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Abstract

A family of stall-regulated wind turbine blades was designed, with a rotor diameter from
44 m to 154 m, and rated power from 1.2 MW to 22.6 MW. These blades were optimized
for installation atop a deepwater floating platform, using a simplified cost model. The opti-
mization used a numerically-smooth airfoil model and a linear dynamic stall method, with
structural dynamic analysis performed in the frequency domain. The analysis methods
were validated by comparison against airfoil data, nonlinear calculations, and full-scale
measurements on operating turbines. Results show that a deepwater offshore turbine
should have a high rated power in comparison to the swept area (approaching 1 kW per
square meter), and a thick blade (t/c of 0.30 over most of its length) with spars made
of carbon fiber. The blade twist and airfoil properties can be tuned such that the blade
behaves well in stall, with high flapwise and edgewise damping throughout the operating
range.
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Chapter 1

Introduction

If an existing commercial wind turbine is installed offshore in deep water,1 the cost-of-
energy will be higher than that of a typical onshore wind turbine. There are three reasons,
which are unavoidable:

1. a more elaborate support structure is required;

2. the electrical power may need to be transmitted over a long distance; and,

3. installation, maintenance, and repair involve costly marine operations and require a
favorable weather window.

Thus it is worth exploring the “corners” of design space, with the thought of minimizing
these additional costs. The most economical offshore turbine is likely to be different from
existing onshore turbines.

It is proposed that passive stall regulation should be revived as a possibility for large
offshore wind turbines. The reason is the simplicity of the mechanical systems: the simplest
stall-regulated, direct-drive (no gearbox) turbine has only one primary moving part: the
aerodynamic rotor/driveshaft/generator rotor. A brake system and yaw drive are also
needed, but they are actuated infrequently. Perhaps this simplicity could be leveraged to
reduce maintenance requirements and downtime.

Although a modern stall-regulated turbine is likely to have three blades, it will not
simply be a return to the “Danish design” of the 1990’s.2 It will incorporate the next-
generation technology for materials, structures, generators, electrical systems, and so forth,
that has been developed over the last decade for pitch-regulated turbines. The blades and
systems will be optimized for operation offshore; for instance, the generator will have a
high rated power in comparison to the swept area of the rotor, and the aerodynamic profile
of the blades will provide the greatest possible damping, to minimize dynamic loads on the
support structure. For installation offshore, the rotor will need to be large, because of per-
unit costs associated with installation, maintenance, and grid connection operations in the
marine environment. The results in Chapter 6 indicate that, at a minimum, the diameter

1A depth greater than a few tens of meters
2For instance, Hau [85] pp 108-112 describes the Danish type of turbine. The reason that a three-bladed

rotor is preferable over a two-bladed rotor is that with three blades the rotor is dynamically balanced,
whereas with two blades it is not: its inertia varies with the rotor azimuth angle. This leads to fluctuating
bending loads on the support structure, unless a teeter hinge is used. Such a hinge is a doubtful proposition
for very large blades, especially under anomalous conditions where the rotor hits the limits of the teeter
angle.

11
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will be on the order of 80 m, which is roughly equal to that of the largest commercial
stall-regulated turbine to date, the Bonus 2MW.

In order to begin conceptual design of the support structure, one needs to have an esti-
mate of the mass and load spectra at the tower-top. On the other hand, conceptual design
of the rotor can be conducted without detailed knowledge about the support structure. It
can be assumed that there is enough leeway in the design to tune the rotor and support
structure dynamics at a later stage in the development process.3 Thus, it is natural to
begin by designing the rotor.

Conceptual design requires rapid calculations, so that the analyst can explore design
space, whether manually or with help of a numerical optimization algorithm. Existing
nonlinear, time-domain software is not ideally suited for conceptual design, because the
calculation time is long,4 and the nonlinear nature of the calculations means that phe-
nomena may not always have an obvious cause-effect relationship to design parameters.

Linear, frequency-domain analysis is ideal in this latter respect, because one can con-
sider each frequency independently,5 and there is always a straightforward relationship
between the input design parameters and output response. On the other hand, in predict-
ing a nonlinear phenomenon like stall, the perturbations from the mean operating state
must be small in order for linear analysis to be accurate. The definitions of “small” and
“accurate” are not well-defined at the conceptual design phase. What matters, in the end,
is that the resulting map of design space is useful; that the trends with design parameters
do not mislead the analyst.

This thesis addresses the above needs: a family of stall-regulated rotor blades was de-
signed and optimized for the deepwater offshore environment; and linear analysis methods
were developed and validated for this purpose. The methods and results are documented
thoroughly; for the reader’s convenience, an effort has been made to focus upon the novel
content in the main body of the text, while descriptions of established methods have been
placed in the appendices.

The first main contribution of this thesis is the extension of existing frequency-domain
analysis methods to provide better predictions for stall-regulated blades. Appendix D
presents the overall analysis procedure. It begins with a stochastic description of the
incoming wind turbulence, and ends with fatigue cycle counts of stresses at points along
the blade. Most of this procedure is based upon existing stochastic methods, such as those
described in textbooks by Rao [146], in general, or Burton et al. [22], for wind turbines
in particular. But it was required to derive two new additions to the existing methods,
which are necessary in order to obtain reasonably accurate predictions of blade vibration.
First, the tangential (in-plane) component of turbulence must be modelled, in addition to
the axial component. Second, it is necessary to consider dynamic stall when calculating
the excitation and damping of blade vibration.

The linearization of dynamic stall is not new; Hansen et al. [79] provide a precedent.
However, Chapter 3 presents a new method that is more intuitive, whereby the effects
of dynamic stall on an airfoil section can be estimated directly from a standard curve
of the lift coefficient versus angle-of-attack. In addition, it is proposed to use different

3If appropriately tuned, the dynamics of the support structure will have little influence on the loads
on the blades. The rotor, however, is one of two sources of loads (the other being waves) that govern the
design of the support structure.

4A typical stochastic dynamic analysis of one load case takes a couple minutes, and something like 12
load cases, at a minimum, are required for a lifetime fatigue analysis.

5In particular, one can focus on the response at a handfull of key frequencies: the first few multiples of
the rotor rotational frequency, and structural natural frequencies.
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linearized equations for the excitation and damping of vibration. Chapter 3 closes with
a comparison of the frequency-domain methods against measurements collected on two
stall-regulated turbines, as well as the predictions from several nonlinear, time-domain
codes. It is demonstrated that linear methods can predict blade dynamics to an accuracy
that is sufficient for conceptual design, but not for detail design or certification.

The second main contribution of this thesis is the design and optimization of a family
of stall-regulated blades for deepwater offshore wind turbines. A Fortran program was
written which optimizes the design of a stall-regulated blade, based upon the cost model
of Chapter 4. This cost model represents a floating offshore wind turbine. It is a zero-
design-parameter cost model: all costs are estimated in closed-form, based upon load
components (both static and dynamic) at the rotor hub. This keeps things simple, and
prevents contamination of the blade optimization by fictitious resonance problems between
the rotor and (untuned) support structure.

Chapter 2 describes the airfoil model used in the optimization. This model defines the
coefficient curves based upon only three parameters: the Reynolds number, thickness-to-
chord ratio, and a scalar “shape” parameter, which can be thought of as specifying whether
the airfoil is low-lift, high-lift, or somewhere in between. The model is empirical – basically,
it is a fancy interpolation algorithm – based upon a thorough survey of published airfoil
data. Particular attention was paid to the way in which drag increases as the airfoil
progresses into stall; this transition is important for a stall-regulated blade.

The appendices document other important aspects of the analysis, such as the struc-
tural model, material properties, and load cases. In these areas, established methods were
found to be adequate.

The optimum rotor blades for a deepwater offshore turbine are presented in Chapter 6.
These blades have several features that differ from historical stall-regulated blade designs.
In particular, the North Sea wind climate calls for higher-than-usual rated power, in the
vicinity of 1,000 W/m2. Using a high rated power minimizes the rotor diameter, and
hence the tower height, which is critical for a floating wind turbine. Also, the particular
aerodynamic profiles of the blades give very good stall properties: the rotational speed
remains nearly constant above the rated windspeed, and aerodynamic damping is high
throughout the operating range.

It is recommended to continue development of a 100 m diameter stall-regulated turbine
with a 7.5 MW rated power, based upon the designs of Chapter 6.
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Chapter 2

A Smooth Airfoil Model for
Optimization Analyses

Blade optimization (whether automated or manual) involves a large number of iterative
calculations. For this to be manageable, the turbine must be modelled in a simplified
manner, with the design completely specified by only a few parameters.1

Gradient-based methods are used for the blade optimization studies, as described in
Section 5.4. In order for gradient-based methods to function reliably, the turbine model
must be “smooth”, with a continuous first derivative.2

The common method of representing airfoil behavior is to interpolate force coefficients
from a look-up table. It is feasible to use a smooth interpolation, such as a spline, with
the coefficient data associated with a given airfoil. But it is not straightforward to inter-
polate between the coefficient datasets associated with different airfoils. Some analytical
framework is required in order to make sure that intermediate values are realistic.

Thus, in this chapter, the challenge is to select a handful of design parameters that
describe a smooth model of the aerodynamic properties of a blade. And yet, by varying
these few parameters, we must also be able to obtain properties that span the range of
modern, high-performance airfoils which could be candidates for a wind turbine blade.

The approach to determining airfoil properties could be either empirical or theoretical.
Here, an empirical approach is used. A simple, parameterized model is fit to representa-
tive test data, capturing the important trends. (References to airfoil data are provided
throughout this chapter.)

There exist established software codes that, given an external aerodynamic profile,
determine the state of flow about the airfoil, the pressure distribution, and thus the net
forces. XFOIL3 is an example. Such a theoretical approach is not used here, because the
details of the external aerodynamic profile are beyond the scope of the optimization. It
is sufficient to identify the optimum behavior from the range of realistic behaviors, given
the basic thickness and length dimensions of the airfoil. Determining a detailed external
profile that produces the desired behavior can be left to a later stage in the design process.

1Hjort et al. [91] provide a good discussion of the simplifying assumptions which allow the number of
active design parameters to be reduced.

2If the gradient is discontinuous, it is not certain that a gradient-based method will reach a true (local)
optimum. One cannot be sure that the optimization is not “stuck” at a non-optimum point due to an
inaccurate estimate of the gradient.

3Drela [46] is an example. XFOIL can also solve the inverse problem: given a state of flow, determine
the external profile.

15
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As mentioned in Appendix B, it is standard to represent airfoil behavior by a set of
three non-dimensional force coefficients: the lift coefficient CL, drag coefficient CD, and
moment coefficient CM . These are based upon typical wind-tunnel data, which is collected
under two-dimensional, quasi-steady flow conditions. A series of simplifying assumptions
and analytical modifications are necessary in order to correct the measured coefficients
to those representative of an operating turbine. Section 2.1 discusses these modifications.
(Section 2.4 and Chapter 3 describe methods to adjust the coefficients to account for
rotational and dynamic effects, respectively.) Section 2.2 describes a simplified set of
parameters upon which the coefficients depend. Section 2.3 presents a smooth model
specifying the coefficients in terms of the parameters.

2.1 Modelling Airfoil Behavior by Two-Dimensional, Quasi-
Steady Coefficients

The aerodynamic forces on an airfoil are predominantly fluid pressure forces, and therefore
can act only normal to the external surface. Referring to the airfoil coordinate system
(Figure A.1), it is evident that out of the six possible force components on a segment of
the blade, we need consider only (F a)X , (F a)Y , and (Ma)Z .4

The pressure distribution around an airfoil is a function of the profile of the external
surface, the time history of the incoming air velocity vector, and curvature of the relative
flow. There are also changes in the local flow pattern, and hence the pressure distribution,
near an abrupt discontinuity in the airfoil geometry, like the tip of a blade.

Blade tip effects are accounted for by the Prandtl factor (Section B.1.2). As for time-
history and flow-curvature effects, these are handled by a combination of semi-empirical
methods and simplifying assumptions, discussed in Sections 2.1.2 through 2.1.4. As input,
these methods require the steady relationship between the local velocity vector in the plane
of the airfoil section, and airfoil forces (F a)X , (F a)Y , and (Ma)Z .

2.1.1 Airfoil Coefficients

The steady relationship between the local velocity vector and airfoil forces is established
by experiment in a wind tunnel. A model airfoil is placed in a uniform flow of a known
velocity, density, and viscosity, and the net forces and moments are measured with the
airfoil in various attitudes. The airfoil is continuous with the walls of the wind-tunnel, or
otherwise has large plates at its edges, such that there are no tip effects. We shall refer to
the measured forces as two-dimensional (2D), because they are representative of a section
through a wing of infinite aspect ratio; although it should be kept in mind that the flow
– especially the vortices shed when the airfoil is stalled – is not literally two-dimensional.

Wind tunnel data is reported in non-dimensionialized form, and it is assumed (justified
by experience) that the results are independent of length scale. The magnitude of the
incoming velocity, as well as the ambient air conditions, are accounted for by reporting

4The viscosity of air is low, and under most operating conditions the spanwise component of local flow
velocity (V a)Z is small in relation to the magnitude of the velocity in the plane of the airfoil section,√

(V a)2X + (V a)2Y . Therefore, skin friction drag in the spanwise direction is negligible. The chordwise
component of velocity is high, therefore skin friction is visible in the drag coefficient at low angles-of-
attack.
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the data as a function of Reynolds number:

Re =
ρc|V |
µ

,

where ρ is the air density, c is the airfoil chord length, |V | =
√

(V a)2
X + (V a)2

Y , and µ is
the air viscosity. The direction of the incoming velocity is accounted for by reporting the
data as a function of angle-of-attack α = tan−1(V a)Y /(V a)X .

(F a)X , (F a)Y , and (Ma)Z are non-dimensionialized by:

CL =
−(F a)X sinα+ (F a)Y cosα

(1/2)ρcL |V |2
;

CD =
(F a)X cosα+ (F a)Y sinα

(1/2)ρcL |V |2
;

and:

CM =
(Ma)Z

(1/2)ρc2L |V |2
;

where L is the length of the airfoil segment over which the forces are measured. The
moment is calculated and reported with reference to the point on the chordline that is c/4
behind the leading edge.

Thus, for each type of airfoil on the wind turbine, CL(Re, α), CD(Re, α), and CM (Re, α)
must be obtained for all ranges of Re and α that will be encountered during the analyses.5

The Reynolds number is a function of the density and viscosity of the ambient air.
These vary with temperature, altitude, and weather conditions. The ratio ν = µ/ρ could
be expected to vary by roughly ±20% over the range of conditions encountered by a
typical wind turbine.6 However, airfoil forces vary weakly with Reynolds number, as seen
in Section 2.2.2. Therefore, airfoil forces will vary by not more than a few percent due to
changes in ambient air properties. To simplify the analysis, it is assumed that the density
and viscosity of the air are constant, and equal to nominal sea-level values of 1.225 kg/m3

and 1.789× 10−5 kg/ms, respectively.
It is also assumed that the maximum speed of the incoming airflow, including the rota-

tional speed of the blade, is less than Mach 0.4.7 This is below the transonic range, and we
can neglect compressibility, whose first-order effects on pressure forces are proportional to
1/
√

1−M2.8 Neglecting compressibility simplifies the aerodynamic analysis considerably.

5This seems obvious, however it is surprising how difficult it is to find a complete set of airfoil data for
wind turbine analysis; the load cases in this report require data in the range 0◦ ≤ α ≤ 90◦, with Re on
the order of 1× 106 to 6× 106.

6White [190] Table A-2 gives ν = 1.16 × 10−5, 1.50 × 10−5, and 1.79 × 10−5 m2/s at temperatures of
-20◦C, 20◦C, and 50◦C, respectively, and a pressure of 1 atm.

7A blade tip speed of 120 m/s and maximum operating gust of 40 m/s produces a flow velocity of 126
m/s; considering the speed of sound to be 340 m/s at sea-level (Bertin and Cummings [13]), the flow is
Mach 0.37. Existing wind turbines tend to have tip speeds in the vicinity of 70 m/s, and the greatest tip
speed among the designs in Chapter 6 is 101 m/s.

8Bertin and Cummings [13] pp 470-473; Abbott and von Doenhoff [1] pp 256-257
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2.1.2 Dynamic Stall

The majority of experiments characterize the static behavior of an airfoil; the airfoil is
held in a fixed position while the forces are measured. These are the force coefficients that
are typically published.9

When the direction of the incoming velocity changes, due to phenomena like atmo-
spheric turbulence, blade vibration, wind shear, and tower shadow, the pressure forces on
the airfoil do not change instantaneously; there is a time delay between the change in flow
and the change in force. This is particularly evident in the range of partial stall: regime
(B) in Figure D.1.

A “dynamic-stall” method is required to account for this time delay. Such methods
modify the forces such that they no longer follow the quasi-steady relationship with angle-
of-attack. As part of this research project, a simple, semi-empirical dynamic stall method
has been adapted to the frequency domain. The discussion of this is quite involved, and
has been given its own chapter in this report: Chapter 3.

Although the effects of the time delay are visible on lift, drag, and moment, the effect
on the lift force is most significant. The dynamic stall calculation is thus applied only
to the lift coefficient CL. The drag and moment coefficients CD and CM assume their
quasi-steady values.

2.1.3 Dynamic Inflow

Dynamic stall describes the time delay in local airfoil forces due to local changes in flow
conditions. Dynamic inflow, on the other hand, is a delay in the response of the induced
velocity when a global change in operating conditions occurs.10 (A global change would
be, for example, a change in collective blade pitch angle.) Dynamic inflow is not modeled
as part of this research project, justified by the following discussion.

Section D.1 describes the approach taken for dynamic analysis: first, loads under the
mean flow conditions are calculated based upon the BEM method. Then, fluctuations
with respect to the mean are calculated using the airfoil coefficient approach described in
Section D.5. This approach assumes that there is no change in the induced velocity.

When induced velocity is held constant, the angle-of-attack along the blade follows
fluctuations in the incoming velocity according to the vector triangle shown in Figure
D.20. In other words, the blade sees the full effect of the fluctuation in incoming velocity.
However, if the wake is given time to adapt to the new flow conditions, then the induced
velocity changes in a manner which tends to reduce the variation in angle-of-attack.

For example, Snel and Schepers [160] describe a series of experiments on the Tjæreborg
wind turbine, in which the blade pitch angle was changed suddenly. The data shows an
initial spike in the aerodynamic load, followed by a relaxation to a new steady-state value,
over a timescale of roughly D/V∞. The spike is the initial change in the angle-of-attack in
response to the change in the flow vector – the “full effect of the fluctuation” mentioned
above. The relaxation indicates the change in global induced velocity.

From the perspective of fatigue calculations, the dominant motions of the blade occur
at the rotational frequency, which is characteristic of wind shear and turbulence sampling
(Section D.1), and the first flapwise vibrational mode. Both of these have timescales

9For example, Abbott and von Doenhoff [1]
10Dynamic inflow is related to the vortical structure of the wake. When the blades are stalled, the

vortical structure becomes uncertain, and dynamic inflow is expected to be negligible. Snel and Schepers
[160] did not study stalled conditions.
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shorter than D/V∞ under most operating conditions. Indeed, Snel and Schepers concluded
that the “dynamic inflow effects for coherent wind gusts appeared to be very limited. This
was derived from theoretical considerations, and confirmed by wind tunnel measurements.”
([160] p 6)

Thus, it is acceptable to neglect dynamic inflow when performing approximate, frequency-
domain fatigue calculations. This is especially true for a stall-regulated turbine, which does
not undergo changes in blade pitch.

2.1.4 Stall Delay

Flow curvature causes the phenomenon of stall delay. Near the root of the blade, where the
radius of rotation is rather small, the incoming flow field is curved, from the perspective
of the rotating blade. When flow begins to separate from the trailing edge of the airfoil,
the curvature induces a pressure gradient which results in a radial (spanwise) component
of flow velocity. The result is that flow remains attached to the leading edge at higher
angles-of-attack than under two-dimensional flow conditions.11

Lindenburg’s “centrifugal pumping” method was implemented to correct nominal, two-
dimensional airfoil coefficients for rotational effects. This method, and the reasons it was
selected, are discussed in Section 2.4.

2.1.5 Comments on Stall Behavior and Drag Data

Published drag data tends to be truncated to angles-of-attack below the point of initial
stall. The lack of data is not due to lack of experiments, but rather the convention of
publising the drag data as a polar with the lift coefficient.

It is conventional12 in the aerospace industry to plot the lift coefficient CL as a function
of angle-of-attack, and then to present the drag coefficient CD as a drag polar, which is
CD plotted against CL. Some wind-turbine related publications have also followed this
convention.13

Figure 2.1 shows an example lift curve and drag polar, in the aerospace convention,
for the S809 airfoil.14 By setting the CD scale of the drag polar so that the lowest values
of drag can be read clearly, the plot ends up being truncated to data within the range
−10◦ < α < 12◦. Thus, while drag forces were measured up to, say, ±20◦, through the
critical range of stall, these data have been lost when the plot was drawn.

Figure 2.2 shows the full drag polar between ±20◦. (Beyond this range, the S809 airfoil
is in deep stall, and its behavior can be predicted fairly well by theory based upon a flat
plate.) This curve is awkward, hard to read at the lowest values of drag, and multiple-
valued as a function of lift. It is also cumbersome to convert this plot into tabulated data,
as a function of angle-of-attack, for use in computer analyses.

For wind turbine analysis, particularly stall-regulated turbines, drag data should be
plotted as a function of angle-of-attack. It should be plotted twice, once with an indepen-
dent Y -axis scale that provides a close-up on the low-drag range; and again on the same
scale as the lift curve. (Examples of such plots can be found throughout this chapter.) Use
of this plotting convention allows all the drag measurements to be included, and makes it
easy to tabulate the data for computer analyses.

11Lindenburg [115] provides a brief discussion of the physics in Section 4
12Abbott and von Doenhoff [1]
13Somers [162]; Selig and McGranahan [157]; Timmer and van Rooij [178]
14Data is from Lindenburg [115]
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Figure 2.1: Lift coefficient curve and drag polar for the S809 airfoil
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Figure 2.2: The full drag polar for the S809 airfoil

Nine publications were found that include deep-stall drag data for airfoils, in the
relevant range of Reynolds numbers; these are summarized in Table 2.1. In addition,
Devinant et al. [39] present data for the NACA 654-421 airfoil at Re = 4 × 105; and
Tangler and Ostowari [174] for the NACA 4418 airfoil at Re = 2.5 × 105, but these
Reynolds numbers are a bit low. Also, several early (pre-1940) NACA test reports provide
full drag data for a variety of airfoils, however this drag data is not to be trusted.15

15Jacobs and Abbott [96]

Table 2.1: A summary of references presenting lift and drag data through angles-of-attack
to full stall

Reference Airfoil(s) Re range
Bak et al. [6] NACA 63-415 1.6× 106

Bloy and Roberts [16] NACA 632-215 5.5× 105

Fuglsang et al. [55] Risø-1 1.6× 106

Gupta and Leishman [74] S809 1× 106

Lindenburg [115] S809 6.5× 105 and 1× 106

McGhee and Bingham [122] (unnamed, 17%) 2× 106 to 1.7× 107

Reuss et al. [148] NACA 4415 6× 105 to 2× 106

Sheldahl and Klimas [158] NACA 0012, 0015 ≤ 7× 105

Timmer [177] NACA 0018 1.5× 105 to 1× 106
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2.2 Parameters Defining Airfoil Characteristics

The relationship between airfoil coefficients CL, CD, and CM , and inflow parameters Re
and α, depend upon the external profile of the airfoil. The goal is a broad survey of
potential rotor designs; therefore, as part of the design process it is of interest to survey
the range of possible airfoil profiles. But there are an infinite number of profiles, and
behavior can differ dramatically from one profile to another.16 So simplifying assumptions
must be made in order to bound the problem.

Furthermore, it is not trivial to predict analytically how a given airfoil will behave in
stalled flow conditions.17 Therefore the survey is limited to airfoils for which at least a
partial set of data is available in the literature. (This is not a bad thing, because it helps
greatly to bound the problem.)

A survey of airfoil data18 shows that the behavior of an airfoil – CL, CD, and CM
curves as a function of angle-of-attack – can be reasonably characterized according to the
following five variables:

1. Reynolds number.

2. Thickness-to-chord ratio.

3. Camber.

4. Stall behavior, by which is meant the way in which flow separation progresses as
a function of angle-of-attack. We can call this the airfoil “shape”, because stall
behavior depends upon the details of the airfoil profile.

5. Surface contamination; in particular, leading-edge roughness.

The peak lift-to-drag ratio of cambered airfoils is higher than that of symmetric airfoils,19

thus it is always preferable to use cambered airfoils on a horizontal-axis wind turbine, where
the angle-of-attack is positive during normal operation. Camber can thus be omitted as
an active design parameter.

The remaining four parameters are discussed in detail in sections below. However,
before proceeding, it is worth digressing in order to describe the relationship between flow
separation on the low-pressure surface and characteristics of the lift, drag, and moment
coefficient curves. Understanding the progress of flow separation during stall provides an
estimate of the relationship between lift and drag, which can be used as a guide to fill in
missing data.

2.2.1 Flow Separation and Force Coefficients

Many of the features in the lift, drag, and moment coefficient curves can be understood in
terms of the position of the separation point along the low-pressure surface. An estimate of
the separation-point location provides guidance for appropriate values of the lift, drag, and
moment coefficients, where data is lacking. In particular, it can be used to help estimate

16Abbott and von Doenhoff [1]
17This is particularly true for a realistic environment with a contaminated leading edge. Compare

measured and calculated values of airfoil coefficients for an airfoil with leading-edge roughness; Fuglsang
et al. [55] Figures 5-3 through 5-6. Predictions of turbine behavior beyond rated windspeed would differ
significantly if calculated coefficients were used instead of measured coefficients.

18Citations are given in the following detailed discussions.
19Abbott and von Doenhoff [1]



2.2. AIRFOIL PARAMETERS 23

Figure 2.3: Definition of the separation point

coefficients in the range of transition to full stall, where the airfoil stops behaving as an
airfoil, and starts behaving as a flat plate. Here, the concept of the separation-point
position is introduced, so that it can be used in the discussion of airfoil data. In Chapter
3, the separation-point position is used as a parameter in the calculation of dynamic stall
effects.

Leishman and Beddoes [114] show that the Kirchhoff-Helmholtz model of flow separa-
tion gives a good prediction of the trend in normal force.20 In this model, the relationship
between the lift force and the location of the separation point is:

CL =
1
4
γa(α− αz)(1 +

√
s)2; (2.1)

or, rearranging:

s =

(
2

√
CL

γa(α− αz)
− 1

)2

. (2.2)

Here, CL is the actual lift coefficient, including flow separation, while γa is the slope
dCL/dα when flow is attached. A typical value for γa is 2π rad−1, or about 0.11 deg−1,
based upon theory.21 The angle-of-attack at zero lift is αz, typically a few degrees below
zero for cambered airfoils. Thus, γa(α− αz) is the lift coefficient at the angle-of-attack α
that would be obtained if flow did not separate. The separation-point location, sketched
in Figure 2.3 is denoted s.22 It has a value of 1 when flow is fully attached, and 0 when
flow is fully separated; a value between 0 and 1 indicates that flow is attached near the
leading edge, and separated near the trailing edge.

Equations 2.1 and 2.2 are valid in the range 0 ≤ (α − αz) ≤ 4CL/γa. Outside of this
range, s is constant, either 0 or 1.23

Figures 2.4 through 2.6 show the separation-point position calculated from the lift
coefficient curves of three different airfoils. Not surprisingly, on airfoils that exhibit smooth

20. . . or lift force, in the case of small angles-of-attack. Strictly speaking, the Kirchhoff-Helmholtz equa-
tion applies to the normal force; Gupta and Leishman [74]. However, Leishman and Beddoes [113] and
Hansen et al. [79] make the approximation CL ≈ CN , using the Kirchhoff-Helmholtz equation for the lift
force. This is the tactic that we take here, because it is simpler, and adequately accurate over the relevant
range of angles-of-attack (roughly 10◦ to 30◦).

21Abbott and von Doenhoff [1] pp 69, 130, and 131
22It is typically denoted f in the literature, however in this report f is reserved for a frequency of

oscillation.
23For −4CL/γa ≤ (α − αz) < 0, Equations 2.1 and 2.2 are applicable, with the separation point now

moving along the “lower” surface of the airfoil; but we will not worry about this case, which is not relevant
for the load cases in this report.
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Figure 2.4: The position of the separation point as a function of angle-of-attack, calculated
from Risø-1 data [55]

stall behavior, flow begins to separate at a low angle-of-attack (and lift), and the separation
point progresses smoothly from the trailing to leading edge with increasing angle-of-attack.
By contrast, on airfoils that stall sharply, flow tends to remain attached to higher angles-
of-attack (and lift), but then separation progresses rapidly.

The figures demonstrate that there is a fairly consistent relationship between the lift
and drag curves, because drag, like lift, is dominated by flow separation. Drag increases
significantly once flow begins to separate, especially so beyond the point of maximum
lift, as the separation point approaches the leading edge. Thus, the trend in drag can be
related to the trend in lift: smoothly-stalling airfoils show a smooth increase in drag with
increasing angle-of-attack throughout the range of flow separation, while sharply-stalling
airfoils show an abrupt rise in drag corresponding to the drop in lift.

At high angles-of-attack, when flow is fully separated (α− αz > 4CL/γa, with s = 0),
the lift and drag of the airfoil can be estimated by the equations for a flat plate. Lindenburg
[115] gives (and validates) the following formulas, which contain a correction for the aspect
ratio of the blade:

Cn = CD,max

[
1

0.56 + 0.44 sinα
− 0.41(1− e−17/AR)

]
sinα; (2.3)

Ct = |Cn|
√
rnose

c
(0.3− 0.55 cosα). (2.4)

Then, CL = Cn cosα−Ct sinα, and CD = Cn sinα+Ct cosα. In Equation 2.4, rnose is the
(approximate) radius of the rounded leading edge of the airfoil, and c is the chord length.

Airfoil behavior is well-defined when flow is fully attached (s = 1) or fully separated
(s = 0). It is the nature of the transition between attached and separated flow, 0 < s < 1,
which determines the behavior of a stall-regulated turbine. Power output and aerodynamic
damping are sensitive to the lift and drag in the transition region.
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Figure 2.5: The position of the separation point as a function of angle-of-attack, calculated
from NACA 0012 data [158]

Figure 2.6: The position of the separation point as a function of angle-of-attack, calculated
from S809 data [115]
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Figure 2.7: An example of the effect of Reynolds number on airfoil coefficients; data from
Sheldahl and Klimas [158] (Re = 7× 105 and 1.8× 106) and Abbott and von Doenhoff [1]
(Re = 6× 106)

2.2.2 Reynolds Number

A Reynolds number range of 5× 105 through 6× 106 was considered during the survey of
data. For Re < 5×105, the characteristics of the flow about an airfoil may be significantly
different than for higher Re,24 and such a low Re is not relevant for utility-scale wind
turbine analysis. Data is sparse for Re > 9 × 106, and the difference in force coefficients
between Re = 6 × 106 and 9 × 106 is typically small.25 The maximum Reynolds number
expected during the present optimization analyses is about 8 × 106, for a tip airfoil with
a 1 m chord traveling at 120 m/s.

In the range 5× 105 ≤ Re ≤ 6× 106, an increase in Reynolds number:

1. delays stall to a higher angle-of-attack,

2. increases the peak lift coefficient, and

3. decreases the minimum drag coefficient.

Figure 2.7 shows data for the NACA 0012 airfoil, which has been tested over a large range
of Reynolds numbers.

The NACA 0012 is a sharply-stalling airfoil. There is some evidence that for smoothly-
stalling airfoils the effect of Reynolds number on the lift curve – in particular, the peak lift
coefficient – is not as pronounced. Figure 2.8 shows an example, for the NACA 654-412
airfoil.

According to Equations 2.3 and 2.4, for fully-separated flow around a flat plate, the
lift and drag coefficients do not depend on Reynolds number. Measurements by Sheldahl

24Selig and McGranahan [157]
25Abbott and von Doenhoff [1]
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Figure 2.8: An example of the effect of Reynolds number on the force coefficients of a
smoothly-stalling airfoil; data from Devinant et al. [39] (Re = 4 × 105 and Abbott and
von Doenhoff [1] (Re = 3× 106 and 6× 106)

and Klimas [158] and Devinant et al. [39] indicate that this is a reasonable assumption for
Reynolds numbers between 2× 105 and 1.8× 106. It is assumed that the same applies to
higher Reynolds numbers as well.

2.2.3 Thickness-to-Chord Ratio

When flow is attached, and the leading-edge surface is rough, thick airfoils tend to have a
slightly higher minimum drag than thin airfoils.26

Thick airfoils also tend to have a slightly lower slope of the lift coefficient curve.27

However, data from, for example, van Rooij and Timmer [185], and Baker et al.28 indicate
that it is possible to design very thick airfoils (t/c up to 0.4) which maintain a slope of
near 0.11/deg (the theoretical flat-plate value). Thus, it is assumed that the slope of the
lift coefficient curve, when flow is fully-attached, is 0.11/deg, irrespective of thickness.

For t/c > 0.12, increasing t/c tends to reduce the peak lift coefficient, for airfoils
otherwise having the same profile.29

Data indicates that thick airfoils tend to stall differently than thin airfoils. In com-
parison with a thin airfoil, a thick airfoil tends to reach its peak lift coefficient at a lower
angle-of-attack; but then, with increasing angle-of-attack, the separation-point position
progresses to the leading edge more slowly.

Figure 2.9 shows an example of this change in stall behavior as a function of t/c. A 30%

26Abbott and von Doenhoff [1] pp 152-153
27Abbott and von Doenhoff [1] pp 130-131; although the degree to which this is true depends upon the

details of the airfoil profile.
28References [7] and [8]
29Abbott and von Doenhoff [1] pp 132-135; although there are exceptions for specific types of airfoil

profiles.
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Figure 2.9: An example of the effect of t/c ratio on behavior approaching deep stall; DU
airfoil data is from Timmer and van Rooij [178] Figure 22, and NACA 4415 data is from
Reuss et al. [148] Figure 10

thick airfoil, DU 97-W-300, is compared against two thinner airfoils (15% thick NACA
4415, and 18% thick DU 96-W-180). (Similar trends can be observed in the data of Table
2.2, in Section 2.3.)

2.2.4 Airfoil Shape

In Section 2.2.3, it was described how airfoils with different t/c ratios exhibit very different
stall behavior. For a fixed t/c ratio, it is also possible to elicit different types of stall
behavior by altering the airfoil profile. The difference can be dramatic.

Figure 2.10 compares two airfoils with nearly the same thickness, chord, and Reynolds
number. Flow about the NASA LS(1)-0413 airfoil30 remains fully attached through an
angle-of-attack of roughly 10◦, at a high maximum lift coefficient (for this Reynolds num-
ber) of about 1.65. As the angle-of-attack is increased further, flow begins to separate
from the trailing edge; but at an angle-of-attack of about 14◦, flow separates from the
leading edge, and the airfoil abruptly enters deep stall.

Contrast this behavior with that of the Risø-1 airfoil.31 On this airfoil, flow begins to
separate from the trailing edge at an angle-of-attack of approximately 6◦. The separation
point then proceeds smoothly towards the leading edge as a function of angle-of-attack;
so smoothly, in fact, that it is hard to identify the point at which flow is fully separated.

The shape parameter is defined as a number between 0 and 1, with 0 representing
low-lift, smoothly-stalling airfoils, and 1 representing high-lift, sharply-stalling airfoils.

30McGhee and Beasley [124]
31Fuglsang et al. [55]
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Figure 2.10: An example of the effect of airfoil shape on lift and drag coefficients
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Figure 2.11: An example of the effect of leading-edge roughness on airfoil coefficients; data
from Fuglsang et al. [55] (Risø-1) and McGhee and Beasley [124]

2.2.5 Surface Contamination

An airfoil is very sensitive to the condition of its exterior surface. This is particularly true
for airfoils that are designed to operate with a laminar boundary layer, such as the NACA
6-series,32 and many wind turbine airfoils.33

What is a contaminated surface? It is a surface with small irregularities which cause
the boundary layer to become turbulent closer to the leading edge than would be the case
for a pristine surface. Surface contamination also increases the skin friction drag.

The irregularities need not be large in order to have a detrimental effect. Referring to
Abbott and von Doenhoff [1]: “Dust particles adhering to the oil left on wing surfaces by
fingerprints may be expected to cause transition at high Reynolds numbers. Transition
spreads from an individual disturbance with an included angle of about 15 degrees. A
few scattered specks, especially near the leading edge, will cause the flow to be largely
turbulent. This fact makes necessary an extremely thorough inspection if low drags are to
be realized. Specks sufficiently large to cause premature transition can be felt by hand.”
(pp 157-158)

Figure 2.11 shows how surface contamination alters the lift and drag coefficient curves.
The maximum lift coefficient drops, and flow separation initiates at a slightly lower angle-
of-attack.34 The lift curve is relatively unchanged when flow is attached. However, the drag
bucket (the region of minimum drag associated with attached, laminar flow) disappears,
and the minimum drag shifts towards zero angle of attack. This significantly reduces (by
roughly a factor of two) the maximum lift-to-drag ratio.

Figure 2.12 shows an additional example, for the 25% thick DU 91-W-250 airfoil. Once
the flow is mostly separated, leading-edge roughness makes little difference.

32Abbott and von Doenhoff [1] pp 119-122
33For example, Somers [162], and related documents in the development of the NREL S-series airfoils.
34Note that the lift behavior of the LS(1)-0413 is remarkably independent of surface contamination.
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Figure 2.12: An example of the effect of leading-edge roughness on the force coefficients
of a thick airfoil; data from Timmer and van Rooij [178]

When it comes to operating turbines, Berg et al. [12] report measurements on the
Sandia 34-m diameter Darrieus VAWT. The primer coat of paint on the blades did not
adhere well to the aluminum skin, and small flakes of paint detached during operation. The
result was a significantly reduced power output, essentially shifting the power curve by 2
m/s – that is, when the leading edge was rough, 2 m/s additional windspeed was required
in order to produce a given output power, in comparison with the turbine operating with
smooth blades.

For a modern offshore VAWT or HAWT, the concern is not so much paint flaking,
but rather salt accumulation from ocean spray, and long-term deterioration of the exterior
surface (gel coat).35 The blades are accessible only at great cost, and the starting point
for this design project is that the blades are maintenance-free.

We might compare the effects of salt accumulation with those of dust or insect ac-
cumulation. Corten and Veldkamp [31] provide evidence for the hypothesis that insect
accumulation was responsible for an observed decline in power on operating HAWTs (pre-
sumably stall-regulated). The power decline was most pronounced in high winds, and was
up to 25% of the nominal power. It was observed that the decline in power was intermit-
tent – it corrected itself without active maintenance – and it was hypothesized that rain
effectively washes the blades.

Khalfallah and Koliub [103] report on the effect of dust on wind turbine output power.
Measurements were conducted on turbines installed at high-wind sites in Egypt, which
tend to be very dusty. A pitch-regulated and a stall-regulated turbine with the same airfoils
were installed at the same site, and their performance was measured over 9 months, during
which time the blades were not cleaned, and there was almost zero rain. Interestingly,
the stall-regulated turbine showed much greater sensitivity to gust accumulation than
the pitch-regulated turbine; after nine months, the mean power loss of the stall-regulated

35There is also the issue of icing in arctic climates, but this is outside the scope of the current study.
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turbine was slightly over 50%, while the mean power loss of the pitch-regulated turbine
was slightly under 20%.

It is not entirely clear whether existing wind turbine design practice is to assume a
smooth surface (laminar flow) or a contaminated surface (turbulent flow). A review of
published analyses36 indicates that in at least some cases the attached-flow drag coefficients
are clearly those that would be associated with smooth surfaces, and laminar flow.37 On
the other hand, Burton et al. [22], p 169, present drag coefficients that are clearly based
upon a roughened leading edge.

For purposes of this design project, it is assumed that the wind turbine is located
where it rains frequently. However, it is also assumed that the blades are maintenance-free,
never cleaned. Given the sensitivity of the laminar-to-turbulent transition to leading-edge
roughness, it is assumed that the leading edges of the airfoils are lightly contaminated,
and flow about the airfoil is turbulent. Therefore, all analyses conducted as part of this
research project use aerodynamic coefficients that are representative of airfoils with leading-
edge roughness.

There is another good reason to assume a roughened leading edge. If a wind turbine
is designed with rough airfoil coefficients, and ends up behaving “smooth”, it is easy to
de-rate the performance to the desired level; artificial roughness could even be added to
the leading edge. On the other hand, if a wind turbine is designed “smooth” and ends up
behaving “rough”, then it is difficult to increase the performance to the desired level.

2.3 A Smooth Model for Estimating the Behavior of Rep-
resentative Airfoils

A literature review was conducted in order to collect published airfoil coefficient data. The
review spanned from early NACA tests (the reports behind the data in Abbott and von
Doenhoff [1]) through the present. Focus was placed upon airfoils used on wind turbines;
a thickness range of 0.12 ≤ t/c ≤ 0.40; both high and low maximum lift coefficient; airfoils
with leading-edge roughness; and, data spanning the transition between initial and deep
stall.

The collected force coefficient data indicates that it is reasonable to represent the lift
coefficient curve as a piecewise function, illustrated in Figure 2.13. The pieces of the curve
can be related to the state of flow separation on the low-pressure surface:

(A): a straight line. This is the slope when flow is fully-attached.

(B): a segment of a circle. Trailing-edge separation initiates.

(C): a third-order polynomial. The separation point advances towards the leading edge.

(D): a second-order polynomial. The separation point “sticks”, such that flow remains
attached near the leading edge.

(E): a third-order polynomial. The separation point advances all the way to the leading
edge.

36It is not so common to find analyses of wind turbine designs published to the degree of detail that airfoil
coefficients are reported. Of those that were found, we must rule out all analyses that were performed for
purposes of correlation to wind tunnel tests, or other tests in which conditions were closely controlled.

37For example, Jonkman [100] Appendix B, or Hansen [80] pp 11, 79-81.
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Figure 2.13: Representing a lift coefficient curve by piecewise functions

(F): formula for the lift of a flat plate.

Except for region (F), the functions used to represent the pieces of the curve are not
based on theory; they simply look like trends observed in the data. The example shown
in Figure 2.13 is representative of a thick airfoil, and was chosen because each region is
clearly visible; the extents of regions (A) through (F) vary greatly depending upon the
particular airfoil.

The drag coefficient curve is also represented by a piecewise function, as shown in
Figure 2.14. A fourth-order polynomial is used through the range of angles-of-attack
corresponding to regions (A) and (B) of the lift curve. A third-order polynomial is used
for regions (C) through (E), and flat-plate theory is used in region (F). Figure 2.14 is
representative of a thin airfoil; as with lift, the extent of each region of the drag curve
varies depending upon the particular airfoil.

Section 2.3.1 gives the formulas and calculation procedure for the lift and drag coeffi-
cient curves. Section 2.3.2 describes calibration of the curves to match test data.

2.3.1 Formulas Describing the Coefficient Curves

Figure 2.15 shows the control points that are used to calculate the lift and drag coefficient
curves. These points are defined by the following parameters.

The angle-of-attack at zero lift is αz. This defines the attached-flow line, whose slope
γa is assumed to be 0.11/deg (2π/rad).

Maximum lift CL,max occurs at point m1, where the angle-of-attack is αm1. The cor-
responding drag coefficient is CD,m1. (The m subscript can be thought of as “maximum”,
or ”matching point”.)

The lift coefficient curve deviates from the attached-flow line at an intersection point
(αi, CL,i); this intersection point does not need to be input, because it is calculated based
upon αz and point m1.
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Figure 2.14: Representing a drag coefficient curve by piecewise functions

Figure 2.15: Parameters defining the force coefficient curves
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The point of full flow separation is s2, with lift and drag coefficients CL,s2 and CD,s2,
computed by formulas for a flat plate. (The lift coefficient curve associated with a flat
plate is shown as a dashed line in Figure 2.15. The s subscript denotes “stall point”.)

In between points m1 and s2, some airfoils exhibit intermediate stall behavior, with a
drop-off in lift between m1 and a point s1, followed by a plateau between points s1 and
m2. Point m2 lies near, and typically slightly above, s2. Parameters αs1, CL,s1, αm2,
and CL,m1 define this part of the curve. Some airfoils do not exhibit intermediate stall
behavior, in which case points s1 and m2 are coincident with point s2.

Here are the equations defining the lift coefficient curve. The attached-flow line is:

CL = γa(α− αz). (2.5)

The transition between attached flow and point m1 is modeled as a segment of a circle.
The slope dCL/dα must be zero at αm1. An angle is calculated:

θi = atan(γa) + 90◦. (2.6)

Then, the radius of the circle is:

R =
γa(αm1 − αz)− CL,m1

sin θi − γa cos θi − 1
. (2.7)

The intersection point i can then be calculated:

αi = αm1 +R cos θi; CL,i = γa(αi − αz). (2.8)

The equation for lift, αi < α ≤ αm1 is:

CL = CL,m1 −R+
√
R2 − (α− αm1)2. (2.9)

In the range αm1 < α ≤ αs1, a third-order polynomial is used:

CL = c3α
3 + c2α

2 + c1α+ c0. (2.10)

The coefficients are determined by solving the matrix equation:
α3

m1 α2
m1 αm1 1

3α2
m1 2αm1 1 0

α3
s1 α2

s1 αs1 1
3α2

s1 2αs1 1 0



c3

c2

c1

c0

 =


CL,m1

0
CL,s1
γs1

 , (2.11)

where γs1 is the slope dCL/dα at α = αs1. This is calculated as:

γs1 =
CL,m2 − CL,s1
αm2 − αm1

. (2.12)

By Equation 2.32, CL,m2 is itself a function of α, and α = αs1 is used when calculating
CL,m2 for use in Equation 2.12. This is explained as follows. On the portion of the lift
curve αs1 < α ≤ αm2, it was initially decided to use a linear expression for CL:

CL =
(

α− αs1

αm2 − αs1

)
(CL,m2 − CL,s1) + CL,s1, (2.13)

but, referring to Equation 2.32, a good empirical fit was achieved with CL,m2 of the form
A(α − αs1) + B, with A and B constants. Thus, CL is really quadratic in the range
αs1 < α ≤ αm2.
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A third-order polynomial is used in the range αm2 < α ≤ αs2, with coefficients calcu-
lated by:

α3
m2 α2

m2 αm2 1
3α2

m2 2αm2 1 0
α3

s2 α2
s2 αs2 1

3α2
s2 2αs2 1 0



c3

c2

c1

c0

 =


CL,m2

γm2

CL,s2
γs2

 . (2.14)

Here, γm2 is calculated by Equation 2.12; CL,m2 is evaluated using Equation 2.32 with
α = αm2. The slope γs2 is calculated numerically by the deep-stall (flat plate) formulas,
Equations 2.3 and 2.4. These formulas are also used in the range α > αs2.

The drag coefficient curve is split into three segments. In the range α ≤ αm1, a
fourth-order polynomial is used:

CD = K(α− αb)4 + CD,min. (2.15)

where:

K =
(
CD,m1 − CD,min

(αm1 − αb)4

)
(2.16)

Here, αb is the angle-of-attack at minimum drag. (The subscript b refers to the drag
“bucket”.) It is set to a constant 0◦ in the present implementation of the model.

In the range αm1 < α ≤ αs2, a third-order polynomial is used to interpolate between
the drag bucket and the deep-stall curve. The coefficients of this polynomial are calculated
by: 

α3
m1 α2

m1 αm1 1
3α2

m1 2αm1 1 0
α3

s2 α2
s2 αs2 1

3α2
s2 2αs2 1 0



c3

c2

c1

c0

 =


CD,m1

4K(α− αb)3

CD,s2
γD,s2

 . (2.17)

The slope γD,s2 is calculated numerically from the flat-plate formulas, Equations 2.3 and
2.4. These equations are also used for α > αs2.

The moment coefficient is not relevant for the analysis methods used in this project.
Nonetheless, a simple model was implemented. It is similar to the drag coefficient model.
In the range α ≤ αm1, a linear interpolation is used between (α,CM ) = (−10◦,−0.05)
and (αm1,−0.10). A third-order polynomial is then used to transition to the flat-plate
moment coefficient at αs2. The flat-plate formula for the moment coefficient was taken
from Lindenburg [115], p 16.

2.3.2 Calibration of Coefficient Curve Parameters to Test Data

The parameters shown in Figure 2.15 were calibrated to test data, as a function of Re, t/c,
and shape. (Recall, from Section 2.2.4, that airfoil shape is a number between 0 and 1,
specifying the degree to which the airfoil is low-lift and smoothly-stalling, versus high-lift
and sharply-stalling.) Table 2.2 summarizes values of the parameters that were obtained
from the measured lift and drag coefficient curves of various (relevant) airfoils.38

38As mentioned in Section 2.1.5, the most valuable data was that which was in shortest supply: lift
and drag curves spanning the full range of stall. This is why the list in Table 2.2 is fairly short. Typical
presentations of airfoil coefficient data, such as Abbott and von Doenhoff [1], provide only αz, CD,min,
αm1, and CL,max.
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Table 2.2: Measured airfoil coefficient curve parameters

----------------------------------------------------------------------------------------------------------

Airfoil y(Re) y(tc) sh aoa0 Cdb aoam1 Clm1 Cdm1 aoas1 Cls1 aoam2 Clm2 dClda aoas2 Ref

S805 0.00 0.05 0.3 -2.0 0.011 14.0 1.15 14.0 1.15 14.0 1.15 19.0 (a)

S902 0.07 0.00 0.3 -4.5 0.012 13.4 1.15 13.4 1.15 13.4 1.15 18.2 (b)

S903 0.07 0.00 0.2 -2.5 0.009 12.5 1.00 12.5 1.00 12.5 1.00 16.0 (b)

S901 0.07 0.21 0.2 -4.0 0.011 11.2 1.05 11.2 1.05 11.2 1.05 16.5 (b)

NACA 65_4-421 0.00 0.32 0.0 -3.0 21.0 1.25 0.250 21.0 1.25 21.0 1.25 40.0 (c)

FB3500-1750 0.06 0.82 0.5 -4.0 0.100 12.0 1.55 0.200 13.0 1.10 >20.0 1.10 0.000 (d)

Riso-1 0.36 0.04 0.2 -3.5 0.012 12.5 1.10 0.070 12.5 1.10 12.5 1.10 19.0 (e)

NACA 63-415 0.36 0.11 0.2 -3.5 12.5 1.10 0.070 12.5 1.10 12.5 1.10 30.0 (f)

S902 0.47 0.00 0.3 -4.5 0.013 12.0 1.20 12.0 1.20 12.0 1.20 17.5 (b)

S903 0.47 0.00 0.3 -2.5 0.011 12.0 1.05 12.0 1.05 12.0 1.05 17.0 (b)

S805 0.47 0.05 0.3 -2.2 0.010 14.0 1.15 14.0 1.15 14.0 1.15 18.0 (a)

LS(1)-0413 0.47 0.04 1.0 -4.0 0.010 16.0 1.70 16.0 1.70 16.0 1.70 20.0 (g)

LS(1)-0417 0.47 0.18 1.0 -3.0 0.012 14.0 1.75 14.0 1.75 14.0 1.75 18.0 (h)

DU 95-W-180 0.70 0.21 0.0 -3.5 0.008 9.5 1.18 0.025 13.0 1.10 20.0 1.05 -0.007 22.0 (i)

DU 91-W2-250 0.70 0.46 0.0 -3.0 0.010 9.0 1.15 0.025 11.0 1.00 >16.0 1.13 0.013 (i)

FFA-W3-241 0.36 0.43 0.0 -2.5 0.017 10.0 1.18 0.033 16.0 1.00 >25.0 1.00 -0.005 (e)

S814 (rough) 0.33 0.43 0.0 -3.0 0.015 9.0 1.00 15.0 0.90 0.000 (c)

S901 0.47 0.21 0.0 -3.0 0.013 11.2 1.05 11.2 1.05 11.2 1.05 17.5 (b)

S814 (LE trans) 0.33 0.43 0.5 -3.5 0.012 10.0 1.20 12.0 1.05 >20.0 1.10 0.009 (c)

FFA-W3-241 w/VG 0.36 0.43 1.0 -2.5 0.020 12.5 1.40 0.044 16.0 1.20 >25.0 <1.00 0.005 (e)

LS(1)-0421 0.47 0.32 1.0 -3.5 0.013 16.0 1.30 (j)

FFA-W3-301 0.36 0.64 0.0 -2.0 0.022 6.5 0.85 0.033 10.0 0.87 >25.0 0.005 (e)

FFA-W3-301 w/VG 0.36 0.64 0.3 -2.5 0.025 9.0 1.00 0.058 12.0 0.90 >25.0 0.90 (e)

DU-97-W-300 0.70 0.64 0.5 -2.5 0.016 9.0 1.17 0.027 11.0 0.85 >20.0 >1.05 0.020 (i)

NACA 63_2-418 1.00 0.21 0.3 -3.0 0.010 13.5 1.20 (k)

NACA 63_2-421 1.00 0.32 0.3 -2.5 0.011 14.0 1.10 (k)

LS(1)-0413 1.00 0.04 1.0 -4.0 0.009 19.0 2.05 19.0 2.05 19.0 2.05 21.0 (g)

LS(1)-0417 1.00 0.18 1.0 -3.0 0.010 17.0 2.05 17.0 2.05 17.0 2.05 19.0 (h)

NASA supercrit. 0.99 0.18 1.0 -3.5 0.015 19.0 1.95 0.100 19.0 1.95 19.0 1.95 21.0 (l)

LS(1)-0421 1.00 0.32 1.0 -4.0 0.011 18.0 1.65 (j)

----------------------------------------------------------------------------------------------------------

Note: "sh" is the airfoil shape parameter.

(a) Somers [162] pp 68, 71-72

(b) Somers [163] pp 74, 81, 88

(c) Devinant et al. [39] p 700; smooth airfoil, turbulent flow

(d) Baker et al. [8] pp 18-19

(e) Fuglsang et al. [56] pp 23-24, 35, 39, 57, 61

(f) Bak et al. [6] p 31

(g) McGhee and Beasley [123] Figure 8

(h) McGhee and Beasley [125] pp 54-55

(i) Timmer and van Rooij [178] pp 491-493, 495

(j) Somers and Tangler [164] Figures 4 and 5

(k) Abbott and von Doenhoff [1] pp 536, 544

(l) McGhee and Bingham [122] pp 32-33
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In formulating the equations for the parameters, it was found convenient to map Re
and t/c to the range 0 to 1, in the following manner:

rRe =
Re− 5× 105

5.5× 106
; yRe = min(2rRe − r2

Re, 1); (2.18)

valid in the range Re ≥ 5× 105; and,

ytc =
t/c− 0.12

0.28
; (2.19)

valid in the range 0.12 ≤ t/c ≤ 0.40. The reason for the nonlinear relationship with
Re is found in the data: the coefficient curves are more sensitive to Re when Re is low
(5× 105) than when Re is high (6× 106). Note that shape is already limited to the range
0 ≤ shape ≤ 1, and can be used directly.

The calculation is split up into two branches. One branch is followed if t/c ≤ 0.40,
and the other if t/c > 0.40.

First, we will discuss the calculation for t/c ≤ 0.40. The zero-lift angle-of-attack αz is
set to -3◦, for all airfoils. This is a typical value for a cambered airfoil.39 As mentioned
previously, the angle-of-attack at minimum drag, αb, is set to a constant 0◦. This is a
typical value, given that αz = −3◦, referring to data in Abbott and von Doenhoff [1].

If t/c ≤ 0.30, the minimum drag is calculated by:

CD,min = 0.012− 0.003yRe + 0.015ytc − 0.005yReytc. (2.20)

For thin airfoils, ytc ≈ 0, and Equation 2.20 gives a minimum drag of 0.012 at low Re to
0.009 at high Re, which are typical values for an airfoil with a rough leading edge, as can
be seen in Table 2.2. The trend of slightly decreasing CD,min with increasing Re can be
seen when the same airfoil is tested over a range of Re.40

For a thick airfoil (t/c = 0.30) at a mid-range Reynolds number (Re = 2 × 106,
yRe = 0.47), Equation 2.20 gives CD,min = 0.019. Referring to Table 2.2, this is in the
correct range, based upon the FFA-W3-301 and DU-97-W-300 airfoils.

The minimum drag at t/c = 0.40 is assumed to be 0.1, independent of Re. This
value of drag comes from an experiment41 on a flatback (blunt trailing-edge) airfoil with
t/c = 0.35, Re = 6.7× 105. Lower drag can be obtained by sharpening the trailing edge;
but with a sharp trailing edge, and a rough leading edge, the section stops behaving like
an airfoil, producing little lift.42 Other tests on very thick airfoils with sharp trailing edges
also show this behavior.43

In contrast with the experiments by Baker et al., the airfoil coefficients specified for
the NREL 5 MW reference turbine,44 representative of smooth airfoils, have CD,min of
0.0113 for t/c = 0.40, and 0.0094 for t/c = 0.35.

Lack of published data makes it impossible to determine the “best” values to use for
minimum drag when t/c > 0.30. Thus a minimum drag of 0.1 at t/c = 0.40 was adopted

39Really, it is irrelevant what value is given, because the optimization algorithm adjusts the twist of each
section along the blade.

40For example, McGhee and Beasley [125] p 55
41Baker et al. [7] p 426; Baker [8] pp 18-19
42Baker et al. [7] pp 425-426
43van Rooij and Timmer [185] p 476. There is numerical evidence that, near the blade root, rotational

effects cause such very thick sections to behave as airfoils, even if the 2D wind tunnel data indicates
blunt-body behavior.

44Jonkman [100] pp 166-177
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as a conservative estimate. The blunt trailing-edge profile ensures airfoil-like behavior, if,
for some reason, a very thick section were specified outboard of the blade root area. (The
high drag discourages this.)

Between t/c of 0.30 and 0.40, the minimum drag is interpolated according to a third-
order polynomial:

CD,min = c3(t/c)3 + c2(t/c)2 + c1(t/c) + c0. (2.21)

The coefficients are calculated by:
0.027 0.09 0.3 1
0.27 20.6 1 0
0.064 0.16 0.4 1
0.48 0.8 1 0



c3

c2

c1

c0

 =


CD,min(t/c = 0.3)

dCD,min/d(t/c)|(t/c=0.3)

0.1
2/3

 . (2.22)

This ensures that the slope of CD,min is a continuous function of t/c (or ytc). The value of
2/3 which appears on the right-hand side of the equation is the slope of the line between
(t/c, CD,min) = (0.4, 0.1) and (1, 0.5), where the latter is the drag of a circular cylinder.

As shown in Chapter 6, the consequence of using Equations 2.20 and 2.22 (with a
high drag at t/c = 0.40) is that airfoils with t/c > 0.30 are limited to the region of the
blade root, where drag is relatively unimportant. In other words, the high minimum drag
for t/c > 0.30 acts as a somewhat artificial constraint, forcing outboard airfoils to have
t/c ≤ 0.30. Such a constraint is, however, appropriate, considering the sparsity of data
available for very thick airfoils.

We now turn from the minimum drag to the maximum lift, point m1 in Figure 2.15.
The maximum lift coefficient varies greatly, depending upon the shape of the airfoil and
the Reynolds number. The implemented equation is:

CL,max = 0.85 + 0.1yRe + 0.55 shape + 0.4yRe(shape). (2.23)

The data in Table 2.2 indicates that thin airfoils can reach a maximum lift coefficient
of around 2.0, at a high Reynolds number and with a rough leading edge. Data from Selig
and McGranahan [157] indicates that the maximum lift coefficient of a high-lift airfoil
drops to perhaps 1.5 at a low Re of 5 × 105, with a rough leading edge. Thick airfoils,
with vortex generators, attain similar values of maximum lift.45 So CL,max is not a strong
function of t/c.

At the other end of the spectrum, an airfoil can be designed such that trailing-edge
stall initiates at a low angle-of-attack, limiting the maximum lift coefficient. For example,
the 12% thick, uncambered NACA 661-012 airfoil, with a rough leading edge, and at
Re = 6 × 106, has CL,max = 0.90.46 Referring to Table 2.2, the 30% thick FFA-W3-301
has CL,max = 0.85, while other smoothly-stalling, cambered airfoils at moderate Re have
CL,max in the vicinity of 1.0.

The angle-of-attack at maximum lift is best specified as an offset from the attached-flow
line, αz + CL,max/γa. The expression used here is:

αm1 = αz +
CL,max

γa
+ 5− 4ytc − shape + 4ytc(shape). (2.24)

For thin airfoils, αm1 is offset by 4◦ to 6◦; compare the high-lift LS(1)-0413 (4.4◦) with the
low-lift Risø-1 (6.0◦). Thick airfoils with low maximum lift tend to enter trailing-edge stall

45Timmer and van Rooij [178] Figure 21
46Abbott and von Doenhoff [1] p 662



40 CHAPTER 2. AIRFOILS FOR OPTIMIZATION ANALYSES

Figure 2.16: Drag coefficient at maximum lift

more abruptly, with maximum lift occurring closer to the attached-flow line. An example
is the DU 91-W2-25047, which has an offset of 1.5◦. This trend with t/c is by no means
absolute – some thin airfoils, like the NACA 651-212, have a small offset48 – however it
does represent the data in Table 2.2.

Figure 2.16 illustrates the trends in the drag coefficient at maximum lift, CD,m1, based
upon the data in Table 2.2. The equations are as follows. Define:

∆α = αm1 − αb − 8◦, (2.25)

where αb is the angle-of-attack at minimum drag (the drag “bucket”). Then, for low-lift
airfoils (shape = 0):

CD,m1 = CD,min + 2.23× 10−4 (∆α)2.5 + 0.01; (2.26)

and for high-lift airfoils (shape = 1):

CD,m1 = CD,min + 9.37× 10−5 (∆α)2.5 + 0.01. (2.27)

For intermediate values of shape, between 0 and 1, CD,m1 is interpolated linearly between
the extremes.49

Equations 2.25 through 2.27 indicate that there are strong trends with ∆α and shape.
These trends have a physical explanation. The increase in drag from the minimum value
CD,min is dominated by flow separation; after all, inviscid flow theory predicts zero drag
when flow is fully attached. Consider that the portion of the chord over which flow
is separated, 1 − s by Equation 2.2, behaves as a flat plate. Then, for a given, fixed

47Timmer and van Rooij [178] Figure 6
48In the case of the NACA 651-212, the offset from the attached-flow line is 2.3◦; Abbott and von

Doenhoff [1] p 618
49The relationship is undefined for ∆α < 0◦; not for any physical reason, but rather because all the

airfoils used in the present analyses have ∆α ≥ 0.
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Figure 2.17: Example of separation point position at maximum lift

separation-point position s, one would expect the drag coefficient to increase with angle-
of-attack, because that is what happens with a flat plate. One would also expect that,
for a fixed angle-of-attack, moving the separation-point position towards the leading edge
would increase the drag.

For example, referring to the upper plot in Figure 2.17, two airfoils A and B have the
same separation point position at CL,max, but airfoil B has the higher maximum lift. In
this case, airfoil B will have a higher CD,m1 than airfoil A. Referring to the lower plot,
now airfoils A and B have the same angle-of-attack at maximum lift. In this case, because
airfoil B has a smaller separated zone, it will have a lower CD,m1 than airfoil A.

Before defining the trough, point s1, beyond the maximum lift, it is most convenient
to discuss the angle-of-attack at full separation, point s2. The reason is that points s1 and
m2 are defined relative to points m1 and s2. (Refer to Figure 2.15.)

The following equation is used to define the angle-of-attack at full separation:

αs2 = αz + 23 + 7
√
ytc. (2.28)

This formula is based upon the observation (Table 2.2) that leading-edge separation tends
to occur at a higher angle-of-attack on thick airfoils than thin airfoils. On airfoils that are
12% thick, the separation point tends to move steadily from the trailing to leading edge as
the angle-of-attack increases. By contrast, on airfoils that are more than 21% thick, the
larger leading-edge radius tend to delay full flow separation. The reason for the square
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root function is that there seems to be more of a change between 12% and 21% than from
21% to 30% or 40%.

The lift and drag coefficients at αs2 are calculated by Equations 2.3 and 2.4.
The drop-off in lift beyond point m1 is calculated as follows:

αs1 = αs2 − 0.02(αs2 − αm1)− 0.88(αs2 − αm1)
√
ytc(1− shape); (2.29)

CL,s1 = CL,s2 + [(0.9− 0.2
√

shape)CL,m1 − CL,s2]
√
ytc(1− shape). (2.30)

For thin airfoils (ytc near zero), these equations indicate that points s1 and s2 are nearly
coincident, so there is a consistent drop-off in lift (modeled as a third-order polynomial,
Equation 2.10) to the fully-stalled value. Thick, high-lift airfoils behave similarly to thin
airfoils.50

Thick, low- and medium-lift airfoils behave differently. At angles-of-attack beyond
maximum lift, the lift coefficient drops off, but not all the way to the flat plate value. As
metioned previously, the separation point “sticks”, and flow remains attached near the
leading edge, up to a high angle-of-attack.51 Equations 2.29 and 2.30 were obtained by
trial and error, based upon the data in Table 2.2.

Flow remains attached near the leading edge up to point m2. Here are the equations
used for point m2:

αm2 = αs2 − 0.5(αs2 − αs1) + 0.4(αs2 − αm1)
√
ytc(1− shape); (2.31)

CL,m2 = CL,s2 + [CL,s1 − CL,s2+

(−0.005 + 0.015ytc)(α− αs1)]
√
ytc(1− shape). (2.32)

Again referring to Table 2.2, the column marked “dClda” indicates the approximate
slope between points s1 and m2. The data hints that thinner airfoils have a slightly
negative slope, while thicker airfoils have a slightly positive slope. Looking at some of
these lift coefficient curves,52 it appears that the trend between s1 and m2 is nearly, but
not quite, linear. (A linear trend just looks too “perfect”.) Hence the weak dependence
with α (the actual angle-of-attack) in Equation 2.32.53

We now turn to the case in which t/c > 0.40. In this case, a simple assumption is made:
the coefficient curves at a given t/c are assumed to be a linear interpolation between the
values at t/c = 0.40 and those at t/c = 1.00. The lift and drag coefficients at t/c = 1.00
are those of a circular cylinder, assumed to be CL = 0 and CD = 0.5, independent of α,
Re, and shape.

Equations 2.18 through 2.32 provide values for all the parameters used to define the
lift and drag coefficient curves, according to the equations in Section 2.3.1. It remains to
demonstrate that the curves so obtained are, indeed, reasonable.

2.3.3 Validation of the Force Coefficient Model

Figures 2.18 through 2.24 compare force coefficient curves generated from the airfoil model
against wind tunnel measurements.

50Figure 2.22 shows an example.
51Figure 2.9
52For example, Timmer and van Rooij [178] Figure 22
53The nominal linear relationship justified by the values in Table 2.2 would be obtained by setting

α = αm2 in Equation 2.32.
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Figure 2.18: A comparison of measured airfoil coefficients with those calculated by the
model: Risø-1 airfoil; data from Fuglsang et al. [55]

Figure 2.19: A comparison of measured airfoil coefficients with those calculated by the
model: NASA LS(1)-0413 airfoil; data from McGhee and Beasley [123]
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Figure 2.20: A comparison of measured airfoil coefficients with those calculated by the
model: DU 96-W-180 airfoil; data from Timmer and van Rooij [178]

Figure 2.21: A comparison of measured airfoil coefficients with those calculated by the
model: FFA-W3-241 airfoil; data from Fuglsang et al. [56]
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Figure 2.22: A comparison of measured airfoil coefficients with those calculated by the
model: DU 97-W-300 airfoil; data from Timmer and van Rooij [178]

Figure 2.23: A comparison of measured airfoil coefficients with those calculated by the
model: FB3500-0875 airfoil; data from Baker [8]
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Figure 2.24: A comparison of measured airfoil coefficients with those calculated by the
model: FB3500-1750 airfoil; data from Baker [8]

Figure 2.18 shows the Risø-1 airfoil, which is a thin (14%) outboard airfoil with a low
maximum lift coefficient and a smooth stall characteristic. Adjusting the shape parameter
such that the maximum lift coefficient is the same, the model accurately reproduces the
lift curve. Drag is underpredicted in the vicinity of initial stall, however the offset in
angle-of-attack between the calculated and measured curves is only 1◦.

Figure 2.19 shows the NASA LS(1)-0413 airfoil, a 13% thick outboard airfoil with a
high maximum lift coefficient. The model reproduces the shape of the lift curve, although
there is a roughly 2◦ offset in the zero-lift angle-of-attack.54 The drag curve is accurately
reproduced.

Moving to thicker, (nominally) mid-span airfoils, Figures 2.20 and 2.21 show the DU
96-W-180 and FFA-W3-241 airfoils. These are 18% and 24% thick, respectively. The
initial stall behavior of the FFA-W3-241 airfoil is captured accurately, with both the lift
and drag curves following the data. The model predicts a slightly greater drop-off in lift,
transitioning to deep stall. The lift curve of the DU 96-W-180 airfoil is reproduced fairly
well, although the model shows a slightly greater angle-of-attack (between 1◦ and 2◦) at
maximum lift.

Figure 2.22 shows the 30% thick DU 97-W-300 airfoil. Data indicates that this airfoil
is nominally low-lift, with a smooth stall behavior. However, when vortex generators are
added, mixing of the boundary layer causes stall to be delayed to a higher angle-of-attack,
and the airfoil reaches a high lift, and stalls sharply (though not as sharply as the thinner
NASA LS(1)-0413). The model reproduces this range of behavior, as the shape parameter
is varied from 0 to 1. Crucially, the trend in drag is correctly predicted. In the low-lift
case, the model lift coefficient curve does not stall quite as sharply as that of the actual
airfoil, although such smooth stall might be achievable by tweaking the geometry of the

54This is meaningless for optimization, because the twist profile can be adjusted.
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airfoil’s external profile.
Figures 2.23 and 2.24 show two versions of the 35% thick FB3500 airfoil. The FB3500-

0875 has a thickness at the trailing edge of 0.0875c, and the FB3500-1750 has a thickness
at the trailing edge of 0.175c. The trailing edge thickness has a large effect on the behavior
of the airfoil.

The FB3500-0875 has a low maximum lift coefficient and stalls smoothly. Using a shape
parameter of 0, the model reproduces the lift curve. Although the model overpredicts the
minimum drag coefficient, drag in the vicinity of stall is well predicted.

The FB3500-1750 behaves like a high-lift airfoil, with sharp stall behavior. However,
the initial stall event does not lead to full flow separation, like on thin airfoils (Figure
2.19); flow remains attached near the leading-edge, and the lift coefficient stabilizes at
around 1.0. With a shape parameter of 1, the model approaches the measured maximum
lift coefficient. However, the stall behavior is not reproduced. Equations 2.24 and 2.29 do
not allow for the abrupt initial stall.

Based upon Figure 2.22, it is suggested that the lift curve produced by the model is
realistic, representing a case with vortex generators. Furthermore, due to high minimum
drag, thick, flatback airfoils are limited to the region near the blade root, where rotational
effects modify the lift and drag behavior; this is discussed in Section 2.4. It is unlikely
that the sharp stall seen in Figure 2.24 would occur in the presence of rotational effects.
Therefore, we should not worry too much that the model does not reproduce the FB3500-
1750 data.

Summarizing the comparisons made in Figures 2.18 through 2.24, the empirical model
provides the means to specify airfoil coefficient curves using t/c and a “shape” parameter.
The resulting curves span nearly the entire range of behavior of cambered airfoils proposed
for wind turbine blades, with the exception of a thick flatback airfoil with a high maximum
lift coefficient. The coefficient curves are realistic, in particular when it comes to the drop
off in lift at angles-of-attack beyond the point of maximum lift. This region of the lift
curve is critical for damping of blade vibrations at high windspeeds. In addition, the
model captures the correct trends in drag for each type of lift curve.

Figures 2.25 through 2.28 show a survey of the model coefficient curves, varying shape,
Reynolds number, and t/c in turn. Figures 2.29 and 2.30 show lift-to-drag ratios for dif-
ferent values of shape and t/c. The peak lift-to-drag ratio increases with shape (maximum
lift coefficient), and decreases with t/c. The values are reasonable, given that the airfoils
are assumed to have a rough leading edge.

It is emphasized that the coefficient curve model is not based upon physics; really, it is
nothing more than a fancy interpolation between published airfoil datasets. However, get-
ting this interpolation “right” is crucial to obtaining realistic results from an optimization.
The model serves this purpose well.

Note that the quasi-steady coefficient curves shown in this chapter must be augmented
by a dynamic stall method, such as the one described in Chapter 3, in order to correctly
predict the dynamic response of a blade.

2.4 Correcting Airfoil Coefficients for Rotational Effects

This section briefly describes the methods used to correct 2D, quasi-steady airfoil coeffi-
cients for rotational effects, also known as “stall delay”. A full survey of such methods
was not performed; this was done recently by Breton et al., as discussed below.

Figure 2.31 shows an example of stall delay, using pressure-tap data collected during the
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Figure 2.25: The trend in force coefficients with shape, calculated by the model

Figure 2.26: The trend in force coefficients with Reynolds number, calculated by the model
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Figure 2.27: The trend in force coefficients with airfoil t/c, calculated by the model

Figure 2.28: The trend in force coefficients with t/c, calculated by the model, for cross-
sections in between a thick airfoil (t/c = 0.40) and a cylinder
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Figure 2.29: The trend in lift-to-drag ratio with airfoil shape, calculated by the model

Figure 2.30: The trend in lift-to-drag ratio with airfoil t/c, calculated by the model
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NREL UAE experiment.55 A couple items should be noted. First, there is no noticeable
stall delay on the outer half of the blade, where the loads tend to be greatest. Second, on
the inner portion of the blade, the fairly dramatic increase in lift is accompanied by an
equally dramatic increase in drag.56

Breton et al.57 surveyed existing models for predicting the effects of stall delay on
airfoil coefficients. The results showed that the models cannot be used with confidence:
“It was concluded that none of the models studied correctly represented the flow physics
and that this was ultimately responsible for their lack of generality.” ([17] p 480) Breton
et al., in Figures 5 and 6, showed that overall rotor behavior – in particular, root flap
bending moment and output power – was predicted equally well or better using 2D airfoil
coefficients than any of the models. Yet this result was obtained with a prescribed-wake
vortex code. Using a more typical BEM code, Lindenburg [115] had to correct the 2D
coefficients for stall delay in order to come close to the measured shaft torque, under
stalled-flow conditions.58

It is perhaps not necessary to consider stall delay during preliminary design, because
the “trick” described in Section B.4.3 can be used to exchange large errors in rotor forces
and output power for a small error in rotational speed. However, this has not been proven
to be valid in all cases, so to be on the safe side, it was decided to include a correction for
stall delay. Lindenburg’s centrifugal pumping method59 was chosen, because, as Breton
et al. show, it gives a correction that is moderate in comparison with other methods. It
was desired not to over-correct the quasi-steady coefficients.

“Centrifugal pumping” is the tendency of stagnated60 air to be flung outwards, in the
spanwise direction. As the air moves outwards, coriolis effects then modify the chordwise
pressure gradient in a manner that tends to encourage the flow to remain attached.

The derivation of Lindenburg’s model is outside the scope of this project, and will not
be pursued here; it is simply accepted as a reasonable model, primarily on the basis of
comparisons with NREL UAE experimental data, reviewed in Lindenburg61 and Breton et
al.62 Note that the model was both calibrated and validated with this dataset, which means
that there is no guarantee that the model is generally applicable. However, the corrections
to the lift and drag coefficients are moderate relative to other available methods.

There are two versions of Lindenburg’s model that have been published. The first
version was presented in a 2003 ECN report [115], while the second, updated version was
published in a 2004 conference article [116]. The key difference is that, in the updated
version, the correction for rotational effects does not go to zero when flow is attached.
While there may be a physical basis for this, it is not desirable in the context of the present
design study: the BEM method, without rotational corrections, has been shown to give
good predictions of output power and loads under attached-flow conditions. Therefore,
the form of the equations here are based upon the 2003 report. However, the constants
have been updated to reflect the values in the more recent publication.

55Tangler [173] p 254
56The negative drag force seen on the lower plot is clearly unphysical; most likely, it is due to a small

error in the estimation of the inflow angle.
57Breton [17]; Breton et al. [18]
58I obtained a similar result, using a BEM method. [126] Neither wake vortex nor BEM methods are

theoretically valid when the blades are stalled, so it is not straightforward to explain these conflicting
results.

59References [115] and [116]
60. . . relative to the blade motion . . .
61Lindenburg [115]
62Breton et al. [18]
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Figure 2.31: An example of the stall delay phenomenon; data from Tangler [173] Figures
7 and 8
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Lindenburg’s model utilizes the Kirchhoff model of the separation point position, Equa-
tion 2.2. The nominal separation-point position s is calculated first. Then, an effective
rotational angle-of-attack is calculated:

αr = α+
(

0.2
π

)(
c

r

)
(1− s)

(
rΩ
V

)2

. (2.33)

Here, α is the nominal angle-of-attack (in radians) and V is the relative air velocity seen by
the airfoil, including the incoming wind, rotor rotation, and induced velocity components.

The modified lift coefficient is calculated as follows. First, an intermediate value is
calculated, accounting for rotational effects near the root:

CL1 = CL,2D + 1.6
(
c

r

)(
rΩ
V

)2

(1− s) [cosαr + 0.25 cos(αr − αz)] ; (2.34)

An additional correction is applied for rotational effects near the tip:63

C ′L = CL1

[
1−

(
rΩ
V

)2

e−2 AR,out
(

1− CL1

γa(α− αz)

)]
. (2.35)

The variable AR,out is the aspect ratio of the blade segment outboard of the radial position
at which coefficients are being calculated. (In the present analysis, this is approximated
as (Ro − r)/c, which is accurate near the tip.) Drag is calculated by:

C ′D = CD,2D + 1.6
(
c

r

)(
rΩ
V

)2

(1− s) sinαr. (2.36)

Figures 2.32 through 2.34 show the results of the Lindenburg correct near the root. The
geometry of the NREL 5 MW reference turbine was used. Nominal, 2D force coefficient
curves were generated using the airfoil model of Chapter 2. The shape parameter was
adjusted such that the maximum lift coefficient was the same as that of the airfoils used
on the NREL turbine.64 Jonkman65 reports values of these coefficients that have been
modified for stall delay using the method of Selig and Eggers.66 While the modified
coefficients of the NREL 5 MW turbine should not necessarily be considered “correct”,
this turbine is used as a baseline for engineering studies, and is thus a good basis for
comparison.

Figure 2.32 shows a 40% thick airfoil immediately outboard of the root cylinder, at
r = 10.3 m on the 63 m long blade. The 2D coefficients match well, with the exception of
minimum drag; evidently, the “DU40” airfoil has a sharp trailing edge, while the model
of Chapter 2 is based upon a blunt trailing edge. (This makes little difference to the high
levels of drag in stall.) When corrected for rotational effects, the coefficients based upon
Lindenburg’s method fall in between the 2D coefficients and the modified coefficients given
by Jonkman. While the lift predicted by Lindenburg’s method is significantly lower, so is
the drag; the performance, measured by the lift-to-drag ratio, is similar.

63The tip effects are nearly negligible for large turbines. Note that this correction is independent of the
Prandtl factor. Lindenburg does not superpose the root and tip corrections in this manner: he implemented
the stall-delay effects for r < 0.8Ro, and tip effects for r ≥ 0.8Ro. This was relevant for the model-scale
turbine blade used in the NREL experiments, however for a full-sized blade the respective corrections
are negligible at this radial location, so superposition can be used. It is not desirable to implement a
truncation, with a thought to the numerical smoothness that is required for optimization.

642D coefficients for these airfoils were found in Bulder et al. [20] pp 81-83
65Jonkman [100] pp 50-54 and 165-177
66Jonkman gives no reference for this method.
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Figure 2.32: A comparison of different stall-delay methods, based upon the geometry of
the NREL 5MW reference turbine; 40% thick root airfoil

Figure 2.33: A comparison of different stall-delay methods, based upon the geometry of
the NREL 5MW reference turbine; 35% thick airfoil
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Figure 2.34: A comparison of different stall-delay methods, based upon the geometry of
the NREL 5MW reference turbine; 30% thick airfoil

Moving outboard on the blade, rotational affects diminish. At r = 16.4 m, the airfoil
is 35% thick. The comparison of coefficients is shown in Figure 2.33. The trends are
essentially the same as in Figure 2.32, only less pronounced.

Figure 2.34 appears coefficients at a radial location of 22.6 m, where the airfoil is 30%
thick. Note that the model does not reproduce the sharp initial stall; this was noted
in Section 2.3.3. Neglecting this discrepancy, the trends in the stall delay correction are
similar to those in Figures 2.32 and 2.33. The influence of stall delay is starting to become
small, one-third of the distance along the blade span.

Turning to Lindenburg’s tip correction, Figure 2.35 shows an example based upon a
radial location of 62 m on the 63 m long NREL 5 MW blade. The reduction in lift is small,
to the extent that it is likely of the same magnitude as the uncertainty in the measurement
of the 2D airfoil coefficients. It would therefore be reasonable to neglect rotational effects
near the tip of a utility-scale blade. It was decided, somewhat arbitrarily, to include the
tip correction in the present study.
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Figure 2.35: The effects of Lindenburg’s tip correction on a large turbine blade



Chapter 3

A Linear Dynamic Stall Method

The aerodynamic pressure forces on an airfoil exhibit time-history effects; the forces at
a given point in time are a function of both the instantaneous and previous flow condi-
tions. In wind turbine analysis software, these time-history effects are typically bundled
into a “dynamic stall” analysis; although time-history effects are present under all flow
conditions, they are particularly pronounced in the vicinity of initial stall.

Following Leishman and Beddoes [114], there are three types of dynamic effects which
have a significant influence on airfoil lift, drag, and moment behavior. The first effect is
present under conditions of attached flow, and can be predicted by potential flow theory.
It is the combination of a pressure force reacting to the impulsive motion of the airfoil,
plus a time-delayed variation of circulation (lift). The time delay is related to the time it
takes to convect vorticity downstream, away from the airfoil.

Impulsive motion decays exponentially with the ratio of the speed of sound to the
chord length.1 It is therefore negligible for a wind turbine blade, since flow is subsonic
and structural vibration is relatively slow.

Leishman and Beddoes2 give an empirical approximation of the time delay of the
change in circulation:

φCa = ∆α
(
1− 0.3 e−0.28(V/c) t − 0.7 e−1.06(V/c) t

)
. (3.1)

Based upon this equation, when the angle-of-attack is perturbed, the attached-flow cir-
culation will approach its steady-state value exponentially, with timescales 3.57c/V and
0.94c/V . Here V is the magnitude of the local flow velocity at the airfoil.

The second effect is related to separation of flow from the trailing edge of the airfoil.
This is illustrated in Figure 2.3. The position of the separation point can be estimated
based upon two-dimensional quasi-steady airfoil coefficient data, with an empirical time
delay as the separation point adjusts to changes in airfoil attitude.

The movement of the separation point is delayed twice. First, the change in leading-
edge pressure lags the change in the attached-flow circulation. This delay can be modeled
by an exponential decay. The characteristic timescale is 0.85(c/V ), using empirical con-
stants from Leishman and Beddoes [113], Table 1, at Mach 0.3.3 Second, movement of
the separation point lags the change in leading-edge pressure; again, this time delay can
be represented by an exponential decay. The timescale is 1.5(c/V ).

1Leishman and Beddoes [114] Equations (8) and (9)
2Leishman and Beddoes [114] Equation (3); in the current discussion, we shall assume that the flow

velocity is much less than the speed of sound, such that
√

1−M2 ≈ 1.
3The time constants appear to be stable from one airfoil to the next; for example, Gupta and Leishman

[74] found a good match with S809 airfoil data using the same constants.
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The third and most dramatic effect of dynamic stall is separation of flow from the
leading edge. A vortex forms, building vorticity, and then sweeps over the low-pressure
surface of the airfoil, which results in a spike, followed by a drop, in the normal force. Most
airfoils exhibit this phenomenon, if oscillated through a large (say, 10◦) angle-of-attack
amplitude.4 However, it is possible to design airfoils that stall smoothly and progressively
from the trailing edge.5 Even if an airfoil initially exhibits leading-edge stall, it may be
possible to force trailing-edge stall by using stall strips.6

For a stall-regulated turbine, it is desirable to use airfoils that stall smoothly, because
this reduces excitation and increases damping of blade vibration. In addition, vortex
formation and shedding is a highly nonlinear behavior7 that would be impractical to
adapt for frequency-domain analysis. Therefore, leading-edge stall is neglected.8

Ignoring leading-edge stall, we are left with separation-point movement, which lags
leading-edge pressure, which in turn lags circulation (attached-flow lift). The Øye dynamic
stall method9 indicates that for purposes of wind turbine analysis10 it is reasonable to
neglect delays due to leading-edge pressure and circulation, and account for dynamic stall
with a single time-lag of separation-point movement, with respect to the circulation at the
instantaneous angle-of-attack. This time-lag can be described by the differential equation:

ds

dt
=
sq − s
τs

, (3.2)

where, as shown in Figure 2.3, s is the distance from the leading edge to the separation
point, normalized by the chord length. Equation 3.2 has the solution:

s(t)− sq = [s(t0)− sq] e−(t−t0)/τs . (3.3)

Hansen et al. give the value of τ as approximately 4. The lift force is then calculated as:

CL = sCL,a + (1− s)CL,s. (3.4)

Here, CL,a is the lift coefficient for fully-attached flow, and CL,s is the lift coefficient for
fully-separated flow. Thus, the lift force is assumed to vary linearly as a function of the
position of the separation point.

Experiments show that the drag force has little hysteresis; the dynamic response largely
follows the quasi-steady drag curve.11 The moment coefficient exhibits hysteresis, however
the twisting moment on the blade does not excite significant vibration.12 Therefore,
the discussion and methods in this chapter are limited to the lift force. Quasi-steady
coefficients are used for drag and moment.

4Most large-amplitude dynamic stall data show spikes in the normal force. Also, an abrupt drop in
lift coefficient at high angles-of-attack indicates that an airfoil is prone to leading-edge stall, and a glance
through Abbott and von Doenhoff [1] shows that this is common.

5The Risø-1 airfoil is an example; Fuglsang et al. [55].
6Petersen et al. [142]
7. . . as opposed to the mildly nonlinear behavior of trailing-edge stall . . .
8This is consistent with some of the literature describing time-domain analysis of wind turbines; for

example, Hansen et al. [79], Øye [140], and the review by Hansen et al. [82].
9Øye [140]; also Hansen et al. [82]

10. . . as opposed to the analysis of helicopter rotors – the original motivation for the Leishman-Beddoes
method – which encounter much more severe dynamic stall conditions . . .

11For example, Fuglsang et al. [55]
12This statement is true for typical blade designs, which are relatively stiff in torsion. A torsionally-

flexible blade could experience aeroelastic coupling between blade twist and flapwise deflection.
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Figure 3.1: An example of inaccuracy when the 2D, quasi-steady lift coefficient curve is
linearized without accounting for stall hysteresis

3.1 The Importance of Dynamic Stall for Linear Dynamic
Analyses

Aerodynamic forces enter the frequency-domain calculations at two steps, and in two
different ways. As described in Section D.5, transfer functions are derived which give the
change in aerodynamic forces with changes in the local air velocity. For example, the
transfer function that gives the change in Y b force with a change in the axial velocity
is ∂(F b)Y /∂uz. These transfer functions are used to convert the rotationally-sampled
turbulence spectra into aerodynamic force spectra which excite vibration of the blade.
Later, in Section D.9, similar transfer functions are used to establish a relationship between
motion of the blade (producing changes in the local air velocity) and fluctuations in the
aerodynamic forces; these force fluctuations tend to damp vibration of the blade.13

Equations D.80 through D.83 give expressions for the transfer functions, in terms of the
airfoil force coefficients. In this context, the purpose of the linear dynamic stall method
is to specify appropriate values of dCL/dα|α0 to use in these equations, for excitation and
damping. (For convenience, dCL/dα|α0 is denoted by γ throughout this chapter.)

Figure 3.1 shows an example of why it is necessary to account for dynamic stall, in the
context of excitation. At the mean angle-of-attack shown, a simple linearization of the 2D,
quasi-steady coefficient curve gives a slope that is almost flat. This means that the lift force
does not change with angle-of-attack; the term proportional to γ gives no contribution to
excitation. By contrast, the data shows clearly that the force fluctuates significantly as
the angle-of-attack oscillates. Therefore, the simple linearization is incorrect.

Damping is more subtle, and it is not obvious how to gauge the accuracy of the damping
prediction from a plot like Figure 3.1. Suffice it to say that without accounting for the

13However, damping can also be negative, leading to divergence.
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Figure 3.2: An illustration of the equivalent slopes used in the linear dynamic stall model

stall hysteresis in the lift curve, damping is severely underpredicted. It is typical that
the analysis will predict aeroelastic instability14 at windspeeds above rated, when in fact
damping is quite positive. This is illustrated with examples later in this chapter.

Thus, the idea behind the linear dynamic stall method is to calculate equivalent slopes
of the CL-α curve, for excitation and damping, as a function of mean angle-of-attack α0,
and the frequency of oscillation f . An example, employing the methods of this chapter,
is shown in Figure 3.2. This figure shows the quasi-steady CL-α curve of an airfoil. The
airfoil is operating at a mean angle-of-attack α0 and mean lift coefficient CL0. The inflow
oscillates, such that the angle-of-attack varies sinusoidally. This is shown as a hysteresis
loop about the mean operating point. At the mean operating point, there is a maximum
slope γmax, and another slope γq that is the linearization of (tangent to) the quasi-steady
curve. The equivalent slopes for excitation and damping lie in between these two extremes,
and are interpolated on the basis of simple equations which are a function of frequency.

3.2 A Baseline Time-Domain Dynamic-Stall Model

Only a limited amount of dynamic stall data has been published, so it was necessary
to validate the linear method numerically, comparing against a nonlinear, time-domain
method. The nonlinear method is presented here, first, because it provides background
for development of the linear method. A slightly modified version of the Øye model was
chosen as the baseline for time-domain calculations. This method is simple and effective.

3.2.1 Calculation Procedure

The present method differs from the Øye model in that the fully-separated lift coefficient
(Equation 3.4) is not used. Rather, following Leishman and Beddoes [114], also Hansen et

14This means that the blade vibrations diverge, the response is infinite, and the analysis cannot be
completed.
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al. [79], the Kirchhoff formula, Equation 2.1, is used to relate the position of the separation
point to the lift coefficient.

The modified Øye method requires, as input, tabulated CLq versus α data. This is the
standard quasi-steady coefficient data; but in this chapter it is necessary to mark it with
a q subscript, since the instantaneous value of CL deviates from the quasi-steady curve.
Several quantities must be defined (or located by searching numerically) based upon the
tabulated data. These are: the angle-of-attack at zero lift, αz; the maximum slope of the
lift coefficient curve in the attached-flow region:15

γa = maxαq

[
CLq

αq − αz

]
; (3.5)

and the angle-of-attack at which flow is fully separated, αFS . This latter quantity is
calculated by setting s to zero in Equation 2.2:

αFS = αz + 4
CLq
γa

, (3.6)

where both CLq and αFS lie upon the quasi-steady curve.
Here is how the dynamic stall calculation works for a single timestep. For a given,

instantaneous angle-of-attack α, the quasi-steady position of the separation point can be
calculated from Equation 2.1:

sq =


0; α ≥ αFS(

2
√

CLq

γa(α−αz) − 1
)2

; α < αFS
(3.7)

Equation 3.3 can be written, using discrete timesteps:

s(t) = sq + [s(t−∆t)− sq] e−∆t/τs , (3.8)

which can be evaluated numerically, using s from the previous timestep, and the value of
sq from Equation 3.7.16

Once the position of the separation point s is known, the instantaneous lift coefficient
can be calculated from Equation 2.1:

CL =
1
4
γa(α− αz)(1 +

√
s)2. (3.9)

It should be emphasized that here α is the instantaneous angle-of-attack, and s is the
instantaneous separation point position. Observe that Equation 2.1 has been applied mul-
tiple times, to solve for different quantities. This is consistent, though, because different
values of lift coefficient, angle-of-attack, and separation point have been used each time.

3.2.2 Validation

Several references17 contain wind tunnel measurements of dynamic stall. The tests were
all conducted by oscillating an airfoil at a single harmonic, with a particular amplitude A
and frequency f .

15This comes from Hansen et al. [79] pp 11-12
16It is assumed that sq changes over a timescale that is large in comparison with ∆t. Since sq is calculated

based upon the instantaneous α, this means that the timestep ∆t must be fine enough to smoothly capture
changes in α.

17See Tables 3.1 through 3.3: Leishman and Beddoes [113],[114], NACA 0012 airfoil; Gupta and Leishman
[74], S809 airfoil; Pierce [143], NACA 4415, NASA LS(1)-0417, and S809 airfoils; Fuglsang et al. [55], Risø-1
airfoil; Fuglsang et al. [56], FFA-W3-241, FFA-W3-301, and NACA 63-430 airfoils; Bak et al. [6], NACA
63-415 airfoil
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Figure 3.3: Coefficients and quasi-steady separation-point position of the S809 and Risø-1
airfoils

The validation is focused upon two airfoils that were designed specifically for wind
turbines: the Risø-1 and the S809. The behavior of these airfoils is comparable, as shown
in Figure 3.3. However, the dynamic-stall tests of the Risø-1 were conducted with small-
amplitude oscillation, while those of the S809 were conducted with large-amplitude oscil-
lation.

Fuglsang et al. [55] present a series of CL-α hysteresis loops for the Risø-1 airfoil. The
experiments were limited to small amplitudes of oscillation, ±2◦ angle-of-attack. This
could be characteristic of the type of oscillation that would result from blade vibration,
thus these measurements are particularly relevant for prediction of damping.

Reduced frequencies k = ωc/2V = πfc/V were either 0.077 or 0.11. To give this
greater meaning, consider an airfoil with a chord of 1.25 m and an incident flow velocity of
50 m/s, representative of a location somewhat inboard of the blade tip. Then, k = 0.077
corresponds to f = 0.98 Hz, and k = 0.11 to f = 1.4 Hz.

Figures 3.4 and 3.5 compare the measured hysteresis loops with those calculated by
the nonlinear dynamic-stall method. The quasi-steady curve is drawn as a thin black line,
while calculations are drawn as a somewhat thicker black line, and measured data is drawn
as a gray line. The calculations used the mean, quasi-steady point as an initial condition,
which is why there is an anomalous partial-cycle in the calculated curve.

Neglecting the offset in the data from the mean, quasi-steady curve,18 the predicted
dynamic-stall loops are seen to match quite well against measurements. It appears that the
nonlinear dynamic-stall method can predict both the amplitude and mean slope (excitation
and damping) of the lift hysteresis, for smoothly-stalling airfoils under small angle-of-
attack oscillations.

Gupta and Leishman [74] present plots of the dynamic-stall response of the S809 airfoil.
18In the context of calculating the equivalent slope (for excitation) and the energy dissipation (for

damping), the offset of the mean is negligible.
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Figure 3.4: The nonlinear dynamic-stall method compared with test data; Risø-1 airfoil,
k = 0.11

Figure 3.5: The nonlinear dynamic-stall method compared with test data; Risø-1 airfoil,
k = 0.077
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Figure 3.6: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.026, α0 = 8◦; A = 5.5◦

These experiments were performed using large amplitudes of oscillation: A = 5.5◦ or 10◦.
Such amplitudes could be characteristic of a severe, local turbulence gust; severe yaw
offset; or partial wake shadowing from a turbine sited close upwind.

Measurements were collected for k = 0.026, 0.05, and 0.077 (0.33 Hz, 0.64 Hz, and 0.98
Hz, using the example of c = 1.25 m and V = 50 m/s). The validation here includes only
k = 0.026, and 0.077, because results for k = 0.05 were substantially similar. Together,
the dynamic-stall data presented by Fuglsang et al. and Gupta and Leishman covers the
most important range of frequencies, spanning from the rotational frequency 1P to the
first flapwise vibrational frequency.

Figures 3.6 through 3.12 compare the calculated and measured lift response of the
S809 airfoil. Here, the thin, black line is the quasi-steady lift coefficient curve, taken
from Lindenburg [115], and the thicker black line is the calculation. Gray lines show the
measurements. There are sometimes two gray lines; these show the bounds of the test
data, not actual measured hysteresis loops. In other words, the measured data falls in
between the inner and outer bounds represented by the gray lines, but does not follow the
gray lines; it is typical that the data exhibits sharp, rapid oscillations, which fall within
the indicated bounds, but are not shown on the plots. These cases indicate the occurrence
of leading-edge vortex shedding.

The accuracy of the predictions must be described as poor at the lower frequency
of k = 0.026. This could in part be attributed to the fact that the simple nonlinear
dynamic-stall method does not include vortex shedding.

Agreement with the measured hysteresis loops was better at the higher frequency of
k = 0.077, excepting the case in which leading-edge vortex shedding occurred (α0 = 20◦,
Figure 3.11).

It is worth noting that Gupta and Leishman’s analytical curves – based upon the
“full” Leishman-Beddoes method which includes leading-edge stall – were no more accu-
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Figure 3.7: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.026, α0 = 14◦; A = 5.5◦

Figure 3.8: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.026, α0 = 20◦; A = 5.5◦
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Figure 3.9: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.077, α0 = 8◦; A = 5.5◦

Figure 3.10: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.077, α0 = 14◦; A = 5.5◦
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Figure 3.11: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.077, α0 = 20◦; A = 5.5◦

Figure 3.12: The nonlinear dynamic-stall method compared with test data; S809 airfoil,
k = 0.077, α0 = 8◦; A = 10◦
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rate than those of the basic method. The leading-edge stall “trigger” was never tripped;
the Leishman-Beddoes method predicted stall to occur from the trailing-edge. However,
leading-edge stall is clearly visible in the measurements at α0 = 20◦.

Interestingly, Gupta and Leishman concluded that “[g]ood agreement was obtained
between the predictions and the experimental results” and that “the results showed en-
couraging agreement in predicting the onset and consequences of dynamic stall.” ([74], p
533) These conclusions appear to be questionable, particularly in cases of low-frequency
oscillation or leading-edge vortex shedding.

Still, the Leishman-Beddoes method is standard in wind turbine design codes, and the
simple nonlinear dynamic-stall method reproduces the most important features of the lift
response, at least for smoothly-stalling airfoils. Therefore the nonlinear method can be
considered valid for purposes of evaluating the linear method.19 It should be kept in mind,
though, that large-amplitude results are likely imprecise.

3.3 A Linear Dynamic-Stall Model

As mentioned in Section 3.1, the purpose of the linear dynamic stall method is to deter-
mine appropriate values of γ for use in computing excitation and aerodynamic damping.
Any of the existing dynamic stall models can, in theory, be linearized for this purpose.
For example, Hansen et al. [79] derived a formal linearization of the Leishman-Beddoes
dynamic stall model, not including leading-edge vortex shedding. This model accounts
explicitly for time-delay effects associated with attached potential flow (convection of vor-
ticity downstream), development of the pressure about the airfoil, and separation-point
movement.

The Øye model is simpler, combining all the effects into a single time-lag. However,
the Øye model applies the time-lag to the position of the separation-point s. In this case,
the nonlinear relationship between s and α in Equation 2.1 complicates the linearization
more than is necessary. It is argued in Section 3.3.1 that valid results can be obtained by
applying the time-lag directly to the angle-of-attack.

The resulting method, as described in Section 3.3.2, is very simple. It requires definition
of a maximum CL-α slope (Section 3.3.3) and the linearization of the quasi-steady CL-
α curve. Then, equivalent lift coefficient slopes can be calculated for excitation (Section
3.3.4) and damping (Section 3.3.5). These slopes are discontinuous at αs, so a modification
is required for α > αs, as described in Section 3.3.6.

3.3.1 Time-Delay on Angle-of-Attack

Both the Øye and Leishman-Beddoes models apply a constant time-lag to movement of the
separation point, as in Equation 3.2. In the present, frequency-domain implementation,
the time-lag is applied directly to the angle-of-attack:20

dαs
dt

=
α− αs
τs

. (3.10)

19We haven’t much choice in the matter; extending the Leishman-Beddoes method to provide a better
match with the S809 data is outside the scope of this project.

20A more complex model was also developed, including a Leishman-Beddoes type time-lag associated
with attached flow. A comparison against the data in Tables 3.1 through 3.3 indicated that using a more
complex model does not increase the accuracy, for the cases studied.
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This would be equivalent to Equation 3.2 if the relationship between s and α were linear.
According to Equation 2.2, the relationship is nonlinear; however, it approaches linear
for smoothly-stalling airfoils, due to the shape of the CL-α curve. Figure 2.4 shows an
example. On the other hand, Figure 2.5 shows that s is not a linear function of α for
sharply-stalling airfoils, while Figure 2.6 shows that the relationship does not approach
linear for some relatively smoothly-stalling airfoils.

That being said, it should be kept in mind that the discrepancy between a time-lag on
s and a time-lag on α is not necessarily an error. Applying a constant time-lag on α is
equivalent to applying a (modestly) variable time-lag on s. Physically, there could well be
variation in the time constant between mostly-attached (s near 1) and mostly-separated
(s near 0) flow. In the context of a linear dynamic-stall method, it is most convenient to
assume a constant time-lag on α.

3.3.2 Dynamic Lift Coefficient Response

Consider an airfoil whose mean, quasi-steady operating condition is at an angle-of-attack
where the flow is partially separated; 0 < s < 1. Next, picture that the airfoil undergoes
oscillatory motion – say, in the flapwise direction – such that the angle-of-attack oscillates
sinusoidally. Let the frequency of this motion be f . The question is: what trends in the
lift force are expected as the airfoil oscillates with different frequencies?

In answer can be obtained by considering the time-lag on separation-point movement.
Figure 3.13 illustrates the position of the separation point as an airfoil oscillates at three
different frequencies which span the range of interest. The rightmost column shows the
airfoil oscillating rapidly, such that the separation point remains nearly fixed.21 Since the
separation point does not move, we would expect little or no hysteresis to occur. The
circulation should change according to potential flow, over the portion of the airfoil where
flow remains attached. However, the slope of the lift force versus angle will not follow the
quasi-steady curve: it will be steeper.

What happens when the vibration is relatively slow? The leftmost column of Figure
3.13 illustrates a case of slow oscillation. Here the time-lag of separation-point movement
is negligible; in other words, the separation point moves in phase with the airfoil. In this
case, there will be no hysteresis in the lift response; it will follow the quasi-steady curve,
which in the frequency domain is simply approximated as the tangent line γq.

Now consider a case of medium-frequency oscillation, illustrated in the center column
of Figure 3.13. Here, the oscillation frequency is low enough that the separation point
moves, but high enough that the separation point does not quite “catch up” with the
circulation; in other words, the time-lag is not negligible, so there is a meaningful phase
lag between the circulation and the adjustment of the separation point. It is this phase
lag which causes the hysteresis loops in the lift coefficient response under dynamic stall.

Here is a simplistic explanation of a single cycle of dynamic stall hysteresis. The
airfoil pitches up; and before the separation point moves forward, the circulation increases
according to the full length of the low-pressure surface forward of the separation point.
This causes a spike in lift. Then, with the airfoil still nose-up, the separation point moves
forward, and the lift drops towards the flat-plate (fully-stalled) value. The airfoil then
pitches down, but because flow is not attached over much of the low-pressure surface, the
airfoil continues to behave as a flat plate, and there is little change in lift. After a short

21Recall that the time-delay on separation-point movement is something like 4c/V ; for an airfoil oscil-
lating with a characteristic period less then this, the separation point does not move much.
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Figure 3.13: The position of the separation point under oscillating flow conditions, as a
function of phase and frequency
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delay, the separation point moves aft, and as it does so, the lift increases.
The simplest, first-order approach is to assume that the lift on the airfoil varies linearly

between the two extremes of low and high frequency. Thus the lift force is assumed to
respond to changes in angle-of-attack in the following linear manner:

C̃L − CL0 = γmax(α− αs) + γq(αs − α0); (3.11)

or alternatively:

C̃L − CL0 = γmax(α− α0) + (γq − γmax)(αs − α0). (3.12)

Here, the effective linearized lift coefficient is denoted C̃L, in order to distinguish it from
the more general instantaneous CL in, for instance, Equation 3.9. The value γmax is the
maximum slope dCL/dα|α0 that can be obtained at α0. It corresponds to the (fictitious)
case, mentioned above, in which the separation point is held fixed at the quasi-steady
position sq at α0, such that αs = α0, while the instantaneous angle-of-attack α fluctuates.
The value γq is the slope of the quasi-steady CLq-α curve. It is shown below that the
equivalent slope derived from C̃L depends on whether excitation or damping is being
calculated.

3.3.3 Maximum Lift Coefficient Slope

The maximum slope γmax attained at high-frequency oscillation is simply the line connect-
ing the point of zero lift (αz, 0) to the mean, steady-state point of operation (α0, CL0). An
example of this is shown in Figure 3.2.

This trend makes sense. If the separation point is located near the trailing edge, such
as case A at the top of Figure 3.14, then the response in circulation – and lift force –
will be strong, nearly equal to the slope (dCL/dα)a at low angles-of-attack, in the linear,
attached-flow region. If the separation point is located near the leading edge, such as case
D, then the response in circulation will be weak, nearly equal to the slope (dCL/dα)s of
the fully-stalled airfoil. In between (cases B and C), the response in circulation will be of
intermediate strength; stronger towards smaller α0, and weaker towards larger α0.22 Thus
we can expect the slope γmax to decrease as the mean angle-of-attack α0 increases.

This must be expressed mathematically; begin with the Kirchhoff formula, Equation
2.1:

CL =
1
4
γa(1 +

√
s)2 (α− αz).

Take the derivative with respect to α to find the slope:

dCL
dα

=
1
4
γa

[
(1 +

√
s)2 + 2(1 +

√
s)
(

1√
s

)
ds

dα
(α− αz)

]
;

dCL
dα

=
1
4
γa

[
(1 +

√
s)2 +

(α− αz)√
s

ds

dα
+ (α− αz)

ds

dα

]
. (3.13)

The maximum slope γmax corresponds to the case in which the separation point is held
fixed at the mean value; s = s0 and ds/dα = 0:

γmax =
1
4
γa(1 +

√
s0)2. (3.14)

22α0 is the mean, quasi-steady value of angle-of-attack.



72 CHAPTER 3. A LINEAR DYNAMIC STALL METHOD

Figure 3.14: An illustration of the quasi-steady position of the separation point as a
function of angle-of-attack (drawn for an airfoil that stalls smoothly from the trailing
edge), along with the expected trend in the lift coefficient response if the separation point
were held fixed as the angle-of-attack changed
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Figure 3.15: An illustration of the line representing the equivalent slope γe for stochastic
excitation

The mean separation point position s0 (which is the quasi-steady position sq evaluated at
α0) can be calculated by Equation 2.2 by using CL0 and α0:

s0 =

(
2

√
CL0

γa(α0 − αz)
− 1

)2

. (3.15)

Substituting Equation 3.15 into Equation 3.14 gives:

γmax =
CL0

α0 − αz
. (3.16)

3.3.4 Equivalent Response for Blade Excitation

Before proceeding, it may be useful to say a bit more about the difference between excita-
tion and damping. Because it is linear, the frequency-domain calculation can be thought
of like this: stochastic excitation due to turbulence is represented as a superposition of
harmonics, with the magnitude of excitation (Equations D.80 through D.85) dependent
upon an equivalent lift coefficient slope γe. In this view, the harmonic excitation is ap-
plied to a stationary blade; phase information is irrelevant, because it is not retained
in the spectral density. The blade responds to each harmonic component independently,
with the response depending upon the level of aerodynamic damping. The aerodynamic
damping is independent of the harmonic excitation. Phase matters for damping, and this
is accounted for by using a different value for the equivalent slope, γd, described in the
next section.

Since excitation is applied as if the blade were stationary, the appropriate equivalent
slope γe seems to be that which connects the corners of a box drawn around the entire
CL-α hysteresis loop. This is sketched in Figure 3.15. This definition of the equivalent
slope captures the full fluctuation in the lift force for a given range in angle-of-attack.
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Let a given harmonic of the stochastic turbulence produce a fluctuation in the angle-
of-attack that is, to first order, also harmonic:23

α = α0 +A eiωt. (3.17)

Note that the frequency ω = 2πf may be associated with the turbulent velocity spectrum;
or it may be one of the natural frequencies of vibration of the blade. This depends upon
whether we are calculating excitation or damping of the structure.

The assumption of harmonically oscillating flow is used to solve Equation 3.10. Write
the equation in the form:

dαs
dt

+
1
τs
αs =

α

τs
. (3.18)

The solution procedure to differential equations of this form can be found in textbooks.24

Multiply both sides by an integrating factor:

et/τs
dαs
dt

+ et/τs
1
τs
αs = et/τs

α

τs
. (3.19)

The left-hand side can then be written as a derivative of the combined terms:
d

dt

[
et/τsαs

]
= et/τs

α

τs
. (3.20)

Integrate this equation in time:

et/τsαs =
∫
et/τs

α

τs
dt+ C. (3.21)

Substituting Equation 3.17 for α, the integral becomes:

et/τsαs =
α0

τs

∫
et/τs dt+

A

τs

∫
e[(1/τs)+iω]t dt+ C.

Evaluating the integrals:

et/τsαs = α0e
t/τs +

(
A

τs

)(
1

(1/τs) + iω

)
e[(1/τs)+iω]t + C;

et/τsαs = α0e
t/τs +

(
A

τs

)(
(1/τs)− iω
(1/τs)2 + ω2

)
et/τseiωt + C;

αs = α0 +
(
A

τs

)(
(1/τs)− iω
(1/τs)2 + ω2

)
eiωt + Ce−t/τs . (3.22)

The constant C represents an initial condition, which decays exponentially, and has no
meaning for frequency-domain analysis; we can therefore set C = 0. The solution is
therefore:

αs = α0 +A

(
1− iτsω

1 + (τsω)2

)
eiωt. (3.23)

23Note that for the response of α to be harmonic, given harmonic components of turbulence as an input,
the fluctuations in α must be small. The reason why it is acceptable to make this assumption is that, over
the outer portion of the blade, where the aerodynamic forces matter most, the rotational speed – not the
turbulence – is the dominant component of the velocity vector local to the airfoil. Note that the actual
input and response will consist of multiple frequencies acting simultaneously; this case is dealt with later
in this chapter.

24For example, Edwards and Penney [49] pp 41-42
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The physical meaning of the solution now becomes a bit easier to see if we switch to
real, rather than complex, numbers. Define the phase of α such that:

α = α0 + Imag
[
Aeiωt

]
= α0 +A sinωt. (3.24)

From Equation 3.23, we then have:

αs = α0 +
(

A

1 + (τsω)2

)
(sinωt− τsω cosωt) . (3.25)

When oscillation is slow, and ω is small, then αs ≈ α. When oscillation is fast, and
ω is large, then the amplitude of αs decreases, while it has components both in-phase
(sinωt) and out-of-phase (cosωt) with α. In other words, the phase of αs lags that of α,
as expected. The greater the frequency of oscillation, the smaller the amplitude of αs, and
the more it lags α.

Putting Equations 3.24 and 3.25 into Equation 3.12 gives:

C̃L − CL0

A
= γmax sinωt+ (γq − γmax)

(
sinωt− τsω cosωt

1 + (τsω)2

)
. (3.26)

The equivalent slope for computing excitation forces is the magnitude of the fluctuation
in lift force for a given amplitude of oscillation of angle-of-attack:

γe =
|C̃L − CL0|

A
=
√
γ2

in + γ2
out, (3.27)

with:

γin = γmax + (γq − γmax)
(

1
1 + (τsω)2

)
, (3.28)

which is the component in-phase with α, and:

γout = (γmax − γq)
(

τsω

1 + (τsω)2

)
, (3.29)

which is the component out-of-phase with α. A comparison with data, Section 3.4, indi-
cates that the magnitude of this slope should not be allowed to drop below the quasi-steady
value:

γe = max
[√

γ2
in + γ2

out, |γq|
]
. (3.30)

3.3.5 Equivalent Response for Damping

For frequency-domain analysis it is assumed that the response of the blade, like the exci-
tation, is a superposition of independent harmonics. For a given harmonic, the equivalent
lift coefficient slope for damping, γd, must correctly predict the energy dissipated, over a
cycle of blade oscillation, by the changes in aerodynamic forces that occur as a result of
the blade motion.

Let the blade be oscillating in one of its natural modes. The motion of an airfoil section
at a given point along the blade can be described by:

y = y0 cosωt;
dy

dt
= −y0ω sinωt. (3.31)
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Figure 3.16: A sketch of flow and force vectors

Here, ω = 2πfn is the natural frequency of the mode of vibration. The variable y represents
displacement orthogonal to the mean flow direction at angle-of-attack α0; that is, parallel
to the mean lift force FL0. This is sketched in Figure 3.16. The change in instantaneous
angle-of-attack is in phase with fluctuations in the velocity:

α− α0 = A sinωt. (3.32)

This linear relationship between dy/dt and α is valid only to first order, for small pertur-
bations about the mean angle-of-attack.

In a given oscillation cycle, the energy expended due to fluctuations in the lift coeffi-
cient25 is:

U = −
∫

(FL − FL0) dy = −
∫ 2π/ω

0
(FL − FL0)

dy

dt
dt. (3.33)

Using Equation 3.31 and FL = (1/2)ρcLV 2
0 CL:

U =
1
2
ρcLV 2

0 y0ω

∫ 2π/ω

0
(CL − CL0) sinωt dt. (3.34)

Using Equation 3.26:

U =
1
2
ρcLV 2

0 y0Aω

∫ 2π/ω

0

[
γmax sin2 ωt+ (γq − γmax)(

sin2 ωt− τsω cosωt sinωt
1 + (τsω)2

)]
dt. (3.35)

The term with sin cos integrates to zero, while that with sin2 is nonzero:

U =
1
2
ρcLV 2

0 y0Aω (3.36)[
γmax + (γq − γmax)

(
1

1 + (τsω)2

)] ∫ 2π/ω

0
sin2 ωt dt;

U =
1
2
πρcLV 2

0 y0Aγin. (3.37)

This means that the equivalent slope to use when calculating damping, γd, is equal to γin,
from Equation 3.28.

25. . . as opposed to fluctuations in the velocity due to the oscillatory motion, referring to Equation 3.53
. . .
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3.3.6 The Linear Method in the Deep-Stall Range

A consequence of using Equation 3.11 is that γe and γd are discontinuous at αs, if quasi-
steady coefficients are used for α0 > αs. It is likely appropriate to extrapolate the linear
method somewhat beyond αs, because the slope of the quasi-steady curve is typically near
zero, yet some hysteresis is expected. In this report, a fade function is used. This function
employs a linear interpolation between γe (or γd) and γq, for α0 between αs and αs + 10◦,
in order to smooth the transition from dynamic stall to the quasi-steady coefficient curve.

3.4 Calibration Against Test Data

The time constant τs was calibrated against test data. The results of the comparison
are also a partial validation of the approach, although limitations of the method are also
evident.

A literature search was conducted in order to find published measurements of dynamic
stall. Tables 3.1 through 3.3 summarize the data that was found, in addition to the results
of the linear dynamic stall method. These results represent only the equivalent slope for
excitation, which is easy to read off of plots of the hysteresis loops, as shown in Figure
3.15. Estimation of damping requires the time-history of the response, which is difficult
to derive from plots.26

Tables 3.1 and 3.2 show specimens tested at Risø Laboratories. These tests are char-
acterized by a small amplitude of oscillation. Also, the airfoils are representative of those
used on stall-regulated wind turbines, tending to have a smooth stall behavior. This data
is appropriate to use as a basis for calibration of the time constant.

Table 3.3 shows other data, characterized by large amplitudes of oscillation. One would
not expect a linearized method to be valid over such large departures from the mean. This
data therefore serves to illustrate the limitations of linear methods.

Here is how the calibration was conducted. For each measured CL-α hysteresis loop, a
box can be drawn that exactly encloses the loop; the four walls of the box are CL = CL,max,
CL = CL,min, α = αmax, and α = αmin. This is shown in Figure 3.15. The “measured”
slope, for excitation, is then:

(γe)data =
CL,max − CL,min

αmax − αmin
. (3.38)

It is desired that Equation 3.30 reproduces this slope.
A spreadsheet was created containing the above data, with the time-lag τs, as a vari-

able. A goodness-of-fit metric was calculated as:

η =

√
1
N

∑(
γe

(γe)data
− β

)2

. (3.39)

The constant β is nominally 1, but can be modified if it is desirable to bias the results.
The calibration of τs was done in two stages. The reason was that only a portion of

the data in Tables 3.1 and 3.2 was located during the first literature search. The first
calibration was conducted based upon only the Risø-1 airfoil data.27 Later, References

26It is possible to reconstruct the time history from plots of the hysteresis loops; but this would be quite
time consuming. Instead, validation of damping is obtained by comparing the result of linear and nonlinear
calculations, as described in Section 3.5. The nonlinear method compares well with the majority of the
measured hysteresis loops (those which do not exhibit leading-edge vortex shedding).

27Fuglsang et al. [59]
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Table 3.1: A summary of dynamic-stall specimens; small-amplitude tests; τs = 5c/V

Source Airfoil α0 A k dCL/dα
(deg) (deg) max qs calc. meas.

Fuglsang Risø-1 2.8 1.4 0.110 6.8 6.8 6.8 6.8
Fuglsang Risø-1 7.7 1.5 0.110 6.5 3.2 4.8 4.6
Fuglsang Risø-1 9.7 1.6 0.110 5.7 1.3 3.8 3.9
Fuglsang Risø-1 11.8 1.6 0.110 5.0 1.0 3.2 3.3
Fuglsang Risø-1 13.9 1.7 0.110 4.4 0.5 2.8 2.9
Fuglsang Risø-1 15.8 1.8 0.110 3.9 -0.4 2.5 2.7
Fuglsang Risø-1 23.3 2.0 0.110 2.3 -2.6 2.6 3.2
Fuglsang Risø-1 3.3 1.5 0.077 6.8 6.8 6.8 6.3
Fuglsang Risø-1 8.2 1.6 0.077 6.3 3.2 4.2 4.0
Fuglsang Risø-1 10.0 1.7 0.077 5.6 1.3 3.0 3.0
Fuglsang Risø-1 11.9 1.8 0.077 4.9 1.0 2.6 2.4
Fuglsang Risø-1 13.7 1.8 0.077 4.5 0.5 2.3 1.9
Fuglsang Risø-1 15.8 1.9 0.077 3.2 -0.4 1.6 2.0
Fuglsang Risø-1 23.3 2.1 0.077 2.3 -2.6 2.6 2.8
Fuglsang 2 FFA-W3-241 9.5 1.5 0.093 6.2 4.1 5.2 4.8
Fuglsang 2 FFA-W3-241 11.3 1.5 0.093 5.7 -1.5 4.0 5.0
Fuglsang 2 FFA-W3-241 13.5 1.7 0.093 4.5 0.2 3.1 4.5
Fuglsang 2 FFA-W3-241 15.7 1.8 0.093 3.9 -0.7 2.7 3.3
Fuglsang 2 FFA-W3-241 20.0 1.9 0.093 3.0 -2.1 2.6 2.6
Fuglsang 2 FFA-W3-241 24.7 1.9 0.093 2.1 -3.4 3.4 2.6
Fuglsang 2 FFA-W3-241 9.7 1.5 0.070 6.0 4.1 4.8 4.2
Fuglsang 2 FFA-W3-241 11.5 1.6 0.070 5.6 -1.5 3.4 4.5
Fuglsang 2 FFA-W3-241 13.7 1.8 0.070 4.5 0.2 2.6 3.6
Fuglsang 2 FFA-W3-241 16.0 1.9 0.070 3.9 -0.7 2.3 2.7
Fuglsang 2 FFA-W3-241 20.1 1.9 0.070 2.9 -2.1 2.4 2.5
Fuglsang 2 FFA-W3-241 24.6 2.0 0.070 2.1 -3.4 3.4 2.5
Fuglsang 2 FFA-W3-301 9.1 1.4 0.093 6.0 0.9 4.1 5.2
Fuglsang 2 FFA-W3-301 11.1 1.4 0.093 5.2 1.6 3.7 5.2
Fuglsang 2 FFA-W3-301 13.1 1.5 0.093 4.7 4.0 4.4 3.4
Fuglsang 2 FFA-W3-301 15.0 1.6 0.093 4.4 0.8 3.0 3.3
Fuglsang 2 FFA-W3-301 16.9 1.6 0.093 4.0 -1.1 2.8 3.5
Fuglsang 2 FFA-W3-301 21.2 1.7 0.093 2.9 -1.8 2.3 3.2
Fuglsang 2 FFA-W3-301 25.8 1.8 0.093 2.1 -2.7 2.7 2.4
Fuglsang 2 FFA-W3-301 9.0 1.5 0.070 6.0 1.3 3.6 4.8
Fuglsang 2 FFA-W3-301 10.9 1.5 0.070 5.2 0.8 3.1 4.7
Fuglsang 2 FFA-W3-301 12.9 1.6 0.070 4.8 4.3 4.4 2.9
Fuglsang 2 FFA-W3-301 14.9 1.6 0.070 4.4 0.9 2.6 2.3
Fuglsang 2 FFA-W3-301 16.8 1.7 0.070 4.0 -1.6 2.6 3.4
Fuglsang 2 FFA-W3-301 21.3 1.8 0.070 2.8 -2.2 2.4 2.4
Fuglsang 2 FFA-W3-301 25.9 1.9 0.070 2.0 -2.7 2.7 2.5

Notes on Table 3.1:

(1) “Fuglsang” is Fuglsang et al. [59]

(2) “Fuglsang 2” is Fuglsang et al. [56]
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Table 3.2: A summary of dynamic-stall specimens (continued); small-amplitude tests;
τs = 5c/V

Source Airfoil α0 A k dCL/dα
(deg) (deg) max qs calc. meas.

Fuglsang 2 NACA 63-430 6.4 1.5 0.093 5.1 4.1 4.6 4.5
Fuglsang 2 NACA 63-430 8.2 1.5 0.093 4.8 2.6 3.8 4.0
Fuglsang 2 NACA 63-430 10.0 1.6 0.093 4.4 1.1 3.1 3.4
Fuglsang 2 NACA 63-430 11.9 1.6 0.093 4.1 2.4 3.3 2.9
Fuglsang 2 NACA 63-430 13.8 1.7 0.093 3.7 -0.6 2.6 2.8
Fuglsang 2 NACA 63-430 15.8 1.8 0.093 3.2 -1.4 2.4 2.9
Fuglsang 2 NACA 63-430 19.8 1.9 0.093 2.5 2.1 2.3 2.0
Fuglsang 2 NACA 63-430 23.7 1.9 0.093 2.1 -0.5 1.5 2.2
Fuglsang 2 NACA 63-430 6.4 1.6 0.070 5.1 3.6 4.2 4.2
Fuglsang 2 NACA 63-430 8.2 1.6 0.070 4.8 2.9 3.6 3.7
Fuglsang 2 NACA 63-430 10.0 1.6 0.070 4.4 1.4 2.8 3.3
Fuglsang 2 NACA 63-430 11.9 1.7 0.070 4.0 2.5 3.1 2.4
Fuglsang 2 NACA 63-430 13.8 1.8 0.070 3.7 -0.6 2.2 2.2
Fuglsang 2 NACA 63-430 15.7 2.0 0.070 3.2 -1.0 2.0 2.3
Bak NACA 63-415 9.6 1.5 0.092 5.5 3.5 4.5 3.6
Bak NACA 63-415 11.5 1.5 0.092 5.2 1.8 3.7 3.2
Bak NACA 63-415 13.5 1.6 0.092 4.6 -0.5 3.2 3.4
Bak NACA 63-415 15.7 1.8 0.092 3.9 -2.3 3.1 4.4
Bak NACA 63-415 17.9 1.9 0.092 3.2 -2.1 2.7 4.4
Bak NACA 63-415 20.3 2.1 0.092 2.6 -4.7 4.7 4.2
Bak NACA 63-415 22.9 2.0 0.092 2.0 -2.9 2.9 3.7
Bak N. 63-415-Risø-D 10.3 1.5 0.092 5.5 2.5 4.1 3.6
Bak N. 63-415-Risø-D 12.2 1.6 0.092 5.1 1.3 3.6 3.1
Bak N. 63-415-Risø-D 14.2 1.7 0.092 4.6 -0.4 3.1 3.1
Bak N. 63-415-Risø-D 16.5 1.9 0.092 3.8 -2.4 3.2 4.2

Notes on Table 3.2:

(1) “Fuglsang 2” is Fuglsang et al. [56]

(2) “Bak” is Bak et al. [6]
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Table 3.3: A summary of dynamic-stall specimens; large-amplitude tests; τs = 5c/V

Source Airfoil α0 A k dCL/dα
(deg) (deg) max qs calc. meas.

Gupta S809 8.0 5.5 0.026 5.5 5.5 5.5 3.4
Gupta S809 14.0 5.5 0.026 3.9 0.9 1.3 2.1
Gupta S809 20.0 5.5 0.026 1.8 -0.8 0.9 3.9
Gupta S809 8.0 5.5 0.050 5.5 5.5 5.5 3.4
Gupta S809 14.0 5.5 0.050 3.9 0.9 1.9 1.8
Gupta S809 20.0 5.5 0.050 1.8 -0.8 1.1 3.9
Gupta S809 8.0 5.5 0.077 5.5 5.5 5.5 3.6
Gupta S809 14.0 5.5 0.077 3.9 0.9 2.5 2.9
Gupta S809 20.0 5.5 0.077 1.8 -0.8 1.3 4.9
Leishman NACA 0012 7.8 8.4 0.060 6.2 6.4 6.4 5.1
Leishman NACA 0012 10.0 8.0 0.075 6.3 6.4 6.4 3.9
Leishman NACA 0012 15.0 5.0 0.076 5.7 5.0 5.3 4.0
Leishman NACA 0012 7.1 8.7 0.099 6.4 6.4 6.4 6.3
Leishman NACA 0012 12.0 8.5 0.100 6.1 6.4 6.4 4.7
Pierce LS(1)-0417 8.0 10.0 0.026 6.0 6.4 6.4 5.1
Pierce LS(1)-0417 14.0 10.0 0.026 5.0 3.1 3.3 2.9
Pierce LS(1)-0417 20.0 10.0 0.027 2.9 -1.0 1.2 1.8
Pierce LS(1)-0417 8.0 10.0 0.052 6.0 6.4 6.4 5.3
Pierce LS(1)-0417 14.0 10.0 0.052 5.0 3.1 3.6 3.5
Pierce LS(1)-0417 20.0 10.0 0.055 2.9 -1.0 1.6 2.9
Pierce LS(1)-0417 14.0 10.0 0.079 5.0 3.1 4.0 4.1
Pierce LS(1)-0417 20.0 10.0 0.081 2.9 -1.0 2.0 3.6
Pierce LS(1)-0417 8.0 10.0 0.082 6.0 6.4 6.4 5.7
Pierce NACA 4415 14.0 10.0 0.029 4.9 0.0 1.4 2.0
Pierce NACA 4415 20.0 10.0 0.031 3.1 -2.4 2.5 2.4
Pierce NACA 4415 14.0 10.0 0.055 4.9 0.0 2.4 2.2
Pierce NACA 4415 8.0 3.5 0.059 5.7 6.0 6.0 3.3
Pierce NACA 4415 20.0 10.0 0.064 3.1 -2.4 2.6 3.0
Pierce NACA 4415 14.0 10.0 0.086 4.9 0.0 3.2 3.2
Pierce NACA 4415 20.0 3.5 0.087 3.1 -2.4 2.7 3.3
Pierce NACA 4415 8.0 3.5 0.089 5.7 6.0 6.0 4.0
Pierce S809 20.0 10.0 0.025 1.8 -0.8 0.9 1.6
Pierce S809 8.0 10.0 0.026 5.5 5.5 5.5 4.0
Pierce S809 14.0 10.0 0.026 3.9 0.9 1.3 2.4
Pierce S809 20.0 10.0 0.051 1.8 -0.8 1.1 2.9
Pierce S809 8.0 10.0 0.053 5.5 5.5 5.5 4.4
Pierce S809 14.0 10.0 0.053 3.9 0.9 2.0 2.9
Pierce S809 8.0 10.0 0.077 5.5 5.5 5.5 5.0
Pierce S809 20.0 10.0 0.078 1.8 -0.8 1.3 3.8
Pierce S809 14.0 10.0 0.080 3.9 0.9 2.5 3.5

Notes on Table 3.3:

(1) “Gupta” is Gupta and Leishmen [74]

(2) “Leishman” is Leishman and Beddoes [113],[114]

(3) “Pierce” is Pierce [143]
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Figure 3.17: Calibration of the time constant τs based upon measurements of the Risø-1
airfoil

[56] and [6] were found, and a second calibration was conducted. The fact that the
calibration was conducted in two stages has influenced the values of τs used in the full-
scale validation of the dynamic stall method (Section 3.6), as well as the rotor optimization
studies (Chapter 6), and therefore requires elaboration.

Using Risø-1 airfoil data, the best fit, by Equation 3.39, is obtained with τs = 3.7c/V .
The resulting ratio of γe/(γe)data is shown in Figure 3.17, where the Risø-1 points are
highlighted.

Some comments on Figure 3.17 are necessary. First, it is clear that the predicted
values of γe are poor for large-amplitude oscillations. At low angles-of-attack, where flow
is attached at the mean angle-of-attack, the linear method is conservative, especially at
low frequencies. This is because, due to the linearization, the initiation of flow separation
is not captured. At high angles-of-attack, near the deep-stall range, the linear method is
unconservative. This is because airfoils oscillated through large amplitudes exhibit leading-
edge vortex shedding, which has been neglected in development of the current methods
(both linear and nonlinear). This is not so much of a concern for preliminary design,
provided that the rotor is not expected to encounter abrupt changes in flow conditions,
such as a severe wake velocity deficit or tower shadow on a downwind rotor.

The second comment on Figure 3.17 is that, in cases with small-amplitude oscillation,
other airfoils show significantly more scatter than the Risø-1. Part of the explanation lies
in the stall behavior. The Risø-1 airfoil has a very nice, smooth transition from attached-
flow to stall, as can be seen in Figure 3.18. Other airfoils, such as the FFA-W3-241 (also in
Figure 3.18), exhibit a sharp initial stall at a lower angle-of-attack, followed by a plateau
in the lift curve. The assumed interpolation of the lift coefficient response, Equation 3.11,
works better for a Risø-1 type of stall behavior than an FFA-W3-241 type of stall behavior.

In order to improve the correlation between predicted and measured values of γe, a
second calibration was conducted based upon the full set of small-amplitude data. This is
shown in Figure 3.19. The best result was obtained with τs = 5.0c/V , although there is
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Figure 3.18: A comparison of the lift curves of the Risø-1 and FFA-W3-241 airfoils

still significant scatter. It is seen that with this value of τs, the predicted γe for the Risø-1
airfoil becomes conservative, on balance.

A problem arises, though, because while overpredicting the dCL/dα slope is conserva-
tive for excitation, it is unconservative for damping. In other words, to be conservative,
one wants to overpredict γe and underpredict γd. It was decided, therefore, to retain
the value of τs = 3.7c/V when calculating γd, for damping, and to use τs = 5c/V when
calculating γe, for excitation.

Comparisons with full-scale turbine data in Section 3.6 indicate that it may be rea-
sonable to use simply γmax (Equation 3.16) for purposes of computing excitation.28 As
Figure 3.20 shows, this biases excitation towards the conservative. This was not done
in the present project, though; instead, a high value of turbulence intensity was used to
obtain a conservative bias.

3.5 Validation Against the Nonlinear Method

In order to evaluate the accuracy of the linear method over a broad range of cases, it was
necessary to conduct a numerical study. The nonlinear dynamic-stall method described
in Section 3.2 was used as a baseline; it is considered to give the “correct” solution. As
shown in Figures 3.6 through 3.12, the baseline nonlinear method is valid for airfoils which
do not exhibit leading-edge vortex shedding.

3.5.1 Airfoils Included in the Study

Before the numerical model of airfoil coefficients (Chapter 2) was developed, calculations
were performed with tabulated airfoil coefficient data. Coefficient tables were amalga-
mated from data that was found in the literature, for smoothly-stalling airfoils of the sort
that would be used on stall-regulated turbines. The tables spanned a Reynolds number

28Damping must include the effects of the time lag, and should be calculated using Equation 3.28.
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Figure 3.19: Calibration of the time constant τs based upon measurements of several
airfoils

Figure 3.20: A comparison of the equivalent slopes based upon interpolation with a time
delay, and γmax (Equation 3.16), which is independent of time delay
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Figure 3.21: A 12% thick, smoothly-stalling airfoil

range of 5 × 105 through 6 × 106, using coefficient data from different (albeit similar)
airfoils, if necessary.

Figure 3.21 shows coefficients for a 12% thick, cambered airfoil with a smooth stall
characteristic. The coefficients are based primarily upon the Risø-1 airfoil.29 Data for
this airfoil was reported at Re = 1.6 × 106, which was assumed to be representative of
Re = 2 × 106. For Re = 6 × 106, and also to estimate coefficients at negative angles-
of-attack, reference was made to Abbott and von Doenhoff [1], looking at NACA 4412
and NACA 641-412 airfoil data. (Deep-stall drag data at this Reynolds number is a guess
based upon references mentioned in Section 2.1.5.) The effect of reducing the Reynolds
number from Re = 2× 106 to Re = 5× 105 was estimated based upon trends observed for
the NACA 0012 airfoil.30

Figure 3.21 shows coefficients for an 18% thick, cambered airfoil with a smooth stall
characteristic. The coefficients are based upon the DU 95-W-180 airfoil31 (with 2◦ flap), at
Re = 2×106. Coefficients at Re = 5×105 are based upon the S901 airfoil32 at Re = 7×105.
The NACA 643-418 airfoil33 (with roughened leading edge) was used for Re = 6 × 106.
One significant alteration was made to the NACA 643-418 data: the lift coefficient at an
angle-of-attack of 18◦ was reduced from 1.17 to 1.00, in order that the slope in the lift
curve was similar to that of the other two airfoils. (Using the original data would have
given a large negative slope between α of 18◦ and 20◦, which would defeat the purpose of

29Fuglsang et al. [55]
30Sheldahl and Klimas [158]
31Timmer and van Rooij [178]
32Somers [163]
33Abbott and von Doenhoff [1]
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Figure 3.22: An 18% thick, smoothly-stalling airfoil

investigating a smoothly-stalling airfoil.)

In this case, the coefficient curves are a composite of data from three airfoils, and
there are inconsistencies. Under attached flow, the trend in drag coefficient with Reynolds
number is not quite as expected: it should decrease with increasing Reynolds number.
Also, the lift coefficient curve indicates that stall at Re = 2× 106 occurs at a lower angle-
of-attack than at Re = 5 × 105, which is not expected to be the case. That being said,
consistency across a range of Reynolds numbers is not so important for the present study,
which is conducted at one Reynolds number (interpolated between the given curves).

Figure 3.23 shows a 24% thick, cambered airfoil with a smooth stall characteristic. The
coefficients are based upon the DU 91-W2-25 airfoil.34 Data was provided at a Reynolds
number of 3× 106, which was assumed to be representative of Re = 2× 106. Coefficients
at other Reynolds numbers were estimated.

Stall strips may be used to obtain a very smooth stall characteristic. Examples of
coefficients for airfoils with stall strips can be found in Petersen et al. [142], Figure 3.15,
and Riziotis et al. [149], Figures 8 and 9. Coefficient curves were estimated for 18% and
24% thick airfoil with stall strips; these are shown in Figures 3.24 and 3.25.

For convenience, the airfoils shown in Figures 3.21 through 3.25 are denoted A12, A18,
A24, A18-SR, and A24-SR.

34Timmer and van Rooij [178]
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Figure 3.23: A 24% thick, smoothly-stalling airfoil

Figure 3.24: An 18% thick airfoil with stall strips
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Figure 3.25: A 24% thick airfoil with stall strips

Table 3.4: Values of variables used in the comparison
Variable Values
Airfoil A18-SR, A24-SR, A12, A18, A24
frequency 0.2, 0.8, 1.4, 2.0, 2.6, 3.2 Hz
A 1◦, 3◦, 5◦, 7◦

α0 8◦, 10◦, 12◦, 14◦, 16◦, 18◦, 20◦

3.5.2 Comparisons of Excitation Forces Calculated by the Linear and
Nonlinear Methods

A test matrix was developed containing all permutations of the variables shown in Table
3.4; for a total of 840 cases. Each test case consists of a single airfoil element, oscillated
harmonically at a certain frequency and amplitude A, with mean angle-of-attack α0.

Values of γe were calculated according to Equation 3.30 for the linear method, and
Equation 3.38 for the nonlinear method. The nonlinear method was run with a timestep
∆t of 0.008 s, over a period of at least two full oscillations of the angle-of-attack cycle:
T ≥ 4π/ω. This length of simulation was sufficient for transients to die out, and at least
one full harmonic cycle to be obtained.

Results are shown in Figure 3.26. In most cases, the linear and nonlinear methods are
in agreement. Among 840 points, only a handful show gross disagreement between the
methods. These cases are associated with low frequencies. Figure 3.27 shows an example.
At low oscillation frequencies, fluctuations in lift follow the quasi-steady lift coefficient
curve, while the linear method predicts a slope that is equal to that of the quasi-steady
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Figure 3.26: A comparison of the equivalent lift coefficient slope γe for excitation, calcu-
lated by the linear and nonlinear methods

curve at the mean angle-of-attack. When the slope of the lift coefficient curve changes
abruptly, linearization is valid only in the immediate vicinity of the mean point.

When the frequency of oscillation is higher, and amplitude smaller, the agreement is
quite good; Figure 3.28 shows an example.

Further insight into the comparison between the linear and nonlinear methods can be
obtained by examining some simple statistics. Define the ratio of linear and nonlinear
equivalent slopes:

ε =
(γe)linear

(γe)nonlinear
. (3.40)

Table 3.5 shows the mean and standard deviation of the ratio ε, as a function of two
design variables. In each entry of the table, the amplitude (listed in the upper row), and
either the frequency or mean angle-of-attack (listed in the left-hand column) are fixed.
The mean or standard deviation of ε is then computed over all permutations of the other
two variables.

The values in the table show that if one steers clear of the combination of low frequency
and large amplitude, then the linear method can be expected to predict the equivalent
slope γe to within roughly ±20% (a couple standard deviations), relative to the nonlinear
method. Where there is disagreement between the methods, the linear method can be
expected to be conservative and unconservative in roughly the same fraction of cases; this
follows from the fact that the mean values of ε are near 1.
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Figure 3.27: A case of poor agreement between the linear and nonlinear methods

Figure 3.28: A case of good agreement between the linear and nonlinear methods
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Table 3.5: Mean and standard deviation of linear/nonlinear ratio ε, for excitation γe

Mean A St.dev. A
1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

0.2 0.949 0.947 0.940 0.978 0.2 0.113 0.225 0.365 0.529
0.8 1.008 1.008 1.000 0.989 0.8 0.053 0.082 0.155 0.236

f 1.4 1.032 1.040 1.035 1.019 f 1.4 0.052 0.061 0.119 0.172
2.0 1.047 1.055 1.043 1.018 2.0 0.053 0.075 0.119 0.149
2.6 1.059 1.060 1.042 1.011 2.6 0.062 0.087 0.114 0.126
3.2 1.070 1.063 1.040 1.008 3.2 0.071 0.094 0.106 0.114

Mean A St.dev. A
1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

8◦ 0.988 0.965 0.939 0.921 8◦ 0.107 0.166 0.185 0.196
10◦ 1.004 0.974 0.906 0.844 10◦ 0.078 0.132 0.160 0.187
12◦ 1.032 1.002 0.934 0.870 12◦ 0.026 0.051 0.135 0.172

α0 14◦ 1.031 1.022 0.990 0.956 α0 14◦ 0.061 0.073 0.108 0.123
16◦ 1.060 1.069 1.104 1.137 16◦ 0.036 0.087 0.158 0.262
18◦ 1.081 1.117 1.192 1.249 18◦ 0.097 0.161 0.256 0.375
20◦ 0.999 1.055 1.051 1.049 20◦ 0.083 0.064 0.094 0.166

3.5.3 Comparisons of Damping Calculated by the Linear and Nonlinear
Methods

Damping is compared on the basis of energy dissipated over a cycle of oscillation. It is
convenient, however, to define the dissipated energy in terms of a damping ratio, which is
more intuitive. Converting dissipated energy into a damping ratio requires specification
of the blade section; here, typical parameters for an outboard blade section are used:
c = 1.25 m, L = 1 m, m = 100 kg, ρ = 1.225 kg/m3, and rΩ = 50 m/s.

The blade section is assumed to vibrate in the flapwise direction, such that the angle-
of-attack varies harmonically:

α = α0 +A sinωt. (3.41)

Let the flapwise velocity be (vs)Z , in blade section coordinates (Figure A.1). Referring to
Figure 3.16, it follows that:

tanα =
rΩ tanα0 − (vs)Z

rΩ
; (3.42)

(vs)Z = −rΩ(tanα− tanα0). (3.43)

Define ν = α− α0 = A sinωt. Then:

(vs)Z = −rΩ[tan(α0 + ν)− tanα0]. (3.44)

By the definition of tangent and the sum-angle formulas:

tan(α0 + ν) =
sin(α0 + ν)
cos(α0 + ν)

=
sinα0 cos ν + cosα0 sin ν
cosα0 cos ν − sinα0 sin ν

. (3.45)

For small A, which implies small ν:

tan(α0 + ν) =
sinα0 + ν cosα0

cosα0 − ν sinα0
. (3.46)
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A Taylor expansion in ν gives, to first order:

tan(α0 + ν) ≈ tanα0 + ν(1 + tan2 α0). (3.47)

It follows that:

(vs)Z ≈ −rΩ(A sinωt)(1 + tan2 α0). (3.48)

Equation 3.48 reproduces, to first order, the harmonic angle-of-attack defined in Equation
3.41. The amplitude of flapwise velocity is thus:

(vs0)Z ≈ rΩA(1 + tan2 α0). (3.49)

Note that the relationship between the amplitude of flapwise velocity and displacement
parallel to the (mean) lift force is:

(vs0)Z cosα0 = y0ω; (3.50)

so that:

y0ω = rΩA(1 + tan2 α0)(cosα0). (3.51)

The expression for dissipated energy is derived from a perturbation analysis, with the
amplitude A as a small parameter. The starting point is:

U = −
∫
FL dy. (3.52)

Integrating over a cycle:

U = −
∫ 2π/ω

0
FL

dy

dt
dt;

U = −1
2
ρcL

∫ 2π/ω

0
V 2CL

dy

dt
dt.

Assuming harmonic displacement, y = y0 cosωt:

U =
1
2
ρcLy0ω

∫ 2π/ω

0
V 2CL sinωt dt. (3.53)

This differs from Equation 3.34 in that the time integral includes the effects of fluctuations
in both force and the net local velocity. Now, in place of CL, use the equivalent C̃L from
Equation 3.26, also employing Equations 3.28 and 3.29, to make the expression easier to
write:

C̃L = CL0 +A(γin sinωt+ γout cosωt). (3.54)

The velocity V is, to first order:

V = V0 +
∂V

∂(vs)Z

∣∣∣∣
α0

(vs)Z . (3.55)

Also:

V =
√

[V∞ + Vi − (vs)Z ]2 + (rΩ)2. (3.56)
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Thus:

∂V

∂v
= − V∞ + Vi − v√

(V∞ + Vi − v)2 + (rΩ)2
= − sinα; (3.57)

and:

∂V

∂v

∣∣∣∣
α0

= − sinα0. (3.58)

The expression for energy becomes:

U =
1
2
ρcLy0ω

∫ 2π/ω

0
[V0 + rΩA sinωt sinα0(1 + tan2 α0)]2

[CL0 +A(γin sinωt+ γout cosωt)] sinωt dt.

Omitting terms of O(A2):

U =
1
2
ρcLy0ω

∫ 2π/ω

0
[V 2

0 + 2V0rΩA sinωt sinα0(1 + tan2 α0)]

[CL0 +A(γin sinωt+ γout cosωt)] sinωt dt;

U =
1
2
ρcLy0ω

∫ 2π/ω

0
[V 2

0 CL0 + V 2
0 A(γin sinωt+ γout cosωt)

+2CL0V0rΩA sinωt sinα0(1 + tan2 α0)] sinωt dt.

Carrying out the integration:

U =
1
2
ρcLy0ω

∫ 2π/ω

0
[V 2

0 CL0 sinωt+ V 2
0 A(γin sin2 ωt+ γout sinωt cosωt)

+2CL0V0rΩA sin2 ωt sinα0(1 + tan2 α0)] dt;

U =
1
2
ρcLy0ω[V 2

0 Aγin + 2CL0V0rΩA sinα0(1 + tan2 α0)]
∫ 2π/ω

0
sin2 ωt dt.

Use Equation 3.51 for y0ω. Then:

U =
1

2ω
πρcLrΩA2(cosα0)(1 + tan2 α0)

[V 2
0 γin + 2CL0V0rΩ sinα0(1 + tan2 α0)]. (3.59)

For the nonlinear method, U is obtained by summation over one cycle of motion of the
energy increments ∆U :

∆U = −(FL cosα)(vs)Z ∆t. (3.60)

Here the flapwise velocity (vs)Z is computed such that α = α0 +A sinωt exactly.
The damping ratio can then be calculated:

ζ =
U

2πm(vs0)2
Z

. (3.61)
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Figure 3.29: A comparison of damping ratio calculated by the linear and nonlinear meth-
ods; 0.8 ≤ f ≤ 2.6 Hz; the damping calculated by linearizing the quasi-steady, 2D coeffi-
cient curve is also shown

Equation 3.61 simply converts U into a more intuitive value representative of a damping
ratio. It can be applied using the dissipated energy U from either the linear or nonlinear
method.

Figure 3.29 compares the damping ratio calculated by the linear and nonlinear meth-
ods. The frequency range is limited to 0.8 to 2.6 Hz, because this brackets the most
significant blade vibrational frequencies. The plot includes predictions obtained by lin-
earizing the 2D, quasi-steady coefficient curve. Conclusions are:

1. The linear method is conservative for damping that is near-zero or negative.

2. The linear method, which includes the effects of dynamic stall, is a substantial
improvement over the linearized 2D, quasi-steady coefficient curve.

3. The linear method does not generally agree with the nonlinear method to within an
accuracy in ζ of ±0.01. This means that the error is not negligible, in comparison
with structural damping.

It is helpful to examine one case with poor agreement between the linear and nonlinear
methods, and another with good agreement. Figure 3.30 shows a case that is typical of
those with a large discrepancy between the linear and nonlinear methods. It is seen that
the mean angle-of-attack is in the stalled range, but the large amplitude of oscillation
carries the angle-of-attack into the attached-flow range. The nonlinear hysteresis loop
then follows the attached-flow slope, while the linear method does not. It is therefore the
abrupt change in CL-α slope that causes the linear method to underpredict damping. The
same type of discrepancy occurs in the vicinity of a sharp stall response.

Define the error in damping ratio:

δ = ζlinear − ζnonlinear. (3.62)
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Figure 3.30: A comparison of the CL-α hysteresis loop, calculated by the nonlinear method,
with the equivalent slope for damping γd, calculated by the linear method; a case of poor
agreement

Figure 3.31: A comparison of the CL-α hysteresis loop, calculated by the nonlinear method,
with the equivalent slope for damping γd, calculated by the linear method; a case of good
agreement
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Table 3.6: Mean and standard deviation of linear-nonlinear error δ, for damping ratio

Mean A St.dev. A
1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

0.2 -0.0044 -0.0205 -0.0480 -0.0783 0.2 0.0152 0.0453 0.0849 0.1081
0.8 0.0001 -0.0044 -0.0116 -0.0198 0.8 0.0031 0.0100 0.0188 0.0236

f 1.4 0.0010 -0.0019 -0.0062 -0.0111 f 1.4 0.0013 0.0048 0.0086 0.0108
2.0 0.0008 -0.0009 -0.0037 -0.0070 2.0 0.0008 0.0029 0.0048 0.0061
2.6 0.0014 -0.0001 -0.0023 -0.0046 2.6 0.0006 0.0019 0.0031 0.0041
3.2 0.0014 0.0002 -0.0014 -0.0032 3.2 0.0005 0.0013 0.0023 0.0030

Mean A St.dev. A
1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

8◦ -0.0014 -0.0079 -0.0161 -0.0205 8◦ 0.0107 0.0319 0.0564 0.0684
10◦ -0.0024 -0.0114 -0.0262 -0.0347 10◦ 0.0101 0.0217 0.0470 0.0654
12◦ 0.0008 0.0070 0.0075 -0.0022 12◦ 0.0012 0.0145 0.0276 0.0324

α0 14◦ 0.0006 -0.0004 -0.0011 -0.0071 α0 14◦ 0.0017 0.0043 0.0115 0.0236
16◦ 0.0003 -0.0048 -0.0148 -0.0270 16◦ 0.0023 0.0187 0.0381 0.0567
18◦ 0.0003 -0.0062 -0.0212 -0.0335 18◦ 0.0019 0.0187 0.0421 0.0614
20◦ 0.0021 -0.0086 -0.0135 -0.0196 20◦ 0.0083 0.0171 0.0222 0.0296

(It does not make sense to define the ratio of linear/nonlinear damping predictions, because
values can be very close to zero.)

Table 3.6 quantifies the error in damping, δ. Referring to Figure 3.29, there appears
to be significant scatter in the comparison, and this is reflected in the large standard
deviations seen in Table 3.6. However, the situation is better than it appears at first
glance. A vibrating blade can be expected to have a natural frequency above 1 Hz, and
a small angle-of-attack amplitude. Under these conditions, the errors are small, although
not negligible, in comparison with the structural damping ratio of around 0.01. The errors
are biased towards the conservative (underpredicting damping), especially when damping
is low or negative.

It is important that the linear method tends to be conservative in cases in which
damping is negative. This means that the linear dynamic-stall method can be used with
confidence. If the linear method predicts that damping is positive, then damping is almost
certainly positive. Thus, the linear method provides a means to calculate damping dur-
ing frequency-domain calculations that is reliable, and much improved over an estimate
obtained from the quasi-steady coefficient curve.

3.5.4 Multiple Excitation Frequencies

In a real load case, excitation occurs as a stochastic process, which can be represented by
a frequency spectrum; multiple frequencies act simultaneously.

There is a particular case that is of interest, and we can focus on this case in order to
limit the scope of the analysis.35 Under stalled conditions, when the windspeed approaches
cut-out, aerodynamic damping is comparatively low, and vibration in the first flapwise
mode is significant. The blade response has two dominant harmonics: the first flapwise
natural frequency fn, and the rotor rotational frequency 1P. Depending upon the level
of damping, the amplitudes of the fn and 1P harmonics may be comparable, or one or
the other may dominate. Excitation is primarily at 1P, however blade vibration depends

35Section 3.6 contains examples of this case.
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upon the comparatively weak excitation at fn. Damping depends upon the aerodynamic
response to airfoil motion at fn, however this depends upon the position of the separation
point, which is influenced by fluctuations in the flow at 1P. So in the true, nonlinear case,
the responses to the harmonics at 1P and fn are interrelated.

By linear theory, though, superposition applies. In a case with two frequencies:

CL = γ1α1 + γ2α2; γi =
dCL
dαi

∣∣∣∣
α0

; (3.63)

where α1 = A1 sin(ω1t + φ1) and α2 = A2 sin(ω2t + φ2). Equation 3.30 can be used to
calculate γ1 and γ2. Superposition also applies when calculating the dissipated energy,
and thus the damping ratio, with the linear method.

Here a numerical example is considered to evaluate whether the use of superposition
is acceptable. Pick f1 = 0.25 Hz, f2 = 1.5 Hz, and φ1 = φ2 = 0. Choosing f2 as an integer
multiple of f1, and letting the motion be in-phase, makes the calculations easier, yet still
serves to illustrate the main points.

Assume that the higher frequency fn represents structural vibration, while the lower
frequency 1P represents changes in the incident wind velocity, such as wind shear and
rotationally-sampled turbulence.

Only for purposes of comparison, define the effective lift coefficient slope as:

γe =
CL,max − CL,min

2(A1 +A2)
. (3.64)

In words, this says that the effective lift coefficient slope is equal to the range of lift
coefficient divided by the range of angle-of-attack encountered over one cycle of the lower-
frequency oscillation. This is used only for comparing the linear and nonlinear methods;
in the actual structural calculations, γe is calculated independently for each frequency.

Damping is defined relative to the motion at the higher frequency, representing struc-
tural vibration. The velocity amplitude is:

(vs0)Z = rΩA2(1 + tan2 α0). (3.65)

For the nonlinear method, an approximate velocity of structural motion (vs)Z , assuming
flapwise vibration, is calculated:

α = α0 +A2 sinω2t; (3.66)

(vs)Z ≈ −rΩ(tanα− tanα0). (3.67)

Equation 3.67 is not exact, because the tangent function does not allow superposition; but
the approximation is close enough to use in evaluating how well the linear and nonlinear
methods compare. The force on the airfoil in the flapwise direction is calculated by Equa-
tion 2.1, using the instantaneous angle-of-attack α. Energy dissipated from the structural
vibration during a single timestep is then:

∆U = −(FL cosα)v ∆t. (3.68)

An analysis was performed using all permutations of the variables shown in Table 3.7.
The total magnitude of the fluctuation in angle-of-attack, A1 + A2, was set to the same
values as in the single-frequency study. The ratio A1/A2 was varied such that the lower-
frequency (wind shear) and higher-frequency (structural vibration) oscillations were, in
turn, dominant.
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Table 3.7: Values of variables used in the comparison
Variable Values
Airfoil A18-SR, A24-SR, A12, A18, A24
A1 +A2 1◦, 3◦, 5◦, 7◦

A1/A2 0, 0.33, 1, 3
α0 8◦, 10◦, 12◦, 14◦, 16◦, 18◦, 20◦

Figure 3.32: A comparison of the equivalent lift coefficient slope γ, calculated by the
linear and nonlinear methods, for a case in which the relative flow oscillates with two
simultaneous frequencies

Figure 3.32 shows the results for the equivalent slope γe, indicative of the excitation
forces. The pattern of scatter in the results appears quite similar between the single-
frequency and two-frequency cases. This is confirmed by comparing Table 3.8 with Table
3.5. The single-frequency and two-frequency cases have comparable magnitudes of mean
and standard deviation of the ratio ε. (The individual values in the two tables cannot
be compared directly, because the tables were generated based upon two different sets of
cases. But it is clear that the degree of error is quite comparable between the two tables.)

It can be concluded that, when it comes to excitation forces, the accuracy of the
linearized lift force is sensitive to the total deviation from the mean angle-of-attack, and
is relatively insensitive to the presence of multiple frequency components. Note that this
conclusion is limited to the case of a wind turbine blade, for which distinct 1P and first-
flapwise vibrations are dominant. It has not been shown to be true in general.

Figure 3.33 compares the damping ratio calculated by the linear and nonlinear meth-
ods. This appears similar, in terms of degree of accuracy, to the single-frequency case.
Looking at the statistics in Table 3.9, it is evident that the accuracy of the linear damping
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Table 3.8: Mean and standard deviation of linear/nonlinear ratio ε, in a case with two
simultaneous frequencies

Mean A1 +A2 St.dev. A1 +A2

1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

0.00 1.035 1.036 1.033 1.020 0.00 0.0195 0.0408 0.0920 0.1391
A1/A2 0.25 1.032 1.028 1.021 1.007 A1/A2 0.25 0.0213 0.0512 0.1131 0.1730

0.50 1.029 1.020 1.012 0.998 0.50 0.0294 0.0753 0.1477 0.2225
0.75 1.021 1.013 1.007 1.004 0.75 0.0492 0.1214 0.2115 0.3179

Mean A1 +A2 St.dev. A1 +A2

1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

8◦ 1.015 1.050 1.087 1.102 8◦ 0.0055 0.0371 0.0603 0.0627
10◦ 0.998 0.951 0.910 0.881 10◦ 0.0403 0.1092 0.1436 0.1531
12◦ 1.012 0.978 0.907 0.807 12◦ 0.0344 0.0826 0.1065 0.1039

α0 14◦ 1.044 1.022 0.945 0.871 α0 14◦ 0.0080 0.0225 0.0478 0.0907
16◦ 1.033 1.033 1.011 0.983 16◦ 0.0379 0.0357 0.0518 0.0970
18◦ 1.057 1.065 1.105 1.162 18◦ 0.0102 0.0525 0.1388 0.2310
20◦ 1.046 1.071 1.163 1.244 20◦ 0.0124 0.0840 0.1788 0.2763

calculation is sensitive to the total deviation from the mean angle-of-attack. The accuracy
of damping (assumed to be associated with the higher frequency) is not sensitive to the
relative amplitude of the low- and high-frequency components, A1/A2.

3.6 Comparison Against Full-Scale Measurements

The results of Section 3.5 indicate that the linear dynamic-stall method gives an accurate
prediction of damping, and a reasonable prediction of excitation,36 when the frequency of
oscillation is over 1 Hz and the angle-of-attack amplitude is a few degrees or less. At lower
frequencies, or higher amplitudes, the scatter increases.

These results lead to the questions: what are typical frequencies and amplitudes of
the excitation and vibration of a wind turbine blade? And, does the linear dynamic-
stall method, despite the possible errors, provide a useful estimate of the blade’s dynamic
behavior?37

The answers to these questions are established in this section, by comparison with
measurements collected on full-scale turbines. In summary, the angle-of-attack amplitude
due to excitation phenomena – turbulence, wind shear, tower shadow, and such – can
be more than a few degrees, and acts over a broad range of frequencies. The change in
angle-of-attack due to vibration is expected to be within a few degrees, with characteristic
frequencies over 1 Hz. Therefore, the linear dynamic-stall method is not precise. But
it is useful: overall, it appears that the wind turbine model described in this report –
which is simple in comparison with most commercial analysis codes – captures the most
important features of the blade’s dynamic behavior. There are clear shortcomings, though,

36Roughly within ±10%
37The word “useful” was chosen, after some consideration. Clearly, one desires an “accurate” estimate

of turbine behavior. But what level of accuracy is required for preliminary design? There is no firm answer
to this question. The analysis is useful if it provides insight into what differentiates a good design from
a bad design, and even more so if it provides quantitative estimates of changes in parameters which lead
to a lower COE. The analysis is not useful if it produces trends which are incorrect, and thereby misleads
the designer.
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Figure 3.33: A comparison of damping ratio calculated by the linear and nonlinear meth-
ods, for a case in which the relative flow oscillates with two simultaneous frequencies

Table 3.9: Mean and standard deviation of linear-nonlinear error δ, in a case with two
simultaneous frequencies

Mean A1 +A2 St.dev. A1 +A2

1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

0.00 0.0010 -0.0002 -0.0031 -0.0068 0.00 0.0010 0.0047 0.0093 0.0122
A1/A2 0.25 0.0010 -0.0006 -0.0014 -0.0040 A1/A2 0.25 0.0011 0.0029 0.0072 0.0101

0.50 0.0010 -0.0008 -0.0008 -0.0030 0.50 0.0011 0.0030 0.0072 0.0098
0.75 0.0008 -0.0004 -0.0014 -0.0042 0.75 0.0011 0.0052 0.0103 0.0130

Mean A1 +A2 St.dev. A1 +A2

1◦ 3◦ 5◦ 7◦ 1◦ 3◦ 5◦ 7◦

8◦ 0.0008 0.0049 0.0097 0.0119 8◦ 0.0003 0.0044 0.0064 0.0062
10◦ 0.0006 -0.0010 -0.0036 -0.0051 10◦ 0.0021 0.0047 0.0089 0.0109
12◦ 0.0003 -0.0026 -0.0080 -0.0113 12◦ 0.0016 0.0022 0.0052 0.0084

α0 14◦ 0.0013 0.0028 0.0030 -0.0007 α0 14◦ 0.0002 0.0020 0.0049 0.0066
16◦ 0.0013 0.0008 -0.0000 -0.0028 16◦ 0.0003 0.0007 0.0019 0.0043
18◦ 0.0012 -0.0008 -0.0049 -0.0102 18◦ 0.0002 0.0030 0.0068 0.0094
20◦ 0.0011 -0.0015 -0.0078 -0.0131 20◦ 0.0003 0.0040 0.0078 0.0100
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if one wishes to move beyond preliminary design of the blade. In particular, modelling an
isolated blade means that resonances between the blades, drivetrain, and support structure
(characteristic of a poor design) are not predicted.

This brings up an important point. Faced with a discrepancy between prediction and
measurement, it is difficult, or in some cases impossible, to isolate the source of the discrep-
ancy. In other words, the following comparisons against full-scale measurements reflect not
only the linear dynamic-stall model, but also the whole modelling approach, including the
BEM method, isotropic turbulence model, FE model of an isolated blade, and frequency-
domain dynamics.38 This does provide an advantage, though, because this section serves
as a validation of the entire modelling approach and software implementation.

Section 3.6.1 describes the turbines and load cases selected for the validation exer-
cise. Section 3.6.2 compares predicted and measured blade root bending moment spectra,
and an attempt is made to explain the spectra in terms of physical phenomena. Section
3.6.3 shows that it is straightforward to bias the calculated response towards the con-
servative by increasing the turbulence intensity and/or decreasing the turbulence length
scale. Using Dirlik’s method (Section D.13), fatigue cycle counts are estimated from the
root moment spectra. Section 3.6.4 compares predicted cycle counts with measured cy-
cle counts obtained from both Dirlik’s method (spectrum-based) and rainflow counting
(from time-series). Section 3.6.5 illustrates the importance of including axial, lateral, and
vertical components of turbulence, while Section 3.6.6 compares damping obtained with
and without a dynamic stall model. Section 3.6.7 compares the linear method against
nonlinear, time-domain calculations for a very large turbine, demonstrating that the lin-
ear method provides a reasonable estimate of turbine behavior across a range of turbine
sizes.39 Finally, Section 3.6.8 summarizes the most important conclusions from the study.

3.6.1 Turbines Used for Validation

The VEWTDC (Verification of European Wind Turbine Design Codes) study40 compared
the calculated and measured dynamic responses of three turbines – two stall-regulated,
and one pitch-regulated. Calculated results were obtained from eight aeroelastic, time-
domain wind turbine design codes: PHATAS (ECN), Alcyone (CRES), Alcyone with
free-wake panel aerodynamics (NTUA), HAWC (Risø), Bladed (Garrad Hassan), Flex4
(DTU), Flexlast (Stork Product Engineering), and Vidyn (Teknikgruppen AB).

The three turbines were a Nordtank NTK-500 located at Risø Laboratories (Table
3.10); a Tacke TW-500 located on Crete, Greece (Table 3.11); and a Lagerwey LW750
located at Oude Tonge, The Netherlands. The NTK-500 and TW-500 were stall-regulated;
the LW750 was pitch-regulated. Only the two stall-regulated turbines are considered in
the present study.

Documents describing the structural and aerodynamic properties of the blades were
obtained from ECN, with permission from the blade manufacturer, LM Glasfiber.41 This
information is proprietary, so only public-domain data can be given here.

Load cases, for which measurements were available, are summarized in Table 3.12.
For the NTK-500 turbine, atmospheric conditions were described by the mean windspeed
V∞ and longitudinal turbulence intensity Iu. The other parameters were given as typical

38There are also uncertainties in the reduction of strain-gauge data to blade root bending moments.
39In other words, it appears that the linear method, as a preliminary design tool, is not limited to short,

stiff blades.
40Schepers et al. [152]
41References [53] and [108]
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Table 3.10: Public-domain information on the Nordtank NTK-500 turbine; Schepers et
al. [152] and Hansen [83]

Blades LM 19.0
Airfoils NACA 63-4xx, FFA-W3-XXX
Diameter 41 m
Tilt 2◦

Cone 0◦

Rotational speed 3.16 rad/s
Rated power 500 kW
Hub height 36 m

Table 3.11: Public-domain information on the Tacke TW-500 turbine; Schepers et al. [152]

Blades LM 17.0
Diameter 36 m
Rotational speed 3.24 rad/s
Rated power 500 kW

for the site, based upon long-term measurements. The TW-500 turbine was located in
complex, mountainous terrain, and orthogonal components of turbulence intensity and
length scale were measured at the same time as the loads. Note that there is some doubt
about the yaw misalignment reported for the TW-500 load cases.42

The simplified turbulence model used in this project allows only a single value of
turbulence intensity and a single length scale. Unless otherwise stated, Iu and Lu were
used.

Analyses were conducted with a 16-element blade model, which differs from the 12-
element model used for optimization studies.43 The spectrum calculations used a frequency
resolution of ∆f = 0.01 Hz, with 4,096 frequency bins, of which the first 1,024 were taken

42Schepers et al. [152] p 15
43In the analyses of Chapter 6, the number of elements was decreased from 16 to 12 in order to speed

up the calculations, the speed of which is proportional to N2
e .

Table 3.12: Load cases used in the VEWTDC study, for which data was available; Schepers
et al. [152]

Load case V∞ Iu Iv Iw Lu Lv Lw h0 α yaw
(m/s) (m) (m) (m) (m) (deg)

NTK 1 7.9 0.12 0.10 0.07 150 45 15 0.06 10
NTK 2 11.8 0.11 0.09 0.07 150 45 15 0.06 7
NTK 3 15.4 0.10 0.08 0.06 150 45 15 0.06 1
TW 1 10.4 0.101 0.077 0.053 132 23 12 0.126 17
TW 4 14.0 0.127 0.109 0.068 81 35 12 0.078 25
TW 8 17.7 0.101 0.077 0.058 80 21 11 0.130 23
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to be valid. This means that aliasing is likely insignificant in the calculated results.

3.6.2 Root Bending Moment Spectra

Strain gauges were used to measure the time histories of root bending moments for each
load case in Table 3.12. The time-series datafiles were obtained from ECN.44 These files
report root bending moments in the edgewise (parallel to the rotorplane) and flatwise
(perpendicular to the rotorplane) directions.45 Each load case consists of 19,200 points,
with ∆t = 0.03125 s, for a total measurement time of 600 s (10 minutes).

The data was processed by computing the autocorrelation function numerically, then
taking the Fourier transform to obtain the spectrum. Specifically, the following algorithm
was used:

! Compute the autocorrelation.
do k = 1,N/2 + 1

sum = 0.d0
do j = 1,19200-(k-1)

sum = sum + data(j)*data(j+(k-1))
end do
Q(2*k-1) = sum/dble(19200-(k-1))
Q(2*k) = 0.d0

end do

! Mirror Q.
do k = 1,N/2 - 1

Q(N + 2*(k+1) - 1) = Q(N - 2*k + 1)
Q(N + 2*(k+1)) = Q(N - 2*k + 2)

end do

! Fourier transform to obtain spectral density.
call FFT (Q,N,1,S,ierr)

For the fast Fourier transform algorithm used in this project, the number of points N must
be a power of 2; N = 16, 384 was used in the present calculations. This gives a frequency
resolution:

∆f =
1

N ∆t
= 0.00195 Hz. (3.69)

This is convenient, because then averaging each group of 5 points gives a resolution of
0.0098 Hz, which is almost identical to the resolution of 0.01 Hz used in the calculations;
the magnitudes of deterministic “spikes” in the spectra can therefore be compared directly.46

As stated previously, only one-quarter of the calculated spectrum was retained as valid.
Thus, the maximum frequency to which the data is valid is:

fmax =
N ∆f

4
= 8 Hz. (3.70)

44Gerard Schepers, personal communication
45In the blade coordinate system defined in this report, the edgewise moment is taken about the Zb axis,

while the flatwise moment is taken about the Y b axis. Thus the edgewise moment is denoted MZ , and the
flatwise moment is denoted MY .

46It is likely that the computed results reported by Schepers et al. [152], labeled as “range of aeroelastic
software”, used a different frequency resolution and averaging technique. Thus one must be cautious when
comparing the magnitudes of the deterministic spikes against these ranges.
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Figure 3.34: A comparison of filtered and unfiltered edgewise root moment spectra

Fluctuations in the edgewise root moment are dominated by gravity, acting at the
rotational frequency. Edgewise blade vibrations have spectral components that are orders
of magnitude lower. Computing the spectrum according to the raw time-series results in a
signal that is “contaminated” by the 1P gravity loads, as can be seen in Figure 3.34. The
following tactic is taken to filter out the 1P signal. First, the raw spectrum is calculated.
The peak at 1P is saved; this point is circled in Figure 3.34. Then, a cosine function is fit
to the data:

MZ(1P) = A cos(Ωt+ b), (3.71)

and this is then subtracted from the original time-series. The spectrum is calculated
according to this filtered time-series, then the peak point at 1P is added back to the
curve. An example of the resulting filtered spectrum is shown in Figure 3.34. Note that
fatigue cycle counts (Section 3.6.4) are calculated according to the unfiltered time series
and spectrum.

NTK-500 Load Case 1

Figure 3.35 shows the flatwise root moment spectrum for the NTK-500 turbine when the
windspeed is 7.9 m/s. At this windspeed, flow along the blade is attached, and so there
are no stall hysteresis effects; this load case does not reflect the dynamic stall method
described in this chapter. The aerodynamics are nearly linear, so it is expected that the
behavior of the turbine is predicted accurately.

The spectrum is plotted twice, using different ranges for the frequency axis. The
closer-up plot, showing the range 0 Hz ≤ f ≤ 4 Hz, includes upper and lower bounds of
the spectral curves obtained from the aeroelastic analysis codes which were part of the
VEWTDC study. These values were read from plots in Schepers and Heijdra [151].47 It is

47The values were taken from the “second round” results; for these results, the participants had the
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Figure 3.35: The spectrum of the flatwise moment at the blade root, for the NTK-500
turbine, load case 1
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Figure 3.36: An annotated spectral plot of the NTK-500 turbine, load case 1

cautioned against placing too much confidence in these bounds, primarily because peaks in
the spectral curve are sensitive to the particular filtering and averaging algorithms used.
However, the general trends can be trusted. It is striking how much scatter there was
between the different aeroelastic codes. The scatter is especially noteworthy, because the
participants based the calculations upon the same description of the turbines’ structural
and aerodynamic characteristics.

Figure 3.36 highlights some features of the spectra in Figure 3.35. The rotational speed
of the turbine is very close to π rad/s, so 1P is about 0.5 Hz. The rotationally-sampled
turbulence spectrum has peaks at multiples of the rotational frequency, kP, and this is
reflected in the root bending moment spectrum. However, the response to the turbulence
spectrum is smooth. The distinct spikes which appear at kP are due to deterministic
loading. The spike at 1P is primarily wind shear and gravity (in combination with blade
twist), although tower dam is also present. The spike at 2P is a combination of wind shear
and tower dam. Spikes at higher frequencies are due only to tower dam effects. A “bulge”
in the spectrum is evident around the first flapwise vibrational frequency, although this
mode is well-damped. Although hard to detect on the plot, there is also another bulge in
the vicinity of 1.4 Hz to 1.6 Hz. These are rotor yaw and tilt modes, which are not included
in the simple model of an isolated blade used for the frequency-domain calculations.48

The measured peak in the flatwise moment spectrum at 1P is circled in Figure 3.36.
This point is important, because it dominates the flatwise fatigue cycle count and damage-
equivalent moment, for this load case. This 1P spike is underpredicted in the calculations,
which means that the resulting fatigue cycles are underpredicted. An effort was made
to identify what phenomena could cause such a high spike at exactly 1P, which were not

opportunity to study the measurements and tune the calculations, in contrast to the blind first round.
48One should be careful to distinguish mentally between “frequency-domain” and “isolated-blade”. It is

certainly possible to implement frequency-domain methods on a full-rotor model, in which case these yaw
and tilt modes would be captured. This was not done in the present study because an effort was made to
keep things as simple (and as fast, computationally) as possible.
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captured by the present model. The source of this loading could not be found. It is
suspected that this is “bleed-over” from the edgewise gravity loading, which is an order
of magnitude higher; perhaps the local geometry of the hub in the vicinity of the strain
gauges resulted in an increased flatwise strain under gravity.

Referring back to Figure 3.35, the comparison of the response in the second flapwise
mode, around 6 Hz, indicates that the calculated damping is overpredicted; but this does
not reflect on the dynamic stall model, because flow is attached. It is also not significant
from the perspective of fatigue, because the amplitude is low.

Some of the high-frequency spikes related to tower dam are not evident in the data.
This may be due to the deterministic nature of the tower dam loading, in which the relative
phase matters. In the case of attached flow, when damping is high, the velocity deficit
does not act as a superposition of stochastic components. (It will be seen later, especially
on the Tacke turbine, that these high-frequency components appear when damping is low.)

Figure 3.37 shows the edgewise bending moment spectrum. This spectrum is domi-
nated by gravity to the extent that structural vibrations are negligible in the calculation of
fatigue damage. That being said, it is still instructive to look at the comparison between
calculated and measured vibrations.

Structural vibrations in the range between 1P and 5P are underpredicted by an order
of magnitude. This is true for both frequency-domain and aeroelastic calculations. It
seems that the rotational-sampling effect at 1P and 2P is stronger than expected. This is
in the range of tower vibrational frequencies, though it is not clear what would cause an
amplification of the tower response. Alternatively, it could be that the local turbulence
intensity differs from the meteorological mast measurements, or that the turbulence length
scales differ from the long-term average values. Either of these could cause the excitation
spectrum to be shifted upwards, although it is difficult to imagine that the difference would
be an order of magnitude. The discrepancy in the spectrum in the vicinity of 2 Hz is most
likely due to blade vibration in the flapwise modes. This provides a hint that, indeed, the
strain-gauge data does not perfectly isolate the “edgewise” and “flatwise” directions.

There is clearly a resonance of the first edgewise mode of vibration, at 3 Hz, which is
excited by the 5P component of tower dam.

The plot which extends to high frequencies shows a large relative discrepancy, but
this is almost certainly a residual of the 1P spike that was not entirely filtered out. The
residual is 6 orders of magnitude lower than the spike.

NTK-500 Load Case 2

In the second load case, the windspeed is 11.8 m/s. This is approximately the rated
windspeed, and the blade is just on the verge of stall, as shown in Figure 3.38. Thus,
fluctuations in the windspeed will stall the blade, and dynamic stall has an effect.

Figure 3.39 shows the flatwise root moment spectrum. The approximate nature of
the linear dynamic-stall method is evident. The dynamic stall method underpredicts the
damping of the first and second flapwise vibrational modes. (It should be noted, though,
that three of the eight aeroelastic codes also underpredicted damping of these modes.49)
Also, excitation at high frequencies of vibration is overpredicted.

It is likely that the linear interpolation of the lift coefficient slope between the maximum
and quasi-steady values, Equation 3.11, is responsible for the underprediction of damping.

49Schepers and Heijdra [151] p 110. The industry-standard Bladed was one of the codes that underpre-
dicted the damping. In addition, two of the codes overpredicted damping of the flapwise modes.
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Figure 3.37: The spectrum of the edgewise moment at the blade root, for the NTK-500
turbine, load case 1
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Figure 3.38: Angles-of-attack along the NTK-500 blade

Figure 3.40 illustrates what is happening. On airfoils of the type shown in the figure, the
quasi-steady slope drops rapidly from the attached-flow value (rougly 2π) to zero upon the
initiation of stall. When the linear interpolation is performed, one obtains a slope γd that
is somewhere in between γq and γmax. Experiments show that the dynamic-stall slope is
near γmax.50 Therefore the linear dynamic-stall method is incorrect in such a case. That
being said, the calculated response is overpredicted, which is conservative.

Figure 3.41 illustrates the results when the slope of the lift coefficient curve, used to
calculate damping, is varied between γq and γmax. (In this plot, the equivalent slope for
excitation is calculated as usual, by the linear dynamic-stall method.) Actually, using
the quasi-steady slope γq, the damping is negative, and so the plotted response should
be infinite; the damping ratio was assigned a value of 0.0002 for purposes of plotting. It
appears that the actual damping lies somewhere in between the damping calculated with
γd (the linear dynamic-stall method) and γmax.

Figure 3.42 shows what happens when damping is held constant, using the nominal γd,
and excitation (γe) is varied between γq and γmax. Again, it appears that for the type of
airfoil sketched in Figure 3.40, the linear dynamic-stall method underpredicts γe at angles-
of-attack in the vicinity of initial stall. For excitation, underpredicting the equivalent lift
coefficient slope is unconservative. Thus, in this load case, the net effects of the errors
cancel to some extent, and the resulting prediction is unconservative in the vicinity of 1P,
but conservative in the vicinity of the vibration frequencies.

The strain gauge data for the edgewise moment cut out partway through the load case,
so it was not analyzed.

50Fuglsang et al. [56] p 43
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Figure 3.39: The spectrum of the flatwise moment at the blade root, for the NTK-500
turbine, load case 2
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Figure 3.40: An illustration of why the calculated damping is low

Figure 3.41: The spectrum of the flatwise moment at the blade root, for the NTK-500
turbine, load case 2, using different equivalent slopes when calculating the damping ratio
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Figure 3.42: The spectrum of the flatwise moment at the blade root, for the NTK-500
turbine, load case 2, using different equivalent slopes when calculating the excitation of
blade vibration

NTK-500 Load Case 3

In load case 3, the windspeed is 15.4 m/s, and the blade is well into the stalled range over
its entire length. This can be seen in Figure 3.38.

Figure 3.43 shows the flatwise root moment spectrum. In this case, both damping and
excitation of the flatwise modes of vibration are well predicted. Under such stalled flow
conditions, the vibration response is sensitive to the equivalent slopes γd andγe, thus the
results show that the linear dynamic-stall method works well in this case. It appears from
the measurements that rotor yaw and tilt modes are excited at the 3P (blade-passing)
frequency, and these are not captured by the isolated-blade model. As was observed in
previous load cases, the response at 1P is significantly underpredicted; but again, it is
hypothesized that this is a residual from edgewise gravity loading.

Neglecting the spike at 1P, it appears that the excitation is nonetheless underpredicted
in the vicinity of 1P. This may be in part due to inaccuracy in the linear dynamic stall
method. Figure 3.44 shows the results that are obtained if the maximum slope γmax (Equa-
tion 3.16) is used to calculate excitation, instead of γe (Equation 3.30). The correlation is
improved in the range between 1P and 3P.

Referring to the lower plot in Figure 3.43, it is observed that spikes at multiples of kP ,
likely caused by tower dam, are visible in the measured frequency spectrum. In this case,
potential theory (with a Fourier representation) provides a fairly good prediction of tower
dam effects.

Figure 3.45 shows the edgewise root moment spectrum. It appears that the damping
of the first edgewise mode of vibration is well-predicted. Excitation is underpredicted. In
part, this is due to the slight overprediction of the natural frequency; on the real turbine,
the first edgewise mode appears to be almost exactly aligned with the 6P frequency. The
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Figure 3.43: The spectrum of the flatwise moment at the blade root, for the NTK-500
turbine, load case 3
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Figure 3.44: The spectrum of the edgewise moment at the blade root, for the NTK-500
turbine, load case 3, showing the effects of increasing the equivalent slope be used for
excitation, from γe to γmax

simplified model is able to detect the existence of the resulting resonance, although the
magnitude is underpredicted. Note that the edgewise vibration predicted by the frequency-
domain method is comparable to that predicted by the aeroelastic codes.

As was noted in the first load case, the blade response in the frequency range between
1P and 4P is significantly underpredicted by all the analyses. It is hypothesized that this
is due to contamination of the edgewise strain signal by flatwise vibration. As before,
this has little effect on the resulting fatigue calculations, because these are dominated by
gravity loading at 1P.

TW-500 Load Case 1

In contrast with the Nordtank turbine, the Tacke TW-500 has a large tower diameter and
a small clearance between the blades and tower. This results in a comparatively severe
tower dam effect, giving strong excitation at multiples of the rotational frequency.

Load case 1 has an average windspeed of 10.4 m/s. Referring to Figure 3.46, flow is
attached. However, the Tacke turbine was located in a mountainous region with complex
topography, and the load case includes a 17◦ yaw offset.51 Thus it is likely that the
angle-of-attack varies enough to enter the stalled range, intermittently.

Figure 3.47 shows the flatwise root moment spectrum. Looking at the baseline response
(not including the spikes) in the range 1.4 ≤ f ≤ 2.2 Hz, it appears that damping of the
first flapwise mode is overpredicted, and/or excitation is underpredicted. This could be
due to a number of reasons – yaw misalignment, interaction with full-rotor or tower modes

51Recall that the simplified analysis methods used in this project cannot model the effects of yaw
misalignment on the stochastic loads. It is possible to add the deterministic angle-of-attack fluctuation by
employing a series of BEM analyses at different azimuth angles, but this was not done.



114 CHAPTER 3. A LINEAR DYNAMIC STALL METHOD

Figure 3.45: The spectrum of the edgewise moment at the blade root, for the NTK-500
turbine, load case 3
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Figure 3.46: Angles-of-attack along the TW-500 blade

of vibration, nonuniform turbulence length scale – but if the damping is overpredicted, it
is likely because the blade periodically enters stall.

The edgewise root moment spectrum, shown in Figure 3.48, also indicates that the
blade entered stall. The damping of the first edgewise mode is very much overpredicted;
if flow remained attached, then the damping of this mode could be calculated accurately,
even without a dynamic stall method.

Therefore, this load case illustrates a fundamental limitation of frequency-domain
methods, that they cannot model a transition between two very different flow states.

It is evident from the data that the blade vibration frequencies of the Tacke turbine
are not well-tuned relative to the excitation frequencies, such that significant resonance
occurs in both flapwise and edgewise modes.

There is a region in the range 2P to 4P where the aeroelastic analyses predict the
observed edgewise response, while the simplified, frequency-domain model does not. The
reason could either be stall, as mentioned previously, or else excitation of vibration in the
drivetrain, which is not captured by the isolated-blade model.

In Figure 3.48, the spectrum beyond 3.6 Hz is not very meaningful, because it is
dominated by the residual signal from the first edgewise mode. This could be filtered out,
but the amplitude of vibration is very low in this frequency range.

TW-500 Load Case 4

In load case 4, the windspeed is 14.0 m/s, and, referring to Figure 3.46, the blade is on
the verge of stall. There is a yaw misalignment of 25 degrees.52

Figure 3.49 shows the flatwise root moment spectrum. Here, the damping of the first
and second flapwise modes of vibration seems to be predicted accurately, although the
excitation of the first mode is underpredicted. The response at 1P is underpredicted by

52The reported yaw misalignment is subject to some uncertainty.
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Figure 3.47: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 1
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Figure 3.48: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 1
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an order of magnitude; but again, gravity may play a role here. It appears that the tower
dam effect is well-predicted.

The most striking characteristic of load case 4 is a severe resonance in the first edgewise
mode, apparently excited by tower interference at 7P; though there may be other sources
of excitation as well. The resonance is clearly visible in Figure 3.50. The frequency-domain
method appears to overpredict the damping and underpredict the excitation associated
with this mode. It is unknown what aspect of the simplified method is responsible for
the discrepancy, whether it is the linear dynamic stall method, the isolated-blade model,
or the isotropic representation of turbulence. Five of the eight aeroelastic codes did an
adequate job predicting the magnitude of this resonance.

TW-500 Load Case 8

The windspeed in load case 8 is 17.7 m/s, with the turbine operating well into the stalled
range (Figure 3.46). The yaw misalignment is 23◦.

Figure 3.51 shows the flapwise root bending moment spectrum. In this case, it appears
that damping is underpredicted. The natural frequency of the first flapwise mode seems
to lie on the wrong side of the 4P frequency. Six of the eight aeroelastic codes also placed
the frequency here. Therefore, it seems to be related to the definition of the turbine; in
fact, the given section properties were somewhat unclear in the region of the root, and this
could easily be responsible for a small shift in the natural frequency. It is also possible that
the natural frequency is shifted due to interaction between the blades and the drivetrain,
although one would expect that the aeroelastic codes would have captured this.

Damping of the second flapwise mode is also underpredicted.
Figure 3.52 shows the edgewise root bending moment spectrum. Here the natural

frequency of the first edgewise mode, in the vicinity of 3.6 Hz, is slightly underpredicted.
The simple model thus misses the severe resonance that occurs with excitation at 7P.53

As with load case 4, five of the eight aeroelastic codes predicted this resonance well.
All of the analyses – aeroelastic and frequency-domain – underpredicted the response

in the range between 1P and 4P. The reason is unknown.

3.6.3 Turbulence Intensity and Length Scale

The magnitude of blade vibration is sensitive to both the turbulence intensity and length
scale. On one hand, this means that there is uncertainty in the comparison against full-
scale measurements, because it is difficult or impossible to measure the turbulence param-
eters local to the rotor. On the other hand, this sensitivity provides an easy way for the
designer to bias the analysis towards the conservative, by overestimating the turbulence
intensity or underestimating the length scale.54

Figures 3.53 through 3.56 show the effects of increasing the turbulence intensity from
the baseline of 0.10 (for these load cases) to 0.20. The spectrum increases as the square
of the turbulence intensity, uniformly across the entire frequency band. This is true for
both attached-flow and stalled conditions.

Figures 3.57 through 3.60 show the effects of decreasing the turbulence length scale.
Here, energy is redistributed from the lowest frequencies to higher frequencies. The effect

53However, the simple model clearly indicates that the first edgewise natural frequency is poorly damped,
and is unnervingly close to a strong spike in the excitation.

54In this project, the turbulence intensity was set to 0.2 for the blade design studies. This is a conservative
value for an offshore turbine, provided that wake effects from upwind turbines are not severe.
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Figure 3.49: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 4
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Figure 3.50: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 4
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Figure 3.51: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 8
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Figure 3.52: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 8
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Figure 3.53: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 1, showing the effects of increasing the turbulence intensity

Figure 3.54: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 1, showing the effects of increasing the turbulence intensity
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Figure 3.55: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 8, showing the effects of increasing the turbulence intensity

Figure 3.56: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 8, showing the effects of increasing the turbulence intensity
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Figure 3.57: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 1, showing the effects of decreasing the turbulence length scale

is less pronounced than an increase in the turbulence intensity.55

3.6.4 Fatigue Cycles and Damage-Equivalent Loads

The spectra plotted in the previous sections show how predictions compare with measure-
ments, as a function of frequency. Since different phenomena – for instance, rotational
sampling of turbulence, flapwise blade vibration, or tower dam effects – have characteristic
frequencies, the spectral plots indicate which phenomena are well predicted and which are
not. For purposes of sizing the blade structure, though, the dynamic response is most
important; this includes both peak loads and fatigue cycle counts. These quantities are
estimated based upon integrals of the spectral curve – the spectral moments, Equation
D.146. It is difficult to estimate these visually from the spectral plots, especially with a
logarithmic scale. How well the predicted and measured spectra compare, for design pur-
poses, is best evaluated by looking at fatigue cycle counts and damage-equivalent loads.

The Dirlik method, described in Section D.13, can be used to obtain an estimate of
fatigue cycle counts from the moments of the auto-spectrum of a load or stress component.
Rainflow counting56 can be used to obtain an estimate of the same fatigue cycle counts
from the raw time-series. The Dirlik method is an approximation, while rainflow counting
can be considered the “correct” result.

The cycle counts are plotted as exceedance (cumulative cycle) curves. An exceedance
curve is calculated by integrating the cycle-count probability distribution, as a function of

55In the extreme case, with a length scale much smaller than the rotor diameter, the turbulent would
lose its coherence across the rotor diameter, and the rotational-sampling effect would disappear.

56The rainflow counting algorithm of Downing and Socie [45] was used.
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Figure 3.58: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 1, showing the effects of decreasing the turbulence length scale

Figure 3.59: The spectrum of the flatwise moment at the blade root, for the TW-500
turbine, load case 8, showing the effects of decreasing the turbulence length scale
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Figure 3.60: The spectrum of the edgewise moment at the blade root, for the TW-500
turbine, load case 8, showing the effects of decreasing the turbulence length scale

load level. Using discrete load levels, one obtains:

nexc(k) =
k∑
j=1

n(k) (3.72)

where n(k) is the number of cycles at the kth load level, and the index j counts from the
highest to the lowest load level. The reason for plotting as an exceedance curve is that the
results are not sensitive to the load level bin width. In addition, this is the format used
by Schepers and Heijdra [151] to plot the results of the aeroelastic codes.57

It is not entirely straightforward to compare calculated and measured fatigue cycle
counts. The rainflow count is obtained from 600 seconds of time-history data. Thus, in
order for the Dirlik and rainflow cycle counts to be directly comparable, the period T
(Equation D.147) is set to 600 seconds. However, the Dirlik method (Equation D.148)
provides a continuous probability distribution. High levels of the stress amplitude s are
associated with fractional cycles (less than 1 full cycle). The question is: should these frac-
tional cycles be included when calculating cumulative cycle counts and damage-equivalent
loads? After all, they represent magnitudes of stress that could occur, according to the
Dirlik method, with some low probability.

The answer is that fractional cycles should be included when calculating cumulative
cycle counts (integrating the probability curve), but should not be included when cal-
culating damage-equivalent loads, for purposes of the comparison against rainflow-count
data. The reason is that the rainflow method counts only with a resolution of full cycles.58

Essentially, the rainflow counts are truncated at the stress amplitude s that gives one cycle
in 600 seconds; the tail of the distribution is cut off. Damage-equivalent loads are sensitive

57Schepers and Heijdra plotted counts of half-cycles, therefore the number of cycles was divided by two
to compare with the results of the present calculations.

58Some rainflow algorithms can count with a resolution of half-cycles.
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Table 3.13: Damage-equivalent root bending moments; units of kNm

Turbine LC Component Analysis Data
Actual I I = 0.20 Dirlik rainflow

NTK-500 1 MY 100.8 169.0 100.0 107.0
2 MY 101.1 179.1 79.6 124.6
3 MY 94.3 188.1 136.6 141.1
1 MZ 300.8 308.1 327.6 218.1
2 MZ 307.5 323.6
3 MZ 304.7 315.4 299.2 221.8

TW-500 1 MY 76.5 137.8 70.5 94.6
4 MY 96.2 141.0 113.4 129.6
8 MY 179.5 318.8 161.5 175.2
1 MZ 207.4 212.7 345.2 197.5
4 MZ 211.0 216.8 366.8 244.1
8 MZ 210.2 222.0 353.6 320.0

to small numbers of high-amplitude load cycles. Thus misleading values are obtained if a
damage-equivalent load is calculated with, say, 0.1 cycles of a very high load amplitude
that was not experienced in the time-history data.59

Figures 3.61 through 3.66 show exceedance curves for the load cases in Table 3.12.
Each figure shows the rainflow count, the Dirlik cycle count based upon the measured
spectrum, the Dirlik cycle count based upon the calculated spectrum, and the results of
aeroelastic calculations reported by Schepers and Heijdra [151].

Unlike the spectral plots in previous sections, which showed only the upper and lower
bounds at specified frequencies,60 each “aeroelastic software” curve in Figures 3.61 through
3.66 corresponds to the result from a particular aeroelastic code. The displayed curves
represent the two or three codes that gave the highest and lowest cycle counts for each
load case and load component; results from the other aeroelastic codes fall in between.

Table 3.13 shows damage-equivalent root bending moments, which essentially condense
the cycle-count results into a single number. These were calculated with an exponent
m = 10 and for n0 = 300 cycles (Equation D.157), which corresponds to approximately
the rotational frequency of 1P, since T = 600 seconds and Ω ≈ 0.5 Hz.

It is instructive to first compare the Dirlik and rainflow-counting methods, which are
both based upon the same time-history data. It is evident that the Dirlik method provides
only a rough approximation of the rainflow cycle counts. Apparently, when the spectrum
is dominated by a deterministic component, as with all the MZ load cases except the TW-
500 turbine load case 8, the Dirlik method overpredicts the peak loads and underpredicts
the low-amplitude, high-cycle loads. This is acceptable for purposes of preliminary design,
because fatigue damage is overestimated. When the spectrum is dominated by stochastic
loads, as with the MY load cases, the Dirlik method provides a better approximation of
the rainflow count, although it seems to consistently underpredict both peak loads and

59Note that the full Dirlik distribution, including fractional cycles, is used when calculating the fatigue
damage during optimization analyses. This adds a measure of conservatism to the fatigue calculation;
though the effect of the tail of the distribution is much less significant when evaluating the fatigue lifetime
over 25 years of operation, as opposed to a load case of 600 seconds.

60Only upper and lower bounds were shown because, due to overlapping curves, it was not possible to
read the heights of the spikes in the spectrum from the plots in Schepers and Heijdra. Curves on the
cycle-count plots were easier to read.
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Figure 3.61: Root moment exceedance curves for the NTK-500 turbine, load case 1
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Figure 3.62: Root moment exceedance curves for the NTK-500 turbine, load case 2

the number of cycles.
Comparing the calculated (with actual I) and measured Dirlik cycle counts, the severity

of flatwise loading seems to be predicted quite well, with the exception of the NTK-
500 turbine, load case 3. In this case, though, the alternating load at exactly the 1P
frequency was severely underpredicted by both the linear method and aeroelastic codes.
It is suspected that this discrepancy is due to contamination of the flatwise strain signal by
edgewise gravity loading;61 although it is unknown why the discrepancy was more severe
in load case 3 than the first two load cases. If the 1P spike in the data is truncated to the
value obtained from the calculations, then the measured damage-equivalent load (using
the Dirlik method) drops from 136.6 Nm to 100.6 Nm. In other words, the discrepancy in
the 1P spike accounts for most of the disagreement between the calculated and measured
damage-equivalent loads.

Edgewise loading seems to be well-predicted for the NTK-500 turbine, but underpre-
dicted for the TW-500 turbine, which suffered severe resonance between the first edgewise
mode of vibration and excitation at 7P due to yaw misalignment and tower dam.

Similar conclusions apply for the comparison between the calculated and measured
rainflow cycle-counts.

Looking at the flatwise results, it is not evident that accuracy becomes worse as the
blades transition from attached to stalled flow. Results become less accurate for the
NTK-500 turbine, but more accurate for the TW-500 turbine.

The comparison between the analysis with I = 0.20 and the rainflow count is most im-
portant for design purposes, because this is indicative of the blade optimization studies in
Chapter 6. Setting I = 0.20 provides a conservative estimate of fatigue for all cases except
post-stall edgewise vibration of the TW-500 turbine. Therefore, provided that resonance
is avoided – which is ensured by carefully tuning the natural frequencies and operating
schedule during the detail design phase – it is expected that the fatigue calculations of

61It appears that the edgewise signal was also contaminated by flatwise loading.
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Figure 3.63: Root moment exceedance curves for the NTK-500 turbine, load case 3
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Figure 3.64: Root moment exceedance curves for the TW-500 turbine, load case 1
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Figure 3.65: Root moment exceedance curves for the TW-500 turbine, load case 4
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Figure 3.66: Root moment exceedance curves for the TW-500 turbine, load case 8



3.6. COMPARISON AGAINST FULL-SCALE MEASUREMENTS 135

Chapter 6 are conservative, for the load cases analyzed.

3.6.5 Importance of Tangential Turbulence

Figures 3.67 and 3.68 show the importance of including tangential turbulence in the model,
using the Nordtank turbine as an example. At low windspeed, when flow is attached,
tangential turbulence makes no difference. Above the rated windspeed, when flow is
stalled, the difference is large. Without tangential turbulence, the damage-equivalent
flatwise moment is 76.3 kNm, as opposed to 94.3 kNm with all turbulence components.

3.6.6 Importance of Dynamic Stall

Figures 3.41 and 3.42 illustrate the importance of a dynamic stall model for damping and
excitation, respectively. This can also be seen in Figure 3.69, which plots the damping
as a function of windspeed for the Nordtank and Tacke turbines. In both cases, damping
goes negative if quasi-steady coefficients are used.

3.6.7 Predictions of the Linear Method for a Large Turbine

The Nordtank and Tacke turbines, for which measurements were available, are small by
today’s standards, with diameters of 41 and 36 m, respectively. The turbines described
in Chapter 6, which were designed using the linear method, have diameters up to 154 m.
Thus it may be questionable whether the validation in this chapter is applicable up to
large turbine sizes.

In order to get a feeling for how well the linear method scales, it was compared against
the FAST aeroelastic code, for the 113 m diameter turbine of Table F.29. Two load cases
were run. The first case was run with V∞ = 17 m/s, roughly the rated windspeed, where
the linear method predicts a flapwise damping ratio that is remarkably high. The second
case was run with V∞ = 25 m/s, the cutout windspeed, where the linear method predicts
that the minimum damping occurs. The turbulence intensity was set to a relatively severe
0.20; large velocity fluctuations will emphasize any nonlinearity that is present.

To isolate nonlinear effects associated with the blades, and because the drivetrain was
not dimensioned, the FAST analyses were run assuming a rigid drivetrain and constant
rotational speed. The blade model consisted of 12 elements, like the analyses of Chapter
6.

Figures 3.70 and 3.71 compare the resulting load spectra. The linear method appears
to underpredict the severity of flapwise vibration. Comparing the upper plots of Figures
3.70 and 3.71, it is evident that the severity of vibration scales appropriately with the
windspeed; in other words, the linear method correctly predicts the magnitude and trends
of damping. That the severity of flapwise vibration is underpredicted may be due to
differences in the lateral and vertical turbulence length scale (Section 3.6.3); inaccuracy in
the excitation slope γe; or dynamic interaction of the first flapwise and edgewise modes,
whose natural frequencies (around 1.1 and 1.3 Hz, respectively) approach each other as
blade size increases.

The excitation and damping of edgewise vibrations is underpredicted. It is speculated
that the main reason is interaction between the flapwise and edgewise modes. In the FAST
results at 25 m/s, the flapwise mode appears in the edgewise spectral plot (the lower plot
of Figure 3.71); the flapwise mode does not appear in the spectrum obtained by the linear
method.
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Figure 3.67: The effects of tangential turbulence at a windspeed below rated
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Figure 3.68: The effects of tangential turbulence at a windspeed above rated
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Figure 3.69: Damping ratios with and without dynamic stall; the curves include a struc-
tural damping ratio of 0.008
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Figure 3.70: A comparison of the FAST aeroelastic code and the linear method for a 113
m diameter turbine, at the rated windspeed of 17 m/s
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Figure 3.71: A comparison of the FAST aeroelastic code and the linear method for a 113
m diameter turbine, at the cutout windspeed of 25 m/s
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From the perspective of design, it is noted that edgewise fatigue is dominated by
gravity; even the increased level of edgewise vibration predicted by FAST is not severe; for
instance, compare Figure 3.71 with Figure 3.52. Insofar as the linear method underpredicts
flapwise vibration, the discrepancy is largely compensated by the severe value of turbulence
intensity used for design (Figure 3.55, for example), and the trends are correctly predicted.
It is concluded that the linear method may be used for the preliminary design of large
stall-regulated blades.

3.6.8 Summary

This chapter has presented a simple, linear dynamic-stall model, that is well-suited to
frequency-domain analysis. The linear model accounts for the effects of trailing-edge flow
separation, but does not account for leading-edge vortex shedding.

The key feature of the linear dynamic-stall model is the calculation of equivalent slopes
of the lift coefficient curve, dCL/dα; different equivalent slopes are used for excitation and
damping. The excitation slope captures the full range of fluctuation in the lift coeffi-
cient, while the damping slope matches the energy dissipated over a cycle of oscillation.
In frequency-domain analysis, these equivalent slopes are used in the transfer function
between incoming windspeed and force fluctuations on the airfoil.

The method is by no means precise. In calibrating the time-domain constant against
measurements, the equivalent slope for excitation fell between 0.6 and 1.5 times the ob-
served value. The linear model was compared against a nonlinear, time-domain model for
a large number of cases. The standard deviation of the error in excitation slope is below
10% for angle-of-attack amplitudes of 3◦ or less, and frequencies of 0.8 Hz or greater. The
error in damping slope shows similar trends (although on the whole better accuracy than
the excitation slope). In other words, the linear model is trustworthy for small-amplitude,
high-frequency oscillations, and doubtful for large-amplitude, low-frequency oscillations.
In any case, however, the linear dynamic-stall model is a large improvement over using
the tangent of the quasi-steady CL-α curve.

A case with multiple excitation frequencies was examined. The frequencies were chosen
to be representative of 1P rotational sampling and a blade vibration mode. The presence
of multiple frequencies, in itself, does not seem to diminish the accuracy of the linear
dynamic-stall model. As in the single-frequency case, the accuracy is sensitive to the total
departure from the mean operating point.

The linear dynamic-stall model, in combination with the simple, isolated-blade struc-
tural model described in Appendix C, was used to predict the dynamic response of two
full-scale, stall-regulated turbines. Calculated and measured bending moments at the root
were compared.

Ultimately, the accuracy of the comparison can be boiled down to a single number:
the damage-equivalent root bending moments given in Table 3.13. These values are not
entirely straightforward to interpret, because of contamination between flatwise and edge-
wise strain measurements, and errors introduced by the Dirlik cycle-counting algorithm.
Nonetheless, the values in Table 3.13 indicate that the simplified structural and aerody-
namic analysis methods used in this project provide a rough estimate of the true severity of
fatigue. By employing a turbulence intensity that is at the upper bound of the conceivable
range, a conservative estimate of fatigue is obtained, for design purposes.

A comparison was made between the linear method and the FAST aeroelastic code,
for a large stall-regulated turbine. This comparison indicates that the capabilities and
shortcomings of the linear method remain largely the same for different turbine sizes.
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Chapter 4

Cost Models

To compare two different wind turbine designs requires a common basis. Here, levelized
cost of energy (COE) is used as the sole criterion: the best turbine is the one that delivers a
unit of energy at the lowest cost. In reality, there are other, secondary considerations, the
most important of which are aesthetics and noise. For land-based wind turbines, aesthetic
considerations have led to the dominance of three-bladed over two-bladed rotors,1 while
noise constraints limit tip speeds.2 For deepwater offshore wind turbines, both aesthetics
and noise are much less important than onshore.

The question is then how to estimate COE. The methods adopted here are similar to
established textbook methods,3 which have been used in previous blade design studies.4

The approach is semi-empirical, based upon the assumption that cost is proportional to
mass. Component masses are either calculated by detailed analysis (blades), or assumed to
vary with the rotor load component that is likely to govern the design. In the latter case,
the trend in mass is calibrated to published data from existing turbines (either commercial
or conceptual).

The cost model was calibrated to turbines of 1.5 MW and 5 MW rated power. Cost
estimates of larger turbines require extrapolation.

4.1 Assumptions Regarding the Levelized Cost of Energy

Following Zaaijer (ed.) [197], the levelized cost of energy is defined as:5

COE =
∑T
t=0Ct(1 + r)−t∑T
t=0E0(1 + r)−t

. (4.1)

Ct is the cost incurred in a particular year t; the first year includes the investment costs,
and subsequent years include operation and maintenance costs. E0 is the energy produced
by the turbine in one year. The variable r accounts for the interest rate on debt, as well
as inflation: (1 + r) = (1 + i)/(1 + ν), with i the interest rate and ν the inflation rate.
Equation 4.1 allows a cost comparison to be made between any two energy extraction
devices, not limited to wind turbines.

1Wind Energy – The Facts [192] pp 11-12
2Burton et al. [22] p 346
3Harrison and Jenkins [84], Burton et al. [22]
4For example, Fuglsang and Thomsen [59]
5The equations describing the value of money in time, upon which Equation 4.1 is based, can be found

in, for example, Humphreys and Wellman [93] and Ganic and Hicks [66].

143
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The annual energy production E0 is comparatively straightforward to estimate, based
upon an aerodynamic model of the rotor.6 The cost C, however, is a function of many
parameters which contain a large amount of uncertainty, from a preliminary design stand-
point. (For example, what is the cost of delivering and recovering crew for maintenance
on a floating offshore wind turbine? The average cost would vary dramatically depending
upon the distance of the wind farm from the maintenance facility, whether a boat or heli-
copter were used for transportation, the salary of the crew, weather statistics, and other
such factors.)

Equation 4.1 can be expanded as follows, to compare the COE of two designs:

COE1

COE2
=
S1 +G1 + I1 +

∑T
t=0M1(1 + r)−t

S2 +G2 + I2 +
∑T
t=0M2(1 + r)−t

; (4.2)

where S is the cost of the turbine structure and mechanical systems, G is the cost of
electrical systems and grid connection, I is the installation and commissioning cost, and
M is the annual operation and maintenance cost, including decommissioning.7

The analyses in this report provide estimates of S and G, but not the other parame-
ters.8

Here it is an advantage that the focus is on offshore wind turbines, because it can
be assumed that the components are manufactured on the coastline and transported by
ship. The costs of sea transport are not as sensitive to size or mass as land transport. In
addition, all the turbines are assumed to be of the same basic specification – stall-regulated,
direct-drive, variable-speed, and so on.

Thus for two turbines of a similar size, it is reasonable to assume that moderate changes
in the structural design – for example, the blade span or chord – will not significantly
impact installation or maintenance costs. In other words, blade optimization may be
conducted based upon an estimate of S and G, assuming, for a perturbation from a
baseline design, that I and M are constant. This fits in with the strategy to define
turbines non-dimensionally with respect to length scale, and then vary the length scale
such that each wind turbine produces exactly the same amount of energy in a year.

Out of necessity, in Chapter 6, the cost model is extrapolated in order to compare
turbines of very different sizes. Calibration against existing designs ensures that the
trends in component mass, as a function of turbine size, are reasonable.

For two turbines of widely different sizes, it is expected that installation and main-
tenance costs per turbine will tend to increase with size, but these same costs per unit
energy production will tend to decrease with size. In other words, despite the fact that
a large turbine costs more to service than a small turbine, it is cheaper to maintain one
large turbine producing, for example, 1×1014 J/year than four smaller turbines producing
2.5× 1013 J/year.

4.2 Estimating Costs

The blade optimization requires the costs of the structure and mechanical systems S, and
the electrical systems and grid connection G, for each turbine design. A literature survey
was conducted in order to identify which methods are available to estimate these costs.

6See Appendix B
7There is a significant omission from Equation 4.2, which is the spacing of turbines in a wind farm.

For the time being, it is assumed that the spacing is independent of the turbine design, for a fixed annual
energy production. Turbine spacing in wind farms is discussed further in Appendix G.

8The installation cost I is to some extent implicit in the cost model, but was not considered in depth.
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The approach here is to estimate a relative cost with respect to a baseline design.
Along these lines, for a given system or piece of equipment, Humphreys and Wellman [93],
pp 8-13, suggest that a local estimate of the relative change in cost can be obtained by a
ratio estimate:

c1

c2
=
(
x1

x2

)n
. (4.3)

c is the cost, x is the “size” of the equipment, quantified in some convenient way, and
n is an empirical exponent, whose most common value for industrial equipment is 0.6,
although this value can vary greatly. Note that the system or component cost c1 is a part
of either S1 or G1 in Equation 4.2; similarly, c2 is a part of either S2 or G2. To be explicit:

Si +Gi =
Nc∑
j=1

(ci)j , (4.4)

where Nc is the total number of systems or components that contribute to the cost.
Burton et al. [22], p 330, suggest linearizing the cost about the baseline, using an

estimate of the mass of the equipment:

c1

c2
= µ

m1

m2
+ (1− µ). (4.5)

µ is the slope of the linearized local cost model; it can be thought of as the fraction of
the total cost that varies with mass. Burton et al. suggest that µ = 0.9 can be chosen as
a starting point. Equations 4.3 and 4.5 are compatible if the design is to be evaluated is
near the baseline, if m = x, and if n and µ are chosen appropriately.

Fuglsang and colleagues9 conducted a series of optimization studies, using Equation
4.5 as a cost model. In this approach, the major components and systems of the turbine
are considered in turn, with masses estimated based upon governing loads from the rotor.
Fuglsang and Thomsen [59], p 13, give suggested values for the parameters µ and c2.

Simpler approaches to cost modeling have been published. Collecutt and Flay [28]
examine the way in which optimal rotor design varies with the wind conditions at the
site. They use a cost equation that is a function of D, Prated, Vrated, and H0 (hub height).
The form of the equation is reminiscent of Equation 4.3, except that several ratios are
multiplied together. Galanis and Christophides [65] present a similar, but even simpler,
cost equation. Cuerva and Sanz-Andrés [34] assume that operation and maintenance cost
is proportional to rated power, and that the total investment cost is proportional to the
thrust load. They are thus able to incorporate a very simple measure of cost into a
modified equation for the power coefficient.

There are also cost models that use something like Equation 4.3, where x is not taken
as mass, but rather is a global parameter like diameter or rated power. Bulder et al. [19],
describing the BLADOPT blade optimization software, also Fingresh et al. [52], describe
models of this type. The cost formulas are empirical, and are calibrated to costs of
commercial turbine components.

A cost model based upon global parameters is not suitable for the present study.10

The empirical equations can give incorrect trends if applied to a design that is in some
way novel.

9Fuglsang and Thomsen [59], [60]; Fuglsang and Madsen [58]
10Electrical components are the exception, because their peak “loading” is the rated power.
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Consider, as an example, the equation that Bulder et al.11 give for the cost of the
nacelle structure:

cn = b

(
D

25 m

)2.7

,

where b is some constant, and D is the rotor diameter. This equation may be appropriate
if one wishes to select among established rotor designs. However, it is not necessarily the
case that a rotor with a larger diameter delivers a more severe load regime to the nacelle
structure. This depends on a variety of parameters, like the chord length, airfoils, and
operating speed. So the overly-simplified cost model has the effect of closing out a region
of design space (longer blades with a smaller chord) that might otherwise be open to the
optimizer.

For purposes of the present study, it is natural to use Equation 4.5 to calculate blade
cost, because the blade mass is obtained as part of the optimization. Benini and Toffolo
[11] stop there, assuming that the total cost of the wind turbine “can be reconstructed on
the basis of the cost of [the] turbine blade alone.” (p 358)

Blade mass alone is insufficient to distinguish differences between land-based and float-
ing turbine designs. Therefore, a more refined cost model is required; it was decided to use
a cost model similar to that of Fuglsang and Thomsen [59]. This still leaves the question,
though, of how to calculate masses of various components.

Fuglsang and Thomsen, and Fuglsang and Madsen [58], suggest rotor load components
that govern the mass of each part of the turbine structure. The functions relating loads
and mass are not available in the literature, however.

Burton et al.12 assume that component masses are directly proportional to the gov-
erning load.

Harrison and Jenkins [84] provide a cost model that is based upon a series of simple
structural analyses, leading to an estimate of the mass of each component of the turbine.
The raw estimate is multiplied by an empirical factor (which can be much different from
1.0) in order to bring the mass estimates in line with the masses of actual turbine compo-
nents. The basic idea is that costs of structural components are proportional to their mass,
with different cost/mass multipliers (expressed in, for example, $/kg) used for different
components.

Similarly, Malcolm and Hansen [119] describe a detailed cost model, with separate
cost equations for every main component in the turbine. Costs of electrical components,
and many of the secondary costs like transportation, site engineering, and such, are pro-
portional to the rated power (such as $/kW). Component mass is calculated based upon
structural principles, where possible; in some cases, such as the main shaft and bearings,
mass is estimated as a function of rotor diameter. As with Harrison and Jenkins, cost is
assumed to be proportional to mass.

In the present study, a hybrid approach was adopted. When possible, trends in com-
ponent mass are calculated based upon a simplified structural analysis. For some compo-
nents, like the nacelle bedplate, this would require specifying several design parameters,
which is not feasible within the scope of the project. In these cases, a trend like Equation
4.3 is assumed between mass and the governing load, and the exponent is calibrated to
established designs.

11Bulder et al. [19] p 27
12Burton et al. [22] p 333-334
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Table 4.1: Cost parameters given by Fuglsang and Thomsen [59], with c2 rescaled such
that S2 + G2 = 1.0; note that S2 is the sum of c2 for the blades through the foundation,
and G2 is equal to c2 for grid connection

Component c2 c2 µ
(onshore) (offshore)

Blades 0.191 0.137 0.90
Hub 0.026 0.019 0.00
Main shaft 0.044 0.031 0.70
Gearbox 0.130 0.093 1.00
Generator 0.078 0.056 1.00
Nacelle 0.113 0.081 0.60
Yaw system 0.043 0.032 1.00
Controller 0.043 0.032 0.00
Brake system 0.018 0.013 1.00
Tower 0.183 0.132 0.70
Foundation 0.044 0.187 0.25
Grid connection 0.087 0.187 0.00
Factor f 0.7 1.0

4.3 Baseline Cost Comparison Equations

Based upon the discussion above, it was decided to use a cost model based upon Equation
4.5. Fuglsang and Thomsen [59], p 13, (also Burton et al. [22], p 339) provide parameters
c2 and µ to use with this cost model, for the components and systems of a typical turbine.
These parameters are shown in Table 4.1. The values of c2 vary depending upon whether
the turbine is installed onshore, on a fixed-bottom support structure offshore, or on a
floating support structure offshore. The values of c2 are scaled such that S2 + G2 =
1.0; installation and maintenance costs are omitted. The values of µ are assumed to be
constant.

At the bottom of Table 4.1 is a factor f . It is suggested to apply this factor to the
cost c2, i.e. c1/(fc2), if one wishes to compare the structural and electrical system cost
(but not the overall COE) of onshore and offshore turbines.13 The factor may be omitted
if, for example, one offshore turbine is being compared with another offshore turbine.

Fulton et al. [63] give an estimated cost breakdown for both a bottom-fixed (20 m
sea depth) and floating (tension-leg platform, 65 m sea depth) offshore wind turbine. In
addition, Henderson et al. [87] provide cost estimates for a three-legged semi-submersible
floating wind turbine. Converting the data to the form of c2 gives the values shown in
Table 4.2.

(Again, the factor f should be applied as c1/(fc2) if one wishes to compare structural
and electrical costs between between categories.)

It is evident from Table 4.2 that the independent estimates of Fuglsang and Thomsen
and Fulton et al., for a bottom-fixed offshore turbine, are largely in agreement. Fuglsang
and Thomsen analyzed a stall-regulated turbine, so there is no pitch system; and the

13Onshore wind costs very roughly 2/3 that of offshore wind; Milborrow [130]. Of course, there is a lot
of variation depending upon the site, especially the water depth and mean windspeed.
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Table 4.2: Cost parameter c2 for bottom-fixed and floating offshore wind turbines; cost
estimates were taken from Fuglsang and Thomsen [59], Fulton et al. [63], and Henderson
et al. [87]

Fuglsang Fulton Fulton Henderson
bottom-fixed bottom-fixed floating floating

Component (TLP) (semi-sub)
Blades 0.137 0.096 0.077
Hub 0.019 0.033 0.026
Main shaft 0.031 0.020 0.016
Gearbox 0.093 0.098 0.079
Generator 0.056 0.036 0.029
Nacelle 0.081 0.066 0.053
Yaw system 0.032 0.006 0.005
Pitch system 0.020 0.016
Controller 0.032 0.001 0.001
Electronics 0.081 0.065
Brake system 0.013 0.001 0.001

Total turbine 0.494 0.442 0.355 0.228
Tower 0.132 0.110 0.089
Floating body 0.150

Total platform 0.132 0.110 0.239 0.358
Moorings 0.101
Foundation 0.187 0.252 0.140

Total restraint 0.187 0.252 0.241 0.199
Grid connection 0.187 0.195 0.164 0.215
Factor f 1.00 1.24 1.75
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“electronics” category listed under Fulton et al. could evidently be distributed to some of
the other systems, like the brake system, yaw system, and controller. But these differences
are fairly minor.

Part of the difference in blade cost may be due to stall (Fuglsang and Thomsen) versus
pitch (Fulton) regulation. Blades of a stall-regulated turbine may be heavier than those of
a pitch-regulated turbine, because loads at windspeeds near cut-out are more severe when
the blades cannot pitch into the wind.

Part of the difference in support structure cost may have to do with the water depth
and wave conditions that were assumed for the analyses.

Recall that within each column the values are scaled such that the total structural and
electrical system cost is equal to 1.0. Thus although many of the values for floating wind
turbines are less than those for bottom-fixed turbines, this is not because, for example,
the blades are cheaper; it is because the platform is more expensive, so the blades are a
smaller fraction of the total cost. (This is the reason for the f factor.)

Tables 4.1 and 4.2 provide reference values, but these were not accepted blindly. The
cost model for each component is reviewed in detail in the sections below.

4.3.1 Blades

A relatively detailed structural analysis of the blades is performed, so a direct estimate is
available for the masses m1 and m2 to use in Equation 4.5. However, the root attachment
that bolts to the hub is not included in the analysis, so its mass must be accounted for
separately.

Based upon a study by Jackson et al. [95], it appears that a significant mass and cost
savings is possible with a stud-type connection, as opposed to a T-bolt connection. On
the other hand, Veers et al.14 tend to favor a T-bolt attachment, on grounds of reliability:
“The T-bolt type . . . is one of the most efficient joints for large blade roots, because there
are no bonded joints, and therefore may provide long-term performance.” (p 255)

If the results of Jackson et al. hold true, then it is probable that a stud-type root
attachment is preferable for a floating wind turbine, because the platform cost is sensitive
to the tower-top mass (Section 4.3.9). It is assumed that for a large-scale deployment of
floating offshore wind farms, it would be worth the investment in engineering and test
programs to develop a reliable stud-type connection.

A mass representative of a stud-type root attachment is added to the calculated mass
of the blade. It was noted that the fiberglass thickness required to contain the metal
studs15 is comparable to the (optimized) material thickness of the spar caps in the blade
element adjacent to the root cylinder.16 A convenient first estimate, then, is to let the root
cylinder material thickness equal that of the adjacent element. This has two advantages.

14Veers et al. [187]. Interestingly, despite the apparently opposing viewpoints voiced in the articles, two
of the authors of Jackson et al., also appear as authors of Veers et al. In general, the choice between bolted
and bonded joints in composites is nuanced, and involves tradeoffs in structural efficiency, reliability, and
manufacturability.

15This is based upon the required thickness given by Jackson et al. [95], in Table VI, 3.8 cm for a 50 m
blade, albeit with IEC Class III loads, which are less severe than those used in this report.

16This is based upon optimization studies run with the methods in this report, which constrains the root
cylinder diameter based upon the airfoil thickness of the adjacent element. If given no constraints, the
optimal root cylinder diameter tends to be large, for high stiffness, and material thickness is low, critical
in buckling or fatigue.
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First, it is realistic, from the perspective of a laminate layup plan.17 Second, it captures
the correct trend of increasing thickness with increasing outboard mass and loading.

The root cylinder diameter was constrained such that it did not exceed 1.2 times the
airfoil thickness (that is, t/c times the chord length) of the adjacent element.

A value µ = 0.9 was selected for the blade cost function, based upon Fuglsang and
Thomsen [59]; the value of µ should be the same for the blades of offshore and onshore
turbines, because the type of construction is assumed to be similar.

4.3.2 Hub

Burton et al. [22], p 334, assume that hub mass is proportional to the damage-equivalent
fatigue moment, in the flapwise direction, at the root of the blade. It is reasonable to
assume that the hub is critical in fatigue.18 The complex shape must lead to stress
concentrations, and the ductile behavior of steel tends to make stress concentrations more
critical in fatigue than ultimate conditions. But what about fatigue due to edgewise
bending?

Let us compare the damage-equivalent fatigue moments in the edgewise and flapwise
directions, for a 58.5 m diameter, stall-regulated reference turbine. An S-N curve exponent
m of 3 is used, representative of steel. The ultimate flapwise bending moment (2.3× 106

Nm) is higher than the ultimate edgewise bending moment (3.8 × 105 Nm). However,
because of the large number of rotations (about 4 × 108) and fully-reversing nature of
gravity loading, the damage-equivalent edgewise bending moment is 3.5 × 106 Nm, in
comparison with the damage-equivalent flapwise bending moment of 7.9× 105 Nm. Note
that the damage-equivalent edgewise bending moment is higher than the ultimate flapwise
bending moment.

The mass of the hub is therefore assumed to be proportional to the damage-equivalent
edgewise bending moment at the root of the blade, Medge. This is primarily a function of
blade mass, but is also a function of the mass distribution along the span of the blade.

Because a three-bladed configuration requires a more complex hub geometry than a
two-bladed configuration, it is assumed that the mass of the hub is also proportional to
the number of blades.19

Therefore, mass is assumed to scale as follows:

(mh)1

(mh)2
=

(
(Nb)1(Medge)1

(Nb)2(Medge)2

)kh

. (4.6)

The exponent kh was introduced, because kh = 1 tends to overpredict hub mass, when
Equation 4.5 is extrapolated to large turbines.

The constant kh was calibrated (roughly) to baseline configurations from the Wind-
PACT design study20, as well as the NREL 5 MW reference turbine.21 The WindPACT
1.5 MW baseline configuration served as a reference for (mh)2, (Nb)2, and (Medge)2. The

17. . . as opposed to a large-diameter and low-thickness root cylinder, which would require dropping plies,
and then building back up at the attachment.

18Malcolm and Hansen [119] assume that hub mass was proportional to the ultimate root flapwise
bending moment, although this was scaled empirically to match the mass of commercial designs.

19This is valid only for a rigid hub; a teetered hub would involve additional expense, likely above and
beyond a three-bladed hub. Note that only three-bladed rotors are considered in this report; the number
of blades was retained in the cost function for future reference.

20Malcolm and Hansen [119] p 26
21Jonkman [100] p 55
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Table 4.3: Calibration of kh

WindPACT NREL WindPACT Analysis Analysis
1.5 MW 5 MW 5 MW 5 MW 5 MW

D (m) 70 126 128 106 124
mb (kg) 4,200 17,700 27,200 17,600 30,800
Medge (Nm) 3.5× 106 2.4× 107 4.2× 107

mh (kg) 15,000 56,800 101,000
mh (kg), kh = 1.00 103,000 180,000
mh (kg), kh = 0.75 63,600 96,700

calibration was conducted by running analyses of similar blades using the methods de-
scribed in this report. These blades were assigned a chord and t/c distribution based
upon high aerodynamic efficiency, and then the ξ (twist) and hcap distributions were op-
timized. Table 4.3 summarizes the calibration. The result was that kh should be about
0.75.

It could be questioned why the WindPACT study was used for calibration, yet the
WindPACT cost model was not directly adopted. The answer is that the WindPACT
cost model was calibrated to commercial mass data, for the baseline designs.22 Thus
component masses for the WindPACT baseline designs can be considered representative
of commercial turbines. However, this is not evidence that the WindPACT cost model is
more correct, when extrapolated, than an alternate cost model. In the case of the hub,
it is estimated that the high number of cycles, together with elastic stress concentrations
inherent in the hub geometry, most likely lead to a fatigue-critical design.

Calculations of nacelle mass, Figure 4.3, indicate that the present cost model gives
reasonable trends. (This also does not provide evidence that the present cost model gives
the best possible extrapolation.)

It is assumed that µ = 0.9 for the hub, same as for the blades.

4.3.3 Drivetrain

Burton et al. assume that the drive shaft mass is proportional to the bending moment
caused by the cantilevering of the blades and hub. In this case, since the hub mass is almost
proportional to blade mass, the drive shaft mass could be assumed to be proportional to
blade mass times a characteristic length of the shaft L.23

Malcolm and Hansen [119] assume that the design of the drive shaft is dictated by
stiffness, rather than strength. They argue that, then, the mass of the shaft can be
considered constant with perturbations in the design of the blades. But in a stiffness-
based design, the stiffness of the shaft would have to scale according to the rotational
inertia of the blades and hub. Let us pursue this approach.

The stiffness of a hollow shaft in torsion is:

kt =
Gπ

32L
(D4

o −D4
i ), (4.7)

22In the case of the hub, Malcolm and Hansen [119] discuss the WindPACT cost model on pp 17-18. No
references are given to the commercial data to which the model was calibrated.

23The length L could be, for instance, the overhang to the first bearing, or the total shaft length.
Assuming that the bearings are located at the same fractional position along the shaft, it does not matter
how L is chosen, so long as it is consistent.
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Figure 4.1: The position of the center of gravity of the hub section, rch; the blade, rcb;
and the total hub-blade structure, rc

while the mass of the shaft is

ms =
πρL

4
(D2

o −D2
i ). (4.8)

Here, L is the length of the shaft. The rotational inertia of the rotor is roughly:

mt = (Nbmb +mh)r2
c , (4.9)

where Nb is the number of blades, mb is the blade mass, and rc is the radial location of
the combined center of gravity of one blade and 1/Nb of the hub. These quantities are
shown in Figure 4.1. Note that we are neglecting the rotational inertia of the blade about
its own center of gravity. Since hub mass is almost proportional to blade mass (and, let
us guess, the number of blades), the rotational inertia can be written:

mt = aNbmbr
2
c , (4.10)

with a some constant.
The fundamental natural frequency of the rotor-hub-shaft system in torsion is:

ωn =

√
kt
mt

=

√
πG

32LaNbmbr2
c

(D4
o −D4

i ). (4.11)

Assume that ωn is fixed at some multiple of the rotor rotational speed Ω, presumably
where excitation of the torsional mode is minimal.24 Then:

(ωn)1

Ω1
=

(ωn)2

Ω2
. (4.12)

24The natural frequency in torsion is also constrained by blade vibration frequencies, but these can be
assumed to vary with the rotational speed, as well.
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It is reasonable to assume that Di = 0.5Do.25 This leads to a ratio:

(Do)4
1

(Do)4
2

=
L1(Nb)1(mb)1(rc)2

1Ω2
1

L2(Nb)2(mb)2(rc)2
2Ω2

2

. (4.13)

The ratio of drive shaft mass is:

(ms)1

(ms)2
=

(Do)2
1 − (Di)2

1

(Do)2
2 − (Di)2

2

. (4.14)

Assuming, again, that Di = 0.5Do:

(ms)1

(ms)2
=

(Do)2
1

(Do)2
2

=

(
L1(Nb)1(mb)1(rc)2

1Ω2
1

L2(Nb)2(mb)2(rc)2
2Ω2

2

)1/2

. (4.15)

The center-of-gravity radius rc can be calculated by the following:

rc =

√
mbr

2
cb + (mh/Nb)r2

ch

mb + (mh/Nb)
, (4.16)

where mh is the hub mass from Section 4.3.2, and rch ≈ 1.3 m.26 The values of mb and
rcb can be calculated from the blade design.

Therefore, if the design of the shaft is governed by fatigue, then its mass scales with
LNbmb. If the design of the shaft is governed by stiffness, then its mass scales with√
LNbmbr2

cΩ2.
Several different turbine sizes were studied, in order to compare fatigue-based and

stiffness-based scaling. The assumption in Equation 4.15 that ωn scales with Ω appears
to lead to unrealistically light shafts. One reason is that as blades get larger, the majority
of mass is added to the inboard portion of the blade, so mb increases much more rapidly
than rc.

Thus, it is assumed that drive shaft mass and cost scales with LNbmb.27

It remains to specify the trend with which the shaft length L scales. The shaft overhang
is related to the width needed for the blade hub. It is also related to required clearance
between the blade tips and the tower. Based upon the latter, we will bend the rule
prohibiting trends with global parameters, and say that L is proportional to the rotor
radius Ro.

Following Fuglsang and Thomsen, it is assumed that µ = 0.7.
As for the rest of the drivetrain, it is assumed that bearing cost follows that of the

main shaft. It is assumed that the generator is direct-drive (no gearbox), as described
below.

4.3.4 Generator

The generator is assumed to be direct-drive. This eliminates the need for a gearbox. While
a direct-drive generator may be somewhat heavier than a gearbox/generator combination,
the concept has proven to be commercially viable onshore. Offshore, direct-drive may offer
a significant advantage, due to reduced maintenance requirements.28

25Harrison and Jenkins [84] p 67; Malcolm and Hansen [119] p 19
26The value of rch is based upon the experimental Tjæreborg wind turbine [160] and the NREL 5 MW

reference turbine [100]; these turbines are very different, but rch is similar for each.
27The shaft is much less expensive than the blades, nacelle, or tower, (Burton et al. [22] p 335) so for

the present study it is not really so critical which cost model is chosen.
28Wind Energy – The Facts [192] p 25
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Table 4.4: Calibration of kg

WindPACT WindPACT Analysis Analysis
1.5 MW 5 MW 5 MW 5 MW

Vtip (m/s) 75 75 68 66
D (m) 70 128 106 124
Ω (rad/s) 2.15 1.17 1.29 1.07
Trated (Nm) 7.0× 105 4.3× 106 3.9× 106 4.7× 106

mgen +mgear (kg) 16,000 59,000
mg (kg), kg = 1.00 82,000 99,000
mg (kg), kg = 0.75 54,000 62,000

The cost and mass breakdowns that are available in the literature are for traditional
designs that include a gearbox. It is therefore assumed, as a best estimate, that the cost
and mass of the gearbox are incorporated into the direct-drive generator.

Burton et al. and Malcolm and Hansen assume that the mass of the generator is
proportional to the rated power. However, Anaya-Lara et al.29 state that the size of a low-
speed generator depends upon the rated torque rather than the rated power. Therefore,
it is assumed that the mass of the generator is proportional to the rated torque.

It is assumed that mass scales as:

(mg)1

(mg)2
=
(

(Trated)1

(Trated)2

)kg

. (4.17)

Based upon the values in Table 4.4, kg ≈ 0.75.
It is assumed that µ = 1.0.

4.3.5 Nacelle Structure

Following Burton et al., the mass of the nacelle bedplate is assumed to vary with the
damage-equivalent flapwise bending moments at the root of the blade. However, to match
the WindPACT blade values, the proportionality must be less than linear:

(mn)1

(mn)2
=

(
(Mflap)1

(Mflap)2

)kn

. (4.18)

The value of kn is around 0.70, when calibrated to the WindPACT blades. Table 4.5
summarizes the calibration.

Following Fuglsang and Thomsen, it is assumed that µ = 0.6 for the nacelle structure.

4.3.6 Yaw system

Following Burton et al., the mass of the yaw system is assumed to be proportional to
damage-equivalent flapwise bending moments at the root of the blade. An exponent ky
of 0.70 is used, such that the yaw drive mass follows the nacelle mass. Data is lacking
to make an independent calibration; but for very large turbines an exponent of ky = 1.0
seems to give an unreasonably heavy yaw drive.

Following Fuglsang and Thomsen, it is assumed that µ = 1.0.
29Anaya-Lara et al. [4] p 101
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Table 4.5: Calibration of kn

WindPACT WindPACT Analysis Analysis
1.5 MW 5 MW 5 MW 5 MW

D (m) 70 128 106 124
mb (kg) 4,200 27,200 17,600 30,800
Mflap (Nm) 8.0× 105 8.6× 106 1.3× 107

mn (kg) 15,000 102,000
mn (kg), kn = 1.00 161,000 244,000
mn (kg), kn = 0.70 79,100 106,000

4.3.7 Brake system

The brake system must be able to bring the rotor to a stop when the rotor is operating
at its maximum torque. Part of the capacity of the brake system is used to overcome the
aerodynamic torque, and additional capacity is required to dissipate rotational energy of
the rotor and bring it to a stop quickly.

To make the calculation simple, assume that the mass (cost) of the brake system is
proportional to the power that it must dissipate.30 The power can be estimated as the
rated power of the turbine plus the rotational energy of the rotor at maximum speed,
divided by the number of seconds required for an emergency stop. Using Equation 4.10:

mbr ∝ Pbr = Prated +
1
2
a1Nbmbr

2
cΩ

2
rated

(
1
T

)
. (4.19)

Here, T is the stopping time; a typical value might be 5 seconds.31 A very rough estimate
for hub mass is mh = Nbmb; that is, the hub is about the same mass as the blades.32 It
follows that a1 = 2. Thus:

(mbr)1

(mbr)2
=

(Prated)1 + 0.2(Nb)1(mb)1(rc)2
1(Ωrated)2

1

(Prated)2 + 0.2(Nb)2(mb)2(rc)2
2(Ωrated)2

2

. (4.20)

Based upon Fuglsang and Thomsen, it is assumed that µ = 1.0.

4.3.8 Tower

Harrison and Jenkins33 provide closed-form procedures for sizing of cylindrical steel tow-
ers. The procedures consider strength (fracture and buckling) and tuning of the natural
frequency relative to the rotor rotational frequency.

However, the Harrison and Jenkins tower model is not sufficient for use in blade opti-
mization. The reason is that the damping of tower vibration is sensitive to the aerodynamic
loads on the rotor. With a stall-regulated rotor – or a pitch-regulated rotor with an ill-
tuned controller – the total damping of the tower fore-aft vibrational mode can approach
zero, or become negative. The cost model should indicate that the mass of the tower
approaches infinity as the total (aerodynamic plus structural) damping approaches zero.

30Structural considerations would indicate that mass is proportional to maximum torque, rather than
power. But high levels of power dissipation require more expensive materials.

315 seconds is based upon Burton et al. Figure 7.36.
32This is estimated based upon data for the experimental Tjæreborg turbine.
33Harrison and Jenkins [84] pp 97-111
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To some extent, fore-aft damping of the tower is related to flapwise damping of the
blade; but there are two important differences. First, the natural frequency of the tower
fore-aft mode is lower than that of the first blade flapwise mode. The blade frequency
is typically in the vicinity of 3.5P, while (on land) the tower frequency is either around
0.75P or 1.3P.34 The lower frequency means that the fluctuations in aerodynamic forces –
and hence damping – are closer to the quasi-steady response (see Chapter 3). The second
difference between tower and blade damping is the mode shape. The first flapwise mode
of the blade has a large deflection near the tip, and a small deflection near the root. This
means that the aerodynamic characteristics near the tip have a large influence on damping,
while those near the root have a small influence. By contrast, tower vibration moves the
entire blade as (approximately) a rigid body, with uniform translation in the flatwise (Zr)
direction. Thus the aerodynamic characteristics at the tip and root are equally important.
In other words, positive damping of the blade flapwise mode is no guarantee of positive
damping of the tower fore-aft mode.

Given that quasi-static analysis is insufficient for the tower cost model, two options
remain: perform a dynamic analysis and size the tower based upon ultimate and fatigue
strength checks; or, determine an appropriate load-based metric, similar to those used to
size the other components in the present cost model. The former approach – a relatively
comprehensive tower sizing algorithm based upon dynamic analyses – was adopted by,
for example, Fuglsang et al. [61]. On the other hand, Hjort et al. [91] caution against
using a refined dynamical model of the sub-structure during blade optimization, because
resonance problems may artificially constrain the blade design. Keeping with the spirit of
the present project, it was decided to pursue a metric, based upon rotor load components,
that represents the severity of tower vibration.35 In particular, it is proposed to define the
tower cost metric as a sum of two metrics, one based upon the static load, and another
based upon an estimate of the dynamic response:

mt = maxv∞ [(mt)st + (mt)dyn] . (4.21)

The metric is calculated at each mean windspeed V∞, and the highest value is assumed
to govern the mass of the tower.

Assume that tower mass is proportional to the internal moments that must be carried.
This follows from the formula for bending stress, provided that the diameter is fixed:

σ =
Mc

I
=
MDt

2I
=

M

2πD2
t t
.

Assume that the stress σ is some maximum allowable value, σa. Since mass per unit length
is m = ρπDtt:

σa =
ρM

2Dtm
; m =

ρM

2Dtσa
.

34For example, Hau [85], Chapter 12
35It was initially attempted to program a tower dimensioning algorithm, obtaining a tower-top thrust

spectrum based upon rotationally-sampled turbulence, using the assumption of rigid blades. This is not
conceptually difficult. However, the complexity of this analysis is roughly the same as the present isolated-
blade analysis; in other words, including such a tower analysis would double the complexity of the current
calculations, in exchange for a marginally better estimate of tower cost. Also, an additional FFT would
need to be taken at each windspeed; this is the most computationally-intensive part of the analysis, and
thus the calculation time would double, or worse, depending on the number of aerodynamic elements used
for each blade.
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The static tower mass metric can then be taken as the bending moment at the tower base:

(mt)st = FTH0. (4.22)

The dynamic metric, (mt)dyn, should represent the fluctuation of the tower base bend-
ing moment. The standard deviation, σM , provides a good estimate of the severity of
fluctuation:

(mt)dyn = σM . (4.23)

How can the dynamic response be represented without a detailed structural model?
The response of a vibrational mode in the vicinity of resonance can be written as a function
of the frequency of vibration, the level of excitation, the level of damping, and the mass. In
other words, the stiffness can be made implicit. If it is further assumed that the generalized
mass of the first fore-aft tower mode is dominated by the rotor-nacelle assembly, then the
response can be written such that it does not explicitly include the tower dimensions D
and t.36

Say that we have a single stochastic degree-of-freedom, representing the generalized
coordinate of the first tower fore-aft mode. The first fore-aft mode shape is primarily a
displacement in the Zr direction, with small rotations. The modal Zr displacement at
the tower-top – call it w1 – can be normalized to a magnitude of 1, while the other five
degrees-of-freedom are near zero.

For simplicity, assume that the wind fluctuates uniformly, without spatial variation.
Furthermore, the wind can be characterized by white noise, for the narrow portion of the
spectrum that strongly influences the first mode of tower vibration. Then we have that
So(uz, uz, f) (Equation D.39), evaluated at the tower natural frequency fn, can be taken
as a constant; call this constant Su, for short.

The transfer function to generalized force G1 for this degree-of-freedom is (dFT /duz)e,
such that:

SG =
(
dFT
duz

)2

e
Su (4.24)

The sensitivity of thrust force to velocity is simply the sum of sensitivities of axial force
to velocity of the individual blade elements:(

dFT
duz

)
e

= Nb

Ne∑
j=1

d(F bj )Z
duz

. (4.25)

where d(F bj )Z/duz is calculated by by Equation D.82, using the equivalent lift coefficient
slope for excitation, dCL/dα = γe, from the dynamic stall method of Chapter 3.

The transfer function from force to displacement is:

H(ω) =
1

(K1 −M1ω2) + i(C1ω)
, (4.26)

such that:37

Sq(ω) = |H(ω)|2 SG. (4.27)

36Or, rather, D(y) and t(y), with y the elevation above the base.
37Here ω = 2πf is used, to avoid factors of 2π in the equations. We do not need to worry about

converting the spectrum SG from f to ω, because it was assumed not to be a function of frequency.
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The transfer function from generalized displacement to internal load is the generalized
stiffness K1, while, finally, the transfer function from internal load to base bending moment
is the tower height H0. This gives:

SM (ω) = H2
0K

2
1 |H(ω)|2

(
dFT
duz

)2

e
Su. (4.28)

The mean square response is calculated as:

E[M2] =
∫ ∞

0
SM (ω) dω = H2

0K
2
1

(
dFT
duz

)2

e
Su

∫ ∞
0
|H(ω)|2 dω. (4.29)

Rao [146], p 1006, gives the solution to the integral:∫ ∞
0

∣∣∣∣ 1
(K1 −M1ω2) + i(C1ω)

∣∣∣∣2 dω =
π

2K1C1
. (4.30)

Thus:

σM =
√
E[M2] = H0

(
dFT
duz

)
e

√
πSuK1

2C1
. (4.31)

Noting that
√
K1 = ωn

√
M1:

σM = H0

(
dFT
duz

)
e
ωn

√
πSuM1

2C1
. (4.32)

Recall that tower-top displacement of the first fore-aft mode w1 is normalized to 1.
Then, neglecting the inertia of the tower itself,38 the modal mass M1 is then simply the
mass of the rotor-nacelle assembly mr.39

Likewise, the modal damping C1 is the change in thrust force with axial velocity,
(dFT /duz)d, plus some structural damping. (dFT /duz)d is calculated as in Equation 4.25,
except using the equivalent lift coefficient slope for damping, dCL/dα = γd. In calculating
γd, the frequency of oscillation corresponds to the natural frequency of tower vibration
ωn. Then:

C1 =
(
dFT
duz

)
d

+ 2M1ωnζs, (4.33)

where ζs is the structural damping ratio, here taken to be 0.01. The tower damping ratio
can be calculated as:

ζ =
C1

2M1ωn
. (4.34)

The above assumptions were verified to be reasonable by comparing tower damping
calculated by Equation 4.34, for two sample rotors, against values derived from Kühn40.
Figure 4.2 shows the results. The designs of the three turbines are quite different, so
it is not expected that the values coincide exactly. For example, the reference designs
have three blades, while the turbine studied by Kühn has two blades. The turbines
have different rated windspeeds. Also, the reference designs use variable speed, which
is evident as a positive slope at low windspeeds. That being said, the magnitude of
damping is comparable under stalled conditions, which indicates that the assumptions
behind Equation 4.34 are valid to a first approximation.

38The tower is heaviest near the bottom, where the modal displacement is small.
39This is the sum of masses of everything above and including the yaw drive.
40Kühn [106], Figure 9.11
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Figure 4.2: A comparison of tower fore-aft damping ratios calculated from Equation 4.26
with those given by Kühn [106] in Figure 9.11

It remains to pick a tower vibrational frequency ωn representative of the first fore-aft
mode. At first, it was attempted to use fn = ωn/2π = 1.3P , based upon the current rotor
design being analyzed as part of the optimization. In other words, the tower frequency
was related to the operating schedule of the turbine. This was found to result in blade
designs with a low tip speed, since, by Equation 4.32, the dynamic amplification factor is
proportional to the tower frequency. But this trend is not realistic. It is preferable to have
a blade with a high tip speed, in which case fn could be moved to the vicinity of 0.75P,
keeping the tower frequency constant. Thus, for preliminary sizing of the rotor, the tower
frequency should not be related to the operating schedule.

The tower frequency fn was calculated as a function of annual energy production,
such that it remained constant throughout each optimization analysis. Assuming nominal
values for tip speed Vtip = 70 m/s, rated power fraction P/Prated = 0.36, and rated power
to area ratio Prated/A = 500 (onshore) or 800 (North Sea) W/m2, the tower frequency is
calculated as:

fn =
(

1.3
2π

)(
Vtip√
Aref/π

)
, (4.35)

with:

Aref =
(
Eann

Y

)(
Prated

P

)(
A

Prated

)
. (4.36)

Putting everything together, the tower cost metric is:

mt = FTH0 +H0

(
dFT
duz

)
e
ωn

√
πSumr

2(dFT /duz)d + 4mrωnζs
. (4.37)

A survey of various example designs indicates that Equation 4.37 (using a single standard
deviation) tends to weight the static and dynamic contributions to mt about equally, which
is desireable.
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It is assumed that µ = 0.7, following the value used by Fuglsang and Thomsen for a
fixed tower.

4.3.9 Platform

In this report it is assumed that the platform is a catenary-moored spar buoy. There is an
obvious reason for assuming this configuration: the only existing example of a megawatt-
size floating wind turbine, Hywind, is of this type. Another reason is the desire to keep
things simple. The geometry of the simplest cylindrical spar can be described by just a
few design parameters. Alternative configurations, like a semi-submersible or a tension-leg
platform,41 have many more design parameters.

Initially, it was attempted to develop a cost model based upon the dynamic response
of the spar buoy. Equations of motion were derived, as well as hydrodynamic forces.42

But the analytical approach became too complicated; it is a research topic in its own
right. To give one example, the underwater sections of the spar will likely have a different
diameter than the above-water sections, and either be made of steel, reinforced with
longitudinal stiffeners and transverse (ring) frames; or else made of concrete. Without
adding several design parameters, then, it is not possible to obtain a reliable estimate
of the mass and stiffness of the structure below the waterline. Adding several design
parameters, we are faced with an optimization problem; not intractable,43 but also not
realistic to accomplish within the scope of this project. Another example is hydrodynamic
loading; it is not straightforward to establish the relationship between wetted geometry,
hydrodynamic forces, and platform motion.44 The relationship is nonlinear – very much
so, in extreme weather conditions – and there is a tradeoff between analysis time and
accuracy that is reminiscent of the aerodynamic analysis of Chapter 3.

For purposes of the present cost model, a tentative, empirical approach is adopted,
with the Hywind platform as the single available datum. It is assumed (based upon
discussions with engineers familiar with the Hywind design) that the tower is critical in
fatigue, governed by inertial and gravitational loads due to dynamic pitch motion, not
aerodynamic loads on the rotor. The tower mass is then proportional to mrH

2
0 , where the

quadratic relationship with H0 is due to the rotational inertia of the rotor-nacelle assembly
about the platform center-of-gravity.

It is assumed that the submerged portion of the platform is dimensioned to provide
sufficient buoyancy and ballast to support and stabilize the tower, nacelle, and rotor. The
cost is assumed to be proportional to the tower mass, thus proportional to mrH

2
0 .

It is assumed that µ = 0.7, following the value used by Fuglsang and Thomsen for a
fixed tower.

4.3.10 Mooring and Anchoring (Foundation)

It is assumed that the spar buoy is catenary-moored. It is further assumed that there
is some slack in the mooring system, such that the leeward lines are not taut when the
platform is in static equilibrium. Related to this, it can be assumed that the mooring

41For example, Chakrabarti (ed.) [24] on offshore structures in general, or Butterfield et al. [23] on
floating wind turbines in particular.

42Newman [136] is a good reference for a simple model of a spar buoy. Savenije [150] provides simplified
theory for a floating spar-type turbine.

43Sclavounos [154] conducts such an optimization analysis, holding the rotor design constant.
44Even a subject as basic as fluid forces on a vertical cylinder is an active area of research; see the

author’s review of this topic: Merz et al. [128].
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system is designed such that it does not restrain heave or pitch motion of the platform:
the platform is allowed to move freely in both heave and pitch. The purpose of the mooring
system is to restrain the surge motion of the platform.

A preliminary study of a spar buoy (in addition to other types of floating platforms)
by Sclavounos et al. [154] indicated that forces in the mooring system (including anchors)
are dominated by wave-induced motion of the platform. A similar conclusion was reached
by Fylling et al. [64], as well as Savenije [150].

So we can envision that the forces in the mooring system develop as follows. Steady or
very low-frequency forces – wind, current, and wave (slow-drift) – cause the platform to
offset from its neutral position, until its motion is restrained by tensioning of the mooring
cables on the windward (or perhaps “waveward”) side of the platform, and relaxation on
the leeward side. The platform oscillates in surge, acting as a harmonic mass-spring system
as a result of the low-frequency forces and the mooring system stiffness. The platform also
oscillates in heave and pitch, driven primarily by waves, and (nearly) unrestrained by the
mooring system; however, the mooring cables are forced to follow the motion. Therefore,
those cables that are taut experience oscillating strains (and loads) as a result of the pitch,
and particularly heave, motion.45

The rigid-body response of a spar buoy to wave loads is dominated by motion at its
natural frequencies.46 To a first approximation, the single degree-of-freedom harmonic
oscillator equation can be used to describe the motion.47 The solution to this equation is
given by Equation D.116, repeated here, with generalized damping C:

qj =

 1√
(Kj −Mjω2)2 + C2ω2

Gj .
qj is the amplitude of the response to loading Gj , where both loading and response are
harmonic with frequency ω. In this case, the subscript j can be considered to refer to
either heave, pitch, or surge motion.

Because the dominant motions of the structure occur in the vicinity of the resonant
frequency ωn =

√
Kj/Mj , it is seen that the displacement qj is proportional to the ampli-

tude of loading Gj , and inversely proportional to the damping C and frequency
√
Kj/Mj .

The damping is typically small relative to critical damping.48 Various viscous and wave-
making effects contribute to the damping;49 these are neither trivial nor straightforward
to estimate.50 (For pitch or surge motion, aerodynamic damping of the rotor motion will
also contribute to the total damping. For heave motion, there will be no contribution from
aerodynamic damping.)

Without further assumptions, there is no single, simple trend that can be identified
for mooring system cost estimation. Therefore, we shall assume the following: that the
mooring system mass and cost are proportional to the stiffness,51 and that the required
stiffness is dictated by the natural frequency in surge. In this case, holding ωn constant,
cost is proportional to Mj , which is the mass of the platform plus the added mass in surge.

45Sclavounos et al. [154]
46Newman [136] describing heave motion; Faltinsen [50] p 160 describing surge motion
47This applies even for slow-drift motion in surge, which is a nonlinear force; see Faltinsen [50] p 159.
48Newman [136]; Faltinsen [50] p 155
49Faltinsen [50] p 160
50The work of Moe and colleagues is relevant here: Verley and Moe [188]; Yttervoll and Moe [196];

Demirbilek et al. [37]
51This is typical of a tension structure.
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However, for a cylinder, the added mass is simply the displaced mass, which is equal to
the mass of the platform. Therefore, the mooring and anchoring system cost is assumed
to be proportional to the total mass of the platform.

This might or might not be correct. But in the most basic terms, it predicts the
correct trend: a big, heavy platform needs a stiff, heavy mooring system, while a small,
light platform can have a flexible, light mooring system.

It is assumed that µ = 0.3. This value is based upon that of Fuglsang and Thomsen
for foundation components. It is reasonable that the value of µ is low, because installation
of the mooring system constitutes a large part of the cost.

4.3.11 Grid Connection

Grid connection accounts for a significant fraction of the cost of an offshore wind farm,
around 15% to 20% of the total installation cost.52 However, previous design studies have
not firmly established how this cost might vary with the design of the wind turbines in
the farm. For example, Fuglsang and Thomsen [59] assume that the grid connection cost
is fixed. On the other hand, Burton et al. [22], p 335, in a cost analysis of a land-based
wind turbine, assume that the grid connection cost varies with the rated power.

There is a large body of literature on the grid connection of wind farms. Based upon
a literature search, what can be said about the interaction between wind turbine design
and grid connection costs?

First, it is clear that there is such an interaction; that is, the design of the wind turbine
does influence the cost of the associated grid connection. Quoting from Cockerill et al. [26]:
“Grid connection costs are most strongly a function of the number of turbines in the [wind
farm], their individual power capacity, and the distance of the [wind farm] from the shore.”
(p 702) When it comes to wind farms that are far offshore, one component of the cost
is the local grid connecting together the turbines in the wind farm; another component
of the cost is the high-voltage transmission to shore, or to the nearest interface to the
electrical grid. According to Junginger et al. [102], the “internal grid connection (i.e. the
connection of the separate wind turbines to a central transformer station) only contributes
a minor share to total investment costs.” (p 105) So, the primary cost of grid connection
is associated with transmission, over long distances, of the total wind farm power output.

The cost of establishing a long-distance transmission line from a wind farm to the
electrical grid includes both the costs of the equipment (transformer stations, cables)
and installation costs (cable-laying ships). It is reasonable to assume that the cost of
the electrical equipment is proportional to the maximum (rated) power that must be
transmitted – that is, the maximum power output of the wind farm, which is the rated
power of each wind turbine times the number of turbines in the farm. This is consistent
with our earlier assumption regarding the cost of the generator.

Herman [88] estimates the costs of installing53 electric cables in both the local grid
(connecting the turbines to the transformer station) and the connection to shore. Mobi-
lization and on-shore preparation costs (which can be considered fixed) are significant, as
are per-turbine connection costs. Installation cost is not sensitive to the power rating of
the cables.

For purposes of our analysis, we can say that the number of turbines in the wind
farm is fixed. (Recall that the turbine design is normalized to a specified annual energy

52Fuglsang and Thomsen [59] p 13; Fulton et al. [63] p 35; Tong [180] p 409; Henderson et al. [87] p 416
53“Installing” here refers to the process of installation – that is, mobilizing the vessels, preparing the

equipment, and such. It does not include the cost of the physical components being installed.
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production, so the energy produced by the wind farm is, in this case, independent of the
turbine design.) This means that we can consider installation costs to be fixed.

We can thus estimate that grid connection costs are proportional to the rated power
of the wind turbine, and the value of µ for grid connection is not near 0, nor is it near 1;
it is somewhere in between. de Alegŕıa et al. [36] provides evidence which supports this
conclusion; the costs of submarine cables, per unit length, are reported to be proportional
to the rated power of the cables. The cost of transformers is is proportional to P 0.75

rated. For
both cables and transformers, the value of µ is much closer to 1 than to 0, not including
installation. Even including installation, it appears that µ is closer to 1 than to 0, because
the electrical equipment is more expensive than its installation. It appears that the value
of µ will vary somewhat as a function of the size of the wind farm; here it is assumed that
the wind farm is large, at least in the hundreds of megawatts.

Based upon this information, a guess could be made that, including installation, a
reasonable value for µ is 0.7.

There is another important issue related to the connection of wind farms to the grid:
the variability of the wind, and hence the power output of the wind farm.54 Fluctuations
in wind farm output must be compensated by reserve generating capacity using other
sources of energy, which increases the effective cost of wind energy.55

Let us think about this in the context of the weighting which applies to the rated
power of each wind turbine. In the present approach, the geometry of each turbine design
is scaled such that the annual energy production is equal to a specified, constant value.
The annual energy production is therefore independent of the rated power. This means
that if the rated power is lowered, the same amount of energy is generated; but more
consistently. Fluctuations in power output are reduced (over timescales much longer than
the rotor rotational period; t >> 2π/Ω). This should result in a lower cost of energy.

It is difficult to incorporate this explicitly into the present cost model, and it is not
attempted to do so. It does indicate, though, that the optimization should be weighted
rather heavily towards reducing rated power.

4.3.12 Summary and Limitations

Table 4.6 summarizes the cost model chosen for each component. Values of c2 were
estimated based upon Table 4.2, generally a compromise between the “Fulton” and “Hen-
derson” values.

A similar cost model was developed for onshore turbines; it is shown in Table 4.7.
Values for c2 were based upon Fuglsang and Thomsen [59], Table 3-6.56 Assembly and
transportation costs were omitted, and the remaining cost parameters were rescaled such
that the sum equals 1.0. The values of µ are the same as those in Table 4.6. It is assumed
that the mass of the foundation is governed by ultimate strength.

The cost models used in this project are highly simplified, relating the masses of turbine
systems to blade load components that are assumed to govern the design. Therefore, there
is significant uncertainty in the calculated component masses, although the trends have
been calibrated to provide the correct orders-of-magnitude.

It was considered to develop more advanced cost models based upon structural me-
chanics – in other words, to conduct preliminary design of components other than the

54Electrical quality and stability is yet another issue; Tande [171] provides an overview of grid stability
issues.

55Holttinen [92]. Tande [172] discusses the case of Norway in particular.
56This cost model is also cited by Burton et al. [22], p 331.
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Table 4.6: A summary of cost parameters for a floating offshore wind turbine

Component Scales with c2 µ Notes
Blades Nbmb 0.09 0.9
Hub (NbMedge)0.75 0.03 0.9 (1)
Drivetrain RoNbmb 0.02 0.7
Generator (Trated)0.75 0.09 1.0 (2)
Nacelle (Mflap)0.70 0.06 0.6 (3)
Yaw system (Mflap)0.70 0.01 1.0 (3)
Brake system f(Prated, Nb,mb,Ω) 0.01 1.0 Equation 4.18
Tower FTH0 + σM 0.10 0.7 (4)
Platform mrH

2
0 0.18 0.7

Mooring system mp 0.21 0.3 (5)
Grid connection Prated 0.20 0.7

Notes on Table 4.6:

(1) Here, Medge is the damage-equivalent edgewise root bending moment, obtained by a full
fatigue analysis.

(2) The rated torque is Trated = Prated/Ωrated. The cost fraction is higher than the values listed
in Tables 4.1 and 4.2, because the generator is assumed to be direct-drive. Therefore, the
cost of the gearbox is incorporated into the generator.

(3) Mflap is the damage-equivalent flapwise root bending moment.

(4) Equation 4.37; the expression is calculated at each mean windspeed over the operating range,
and the maximum governs the cost.

(5) mp is the total mass of the floating platform.

Table 4.7: A summary of cost parameters for an onshore wind turbine

Component Scales with c2 µ Notes
Blades Nbmb 0.20 0.9
Hub (NbMedge)0.75 0.04 0.9 (1)
Drivetrain RoNbmb 0.05 0.7
Generator (Trated)0.75 0.20 1.0 (2)
Nacelle (Mflap)0.70 0.12 0.6 (3)
Yaw system (Mflap)0.70 0.04 1.0 (3)
Brake system f(Prated, Nb,mb,Ω) 0.02 1.0 Equation 4.18
Tower FTH0 + σM 0.19 0.7 (4)
Foundation FTH0 0.05 0.3 (6)
Grid connection Prated 0.09 0.7

Notes on Table 4.7: see Table 4.6

(6) For the foundation, the static tower base bending moment FTH0 is calculated under the
ultimate gust load case.
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Table 4.8: Baseline component masses for a 1.5 MW turbine

Component m2 (kg)
Blades 13,000
Hub 15,000
Drivetrain 3,000
Generator 15,000
Nacelle bedplate 15,000
Yaw system 4,000
Brake system 1,000
Other nacelle (fixed) 9,000

rotor blades – rather than using simple trends with loads. It was decided that an ap-
proach based upon structural mechanics was too complex to fit inside the scope of this
project.

Here, the simple cost models are used to provide a non-arbitrary estimate of the relative
importance of minimizing blade mass, fluctuating loads, blade length, and generator power
rating. If it were not attempted to estimate the tradeoffs, then an alternative would be to
simply minimize blade mass. This would be completely independent of the turbine systems
and support structure. Despite the uncertainty of the cost models shown in Tables 4.6
and 4.7, they provide a cost estimate that is closer to reality than one which considers
only blade mass.

4.4 Baseline Rotor and Nacelle Mass

As described in Section 4.3.9, the mass of the floating platform is estimated based upon
tower-top mass mr, and hub height H0. Tower-top mass is the sum of masses of all
the individual components within the nacelle and rotor. The above cost models provide
estimates of the change in mass of each component, but summation requires an estimate
of the absolute mass of each component. It is therefore necessary to specify component
masses for a typical reference design.

The WindPACT 1.5 MW reference turbine57 was chosen as a baseline. Table 4.8 gives
approximate component masses for this turbine. The mass of the generator is estimated as
the sum of the WindPACT gearbox and generator masses. The mass of the brake system
is simply a guess; it is higher than that predicted by the equation given in the WindPACT
report, because in this case (direct-drive) the brake system is located on the low-speed
shaft. The mass of the yaw drive is based upon Equation 5.71 of Harrison and Jenkins
[84], using loads from an analysis of a turbine similar to the WindPACT turbine. The
“other” category includes items like the nacelle cover, whose mass is relatively independent
of design parameters.

The masses in Table 4.8 are summed to obtain mr, the mass of the rotor-nacelle
assembly, which is a part of the cost model of the tower, platform, and mooring system.
The baseline tower mass was taken as 100,000 kg. The masses of the floating platform
and mooring system (or foundation, in the case of a land-based turbine) are unknown, so
they are simply normalized to 1.0 as a baseline.

57Malcolm and Hansen [119]
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Figure 4.3: A comparison of the mass of the nacelle, including all subsystems (struc-
ture, drivetrain, generator, yaw system, and brake system), between commercial turbines
and the present cost model, applied to several baseline (non-optimized) turbine designs;
commercial data comes from Wind Energy – The Facts [193], Figure I.3.25

4.5 Validation

Figure 4.3 compares the mass of the rotor-nacelle assembly, calculated using the above
cost model, with data from commercial turbines. The cost model gives reasonable trends.

The model predicts a heavier nacelle mass in the North Sea climate, because the rotor
load regime is more severe. This is probably realistic; though note that a North Sea turbine
produces twice as much energy in a year as an onshore turbine of the same diameter.



Chapter 5

Optimization Methods and Design
Procedures

To design an optimal stall-regulated wind turbine blade requires numerical optimization.
The reason is that there are no closed-form theories that can be used to calculate the best
balance between the aerodynamic and structural properties of the blade. A minimalist
description of the blade must specify on the order of 25 to 50 design parameters. These
parameters interact nonlinearly. To pick one example, the thickness-to-chord ratio of
the blade at a location of r/Ro = 0.8 affects the aerodynamic characteristics, the section
stiffness, and the mass. The aerodynamic characteristics affect the excitation and damping
of blade vibration, as well as the optimum rotational speed of the rotor. The section
stiffness and mass affect the mode shapes and natural frequencies of the blade, which
in turn affect excitation and damping of vibration – in particular, related to the modal
response at multiples of the rotational frequency. The mass also affects gravity loads along
the entire inboard portion of the blade.

Employing numerical optimization does not relieve the designer from the task of un-
derstanding the problem, at least to the extent possible, and implementing a good design.
Two reasons come to mind. First, the optimization algorithms require a valid starting con-
figuration. This should be as close to the eventual optimum as possible, in order to avoid
getting stuck at a local, non-optimal minimum of the cost function.1 Second, numerical
optimization methods will ruthlessly exploit any shortcomings or oversights in the setup of
the problem: a missed source of loading, errors due to linearization or discretization, and
so forth. The resulting design must be understood, and likely refined “manually” during
later phases of the design process.

In order to obtain an initial design that is a reasonable starting point for optimization,
the following design procedure is implemented:

1. Closed-form, textbook methods are used to obtain the aerodynamically optimum
profile at a chosen design windspeed. The profile is modified to reduce the inboard
chord length and twist to realistic values.

2. The blade structure is sized manually, to a feasible2 configuration, with all load
factors less than 0.95.

1In general, one has no way of knowing for sure whether the result of the optimization is a local or
global optimum.

2In optimization terminology, the design is “feasible” because none of the specified constraints are
violated.
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3. Holding the aerodynamic profile fixed, the spar cap thickness at each element is
optimized, with the goal of minimizing blade mass, limiting load factors to less than
0.95. Load factors are limited to 0.95 at this initial stage, instead of 1.00, because
it is not desired to prematurely constrain any of the design parameters during the
actual optimization studies.

This provides a reference configuration which is close to the aerodynamic optimum, while
being realistic from a structural standpoint. Section 5.3 describes the reference configu-
rations used in this project. Optimization studies and results are discussed in Chapter
6.

A constrained, gradient-based optimization method is used: sequential linear program-
ming inside the feasible domain, switching to the method of feasible directions to move
off a boundary. This was the simplest method that was found to be effective. There is
precedence for the use of this approach in blade design studies. Section 5.4 discusses the
method in detail.

The sensitivity of a design to changes in parameters becomes much easier to understand
if the annual energy production Eann is fixed. Thus, the geometry of the aerodynamic
profile is defined so as to be independent of length scale; then the length scale is varied
iteratively such that a specified Eann is obtained. This process is discussed in Section 5.2.

First, though, is a review of historical blade design studies, and existing approaches to
blade design and optimization.

5.1 Previous Rotor Design Studies

Wilson and Lissaman [191] present the “textbook” method of calculating the blade twist ξ
and chord c in order to maximize power coefficient CP at a design windspeed Vd. Burton
et al. [22] provide a somewhat more elaborate example, in which the root geometry is
truncated to limit ξ and c to reasonable values. This design process results in a blade
that has a high CP ; but the BEM equations say nothing about the tradeoff between
aerodynamic and structural efficiency.

5.1.1 Development of Combined Structural and Aerodynamic Optimiza-
tion

Morgan and Garrad [131] provide an early example of optimization to different objec-
tive functions. Pitch- and stall-regulated turbines were optimized for maximum energy
production, maximum CP ,3 and a simple COE function that was proportional to maxi-
mum torque, thrust, and power. Design variables were the chord and twist as a function
of radius, the power output, and the rotational speed. Optimization was limited to the
aerodynamic behavior of the turbine; structural dynamics was not considered.

The results show chord and twist distributions that are typical of aerodynamic op-
timization by the BEM method. This is illustrated in Figure 5.1, which compares the
profiles against the textbook single-point, maximum CP design procedure described later
in this chapter. (The discrepancy near the root is likely due to the fact that the single-point
design curve was calculated based upon one airfoil that is representative of the outboard
portion of the blade.) In comparison with a linear chord profile, the blade has a “waisted”

3Maximizing CP is equivalent to maximizing the power production at a single windspeed, while maxi-
mizing energy capture is equivalent to maximizing the integral of the power production, weighted by the
windspeed probability distribution.
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Figure 5.1: Chord profiles obtained by Morgan and Garrad [131] using different objective
functions, compared with the maximum CP design obtained by the methods in this chapter

shape, with a large chord at the root, and a rounded, tapered tip. (This geometry is dis-
cussed further in Section 5.3.) Morgan and Garrad found comparatively minor differences
when optimizing to the different objective functions.

Fuglsang and Madsen [57] introduced a structural model, in combination with a BEM
aerodynamic model, into the optimization process. A 1 MW, stall-regulated turbine was
investigated. The structural model was used to perform a strength calculation under
ultimate gust conditions, with the turbine shut down.4 Both structural and aerodynamic
design variables were considered. Design parameters were: blade length, and distributions
of airfoil aerodynamic properties, chord, twist, t/c, and spar cap material thickness along
the blade.

The structural model was used to size the material thickness along the blade. Then,
the cost function was calculated according to a dynamic simulation of the lifetime fatigue
loads, using the Flex4 aeroelastic code.

Maximum annual energy production was used as an optimization criterion. In some
of the analyses, maximum blade loads were constrained to be less than a specified value,
which was varied parametrically; then, annual energy was maximized at each level of the
constraint. It was found that

[w]hen the rotor swept area is increased for constant rated power, a substantial
increase in the annual [energy] production is possible. However, both mean
and extreme loads also increase progressively. If a constraint is added to the
mean blade root flapwise moment at stall or to the extreme blade root flapwise
moment [under the ultimate gust load case], the annual production is reduced
[, showing a nonlinear trend with] the constrained load. When the constrained
load is lowered, the blade chord is reduced, leading to a reduction in rotor

4The load case was akin to that described in Section E.3.1.
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solidity. Even though the design is no longer at the aerodynamic optimum
. . . [it seems] preferable to reduce the solidity for an optimum tradeoff between
the annual production and the magnitude of the fatigue loads. ([57] pp 69-70)

It appears that the tradeoff between reduced load and reduced annual energy produc-
tion – or similarly, CP – points in the direction of a small chord and reduced solidity.

Fuglsang and Madsen also found that airfoils with a high maximum lift coefficient
were desirable. However, the parametric model that was used for the airfoil coefficients is
questionable. In comparison with the airfoil model of Chapter 2, the model of Fuglsang
and Madsen gives an overly smooth trend in CL through stall, an extraordinarily high lift
coefficient at deep-stall angles-of-attack, and a high CL/CD ratio for airfoils with a high
maximum lift coefficient.

Extending this study, Fuglsang and Madsen [58] optimized the blade of a 1.5 MW,
stall-regulated turbine. They used a gradient-based optimization algorithm consisting of
a combination of sequential linear programming and the method of feasible directions.
(This is the method adopted for the present project; Section 5.4.) The objective function
was COE, calculated as a function of maximum and damage-equivalent loads at the blade
root; this is similar in scope, if not the same in detail, to the cost function of Chapter 4.
It is not entirely clear how material thickness and section properties were calculated. The
published results did not include section properties of the blade structure.

The chord and twist distributions are shown in Figure 5.2.5 Note that the root chord
and the tip twist were fixed at their original values.

It is instructive to compare the actual and COE-optimum blade designs against the
textbook, single-point maximum CP designs. These depend upon the design windspeed, so
a bracketing range is shown. Apparently, the chord distribution of the LM and optimized
blades have been adjusted away from the aerodynamic optimum, most likely to achieve the
desired stall characteristics, natural frequencies, and structural efficiency. Fuglsang and
Madsen: “The chord was in general reduced, since this reduces blade weight and reduces
extreme loads and fatigue loads from the reduction in projected blade area. The maximum
strains together with the annual energy production, however, prevented the chord from
being reduced too much. At the tip, the chord was nearly maintained [equal to that
of the reference turbine] for aerodynamic reasons . . . Optimum aerodynamic efficiency at
some design wind speed is closely related to a single rotor shape. However, nearly optimum
aerodynamic efficiency can be obtained by a number of different rotor shapes with different
cost. Hence, there exists an important potential for reducing cost of energy with no or
only little reduction in energy yield.” ([58] pp 203-204) The optimal rotor had a lower
power density (Prated/A) than the reference rotor; 460 W/m2 against 560 W/m2.

In a subsequent investigation, Fuglsang and Thomsen examined what sort of turbine
would be optimal in an offshore wind farm.6 At the same time, they also optimized a
turbine for an onshore wind farm, with a different wind climate, for comparison. The
methods and cost model were similar to that of Fuglsang and Madsen [58]. However, the
aerodynamic loads model was expanded to include wind farm effects, principally wakes
from upstream turbines.

The spacing between the turbines in the wind farm was specified as a multiple of the
rotor diameter. It is shown in Appendix G of this report that scaling the spacing in this

5Fuglsang and Madsen [58] published normalized chord and twist profiles; Fuglsang and Thomsen [59]
state that the root chord length of the LM 29.2 blade, upon which the optimization was based, is about 3
m.

6Fuglsang and Thomsen [59], [60]
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Figure 5.2: Optimum chord and twist distributions determined by Fuglsang and Madsen
[58], for a 60 m diameter, stall-regulated rotor; also ahown are single-point maximum CP
designs, at different design windspeeds
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Table 5.1: Results of Fuglsang and Thomsen [59], optimizing an offshore wind turbine

Reference Optimized Optimized Optimized
(original blade) (original blade) (new blade)

H0 (m) 59.5 46.0 50.2 50.6
D (m) 60.0 67.2 71.1 74.0
RoΩ (m/s) 60.3 58.4 63.3 66.6
Prated (MW) 1.5 1.5 2.0 2.0
E0 ratio 1.00 1.06 1.28 1.32
Cost ratio 1.00 1.04 1.16 1.16
COE ratio 1.00 0.98 0.91 0.88

manner can give misleading results.
The starting point for the optimization was the same LM 29.2 blade from Fuglsang and

Madsen. In most of the analyses, the blade shape was not optimized. To vary the rotor
diameter, the blade was simply slid radially by changing the length of the hub section.
Design variables were the hub height, rotor diameter, rotor speed, and rated power. In one
analysis, the blade shape was optimized, although very little information is given about
the resulting geometry.

Results for the offshore turbine are summarized in Table 5.1. The final configurations,
both onshore and offshore, had larger diameters than the reference turbine.

Especially interesting are the results for the optimized configuration using the original
blade and same rated power of 1.5 MW. In this case, the shape of the blade was fixed, and
the diameter was increased by simply widening the hub. The energy production increased
by 6%, while the swept area increased by 25%. Even correcting for the change in the
average windspeed due to the reduced hub height, the area-to-energy production ratio is
higher; this implies that CP decreased significantly from the reference to optimized rotor.

Fuglsang et al. [61] describe a further evolution of the optimization procedure, examin-
ing the effects of tuning turbine designs to particular wind climates. Only a broad sketch
of the optimization method is provided. An interesting aspect of the approach is the way
in which the components are dimensioned. On each iteration of the optimization, when
the cost is being computed, the cost module sizes the components using a simplified, local
optimization, based upon the loads from a set of aeroelastic calculations. For example, the
blade sections were sized element-by-element based upon required stiffness7 and strength.
Then, the thickness is increased iteratively such that a maximum tip deflection constraint
is satisfied, while obtaining the minimum increase in blade mass. In other words, material
thickness is not included as a direct design variable in the primary optimization loop. The
updated geometry from the cost model is used as a starting point for the next iteration.
Fuglsang et al. claim that this does not affect the solution to which the optimization
converges.

The presentation of results is limited in scope (likely due to proprietary turbine de-
signs). Percentage changes in cost of energy are given for various scenarios in which more
or fewer of the turbine systems were included in the optimization, and for different wind
climates. No information is given about the specific designs.

Bulder et al. [19] describe the blade optimization tool BLADOPT, which, like the work

7It was not stated exactly how the required stiffness was determined.
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of Fuglsang and colleagues, combines aerodynamic and structural optimization. However,
BLADOPT employs a calculation of damage-equivalent loads based upon a rigid blade,
rather than a full aeroelastic simulation. The cost model is quite detailed, with component
costs being determined either on the basis of mass, by a simple engineering calculation, or
as an empirical trend with basic turbine parameters like diameter or rated power. Example
results are not reported.

Recently, Xudong et al. [194] reported on the development of a blade optimization tool
based upon aeroelastic calculations. A modal approach is used, considering the first two
flapwise and first edgewise modes of vibration. The cost model is based upon a simplified
COE metric, considering only rotor cost and annual energy production. The rotor cost
is assumed to be proportional to the mass of the rotor, so, for a given annual energy
production, the cost model is equivalent to minimizing blade mass. But the blade mass
is calculated in a simplified manner, with the mass of each radial station (blade element)
scaling in proportion to the chord length:

mr =
1
mb

Ne∑
j=1

m0,j
cj
c0,j

,

where mb is the original blade mass, m0,j is the original mass of the jth blade element, c0,j

is the original chord length, and cj is the updated chord length. In other words, during
the optimizations, the structural section properties were not altered. In order to prevent
loads from becoming too high, constraints were placed upon the maximum thrust and
shaft torque, such that these were not higher than the values on the original turbines.
Thus, the method is essentially a load-constrained aerodynamic optimization, akin to the
early work of Fuglsang and Madsen [57].

Xudong et al. optimized chord, twist, and t/c distributions along the blade span, based
upon three existing rotor designs: the 4.5 m diameter MEXICO experimental turbine, the
Tjæreborg 2 MW (60 m diameter) experimental prototype turbine, and the NREL 5 MW
(126 m diameter) reference turbine. Results for the NREL turbine are shown in Figure 5.3,
again compared with single-point designs. The chord deviates slightly from both linear
(NREL 5 MW) and CP -optimum profiles. However, the differences in the power curve
and axial force were negligible.

5.1.2 Genetic Algorithms

The above studies used constrained, gradient-based optimization methods. Genetic algo-
rithms have also been employed successfully in the optimization of wind turbine blades.

Selig and Coverstone-Carroll [156] implemented a genetic algorithm in combination
with an inverse design technique. The inverse design technique,8 in this case, was imple-
mented to constrain the rated power to a specified value. The optimization was restricted
to aerodynamic parameters; it does not appear that the structural properties were mod-
elled. The objective function was maximum annual energy capture. Chord and twist
distributions, to maximize energy capture, were found as a function of Ro, Prated, and
wind climate.

Giguére et al. [67] performed a follow-up study using the same software. The objective
function was updated to COE, including a simple structural model and an ultimate-gust
(IEC Class II, V∞ = 42 m/s)) strength check. The dynamic response was not considered.

8This is described briefly, but not completely, by Selig and Tangler [155].
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Figure 5.3: Optimum chord and twist distributions determined by Xudong et al. [194],
for the NREL 5 MW reference turbine
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Figure 5.4: The optimum chord distribution for a 750 kW, 44 m diameter rotor, obtained
by a genetic algorithm with a simple COE function (Giguere et al. [67] Figure 9); also
shown is the result of Morgan and Garrad [131] for a 40 m diameter rotor

Airfoil coefficient data was estimated using the Eppler method.9 A set of airfoils was
synthesized, having maximum lift coefficients between 0.7 and 1.2.

The rotor blades of a 750 kW, 44 m diameter turbine were optimized. Design variables
were the chord and twist distributions along the span, the outboard airfoils, and the
rotor diameter. Figure 5.4 compares the resulting chord distribution10 with a single-point
maximum CP design, with the same rotor diameter and tip speed. The COE optimum
found by Morgan and Garrad, for a 20 m diameter rotor, is also shown. These results
indicate that accounting for structural properties by a simple static strength check does
not lead to a design that is significantly different from a CP -based design.11

Diveux et al. [40] optimized basic parameters of a wind turbine – number of blades,
diameter, hub height, rotational speed, rated power, design windspeed, stall versus pitch
regulation, and generator type – in the context of cost of the entire wind farm. The
turbines themselves were not simulated. Simple relations were employed to predict the
turbine behavior, like the power-versus-windspeed curve. A genetic algorithm was used.

The results are somewhat too varied to be effectively summarized here. One interesting
conclusion was that a variable-speed, pitch-regulated system was superior to a constant-
speed, stall-regulated system. The difference in COE was on the order of 10%, which
is large, in the context of wind turbine optimization. However, this difference is almost
solely due to the higher energy capture of the pitch-regulated turbine, which was assigned

9Comparisons of calculations and experiments indicate that this method does not provide accurate lift
and drag coefficients throughout the stall range, particularly with a rough leading edge. See Somers [163],
for example.

10Only one of several similar curves is shown; minor differences were associated with the maximum lift
coefficient.

11. . . with a truncated root chord based upon manufacturing considerations.
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a higher rated power.
Benini and Toffolo [11] performed a multi-objective optimization using a genetic algo-

rithm. They focused on “annual energy production density” E0/A (actually, E0/R
2
o, as

they defined it). The premise of the paper is that maximization of E0/A is an objective
that is independent of and equally important to minimizing COE.12 Pareto fronts were
drawn as a function of COE and E0/A.

The analysis used a BEM calculation for the aerodynamics. The structural model was
simple, consisting of a stress calculation at the root of the blade, at the rated windspeed
and power, considering bending and centrifugal loading. The material strength was cali-
brated such that a reasonable blade mass was obtained. The optimization algorithm was
used to determine tip speed, the length of the root cylinder, the chord distribution, and
the twist distribution. A simple cost model was employed, considering blade mass and
rated power.

Figure 5.5 show the chord and twist profiles that resulted from the calculations; out of
several profiles plotted by Benini and Toffolo, the figure shows the configuration that was
nearest the minimum COE. (It is questionable whether these profiles should be labeled
“optimum” or not, because they do not lie at the minimum COE.)

It is interesting how sharply the chord profile tapers. The twist, also, has a profile that
does not follow that of the textbook design methods.

Figures 5.6 through 5.8 summarize the global results, looking only at a 1 MW turbine.
(Benini and Toffolo repeated the analysis for 600 kW and 800 kW turbines, with similar
results.) If we think of these plots in terms of the optimization strategy of the present
report, where the geometry is normalized to a specified annual energy production, then
the X axis represents simply the inverse square of the turbine radius. The results suggest
that we can expect the optimum cost-of-energy to lie at a somewhat larger-than-typical
rotor diameter, or lower E0/A, off the left-hand side of the plots. (It is curious that Benini
and Toffolo did not attempt to locate the minimum cost-of-energy!) At the minimum
COE, we can expect a slightly increased blade mass, and a tip speed that is in the range
of 65-70 m/s. As Benini and Toffolo state in the conclusion: “The main results obtained
indicate that the minimization of COE requires large-sized HAWTs having high [E0], but
low blade loads and low blade [mass].” ([11], p 363) That it is desirable to have high
E0 with low loads and mass is obvious, but it is perhaps not obvious that, holding E0

constant, one should look towards an increased diameter.

5.1.3 Other Studies

Zhiquan et al. [198] employed the “complex” method, which is a type of constrained,
direct-search (no gradients) algorithm. The aerodynamic profile – chord, twist, and airfoil
shape – of the blade was optimized, with the goal of maximizing annual energy capture.
The chord profile was found to agree closely with that of the LM Glasfiber LM19 blade.
The optimal chord and twist profiles are shown in Figure 5.9. Over the inboard half of the
blade, the optimum profiles for maximum energy capture lie farther than expected from
the single-point design. The reason is likely that, as mentioned previously, the single-point
design curves are based upon one airfoil, while the optimization varied the airfoil along
the blade length.

Like Benini and Toffolo, Lee et al. [110] define the problem as a multi-objective opti-

12Frankly, this seems to be a case of a method – a multi-objective evolutionary algorithm – in need of a
problem, rather than a method being selected which best suits the problem at hand.
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Figure 5.5: Optimum chord and twist distributions determined by Benini and Toffolo [11],
for configuration “T1”, which is near the minimum COE
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Figure 5.6: Cost-of-energy as a function of annual energy per unit swept area; data from
Benini and Toffolo [11]

Figure 5.7: Blade mass as a function of annual energy per unit swept area; data from
Benini and Toffolo [11]
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Figure 5.8: Tip speed as a function of annual energy per unit swept area; data from Benini
and Toffolo [11]

mization. They optimized the chord and twist profiles of the blade, as well as the rotor
speed, examining the tradeoff between annual energy production and blade cost. The esti-
mate of blade cost was based upon the assumption that the cost (with a thought towards
manufacturing) is proportional to the square root of the blade surface area times the blade
length. Constraints were placed upon rotor solidity (σr ≥ 0.0345), maximum chord (c ≤ 4
m), and tip speed (Vtip ≤ 90 m/s). A probabilistic analysis technique (outside the scope
of the current discussion) was used to attempt to identify the probability that the global
optimum has been found, rather than a local optimum.

Figure 5.10 shows the optimum chord and twist distributions obtained by Lee et al.
The effect of the probabilistic approach is minor. The chord distribution matches well with
a single-point design, although the taper near the tip is slightly sharper in the optimized
configuration. The shape of the optimum twist distribution matches well with that of
a single-point design, however there is an offset between the profiles of about 4◦. It is
speculated that this is due to the zero-lift angle-of-attack assumed when specifying the
airfoil properties.

The WindPACT blade design study13, although not based upon a numerical optimiza-
tion, deserves mention. This project is noteworthy for the large variety of designs that
were generated and compared. Beginning with a baseline 1.5 MW, pitch-regulated rotor
with a 70 m diameter, various design parameters were perturbed in order to study the
effects on COE. The “test matrix” included upwind and downwind rotors, with two and
three blades.

Calculations were performed in the time domain, with some analyses using the FAST AD
mode-based code, and others using ADAMS, which is a general dynamic simulation tool
based upon a multi-body formulation. The aerodynamic model was not specified, however
it was probably AeroDyn [132].

Many conclusions were drawn as a result of the WindPACT study. Here, the following
13Malcolm and Hansen [119]; Griffin [71]
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Figure 5.9: Optimum chord and twist distributions determined by Zhiquan et al. [198]
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Figure 5.10: Optimum chord and twist distributions determined by Lee et al. [110]
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conclusions are most relevant: “Although increasing the tip speed alone had deleterious
effects . . . the combination of increased tip speed with decreased blade chord . . . had con-
siderable benefits. The interpretation of these results is that it is more efficient for a blade
of lower solidity to move faster and to do the same mechanical work with lower loads.”
([119] p 36) Also: “Lower COE can be achieved by reducing the chord and increasing the
tip speed with attention to the spanwise tapering of the blade. The optimum level for
this approach must depend on further investigation of system design, especially the blade
design, and must be balanced by consideration of the acoustic penalties.” ([119] p 44)

Long and skinny blades, up to a point, seem to provide the lowest COE. The Wind-
PACT results indicate that tip speeds in the range of 75-85 m/s are optimal; these tip
speeds are higher than those given by Fuglsang et al. or Benini and Toffolo.

In the context of stall- versus pitch-regulated blades, it is worth noting that Malcolm
and Hansen studied the effects of using blade pitch control to damp tower motion. They
conclude that the “inclusion of feedback from tower motion into the control system reduced
tower loads considerably,” ([119] p 49), and that this was one of the three features that
offered the greatest potential for reducing COE. (The other two were a small chord with
high tip speed, and flap-twist coupling.)

5.1.4 Current Industry Standard

This brings us to the current industry state-of-the-art in blade optimization. Fuglsang14

presents the blade design methods used by LM Glasfiber. The optimization is based
upon sequential linear programming. Analysis is conducted in the time domain, using the
aeroelastic code Flex. An inner design loop is included: for each perturbation of primary
variables by the outer optimization loop, the structural design is iterated to convergence
with the calculated loads. Details of the structural design methods are not given.

Fuglsang states that in “the optimization of a rotor to a given turbine the purpose
is to avoid violation of constraints while optimizing [annual energy production].” ([62] p
5) This approach falls short of a full system optimization, not for technical reasons, but
because LM Glasfiber is an independent blade manufacturer supplying blades which best
match turbine specifications of its customers. So, within a given analysis cycle, many of
the turbine system and structural parameters are fixed.

Fuglsang cautions against using too simple a model: “A structural model offering a
detailed calculation with [a complexity as described in the article] allows for calculation
of accurate gradients by small perturbations of design variables. This is essential in the
concept of optimization and from experience simplified models tend to set the optimization
on the wrong track.” ([62] p 7) Unfortunately, there is no elaboration upon this point. It
is not true in general that simplified models will lead to the wrong answer. But Fuglsang’s
warning should serve as a reminder that, in the context of the optimizations in Chapter
6, it is necessary to understand how and why the design evolves from the initial design to
the optimum.

LM Glasfiber uses massively parallel computation to run their blade design tool. A
full analysis takes 2 minutes, with Ndv + 1 analyses required per optimization step.15 An
example is given with 10 design variables, requiring 20 steps, for a calculation time of
approximately 10 hours.16

14Fuglsang [62]; not the same author as Fuglsang and Madsen
15Ndv is the number of design variables. This implies that after the gradient is computed, a single step

is taken without performing a line search. The methods of Section 5.4 employ a line search.
16For comparison, the frequency-domain methods of the present project run in about the same elapsed
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Hjort et al. [91] describe the blade design approach at Siemens Wind Power. The BEM
method is used for aerodynamic calculations. A nested optimization approach is employed.
The operating schedule is optimized in an inner loop – much like the approach described
in Section B.4 – every time a design variable is perturbed in the outer optimization loop.
However, unlike the present project, Hjort et al. also optimize the structural degrees-of-
freedom in an inner loop. They caution that their “experience indicates poor performance
[when structural degrees-of-freedom are included in the outer loop], because the gradient
based optimizer will fail in the sense that it finds a local optimum for the target scalar
in the immediate vicinity of the initial blade geometry. The structural DoFs seem to
cause target function gradients with steepest [descent] directions leading into useless local
minima for the target function, e.g. the blade root flapwise fatigue load.” ([91] p 326)

(Such local minima were indeed encountered in the present study; the topic is discussed
further in Section 5.4.4.)

Hjort et al. emphasize the difficulty of calculating gradients using stochastic, aeroelastic
simulations. For example, the blade response is sensitive to the relative phase of turbulent
velocity fluctuations and blade vibration.17 Four-point gradient calculations are used.
This is in contrast to Fuglsang, who employed two-point gradients.

Like Fuglsang, Hjort et al. run blade analyses using massively parallel computation:
200 cpus. One step in the optimization analysis (gradients plus line search), with 50 design
variables, takes roughly 2 hours.18

Finally, the work of Corten and Schaak19 should be mentioned. They used a set of
wind-tunnel experiments on small (0.25 m diameter) rotors to demonstrate that the power
output of a wind farm as a whole could be increased, and operating loads on individual
turbines reduced, by reducing the power coefficient of the windward turbines (that is,
operating them at a efficiency below maximum). Wind farm effects are discussed further
in Appendix G.

5.1.5 Rotors for Floating Turbines

It does not appear that blades have been developed specifically for use on floating wind
turbines, with one exception.20 Tong [180] describes a carbon fiber blade developed as
part of the conceptual design of a floating wind turbine. To reduce mass, the tip speed
was set extremely high: 120 m/s.21 The rotor is described as “extremely lightweight and
flexible.” (p 406) It is oriented downwind in order to provide enough clearance between
the blades and tower. (The tower is a lattice structure, which would reduce tower shadow
effects, in comparison with a tubular tower.) However, the blade design is presumably

time, on a single processor; and this with computing two-sided gradients and a line search, for roughly
2Ndv + 15 analyses per step. With parallel processing, the elapsed time could be decreased by between
one and two orders of magnitude, for a typical analysis with 50 design variables.

17This is not an issue numerically with frequency-domain calculations, which makes calculating gradients
easier. But then, lack of phase information could result in the peak response being over- or underpredicted.
With frequency-domain analysis, problems with numerical sensitivity are related to the frequency bin width
df , as well as how much of the high-frequency tail is included when calculating the statistical response
from the spectra.

18Again, this is on the same order as the runtime of the frequency-domain method on a single processor.
19Corten and Schaak [32]; Corten et al. [33]
20This was true at the time of writing. But surely it is no longer true as you read this, because research

into floating wind turbines is proceeding rapidly.
21This is also the upper limit that we are using in this research project. It cannot be any higher without

beginning to see Mach number effects.
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proprietary, because there are no details given in the article regarding its aerodynamic
properties, geometry, or construction.

It is recognized that a blade for a floating wind turbine will be different than a standard
onshore blade. For example, Butterfield et al.: “[A]ny reductions in tower-top weight will
result in further reductions in total system weight . . . This can be done in many ways, and
including some methods [that] were rejected for land-based systems because of acoustic
emissions or aesthetics. For all designs, higher rotor tip speeds will result in [tower-top]
weight reductions. This is realized by several physical advantages. Higher rotational
speeds allow smaller blade planform and lower blade weight for the same energy output.
Higher speeds mean lower input torque and lower gear ratios, and hence smaller shafts
and gearboxes.” ([23] p 8)

5.1.6 Comments

The optimum chord profiles often appear similar to those obtained by designing to maxi-
mum CP at a single design windspeed. One explanation may be that most of the recent
studies dealt with pitch-regulated turbines. The pitch system keeps the blade oriented
such that flow is attached over the outboard part, and thus the range of angles-of-attack
is much smaller than that of a stall-regulated blade; in other words, flow conditions stay
closer to those at the design windspeed.

To a large extent, the dynamic response of a stall-regulated turbine is governed by
the aerodynamic damping that is achieved at high windspeeds, when flow is separated.
(Refer to Figure 3.41.) Crucially, steady-state structural calculations do not account for
the relationship between the aerodynamic profile, blade damping, and stresses in the blade
and support structures. Thus it is expected that optimization studies which include only a
static ultimate load case will give designs that are biased towards aerodynamic efficiency.

The study of Fuglsang and Madsen [58] comes the closest to a “complete” optimization
of a stall-regulated turbine. It can be seen in Figure 5.2 that the resulting blade deviates
notably from the nominal aerodynamic optimum.22 The chord and twist profiles were
represented by 5 degrees-of-freedom each, which is low.

Among the studies which included a full dynamic structural analysis – namely, Fuglsang
and colleagues and WindPACT – the results indicate that a narrow outboard chord should
be used. For a fixed diameter, energy capture is slightly reduced with respect to the aerody-
namic optimum, however cost savings based upon reduced loads more than compensate.23

It might be useful to jump ahead here, and take a glance of a couple of the optimum
designs of Chapter 6. Figure 5.11 compares the chord profiles of several of the smallest
blades against the COE optimum identified by Fuglsang and Madsen [58]. The chord
profile labeled “Optimum (onshore)” is the turbine from Table F.1, a 1.4 MW turbine
producing 1.42 × 1013 J/year in the onshore wind climate. This blade is unique, among
the COE optimum designs, in that it has a profile that approximates a maximum-CP
design. All the other blades have profiles which resemble that labeled “Optimum (North
Sea)”, with a straight taper, except near the tip. In Figure 5.11, the COE optimum
blade comes from Table F.19. This turbine has a rated power of 2.5 MW, and produces

22The chord and twist profiles obtained by Benini and Toffolo [11] also deviated significantly from the
aerodynamic optimum, despite an overly-simplified structural calculation. Profiles of a similar shape were
not obtained by any of the other studies. However, analysis of these results is complicated by two factors:
first, the profiles were represented by only four degrees-of-freedom. Second, the profiles did not correspond
to those at the optimum COE.

23For instance, Fuglsang and Madsen [58] Figure 5
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Figure 5.11: A comparison of an optimum onshore blade producing 1.42×1013 J/year (1.4
MW), a North Sea blade producing twice as much annual energy (2.5 MW), the reference
design from which the North Sea blade was optimized, and the optimum 1.5 MW blade
described by Fuglsang and Madsen [58]

2.84×1013 J/year in the North Sea wind climate. The reference design is the blade shown
in Figure 5.17.

It is difficult to draw firm conclusions from the comparison, since a full definition of
Fuglsang and Madsen’s optimum blade is not available. It can be said, though, that this
blade shares a similar outboard chord profile with the optimum North Sea blade, except
at the tip. The tip of Fuglsang and Madsen’s blade seems to taper according to a typical
BEM-method profile (Section 5.3.1), whereas the North Sea blade has a particular profile,
described in Chapter 6, which maximizes the aerodynamic damping. All of the “optimum”
blades are seen to have a narrow chord, in comparison with the aerodynamic optimum
blade.

5.2 Design Strategy

Comparing different blade designs is difficult, even from the perspective of a sensitivity
analysis, with small changes in design parameters. The reason is that the tradeoff between
cost savings – for example, reduced loads on the blades and support structure – and annual
energy production must be run through the “filter” of the COE model in order to determine
whether a change in a design parameter is good or bad. For example, an incremental
change in the chord length at r/Ro = 0.8 may increase annual energy production – but it
will also increase loads and mass. One must make this tradeoff mentally when trying to
understand the sensitivity of the design to various parameters. It is especially taxing to
try to understand the three-way tradeoff between structural loads, rated generator power,
and energy production.

In this project, a strategy24 has been adopted which eliminates this difficulty. The

24This is being called a “strategy” because it is not required – in fact, it is constraining – from a
mathematical or theoretical standpoint.
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geometry of the aerodynamic profile is defined, internal to the optimization software, non-
dimensionally with respect to length scale.25 Upon perturbation of any design parameter,
the mean aerodynamic behavior and operating schedule are calculated first: rotational
speed, mean loads, power output, and energy production as a function of windspeed. As
part of this calculation, and before analysis of the dynamic response, the swept area is
varied iteratively, such that a specified value of annual energy Eann is produced. This sets
the diameter of the turbine, which in turn sets the length scale.

By normalizing to a specified value of annual energy capture, trends with design pa-
rameters become more understandable. A higher bending moment is “bad”; a lower rated
power is “good” (because it provides the same energy with a smaller generator).

Here is how the iterative calculation of length scale is implemented. It begins with a
guess as to the swept area of the rotor, A0, which will produce the desired annual energy.
The diameter is calculated from the swept area, and then the chord lengths along the
blade are calculated by:

c =
(
c

Ro

) √
A0

π
, (5.1)

where c/Ro is the design parameter used in the optimization algorithm. Airfoil thickness is
calculated based on t/c ratio, and so on: all length dimensions (but not material thickness)
follow from the swept area.

The procedure described in Section B.4 is used to calculate the optimum rotational-
speed schedule, as a function of mean (10-minute average) windspeed. This also provides
the power output (and on the final iteration, the mean loads, from the BEM calculations)
at each windspeed.

Once the power output at each windspeed has been calculated, it is straightforward to
calculate the annual energy production. For a given hub-height windspeed bin, call it Vj ,
the corresponding windspeed at a 10 m elevation is calculated by Equation D.93:

V10,j = Vj
ln[(10 m)/h0]

ln(H0/h0)
, (5.2)

with h0 = 0.01 m. V10,j is then used in Equation E.1 to calculate the probability of Vj
occurring at hub height. The contribution of windspeed Vj to the annual energy capture
is:

E0,j = Y pj ∆V Pj , (5.3)

with Y the number of seconds in a year, pj the probability density of windspeed Vj , ∆V
the width of a windspeed bin (2 m/s), and Pj the power output at an average windspeed
of Vj .

If the annual energy production E0 is not equal to the specified value, then the area
is scaled according to:

Aj = Aj−1

(
E0

Etarget

)1.2

. (5.4)

(The exponent of 1.2 on the energy ratio was found to give faster convergence than an
exponent of 1.0.) Chord lengths, airfoil thicknesses, and other length dimensions are
re-calculated based upon the updated swept area.

25The aerodynamic profile includes the chord and diameter. In the current implementation, material
thickness does not vary with length scale. The reason is that energy production is independent of material
thickness.
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After a few iterations, the annual energy production converges to the desired value.
A tolerance of 1× 10−7, on the fractional change in swept area, is used for a convergence
criterion. This sets the aerodynamic geometry of the turbine: the rotor diameter, and the
external aerodynamic profile of the blades.

5.3 Reference Designs

The reference design serves as the starting point for optimization analyses. The choice of
the reference design is important; it should be the best possible guess for the optimized
design, particularly when it comes to dynamic characteristics like natural frequencies.
The reason is that design space could contain local minima, largely due to spikes in blade
excitation at multiples of the rotational frequency. Thus, the appropriate reference design
varies from case to case.

5.3.1 Design Procedure

The procedure used to obtain a reference design is as follows.

Select a Target Vibration Frequency

It is typical to design a blade whose first natural frequency of vibration is above the
blade passing frequency of the rotor: fn > NbΩ/2π. It is also possible to design a blade
whose first natural frequency is below the blade passing frequency: (Nb − 1)Ω/2π < fn <
NbΩ/2π.26 Ideally, the optimization algorithm should be able to find the best relationship
between the vibrational and rotational frequencies.

Blade vibration is minimized if the natural frequencies (particularly of the first flapwise
mode) are kept away from integer multiples of the rotational frequency. At windspeeds
above rated, where both peak loads and the majority of fatigue damage occur, rotational
sampling of turbulence is relatively minor above 2P; this can be seen in the curves at the
bottom of Figure 5.12. Tower dam effects, on the other hand, add spikes to the excitation
spectra at multiples of the rotational frequency; these are also clearly visible in Figure
5.12.

Trial analyses have shown that the gradient-based optimization algorithm implemented
in this report can sometimes (but not always) become stuck at a non-optimal frequency if
tower dam is included. Figure 5.12 shows an example, based upon the reference design in
Table F.41 below. Here, the initial configuration had a frequency in the vicinity of 4.4P.
Running the optimization from this point, the algorithm could not modify the operating
schedule and geometry such that the first flapwise natural frequency crossed the 4P spike
due to tower dam. The stress spectrum at the blade root (point 3, referring to Figure C.7)
of the resulting configuration is shown in Figure 5.12, labeled “stuck”.27

The gray line shows the true optimum, obtained after modifications allowed crossing
of the 4P frequency. The rotational speed has increased, and the blade’s aerodynamic
profile has been modified, such that the first flapwise frequency sits at 3.5P.

26Harrison and Jenkins [84] pp 20 and 135
27The reason that the configuration becomes stuck is that one of the elements has a load factor of 1.0

in buckling under an extreme operating gust, and so the element cannot carry additional load – needed
to pass the 4P frequency – without being thickened. Thickening increases blade mass, which results in an
increase in the COE metric. Thus a local minimum is formed in the cost function.
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Figure 5.12: An example of how the optimization algorithm can become stuck when trying
to cross a multiple of the rotational frequency with the first flapwise vibrational frequency

If tower dam is deactivated, the optimization algorithm can cross multiples of nP with
the first flapwise vibrational frequency.28 This suggests a fix in the event that the opti-
mization algorithm is stuck: deactivate tower dam, run the optimization, then reactivate
tower dam and optimize once more.

This example should also serve as a caution that it may be counterproductive to include
too much detail in an optimization, especially one that employs gradient-based methods.
In this relatively simple case, employing linearized analysis methods, it is easy to check
whether the algorithm is “bumping” against an nP frequency.29 But in other cases, the
physics may be more difficult to comprehend, and it may not be obvious how to check if
an artificial barrier is constraining the analysis.

To sum up: it is not absolutely necessary to know the relationship between vibrational
and rotational frequencies beforehand. However, while establishing the initial structural
configuration, one should attempt to place the first flapwise frequency within the range
(such as 3.5P) expected to contain the optimum.

Establish a Single-Point Design

The initial blade geometry – the chord c and twist ξ as a function of radial position – is
set based upon textbook methods. Momentum balance, Equation B.2, is used. Flow is
assumed to be aligned with the axis of rotation, so only the Zr component of momentum
balance is considered.

The strategy is the following: it is desired that the blade operates at the best FL/FD
28The 1P and 2P frequencies may be an exception, however the optimum first flapwise frequency has

always been found to be well above 2P.
29Hjort et al. [91] note a similar problem, that resonance between blade and other system (drivetrain,

tower, controller) frequencies can lead to premature constraints on the rotor design. They advocate the
use of rigid support structures, and a minimalist control algorithm, when optimizing the rotor. This is the
approach adopted in the present project.
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Figure 5.13: The influence of the Prandtl tip correction factor on the chord length near
the blade tip

(lift-to-drag) ratio along its entire length at a “design” windspeed Vd. This fixes the angle-
of-attack along the blade, because each airfoil has one angle-of-attack at which FL/FD is
maximum.

There is no a priori optimum value of Vd. It depends upon the airfoils, diameter,
rotational speed (tip speed), and wind climate. The design windspeed and rotational
speed should be chosen such that the rated windspeed Vrated, where the blade stalls, lies
near the range where the most energy is available. This range depends upon the wind
climate.

As mentioned in Section E.1, two wind climates are considered: “onshore” and “North
Sea”. The probability distribution and energy content of each wind climate are shown in
Figure E.1, for a hub height of 60 m. In the onshore climate, Vrated should be around 13
m/s, while in the North Sea climate, it should be more like 17 m/s.30

Section B.3 in the appendix gives a derivation of the equations that are used to deter-
mine the optimum aerodynamic profile at a single operating point.

(A Note on Blade Tip Geometry)

One thing that is noteworthy about this aerodynamic design procedure is how the Prandtl
factor influences the chord at the tip region.31 In Figure 5.13, it can be seen that including
the Prandtl factor in the geometry calculation results in a “raked” tip. Such a tip is also
visible in other studies in which the BEM method was used to calculate aerodynamic
forces.32

The raked tip results because the Prandtl factor changes the relationship between
airfoil forces and induced velocity: it makes induced velocity much more sensitive to
forces, or, in the same manner, forces much less sensitive to induced velocity. Thus, to
hold (V r

i )Z = −(1/3)Vdes, the chord length decreases.
On the one hand, the raked tip seems spurious, a numerical artifact. Shen et al. [159]

show that when 2D airfoil coefficients are employed – as we have done – the induced
velocity (V r

i )Z approaches −V∞ (in our case, −Vdes) at the tip. But we have specified

30It is possible to obtain optimal values, say, from the perspective of maximizing energy production,
using numerical optimization. But that seems like overkill here, where we are attempting to establish an
initial configuration for optimization.

31The Prandtl factor has no influence on the twist distribution.
32For example, Morgan and Garrad [131], and Fuglsang and Madsen [58]
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(V r
i )Z = −(1/3)Vdes; the only way this is possible is if the chord length c, and hence the

airfoil forces, approach zero at the tip.
The Prandtl factor is derived assuming that the induced velocity is constant local to

the blade, along its entire span. This is not physical. In fact, the assumption of radial
independence breaks down in the region of the tip; flow is three-dimensional. Thus the
raked shape of the tip, as derived by BEM calculations, should be viewed with suspicion.

On the other hand, common sense indicates that a raked tip is desirable from both
a structural and aerodynamic standpoint: aerodynamic loads near the tip are near-zero
anyway, so why place extra material there? In addition, more advanced aerodynamic
calculations, such as Hansen and Johansen [79], indicate that axial induction and forces
do drop off towards the tip in a manner similar to that predicted by BEM with the Prandtl
factor.

Manually Define Material Thickness

Once the initial aerodynamic profile has been determined, structural properties – here
limited to the spar cap material thickness along the blade – are defined manually. The
distribution does not need to be optimal, because it will be optimized numerically in the
next step. However, the result must be a feasible configuration, here defined such that
all load factors33 along the blade are less than 0.95. The process is one of trial-and-error,
running analyses and increasing the thickness of elements with one or more load factors
greater than 0.95. (Using frequency-domain methods makes the calculations fast enough
that this is practical.) It is not entirely straightforward to obtain a feasible configuration,
because of the interaction between outboard and inboard elements.

Optimize Material Thickness

After defining a feasible blade design (which may be very heavy), the material thickness
distribution is optimized to provide an estimate of the mass of a “good” design. The
aerodynamic profile is fixed during this stage. Load factors are still constrained to 0.95.

5.3.2 Reference Designs with Eann = 1.42× 1013 J

The smallest set of turbines to be considered in this study have a nominal rated power in
the vicinity of 1.25 MW. If the average power is set at 0.36 times the rated power, which
would be typical of the onshore wind climate, then the annual energy production is:

Eann = 0.36PratedY = 0.36(1.25 MW)(31, 557, 600 s) = 1.42× 1013 J.

Onshore Wind Climate

The onshore wind climate (Vavg = 7.5 m/s at 60 m elevation) calls for a diameter of
roughly 60 m. Figure 5.14 shows single-point design chord and twist profiles for a 30 m
blade. It was assumed that the tip speed Vtip is 65 m/s, and the design windspeed Vd
is 7 m/s. This design windspeed is a bit low; it could be higher, but, as seen in Figure
5.14, this results in a blade with a larger-than-normal chord. A large chord is undesirable,
because extreme loads are high.

The chosen chord and twist for each blade element are plotted as points in Figure 5.14.
The profiles are truncated near the root, according to engineering judgment.

33. . . based upon the strength checks in Section E.3 . . .
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Figure 5.14: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 1.42× 1013 J, onshore wind climate
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Figure 5.15: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 1.42× 1013 J, North Sea wind climate

North Sea Wind Climate

The design for the North Sea wind climate (Vavg = 9.5 m/s at 60 m elevation) is very
different from the design suited for the onshore climate. Referring to Figure E.1, the
North Sea climate contains roughly twice the average energy available in the wind; so,
normalizing to annual energy production, the swept area of the North Sea rotor can be
reduced to half that of the onshore rotor. A diameter of about 44 m is appropriate for the
specified annual energy production of 1.42× 1013 J.

It was decided to use a design windspeed of Vd = 8 m/s to develop the initial, single-
point design chord and twist profiles. These are shown in Figure 5.15.

5.3.3 Reference Designs with Eann = 2.84× 1013 J

Doubling the annual energy production from the smallest set of turbines gives Eann =
2.84×1013 J. This corresponds to a nominal rated power of 2.5 MW, with P/Prated = 0.36.
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Figure 5.16: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 2.84× 1013 J, onshore wind climate

Onshore Wind Climate

For the onshore wind climate, and Eann = 2.84× 1013 J, the expected diameter is approx-
imately 90 m. Figure 5.16 shows the chord and twist profiles for a 45 m blade, generated
for maximum CP at Vd = 7 m/s.

Two reference designs were generated: one with a fiberglass spar, and another with a
carbon fiber spar. Both designs began with the chord and twist profiles shown in Figure
5.16. Material thickness was optimized separately for each material.

North Sea Wind Climate

Under North Sea wind conditions, a diameter of about 62 m is required to produce 2.84×
1013 J/year with a rated power of 2.5 MW. Figure 5.17 plots the chord and twist profiles
obtained from single-point design.

5.3.4 Reference Designs with Eann = 5.68× 1013 J

Again doubling the energy production, and nominal rated power, gives a 5 MW turbine
producing 5.68× 1013 J/year.
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Figure 5.17: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 2.84× 1013 J, North Sea wind climate
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Figure 5.18: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 5.68× 1013 J, North Sea wind climate

Onshore Wind Climate

In the onshore wind climate, the diameter is about 120 m. This is very close to the
nominal diameter of the turbine producing 1.14 × 1014 J/year in the North Sea wind
climate. The latter was defined first; thus the chord and twist profiles in Figure 5.19 were
used as the reference design for the onshore wind, Eann = 5.68×1013 J case. The material
thickness was optimized independently for the onshore climate, because the load regime
is less severe.

North Sea Wind Climate

In the North Sea wind climate, the nominal diameter of a 5 MW turbine is about 86 m,
to produce 5.68 × 1013 J/year. The chord and twist profiles of the reference design are
shown in Figure 5.18. The material thickness was optimized separately for designs with
fiberglass and carbon fiber spars.

5.3.5 Reference Designs with Eann = 1.14× 1014 J

Only the North Sea wind climate was considered for turbines producing 1.14×1014 J/year.
The nominal rated power is 10 MW, and the diameter is about 120 m. The chord and



196 CHAPTER 5. OPTIMIZATION AND DESIGN

Figure 5.19: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 1.14× 1014 J, North Sea wind climate

twist profiles of the reference design are shown in Figure 5.19. Reference designs were
defined with fiberglass and carbon-fiber spars.

5.3.6 Reference Design with Eann = 2.28× 1014 J

One case was analyzed at an energy production level of 2.28 × 1014 J/year: the North
Sea wind climate, with a carbon-fiber spar, nominal rated power of 20 MW, and nominal
diameter of about 160 m. Figure 5.20 shows the chord and twist profiles of the reference
design.

5.4 Optimization Methods

The general form of the combined structural and aerodynamic optimization problem is as
follows. Given a vector of design variables x:

Minimize Π(x), subject to g(x) ≤ 0. (5.5)

Here, Π is the objective function (like COE) while g is a vector of constraint functions,
such as load factors. Equality constraints are not needed in the present formulation of the
problem.
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Figure 5.20: Chord and twist profiles obtained by single-point, maximum CP design pro-
cedures; Eann = 2.28× 1014 J, North Sea wind climate
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Figure 5.21: A sketch of the constrained optimum, showing that in structural engineering
problems, it is expected that the optimum lies on a sharp, constrained boundary, rather
than at the bottom of a smooth, parabolic bowl

A wide variety of methods are available to deal with such problems.34 Keeping with the
theme of this research project, it was sought to implement the simplest possible method
that could effectively solve the problem. This led to a progressive approach, implementing
first direct-search methods, then gradient-based unconstrained methods, then gradient-
based constrained methods.

Unconstrained methods, both direct-search and gradient-based, were not successful.
The crux of the problem is sketched in Figure 5.21. The x axis is a design variable like
chord or thickness, and the y axis is Π, here blade mass or COE (which is related to
blade mass). In a structural engineering problem, minimizing mass, the optimal point is
expected to lie on a sharply-constrained boundary, representing failure, such as material
fracture.

Figure 5.22 illustrates how a progressive direct-search algorithm can get stuck at a
non-optimal point along a sharp boundary. If the algorithm ends up at point (A), it
will report, incorrectly, that an optimum has been found, because perturbing any design
variable increases Π. Gradient-based algorithms are also ill-conditioned in the vicinity of
a sharply-curved objective function. There are techniques, like sequentially tightening the
penalty function which represents the boundary, that can ease the numerical problems.
But these were not found to be effective in the complicated, multi-dimensional design
space of a wind turbine blade.

Constrained optimization algorithms were found to be very effective, and it was not
necessary to go beyond a first-order method. Guided by Fuglsang and Madsen [58], se-
quential linear programming was used inside the feasible domain, while the method of
feasible directions was used to move off of a constraint boundary.

Section 5.4.1 gives the definition of the optimization problem for a wind turbine blade.
Section 5.4.2 describes the details of the optimization algorithm, while Section 5.4.3 de-
scribes steps that were taken to make the analysis as smooth as possible numerically, to
improve the quality of calculated gradients. Section 5.4.4 discusses local minima of the
cost function, how these can be avoided, and why the linear constrained optimization

34My general references on optimization are Arora [5], Gill et al. [68], Press et al. [145], and Reklaitis et
al. [147].



5.4. OPTIMIZATION METHODS 199

Figure 5.22: A sketch illustrating why progressive direct-search methods can get stuck at
non-optimal points

method is useful, despite the possible presence of local minima.

5.4.1 Problem Setup

The optimization problem for a wind turbine blade is implemented as follows:

Minimize Π(x), subject to:

LF(x) ≤ 1; (5.6)

ζ(x, V∞) ≥ 0;

0.1 ≤ x ≤ 10.

The active design variables are contained in the vector x, scaled such that their realistic
limits are between 0.1 and 10. The scalar Π is the objective function, which represents
either COE or CP for the analyses in this report. The vector LF contains the load factors
from the strength checks described in Section C.7. The vector ζ contains the modal
damping ratios, at each windspeed, for each of the mode shapes included in the analysis:
here, the first six modes.

Getting more specific, the vector x contains a subset of the following design variables:

(1) The generator power factor, PF = Eann/PratedY ; only Prated is a variable. This is
scaled as:

x = 9.9
PF− 0.2

0.4
+ 0.1. (5.7)

(2-13) Spar cap material thickness hcap:

xj = 9.9
(hcap)j − 0.004

0.196
+ 0.1. (5.8)
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(14-25) The airfoil shape for element j, between 1 and 12, scaled as:

xj = 9.9 shapej + 0.1. (5.9)

(26-37) Blade twist ξ for element j:

xj = 9.9
ξj + 5

30
+ 0.1. (5.10)

(38-49) Normalized chord κ = c/Ro:

xj = 9.9
κj − 0.001

0.199
+ 0.1. (5.11)

(50-61) Thickness-to-chord ratio t/c:

xj = 9.9
(t/c)j − 0.12

0.88
+ 0.1. (5.12)

These variables can be activated or deactivated individually by way of an input file. If
deactivated, each variable can either be fixed, or, with the exception of PF, interpolated
based upon the nearest adjacent active variables.

Different strategies were tried with regard to the tradeoff between accuracy and cal-
culation speed. For example, it was attempted to first activate variables at only a few
elements along the blade span, and interpolate the rest, for a coarse convergence; then
to activate all variables for a fine convergence. But it was found to be equally fast and
reliable to simply activate all variables from the beginning.

That being said, not every variable was active: the innermost element 1 was defined
to be a cylinder, whose material thickness was the same as that of element 2, and whose
chord was c1 = 1.2c2(t/c)2. Thus, a typical COE optimization consisted of 56 active design
variables.

Note that the above design variables do not include the material properties. The ca-
pability to include the material properties as design variables is included in the software,
however this was not used in the current project. The reason is that, while it is straight-
forward to interpolate the stiffness of a laminate with mixed carbon and glass fibers, it
is not straightforward to interpolate strength and fatigue properties. These should be
established by coupon tests on representative layups.

There are 372 possible load factor constraints: 5 failure modes (ultimate strength, ulti-
mate buckling, extreme operating strength, extreme operating buckling, and fatigue), at 6
points about the cross section of each element (or 8, for the root cylinder), plus the global
“failure” modes of tip deflection and flutter. Before each cycle of the optimization algo-
rithm (gradient calculation, solving the linear program, and a line search), a preliminary
analysis is conducted, and only those load factors that are above 0.9 – that is, threatening
to constrain the problem – are included as active constraints.35 This typically ends up
being about 20-50 constraints, with the higher value occuring later in the optimization
sequence.

It is necessary to implement explicit constraints on damping for two reasons. First,
early in the optimization process, when the design is far from the optimum, damping can

35If a particular element has no load factor above 0.9, then the single highest load factor associated with
that element is taken as an active constraint.
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Figure 5.23: A sample nonlinear optimization problem in two dimensions

become very low, particularly in edgewise modes of vibration. No solution is possible if
damping is negative, and a constraint on damping explicitly “steers” the SLP algorithm
away from this condition. Second, load factors are calculated based upon the damping
of the blade at mean windspeeds, between 5 and 25 m/s. However, if a gust occurs near
the cutout windspeed of 25 m/s, it is necessary that the blade remains positively damped.
Therefore, damping is required to remain positive through 39 m/s.

There are 108 possible damping ratio constraints: damping is calculated at 18 wind-
speeds, at intervals of 2 m/s, from 5 to 39 m/s; and there are 6 mode shapes. Only
damping ratios that are below 0.008 are made active as constraints.

When the objective function Π represents COE, it is taken as the weighted sum of
normalized component costs, described in Chapter 4:

Π =
∑[

c2

(
µ
m1

m2
+ 1− µ

)]
. (5.13)

This gives Π = 1 for a turbine similar to the WindPACT 1.5 MW reference turbine. When
Π represents a CP metric, it is taken as the negative sum of the CP for two adjacent velocity
bins, for instance 7 and 9 m/s:

Π = −(CP )7 − (CP )9. (5.14)

5.4.2 Algorithm

The linearization of a nonlinear problem, and solution by sequential linear programming,
is best illustrated with a two-dimensional example. Figure 5.23 shows a generic nonlinear
optimization problem. The analysis begins at point A, with the true, feasible optimum
located at point B.36 The solid lines show the contours of the objective function, decreas-
ing towards point B. In this example, there are two constraints which are active. Like the
objective function, the constraint functions have contours in design space: these contours
are shown by dotted lines for constraint 1, and dashed lines for constraint 2. Each con-
straint function has a critical value which defines the constraint (for example, load factors
must be less than 1). These critical values are shown in Figure 5.23 as hatched lines, like
solid walls that cannot be passed.

36“Feasible” being: within the boundaries set by the constraints
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Figure 5.24: Linearization of the sample problem in the vicinity of point A

Observing the contours in the vicinity of point A (here, visually, or in the software,
numerically), one can draw a linearized model about this point. Figure 5.24 shows the
result. Point B still appears in the sketch, at the location of the true optimum (which, of
course, is unknown to the optimization algorithm); but according to the linearized model
of design space, the optimum is at point B′. Linear programming provides an efficient
way to find the linearized optimum, point B′, using matrix operations. The line AB′ then
provides a direction along which to conduct a line search. During the line search, two
things can happen: a local minimum of the objective function may be found, in which
case this becomes the starting point for a new linear program; or else a boundary may
be encountered, in which case the method of feasible directions is employed on the next
iteration.

In a constrained, linear optimization problem, the minimum of the objective function
always lies at a corner of two constraints.37 In a nonlinear problem, like Figure 5.23, the
minimum may lie along a boundary, or not along any boundary at all. The sequential linear
programming (SLP) algorithm then does not head directly for the true optimum, rather
it oscillates as it approaches. This situation can be seen by carrying the example from
Figures 5.23 and 5.24 through one more iteration. Searching along the direction indicated
in Figure 5.24, a new “point A” is found, as shown in Figure 5.25. A linearization is
carried out about point A, giving the objective function and constraint contours seen
in the sketch. This time, however, the descent direction of the objective function leads
away from constraint 2. Rather, the linear system will be constrained by some other
boundary; in the case of Figure 5.25, the lower bound on the design variable x1 becomes
active. Thus, the search direction from point A again does not point directly at the true
optimum. Over a number of iterations, the optimization algorithm will wander back and
forth, approaching closer and closer to point B.

In other cases, the optimization algorithm hits a boundary before finding a local mini-
mum of the objective function. The situation is then like that which is sketched in Figure
5.26. The method of feasible directions (MFD), which is also based upon a linear model,
is used to find a search direction that is a compromise between reducing the objective
function and moving away from the boundary.38 It is necessary to step away from the

37. . . or n constraints, in the case of n-dimensional design space.
38A line search is not employed in this case; rather, the goal is to take a small but significant step away
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Figure 5.25: The next step of the solution by sequential linear programming, showing that
the linear model does not converge directly, but takes a “wandering” path as it approaches
the true minimum

Figure 5.26: A sketch of the way in which the method of feasible directions is used to step
off a boundary

boundary, because otherwise the linear model would make no progress if the contour of
the boundary were concave.

Both SLP and MFD involve solving a linear program; the difference lies in the way in
which the problem is set up. Solving a linear program involves organizing the problem into
a particular format – called a tableau – and then conducting tedious matrix manipulations
according to a certain logic. The details of the algorithm are outside the scope of this
report.

Press et al. [145], pp 322-325, provide an algorithm that is flexible, accepting ≤, ≥, and
= constraints. However, the problem must be defined in a particular format. Different
references use different formats to define the linear programming problem, and the key to
a successful implementation is to correctly transform from one format to the other.

For blade optimization, the SLP problem is set up as follows. First, gradients are
calculated. This involves perturbing each design variable xj , in turn, and performing a
lifetime loads and stress analysis. The analysis provides the key load components from
which the cost-of-energy function is calculated (Chapter 4), the load factors at each stress
point, and the damping ratios at each windspeed. This allows gradients to be calculated

from the boundary.



204 CHAPTER 5. OPTIMIZATION AND DESIGN

numerically; a two-sided (second-order) formulation is used:

∂Π
∂xj

=
Π(xj + ∆xj)−Π(xj −∆xj)

2∆xj
; (5.15)

∂LFk
∂xj

=
LFk(xj + ∆xj)− LFk(xj −∆xj)

2∆xj
; (5.16)

∂ζk
∂xj

=
ζk(xj + ∆xj)− ζk(xj −∆xj)

2∆xj
. (5.17)

Second-order gradients are used because design space is not perfectly smooth. The mag-
nitude of ∆xj was set to 0.03. Since each design variable was normalized to a range
0.1 ≤ xj ≤ 10 (Equations 5.7 through 5.12), the perturbation was about 0.003 of the
reasonable range for each variable. It was found, by trial-and-error, that this magnitude
of ∆xj gives a resolution that is fine enough to capture the local objective and constrained
function contours, but not so fine that it is heavily affected by numerical noise.39

The linearized optimization problem is then:

Minimize Π̃(x) = Π(x0) + γT (x− x0); γj =
∂Π
∂xj

∣∣∣∣∣
x0

; subject to:

LFk(x0) + δTk (x− x0) ≤ 1; (δk)j =
∂LFk
∂xj

∣∣∣∣∣
x0

; (5.18)

for each load factor, indexed by k;40

ζk(x0, V∞) + εTk (x− x0) ≥ 0.004; (εk)j =
∂ζk
∂xj

∣∣∣∣∣
x0

;

for each damping ratio, indexed by k; and,

0.1 ≤ xj ≤ 10.

This linearized problem must be transformed into the form required by the Press et al. algo-
rithm. In particular, the cost function must be of the form Π = CTx, and each constraint
must be of the form ATx ≤ b, ATx ≥ b, or ATx = b, with bj ≥ 0 and xj ≥ 0 for all
elements j. The result is:

Maximize − γTx; subject to:

δTk x ≤ 1− LFk(x0) + δTk x0; or (5.19)

−δTk x ≥ −1 + LFk(x0)− δTk x0;

39A couple of methodical studies were conducted, using an earlier version of the software. These indicated
that values of ∆xj between 0.01 and 0.10 give similar values for the gradients. Above or below this range,
errors become significant. However, the range can vary depending upon the curvature of design space and
the amount of numerical noise.

40In other words, if there are NLF active load factor constraints, then k = 1, 2, . . . NLF. Read (δk)j

as “the jth element of the vector δk”; δk is the vector of derivatives associated with the kth load factor
constraint.
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εTk x ≥ 0.004− ζk(x0, V∞) + εTk x0; or

−εTk x ≤ −0.004 + ζk(x0, V∞)− εTk x0;

xj ≥ 0.1; and xj ≤ 10.

In the case of the damping and load factor constraints, the sign of the equation is defined
such that the right-hand side (containing all the terms that do not depend upon x) is
positive.

The solution to the linear problem is a point x̃ in design space. The direction for the
subsequent line search is d = x̃ − x0. A golden ratio algorithm is employed for the line
search.

The solution to the linear program x̃ provides a natural upper bound to initialize the
golden ratio search. However, it was experienced that x̃ is often an unrealistic configu-
ration, with dynamic properties that lead to an ill-conditioned mode shape calculation.
Thus, an upper bound on the magnitude of d is set: |d| ≤ 1.0. (Recall that x is scaled
such that the range of reasonable values of each xj is between 0.1 and 10.) This prevents
the optimization algorithm from trying to analyze configurations that are too far from the
initial point.

The method of feasible directions is set up differently, although it uses the same gra-
dients. Let d be a vector in the design space of x, defining a search direction. The MFD
problem is set up as:

Maximize θ; subject to:

γTd ≤ −θ; γj =
∂Π
∂xj

∣∣∣∣∣
x0

;

1− LFk(x0)− δTk d ≥ θ; (δk)j =
∂LFk
∂xj

∣∣∣∣∣
x0

;

ζk(x0)− 0.004 + εTk d ≥ θ; (εk)j =
∂ζk
∂xj

∣∣∣∣∣
x0

; (5.20)

xj − 0.1 + dj ≥ θ;

10− xj − dj ≥ θ;

−1 ≤ dj ≤ 1.

This definition of the problem does not fit well with the required format, because the Press
et al. algorithm requires that the solution variables (in this case, dj) are greater than zero.
Thus the last constraint cannot be implemented in its present form. A solution is to define
q = d+ {1}, where {1} is a vector of ones. Then the problem can be rewritten:

Maximize θ; subject to:

γT q − γT {1} ≤ −θ;

1− LFk(x0)− δTk q + δTk {1} ≥ θ;
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ζk(x0)− 0.004 + εTk q − εTk {1} ≥ θ; (5.21)

xj − 0.1 + qj − 1 ≥ θ;

10− xj − qj + 1 ≥ θ;

qj ≥ 0; qj ≤ 2.

This can be put into the format required by the Press et al. algorithm:

Maximize θ; subject to:

γT q + θ ≤ γT {1}; or − γT q − θ ≥ −γT {1};

−δTk q − θ ≥ −1 + LFk(x0)− δTk {1}; or

δTk q + θ ≤ 1− LFk(x0) + δTk {1};

εTk q − θ ≥ −ζk(x0) + 0.004 + εTk {1}; or (5.22)

−εTk q + θ ≤ ζk(x0)− 0.004− εTk {1};

qj − θ ≥ −xj + 0.1 + 1; or − qj + θ ≤ xj − 0.1− 1;

−qj − θ ≥ −10 + xj − 1; or qj + θ ≤ 10− xj + 1;

qj ≥ 0; qj ≤ 2.

This linear program can be solved for the search direction d = q − {1}. A line search is
not used; it is attempted to step away from the boundary with a step size of d/|d|; in
other words, magnitude 1, where again the realistic range of each xj is between 0.1 and
10. If the resulting point is feasible (no constrains are violated) and has a lower objective
function, it is accepted. Otherwise, the step size is progressively halved, until such a point
is found.

It has been found that the optimization usually terminates with an unsuccessful MFD
step. In other words, if the algorithm finds the optimum (or at least a local optimum), it
most likely lies on a boundary, and the MFD search will fail to find another point that is
both feasible and with a lower objective function.

5.4.3 Smoothing Design Space

The initial version of the software was not written with numerical optimization in mind.
Convergence within 1% – for example, during the iterative BEM load calculations – was
considered adequate for conceptual design. Once it was decided to employ numerical
optimization using a gradient-based algorithm, a significant effort was required to make
the software numerically smooth. The most significant change was the airfoil model.
Initially, airfoil coefficients were interpolated between tabulated datasets; it was necessary
to switch to the closed-form model described in Chapter 2.

Other necessary changes included:

1. The section property calculation was made continuous in the first derivative, as a
function of t/c.
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2. The tolerance in BEM calculations was tightened to 0.00001 m/s on the induced
velocity. Progressively-tightening numerical damping is employed to achieve this
tolerance.

3. As described in Section C.7.3, an iterative calculation is used during a fatigue calcu-
lation, to find the number of cycles to failure at a given mean and alternating stress
level. The tolerance was tightened to a fractional tolerance of 0.00001.

4. The tolerance on the buckling calculation – the spanwise buckling length parameter
m – was set to 0.00001.

5. The buckling cutoff described in Section C.2.3 was implemented.

There are still discontinuities at a very fine scale. The discretization of the frequency
spectrum, and truncation at some maximum frequency, is one cause of numerical discon-
tinuity. This is unavoidable, if calculation time is to be kept reasonably low.

Two-sided (second-order) gradients are calculated, and are written to file, as a part of
the output from the software. Gradients of the cost function and load factors appear to
be consistent above an order of 10−4. The important gradients – for the design variables
that have a strong influence on the cost function or load factors – have a magnitude on
the order of 10−2.

Note that although the calculations were made numerically smooth, the distributions
of design variables along the blade span were not smoothed. The optimizer is free to vary
the properties of each element in a discontinuous manner. This has two benefits.

First, it provides a check as to whether the problem is formulated realistically. A
highly discontinuous profile, or anomalous design variable, would indicate that something
in the algorithm was unphysical.

The second benefit, somewhat related to the first, is that the optimization can identify
local features that can be exploited to the benefit of the design. This is the case with
the “damping elements” described in Chapter 6. There is perhaps a fine line between a
beneficial, realistic local modification and an unphysical discontinuity in the profile. In a
design like that described in Table F.9, the profile near the tip is discontinuous, but not
to an extent that it could not be manufactured.

It should be noted that, without smoothing, it is not guaranteed that the optimization
will converge to a common profile as the number of elements is refined indefinitely. For
instance, with a very fine mesh, a region of the blade with an optimal airfoil “shape”
parameter of 0.2 might be represented, without changing the cost function, as a set of
elements with shape alternating between 0.1 and 0.3. The somewhat coarse distribution
of 12 spanwise elements can, in a way, be seen as a type of smoothing in itself.

5.4.4 Local Minima and Their Effects on Blade Designs

Section 5.3.1 described a case in which a local minimum was encountered in the cost
function, due to the interaction of tower dam and the natural frequency of the first flapwise
mode. In this case, the solution is to deactivate tower dam during an initial optimization,
and then to rerun with tower dam activated.

There is a second kind of local minima related to the interaction of material thickness
and the aerodynamic profile.41 When a load factor at a given element is very close to 1.0,
the constraint associated with the load factor (Section 5.4.2) rules out any change in the

41These are the local minima which Hjort et al. [91] warned about; Section 5.1.4.
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design variables that would further increase the load factor. Such a constraint is active
even for a weak connection between the design variable and the load factor: for example, a
load factor of 1.0 at element 4 may prevent the chord at element 11 from being increased.

The method of feasible directions was implemented in order to step away from the
constraint boundary in such cases. It has been observed that sometimes this is successful,
and the optimization effectively traverses along the load factor boundary. In other cases,
the linearized model employed by the method of feasible directions fails to find a search
direction that loosens the load factor constraint enough for the optimization to proceed.
Design space is too complex to identify guidelines as to when the method is successful or
unsuccessful.

It was found that local minima associated with load factors can generally be escaped
by increasing the material thickness at the constraining element(s) by a small amount.
This tactic was not automated, though, and was not employed during the optimizations
of most of the designs in Chapter 6. It may be suspected, then, that these designs are not
located at the “true” global optimum.

Despite the possibility of local minima, the single-level optimization approach was
found to be simple, fast,42 and effective at improving blade designs. Large decreases in
the cost function – 20% is a typical value – were obtained, beginning with the reference
designs described earlier in this chapter. The evolution of the designs was rational, and
no further improvement of the cost function could be found by manually perturbing de-
sign variables. It is concluded that the designs of Chapter 6 can be fairly described as
“optimum”, although one should keep in mind that this is not necessarily true from a
mathematical standpoint.

42A basic sub-optimization approach was tried as well. To obtain accurate gradients, a thickness sub-
optimization had to be run, to a tight convergence, each time one of the aerodynamic variables was
perturbed. This greatly increased computation time.



Chapter 6

Optimum Rotors

Using the methods presented in this report, a family of stall-regulated blades was optimized
for installation in the North Sea wind climate, atop a floating platform. Comparing these
with similar blades that were optimized for installation onshore, it was found that there
are important differences between rotors for offshore and onshore turbines. Yet there are
also similarities. It is possible to adapt the chord, twist, and airfoil distributions along
the span such that the post-stall vibration of the blade is well-damped, and the (average)
rotational speed is uniform over windspeeds between rated and cutout. These favorable
characteristics lead to significant reductions in cost, in comparison with aerodynamically-
optimum designs.

This chapter describes the key findings that resulted from the optimizations, organized
by topic. Tables listing the geometry, section properties, and operating characteristics of
each turbine design are given in Appendix F.

Table 6.1 lists all the permutations of annual energy levels, wind climates, cost func-
tions, and spar materials. Cases that were analyzed are marked with an arrow. Initially,
focus was placed on the smaller (nominally 1.25 and 2.5 MW) turbines, where existing
stall-regulated designs could serve as a baseline for comparison. Once confidence was
gained in the design and optimization methods, the analysis was extended to large tur-
bines, where only the most relevant cases were run.

6.1 A Summary of Optimum Designs

Figures 6.1 and 6.2 show the chord and twist profiles of blades optimized for the onshore
and North Sea wind climates, respectively. The profiles of the NREL 5 MW reference
turbine, which is pitch-regulated, are shown for comparison.1

Perhaps the first thing that stands out is the discontinuity of twist angle at the blade
tip. One or two of the outermost elements are twisted back into the wind. This is not
an artifact of the optimization.2 At the “back-twisted” section, flow is attached all the
way up to the cutout windspeed. The slope of the lift coefficient curve is steep in the
attached-flow region, therefore the back-twisted section contributes disproportionately to
the aerodynamic damping. Note that on the larger blades, the back-twist is less pro-
nounced. Still, the combination of twist and airfoil shape cause flow to remain attached
at the tip. The effects of the twist profile are discussed further in Section 6.2.

1The NREL 5 MW chord and twist profiles were taken from Jonkman [100].
2That is to say, the fact that the profile is discontinuous is certainly an artifact of the discretization,

however the fact that an outboard section of the blade is twisted back into the wind has a physical basis.
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Table 6.1: A list of all permutations of the values of annual energy production, wind
climate, cost function, and spar material; cases that were investigated are marked

Eann wind climate cost function spar material
→ 1.42× 1013 J onshore onshore fiberglass

1.42× 1013 J onshore onshore carbon fiber
→ 1.42× 1013 J onshore offshore fiberglass

1.42× 1013 J onshore offshore carbon fiber
→ 1.42× 1013 J North Sea onshore fiberglass

1.42× 1013 J North Sea onshore carbon fiber
→ 1.42× 1013 J North Sea offshore fiberglass

1.42× 1013 J North Sea offshore carbon fiber
→ 2.84× 1013 J onshore onshore fiberglass
→ 2.84× 1013 J onshore onshore carbon fiber
→ 2.84× 1013 J onshore offshore fiberglass
→ 2.84× 1013 J onshore offshore carbon fiber

2.84× 1013 J North Sea onshore fiberglass
2.84× 1013 J North Sea onshore carbon fiber

→ 2.84× 1013 J North Sea offshore fiberglass
→ 2.84× 1013 J North Sea offshore carbon fiber

5.68× 1013 J onshore onshore fiberglass
→ 5.68× 1013 J onshore onshore carbon fiber

5.68× 1013 J onshore offshore fiberglass
5.68× 1013 J onshore offshore carbon fiber
5.68× 1013 J North Sea onshore fiberglass
5.68× 1013 J North Sea onshore carbon fiber

→ 5.68× 1013 J North Sea offshore fiberglass
→ 5.68× 1013 J North Sea offshore carbon fiber

1.14× 1014 J onshore onshore fiberglass
1.14× 1014 J onshore onshore carbon fiber
1.14× 1014 J onshore offshore fiberglass
1.14× 1014 J onshore offshore carbon fiber
1.14× 1014 J North Sea onshore fiberglass
1.14× 1014 J North Sea onshore carbon fiber

→ 1.14× 1014 J North Sea offshore fiberglass
→ 1.14× 1014 J North Sea offshore carbon fiber

2.28× 1014 J onshore onshore fiberglass
2.28× 1014 J onshore onshore carbon fiber
2.28× 1014 J onshore offshore fiberglass
2.28× 1014 J onshore offshore carbon fiber
2.28× 1014 J North Sea onshore fiberglass
2.28× 1014 J North Sea onshore carbon fiber
2.28× 1014 J North Sea offshore fiberglass

→ 2.28× 1014 J North Sea offshore carbon fiber
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Figure 6.1: Chord and twist profiles of blades designed for the onshore wind climate

Figure 6.2: Chord and twist profiles of blades designed for the North Sea wind climate
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The rated power of each blade is shown next to its chord profile. The onshore blades
have fairly typical values of rated power, given their diameter; on the other hand, the
North Sea blades have unusually high values of rated power. It is argued in Section 6.3
that the high rated power is appropriate.

Section 6.4 discusses the aerodynamic profile of the blade. Medium- and low-lift airfoils
are used; high-lift airfoils are avoided, because their abrupt stall behavior results in poor
aerodynamic damping characteristics. The airfoil shape distribution (that is, medium ver-
sus low lift) works together with the twist distribution to provide the necessary damping.
Thick airfoil sections, typically t/c = 0.30, are used along most of the blade span. There
is a small aerodynamic penalty associated in going from an airfoil with, say, t/c = 0.21 to
t/c = 0.30; but the structural benefit is large.

Blade mass predictions are in-line with industry trends for pitch-regulated blades.
On the one hand, this is unsurprising, because of the typical cross-section and material
properties that were assumed. On the other hand, conventional wisdom3 is that stall-
regulated blades must be stiffer, stronger, and heavier than similarly-sized pitch-regulated
blades. Section 6.5 discusses the trends in blade mass.

The tradeoff between fiberglass and carbon fiber is also discussed in Section 6.5. The
results show that a carbon-fiber spar is preferable above a diameter of roughly 80 m. This
is in agreement with industry trends.4 However, the mass trend for fiberglass blades is
too pessimistic, as recent large LM Windpower blades for rotors of up to 126 m diameter
are made with fiberglass spars.5 It is hypothesized that the chosen fatigue properties of
fiberglass, Figure C.14, in combination with the Dirlik method of cycle counting (Sections
D.13.1 and 3.6.4), are too conservative for edgewise gravity fatigue.

The relative costs of North Sea and onshore turbines are compared in Section 6.6.
Despite the favorable offshore wind climate, the cost-of-energy from a deepwater offshore
wind turbine will be higher than that from an onshore wind turbine, by a significant
margin. A 100 m diameter, 7.5 MW turbine is suggested for use in further design studies.

Section 6.7 suggests some studies and experiments that could follow from the work
done for this report.

6.2 Stall Behavior, Damping, and Power Production

It is possible to tune the progression of stall along the blade such that the rotational
speed is nearly constant beyond stall,6 and the aerodynamic damping is well above zero
for all modes and windspeeds up to 40 m/s (extreme operating gust). In other words, it is
possible to design a stall-regulated rotor that behaves nicely at windspeeds above rated,
particularly when the rotational speed can be varied by plus or minus a few percent.

Petersen et al. [142] performed a study which considered the influence of blade design
parameters on aerodynamic damping and power production. Several parametric studies
were performed, including different airfoil types, blade twist, structural pitch,7 and stiff-
ness. Some of the conclusions – like employing higher-lift airfoils inboard and low-lift

3For example, refer to Hau [85] pp 108-115.
4Hau [85] pp 247-248
5Wind Energy – The Facts [193] p 84
6Though, referring to Section B.4.3, errors in the aerodynamic methods and effective airfoil coefficients

may require the rotational speed to vary by a small amount.
7Structural pitch refers to an offset of the principle bending axes that can be used to modify the

flapwise and edgewise mode shapes without varying the aerodynamic twist. This means that the direction
of vibration of each airfoil with respect to its local aerodynamic axes can be modified slightly.
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airfoils outboard – are reproduced in the present blade designs. However, Petersen et
al. did not go much beyond identifying various means by which a designer might mod-
ify a blade to avoid stall-induced vibrations. The study did not deal with the optimum
combination of parameters, nor suggest specific blade designs. In fact, the present results
indicate that one cannot arrive at an optimum stall behavior by studying each parameter
independently, because of the tight coupling between the aerodynamic profile, the struc-
tural stiffness, power production, and damping. Thus, the results in this section can be
seen as extending the methods of Petersen et al., in order to determine the optimum stall
behavior.

6.2.1 Back-Twist and its Effects

The optimized blades attain good damping and power control with a combination of twist
and airfoil properties near the tip. In particular, one or more of the outermost elements
is twisted by a couple degrees, such that the leading edge points back into the wind.
These elements also have airfoils with a higher maximum lift coefficient than the adjacent
elements. The result is that flow remains attached at these elements all the way up to
the cutout windspeed. (The positive twist of the tip elements will be referred to here as
“back-twist”, following Bulder et al. [20], and the associated blade elements will be called
“damping elements”, because they increase the aerodynamic damping.)

As an example, consider the design with Eann = 2.84×1013 J, designed for the onshore
wind climate, with a carbon-fiber spar. This is one of the more extreme examples of back-
twist, with one element serving as the damping element; in other cases, the back-twist is
less pronounced, with the properties spread over a couple of the outboard elements.

Figure 6.3 shows the pattern of stall as a function of windspeed. The plot shows the
ratio of the mean angle-of-attack (α0 − αz) to the angle-of-attack (αm1 − αz) at which
the lift coefficient is maximum; a value of 1 indicates roughly the initiation of stall. (The
terminology comes from Chapter 2.)

The progression of stall of the COE-optimum blade (Table F.13) is compared against
a blade that was optimized for maximum CP at 7 and 9 m/s (Table F.45; call this the
“baseline” design). On the baseline blade, with increasing windspeed, stall progresses
smoothly from the root to the tip, with the tip stalling at a windspeed of about 16 m/s.
By contrast, the COE-optimum blade stalls nearly simultaneously8 over the inner 80% of
the blade when the windspeed is near rated. As the windspeed increases, stall progresses
outwards, but flow remains attached at the damping element.

At high windspeeds, since flow is attached near the tip, this region of the blade produces
a lot of power. This is clearly seen in Figure 6.4, which plots the power per unit length
along the blade, at various windspeeds. The increase in power at the damping element is
balanced by a reduction in power over the rest of the blade.9

Attached flow also gives high damping of flapwise vibrational modes, because the slope
of the CL-α curve is steeply positive. The contribution to modal damping at each node is
plotted in Figure 6.5. Consider first the flapwise damping. Both the baseline and COE-
optimum designs have high damping when the flow is attached. But on the baseline design,

8That is not to say that the blade stalls at the same time dynamically over most of its length; gusts and
lulls in the wind are not perfectly correlated over the blade span. In addition, the timescale of dynamic
stall is very different between the root and tip, because the parameter c/V varies by an order of magnitude;
typical values might be 0.150 near the root, and 0.014 at the tip.

9Note that the COE-optimum turbine has a rated power of 3.1 MW, compared with 2.8 MW for the
baseline turbine, although the two designs produce the same amount of energy in a year.
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Figure 6.3: The progression of stall along a COE-optimum blade, compared against an
aerodynamic-optimum blade, highlighting that the flow remains attached at the damping
element up to the cutout windspeed; Eann = 2.84× 1013 J, onshore wind climate
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Figure 6.4: A comparison of the power per unit length along a COE-optimum blade and
an aerodynamic-optimum blade; Eann = 2.84× 1013 J, onshore wind climate
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the outermost portion of the blade is in roughly the same state of stall (referring back to
Figure 6.3). As a consequence, the three outermost elements have negative aerodynamic
damping at windspeeds approaching cutout. Thus the total flapwise damping ratio drops
to 0.015 at 21 m/s. Contrast this with the COE-optimum blade; when the middle portion
of the blade enters a state of negative aerodynamic damping, at about 17 m/s, the attached
flow over Element 11 (adjacent to the tip) keeps the total damping high. Then, around the
cutout windspeed, when Element 11 stalls, adjacent elements are into deep stall, where
damping is positive again. As a consequence, the minimum damping ratio under steady
conditions is 0.038 at 19 m/s, and the minimum damping ratio under gust conditions is
0.023 at 29 m/s.

A similar type of balancing is evident when it comes to edgewise damping. The baseline
design has negative aerodynamic damping beyond the rated windspeed, as the outboard
portion of the blade stalls. (Including structural damping, the total damping remains
positive, with a minimum edgewise damping ratio of 0.0077, at 21 m/s.) On the COE-
optimum design, Element 11 keeps the total aerodynamic damping positive as the middle
of the blade stalls, and then the adjacent elements keep aerodynamic damping positive
(barely) as Element 11 stalls. The minimum edgewise damping ratio under steady condi-
tions is 0.0101 at 25 m/s, and in a gust is 0.0095 at 29 m/s.

Element 12, at the tip, seems to provide little contribution to either power production
or damping over most of the operating range. To isolate its effects, the tip element was
modified such that the airfoil shape and twist were the same as Element 11: 0.319 and
1.21◦, respectively. A structural analysis cycle (peak and lifetime fatigue loads) was then
run. Referring to Figure 6.6, it is evident that Element 12 makes a key contribution to
damping of the first flapwise mode during gusts that exceed the cutout windspeed. Figure
6.6 also illustrates the type of tradeoff that is necessary in the design of a stall-regulated
turbine: damping is reduced throughout the operating range in exchange for positive
damping during peak gusts.

It could be questioned whether the true damping near the tip is as high as predicted
by BEM aerodynamic methods. On the one hand, the time delay associated with wake
development (dynamic inflow, Section 2.1.3) means that high-frequency oscillations (f >>
1P ) do not affect the induced velocity, thus the Prandtl factor does not apply to the
dynamic forces. Indeed, this is the result obtained from time-domain analyses using the
BEM method. But one would not expect that the magnitude of the alternating forces
in the vicinity of the tip corresponds to that computed using uncorrected 2D coefficients,
because forces must go to zero at the tip, regardless of the wake. An experiment program
would be useful here, to examine forces (pressure distributions) near the tip of a blade,
for which:

1. flow is stalled over most of the blade’s length;

2. flow is nominally attached near the tip, at the mean windspeed; and,

3. the blade is made to vibrate at various frequencies.

For purposes of the present calculations and discussion, it is assumed that the damping
will end up being close to the value calculated by the dynamic stall method in Chapter 3.

It is also an open question whether a real blade would behave as predicted by the BEM
method in a case such as this, where adjacent sections of the blade – say, two meters apart
– experience different degrees of stalled or attached flow. Near the blade tip, flow curvature
effects are not pronounced, so it seems unlikely that radial flow would be significant. But
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Figure 6.5: The contribution of damping of each element along the length of a COE-
optimum blade, compared with an aerodynamic-optimum blade; Eann = 2.84 × 1013 J,
onshore wind climate



218 CHAPTER 6. OPTIMUM ROTORS

Figure 6.6: The modal damping ratios of the first flapwise and first edgewise modes, as a
function of windspeed; Eann = 2.84× 1013 J, onshore wind climate, onshore cost function,
carbon fiber spar

it is possible that, for example, pressure fluctuations in the fluid due to the shedding of
vortices from the stalled region would impact the flow properties at the attached-flow
region. Such a refined investigation is outside the scope of the present study. However,
Figure 6.7 provides a hint as to the width of the transition region between attached and
stalled flow. This is a photo from a wind tunnel test conducted by LM Windpower, in
which vortex generators were mounted over half the airfoil span (on the right). The vortex
generators mix and energize the boundary layer, such that flow remains attached at this
angle-of-attack of 10◦. Flow is separated over the other (left) half of the airfoil, which
lacks vortex generators. The separated flow does indeed affect the flow over the half of the
blade with vortex generators, but only to a spanwise distance of about one-quarter the
chord length. This suggests that the behavior of the damping element, which is a section
of the blade with a span of a couple chord lengths, will not be much affected by adjacent,
stalled elements, beyond a small transition region.

Figures 6.8 through 6.10 show the angle-of-attack ratio, power per length, and damping
ratio along the span of a large North Sea blade. This case is perhaps less remarkable than
the previous case, because the back-twist and change in airfoil shape are less pronounced.
Figure 6.8 shows, though, that the effect is the same: flow remains attached near the tip
through the cutout windspeed.10 It helps that the tip speed is very high, 101 m/s, which
reduces the degree to which the angle-of-attack fluctuates.

The trends in power and damping with windspeed are similar to those of the smaller
onshore blade described previously. The minimum damping of the large North Sea blade
is higher, though: flapwise, under steady conditions, the minimum damping ratio is 0.069
at 25 m/s, and in a gust it is 0.047 at 29 m/s. Edgewise, the minimum damping ratio
under steady conditions is 0.0114 at 25 m/s, and in a gust it is 0.0111 at 29 m/s.

10Yet another strategy is employed by the blade of Table F.25 to keep flow attached. The tip element
has no back-twist, but has an airfoil with a comparatively high lift coefficient.
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Figure 6.7: A photograph of an airfoil section, where flow is separated over the left half,
and attached (due to the presence of vortex generators) over the right half [Source: LM
Windpower, personal communication]

Figure 6.8: The progression of stall along a large COE-optimum blade; Eann = 1.14×1014

J, North Sea wind climate
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Figure 6.9: The power per unit length along a large COE-optimum blade; Eann = 1.14×
1014 J, North Sea wind climate

Figure 6.10: The contribution of damping of each element along the length of a COE-
optimum blade; Eann = 1.14× 1014 J, North Sea wind climate
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6.2.2 Damping

The previous section discussed the spanwise distribution of modal damping for three
blades. The present section provides an overview of modal damping of a broader set
of blades.

Figure 6.11 plots damping of the first flapwise and first edgewise modes, as a function
of windspeed, for a selection of the COE-optimum blades. These are compared against
four existing designs. The first two existing designs are the Nordtank NTK-500 and Tacke
TW-500 from Chapter 3. Here the damping ratios were computed using the linear dynamic
stall method: the same method that was used in the optimizations. The Nibe-A turbine is
a three-bladed, upwind, stall-regulated prototype from the late 1970’s. Flapwise damping
ratios were computed by Øye [140], using a nonlinear, time-domain dynamic stall method.
Finally, Thomsen et al. [176] estimated the damping ratios of the first forward whirling
and first backward whirling edgewise/drivetrain modes on a Bonus 600 turbine. The
forward whirling mode was more highly damped than the backward whirling mode; both
are plotted in Figure 6.11.

The calculated edgewise damping ratios for the Nordtank and Tacke turbines match
well with the lower of the measurements on the Bonus 600 turbine. This provides a degree
of verification of the damping predictions by the method of Chapter 3, because the blade
on the Bonus 600 was the LM 19.1, same as the Nordtank turbine.11 The flapwise damping
of the Nibe-A blade does not match that of the Nordtank or Tacke turbines, however this
is perhaps to be expected, since the Nibe-A was an early experimental prototype. Other
references12 show trends in flapwise damping that look similar to those of the Nordtank
and Tacke turbines.

Figure 6.11 indicates that, relative to historical designs, it is possible to significantly
increase both the flapwise and edgewise damping throughout the operational windspeed
range by appropriately tuning the aerodynamic profile of the blade. This is especially true
for turbines in the North Sea wind climate, with a high rated windspeed.

Looking at the curves in a bit more detail, the upper plot in Figure 6.11 shows turbines
optimized for the onshore wind climate. They have a rated windspeed in the vicinity of
13 m/s. The dashed line shows a baseline design, from Table F.45, that was optimized for
maximum aerodynamic efficiency, and has no back-twist. It has a stall pattern reminiscent
of the Nordtank and Tacke turbines, with a minimum flapwise damping ratio of about
0.015, although the variable-speed operation is evident as an initial increase in damping
below the rated windspeed.

Two turbines with a diameter of 83 m are shown.13 The first one has high flapwise
damping up to the cutout windspeed, but then the damping drops to near zero under
gust conditions, in the vicinity of 30 m/s. The second case, plotted as a dotted curve, has
an aerodynamic profile that is tuned differently.14 Flapwise damping is lower – though
well above zero – below the cutout windspeed of 25 m/s, but then increases under gust
conditions. In addition, the edgewise damping of this latter design is high.

The large onshore turbine,15 with a diameter of 120 m, has excellent flapwise and

11Hansen [78], also Riziotis et al. [149], show that indeed there may be a moderate discrepancy between
damping associated with isolated-blade modes and full-drivetrain modes.

12For example, Petersen et al. [142] and Riziotis et al. [149]
13Tables F.9 and F.11
14A different starting point was used for the optimization. The final cost function is very close between

the two designs, 1.75 versus 1.79.
15Table F.21
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Figure 6.11: Flapwise and edgewise damping ratios as a function of windspeed, for the
COE-optimum blades, compared against four existing stall-regulated turbines
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Figure 6.12: Trends in minimum damping ratio with diameter

edgewise damping properties. Interestingly, this blade employs less than 1◦ of back-twist,
and only a moderate increase in the maximum lift coefficient near the tip.

The lower plot shows turbines optimized to the North Sea wind climate: Tables F.19
and F.23 through F.31. The high rated windspeed of about 17 m/s means that flow
remains attached along the outboard portion of the blades over much of the operating
range. Despite having diameters between 83 m and 154 m, the turbines have very similar
stall behavior.

Figure 6.12 indicates trends in flapwise, edgewise, and tower fore-aft damping as a
function of rotor diameter. Two sets of points are shown for flapwise damping: one set
is the minimum damping ratio between 5 and 25 m/s, representing steady conditions
between cut-in and cutout. The other set is the minimum damping ratio between 5 and
39 m/s, representing conditions that may be encountered during a gust.

Considering flapwise damping under steady conditions, the minimum damping ratio
appears to have no trend with diameter. Under gust conditions, though, it is evident that
the minimum damping increases with increasing diameter. The same trend is observed in
both edgewise and tower fore-aft damping. It is unclear whether this trend with rotor size
is due to something fundamental in the blade response, or whether it is related to the cost
model. In particular, for a large turbine (Table F.31), the structure is a larger fraction
of the total cost, and the electrical system a smaller fraction, in comparison with a more
moderately-sized turbine (Table F.25). This means that, for large turbines, the cost model
may weight the blades’ dynamic behavior more strongly, and the electrical system (rated
power and torque) less.

Figure 6.13 shows the tower damping ratio as a function of mean windspeed, for a
selection of COE-optimum turbines. Given the rather different blade damping trends seen
in Figure 6.11, for the onshore turbines, the trends in tower damping are surprisingly
uniform. Another interesting feature is that although damping ratios at low and high
windspeeds may be very different, the minimum tower damping ratio changes only a
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small amount, as was seen in Figure 6.12. The windspeed at which the tower damping
is a minimum appears to be a function of the rated windspeed. Onshore, the rated
windspeed is about 13 m/s, and minimum tower damping occurs at 15 m/s; offshore,
the corresponding values are 17 m/s and 19 m/s. Referring back to Figures 6.3 and 6.8,
it is evident that minimum tower damping occurs at the windspeed where most of the
blade elements have an angle-of-attack just beyond αm1, corresponding to the maximum
lift coefficient. This makes sense, because it is here that the negative slope of the lift
coefficient curve occurs. Thus, while the attached flow near the tip (the damping element)
is very effective in preventing blade vibration, because the modal displacement is large
near the tip, it is not so effective in preventing tower vibration, where the entire rotor
translates approximately as a rigid body. That being said, it is evident from Figure 6.13
that the minimum damping is not less than that observed on other stall-regulated wind
turbines; and at other windspeeds, the damping is much higher.

6.2.3 Power Production and Operating Schedule

By appropriately tuning and balancing the stall behavior of the rotor, the rotational
speed is nearly constant beyond stall,16 and the loss in energy production near the rated
windspeed is small. If the rotor is not tuned in this manner, the stall behavior can be very
unfavorable.

Figure 6.14 provides an example. This compares the power-speed relationship, as a
function of windspeed, for two turbines: the NREL 5 MW reference turbine,17 and a COE-
optimum turbine of similar diameter, from Table F.29. The NREL turbine was designed
to be pitch-regulated, and operates close to the maximum possible aerodynamic efficiency
below its design rated windspeed of about 12 m/s. In Figure 6.14, the pitch is fixed, and
the NREL blade is operated with stall regulation.18 The generator size in the example is
set to 10 MW, to provide a closer comparison with the COE-optimum design. But this
has no bearing on the conclusions drawn from the comparison; they would be the same if
based upon a 5 MW rated power.

When operated according to the rotational speed schedule of Section B.4, the power-
windspeed curve of the NREL turbine is very poor. In order to avoid the possibility that a
gust causes significant overpower, the rotational speed is truncated to just over 1.1 rad/s.
But at this rotational speed, the turbine does not reach its maximum power output until
the windspeed exceeds 23 m/s. Thus a large amount of energy is lost in comparison with
a pitch-regulated turbine, which would provide a constant 10 MW (in this example) above
a windspeed of about 15 m/s. By contrast, at 15 m/s, the stall-regulated NREL turbine
produces 8 MW, and only slowly approaches the rated power with increasing windspeed.

The COE-optimum stall-regulated turbine has a much better power-speed relation-
ship. The turbine is close to its rated power of 11.4 MW at a windspeed of 17 m/s. As
the windspeed increases further, the target rotational speed stays almost constant, while
producing the rated power. A constant rotational speed allows tuning of frequencies such
that resonance is avoided at high windspeeds, where loads are high and damping is low.

It is worth noting that the maximum power coefficient of the COE-optimum designs
is not as high as the aerodynamic optimum designs. For example, comparing Tables F.13

16. . . allowing for a small variation to compensate for errors in the aerodynamic calculations and coeffi-
cients . . .

17Jonkman [100]
18This is very similar to what Bulder et al. [20] did for the design study of the ICORASS stall-regulated

turbine. And indeed, they found that the properties as a stall-regulated blade were undesireable.
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Figure 6.13: Damping of the tower fore-aft mode, as a function of windspeed
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Figure 6.14: A comparison of operating schedules, using the algorithm of Section B.4,
between a blade that has been optimized for maximum aerodynamic efficiency, and an
optimal stall-regulated blade of a similar size
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Figure 6.15: Rotor thrust force contours of the COE-optimum turbine from Figure 6.14,
showing an example of how changing the rotational speed in response to platform pitch
and surge motion can be used to increase damping of this motion

and F.45, the COE-optimum design has CP,max = 0.448, while the equivalent aerodynamic
optimum has CP,max = 0.479. These values are representative of other turbine sizes, as
well.19

6.2.4 Thoughts on Damping Platform Motion

Figure 6.15 shows quasi-steady rotor thrust as a function of rotational speed and wind-
speed; the turbine is the same COE-optimum design as that shown at the bottom of
Figure 6.14. Between wind speeds of about 18 and 22 m/s, the quasi-steady thrust is
nearly constant with fluctuations in the incoming windspeed.

If thrust is independent of windspeed, then aerodynamic damping is zero. For struc-
tural vibrations in the tower fore-aft mode, with a characteristic frequency on the order
of 0.5 Hz, damping is positive, because of dynamic effects; this can be seen in Table F.29
or Figure 6.13. But for pitch or surge motions of a floating platform, with a characteristic
frequency below 0.05 Hz (to stay out of the range of wave excitation), the response will
approach quasi-steady. This means that active control of the rotor speed is necessary to
damp these motions.

The line drawn at 19 m/s in Figure 6.15 illustrates that aerodynamic damping can be
increased by varying the rotational speed by a small amount. When the platform begins

19A power coefficient of 0.48 may seem on the low side for an aerodynamic optimum configuration,
however keep in mind that it was assumed that the airfoils have a rough leading edge, which increases the
minimum drag (Chapter 2).
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to move into the wind, the rotational speed is increased, increasing the thrust force; and
when the platform begins to move away from the wind, the rotational speed is decreased.

The change in the rotational speed is controlled by varying the generator torque,
therefore there will also be fluctuations in power output, in phase with the platform
motion. At the wind farm level, the phase of the platform oscillations from one turbine
to the next should be nearly uncorrelated, because of the stochastic nature of waves, and
the fairly large separation between turbines.20 With many turbines in the wind farm, it
is thus expected that the power fluctuations will cancel out.

6.3 Rated Power and Swept Area

For the turbines optimized to the onshore wind climate, the ratio of the rated power to
swept area is within the typical range21 of roughly 400 to 600 W/m2. But for the turbines
optimized to the North Sea wind climate, this ratio is abnormally high, in the vicinity of
1,000 W/m2.

Define the generator power factor as PF = P/Prated = Eann/PratedY ; this is the average
fraction of the rated power that is produced over the course of a year. The optimum
generator power factor was observed to be relatively constant with wind climate, in the
range 0.30 to 0.35. This seems rational, given that the shape of the energy distribution
curve, Figure E.1, is similar between the onshore and North Sea wind climates. It is
unclear, at first glance, why existing turbines installed in high-wind climates22 do not
have a higher Prated/A ratio.

A numerical experiment was performed in order to identify why a high value of Prated/A
was found to be optimal. As a starting point, a turbine was defined using the chord and
twist distribution of the single-point aerodynamic optimum shown in Figure 5.19. This
turbine operates in the North Sea wind climate. Keeping the ratio Eann/PF constant,
such that the rated power was fixed at 5 MW, the magnitude of Eann was varied such that
the diameter of the turbine was equal to 120.8 m, about the same as shown in Figure 5.19.
This gives Eann = 8.126× 1013 J, and Prated/A = 436 W/m2. Note that these values were
chosen to be comparable to those of the NREL 5 MW reference turbine.

The spar cap material thickness was re-optimized such that load factors were less than
0.95; in general, thickness decreased, because truncating the power at 5 MW results in a
less severe load regime in comparison with the original 10 MW.

Two COE optimizations were conducted, each using the above turbine as the starting
point. The only difference between the two optimizations was that in the first, the rated
power was fixed, while in the second, it was allowed to vary (by way of making the power
factor an active design variable).

The results are summarized in Table 6.2, with the corresponding chord distributions
plotted in Figure 6.16. Six turbines are shown: the starting configuration (labeled “Ini-
tial”), the COE optimum with a fixed rated power of 5 MW, and four intermediate designs
in the progression towards the COE optimum with a variable rated power, labeled A, B,
C, and D.23 (The optimization sequence was terminated at turbine D, short of the final
optimum. Because the starting point was far from the optimum – in particular, the diam-

20Large turbines will be separated by a distance on the order of 1 km.
21Hau [85] p 517, and Burton et al. [22] p 337, give data for existing commercial wind turbines.
22. . . corresponding to IEC Class I . . .
23The properties of the 5 MW turbine are summarized in Table F.33; those of turbine D are summarized

in Table F.35.
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Table 6.2: The component costs for a turbine with a constrained power factor of 0.515
(PF = Eann/PratedY , giving 5 MW rated power, with Eann = 8.126 × 1013 J), optimized
to the offshore cost function, in comparison with a turbine whose optimization began with
the same initial configuration, but whose power factor was allowed to vary as a design
variable; for this latter turbine, several intermediate configurations are shown

Component Initial 5 MW A B C D
Blades 0.8850 0.6931 0.6219 0.5591 0.5105 0.4872
Hub 0.1442 0.1178 0.1124 0.1044 0.0973 0.0933
Drivetrain 0.1308 0.1011 0.0885 0.0781 0.0697 0.0652
Generator 0.3533 0.3118 0.3211 0.3185 0.3186 0.3146
Nacelle 0.2969 0.2772 0.2758 0.2688 0.2583 0.2556
Yaw system 0.0758 0.0703 0.0699 0.0680 0.0651 0.0643
Brake system 0.0421 0.0414 0.0439 0.0454 0.0474 0.0496
Tower 0.3493 0.3075 0.3019 0.2833 0.2678 0.2691
Platform 1.3760 1.1530 1.0530 0.9564 0.8768 0.8331
Mooring 0.8082 0.6966 0.6464 0.5982 0.5584 0.5366
Grid connection 0.5267 0.5267 0.5827 0.6215 0.6686 0.7020
Total cost: 4.9890 4.2970 4.1170 3.9020 3.7380 3.6710
Diameter (m) 120.8 117.6 112.0 107.7 104.3 102.0
Vtip (m/s) 68.3 78.5 80.6 84.1 88.2 92.6
mb (103 kg) 22.4 17.5 16.0 14.5 13.2 12.6
mr (103 kg) 388.5 335.5 326.1 311.1 296.2 289.2
Rated power (MW) 5.00 5.00 5.60 6.02 6.52 6.88
Prated/A (W/m2) 436 460 568 661 763 842
PF 0.515 0.515 0.460 0.428 0.395 0.374

eter had to be greatly reduced, with the other design variables having to adapt along the
way – the optimization proceeded slowly.)

It is clear from the table that the primary tradeoff is between the size of the rotor – the
influence of which propagates down the support structure – and the cost of the electrical
systems and grid connection. The lowest cost-of-energy in the North Sea wind climate
clearly lies towards a high Prated/A ratio. One possible objection to this might be that a
high Prated/A ratio implies greater fluctuation in the power obtained from the wind farm,
because more energy is captured at high windspeeds. However, since the power factor of
0.30 to 0.35 is no different than that of a typical onshore windfarm, the challenges with
balancing the grid should not be any greater than those associated with onshore wind
energy.

One trend observed in Table 6.2 is noteworthy: there seems to be a relationship between
Prated/A and the tip speed. It is not entirely obvious that this should be the case, because,
at a given operating state, one should be able to hold power production and diameter
constant, while varying the rotational speed together with either blade pitch or chord
length. In other words, why does the 5 MW blade not have a higher tip speed, a narrower
chord, and a different twist?

This was investigated by perturbing the geometry of the blade, and seeing how the cost
function changed. First, the blade was pitched by -2◦ (effectively, 2◦ was subtracted from
the twist angle at each element). Because a negative pitch angle points the airfoil nose away
from the wind, it increases the angle-of-attack on the blade, for a given windspeed and
rotational speed. Thus for stall to occur at the appropriate windspeed, in order to produce
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Figure 6.16: Chords of the turbines shown in Table 6.2

the specified annual energy according to the operating schedule algorithm (Section B.4),
the rotational speed must increase. Pitching the blade by -2◦ increased the tip speed from
78.5 to 84.3 m/s, as shown in Table 6.3. Perturbing the pitch raises the cost-of-energy,
mainly because fatigue loads become more severe.

Reducing the chord also forces the tip speed to increase, according to the operating
schedule algorithm, because the annual energy produced by the blade must stay the same.
Beginning with the 5 MW turbine, the blade pitch was adjusted by −1◦, and the chord
length along the blade was reduced to a factor of 0.9 times the original chord length.24

This caused some load factors to exceed 1.0, so the material thickness distribution was
re-optimized. Referring to Table 6.3, the resulting design has a cost that is only slightly
greater than the original blade. Reducing the chord lowers the mass of the blade, and also
lowers the ultimate loads, in exchange for increased fatigue loads.25

It is concluded that the trend in tip speed seen in Table 6.2 is real, from the perspective
of numerical optimization; but from an engineering standpoint, the tip speed can be
increased (or likely decreased) by a moderate amount without a significant change in the
cost, provided that the blade profile is adapted accordingly.

6.4 Airfoil Sections

The most striking feature about the aerodynamic profile is that the airfoil t/c ratio is near
0.30 between the root and roughly r/Ro = 0.8, as shown in Figure 6.17. This has not been
observed on existing designs, which tend to have thinner airfoils outboard. Referring to
Chapter 2, the airfoil properties at t/c = 0.30 were based (approximately) upon the DU
97-W-300 airfoil, whose properties are described by Timmer and van Rooij [178]. Despite

24Reducing the chord without changing the blade pitch results in a slightly greater cost metric.
25The cause of the increased fatigue loads was not investigated in detail, but at a glance it appears to

be due to reduced damping over the rated windspeed.
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Table 6.3: A comparison of component costs for different tip speeds, obtained by perturb-
ing the blade pitch and chord length

Component 5 MW −2◦ pitch −1◦ pitch,
reduced chord

Blades 0.6931 0.6960 0.6745
Hub 0.1178 0.1193 0.1182
Drivetrain 0.1011 0.1017 0.0983
Generator 0.3118 0.2938 0.2956
Nacelle 0.2772 0.2983 0.2932
Yaw system 0.0703 0.0762 0.0748
Brake system 0.0414 0.0452 0.0439
Tower 0.3075 0.3540 0.3156
Platform 1.1530 1.1880 1.1680
Mooring 0.6966 0.7141 0.7041
Grid connection 0.5267 0.5267 0.5267
Total cost: 4.2970 4.4130 4.3130
Diameter (m) 117.6 117.8 117.7
Vtip (m/s) 78.5 84.3 84.4
mb (103 kg) 17.5 17.6 17.0
FT (MN) 2.22 2.23 2.05
Mflap (MN m) 12.84 14.55 14.17

its thickness, and the assumption of a rough leading edge, this airfoil has a maximum
lift-to-drag ratio of over 50.26 This is comparable to the maximum lift-to-drag ratio of,
for example, the thinner NACA 644-421 airfoil with a rough leading edge.27 Thus a
modern, smoothly-stalling, thick airfoil provides a structurally-efficient cross-section with
acceptable aerodynamic performance.

The aerodynamic performance of thinner airfoils is better than that of thicker air-
foils,28 so it is natural to question why the trade-off between structural and aerodynamic
performance ended up in favor of a thick airfoil section.

For example, compare the COE-optimum design in Table F.1 with the aerodynamic-
optimum (baseline) design in Table F.37. The diameter of the two turbines is approxi-
mately the same. Because annual energy production is exactly the same, this means that
the annual energy production per swept area is about the same, despite the fact that the
maximum CP of the optimum design (0.454) is lower than that of the reference design
(0.479). Looking at the power delivered at each windspeed, the COE-optimum design de-
livers less power at low windspeeds; but it has a higher rated power, and thus delivers more
power at high windspeeds. Increased rated power means that the costs of the electrical
system and grid connection will be greater. However, the cost of a direct-drive generator
depends upon the peak torque, rather than the power (see Chapter 4). Because the ro-
tational speed of the COE-optimum design (2.5 rad/s) is higher than that of the baseline
design (nominally 2.1 rad/s, but with a large deviation due to poor stall behavior), the
maximum torque of the COE-optimum design is actually lower. Thus the generator cost
is decreased, despite a higher rated power. It is seen that the net effect of using thick
airfoils is to obtain light blades (lower structural cost) in exchange for a more expensive

26Refer to Figure 2.30
27Abbott and von Doenhoff [1] p 593
28. . . for the range t/c ≥ 0.12 . . .
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Figure 6.17: Thickness-to-chord ratio of two of the COE-optimum blades

electrical system, not including the generator. In other words, using thinner airfoils would
increase the mass of the blades,29 yet, by increasing energy production at low windspeeds,
allow the rated power to be reduced.

The t/c ratio “sticks” at 0.30 over most of the blade length. This is because it was
assumed that the airfoil shape transitions from a sharp trailing edge at t/c = 0.30 to
a flatback (blunt trailing edge) at t/c = 0.40. Thus, according to the airfoil model in
Chapter 2, the minimum drag increases rapidly for t/c > 0.30. Away from the root,
having t/c ≤ 0.30 is appropriate, because moderately thicker airfoils (t/c = 0.35) can
exhibit premature flow separation – they stop behaving as airfoils – when the leading-edge
is rough.30

Even so thick as t/c = 0.30, airfoils can be designed with low and high maximum lift
coefficients; to obtain high lift, vortex generators can be employed.31

Figure 6.18 shows two representative examples of the airfoil shape distribution along
the blade, here represented by plotting the maximum lift coefficient. These cases are
representative of two extremes, one being a small blade with a single damping element,
and the other being a large blade with a high tip-speed, where flow remains attached near
the tip despite the low-lift airfoils.

The results of the optimizations are consistent with the design guideline given by
Petersen et al.: “Use low-lift airfoils on the outer part of the blade, for good damping,
and high-lift airfoils on the inner part of the blade, to increase power production.” ([142]
p 137) The damping element is an exception: here, medium-lift airfoils may be used. The
highest-lift airfoils, with a lift coefficient approaching 2.0, are not used.

The use of low-lift airfoils is in disagreement with the conclusion of Fuglsang and

29Increasing aerodynamic efficiency also provides the opportunity to reduce the diameter, instead of the
rated power. But in this case it appears that a slightly shorter blade with thinner airfoils would end up
weighing more, so this potential for reducing the diameter is unrealized.

30van Rooij and Timmer [185]
31See Chapter 2; also Timmer and van Rooij [178], and van Rooij and Timmer [185]
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Figure 6.18: Two representative examples of the airfoil distribution along the blade span

Madsen [58], who recommend the use of high-lift airfoils (CL ≥ 1.6) over the entire blade
span. They describe this result as “a compromise between a smaller chord, maximum
allowable strains and the minimum allowable blade thickness. A reduction in chord reduces
both blade weight and extreme loads, but should be counterbalanced by an increase in
CL,max to maintain power.” ([58] p 204)

A numerical experiment was conducted in order to attempt to explain the discrepancy,
or at least explain why the present optimization algorithm arrived at low-lift airfoils, be-
yond the obvious advantage of higher aerodynamic damping. The COE-optimum turbine
from Table F.25 was used for the experiment. This turbine, whose power contours and
operating schedule are shown in Figure 6.19, has a diameter of 84.1 m, and the rated
power is 5.1 MW.

Element 8, at a position r/Ro = 0.71, was modified such that the airfoil shape was
1.00, instead of the original 0.13. Making only this change, the balance of aerodynamic
forces that provides the favorable stall behavior was thrown off; the operating schedule
looked like the upper plot of Figure 6.14.32 In order to fix this, the twist angle of Element
8 was modified to -4.5◦, in order that the high-lift airfoil stalled at the same windspeed as
the original airfoil. But this resulted in a lift that was too high below the rated windspeed,
lowering the aerodynamic efficiency, so an additional change was made, reducing the chord
from 1.9 m to 1.1 m. The aerodynamic behavior then returned to approximately the
contours shown in Figure 6.19. However, to maintain the necessary structural stiffness
and strength, the spar cap material thickness had to be increased from 1.4 cm to 6.0
cm; despite the reduced chord – or rather, because of it – the mass of the blade element
increased from 400 kg to 671 kg, and the cost function increased from 2.38 to 2.50.

This example highlights the rather complex tradeoffs between aerodynamic and struc-
tural performance. Increasing the maximum lift and reducing the chord has the benefit

32In particular, the rotational speed at the rated power dropped, because Element 8 produced more
power. Thus the rotational speed cutoff dropped correspondingly, and the rotor spun too slowly for the
other elements to operate efficiently.
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Figure 6.19: The power contours and operating schedule of an 84-m-diameter offshore
turbine producing 5.68× 1013 J/year
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Figure 6.20: A comparison of the masses of the optimum blades from this report, against
published masses of existing commercial turbines, as well as theoretical studies

that ultimate gust loads are lower. On the other hand, operating loads are about the same,
because to produce a given power at a given windspeed entails putting a certain thrust
force on the air with the blades. This thrust must be carried by the blade structure, and
a thick section carries the load much more efficiently than a thin section. Since the t/c
ratio is maxed out at 0.30, due to aerodynamic considerations, reducing the chord reduces
the thickness proportionately. Therefore, it is not really desirable to minimize the chord
length by using high-lift airfoils. Rather, the chord should be “appropriate”: not so large
that ultimate loads on the support structure and foundation become unreasonably high,
yet not so small that the blade spar becomes unreasonably heavy.33

There is another factor working in favor of low-lift airfoils: once the airfoil has stalled,
the maximum attached-flow lift coefficient makes no difference, and a large chord produces
more power than a small chord. Thus low-lift airfoils, with their larger chord, are actually
more efficient, aerodynamically, at high windspeeds.

It is concluded that the high damping and appropriately-sized chord obtained with
thick, low-lift airfoils lead to the most cost-effective stall-regulated blade.

6.5 Blade Mass and Choice of Material

Figure 6.20 shows the estimated mass of the COE-optimum blades, in comparison with a
variety of existing commercial blades, as well as blades from other design studies.

Two important qualifications need to be made up front. First, blade mass was com-
puted without accounting for aerodynamic brakes at the blade tips. Adding mass near the
tip would require additional reinforcement along the length of the blade, so the increase
in total mass would not be negligible. Second, the root attachment was not designed in

33Fuglsang and Madsen did not vary the rotational speed of the turbine during their optimization runs.
It is speculated that in their case high-lift airfoils gave a more appropriate chord size and power curve for
this particular rotational speed.
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Table 6.4: A comparison of the COE for fiberglass and carbon-fiber blades, in the onshore
wind climate; Eann = 2.84× 1013 J

Component Governing Glass Carbon
Load Load Cost Load Cost

Blades mb 7.412× 103 0.3279 5.890× 103 0.5646
Hub Medge 7.971× 106 0.0707 6.862× 106 0.0637
Drivetrain RoNbmb 9.240× 105 0.0861 7.343× 105 0.0715
Generator Trated 1.489× 106 0.3476 1.444× 106 0.3394
Nacelle Mflap 3.650× 106 0.2563 3.586× 106 0.2538
Yaw system Mflap 3.650× 106 0.1157 3.586× 106 0.1143
Brake system f(Prated, Nb,mb,Ω) − 0.0457 − 0.0444
Tower FTH0 + σM 4.338× 107 0.2789 3.936× 107 0.2583
Foundation FTH0 7.254× 107 0.0652 6.413× 107 0.0617
Grid connection Prated 3.037× 106 0.1545 3.141× 106 0.1589
Total: 1.7490 1.9310

detail; thickness at the root was set equal to the spar thickness of the adjacent element,
which was typically 3 to 4 cm.34 Depending on the type of root attachment, additional
material might be required in the root region, which would also increase the mass.

Balancing the above factors, the structural analysis was biased towards the conserva-
tive: the Dirlik method is inherently conservative for gravity fatigue loading (Section 3.6);
the turbulence intensity was set to an upper bound (Appendix D and Section 3.6); and
the theoretical buckling strength was reduced by a conservative factor (Section C.2.3). In
addition, there may be more weight-effective methods of stabilizing the spar caps against
buckling than to add extra webs (Section C.4.1).

As a first estimate, then, the masses in Figure 6.20 can be taken at face value. In any
case, the trends in mass are rational.

Comparing the cost-of-energy estimates for fiberglass and carbon-fiber blades, it is ev-
ident that for rotors between about 60 and 90 m diameter, fiberglass is preferable onshore,
while fiberglass and carbon-fiber are about equal offshore. Above a diameter of about 100
m, carbon-fiber is preferable; although, as discussed later in this section, improved fatigue
properties can make fiberglass competitive at larger diameters.

Table 6.4 compares the costs of two onshore turbines, whose properties are listed in
Tables F.9 and F.13. The turbines have a diameter of about 83 m; one has fiberglass
blades, and the other carbon-fiber. The reduced mass of the carbon-fiber rotor allows the
mass of the hub and drivetrain to be reduced. The superior strength and stiffness of carbon
fiber allow a smaller chord and higher tip-speed, which reduces peak aerodynamic loads,
lowering the cost of the support structure, particularly the tower. However, these savings
are overshadowed by the greater cost of the carbon-fiber material, which makes the blades
much more expensive. On balance, the fiberglass blades provide a lower cost-of-energy.

The mass of the blade with a carbon fiber spar (5890 kg) is 0.79 times the mass of
the all-fiberglass blade (7413 kg). Thus the total mass is not reduced in proportion to
the strength of carbon fiber with respect to fiberglass. From Section C.3.2, the design
strength of fiberglass in compression is 130 MPa, while that of carbon fiber is 253 MPa, a

34The argument for this approach is given in Section 4.3.1.
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Table 6.5: A comparison of mass of fiberglass and carbon-fiber blades and spar caps; units
of kg; Eann = 2.84× 1013 J, onshore wind climate, onshore cost function

Glass Carbon Carbon/glass
r/Ro mcaps mtotal mcaps/mtotal mcaps mtotal mcaps/mtotal mcaps ratio
0.082 916 916 1.00 455 455 1.00 0.50
0.154 598 1137 0.53 367 995 0.37 0.61
0.236 612 1133 0.54 324 924 0.35 0.53
0.328 562 1045 0.54 300 859 0.35 0.53
0.424 513 932 0.55 283 784 0.36 0.55
0.522 429 771 0.56 233 638 0.36 0.54
0.619 343 611 0.56 164 462 0.36 0.48
0.712 214 390 0.55 122 340 0.36 0.57
0.797 128 242 0.53 80 220 0.36 0.62
0.871 77 138 0.56 47 127 0.37 0.61
0.933 35 71 0.49 23 61 0.38 0.67
0.980 12 26 0.44 10 26 0.38 0.85

ratio of 0.51.
Table 6.5 shows the total mass of each blade element, along with the mass of the spar

caps, calculated as 2ρhcap(0.35c)Le, or πρhcapDLe for the root cylinder. The spar caps
account for a bit over half the mass of the fiberglass blade, and a bit over one-third of
the mass of the carbon-fiber blade. Taking the ratio of the mass of the carbon-fiber spar
caps to that of the fiberglass spar caps, it is evident that the mass of the spar caps is
reduced almost in proportion to the material strength. However, the secondary structure
is unchanged. Also, the thinner spar caps of the carbon-fiber blade are more prone to
buckling than fiberglass, and therefore require an additional web to stabilize the cross-
section.35 Therefore, the fractional reduction in total blade mass is much smaller.

Next, consider the case of turbines, of about 84 m diameter, optimized to the offshore
cost function: Tables F.15 and F.17. (To isolate the effects of the cost function from the
wind climate, these were optimized to the offshore cost function, but onshore wind cli-
mate.) Table 6.6 compares the turbines with fiberglass and carbon-fiber blades. Whereas
onshore, fiberglass had a clear cost advantage, offshore the cost is almost exactly the same.
The reason is that the increased cost of the carbon blades is offset by reductions in support
structure and system costs. It can be concluded that carbon-fiber blades are more likely
to be preferable offshore than onshore.

This trend continues for turbines of about 84 m diameter, in the North Sea wind
climate (Tables F.23 and F.23). The cost comparison is shown in Table 6.7.

Table 6.8 compares the costs of offshore turbines with a diameter of about 114 m. It is
evident that for turbines this large, carbon fiber gains a decisive advantage over fiberglass
as the spar material. The fiberglass blades are critical in fatigue over the inner 2/3 of
the span, largely due to alternating gravity loads. Contrast this with smaller North Sea,
fiberglass blades: at 83 m diameter (Eann = 5.68×1013 J), fatigue, buckling, and ultimate
strength are roughly equally critical; while at 63 m diameter (Eann = 2.84×1013 J), fatigue

35As described in Section C.4.1, it is assumed that the spars are restrained against buckling by adding
extra webs. There are other alternatives for buckling restraint, like a sandwich construction. Regardless,
to restrain the section against buckling requires additional material and cost, which is well represented by
additional webs.
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Table 6.6: A comparison of the COE for fiberglass and carbon-fiber blades, in the onshore
wind climate, optimized to the offshore cost function; Eann = 2.84× 1013 J

Component Governing Glass Carbon
Load Load Cost Load Cost

Blades mb 7.831× 103 0.1554 6.019× 103 0.2577
Hub Medge 8.177× 106 0.0540 6.697× 106 0.0469
Drivetrain RoNbmb 9.901× 105 0.0365 7.661× 105 0.0296
Generator Trated 1.486× 106 0.1560 1.329× 106 0.1445
Nacelle Mflap 3.787× 106 0.1309 3.432× 106 0.1238
Yaw system Mflap 3.787× 106 0.0297 3.432× 106 0.0277
Brake system f(Prated, Nb,mb,Ω) − 0.0204 − 0.0188
Tower FTH0 + σM 4.464× 107 0.1502 4.219× 107 0.1436
Platform mrH

2
0 6.845× 108 0.3734 6.143× 108 0.3407

Mooring system mrH
2
0 6.845× 108 0.3067 6.143× 108 0.2904

Grid connection Prated 2.749× 106 0.3166 2.657× 106 0.3080
Total: 1.7300 1.7320

Table 6.7: A comparison of the COE for fiberglass and carbon-fiber blades, in the North
Sea wind climate, optimized to the offshore cost function; Eann = 5.68× 1013 J

Component Governing Glass Carbon
Load Load Cost Load Cost

Blades mb 8.645× 103 0.1706 7.323× 103 0.2898
Hub Medge 9.741× 106 0.0612 8.991× 106 0.0578
Drivetrain RoNbmb 1.082× 106 0.0393 9.242× 105 0.0344
Generator Trated 2.581× 106 0.2360 2.335× 106 0.2188
Nacelle Mflap 6.751× 106 0.1842 6.584× 106 0.1814
Yaw system Mflap 6.751× 106 0.0445 6.584× 106 0.0437
Brake system f(Prated, Nb,mb,Ω) − 0.0336 − 0.0333
Tower FTH0 + σM 6.080× 107 0.1937 5.660× 107 0.1824
Platform mrH

2
0 8.974× 108 0.4729 8.565× 108 0.4536

Mooring system mrH
2
0 8.974× 108 0.3564 8.565× 108 0.3468

Grid connection Prated 5.239× 106 0.5490 5.136× 106 0.5393
Total: 2.3410 2.3810
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Table 6.8: A comparison of the COE for fiberglass and carbon-fiber blades, in the North
Sea wind climate, optimized to the offshore cost function; Eann = 1.14× 1014 J

Component Governing Glass Carbon
Load Load Cost Load Cost

Blades mb 2.956× 104 0.5616 1.812× 104 0.7691
Hub Medge 3.797× 107 0.1644 2.672× 107 0.1270
Drivetrain RoNbmb 5.041× 106 0.1611 3.063× 106 0.1002
Generator Trated 6.986× 106 0.4979 6.352× 106 0.4633
Nacelle Mflap 1.922× 107 0.3573 1.719× 107 0.3322
Yaw system Mflap 1.922× 107 0.0926 1.719× 107 0.0856
Brake system f(Prated, Nb,mb,Ω) − 0.0894 − 0.0842
Tower FTH0 + σM 1.526× 108 0.4410 1.350× 108 0.3934
Platform mrH

2
0 3.271× 109 1.581 2.652× 109 1.292

Mooring system mrH
2
0 3.271× 109 0.9103 2.652× 109 0.7658

Grid connection Prated 1.085× 107 1.073 1.142× 107 1.126
Total: 5.929 5.538

is less critical than other modes of failure. Increasing material thickness is ineffective in
reducing fatigue load factors, because of mass compounding: the mass of the additional
material worsens the edgewise fatigue loads, requiring yet more material, and so on. Thus
large fiberglass blades have a mass that is out of proportion to carbon-fiber blades of the
same size; this is visible in Figure 6.20, in Section 6.5.

The above trend, showing a transition from fiberglass to carbon at a diameter around
80 m, has been noted by Hau, who states: “Today, large rotor blades for rotors with a
diameter of more than 70 or 80 m are almost always produced by using a certain proportion
of carbon fibre” ([85] pp 247-248) On the other hand, Wind Energy – The Facts states that
LM Windpower “avoids carbon reinforcement in their latest [61.5 m long] blade.” ([193]
p 84) The author has held personal discussions with engineers familiar with commercial
blade designs, and indeed some of the latest generation of large 5 MW blades use no carbon
fiber. Improved fatigue properties of fiberglass are responsible for this. Thus the tension
fatigue properties of fiberglass shown in Section C.7.3, which represent the state-of-the-art
circa year 2000, are conservative, especially when combined with the conservative edgewise
fatigue cycle counts from the Dirlik method. Still, the cost comparisons in Tables 6.6 and
6.7 provide no reason to suspect that fiberglass is superior to carbon fiber for large offshore
blades.

6.6 Are Deepwater Offshore Turbines Cost-Competitive?

It is of interest to compare the total cost of a deepwater offshore turbine with an onshore
turbine, taking into account the higher winds offshore. In other words: does the North
Sea wind climate compensate for the costs of installing a turbine far offshore? In short,
the answer is no.

To compare the cost-of-energy between offshore and onshore turbines, and across a
range of diameters, the cost functions must be normalized. They are normalized to an
annual energy production of 1.42× 1013 J, which means that the costs are multiplied by a
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Figure 6.21: A comparison between the cost of energy of North Sea and onshore turbines,
as a function of diameter and rated power

factor of 1.42× 1013/Eann. The costs are also normalized to those of an onshore turbine,
which means that the costs computed by the offshore cost function must be doubled.36

Having normalized the cost functions, Figure 6.21 is obtained. Excluding operation and
maintenance, which were not included in the cost estimates, the minimum cost-of-energy
is obtained at a diameter between 60 and 80 m.

Table 6.9 provides a breakdown of the contribution to cost-of-energy of each turbine
system or component. Whether one compares North Sea and onshore turbines on the
basis of energy capture or diameter, the rotor-nacelle assembly of a North Sea turbine
costs much less, per unit energy. This is because the energy production per unit swept
area is much higher in the North Sea wind climate. However, the total cost of a North
Sea turbine is higher, by at least a factor of 1.35, because the support structure and grid
connection costs are so much higher.

Operation and maintenance were not included in the costs shown in Figure 6.21 and
Table 6.9. Adding operation and maintenance costs (and a more refined estimate of
manufacturing and installation costs) would change the trends in a couple ways. First,
the relative costs of a North Sea turbine would be even higher, in comparison with an
onshore turbine, because of the expense of marine operations. Second, large turbines would
come out more favorably, because of fixed, per-unit costs associated with maintenance and
installation. (Sixteen of the smallest turbines are required in order to equal the energy
production of one of the largest, 154 m diameter turbines.) That being said, the structural
and systems costs increase rapidly with diameter, above a diameter of about 100 m. It
appears unlikely that a 22 MW, 154-m-diameter turbine will be cost-effective.

If the North Sea cost curve in Figure 6.21 is given a moderate per-unit increment,37 it
36The cost models of Section 4.3 indicate a factor of about 1.4 in cost from onshore to shallow-water,

bottom-fixed offshore, and another factor of 1.5 from shallow-water to deepwater offshore. Together, these
factors can be rounded off to about 2, for comparing onshore and deepwater offshore turbines.

37Say, a normalized per-unit cost of 0.1
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Table 6.9: A comparison of the COE optimum designs for the North Sea and onshore wind
climates, where the North Sea costs (using the offshore cost function) have been doubled
in order to allow a direct comparison with the onshore cost function, but then all costs
are normalized to Eann = 1.42× 1013 J

Component North Sea Onshore North Sea Onshore North Sea Onshore
(×1013 J →) 1.42 1.42 2.84 2.84 5.68 5.68

Blades 0.0782 0.1515 0.0759 0.1640 0.1449 0.3705
Hub 0.0296 0.0345 0.0292 0.0354 0.0289 0.0396
Drivetrain 0.0188 0.0373 0.0165 0.0431 0.0172 0.0614
Generator 0.1036 0.1657 0.1050 0.1738 0.1094 0.1861
Nacelle 0.1341 0.1578 0.1060 0.1282 0.0907 0.1244
Yaw system 0.0239 0.0610 0.0228 0.0579 0.0219 0.0624
Brake system 0.0137 0.0192 0.0159 0.0229 0.0167 0.0225
Tower 0.1208 0.1566 0.0968 0.1395 0.0912 0.1486
Platform 0.2214 − 0.2020 − 0.2268 −
Mooring/foundation 0.3506 0.0491 0.2210 0.0326 0.1734 0.0277
Grid connection 0.3422 0.0862 0.2906 0.0773 0.2697 0.0655

Total: 1.4370 0.9190 1.1810 0.8750 1.1908 1.1087

Diameter (m) 45.6 61.1 63.3 83.1 84.1 116.4
Rated power (MW) 1.19 1.41 2.47 3.04 5.14 5.60
Spar material glass glass glass glass carbon carbon

appears that a turbine of about 100 m diameter, with a carbon fiber spar, a rated power
of 7.5 MW, and an annual energy production of 8.3 × 1013 J is a good starting point for
further development.

6.7 Recommended Studies and Experiments

This report has described the conceptual design of a family of stall-regulated blades for
deepwater offshore wind turbines. Provided that utilities are willing to pay a premium
of about a factor of 1.5 for energy from offshore wind – that is to say, if we shall exploit
deepwater offshore wind energy at all – then these blade designs appear to be promising
enough that they should be studied further. What are the next steps in the development?

Some of the favorable damping and power regulation properties of the optimum blade
designs depend upon a segment of the blade near the tip holding flow attached (on average)
while adjacent sections enter stall. The BEM method is not theoretically valid in this
case, because the induction is nonuniform. In addition, it is possible that stalled flow over
adjacent wing sections could impact the behavior at the attached-flow section.

This could be investigated with a wind tunnel test, in which a medium-lift airfoil
section, with slight nose-down pitch, was sandwiched between low-lift sections. Pressure
taps could give an estimate of the local aerodynamic forces. The hypothesis is that the
forces will remain close to the nominal coefficient-table values. Figure 6.22 shows a sketch
of the proposed setup. Some typical dimensions might be a 0.5 m chord, a 1 m span of
attached-flow, and 1.5 m spans of stalled flow.

One of the main outstanding questions is the behavior of the turbine under fault
events; these load cases were not considered during the conceptual design. In particular,
aerodynamic emergency brakes may be required, which would increase the mass of the
blades. The extent to which aerodynamic braking is needed may depend upon how reliably
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Figure 6.22: A recommended wind tunnel experiment, testing the effects that stall over
portions of the blade have on adjacent sections with nominally attached flow
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the local grid can be isolated from remote events: in the event of a grid fault, could energy
be temporarily dissipated at either the individual turbine or wind farm level, such that
the generator would always be available to brake the rotor?

If aerodynamic brakes are needed, it is suggested to investigate a rotating leading-edge
type design, so that the spar box is not interrupted. Such a leading-edge brake may be
particularly effective on the blade designs described here, since these have a region of
attached flow near the tip all the way up to the cutout windspeed.

Reliability of emergency braking could be increased, and downtime in the event of
an electrical system fault could be reduced, by employing multiple independent electrical
systems. These would not be redundant. Rather, a 7.5 MW rated turbine would have
three 2.5 MW generators and electrical systems driven from the main shaft.38 If each
generator could output twice its rated power for a short time during emergency braking,
then even with a fault in one generator, the remaining two could be used to brake the
turbine. Also, if there were a fault in one generator, the turbine could continue to operate
at a reduced rotational speed, with a rated power of 5 MW. Referring to Table F.29 as an
example, a turbine with a rated windspeed of 17 m/s outputs less than 2/3 of its rated
power up to 14 m/s. Thus a three-generator turbine with two operational generators
would experience no loss of energy production at windspeeds of 14 m/s or below. It would
be interesting to conduct a cost-benefit analysis of such a multiple-generator drivetrain.

The methods in this document can be directly employed for the conceptual design
of an active-stall regulated rotor. The physics of stall is nearly the same, whether the
stall is initiated passively or by a (small) change in blade pitch. In either case, operation
under stalled conditions requires tailoring of the aerodynamic profile to provide the highest
possible damping, and lowest possible loads.

Methods similar to those described in this document can also likely be developed
for conceptual design of pitch-to-feather regulated turbines. For either active-stall or
pitch-to-feather turbines, the control system response needs to be linearized. Here, the
low-frequency response is modified due to the action of the pitch regulation system, while
the high-frequency response follows the airfoil behavior under attached-flow conditions.
Such a concept is briefly discussed by Bulder et al.39 The VEWTDC project (Chapter 3)
included a pitch-regulated turbine, the Lagerwey LW750; these measurements might be
used for validation.

It is recommended to design a family of pitch-regulated blades according to similar
principles and assumptions as used in this report, such that a direct comparison can be
made between the cost-of-energy of stall- and pitch-regulated rotors.

38Three direct-drive generators could be located adjacent to each other a long the shaft. Alternatively,
one large-diameter generator might be used, with three independently-wired, interspersed sets of windings.

39Bulder et al. [19] pp 19-21; in Dutch
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Chapter 7

Conclusions

A family of fixed-pitch, stall-regulated rotor blades has been designed for a deepwater
offshore wind turbine. These blades offer a large improvement in dynamic behavior – and
thus a lower cost-of-energy – with respect to historical stall-regulated blades. It is expected
that the mechanical simplicity of a fixed-pitch, direct-drive turbine can be leveraged so
that maintenance requirements and downtime are reduced. However, the unavoidable
costs associated with the floating platform, transmission of electrical power, and marine
operations mean that the optimum deepwater offshore wind turbine is more expensive
than the optimum onshore wind turbine, even taking into account the better wind climate
offshore.

Linear, frequency-domain analysis methods were used to design the blades, in contrast
to the established approach, which is to use nonlinear, time-domain analysis. A very
simple structural model was used, consisting of an isolated blade, rigidly attached at the
root, and rotating at a constant speed. This simplicity is an advantage during optimization
of the blade profile, because it avoids artificial resonance when the dynamic properties of
the rotor and support structure are not optimally tuned.

Two enhancements to existing frequency-domain methods1 were required in order to
obtain a sufficiently accurate prediction of dynamic behavior. First, the tangential (in-
plane) component of atmospheric turbulence had to be modelled, in addition to the axial
component. Second, it was necessary to consider the effects of dynamic stall on the
excitation and damping of blade vibration.

A new, linear dynamic-stall model was developed and validated against nonlinear anal-
ysis and measurements on full-scale turbines. The linear dynamic-stall model is partic-
ularly well-suited to calculating an equivalent slope of the lift coefficient (CL versus α)
curve for use in the transfer function between windspeed and force at a point along the
blade. Different equivalent slopes are calculated for excitation and damping of vibration:
the excitation slope captures the range of fluctuation in the lift force, while the damping
slope matches the energy dissipated over a cycle of oscillation. The linear dynamic stall-
model is accurate when the amplitude with which the angle-of-attack fluctuates is 3◦ or
less, and the frequency is 0.8 Hz or above. Accuracy deteriorates when the angle-of-attack
fluctuates with a large amplitude and low frequency.

The comparison against full-scale turbine data indicates that the linear dynamic-stall
model estimates the severity of blade vibration to an accuracy that is sufficient for pre-
liminary design, but not for detailed design or certification. There are two main sources
of error in the frequency-domain predictions of fatigue: first, the linearization of aero-

1Burton et al. [22] describe existing methods.
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dynamic forces; and second, the use of the Dirlik method to count fatigue cycles based
upon load spectra. For flapwise vibration, the former is more significant, while for edge-
wise vibration, the latter is more significant. Simplified linear methods cannot accurately
predict the severity of resonance between blade and drivetrain modes, if this resonance is
extreme. But linear methods can predict the existence of such resonance, and can be used
to tune structural frequencies to avoid the problem in the first place. In addition, if the
analysis is run with a turbulence intensity that is at the upper bound of the feasible range
– 0.2 was used in this project – then predictions of fatigue loading are biased towards the
conservative.

A gradient-based optimization algorithm was employed to optimize the blade de-
signs for minimum cost-of-energy. Such algorithms require that the model is numerically
smooth, in order that estimates of the gradient are accurate. This makes the use of tab-
ulated airfoil coefficient data problematic. A numerically-smooth model was developed,
based upon an amalgamation of published data, which captures the range of observed
airfoil behavior as a function of three parameters: the Reynolds number, the t/c ratio,
and the “shape”. This latter parameter varies between 0 and 1, and determines whether
the airfoil is low-lift and smoothly-stalling, high-lift and sharply-stalling, or somewhere
in between. The simplicity of the model allows the optimizer to choose between a large
variety of airfoils, using a minimum number of design parameters.

The family of blades was optimized with the goal of minimizing cost-of-energy. Models
were developed to represent the cost of onshore and floating wind turbines. These models
estimate the mass of the various components of the turbine based upon load components
and power output from the rotor. The cost of each component is then assumed to be
proportional to the mass. The cost models were calibrated to provide reasonable trends
over a large range of turbine sizes.

The results of the optimizations show that with careful tailoring of the blade profile, it
is possible to obtain high aerodynamic damping throughout the operational range, along
with a constant power output above the rated windspeed. This favorable behavior is partly
a result of back-twist (pitching the airfoil such that the nose points into the wind), which
keeps flow attached (on average) over a section of the blade at or near the tip, all the way
through the cutout windspeed.

A variable-speed electric system, as is standard on pitch-regulated turbines, is neces-
sary; with the ability to vary the rotational speed by a small amount, power output and
loads can be accurately predicted throughout the stalled range.

It was assumed that the offshore wind turbine was located in the North Sea, which has
a high average windspeed. The optimum North Sea blades have a rated power per unit
swept area in the vicinity of 1,000 W/m2. This is higher than existing designs, which are
typically in the range of 400 to 600 W/m2. A numerical experiment showed that at high
values of Prated/A, savings in the cost of the blades and support structure outweigh the
additional costs associated with the electric system.

The optimum blade design involves a tradeoff between structural and aerodynamic
performance, and the optimum designs are biased more towards structural efficiency than
existing designs. The airfoils have a thickness-to-chord ratio of 0.30 up to r/Ro of about
0.8. This is made possible by the relatively good aerodynamic performance of modern
airfoils up to 30% thick. Medium-lift airfoils are used near the root, and low-lift airfoils
over the outboard portion of the blade, with the possible exception of the back-twisted
section. Nowhere along the blade are high-lift airfoils used.

Blades with fiberglass and carbon-fiber spars were studied. The tension fatigue prop-
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erties used for fiberglass were likely conservative, in light of today’s blade materials. This
resulted in carbon fiber becoming preferable beyond a rotor diameter of about 80 m. Re-
gardless, with the exception of small blades (D < 60 m), carbon fiber is competitive with
fiberglass for the blades of an offshore turbine. The reduced mass of carbon-fiber blades
compensates for the increased cost of the material, because tower-top mass governs the
cost of the floating platform.

It was found that energy from the optimum floating wind turbine costs about 1.35 times
that from the optimum onshore wind turbine, not including operation and maintenance.2

The better wind climate in the North Sea did not compensate for the increased costs of
the support structure and grid connection.

In the long term, deepwater wind turbines are promising, despite the fact that they cost
more than onshore wind turbines. The reason is that there are vast areas of ocean with high
average windspeeds. A factor of 1.5 on the cost-of-energy is not insurmountable, especially
if economic development causes global energy costs to rise. It is therefore recommended
to continue development of the blade designs described in this report, with two goals in
mind: first, to determine whether the improved damping and stall behavior makes these
blades competitive with comparable pitch-regulated designs, in light of the potential to
reduce maintenance costs. The second goal should be to study the dynamic behavior of
the designs in more detail, especially the aerodynamics of the back-twisted section near
the tip, and the behavior of the turbine under abnormal conditions, like an emergency
stop.

2The actual cost ratio is expected to be even higher, say, 1.50, because marine operations are more
expensive than on-land operations.
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Appendix A

Terminology

Variable Description
A area; constant; coefficient; amplitude; matrix; in-plane stiffness
AR aspect ratio
a constant; axial induction factor; in-plane flexibility; distance; integer
B constant; extension-bending coupling stiffness; matrix
b constant; vector; extension-bending coupling flexibility; length dimension; integer
C constant; cost; generalized damping
CD drag coefficient
CL lift coefficient
C̃L linearized lift coefficient
CM moment coefficient
CN normal force coefficient
CP power coefficient
CT thrust coefficient
COE cost of energy
c airfoil chord; constant; cost; centroid distance; damping matrix; integer
D diameter; bending stiffness; symmetric matrix; aerodynamic damping; variable
d direction for a line search; bending flexibility; constant; distance; damage
E energy production; elastic modulus
E[ ] expected value operator
F force
f frequency (Hz); conversion factor on cost; Prandtl factor
G cost of grid connection; shear modulus; generalized force
Gxy shear modulus
g gravitational acceleration; vector of constraints; number of standard deviations
H transfer function; generic variable; height
H0 hub height
h material thickness; generic variable
h0 surface roughness length
I turbulence intensity; installation cost; bending moment of inertia
i

√
−1; interest rate

J torsional moment of inertia
j index
K constant; fatigue constant; generalized stiffness; azimuthal variation; modified Bessel
k index; reduced frequency = ωc/2V ; constant; exponent; stiffness matrix
L length; turbulence length scale
LF load factor, e.g. load/allowable load
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M moment; moment resultant; mach number; maintenance cost; generalized mass
m mass; mass matrix; fatigue exponent; generic multiple; spectral moment
N total number; force resultant
n number of cycles; exponent; generic multiple; normal vector
O vector to origin
P rotor rotational frequency; power; load
P average power
PF generator power factor P/Prated

p probability density; internal loads
Q correlation function; ply stiffness; displacement; torque; variable
q transformed search direction; generalized coordinate
R radius; outer radius; loading ratio; variable
r radial coordinate; radius of curvature; growth rate
Re Reynolds number
S spectrum; cost of structure; allowable stress; shape function; matrix
s separation point position; stress amplitude; position variable; generic variable
shape airfoil shape parameter
T period; torque; coordinate transform matrix; time solution
t thickness; airfoil thickness; time
U velocity; dissipated energy; strain energy; upper triangular matrix
u fluctuation in axial velocity; x displacement; distance
V velocity; windspeed; volume
v fluctuation in velocity; y displacement
W work; z displacement; displacement vector
w z displacement; displacement vector
X distance between turbines
x generic variable; design variables; position vector
x̃ solution to a linear program
Y number of seconds in a year
y generic variable; distance
Z matrix; variable
z through-thickness coordinate
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Variable Description
α angle-of-attack; weibull parameter; generic variable
β constant; weibull parameter; generic variable
Γ gamma function
γ slope dCL/dα; design variable derivatives; yaw offset; shear strain
δ error in damping ratio; load factor derivatives
ε error ratio; strain; damping ratio derivatives; small value
ζ damping ratio
η goodness-of-fit metric
Θ vector of rotational displacements
θ generic angle; ply angle; rotational displacement
κ normalized chord c/Ro; curvature
λ eigenvalue
µ viscosity; variable portion of cost
ν kinematic viscosity = µ/ρ; small parameter; inflation rate
νxy, νLT , ν12 Poisson’s ratio
ξ twist angle
Π objective function; potential
ρ physical density; probability density
σ stress
σr rotor solidity
τ time offset; time constant; shear stress
Φ mode shape
φ phase angle; inflow angle
φC circulation
χ wake skew angle
ψ azimuth angle
Ω rotational speed
ω frequency (rad/s)

Superscript Description
12 ply coordinates
a airfoil coordinate system
b blade coordinate system
o one-sided
r rotor coordinate system
s airfoil section coordinate system
xy laminate coordinates
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Subscript Description
∞ remote
0 baseline
2D two-dimensional
a attached flow; allowable; airfoil coordinates; alternating
ann annual
avg average
b drag bucket; blades; blade coordinates
br brake system
c systems or components; centroid
cap spar cap
cb blade centroid
cg center of gravity
ch hub centroid
cr critical
D drag; dissipated
d damping; design
dv design variables
dyn dynamic
e excitation; element
edge edgewise component
eff effective
emp empirical
eq equivalent
exc exceedances
FS fully-stalled
f fatigue; flapwise
flap flapwise component
G generalized force
g generator
gear gearbox
gen generator
h hub
i index; intersection; induced velocity; inner
in in-phase
int internal
j index
K kinetic
k index
L lift; longitudinal
LB lower bound
LT shear (longitudinal-transverse)
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M root moment
m matching; mean
max maximum
min minimum
n normal component; nacelle; natural
nose airfoil nose
o outer
out out-of-phase
P potential
p platform
q quasi-steady; generalized displacement
Re Reynolds number
r rotational; rotor-nacelle assembly; radial station; rotorplane coordinates
rated rated power or windspeed
ref reference
rot rotor
s stall; separation point; separated flow; shaft; structural; section coordinates
st static
T thrust; transverse
t tangential component; torsional; tower
tc t/c ratio
tip blade tip
UB upper bound
u axial direction; axial velocity; x displacement
v transverse direction; y displacement
w vertical direction; z displacement; wake
X x component
x x component
Y y component; flapwise; flatwise
y y component; yaw
Z z component; edgewise
z z component; axial component; zero
θ angular
σ centrifugal stiffness; stress

A.1 Coordinate Systems

There are four coordinate systems used in the analysis: rotor, blade, section, and airfoil.
These are sketched in Figure A.1.

The rotor coordinate system is oriented with the Zr axis pointing downwind, aligned
with the axis of rotation of the rotor. The Y r axis points straight up (rotor tilt is ne-
glected), and the Xr axis is parallel to the ground or mean water level.

The blade coordinate system is offset from the rotor coordinate system by a rotation
about the Zr (same as Zb) axis by the azimuth angle ψ. The Xb axis points along the
blade. It is assumed that the Xb axis passes through the centroid of the structural cross-
section along the entire length of the blade.

There is a beam section coordinate system associated with each structural element.
The Y s axis is parallel to the weak principal axis, which is assumed to be parallel to the
airfoil chord. The Zs axis is parallel to the strong principal axis. The Xs axis is aligned
with the Xb axis. The Y s and Zs axes are offset from the Y b and Zb axes by a rotation
about the −Xb axis by the element twist angle ξ. (The negative sign means that a positive
twist angle rotates the blade such that it points into the wind; this is a convention of wind
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Figure A.1: Definitions of coordinate systems for aerodynamic and structural analysis

turbines.)

A.2 Convention for Vectors and Matrices

Vectors and matrices are not marked explicitly with bold font, overhead arrows, brackets,
or tensor subscripts. A general column vector is written as, for example, the velocity
V . A subscript may be used to identify different variables; for example, the remote
velocity vector incoming to a particular location on the blade is denoted V0. If the vector
is referenced to a particular coordinate system, then a letter identifying the coordinate
system is placed as an exponent; for example, the incoming velocity referenced to the airfoil
coordinate system is V a

0 . If a single component of the vector is needed, then the vector is
enclosed in parentheses, with the subscript in the parentheses specifying the component.
Thus, (V a

0 )X is the X component, in airfoil coordinates, of the incoming velocity. Finally,
if a vector component is raised to a power, the power appears as a superscript outside the
parentheses; for example, (V a

0 )2
X .

For matrix operations, the transpose operation is sometimes required. Transposed
vectors and matrices are denoted with a superscript T . For example, xT is the row vector
of coordinates x. The transpose of a matrix is denoted in the same manner; for example,
the transpose of the mass matrix is mT . If the vector or matrix is referenced to a particular
coordinate system, then the transpose is denoted as, for example, (mb)T , which should be
read as “the transpose of the mass matrix, referenced to blade coordinates.”

Similarly, the inverse of a matrix is denoted with a superscript −1; so (kb)−1 is the
inverse of the stiffness matrix, referenced to blade coordinates.

Transforming between reference coordinate systems is accomplished by way of a trans-
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form matrix T . The “from” coordinate system is identified by a letter in the subscript,
while the “to” coordinate system is identified by a letter in the superscript. So, for exam-
ple, T ba transforms a vector from airfoil coordinates to blade coordinates. The operation
works like the following:

xb = T bax
a. (A.1)

We began with a position vector x referenced to airfoil coordinates, and we ended with
the same vector referenced to blade coordinates. In order to go back, we can define
T ab = (T ba)−1 = (T ba)T (where the fact that the inverse and transpose are equivalent is
peculiar to transform matrices). Then, xa = T ab x

b.
In the convention used in this document, a transform matrix like T ba always transforms

whatever vector or matrix it multiplies; therefore it is not always the same matrix. For
example, the transform matrix in the equation

xb = T bax
a,

where x is a vector of the positions of all the nodes in a FEM model, is not the same as
the transform matrix in

V b
0 = T baV

a
0 ,

where V0 is a three-component spatial vector. But the operation – taking a vector refer-
enced to airfoil coordinates and converting it to a vector referenced to blade coordinates
– is identical.
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Appendix B

Aerodynamic Analysis Methods,
Mean Aerodynamic Loads, Power
Production, and Operating
Schedule

This project employs frequency-domain methods to compute the dynamic response of
the blade. The calculation consists of two parts: the mean operating state of the rotor,
and fluctuations with respect to the mean. This chapter describes the methods used to
calculate the mean operating state. The dynamic response is discussed in Appendix D.

Section B.1 begins by discussing the blade element momentum method. Section B.2
describes how the BEM calculations are used to compute mean loads and power produc-
tion. Section B.4 discusses how the rotational speed schedule is determined, as a function
of mean windspeed, and how this relates to power production and loads.

B.1 The Blade Element Momentum Method

The quasi-static blade element momentum (BEM) method is used to calculate the mean
aerodynamic loads and power production.

Comparisons with test data indicate that the BEM method is accurate when flow is
attached along the majority of the blade length, and less accurate (without empirical
modification) when the majority of the blade is stalled. This is no surprise. The mo-
mentum balance equations are derived from a control volume analysis, which assumes
that no flow passes across the walls of the streamtube. When the blades stall, the flow
becomes turbulent and disorderly, and three-dimensional flow can occur. This invalidates
the assumptions.

How bad are the “less accurate” predictions after stall? Not that bad, provided that
the turbine is variable-speed, controlled to constant power beyond stall. This is discussed
in more detail as part of Section B.4.3.

It is particularly important to predict how stall progresses over the outboard half of the
blade. This determines the rated power on a stall-regulated wind turbine (but not a pitch-
regulated wind turbine, whose blades are pitched to prevent stall). The BEM method can
provide an accurate prediction of the maximum power, although on fixed-speed turbines
the calculation is sensitive to the values of the airfoil force coefficients. Figure B.8, in
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Section B.4.3, provides an example.
Reference [152] describes the comparison of predictions from seven BEM-based (and

one free-wake vortex) aeroelastic codes against test data collected on full-sized turbines
during operation. Conclusions of the study were:

1. Below the rated windspeed1 of a stall-controlled turbine, BEM power predictions
matched measurements to within 10%.

2. At rated windspeed, the difference between calculated and measured power can be
“more than 15%” ([152] p 22).

3. Blade fatigue loads are predicted to about ±15%, while mean loads are predicted to
±5% to ±10%.

4. The prediction of loads in components other than the blades tended to be less accu-
rate; a difference of “often between 10% to 40%” (p 23) is given. This is, however,
dependent on the structural model used, in addition to the BEM method.

5. Accuracy can be expected to be much lower (differences of 50%) under “special”
conditions, for example failure of a yaw or pitch system.

6. The more theoretically advanced free-wake vortex model did not provide better
results than the BEM method.

From the above, it can be concluded that the BEM method is sufficiently accurate for
preliminary design, which is all that is needed for this report. When coupled with a good
structural model, it is also sufficiently accurate for final design and certification, although
some allowance for error must be made by using conservative assumptions, especially in
extreme or unusual load cases.

B.1.1 Momentum Balance

The foundation of the blade element momentum method is the balance between the force
on a segment of the blade – the blade element – and the change in momentum of the air
flowing past. (This is in essence Newton’s Law, F = ma.) The derivation is presented in
many references.2

The momentum balance equation applies for an arbitrary planar surface in space,
representing a portion of the rotorplane.3 Such a surface is drawn in Figure B.1, where it
has been chosen as a closed annulus. A closed annulus is a good choice, because the same
blade elements sweep around and around the annulus.

The momentum balance equation is:

F = −2ρA |V0 + (fVi · n)| fVi. (B.1)

In this equation, F is the force vector of the air on the blades (not of the blades on the
air; hence the negative sign on the right-hand side of the equation). A is the area of the

1Rated windspeed is the windspeed at rated power, which can be thought of as the “stall point” of a
stall-regulated wind turbine.

2For example, Wilson and Lissaman [191], Burton et al. [22], and Hansen [80]. Reference [127] contains
a derivation which uses the same terminology as this report.

3In the case of a coned blade, the rotorplane is not coned; it is defined as a flat plane located at a
position that “best” represents the rotor.
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Figure B.1: A sketch of an annulus used for momentum balance

surface, and n is the surface normal vector. V0 is the remote upstream velocity vector
of the air that passes through the surface. Vi is the induced velocity vector: this is the
change in velocity of the air as it flows from far upstream to the rotorplane, such that
V0 + Vi is the (uncorrected) velocity of air which passes through the surface. Finally, f
is the Prandtl factor, which corrects for the fact that there is a finite number of blades
(Section B.1.2). The vectors F , V0, Vi, and n can be written in any coordinate system,
although using surface (rotorplane) coordinates is a logical choice:

F r = −2ρA |V r
0 + f(V r

i )Z | fV r
i . (B.2)

One thing that is remarkable about Equations B.1 and B.2 is that the velocity re-
lated to the mass flow rate, |V r

0 + f(V r
i )Z |, includes the full magnitude of the remote

velocity V r
0 , and not just the component that is normal to the surface. This result is not

straightforward. Its origin is described by Burton et al.4

The equations are frequently presented in non-dimensional form. Begin with the mo-
mentum balance of the components normal to the surface:

(F r)Z = −2ρA |V r
0 + f(V r

i )Z | f(V r
i )Z . (B.3)

Define thrust coefficient:

CT =
(F r)Z

1/2ρA |V0|2
; (B.4)

CT = − 2ρA
1/2ρA |V0|2

|V r
0 + f(V r

i )Z | f(V r
i )Z ;

CT = −4
1
|V0|2

f(V r
i )Z

√
[(V r

0 )Z + f(V r
i )Z ]2 + (V r

0 )2
X + (V r

0 )2
Y ;

CT = −4f
(V r
i )Z
|V0|

√[
(V r

0 )Z
|V0|

+
f(V r

i )Z
|V0|

]2

+
(V r

0 )2
X + (V r

0 )2
Y

|V0|2
.

4Burton et al. [22], pp 99-103
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Figure B.2: Definition of the yaw offset angle

Now, define an axial induction factor a as −(V r
i )Z/|V0|. Physically, this is the amount

the air slows down in the axial direction, between far upstream and the rotorplane, in
comparison with the total incoming velocity. Also define a yaw offset angle γ (Figure
B.2):

cos γ =
(V r

0 )Z
|V0|

; sin γ =

√
(V r

0 )2
X + (V r

0 )2
Y

|V0|
. (B.5)

Then, the thrust coefficient becomes:

CT = 4fa
√

(cos γ − fa)2 + sin2 γ. (B.6)

Note that if incoming flow is axial, γ = 0 and:5

CT = 4fa|1− fa|. (B.7)

When a > 0.5, momentum theory becomes invalid, and an empirical correction is
required. Reference [126] contains a literature search and study of published empirical
formulas. The recommended formula is that of Burton et al. [22] (p 67):

a2 = 1; CT2 = 1.82;

a1 = 1− 0.5
√
CT2; CT1 = 4a1(1− a1);

aempf =
CT − CT1

CT2 − CT1
(a2 − a1) + a1. (B.8)

Again, f is the Prandtl factor. When the calculations are being performed, one takes
the lesser of the empirical aemp and the theoretical a computed by solving Equation B.6.
Details of the calculation procedure are described in Reference [126], and shall not be
discussed here.

5Some references omit the second f , such that the equation is CT = 4fa|1 − a|; the difference is not
large, and test data is inconclusive. [126]
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Finally, without going into details, when the rotorplane is yawed or tilted with respect
to the incoming flow, the induced velocity is assumed to vary as a function of azimuth. A
factor K is used to account for the azimuthal variation. The following equation was used
in the analysis described in this report:6

K = 1 +
r

Ro
tan

(
χ

2

)
cos(ψ − ψw). (B.9)

χ is the wake skew angle, ψ is the azimuth angle, and ψw is the azimuth angle (projection
onto the rotorplane) of the vector pointing in the direction of the wake.

B.1.2 Prandtl Factor

The Prandtl factor is defined as follows:7

f =
2
π

cos−1
(
eNb(r−R)/(2r sinφ)

)
, (B.10)

with:

sinφ =
|V · n|
|V |

. (B.11)

The vector V is the flow at the rotorplane, relative to the blades; it includes the rotational
motion of the blades in addition to the net vector of remote and induced velocity.

At tip speed ratios below 5, the Prandtl factor tends to overpredict the lift force.
The Prandtl factor is valid when flow about the blades is attached, and thus the wake

structure is well-defined. When flow at the blades is separated (the blades are stalled),
the assumptions used in the calculation of the Prandtl factor are no longer valid. This
leads to the conclusion that the Prandtl factor should be applied only to the lift force, not
the drag force. The drag force must also approach zero near the blade tip, however not
necessarily in the same manner as the lift force.

Because simple momentum balance theory breaks down when flow is stalled, it is not
necessarily a problem that the Prandtl factor becomes invalid, as well. Therefore, for the
analyses in this report, the calculations do not distinguish between lift and drag in the
application of the Prandtl factor.

B.2 Calculating Mean Aerodynamic Loads and Power Pro-
duction

The theory of Section B.1 is implemented as an iterative calculation. Once convergence
is obtained8, the left-hand side of Equation B.2 – which comes from transforming the
airfoil lift, drag, and moment – contains the forces and moments at each blade element,
referenced to a common rotor coordinate system. These are used as the mean loads in the
structural analysis.

6Hansen [80] p 98
7For example, Hansen [80] p 53. A good reference for the derivation of the equation by potential flow

methods is Prandtl [144]. This is not the original reference of publication of the equation, but it is in
English and is available on the Internet (as of May 2009).

8Convergence to a tight tolerance (necessary for optimization) can be difficult, particularly in cases in
which the rotor spins fast in low winds, leading to possible flow reversal. In this project, progressively-
tightened numerical damping was employed to ensure convergence.
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Figure B.3: The distribution of elements (both structural and aerodynamic) along the
blade

Unlike the structural dynamic analysis, which considers only one blade, all the blades
are included in the BEM calculation. Rotor-average forces and moments are calculated
as:

F rrot =
Ne∑
j=1

F rj ; (B.12)

M r
rot =

Ne∑
j=1

(M r
j + rj × F rj ); (B.13)

where j indexes the blade elements, r is the vector from the rotor axis to each element,
and F r and M r are local airfoil forces and moments, in the rotor coordinate system. Shaft
power is calculated as P = (M r

rot)ZΩ.
The blade is divided into 12 elements along its span, as sketched in Figure B.3. This

distribution of elements is used for both structural and aerodynamic analysis. The element
length is refined towards the tip, because the aerodynamic forces change rapidly in this
region. The element adjacent to the axis of rotation is not numbered. This element
represents the hub. It is not modeled aerodynamically, and is assigned a high stiffness
during the structural calculation.

In order to calculate annual energy production and structural fatigue, the turbine
must be analyzed over the range of windspeeds between cut-in and cut-out. The cut-in
windspeed is assumed to be 4 m/s, and cut-out 26 m/s. This range is divided into 11 bins,
each of width 2 m/s. Analysis is performed at windspeeds of 5, 7, 9, . . . , 23, and 25 m/s.

Wind shear, described in Section E.2, has an effect on the mean output power and loads.
This is accounted for by taking the average velocity over the annulus swept by each blade
element, where wind shear is included when calculating the average. Using the average
velocity is not precise, because power varies with V 3

∞, but it is close enough. Figure B.4,
taken from time-domain simulations using the NREL 5 MW reference turbine geometry,
shows that the difference in output power between actual wind shear and annulus-average
velocity is negligible.

The effect of wind shear on fluctuating blade loads is considered separately, as part of
the dynamic structural analysis. This is discussed in Section D.7.

B.3 Establishing an Optimum Aerodynamic Profile at a
Single Operating Point

As described in Chapter 5, the starting point for numerical optimization was an aerody-
namically optimum blade, having maximum CP at a chosen design windspeed. In order
for CP to be maximized, the airfoils along the blade should all operate at their peak
lift-to-drag ratio.
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Figure B.4: A comparison of calculated power using two wind shear methods: one the
actual, local velocity including the effects of wind shear; and the other using a uniform
average windspeed for each blade element annulus, where the average includes the effects
of wind shear

What is the best lift-to-drag ratio, and associated angle-of-attack? For simplicity, only
one airfoil is considered, which is representative of the outboard portion of a blade. Figure
3.22 shows coefficients for an 18% thick, smoothly-stalling airfoil.

On this airfoil, the maximum lift-to-drag ratio is in the range 63-70 (depending on
Reynolds number).9 We will use CL = 0.77 and CD = 0.011, for Re = 2× 106. These are
obtained at an angle-of-attack of 4◦. The design angle-of-attack αd, at V∞ = Vd, should
therefore be 4◦, for this airfoil.

Specifying αd, CL, CD, Vd, Ro, Ω, ρ, and Nb is sufficient to determine the chord and
twist profiles. Here is how the calculation proceeds. The first step is to find the induced
velocity at which power is maximized, to satisfy the criterion of maximum CP . Write
Equation B.2 for the design condition, considering only the Zr component of momentum:

(F r)Z = −2ρA [Vd + f(V r
i )Z ] f(V r

i )Z ; (B.14)

P = (F r)Z [Vd + (V r
i )Z ] = −2ρA [Vd + (V r

i )Z ]2(V r
i )Z . (B.15)

When power is maximum, ∂P/∂(V r
i )Z = 0. Thus:

∂P

∂(V r
i )Z

= 0 = −2ρA {2[Vd + (V r
i )Z ](V r

i )Z + [Vd + (V r
i )Z ]2};

2(V r
i )Z + [Vd + (V r

i )Z ] = 0;

9This lift-to-drag ratio is less than that of the best laminar-flow airfoils; but recall that we are assuming
a roughened leading edge.
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(V r
i )Z = −1

3
Vd. (B.16)

Next we wish to obtain an initial guess for the twist distribution ξ(r) and the chord
distribution c(r). Consider an annulus of the swept area of the rotor, as shown in Figure
B.1. The annulus is centered at radius r, and is of width dr. Returning to Equation B.14,
considering only the annulus, write the Zr component of the airfoil lift and drag forces on
the left-hand side:

Nb
1
2
ρc dr |V |2(CL cosφ+ CD sinφ) = −2ρ(2πr dr) [Vd + f(V r

i )Z ] f(V r
i )Z ;

Nbc |V |2(CL cosφ+ CD sinφ) = −8πr [Vd + f(V r
i )Z ] f(V r

i )Z . (B.17)

We also have, by Figure D.19:

φ = atan
(
Vd + (V r

i )Z
rΩ− (Vi)t

)
; (B.18)

φ = ξ + αd; (B.19)

and:

|V | = Vdes + (V r
i )Z

sinφ
. (B.20)

Note that the Prandtl factor is applied on the momentum side of Equation B.17, which
is based upon annulus-average flow properties, but not on the airfoil force side of the
equation (|V | or φ), which is based upon local flow properties.10

For an initial guess, we can set (Vi)t to zero, because it is small relative to rΩ on the
outer portion of the blade. In this case, ξ and c are the only two remaining unknowns,
and these can be solved for in closed-form. The following procedure is used to calculate ξ
and c at the annulus at location r:

1. Choose a blade tip radius Ro and rotational speed Ω, guided by a desired value for
tip speed Vtip = RoΩ.

2. Calculate the inflow angle (neglecting (Vi)t):

φ = atan
(
Vdes + (V r

i )Z
rΩ

)
;

using (V r
i )Z = (1/3)Vdes.

3. Calculate the blade twist angle ξ = φ− αd, using the ideal αd, in our case 4◦.

4. Calculate the Prandtl factor f by Equation B.10.

5. Calculate the velocity seen by the airfoil, |V | = (Vdes + (V r
i )Z)/ sinφ.

6. Finally, calculate the chord from Equation B.17:

c =
−8πr [Vdes + f(V r

i )Z ] f(V r
i )Z

Nb |V |2(CL cosφ+ CD sinφ)
;

using CL and CD at αd.
10Burton et al. [22] p 83
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Once the initial guess for geometry has been obtained, we must relax the assumption
that (Vi)t is zero. The calculation is then iterative. Here are the steps, which are similar
to those listed above:

1. Calculate the tangential induced velocity, using the tangential component of Equa-
tion B.2:

(Vi)t =
−Nbc(CL sinφ− CD cosφ)

8πr[Vdes + f(V r
i )Z ]f

.

On the first iteration, values for the variables come from the initial guess above. As
before, CL and CD correspond to the optimal αd.

2. Calculate the inflow angle (neglecting (Vi)t):

φ = atan
(
Vdes + (V r

i )Z
rΩ− (Vi)t

)
;

using (V r
i )Z = (1/3)Vdes.

3. Let ξ0 be the value of ξ from the previous iteration (or initial guess). Update the
blade twist angle ξ = φ− αd.

4. Calculate the Prandtl factor f by Equation B.10.

5. Calculate the velocity seen by the airfoil, |V | = (Vdes + (V r
i )Z)/ sinφ.

6. Calculate the chord from Equation B.17:

c =
−8πr [Vdes + f(V r

i )Z ] f(V r
i )Z

Nb |V |2(CL cosφ+ CD sinφ)
;

using CL and CD at αd.

7. Check convergence: ξ − ξ0 should be near zero.

The above calculations were programmed, with results as shown in the figures of Sec-
tion 5.1.

B.4 Operating Schedule

Figure B.5 shows an example of an operating schedule for a variable-speed, fixed-pitch,
stall-regulated wind turbine. The operating schedule specifies the desired rotational speed
as a function of the mean windspeed. The contours in Figure B.5 show the shaft power,
while the black line is the operating schedule that is obtained using this procedure:

1. Locate the lowest rotational speed at which the rated power is reached. This point
is the rated windspeed.

2. For windspeeds below rated, scan to find the rotational speed at which power is
maximized. Truncate the rotational speed at a maximum of the cutoff determined
by Item (1).

3. For windspeeds above rated, scan to find the rotational speed at which power is
equal to rated power.
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Figure B.5: An example of an operating schedule, specifying the desired rotational speed
as a function of mean windspeed

B.4.1 Power Contours and Angles-of-Attack

The power contours in Figure B.5 have a characteristic shape. This is related to the
angles-of-attack along the blade span.

As an example, consider the 400 kW contour in Figure B.6. At a high rotational speed
and moderate windspeed, flow is attached along most of the blade. But the angle-of-attack
is low, and only a small component of the airfoil lift force produces torque on the rotor.
Increasing the rotational speed leads to drag losses that outpace the torque due to lift,
thus the contour is tilted slightly towards higher windspeeds.

Reducing the rotational speed, there is a “knee” in the power contour. This represents
the onset of stall over the inboard portion of the blade. Continuing to follow the con-
tour around the bend, rotational speed is held relatively constant, while the windspeed
increases. Angles-of-attack increase at different rates along the blade, leading to a pro-
gressive stall from the root to the tip.11 There is a balance between increasing forces due
to increasing windspeed (force is proportional to V 2, all else being equal), and lower lift
and higher drag due to stall. In the ideal design, these changes nearly cancel, and power
is constant at a fixed rotational speed. In real designs, it is typical that the rotational
speed has to be increased slightly to maintain constant power. This is seen in Figure B.6.
At even higher windspeeds (off the scale of the plot, beyond cut-out), the trend reverses,
and rotational speed must decrease to hold power constant.

11The specific pattern of this stall progression depends upon the spanwise distribution of airfoil properties
and twist angle. Adjusting the progression of stall is the primary means for the blade designer to increase
the aerodynamic damping, which is critical at high windspeeds. Chapter 6 discusses this in more detail.
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Figure B.6: Explanation of the shape of the power contours

B.4.2 Generator Torque Control

Generator torque control is used to hold the output power at a target value, which is a func-
tion of mean windspeed.12 The simplified, frequency-domain analysis methods employed
in this report do not require that the generator torque control algorithm be specified.

Stall-regulated, variable-speed turbines have been investigated extensively. For in-
stance, Muljadi et al. [133] demonstrate that generator torque control can be used, in
combination with variable speed, to obtain a desired post-stall rotational speed profile, as
well as operate at maximum CP below the rated windspeed. Thus the operating schedule
shown in Figure B.5 is realistic.

Bulder et al. [20] studied the feasibility of a large (10 MW), two-bladed, stall-regulated
turbine. Different concepts of rotational speed control were evaluated. These can be
grouped into two categories:

1. The rotational speed of the rotor is limited such that a gust or lull in the wind cannot
result in the turbine exceeding its rated power.

2. The average rotational speed follows the rated power contour, such that a gust or
lull can result in a shaft power that is greater than rated, at least temporarily.

The advantage of the latter approach is that aerodynamic efficiency is better at windspeeds
immediately below rated. However, the disadvantage is that a moderate gust can result
in significant overpower, which must be absorbed by either the electrical system or some

12The actual control algorithm would likely be based upon maintaining the rotational speed that holds
average power constant. The instantaneous power output will fluctuate up and down, as generator torque
is varied to control the speed.
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Figure B.7: Two options for the rotational speed schedule, showing that by holding aero-
dynamic efficiency at a maximum up to rated power, more energy is captured, but a gust
can result in significant overpower

other braking system. This is illustrated in Figure B.7, using the example turbine from
Figure B.5.

Bulder et al. are optimistic about the second control strategy, maximizing energy
production at the risk of severe overpower. They suggest that it may be possible to
predict changes in windspeed ahead of time (presumably by on-site, upwind meteorological
towers: [20], pp 42-43), allowing the control system to adjust the rotational speed before
gusts impact the rotor. They observed a significant increase in energy production (20%)
by following the second strategy, as compared to the first; this large increase in energy
production is the motivation for pursuing such a risky control strategy.

However, with redesigned blades, this risk may not be necessary. Bulder et al. opti-
mized the blades of the turbine for maximum energy production at low windspeeds; but
the blades had poor stall behavior. The blades described in Chapter 6, which were opti-
mized to minimum cost-of-energy, have a favorable stall behavior; they lose only a couple
percent of energy production by following a conservative operating schedule.13

Following the conservative operating schedule shown in Figures B.5 and B.7, it is
evident that, in this example, the worst case overpower occurs when there is a sudden drop
in windspeed from 26 to 14 m/s. This results in 1.2 times rated power. It is reasonable
to design the electrical system for a temporary power of this magnitude.

13The lower plot of Figure 6.14 provides an example.
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B.4.3 Benefits of Variable-Speed Operation

Controlling to constant power above the rated windspeed greatly reduces the likelihood that
power production and aerodynamic loads are underpredicted, in comparison with operation
at a constant rotational speed. The reason is that both the power and loads are sensitive
to the rotational speed when the blades are stalled; but the relationship between power,
torque, and thrust is relatively consistent. Thus, by controlling to a known average power,
potentially large errors in predicted power and loads are exchanged for an error in the
rotational speed.

Figure B.8 shows an example, using data from the NREL Unsteady Aerodynamics Ex-
periment (UAE).14 Measurements were collected with the turbine operating at a constant
speed of 72 rpm (7.54 rad/s). Calculations were performed using two control strategies:
one with constant speed, and the other matching the measured power output. One set of
calculations used nominal, 2D airfoil coefficients, and then the calculations were repeated
using 3D coefficients, which are corrected for stall delay; beyond the rated windspeed, the
difference in coefficients is large.

Calculating the turbine performance using a constant-speed control strategy, both the
torque and flapwise moment are underpredicted beyond the rated windspeed. Adding a
stall delay correction helps, but does not eliminate the problem. In addition, the stall
delay correction leads to an overprediction of rated power, in the vicinity of V∞ = 11 m/s.

By contrast, calculating the turbine performance using a power-matching control strat-
egy, torque is predicted accurately well into the stalled range, although it is underestimated
near cut-out. Flapwise moment goes from being significantly unconservative to accurate,
when 2D coefficients are used, or conservative, when 3D coefficients are used.

The calculated power-speed map from the UAE turbine is shown in Figure B.9. In
order to follow the 10 kW power contour between 10 m/s and 21 m/s, the rotational speed
must increase from 7.3 to 9.3 rad/s. On utility-scale turbines, the increase (or error) in
rotational speed is expected to be less. Figure B.5 is one example. Another example is
shown in Figure B.10, which is based upon the NREL 5 MW reference turbine.15 Here
the rotational speed increases only slightly, following the 5 MW contour between 18 m/s
and 26 m/s.

It can be concluded from Figures B.5 and B.10 that, when a constant-power control
strategy is used, the primary difference between omitting or including stall delay is a
change in the rotational speed beyond stall of a few percent. Since torque and flapwise
moment (Figure B.8) are reasonable in both cases, it is perhaps not necessary to include
a model for stall delay when conducting preliminary design studies. At least, one should
not worry too much about the uncertainties in the methods used to predict stall delay,
because the blade design will not be strongly affected.

14Many references report data from this experiment. In this case, the data was taken from Lindenburg
[115] Figures 6.2 and 6.3.

15This turbine was designed to be pitch-regulated, not stall-regulated.
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Figure B.8: The influence of stall delay and the rotational speed control strategy on rotor
torque and flapwise moment at the root
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Figure B.9: The power-speed map for the NREL UAE turbine, showing cases with and
without corrections for stall delay
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Figure B.10: The power-speed map for the NREL 5 MW turbine, showing cases with and
without corrections for stall delay



Appendix C

Structural Analysis Methods

For preliminary design of a wind turbine rotor, a structural model is required for calcu-
lation of deflections and stresses (or strains) that result from the loads – aerodynamic,
inertial, and gravitational – which act on the blades; it is also required to calculate natural
frequencies of the rotor in order to avoid resonance conditions.

Each blade can be modeled as a beam. Because the blade section tapers and twists,
a closed-form solution is impractical, therefore finite element analysis is used. Rigid-body
motion of the blade must be included in the model, however structural displacements from
the rigid-body position are assumed to be small, so that the structural model is linear.

It makes the most sense – in the context of preliminary design – to conduct analyses
in the frequency domain. This is because frequency-domain calculations are orders of
magnitude faster than corresponding time-domain calculations, when the goal is to obtain
the stochastic dynamic response of a structure. The simplicity of the methods also provides
insight into the relationships between design parameters and dynamic behavior. Chapter
D describes structural dynamic analysis in the frequency domain.

Frequency-domain analysis requires a linear approximation of aerodynamic loads. Chap-
ter 3 is devoted to this topic.

The present chapter contains derivations of the methods which form the basis for the
structural analysis. Section C.1 describes assumptions that were made to simplify the
structural analysis. Section C.2 describes how the blade spar is modeled according to the
theory of laminated plates and beams. Section C.3 gives properties of fiberglass and carbon
fiber materials typically used in blade structures. The assumed construction and section
properties of the blade are described in Section C.4. Section C.5 shows how local stresses
are calculated at various points on each cross-section. Finite element analysis methods,
and a standardized, automatically-generated blade model, are presented in Section C.6.
Finally, Section C.7 closes the chapter with a discussion of failure criteria.

C.1 Simplifying Assumptions

In addition to using a linear dynamic model, which enables analysis in the frequency
domain, two assumptions were made in order to make the calculations as simple as possible.
The first assumption is that the sizing of the blade structure is independent of the motion
of the support platform. The second assumption is that a single blade can be analyzed
in isolation, without considering the entire rotor and drivetrain. These assumptions are
discussed in the following sections.

273
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C.1.1 A Rotor on a Floating Platform

This report is focused upon the design of the rotor, not of the support structure or floating
platform. In order to minimize the number of design parameters – which is critical for
gaining an understanding of design space, as well as performing numerical optimization –
it is desirable that the rotor be modelled independently of the support structure. It is thus
assumed that a reasonable preliminary design of the rotor can be obtained, neglecting the
motion of the platform.1

Here is the argument as to why this assumption is reasonable. First, consider a stiff,
bottom-fixed support structure, whose first natural frequency is above the range in which
ocean waves have significant energy. The natural frequencies are also tuned such that
they do not interact dynamically with the rotation of the rotor. For such a structure,
the amplitude of vibration at the nacelle will be fairly small, and thus will not drive the
design of the blades. Next, consider a floating platform (assumed to be a spar buoy). The
surge and pitch response of such a platform occurs at low frequencies, below the range
in which ocean waves have significant energy. The rotor will see this motion as a slow
oscillation of the incoming windspeed. This has definite consequences for the evenness
of power production, which will oscillate with the motion of the platform.2 However,
when it comes to the structural design of the blades, atmospheric turbulence, gravity, and
wind shear, which act primarily at the rotor rotational frequency, will dominate fatigue
loading. Platform motion could contribute to the maximum gust seen by the blades; but
the velocity of platform motion is low in comparison with the wind velocity. The relative
windspeed would be something like 72 m/s, with platform motion, instead of 70 m/s,
without. This difference will have a small effect on the design of the rotor.

There are advantages to tuning the natural frequencies of the support structure and
blades together with the rotational speed of the rotor.3 In this sense, the design of the
rotor does depend upon the dynamics of the support structure. However, it is noted, based
upon the analyses in Chapter 6, that the rotor cost function is quite flat; beginning with
the “optimum” design, the rotor can be tuned in a manner that results in only a negligible
increase in cost.

So, it is reasonable to assume that the motion of the structure (and thus its detailed
dynamic behavior) does not significantly influence the rotor design. However, the design
of the support structure does depend upon the rotor – almost entirely, in fact, since it
exists only to support the rotor and nacelle systems. Thus the design of the rotor should
reflect its influence on the cost of the support structure. It is attempted to account for this
by estimating trends in the support structure cost when optimizing the rotor. Chapter 4
discusses the cost model used for optimization.

C.1.2 A Rotor or Blade Model?

A model can be made of an isolated rotor blade mounted on a rigid, rotating axis, or a
model can be made of an entire rotor, with the blades coupled through a flexible hub and
drivetrain. The philosophy adopted in this research project – keep things as simple as

1Hjort et al. [91] state that when conducting rotor design studies, it is reasonable to model the sup-
port structure as rigid, so that unwanted and unrealistic resonance problems are not encountered during
optimization.

2A Statoil analysis of a floating spar buoy showed that with Hs = 5 m (significant wave height) and
V∞ = 17 m/s, the velocity of nacelle oscillation was approximately 1 m/s, with a characteristic frequency
of 0.03 Hz. [167]

3Burton et al. [22] give an example on p 460.
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possible – indicates that a single-blade model would be preferable. But certain physical
phenomena are neglected by not considering all the blades simultaneously.

As both Bir [14] and Hansen [76] show, for a given mode of vibration of a single blade in
a three-bladed turbine, the rotor as a whole exhibits, nominally, three natural frequencies:
a collective vibration at the blade natural frequency ωn, a forward-whirling4 vibration at
a frequency of ωn − Ω, and a backward-whirling vibration at a frequency of ωn + Ω.

An actual wind turbine deviates from the nominal ωn, ωn−Ω, and ωn+Ω frequencies.5

This is because of interaction between the blades and the support structure, as well as
interaction between different modes of blade vibration.

When the rotor is stationary, an isolated blade will not give the actual modes of
vibration, only an approximation, because it does not account for the interaction with
other blades and the support structure. When the rotor is operating, an isolated blade
will appropriately account for the increase in apparent stiffness due to centrifugal forces,
however it will neglect the forward and backward whirling modes of vibration.

A model of the entire wind turbine must be used when tuning the natural frequencies
of the structure, as well as the turbine operating schedule (generator speed and torque as
a function of windspeed), to avoid resonance. But tuning of natural frequencies is not the
purpose of preliminary design. The goal is to select the best (most cost-effective) rotor
geometry. For this purpose it is sufficient to estimate the rotor mass and the loads on the
support structure, which are adequately predicted by a single-blade model;6 fine-tuning
of frequencies is best left to later phases in the design process.

The primary motivation for using a single-blade model is the speed of the calculation.
The stochastic analysis methods described in Appendix D have a calculation time propor-
tional to N2

DOF, where NDOF is the number of degrees-of-freedom in the model.7 For a
three-bladed rotor, then, modelling all three blades would slow portions of the calculation
by an order of magnitude.

Another important reason for using a rigidly-mounted, single-blade model is that the
number of design parameters is kept to a minimum. If the detailed behavior of the support
structure – the drivetrain, nacelle, tower, and foundation – is not well-defined, then simply
assigning representative design parameters can be counterproductive. During optimization
of the blade, the resonance behavior of the support structure may artificially constrain
blade parameters, especially the rotational speed of the rotor. An example of this is given
in Section 4.3.8 of the Appendix, which describes the tower cost model.

Although the tower is not sized in detail, it is nonetheless important to account for
aerodynamic damping of the tower fore-aft mode when configuring the blades. The tower
cost model of Section 4.3.8 accounts for tower damping, without requiring an explicit
model of the tower.

C.2 The Spar as a Laminated Beam or Plate

The wind turbine blade is assumed to be of a standard design, with the spar made of lami-
nated fiberglass/epoxy or carbon fiber/epoxy. The spar can be thought of as a rectangular

4Whirling means that the imbalance progresses around the azimuth. Bir calls these progressive and
regressive modes, rather than forward and backward whirling.

5Again, citing Bir [14] and Hansen [76].
6The dynamic fluctuations in overall rotor thrust and torque are not predicted by a single-blade model;

but an approximate method was developed for use in the cost models of Chapter 4.
7The dependence with N2

DOF is due to the need to calculate cross-correlations between each pair of
degrees-of-freedom in the model.
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box, at least for purposes of the current discussion.8 As shown at the top of Figure C.5,
the box consists of caps on the top and bottom, and webs on the sides. The cap laminate
and web laminate will probably be different, because the cap must be very stiff and strong
in the spanwise direction, while the web laminate must be stiff and strong in shear.

Details of the material properties are described in Section C.3; what is relevant here
is that the majority of the glass or carbon fibers are aligned in the spanwise direction,
with comparatively few fibers in other directions (like chordwise). Therefore, the blade
material is anisotropic, and the conventional set of material properties (E, G, and ν) is
generally insufficient to specify its behavior. However, the stresses in a wind turbine blade
are primarily due to flapwise and edgewise bending, as a beam. In this case, deflections
are well-represented using only equivalent Ex values for the materials that form the blade
section. On the other hand, the calculation of buckling strength requires an anisotropic
material model. In this case, equivalent values of Ex, Ey, νxy, and Gxy are needed.

Sections C.2.1 and C.2.2 present a derivation of laminated plate and beam theory,
where the simplifying assumptions are made explicit. Likewise, Section C.2.3 develops the
equations for the buckling of a curved, laminated plate.

C.2.1 Laminated Plates

Laminated plate theory is fairly straightforward, provided that certain simplifying as-
sumptions hold.9 One establishes bulk stress-strain properties of an individual ply by
conducting experiments on a ply, or a unidirectional laminate. In our case, it is assumed
that the laminates are thin, which means that through-thickness stresses and strains can
be neglected, leading to a state of plane stress.10 The elastic behavior of the ply can then
be characterized by the longitudinal elastic modulus EL, the transverse elastic modulus
ET , Poisson’s ratio νLT , and shear modulus GLT .11

Specifically, define:

Q11 =
EL

1− ν2
LT (ET /EL)

;

Q22 =
ET

1− ν2
LT (ET /EL)

; (C.1)

Q12 =
νLTET

1− ν2
LT (ET /EL)

;

Q66 = GLT .

8For example, Burton et al. [22] pp 380-381, or Veers et al. [187] p 246. The blade spar is fairly close
to a box along the outer portion of the blade. At the root it is a cylinder, and there is a transition region,
where the airfoil is very thick, and the spar is somewhere in between a box and a cylinder.

9My references for laminated plate theory were Agarwal and Broutman [2] Chapters 5 and 6, and Lee
and Suh [109] Chapters 3 and 4. I should probably qualify “straightforward”: calculation of the stiffness
of a laminated plate is straightforward. Predicting the failure of a laminated plate is not straightforward.

10This assumption is not a good one when it comes to the failure analysis of details, like bolt holes or
bends in the laminate, especially inboard towards the root where the laminate thickness may be of the
same order as the diameter of the hole or radius of the bend. But even the “thick” inboard laminates are
thin in comparison with their width and length, so when it comes to establishing stiffness behavior, load
distribution, and nominal strains, the thin plate assumption is appropriate.

11If the ply is a tape ply, having fibers in just one direction, the longitudinal direction is typically the
fiber direction. If the ply is a fabric ply, having fibers in multiple directions, the direction considered
longitudinal depends upon the weave of the fabric.
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Figure C.1: Ply and laminate coordinates

Then: σ1

σ2

τ12

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


 ε1

ε2
γ12

 . (C.2)

The 1,2 coordinate system is the ply coordinate system. When several plies are lami-
nated together to form a plate, the plate coordinate system is denoted x,y. The relationship
between the ply and the laminated plate coordinate system is shown in Figure C.1.

When computing the stress-strain relationship for a laminated plate, we begin by trans-
forming all the ply properties into a common direction. Define transformation matrices:

Tσ =

 cos2 θ sin2 θ 2 cos θ sin θ
sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ

 ; (C.3)

Tε =

 cos2 θ sin2 θ cos θ sin θ
sin2 θ cos2 θ − cos θ sin θ

−2 cos θ sin θ 2 cos θ sin θ cos2 θ − sin2 θ

 . (C.4)

Then:

Qxy = (Tσ)−1Q12Tε. (C.5)

Q12 is the matrix in Equation C.2, referenced to ply coordinates, and Qxy is the same
matrix, referenced to laminate coordinates.

The state of deformation of a laminated plate is described by strains εx, εy, and γxy at
the mid-thickness of the plate; and curvatures κx, κy, and κxy, which describe the gradient
of strain through the thickness. Define force and moment resultants:

Nx =
∫ h/2

−h/2
σx dz; Ny =

∫ h/2

−h/2
σy dz; Nxy =

∫ h/2

−h/2
τxy dz;

Mx =
∫ h/2

−h/2
σxz dz; My =

∫ h/2

−h/2
σyz dz; Mxy =

∫ h/2

−h/2
τxyz dz; (C.6)

and elastic properties:

A =
∫ h/2

−h/2
Qxy dz; B =

∫ h/2

−h/2
Qxyz dz; D =

∫ h/2

−h/2
Qxyz2 dz, (C.7)
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where h is the thickness of the laminate and z is the through-thickness position relative
to the mid-thickness. Then, the stress-strain relationship for a laminated plate is:

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





εx
εy
γxy
κx
κy
κxy


. (C.8)

The inverse relationship is denoted:

εx
εy
γxy
κx
κy
κxy


=



a11 a12 a16 b11 b12 b16

a12 a22 a26 b12 b22 b26

a16 a26 a66 b16 b26 b66

b11 b12 b16 d11 d12 d16

b12 b22 b26 d12 d22 d26

b16 b26 b66 d16 d26 d66





Nx

Ny

Nxy

Mx

My

Mxy


. (C.9)

C.2.2 A Beam Composed of Laminate Plates

Many of the terms in Equations C.8 and C.9 can be neglected when representing the blade
as a beam.

As a starting point, it is assumed that the laminates are symmetric. This means that
the B and b matrices in Equations C.8 and C.9 are zero; there is no coupling between
extension and bending.

Because there is no coupling between extension and bending, only local moments could
cause the laminate to bend. The laminate is thin with respect to the width and height
of the beam, so global bending of the beam results in axial extension of the laminate on
the tension side, and axial compression of the laminate on the compression side; local
curvature is minimal. Therefore, local bending can be neglected, and we need to consider
only in-plane deformation of the laminate: the A and a matrices.

A further simplifying assumption is made. It is assumed that the laminate is balanced
in the spanwise direction. This means that for any ply which is oriented at an angle +θ
with respect to the spanwise direction, there is another identical ply which is oriented at
an angle −θ. This means that A16, A26, a16, and a26 are zero; there is no coupling between
extension and shear. Therefore, our material model is: Nx

Ny

Nxy

 =

 A11 A12 0
A12 A22 0
0 0 A66


 εx

εy
γxy

 , (C.10)

a significant simplification from Equation C.8.
Next, consider the transverse behavior of each laminated plate: a cap or a web. There

are two options: one option is to consider the laminate to be restrained at its edges by
the adjacent members. In this case, when the laminate is stretched in the X direction,
εy is zero, and Ny is not zero. The other option is to consider the laminate to be free
at its edges, in other words, the adjacent members do not provide significant restraint on
Poisson contraction. In this case, when the laminate is stretched in the X direction, Ny is
zero, and εy is not zero.
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The latter case is assumed for the calculations in this report; this is the most common
assumption for beam analysis.12 in this case: εx

εy
γxy

 =

 a11 a12 0
a12 a22 0
0 0 a66


 Nx

0
Nxy

 , (C.11)

and:

εx = a11Nx; γxy = a66Nxy; (C.12)

are the only relevant elastic properties. Define bulk stresses (neglecting the laminated
character of the plate):

σx =
1
h
Nx; τxy =

1
h
Nxy. (C.13)

Then we have stress-strain relationships:

σx =
1

ha11
εx; τxy =

1
ha66

γxy. (C.14)

Therefore, we have equivalent elastic moduli:

Ex =
1

ha11
Gxy =

1
ha66

; (C.15)

and we can use isotropic beam theory.
Note that when computing the buckling strength of the spar laminates, it is necessary

to include transverse material properties, as well as local bending, so many of the above
simplifications are not applicable.

C.2.3 Buckling of Laminated Shells

As the blade bends in the flapwise direction, one of the spar caps is placed in compression.
It must not buckle under this compressive load.

The spar cap, shown at the top of Figure C.5, is shaped as a portion of an airfoil profile.
It is assumed that the shape of the spar cap can be represented by a portion of a cylinder of
uniform curvature. It is also assumed that the spar cap is simply-supported, at its edges,
by the webs. It is further assumed that section properties such as laminate thickness, and
the shape of the airfoil, taper slowly enough that the section may be assumed uniform
over a length that is comparable to the distance between webs. Finally, it is assumed that
bending of the blade is reacted by uniform tension and compression in the spar caps. The
problem is thus reduced to buckling of a simply-supported, cylindrical shell, of uniform
section, under a uniform compressive load.

Here are the steps in the derivation of the buckling equations:13

1. Derive an expression for the strain energy in the panel, as a function of displacements.

2. Derive an expression for the work done by the compressive load, as a function of
displacement of the boundary along which the load acts.

12Lee and Suh [109], p 249
13Burton et al. [22] pp 413-417
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3. Assume (based upon formal solutions which will not be reproduced in this report) a
displaced shape of the panel, and substitute into the energy and work expressions.
Thus, the energy and work are now expressed as a function of the magnitude of the
displaced shape.

4. Apply the principle of stationary potential energy.14 The result is a set of equations
which can be solved for the buckling load.

Strain-Displacement Relations for Cylindrical Shells

The following strain-displacement relations apply in the case of a thin, cylindrical shell
undergoing small displacements:15

εx =
∂u

∂x
; εθ =

∂v

r∂θ
− w

r
; γxθ =

∂u

r∂θ
+
∂v

∂x
;

κx =
∂2w

∂x2
; κθ =

1
r2

∂2w

∂θ2
; κxθ =

1
r

∂2w

∂x∂θ
. (C.16)

The only difference between these and the strain-displacement relations for a flat plate
is the term −w/r on εθ. Intuitively, this term represents the circumferential strain that
must occur with out-of-plane displacement, because the circumferential length around the
axis of curvature increases with radial position.

Strain Energy in a Laminated Cylindrical Shell

Strain energy is:

U =
∫
V

∫
dεT {σ} dV. (C.17)

Deformation is elastic, therefore stress remains constant with strain:

U =
∫
V
εT σ dV. (C.18)

In the case of a laminated plate or thin, cylindrical shell, the strain is:

ε =

 εx
εθ
γxθ

+ z

 κx
κθ
κxθ

 , (C.19)

where εx, εθ, and γxθ are strains measured at the laminate midplane, while κx, κθ, and κxθ
are curvatures. At any point in the laminate, the relationship between stress and strain
is:16

σ = Qxyε. (C.20)

14Cook et al. [30] Chapter 3. This is a version of the Rayleigh-Ritz method. Such energy methods are
related to the Lagrange equations described in Section C.6; for example, Hurty and Rubenstein [94] pp
80-99.

15Timoshenko and Woinowsky-Krieger [179] p 512. A higher-order analysis includes additional terms,
which must be included if the shell is thick.

16See Equations C.2 and C.5.
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Substituting into Equation C.18:

U =
1
2

∫
V


 εx

εθ
γxθ

+ z

 κx
κθ
κxθ



T

Qxy


 εx

εθ
γxθ

+ z

 κx
κθ
κxθ


 dV. (C.21)

When the above equation is multiplied out, and integrated through the thickness, the
result is terms like: εx

εθ
γxθ


T ∫ h/2

−h/2
Qxy dz

 εx
εθ
γxθ

 .
By definition, this is: εx

εθ
γxθ


T

A

 εx
εθ
γxθ

 .
Next: εx

εθ
γxθ


T ∫ h/2

−h/2
Qxyz dz

 κx
κθ
κxθ

 ;

 εx
εθ
γxθ


T

B

 κx
κθ
κxθ

 .
And:  κx

κθ
κxθ


T ∫ h/2

−h/2
Qxyz2 dz

 κx
κθ
κxθ

 ;

 κx
κθ
κxθ


T

D

 κx
κθ
κxθ

 .
Assume that the laminate is balanced and symmetric in the spanwise (x) and chordwise

(θ) directions. Then, due to symmetry, B = 0. This is convenient, because it means that
it is possible to separate the in-plane and bending contributions to strain energy. They
can be calculated separately and summed. In-plane strain energy is:

Uin−plane =
1
2

∫ L

0

∫ θ0

0

 εx
εθ
γxθ


T

A

 εx
εθ
γxθ

 r dθ dx, (C.22)

and bending strain energy is:

Ubending =
1
2

∫ L

0

∫ θ0

0

 κx
κθ
κxθ


T

D

 κx
κθ
κxθ

 r dθ dx. (C.23)



282 APPENDIX C. STRUCTURAL METHODS

Begin with in-plane strain energy. Substitute in the strain-displacement relations,
Equation C.16:

Uin−plane =
1
2

∫ L

0

∫ θ0

0


∂u
∂x

∂v
r∂θ −

w
r

∂u
r∂θ + ∂v

∂x


T  A11 A12 0

A12 A22 0
0 0 A66




∂u
∂x

∂v
r∂θ −

w
r

∂u
r∂θ + ∂v

∂x

 r dθ dx.

(A16 and A26 are zero because it has been assumed that the laminate is balanced.) Car-
rying out the matrix multiplication:

Uin−plane =
1
2

∫ L

0

∫ θ0

0

[
A11

(
∂u

∂x

)2

+ 2A12
∂u

∂x

∂v

r∂θ
− 2A12

∂u

∂x

w

r

+A22

(
∂v

r∂θ

)2

− 2A22
∂v

r∂θ

w

r
+A22

(
w

r

)2

(C.24)

+A66

(
∂u

r∂θ

)2

+ 2A66
∂u

r∂θ

∂v

∂x
+A66

(
∂v

∂x

)2 ]
r dθ dx.

Assume the following displacements, which are valid for a simply-supported shell:17

u = cu sin
nπθ

θ0
cos

mπx

L
;

v = cv cos
nπθ

θ0
sin

mπx

L
; (C.25)

w = cw sin
nπθ

θ0
sin

mπx

L
.

Relevant derivatives are:

∂u

∂x
= −cu

mπ

L
sin

nπθ

θ0
sin

mπx

L
;

∂u

r∂θ
= cu

nπ

rθ0
cos

nπθ

θ0
cos

mπx

L
;

∂v

∂x
= cv

mπ

L
cos

nπθ

θ0
cos

mπx

L
;

∂v

r∂θ
= −cv

nπ

rθ0
sin

nπθ

θ0
sin

mπx

L
;

∂w

∂x
= cw

mπ

L
sin

nπθ

θ0
cos

mπx

L
;

∂2w

∂x2
= −cw

m2π2

L2
sin

nπθ

θ0
sin

mπx

L
;

∂w

r∂θ
= cw

nπ

rθ0
cos

nπθ

θ0
sin

mπx

L
;

17Timoshenko and Woinowsky-Krieger [179] p 516
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∂2w

r2∂θ2
= −cw

n2π2

r2θ2
0

sin
nπθ

θ0
sin

mπx

L
;

∂2w

r∂θ∂x
= cw

mnπ2

rθ0L
cos

nπθ

θ0
cos

mπx

L
.

Substitute the assumed displacements into the strain energy equation:

Uin−plane =
1
2

∫ L

0

∫ θ0

0

[
A11c

2
u

m2π2

L2
sin2 nπθ

θ0
sin2 mπx

L

+2A12cucv
mnπ2

Lrθ0
sin2 nπθ

θ0
sin2 mπx

L

+2A12cucw
mπ

rL
sin2 nπθ

θ0
sin2 mπx

L

+A22c
2
v

n2π2

r2θ2
0

sin2 nπθ

θ0
sin2 mπx

L

+2A22cvcw
nπ

r2θ0
sin2 nπθ

θ0
sin2 mπx

L
(C.26)

+A22c
2
w

1
r2

sin2 nπθ

θ0
sin2 mπx

L

+A66c
2
u

n2π2

r2θ2
0

cos2 nπθ

θ0
cos2 mπx

L

+2A66cucv
mnπ2

Lrθ0
cos2 nπθ

θ0
cos2 mπx

L

+A66c
2
v

m2π2

L2
cos2 nπθ

θ0
cos2 mπx

L

]
r dθ dx.

The following integrals apply:∫ L

0
sin2 mπx

L
dx =

L

2
;

∫ θ0

0
sin2 nπθ

θ0
dθ =

θ0

2
.

Values for cos2 integrals are the same. The expression for in-plane strain energy becomes:

Uin−plane = A11c
2
u

m2π2θ0r

8L
+A12cucv

mnπ2

4
+A12cucw

mπθ0

4

+A22c
2
v

n2π2L

8rθ0
+A22cvcw

nπL

4r
+A22c

2
w

Lθ0

8r
(C.27)

+A66c
2
u

n2π2L

8rθ0
+A66cucv

mnπ2

4
+A66c

2
v

m2π2θ0r

8L
.
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Next, consider bending strain energy:

Ubending =
1
2

∫ L

0

∫ θ0

0


∂2w
∂x2

∂2w
r2∂θ2

2 ∂2w
r∂θ∂x


T  D11 D12 0

D12 D22 0
0 0 D66




∂2w
∂x2

∂2w
r2∂θ2

2 ∂2w
r∂θ∂x

 r dθ dx;

Ubending =
1
2

∫ L

0

∫ θ0

0

[
D11

(
∂2w

∂x2

)2

+ 2D12

(
∂2w

r2∂θ2

)(
∂2w

∂x2

)

+D22

(
∂2w

r2∂θ2

)2

+ 4D66

(
∂2w

r∂θ∂x

)2 ]
r dθ dx. (C.28)

Substitute the assumed displacements:

Ubending =
1
2

∫ L

0

∫ θ0

0

[
D11

(
−cw

m2π2

L2
sin

nπθ

θ0
sin

mπx

L

)2

+2D12

(
−cw

n2π2

r2θ2
0

sin
nπθ

θ0
sin

mπx

L

)(
−cw

m2π2

L2
sin

nπθ

θ0
sin

mπx

L

)

+D22

(
−cw

n2π2

r2θ2
0

sin
nπθ

θ0
sin

mπx

L

)2

+4D66

(
cw
mnπ2

rθ0L
cos

nπθ

θ0
cos

mπx

L

)2 ]
r dθ dx;

Ubending = D11c
2
w

m4π4rθ0

8L3
+D12c

2
w

m2n2π4

4Lrθ0

+D22c
2
w

n4π4L

8r3θ3
0

+D66c
2
w

m2n2π4

2Lrθ0
. (C.29)

Work Done by Applied Forces

A uniform force resultant Nx is applied along the panel edge. It is assumed that the force
is constant, independent of the deflection of the panel. As the panel edge deflects in the
spanwise (x) direction, the applied force does work on the panel equal to the (integral)
magnitude of the force times the deflection.

The shortening of the panel is:18

∆x =
1
2

∫ L

0

(
∂w

∂x

)2

dx. (C.30)

Upon substituting in for the displacement and evaluating the integral:

∆x = c2
w

m2π2

4L
sin2 nπθ

θ0
. (C.31)

18Burton et al. [22] p 415, Cook et al. [30] p 430
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The work done by the spanwise force resultant Nx is:

W =
∫ θ0

0
Nx ∆x r dθ. (C.32)

This evaluates to:

W = c2
w

m2π2

8L
rθ0Nx. (C.33)

Stationary Potential Energy

If one defines the potential Π = U − W , where the strain energy U and work W are
functions of generalized coordinates q, then for each generalized coordinate qi, the rela-
tionship ∂Π/∂qi = 0 must hold.19 That the derivative is zero means that the potential
Π is stationary with respect to small variations in each generalized coordinate qi. The
principle of stationary potential energy can be used to derive the buckling equations; in
our case, the generalized coordinates are the displacement amplitudes cu, cv, and cw.

Potential Π is:

Π = A11c
2
u

m2π2θ0r

8L
+A12cucv

mnπ2

4
+A12cucw

mπθ0

4

+A22c
2
v

n2π2L

8rθ0
+A22cvcw

nπL

4r
+A22c

2
w

Lθ0

8r

+A66c
2
u

n2π2L

8rθ0
+A66cucv

mnπ2

4
+A66c

2
v

m2π2θ0r

8L

+D11c
2
w

m4π4θ0r

8L3
+D12c

2
w

m2n2π4

4Lrθ0
+D22c

2
w

n4π4L

8r3θ3
0

+D66c
2
w

m2n2π4

2Lrθ0

−c2
w

m2π2

8L
rθ0Nx. (C.34)

Set L = rθ0:

Π = A11c
2
u

m2π2

8
+A12cucv

mnπ2

4
+A12cucw

mπθ0

4
+A22c

2
v

n2π2

8

+A22cvcw
nπθ0

4
+A22c

2
w

θ2
0

8
+A66c

2
u

n2π2

8
+A66cucv

mnπ2

4
+A66c

2
v

m2π2

8

+D11c
2
w

m4π4

8r2θ2
0

+D12c
2
w

m2n2π4

4r2θ2
0

+D22c
2
w

n4π4

8r2θ2
0

+D66c
2
w

m2n2π4

2r2θ2
0

−c2
w

m2π2

8
Nx. (C.35)

The derivatives of the potential give the buckling equations:

∂Π
∂cu

= 0 = A11cu
m2π2

4
+A12cv

mnπ2

4
+A12cw

mπθ0

4
19Cook et al. [30] p 73
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+A66cu
n2π2

4
+A66cv

mnπ2

4
;

(m2A11 + n2A66)α+mn(A12 +A66)β +mA12
θ0

π
= 0; (C.36)

∂Π
∂cv

= 0 = A12cu
mnπ2

4
+A22cv

n2π2

4
+A22cw

nπθ0

4

+A66cu
mnπ2

4
+A66cv

m2π2

4
;

mn(A12 +A66)α+ (n2A22 +m2A66)β + nA22
θ0

π
= 0; (C.37)

∂Π
∂cw

= 0 = A12cu
mπθ0

4
+A22cv

nπθ0

4
+A22cw

θ2
0

4

+D11cw
m4π4

4r2θ2
0

+D12cw
m2n2π4

2r2θ2
0

+D22cw
n4π4

4r2θ2
0

+D66cw
m2n2π4

r2θ2
0

−cw
m2π2

4
Nx,cr;

Nx,cr = A12
θ0

mπ
α+A22

nθ0

m2π
β +A22

θ2
0

m2π2

+D11
m2π2

r2θ2
0

+ 2D12
n2π2

r2θ2
0

+D22
n4π2

m2r2θ2
0

+ 4D66
n2π2

r2θ2
0

. (C.38)

In the above, α and β are two variables, the solution for which is given below.

Assumptions Regarding Shell Deformation

The assumed displacements can be a sinusoid of any number of half-waves, between the
webs in the chordwise direction, and between some indeterminate boundaries in the span-
wise direction. The number of half-waves is specified by the parameters m and n. It is
evident, intuitively, that m and n (that is, the actual deformed shape of the panel) will
take whichever values result in the minimum buckling load.

There is a problem: it is not obvious what should be the length of the panel. In
aircraft constructions, there tend to be ribs, rather closely spaced, which support the wing
skin. For buckling analysis, these ribs would form natural boundaries for the panel in
the spanwise direction. However, such ribs are not mentioned in the references discussing
wind turbine blade design, and thus it is assumed that the blades are constructed without
ribs.

It would seem reasonable to assume that the panel is long in the spanwise direction.
In what manner does a long panel buckle? An infinitely long, flat, simply-supported,
isotropic panel buckles “square”, with the lengthwise wavelength equal to the widthwise
wavelength; the buckling load of a square panel and an infinitely long panel is the same.20

In other words, a panel of infinite length buckles with the worst-case wavelength, which,
20Young and Budynas [195] p 730
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for a flat, isotropic panel, is square. To assume that the panel is long is therefore a sound,
conservative assumption.

There is no guarantee that a long, cylindrical, orthotropic panel also buckles square.
Therefore a minimization of the buckling load must be conducted, varying m and n. n, the
number of chordwise half-waves, is assumed to be an integer. m, the number of spanwise
half-waves, is assumed to be a continuous number.

Stiffness Matrices

In order to evaluate the above buckling equations, it is necessary to compute the terms
of the extensional and bending stiffness matrices, A and D, given laminate engineering
constants Ex, Ey, νxy, and Gxy (Section C.3). To avoid having to specify an explicit ply
stacking sequence, it is assumed that the off-axis plies are interspersed uniformly through-
out the stacking sequence. In this case, the laminate can be considered a homogeneous,
orthotropic material. The stiffness matrix terms are:

A11 = h
Ex

1− ν2
xy(Ey/Ex)

; A12 = h
vxyEy

1− ν2
xy(Ey/Ex)

;

A22 = h
Ey

1− ν2
xy(Ey/Ex)

; A66 = hGxy; (C.39)

D11 =

(
h3

12

)
Ex

1− ν2
xy(Ey/Ex)

; D12 =

(
h3

12

)
vxyEy

1− ν2
xy(Ey/Ex)

;

D22 =

(
h3

12

)
Ey

1− ν2
xy(Ey/Ex)

; D66 =
h3

12
Gxy.

h is the laminate thickness. (If the stacking sequence were such that the laminate could
not be considered homogeneous, then the A terms would be identical, but the D terms
would be different.21)

Calculation Procedure

Once the elastic material constants have been calculated, then, for given values of m and
n, we can write Equations C.36 and C.37 as:

C1α+ C2β + C3 = 0; C4α+ C5β + C6 = 0. (C.40)

Solving for α and β:

β =
(C3C4/C1)− C6

C5 − (C2C4/C1)
; α = −C2

C1
β − C3

C1
. (C.41)

Then Equation C.38 can be used directly to calculate the buckling load.
The calculation is iterative. An integer value of n is assumed. Then, a golden search

is used to find the value of m for which the buckling load is minimized. The next integer
value of n is assumed, and another minimum buckling load calculated. And so on. The
procedure is stopped when nj+1 gives a higher buckling load than nj .

21Agarwal and Broutman [2] p 192
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Table C.1: Laminate properties for the example buckling calculation

Ply:
E1 37.7 GPa
E2 11.3 GPa
ν12 0.29
ν21 0.09
G12 3.3 GPa
Laminate:
Ex 33.6 GPa
Ey 12.4 GPa
νxy 0.38
νyx 0.14
Gxy 4.8 GPa
h 0.015 m
R 1.15 m

Verification

The buckling analysis of a curved, laminated plate (Section C.2.3) was programmed into
a Fortran subroutine. Burton et al. [22], p 417, show a plot of critical buckling stress plot
against the included angle of the curved panel. Ply and laminate properties are shown in
Table C.1.

Figure C.2 shows the output of the software, compared with the curve read from the
plot in Burton et al. (It was not possible to obtain exact values from the Burton et
al. plot.) The curves match within reason.

Figure C.3 shows the buckling strength of the root cylinder, load in bending. The
included angle θ (such that the width of the panel is θD/2) that gives the lowest buckling
load is also plotted. The assumption was made that the cylinder is uniformly loaded in
compression, and following Young and Budynas [195], p 735, the trend in buckling strength
with thickness should be linear. Indeed, this is what the software predicts.

Empirical Reduction

Test data on steel tubes indicates that the theoretical elastic buckling load (akin to Equa-
tion C.38) is unconservative. Test specimens tend to fail at 0.4 to 0.6 of the theoretical
load.22 Taking a clue from the NORSOK Standard N-004 [139] on the design of steel
structures, a factor of 0.5 is applied to the theoretical buckling load. The nominal stress
in the spar cap at buckling is then:

σcr = 0.5
Nx,cr

h
. (C.42)

Modification for Optimization Analysis

As can be seen in Figure C.3, and the close-up in Figure C.4, following the theory the
allowable buckling stress is not uniform as the panel width (or included angle) increases.

22Young and Budynas [195] pp 534 and 735
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Figure C.2: The buckling strength computed by the software, compared with an example
from Burton et al. [22]

Figure C.3: The buckling strength of a cylinder loaded in bending, along with the included
angle of the buckling wave



290 APPENDIX C. STRUCTURAL METHODS

Figure C.4: The cutoff in the allowable buckling stress which prevents local minima during
optimization calculations

Rather, the allowable stress increases as the number of chordwise buckling waves n transi-
tions from one integer to the next. If one were very confident in the boundary conditions
on the panel, then perhaps the increase in stress could be utilized. However, it is safer
to not exceed the minimum buckling stress, because the effective width of the panel may
vary depending upon the actual degree of restraint along its edges. In addition, each re-
gion of increased buckling stress represents a potential local minimum that could lead to
erroneous results during gradient-based optimization.23

This problem is fixed by truncating the allowable buckling stress to the minimum, as
shown in Figure C.4.

C.3 Material Properties

Sticking to the “keep it simple” philosophy of this research project, it was decided that
only the properties of the blade spar cap laminates should be design variables. A single
laminate was chosen for the webs, and another for the leading and trailing edge structure,
and these were retained through all the analyses.24

Two laminates were chosen for the spar cap: one made of fiberglass, and the other a
carbon/glass hybrid, with carbon fiber plies in the spanwise direction, and fiberglass at
±45◦. These laminates are intended to be representative of current design practice.

A survey of blade construction techniques and materials was conducted. Such a survey
is difficult because most commercial wind turbine technology is proprietary. There are,
however, several references that discuss the state-of-the-art (at the time of their publica-
tion) of blade construction.

Veers et al. [187] discuss a diverse set of topics related to the projected near-term
evolution of blade design. Fiberglass laminates are standard. Carbon fiber is far superior

23Chapter 5
24Section C.4 describes the cross-section of a blade that was assumed for the analyses.
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from the standpoint of strength-to-weight and stiffness-to-weight, and so it would seem
promising to incorporate carbon fiber plies into a glass/carbon hybrid blade material.
However, “initial studies indicated that the critical problem with carbon fibres, from a
fatigue standpoint, is fibre alignment. Small misalignments can produce a dramatic re-
duction in fatigue strength. Thus manufacturing processes are critical to the introduction
of carbon fibres into blade designs.” ([187] p 249) Carbon fiber composites are expensive,
and

[e]arly results from test programmes show that the strain-related properties of
lower-cost varieties of carbon composites, particularly in compression, are sig-
nificant[ly] poorer than those of aerospace-grade materials, and that these ma-
terials are very sensitive to reinforcement architecture, manufacturing method
and structural detail geometry. The baseline ultimate compressive strain for
large-tow carbon fibre laminates fabricated from low-cost prepreg (vacuum
bag, no resin bleeding), with relatively straight fibres, is around [0.010 to
0.012]. Low-cost fibres, with their larger tow size and thicker plies formed us-
ing RTM [resin transfer moulding] techniques, result in ultimate compressive
strains around [0.006 to 0.008]. While acceptable for blades, the prepreg values
for compressive strain to failure provide little cushion against other factors that
reduce their compressive strength, e.g. misalign[ed] fibers, manufacturing pro-
cesses and structural details. RTM laminates have significantly less cushion.
([187] p 250)

Thus, in part due to such design and manufacturing difficulties, it is not obvious
that glass/carbon fiber hybrids provide a significant cost advantage over purely fiberglass
laminates. Hau25 states that “large rotor blades for rotors with a diameter of more than
70 or 80 m are almost always produced by using a certain proportion of carbon fibre.”
However, the LM Glasfiber 54P blade, for a 108 m diameter rotor, uses only fiberglass.26

Jackson et al. [95] show a 13% increase in the cost of a carbon/glass hybrid blade (50
m long), in comparison with an all-fiberglass blade. Joosse et al. [101] report contrary
findings, indicating a 14% reduction in the cost of a 60 m long offshore turbine blade, by
employing a large-tow carbon-fiber spar. Griffin [71] calculates a 13% reduction in cost
with a hybrid carbon/glass spar.

Since neither fiberglass nor carbon fiber is clearly preferable, material trade studies
were conducted as part of the rotor design process, as described in Chapter 6.

C.3.1 Material Stiffness Properties

As described in Section C.4, stiffness properties are required for the fiberglass spar lam-
inates (spar caps and webs), as well as secondary structure at the leading and trailing
edges. The secondary structure consists of a skin and a balsa-wood core.

First, consider the spar laminates. Burton et al. [22], pp 382 and 417, give properties
for a fiberglass laminate with 50% fibers by volume, of which 80% are spanwise and 20%
are off-axis at ±45◦. Griffin and Ashwill27 give properties for fiberglass laminates with

25Hau [85] pp 247-248
26http://www.compositesworld.com/articles/carbonglass-hybrids-used-in-composite-wind-turbine-

rotor-blade-design (as of October 2010). This same article indicates that the LM 61.5P blade, for a 126 m
diameter rotor, uses a hybrid of carbon and glass fibers. Curiously, Wind Energy – The Facts [192] states
that LM Glasfiber “avoids carbon reinforcement in their latest [61.5 m long] blade.” (p 84)

27Reference [72]; also, Griffin [71] p 29
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Table C.2: Spar cap and web laminate stiffness properties

Spar cap Spar cap Web Skin Balsa
(glass) (hybrid)

Ex 32.5 GPa 74.3 GPa 21.0 GPa 24.2 GPa 2.1 GPa
Ey 11.0 GPa 10.0 GPa 21.0 GPa
νxy 0.35 0.35 0.28
Gxy 5.3 GPa 4.8 GPa 8.3 GPa 5.0 GPa 0.14 GPa
ρ 1,850 kg/m3 1,620 kg/m3 1,850 kg/m3 1,750 kg/m3 144 kg/m3

40% or 50% fibers by volume, of which 70% or 80% are spanwise. In both cases, the
laminates were intended to be representative of established construction practices for the
blade spar cap. It can therefore be assumed that a typical spar cap laminate has around
70% and 80% fibers in the spanwise direction, and 20% to 30% at ±45◦. The properties
used in this project were defined as the average of the reported properties for a laminate
with 80% fibers in the spanwise direction, and 50% fibers by volume. The laminate is
constructed using resin transfer molding, in a heated mold, with post-cure (the baseline
according to Griffin). Equivalent engineering constants are shown in Table C.2.

Properties for a hybrid carbon/glass laminate were selected from several such laminates
described by Griffin [71]. The chosen laminate has 70% carbon fibers in the spanwise
direction, and 30% glass fibers at ±45◦. It has 50% fibers by volume. The fabric is stitched
in order to hold the fibers in place. Note that the difference between the fiberglass and the
carbon/glass hybrid laminate is primarily the elastic modulus in the spanwise direction;
the other stiffness properties are quite comparable.

Burton et al., p 416, state that it can be assumed that the ±45◦ plies are concentrated
near the midplane, while the spanwise plies are placed towards the outside of the laminate.
As a consequence, the fiber-direction elastic modulus of a single ply (which is higher than
that of the total laminate) may be used when computing bending stiffness of the spar
cap. However, by interspersing off-axis plies through the thickness, the laminate better
resists impact, delamination, stress concentrations, free-edge stresses, and fatigue. To be
conservative, it is assumed that the effective elastic modulus of the laminate in bending is
the same as that of the bulk laminate.

The literature on blade design seems to focus on spar cap properties – and rightly
so, because it is the spar caps that provide stiffness and strength in flapwise bending.
Little is mentioned about the webs. Griffin [71] mentions that the webs are of a sandwich
construction, consisting of a triaxial fiberglass skin with a balsa core. Hau [85] shows
examples of several blade cross-sections. These include webs with a sandwich construction,
similar to that described by Griffin, as well as webs that are manufactured with the caps
by filament winding, and thus are solid laminates of the same layup and thickness as the
caps.

The primary deformation of a blade is flapwise bending. As the downwind spar cap
compresses and the upwind spar cap stretches, the webs are placed in shear. If the con-
struction is such that the webs are produced separately from the spar caps, as is assumed
here, then the webs should be given a layup that has a high fraction of ±45◦ fibers, in
order to be strong and stiff in shear.28

28Because the blade spar is wider than it is high – the height is typically 25% to 60% of the width – the
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The web laminate was somewhat arbitrarily assigned stiffness properties of a 20/60/20
fiberglass-epoxy laminate, as shown in Table C.2.29 Ply properties were taken from Agar-
wal and Broutman [2], p 171.

Skin and balsa core properties were taken from Griffin [71], p 17.

C.3.2 Static Strength Properties

The leading and trailing edge structures are assumed to be composed of a skin and balsa-
wood core whose properties are specified upfront; only the spar is sized according to
strength criteria.

Numerous failure criteria have been proposed for laminated fibrous composites.30 It
is typical, in current aerospace engineering practice, to use either the maximum stress or
maximum strain failure criterion.

Strength properties of composites are derived experimentally, and results may be re-
ported in terms of either stress or strain. For purposes of the simplified analyses conducted
in this research project, it does not matter which is used. This is because loading of the
blade material is assumed to be uniaxial, therefore stress and strain are directly related
through the (bulk) elastic modulus Ex.

A literature search revealed two modern databases containing static and fatigue strength
of the sorts of fiberglass laminates that would be used in wind turbine blades. One
database is called MSU/DOE (Montana State University/Department of Energy), based
in the United States. Several summary documents are available through Sandia National
Laboratories.31 The other database is associated with TU Delft, in the Netherlands. A
summary can be found in Nijssen et al. [138]

Many other datasets are available in the literature, as well. But data on the particular
laminates used in wind turbine blades is not widely available.

Representative strength values were chosen, primarily based upon Griffin [71]. This
reference reports static and fatigue strengths for several fiberglass and carbon/glass hybrid
laminates, containing between 70% and 80% unidirectional fibers, and 40% to 50% fibers by
volume. Griffin estimated the strength properties based upon values from the MSU/DOE
database. Raw data was reduced to design values using factors from the Germanischer
Lloyd design standards for wind turbines.32

A design strain of 0.004 was selected for the static compression strength of fiberglass.
Since the elastic modulus is 32.5 GPa, the design stress is 130 MPa in compression.33

Similarly, a design compression strain of 0.0034 was selected for the carbon/glass hybrid.
With an elastic modulus of 74.3 GPa, the design stress is 253 MPa.

spar caps will provide significant assistance in reacting edgewise bending. Thus the webs do not require
as many axial (0◦) fibers as the spar caps, and they can have a greater fraction of ±45◦ fibers.

2920/60/20 means 20% fibers in the axial direction, 30% fibers in each of the +45◦ and −45◦ directions,
and 20% fibers in the 90◦ direction. It is assumed that 90◦ fibers are required because the web laminate
is shaped like a C channel, with the flanges glued to the spar cap, and thus includes rather sharp-radius
bends.

30Hinton et al. [90] is the culmination of a series of articles reviewing a variety of failure criteria.
31For example, Sutherland and Mandell [168]
32The knockdown factors account for statistical scatter, in-service damage, minor manufacturing flaws,

and temperature. See also Burton et al. [22] p 389.
33Contrast this with a design value given by Burton et al. [22], p 406, of 197 MPa, for the same type of

laminate. The difference is significant. However, (1) buckling, fatigue, and deflection criteria are frequently
more important than static strength; and (2) it is the relative merits of different blade designs that are
being compared in this research project, and the same value of strength is used for all the analyses.
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Table C.3: Fatigue strength S-N parameters for fiberglass

R(1) K m
10 1.10 15.0
-1 1.06 13.5
0.1 1.30 7.4

Sf tens.(2) Sf comp.(2)

536 MPa 209 MPa

(1) An R ratio of 10 represents fatigue under a mean tension load, a ratio of -1 is pure alternating
load, and a ratio of 0.1 represents fatigue under a mean compression load.

(2) These are the intercepts on the tension and compression side of the mean-stress axis. Es-
sentially, these are the tension and compression design values under static loading; however
they differ from the static design values because different knockdown factors are applied.
(Burton et al. [22] p 389)

In tension, a design strain of 0.010 was selected for fiberglass, corresponding to a design
stress of 325 MPa. For the carbon/glass hybrid, the corresponding values are 0.005 and
372 MPa. (The blades are expected to fail in compression, so the tension values are seldom
critical.)

The strength of the web laminate was not checked, so its strength properties were not
determined.

C.3.3 Fatigue Strength Properties

The fatigue strength of fiberglass is a function of the mean load, the magnitude of the
alternating load, and the number of alternating load cycles applied. For a fixed ratio of
mean and alternating load, failure in fatigue can be predicted by:

εa
ε0

= KN−1/m; or
σa
σ0

= KN−1/m. (C.43)

For uniaxial loading it does not matter whether stress or strain is used; here it is decided
to use stress. The parameter σ0 is the single-cycle failure stress (see Section C.7). The
parameters K, and m are determined by fatigue tests.34 The fatigue strength calculation
procedure is described in Section C.7; suffice it to say here that the parameters K and
m are functions of the loading ratio R = σmin/σmax. The parameters must be deter-
mined experimentally at several loading ratios; interpolation can be used to estimate the
parameters at loading ratios in between the experimental points.

Griffin [71] reports ε0 for fatigue, and values of K, and m at three different loading
ratios. The value of ε0 was corrected by factors from the Germanischer Lloyd design
standards for wind turbines. (The factors are different for fatigue than for static strength.)
These are summarized in Tables C.3 and C.4; strain was converted to stress using Ex from
Table C.2.

34The experiments are conducted by placing a rectangular coupon in tension and compression. This
means that the state of stress in the coupon is uniaxial, while the state of strain includes both axial and
transverse (Poisson) components.
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Table C.4: Fatigue strength S-N parameters for a carbon/glass hybrid

R K m
10 1.03 28
-1 1.02 17
0.1 1.01 48

Sf tens. Sf comp.
614 MPa 409 MPa

C.4 Section Properties and Blade Construction

Section C.6 below describes how the blade is modeled as a sequence of uniform beam
elements. As input to the beam model, the bending, axial, and torsional stiffness is
required. The beam model is used to calculate deflections and internal forces and moments
at various locations along the blade. For strength analysis, local stresses must be calculated
from the internal forces and moments. Section analysis is used to derive stiffnesses and to
obtain the transfer functions between loading and stress.

C.4.1 Blade Construction

Referring to the sketch in Figure C.5, it is assumed that the primary load-carrying struc-
ture of the blade is a solid composite spar.35 The spar is essentially a box, although the
upper and lower walls (the spar caps) are curved to match the airfoil profile. The interior
walls (the webs) are located at 0.15c and 0.50c, measured from the leading edge, with c
the chord length of the airfoil section. The webs are fabricated separately from the spar
caps, and, as described in Section C.3, they have a different layup.

On large blades, which have deep and wide spars, the spar caps can become overly
critical in buckling; the blade may buckle at a load that is less than half the load at
material failure. In this case, it is desirable to stabilize the section against buckling.
Jensen [97] describes a number of techniques that can be used. Here, however, a simple
assumption is made, which does not require additional design parameters. One or more
extra webs is added, dividing the spar into multiple cells.36 This is sketched in Figure C.6.
These extra webs are assigned the same thickness as the other webs – half the thickness
of fiberglass spar caps, or the same thickness as carbon fiber spar caps – and are included
in the calculation of ρA, EA, and EI in the flapwise and edgewise directions. The extra
webs have little effect on the section stiffness, because they are located comparatively near
the centroid of the section, and do not have a high spanwise modulus. But by supporting
the spar caps locally, they greatly increase the buckling capacity. The extra webs are
neglected when calculating the torsional stiffness of the section.37

The leading and trailing edge structures are sandwich panels, with a core material such
as balsa wood, and thin fiberglass fabric skins. The skin also forms the outermost layer of
the spar caps.

35Examples of this type of construction can be found in Burton et al. [22] p 380; Griffin [71]; Veers et
al. [187]; and Hau [85] p 238.

36This is justified by the LM Glasfiber blade section shown on p 238 of Hau [85].
37Burr and Cheatham [21], on p 818, indicate that this is likely a reasonable assumption.
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Figure C.5: A sketch of a cross-section of the blade, illustrating the construction and the
assumed geometry for calculating section properties

Figure C.6: A sketch of a cross-section with an extra web to restrain buckling of the spar
caps
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C.4.2 Beam Stiffness Properties

There is a beam section coordinate system (denoted with a “s” superscript) associated
with each beam element. This coordinate system has its origin (approximately) at the
centroid of the spar cross-section. It is assumed that the centroids lie along a straight line,
the Xb axis of the blade coordinate system, from the root of the blade to the tip. The
principal moments of inertia are about the Y s (weak) and Zs (strong) axes. It is assumed
that the weak moment of inertia is parallel with the blade chord, and the strong moment
of inertia is perpendicular to the blade chord.

Basic section theory is used to calculate stiffness properties.38 To simplify the calcu-
lation, the section is discretized into rectangular segments, as shown in Figure C.5. Three
different discretizations are used.

One discretization, shown in Figure C.5, is used for calculating the stiffness EIyy about
the Y s axis. Each spar cap is split into four horizontal, rectangular segments of unequal
length.39 The leading and trailing edges are approximated as flat plates separated by 60%
of the airfoil thickness. Stiffness is calculated as:

EIyy = EIspar + EIskin + EIcore, (C.44)

where:

EIspar = Ecap

4∑
j=1

wj [b3j − (bj − 2hcap)3]
12

+NwebsEweb
hcap[0.5(b1 + b4)− 2hcap]3

24
;

EIskin = Eskin

(
0.65c

12
[(0.6t)3 − (0.6t− 2hskin)3]

+
4∑
j=1

wj [b3j − (bj − 2hskin)3]
12

)
;

and:

EIcore = Ebalsa
0.65c

12
[(0.6t)3 − (0.6t− 2hcore)3].

Here, wj is the width of a rectangular segment, bj is the height between the segment on
the upper spar cap and the segment on the lower spar cap, h is laminate thickness, c is
the airfoil chord, and t is the airfoil thickness.

hcap is a design variable. Other dimensions are specified before performing structural
analysis.

wj/c and bj/c are fixed for each airfoil thickness. They were determined by tracing
the exterior profiles of representative airfoils with t/c = 0.12, 0.18, 0.24, and 0.30. For
airfoils of intermediate thickness, wj/c and bj/c are calculated by linear interpolation as
a function of t/c.

The skin thickness is fixed at 2.54 mm. Core thickness is, following Griffin [71], a
function of chord length: hcore = 0.01c.

The second discretization, shown in Figure C.5, is used for calculating the stiffness
EIzz about the Zs axis, and the torsional moment of inertia J about the Xs axis. For
this purpose, the spar is approximated as an equivalent rectangle. The height b of the

38Roark’s Formulas for Stress and Strain (Young and Budynas [195]) is handy for this purpose.
39The airfoil shown in Figure C.5 is 30% thick, the worst case; thinner airfoils are more nearly rectangular.
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equivalent rectangle varies between 0.85t and 0.95t, depending upon t/c ratio. The width
w of the equivalent rectangle is 0.35c. It is assumed that the webs have a thickness that
is half that of the spar caps. Axial stiffness is calculated as:

EA = EAspar + EAskin + EAcore, (C.45)

where:

EAspar = NwebsEweb(0.5(b1 + b4)− 2hcap)(0.5hcap) + 2Ecapwhcap,

EAskin = 2Eskinchskin,

and:

EAcore = 2Ebalsa(0.15chcore + 0.35chcore).

Here, b1 and b4 are the heights between the outermost segments, from Equation C.44.
The Y s coordinate of the centroid is calculated as:

yc =
(

1
EA

)(
− 0.25c(2Ebalsa0.15chcore + 0.15EAskin). (C.46)

+0.35c(2Ebalsa0.15chcore + 0.5EAskin)
)
.

Bending stiffness is calculated as:

EIzz = EIspar + EIskin + EIcore, (C.47)

where:

EIspar =
Eweb(b1 + b4)hcap

4

Nwebs∑
j=1

y2
j + 2Ecap

hcapw
3

12
+ EAspary

2
c ,

EIskin = 2Eskin

(
hskinc

3

12
+ hskinc(0.175c− yc)2

)

and:

EIcore = 2Ebalsa

(
hskin(0.15c)3

12
+ hskin(0.15c)(0.25c+ yc)2

hskin(0.35c)3

12
+ hskin(0.35c)(0.35c− yc)2

)
.

Here, yj is the ys coordinate of each web, measured from the centroid.
The final discretization is used to calculate torsional stiffness. The section is repre-

sented by two closed, hollow boxes, one representing the spar, and the other representing
the skin. The core is neglected due to its very low shear modulus. Torsional stiffness is
calculated as:40

Gcap +Gweb

2
Jspar +GJskin (C.48)

40Young and Budynas [195] p 405
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Table C.5: Material properties of a sample blade; source: Griffin [71]

Ex 25.0 GPa
Ey 9.2 GPa
Gxy 5.0 GPa
νxy 0.35
ρ 1,750 kg/m3

where:

Jspar =
h2

cap(w − 0.5hcap)2(0.85t− hcap)2

0.5whcap + 0.85thcap − h2
cap − (0.5hcap)2

and:

Jskin =
2h2

skin(c− hskin)2(0.6t− hskin)2

chskin + 0.6thskin − 2h2
skin

.

The stiffness properties of the root cylinder are calculated by the common formulas:

Iyy = Izz =
πD4

64
; J =

πD4

32
; A =

πD2

4
. (C.49)

It is assumed that the root cylinder has the same material properties as the spar caps.
The diameter of the root cylinder is assumed to be 1.5 times the airfoil thickness t of the
innermost airfoil element.

C.4.3 Validation

Griffin [71] provides cross-sectional data for a theoretical wind turbine blade, including spar
cap thickness and material properties. Material properties are summarized in Table C.5.
The geometry of several cross-sections is summarized in Table C.6. The table compares
the stiffness calculated by the software with that provided by Griffin.

The flapwise stiffness (which is most important) compares well, except near the tip of
the blade. The edgewise stiffness is about 30% overpredicted over the inboard half of the
blade, and matches closely near the tip. The overprediction of stiffness inboard may be
due to the assumption that the webs are half the thickness of the spar caps. Note that
significant uncertainty is associated with web thickness and the properties of the leading
and trailing edge structure.

Perfect agreement is not expected, because the above calculations are based upon
blade shapes that are not exactly the same as those used by Griffin. The design specified
by Griffin is but one of many possible designs, and should not be taken as absolutely
correct. Rather, it serves as a sanity check. The stiffnesses calculated by the software are
in reasonable agreement.

C.5 Stress Calculation

The endpoint of the finite element analysis of the blade is a set of internal (not applied)
loads and moments ps acting on each beam element cross-section. For a given element,
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Table C.6: Section properties of a sample blade; source: Griffin [71]

r/R 0.25 0.50 0.80 0.95
c (m) 2.80 2.18 1.41 1.04
t/c 0.300 0.255 0.198 0.160
b (m) 0.98 0.76 0.49 0.32
hcap (cm) 4.14 3.56 1.25 0.31
Griffin:
EIflap (N m2) 3.24× 108 7.69× 107 7.47× 106 2.04× 106

EIedge (N m2) 6.65× 108 2.58× 108 5.11× 107 1.87× 107

Software:
EIflap (N m2) 3.11× 108 9.21× 107 6.50× 106 8.16× 105

EIedge (N m2) 8.61× 108 3.48× 108 6.07× 107 1.80× 107

Figure C.7: Points on the cross-section at which stresses are calculated

the vector ps consists of three shear loads (P s)X , (P s)Y , and (P s)Z ; and three moments
(M s)X , (M s)Y , and (M s)Z .

For purposes of preliminary design, shear stress is neglected, because the axial stress
due to bending moments is far more severe than the shear stress due to torsion and direct
shear.

Stresses (and stress spectra) are computed at six points around the cross section, three
on the upper spar cap and three on the lower spar cap. These points are shown in Figure
C.7.

It is assumed that stress behaves linearly, and can be superposed, such that each
component can be considered separately. Begin with (P s)X . This induces a uniform axial
strain:

ε =
(P s)X
EA

, (C.50)

where EA is calculated by Equation C.45. The stress at all six points is:

σx = Ecap
(P s)X
EA

. (C.51)
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Figure C.8: Points on the root cylinder cross-section at which stresses are calculated

A positive bending moment (M s)Y produces compressive stress at points 1, 2, and 3,
and tensile stress at points 4, 5, and 6. Stresses are:

σx = −Ecap
(M s)Y z

EIyy
. (C.52)

For points 1 through 6, z is assumed to be h1/2, t/2, h4/2, −h1/2, −t/2, and −h4/2. h1

and h4 are from Equation C.44, and t is the maximum height (thickness) of the airfoil.
A positive bending moment (M s)Z produces tensile stress at points 1 and 4, and

compressive stress at points 3 and 6. As part of the beam formulation, it is assumed that
the gradient of strain is linear under bending. The stress can be calculated as:

σx = Ecap
(M s)Z y

EIzz
, (C.53)

where EIzz is calculated by Equation C.47, and y is (w/2 − yc) for points 1 and 4, and
(−w/2− yc) for points 3 and 6.

For the root cylinder, stress is calculated at eight points evenly spaced about the
perimeter, as shown in Figure C.8. Axial stress for all the points is calculated as:

σx =
(M s)Y z

I
+

(M s)Z y

I
+

(P s)X
A

. (C.54)

From the above linear relationships between section loads and material stresses, a
matrix equation can be written:

σ = Bsps = BsT sb p
b. (C.55)

σ is a vector of the values of σx for each of the six points (or eight points, for the root
cylinder) on every section in the model. ps is a vector of all the internal nodal loads in
the model. The entries in the matrix B can be calculated by superposing Equations C.51
through C.54, for the appropriate points.
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C.6 Finite Element Model of the Blade

The finite element method provides a means to obtain an approximate, numerical solution
to a structural analysis problem. The concept of finite element analysis is:41

1. to discretize the structure into small pieces;

2. assume a convenient form of the solution (in this case, the displacement field) within
each piece;

3. derive the governing equation of motion for the structure;

4. combine the assumed piecewise solutions such that continuity of the structure is
preserved;

5. substitute the piecewise solution into the governing equation, obtaining a matrix
equation which can be solved by the methods of linear algebra.

C.6.1 Discretized Structural Model of a Rotor Blade

The blade of a HAWT is well represented as a beam. It is assumed that the deflections of
the blade are small in comparison with the length of the blade, such that classical, linear
beam theory can be used without significant error.

Modeling the blade as a beam means that the topology of the cross-section is repre-
sented by stiffness parameters. As described in Section C.4, these section properties are
computed separately, not as a part of the finite element discretization. This means that the
finite (beam) element model itself gives no information about the state of stress or strain
of the material; it gives only the general state of load and deflection at a cross-section.
How, exactly, the section carries that load – and what is the local stress and strain of the
material – must be computed afterwards, based upon the separate cross-section model.

The above points are probably obvious to the structural engineer. But it is worth
noting what is being missed by not discretizing the structure in a way that includes the
cross-section. For example, shell elements could be used to represent the skin, spar caps,
and webs of the blade. With such a model, only material properties would be needed
as input, not section properties; and the finite element analysis would report the load
distribution, and rough values of local stress and strain, in the members of the section. As
it is, using a beam model, some simplifying assumptions are used to obtain relationships
between the load distribution, deflection, stress, and strain. Of course, consistent with
the project philosophy, a beam model was selected because it is the simplest model that
captures the first-order physics of blade behavior.

Thus the blade is discretized into a number of segments, with each segment having
uniform cross-sectional properties.

The structural model will be most accurate if many, small elements are located where
the curvature of the blade under load is greatest. Because of the way a typical blade is
loaded and the way the cross-section tapers, curvature is greatest near the middle of the
blade. So the finite element analysis “wants” fine elements in the middle of the blade,
with coarse elements okay near the root and tip.

By contrast, the aerodynamic analysis wants fine elements near the tip of the blade,
where flow conditions change rapidly with position, and coarse elements near the root,
where aerodynamic performance is not so important.

41Cook et al. [30]
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Table C.7: Radial position of aerodynamic and structural nodes

Node r/Ro
0 0.000
1 0.050
2 0.115
3 0.193
4 0.280
5 0.375
6 0.473
7 0.571
8 0.667
9 0.757
10 0.837
11 0.906
12 0.961
13 1.000

There is no reason why the structural and aerodynamic elements must coincide. But
if they do, then programming and interpretation of results are easier. Therefore, in the
present analysis, structural and aerodynamic elements were made to coincide, and the
discretization is a compromise between the two.

For the blade design studies in Chapter 6, the blade is discretized into 13 elements,
labeled 0 through 12. These are shown in Figure B.3. Element 0 can practically be
ignored; it represents the hub, and exists primarily to offset the rest of the elements such
that their radial position is correct. So effectively, there are 12 structural elements and 12
aerodynamic elements.

A beam element is defined by the location of the nodes at its endpoints; thus there are
14 nodes in the model, labeled 0 through 13. Node 0 lies on the axis of rotation, Node 1
is located at the outer surface of the hub, and Node 13 at the blade tip. The locations of
the nodes are listed in Table C.7.

The sections below contain a detailed derivation of a finite-element based dynamic
model of a wind turbine blade.42

C.6.2 Assumed Displacement Field

The displacement at each node in the finite element model is described by six degrees of
freedom: three displacements along and three rotations about the axes of an orthogonal
coordinate system. The variable x is used to denote the vector of degrees of freedom. For
Node j, degrees of freedom are: x = {wX,j , wY,j , wZ,j , θX,j , θY,j , θZ,j}. The displacements
and rotations are most conveniently described in the element section coordinate system
(see Section A.1), denoted by superscript s, that is, xs = {(wsj )X , (wsj )Y , (wsj )Z , (θsj )X ,
(θsj )Y , (θsj )Z}.

For out-of-plane displacements (wsj )Y and (wsj )Z , it is assumed that the element de-

42Unless mentioned otherwise, I referred to Cook et al. [30] when developing the finite element model
described in this section.
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forms, along its length, as a cubic polynomial. Taking Y deflection as an example:

(W s)Y = a+ bs+ cs2 + ds3, (C.56)

where s is the position along the length of the element, and W is the continuous dis-
placement.43 General boundary conditions for displacement in the Y direction can be
written:

(W s)Y |s=0 = (ws1)Y ,
(
d(W s)Y
ds

)
s=0

= (θs1)Z ,

(W s)Y |s=L = (ws2)Y ,
(
d(W s)Y
ds

)
s=L

= (θs2)Z , (C.57)

between Nodes 1 and 2.44 Therefore, from the first two boundary conditions:

a = (ws1)Y and b = (θs1)Z . (C.58)

Solving for c and d using the latter two boundary conditions gives:

c = −(θs2)Z
L
− 2(θs1)Z

L
+

3(ws2)Y
L2

− 3(ws1)Y
L2

, (C.59)

and

d = −2(ws2)Y
L3

+
2(ws1)Y
L3

+
(θs2)Z
L2

+
(θs1)Z
L2

. (C.60)

The expression for Y displacement (W s)Y at any coordinate s along the element, in terms
of nodal displacements and rotations at Nodes 1 and 2 of the element, is:

(W s)Y =

(
1− 3s2

L2
+

2s3

L3

)
(ws1)Y +

(
s− 2s2

L
+
s3

L2

)
(θs1)Z

+

(
3s2

L2
− 2s3

L3

)
(ws2)Y +

(
−s

2

L
+
s3

L2

)
(θs2)Z . (C.61)

Repeat the above derivation for (W s)Z . Assume:

(W s)Z = a+ bs+ cs2 + ds3. (C.62)

Boundary conditions are:

(W s)Z |s=0 = (ws1)Z ,
(
d(W s)Z
ds

)
s=0

= −(θs1)Y ,

(W s)Z |s=L = (ws2)Z ,
(
d(W s)Z
ds

)
s=L

= −(θs2)Y . (C.63)

43w and θ describe the displacements and rotations at the nodes, while W and Θ are the displacements
and rotations both at the nodes and in between the nodes. In other words, w and W have the same value
at the nodes, as do θ and Θ. It will be obvious why this distinction is made as we proceed through the
derivation.

44The nodes could more generally be denoted j and j+1, but then the equations look messier. Substitute
any two consecutive numbers for “1” and “2”, if you like.
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Note that the sign of the slope terms is negative, because of the relative orientation of the
Y and Z axes. Apart from the sign reversals, the equations are the same:

a = (ws1)Z and b = −(θs1)Y , (C.64)

c =
(θs2)Y
L

+
2(θs1)Y
L

+
3(ws2)Z
L2

− 3(ws1)Z
L2

, (C.65)

d = −2(ws2)Z
L3

+
2(ws1)Z
L3

− (θs2)Y
L2

− (θs1)Y
L2

, (C.66)

and:

(W s)Z =

(
1− 3s2

L2
+

2s3

L3

)
(ws1)Z +

(
−s+

2s2

L
− s3

L2

)
(θs1)Y +

(
3s2

L2
− 2s3

L3

)
(ws2)Z +

(
s2

L
− s3

L2

)
(θs2)Y . (C.67)

There are two degrees of freedom remaining, axial displacement (W s)X and torsion
(Θs)X . It is assumed that these each vary linearly as a function of position s along the
element. Mathematically:

(W s)X =
(

1− s

L

)
(ws1)X +

s

L
(ws2)X , (C.68)

and:

(Θs)X =
(

1− s

L

)
(θs1)X +

s

L
(θs2)X . (C.69)

The above equations can be combined together in matrix form:

Xs = Ssx (C.70)

where X is the vector of displacements and rotations; S is the shape function matrix, a
function of position s; and x is the vector of nodal degrees of freedom, a function of time.

C.6.3 Piecewise Solution and Energy Expressions

The beam representing the blade is both moving as a rigid body through space and
deforming.45 The Lagrange equations are used to derive the equations that describe the
motion of the beam, :46

d

dt

(
∂EK
∂ẋi

)
− ∂EK

∂xi
+
∂ED
∂ẋi

+
∂EP
∂xi

= Fi. (C.71)

Here, the index i refers to the degree of freedom in the model. The vector x contains
the degrees of freedom in the model. (In this section, let w be the vector expressing
deflection of the degrees of freedom from the undeformed state; x expresses the position
of the degrees of freedom, including both deflection and rigid-body motion.) EK is the

45In deriving the equations in this section, I referred to Cook et al. [30] (primarily Chapter 13) and
Spong and Vidyasagar [166] Chapter 6. These are the applicable references unless otherwise noted.

46The Lagrange equations are related to energy conservation; Hurty and Rubenstein [94] pp 80-94. Rao
[146], p 503, provides the full version of the Lagrange equations, including the damping term.
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kinetic energy of the entire body, ED is the energy dissipated by damping mechanisms,
and EP the potential energy, in this case the strain energy. F is the vector of applied
forces. It does not include reaction forces, provided that the reaction forces do no work.47

Energy must be coordinate system independent, therefore the derivatives in Equation
C.71 can be evaluated with respect to any coordinate system. However, kinetic energy
EK is dependent upon the absolute motion of a mass. Thus it should be written with
respect to a fixed, global coordinate system. Likewise, it is most convenient to write ED
and EP with respect to a coordinate system that follows the motion of the blade, because
it is only deflection with respect to the undeformed body that contributes to these energy
terms. Using the “wrong” coordinate system makes derivation of the terms more difficult.

The expression for the kinetic energy of a body looks like:

EK =
1
2

∫
B
ρ
dQT

dt

dQ

dt
dB, (C.72)

where Q here represents a vector describing the displacement of a point of mass in the
body.

The problem has, however, already been reduced significantly by considering a beam
model, and further still, a finite element representation. It is convenient to begin by
considering a single element, working in the element section coordinate system. To simplify
matters further, it is possible to separately consider lateral displacement, extension, and
torsion of the beam. (This simplification does not result in any loss of accuracy, it just
allows smaller steps to be taken during the derivation.)

Consider lateral displacement in the Y direction. Using Equation C.72, the kinetic
energy can be written:

EK =
1
2

∫ L

0
ρA

(
d(W s)Y
dt

)2

ds. (C.73)

As seen in the previous section, (W s)Y can be written in the form:

(W s)Y = Sxs,

where xs = {(ws1)Y , (θs1)Z , (ws2)Y , (θs2)Z} (a partial vector of the element degrees of free-
dom), and the (partial) shape function matrix S comes from Equation C.61. Substituting
into Equation C.73:

EK =
1
2

∫ L

0
ρA

(
d[(xs)TST ]

dt

)(
d[Sxs]
dt

)
ds. (C.74)

But, the shape function matrix S is a function of position, not time; and the nodal degrees
of freedom xs are functions of time, not position. Therefore, the kinetic energy can be
rewritten:

EK =
1
2
d(xs)T

dt

∫ L

0
ρASTS ds

dxs

dt
. (C.75)

Define
∫ L

0 ρASTS ds to be the portion of an element mass matrix ms
e that is associated

with {(ws1)Y , (θs1)Z , (ws2)Y , (θs2)Z}. In this case, section properties are considered constant
along the element, so ms

e = ρA
∫ L

0 STS ds.

47The Lagrange equations are also applicable when x represents any set of generalized coordinates. This
could be, for example, in a modal analysis, the amplitudes of the vibration modes. F is then the generalized
force.
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The portions of the element mass matrix associated with degrees of freedom {(ws1)Z ,
(θs1)Y , (ws2)Z , (θs2)Y } and {(ws1)X , (ws2)X} can be derived following the same procedure.
The portion of the element mass matrix associated with the torsion degrees of freedom
{(θs1)X , (θs2)X} is slightly different. In this case, the starting point is:

EK =
1
2

∫ L

0

∫
A
ρ

(
r
d(Θs)X
dt

)2

dA ds. (C.76)

Here, r is the vector from the origin of the section coordinate system to a point of material
on the cross-section. Implementing the assumed displacement via the shape function:

EK =
1
2

∫ L

0

∫
A
ρr2 d(xs)T

dt
STS

dxs

dt
dA ds, (C.77)

where x = {(θs1)X , (θs2)X}. Rearranging:

EK =
1
2
d(xs)T

dt
ρ

(∫
A
r2 dA

)(∫ L

0
STS ds

)
dxs

dt
. (C.78)

Defining J =
∫
A r

2 dA, the portion of the element mass matrix associated with torsion
degrees of freedom is ms

e = ρJ
∫ L
0 STS ds.

Considering all the element degrees of freedom – the full 12-element vector xs, 12-by-12
matrix ms

e, and 4-by-12 matrix S – we can write:

EK =
1
2
d(xs)T

dt
ms
e

dxs

dt
, (C.79)

with:

ms
e = ρK

∫ L

0
STS ds, (C.80)

where K is J for the torsion degrees of freedom and A for the others. Here is the full
element mass matrix ms

e written out:48

Cb =
ρAL

420
; Ca =

ρAL

6
; Cr =

ρJL

6
; (C.81)



2Ca 0 0 0 0 0 Ca 0 0 0 0 0
0 156Cb 0 0 0 22LCb 0 54Cb 0 0 0 −13LCb

0 0 156Cb 0 −22LCb 0 0 0 54Cb 0 13LCb 0
0 0 0 2Cr 0 0 0 0 0 Cr 0 0
0 0 −22LCb 0 4L2Cb 0 0 0 −13LCb 0 −3L2Cb 0
0 22LCb 0 0 0 4L2Cb 0 13LCb 0 0 0 −3L2Cb

Ca 0 0 0 0 0 2Ca 0 0 0 0 0
0 54Cb 0 0 0 13LCb 0 156Cb 0 0 0 −22LCb

0 0 54Cb 0 −13LCb 0 0 0 156Cb 0 22LCb 0
0 0 0 Cr 0 0 0 0 0 2Cr 0 0
0 0 13LCb 0 −3L2Cb 0 0 0 22LCb 0 4L2Cb 0
0 −13LCb 0 0 0 −3L2Cb 0 −22LCb 0 0 0 4L2Cb


48This is called the “consistent” mass matrix, because effectively it considers the distribution of mass

over the element. A simpler, diagonal matrix can be obtained by “lumping” the mass at the nodes, rather
than trying to obtain the distribution over the element. Either form of the matrix will give acceptable
results in typical cases. [30] I chose the consistent version because of its parallel with the way in which the
stiffness matrix is derived.
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Equation C.79 gives the equation for kinetic energy; now we will pursue an equation
for the potential energy, which in the context of a wind turbine blade is the strain energy
stored in deflection of the structure. The equation for strain energy is:

EP =
∫
B

∫
σT dε dB. (C.82)

By laminated plate theory, described in Section C.2, σ is the bulk stress, and can be
substituted with the force resultant N :49

EP =
∫
B

1
h

∫
NT dε dB. (C.83)

The variable h is the laminate thickness. The relationship between force resultant and
strain is:

N = Aε, (C.84)

where the A matrix is that described in Section C.2, not to be confused with cross-sectional
area. The expression for potential energy becomes:

EP =
∫
B

1
h

∫
εT AT dε dB. (C.85)

Since it is assumed that the material behaves in a linear elastic manner, A is not a function
of strain, so performing the strain integration gives:

EP =
∫
B

1
2h
εT AT ε dB. (C.86)

Take the transpose (or equivalently, note that A is symmetric):

EP =
1
2

∫
B

1
h
εT A ε dB. (C.87)

Alternatively, we can substitute ε = aN , where a = A−1, and obtain:

EP =
1
2

∫
B

1
h
NTaT A aN dB;

EP =
1
2

∫
B

1
h
NTaN dB. (C.88)

Here it must be decided how to represent the Poisson behavior of the laminate. Fol-
lowing Section C.2, the laminate is considered to be unrestrained. Writing out the terms
in Equation C.88, one obtains:

EP =
1
2

∫
B

1
h

(a11N
2
x + a22N

2
y + a66N

2
xy

+2a12NxNy + 2a16NxNxy + 2a26NyNxy) dB. (C.89)

Here a significant simplification can be made. Assume that the laminates comprising the
cross-section are balanced and symmetric. This means that a16 and a26 will be zero. In
addition, Ny is assumed to be zero. Then the expression for strain energy becomes:

EP =
1
2

∫
B

1
h

(a11N
2
x + a66N

2
xy) dB. (C.90)

49It is assumed that the section is composed of thin segments which do not warp, thus local bending
moment M and curvature κ of the laminate can be neglected, and only the in-plane force resultant N and
mid-plane strain ε matter.
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The same simplifying assumptions lead to the relationships εx = a11Nx and γxy = a66Nxy.
Substituting into Equation C.90 gives:

EP =
1
2

∫
B

1
h

(
1
a11

ε2x +
1
a66

γ2
xy

)
dB. (C.91)

At this point we will consider a single element, in the element section coordinate system.
A wise choice for the element section coordinate system (with the Y and Z axes aligned
with the two principal axes of bending of the cross-section) allows lateral displacement,
extension, and torsion of the beam to be considered separately.50

First consider lateral displacement in the Y direction. The strain energy is:

EP =
1
2

∫
B

1
h a11

(
−yd

2(W s)Y
ds2

)2

dB. (C.92)

Define (1/ha11) to be an equivalent elastic modulus E. Introduce Equation C.61 for
(W s)Y :

EP =
1
2

∫
B
Ey2 d2[(ws)TST ]

ds2

d2[Sws]
ds2

dB. (C.93)

Since ws is a function of time, not position along the element, the equation becomes:

EP =
1
2

(ws)T
∫ L

0

∫
Area

Ey2 d(Area)
d2ST

ds2

d2S

ds2
ds ws. (C.94)

Define
∫ L

0

∫
AreaEy

2 d(Area) (d2ST /ds2)(d2S/ds2) ds to be the portion of an element
stiffness matrix kse that is associated with {(ws1)Y , (θs1)Z , (ws2)Y , (θs2)Z}. The portions of
the element stiffness matrix that are associated with {(ws1)Z , (θs1)Y , (ws2)Z , (θs2)Y } and
{(ws1)X , (ws2)X} can be derived similarly.

For torsion, define an equivalent shear modulusG = 1/ha66. The derivation of torsional
stiffness for an arbitrary, closed, thin-walled cross-section, like the spar box being modelled,
is not trivial. The stiffness can be calculated by solving the differential equations of
elasticity, which lead to the membrane analogy.51 Alternatively, solutions are published
in handbooks.52 The appropriate formula is:

J =
4A2∫

(1/h) du
, (C.95)

where u is the distance along a line lying at the mid-thickness of the walls, A is the total
area enclosed by the line specified by u, and h is the wall thickness.

Equation C.95 is applicable if the material is of a uniform shear modulus G. In the
spar box, if G of the webs is different than that of the spar caps, the following formula
can be used:

GJ =
4A2∫

(1/Gh) du
, (C.96)

50Because εx is squared, it would appear at first glance that superposition would not apply if εx is the
sum of several terms. But the choice of the coordinate system results in all the interaction terms becoming
zero when the integral over the cross-section is taken.

51Burr and Cheatham [21] Section 13.9
52Young and Budynas [195] p 405
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or for discrete linear segments:

GJ = 4A2 1∑
j

bj
Gjhj

, (C.97)

where bj is the width of segment j, measured along the mid-thickness line.
Potential energy due to torsion can be written:

EP =
1
2

∫ L

0
GJ

(
d(Θs)X
ds

)2

ds. (C.98)

Using Equation C.69:

EP =
1
2

∫ L

0
GJ

d(ws)TST

ds

dSws

ds
ds, (C.99)

which can be rearranged as:

EP =
1
2

(ws)T
∫ L

0
GJ

dST

ds

dS

ds
ds ws. (C.100)

The integral is the portion of the element stiffness matrix kse associated with degrees of
freedom {(θs1)X , (θs2)X , }.

Considering all the element degrees of freedom, we can write:

EP =
1
2

(ws)T kse w
s. (C.101)

The full element stiffness matrix kse is:

Cb1 =
EIzz
L3

; Cb2 =
EIyy
L3

; Ca =
EA

L
; Cr =

GJ

L
; (C.102)



Ca 0 0 0 0 0 −Ca 0 0 0 0 0
0 12Cb1 0 0 0 6LCb1 0 −12Cb1 0 0 0 6LCb1

0 0 12Cb2 0 −6LCb2 0 0 0 12Cb2 0 −6LCb2 0
0 0 0 Cr 0 0 0 0 0 −Cr 0 0
0 0 −6LCb2 0 4L2Cb2 0 0 0 6LCb2 0 2L2Cb2 0
0 6LCb1 0 0 0 4L2Cb1 0 −6LCb1 0 0 0 2L2Cb1

−Ca 0 0 0 0 0 Ca 0 0 0 0 0
0 −12Cb1 0 0 0 −6LCb1 0 12Cb1 0 0 0 −6LCb1

0 0 12Cb2 0 6LCb2 0 0 0 12Cb2 0 6LCb2 0
0 0 0 −Cr 0 0 0 0 0 Cr 0 0
0 0 −6LCb2 0 2L2Cb2 0 0 0 6LCb2 0 4L2Cb2 0
0 6LCb1 0 0 0 2L2Cb1 0 −6LCb1 0 0 0 4L2Cb1


Following a similar procedure to that used above, the dissipated energy can be written:

ED =
1
2
d(xs)T

dt
cse
dxs

dt
. (C.103)

It is assumed that no energy dissipation is associated with the rotation of the rotor. The
dissipated energy is then:

ED =
1
2
d(ws)T

dt
cse
dws

dt
. (C.104)

The damping matrix cse is discussed in Appendix D.
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C.6.4 Structural Continuity

Up to this point, expressions for kinetic, potential, and dissipated energy have been derived
for a single element. To complete the finite element model, the individual element mass,
stiffness, and damping matrices are “built” together into global matrices that describe the
entire structure. To do this requires that a consistent coordinate system be used for all
elements.

Consider the global stiffness matrix k. It is composed of a superposition of all the
element stiffness matrices ke (Equation C.102), associating each row and column with the
appropriate elements in the global load and displacement vectors F and x. But it makes
no sense to superpose kse directly, because the section coordinate system may vary from
element to element. Therefore, the superposition will be conducted in the blade coordinate
system. For each element, compute:

kbe = T bs k
s
e(T

b
s )T . (C.105)

Now superpose kbe for each element to obtain kb.
A like process is conducted for the element mass matrices ms

e to obtain the global mass
matrix mb, and the element damping matrices cse to obtain the global damping matrix cb.

Gravity

Gravity is a uniform linear acceleration field, with a constant direction relative to the
fixed, global coordinate system. It can be incorporated into the Lagrange equations either
through the potential energy term on the left-hand side or as an applied force on the
right-hand side. Treating gravity as an applied force, it can be calculated by:

Fg = mrg. (C.106)

The matrix mr is the mass matrix referenced to rotor coordinates. The gravitational
acceleration vector g has the form {0, −g, 0, 0, 0, 0} for each set of six degrees of freedom
{(xri )X , (xri )Y , (xri )Z , (θri )X , (θri )Y , (θri )Z}, associated with Node i.

C.6.5 Centrifugal Stiffening

The beam model has thus far been developed as a linear model, to first order in deflection.
The rigid-body motion of the blade leads to nonlinear terms in the full equations of motion.
Most of these can be neglected if deflections are small. Centrifugal stiffening, though, is
included in the calculations.

A review of references53 describing the equations of motion of a wind turbine blade
indicates that centrifugal stiffening has a discernable, but not dominant, effect on the
loading and vibration frequencies of the blade. Fortunately, despite the fact that centrifu-
gal stiffening is a second-order effect, it can be modeled in a simple manner, provided
deflections are small.

Centrifugal stiffening occurs because as the blade deflects, an axial tension load pro-
duces a moment which tends to restore the blade to its undeformed position.54 The
tension load arises because the rotation of a blade induces an inward radial component of
acceleration, with magnitude RΩ2.

53Bir [14], Burton et al. [22] pp 259-268, Hansen [76], Hansen [80] pp 121-123
54This description assumes that the blade is not coned. It is more general to say that the tension load

produces a moment which tends to align the blade perpendicular to the axis of rotation.
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Cook et al. [30], p 430, describe the potential energy associated with the lateral deflec-
tion of a beam under an axial load.55 Consider a beam element which undergoes a lateral
deflection, say, in the local Y direction, but does not extend in its length dx. One then
has the trigonometric relationship:

(dx− da)2 + dw = dx2; (C.107)

dx2 − 2 da dx+ da2 + dw2 = dx2.

da is small with respect to both dw and dx, therefore da2 disappears, giving:

−2 da dx+ dw2 = 0;

da =
1
2
dw2

dx
. (C.108)

Now consider a single beam element, with an axial load P applied to the right-hand
side. The node at the right-hand side deflects by (W s)Y , with no axial extension. For
reasons evident from Equation C.108, the load P increases in potential by the amount:

EP = Pu, (C.109)

where:

u =
1
2

∫ L

0

(
d(W s)Y
ds

)2

ds. (C.110)

The finite element formulation for lateral beam deflection gives:

EP =
1
2
P

∫ L

0

d(ws)TST

ds

dSws

ds
ds; (C.111)

EP =
1
2

(ws)T P
∫ L

0

dST

ds

dS

ds
ds ws. (C.112)

The term P
∫ L

0
dST

ds
dS
ds ds acts as a portion of an element stiffness matrix ksσ,e. An identical

derivation can be made for deflection (W s)Z . There is no centrifugal stiffness for the other
degrees of freedom. The full centrifugal stiffness matrix ksσ,e for an element is:56

Cc =
P

30L
; (C.113)

0 0 0 0 0 0 0 0 0 0 0 0
0 36Cc 0 0 0 3LCc 0 −36Cc 0 0 0 3LCc

0 0 36Cc 0 −3LCc 0 0 0 −36Cc 0 −3LCc 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3LCc 0 4L2Cc 0 0 0 3LCc 0 −L2Cc 0
0 3LCc 0 0 0 4L2Cc 0 −3LCc 0 0 0 −L2Cc

0 0 0 0 0 0 0 0 0 0 0 0
0 −36Cc 0 0 0 3LCc 0 36Cc 0 0 0 −3LCc

0 0 −36Cc 0 3LCc 0 0 0 36Cc 0 3LCc 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3LCc 0 −L2Cc 0 0 0 3LCc 0 4L2Cc 0
0 3LCc 0 0 0 −L2Cc 0 −3LCc 0 0 0 4L2Cc


55This derivation uses the alternate explanation that Cook et al. give in a footnote; it seemed more

straightforward.
56Cook et al. [30] p 434
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It remains to compute the load P in the element. Aerodynamic loads in the spanwise
direction are almost zero, however gravity loads are not zero. How important are the axial
loads due to gravity, in comparison with those due to centrifugal acceleration?

Centrifugal acceleration is RΩ2. Let us examine values for a generic turbine, R = 30
m and Ω = 2.5 rad/s. Picking a location at 70% span as representative, the centrifugal
acceleration is 131 m/s2, which is over ten times that of gravity. Therefore gravity can be
neglected when calculating centrifugal stiffening. This is convenient, because, if rotational
speed does not vary too much during a given analysis, the centrifugal stiffness matrix can
be calculated upfront, and simply combined with the structural stiffness matrix. (If there
were applied axial loads that varied over time, the centrifugal stiffness matrix would vary,
and would need to be recalculated at each timestep.)

Assuming zero cone angle, the load P at the base (the node closer to the root) of
element j is the sum of Pj = mjrjΩ2 for element j and all elements outboard of j:

P = Ω2
N∑
i=j

miri. (C.114)

Note that the centrifugal forces must be computed “manually” upfront in order to
obtain kσ; and then they should be applied again when solving the governing equations.

For subsequent calculations, define an effective stiffness:

keff = k + kσ. (C.115)

C.6.6 Constraints

The blade is constrained at its root. In the current, single-blade model, this constraint
is modeled as a stiff beam element representing the hub. (The hub element is arbitrarily
assigned ten times the stiffness of the adjacent blade root element.) The hub element is
attached rigidly to the axis of rotation. In order to represent this rigid attachment, the
mass, damping, and stiffness matrices must be modified.

The equation of motion (to be derived in the following section) takes the standard
form:

m
d2x

dt2
+ c

dx

dt
+ keffx = F. (C.116)

If the goal is to constrain degree of freedom i, this means that we want to assign values to
xi and its time derivatives, and compute the reaction force. In other words, the left-hand
and right-hand sides of Equation C.116 must be switched for degree of freedom i.

Cook et al. [30], p 52, give a method to do so while retaining the form of Equation
C.116.57 First, column i, corresponding to the prescribed degree of freedom, is subtracted
from both sides:

m
d2x

dt2
−mji

d2xi
dt2

+ c
dx

dt
− cji

dxi
dt

+ keffx− keff,jixi

= F −mjixi − cji
dxi
dt
− keff,jixi, (C.117)

57Cook et al. describe the procedure for the static equation kx = F ; I have simply followed the same
procedure for the dynamic equation mẍ+ cẋ+ kx = F .
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where xi is the prescribed value of the degree of freedom, and mji, cji, and keff,ji are
column vectors, permuting j. This leaves column i equal to zero in the mass, damping,
and stiffness matrices. Next, the equation in row i is replaced by the trivial solution:

mii
d2xi
dt2

+ cii
dxi
dt

+ keff,iixi = mii
d2xi
dt2

+ cii
dxi
dt

+ keff,iixi. (C.118)

That is, row i of each matrix is set to zero, with the exception of the term on the diagonal,
which retains its original value.

C.6.7 Verification

The finite element subroutines performing the above calculations are here verified by using
the example of a uniform cantilevered beam, for which closed-form solutions are available
for deflection, internal forces, mode shapes, and natural frequencies. Limited natural
frequency data is available for the Tjæreborg wind turbine, and this is used for validation.

Element Distribution

Figure B.3 shows the distribution of aerodynamic and structural elements along the length
of the blade. The distribution is a compromise between the requirements for structural
analysis, for which the elements should be most dense where curvature of the deformed
blade is greatest, and aerodynamic analysis, for which the elements should be most dense
near the blade tip.

Transformation Matrices

Each transformation matrix is constructed of 3-by-3 blocks of possibly nonzero values
centered along the diagonal. Each 3-by-3 block transforms an XYZ vector such as position,
rotation, velocity, force, or moment. The transformation is the same for any such XYZ
vector, therefore we need only to verify a single 3-by-3 transformation.

Consider a case in which the azimuth angle of the blade is 30◦. The transformation
matrix from blade to rotor coordinates is then:

T rb =

 0.866 -0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

 .
If the rotor is spinning at 2 rad/s, then the time derivative of the transformation is:

dT rb
dt

=

 -1.000 -1.732 0.000
1.732 -1.000 0.000
0.000 0.000 0.000

 .
If one takes a position vector rb in blade coordinates, fixed to a rigid blade, and multiplies
by the time derivative of the transformation, then the velocity of the point is obtained.
The second time derivative is:

d2T rb
dt2

=

 -3.464 2.000 0.000
-2.000 -3.464 0.000
0.000 0.000 0.000

 .
This provides the acceleration of a point on a rigid blade.
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Table C.8: Section properties of a uniform cantilevered beam

L 10 m
ρA 28.32 kg/m
EA 4.75× 108 N
EIyy 2.65× 106 Nm2

EIzz 2.07× 107 Nm2

GJ 6.31× 106 Nm2

Table C.9: Verification of the static finite element solutions for tip deflection and reaction
forces when each degree of freedom is activated at the tip of the cantilever

Tip Load deflection axial force shear moment
(m or rad) (N) (N) (Nm)

P bx Theory: 2.11× 10−5 1,000 0 0
FEM: 2.17× 10−5 1,000 0 0

P by Theory: 0.0161 0 1,000 10,000
FEM: 0.0161 0 1,000 10,300

P bz Theory: 0.126 0 1,000 -10,000
FEM: 0.126 0 1,000 -10,800

M b
x Theory: 1.58× 10−3 0 0 1,000

FEM: 1.59× 10−3 0 0 1,000
M b
y Theory: -0.0189 0 0 1,000

FEM: -0.0189 0 0 1,000
M b
z Theory: 2.42× 10−3 0 0 1,000

FEM: 2.42× 10−3 0 0 1,000

In the context of finite element analysis of the blade, the transformation from the blade
coordinate system to beam section coordinate system and back is also important. Let the
airfoil be turned into the wind (positive twist) by 10◦. The transformation from blade to
section coordinates is:

T sb =

 1.000 0.000 0.000
0.000 0.985 -0.174
0.000 0.174 0.985

 .
Deflections and Forces

A uniform cantilevered beam was modelled, with section properties as shown in Table C.8.
A load of 1,000 N, or moment of 1,000 Nm, was placed at the blade tip, one degree-of-
freedom at a time. The deflection at the tip was calculated, as well as the reaction forces
at the root. Table C.9 compares the results of the software with the closed-form solutions.

Centrifugal Stiffness

The uniform cantilevered beam described by Table C.8 is used for verification. It is
assumed that the beam is rotating at π rad/s.
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Table C.10: Verification of the centrifugal force calculation

Element r m P P
(m) (kg) (N) (N)

theory software
16 9.71 8.09 786.91 786.91
15 9.37 9.78 1708.27 1708.27
14 8.97 11.42 2741.42 2741.42
13 8.51 12.98 3860.92 3860.92
12 8.00 14.47 5039.21 5039.21
11 7.44 15.86 6247.31 6247.31
10 6.83 17.16 7455.46 7455.46
9 6.18 18.35 8633.95 8633.95
8 5.50 19.43 9753.76 9753.76
7 4.78 20.39 10787.35 10787.35
6 4.03 21.22 11709.28 11709.28
5 3.25 21.92 12496.88 12496.88
4 2.46 22.49 13130.75 13130.75
3 1.65 22.92 13595.33 13595.33
2 0.83 23.21 13879.19 13879.19
1 0.01 23.35 13975.36 13975.36

Table C.10 compares the centrifugal tension load obtained from the software, based
upon the finite element mass matrix, with that obtained from a closed-form integral:

P = ρAΩ2
∫ R

r
r dr =

1
2
ρAΩ2(R2 − r2). (C.119)

This centrifugal tension load is used to calculate the centrifugal stiffness matrix.
Figure fig: verification 2.8 illustrates the effects of rotational speed on blade stiffness

and natural frequency.58 The thin line, referenced to the axis at right, shows the tip
deflection under an applied load of Pz = 1, 000 N at the blade tip. The thick lines show
the first natural frequency, which is associated with the first flapwise mode. Output of
the software is compared against an approximate formula provided by Burton et al. [22],
p 261:

f =
√
f2

0 + 0.0438Ω2, (C.120)

where f0 is the natural frequency when the rotor is stationary, and Ω is the rotational
speed in rad/s.

C.6.8 Governing Equations

The terms of the Lagrange equations can now be evaluated, in order to arrive at the
governing equations of motion. The equations of motion are written in a fixed, global
coordinate system, in this case (since the support structure is assumed to be perfectly rigid)

58This example is based upon structural data for the Tjæreborg 2 MW wind turbine; Snel and Schepers
[160].
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Figure C.9: The effects of a spinning rotor on stiffness and natural frequency

the rotor coordinate system. This is necessary in order to capture the effects related to
rigid-body motion of the blade. Although the equations are written in the rotor coordinate
system, it is most convenient to keep the variables in the blade coordinate system, because
then quantities such as deflection do not vary as a function of the azimuthal position of
the blade.

Referring to Equation C.71, proceed term by term, beginning with kinetic energy:

d

dt

(
∂EK
∂ẋri

)
=

d

dt

[
∂

∂ẋri

(
1
2
d(xr)T

dt
mr dx

r

dt

)]
;

d

dt

(
∂EK
∂ẋri

)
=

d

dt

(
mr
i

dxr

dt

)
;

d

dt

(
∂EK
∂ẋri

)
=
dmr

i

dt

dxr

dt
+mr

i

d2xr

dt2
.

The variable mr
i is the ith row of the mass matrix. Putting all the rows together into the

form of a matrix multiplication gives:

dmr

dt

dxr

dt
+mr d

2xr

dt2
(C.121)

When written in the rotor coordinate system, the mass matrix is not constant, because the
position of the blade, and therefore of the blade’s mass, varies with time. Since structural
deflections are small, the mass matrix is constant in the blade coordinate system. We
therefore want to write the kinetic energy term, Equation C.121, in the blade coordinate
system. In order to do this, the displacement (degree of freedom) vector xr should be
expressed in the blade coordinate system, too. The vector xr can be written as the sum of
a position offset from the origin of the rotor coordinate system to the undeformed position
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of the blade (at the origin of the section coordinate system associated with each degree of
freedom), and the deflection wr:59

xr = Orrs + wr. (C.122)

Equation C.121 can be written as:

d

dt

(
T rbm

b(T rb )T
) d

dt

[
T rb (Obrs + wb)

]
+T rbm

b(T rb )T
d2

dt2

[
T rb (Obrs + wb)

]
. (C.123)

Now look at the time derivatives of the displacement vector:

d

dt

[
T rb (Obrs + wb)

]
=
dT rb
dt

(Obrs + wb) + T rb
d

dt
(Obrs + wb).

In the blade coordinate system, the position offset vector Obrs is constant, so its time
derivatives are zero. Thus:

d

dt

[
T rb (Obrs + wb)

]
=
dT rb
dt

(Obrs + wb) + T rb
dwb

dt
. (C.124)

The second time derivative is:

d2

dt2

[
T rb (Obrs + wb)

]
=

d

dt

[
dT rb
dt

(Obrs + wb)
]

+
d

dt

(
T rb
dwb

dt

)
;

d2

dt2

[
T rb (Obrs + wb)

]
=
d2T rb
dt2

(Obrs + wb) + 2
dT rb
dt

dwb

dt
+ T rb

d2wb

dt2
.

The kinetic energy term becomes:(
dT rb
dt

mb(T rb )T + T rbm
bd(T rb )T

dt

)[
dT rb
dt

(Obrs + wb) + T rb
dwb

dt

]

+T rbm
b(T rb )T

[
d2T rb
dt2

(Obrs + wb) + 2
dT rb
dt

dwb

dt
+ T rb

d2wb

dt2

]

=

(
dT rb
dt

mb(T rb )T
dT rb
dt

+ T rbm
bd(T rb )T

dt

dT rb
dt

+ T rbm
b(T rb )T

d2T rb
dt2

)
(Obrs + wb)

+

(
dT rb
dt

mb(T rb )TT rb + T rbm
bd(T rb )T

dt
T rb + 2T rbm

b(T rb )T
dT rb
dt

)
dwb

dt

+T rbm
b(T rb )TT rb

d2wb

dt2

The transpose of a transformation matrix is the same as the inverse, and (T rb )TT rb = I, so
the kinetic energy term becomes:(

dT rb
dt

mb(T rb )T
dT rb
dt

+ T rbm
bd(T rb )T

dt

dT rb
dt

+ T rbm
b(T rb )T

d2T rb
dt2

)
(Obrs + wb)

59In this case, the vector Or
rs has zeroes associated with all the rotational degrees of freedom. Rotation

is accounted for by the transformation matrix.
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+

(
dT rb
dt

mb + T rbm
bd(T rb )T

dt
T rb + 2T rbm

b(T rb )T
dT rb
dt

)
dwb

dt

+T rbm
bd

2wb

dt2
(C.125)

In Equation C.125, the term

T rbm
bd

2wb

dt2

would be the acceleration in the rotor coordinate system if the blade were not rotating;(
dT rb
dt

mb + T rbm
bd(T rb )T

dt
T rb + 2T rbm

b(T rb )T
dT rb
dt

)
dwb

dt

is the coriolis acceleration; and(
dT rb
dt

mb(T rb )T
dT rb
dt

+ T rbm
bd(T rb )T

dt

dT rb
dt

+ T rbm
b(T rb )T

d2T rb
dt2

)
(Obrs + wb)

is the centrifugal (more properly, centripetal) acceleration.
It is possible, without writing out all the terms, to use approximations to simplify

Equation C.125. First, the deflection wb has been assumed throughout this derivation to
be small, therefore it is small in comparison with the radius Obrs, and can be neglected.
Second, based upon the form of the transformation matrix T rb , which is:60

T rb =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (C.126)

dT rb
dt

=
dψ

dt

 − sinψ − cosψ 0
cosψ − sinψ 0

0 0 0

 (C.127)

it can be seen that flapwise deflection, being parallel to the angular velocity vector, has
zero coriolis acceleration. It is expected that the primary deflection of the blade is flapwise;
this follows from an elementary static analysis of the forces on the airfoil and the moment
of inertia of the blade cross-section. Therefore, the coriolis acceleration is assumed to be
zero. Finally, the first two terms in the centrifugal force are equal and opposite, and sum
to zero. Making these simplifications, the final kinetic energy term is:

T rbm
bd

2wb

dt2
+

(
T rbm

b(T rb )T
d2T rb
dt2

)
Obrs. (C.128)

The next term in the Lagrange equations, which is also a function of kinetic energy,
is:

∂EK
∂xi

=
1
2
∂

∂xri

(
d(xr)T

dt
mr dx

r

dt

)
. (C.129)

60The full transformation matrix T r
b which applies to all degrees of freedom is composed of many such

3-by-3 matrices like Equation C.126, with the cosine terms lying on the diagonal.
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Note that:

∂

∂xri

dxr

dt
=

d

dt

dxr

dxri
= 0. (C.130)

Therefore only the derivative of the mass matrix can potentially be nonzero:

∂EK
∂xi

=
1
2
d(xr)T

dt

∂mr

∂xri

dxr

dt
. (C.131)

Some tedious algebra can be avoided by realizing that the kinetic energy is independent
of the azimuthal position of the blade.61 From Equation C.122, xri = Orrs,i + wri . The
origin vector Orrs,i has nonzero terms of the form rj cosψ and rj sinψ, where j is the node
number associated with degree of freedom i; rj is constant for the circular motion of the
blade, so the origin vector is a function of only azimuth angle ψ. Since kinetic energy is
independent of the azimuth angle, dxri = dwri ; and since deflections are small, the mass
matrix is not a function of deflection. This term in the Lagrange equations must be zero:

∂EK
∂xi

= 0. (C.132)

Next, consider the dissipative energy term in the Lagrange equations:

∂ED

∂ẋbi
=

1
2
∂

∂ẋbi

(
d(wb)T

dt
cb
dwb

dt

)
.

Noting that:

dxbi
dt

=
d

dt
(Obbs,i + wbi ) =

dwbi
dt

, (C.133)

The dissipative energy term becomes:

∂ED

∂ẇbi
=

1
2
∂

∂ẇbi

(
d(wb)T

dt
cb
dwb

dt

)
; (C.134)

∂ED

∂ẇbi
=

1
2

(
cbi
dwb

dt
+
d(wb)T

dt
(cbi)

T

)
, (C.135)

assuming that cb is symmetric. Because the energy derivative is a scalar, the terms on
the right-hand side must evaluate to scalars, thus it makes no difference if we take the
transpose. The result is:

∂ED

∂ẇbi
= cbi

dwb

dt
. (C.136)

Combining the individual equations into one matrix equation, the dissipative energy term
becomes:

cb
dwb

dt
. (C.137)

61This argument allows us to skip writing out the mass matrix derivative as ∂/∂xr
i [T r

b m
b(T r

b )T ], figuring
out what ∂T r

b /∂x
r
i and ∂(T r

b )T /∂xr
i are (∂mb/∂xr

i is zero), and then multiplying out the terms; the result
should be zero.
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Converting to rotor coordinates:

T rb c
bdw

b

dt
. (C.138)

Now consider the potential energy term in the Lagrange equations:

∂EP

∂xbi
=

1
2
∂

∂xbi

(
(wb)T kbeff wb

)
.

Noting that xbi = Obbs,i + wbi , with Obbs,i constant:

∂EP

∂wbi
=

1
2

(
kbeff,i w

b + (wb)T (kbeff,i)
T
)
, (C.139)

where it is assumed that the stiffness matrix kbeff is symmetric.62 By the same argument
that was used for the dissipative energy term, the potential energy term is:

kbeff wb. (C.140)

Converting to rotor coordinates:

T rb k
b
eff wb. (C.141)

Inserting all of the terms into the Lagrange equations, the governing equations for the
wind turbine blade, in matrix form, are obtained:

T rbm
bd

2wb

dt2
+

(
T rbm

b(T rb )T
d2T rb
dt2

)
Obrs

+T rb c
bdw

b

dt
+ T rb k

b
eff wb = F r. (C.142)

The centrifugal force term acts like an applied force (because the nonlinear effects are
already included in the kbeff matrix). It is thus convenient to place it on the right-hand
side, with the other applied forces:

T rbm
bd

2wb

dt2
+ T rb c

bdw
b

dt
+ T rb k

b
eff wb

= F r −
(
T rbm

b(T rb )T
d2T rb
dt2

)
Obrs. (C.143)

This form of the governing equations is comparable to that described by Burton et
al. [22], pp 255-259, for an isolated blade. As discussed in Section C.1.2, there are im-
portant effects that are neglected by considering only an isolated blade, rather than the
entire rotor. Equation C.143 is intended for blade design. Single-blade loads are used in
Chapter 4, on a preliminary basis, as a metric to evaluate the relative severity of loading
on the support structure; and for this purpose Equation C.143 is sufficient. However, for
design of the support structure, loads must be calculated with a full-rotor analysis. This
lies outside the scope of this project.

The transformation matrix T rb which converts blade (rotating-frame) to rotorplane
(fixed-frame) coordinates depends upon the azimuth angle of the rotor; under operation,

62Cook et al. [30] p 216
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Figure C.10: Parallel springs representing structural and centrifugal stiffness

it is a function of time. In Section D.1, it is shown that the dynamic structural response
of the blade can be derived in blade coordinates, so the time-dependent transformation
is omitted. This works fine for a preliminary analysis of the blade structure; but if the
overall dynamics of the turbine are of interest, then a more complicated set of equations
must be used, which includes the effects of rotation.63

Equation C.143 is used for modal-based fatigue and natural frequency analysis, as
described in Appendix D. For static strength analysis, it is required to compute the
maximum quasi-static loads in the blade. While the turbine is operating (the maximum
operational gust load case), the quasi-static equation is:

T rb k
b
eff wb = F r −

(
T rbm

b(T rb )T
d2T rb
dt2

)
Obrs. (C.144)

This equation can be solved for deflections:

wb =
(
T rb k

b
eff

)−1
[
F r −

(
T rbm

b(T rb )T
d2T rb
dt2

)
Obrs

]
. (C.145)

When the turbine is not operating (the maximum storm gust load case), the centrifugal
terms can be set to zero. In this case, the static equation is:

T rb k
b wb = F r. (C.146)

Note that the static stiffness matrix is used, because there are no centrifugal stiffening
effects when the rotor is stationary. Internal loads are then calculated by Equation C.147.

C.6.9 Internal Loads

Internal loads at each node need to be calculated; material stresses are computed based
upon these internal loads.64 Importantly, centrifugal stiffening is not included when cal-
culating the load that the material carries. Centrifugal stiffening acts in parallel with the
material stiffness; this is shown in Figure C.10 for a one degree-of-freedom system. Mate-
rial fracture is based upon the severity of load in the material spring k, not the centrifugal
spring kσ.

Therefore, to compute internal loads, the static stiffness matrix is used, without cen-
trifugal stiffening. The stiffness matrix for each element ke is taken in isolation, and

63Hansen [76]
64Section C.7 on failure criteria
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internal loads at the nodes of the element are computed (in whichever coordinate system
is convenient) by:

Fint = kew, (C.147)

where the deflection vector w includes only those degrees-of-freedom associated with the
element. As described in Section C.5, stresses can then be computed on the basis of the
internal loads. These stresses are used for checking whether the blade may fail.

C.7 Failure Criteria

The blade structure fails if it does not perform its required function; this includes, but is
not limited to, material fracture. There are five types of checks that are made: ultimate
strength, buckling, fatigue, blade tip deflection, and flutter.

C.7.1 Static Strength

The maximum-stress failure criterion is used to predict fracture of the blade material.65

This criterion says that the material fractures when:

σ ≥ S

1.35
. (C.148)

Section C.3.2 gives values for S in tension and compression. The factor of 1.35 is a typical
partial safety factor on loads.66 In a more detailed analysis, the factor is adjusted to 0.90
or 1.00 for those minor load components that reduce the severity of stress at a particular
location. Here, for simplicity, a factor of 1.35 is always used.

As described in Section C.4, there are several points at each element cross-section at
which the strength is evaluated. The stress at these points can be calculated by σ =
BsT sb p

b, where pb is the vector of internal loads and moments at each node, in blade
coordinates, obtained from finite element analysis.

C.7.2 Buckling

The spar cap buckles when:

σ ≥ σcr
1.35

, (C.149)

where σcr is calculated according to Equation C.42. The stress σ is calculated at each
of the points shown in Figures C.7 and C.8, but for purposes of the buckling check it is
assumed to be distributed uniformly over the width of the spar cap. A typical separation
distance z between the neutral axis and spar caps is computed as z = 0.9(t/2) (refer to
Figure C.5), where t is the airfoil thickness. The spanwise compressive stress is then:

σ =
(M s)Y z

Iyy
, (C.150)

where variables are referenced to the section coordinate system.

65As discussed in Section C.3, for purposes of the present analyses, the maximum-stress and maximum-
strain failure criteria are identical, because loading is uniaxial in the spanwise direction.

66Burton et al. [22] p 213
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Buckling in the root cylinder is estimated by making the conservative assumption that
it is uniformly loaded in compression at the maximum bending stress, by Equation C.150.
Then, the width of an equivalent curved panel is found, between the limits of 0 and πD/2,
that minimizes the buckling load. Equation C.149 is then used as the failure criterion.

The blade could have additional post-buckling strength; that is, initial buckling does
not necessarily constitute failure. Prediction of behavior after buckling requires either
semi-empirical methods, or a very careful nonlinear finite element analysis, using shell
or solid elements. In either case, the effects of minute, initial imperfections in geometry
must be considered. Such an analysis is well outside the scope of this preliminary design
activity. Therefore, failure is defined as the initial buckling event.

C.7.3 Fatigue

Typical engineering practice is to use Miner’s linear cumulative damage rule to predict
the fatigue failure of blade materials.67 Miner’s rule is that a single load cycle of stress
amplitude σa at mean stress σm causes damage 1/N . N is the number of load cycles to
failure at a constant σa and σm. Failure is said to occur when damage reaches 1:

ncycles∑
i=1

1
Ni(σa, σm)

= 1. (C.151)

Miner’s rule is empirical. Unlike a damage tolerance approach using fracture mechan-
ics, Miner’s rule contains no explicit model for the progression of fatigue damage. In other
words, there is no reason why the linear cumulative damage hypothesis must be true; it
is simply observed in practice that it provides a reasonable prediction for fatigue failure,
given a carefully derived set of S-N curves for the material and geometry being analyzed.
Miner’s rule is made more attractive by the fact that the fracture approach is difficult to
apply to fibrous composites, because the formation and propagation of cracks depend on
the micromechanics of the fibers and matrix. Modeling micromechanical fracture behavior
is not trivial, and is beyond the scope of a typical engineering strength check.

So Miner’s rule is used, and it depends upon good S-N data for the accuracy of the
fatigue prediction. As mentioned previously, the S-N data must establish the relationship
between three parameters: N , σa, and σm. These can be visualized as a “Goodman
diagram”, which is like a topographic map, with σm the X coordinate, σa the Y coordinate,
and N the elevation lines. Typical engineering practice is to assume that the elevation
lines of constant-N are linear on the Goodman diagram, connecting experimental points
at pure alternating load (σm = 0) with the static tension and compression strength.68

Figure C.11 shows an example.
There is some question as to whether it is valid to assume linear constant-N lines

on the Goodman diagram. Nijssen et al. [137] report the results of coupon tests using a
material and load spectrum that is representative of a wind turbine. (The load spectrum
was WISPER, and its simplified version WISPERX.) When a linear Goodman diagram,
based upon constant-amplitude tests at zero mean stress, was used to predict the fatigue
life of the WISPER coupons, the predicted number of cycles to failure was approximately
one order of magnitude greater than the test-average number of cycles to failure.69

67Burton et al. [22] p 388
68Burton et al. [22] p 387
69This is not quite as bad as it sounds, because the scatter in fatigue test data typically spans about an

order of magnitude; see the discussion later in this section.
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Figure C.11: The typical linear trend of σa with σm, for various numbers of cycles to
failure

What this means is that the linear cumulative damage hypothesis does not hold, and/or
the linear Goodman diagram is too simple. Sutherland and Mandell ([169] and [170]) pro-
vide evidence that the linear Goodman diagram is too simple. Figure C.12 shows a Good-
man diagram based upon constant-amplitude coupon data from the MSU/DOE database,
for a fiberglass-polyester laminate with stacking sequence [90/0/±45/0]s. The black lines
show the average of the test data, while the gray lines show the linear Goodman diagram.
When the mean stress is compressive, the linear Goodman diagram is conservative. When
the mean stress is tensile, and the magnitude of stress is severe, the linear relationship is
reasonable or conservative. However, in the presence of a mean tensile stress, the damage
caused by many small load cycles is significantly more severe than would be predicted by
the linear trend. Figure C.13 illustrates this for coupons that failed at 106 cycles.

Under flapwise bending fatigue loading, wind turbine blades fail on the tension side.70

This makes intuitive sense, considering that fatigue failure is due to the propagation of
cracks through the material. We can therefore conservatively use a linear or bilinear
relationship on the compression half of the Goodman diagram.

Let us focus further on the tension half of the Goodman diagram. Sutherland and
Mandell [170] studied the sensitivity of fatigue life predictions to the resolution used for
the Goodman diagram. It was found that, in order to obtain reliable tensile fatigue
estimates, fatigue data should be collected at R ratios71 of -1 (zero mean stress), -0.5, 0.1,
and 0.5.

As described in Table C.3, and the associated text, the selected reference for fatigue
design values provided reference points at R of -10 (in compression), -1 (zero mean stress),
and 0.1 (in tension). The Goodman diagram is then as shown in Figure C.14. (Con-

70For example, see the blade tests conducted by van Leeuwen et al. [184]; static specimens failed on the
compression side, and fatigue specimens failed on the tension side.

71R = σmin/σmax for a given load cycle. σa = (σmax−σmin)/2 = (1−R)/2, and σm = (σmax +σmin)/2 =
(1 +R)/2.
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Figure C.12: Contour lines of specimen failures as a function of σa and σm; also the typical
linear trend used in analysis; data from Sutherland and Mandell [169]

Figure C.13: A comparison of the empirical trend and the typical linear trend for specimens
which failed at 106 cycles; data from Sutherland and Mandell [169]
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Figure C.14: The bilinear Goodman diagram used in this research project for fiberglass
laminates; based upon design values given by Griffin [71]

struction of this diagram is described below.) What are the consequences of using this
simplified Goodman diagram for fatigue analysis?

Data from Sutherland and Mandell [170] indicates that the predicted fatigue lifetime
will be between 0.8 and 2.5 times the fatigue lifetime that would be obtained by using
a more complex Goodman diagram, with design values at several R ratios. Possibly
overpredicting fatigue lifetime by a factor of 2.5 is not desirable, however this is not as
bad as it might sound. At a particular stress level, the scatter in fatigue data typically
spans an order of magnitude.72 Therefore, a factor of 2.5 is well within the scatter in
the test data. As a consequence, using the bilinear Goodman diagram shown in Figure
C.14 is acceptable for preliminary design, and is consistent with the sorts of simplifying
assumptions that have been made throughout this research project. (Note also that the
shape of the Goodman diagram in Figure C.14 is reminiscent of the data in Figure C.12;
it captures the greater severity of low-amplitude cycles in the presence of a mean tensile
stress.) For final design and certification, additional data would be desirable.

The Goodman diagram for a hybrid laminate, with carbon fibers in the spanwise
direction and fiberglass at ±45◦, is shown in Figure C.15. It looks different than Figure
C.14, for fiberglass. Carbon fiber laminates are much more fatigue-resistant than fiberglass
laminates.

The design values shown in Figure C.15 were taken from Griffin [71], the same reference
as for fiberglass. However, a literature search did not find supporting references containing
data that could be used to estimate the degree of scatter in the fatigue predictions. This is

72Sutherland and Mandell [170] Figure 14; Mandell et al. [121]; Nijssen et al. [138] Figures 6 through
11; van Leeuwen et al. [184]
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Figure C.15: The bilinear Goodman diagram used in this research project for carbon/glass
hybrid laminates; based upon design values given by Griffin [71]
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perhaps not so important, because the analyses in Chapter 6 indicate that a carbon-fiber
spar is not expected to fail in fatigue.

Here is how the Goodman diagrams in Figures C.14 and C.15 are constructed. Re-
visiting Equation C.43, for a given number of cycles N at constant σa and σm, failure is
predicted by:

σa
σ0

= KN−1/m, (C.152)

where K and m are given in Table C.3. σ0 is the strength at a single cycle of loading.
Under purely alternating load, the laminate will fail in a single cycle of loading if the
compressive design value Sf,comp (Table C.3) is exceeded; thus the zero-mean strength,
call it Sa, is the same as the compressive strength. σ0 is interpolated linearly based upon
the mean stress σm. For compression:

σ0 = σm + Sa; (C.153)

and for tension:

σ0 = Sa −
Sa
Sf
σm. (C.154)

Equations C.153 and C.154 define the line in Figure C.14 labeled 100.
Once σ0 has been obtained, then values of σa for other R ratios (at which K and

m data are given) can be calculated, for a given N , by Equation C.152. Finally, the
corresponding σm is calculated by:

σm =
1 +R

1−R
σa. (C.155)

Straight lines connect the empirically-determined points.
In practice, when calculating fatigue damage by Equation C.151, one is given σa and

σm, and must calculate N . This is not entirely straightforward, because the empirical
parameters K and m are known only at certain R ratios. An iterative procedure is used.

Referring to Figure C.16, the first step is to calculate the single-cycle alternating failure
stress σ0 along the R line containing σa and σm. For mean compression:

σ0 =
Sa

1− σm/σa
; (C.156)

and for mean tension:

σ0 =
Sa

1 + Saσm/(Sfσa)
. (C.157)

Next, a number of cycles is guessed; call it Ng. Mean and alternating stresses corre-
sponding to this number of cycles are calculated at points 1 and 2, which lie on the nearest
R lines for which K and m are known. Call these coordinates (σm,1, σa,1) and (σm,2,σa,2).
Define a straight line connecting points 1 and 2:

α =

(
σa,2 − σa,1
σm,2 − σm,1

)
; y = αx− ασm,1 + σa,1. (C.158)

Find the alternating stress σa,g at the point g, which is the point along the actual R line
that corresponds to the guessed number of cycles:

σa,g =
−ασm,1 + σa,1
1− ασm/σa

. (C.159)
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Figure C.16: Iterative calculation of the number of cycles to failure

Based upon whether σa is greater or less than σa,g, guess a new number of cycles Ng.
A bisecting search algorithm is used, with the number of cycles on a logarithmic basis:

logNg =
logNLB + logNUB

2
, (C.160)

where LB refers to the lower bound and UB refers to the upper bound. Iteration ends
when σa,g and σa agree to within a specified tolerance.

The final value of the number of cycles to failure N , at the specified σa and σm, is
used in Equation C.151 to obtain the incremental damage of one load cycle. Adding up
the incremental damage of each σa and σm pair over the lifetime of the wind turbine gives
the total expected damage, from which a margin of safety can be calculated. In practice,
a discrete number of σa and σm pairs is specified, along with a number of applied cycles
n for each pair. The values of σa, σm, and n are calculated by spectral analysis in the
frequency domain, as described in Appendix D.

For verification, Figure C.17 shows calculated points (from a Fortran subroutine im-
plementing the above equations) plotted over the Goodman diagram from Figure C.14.

C.7.4 Tip Deflection

The maximum tip deflection criterion results from two considerations. First, the blades of
an upwind turbine must not deflect so much that they contact the tower. In this report,
it is not specified whether the rotor is oriented upwind or downwind. We could say that
the turbine is oriented downwind, and therefore has no such constraint on deflection.
(Although the blade of even a downwind turbine must not vibrate so severely that it
strikes the tower on the upwind half of the vibration cycle.)

The second consideration could be summed up as an application of the principle of
“design for analysis”. Design for analysis means: the analysis methods we use are always
limited in scope. It is always possible to invent a design that is poorly described by
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Figure C.17: A replot of the bilinear Goodman diagram shown in Figure C.14, showing a
selection of values output from the software (gray squares, with number of cycles listed)

the existing analysis methods. Such a design is not useful, without the development and
validation of applicable analysis methods. Frequently, in such cases the best choice is to
abandon the design, in favor of a (perhaps more conventional) design that can be analyzed
with existing tools, and is validated by existing test data.

In the derivation of the structural model (Section C.6), it is assumed that deflections
of the blade are small. These methods cannot be used to analyze a blade which has
an arbitrarily large tip deflection. Options are, therefore, to reformulate the structural
model to accommodate large deflections, or to limit valid designs to a small tip deflection.
Following the philosophy of this research project (keep it simple), the latter option was
chosen.

This does not completely solve the problem, however. It still matters whether the
turbine is considered upwind or downwind. If deflections are assumed to be small, then
the appropriate criterion for a downwind turbine would be that tip deflection does not
exceed, say, 10% of the blade length. But this means that as the blade gets longer, the
maximum tip deflection increases with length. The tip deflection for an upwind blade may
have an absolute maximum value dictated by tower clearance, regardless of blade length.

That being said, as shown in Figure C.18, if the combination of blade precone and
rotor tilt is greater than 5.7◦, then a maximum tip deflection of 10% of the blade length
will ensure tower clearance, regardless of blade length. It is common to have at a few
degrees precone and tilt. There is also an overhang; the hub center is offset from the edge
of the tower by a couple meters.

The blade is considered to fail the maximum tip deflection criterion if, during any load
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Figure C.18: Blade clearance with tilt and precone

case:

(wb)Z > 0.1Ro + 1 m. (C.161)

Typically, the ultimate gust load case (which includes dynamic effects) gives the greatest
tip deflection.

C.7.5 Flutter

The blade is considered to fail the flutter criterion if, at its rated speed Ω, the tip speed
exceeds the calculated tip speed at flutter:

RoΩ > Vtip,flutter. (C.162)

Section D.9 discusses aerodynamic damping in the context of fatigue analysis. The
damping calculation described in Section D.9 applies to each natural mode of vibration
independently. It was noted that this damping can become negative under stalled-flow
conditions, leading to instability. In the software performing these calculations, if damping
becomes negative, it is set to a very low positive value, near zero. This leads to large
dynamic stresses, which indicate that the configuration is not viable.

There is another class of instabilities which may be critical, involving the interaction
between flapwise and torsional modes of vibration. This is termed “classical flutter”.73

(We shall just say “flutter”.) What is particularly noteworthy about flutter is that it
occurs under attached-flow conditions; it does not occur when flow is stalled.

The interaction between the flapwise and torsional mode shapes is not considered in
the basic modal analysis, and therefore the problem must be reformulated. This sec-
tion describes a simplified analysis of flutter instability, which is implemented as a fifth
“strength check”, alongside static strength, fatigue, buckling, and tip deflection.

Basics of Flutter

Consider an airfoil operating at a small angle-of-attack, as shown in Figure C.19. The
elastic axis is, for simplicity, assumed to be aligned with the Zs axis of the section coordi-
nate system. The center of gravity (cg) is defined as the average position of the material

73For example, Blevins [15] p 136
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Figure C.19: Airfoil geometry for flutter analysis

in the cross-section, weighted by the mass per unit length ρ dA. The center of gravity and
elastic axis are not quite coincident, because the spar caps, webs, and leading and trailing
edge structure all have different ratios of density to elastic modulus.

The angle-of-attack is small, and in Figure C.19 it is drawn as zero. The lift force thus
acts parallel to the Zs axis. Because flow is attached, potential theory applies, and the
net lift force FL will act at a point approximately one-quarter chord behind the leading
edge.

Picture that the airfoil is now forced to vibrate in the flapwise direction (Zs in the
figure).74 The equivalent “spring” stiffness provided by the material acts at the elastic
axis, while the acceleration of the mass is resisted by a net force acting at the center of
gravity. Therefore, when the cross-section undergoes flapwise acceleration, the offset ycg
causes a moment to be applied at the elastic axis. This moment twists the airfoil; the twist
of the airfoil changes the angle-of-attack, and thus causes an increment in the lift force.
It can be seen that if the center of gravity lies aft of the elastic axis, as shown in Figure
C.19, that the change in lift force will tend to augment the acceleration (like a negative
added mass75), while if the center of gravity lies forward of the elastic axis, the change
in lift force will tend to resist the acceleration (like a positive added mass). Flutter can
occur only if the center of gravity lies aft of the elastic axis.

A similar effect occurs if we picture that the airfoil is forced to twist about the Xs

axis. Then, the twist causes a (nearly) linear motion of the center of gravity in the Zs

direction, which introduces flapwise motion.
Thus, the offset between the center of gravity and elastic axis, together with the aero-

dynamic behavior of the airfoil, causes the flapwise and torsional modes to be coupled.
Previously, in deriving the section properties for the finite element model, it was (im-
plicitly) assumed that the center of gravity and elastic axis were coincident. It was thus
possible to derive independent equations of motion for each mode shape. This simplifica-
tion is appropriate for simplified fatigue analysis. However, to determine the possibility
of flutter, the modal equations must be modified.

74The flapwise direction can also be considered Zb, which is offset from Zs by the blade twist angle. For
purposes of the current illustration, it does not matter.

75It is like a negative added mass if we ignore unsteady aerodynamic effects. Otherwise, there will be
some phase offset between the acceleration of the airfoil section and the change in lift force, and things
become more complicated.
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Simplified Flutter Analysis

The flutter analysis derived here is “simplified” for two reasons: first, because it is based
upon quasi-steady aerodynamics, ignoring unsteady effects; and second, because it is based
upon mode shapes that are calculated independently of flutter, and therefore the analysis
does not include all degrees-of-freedom.

What are the consequences of neglecting unsteady aerodynamics? Lobitz [117] studies
this question in detail, considering a 35 m long HAWT blade. The conclusion is that ne-
glecting unsteady aerodynamics can lead to “relatively drastic underpredictions” (p 224)
of the air velocity at which flutter initiates. For the case studied, quasi-steady aerodynam-
ics resulted in flutter velocities that were between 44% and 76% of those obtained from
the full nonlinear analysis, depending upon whether a single representative airfoil section
(44%) or full structural model (76%) was used.

This level of underprediction of the flutter velocity – particularly the 24% underpre-
diction of the full blade model – could be problematic for a final blade design, however it
is acceptable for our preliminary design purposes.

Lobitz [117] and Hansen [78] both found that flutter on utility-scale turbine blades
was a combination of the second flapwise and first torsional modes. Thus two checks for
flutter are conducted, one using the first flapwise and first torsional modes, and the other
using the second flapwise and first torsional modes.

The following analysis is based upon the formulas given by Blevins [15], pp 130-139,
also Dowell [44], pp 81-85, for a single airfoil section. Hansen [79] describes an aeroelastic
analysis method, based upon modal dynamics, which is much more comprehensive than
the simple modal method derived here.

Let the blade be oscillating in a flapwise mode. The acceleration, in generalized co-
ordinates, is d2qf/dt

2. Then the acceleration vector, referenced to section coordinates, of
the degrees-of-freedom in the structural model is d2ws/dt2 = T sb Φf (d2qf/dt

2). Here, Φf

is the vector representing the flapwise mode shape, and T sb is the transformation matrix
which converts from blade to section coordinates (it is simply a rotation about the Xb

axis by the blade twist angle at each node).
At the center of each blade element, midway between each pair of nodes, the accelera-

tion vector can be calculated by averaging the values for the adjacent nodes. This gives a
vector d2wse/dt

2. Each airfoil can be represented as a uniform section, as shown in Figure
C.19, with a spanwise length equal to the length of the element. The element has a chord
c, quarter-chord position yL (with respect to the elastic center), center of gravity position
ycg, and lift coefficient slope dCL/dα.

Consider the jth element. (We shall avoid writing a j subscript on every variable;
just keep in mind that in Equations C.163 and C.164 we are referring to a single airfoil
section.) Acceleration d2(wse)Z/dt

2 produces a torque:

(M s
e )X = −mycg

d2(wse)Z
dt2

, (C.163)

where m is the total mass of the element. Likewise, torsional acceleration d2(θse)X/dt
2

produces a force:

(F se )Z = −mycg
d2(θse)X
dt2

. (C.164)

These forces and torques can be distributed to adjacent nodes according to F sj = (F se,(j+1)+
F se,j)/2. The nodal forces can then be assembled into a force vector F s of length NDOF
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(with many of the elements zero). This force vector can then be converted into a general-
ized force acting on the first torsional mode: Gt = ΦT

t T
b
sF

s.
The above sequence of operations has the effect of converting the acceleration of the

flapwise mode d2qf/dt
2 into a generalized force on the first torsional mode Gt. All the vari-

ables involved in the sequence are constant during a given analysis, therefore we can write
this relationship as Gt = Ct(d2qf/dt

2), where Ct is the coupling coefficient, a constant.
A similar sequence of operations can be performed, beginning with the generalized

acceleration of the first torsional mode, d2qt/dt
2, and ending with the generalized force of

the flapwise mode, Gf , such that Gf = Cf (d2qt/dt
2).

Next, consider a small generalized displacement qt of the first torsional mode. (It is
here assumed that there is no torsion associated with the flapwise mode, which is the case
in our analyses, because of the idealized cross-sections that were used for the finite element
model.) There is an associated nodal displacement vector ws = T sb Φtqt. As before, the
displacement at the middle of an element can be calculated by averaging the displacements
at the nodes. This gives a vector wse.

If an airfoil element deflects by a small angle α = (θs)X , where (θs)X is a component
of the vector wse, then there is a change in the lift force:

FL = (F se )Z =
1
2
ρcLV 2

(
dCL
dα

)
(θs)X . (C.165)

Note that velocity varies linearly as a function of radius, such that:

V =
r

Ro
Vtip (C.166)

Likewise, there is a change in torque about the elastic center:

M = (M s
e )X =

1
2
ρc(yL)LV 2

(
dCL
dα

)
(θs)X . (C.167)

These forces and torques can be distributed to adjacent nodes according to F sj = (F se,(j+1)+
F se,j)/2. The nodal forces can then be assembled into a force vector F s, and converted
into generalized forces acting on the flapwise and torsional modes: Gaf = ΦT

f T
b
sF

s and
Gat = ΦT

t T
b
sF

s.76 In other words, there are relationships Gaf = Bfqt and Gat = Btqt,
with Bf and Bt constants.

Now consider Equation D.113, the independent modal equation of motion, for the
flapwise and torsional modes.77 Neglect damping. Introduce coupling between the flapwise
and torsional mode equations by applying the above generalized forces:78

Mf
d2qf
dt2

+Kfqf = Cf
d2qt
dt2

+Bfqt; (C.168)

Mt
d2qt
dt2

+Ktqt = Ct
d2qf
dt2

+Btqt. (C.169)

These are the relevant equations of motion for flutter vibration, assuming quasi-steady
aerodynamics.

76The lift force will contribute to the generalized force of the flapwise mode, while the torque will
contribute to the generalized force of the torsional mode. But the procedure is kept general, for simplicity.

77We do not yet assume harmonic motion, although we will shortly.
78These are analogous to Blevins [15] Equations (4-58) and (4-59).
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Next, propose that during flutter instability the flapwise and torsional modes oscillate
at a common frequency (or diverge at a common rate), λ. This follows from the presump-
tion that the modes are coupled. We can describe the oscillation (or divergence) of each
mode by:

qf = Af e
λt; qt = At e

λt. (C.170)

Substituting into Equations C.168 and C.169:

(Mfλ
2 +Kf )Af − (Cfλ2 +Bf )At = 0;

−Ctλ2Af + (Mtλ
2 +Kt −Bt)At = 0. (C.171)

This is an eigenvalue problem. Non-trivial solutions are possible when λ satisfies the
following equation:

(MfMt − CfCt)λ4 + [KfMt +Mf (Kt −Bt)−BfCt]λ2

+Kf (Kt −Bt). (C.172)

(Note that if Bt > Kt, static divergence of the blade twist angle occurs; this should be
checked first, before proceeding with the flutter velocity calculations below.) Equation
C.172 has a closed-form solution:79

λ = ±

−β2 ±
√
β2

2 − 4β1β3

2β1

1/2

, (C.173)

where β1, β2, and β3 are the coefficients on λ4, λ2, and λ0 in Equation C.172.
If any value of λ has a positive real part, then the oscillations will diverge with time.

If β2
2 − 4β1β3 < 0, then at least one value of λ will have a positive real part. Thus the

condition β2
2 − 4β1β3 = 0 identifies the boundary between stable and unstable. Use this

condition and solve for velocity:

(Mfbt + bfCt)2V 4
tip,cr

+[4(MfMt − CfCt)Kfbt − 2(KfMt +MfKt)(Mfbt + bfCt)]V 2
tip,cr

+(KfMt +MfKt)2 − 4(MfMt − CfCt)KfKt = 0; (C.174)

V 2
tip,cr =

−γ2 ±
√
γ2

2 − 4γ1γ3

2γ1
. (C.175)

Here, γ1, γ2, and γ3 are the coefficients on V 4
tip,cr, V

2
tip,cr, and V 0

tip,cr in Equation C.174.
The terms bf and bt are Bf and Bt, with V 2

tip factored out.
If one of the two values on the right-hand side of Equation C.175 is positive and real,

then flutter occurs. A flutter “load factor” can be defined as LF = Vtip/Vtip,cr.

79Blevins [15] Equation (4-65)



Appendix D

Modal and Spectral Analysis
Methods

Atmospheric flow – the wind – is a dynamic and stochastic process. Both these aspects,
dynamic and stochastic, must be dealt with in order to obtain a reasonable prediction of
how a wind turbine behaves.

The basic equations describing the dynamics of a wind turbine blade are derived in
Section C.6, culminating in Equation C.143. But it has not yet been specified how this
equation is solved.

There are two options: analysis in the frequency domain, or analysis in the time
domain. Analysis in the time domain allows general nonlinear behavior to be modeled.
By contrast, analysis in the frequency domain requires that the model be linearized about
a steady-state operating point. In other words, calculation of the steady-state operating
point can be nonlinear, but then fluctuations from the mean must be modeled as linear.

Frequency-domain analysis is therefore well suited to a case in which the input can
be described as small stochastic fluctuations occurring about an average, and the system
behavior can be described as smooth in the vicinity of the average operating condition.
The accuracy of frequency-domain analysis depends upon how close the actual behavior
fits these descriptions.

How well is rotor aerodynamics suited to linearization and frequency-domain analysis?
The primary source of nonlinearity in the rotor of a stall-regulated wind turbine is the stall
event, which results in a nonlinear relationship between windspeed and the aerodynamic
forces on the airfoil. Structural behavior can be considered linear under all aerodynamic
conditions, provided that the blades satisfy the tip deflection criterion of Section C.7.

It is useful to consider separately the three regimes of operation shown in Figures D.1
and D.2. Figure D.1 shows aerodynamic forces for one particular location on the blade.
For purposes of this discussion, it does not matter which location; say it is the airfoil at
r/R = 0.75. Figure D.2 relates the airfoil forces at r/R = 0.75 to the rotor-average thrust
(FT ) and torque (Q) loads.

In the low-windspeed regime, labeled (A), the wind turbine is operating well below
rated power, where turbulent fluctuations seldom carry the blades beyond stall. Here the
local aerodynamic behavior is linear, or nearly so. The global rotor behavior is linear on a
timescale of less than the time it takes the rotor to perform one full revolution; typically
a few seconds. At longer timescales, changes in the structure of the wake result in mildly
nonlinear behavior. This nonlinearity can be seen, for example, in the thrust curve in
Figure D.2.
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Figure D.1: A sketch of airfoil lift and drag behavior

Figure D.2: A sketch of rotor thrust and torque behavior
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Figure D.3: A stalled airfoil

The timescale of wake development, and its influence upon aerodynamic load predic-
tions, are discussed further in Section 2.1.3. But regardless, the nonlinearity is mild, and
one would expect that the error due to linearization would be small.

Consider a case in which the mean windspeed is 8 m/s. A typical turbulence intensity
– the ratio of the standard deviation of windspeed to the mean windspeed – is about 0.10,
offshore.1 Inside an offshore wind farm, 0.20 is a representative, perhaps slightly conser-
vative, turbulence intensity, assuming roughly 10D separation between the turbines.2 We
will assume that the turbulence intensity is 0.20. If stall initiates in the vicinity of the
rated windspeed – say, 13 m/s – then the effects of turbulent windspeed fluctuations up
to +3 standard deviations can be modeled as linear.

In the high-windspeed regime (C), when the blades are in deep stall; or in the non-
operational condition, as in a storm; the blades act as blunt bodies in a cross-flow. Consider
an airfoil of long span, stalled, in a cross-flow, as shown in Figure D.3. The force on the
airfoil depends on two parameters that can vary due to turbulence: the magnitude of
the incoming velocity V∞, and the direction of the incoming velocity, measured as the
angle-of-attack α.

The linearization of the airfoil force is accurate if the following assumptions hold:

1. The fluctuation in velocity due to turbulence is small in relation to the total velocity
V seen by the airfoil; V includes both remote windspeed and the velocity rΩ due
to rotation of the rotor. Since an upper bound on turbulence intensity offshore is
0.20, if the windspeed is 20 m/s, then the standard deviation of windspeed due to
turbulence is 4 m/s. Thus this assumption should hold for plus or minus a couple
standard deviations of turbulent windspeed fluctuation. Adding rotational speed
only makes linearization more accurate. Rotational speed rΩ at the blade tip is at
least 60 m/s, and therefore even far inboard at 25% radius the rotational speed is
at least 15 m/s, on par with the incoming windspeed in regime (C).

2. The airfoil coefficients CL, CD, and CM vary linearly with angle-of-attack α. As
the sketch of airfoil coefficient behavior, Figure D.1 shows,3 in regime (C) the airfoil

1Larsen [107]
2Thomsen and Sørensen [175]
3The moment coefficient CM is not shown, however it is smooth in regimes (A) and (C). In regime (B),

as with CL, if stall is abrupt, then CM may include an abrupt transition; if stall is smooth, then CM varies
smoothly.
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coefficients vary smoothly. Therefore, linearization should hold in a range of, say,
±10◦. The greatest angular change would occur in the case of a storm, with the
turbine shut down, and a lateral (chordwise) turbulent gust. Let V∞ = 30 m/s, and
assume that turbulence is isotropic. Then a lateral turbulent windspeed fluctuation
of one standard deviation changes the angle-of-attack by 11◦; three standard devia-
tions, 31◦. In an operating case, with Ω = 2 rad/s, r = 10 m,4 and V∞ = 20 m/s,
with a turbulent fluctuation of 8 m/s (2 standard deviations), the angle-of-attack
changes by 9.5◦.

It is therefore reasonable to expect that linearization will give fair results for purposes of
most fatigue calculations (though not necessarily extreme values) in regime (C).

That leaves regime (B). Although assumption (1) above still holds, assumption (2)
does not hold. It is therefore problematic to linearize airfoil forces in the vicinity of stall.

The problem can be helped by selecting airfoils that have a very smooth stall behavior.
It is possible to design airfoils that have very good lift-to-drag characteristics at low angles
of attack, yet stall early, after which the separation point progresses smoothly from the
trailing edge to the leading edge with increasing angle-of-attack. (Airfoil behavior is
discussed in detail in Chapter 2.)

In addition to selecting appropriate airfoils, a very simple, semi-empirical dynamic stall
method has been developed as part of this research project. This method provides modified
values of the lift curve slope, dCL/dα, for use in fatigue calculations. A modified dCL/dα
value approximates the range of load oscillation observed in experiments on airfoils which
stall smoothly from the trailing edge. A different modified dCL/dα value approximates
the energy dissipated over a cycle of oscillation, in order to predict aerodynamic damping.
The method is described in detail in Chapter 3.

Comparisons against measurements taken on full-scale turbines indicate that the linear
dynamic stall method provides adequate predictions of excitation and damping in regime
(B).

What precedence for linearized aerodynamic analysis is there in established engineering
practice, or published in the literature? Linearization is common in the context of control
algorithm tuning and aeroelastic stability analysis. Linearized loads analysis is discussed,
but the attitude seems skeptical. Burton, et al. [22]:

... the method [using the slope of the 2D lift coefficient curve] becomes increas-
ingly inaccurate for pitch regulated machines as winds approach the cut-out
value and breaks down completely for stall-regulated machines once the wind-
speed is high enough to cause stall. (p 249)

Kühn [106]:

The stall affect and the associated variation in the slope of the lift coefficient
discard linearisation of the aerodynamics. (p 116)

There is good precedence for using linearized analysis in regime (A). Sørensen et
al. [165] formulated a linearized model of a wind turbine, including the aerodynamics.
They compared calculated and measured spectral density plots of the blade root bending
moment, for a 300 kW, stall-regulated Nordtank wind turbine, and the 2 MW, pitch-
regulated, experimental Tjæreborg wind turbine. The load case for the Nordtank had an

4The radius of a blade with a rotational speed of 2 rad/s and a tip-speed of 60 m/s (the worst case) is
30 m.
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average windspeed of 7 m/s, which is in regime (A), below rated windspeed. The load
case for the Tjæreborg turbine had an average windspeed of 11 m/s, in comparison with
its rated windspeed of 15 m/s, so for the most part operation was in regime (A). (The
turbulence intensity was 0.12, for a standard deviation of 1.3 m/s.)

Sørensen et al. found that:

The examples show that using similar structural models, the frequency domain
and the time domain calculations of loads are in very good agreement ... The
agreement between the calculated and measured loads is also good. This ver-
ifies that the most important effects are included in the model. Finally, [the
linearized calculations have] shown that the frequency domain model results
in a code that is [two orders of magnitude] faster than the similar time domain
code. (p 316)

Van Engelen and Braam [183] developed software (TURBU) which analyzes a wind
turbine in the frequency domain. The intended use is for control systems, aeroelastic
analysis, and loads analysis for preliminary design. For preliminary design, the idea is
to run a large number of load cases, and perform design optimization, in the frequency
domain. Then, the critical load cases on the most promising designs are re-analyzed using
nonlinear time-domain calculations.

Verification of TURBU was sparsely documented, and no comparisons against test
data were published. But Van Engelen and Braam, along with Sørensen et al., do show
that there is precedence for a frequency-domain analysis approach.

In addition, there is justification for frequency-domain analysis under conditions of
deep stall, regime (C). On offshore oil platforms, it is (or was) common to linearize the
hydrodynamic force on a blunt body5 for structural fatigue calculations, when loading is
stochastic.6 Thus the words of Burton et al., that the linearized analysis “breaks down
completely” when flow separates, appear to be overstated.

To sum up: granting that linearization of aerodynamic loads will result in errors, es-
pecially in the vicinity of initial stall, regime (B); there is good reason to expect that a
linearized fatigue analysis will give a fair estimate of fatigue damage, sufficient for pre-
liminary design, when the method of Chapter 3 is employed. Frequency-domain analysis
is necessary if a large number of designs and a large number of load cases are to be
analyzed, as is the case with numerical optimization. Therefore, it was decided to use
frequency-domain analysis for the fatigue calculations conducted as part of this research
project.

D.1 Fatigue Calculation Procedure

Modal analysis is used to model the dynamics of the wind turbine blade; spectral analysis
methods are used to calculate the modal response to stochastic loading. These methods
are used for three purposes: first, to calculate the natural frequencies of the blade, which
must avoid resonance with multiples of the rotor rotational speed; second, to calculate the
dynamic response of the blade under extreme loads; and third, to calculate the lifetime of

5Offshore platforms are usually constructed of cylinders, which are blunt bodies. A deeply-stalled blade
also acts like a blunt body.

6Eatock Taylor and Rajagopalan [48]; Malhotra and Penzien [120]; Gudmestad and Connor [73]; and
many others
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the blade under fatigue loading. Fatigue is the focus of this section; for extreme loads, see
Section E.3.

The first step in the dynamic analysis is to calculate the natural frequencies and mode
shapes of the blade (Section D.2.1). This is a straightforward eigenvalue and eigenvector
calculation using Equation C.143, with all applied loads set to zero.

The fatigue calculation requires the spectra of stress at the most critical locations
around each of the cross-sections along the length of the blade. (The cross-sections are
located at each node of the finite-element model.) The input to the calculation is a spectral
model of turbulence in the wind, providing cross-spectral (or auto-spectral) density, as a
function of frequency, for any two points in space. The procedure to convert from the
turbulence spectra to the stress spectra is:

1. beginning with the turbulence spectra (Section D.3);

2. calculate rotationally-sampled turbulence spectra, which is what the rotating blade
“sees” (Section D.4);

3. to the aerodynamic force spectra at the airfoil elements (Section D.5);

4. to the aerodynamic force spectra at the nodes (Sections D.6 and D.7);

5. to generalized force spectra associated with each natural mode of vibration;

6. to generalized displacement spectra associated with each natural mode of vibration
(this involves solving the typical mass-spring-damper equation, Sections D.8 and
D.9);

7. to physical displacement spectra at the nodes (Section D.10);

8. to internal load spectra at each cross-section (Section D.11);

9. and finally, calculate stress spectra from the cross-section loads (Section D.12).

Stress cycles are computed from the stress spectra based upon the theory described in
Section D.13.

It should be added that the above procedure is compressed in the actual software im-
plementation. Steps (3) through (5) are matrix operations which are multiplied together
beforehand into a single matrix. Likewise, steps (6) through (9) have also been pro-
grammed as a single matrix operation. This greatly speeds up the calculations. However,
it also makes the derivation incomprehensible, and so here, for documentation purposes,
the steps are worked out in turn.

First, though, some background theory is established.

D.2 Theoretical Background

This section describes the theoretical background of modal and spectral analysis. Although
this is “textbook material”, the author found that in the gap between the basic theory
and a correct software implementation, there were several tricky concepts that were poorly
described by existing references.
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D.2.1 Natural Frequencies and Mode Shapes

Setting applied forces to zero, Equation C.143 can be written in the following simplified
manner:

T rbm
bd

2wb

dt2
+ T rb c

bdw
b

dt
+ T rb k

b
eff wb = 0.

The effects of rotation are accounted for in the matrix keff , therefore the blade coordinate
system (the rotating coordinate frame) can be used. The equation becomes:

m
d2w

dt2
+ c

dw

dt
+ keff w = 0, (D.1)

where the b superscript indicating blade coordinates will, for simplicity, not be written.
Recall that w is the vector of degrees of freedom in the finite-element model of the blade.
Also recall that the damping matrix c has not yet been specified. It is discussed in Section
D.9.

We can attempt a non-trivial solution of Equation D.1 by the technique of separation
of variables.7 Suppose:

w(t) = Φ T (t), (D.2)

where Φ is a non-dimensional amplitude vector, with one entry per degree-of-freedom in the
finite-element model, and T is a function of only time, not degree-of-freedom. Substituting
into Equation D.1:

mΦ
d2T

dt2
+ cΦ

dT

dt
+ keffΦT = 0. (D.3)

Based upon this equation, further suppose that T takes the form:

T = est, (D.4)

such that:

mΦs2est + cΦsest + keffΦest = 0. (D.5)

This leads to a system of equations, considering row j of each matrix:

(mjΦ)s2 + (cjΦ)s+ keff,jΦ = 0. (D.6)

Since mjΦ, cjΦ, and keff,jΦ are scalars, Equation D.6 can be solved for s:

s =
−cjΦ±

√
(cjΦ)2 − 4(mjΦ)(keff,jΦ)

2mjΦ
. (D.7)

Assume that the values in the damping matrix c are fairly small. In this case:

s =
−cjΦ
2mjΦ

± i

√
4(mjΦ)(keff,jΦ)− (cjΦ)2

2mjΦ
;

7This is, of course, the harmonic oscillator equation, and its solution can be found ubiquitously in texts
on structural dynamics, or more generally, system dynamics. My reference for the current discussion is
Rao [146], p 477.
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s =
−cjΦ
2mjΦ

± i
√
keff,jΦ
mjΦ

− (cjΦ)2

4(mjΦ)2
. (D.8)

It is typical to define a “critical” value of damping such that:

(cjΦ)2
cr − 4(mjΦ)(keff,jΦ) = 0,

and:

(cjΦ)cr = 2
√

(mjΦ)(keff,jΦ). (D.9)

It is also typical to define a damping ratio:

ζ =
cjΦ

(cjΦ)cr
. (D.10)

In addition, it is typical to define the undamped natural frequency:

ωn =

√
keff,jΦ
mjΦ

. (D.11)

Making these substations, Equation D.8 can be written:

s = −ζωn ± iωn
√

1− ζ2. (D.12)

The solution in time is thus:

T = e−ζωn(eiωn

√
1−ζ2 + e−iωn

√
1−ζ2), (D.13)

and it is evident that vibration occurs at a frequency:

ω = ωn

√
1− ζ2. (D.14)

Now return to Equation D.5. It must be the case that:

(ms2 + cs+ keff)Φ = 0. (D.15)

If ζ is not small in comparison with 1 (that is, if damping is large enough that the system
approaches the critically-damped state), then the vector Φ is in general complex, except
for certain values of c. In this case, for n degrees of freedom, 2n equations must be solved.
In general, the problem becomes more complicated to solve and interpret.8

It is much preferable if we can assume that damping is small and is of a particular
form. Then the analysis of natural frequencies and mode shapes can be performed using
the undamped equations, which is more straightforward. Later, when calculating the
response of each natural mode to various applied forces, a small amount of damping can
be added back into the equations. The most significant damping of a wind turbine blade
is aerodynamic damping of the first flapwise mode of vibration. Burton et al. [22], p 263,
give an example in which ζ = 0.17 for this mode.9 Even at this fairly high damping level,
by Equation D.14, ω = 0.985ωn, and it is reasonable to use undamped natural frequencies
and modes to represent the structural response.

8Hurty and Rubenstein [94], Chapter 9, and He and Fu [86], Chapter 6, discuss modal analysis of
systems with a general damping matrix c.

9By contrast, a typical value of structural damping is around 0.01. (Burton et al. [22] p 263, Blevins
[15] pp 326-327)
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If we let ζ = 0, then s = ±iωn, and Equation D.15 becomes:

−mΦω2
n + keffΦ = 0.

(k−1
eff m)Φ− 1

ω2
n

Φ = 0. (D.16)

This is an eigenvalue problem Ax − λx = 0. There is a problem, though: standard
numerical techniques prefer that the matrix A is symmetric, and k−1

eff m is not necessarily
symmetric. Rao [146], p 568, describes a work-around. First, Cholesky decomposition is
used to calculate an upper triangular matrix U such that:

k = UT U. (D.17)

Then, defining Ψ = UΦ, and a symmetric matrix D = (UT )−1mU−1, an eigenvalue
problem can be written:

DΨ− λΨ = 0. (D.18)

When this equation is solved, the natural frequencies are still defined by the eigenval-
ues λ = 1/ω2

n, and the desired eigenvectors Φ can be determined from the computed
eigenvectors Ψ by Φ = U−1Ψ.

To solve Equation D.18 for the eigenvalues and eigenvectors, the procedure described
by Press et al. [145], pp 350-363, was followed. Subroutines TRED2 and TQLI (Press et
al., pp 355 and 362) operate sequentially on the matrix D, and output all of the eigenvalues
(natural frequencies) and eigenvectors (mode shapes).10

D.2.2 Correlation and Spectral Density

Skipping the formalisms of statistical theory, we begin by looking at the turbulent velocity
field (ux, uy, V∞ + uz) that blows by a fixed point P . It is assumed that the statistical
properties of the flow do not change over the timespan of a single load case (10 minutes
is typical).11 Here, the coordinate axes are chosen such that the Z component of velocity
V∞+uz is aligned with the direction of mean flow, which has average velocity V∞. Velocity
components ux, uy, and uz are random fluctuations about the mean flow. Although the
fluctuations are described as random processes, they are due to eddies (vortices) in the
air. The eddies have a physical structure, and the fluid obeys the laws of fluid mechanics
(continuity, momentum, and energy equations), therefore there is a correlation in the
velocity field between one point and another; the flow is independent neither in space nor
in time.12

Random processes like turbulence can be modeled as a superposition of sinusoids.
Looking at a band of frequency df , the response at this frequency is a sine function, whose
amplitude is related to the spectral density (which will be described momentarily). But
first, here is a critical point. Each band of frequency df acts with a phase that is random,

10That all the natural frequencies and mode shapes are computed is fine for a small problem like a beam
model of a single blade. Different numerical techniques would be required if the problem were large, because
really only the lowest several modes are needed to adequately capture the blade’s dynamic response.

11This is valid for wind turbine analysis, because near-surface atmospheric turbulence exhibits little
change, statistically, when measured over a timespan of between 10 minutes and 1 hour. (van der Hoven
[181])

12Davidson [35] Chapter 3
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uniformly distributed between 0 and 2π.13 The implication is that the phase information
of the sinusoids does not need to be stored, because it can be reconstructed by a uniform
probability distribution. (This applies only to stochastic processes; phase may matter for
periodic processes. Also, phase matters for fluid damping, which is generally nonlinear.)

Since we do not require phase information, we can express the correlation of two
velocity components, between one point and another, over space and time, as the average
(expected value) of the value at the first point times the value at the second point. For
example, if we are correlating u at a point with position vector x at time t with u at a
point with position vector x+ s at time t+ τ , this is written as:

Quu(s, τ) = E[u(x, t)u(x+ s, t+ τ)]

=
1
T

∫ T

0
u(x, t)u(x+ s, t+ τ) dt. (D.19)

In a numerical calculation, the expected value would be calculated as:

Quu(s, τ) = E[u(x, t)u(x+ s, t+ τ)]

=
1
N

N∑
j=1

u(x, tj)u(x+ s, tj + τ), (D.20)

where T = N ∆t. (The entire discussion here will be developed considering an arbitrary
velocity component u. But all the formulas are equally applicable for a correlation based
upon any other variables. For example, one could have the correlation Qξη(s, τ) between
blade displacements ξ and η, and so forth for any two signals.)

Note the information contained in Q, and the information lost by using Q to represent
the relationship between the signals u(x, t) and u(x+ s, t+ τ). If the signals are strongly
correlated – or inversely correlated – across the gap s and the time τ , then Q(s, τ) will
have a large magnitude, positive or negative. If the signals have no relationship with one
another, then over a long enough period of integration T , Q(s, τ) will be zero. If we plot
Q(0, τ) as a function of τ , or Q(s, 0) as a function of s, the shape of the correlation curve
will indicate the size of the turbulent eddies. Because Q is the value of an integral of the
signals through time, it is independent of the absolute phase of the signals; only relative,
not absolute, phase information is contained in the correlation function.14

Spectral density, or simply the spectrum, is the Fourier transform, in time, of the
correlation function Q:

Suu(s, f) =
∫ ∞
−∞

Quu(s, τ) ei2πfτ dτ. (D.21)

A plot of the spectrum, as a function of frequency, makes clear which frequencies are
present in both u(x, t) and u(x+ s, t+ τ) – that is, the frequencies that both signals have
in common. The amplitude of the spectrum at a particular frequency indicates the level
of energy, at that frequency, that the signals share in common.

Here is a simple, deterministic example. Let the signals be:

u(x, t) = A1 sin(aπt+ φ1) +A2 sin(bπt+ φ2);

13de Silva (ed.) [38] p 11-9
14Davidson [35] p 460
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and

u(x+ s, t+ τ) = A3 sin(aπ(t+ τ) + φ3) +A4 sin(cπ(t+ τ) + φ4);

where a, b, and c are different integers, and φ is the phase angle. Compute the correlation:

E[u(x, t)u(x+ s, t+ τ)] =
1
T

∫ T

0

[
A1A3 sin(aπt+ φ1) sin(aπ(t+ τ) + φ3)

+A2A3 sin(bπt+ φ2) sin(aπ(t+ τ) + φ3)

+A1A4 sin(aπt+ φ1) sin(cπ(t+ τ) + φ4)

+A2A4 sin(bπt+ φ2) sin(cπ(t+ τ) + φ4)
]
dt.

When the integral is performed, taking the average over a long period of time, only the
first term will produce non-zero values. Consider the first term in more detail:

1
T

∫ T

0
A1A3 sin(aπt+ φ1) sin(aπ(t+ τ) + φ3) dt.

Using sum-angle formulas:

1
T

∫ T

0
A1A3[sin2 aπt cosφ1 cos(aπτ + φ3) + sin aπt cos aπt cosφ1 sin(aπτ + φ3)

+ sin aπt cos aπt sinφ1 cos(aπτ + φ3) + cos2 aπt sinφ1 sin(aπτ + φ3)] dt.

Averaging over a long period of time, the term sin aπt cos aπt will average to zero, while
the terms sin2 aπt and cos2 aπt will each average to 1/2. Thus:

1
2
A1A3[cosφ1 cos(aπτ + φ3) + sinφ1 sin(aπτ + φ3)].

The correlation is:

Quu =
1
2
A1A3 cos(aπτ + φ3 − φ1).

Taking the Fourier transform, the spectrum will show a spike at frequency aπ (rad/s),
whose amplitude depends upon the multiple A1A3. The other frequencies bπ and cπ,
which the signals did not share in common, do not appear in the correlation nor in the
spectrum.

D.2.3 Properties of the One-Sided Spectrum

Equation D.21 defined the two-sided spectrum, that is, one that spans frequencies −∞ to
∞. The spectrum is symmetric about zero frequency – negative frequencies are the same
as positive frequencies. It is common in engineering to work with the one-sided spectrum,
which simply takes the energy in the negative frequencies and assigns it to the positive
frequencies, leaving Souu = 2Suu. The one-sided spectrum Souu spans frequencies 0 to ∞.
Empirical turbulence and wave spectra are usually reported as one-sided spectra but it is
critical to make sure which is being used.
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Switching to a one-sided spectrum, Equation D.21 becomes:

Souu(s, f) = 2
∫ ∞
−∞

Quu(s, τ) ei2πfτ dτ. (D.22)

Since the correlation function Quu is symmetric in τ (recall that we have assumed that the
statistical properties of u are constant for a given load case, so it does not matter where
in time we measure), we can write:

Souu(s, f) = 4
∫ ∞

0
Quu(s, τ) ei2πfτ dτ. (D.23)

The inverse transform is:

Quu(s, τ) =
∫ ∞

0
Souu(s, f) e−i2πfτ df. (D.24)

The spectrum Souu(s, f) is very useful in fatigue (and sometimes extreme load) analysis
because load or deflection cycle statistics can be estimated directly from the spectrum,
without taking a detour through time-domain analysis. Begin with the variance of a single
stress history σ(t):

Qσσ(0, 0) = E[σ(x, t)σ(x, t)] = σ̂2
σ =

∫ ∞
0

Soσσ(0, f) df. (D.25)

So the area under the spectrum is the variance σ̂2. If the random signal were near-
Gaussian, we could use the variance to predict probabilities and extreme values of the
signal. It is shown in Section D.13 that, in a more complex case, an estimate of cycle
counts can be obtained by way of functions of spectral moments:

mj =
∫ ∞

0
f jSoσσ(0, f) df. (D.26)

D.2.4 Fourier Transform

We will now digress somewhat and go into some depth with the Fourier transform. The
reason is that the numerical calculation of a Fourier transform is easy to get horribly
wrong, and therefore must be set up, executed, and interpreted with care.

The foundation of the Fourier transform is the proposal that we can represent a function
as a sum of trigonometric functions:

Q(s, τ) =
1
T

∞∑
k=−∞

Sk(s) e−ik2πτ/T . (D.27)

If we take the limit T → ∞, then 1/T → df and k/T → f , such that the coefficient Sk
becomes a smooth function of frequency S(s, f). The discrete sum becomes an integral:

Q(s, τ) =
∫ ∞
−∞

S(s, f) e−i2πfτ df. (D.28)

Given Q, we would like to solve for the trigonometric “coefficients” (now frequency func-
tion) S. Multiply both sides by ei2πf0τ , for some specific frequency f0, and integrate over
time: ∫ T/2

−T/2
Q(s, τ) ei2πf0τ dt =

∫ T/2

−T/2
ei2πf0τ

∫ ∞
−∞

S(s, f) e−i2πfτ df dt;
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∫ T/2

−T/2
Q(s, τ) ei2πf0τ dt

=
∫ ∞
−∞

S(s, f)

[∫ T/2

−T/2
e−i2πfτei2πf0τ dt

]
df. (D.29)

The term e−i2πfτei2πf0τ , when integrated over a long enough time T →∞, is zero for all
values of f except f0. At f0:

e−i2πf0τei2πf0τ = 1,

and, recalling that df = 1/T , the equation becomes:∫ T/2

−T/2
Q(s, τ) ei2πf0τ dt = S(s, f0) T

1
T

;

S(s, f0) =
∫ ∞
−∞

Q(s, τ) ei2πf0τ dt.

The value of f0 is arbitrary, therefore it applies for any f :

S(s, f) =
∫ ∞
−∞

Q(s, τ) ei2πfτ dt. (D.30)

Equations D.28 and D.30 form a Fourier transform pair, taking a function from the time
domain to the frequency domain (that is, decomposing the function into a sum of trigono-
metric functions) and back again.

D.2.5 Fourier Transform: Discrete Form

Equations D.28 and D.30 are based on continuous functions. Performing numerical cal-
culations, we require a discrete form of the Fourier transform. Also, we cannot perform
infinite sums, therefore we must truncate the summation at some maximum number of
terms. This is trickier than it sounds at first.

Begin with Equation D.27, but truncate the period T , and limit the number of fre-
quencies to N . We have relationships:

T = 1/∆f = N ∆τ. (D.31)

So we have a time series of finite length T , divided into N uniform timesteps ∆τ . When we
convert to the frequency domain, we will (theoretically, not practically) have N frequencies
at uniform spacing ∆f . A particular time τ can be written j∆τ , and a particular frequency
f can be written k∆f , where j and k are integers.

In discrete, truncated form, Equation D.27 is:

Q(s, j∆τ) = ∆f
N/2∑

k=−(N/2−1)

S(s, k∆f) e−i2πjk ∆τ ∆f . (D.32)

We shall repeat the process that we used for the continuous case in order to derive the
values of S. Multiply both sides of the equation by ei2πjm ∆τ ∆f , and sum all the timesteps
in the sequence of Q:

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjm ∆τ ∆f =



350 APPENDIX D. MODAL AND SPECTRAL ANALYSIS METHODS

N/2∑
j=−(N/2−1)

ei2πjm ∆τ ∆f ∆f
N/2∑

k=−(N/2−1)

S(s, k∆f) e−i2πjk ∆τ ∆f

 ;

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjm ∆τ ∆f = ∆f
N/2∑

k=−(N/2−1)

S(s, k∆f)

 N/2∑
j=−(N/2−1)

e−i2πjk ∆τ ∆fei2πjm ∆τ ∆f

 . (D.33)

The sum in brackets is zero except for when k = m:

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjm ∆τ ∆f

= ∆f S(s,m∆f)
N/2∑

j=−(N/2−1)

(1). (D.34)

Since m is arbitrary, rename it back to k, and solve for S:

S(s, k∆f) =
1

N ∆f

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjk ∆τ ∆f . (D.35)

Equations D.32 and D.35 are a discrete, truncated Fourier transform pair.

D.2.6 Fast Fourier Transform and Numerical Considerations

A fast Fourier transform (FFT) subroutine was programmed in Fortran, based upon Press
et al. [145], pp 394-395. The FFT subroutine takes, as input, a floating-point data array
of length N ; it also returns, as output, a floating-point data array of length N . The
subroutine can perform either of the following transforms:

Hk =
N−1∑
j=0

hj e
i2πjk/N (D.36)

is the forward transform, and:

hj =
N−1∑
k=0

Hk e
−i2πjk/N (D.37)

is the inverse transform. H and h are the floating-point data arrays. The order of input
and output for the forward FFT is described in Table D.1.

In order to use the FFT, Equations D.32 and D.35 must be massaged into the right
form. We will focus on Equation D.35, the “forward” transform from the time domain
to the frequency domain, because this is the one which is needed for aerodynamic load
calculations (Section D.4).15

15Burton et al. [22] describe preparation of the FFT data on pages 244 and 245.
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Table D.1: Input and output convention for the forward FFT

Input: Output:
index t index f
1 0 1 0
2 ∆τ 2 1/(N ∆τ)
... ...

N/2− 1 (N/2− 1)/(N ∆τ)
N/2 ±1/(2 ∆τ)
N/2 + 1 −(N/2− 1)/(N ∆τ)
...

N − 1 (N − 2) ∆τ N − 1 −2/(N ∆τ)
N (N − 1) ∆τ N −1/(N ∆τ)

We start with:

S(s, k∆f) =
1

N ∆f

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjk ∆τ ∆f .

First, we want the one-sided spectrum:

So(s, k∆f) =
2

N ∆f

N/2∑
j=−(N/2−1)

Q(s, j∆τ) ei2πjk ∆τ ∆f .

Next, in order to match the form of Table D.1, we must take the first N/2 − 1 points in
the Q data16 and append them beyond T/2, such that the limits of summation are 0 to
T −∆τ = (N − 1) ∆τ .

Noting, from Equation D.31, that ∆τ ∆f = 1/N , the one-sided spectrum can then be
written:

So(s, k∆f) =
2

N ∆f

N−1∑
j=0

Q(s, j∆τ) ei2πjk/N
 . (D.38)

The portion of the equation enclosed in brackets matches the forward FFT form in Equa-
tion D.36. Therefore the output of the FFT subroutine must be multiplied by 2/(N ∆f)
in order to obtain So.

The parameters N and ∆f (from which T and ∆τ can be computed) must be selected
such that the important features of the spectrum are captured. It is a requirement of the
FFT algorithm that N be a power of 2.

Clearly, because the function Q is mirrored about index N/2, we really have only N/2
pieces of information. As a consequence, So is symmetric about N/2 as well, and its values
for the highest N/2 frequencies are meaningless. In addition, due to aliasing, frequencies
approaching (N/2) ∆f will have a spectral density that is too high. Burton et al. [22], p
245, suggest that the spectral density at frequencies above (N/4) ∆f be discarded, and
this advice has been followed in this research project. In other words, N is assigned a

16The correlation function Q is symmetric about the origin τ = 0, and goes from −T/2 + ∆τ (index
−(N/2− 1)) to T/2 (index N/2).
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Figure D.4: An example of a one-sided spectrum So, calculated with a FFT algorithm;
in real life, the spectrum should approach zero at high frequencies, whereas the computed
spectrum shows numerical artifacts

value four times larger than the number of frequencies for which a reliable spectrum is
desired.17 Figure D.4 shows an example.

D.3 Turbulence Spectrum

Design standards provide, as a starting point, the single-point spectra for turbulent wind-
speed fluctuations Soxx(0, f), Soyy(0, f), and Sozz(0, f).18 Typically a Kaimal spectrum is
used. Then, coherence functions are given that allow the cross-spectra Soxx(s, f), Soyy(s, f),
and Sozz(s, f) to be calculated, where s is a position vector separating two points in space.
The expressions for coherence may be analytical, based upon simplifying assumptions, or
else they may be empirical.19

In this research project, a simpler approach was adopted, based upon Burton et al. [22],
pp 239-249. The von Karman spectrum is used. Figure D.5 compares the von Karman
and Kaimal single-point turbulence spectra in the direction of the mean flow. The Kaimal
spectrum predicts significantly greater changes in windspeed over periods of time longer
than 3 minutes. The von Karman spectrum, on the other hand, predicts greater changes
in windspeed over timescales between roughly 10 seconds and 3 minutes. In terms of
structural fatigue, it would seem that the von Karman spectrum is conservative, because

17A note to myself, and others who might want to use the software associated with this report: the
Fortran subroutines are configured so that the user inputs the desired “reliable” number of frequencies,
call it nf ; internally, N is set to 4nf before performing the spectral calculations. Then, only the first nf

values of So are output.
18It would be more consistent to write So

uxux
(0, f), and so on, but I want to avoid second-level subscripts.

Just remember that we are correlating velocity components, and xx means uxux during this part of the
derivation.

19Burton et al. [22] Chapter 2 discusses the turbulence models provided by various design standards.
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Figure D.5: A comparison between the von Karman and Kaimal turbulence spectra in the
direction of the mean flow; although the length scales are different numbers, they represent
the same wind condition

fluctuations in windspeed at higher frequencies will result in more load cycles than fluc-
tuations at lower frequencies. (Note that the spectra are nearly identical at timescales of
blade vibrations, in the vicinity of 0.5 Hz and higher. Thus predictions of blade resonant
vibrations should be similar, whether the von Karman or the Kaimal spectrum is used.)

The formula for the single-point von Karman spectrum is as follows:20

Sozz(0, f) = σ2
u

4Lu
V∞[1 + 70.8(fLu/V∞)2]5/6

. (D.39)

Lu is a length scale that indicates the size of a typical turbulent eddy. Equation D.39
is the spectrum that is obtained if we measure, at a fixed point, the fluctuation in the
velocity component in the direction of the mean flow.

Two important simplifying assumptions are made about the turbulent windfield. First,
it is assumed that turbulence is isotropic. What does this mean, exactly? Consider the
case illustrated in Figure D.6, in which mean flow is zero. We stand at point (A), facing
one direction, and plot the cross-spectrum:

Qrr(r) = E[ur(0)ur(r)]

as a function of radius r from the point at which we stand. (ur is the velocity in the
direction we are facing.) Next, we remain at point (A), but turn to face a different
direction. Again we measure Qrr(r), where r is now the new direction we face. Finally,
we move to point (B), face in some direction, and measure Qrr(r) one more time. If the
turbulence is isotropic, all three plots of Qrr(r) will come out identical. Thus isotropic
turbulence means that the velocity field is statistically – integrated over time – identical
in every direction.

20Burton et al. [22] p 23
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Figure D.6: Isotropic turbulence illustration

Assuming that turbulence is isotropic, one value of the standard deviation σu and one
value of the length scale Lu apply in all directions. Here, values are chosen which are
typical of the mean (axial) flow direction, because this has a larger role in exciting blade
vibration than the transverse and vertical components. Following Burton et al. [22] p 24,
we have:

Lu = (280 m)
(

H

(1000h0.18
0 ) m

)0.35

, (D.40)

where H is the height above sea level and h0 is a “surface roughness length”. Over the
ocean, a typical value for h0 is 0.001. But inside a wind farm adjacent turbines would
increase the effective surface roughness. Referring to Burton et al. [22], p 19, one finds
that over “flat desert, rough sea” h0 = 0.001; “flat grassy plains”, 0.01; “open farmland,
few trees and buildings” 0.03; and “villages, countryside with trees and hedges” 0.1.

Although h0 spans two orders of magnitude, using Equation D.40 one finds that Lu
spans a relatively small range. For example, using H = 90 m, if h0 = 0.001 then Lu = 139
m, while if h0 = 0.1 then Lu = 186 m. An intermediate value of h0 = 0.01 was used for
the analyses in this project. With this value of h0, Equation D.40 can be simplified to:

Lu = 33.35 H0.35. (D.41)

As previously mentioned, we are using empirical values of σu and Lu which are typical
of the mean flow direction. Using measured properties in the mean flow direction might
be conservative, or it might be unconservative. The intensity of turbulence is typically
less in the transverse and vertical directions. The length scales in the transverse and
vertical directions are smaller than in the mean-flow direction. For equal turbulence
intensity, a smaller length scale results in increased energy at high frequencies, in the
vicinity of structural resonance. On the other hand, a smaller length scale results in
reduced coherence along the length of the blade. So, using mean-flow direction properties
in place of transverse and vertical properties, there is a tradeoff between overpredicting
intensity and coherence, and underpredicting fluctuations near blade resonant frequencies.

The second simplifying assumption is that the turbulence field is frozen. As shown in
Figure D.7, in the presence of a mean flow V∞, frozen turbulence means that velocities
ux, uy, and uz measured at point (A) at time t are exactly the same as those measured a
distance V∞ ∆t downstream at time t + ∆t. This allows the exchange of space for time,
and time for space, in the calculations.

One would expect the frozen turbulence hypothesis to be valid if the structure of the
turbulent eddies does not change significantly over the time ∆t. A rough check of this
can be made. The break-up time of a turbulent eddy is roughly its turn-over time Lu/ue,
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Figure D.7: Isotropic turbulence convected downstream

where ue is representative of the velocity due to rotation of the eddy.21 The time it takes
such an eddy to pass through the rotor is Lu/U . Therefore, if ue << V∞, then the eddy
will retain a relatively consistent structure as it passes through the rotor. If we take σu
to be representative of ue, then indeed it is the case that ue << V∞, and we are safe to
assume frozen turbulence.

D.4 Rotationally-Sampled Turbulence Spectrum

The previous section described turbulence in the air, with Equation D.39 defining the
spectrum Sozz(0, f), for a single velocity component, seen by a single, fixed point in space.
Analysis of the whole blade requires the spectra relating different velocity components at
different points; for example, Sozx(s, f). In addition, the blade is rotating; and what is
needed is not the turbulence at a fixed point, but the turbulence that the blade sees as it
rotates. This is called the “rotationally-sampled” turbulence spectrum.

The rotationally-sampled turbulence spectrum is computed by employing the assump-
tions of isotropic and frozen turbulence, together with the continuity equation of fluid
mechanics. The derivation is based upon that given by Burton et al. [22] pp 239-249.
(Note that Burton et al. have a sign error in both of the critical equations 5.42 and 5.51! )
However, whereas Burton et al. consider only the axial component of turbulence, in this
report the analysis has been extended to include lateral and vertical turbulence.

Why was it necessary to extend the analysis? As Burton et al. themselves point
out, on a stall-regulated turbine, “bending moment plots derived from three-dimensional
wind simulations above rated are dominated by fluctuations at blade-passing frequency
which bloom and decay as the angle between the airflow and the shaft axis rises and
falls [due to lateral and vertical turbulence]. Superimposed on these are lower frequency
fluctuations caused by changes in the [axial] wind speed.” (p 400) Stated another way:
the low-frequency components of lateral and vertical turbulence result in a slowly-varying
yaw offset. As shown in Figure D.8, the blade sees a steady yaw offset as an incoming
windspeed that fluctuates with a sinusoidal component at the rotor’s rotational frequency.
This results in a large number of fatigue cycles.22

The geometry for the generalized rotationally-sampled turbulence problem is illus-
trated in Figure D.9. The problem is defined using rotor coordinates at the start, al-

21Davidson [35] p 76
22The yaw dynamics (whether passive or actively controlled) will eventually adapt the turbine to a steady

yaw offset. Burton et al. [22], p 477, indicate that the response time of an actively controlled yaw drive is
slow. This means that a number of fatigue cycles could accumulate before the yaw drive eliminates the yaw
offset. The same applies for a friction-damped, free-yaw, downwind turbine. In the current calculations, it
is conservatively assumed that the yaw drive aligns the turbine to the mean-flow direction, and does not
adapt to turbulent transients.
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Figure D.8: Change in blade flow due to yaw

though, for simplicity, the r superscript is omitted for the time being. Let there be two
airfoil sections along the blade, one at a radius r1 and another at a radius r2. We would
like velocity correlations between point (A), which is the location of the airfoil section at
radius r1 and time t, and point (B), which is the location of the airfoil section at radius
r2 and time t + τ .23 The vector h is from point (A) to point (B). At each point, there
is a component of turbulent velocity normal to the rotorplane (the XrY r plane), in the
Zr direction, uz; and there is a component of turbulent velocity parallel to the rotorplane
and tangent to the spanwise direction of the blade, ut. Airfoil forces are assumed to be
independent of spanwise airflow, so the spanwise component of velocity is irrelevant, and
does not appear in the problem.

Four types of correlation functions are sought:

Qzz(h, τ) = E[uz(r1, t)uz(r1 + h, t+ τ)],

Qtt(h, τ) = E[ut(r1, t)ut(r1 + h, t+ τ)],

Qzt(h, τ) = E[uz(r1, t)ut(r1 + h, t+ τ)],

and

Qtz(h, τ) = E[ut(r1, t)uz(r1 + h, t+ τ)].

(The reason for these four correlations will become apparent later.)
To start with, only the spectrum Sozz(0, f) is known, where uz is in the direction

of mean flow V∞. The inverse Fourier transform of Sozz(0, f) (Equation D.39) gives the
auto-correlation function Qzz(0, τ). There is a closed form expression for this:24

Qzz(0, τ) =
2σ2

u

Γ(1/3)

(
V∞τ

2.68Lu

)1/3

K1/3

(
V∞τ

1.34Lu

)
. (D.42)

23The blade is arbitrarily assumed to be aligned with the Xr axis at time t.
24Connell [29]; Kristensen and Frandsen [104]; Burton et al. [22] p 242
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Figure D.9: A definition of the geometry for the rotationally-sampled turbulence problem
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Figure D.10: Correlation along two directions from a common point

K is the modified Bessel function. The existence of this closed-form expression is the
reason the von Karman spectrum was chosen, rather than the Kaimal spectrum.25

Now the assumption of frozen turbulence is applied. In a certain span of time τ , the
flow moves downstream a distance V∞τ . The frozen turbulence assumption says that the
correlation of uz, at a fixed point, over time τ , is identical to the correlation of uz, over
a distance z = V∞τ , at a fixed time. In other words, Qzz(0, τ) = Qzz(z, 0). In this case,
Equation D.42 becomes:

Qzz(z, 0) =
2σ2

u

Γ(1/3)

(
z

2.68Lu

)1/3

K1/3

(
z

1.34Lu

)
. (D.43)

Next, the assumption of isotropic turbulence is applied. Let us define some local
coordinates, which are arbitrary. Referring to Figure D.10, we stand at an arbitrary
point in space and face some direction. Denote this direction by the subscript a. We
have turbulent velocity component ua, standard deviation σu of ua, length scale Lu, and
distance a in the direction we face.26 The assumption of isotropic turbulence says that
Qzz(z, 0) = Qaa(a, 0), for any direction a.

Next comes an important relationship, illustrated in Figure D.11. Based upon the
continuity equation, one can begin with the isotropic, single-point, single-direction spatial
correlation function Qaa(a, 0), and derive the correlation function for the general case.
The general case is the spatial correlation between two arbitrary velocity components, at
two arbitrary points separated by a distance s. The derivation will not be reviewed in
detail here; it can be found in Davidson [35], pp 318-325. If the velocity components are
in the same direction, the equation is:

Qii(s, 0) = Qss(s, 0) +
s

2
dQss(s, 0)

ds
− s2

i

2 s
dQss(s, 0)

ds
. (D.44)

Here, i can be either x, y, or z. si is the component, in the i direction, of the vector
connecting the first to the second point. If the velocity components are orthogonal to each
other, the equation is:

Qij(s, 0) = −sisj
2s

dQss(s, 0)
ds

. (D.45)

Now Equations D.44 and D.45 are applied to the correlations between the velocity
components shown in Figure D.9. This geometry is shown again in Figure D.12, with the
addition of a point (S) directly upstream of point (B). The distance from point (S) to

25Does the Kaimal spectrum have a closed-form expression, either exact or approximate, for its inverse
Fourier transform? It was not found in the literature. The derivation of such an expression would be too
time-consuming to attempt here.

26We could have written σa and La, but these parameters are constant during a given calculation, so we
continue to write them as σu and Lu.
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Figure D.11: Correlation between velocity components

point (B) is V∞τ . For convenience, define t = 0 and let point (A) be located at position 0.
Then, as stated previously, the assumption of frozen turbulence tells us that the correlation
between velocity components at point (A) at time t = 0 and point (B) at t = τ is the
same as the correlation between velocity components at point (A) and point (S) at t = 0.
Now the four correlation functions we seek are:

Qzz(s, 0) = E[uz(0, 0)uz(s, 0)], Qtt(s, 0) = E[ut(0, 0)ut(s, 0)],

Qzt(s, 0) = E[uz(0, 0)ut(s, 0)], and Qtz(s, 0) = E[ut(0, 0)uz(s, 0)].

Begin with Qzz. Equation D.44 gives:

Qzz(s, 0) = Qss(s, 0) +
s

2
dQss(s, 0)

ds
− s2

z

2 s
dQss(s, 0)

ds
. (D.46)

This will be computed numerically, so it is not necessary to write out the entire equation.
But it is necessary to find expressions for the variables s, sz, and dQss/ds. (Qss is calcu-
lated from Equation D.43.) Considering the geometry shown in Figure D.12, and noting
that ψ = Ωτ , we have:

sz = −V∞τ ; (D.47)

and:

s =
√

(V∞τ)2 + r2
1 + r2

2 − 2r1r2 cos Ωτ . (D.48)

It is an identity of the modified Bessel function K that:27

d

dx
[xαKα(x)] = −xαKα−1(x).

Therefore, by Equation D.43 for Qss:

dQss
ds

=

(
2σ2

u

Γ(1/3)

)
d

ds

[(
1
2

)1/3 ( s

1.34Lu

)1/3

K1/3

(
s

1.34Lu

)]

= −
(

2σ2
u

Γ(1/3)

)(
1

1.34Lu

)(
s

2.68Lu

)1/3

K−2/3

(
s

1.34Lu

)
. (D.49)

This provides all of variables that are needed to evaluate Qzz(s, 0) numerically.

27Varma and Morbidelli [186] p 329
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Figure D.12: A further definition of the geometry for the rotationally-sampled turbulence
problem

Next, consider Qtt. This is somewhat more complicated than Qzz because the “tangen-
tial” direction changes between points (A) and (S). At point (A), the tangential velocity
is ut = uy, whereas at point (S), it is ut = −ux sinψ + uy cosψ. Write Qtt as:

Qtt(s, 0) = E[uy(0, 0)(−ux(s, 0) sinψ + uy(s, 0) cosψ)]. (D.50)

This can be written:

Qtt(s, 0) = −(sin Ωτ)E[uy(0, 0)ux(s, 0)]

+(cos Ωτ)E[uy(0, 0)uy(s, 0)]. (D.51)

Thus, the problem has been reduced to finding separately E[uy(0, 0)ux(s, 0)] = Qyx(s, 0)
and E[uy(0, 0)uy(s, 0)] = Qyy(s, 0). First, apply Equation D.44:

Qyy(s, 0) = Qss(s, 0) +
s

2
dQss(s, 0)

ds
−
s2
y

2 s
dQss(s, 0)

ds
. (D.52)

Equations D.48 and D.49 give s and dQss/ds. We still need to find sy. By geometry:

sy = r2 sin Ωτ. (D.53)

Next, apply Equation D.45:

Qyx(s, 0) = −sysx
2s

dQss(s, 0)
ds

. (D.54)

Geometry gives:

sx = r2 cos Ωτ − r1. (D.55)
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Thus we have all the variables needed to solve for Qtt(s, 0) numerically.
Next, consider Qzt(s, 0):

Qzt(s, 0) = −(sin Ωτ)E[uz(0, 0)ux(s, 0)]

+(cos Ωτ)E[uz(0, 0)uy(s, 0)]. (D.56)

Apply Equation D.45:

Qzx(s, 0) = −szsx
2s

dQss(s, 0)
ds

(D.57)

and:

Qzy(s, 0) = −szsy
2s

dQss(s, 0)
ds

. (D.58)

All the variables are known from previous equations.
Finally, consider Qtz(s, 0):

Qtz(s, 0) = E[uy(0, 0)uz(s, 0)]. (D.59)

Apply Equation D.45:

Qyz(s, 0) = −sysz
2s

dQss(s, 0)
ds

. (D.60)

Likewise, all the variables are known from previous equations.
Taking the Fourier transforms of Qzz, Qtt, Qzt, and Qtz gives the rotationally-sampled

turbulence spectra Sozz, S
o
tt, S

o
zt, and Sotz. This is done numerically with a FFT. Equation

D.38 is used.
Figure D.13 reproduces Burton et al. [22], Figure 5.18, almost exactly. This demon-

strates that the axial turbulence correlation matrix Qzz is calculated correctly.
Figure D.14 shows the auto-correlations of Qzz, Qtt, Qzt, and Qtz for r = 20 m.

Likewise, Figure D.15 shows the cross-correlations of Qzz, Qtt, Qzt, and Qtz for r1 = 10
m and r2 = 20 m.

The tangential velocity correlation Qtt looks reasonable from the plots. Turbulent
eddies blow past the rotor, causing some measure of yaw or tilt offset in the flow. As the
blade rotates, it sees a yaw offset as an alternating flow; and indeed, the plots of Qtt show
this alternating characteristic.

What is noteworthy about the tangential correlation Qtt is that it decreases more
rapidly with time (or equivalently, the distance that the mean flow blows downstream)
than the axial correlation Qzz. This indicates that the velocity within an eddy has a
steeper gradient in a direction orthogonal to the velocity than in a direction parallel to
the velocity. Indeed, this follows from Equation D.44. Consider the auto-correlation in a
case in which the blade is not spinning. Then we have:

Qzz(s, 0) = Qss(s, 0); (D.61)

and:

Qtt(s, 0) = Qss(s, 0) +
s

2
dQss(s, 0)

ds
; (D.62)

where s = V∞t. By physical argument, the change in the correlation with distance,
dQss/ds, is clearly negative, and therefore we expect Qtt to decrease with s more quickly
than Qzz.
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Figure D.13: A reproduction of Burton et al. [22], Figure 5.18, generated by the software

Figure D.14: Auto-correlations of axial and tangential turbulence velocity components
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Figure D.15: Cross-correlations of axial and tangential turbulence velocity components

Figures D.16 and D.17 plot examples of the auto- and cross-spectra. (Both linear and
logarithmic scales are shown; the linear plot shows the sign of the spectra, while the loga-
rithmic plot provides a better view of the magnitude at high frequencies.) A comparison
with Burton et al. Figures 5.20 and 5.21 indicates that the results are reasonable.

Worth noting here is that the spectra Szt and Stz can take negative values. This has
to do with the relative phase of the velocity components uz and ut. It is appropriate that
the values are negative when the relative phase is 180◦. This can be seen by looking at
Equations D.63 and D.64.

Here is a simplified example. Equation D.63 can be written:

F = Auz +But.

Let uz = cosωt and ut = cos(ωt + π) = − cosωt. In this case, the effect of the reversed
phase is to reduce the magnitude of F , thus the magnitude of the spectral density is
expected to be low. Calculating the correlation:

E[F (t)F (t+ τ)] = A2E[cosωt cosω(t+ τ)]− 2ABE[cosωt cosω(t+ τ)]

+B2E[cosωt cosω(t+ τ)].

Thus Szz and Stt will be positive, while Szt and Stz may be positive or negative, depending
upon the relative phase of uz and ut.

Summing up, the derivation began with a semi-empirical spectrum Sozz(0, f), and the
equivalent correlation function Qzz(0, τ) for the single-point turbulence in the mean flow
direction, as a function of time. Using the assumptions of isotropic and frozen turbulence,
we have computed the auto- and cross-spectral densities Sozz(h, f), Sott(h, f), Sozt(h, f), and
Sotz(h, f) that any two points on the blade “see” as the blade rotates. z is perpendicular
to the rotorplane, while t is tangential to the rotorplane, as shown in Figure D.9.
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Figure D.16: Auto-spectra of axial and tangential turbulence velocity components
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Figure D.17: Auto-spectra of axial and tangential turbulence velocity components
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D.5 Aerodynamic Loads on the Blade

Frequency-domain analysis requires a linear relationship between the applied aerodynamic
load at a degree-of-freedom of the finite element model and the turbulence velocity compo-
nents uz and ut. This relationship is the transfer function that coverts turbulence into the
dynamic forces that excite blade vibration. Let F bj be the vector of forces and moments
at element j, in blade coordinates. We seek a linear relationship such that:

F bj =
∂F bj
∂uz,j

uz,j +
∂F bj
∂ut,j

ut,j . (D.63)

The goal is to find correlations between force components, for example:

E[(F bj )Y (F bk)Z ] =
∂(F bj )Y
∂uz,j

∂(F bk)Z
∂uz,k

E[uz,juz,k] +
∂(F bj )Y
∂uz,j

∂(F bk)Z
∂ut,k

E[uz,jut,k]

+
∂(F bj )Y
∂ut,j

∂(F bk)Z
∂uz,k

E[ut,juz,k] +
∂(F bj )Y
∂ut,j

∂(F bk)Z
∂ut,k

E[ut,jut,k]. (D.64)

Thus the force correlations are computed by relating them to the velocity correlations,
which are known from Section D.4. (For convenience, from this point forward the (0, 0)
and (h, τ) are not written for the variables inside the E[ ] function; they shall be implicit.)

As discussed in Chapter 3, a special dynamic stall method is required in order to
capture the full range of alternating loads, which is more severe than the loads predicted
by quasi-steady behavior. The dynamic stall method is formulated based upon airfoil
coefficients, so that is the approach taken here.28

Using airfoil coefficients to calculate the fluctuating loads means that the induced
velocity, which is calculated by the BEM method, is implicitly assumed to be constant.
In other words, the assumption is that the global flow, and wake, remain constant, while
the local flow vector is directly perturbed by turbulence. In this case, induced velocities
remain at their steady-state values. This would be representative of a fast fluctuation in
windspeed, for example due to blade vibration. The calculation of loads based upon airfoil
coefficients is likely to be somewhat in error in the low-frequency range of the spectrum,
below a frequency of roughly V∞/D Hz.29

Aerodynamic forces are computed from empirical relationships based upon the Reynolds
number, and the direction of inflow. The empirical relationships are tabulated as non-
dimensionialized forces, or force coefficients, CL, CD, and CM .30 (Chapter 2 discusses the
empirical airfoil coefficients.) The coefficients are related to forces by:

FL =
1
2
CL(Re, α) ρcL |V |2,

FD =
1
2
CD(Re, α) ρcL |V |2, (D.65)

M = −1
2
CM (Re, α) ρc2L |V |2.

28The alternative would be a calculation of the coefficient slopes by the quasi-steady BEM method,
which is equivalent to assuming that the wake is allowed to fully develop. This is likely less accurate than
using airfoil coefficients, over the frequency range of interest for structural analysis.

29This is related to wake development, also known as dynamic inflow; see Section 2.1.3 of this report, as
well as the report by Snel and Schepers [160].

30Abbott and von Doenhoff [1]
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Figure D.18: Lift and drag forces

Figure D.18 shows the lift and drag forces; these are oriented, respectively, perpendicular
to and parallel to the direction of local flow velocity. The moment acts about the Za axis
pointing out of the page in the lower sketch. The spanwise length L is unspecified – really,
it could be moved to the left-hand side, giving forces and moments per unit length – but
in the present analysis it is the length of the discrete blade element for which the forces
are being computed.

The flow velocity V is the local velocity in the vicinity of the airfoil – what the airfoil
“sees”. As shown in Figure D.19, it is the vector sum of the rotational speed rΩ, the
remote velocity V∞, the induced velocity (V r

i )Z (Appendix B), and turbulence velocity
components ut and uz:

|V | =
√

(rΩ− ut)2 + (V∞ + (V r
i )Z + uz)2. (D.66)

(The tangential component of induced velocity is very small in comparison with rΩ, and
so can be neglected.)

Figure D.20 illustrates the effect of a small increment in turbulence velocity on the
local flow angle. It also changes the incoming flow velocity |V |. In order to apply spectral
analysis, the change in force must be approximated as a linear function of the turbulence
velocity components.

Begin with a generic form of the aerodynamic force, which could refer to either lift or
drag:31

F =
1
2
ρcL |V |2C. (D.67)

Introduce uz = ε |V | and ut = ε |V |, where ε is a small parameter. A perturbation
approach gives:

F = F0 + uz
∂F

∂uz
+ ut

∂F

∂ut
+O(ε2);

|V | = |V0|+ uz
∂|V |
∂uz

+ ut
∂|V |
∂ut

+O(ε2); (D.68)

C = C0 + uz
∂C

∂uz
+ ut

∂C

∂ut
+O(ε2).

31. . . or moment, but in this case the right-hand side should be proportional to c2.
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Figure D.19: Flow vectors at an airfoil element

Figure D.20: Change in flow vectors due to turbulence
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Substituting for |V | and C in Equation D.67:

F =
1
2
ρcL

(
|V0|+ uz

∂|V |
∂uz

+ ut
∂|V |
∂ut

)2

(
C0 + uz

∂C

∂uz
+ ut

∂C

∂ut

)
.

Keeping only linear terms:

F =
1
2
ρcL

(
|V0|2C0 + 2 |V0| uz

∂|V |
∂uz

C0 + 2 |V0| ut
∂|V |
∂ut

C0

+|V0|2uz
∂C

∂uz
+ |V0|2ut

∂C

∂ut

)
. (D.69)

First consider the velocity derivatives in Equation D.69. Using Equation D.66:

∂|V |
∂uz

=
1
2

[(rΩ− ut)2 + (V∞ + uz + (V r
i )Z)2]−1/2(2)(V∞ + uz + (V r

i )Z).

Retaining terms of O(0) in the derivative:

∂|V |
∂uz

=
V∞ + (V r

i )Z√
(rΩ)2 + (V∞ + (V r

i )Z)2
. (D.70)

Similarly:

∂|V |
∂ut

=
−rΩ√

(rΩ)2 + (V∞ + (V r
i )Z)2

. (D.71)

Now consider the coefficient derivatives. Expand the derivative:

∂C

∂uz
=
dC

dα

∂α

∂uz
. (D.72)

The derivative of C with respect to angle-of-attack α is computed numerically using the
methods of Chapter 3. It is assumed that the change in airfoil coefficient with respect to
Reynolds number (which is proportional to |V |) is small compared to the change in airfoil
coefficient with respect to angle-of-attack.

The derivative of angle-of-attack with respect to velocity can be found using geometry,
shown in Figure D.19. The following relationship applies:

tan(α+ ξ) =
V∞ + uz + (V r

i )Z
rΩ− ut

. (D.73)

ξ is the twist, with respect to the rotorplane, of the airfoil section. Taking the derivative:

∂α

∂uz
=

∂

∂uz

[
tan−1 V∞ + uz + (V r

i )Z
rΩ− ut

]
;

∂α

∂uz
=

rΩ− ut
(rΩ− ut)2 + (V∞ + uz + (V r

i )Z)2
.

Keeping terms of order O(0) in the derivative:

∂α

∂uz
=

rΩ
(rΩ)2 + (V∞ + (V r

i )Z)2
. (D.74)
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Similarly, one finds that:

∂α

∂ut
=

V∞ + (V r
i )Z

(rΩ)2 + (V∞ + (V r
i )Z)2

. (D.75)

Substituting the derivatives back into Equation D.69, noting that:

|V0| =
√

(rΩ)2 + (V∞ + (V r
i )Z)2,

the aerodynamic force is:

F =
1
2
ρcL

[
|V0|2C0 +

(
2(V∞ + (V r

i )Z)C0 + rΩ
dC

dα

)
uz

+
(
−2rΩC0 + (V∞ + (V r

i )Z)
∂C

∂α

)
ut

]
. (D.76)

Equation D.76 can be used to calculate lift, drag, and moment. The fluctuating airfoil
forces should be defined in blade coordinates, which can be obtained from lift, drag, and
moment by a coordinate transformation:

(F b)Y = FL sin(α+ ξ)− FD cos(α+ ξ);

(F b)Z = FL cos(α+ ξ) + FD sin(α+ ξ); (D.77)

(M b)X = −M + (FL cosα+ FD sinα)δ;

(F b)X = (M b)Y = (M b)Z = 0.

δ is the distance along the Xa axis from the aerodynamic center to the structural centroid.
The element force vector F b = [0, (F b)Y , (F b)Z , (M b)X , 0, 0]T . α is the steady-state angle-
of-attack.

Referring to Figure D.19, geometry gives:

cos(α+ ξ) =
rΩ− ut
|V |

; sin(α+ ξ) =
V∞ + (V r

i )Z + uz
|V |

. (D.78)

We shall require derivatives to O(0):

∂

∂uz
cos(α+ ξ) = − sin(α+ ξ)

∂α

∂uz
= −(V∞ + (V r

i )Z)(rΩ)
|V0|3

;

∂

∂ut
cos(α+ ξ) = − sin(α+ ξ)

∂α

∂ut
= −(V∞ + (V r

i )Z)2

|V0|3
;

∂

∂uz
sin(α+ ξ) = cos(α+ ξ)

∂α

∂uz
=

(rΩ)2

|V0|3
; (D.79)

∂

∂ut
sin(α+ ξ) = cos(α+ ξ)

∂α

∂ut
=

(V∞ + (V r
i )Z)(rΩ)
|V0|3

.

For each blade element j, we want the derivatives of forces and moments, in blade
coordinates, with respect to velocity. Begin with (F bj )Y :

∂(F bj )Y
∂uz

=
∂FL
∂uz

sin(α+ ξ) + FL
∂

∂uz
sin(α+ ξ)
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−∂FD
∂uz

cos(α+ ξ)− FD
∂

∂uz
cos(α+ ξ).

Retaining terms only up to O(0), we have:32

∂(F bj )Y
∂uz

=
1
2
ρcL

[
2(V∞ + (V r

i )Z)2 + (rΩ)2

|V0|
CL + rΩ

V∞ + (V r
i )Z

|V0|
dCL
dα

−(V∞ + (V r
i )Z)

rΩ
|V0|

CD −
(rΩ)2

|V0|
dCD
dα

]
; (D.80)

Similarly:

∂(F bj )Y
∂ut

=
1
2
ρcL

[
− rΩV∞ + (V r

i )Z
|V0|

CL +
(V∞ + (V r

i )Z)2

|V0|
dCL
dα

(D.81)

+
2(rΩ)2 + (V∞ + (V r

i )Z)2

|V0|
CD − (V∞ + (V r

i )Z)
rΩ
|V0|

dCD
dα

]
;

∂(F bj )Z
∂uz

=
1
2
ρcL

[
(V∞ + (V r

i )Z)
rΩ
|V0|

CL +
(rΩ)2

|V0|
dCL
dα

+
2(V∞ + (V r

i )Z)2 + (rΩ)2

|V0|
CD + rΩ

V∞ + (V r
i )Z

|V0|
dCD
dα

]
; (D.82)

∂(F bj )Z
∂ut

=
1
2
ρcL

[
− 2(rΩ)2 + (V∞ + (V r

i )Z)2

|V0|
CL + (V∞ + (V r

i )Z)
rΩ
|V0|

dCL
dα

−rΩV∞ + (V r
i )Z

|V0|
CD +

(V∞ + (V r
i )Z)2

|V0|
dCD
dα

]
; (D.83)

∂(M b
j )X

∂uz
= −1

2
ρc2L

[
2(V∞ + (V r

i )Z)CM + rΩ
dCM
dα

]
(D.84)

+
1
2
ρcL

[(
2(V∞ + (V r

i )Z)CL + rΩ
dCL
dα

)
cosα − rΩ(sinα)CL

+
(

2(V∞ + (V r
i )Z)CD + rΩ

dCD
dα

)
sinα+ rΩ(cosα)CD

]
δ;

∂(M b
j )X

∂ut
= −1

2
ρc2L

[
− 2rΩCM + (V∞ + (V r

i )Z)
dCM
dα

]
(D.85)

+
1
2
ρcL

[(
−2rΩCL + (V∞ + (V r

i )Z)
dCL
dα

)
cosα − (V∞ + (V r

i )Z)(sinα)CL

+
(
−2rΩCD + (V∞ + (V r

i )Z)
dCD
dα

)
sinα+ (V∞ + (V r

i )Z)(cosα)CD
]
δ.

32These equations, with the exception of moment, are given by Petersen et al. [142], p 17.
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Figure D.21: The distribution of airfoil element loads to adjacent structural nodes

D.6 Stochastic Nodal Loads

In the previous section, the fluctuating aerodynamic forces, linearized with respect to
turbulence velocities, were computed at each element along the blade. These aerodynamic
forces are calculated as loads that are distributed evenly over the length of an element.
However, the finite element model, described in Section C.6, requires that the loads be
applied as point forces and moments at the nodes. As shown in Figure D.21, half of the
aerodynamic load on each element (that is, the load between the dashed lines) is assigned
to the nearest node. Observing the numbering convention shown in Figure D.21, the
(fluctuating) load at each node is:

P bj =
F b(j−1) + F bj

2
, (D.86)

Where Pj is the vector of six loads and moments applied at node j, and Fj is a vector of
aerodynamic loads and moments acting on element j.

The auto- or cross-spectrum of each pair of nodal load components is needed. Consider,
as an example, the load in the Y b direction at node j and the Zb direction at node k. Call
this spectrum So((P bj )Y , (P bk)Z , f). Working backwards, take the inverse Fourier transform
to obtain the correlation:

Q((P bj )Y , (P bk)Z , τ) = E[(P bj )Y (P bk)Z ]. (D.87)

By Equation D.86, the nodal loads are determined from the adjacent element loads:

(P bj )Y =
(F b(j−1))Y + (F bj )Y

2
; (P bk)Z =

(F b(k−1))Z + (F bk)Z
2

.
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Substituting into Equation D.87 and multiplying out the terms:

Q((P bj )Y , (P bk)Z , τ) =
1
4

(
E[(F b(j−1))Y (F b(k−1))Z ] + E[(F b(j−1))Y (F bk)Z ]

+E[(F bj )Y (F b(k−1))Z ] + E[(F bj )Y (F bk)Z ]
)
. (D.88)

Taking the Fourier transform of both sides converts the correlations into spectra. Thus
the spectrum of a pair of nodal load components can be written as an average of spectra
of element load components; and, by Equation D.64, the spectrum of each pair of element
load components can be written as a weighted sum of turbulence velocity spectra.

D.7 Deterministic Nodal Loads

In addition to stochastic aerodynamic loads, gravity and wind shear are important sources
of fatigue loading on the blade. They are not stochastic, however, and so require special
consideration.

D.7.1 Gravity

Gravity contributes the following applied loads at the nodes:

P b = mb T br g
r = mbgb, (D.89)

where m is the mass matrix; let ψ be the azimuth angle. The acceleration vector gr

consists of (0,−9.81, 0, 0, 0, 0) m/s2 for the six degrees-of-freedom corresponding to each
node.

Equation D.89 is used for calculating static loads; however, for spectral analysis, cal-
culating the gravity load spectra is greatly simplified if the masses are lumped at the
nodes.33 For the jth node:

(P bj )X = −
m(j−1) +mj

2
g sin Ψ; (P bj )Y = −

m(j−1) +mj

2
g cos Ψ. (D.90)

mj is the mass of the jth element of the blade, and g is here a constant 9.81 m/s2. The
azimuth angle Ψ can be put to Ωt, and the various correlations calculated. Define M =
−g(m(j−1) +mj)/2. Then:

E[(P bj )X(P bk)X ] = MjMkE[sin Ωt sin Ω(t+ τ)];

E[(P bj )X(P bk)X ] = MjMk
1
T

∫ T

0
(sin2 Ωt cos Ωτ

+ sin Ωt cos Ωt sin Ωτ) dt;

E[(P bj )X(P bk)X ] =
1
2
MjMk cos Ωτ. (D.91)

Similarly:

E[(P bj )X(P bk)Y ] = −1
2
MjMk sin Ωτ ;

33Lumping the masses at the nodes is theoretically acceptable; see Cook et al. [30] pp 370-376.
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E[(P bj )Y (P bk)X ] =
1
2
MjMk sin Ωτ ;

E[(P bj )Y (P bk)Y ] =
1
2
MjMk cos Ωτ.

Take the discrete Fourier transform; consider the first correlation as an example:

So((P bj )X , (P bk)X , n∆f) =
1
2
MjMk

2
N ∆f

N−1∑
m=0

cos(Ωm∆τ) ei2πmn/N ;

So((P bj )X , (P bk)X , n∆f) = MjMk
1

N ∆f

N−1∑
m=0

1
2

(eiΩm/N∆f + e−iΩm/N∆f ) ei2πmn/N .

Round Ω/2π to the nearest multiple of ∆f . Then, when n∆f = Ω/2π:

So((P bj )X , (P bk)X , n∆f) = MjMk
1

N ∆f

N−1∑
m=0

1
2

(ei2πmn/N + e−i2πmn/N ) ei2πmn/N ;

So((P bj )X , (P bk)X , n∆f) = MjMk
1

2N ∆f

N−1∑
m=0

(ei4πmn/N + 1).

The sum of the real part of ei4πmn/N is zero. This leaves:

So((P bj )X , (P bk)X , n∆f) =
MjMk

2 ∆f
. (D.92)

Calculation of the So((P bj )Y , (P bk)Y , n∆f) spectrum gives exactly the same result.
Next, consider the spectrum:

So((P bj )X , (P bk)Y , n∆f) =
1
2
MjMk

2
N ∆f

N−1∑
m=0

sin(Ωm∆τ) ei2πmn/N ;

So((P bj )X , (P bk)Y , n∆f) =
1
2
MjMk

2
N ∆f

N−1∑
m=0

1
2i

(eiΩm∆τ − e−iΩm∆τ ) ei2πmn/N .

Again, rounding Ω/2π to the nearest multiple of ∆f , then when n∆f = Ω/2π:

So((P bj )X , (P bk)Y , n∆f) =
1
2
MjMk

2
N ∆f

N−1∑
m=0

1
2i

(ei4πmn/N − 1).

The real part of this expression sums to zero. When the load components are orthogonal
to each other, there is no energy in the spectrum.

Therefore, as an initial approximation, gravity can be accounted for by adding spikes to
the appropriate Xb-Xb and Y b-Y b nodal load spectra, at a specific frequency corresponding
to the revolution of the blade. (In the software, the spectra are contained in the matrix
SoP described previously, then SoP is modified with the “spikes” when the gravity-load
frequency is being analyzed.) The results in Section 3.6 indicate that this is conservative,
perhaps overly so.
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D.7.2 Wind Shear

For a given average windspeed at hub-height, there is a gradient in average wind speed
as a function of elevation. The wind tends to be stronger up high, and weaker down
low. Turbulence properties like intensity and length scale also change as a function of
elevation.34

As far as stochastic turbulence, the assumption has been made (Section D.4) that it
is statistically isotropic, in order to obtain rotationally-sampled velocity spectra. So the
variation of turbulence with elevation is neglected. But the deterministic portion of wind
shear can still be included in the analysis. On balance, the blade will encounter wind shear
as a near-sinusoidal variation in the average windspeed, upon which stochastic turbulence
is superposed.

As discussed in Section E.2, the 10-minute mean average windspeed scales with height
as:35

Vavg = Vref

(
ln(H/h0)
ln(H0/h0)

)
. (D.93)

Vref is a reference wind speed measured at height H0 above the mean sea level, H is the
height at which Vavg is to be calculated, and h0 is the surface roughness length (with a
value of 0.01; Section D.3).

Let H0 be the hub height, Vref = V∞, and r be the radius of a point on the blade. We
have H = H0 + r sinψ, so the fluctuation in velocity is:

uz = Vavg − V∞ = V∞

(
ln[(H0 + r sinψ)/h0]

ln(H0/h0)
− 1

)
(D.94)

This expression is plotted in Figure D.22 for two cases. It is periodic with the azimuth
angle ψ. Near the root of the blade, where r/H0 is small, wind shear has almost no effect.
Near the tip of the blade, the effect of wind shear is significant, especially so for large
turbines. This can be seen by comparing the upper and lower plots in Figure D.22. The
upper plot is the fluctuation in the incoming velocity uz/V∞ seen by the blade tip of a
turbine with a radius of 30 m, while the lower plot shows the same for a turbine with a
radius of 60 m.

Equation D.94 is well-represented by the following approximate form, which makes
spectral analysis easy:

uz
V∞

= C0 + C1 sinψ + C2 cos 2ψ. (D.95)

C0, C1, and C2 are functions of r/H0. A numerical Fourier analysis is conducted to obtain
the coefficients for each geometry. Specifically, dividing the circumference into N equal
segments:

C0 =
1
N

N∑
j=1

uz(ψj);

C1 =
2
N

N∑
j=1

uz(ψj) sinψj ; (D.96)

34Burton et al. [22] pp 21-25
35DNV-RP-C205 [43] p 16
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Figure D.22: The apparent velocity seen by the tip of a blade as it rotates; the fluctuation
is due to wind shear
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C2 =
2
N

N∑
j=1

uz(ψj) cos 2ψj .

For the present calculations N is set to 36.
Based upon Equations D.94 through D.96, the following observations can be made.

First, wind shear will show up in the uz velocity spectrum as spikes at frequencies Ω/2π
Hz (1P) and Ω/π Hz (2P). The formulas are derived below.

Second, the coefficient C0 indicates that the average velocity seen by a point near the
blade tip is a couple percent lower than the velocity at hub-height. This should be taken
into account, particularly when evaluating power production, which varies as velocity to
the third power. For a given clearance between the blade tip and mean ocean surface, this
reduction in average velocity due to wind shear partially offsets gains in mean windspeed
made by increasing the rotor diameter and hub-height. This is discussed further in Section
E.2.

The Fourier form of wind shear is added as spikes to the velocity spectra. For fatigue
calculations, the steady reduction in velocity, C0, can be ignored. It can be thought of as
a reduction in V∞.36 This leaves the fluctuating component:

uz = V∞(C1 sinψ + C2 cos 2ψ), (D.97)

where C1 and C2 are functions of r/H0 and ψ = Ωt. The correlation is:

E[uz,juz,k] = E[V∞(C1,j sin Ωt+ C2,j cos 2Ωt)

V∞(C1,k sin Ω(t+ τ) + C2,k cos 2Ω(t+ τ));

E[uz,juz,k] = V 2
∞

(
C1,jC1,kE[sin Ωt sin Ω(t+ τ)]

+C2,jC1,kE[cos 2Ωt sin Ω(t+ τ)] (D.98)

+C1,jC2,kE[sin Ωt cos 2Ω(t+ τ)]

+C2,jC2,kE[cos 2Ωt cos 2Ω(t+ τ)]
)
.

As in the case of gravity loading, sum-angle formulas can be employed to write:

E[sin Ωt sin Ω(t+ τ)] = E[sin2 Ωt cos Ωτ ] + E[sin Ωt cos Ωt sin Ωτ ].

The former expected value is (1/2) cos Ωτ , and the latter zero. Analyzing the other terms
in Equation D.98 similarly gives:

E[uz,juz,k] =
1
2
V 2
∞C1,jC1,k cos Ωτ +

1
2
V 2
∞C2,jC2,k cos 2Ωτ. (D.99)

Referring to the previous section on gravity loads, it is found that:

So(uz,j , uz,k, f) =
1

2∆f
V 2
∞C1,jC1,k (D.100)

36But not in the following equations, because C1 and C2 must be multiplied by the original value of V∞
to obtain the correct magnitudes.
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when f = Ω/2π (rounded to the nearest multiple of ∆f). Similarly:

So(uz,j , uz,k, f) =
1

2∆f
V 2
∞C2,jC2,k (D.101)

when f = Ω/π (also rounded to the nearest multiple of ∆f).
These are velocity spectra. It is most convenient if they are combined with the

rotationally-sampled turbulence velocity spectra upfront, before calculating aerodynamic
load spectra. Specifically, once the rotationally-sampled turbulence spectra are calculated
(Section D.4), add the wind shear spikes (Equations D.100 and D.101) to the spectral
matrices Sozz(Ω/2π) and Sozz(Ω/π) (Section D.6) before calculating the aerodynamic load
spectra (Section D.5).

D.7.3 Tower Dam

When the blades pass by the tower, either on the upwind or downwind side, they encounter
regions of higher and lower flow velocity. This is called tower shadow, or, on the upwind
side, tower dam. As shown in Section 3.6, the resulting blade vibrations are not negligible,
even for upwind turbines.

For purposes of the optimization studies in Chapter 6, it is not desired to include extra
design variables describing the tower geometry. Therefore, a representative geometry is
assumed for purposes of calculating tower dam effects.

It is assumed that the rotor is oriented upwind, on a tubular tower; a downwind rotor
would likely be mounted atop a lattice tower,37 and modelling the wake of a lattice struc-
ture is outside the scope of the present calculations. The tower diameter Dt is assumed
to be 3.5 m, while the distance from the tower centerline to the blade is assumed to be
1.75Dt, or 6.1 m. This distance is probably a bit too high near the root, however here the
velocity fluctuations hardly contribute to blade vibration. Near the tip, 1.75Dt may be
a bit low with reference to the undeformed blade, however it must be assumed that the
blade deforms under operating loads, bringing it closer to the tower. In fact, when the
windspeed is near cut-out, the tip clearance could be less than 1.75Dt. However, it should
be noted that, on a stall-regulated turbine, the effects of velocity fluctuations like tower
dam and wind shear are less pronounced at windspeeds above rated than at lower wind-
speeds.38 The reason is that when the blades are stalled, the slope of the lift coefficient
curve is much lower than the attached-flow slope of roughly 2π.

Burton et al. [22] give the following equation for the velocity perturbation upwind of
a tubular tower. Referring to Figure D.23 for the definition of coordinates:

uz = −[(V r
∞)Z + (V r

i )Z ]
(
Dt

2

)2 x2 − y2

(x2 + y2)2
; (D.102)

where x axis points upwind, perpendicular to the tower axis; y is the distance orthogonal
to both the wind direction and the tower axis; V∞ is the remote incoming wind vector;
and Vi is the induced velocity, such that (V r

∞)Z + (V r
i )Z is the velocity at the rotorplane,

in the downwind direction.
A blade travels in a circle, while in Equation D.102 the lateral position is defined in

terms of the y axis. The distance along the y axis is approximated by the distance d shown
37It is likely that a lattice tower would be a good choice for an upwind offshore turbine as well, for

structural reasons – the mass is lower than a tubular tower – but it is conservative to assume here that
the tower is tubular.

38This was observed in the present investigation; also, Burton et al. [22] p 237.
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Figure D.23: Geometry for the tower dam calculation

in Figure D.23. This approaches y when the blade is near the tower, and has a maximum
value of 2Ro. Mathematically:

y ≈ d =
√

(r sinψ)2 + (r − r cosψ)2. (D.103)

Figure D.24 shows an example of the velocity encountered during one blade revolution,
where the blade passes the tower at t = 0.

The velocity time-series in Figure D.24 is even, therefore it can be represented by a
cosine series, albeit with difficulty. Figure D.25 shows a numerical Fourier transform, taken
over a time series spanning several revolutions. It is evident that tower dam will appear
on a spectral plot as spikes at multiples of the rotational frequency. Somewhere between
20 and 40 terms are needed to reproduce the response. Tower dam effects introduce a
significant source of high-frequency excitation to the blade, beyond what would be expected
from atmospheric turbulence.

The cosine series is calculated as follows. The azimuth is divided into n segments of
width dψ. In the present calculations, n = 3600. The cosine series is:

ũz =
N∑
k=0

ck cos kψ; (D.104)

with N the number of terms; 30 are implemented here, although the number of terms is
truncated so as not to exceed the upper bound of frequencies used in the fatigue calcula-
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Figure D.24: Tower dam effect for an example configuration

Figure D.25: Fourier transform of the velocity time-series
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Figure D.26: A Fourier series representation of the tower dam velocity deficit

tion.39

c0 =
1
n

n−1∑
j=0

uz(ψj); (D.105)

ck =
2
n

n−1∑
j=0

uz(ψj) cos
(
jk2π
n

)
. (D.106)

Figure D.26 compares the velocity deficits calculated with Equations D.102 and D.104.
Using 30 terms, the cosine series approaches the closed-form solution.

In the same manner as Equation D.92, the velocity spectrum between elements 1 and
2, associated with the kth multiple of the rotational frequency fk, is:

So(uz,1, uz,2, fk) =
ck,1ck,2
2 ∆f

. (D.107)

These spikes are added to the rotationally-sampled turbulence spectrum, before computing
blade loads. Note that the phase information is lost when the deterministic velocity deficit
function shown in Figure D.26 is represented as a spectrum. Loss of phase information
can affect dynamic and fatigue calculations that are based upon the spectrum. However,
the spectrum contains the most important feature of tower dam, which is that excitation
at multiples of the blade vibrational frequency is greatly increased over the background
excitation due to turbulence.

D.7.4 Summary of Applied Loading

Before proceeding further, let us sum up this portion of the calculation, using spectra, as
it is implemented in the software. Here is how the spectral analysis is implemented:

39The upper bound is typically 1.2 times the frequency of the first edgewise mode of vibration, but never
less than 2.56 Hz.
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1. Use the numerical Fourier transforms of Equations D.46, D.51, D.56, and D.59 (with
associated equations defining the terms) to define turbulence velocity spectra. A
spectrum is required for every pair of turbulence velocity components. Therefore,
since there are 2Ne turbulence velocity components (one uz and one ut for each of the
Ne elements), and Nf frequencies, form a 2Ne-by-2Ne-by-Nf matrix Sou, with entry
(j,k,n) of the matrix containing So(uj , uk, fn). For a given frequency, the matrix is
ordered like:

Sou(fn) =

[
uzuz uzut
utuz utut

]
=

[
Szz Szt
Stz Stt

]
,

where each of the quadrants is a Ne-by-Ne matrix. At frequencies Ω/2π Hz (1P) and
Ω/π Hz (2P), rounded to the nearest multiple of ∆f , add the deterministic wind
shear spectra to the upper-left quadrant of Sou.

2. Form two vectors of length 3Ne, containing linearized derivatives of element force
with respect to turbulence velocity. Call these vectors Hz and Ht, because they
contain derivatives with respect to uz and ut, respectively. The derivatives are
calculated from the airfoil coefficient curves (Chapters 2 and 3). There are 3Ne rows
because out of 6 possible force and moment components associated with each airfoil
element, three are zero. Note that Hz and Ht are independent of frequency, so for
implementation they can be computed upfront, outside the frequency loop.

3. (Consider now only one frequency fn; this step and the next are repeated for each
frequency.) Form a 3Ne-by-3Ne matrix of element force spectra SoF . Each of its
entries is calculated by:

SoF (j, k) = Hz(j)Hz(k)Sozz(m,n) +Hz(j)Ht(k)Sozt(m,n)

+Ht(j)Hz(k)Sotz(m,n) +Ht(j)Ht(k)Sott(m,n), (D.108)

where m and n are the element numbers associated with element forces j and k.

4. Form a 6(Ne + 1)-by-6(Ne + 1) matrix of nodal load spectra, SoP . By Equation
D.88, each entry is computed as the average of the element load spectra, for the
four elements adjacent to the two nodes (Figure D.21). For a node at the blade root
or tip, there is no “outside” element, so the spectrum associated with the outside
element is set to zero. If the frequency fn corresponds to the rotational frequency
Ω/2π Hz (rounded to the nearest multiple of ∆f), add gravity load spectra to SoP .

D.8 Generalized Coordinates

SoP is a matrix of the auto-spectral densities (on the diagonal) and the cross-spectral
densities (off the diagonal) of nodal loads between every pair of degrees-of-freedom in the
finite element model. This completes the first half of the spectral analysis, the applied
load spectra. The second half of the calculation is to compute the response spectra from
the load spectra.

Modal analysis, as described in Section D.2.1, is used to calculate the dynamic response
of the blade. Because a spectral calculation is needed for every permutation of two degrees-
of-freedom in the model, the number of operations is proportional to N2

DOF. There are 17
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structural nodes, so 102 degrees-of-freedom. By contrast, the key features of the dynamic
response can be captured with fewer than 10 mode shapes. Therefore, by using modal
analysis, calculation of the response can be accelerated by a factor of 100.

All analyses are conducted in blade coordinates, so, for convenience, the “b” superscript
is omitted in the discussion that follows.

Neglecting steady forces, like the centrifugal force, the equation of motion in blade
coordinates is (Equation C.143):

m
d2w

dt2
+ c

dw

dt
+ keff w = P (t). (D.109)

Propose, following Section D.2.1, that the spatial solution for displacement is a weighted
sum of the mode shapes Φj . Propose also that the forcing is harmonic, and the time
solution is harmonic at the forcing frequency:

w =

Nq∑
j=1

Φjqj

 eiωt = Φqeiωt. (D.110)

Φ is a matrix containing a mode shape Φj in each column (it is assumed that the columns
are ordered, left to right, from lowest to highest natural frequency), and q is a column vec-
tor of weights, also called generalized displacements. In practice, as mentioned above, Nq

can be truncated to much less than the total number of degrees-of-freedom. Substituting
into Equation D.109:

−mΦqω2eiωt + icΦqωeiωt + keffΦqeiωt = Peiωt.

Multiply both sides by the transpose of the mode shape matrix:

−ΦTmΦqω2 + iΦT cΦqω + ΦTkeffΦq = ΦTP. (D.111)

It is a property of mode shapes that ΦT
j mΦk = 0, for j 6= k. Same with ΦTkeffΦ (noting

that the mode shapes were derived based upon the effective stiffness matrix keff , not the
basic stiffness matrix k).

The definition of the damping matrix c must be dealt with. It will be discussed in
detail in Section D.9. But here an assumption is made, which is not based on physics,40

but is simply a matter of convenience: the damping matrix can be written c = αm+βkeff ,
with α and β constant scalars.

Substituting this form of damping into the equation of motion:

−ΦTmΦqω2 + i(αΦTmΦ + βΦTkeffΦ)qω + ΦTkeffΦq = ΦTP. (D.112)

Define some terminology: Mj = ΦT
j mΦj , Kj = ΦT

j keffΦj , and Gj = ΦT
j P . Note that these

are all scalars. There are then Nq independent equations:

−Mjqjω
2 + i(αMj + βKj)qjω +Kjqj = Gj . (D.113)

The solution is:

qj =
Gj

Kj −Mjω2 + i(αMj + βKj)ω
. (D.114)

40See the chapter “Damping Theory” written by R.D. Peters in de Silva (ed.) [38] for a review of the
physics of damping.
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Since a complex number can be written as z = |a|eiθ:

qj =

 1√
(Kj −Mjω2)2 + (αMj + βKj)2ω2

e−iθj

Gj . (D.115)

Damping is assumed to be small for all modes.41 Therefore the effect of the phase shift
can be neglected:42

qj ≈

 1√
(Kj −Mjω2)2 + (αMj + βKj)2ω2

Gj . (D.116)

The correlation between two generalized coordinates is:

E[qjqk] =

 1√
(Kj −Mjω2)2 + (αMj + βKj)2ω2


[

1√
(Kk −Mkω2)2 + (αMk + βKk)2ω2

]
E[GjGk]. (D.117)

Take the Fourier transform of both sides:

So(qj , qk, f) =

 1√
(Kj −Mjω2)2 + (αMj + βKj)2ω2


[

1√
(Kk −Mkω2)2 + (αMk + βKk)2ω2

]
So(Gj , Gk, f). (D.118)

Equation D.118 relates a single modal response with a single generalized force input. In
general, there will be a Nq-by-Nq matrix of generalized force spectra SoG as the input, and
a Nq-by-Nq matrix of generalized displacement spectra Soq as the response.

The calculations described in Sections D.6 and D.7 result in the matrix SoP , contain-
ing load spectra for each pair of degrees-of-freedom in the finite element model. SoG is
calculated from SoP using mode shapes. Look at the correlation:

E[GjGk] = E[ΦT
j PΦT

k P ].

ΦT
k P is a scalar, so the transpose can be taken without changing the result:

E[GjGk] = E[ΦT
j PP

TΦk].

The Φ’s are constant, neither a function of τ nor frequency:

E[GjGk] = ΦT
j E[PP T ]Φk.

Taking the Fourier transform of both sides:

So(Gj , Gk) = ΦT
j S

o
PΦk. (D.119)

41Damping may be high, with damping ratios up to 0.2 or 0.3, when flow is attached to the blade, below
the rated windspeed. But when damping is high, fatigue damage due to blade vibrations is not severe, so
a small error in the calculation is acceptable.

42Rao [146] p 1011
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The left-hand side of Equation D.119 is a single entry in the Nq-by-Nq generalized force
spectra matrix. The right-hand side of Equation D.119 is a matrix calculation:

[Φ1j Φ2j ... ΦNj ]


SoP,11 SoP,12 ... SoP,1N
SoP,21 SoP,22

... ...
SoP,N1 SoP,NN




Φ1k

Φ2k

...
ΦNk

 .
where N is the number of degrees of freedom in the model (NDOF). It takes N2

q such
matrix calculations to fill the SoG matrix. The advantage of truncating the number of
modes is evident!

D.9 Damping

This section digresses from the fatigue calculation procedure in order to discuss damping,
which is required to perform the calculations in Section D.8. For convenience, in Equation
D.112, the damping matrix was assumed to have a form that was proportional to the mass
and stiffness matrices:

c = αm+ βkeff , (D.120)

where the m matrix is shown in Equation C.81, and the stiffness matrix is the sum of
Equations C.102 and C.113. α and β are constants. Equation D.120 provides a way to
formally uncouple the equations of motion for each mode.

In practice, once the modal equations are uncoupled, we can dispense with formality
and assign different damping values to different modes as desired, or rather, as the physics
of the problem dictates. A requirement is that the damping remain small with respect to
critical damping. Here is the proof. Write the jth row of Equation D.111 as:

−ω2ΦT
j mΦq + iωΦT

j cΦq + ΦT
j keffΦq = ΦT

j P ;

−ω2Mjqj + iω[ΦT
j cΦq] +Kjq = Gj . (D.121)

Look closer at the damping term ΦT
j cΦq; because no assumptions are made about the

orthogonality of c, it multiplies out as:

ΦT
j cΦq = ΦT

j cΦ1q1 + ΦT
j cΦ2q2 + ...+ ΦT

j cΦkqk + ...

For convenience, define the shorthand Cjk = ΦT
j cΦk. Then:

qj(ΦT
j cΦ

q

qj
) = Cj1

q1

qj
+ Cj2

q2

qj
+ ...+ Cjj + ...+ Cjk

qk
qj

+ ... (D.122)

Then, Equation D.116 becomes:

qj ≈ (D.123) 1√
(Kj −Mjω2)2 + [Cj1(q1/qj) + Cj2(q2/qj) + ...+ Cjj + ...+ Cjk(qk/qj) + ...]2ω2

Gj .
From Equations D.122 and D.123, it is clear that the coupling between mode shapes

can be neglected if the jth mode is dominant (qj >> qk, and only Cjj remains). When is
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the jth mode dominant? In the vicinity of the jth resonance frequency. And if damping
is small, it can be neglected, except in the vicinity of the jth resonance frequency, when
Kj −Mjω

2 is small.
In other words, since damping is small, it is only near a resonance frequency that

its effect must be considered; otherwise, Kj −Mjω
2 is large and overwhelms the effects

of damping. At a resonance frequency, it is appropriate to make the assumption that
damping is uncoupled. Therefore, damping is assumed to be uncoupled.

It helps if the natural frequencies are spaced far apart, such that only one mode at a
time is strongly excited. This is the case for the first flapwise mode of vibration, which is
the most important for fatigue calculations.

So here is what is done. All mode shapes are assigned a nominal level of structural
damping. Then, aerodynamic damping is calculated separately, based upon theory. The
sum of aerodynamic and structural damping gives the total damping.

D.9.1 Structural Damping

Burton et al. [22], p 263 (based upon Danish Standard 472), recommend a first-flapwise-
mode structural damping ratio of ζ1 = 0.008. This is in-line with values given by Blevins
[15], pp 326-327, who surveyed a wide variety of sources.

Most structure types surveyed by Blevins did not show a strong trend in damping
ratio with the frequency of vibration. Likewise, Chaviaropoulos et al. [25] measured a
19 m long fiberglass wind turbine blade, and found that the loss factor, and hence the
damping ratio,43 did not change significantly between frequencies of 1.9 and 10.0 Hz. This
contrasts with, for example, Burton et al., who assume (p 263) that structural damping
is proportional to frequency.

In this research project, a structural damping ratio of 0.008 was used for the first
flapwise mode of vibration. For all other modes, the structural damping ratio was assumed
to be 0.010, loosely based upon the data summarized by Blevins.

D.9.2 Aerodynamic Damping

Aerodynamic damping can be estimated by linearizing the aerodynamic force about the
point of operation, with respect to the deflection of the blade. For the linearization to
be valid, the velocity of the blade’s deflection must be much less than the speed of the
incoming airflow (including the rigid-body motion of the blade).

In their linear forms, aerodynamic damping and aeroelastic stability (flutter; Section
C.7.5) analyses are related.44 Positive damping is stable, while negative damping is un-
stable. A proper stability analysis includes unsteady potential flow and dynamic stall
phenomena.45 The difference in aerodynamic damping calculated using quasi-steady and
dynamic-stall (unsteady) methods is small but significant, because the overall level of
damping is quite small.46 Here, these unsteady effects are accounted for by the methods
described in Chapter 3.

43The loss factor for a given mode of vibration is 2ωζ/ωn. [38] At the natural frequency, the loss factor
is equal to twice the damping ratio.

44“Flutter” in this report refers to instability that results from a coupling of flapwise and torsional
modes. “Negative damping” refers to instability of an isolated mode.

45Lobitz [117]; Hansen [77]; Petersen et al. [142]
46Petersen et al. [142]; Chaviaropoulos et al. [25]; Hansen [75]
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The procedure for calculating aerodynamic damping is similar to that described in
Section D.5, for calculating loads on the blade. This time, instead of the fluctuation in air
velocity being due to turbulence, it is due to deflection of the blade.

The calculation is complicated somewhat by the fact that the structural nodes are
located at the transition between aerodynamic elements. The position and velocity of the
element midpoint are interpolated, in section coordinates, by using the shape functions,
Equations C.61, C.67, and C.69. Assuming that displacements of the blade are small, it
is only these three motions that affect the aerodynamic forces. Setting s = L/2 gives:

(W s)Y =
(ws1)Y + (ws2)Y

2
+
L

8
[(θs1)Z − (θs2)Z ];

(W s)Z =
(ws1)Z + (ws2)Z

2
+
L

8
[(θs2)Y − (θs1)Y ]; (D.124)

(Θs)X =
(θs1)X + (θs2)X

2
.

It is most convenient to work in blade coordinates, not section coordinates. The trans-
formation between the two coordinate systems is a rotation about the Xs (or Xb) axis.
After transforming, the form of the equation remains exactly the same:

(W b)Y =
(wb1)Y + (wb2)Y

2
+
L

8
[(θb1)Z − (θb2)Z ];

(W b)Z =
(wb1)Z + (wb2)Z

2
+
L

8
[(θb2)Y − (θb1)Y ]; (D.125)

(Θb)X =
(θb1)X + (θb2)X

2
.

Equation D.125 provides a link between nodal degrees of freedom and airfoil displacement.
Taking the time derivative of both sides of the equation, it provides a link between nodal
and airfoil velocity. We can write a matrix equation applicable to the entire blade:

W = Sw;
dW

dt
= S

dw

dt
, (D.126)

where W is a vector of all airfoil element displacements, w is a vector of all nodal dis-
placements, and S is a matrix based upon Equation D.125.

Following Section D.5, the force on the airfoil element can be expressed as the sum of
a steady-state force F0 about the mean position of the blade, and a fluctuating force F
that varies as the blade deflects. F and F0 could represent either lift, drag, or moment.

Let vz = d(W b)Z/dt and vy = d(W b)Y /dt. Also let vz, vy, and (Θb)X be small, of
order ε. Then the fluctuating force can be written:

F = vy
∂F

∂vy
+ vz

∂F

∂vz
+ (Θb)X

∂F

∂(Θb)X
+O(ε2) (D.127)

In comparison with Equation D.69, there is an extra term, because as the airfoil twists in
torsion, the angle-of-attack changes. But the extra term is proportional to displacement,
not velocity, and so it acts as stiffness, not damping. It can be neglected for purposes of
calculating aerodynamic damping.47

47Torsion must be included for flutter analysis; Section C.7.5.
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Equations D.80 through D.83 are used to calculate fluctuations in aerodynamic forces
due to flapwise and edgewise motion of the blade.48 The relationship between blade motion
and airfoil forces can be written as a matrix equation:

F b = B
dW b

dt
. (D.128)

Employing Equation D.126:

F b = BS
dwb

dt
, (D.129)

Next, as in Section D.6, nodal loads are computed as the average of the adjacent element
loads. This operation can be written:

P b = ZF b = ZBS
dwb

dt
= D

dwb

dt
. (D.130)

In other words, a matrix D = ZBS is formed; this establishes a direct, linear relation-
ship between motion of the nodes (wb) and the change in force at the nodes (P b). The
aerodynamic damping is −D.

Write the equation of motion, Equation D.109:

mbd
2wb

dt2
+ cb

dwb

dt
+ keffw

b = P b + P b0 , (D.131)

where P b0 contains all forces not related to damping, and cb is the structural damping.
Bring the aerodynamic damping force to the left-hand side:49

m
d2w

dt2
+ (c−D)

dw

dt
+ keffw = P0. (D.132)

As in Equation D.111, let motion be harmonic, and define mode shapes such that w =
Φqeiωt:

−ΦTmΦqω2 + iΦT (c−D)Φqω + ΦTkeffΦq = ΦTP0. (D.133)

As argued previously, if damping is small, and natural frequencies distinct, it is accept-
able to assume that the damping term in Equation D.133 is orthogonal with respect to
the mode shapes. Thus the equation for each mode shape may be written independently:

−Mjω
2qj + iCjωqj +Kjqj = Gj , (D.134)

where Cj = ΦT
j (c−D)Φj . Cj is the damping of the jth mode shape, and may be used in

Equation D.118:

So(qj , qk, f) =

 1√
(Kj −Mjω2)2 + (Cjω)2


[

1√
(Kk −Mkω2)2 + (Ckω)2

]
So(Gj , Gk, f). (D.135)

(Equation D.134 provides an estimate for aeroelastic stability of flapwise and edgewise
modes of vibration. It does not include twisting, and therefore cannot be used to estimate
classical flutter instability, which is a combination of flapping and twisting.)

48Moment is neglected for purposes of calculating damping. Also note that blade motion in a given
direction is equivalent to a fluctuation in the incoming velocity of opposite sign.

49Omit the “b” superscript, since it is clear we are working in blade coordinates.
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D.10 Physical Displacements

Equation D.118 or D.135 gives the response spectra, due to the applied (fluctuating)
forces, of the blade’s natural modes. The goal is to arrive at spectra for stress at points in
the spar, and to get there requires spectra for the internal (as opposed to applied) loads
and moments at each node. These can be obtained by using the stiffness matrix together
with nodal displacements. Thus the first step is to convert generalized displacements to
physical displacements.

The operation is simply the following:

w = Φq. (D.136)

w is the vector of nodal degrees-of-freedom, q is the vector of generalized displacements
(truncated to the lowest Nq modes), and Φ is a matrix of dimension Nq-by-NDOF, con-
taining the lowest Nq mode shapes in the columns.

The correlation between two degrees-of-freedom is:

E[wjwk] = E[ΦjqΦkq], (D.137)

where Φj is the jth row of the Φ matrix (not the jth mode shape!). Because Φkq is a
scalar, we can take the transpose without changing the result:

E[wjwk] = E[Φjqq
TΦT

k ] = ΦjE[qqT ]ΦT
k . (D.138)

Taking the Fourier transform of both sides:

So(wj , wk, f) = ΦjS
o
qΦT

k . (D.139)

Here, Soq is a Nq-by-Nq matrix, with each entry consisting of the spectrum So(qj , qk, f)
from Equation D.135.

D.11 Internal Nodal Loads

Equation D.139 gives the entries of a NDOF-by-NDOF matrix Sow of nodal displacement
spectra. Nodal displacements are related to internal loads through the element stiffness
matrix. For a single element m, connecting nodes m and m+ 1, the relationship between
element loads and nodal displacements can be written:

p = kew. (D.140)

Note that ke is the basic element stiffness matrix, and is not based upon the effective
stiffness matrix keff which includes centrifugal stiffening.

Calculate the correlation:

E[pjpk] = E[ke,jwke,kw]. (D.141)

ke,j is the jth row of ke. Transpose a scalar:

E[pjpk] = E[ke,jwwTkTe,k] = ke,jE[wwT ]kTe,k. (D.142)

Take the Fourier transform:

So(pj , pk, f) = ke,jS
o
wk

T
e,k. (D.143)



390 APPENDIX D. MODAL AND SPECTRAL ANALYSIS METHODS

Figure D.27: Probability density of a stress cycle

D.12 Stress Spectrum

Equation C.55 in Section C.4 establishes a linear relationship between local stress and
nodal loads:

σ = BsT sb p
b.

In a manner similar to the previous sections, the stress spectra can be established as:

So(σj , σk, f) = Bs
jT

s
b S

o
p(T sb )T (Bs

k)
T . (D.144)

Only the auto-spectra of stress, for which j = k, are of interest.

D.13 Calculation of Fatigue Cycles

With Equation D.144, the auto-spectrum of axial (spanwise) stress is obtained at every
point in the blade at which fatigue life is to be evaluated. The task is now to estimate the
numbers and magnitudes of load cycles – a rainflow count – based upon the spectra.

D.13.1 Probability Density of Stress amplitudes

The auto-spectrum of stress, Soσσ, is used to obtain the probability density of a stress
amplitude of a specified magnitude.50 A stress amplitude is the amplitude of a stress
cycle that would be counted by the rainflow method if time-series analysis were being used.
A particular stress amplitude is not necessarily the range of successive cycles in time.

Let us say that we have a probability density curve ρ as a function of stress amplitude
s. How are cycle counts computed? As shown in Figure D.27, the stress amplitude axis
is divided into a number of discrete intervals of width ∆s. Consider the jth interval, with
sj = j ∆s. The probability that stress amplitude sj occurs on a given peak of the stress
time series is ρj∆s.

50Lee et al. [111], Chapter 10, provide an overview of the fatigue analysis procedure; also van der Tempel
[182] pp 58-68. These are the references for the following discussion unless otherwise mentioned.
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An estimate of the rate at which peaks occur is derived from the Gaussian distribu-
tion51:

npeaks

T
=
√
m4

m2
(D.145)

where mj is the jth spectral moment, calculated as:

mj =
∫ ∞

0
f jSoσσ df. (D.146)

The calculation of fatigue cycles works like this. Based upon statistical distributions
of long-term wind conditions, one is able to say how much time the turbine will spend at
a particular mean windspeed over its lifetime. Call this length of time T . At this mean
windspeed, the stress spectrum Soσσ is calculated, and from the spectrum the probability
density ρj of each stress amplitude sj . Then, the number of stress cycles at level sj is:

nj = (ρj ∆s)T
√
m4

m2
. (D.147)

nj is used with Miner’s Rule, Equation C.151, to calculate the total damage done by the
cycles at stress amplitude sj .

The sum of damage over all stress amplitudes and all environmental conditions gives
the total fatigue damage.

D.13.2 Dirlik Method

The problem has been reduced to finding the probability density ρ from the stress spectrum
Soσσ. The empirical Dirlik formula has been found to be a reliable means to perform this
calculation directly, for flapwise vibrations.52 The results of Section 3.6 indicate that the
Dirlik method is conservative for edgewise gravity loading. An alternative to the Dirlik
method would be to generate a time series from Soσσ, followed by rainflow counting. This
would take much more computing time.

Dirlik’s formula is:

ρ =
D1

2Q
√
m0

e−Z/Q +
D2Z

2R2√m0
e−Z

2/2R2
+

D3Z

2
√
m0

e−Z
2/2; (D.148)

Z =
s
√
m0

; xm =
m1

m0

√
m2

m4
; γ =

m2√
m0m4

;

D1 =
2(xm − γ2)

1 + γ2
; D2 =

1− γ −D1 +D2
1

1−R
; D3 = 1−D1 −D2;

Q =
1.25(γ −D3 −D2R)

D1
; R =

γ − xm −D2
1

1− γ −D1 +D2
1

.

51Lee et al. [111] p 384. The Gaussian distribution is not representative of wind turbine blade fatigue,
but it is corrected empirically, as will be described shortly.

52Burton et al. [22], p 290, recommend Dirlik. (Watch out for a misleading definition – S should be
defined as the amplitude, not range – in the formula for Z.) Lee et al. [111], pp 389-390, also recom-
mend Dirlik. Benasciutti and Tovo [10] compare several approaches against time-series simulation and an
enhanced spectral formula, and find that Dirlik gives good results.



392 APPENDIX D. MODAL AND SPECTRAL ANALYSIS METHODS

D.13.3 Damage-Equivalent Fatigue Loads

Given the stress spectra at a number of locations along the blade, Equations C.151 and
D.147 are used to calculate the cumulative lifetime fatigue damage d at each point. In
Chapter 4, when estimating the effect that fatigue has on the cost of the structure, it
is convenient to work with damage equivalent fatigue loads. These are alternating loads
which, applied for a specified number of cycles n0, reproduce the same cumulative fatigue
damage as the actual load spectra.

In this report, n0 = 1× 105 is used as the reference number of cycles.
If things are linear – and it is assumed that they are – then the stress terms in Equation

C.152 can be replaced with the dominant component of load.53 Specifically:

Pa = (KP0)N−1/m; (D.149)

where P0 is the load, or moment, at static material failure (usually compression-side, in
the case of bending);54 and K and m are the constants for R = −1 loading, like those
given in Table C.3 for fiberglass.

It is assumed that much of the support structure is made of steel. The loading in the
support structure can be related to the loading at the blade root. Thus, to analyze the
support structure, Equation D.149 is applied, using loads Pa calculated at the blade root.
Dividing both sides of the equation by an unknown cross-sectional area A of the steel
component, an equation for stress in the steel structure is obtained:

σa = (Kσ0)N−1/m. (D.150)

We shall neglect mean-stress, or mean-load, effects, which is appropriate for steel.55

Then, σ0 is independent of mean stress and mean load. The value (Kσ0) is then constant,
and (Kσ0A) can be assigned an arbitrary value K0.56 Thus, Equation D.149 can be
written:

Pa = K0N
−1/m; (D.151)

For a given load cycle (Pa)j , the allowable number of cycles to failure is:

Nj =
(

(Pa)j
K0

)−m
. (D.152)

By Equation C.151, the incremental damage due to the load cycle is:

dj =
1
Nj

=
(

(Pa)j
K0

)m
. (D.153)

If spectral moments m0, m1, m2, and m4 are computed for the load, instead of stress,
then we can obtain cycle counts of load Pa using the Dirlik method. These can be used
to calculate the total damage d, as the sum of all dj , over the lifetime of the turbine:

d =
Ncycles∑
j=1

dj = K−m0

Ncycles∑
j=1

(Pa)mj (D.154)

53This could also be a scalar multiple of some combination of load components.
54Do not take this statement too literally. P0 is the single-cycle intercept on the load axis which gives

the best representation of the S-N line.
55DNV-RP-C203 [42] is the applicable reference for this discussion.
56A good choice for K0 is the ultimate load.
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Now, the question is: what level of alternating load Peq produces an equivalent amount
of damage d in n0 cycles? Since the load is uniformly alternating, we have:

d =
n0

N
, or N =

n0

d
. (D.155)

By Equation D.151:

Peq = K0

(
d

n0

)1/m

; (D.156)

and it follows from Equation D.154 that:

Peq =

 1
n0

Ncycles∑
j=1

(Pa)mj

1/m

. (D.157)

Note that, for steel, a typical value of m is 3.
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Appendix E

Environmental Conditions and
Load Cases

Design standards, like IEC 61400-1, provide a list of load cases required for certification.
These include normal operation, extreme conditions, start-up and shut-down, grid loss,
and various system faults.

A subset of these load cases has been chosen for purposes of preliminary design. These
are summarized in Section E.3. It was attempted to capture the most extreme loads on the
turbine blades, as well as lifetime fatigue on the blades during normal operation. Other
load cases, including machine faults, are not considered at this time. The main reason
is that it is not desired to specify characteristics of the turbine systems, other than the
blades.

Aerodynamic loads depend upon the wind conditions. Section E.1 describes the statis-
tical distribution of windspeeds characteristic of a deepwater offshore environment. The
assumed wind shear profile, as a function of height, is described in Section E.2.

E.1 Windspeed Probability Distribution

Johannessen et al. [98] report the results of measurements of one-hour mean windspeeds,
at 10 m elevation, in the Northern North Sea, which we shall assume is representative
of a rather severe offshore climate. The windspeed distribution can be represented by a
two-parameter Weibull distribution. This is:1

p(V∞) =
β

αβ
V β−1
∞ exp

[
−
(
V∞
α

)β]
. (E.1)

Johannessen et al. recommend values α = 8.426 m/s and β = 1.708. The resulting distri-
bution is shown in Figure E.1 after being corrected to a nominal hub height of 60 m (see
Section E.2 below). The corrected distribution is consistent with the distribution reported
by Coelingh et al. [27] for a location midway between England and the Netherlands.

North Sea winds are extraordinarily high, and this as a strong effect on the optimal
turbine design. For initial design and verification studies, comparing against existing
designs, it is desirable to specify a more typical wind climate. It was decided to use a site
with an average windspeed of 6.9 m/s at 60 m, or, using the equations in Section E.2,
α = 6.7 m/s and β = 2.0 at a reference height of 10 m.2

1Najim et al. [135] p 111
2See Burton et al. [22] pp 14-15

395



396 APPENDIX E. ENVIRONMENTAL CONDITIONS AND LOAD CASES

Figure E.1: The probability distribution of windspeed, and the distribution of annual
energy per unit swept area

The maximum power available in the wind passing through a rotor of area A is:3

Pmax = (0.593)
1
2
ρAV 3

∞. (E.2)

Maximum annual energy capture is:

Emax = Y P ; P =
∑
j

(pj ∆Vj)Pmax,j ; (E.3)

where Y is the number of seconds in a year, P is the average power, ∆Vj is the width of the
jth velocity bin, and Pmax,j is Pmax calculated at V∞,j . The maximum possible contribution
of each velocity to the annual energy capture is Y pPmax. This is plotted, for a unit swept-
area, alongside the probability distributions in Figure E.1. It is also shown corrected to
a height of 60 m. The peak in the energy curve occurs at a higher windspeed than the
peak of the probability distribution: lower windspeeds occur frequently, but contain little
energy; while higher wind speeds contain a lot of energy, but occur infrequently.

The annual energy available in the North Sea wind climate is almost exactly twice that
which is available in the onshore wind climate.

E.2 Wind Shear

Johannessen et al. [98] report the probability distribution of windspeed for a reference
height of 10 m above the mean free surface, and an averaging period of one hour. For
analysis at other heights, the windspeed must be corrected to account for wind shear. It is
also possible to correct the one-hour-mean so that it is representative of a 10-minute-mean.

Following DNV-OS-J101 [41], one formula is used to correct the measured site wind-
speed distribution to the turbine hub height and analysis timescale, and another formula
is used to account for the deviation from hub-height windspeed due to wind shear.

3Burton et al. [22] p 45
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Figure E.2 shows the way in which the velocity scales as a function of height, accord-
ing to the different formulas. For purposes of comparison, they are normalized to the
windspeed at a height of 10 m.

The first set of five curves shows the correction of the measured one-hour mean prob-
ability distribution at 10 m to a load case timescale of 10 minutes, and to the hub height
of the turbine. That is, T0 = 3, 600 s, T = 600 s, z0 = 10 m, and z = H0. The five curves
correspond to different windspeeds at 10 m: 5, 10, 15, 20, and 25 m/s. The equations are:

V0 = V∞

(
1 + C ln

z

z0

)(
1− 0.41IU ln

T

T0

)
; (E.4)

C = 0.0573
√

1 + 0.15V∞; (E.5)

IU = 0.06(1 + 0.043V∞)
(
z

z0

)−0.22

. (E.6)

The other equations are intended for correcting the mean incoming (remote) windspeed
at a point on the rotorplane, V0, relative to the value at the hub center, V∞. DNV-OS-J101
suggests either a power law, or the logarithmic relationship of Equation D.93. DNV-RP-
C205 [43], intended for the design of offshore platforms, recommends an exponent α = 0.12
for the power law. This ends up being comparable to the logarithmic relationship with
surface roughness length h0 = 0.01 m. This is the value used in this project for calculating
loads, because, as seen in Figure E.2, the resulting wind shear is comparatively severe.
From Equation D.93, the windspeed is calculated by:

V0 = V∞

(
ln(z/h0)
ln(z0/h0)

)
.

The logarithmic relationship with h0 = 0.0001 m, the lower bound suggested in DNV-
OS-J101, provides a wind shear correction that is comparable to the more complex formu-
las used to correct the probability distribution. For simplicity, in this project, Equation
D.93 with h0 = 0.0001 m is used to estimate the hub-height windspeed probability distri-
bution from the Johannessen et al. data.

E.3 Load Cases

Several wind turbine design standards exist, each of which describes a set of load cases
which must be evaluated.4 Every structural detail of the wind turbine must be shown to
have a positive margin of safety – that is, not fail – under all the load cases, in order to
be certified according to the design standard.

In the current research project, we are performing preliminary design, not certification.
Therefore, in addition to using simplified analysis methods, we seek a simplified set of the
most critical load cases.

To begin with, grid-loss load cases (or, similarly, any electrical-fault load case that
results in a sudden loss of generator load) are neglected. The primary reason is that, quite
simply, there is insufficient information about the dynamic behavior of the subsystems
which brake the rotor, not having yet arrived at a point in the design where these can be

4Burton et al. [22] summarize a set of load cases on pages 214 through 219.
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Figure E.2: Different formulas for windshear, based upon a reference windspeed at a height
of 10 m and an averaging period of one hour

specified.5 The secondary reason is that the evaluation of each structural configuration
must be fast, so time-stepping analyses are to be avoided.

Anaya-Lara et al. [4], Chapter 11, describe cases in which the generating characteristics
of the wind turbine should be varied – increasing or decreasing power over a period of
seconds or minutes – in order to support stability of the grid voltage and frequency.
These sorts of cases should be part of the preliminary design process, because they set
requirements for the operating characteristics of the rotor. For example, although both
stall-regulated and pitch-regulated turbines can be operated so as to support transients
in the grid, a pitch-regulated turbine is more flexible in this respect.6 However, such
considerations are one step downstream of the current blade optimization analyses.

Start-up and shutdown load cases are neglected. As before, the reason is that machine
behavior upon start-up and shutdown is dependent upon the control algorithm, which is
not part of the current study.

Finally, we shall neglect load cases that involve system faults. One of the advantages,
particularly in an offshore context, of a stall-regulated turbine is that there are only a few
critical systems: the braking system, the control system, and the electrical system; also
the yaw system, if the turbine is oriented upwind. It was already stated that the dynamic
behavior of control, braking, and electrical systems is outside the scope of the current
study. As for the yaw system, if it were to fail, then the wind could approach the (parked)

5It would not really make sense to assume something rather arbitrary about the control and braking
systems, only to have these assumptions end up being critical for the design of the rotor. (Burton et al. [22]
pp 217 and 394) It seems better to assume that the control and braking systems can be designed, without
large differences in cost, to bring any reasonable rotor to a stop, without being significantly more critical
than other ultimate load cases.

6Note that an active-stall turbine combines the operating characteristics of a stall-regulated turbine,
with the flexibility of a pitch-regulated turbine; although then the mechanical simplicity of a fixed-pitch
turbine is lost.
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rotor from any direction. It is assumed that the extreme 50-year gust load case, discussed
below, is of comparable or greater severity than a case of yaw failure plus a 1-year gust.7

That leaves three kinds of load cases: ultimate loads with the turbine parked, ultimate
operating loads, and fatigue loads.

E.3.1 Ultimate Loads – Parked

The turbine must be able to withstand the peak windspeed encountered during its lifetime.
This is taken to be the 50-year-return gust.8 This depends upon the average windspeed; a
convenient classification is provided in the IEC 61400-1 standard.9 The design is conducted
to Class I: nominally a 10 m/s average windspeed, with a 50-year reference speed of 50
m/s and peak gust of 70 m/s.

The peak gust is assumed to envelop the entire rotor. The rotor is assumed to be
stationary (parked, not rotating). But the blades vibrate as they are excited by turbulence.
This vibration increases the loads beyond their quasi-static values, and must be taken into
account. Burton et al. [22], pp 219 through 228, provide a procedure which can be used
to estimate blade vibration. It is worth discussing this calculation in detail, because it
includes a clever trick to compensate for limitations of linearizing aerodynamic forces.

Imagine a horizontal-axis wind turbine parked in a 50-year storm with a reference hub-
height speed of 50 m/s, blowing in-line with the axis of rotation. Turbulent eddies will
superpose fluctuations upon the reference speed, and the peak gust of 70 m/s is intended
to be representative of a windspeed that is, statistically, likely to be encountered. The
fluctuations in velocity (and, at a higher frequency, vortex shedding, although this is not
modeled) cause the blade to vibrate.

Now picture that a very large and strong eddy approaches the turbine, and the wind
gusts to 70 m/s, with a characteristic timescale of several seconds – a period of time
significantly longer than that of the lowest natural frequency of vibration of the blade,
which is typically around 1 Hz. This means that the blade will respond to the 70 m/s
velocity quasi-statically, as if it were in a constant 70 m/s windfield. But the blade is
vibrating, which leads to a peak stress that is over and above the quasi-static value.

This description of the event hints at an approach that can be used to estimate the
peak stresses. We can superpose the quasi-static solution, using a windspeed of 70 m/s,
with blade vibrations calculated based upon the reference windspeed of 50 m/s.

This can be shown graphically in the frequency domain, using output from the software
associated with this report. Figure E.3 shows the auto-spectra of the wind, orthogonal
(uz) and parallel (uy) to the chord of the blade.10 The portion of the uz spectrum at the
low end of the frequency range is responsible for the gust from 50 m/s to 70 m/s. Also
shown are the transfer functions between generalized force G and generalized displacement
q for the first flapwise (1) and first edgewise (2) modes of vibration. The dynamic portion
of the response lies at a far higher frequency than the gust; this is why the 70 m/s gust
appears quasi-static, and vibrations are calculated based upon the wind spectra at 50 m/s.

Figure E.4 shows the stress auto-spectrum for a point on the spar cap, at a spanwise
location near the root of the blade, when the average windspeed is 50 m/s. The spectrum
is integrated, to the right of the vertical line, to obtain the area marked “A” on the

7Burton et al. [22], p 215, describe the system-fault load case. It helps that low-lift airfoils are used,
such that the peak lift coefficient is not significantly higher than the peak drag coefficient.

8Burton et al. [22] p 214
9My reference is Burton et al. [22] p 210

10This is similar to Burton et al. [22] Figure A5.1.
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Figure E.3: Auto-spectra of the wind, orthogonal (uz) and parallel (uy) to the chord of the
blade, compared with the transfer function between generalized force G and generalized
displacement q for the first flapwise and first edgewise modes of vibration

plot. Then, taking the square root
√
A gives the standard deviation of dynamic stress

fluctuation, which is to be added to the quasi-static stress at a windspeed of 70 m/s.
It remains to specify how many standard deviations to consider. This is related to the

characteristic timescale of the gust, and the dominant frequency of vibration of the blade,
which is the first flapwise frequency. Following Burton et al. [22], page 324, we shall use
a formula which is based upon the assumption of a Gaussian distribution:11

g =
√

2 ln f1T +
0.5772√
2 ln f1T

; (E.7)

and then σmax = σ70 + g stdev(σx). Here, σ70 is the quasi-static stress, calculated at a
windspeed of 70 m/s, and stdev(σx) is

√
A. f1 is the natural frequency of the first flapwise

mode of vibration, and T can be taken as 5 seconds.12 (A typical value f1 = 1 Hz gives
g = 2.11.)

E.3.2 Ultimate Loads – Operating

It is conceivable that while a turbine is operating just shy of the cut-out windspeed, a
severe gust could produce loads that are more severe than those encountered while parked
during an extreme storm. Thus design standards specify several load cases involving
different types of phenomena – gusts, direction changes, and extreme wind shear – at the
cut-out windspeed (or the rated windspeed; but it is assumed that rated windspeed would
only be critical for a pitch-regulated turbine, not for a stall-regulated turbine).

Burton et al. [22], pp 394-395, indicate that the most severe operating load may be
somewhat (around 10 percent) higher than that calculated by the deterministic load cases.

11A derivation of this equation can be found in Næss [134], Chapter 6.
12Burton et al. [22] p 214



E.3. LOAD CASES 401

Figure E.4: Stress auto-spectrum for a point on the spar cap under a reference wind
condition of 50 m/s

The worst case is an axial gust that does not quite reach the 50-year return value, but
is accompanied by a significant lateral turbulence component, resulting in a moderate
yaw-offset of roughly 30◦. This worst-case condition was obtained by way of a statistical
analysis of the joint probability of axial and lateral turbulence.

Given that we are conducting preliminary design, it does not seem worthwhile to pursue
the probability-based approach described by Burton. Rather, two simple load cases are
defined:

1. a 50-year quasi-static gust, no yaw offset, plus stochastic blade vibration based upon
the cut-out windspeed Vc, plus nominal windshear; and,

2. a 50-year quasi-static gust, 30◦ horizontal yaw offset, plus stochastic blade vibration
based upon Vc with no yaw offset,13 plus nominal windshear.

The 50-year gust is defined by:14

V∞ = Vc

(
1 + I

4.736
1 + 0.1D/(21 m)

)
, (E.8)

where I is the turbulence intensity (0.2 in this research project) and D is the rotor di-
ameter. Wind shear is calculated by Equation D.94. Stochastic vibration is calculated as
described in the previous section on ultimate gust loads.

Note that using a quasi-static gust implies that the blade should be placed in the
azimuthal position that gives the most severe loading. This will either be 180◦ (horizontal
with the leading edge pointing down), where compression loading of the spar cap due to

13This is simply because frequency-domain methods can predict the effects of lateral (yaw) turbulence
only when flow is aligned with the rotor axis; the simplified methods cannot perform stochastic calculations
with a steady yaw offset.

14Burton et al. [22] p 215
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Figure E.5: Stress auto-spectra for a point on the spar cap under cut-out wind conditions
of 25 m/s

gravity is most severe; or in the vicinity of 90◦ (straight up, with the lateral component of
the wind increasing the relative velocity), where the effects of wind shear and yaw offset
are most severe. In the latter case, the most critical azimuthal position will be somewhat
offset from 90◦, perhaps 110◦, where the sine (aerodynamic loading) is 94% of its maximum
value, while the cosine (gravity loading) is 34% of its maximum value. Thus load case (2),
with yaw offset, is evaluated twice, with the blade at 110◦ and 180◦.

It is at least partially justifiable to use a quasi-static calculation for the 1P (rotational
frequency) response. The deterministic gust specified in the IEC standard15 rises and falls
over a time period of 14 seconds. It is at an elevated value for approximately 4 seconds,
and is near its peak value over approximately 2 seconds, within which time a typical rotor
(depending upon the size) will perform the greatest part of a revolution. At least one of
the blades will end up in the most critical position while the gust is near its maximum.
Because the characteristic frequency of the gust is lower than that of the first mode of
vibration of the blade, the vibrational response is negligible.

Figure E.5 shows the stress spectrum at a point on the spar cap of the 1.5 MW turbine,
at the nominal cut-out windspeed of 25 m/s. The rotational sampling of turbulence at 1P
(0.37 Hz) is clearly distinct from the dynamic modes of vibration. This allows the two to
be considered separately.

E.3.3 Fatigue Loads

Fatigue load cases are defined by discretizing the range of windspeeds between start-up
and cut-out into bins of width 2 m/s (for instance, 4-6 m/s, 6-8 m/s ... 24-26 m/s). For
each fatigue load case, the spectral analysis procedure described in Section D.1 is used to
calculate the fatigue cycle distribution.

15Summarized by Burton et al. [22] pp 215-216



Appendix F

Tables of Blade Properties

This chapter presents tables summarizing the geometry, operating behavior, and section
properties of the turbines that were designed as part of this project.

F.1 Cost-of-Energy Optimum Designs

This section contains tables that summarize the geometry, operating schedule, and dy-
namic behavior of each turbine.

A few notes on the table format: masses of components at the tower top are calculated
explicitly. The mass labeled “towertop” is the sum of all the above component masses,
plus a fixed extra mass of 9,000 kg. Platform and mooring masses are not calculated
explicitly, but rather as a ratio against a baseline, where the baseline has a unit mass.
The same applies for grid connection costs. In the second segment of the table, “dtip” is
the maximum tip deflection. “Nwebs” indicates the number of webs in the spar box; here,
3 webs are used to stabilize the caps against buckling. The damping ratio is given for the
first four modes of vibration, typically the first flapwise, first edgewise, second flapwise,
and either the third flapwise or second edgewise modes. Recall that structural damping
of 0.008 is assumed for the first mode, and 0.010 for the other modes. Natural frequencies
are given for a stationary (parked) blade, and again for operation at the cutout windspeed,
where the rotational speed is greatest.

Table F.9 lists the properties of the turbine with fiberglass blades, optimized for the
onshore wind climate, using an older version of the onshore cost function. This version of
the cost function included only static loading on the tower. Table F.11 shows a similar
design that was optimized with the final cost function, which includes an estimate of the
dynamic response of the tower. Table F.13 shows the same case, but with a carbon fiber
spar.
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Table F.1: Summary of properties of the turbine with Eann = 1.42× 1013 J, onshore wind
climate, and onshore cost function

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

9500. 12690. 1914. 12430. 22880. 6101. 959.

tower towertop platform mooring grid

74890. 75470. 0.942 0.942 0.940

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

2932. 61.10 55.55 2.969 77.47 1410000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.53 1.208 1.000 0.00 0.000 0.0279 380.3 3

3.51 2.523 0.399 18.97 0.521 0.0279 447.0 3

5.90 2.534 0.321 12.82 0.521 0.0287 480.2 3

8.55 2.343 0.310 7.17 0.458 0.0268 451.8 3

11.46 2.066 0.307 4.52 0.325 0.0254 390.5 3

14.45 1.676 0.304 1.87 0.302 0.0287 343.0 3

17.44 1.365 0.305 1.41 0.247 0.0283 267.2 3

20.38 1.202 0.302 0.52 0.152 0.0210 173.4 3

23.13 1.037 0.301 -0.36 0.150 0.0167 110.9 3

25.57 1.026 0.195 0.42 0.120 0.0109 64.6 3

27.68 0.940 0.161 -0.39 0.106 0.0078 37.5 3

29.36 0.721 0.133 3.49 0.278 0.0082 20.1 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.331 99250. 0.4421 0.1534 0.0116 0.0668 0.0101

7.0 1.855 276700. 0.4491 0.2051 0.0121 0.0888 0.0101

9.0 2.375 594200. 0.4538 0.2563 0.0127 0.1101 0.0101

11.0 2.536 1042000. 0.4357 0.2290 0.0120 0.1111 0.0100

13.0 2.536 1384000. 0.3508 0.1606 0.0107 0.1002 0.0095

15.0 2.536 1410000. 0.2325 0.1033 0.0098 0.0873 0.0092

17.0 2.559 1410000. 0.1597 0.0774 0.0096 0.0777 0.0091

19.0 2.570 1410000. 0.1144 0.0624 0.0093 0.0685 0.0087

21.0 2.592 1410000. 0.0848 0.0508 0.0091 0.0619 0.0086

23.0 2.625 1410000. 0.0645 0.0514 0.0090 0.0567 0.0082

25.0 2.644 1410000. 0.0502 0.0594 0.0089 0.0520 0.0078

27.0 0.0556 0.0087 0.0445 0.0075

29.0 0.0423 0.0086 0.0384 0.0071

31.0 0.0452 0.0092 0.0359 0.0074

33.0 0.0744 0.0103 0.0342 0.0069

35.0 0.0927 0.0113 0.0407 0.0077

37.0 0.1035 0.0116 0.0445 0.0079

39.0 0.1190 0.0126 0.0476 0.0080

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0263 1 1.4900 1.5750

7.0 0.0330 2 2.0400 2.0940

9.0 0.0398 3 4.3120 4.4130

11.0 0.0342 4 6.3030 6.3650

13.0 0.0222 5 9.2510 9.3580

15.0 0.0160 6 14.9900 15.0500

17.0 0.0190

19.0 0.0200

21.0 0.0199

23.0 0.0214

25.0 0.0229

---------------------------------------------------------------
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Table F.2: Section properties of the turbine with Eann = 1.42 × 1013 J, onshore wind
climate, and onshore cost function

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

2.52 191.5 3.364E+09 5.856E+08 5.856E+08 1.910E+08

4.70 187.6 2.749E+09 4.098E+08 6.171E+08 1.028E+08

7.23 180.7 2.688E+09 2.734E+08 6.066E+08 7.727E+07

10.01 155.7 2.319E+09 1.885E+08 4.544E+08 5.458E+07

12.95 130.4 1.942E+09 1.202E+08 2.960E+08 3.520E+07

15.95 114.6 1.710E+09 6.701E+07 1.583E+08 1.983E+07

18.91 91.1 1.358E+09 3.467E+07 8.184E+07 1.034E+07

21.75 63.1 9.361E+08 1.841E+07 4.856E+07 5.594E+06

24.35 45.4 6.704E+08 9.750E+06 2.799E+07 3.014E+06

26.63 30.6 4.565E+08 2.846E+06 2.267E+07 1.015E+06

28.52 22.3 3.300E+08 1.178E+06 1.569E+07 4.740E+05

29.96 16.9 2.519E+08 3.509E+05 6.776E+06 1.600E+05

----------------------------------------------------------------
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Table F.3: Summary of properties of the turbine with Eann = 1.42× 1013 J, onshore wind
climate, and offshore cost function

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

9585. 12260. 1936. 12490. 23090. 6158. 886.

tower towertop platform mooring grid

76950. 75400. 0.865 0.865 0.895

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

2950. 61.28 55.64 3.161 73.57 1343000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.53 1.095 1.000 0.00 0.000 0.0312 383.6 3

3.52 2.816 0.324 19.33 0.508 0.0312 517.6 3

5.91 2.593 0.304 11.68 0.508 0.0297 500.2 3

8.58 2.395 0.303 8.40 0.411 0.0272 467.1 3

11.49 2.141 0.302 4.69 0.343 0.0248 396.3 3

14.49 1.870 0.302 2.58 0.260 0.0218 311.2 3

17.50 1.547 0.300 1.26 0.257 0.0205 237.2 3

20.44 1.319 0.301 0.64 0.175 0.0159 155.4 3

23.19 1.180 0.241 0.15 0.128 0.0138 105.7 3

25.65 0.996 0.168 0.06 0.130 0.0118 64.6 3

27.76 0.898 0.163 -0.23 0.136 0.0077 35.8 3

29.45 0.899 0.133 3.27 0.283 0.0051 20.4 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.295 101600. 0.4500 0.1674 0.0121 0.0771 0.0102

7.0 1.806 282900. 0.4566 0.2248 0.0129 0.1032 0.0103

9.0 2.314 606900. 0.4608 0.2813 0.0137 0.1286 0.0104

11.0 2.401 1047000. 0.4354 0.2436 0.0127 0.1266 0.0101

13.0 2.401 1343000. 0.3384 0.1779 0.0114 0.1152 0.0095

15.0 2.401 1343000. 0.2203 0.1164 0.0106 0.1013 0.0093

17.0 2.422 1343000. 0.1513 0.0835 0.0105 0.0906 0.0091

19.0 2.443 1343000. 0.1084 0.0671 0.0104 0.0811 0.0088

21.0 2.471 1343000. 0.0803 0.0606 0.0104 0.0732 0.0085

23.0 2.506 1343000. 0.0611 0.0623 0.0107 0.0684 0.0084

25.0 2.535 1343000. 0.0476 0.0668 0.0106 0.0631 0.0079

27.0 0.0488 0.0104 0.0528 0.0077

29.0 0.0406 0.0107 0.0429 0.0073

31.0 0.0637 0.0118 0.0421 0.0076

33.0 0.0808 0.0118 0.0428 0.0074

35.0 0.0958 0.0127 0.0482 0.0082

37.0 0.1158 0.0131 0.0552 0.0084

39.0 0.1288 0.0139 0.0572 0.0084

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0276 1 1.5280 1.6030

7.0 0.0347 2 2.1670 2.2130

9.0 0.0420 3 4.2740 4.3720

11.0 0.0343 4 6.8410 6.8920

13.0 0.0222 5 8.7910 8.8940

15.0 0.0172 6 15.6100 15.6900

17.0 0.0194

19.0 0.0199

21.0 0.0210

23.0 0.0224

25.0 0.0234

---------------------------------------------------------------
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Table F.4: Section properties of the turbine with Eann = 1.42 × 1013 J, onshore wind
climate, and offshore cost function

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

2.53 192.6 3.384E+09 4.791E+08 4.791E+08 1.562E+08

4.72 216.6 3.225E+09 4.124E+08 8.859E+08 1.153E+08

7.25 187.6 2.804E+09 2.703E+08 6.563E+08 7.852E+07

10.03 160.5 2.394E+09 1.952E+08 4.887E+08 5.710E+07

12.99 132.0 1.967E+09 1.265E+08 3.274E+08 3.738E+07

15.99 103.6 1.540E+09 7.572E+07 2.019E+08 2.255E+07

18.97 80.6 1.197E+09 3.947E+07 1.072E+08 1.191E+07

21.82 56.4 8.318E+08 1.988E+07 5.898E+07 6.106E+06

24.42 43.1 6.412E+08 8.073E+06 3.847E+07 2.601E+06

26.70 30.5 4.591E+08 1.996E+06 2.080E+07 7.705E+05

28.60 21.2 3.135E+08 1.047E+06 1.356E+07 4.183E+05

30.04 17.1 2.484E+08 5.412E+05 1.247E+07 2.448E+05

----------------------------------------------------------------
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Table F.5: Summary of properties of the turbine with Eann = 1.42 × 1013 J, North Sea
wind climate, and onshore cost function

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

4722. 6620. 678. 8818. 18310. 4883. 759.

tower towertop platform mooring grid

44160. 53790. 0.482 0.482 0.889

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

1491. 43.57 46.78 1.667 82.63 1334000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.09 0.879 1.000 0.00 0.000 0.0251 176.8 3

2.51 2.436 0.301 17.77 0.535 0.0251 260.5 3

4.20 2.167 0.245 14.33 0.493 0.0253 244.5 3

6.10 1.896 0.276 7.96 0.516 0.0224 216.7 3

8.17 1.638 0.311 6.59 0.339 0.0200 181.6 3

10.30 1.414 0.300 4.22 0.317 0.0203 155.0 3

12.44 1.334 0.304 2.64 0.218 0.0153 116.4 3

14.53 1.139 0.300 1.24 0.178 0.0145 88.9 3

16.49 1.033 0.212 0.75 0.142 0.0115 56.6 3

18.23 0.945 0.186 0.03 0.168 0.0100 39.8 3

19.74 0.887 0.140 2.13 0.321 0.0066 22.7 3

20.94 0.893 0.148 1.26 0.307 0.0050 14.4 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.654 52310. 0.4582 0.1343 0.0120 0.0513 0.0102

7.0 2.302 145400. 0.4642 0.1815 0.0127 0.0677 0.0103

9.0 2.947 311900. 0.4685 0.2282 0.0135 0.0840 0.0104

11.0 3.588 573000. 0.4714 0.2740 0.0142 0.1001 0.0105

13.0 3.793 922400. 0.4597 0.2606 0.0136 0.1028 0.0104

15.0 3.793 1226000. 0.3978 0.2120 0.0125 0.0967 0.0100

17.0 3.793 1334000. 0.2974 0.1601 0.0115 0.0889 0.0096

19.0 3.805 1334000. 0.2130 0.1195 0.0112 0.0815 0.0097

21.0 3.802 1334000. 0.1578 0.0968 0.0110 0.0751 0.0094

23.0 3.801 1334000. 0.1201 0.0812 0.0110 0.0691 0.0093

25.0 3.819 1334000. 0.0935 0.0670 0.0109 0.0624 0.0089

27.0 0.0372 0.0107 0.0524 0.0084

29.0 0.0083 0.0109 0.0444 0.0085

31.0 0.0029 0.0112 0.0387 0.0083

33.0 0.0338 0.0120 0.0381 0.0083

35.0 0.0602 0.0129 0.0398 0.0088

37.0 0.0832 0.0135 0.0384 0.0087

39.0 0.0998 0.0142 0.0386 0.0092

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0209 1 2.1200 2.2400

7.0 0.0251 2 3.1800 3.2520

9.0 0.0295 3 6.7290 6.8700

11.0 0.0339 4 10.7500 10.8200

13.0 0.0307 5 14.2600 14.4000

15.0 0.0237 6 25.1900 25.2800

17.0 0.0165

19.0 0.0162

21.0 0.0175

23.0 0.0176

25.0 0.0180

---------------------------------------------------------------
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Table F.6: Section properties of the turbine with Eann = 1.42 × 1013 J, North Sea wind
climate, and onshore cost function

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

1.80 124.9 2.193E+09 2.003E+08 2.003E+08 6.531E+07

3.35 153.3 2.285E+09 1.905E+08 4.702E+08 5.602E+07

5.15 129.0 1.948E+09 8.685E+07 3.137E+08 2.649E+07

7.13 104.7 1.565E+09 6.672E+07 1.977E+08 1.940E+07

9.24 85.0 1.259E+09 4.992E+07 1.207E+08 1.477E+07

11.37 72.6 1.077E+09 2.931E+07 7.513E+07 8.326E+06

13.48 55.7 8.206E+08 2.048E+07 5.740E+07 6.265E+06

15.51 45.4 6.680E+08 1.181E+07 3.419E+07 3.666E+06

17.36 32.5 4.833E+08 3.616E+06 2.286E+07 1.244E+06

18.99 26.5 3.941E+08 1.889E+06 1.655E+07 6.894E+05

20.34 19.0 2.794E+08 6.684E+05 1.232E+07 2.936E+05

21.36 16.9 2.459E+08 6.569E+05 1.207E+07 2.810E+05

----------------------------------------------------------------
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Table F.7: Summary of properties of the turbine with Eann = 1.42 × 1013 J, North Sea
wind climate, and offshore cost function

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

4827. 6563. 726. 8633. 17950. 4788. 684.

tower towertop platform mooring grid

43430. 53170. 0.450 0.450 0.794

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

1633. 45.60 47.80 1.949 79.36 1190000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.14 0.994 1.000 0.00 0.000 0.0236 197.0 3

2.62 2.383 0.348 18.64 0.586 0.0236 263.2 3

4.40 2.192 0.244 15.48 0.561 0.0250 256.1 3

6.38 1.923 0.265 8.42 0.544 0.0224 228.1 3

8.55 1.685 0.291 5.25 0.425 0.0196 189.5 3

10.78 1.462 0.302 3.72 0.310 0.0168 146.7 3

13.02 1.258 0.299 2.92 0.220 0.0147 111.0 3

15.21 1.141 0.288 1.83 0.171 0.0131 85.6 3

17.26 0.992 0.231 0.84 0.123 0.0108 55.4 3

19.08 0.870 0.169 -0.60 0.146 0.0118 41.6 3

20.66 0.815 0.137 2.63 0.331 0.0065 21.5 3

21.91 0.820 0.133 2.96 0.349 0.0048 13.4 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.643 56640. 0.4531 0.1504 0.0119 0.0578 0.0103

7.0 2.291 157400. 0.4589 0.2036 0.0126 0.0768 0.0104

9.0 2.937 337700. 0.4632 0.2563 0.0133 0.0957 0.0106

11.0 3.481 619400. 0.4653 0.2947 0.0138 0.1113 0.0106

13.0 3.481 944100. 0.4297 0.2528 0.0127 0.1074 0.0104

15.0 3.481 1181000. 0.3498 0.2015 0.0115 0.1010 0.0099

17.0 3.481 1190000. 0.2423 0.1459 0.0108 0.0921 0.0096

19.0 3.517 1190000. 0.1735 0.1182 0.0106 0.0861 0.0096

21.0 3.517 1190000. 0.1285 0.1043 0.0105 0.0795 0.0095

23.0 3.513 1190000. 0.0978 0.0949 0.0104 0.0727 0.0091

25.0 3.518 1190000. 0.0762 0.0740 0.0103 0.0655 0.0089

27.0 0.0431 0.0099 0.0562 0.0083

29.0 0.0083 0.0096 0.0449 0.0081

31.0 0.0047 0.0096 0.0364 0.0077

33.0 0.0268 0.0107 0.0357 0.0083

35.0 0.0567 0.0114 0.0382 0.0084

37.0 0.0910 0.0128 0.0423 0.0091

39.0 0.1069 0.0129 0.0408 0.0089

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0220 1 2.0170 2.1300

7.0 0.0267 2 3.1410 3.2060

9.0 0.0317 3 6.2590 6.3940

11.0 0.0350 4 10.2600 10.3300

13.0 0.0284 5 13.0100 13.1500

15.0 0.0208 6 22.9200 23.0400

17.0 0.0155

19.0 0.0166

21.0 0.0180

23.0 0.0191

25.0 0.0190

---------------------------------------------------------------
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Table F.8: Section properties of the turbine with Eann = 1.42 × 1013 J, North Sea wind
climate, and offshore cost function

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

1.88 132.9 2.335E+09 2.750E+08 2.750E+08 8.970E+07

3.51 148.0 2.184E+09 2.268E+08 4.352E+08 6.195E+07

5.39 129.1 1.950E+09 8.816E+07 3.240E+08 2.695E+07

7.47 105.3 1.579E+09 6.429E+07 2.063E+08 1.905E+07

9.67 84.8 1.261E+09 4.668E+07 1.304E+08 1.338E+07

11.90 65.7 9.704E+08 2.893E+07 7.910E+07 8.797E+06

14.11 50.7 7.478E+08 1.604E+07 4.703E+07 4.677E+06

16.23 41.7 6.143E+08 1.009E+07 3.325E+07 3.029E+06

18.17 30.4 4.490E+08 3.648E+06 1.994E+07 1.221E+06

19.87 26.5 3.976E+08 1.323E+06 1.314E+07 5.092E+05

21.28 17.1 2.523E+08 4.853E+05 9.387E+06 2.164E+05

22.35 15.0 2.183E+08 3.950E+05 9.109E+06 1.789E+05

----------------------------------------------------------------
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Table F.9: Summary of properties of the turbine with Eann = 2.84× 1013 J, onshore wind
climate, and fiberglass spar; this design was optimized to an older version of the onshore
cost function that included only static loading on the tower

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

22240. 27810. 6092. 26070. 43400. 11570. 2288.

tower towertop platform mooring grid

166800. 148500. 2.015 2.015 2.024

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5425. 83.11 66.56 4.260 84.55 3037000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.08 1.508 1.000 0.00 0.000 0.0397 916.4 3

4.78 3.587 0.350 19.23 0.686 0.0397 1137.0 3

8.02 3.424 0.318 11.05 0.520 0.0381 1133.0 3

11.64 3.061 0.320 6.58 0.388 0.0359 1045.0 3

15.58 2.638 0.308 4.18 0.253 0.0369 932.0 3

19.66 2.233 0.308 3.47 0.159 0.0364 771.2 3

23.73 1.855 0.306 1.31 0.181 0.0358 610.8 3

27.72 1.520 0.302 0.59 0.181 0.0291 390.0 3

31.46 1.281 0.302 -0.13 0.129 0.0232 241.7 3

34.78 1.111 0.204 -0.58 0.161 0.0186 138.4 3

37.65 1.121 0.133 2.15 0.378 0.0104 70.9 3

39.93 0.637 0.194 -1.27 0.043 0.0087 26.3 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.025 182500. 0.4393 0.1529 0.0119 0.0729 0.0102

7.0 1.431 508000. 0.4457 0.2074 0.0126 0.0957 0.0102

9.0 1.829 1087000. 0.4487 0.2595 0.0132 0.1174 0.0102

11.0 2.035 1951000. 0.4411 0.2539 0.0130 0.1225 0.0101

13.0 2.035 2772000. 0.3797 0.1850 0.0117 0.1076 0.0097

15.0 2.035 3037000. 0.2708 0.1113 0.0106 0.0903 0.0091

17.0 2.043 3037000. 0.1860 0.0688 0.0101 0.0765 0.0090

19.0 2.046 3037000. 0.1332 0.0630 0.0098 0.0674 0.0087

21.0 2.046 3037000. 0.0987 0.0618 0.0096 0.0616 0.0084

23.0 2.053 3037000. 0.0751 0.0628 0.0093 0.0587 0.0079

25.0 2.055 3037000. 0.0585 0.0628 0.0091 0.0570 0.0077

27.0 0.0352 0.0082 0.0462 0.0066

29.0 0.0152 0.0077 0.0379 0.0063

31.0 0.0100 0.0078 0.0354 0.0061

33.0 0.0425 0.0096 0.0402 0.0071

35.0 0.0881 0.0117 0.0505 0.0078

37.0 0.1213 0.0130 0.0563 0.0079

39.0 0.1303 0.0137 0.0617 0.0086

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0322 1 1.1230 1.1900

7.0 0.0414 2 1.5010 1.5460

9.0 0.0502 3 3.1760 3.2600

11.0 0.0470 4 4.5250 4.5770

13.0 0.0319 5 6.4760 6.5690

15.0 0.0186 6 10.1600 10.2100

17.0 0.0198

19.0 0.0227

21.0 0.0243

23.0 0.0259

25.0 0.0267

---------------------------------------------------------------
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Table F.10: Section properties of the turbine with Eann = 2.84 × 1013 J, onshore wind
climate, and onshore cost function

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.43 339.2 5.960E+09 1.608E+09 1.608E+09 5.245E+08

6.40 350.7 5.210E+09 1.251E+09 2.204E+09 3.299E+08

9.83 313.3 4.684E+09 8.588E+08 1.821E+09 2.397E+08

13.61 264.6 3.951E+09 5.828E+08 1.230E+09 1.631E+08

17.62 228.8 3.427E+09 3.473E+08 7.618E+08 9.978E+07

21.69 189.4 2.835E+09 2.026E+08 4.416E+08 5.869E+07

25.72 153.1 2.291E+09 1.103E+08 2.416E+08 3.227E+07

29.59 104.3 1.557E+09 4.893E+07 1.165E+08 1.459E+07

33.12 72.7 1.081E+09 2.411E+07 6.159E+07 7.284E+06

36.22 48.3 7.305E+08 5.754E+06 3.417E+07 1.966E+06

38.79 31.0 4.673E+08 1.632E+06 2.887E+07 7.360E+05

40.75 16.2 2.392E+08 5.502E+05 4.787E+06 2.017E+05

----------------------------------------------------------------



414 APPENDIX F. TABLES OF BLADE PROPERTIES

Table F.11: Summary of properties of the turbine with Eann = 2.84×1013 J, onshore wind
climate, and fiberglass spar; this design was optimized to the final version of the onshore
cost function that included an estimate of the dynamic response of the tower

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

24360. 30570. 6863. 25320. 45620. 12170. 2191.

tower towertop platform mooring grid

168600. 156100. 2.169 2.169 1.816

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5738. 85.47 67.74 4.376 81.09 2724000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.14 1.496 1.000 0.00 0.000 0.0416 977.1 3

4.91 3.777 0.330 15.94 0.438 0.0416 1261.0 3

8.25 3.481 0.314 13.24 0.428 0.0394 1214.0 3

11.97 3.159 0.310 6.79 0.383 0.0366 1120.0 3

16.03 2.768 0.311 5.78 0.191 0.0342 950.1 3

20.21 2.200 0.302 3.25 0.162 0.0412 859.8 3

24.40 1.865 0.304 2.34 0.116 0.0416 713.8 3

28.50 1.638 0.303 0.85 0.116 0.0343 496.8 3

32.35 1.342 0.301 -0.16 0.088 0.0282 303.9 3

35.77 1.201 0.222 1.13 0.067 0.0158 139.8 3

38.72 1.061 0.151 1.41 0.073 0.0094 65.9 3

41.07 0.544 0.169 -0.93 0.067 0.0048 16.6 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.013 191200. 0.4352 0.1443 0.0121 0.0702 0.0102

7.0 1.414 532300. 0.4416 0.1946 0.0129 0.0917 0.0103

9.0 1.807 1138000. 0.4442 0.2419 0.0137 0.1119 0.0103

11.0 1.898 1972000. 0.4215 0.1961 0.0129 0.1050 0.0101

13.0 1.898 2624000. 0.3398 0.1212 0.0118 0.0887 0.0096

15.0 1.898 2724000. 0.2297 0.0630 0.0111 0.0720 0.0093

17.0 1.902 2724000. 0.1578 0.0473 0.0109 0.0594 0.0091

19.0 1.903 2724000. 0.1130 0.0394 0.0107 0.0498 0.0089

21.0 1.907 2724000. 0.0837 0.0310 0.0105 0.0437 0.0085

23.0 1.927 2724000. 0.0637 0.0369 0.0106 0.0425 0.0084

25.0 1.949 2724000. 0.0496 0.0496 0.0107 0.0437 0.0081

27.0 0.0587 0.0107 0.0459 0.0078

29.0 0.0637 0.0107 0.0481 0.0081

31.0 0.0683 0.0110 0.0495 0.0081

33.0 0.0804 0.0117 0.0508 0.0080

35.0 0.1059 0.0133 0.0583 0.0091

37.0 0.1213 0.0142 0.0590 0.0092

39.0 0.1216 0.0140 0.0587 0.0090

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0327 1 1.0620 1.1230

7.0 0.0420 2 1.4230 1.4650

9.0 0.0508 3 3.3300 3.4010

11.0 0.0414 4 4.6020 4.6490

13.0 0.0259 5 6.7660 6.8430

15.0 0.0176 6 10.3200 10.3700

17.0 0.0221

19.0 0.0234

21.0 0.0242

23.0 0.0249

25.0 0.0269

---------------------------------------------------------------
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Table F.12: Section properties of the turbine with Eann = 2.84 × 1013 J, onshore wind
climate, and onshore cost function (updated cost model)

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.53 351.8 6.179E+09 1.634E+09 1.634E+09 5.330E+08

6.58 378.3 5.647E+09 1.350E+09 2.632E+09 3.672E+08

10.11 326.6 4.889E+09 9.068E+08 1.945E+09 2.545E+08

14.00 275.8 4.128E+09 6.134E+08 1.366E+09 1.743E+08

18.12 226.9 3.392E+09 3.866E+08 8.628E+08 1.104E+08

22.31 205.3 3.081E+09 2.050E+08 4.441E+08 5.988E+07

26.45 174.0 2.609E+09 1.237E+08 2.635E+08 3.624E+07

30.43 129.2 1.933E+09 7.043E+07 1.592E+08 2.084E+07

34.06 88.9 1.326E+09 3.196E+07 7.728E+07 9.599E+06

37.24 47.4 7.111E+08 7.842E+06 4.190E+07 2.599E+06

39.89 28.0 4.188E+08 1.688E+06 2.388E+07 7.029E+05

41.90 9.9 1.436E+08 1.795E+05 2.566E+06 7.264E+04

----------------------------------------------------------------
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Table F.13: Summary of properties of the turbine with Eann = 2.84×1013 J, onshore wind
climate, onshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

17670. 24850. 4842. 25460. 42870. 11430. 2222.

tower towertop platform mooring grid

151400. 138300. 1.781 1.781 2.094

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5425. 83.11 66.55 4.236 90.25 3141000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.08 1.094 1.000 0.00 0.000 0.0312 455.3 4

4.78 3.203 0.285 19.02 0.645 0.0312 995.3 4

8.02 2.831 0.310 10.85 0.555 0.0279 923.7 4

11.64 2.598 0.309 5.78 0.398 0.0257 858.8 4

15.58 2.171 0.305 3.67 0.330 0.0283 784.3 4

19.66 1.843 0.303 3.33 0.192 0.0274 638.3 4

23.73 1.626 0.303 2.44 0.124 0.0223 461.8 4

27.72 1.317 0.304 1.13 0.111 0.0218 340.1 4

31.46 1.195 0.278 1.12 0.096 0.0176 219.9 4

34.78 0.960 0.249 -1.06 0.089 0.0151 126.8 4

37.65 1.025 0.135 1.21 0.319 0.0087 60.7 4

39.93 0.625 0.146 -2.77 0.066 0.0086 25.5 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.119 181400. 0.4369 0.1621 0.0129 0.0694 0.0102

7.0 1.566 506100. 0.4441 0.2234 0.0139 0.0910 0.0103

9.0 2.005 1085000. 0.4478 0.2834 0.0150 0.1117 0.0103

11.0 2.172 1931000. 0.4366 0.2598 0.0145 0.1118 0.0102

13.0 2.172 2753000. 0.3771 0.1838 0.0132 0.0969 0.0097

15.0 2.172 3141000. 0.2801 0.1046 0.0120 0.0806 0.0092

17.0 2.175 3141000. 0.1924 0.0494 0.0113 0.0667 0.0090

19.0 2.185 3141000. 0.1378 0.0383 0.0110 0.0590 0.0088

21.0 2.189 3141000. 0.1021 0.0466 0.0107 0.0541 0.0086

23.0 2.195 3141000. 0.0777 0.0597 0.0106 0.0517 0.0084

25.0 2.195 3141000. 0.0605 0.0476 0.0101 0.0457 0.0077

27.0 0.0304 0.0096 0.0404 0.0073

29.0 0.0230 0.0095 0.0362 0.0071

31.0 0.0269 0.0098 0.0359 0.0071

33.0 0.0460 0.0106 0.0398 0.0072

35.0 0.0747 0.0124 0.0489 0.0084

37.0 0.1183 0.0151 0.0561 0.0091

39.0 0.1391 0.0162 0.0580 0.0090

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0330 1 1.1230 1.1950

7.0 0.0430 2 1.3720 1.4280

9.0 0.0527 3 3.3980 3.4830

11.0 0.0472 4 4.2880 4.3500

13.0 0.0325 5 7.1980 7.2870

15.0 0.0176 6 9.7130 9.7730

17.0 0.0157

19.0 0.0197

21.0 0.0229

23.0 0.0245

25.0 0.0261

---------------------------------------------------------------
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Table F.14: Section properties of the turbine with Eann = 2.84 × 1013 J, onshore wind
climate, onshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.43 168.6 7.732E+09 1.093E+09 1.093E+09 1.412E+08

6.40 307.1 7.737E+09 1.017E+09 1.895E+09 1.269E+08

9.83 255.5 6.289E+09 7.512E+08 1.225E+09 9.745E+07

13.61 217.5 5.344E+09 5.335E+08 8.903E+08 7.007E+07

17.62 192.6 4.796E+09 3.222E+08 5.265E+08 4.250E+07

21.69 156.8 3.920E+09 1.851E+08 3.075E+08 2.474E+07

25.72 115.8 2.864E+09 1.056E+08 1.849E+08 1.447E+07

29.59 90.9 2.257E+09 5.418E+07 9.427E+07 7.483E+06

33.12 66.1 1.650E+09 2.790E+07 6.095E+07 3.891E+06

36.21 44.2 1.121E+09 9.805E+06 2.787E+07 1.485E+06

38.79 26.6 6.939E+08 2.178E+06 2.565E+07 4.967E+05

40.74 15.8 4.122E+08 5.368E+05 5.474E+06 1.186E+05

----------------------------------------------------------------
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Table F.15: Summary of properties of the turbine with Eann = 2.84×1013 J, onshore wind
climate, offshore cost function, and fiberglass spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

23490. 28350. 6529. 26000. 44540. 11880. 2040.

tower towertop platform mooring grid

171800. 151800. 2.535 2.535 1.833

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5580. 84.29 67.15 4.224 77.90 2749000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.11 1.526 1.000 0.00 0.000 0.0422 996.2 3

4.85 3.827 0.332 19.59 0.648 0.0422 1278.0 3

8.13 3.478 0.321 11.52 0.618 0.0402 1224.0 3

11.80 3.296 0.303 5.33 0.554 0.0368 1153.0 3

15.80 2.889 0.316 4.19 0.317 0.0327 949.0 3

19.93 2.580 0.299 3.04 0.186 0.0292 756.0 3

24.06 2.046 0.299 2.21 0.180 0.0332 642.0 3

28.11 1.713 0.313 0.15 0.177 0.0216 358.1 3

31.90 1.449 0.257 0.08 0.140 0.0199 238.8 3

35.28 1.247 0.188 -0.72 0.163 0.0146 132.2 3

38.18 1.183 0.138 2.85 0.373 0.0107 78.0 3

40.50 0.763 0.200 -0.85 0.044 0.0063 27.2 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.961 188800. 0.4418 0.1610 0.0118 0.0780 0.0102

7.0 1.340 524700. 0.4476 0.2166 0.0125 0.1026 0.0102

9.0 1.713 1121000. 0.4498 0.2688 0.0131 0.1258 0.0103

11.0 1.848 1981000. 0.4355 0.2484 0.0126 0.1260 0.0101

13.0 1.848 2707000. 0.3604 0.1809 0.0112 0.1105 0.0096

15.0 1.848 2749000. 0.2383 0.1133 0.0103 0.0928 0.0092

17.0 1.866 2749000. 0.1637 0.0804 0.0101 0.0802 0.0090

19.0 1.871 2749000. 0.1173 0.0704 0.0099 0.0715 0.0087

21.0 1.882 2749000. 0.0868 0.0730 0.0099 0.0674 0.0085

23.0 1.888 2749000. 0.0661 0.0791 0.0097 0.0660 0.0080

25.0 1.899 2749000. 0.0515 0.0678 0.0093 0.0607 0.0074

27.0 0.0354 0.0088 0.0516 0.0071

29.0 0.0202 0.0082 0.0441 0.0066

31.0 0.0463 0.0096 0.0441 0.0069

33.0 0.0724 0.0106 0.0489 0.0074

35.0 0.1078 0.0125 0.0588 0.0086

37.0 0.1295 0.0132 0.0629 0.0085

39.0 0.1297 0.0127 0.0626 0.0082

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0332 1 1.1900 1.2430

7.0 0.0426 2 1.6140 1.6490

9.0 0.0514 3 3.2600 3.3310

11.0 0.0449 4 4.9270 4.9670

13.0 0.0297 5 6.6690 6.7450

15.0 0.0190 6 11.0900 11.1200

17.0 0.0213

19.0 0.0240

21.0 0.0250

23.0 0.0262

25.0 0.0281

---------------------------------------------------------------
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Table F.16: Section properties of the turbine with Eann = 2.84 × 1013 J, onshore wind
climate, offshore cost function, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.48 363.7 6.389E+09 1.760E+09 1.760E+09 5.739E+08

6.49 388.6 5.799E+09 1.441E+09 2.767E+09 3.903E+08

9.97 333.7 4.989E+09 9.561E+08 1.964E+09 2.655E+08

13.80 287.9 4.317E+09 6.711E+08 1.567E+09 1.928E+08

17.87 229.8 3.429E+09 4.416E+08 9.766E+08 1.248E+08

22.00 183.0 2.737E+09 2.524E+08 6.386E+08 6.905E+07

26.09 158.7 2.377E+09 1.355E+08 3.182E+08 3.720E+07

30.01 94.4 1.400E+09 6.110E+07 1.524E+08 1.796E+07

33.59 70.8 1.061E+09 2.269E+07 8.407E+07 6.937E+06

36.73 45.4 6.854E+08 5.958E+06 4.551E+07 2.111E+06

39.34 33.6 5.071E+08 2.142E+06 3.467E+07 9.410E+05

41.32 16.5 2.405E+08 8.547E+05 7.878E+06 3.147E+05

----------------------------------------------------------------
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Table F.17: Summary of properties of the turbine with Eann = 2.84×1013 J, onshore wind
climate, offshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

18060. 24400. 5051. 24080. 41570. 11090. 1879.

tower towertop platform mooring grid

162300. 135100. 2.275 2.275 1.771

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5655. 84.86 67.43 4.327 83.96 2657000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.12 1.188 1.000 0.00 0.000 0.0313 508.5 4

4.88 3.184 0.311 18.06 0.654 0.0313 1059.0 4

8.19 2.903 0.308 9.82 0.666 0.0289 995.3 4

11.88 2.674 0.304 4.06 0.590 0.0264 917.1 4

15.91 2.407 0.306 3.23 0.313 0.0238 778.8 4

20.07 2.130 0.302 3.08 0.146 0.0211 614.9 4

24.23 1.799 0.307 1.56 0.117 0.0192 469.5 4

28.30 1.517 0.300 0.15 0.124 0.0154 304.6 4

32.12 1.241 0.295 -0.31 0.111 0.0122 181.9 4

35.51 1.122 0.186 -0.48 0.103 0.0109 108.6 4

38.44 0.869 0.140 -0.68 0.098 0.0084 51.2 4

40.78 0.888 0.140 1.50 0.408 0.0056 29.8 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.044 191300. 0.4417 0.1803 0.0119 0.0936 0.0101

7.0 1.457 532900. 0.4486 0.2426 0.0126 0.1254 0.0101

9.0 1.863 1141000. 0.4517 0.3019 0.0132 0.1556 0.0101

11.0 1.979 1991000. 0.4318 0.2661 0.0123 0.1572 0.0098

13.0 1.979 2642000. 0.3472 0.1884 0.0108 0.1436 0.0092

15.0 1.979 2657000. 0.2273 0.1190 0.0095 0.1258 0.0087

17.0 1.993 2657000. 0.1561 0.0885 0.0090 0.1105 0.0084

19.0 1.992 2657000. 0.1118 0.0765 0.0085 0.0954 0.0079

21.0 2.002 2657000. 0.0828 0.0657 0.0081 0.0842 0.0075

23.0 2.015 2657000. 0.0630 0.0642 0.0078 0.0752 0.0070

25.0 2.033 2657000. 0.0491 0.0706 0.0078 0.0691 0.0067

27.0 0.0603 0.0076 0.0546 0.0061

29.0 0.0350 0.0067 0.0347 0.0051

31.0 0.0278 0.0066 0.0269 0.0047

33.0 0.0630 0.0088 0.0296 0.0051

35.0 0.0979 0.0105 0.0427 0.0059

37.0 0.1208 0.0114 0.0558 0.0066

39.0 0.1443 0.0131 0.0652 0.0076

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0333 1 1.2350 1.2930

7.0 0.0430 2 1.5190 1.5610

9.0 0.0522 3 3.4930 3.5670

11.0 0.0425 4 4.6970 4.7440

13.0 0.0249 5 6.8970 6.9810

15.0 0.0159 6 10.3300 10.3700

17.0 0.0208

19.0 0.0238

21.0 0.0240

23.0 0.0269

25.0 0.0275

---------------------------------------------------------------
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Table F.18: Section properties of the turbine with Eann = 2.84 × 1013 J, onshore wind
climate, offshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.50 184.4 8.457E+09 1.414E+09 1.414E+09 1.827E+08

6.53 320.0 7.902E+09 1.202E+09 1.906E+09 1.536E+08

10.03 269.6 6.654E+09 8.291E+08 1.351E+09 1.074E+08

13.90 227.5 5.616E+09 5.766E+08 9.863E+08 7.616E+07

17.99 187.3 4.595E+09 3.880E+08 6.681E+08 5.171E+07

22.15 147.9 3.621E+09 2.327E+08 4.234E+08 3.180E+07

26.26 115.3 2.804E+09 1.320E+08 2.367E+08 1.818E+07

30.21 79.8 1.924E+09 6.171E+07 1.233E+08 8.918E+06

33.81 53.6 1.277E+09 2.642E+07 5.878E+07 3.801E+06

36.98 37.1 9.516E+08 6.778E+06 3.804E+07 1.208E+06

39.61 21.9 5.698E+08 1.365E+06 1.514E+07 3.075E+05

41.60 18.0 4.347E+08 1.105E+06 1.449E+07 2.635E+05

----------------------------------------------------------------
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Table F.19: Summary of properties of the turbine with Eann = 2.84 × 1013 J, North Sea
wind climate, offshore cost function, and fiberglass spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

10740. 14530. 2242. 17490. 34180. 9114. 1539.

tower towertop platform mooring grid

95370. 98830. 1.175 1.175 1.647

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

3148. 63.31 56.66 2.934 89.20 2471000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.58 1.066 1.000 0.00 0.000 0.0331 409.6 3

3.64 2.970 0.299 18.20 0.520 0.0331 582.1 3

6.11 2.748 0.301 12.69 0.522 0.0308 563.8 3

8.86 2.513 0.300 8.01 0.394 0.0287 528.5 3

11.87 2.272 0.289 5.68 0.253 0.0264 454.0 3

14.97 1.979 0.291 5.23 0.144 0.0231 353.9 3

18.08 1.678 0.293 4.10 0.116 0.0196 256.6 3

21.11 1.458 0.295 1.40 0.087 0.0194 206.5 3

23.96 1.152 0.291 0.64 0.049 0.0160 123.4 3

26.50 0.844 0.207 -0.53 0.065 0.0126 60.4 3

28.68 0.786 0.142 1.98 0.372 0.0077 31.4 3

30.42 0.471 0.136 -0.36 0.047 0.0045 10.1 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.311 104800. 0.4347 0.1382 0.0124 0.0665 0.0107

7.0 1.837 291900. 0.4413 0.1875 0.0134 0.0874 0.0109

9.0 2.357 626000. 0.4453 0.2363 0.0143 0.1076 0.0112

11.0 2.818 1147000. 0.4469 0.2728 0.0149 0.1244 0.0114

13.0 2.818 1781000. 0.4205 0.2113 0.0139 0.1130 0.0111

15.0 2.818 2307000. 0.3546 0.1459 0.0129 0.0993 0.0105

17.0 2.818 2471000. 0.2608 0.0895 0.0121 0.0848 0.0101

19.0 2.836 2471000. 0.1868 0.0686 0.0120 0.0726 0.0100

21.0 2.843 2471000. 0.1384 0.0726 0.0121 0.0635 0.0099

23.0 2.838 2471000. 0.1053 0.0705 0.0121 0.0567 0.0097

25.0 2.842 2471000. 0.0820 0.0668 0.0122 0.0515 0.0096

27.0 0.0479 0.0120 0.0421 0.0090

29.0 0.0348 0.0120 0.0365 0.0088

31.0 0.0281 0.0120 0.0343 0.0088

33.0 0.0313 0.0124 0.0357 0.0088

35.0 0.0557 0.0126 0.0412 0.0086

37.0 0.0902 0.0140 0.0513 0.0095

39.0 0.1120 0.0146 0.0531 0.0094

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0273 1 1.5250 1.6130

7.0 0.0345 2 2.1330 2.1880

9.0 0.0417 3 4.6160 4.7250

11.0 0.0472 4 7.1430 7.2050

13.0 0.0370 5 8.7660 8.8970

15.0 0.0266 6 15.1900 15.2900

17.0 0.0175

19.0 0.0179

21.0 0.0212

23.0 0.0226

25.0 0.0233

---------------------------------------------------------------



F.1. COST-OF-ENERGY OPTIMUM DESIGNS 423

Table F.20: Section properties of the turbine with Eann = 2.84× 1013 J, North Sea wind
climate, offshore cost function, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

2.61 199.1 3.497E+09 4.671E+08 4.671E+08 1.524E+08

4.87 235.8 3.532E+09 4.344E+08 1.065E+09 1.176E+08

7.49 204.7 3.063E+09 3.252E+08 8.022E+08 9.474E+07

10.37 175.7 2.627E+09 2.310E+08 5.829E+08 6.321E+07

13.42 146.3 2.189E+09 1.466E+08 4.038E+08 4.114E+07

16.52 114.1 1.702E+09 8.743E+07 2.461E+08 2.470E+07

19.59 84.4 1.255E+09 4.659E+07 1.364E+08 1.332E+07

22.54 72.5 1.076E+09 3.046E+07 8.678E+07 8.720E+06

25.23 48.7 7.203E+08 1.229E+07 3.827E+07 3.616E+06

27.59 27.6 4.129E+08 1.926E+06 1.278E+07 6.707E+05

29.55 18.0 2.675E+08 5.157E+05 8.798E+06 2.251E+05

31.04 8.2 1.182E+08 7.035E+04 1.609E+06 3.197E+04

----------------------------------------------------------------
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Table F.21: Summary of properties of the turbine with Eann = 5.68×1013 J, onshore wind
climate, onshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

51480. 64300. 19760. 55830. 93660. 24970. 4506.

tower towertop platform mooring grid

404000. 323500. 5.056 5.056 3.731

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

10650. 116.40 83.21 4.675 79.08 5596000. 5.680E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.91 1.997 1.000 0.00 0.000 0.0344 1303.0 5

6.69 4.526 0.368 15.95 0.342 0.0344 2847.0 5

11.23 4.552 0.321 13.51 0.379 0.0331 2866.0 5

16.30 4.145 0.313 8.46 0.350 0.0307 2612.0 5

21.83 3.645 0.322 6.78 0.206 0.0277 2183.0 5

27.53 3.301 0.302 5.00 0.138 0.0248 1732.0 5

33.23 2.858 0.315 3.78 0.108 0.0209 1285.0 5

38.82 2.693 0.301 2.30 0.108 0.0211 1113.0 5

44.06 2.180 0.301 0.88 0.066 0.0177 684.7 5

48.71 1.713 0.296 -0.34 0.066 0.0105 302.4 5

52.73 1.692 0.223 -0.51 0.122 0.0076 168.8 5

55.93 1.213 0.206 0.05 0.073 0.0046 60.5 5

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.700 357800. 0.4389 0.1602 0.0124 0.0643 0.0102

7.0 0.974 987900. 0.4417 0.2112 0.0132 0.0844 0.0103

9.0 1.252 2102000. 0.4421 0.2603 0.0141 0.1034 0.0104

11.0 1.358 3711000. 0.4276 0.2306 0.0136 0.1031 0.0102

13.0 1.358 5130000. 0.3581 0.1513 0.0123 0.0898 0.0097

15.0 1.358 5596000. 0.2543 0.0787 0.0113 0.0756 0.0094

17.0 1.365 5596000. 0.1747 0.0489 0.0110 0.0640 0.0093

19.0 1.372 5596000. 0.1251 0.0559 0.0111 0.0566 0.0092

21.0 1.376 5596000. 0.0927 0.0575 0.0110 0.0519 0.0090

23.0 1.385 5596000. 0.0705 0.0683 0.0111 0.0513 0.0091

25.0 1.393 5596000. 0.0549 0.0860 0.0115 0.0526 0.0090

27.0 0.0964 0.0118 0.0528 0.0087

29.0 0.0991 0.0122 0.0536 0.0090

31.0 0.0891 0.0119 0.0522 0.0088

33.0 0.0876 0.0122 0.0509 0.0088

35.0 0.1069 0.0134 0.0458 0.0087

37.0 0.1199 0.0138 0.0466 0.0085

39.0 0.1245 0.0142 0.0500 0.0091

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0406 1 0.9699 1.0040

7.0 0.0522 2 1.1450 1.1720

9.0 0.0637 3 3.2220 3.2580

11.0 0.0549 4 3.9690 3.9970

13.0 0.0341 5 6.7800 6.8160

15.0 0.0182 6 8.7690 8.7940

17.0 0.0206

19.0 0.0259

21.0 0.0290

23.0 0.0299

25.0 0.0328

---------------------------------------------------------------
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Table F.22: Section properties of the turbine with Eann = 5.68 × 1013 J, onshore wind
climate, onshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

4.80 344.2 1.579E+10 7.613E+09 7.613E+09 9.837E+08

8.97 627.1 1.401E+10 5.610E+09 6.641E+09 6.215E+08

13.77 565.9 1.304E+10 4.167E+09 6.390E+09 5.019E+08

19.07 472.4 1.093E+10 2.771E+09 4.491E+09 3.417E+08

24.68 382.8 8.781E+09 1.805E+09 2.820E+09 2.220E+08

30.39 303.6 7.046E+09 1.060E+09 1.904E+09 1.370E+08

36.03 230.0 5.250E+09 6.388E+08 1.106E+09 8.257E+07

41.45 212.5 4.912E+09 4.881E+08 9.086E+08 6.476E+07

46.40 147.0 3.379E+09 2.190E+08 4.235E+08 2.992E+07

50.73 75.3 1.677E+09 6.537E+07 1.564E+08 9.356E+06

54.34 52.7 1.194E+09 2.709E+07 1.296E+08 4.681E+06

57.08 26.6 5.766E+08 5.674E+06 3.858E+07 1.149E+06

----------------------------------------------------------------
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Table F.23: Summary of properties of the turbine with Eann = 5.68 × 1013 J, North Sea
wind climate, offshore cost function, and fiberglass spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

25930. 32320. 7134. 39340. 66750. 17800. 3357.

tower towertop platform mooring grid

233900. 201600. 3.324 3.324 3.493

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5468. 83.44 66.72 3.187 84.62 5239000. 5.680E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.09 1.765 1.000 0.00 0.000 0.0342 933.7 4

4.80 4.493 0.327 21.23 0.663 0.0342 1386.0 4

8.05 4.169 0.322 13.25 0.580 0.0323 1352.0 4

11.68 3.940 0.305 8.98 0.484 0.0301 1288.0 4

15.64 3.538 0.308 6.42 0.297 0.0271 1091.0 4

19.73 3.368 0.249 5.67 0.136 0.0258 933.9 4

23.82 2.696 0.305 4.39 0.082 0.0208 646.3 4

27.83 2.398 0.267 3.23 0.064 0.0176 454.0 4

31.58 1.908 0.212 0.79 0.103 0.0176 296.4 4

34.92 1.526 0.221 -0.67 0.113 0.0113 149.3 4

37.80 1.343 0.147 1.89 0.348 0.0086 81.2 4

40.09 1.033 0.141 1.28 0.329 0.0053 33.8 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.883 191600. 0.4577 0.1499 0.0126 0.0716 0.0109

7.0 1.229 530100. 0.4615 0.2025 0.0135 0.0958 0.0112

9.0 1.574 1129000. 0.4623 0.2525 0.0144 0.1198 0.0115

11.0 1.923 2061000. 0.4624 0.3011 0.0154 0.1436 0.0118

13.0 2.028 3322000. 0.4515 0.2816 0.0148 0.1450 0.0117

15.0 2.028 4565000. 0.4039 0.2283 0.0137 0.1339 0.0112

17.0 2.028 5239000. 0.3184 0.1707 0.0126 0.1215 0.0105

19.0 2.034 5239000. 0.2281 0.1275 0.0123 0.1096 0.0103

21.0 2.042 5239000. 0.1689 0.1068 0.0124 0.0992 0.0101

23.0 2.045 5239000. 0.1286 0.1026 0.0126 0.0898 0.0098

25.0 2.047 5239000. 0.1001 0.0874 0.0127 0.0787 0.0097

27.0 0.0463 0.0127 0.0595 0.0091

29.0 0.0203 0.0127 0.0438 0.0088

31.0 0.0129 0.0131 0.0392 0.0091

33.0 0.0303 0.0133 0.0407 0.0090

35.0 0.0619 0.0137 0.0448 0.0090

37.0 0.0952 0.0148 0.0552 0.0099

39.0 0.1140 0.0147 0.0550 0.0096

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0337 1 1.3700 1.4220

7.0 0.0429 2 1.9240 1.9560

9.0 0.0518 3 3.9300 3.9970

11.0 0.0609 4 6.5490 6.5840

13.0 0.0546 5 7.9260 7.9950

15.0 0.0420 6 14.0300 14.0900

17.0 0.0279

19.0 0.0226

21.0 0.0250

23.0 0.0277

25.0 0.0279

---------------------------------------------------------------
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Table F.24: Section properties of the turbine with Eann = 5.68× 1013 J, North Sea wind
climate, offshore cost function, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.44 344.3 6.049E+09 2.266E+09 2.266E+09 7.389E+08

6.42 425.8 6.208E+09 1.991E+09 4.354E+09 5.261E+08

9.87 372.4 5.432E+09 1.458E+09 3.307E+09 3.903E+08

13.66 324.9 4.754E+09 1.034E+09 2.644E+09 2.865E+08

17.69 266.8 3.897E+09 6.918E+08 1.782E+09 1.923E+08

21.78 228.4 3.383E+09 3.705E+08 1.439E+09 1.075E+08

25.82 161.4 2.350E+09 2.364E+08 6.602E+08 6.743E+07

29.70 120.9 1.770E+09 1.106E+08 4.189E+08 3.197E+07

33.25 88.8 1.319E+09 3.363E+07 1.925E+08 1.092E+07

36.36 51.9 7.595E+08 1.329E+07 8.300E+07 4.366E+06

38.94 35.4 5.225E+08 3.180E+06 4.995E+07 1.321E+06

40.91 20.8 3.007E+08 9.767E+05 1.966E+07 4.214E+05

----------------------------------------------------------------
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Table F.25: Summary of properties of the turbine with Eann = 5.68 × 1013 J, North Sea
wind climate, offshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

21970. 30440. 6094. 36460. 65590. 17490. 3328.

tower towertop platform mooring grid

217700. 190400. 3.172 3.172 3.424

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5560. 84.14 67.07 3.216 92.54 5136000. 5.680E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.10 1.305 1.000 0.00 0.000 0.0283 502.6 5

4.84 3.789 0.287 17.98 0.467 0.0283 1255.0 5

8.12 3.419 0.309 13.39 0.473 0.0255 1195.0 5

11.78 3.137 0.307 7.95 0.435 0.0236 1112.0 5

15.78 2.871 0.302 5.94 0.245 0.0219 969.1 5

19.90 2.523 0.302 4.72 0.164 0.0193 760.7 5

24.02 2.245 0.302 2.70 0.101 0.0167 586.1 5

28.06 1.900 0.293 2.39 0.127 0.0143 399.6 5

31.85 1.633 0.299 0.64 0.081 0.0123 272.5 5

35.21 1.413 0.255 0.13 0.056 0.0095 154.1 5

38.12 1.410 0.142 0.92 0.067 0.0074 84.5 5

40.43 1.033 0.144 0.20 0.336 0.0044 32.6 5

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.949 193100. 0.4537 0.1539 0.0129 0.0632 0.0102

7.0 1.321 536400. 0.4592 0.2064 0.0140 0.0839 0.0102

9.0 1.689 1144000. 0.4607 0.2547 0.0150 0.1037 0.0103

11.0 2.062 2089000. 0.4609 0.3023 0.0161 0.1232 0.0103

13.0 2.200 3367000. 0.4500 0.2772 0.0155 0.1244 0.0102

15.0 2.200 4540000. 0.3950 0.2096 0.0142 0.1135 0.0098

17.0 2.200 5124000. 0.3063 0.1399 0.0132 0.1015 0.0093

19.0 2.200 5136000. 0.2199 0.0929 0.0128 0.0900 0.0092

21.0 2.203 5136000. 0.1629 0.0802 0.0126 0.0813 0.0090

23.0 2.203 5136000. 0.1240 0.0789 0.0125 0.0735 0.0087

25.0 2.201 5136000. 0.0965 0.0725 0.0125 0.0666 0.0086

27.0 0.0542 0.0124 0.0561 0.0080

29.0 0.0412 0.0125 0.0479 0.0079

31.0 0.0410 0.0126 0.0428 0.0075

33.0 0.0528 0.0130 0.0429 0.0078

35.0 0.0582 0.0135 0.0463 0.0081

37.0 0.0748 0.0147 0.0501 0.0090

39.0 0.1132 0.0164 0.0517 0.0091

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0319 1 1.3110 1.3710

7.0 0.0406 2 1.6330 1.6780

9.0 0.0488 3 4.1640 4.2320

11.0 0.0571 4 5.4790 5.5260

13.0 0.0502 5 9.0610 9.1290

15.0 0.0353 6 12.4900 12.5300

17.0 0.0202

19.0 0.0184

21.0 0.0221

23.0 0.0249

25.0 0.0257

---------------------------------------------------------------
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Table F.26: Section properties of the turbine with Eann = 5.68× 1013 J, North Sea wind
climate, offshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.47 183.8 8.430E+09 1.719E+09 1.719E+09 2.221E+08

6.48 382.3 9.012E+09 1.636E+09 3.144E+09 1.995E+08

9.95 326.5 7.542E+09 1.268E+09 2.174E+09 1.612E+08

13.78 278.2 6.422E+09 8.985E+08 1.580E+09 1.158E+08

17.84 235.1 5.432E+09 6.186E+08 1.137E+09 8.136E+07

21.96 184.5 4.244E+09 3.728E+08 7.050E+08 4.998E+07

26.04 145.1 3.318E+09 2.296E+08 4.533E+08 3.153E+07

29.95 105.6 2.410E+09 1.134E+08 2.460E+08 1.533E+07

33.53 81.0 1.827E+09 6.549E+07 1.430E+08 9.056E+06

36.66 53.1 1.211E+09 2.441E+07 7.930E+07 3.839E+06

39.27 36.5 8.849E+08 5.913E+06 6.812E+07 1.304E+06

41.25 19.9 4.469E+08 1.606E+06 2.224E+07 3.879E+05

----------------------------------------------------------------
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Table F.27: Summary of properties of the turbine with Eann = 1.14 × 1014 J, North Sea
wind climate, offshore cost function, and fiberglass spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

88690. 89670. 33240. 82980. 138900. 37030. 8941.

tower towertop platform mooring grid

587100. 488400. 12.120 12.120 7.236

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

10150. 113.70 81.84 3.549 88.27 10850000. 1.140E+14

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.84 2.619 1.000 0.00 0.000 0.0708 3875.0 4

6.54 5.553 0.393 15.97 0.324 0.0708 4722.0 4

10.97 5.492 0.288 14.22 0.382 0.0798 5135.0 4

15.92 5.134 0.272 9.52 0.351 0.0711 4621.0 4

21.32 4.511 0.277 6.97 0.198 0.0648 3847.0 4

26.89 4.198 0.293 4.98 0.173 0.0448 2655.0 4

32.46 3.714 0.310 3.78 0.145 0.0331 1808.0 4

37.92 3.258 0.293 2.65 0.145 0.0325 1421.0 4

43.04 2.808 0.281 0.90 0.121 0.0224 790.9 4

47.58 2.193 0.246 0.43 0.097 0.0157 387.4 4

51.51 1.991 0.210 0.97 0.165 0.0110 211.1 4

54.63 1.760 0.182 1.27 0.221 0.0061 91.1 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.632 354600. 0.4563 0.1378 0.0117 0.0598 0.0102

7.0 0.880 975600. 0.4576 0.1842 0.0123 0.0791 0.0103

9.0 1.132 2074000. 0.4577 0.2289 0.0129 0.0983 0.0104

11.0 1.383 3787000. 0.4578 0.2722 0.0136 0.1170 0.0104

13.0 1.553 6220000. 0.4554 0.2849 0.0136 0.1271 0.0104

15.0 1.553 8809000. 0.4199 0.2309 0.0126 0.1177 0.0101

17.0 1.553 10520000. 0.3446 0.1749 0.0115 0.1073 0.0096

19.0 1.553 10850000. 0.2546 0.1210 0.0109 0.0960 0.0095

21.0 1.561 10850000. 0.1885 0.0904 0.0108 0.0865 0.0093

23.0 1.569 10850000. 0.1435 0.0785 0.0109 0.0778 0.0093

25.0 1.572 10850000. 0.1117 0.0722 0.0110 0.0692 0.0091

27.0 0.0619 0.0110 0.0603 0.0088

29.0 0.0614 0.0113 0.0553 0.0088

31.0 0.0702 0.0115 0.0528 0.0086

33.0 0.0774 0.0120 0.0535 0.0089

35.0 0.0751 0.0120 0.0540 0.0090

37.0 0.0787 0.0122 0.0546 0.0093

39.0 0.0885 0.0126 0.0522 0.0093

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0351 1 1.0750 1.1160

7.0 0.0442 2 1.4350 1.4620

9.0 0.0534 3 3.2900 3.3330

11.0 0.0625 4 4.6470 4.6740

13.0 0.0630 5 6.5360 6.5810

15.0 0.0466 6 10.1500 10.1800

17.0 0.0293

19.0 0.0207

21.0 0.0222

23.0 0.0264

25.0 0.0278

---------------------------------------------------------------
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Table F.28: Section properties of the turbine with Eann = 1.14× 1014 J, North Sea wind
climate, offshore cost function, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

4.69 1048.9 1.843E+10 1.496E+10 1.496E+10 4.878E+09

8.75 1065.2 1.538E+10 1.027E+10 1.277E+10 2.400E+09

13.44 1038.4 1.540E+10 5.732E+09 1.209E+10 1.500E+09

18.61 855.8 1.274E+10 3.745E+09 9.000E+09 1.014E+09

24.10 690.7 1.026E+10 2.393E+09 5.633E+09 6.450E+08

29.67 476.6 7.027E+09 1.600E+09 3.791E+09 4.192E+08

35.18 331.3 4.849E+09 9.583E+08 2.257E+09 2.640E+08

40.47 277.7 4.081E+09 5.592E+08 1.436E+09 1.489E+08

45.30 173.9 2.550E+09 2.399E+08 7.640E+08 6.652E+07

49.53 98.8 1.450E+09 6.504E+07 2.986E+08 1.971E+07

53.06 67.5 9.902E+08 2.678E+07 1.954E+08 8.879E+06

55.73 41.1 5.934E+08 9.251E+06 1.146E+08 3.346E+06

----------------------------------------------------------------
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Table F.29: Summary of properties of the turbine with Eann = 1.14 × 1014 J, North Sea
wind climate, offshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

54360. 68890. 20200. 77220. 128400. 34250. 8419.

tower towertop platform mooring grid

519100. 400700. 9.822 9.822 7.612

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

9975. 112.70 81.35 3.827 101.30 11420000. 1.140E+14

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.82 1.883 1.000 0.00 0.000 0.0445 1524.0 4

6.48 4.633 0.339 17.01 0.420 0.0445 2967.0 4

10.88 4.642 0.272 12.78 0.450 0.0454 3022.0 4

15.78 4.054 0.308 8.78 0.360 0.0401 2725.0 4

21.13 3.745 0.303 5.77 0.209 0.0366 2374.0 4

26.65 3.274 0.301 4.21 0.158 0.0326 1856.0 4

32.18 2.839 0.301 3.41 0.113 0.0283 1383.0 4

37.59 2.442 0.299 2.47 0.108 0.0242 964.2 4

42.66 2.128 0.300 1.05 0.068 0.0209 659.3 4

47.16 1.783 0.300 -0.36 0.058 0.0150 361.9 4

51.05 1.878 0.177 0.85 0.075 0.0118 208.8 4

54.15 1.456 0.165 0.05 0.150 0.0063 74.6 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.719 345300. 0.4521 0.1484 0.0124 0.0601 0.0101

7.0 1.000 952900. 0.4547 0.1957 0.0132 0.0790 0.0102

9.0 1.284 2026000. 0.4549 0.2410 0.0141 0.0972 0.0102

11.0 1.569 3700000. 0.4550 0.2856 0.0150 0.1148 0.0103

13.0 1.798 6094000. 0.4540 0.3074 0.0154 0.1267 0.0103

15.0 1.798 8707000. 0.4222 0.2355 0.0142 0.1155 0.0100

17.0 1.798 10750000. 0.3581 0.1649 0.0131 0.1036 0.0095

19.0 1.798 11420000. 0.2725 0.1014 0.0121 0.0915 0.0092

21.0 1.799 11420000. 0.2018 0.0708 0.0117 0.0817 0.0091

23.0 1.802 11420000. 0.1536 0.0716 0.0115 0.0742 0.0089

25.0 1.800 11420000. 0.1196 0.0689 0.0114 0.0663 0.0088

27.0 0.0538 0.0112 0.0584 0.0084

29.0 0.0472 0.0111 0.0520 0.0080

31.0 0.0513 0.0112 0.0503 0.0081

33.0 0.0636 0.0114 0.0492 0.0078

35.0 0.0798 0.0117 0.0518 0.0079

37.0 0.0894 0.0122 0.0533 0.0081

39.0 0.0833 0.0122 0.0537 0.0082

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0365 1 1.0380 1.0910

7.0 0.0464 2 1.2500 1.2910

9.0 0.0562 3 3.2910 3.3480

11.0 0.0660 4 4.0510 4.0950

13.0 0.0702 5 7.3190 7.3750

15.0 0.0503 6 9.1810 9.2230

17.0 0.0316

19.0 0.0177

21.0 0.0195

23.0 0.0253

25.0 0.0284

---------------------------------------------------------------
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Table F.30: Section properties of the turbine with Eann = 1.14× 1014 J, North Sea wind
climate, offshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

4.65 416.0 1.908E+10 8.070E+09 8.070E+09 1.043E+09

8.68 675.1 1.647E+10 6.210E+09 7.998E+09 7.287E+08

13.33 616.4 1.589E+10 4.042E+09 7.682E+09 4.977E+08

18.45 509.0 1.269E+10 3.077E+09 4.761E+09 3.857E+08

23.89 429.8 1.072E+10 2.166E+09 3.488E+09 2.757E+08

29.41 336.2 8.375E+09 1.275E+09 2.116E+09 1.649E+08

34.88 255.6 6.340E+09 7.220E+08 1.237E+09 9.506E+07

40.12 190.1 4.694E+09 3.898E+08 7.002E+08 4.912E+07

44.91 146.2 3.582E+09 2.281E+08 4.196E+08 3.127E+07

49.11 93.1 2.231E+09 9.966E+07 2.040E+08 1.437E+07

52.60 67.4 1.730E+09 3.235E+07 2.017E+08 5.732E+06

55.25 34.0 8.080E+08 7.796E+06 7.287E+07 1.630E+06

----------------------------------------------------------------
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Table F.31: Summary of properties of the turbine with Eann = 2.28 × 1014 J, North Sea
wind climate, offshore cost function, and carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

145200. 169000. 73810. 165600. 264100. 70420. 19290.

tower towertop platform mooring grid

1314000. 916500. 35.370 35.370 15.030

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

18660. 154.10 102.10 4.791 98.99 22550000. 2.280E+14

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

3.85 2.735 1.000 0.00 0.000 0.0521 3568.0 6

8.86 7.362 0.310 16.77 0.386 0.0521 8300.0 6

14.87 6.840 0.279 14.62 0.388 0.0510 7921.0 6

21.57 6.237 0.304 8.32 0.369 0.0455 7435.0 6

28.89 5.652 0.300 6.17 0.215 0.0420 6381.0 6

36.44 4.941 0.300 4.76 0.129 0.0370 4948.0 6

44.00 4.371 0.301 4.19 0.100 0.0321 3768.0 6

51.39 3.754 0.302 2.62 0.102 0.0277 2649.0 6

58.33 3.211 0.301 1.16 0.076 0.0241 1770.0 6

64.49 2.753 0.301 -0.36 0.076 0.0158 1015.0 6

69.81 2.550 0.197 0.71 0.088 0.0122 497.3 6

74.05 1.829 0.203 0.39 0.235 0.0064 160.2 6

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.496 648900. 0.4541 0.1383 0.0126 0.0551 0.0102

7.0 0.693 1782000. 0.4544 0.1835 0.0136 0.0726 0.0102

9.0 0.891 3787000. 0.4545 0.2263 0.0146 0.0896 0.0103

11.0 1.089 6915000. 0.4545 0.2680 0.0156 0.1062 0.0104

13.0 1.284 11410000. 0.4545 0.3077 0.0166 0.1220 0.0104

15.0 1.284 16640000. 0.4312 0.2430 0.0152 0.1123 0.0101

17.0 1.284 20920000. 0.3725 0.1750 0.0141 0.1012 0.0097

19.0 1.284 22550000. 0.2876 0.1113 0.0134 0.0897 0.0094

21.0 1.284 22550000. 0.2130 0.0765 0.0131 0.0794 0.0093

23.0 1.289 22550000. 0.1621 0.0754 0.0130 0.0725 0.0093

25.0 1.288 22550000. 0.1263 0.0742 0.0130 0.0643 0.0089

27.0 0.0597 0.0130 0.0568 0.0089

29.0 0.0535 0.0131 0.0501 0.0085

31.0 0.0595 0.0132 0.0485 0.0085

33.0 0.0724 0.0134 0.0476 0.0083

35.0 0.0854 0.0141 0.0507 0.0087

37.0 0.0857 0.0138 0.0510 0.0086

39.0 0.0779 0.0140 0.0515 0.0086

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0420 1 0.8009 0.8353

7.0 0.0539 2 0.9761 1.0030

9.0 0.0657 3 2.5960 2.6330

11.0 0.0775 4 3.2060 3.2340

13.0 0.0889 5 5.7310 5.7680

15.0 0.0654 6 7.2270 7.2540

17.0 0.0420

19.0 0.0221

21.0 0.0230

23.0 0.0292

25.0 0.0339

---------------------------------------------------------------
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Table F.32: Section properties of the turbine with Eann = 2.28× 1014 J, North Sea wind
climate, offshore cost function, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

6.36 712.2 3.266E+10 2.943E+10 2.943E+10 3.802E+09

11.87 1380.6 3.234E+10 2.550E+10 3.937E+10 3.007E+09

18.23 1181.3 2.843E+10 1.605E+10 2.971E+10 1.873E+09

25.24 1015.4 2.386E+10 1.305E+10 2.104E+10 1.574E+09

32.68 844.8 1.989E+10 8.726E+09 1.451E+10 1.068E+09

40.23 655.1 1.538E+10 5.162E+09 8.719E+09 6.392E+08

47.71 509.2 1.190E+10 3.133E+09 5.418E+09 3.930E+08

54.88 381.9 8.887E+09 1.733E+09 3.057E+09 2.207E+08

61.43 287.0 6.659E+09 9.424E+08 1.715E+09 1.225E+08

67.17 190.8 4.150E+09 4.087E+08 8.576E+08 5.619E+07

71.95 117.3 2.734E+09 1.082E+08 5.651E+08 1.772E+07

75.57 53.3 1.162E+09 2.468E+07 1.576E+08 4.575E+06

----------------------------------------------------------------
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F.2 Designs for Rated Power Study

The designs in Tables F.33 through F.36 belong to the discussion in Section 6.3.

F.3 Aerodynamic Optimum Designs

Initially, there was some doubt whether, in moving from the onshore to North Sea wind
climate, it was appropriate to scale the windspeed at which maximum CP is obtained.
Figure E.1 indicates that, in order to remain at the same location relative to the peak
in available energy, the design windspeed should change from the range of 7-9 m/s, to
11-13 m/s. Both cases were run. The resulting designs are summarized in Tables F.39
and F.41. Despite quite different blade profiles, the mass of the blades is within 10 kg of
each other. However, the tower-top mass of the 11-13 m/s design is lower, which indicates
(based upon the mass calculations of Chapter 4) that the loads delivered by the rotor to
the support structure are less severe.
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Table F.33: Summary of properties of a turbine whose rated power was restricted to a
value typical of existing designs, with Prated/A = 460 W/m2; Eann = 8.13× 1013 J, North
Sea wind climate, offshore cost function, carbon fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

52590. 63770. 20380. 51960. 105500. 28130. 4144.

tower towertop platform mooring grid

396500. 335500. 8.724 8.724 3.333

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

10860. 117.60 83.79 4.736 78.51 5000000. 8.126E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.94 2.405 1.000 0.00 0.000 0.0333 1537.0 5

6.76 5.288 0.379 16.41 0.418 0.0333 3357.0 5

11.35 4.609 0.282 14.43 0.418 0.0348 2856.0 5

16.46 4.157 0.305 7.88 0.412 0.0308 2622.0 5

22.05 3.720 0.304 5.20 0.257 0.0280 2208.0 5

27.81 3.151 0.303 3.26 0.218 0.0255 1704.0 5

33.57 2.836 0.301 2.65 0.102 0.0213 1280.0 5

39.22 2.312 0.303 1.38 0.090 0.0180 843.0 5

44.51 2.053 0.302 0.40 0.067 0.0152 573.4 5

49.22 1.739 0.303 -0.54 0.067 0.0108 320.2 5

53.27 1.567 0.220 -0.59 0.067 0.0080 161.2 5

56.51 1.356 0.168 0.77 0.077 0.0049 67.4 5

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.707 371900. 0.4474 0.1730 0.0123 0.0709 0.0101

7.0 0.983 1027000. 0.4503 0.2255 0.0132 0.0933 0.0102

9.0 1.262 2184000. 0.4505 0.2750 0.0140 0.1144 0.0102

11.0 1.335 3772000. 0.4261 0.2217 0.0132 0.1097 0.0100

13.0 1.335 4956000. 0.3392 0.1336 0.0120 0.0949 0.0095

15.0 1.335 5000000. 0.2228 0.0697 0.0112 0.0797 0.0091

17.0 1.352 5000000. 0.1530 0.0644 0.0110 0.0706 0.0091

19.0 1.356 5000000. 0.1096 0.0694 0.0110 0.0634 0.0090

21.0 1.361 5000000. 0.0812 0.0657 0.0109 0.0578 0.0088

23.0 1.371 5000000. 0.0618 0.0732 0.0109 0.0550 0.0086

25.0 1.384 5000000. 0.0481 0.0804 0.0109 0.0521 0.0081

27.0 0.0883 0.0113 0.0531 0.0083

29.0 0.0949 0.0116 0.0536 0.0084

31.0 0.0893 0.0113 0.0537 0.0083

33.0 0.0908 0.0119 0.0539 0.0088

35.0 0.1154 0.0132 0.0498 0.0083

37.0 0.1307 0.0142 0.0508 0.0088

39.0 0.1349 0.0140 0.0531 0.0087

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0370 1 1.0150 1.0500

7.0 0.0469 2 1.2750 1.3010

9.0 0.0568 3 3.0920 3.1300

11.0 0.0454 4 3.9350 3.9630

13.0 0.0263 5 6.7100 6.7470

15.0 0.0164 6 8.6700 8.6960

17.0 0.0235

19.0 0.0264

21.0 0.0270

23.0 0.0289

25.0 0.0311

---------------------------------------------------------------
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Table F.34: Section properties of a turbine whose rated power was restricted to a value
typical of existing designs, with Prated/A = 460 W/m2; Eann = 8.13 × 1013 J, North Sea
wind climate, offshore cost function, carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

4.85 402.2 1.845E+10 1.297E+10 1.297E+10 1.675E+09

9.05 732.1 1.616E+10 9.331E+09 1.091E+10 1.013E+09

13.90 558.3 1.329E+10 3.464E+09 6.614E+09 4.163E+08

19.25 469.4 1.093E+10 2.662E+09 4.509E+09 3.329E+08

24.93 383.2 8.914E+09 1.721E+09 2.986E+09 2.184E+08

30.69 295.7 6.874E+09 9.480E+08 1.660E+09 1.221E+08

36.39 226.8 5.240E+09 5.777E+08 1.078E+09 7.640E+07

41.86 159.3 3.655E+09 2.698E+08 5.156E+08 3.656E+07

46.86 121.9 2.773E+09 1.607E+08 3.253E+08 2.244E+07

51.24 78.9 1.755E+09 7.322E+07 1.663E+08 1.088E+07

54.88 49.8 1.142E+09 2.150E+07 1.023E+08 3.708E+06

57.64 29.4 6.561E+08 5.518E+06 5.500E+07 1.187E+06

----------------------------------------------------------------
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Table F.35: Summary of properties of a turbine whose rated power was an active design
variable; Eann = 8.13 × 1013 J, North Sea wind climate, offshore cost function, carbon
fiber spar

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

37740. 50170. 12690. 52430. 96480. 25730. 4961.

tower towertop platform mooring grid

341600. 289200. 6.183 6.183 4.586

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

8165. 102.00 75.98 3.863 92.56 6879000. 8.126E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.55 1.712 1.000 0.00 0.000 0.0286 813.0 5

5.87 4.786 0.298 18.48 0.545 0.0286 2238.0 5

9.84 4.128 0.303 12.25 0.502 0.0310 2068.0 5

14.28 3.806 0.303 7.30 0.417 0.0282 1910.0 5

19.13 3.364 0.299 5.14 0.230 0.0272 1661.0 5

24.12 2.938 0.315 4.39 0.148 0.0228 1272.0 5

29.12 2.667 0.297 3.44 0.085 0.0202 987.0 5

34.02 2.306 0.298 3.05 0.066 0.0173 700.8 5

38.61 2.006 0.296 1.17 0.050 0.0170 527.2 5

42.69 1.492 0.298 -0.03 0.050 0.0103 224.8 5

46.21 1.400 0.223 -1.25 0.049 0.0076 120.0 5

49.01 1.350 0.193 1.15 0.286 0.0048 59.6 5

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.797 278800. 0.4460 0.1521 0.0128 0.0635 0.0103

7.0 1.109 772000. 0.4501 0.2016 0.0138 0.0838 0.0103

9.0 1.421 1643000. 0.4506 0.2483 0.0148 0.1032 0.0104

11.0 1.737 2999000. 0.4506 0.2948 0.0158 0.1221 0.0105

13.0 1.816 4785000. 0.4355 0.2538 0.0151 0.1197 0.0103

15.0 1.816 6339000. 0.3756 0.1792 0.0139 0.1076 0.0098

17.0 1.816 6879000. 0.2800 0.1047 0.0131 0.0939 0.0095

19.0 1.820 6879000. 0.2006 0.0668 0.0127 0.0831 0.0095

21.0 1.827 6879000. 0.1485 0.0728 0.0127 0.0765 0.0094

23.0 1.824 6879000. 0.1131 0.0856 0.0126 0.0711 0.0093

25.0 1.822 6879000. 0.0880 0.0859 0.0126 0.0669 0.0092

27.0 0.0771 0.0125 0.0596 0.0087

29.0 0.0649 0.0125 0.0525 0.0086

31.0 0.0615 0.0126 0.0475 0.0085

33.0 0.0689 0.0130 0.0469 0.0084

35.0 0.0710 0.0127 0.0475 0.0083

37.0 0.0756 0.0134 0.0519 0.0091

39.0 0.0953 0.0141 0.0503 0.0089

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0354 1 1.0980 1.1480

7.0 0.0451 2 1.3620 1.4000

9.0 0.0545 3 3.5490 3.6030

11.0 0.0641 4 4.5320 4.5710

13.0 0.0526 5 7.5140 7.5680

15.0 0.0352 6 9.9920 10.0300

17.0 0.0195

19.0 0.0196

21.0 0.0240

23.0 0.0285

25.0 0.0293

---------------------------------------------------------------
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Table F.36: Section properties of a turbine whose rated power was an active design vari-
able; Eann = 8.13 × 1013 J, North Sea wind climate, offshore cost function, carbon fiber
spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

4.21 245.4 1.125E+10 3.984E+09 3.984E+09 5.147E+08

7.85 562.9 1.250E+10 3.670E+09 6.875E+09 4.343E+08

12.06 466.2 1.088E+10 2.582E+09 4.428E+09 3.240E+08

16.70 394.3 9.173E+09 1.849E+09 3.232E+09 2.345E+08

21.62 332.4 7.764E+09 1.193E+09 2.119E+09 1.434E+08

26.61 254.6 5.839E+09 7.484E+08 1.264E+09 9.572E+07

31.56 201.7 4.663E+09 4.443E+08 8.606E+08 5.593E+07

36.30 152.7 3.507E+09 2.507E+08 5.017E+08 3.236E+07

40.63 129.3 2.979E+09 1.586E+08 3.178E+08 2.069E+07

44.43 63.9 1.425E+09 4.221E+07 9.971E+07 6.090E+06

47.59 42.8 9.748E+08 1.500E+07 7.037E+07 2.614E+06

49.99 30.0 6.558E+08 7.113E+06 5.460E+07 1.449E+06

----------------------------------------------------------------
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Table F.37: Summary of properties of the maximum CP design; Eann = 1.42 × 1013 J,
onshore wind climate, LF ≤ 0.95

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

11620. 14230. 2363. 13250. 27590. 7357. 837.

tower towertop platform mooring grid

87840. 86250. 1.144 1.144 0.833

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

2988. 61.68 55.84 3.247 63.66 1250000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.54 1.079 1.000 0.00 0.000 0.0349 424.9 3

3.55 3.192 0.282 16.93 0.352 0.0349 628.7 3

5.95 2.955 0.300 13.28 0.352 0.0313 601.5 3

8.64 2.675 0.280 8.53 0.324 0.0296 554.5 3

11.56 2.414 0.259 6.14 0.294 0.0274 472.4 3

14.59 2.173 0.249 4.23 0.264 0.0246 383.8 3

17.61 1.867 0.217 2.50 0.239 0.0238 302.1 3

20.57 1.667 0.189 1.88 0.216 0.0196 210.9 3

23.35 1.469 0.174 1.00 0.194 0.0158 139.0 3

25.81 1.294 0.154 0.11 0.174 0.0122 86.5 3

27.94 1.180 0.143 -0.39 0.156 0.0080 48.5 3

29.64 0.955 0.138 -0.56 0.182 0.0046 21.0 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.193 107900. 0.4714 0.1585 0.0120 0.0655 0.0109

7.0 1.661 299200. 0.4767 0.2120 0.0127 0.0869 0.0112

9.0 2.064 638800. 0.4787 0.2493 0.0131 0.1032 0.0114

11.0 2.064 1027000. 0.4216 0.1964 0.0118 0.0920 0.0109

13.0 2.064 1249000. 0.3106 0.1428 0.0106 0.0801 0.0104

15.0 2.064 1250000. 0.2023 0.0802 0.0100 0.0677 0.0102

17.0 2.117 1250000. 0.1390 0.0386 0.0100 0.0586 0.0100

19.0 2.189 1250000. 0.0996 0.0196 0.0104 0.0523 0.0100

21.0 2.264 1250000. 0.0737 0.0187 0.0107 0.0478 0.0097

23.0 2.339 1250000. 0.0561 0.0287 0.0112 0.0447 0.0095

25.0 2.403 1250000. 0.0437 0.0420 0.0116 0.0440 0.0094

27.0 0.0636 0.0126 0.0461 0.0099

29.0 0.0980 0.0133 0.0485 0.0096

31.0 0.1148 0.0135 0.0463 0.0099

33.0 0.1164 0.0137 0.0480 0.0102

35.0 0.1152 0.0132 0.0472 0.0100

37.0 0.1171 0.0136 0.0482 0.0099

39.0 0.1207 0.0142 0.0483 0.0097

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0276 1 1.4570 1.5290

7.0 0.0345 2 2.2100 2.2480

9.0 0.0392 3 4.0970 4.1860

11.0 0.0311 4 7.7420 7.7830

13.0 0.0222 5 9.0210 9.1070

15.0 0.0167 6 16.0400 16.1200

17.0 0.0161

19.0 0.0169

21.0 0.0180

23.0 0.0204

25.0 0.0225

---------------------------------------------------------------
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Table F.38: Section properties of the maximum CP turbine with Eann = 1.42 × 1013 J,
onshore wind climate, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

2.54 216.0 3.795E+09 5.173E+08 5.173E+08 1.687E+08

4.75 265.6 3.999E+09 5.089E+08 1.373E+09 1.415E+08

7.29 228.9 3.427E+09 4.203E+08 1.035E+09 1.221E+08

10.10 192.7 2.896E+09 2.549E+08 7.212E+08 7.188E+07

13.08 160.8 2.426E+09 1.498E+08 4.968E+08 4.413E+07

16.10 131.9 1.991E+09 9.214E+07 3.381E+08 2.786E+07

19.09 108.6 1.653E+09 4.282E+07 2.027E+08 1.387E+07

21.96 83.3 1.272E+09 1.991E+07 1.308E+08 6.895E+06

24.58 61.9 9.431E+08 9.732E+06 8.098E+07 3.570E+06

26.88 41.2 6.228E+08 3.946E+06 4.818E+07 1.602E+06

28.79 29.0 4.312E+08 1.948E+06 3.251E+07 8.353E+05

30.24 17.9 2.595E+08 6.879E+05 1.503E+07 3.047E+05

----------------------------------------------------------------
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Table F.39: Summary of properties of the maximum CP design; maximum CP at V∞ = 7
and 9 m/s; Eann = 1.42× 1013 J, North Sea wind climate, LF ≤ 0.95, blade mass limited
to 2,200 kg each

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

6268. 8378. 920. 9982. 21120. 5631. 720.

tower towertop platform mooring grid

54110. 62010. 0.597 0.597 0.833

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

1558. 44.54 47.27 1.549 67.08 1250000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.11 0.903 1.000 0.00 0.000 0.0273 200.9 3

2.56 2.684 0.280 16.07 0.442 0.0273 308.9 3

4.30 2.579 0.315 14.81 0.442 0.0240 308.8 3

6.24 2.294 0.247 9.47 0.419 0.0248 286.0 3

8.35 2.146 0.232 7.43 0.396 0.0228 254.4 3

10.53 1.895 0.218 5.25 0.372 0.0209 205.6 3

12.72 1.670 0.204 4.62 0.334 0.0222 181.6 3

14.85 1.518 0.190 2.89 0.298 0.0190 135.2 3

16.86 1.382 0.176 2.28 0.266 0.0192 107.7 3

18.64 1.233 0.162 1.75 0.226 0.0096 51.6 3

20.18 1.181 0.148 2.08 0.194 0.0065 31.5 3

21.40 1.081 0.141 1.53 0.372 0.0045 17.2 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.467 56550. 0.4740 0.1225 0.0111 0.0444 0.0106

7.0 2.048 156700. 0.4785 0.1674 0.0115 0.0582 0.0109

9.0 2.626 335100. 0.4816 0.2117 0.0120 0.0720 0.0111

11.0 3.012 610700. 0.4807 0.2336 0.0120 0.0805 0.0112

13.0 3.012 923600. 0.4404 0.2071 0.0111 0.0774 0.0109

15.0 3.012 1162000. 0.3607 0.1756 0.0102 0.0726 0.0105

17.0 3.012 1250000. 0.2665 0.1386 0.0093 0.0666 0.0103

19.0 3.043 1250000. 0.1909 0.1012 0.0089 0.0612 0.0100

21.0 3.116 1250000. 0.1414 0.0748 0.0089 0.0567 0.0097

23.0 3.196 1250000. 0.1076 0.0585 0.0088 0.0517 0.0093

25.0 3.269 1250000. 0.0838 0.0498 0.0094 0.0493 0.0094

27.0 0.0354 0.0099 0.0418 0.0095

29.0 0.0387 0.0103 0.0373 0.0095

31.0 0.0511 0.0108 0.0355 0.0098

33.0 0.0697 0.0111 0.0325 0.0098

35.0 0.0828 0.0115 0.0335 0.0101

37.0 0.0813 0.0110 0.0330 0.0100

39.0 0.0823 0.0113 0.0336 0.0101

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0224 1 2.0580 2.1500

7.0 0.0273 2 3.2120 3.2590

9.0 0.0324 3 6.6680 6.7690

11.0 0.0342 4 12.5500 12.6000

13.0 0.0293 5 14.6100 14.7100

15.0 0.0236 6 26.3300 26.4300

17.0 0.0177

19.0 0.0152

21.0 0.0146

23.0 0.0154

25.0 0.0166

---------------------------------------------------------------
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Table F.40: Section properties of a turbine optimized for maximum CP at 7 and 9 m/s,
with Eann = 1.42× 1013 J, North Sea wind climate, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

1.84 138.8 2.438E+09 2.339E+08 2.339E+08 7.630E+07

3.43 177.8 2.666E+09 2.374E+08 6.579E+08 6.709E+07

5.27 159.4 2.367E+09 2.415E+08 5.629E+08 6.923E+07

7.29 135.2 2.039E+09 1.038E+08 3.760E+08 3.149E+07

9.44 116.5 1.761E+09 6.954E+07 2.927E+08 2.182E+07

11.63 94.2 1.426E+09 3.869E+07 1.890E+08 1.258E+07

13.79 85.0 1.292E+09 2.363E+07 1.269E+08 7.927E+06

15.86 67.4 1.025E+09 1.348E+07 8.862E+07 4.688E+06

17.75 60.4 9.222E+08 8.543E+06 6.530E+07 3.105E+06

19.41 33.6 5.009E+08 3.171E+06 3.810E+07 1.251E+06

20.79 25.7 3.777E+08 1.808E+06 3.076E+07 7.616E+05

21.84 19.8 2.854E+08 1.011E+06 2.180E+07 4.406E+05

----------------------------------------------------------------
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Table F.41: Summary of properties of the maximum CP design; maximum CP at V∞ = 11
and 13 m/s; Eann = 1.42×1013 J, North Sea wind climate, LF ≤ 0.95, blade mass limited
to 2,200 kg each

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

6276. 7893. 909. 9270. 21050. 5613. 745.

tower towertop platform mooring grid

55730. 60760. 0.590 0.590 0.833

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

1517. 43.95 46.98 1.234 73.05 1250000. 1.420E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.10 1.048 1.000 0.00 0.000 0.0267 225.9 3

2.53 3.127 0.279 15.77 0.407 0.0267 352.6 3

4.24 2.780 0.241 14.40 0.407 0.0267 335.2 3

6.15 2.404 0.241 9.60 0.382 0.0248 294.9 3

8.24 2.100 0.243 5.74 0.356 0.0223 243.7 3

10.39 1.810 0.257 3.27 0.330 0.0195 190.6 3

12.55 1.587 0.250 2.25 0.278 0.0178 150.6 3

14.66 1.438 0.241 1.39 0.228 0.0169 121.6 3

16.64 1.321 0.188 0.93 0.182 0.0125 76.5 3

18.39 1.210 0.158 0.51 0.215 0.0111 54.2 3

19.91 1.135 0.146 0.61 0.242 0.0065 29.8 3

21.12 0.990 0.139 0.63 0.273 0.0051 16.3 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.473 54450. 0.4687 0.1088 0.0111 0.0395 0.0103

7.0 2.048 151100. 0.4739 0.1468 0.0116 0.0514 0.0104

9.0 2.618 323400. 0.4775 0.1833 0.0120 0.0632 0.0105

11.0 3.183 593200. 0.4796 0.2183 0.0123 0.0747 0.0106

13.0 3.324 947800. 0.4642 0.2028 0.0118 0.0743 0.0104

15.0 3.324 1220000. 0.3890 0.1695 0.0108 0.0692 0.0100

17.0 3.324 1250000. 0.2738 0.1331 0.0102 0.0630 0.0099

19.0 3.363 1250000. 0.1961 0.1038 0.0101 0.0585 0.0099

21.0 3.418 1250000. 0.1452 0.0799 0.0102 0.0546 0.0097

23.0 3.485 1250000. 0.1105 0.0608 0.0103 0.0503 0.0094

25.0 3.562 1250000. 0.0861 0.0446 0.0104 0.0453 0.0091

27.0 0.0340 0.0106 0.0384 0.0089

29.0 0.0421 0.0115 0.0362 0.0092

31.0 0.0569 0.0120 0.0355 0.0096

33.0 0.0716 0.0122 0.0351 0.0095

35.0 0.0784 0.0124 0.0302 0.0097

37.0 0.0802 0.0121 0.0315 0.0096

39.0 0.0808 0.0123 0.0322 0.0097

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0211 1 2.3850 2.4840

7.0 0.0252 2 3.9270 3.9770

9.0 0.0293 3 7.5870 7.6950

11.0 0.0333 4 13.2000 13.2600

13.0 0.0303 5 16.0100 16.1200

15.0 0.0238 6 28.9100 29.0000

17.0 0.0177

19.0 0.0165

21.0 0.0166

23.0 0.0164

25.0 0.0168

---------------------------------------------------------------
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Table F.42: Section properties of a turbine optimized for maximum CP at 11 and 13 m/s,
with Eann = 1.42× 1013 J, North Sea wind climate, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

1.81 158.2 2.779E+09 3.625E+08 3.625E+08 1.182E+08

3.38 205.7 3.084E+09 3.721E+08 1.082E+09 1.047E+08

5.20 175.3 2.653E+09 1.913E+08 7.227E+08 5.808E+07

7.20 141.2 2.134E+09 1.143E+08 4.365E+08 3.499E+07

9.32 113.2 1.705E+09 7.034E+07 2.722E+08 2.164E+07

11.47 88.5 1.325E+09 4.494E+07 1.621E+08 1.362E+07

13.60 71.4 1.068E+09 2.627E+07 1.028E+08 8.142E+06

15.65 61.5 9.201E+08 1.730E+07 7.357E+07 5.479E+06

17.51 43.5 6.526E+08 6.391E+06 5.084E+07 2.274E+06

19.15 35.7 5.370E+08 3.124E+06 3.688E+07 1.250E+06

20.51 24.7 3.628E+08 1.555E+06 2.709E+07 6.619E+05

21.55 19.0 2.763E+08 8.112E+05 1.681E+07 3.564E+05

----------------------------------------------------------------
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Table F.43: Summary of properties of the maximum CP design; maximum CP at V∞ = 7
and 9 m/s; Eann = 2.84× 1013 J, fiberglass spar, onshore wind climate, LF ≤ 0.95; blade
mass limited to 10,200 kg each

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

30510. 34430. 8215. 30730. 54040. 14410. 2163.

tower towertop platform mooring grid

218700. 183500. 2.509 2.509 1.966

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5240. 81.68 65.84 4.095 64.78 2949000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.04 1.384 1.000 0.00 0.000 0.0512 1054.0 3

4.70 4.476 0.258 16.34 0.429 0.0512 1606.0 3

7.88 4.182 0.288 13.54 0.429 0.0455 1552.0 3

11.44 3.744 0.268 8.42 0.429 0.0432 1412.0 3

15.32 3.464 0.245 6.19 0.353 0.0404 1241.0 3

19.32 3.111 0.226 5.16 0.342 0.0380 1031.0 3

23.32 2.722 0.192 3.80 0.333 0.0391 860.7 3

27.24 2.428 0.170 2.16 0.328 0.0320 593.3 3

30.92 2.053 0.160 1.73 0.278 0.0302 416.0 3

34.18 1.875 0.149 0.42 0.192 0.0200 237.0 3

37.00 1.710 0.140 1.03 0.124 0.0118 119.1 3

39.25 1.423 0.135 -0.62 0.101 0.0060 47.9 3

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.864 191900. 0.4784 0.1488 0.0117 0.0636 0.0109

7.0 1.202 530200. 0.4816 0.1985 0.0123 0.0840 0.0113

9.0 1.539 1128000. 0.4822 0.2446 0.0129 0.1031 0.0116

11.0 1.586 1948000. 0.4560 0.2128 0.0120 0.0973 0.0114

13.0 1.586 2634000. 0.3735 0.1688 0.0109 0.0868 0.0108

15.0 1.586 2949000. 0.2722 0.1203 0.0099 0.0757 0.0105

17.0 1.604 2949000. 0.1870 0.0624 0.0092 0.0646 0.0102

19.0 1.660 2949000. 0.1339 0.0309 0.0093 0.0582 0.0102

21.0 1.724 2949000. 0.0992 0.0180 0.0095 0.0535 0.0099

23.0 1.789 2949000. 0.0755 0.0194 0.0102 0.0513 0.0098

25.0 1.850 2949000. 0.0588 0.0291 0.0108 0.0493 0.0098

27.0 0.0475 0.0116 0.0485 0.0101

29.0 0.0755 0.0126 0.0499 0.0100

31.0 0.0982 0.0133 0.0473 0.0104

33.0 0.1083 0.0130 0.0472 0.0102

35.0 0.1081 0.0132 0.0476 0.0105

37.0 0.1069 0.0126 0.0466 0.0103

39.0 0.1090 0.0131 0.0474 0.0103

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0329 1 1.0790 1.1340

7.0 0.0418 2 1.6100 1.6400

9.0 0.0502 3 3.1410 3.2100

11.0 0.0433 4 6.0040 6.0360

13.0 0.0330 5 6.9760 7.0410

15.0 0.0238 6 12.4500 12.5100

17.0 0.0162

19.0 0.0152

21.0 0.0166

23.0 0.0190

25.0 0.0226

---------------------------------------------------------------
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Table F.44: Section properties of the maximum CP turbine, with Eann = 2.84 × 1013 J,
onshore wind climate, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.37 397.0 6.975E+09 1.552E+09 1.552E+09 5.061E+08

6.29 504.0 7.673E+09 1.632E+09 4.810E+09 4.672E+08

9.66 436.7 6.588E+09 1.504E+09 3.723E+09 4.079E+08

13.38 363.9 5.514E+09 8.780E+08 2.490E+09 2.485E+08

17.32 310.1 4.722E+09 5.445E+08 1.845E+09 1.616E+08

21.32 257.7 3.940E+09 3.128E+08 1.246E+09 9.698E+07

25.28 219.5 3.392E+09 1.473E+08 7.917E+08 4.943E+07

29.08 161.4 2.501E+09 6.831E+07 4.964E+08 2.494E+07

32.55 127.3 1.977E+09 3.346E+07 2.794E+08 1.298E+07

35.59 84.1 1.295E+09 1.632E+07 1.808E+08 6.696E+06

38.12 53.0 8.018E+08 7.440E+06 1.164E+08 3.193E+06

40.04 30.0 4.404E+08 2.551E+06 5.595E+07 1.121E+06

----------------------------------------------------------------
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Table F.45: Summary of properties of the maximum CP design; maximum CP at V∞ = 7
and 9 m/s; Eann = 2.84× 1013 J, carbon fiber spar, onshore wind climate, LF ≤ 0.95

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

24210. 29840. 6649. 28630. 52760. 14070. 1894.

tower towertop platform mooring grid

203000. 167100. 2.342 2.342 1.840

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

5448. 83.29 66.64 3.525 67.96 2760000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

2.08 1.403 1.000 0.00 0.000 0.0348 656.1 4

4.79 3.991 0.293 14.80 0.355 0.0348 1407.0 4

8.04 3.719 0.251 12.38 0.355 0.0346 1345.0 4

11.66 3.239 0.251 7.96 0.355 0.0318 1179.0 4

15.62 3.024 0.235 5.79 0.271 0.0294 1025.0 4

19.70 2.667 0.218 4.11 0.271 0.0266 798.9 4

23.78 2.390 0.201 3.09 0.258 0.0247 633.1 4

27.78 2.073 0.186 2.20 0.271 0.0212 437.9 4

31.53 1.881 0.173 1.39 0.240 0.0166 284.5 4

34.86 1.653 0.160 0.30 0.214 0.0127 171.7 4

37.73 1.503 0.147 -0.30 0.199 0.0086 93.6 4

40.02 1.202 0.141 -0.91 0.169 0.0053 39.5 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 0.914 197800. 0.4743 0.1692 0.0114 0.0640 0.0103

7.0 1.273 547600. 0.4784 0.2276 0.0120 0.0848 0.0104

9.0 1.630 1166000. 0.4794 0.2822 0.0125 0.1045 0.0105

11.0 1.632 1949000. 0.4387 0.2331 0.0113 0.0953 0.0101

13.0 1.632 2524000. 0.3443 0.1835 0.0101 0.0851 0.0097

15.0 1.632 2760000. 0.2451 0.1305 0.0089 0.0746 0.0095

17.0 1.647 2760000. 0.1684 0.0677 0.0080 0.0640 0.0092

19.0 1.696 2760000. 0.1206 0.0300 0.0077 0.0568 0.0092

21.0 1.753 2760000. 0.0893 0.0149 0.0077 0.0515 0.0089

23.0 1.814 2760000. 0.0680 0.0161 0.0080 0.0472 0.0087

25.0 1.871 2760000. 0.0529 0.0313 0.0088 0.0471 0.0088

27.0 0.0599 0.0100 0.0476 0.0091

29.0 0.0790 0.0114 0.0479 0.0093

31.0 0.1063 0.0124 0.0444 0.0094

33.0 0.1225 0.0124 0.0463 0.0094

35.0 0.1221 0.0125 0.0468 0.0096

37.0 0.1208 0.0118 0.0459 0.0094

39.0 0.1227 0.0122 0.0468 0.0094

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0335 1 1.2870 1.3370

7.0 0.0426 2 1.8660 1.8950

9.0 0.0512 3 3.8010 3.8580

11.0 0.0406 4 6.3130 6.3430

13.0 0.0292 5 8.2610 8.3170

15.0 0.0207 6 14.3000 14.3400

17.0 0.0161

19.0 0.0155

21.0 0.0168

23.0 0.0202

25.0 0.0233

---------------------------------------------------------------
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Table F.46: Section properties of the maximum CP turbine, with Eann = 2.84 × 1013 J,
onshore wind climate, and carbon fiber spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

3.44 242.4 1.112E+10 2.603E+09 2.603E+09 3.363E+08

6.41 433.3 1.085E+10 2.346E+09 4.126E+09 2.838E+08

9.85 371.1 9.647E+09 1.365E+09 3.155E+09 1.793E+08

13.64 298.1 7.741E+09 8.271E+08 1.929E+09 1.098E+08

17.66 251.0 6.598E+09 5.409E+08 1.460E+09 7.493E+07

21.74 195.7 5.209E+09 2.893E+08 9.114E+08 4.198E+07

25.78 158.4 4.278E+09 1.629E+08 6.081E+08 2.477E+07

29.65 116.8 3.177E+09 7.840E+07 3.535E+08 1.256E+07

33.19 85.4 2.301E+09 4.094E+07 2.305E+08 7.063E+06

36.29 59.8 1.584E+09 1.876E+07 1.358E+08 3.565E+06

38.88 40.9 1.038E+09 8.628E+06 8.723E+07 1.836E+06

40.83 24.3 5.753E+08 2.755E+06 3.742E+07 6.546E+05

----------------------------------------------------------------
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Table F.47: Summary of properties of the maximum CP design; maximum CP at V∞ = 11
and 13 m/s; Eann = 2.84× 1013 J, fiberglass spar, offshore wind climate, LF ≤ 0.95

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

12240. 15750. 2332. 20570. 37810. 10080. 1706.

tower towertop platform mooring grid

125000. 109500. 1.170 1.170 1.933

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

2624. 57.81 53.90 2.036 77.01 2900000. 2.840E+13

---------------------------------------------------------------

r chord t/c twist shape hcap mass Nwebs

1.45 1.270 1.000 0.00 0.000 0.0269 364.6 4

3.32 3.798 0.279 16.76 0.450 0.0269 625.4 4

5.58 3.570 0.275 14.61 0.450 0.0254 622.3 4

8.09 3.220 0.243 10.44 0.450 0.0252 581.3 4

10.84 2.836 0.255 7.11 0.361 0.0234 500.8 4

13.67 2.386 0.244 4.25 0.320 0.0263 449.0 4

16.50 2.094 0.224 2.74 0.318 0.0255 363.9 4

19.28 1.925 0.210 2.12 0.264 0.0181 237.2 4

21.88 1.731 0.178 1.85 0.229 0.0133 146.0 4

24.19 1.813 0.161 1.68 0.223 0.0098 107.2 4

26.19 1.530 0.147 0.86 0.242 0.0065 56.0 4

27.78 1.260 0.141 0.24 0.321 0.0040 25.9 4

---------------------------------------------------------------

Blade damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.104 95680. 0.4761 0.1309 0.0118 0.0496 0.0103

7.0 1.535 264900. 0.4805 0.1782 0.0124 0.0654 0.0105

9.0 1.963 565600. 0.4826 0.2232 0.0131 0.0809 0.0106

11.0 2.389 1034000. 0.4832 0.2657 0.0137 0.0960 0.0108

13.0 2.664 1697000. 0.4806 0.2796 0.0137 0.1038 0.0108

15.0 2.664 2393000. 0.4411 0.2424 0.0125 0.0977 0.0104

17.0 2.664 2856000. 0.3616 0.2032 0.0112 0.0906 0.0099

19.0 2.664 2900000. 0.2630 0.1597 0.0107 0.0823 0.0099

21.0 2.689 2900000. 0.1948 0.1217 0.0107 0.0759 0.0097

23.0 2.732 2900000. 0.1483 0.0868 0.0108 0.0697 0.0094

25.0 2.791 2900000. 0.1155 0.0596 0.0110 0.0632 0.0090

27.0 0.0336 0.0114 0.0522 0.0087

29.0 0.0341 0.0119 0.0455 0.0088

31.0 0.0534 0.0127 0.0440 0.0092

33.0 0.0690 0.0131 0.0440 0.0093

35.0 0.0852 0.0136 0.0330 0.0094

37.0 0.0993 0.0141 0.0404 0.0098

39.0 0.0971 0.0137 0.0395 0.0097

---------------------------------------------------------------

Tower damping ratio Natural frequencies

V xi mod f_park f_cutout

5.0 0.0259 1 1.7590 1.8360

7.0 0.0319 2 2.7540 2.7950

9.0 0.0378 3 5.2920 5.3820

11.0 0.0434 4 9.7440 9.7880

13.0 0.0443 5 11.9800 12.0700

15.0 0.0369 6 21.7300 21.8100

17.0 0.0270

19.0 0.0203

21.0 0.0184

23.0 0.0175

25.0 0.0177

---------------------------------------------------------------
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Table F.48: Section properties of the maximum CP turbine, with Eann = 2.84 × 1013 J,
North Sea wind climate, and fiberglass spar

----------------------------------------------------------------

r m/L EA EI,flap EI,edge GJ

(m) (kg/m) (N) (Nm^2) (Nm^2) (Nm^2)

2.38 194.1 3.410E+09 6.587E+08 6.587E+08 2.149E+08

4.45 277.4 4.080E+09 6.978E+08 2.214E+09 1.902E+08

6.84 247.5 3.640E+09 5.361E+08 1.764E+09 1.478E+08

9.47 211.7 3.140E+09 2.998E+08 1.224E+09 8.833E+07

12.25 176.8 2.611E+09 2.105E+08 7.904E+08 6.108E+07

15.09 158.5 2.353E+09 1.221E+08 4.635E+08 3.643E+07

17.89 131.1 1.957E+09 6.634E+07 2.959E+08 2.073E+07

20.58 91.2 1.356E+09 3.466E+07 1.994E+08 1.128E+07

23.04 63.1 9.392E+08 1.415E+07 1.276E+08 5.011E+06

25.19 53.8 7.946E+08 1.069E+07 1.371E+08 4.108E+06

26.98 35.3 5.138E+08 4.046E+06 7.244E+07 1.670E+06

28.34 22.9 3.278E+08 1.535E+06 3.564E+07 6.604E+05

----------------------------------------------------------------



Appendix G

Wind Farm Effects

Deepwater offshore wind turbines are unlikely to be installed as isolated units.1 The costs
of laying transmission cables over long distances, as well as operation and maintenance
considerations, and conflicts of interest with the fishing and shipping industries, favor large
wind farms consisting of many turbines, spaced as closely as practical.

Spacing between turbines is limited by two effects: the first is that upwind turbines
extract energy from the wind at the elevation of the rotor, creating a deficit in the down-
wind velocity. This velocity deficit slowly disappears with distance downstream, as the
more energetic flow at greater heights mixes into the region of reduced velocity.2 The
other effect is increased turbulence in the wake, related to this same mixing process, or,
close to the upwind turbine, the vortex wake.

G.1 The Wake of a Wind Turbine

It is convenient to think of the wake of a wind turbine as consisting of two parts, or regimes
of flow: the near wake and the far wake.

The near wake is dominated by the tip vortices which exist due to the circulation (lift)
about the blades. Immediately behind the rotor, these vortices are strong and compact,
and act as a shear layer between the ambient flow and the slower-moving flow which has
passed through the rotor. So long as the vortex structure of the wake is preserved, the flow
is well-behaved, such that its properties can be calculated, to engineering accuracy, with
potential theory.3 Between 1 and 2 diameters downstream of the rotor, the tip vortices
begin to dissipate.4 The shear layer between fast and slow moving flow breaks down,
and turbulent eddies form, mixing the fast-moving external flow into the interior of the
wake, and reducing the velocity deficit (that is, speeding up the average flow within the
wake). Roughly 3 to 5 diameters downstream of the rotor, the mixing process reaches
the centerline of the wake, such that it is fully turbulent.5 This marks the transition
between the near and far wake. Thus the far wake is a region of turbulent flow, with a
lower average velocity and a higher intensity of turbulence than the ambient flow. Both

1An exception to this is a wind turbine used to power, for example, an oil platform.
2Sørensen [165], pp 245-249, discusses the energy and power available in the wind as a function of

height. Hau [85] pp 586-589 gives an overview of power reduction and turbulence in wind farms.
3For example, the vortex cylinder model given by Burton et al. [22], or a free-wake vortex model, such

as that described by Leishman [112]
4Ainslie [3]; photographs shown by Vermeer et al. [189], p 474
5Ainslie [3]
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average velocity and turbulence intensity approach ambient values as the distance behind
the rotor becomes large, say, 10D to 20D downstream.6

The case of interest involves the wake effects experienced by one wind turbine located
more than 5D downstream of another. The problem is thus one of turbulent flow. The
nature of turbulent flow requires the use of empirical relationships for engineering calcu-
lations.7

G.2 Models of Wake Effects

The simplest engineering models represent the wake by a uniform velocity (lower than
that of the ambient flow);8 a uniform increase in turbulence intensity, relative to the
ambient value; and an approximate diameter of the wake. More complex engineering
models and calculation tools are available;9 but the simplest models are suitable for the
current purposes.

For computing the velocity deficit, we shall consider two models. (These engineering
models will simply be presented; the background is not simple, and a review is outside the
scope of this report.) First, the Katic model (as described by Barthlemie [9]):

Vw = V∞

[
1− (1−

√
1− CT )

(
D

D + 2kwX

)2
]
, (G.1)

with kw = 0.05. Vw is the velocity within the wake; V∞ is, as always, the ambient
windspeed ; CT is the rotor-average thrust coefficient of the upwind turbine; D is the
rotor diameter; and X is the distance from the upstream to the downstream turbine. The
diameter of the wake can be estimated by:

Dw = D + 2kwX. (G.2)

Second, we shall consider the model of Magnusson and Smedman [118]:

Vw = V∞

(
1− C2 ln

V∞t0
X
− CT

)
; (G.3)

t0 =
C1πD

ΩH0
ln
(
H0

h0

)
. (G.4)

h0 is the surface roughness length, and H0 is the hub height. C1 = 1 and C2 = 0.4. This
model was calibrated for thrust coefficients CT in the range 0.61 to 0.88. When X/V∞
is large with respect to t0, the model indicates that Vw > V∞. In this case, it is simply
saying that the velocity in the wake is fully recovered, and Vw should be set to V∞.

Burton et al. [22], pp 36-37, present two possible models for calculating the additional
turbulence in a wind farm; these are also mentioned by Vermeer et al. [189]. The first
model is due to Quarton and Ainslie (with a variation proposed subsequently by Hassan).
This model is intended to account for a single wake, or a situation in which one can neglect
the presence of upstream turbines farther away than the nearest. The equations are:

I =
√
I2

0 + I2
w, (G.5)

6Vermeer et al. [189]; this statement applies to the wake of a single wind turbine, not a wind farm with
many turbines.

7Davidson [35]; Graebel [70], Chapter 10
8Even the simplest models may include a smooth Gaussian-like transition to either side of the uniform-

velocity region; Duckworth and Barthlemie [47].
9Vermeer et al. [189]
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where I0 is the baseline turbulence intensity (typically in the vicinity of 0.1, or slightly
lower, offshore10), and Iw is the additional turbulence due to the wake. This is calculated
by a series of formulas:

Iw = 5.7C0.7
T I0.68

0

(
X

Xn

)−0.96

; (G.6)

Xn =
nr0

(dr/dx)
; (G.7)

n =
(
√

0.214 + 0.144m)(1−
√

0.134 + 0.124m)
(1−

√
0.214 + 0.144m)(

√
0.134 + 0.124m)

; (G.8)

m =
1√

1− CT
; (G.9)

r0 =
D

2

√
m+ 1

2
; (G.10)

dr

dx
=
√
A2 +B2 + C2; (G.11)

A = 2.5I0 + 0.005; (G.12)

B =
(1−m)

√
1.49 +m

9.76(1 +m)
; (G.13)

C = 0.012Nb
DΩ
2V∞

. (G.14)

Xn is the length of the near-wake region. (dr/dx) is the rate at which the width of the
wake grows.

The second model for turbulence intensity is due to Frandsen and Thøgersen [54]. It
reduces to a simple equation, and is intended to apply deep inside a wind farm, where
many wakes superpose. Equation G.5 applies, and Iw is given by:

Iw =
1
2

(
I0 +

√
I2

0 + I2
1

)
; (G.15)

I1 =
0.36

1 + 0.2
√
XrXc/(D2CT )

; (G.16)

where Xr and Xc are the distances between turbines in the row and column (orthogonal)
directions of the wind farm. (Looking at the form of these equations, it is evident that
they are applicable only when Xr and Xc are of the same order of magnitude.)

10DNV-OS-J101 [41] p 23
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Figure G.1: Reduced velocity at a turbine downwind of another, with a constant spacing
of 400 m between turbines; three different turbine designs are compared; each turbine
produces 1.42× 1013 J/year if operated in isolation

G.3 Analysis of Turbine Spacing in a Wind Farm

Consider a case in which two turbines are separated by a distance X, with one turbine
directly upwind of the other. The two turbines are of the same design, producing, in
isolation, a specified annual energy Eann. Holding X and Eann fixed, and changing the
design, what are the velocity deficit and additional turbulence seen by the downwind
turbine?

As an example, consider three turbines. The maximum CP design summarized in Table
F.37, the optimum turbine summarized in Table F.3, and an older optimum design, based
upon a different cost model, summarized in Table G.1. This latter design is characterized
by a very long, skinny blade, with a low maximum power coefficient.

The velocity deficit and turbulence intensity were calculated using the equations in
Section G.2. The spacing X was a constant 400 m, and annual energy production for the
three example turbines is 1.42× 1013 J. It was assumed that h0 = 0.001 m and I0 = 0.11.

Figure G.1 shows the resulting velocity deficit at the downwind turbine. There are
significant differences between the formulas of Katic and Magnusson and Smedman; the
explanation is outside the scope of the present discussion. It is evident, though, that the
optimum rotor design has either the same or a lower velocity deficit than the maximum
CP design. In other words, for a given annual energy production of the downwind turbine,
the spacing between turbines could be slightly lower for the optimum design than for the
maximum CP design. It is interesting that the low-CP turbine, with a significantly larger
diameter, has an even lower velocity deficit. Not only can the normalized spacing X/D be
reduced, but the absolute spacing X can be reduced, relative to the maximum CP design.
This is opposite the trend that would be expected from rules-of-thumb based upon the ratio
X/D.

A similar conclusion follows from a plot of the turbulence intensity, Figure G.2. Again,
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Table G.1: Properties of a design with a skinny blade, low CP , and large diameter; Eann =
1.42× 1013 J

---------------------------------------------------------------

Masses (kg or nondimensional)

blades hub drive generator nacelle yaw brake

14190. 15750. 3191. 11590. 22480. 5996. 943.

towertop platform mooring grid

83150. 1.076 1.076 0.736

---------------------------------------------------------------

A D H0 dtip Vtip Prated Eann

3653. 68.20 59.10 4.040 73.31 1105000. 1.420E+13

---------------------------------------------------------------

r chord t twist shape hcap mass Nwebs

1.71 1.678 1.678 0.00 0.000 0.0383 808.4 2

3.92 2.641 1.042 15.70 0.592 0.0383 760.6 2

6.58 2.207 0.753 12.07 0.534 0.0411 705.7 2

9.55 2.101 0.649 8.06 0.469 0.0388 672.6 2

12.79 1.871 0.569 3.81 0.401 0.0348 557.0 2

16.13 1.600 0.478 2.46 0.298 0.0326 444.3 2

19.47 1.337 0.400 1.13 0.196 0.0286 323.3 2

22.74 1.128 0.335 -0.15 0.098 0.0228 210.3 2

25.81 0.911 0.266 0.69 0.094 0.0168 117.5 2

28.54 0.713 0.178 1.43 0.090 0.0141 65.8 2

30.89 0.538 0.091 2.05 0.088 0.0122 32.2 2

32.77 0.680 0.088 2.52 0.086 0.0156 32.7 2

---------------------------------------------------------------

Damping ratios

V omega P Cp xi_1 xi_2 xi_3 xi_4

5.0 1.330 114500. 0.4093 0.1647 0.0111 0.0786 0.0101

7.0 1.861 319600. 0.4164 0.2278 0.0115 0.1053 0.0102

9.0 2.150 670100. 0.4108 0.2294 0.0112 0.1129 0.0101

11.0 2.150 999500. 0.3356 0.1542 0.0100 0.0958 0.0098

13.0 2.150 1105000. 0.2247 0.0907 0.0087 0.0789 0.0093

15.0 2.180 1105000. 0.1463 0.0604 0.0081 0.0667 0.0091

17.0 2.189 1105000. 0.1005 0.0453 0.0076 0.0552 0.0088

19.0 2.203 1105000. 0.0720 0.0358 0.0071 0.0450 0.0085

21.0 2.214 1105000. 0.0533 0.0335 0.0067 0.0357 0.0080

23.0 2.233 1105000. 0.0406 0.0336 0.0063 0.0291 0.0075

25.0 2.257 1105000. 0.0316 0.0347 0.0058 0.0256 0.0070

27.0 0.0509 0.0063 0.0287 0.0072

29.0 0.0611 0.0067 0.0336 0.0073

31.0 0.0744 0.0073 0.0390 0.0076

33.0 0.0930 0.0088 0.0442 0.0082

35.0 0.1197 0.0104 0.0508 0.0084

37.0 0.1300 0.0109 0.0579 0.0089

39.0 0.1320 0.0109 0.0587 0.0088

---------------------------------------------------------------

Natural frequencies

mod f_park f_cutout

1 1.2180 1.3050

2 1.7340 1.7880

3 3.0780 3.1990

4 4.9030 4.9640

5 6.1250 6.2620

6 10.4700 10.5300

---------------------------------------------------------------
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Figure G.2: Turbulence intensity seen by a turbine downwind of another

the optimum design has slightly reduced wake turbulence, in comparison with the maxi-
mum CP design; while the long, narrow blade has a significantly reduced wake turbulence.

These results should be viewed with some skepticism, because the formulas are semi-
empirical, and have been calibrated against data collected on “typical” designs. It can be
concluded, however, that it is likely not necessary to increase the spacing between turbines
in a wind farm, if the maximum CP design is replaced with the optimum design.

The fatigue loads on a leeward turbine are very sensitive to the turbulence intensity; see
Section 3.6.3. Figure G.2 hints that it might be possible to reduce COE by optimizing the
design of the turbines for wind farm operation. Such investigations have been conducted
by Fuglsang and Thomsen [59], using a simplified set of design parameters; also Corten et
al.,11 primarily in the context of modifications to the pitch control scheme of the windward
turbines. It has not been identified, however, how the profile and operating schedule of a
stall-regulated blade might be tailored to produce a similar effect.

11Corten and Schaak [32]; Corten et al. [33]
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