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ABSTRACT 

The present work highlights some aspects related to the analyses of Arctic offshore floating 
structures. This thesis consists of five papers, which can be divided into two main categories. 
One category deals with the dynamics of slender structures with an emphasis on the 
prediction and suppression of vortex induced vibrations (VIV), and the other category 
examines the process of interaction between sloping structures and sea ice with focus on 
developing a numerical model to simulate this process in real time. 

Slender structures, such as mooring lines and marine risers, are very important for the 
offshore petroleum industry, which is currently approaching deeper waters. Increasingly, 
attention has been focused on predicting the susceptibility of these structures to VIV. In this 
thesis, two asymptotic techniques namely, the local analysis and the WKB methods, were 
used to derive closed-form solutions for the natural frequencies and mode shapes of slender 
line-like structures. Both the top-tensioned nearly-vertical configuration and the catenary 
configuration were considered. The accuracy of the solutions derived was established through 
comparison with other analytic solution techniques and with results of numerical finite 
element solutions. The effects of the bending stiffness and the effects of approximating the 
tension variation as a linear function were discussed. Experimental data on the multi-modal 
in-line and cross-flow response behaviour of a towed catenary model were analysed to 
examine the usefulness of the solutions for predicting the response frequencies and envelopes 
due to VIV.  

Helical strakes are often used as a mitigating measure to suppress the VIV of slender 
structures. This thesis presented an innovative method to fit ropes helically to a riser in the 
installation phase. Such a procedure will help to overcome the handling problem associated 
with the use of conventional sharp-edged strakes. Experimental investigations were then 
performed to verify the efficiency of these ropes (round-sectioned helical strakes) in 
suppressing VIV. Systematic experimental investigations including twenty-eight 
configurations of round-sectioned helical strakes were tested in an attempt to find the most 
suitable strake configuration. The effects of varying pitch, the surface roughness and the ratio 
between the cross-flow and in-line natural frequencies on the efficiency of the proposed 
configuration of round-sectioned helical strakes were also investigated.  

The process of interaction between sea ice and offshore sloping structures (e.g., conical 
structures and ship-shaped structures) is quite complex. Modelling this process is very 
demanding and often computationally expensive, which typically hinders the chances for real-
time simulations. This kind of simulation can be very useful for training personnel for Arctic 
offshore operations and procedures, for analysing the efficiency of various ice management 
concepts and as a part of the onboard support systems for station keeping. The challenge of 
meeting the real-time criterion was overcome in the present work. This thesis developed a 
numerical model to simulate the process of interaction between sea ice and sloping structures 
in real time. In this model, only level- and broken-ice features were studied. New analytical 
closed-form solutions were established and used to represent the ice breaking process. PhysX 
was used for the first time to solve the equations of rigid body motions with six degrees of 
freedom for all ice floes in the calculation domain. The results of the simulator were validated 
against experimental data from model-scale and full-scale tests.  

Accurate predictions of ice actions are also vital to optimise the design of the structures in the 
Arctic regions. A good understanding of the role of seawater in the process of interaction 
between the sloping structures and level ice will help to establish reliable models to estimate 
the ice forces. This work formulated both the static and dynamic bending problems for a 
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floating wedge-shaped ice beam interacting with an offshore sloping structure. For the 
dynamic interaction, the effects of the water foundation on the bending failure of the ice were 
studied by comparing the results of an elastohydrodynamic approach with a model of a 
Winkler foundation. The thesis also investigated the breaking lengths of the ice wedges (i.e., 
the frequency of the ice loads) as a function of the ice thickness, the compression in the ice 
and the acceleration of the interaction. 
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1 INTRODUCTION 

This thesis considers different aspects of floating structures in Arctic waters. Vortex-induced 
vibrations (VIV) as well as ice actions on floaters are discussed.  

Cost-effective and thus slender structures are essential for the offshore petroleum industry. 
One example of these structures is mooring lines and spread mooring systems, which are 
commonly used to provide station keeping for buoys, barges, ships and floating offshore 
platforms. Another example is marine risers, which are used for the drilling of subsea wells, 
for well intervention and also for the flow of well fluids to production facilities at the sea 
surface.  

The dynamic performance of these long, slender, line-like structures is very important for the 
structural safety and thus must be analysed carefully. Potential hazards may include:  

a) Dynamic amplification of the structural response when the frequency of the external 
excitation is near one of the natural frequencies of the slender structure. A safe design 
must ensure that the available margin to accommodate the dynamic tension is 
sufficient. 
 

b) Flow-induced vibrations (e.g., VIV, galloping, flow interference, buffeting, static 
divergence, and drag crisis). The effects of these vibrations on the tension variation, 
on the fatigue life of the structure and on the hydrodynamic forces must be considered. 
 

c) Impact forces due to, e.g., a collision between two risers in a bundle of risers or an ice 
block hitting a riser. The structural response to these forces must be considered. 

Marine slender structures are often modelled as tension dominated cables or beams due to 
their line topology and the applied pretension. The dynamics of these models are complicated 
by non-linearities that may be due to the geometry, material properties, hydrodynamic forces, 
effects of structural interaction with the sea bed, or some combination of these factors. 
Mathematically, it is possible to formulate a set of nonlinear coupled partial differential 
equations to serve as the basis for the dynamic analyses of these structures. Depending upon 
the complexity of the model, numerical solutions may require a substantial computational 
time and depending on the numerical model they may only provide global quantitative 
response results and consequently little understanding of the relative influences of the various 
parameters that govern the problem solution.  

An alternative formulation that utilises asymptotic methods can be used to derive analytical 
approximations for the natural frequencies and corresponding mode shapes of a slender 
structure. As a consequence of initially assuming that the dynamic response is relatively 
small, the undamped cable or beam formulations lead to distinct natural frequencies and mode 
shapes that depend only on the static configuration and the boundary conditions. The closed-
form solutions for the eigenvalue problem can be useful in several ways: 1) they enhance the 
understanding of how the different structural parameters affect the structural response to the 
external loadings; 2) they simplify the modal analysis of the structural response; 3) based 
upon these approximate solutions, one can assess whether excitation from the environment is 
sufficiently near any natural frequencies of the structure that the response could be amplified 
in the damping controlled region, potentially leading to the undesirable acceleration of fatigue 
or other design problems; or, in other words, 4) they can be used for practical problems to 
assess whether higher order approximations or more complex analyses are needed to more 
adequately address relevant system nonlinearities.  
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In this thesis, two asymptotic techniques were used, namely, the local analysis and the WKB 
methods, to derive closed-form solutions for the natural frequencies and mode shape of 
marine slender structures. Both the top-tensioned nearly-vertical configuration and the 
catenary configuration were studied. The usefulness of the derived analytical solutions was 
emphasised in predicting the VIV of marine risers and mooring lines.  

VIV is a major design concern. These vibrations increase the drag forces acting on slender 
structures and may cause fatigue damage. Therefore, it is of the utmost importance to 
accurately predict such vibrations and to have dependable methods by which to suppress them 
when necessary. Helical strakes are commonly used as a mitigating measure to suppress VIV. 
The edge of these strakes causes flow separation to occur at the strake, and the helical shape 
disturbs the axial correlation of the vortices, which reduces the global lift force. Helical 
strakes are simple, reliable and omni-directional. Their use involves some disadvantages, 
however, mostly related to handling problems during the installation and amplification of the 
drag coefficient when the riser is not vibrating. In this thesis, an innovative method to fit 
ropes helically to a riser in the installation phase is discussed. This procedure will help to 
overcome the handling problems associated with the use of conventional helical strakes. 
Then, experimental data to verify the efficiency of these ropes (round-sectioned helical 
strakes) in suppressing VIV are presented.  

The expansion of the petroleum industry towards the Arctic offshore presents new challenges. 
The search for hydrocarbons in the deep Arctic waters requires the use of drillships and 
floating production units (FPUs). Typically, these units require protection by using ice 
management. In particular, the ship-shaped FPUs must implement ice vaning to avoid 
excessive loads in the pack ice. Each of these activities requires site-specific operations, with 
icebreakers battling large ice floes, followed by icebreakers downstream that cut the ice into 
small pieces just in front of the drillship or FPU. To operate effectively, an assessment of the 
operations is essential, and here real-time simulators have great potential in a number of 
applications. These simulators, if calibrated and validated properly, can be a useful tool for 
training the crews for Arctic operations and procedures. Real-time simulators can also be used 
to analyse the efficiency of various ice management concepts, and, in the future, such 
simulators may even be part of the onboard support systems for station keeping. In this thesis, 
a numerical model was developed to simulate in real time the process of interaction between 
ice and ships (or conical structures). In this model, only level- and broken-ice features were 
studied. The results of the real-time simulator model were validated against experimental data 
from model-scale and full-scale tests. 

Accurate predictions of ice actions are also vital to optimise the design of structures in the 
Arctic regions. A good understanding of the ice-water-structure interaction process will help 
to establish reliable models to estimate the ice forces. In this thesis, the dynamic bending 
problem of a floating wedge-shaped ice beam interacting with a sloping structure was studied. 
Here, the fully-coupled elastohydrodynamic approach was compared with the model of a 
Winkler foundation to study the effects of seawater on the interaction process. Finally, the 
breaking lengths (i.e., the frequency of the ice actions) were studied as a function of the ice 
drift acceleration, the ice thickness and the in-plane compression in the ice.  

1.1 Objective, Scope and Organisation of the Thesis 

This thesis highlights some aspects of the slender structure dynamics, which are very 
important for the offshore petroleum industry. The thesis also touches upon some of the new 
challenges that face the offshore industry in the Arctic regions. The objectives of the present 
study can be summarised as follows: 
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 To develop analytical closed-form solutions for the natural frequencies and the mode 
shapes of slender offshore structures. Both the top-tensioned nearly-vertical 
configuration and the catenary configuration are considered. 
 

 To predict the characteristics of VIV of slender structures using the derived closed-
form solutions for the natural frequencies and mode shapes.    
 

 To study the efficiency of round-sectioned helical strakes in suppressing VIV. 
 

 To develop a reliable model for the calculations of ice actions on offshore structures 
(e.g., conical structures and ship-shaped structures). Both level ice and broken ice 
features are considered. 
 

 To develop a numerical model for real-time simulations of ship-ice interactions.  
 

 To study the effects of seawater on the dynamic interaction between level ice and 
offshore structures. 

The thesis consists of five papers, which I wrote together with my supervisors. For each of 
these papers, I was the first author and conducted the major part of the work. The papers can 
be divided into two main categories: 1) dynamics of slender offshore structures with an 
emphasis on VIV prediction and suppression and 2) ice actions on offshore structures with a 
focus on developing a numerical model to simulate the process of interaction in real time. 
Each paper is given a chapter number, and the thesis is organised as follows: 

Chapter 2 discusses aspects of Arctic offshore field developments. It introduces different 
types of offshore structures and argues that the floating structures are most suitable for the 
Arctic offshore. Some design challenges of the Arctic floaters are then highlighted, which 
include VIV and the estimation of ice actions, which are the main focus of this thesis.  

Chapter 3 describes the derivations of analytical closed-form solutions for vibrations of 
nearly-vertical strings and beams by means of asymptotic methods. Derivations are shown in 
reasonable detail. The chapter presents a simple example in which the bottom tension in a 
marine riser is only 9% of the top tension. The example is analysed for cases with and without 
bending stiffness, and the solutions are compared to the exact solution for the string case and 
to the results from three finite element programs for the beam case.  

Chapter 4 shows the derivations of closed-form approximate solutions of the cross-flow 
natural frequencies and mode shapes for a catenary. The accuracy of these approximations is 
established through comparison with other analytic solution techniques and with results from 
numerical finite element solutions. The effects of the bending stiffness and the effects of 
approximating the tension variation along the catenary as a linear function are discussed. 
Additionally, the paper presents experimental data on the multi-modal, in-line and cross-flow 
response behaviour of a towed catenary model. Such data provide a means to illustrate the 
usefulness of the analytical asymptotic approximations derived for predicting the response 
frequencies and envelopes due to the VIV.   

Chapter 5 presents experimental investigations of the efficiency of round-sectioned helical 
strakes in suppressing VIV. Systematic experimental investigations including twenty-eight 
configurations of round-sectioned helical strakes were tested in an attempt to find the most 
suitable strake configuration. The paper studies the effects of varying the strake pitch, the 

5

 To develop analytical closed-form solutions for the natural frequencies and the mode 
shapes of slender offshore structures. Both the top-tensioned nearly-vertical 
configuration and the catenary configuration are considered. 
 

 To predict the characteristics of VIV of slender structures using the derived closed-
form solutions for the natural frequencies and mode shapes.    
 

 To study the efficiency of round-sectioned helical strakes in suppressing VIV. 
 

 To develop a reliable model for the calculations of ice actions on offshore structures 
(e.g., conical structures and ship-shaped structures). Both level ice and broken ice 
features are considered. 
 

 To develop a numerical model for real-time simulations of ship-ice interactions.  
 

 To study the effects of seawater on the dynamic interaction between level ice and 
offshore structures. 

The thesis consists of five papers, which I wrote together with my supervisors. For each of 
these papers, I was the first author and conducted the major part of the work. The papers can 
be divided into two main categories: 1) dynamics of slender offshore structures with an 
emphasis on VIV prediction and suppression and 2) ice actions on offshore structures with a 
focus on developing a numerical model to simulate the process of interaction in real time. 
Each paper is given a chapter number, and the thesis is organised as follows: 

Chapter 2 discusses aspects of Arctic offshore field developments. It introduces different 
types of offshore structures and argues that the floating structures are most suitable for the 
Arctic offshore. Some design challenges of the Arctic floaters are then highlighted, which 
include VIV and the estimation of ice actions, which are the main focus of this thesis.  

Chapter 3 describes the derivations of analytical closed-form solutions for vibrations of 
nearly-vertical strings and beams by means of asymptotic methods. Derivations are shown in 
reasonable detail. The chapter presents a simple example in which the bottom tension in a 
marine riser is only 9% of the top tension. The example is analysed for cases with and without 
bending stiffness, and the solutions are compared to the exact solution for the string case and 
to the results from three finite element programs for the beam case.  

Chapter 4 shows the derivations of closed-form approximate solutions of the cross-flow 
natural frequencies and mode shapes for a catenary. The accuracy of these approximations is 
established through comparison with other analytic solution techniques and with results from 
numerical finite element solutions. The effects of the bending stiffness and the effects of 
approximating the tension variation along the catenary as a linear function are discussed. 
Additionally, the paper presents experimental data on the multi-modal, in-line and cross-flow 
response behaviour of a towed catenary model. Such data provide a means to illustrate the 
usefulness of the analytical asymptotic approximations derived for predicting the response 
frequencies and envelopes due to the VIV.   

Chapter 5 presents experimental investigations of the efficiency of round-sectioned helical 
strakes in suppressing VIV. Systematic experimental investigations including twenty-eight 
configurations of round-sectioned helical strakes were tested in an attempt to find the most 
suitable strake configuration. The paper studies the effects of varying the strake pitch, the 

5

 To develop analytical closed-form solutions for the natural frequencies and the mode 
shapes of slender offshore structures. Both the top-tensioned nearly-vertical 
configuration and the catenary configuration are considered. 
 

 To predict the characteristics of VIV of slender structures using the derived closed-
form solutions for the natural frequencies and mode shapes.    
 

 To study the efficiency of round-sectioned helical strakes in suppressing VIV. 
 

 To develop a reliable model for the calculations of ice actions on offshore structures 
(e.g., conical structures and ship-shaped structures). Both level ice and broken ice 
features are considered. 
 

 To develop a numerical model for real-time simulations of ship-ice interactions.  
 

 To study the effects of seawater on the dynamic interaction between level ice and 
offshore structures. 

The thesis consists of five papers, which I wrote together with my supervisors. For each of 
these papers, I was the first author and conducted the major part of the work. The papers can 
be divided into two main categories: 1) dynamics of slender offshore structures with an 
emphasis on VIV prediction and suppression and 2) ice actions on offshore structures with a 
focus on developing a numerical model to simulate the process of interaction in real time. 
Each paper is given a chapter number, and the thesis is organised as follows: 

Chapter 2 discusses aspects of Arctic offshore field developments. It introduces different 
types of offshore structures and argues that the floating structures are most suitable for the 
Arctic offshore. Some design challenges of the Arctic floaters are then highlighted, which 
include VIV and the estimation of ice actions, which are the main focus of this thesis.  

Chapter 3 describes the derivations of analytical closed-form solutions for vibrations of 
nearly-vertical strings and beams by means of asymptotic methods. Derivations are shown in 
reasonable detail. The chapter presents a simple example in which the bottom tension in a 
marine riser is only 9% of the top tension. The example is analysed for cases with and without 
bending stiffness, and the solutions are compared to the exact solution for the string case and 
to the results from three finite element programs for the beam case.  

Chapter 4 shows the derivations of closed-form approximate solutions of the cross-flow 
natural frequencies and mode shapes for a catenary. The accuracy of these approximations is 
established through comparison with other analytic solution techniques and with results from 
numerical finite element solutions. The effects of the bending stiffness and the effects of 
approximating the tension variation along the catenary as a linear function are discussed. 
Additionally, the paper presents experimental data on the multi-modal, in-line and cross-flow 
response behaviour of a towed catenary model. Such data provide a means to illustrate the 
usefulness of the analytical asymptotic approximations derived for predicting the response 
frequencies and envelopes due to the VIV.   

Chapter 5 presents experimental investigations of the efficiency of round-sectioned helical 
strakes in suppressing VIV. Systematic experimental investigations including twenty-eight 
configurations of round-sectioned helical strakes were tested in an attempt to find the most 
suitable strake configuration. The paper studies the effects of varying the strake pitch, the 

5

 To develop analytical closed-form solutions for the natural frequencies and the mode 
shapes of slender offshore structures. Both the top-tensioned nearly-vertical 
configuration and the catenary configuration are considered. 
 

 To predict the characteristics of VIV of slender structures using the derived closed-
form solutions for the natural frequencies and mode shapes.    
 

 To study the efficiency of round-sectioned helical strakes in suppressing VIV. 
 

 To develop a reliable model for the calculations of ice actions on offshore structures 
(e.g., conical structures and ship-shaped structures). Both level ice and broken ice 
features are considered. 
 

 To develop a numerical model for real-time simulations of ship-ice interactions.  
 

 To study the effects of seawater on the dynamic interaction between level ice and 
offshore structures. 

The thesis consists of five papers, which I wrote together with my supervisors. For each of 
these papers, I was the first author and conducted the major part of the work. The papers can 
be divided into two main categories: 1) dynamics of slender offshore structures with an 
emphasis on VIV prediction and suppression and 2) ice actions on offshore structures with a 
focus on developing a numerical model to simulate the process of interaction in real time. 
Each paper is given a chapter number, and the thesis is organised as follows: 

Chapter 2 discusses aspects of Arctic offshore field developments. It introduces different 
types of offshore structures and argues that the floating structures are most suitable for the 
Arctic offshore. Some design challenges of the Arctic floaters are then highlighted, which 
include VIV and the estimation of ice actions, which are the main focus of this thesis.  

Chapter 3 describes the derivations of analytical closed-form solutions for vibrations of 
nearly-vertical strings and beams by means of asymptotic methods. Derivations are shown in 
reasonable detail. The chapter presents a simple example in which the bottom tension in a 
marine riser is only 9% of the top tension. The example is analysed for cases with and without 
bending stiffness, and the solutions are compared to the exact solution for the string case and 
to the results from three finite element programs for the beam case.  

Chapter 4 shows the derivations of closed-form approximate solutions of the cross-flow 
natural frequencies and mode shapes for a catenary. The accuracy of these approximations is 
established through comparison with other analytic solution techniques and with results from 
numerical finite element solutions. The effects of the bending stiffness and the effects of 
approximating the tension variation along the catenary as a linear function are discussed. 
Additionally, the paper presents experimental data on the multi-modal, in-line and cross-flow 
response behaviour of a towed catenary model. Such data provide a means to illustrate the 
usefulness of the analytical asymptotic approximations derived for predicting the response 
frequencies and envelopes due to the VIV.   

Chapter 5 presents experimental investigations of the efficiency of round-sectioned helical 
strakes in suppressing VIV. Systematic experimental investigations including twenty-eight 
configurations of round-sectioned helical strakes were tested in an attempt to find the most 
suitable strake configuration. The paper studies the effects of varying the strake pitch, the 

5



effects of surface roughness and the effects of the ratio between the cross-flow and in-line 
natural frequencies on the efficiency of the proposed configuration of round-sectioned helical 
strakes. 

Chapter 6 develops a numerical model for the real-time simulation of ship-ice interactions. 
New analytical closed-form solutions are established and used to represent the ice breaking 
process. PhysX is used for the first time to solve the equations of rigid body motions for six 
degrees of freedom for all ice floes in the calculation domain. The results of the numerical 
model are validated against experimental data from model-scale and full-scale tests. 

Chapter 7 formulates both the static and dynamic problems for a floating wedge-shaped ice 
beam interacting with an offshore sloping structure. For the dynamic interaction, the effects of 
seawater are studied by comparing the results of the elastohydrodynamic approach with the 
model of a Winkler foundation. The paper also investigates the breaking lengths of the ice 
wedges (i.e., the frequency of the ice loads) as a function of the ice thickness, the compression 
in the ice and the acceleration of the interaction.  

Chapter 8 summarises the main conclusions from the present study and discusses some 
recommendations for further work. 

1.2 Readership 

The present work focuses on offshore structures needed for the exploration and production of 
hydrocarbons. Attention has been given to the dynamics of slender structures and to the 
environmental actions from level and broken ice features. The primary readership for this 
thesis is students, engineers, lecturers and scientists working with the following: 

 The dynamic analysis of slender line-like structures. 
 

 The problems of flow-induced vibrations in general and VIV in particular. 
 

 The design of offshore structures in ice-infested waters. 
 

 The development of hydrocarbon fields in the Arctic offshore, especially tasks related 
to ice management and station keeping. 
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2.2 Arctic Floaters 

A floating system can include 1) a hull, 2) marine systems, 3) accommodation, 4) 
hydrocarbon processing facilities, 5) storage, 6) offloading systems, 7) station-keeping 
system, i.e., mooring or dynamic positioning, 8) umbilical connections, and 9) risers to 
connect the hull with the well head at the seabed.  

An Arctic floater can be classified based on its shape, mobility and function. As indicated in 
Figure 2.2, the floater may have a hull form that is either ship-shaped or non-ship-shaped. The 
non-ship-shaped floaters can further be classified as column stabilised, self-elevating, deep 
draught and tension leg floaters; see DNVOSS-102 [3]. The ship-shaped floaters can act as 
free-going vessels, and they also have the possibility of maintaining a geofixed position by the 
use of a mooring or a dynamic positioning (DP) system. Free-going vessels provide support 
and a means of transportation both for personnel and hydrocarbons. It is worth mentioning 
here that ship transportation by tankers is inherently more flexible than pipeline transportation 
and is also cheaper for long distances. Icebreakers are often used to apply physical ice 
management in ice-covered waters. Floaters that apply station-keeping by means of mooring 
or DP systems are useful for the drilling, production, storage, offloading, service and 
intervention operations. The latter is typically performed from floaters on DP.  
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Figure 2.3 shows a sketch of different types of floaters used in the development of the Terra 
Nova field on the Grand Banks. Both ship-shaped and non-ship-shaped floaters are utilised on 
that field. The sea ice conditions are not severe on the Grand Banks, but icebergs may intrude 
into the area occasionally. Therefore, the floating production storage offloading unit (FPSO) 
was designed with disconnection capabilities. Other examples of Arctic offshore floaters can 
be found in Gudmestad et al. [4]. 

 

Figure 2.3:  Different types of floaters used in the development of the Terra Nova field on the 
Grand Banks, Lever et al. [5].  

The structural design of a floating system requires, e.g., a careful analysis of the 
environmental actions, the response of every component in the system and the coupling 
between the different components. The structure must be designed for the actions of wind, 
waves, currents, ice and perhaps seismic activities. A typical loading scenario in ice-covered 
waters is a combined action from drifting ice and ocean currents. For instance, waves are 
heavily attenuated by sea ice, and, thus, for intact level ice and highly concentrated broken 
ice, wave and ice loads are not likely to appear simultaneously (Frankenstein et al. [6]). The 
ice forces act mainly on the hull; however, in certain circumstances, ice blocks may also 
impact the submerged slender components, e.g., mooring lines and risers. The response of the 
hull to the ice actions will modify the characteristics of the risers and mooring lines and, in 
return, influence the level of the ice forces exerted on the hull. The response of risers and 
mooring lines to ocean currents adjusts the stiffness and damping of the floating system. The 
current-induced vibrations of some floaters and to larger extent the vibrations of the 
submerged slender parts can jeopardise the safety of the whole concept. The dynamic 
behaviour of the submerged slender parts is also very important during and after any 
disconnection operation, and it may be very decisive for the degree of success of such 
operations. 

This thesis contributes to the complex picture above in the following ways: 
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1. By studying the vortex-induced vibrations (VIV) of slender line-like structures, e.g., 
risers and umbilical and mooring lines. 

2. By studying the actions of level and broken ice features on a floating hull. 

Analytical closed-form solutions are derived for the natural frequencies and mode shapes of 
slender structures. These solutions are then suggested as practical engineering tools to 
examine the susceptibility of slender structures to VIV. The solutions derived are also useful 
for the empirical models, which predict the VIV behaviour by assuming that the structural 
response will occur at a single or a discrete number of frequencies. Moreover, this thesis 
introduces an innovative method to install round-sectioned helical strakes, and it verifies the 
efficiency of these strakes in suppressing VIV. Finally, a numerical model is developed to 
simulate in real time the interaction between a floater and sea ice, and a closer look is directed 
towards the effect of the seawater on such interactions.  

2.3 Vortex Induced Vibrations 

The vibrations caused by vortex shedding have potentially destructive effects on structures, 
which can be manifested as, e.g., fatigue damage and the amplification of the in-line drag 
forces. Hence, it is essential to take into consideration these vibrations whilst designing 
offshore structures, especially slender structures such as marine risers and mooring lines. 

To illustrate the process of vortex shedding, we can apply Bernoulli’s equation to the potential 
flow around a circular cylinder. Then, it follows that the pressure reaches its maximum value 
at the front stagnation point where the velocity is zero, and that the pressure is a minimum 
when the velocity attains its maximum value at 90º. Furthermore, the pressure is expected to 
increase again towards the aft stagnation point. This causes the fluid particles that exist near 
the cylinder surface to use their kinetic energy to travel against the increasing pressure. In the 
meantime, those particles in viscid fluid lose a portion of their energy due to the friction 
forces, and, therefore, they are no longer capable of following the potential flow streamline 
that could reach the aft stagnation point. At last, as a result of the pressure gradient, the flow 
near the cylinder surface reverses and causes the boundary layer to separate from each side of 
the cylinder, which ultimately forms two shear layers that trail towards the rear of the 
cylinder. The point at which the separation occurs is called the separation point. The 
innermost part of the separated shear layer that is still in contact with the cylinder, moves 
slower than the outermost part, which makes contact with the free stream. This is why the 
shear layers roll into the near wake and fold on each other, forming the vortices. These 
vortices grow and finally separate from the cylinder and travel downstream. 

Because the vortex shedding alternates from one side of the cylinder to the other, the pressure 
around the cylinder becomes periodically fluctuating. This fluctuation in the pressure 
generates time variable forces both in the in-line and the cross-flow directions. The frequency 
of the lift forces (cross-flow forces) is the same as the vortex shedding frequency, whereas the 
frequency of the in-line forces is twice the shedding frequency. Finally, when the vortex 
shedding frequency reaches the natural frequency of the cylinder, the cylinder is likely to be 
excited to oscillate. Here, it is essential to watch carefully how the vibrations are maintained 
over a range of flow velocities. In this range, the frequency of vortex shedding remains locked 
onto the natural frequency of the oscillating cylinder, which is known as the lock-in range, 
where the cylinder motion controls the process of vortex shedding. The lock-in phenomenon 
is simply a process of fluid-structure interaction. On one side, the motion of the cylinder 
affects the flow and changes its behaviour, whereas, on the other side, the flow may change 
the vibration frequency of the cylinder. 
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The complexity of the VIV process comes from the modification of the flow pattern around 
the structure as a function of a number of factors, including the Reynolds number, which will 
be defined later, the turbulence level, the surface roughness, three-dimensionality, and the 
flow-structure interaction. The flow field around stationary or oscillating cylinders and the 
effects of the abovementioned factors are not discussed here. Discussions of this subject can 
be found in Zdravkovich [7, 8], Blevins [9] and Chakrabarti [10]. 

The following section provides an introduction to the most important nondimensional 
parameters, which are frequently used in studying VIV. Section 2.3.2 briefly discusses 
different approaches for the prediction of VIV of marine risers and cables. Finally, Section 
2.3.3 reviews the available methods that are used to suppress VIV.   

2.3.1 Relevant Nondimensional Parameters 

The nondimensional parameters that are often used to study VIV can be divided into three 
groups: flow, structural, and fluid-structure interaction parameters. According to Blevins [9], 
the aspect ratio, reduced velocity, dimensionless amplitude, mass ratio, Reynolds number, 
damping factor and turbulence intensity are the most useful parameters in describing the 
vibration of an elastic structure in steady flow. These parameters and a few others are defined 
below. 

Reynolds number ( ) 

The Reynolds number describes the ratio between inertia forces and viscous forces in the 
boundary layer. It is written as 

=  (2.1) 

where  is the flow velocity,  is the diameter of the cylinder, and  is the kinematic 
viscosity. 

Turbulence intensity 

The turbulence intensity is a measure of the fluctuations in the mean flow and is defined by 
the relation 

 (2.2) 

where  is the root mean square turbulence and  is the free-stream velocity. 

Aspect ratio 

The aspect ratio of a cylinder gives information about its geometrical shape and is defined as 

 (2.3) 

where  is the length and  is the diameter of the cylinder. 

Roughness ratio 

The roughness ratio describes the conditions of the body surface and is defined as 
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 (2.4) 

where  is the characteristic size of the roughness and  is the diameter of the cylinder. 

Mass ratio 

The mass ratio is the ratio between the mass per unit length of the cylinder ( ) and the mass 
per unit length of the displaced fluid ( 4), multiplied by 4. The mass ratio is written 
as 

 (2.5) 

where  is the density of the fluid. The added mass is included by some authors in the mass 
per unit length, but other authors exclude this added mass and consider only the structural 
mass. 

Specific gravity 

The specific gravity is the ratio between the mass per unit length of the cylinder ( ) and the 
mass per unit length of the displaced fluid ( 4), which gives 

4
 (2.6) 

The specific gravity is approximately 1.27 times the mass ratio. 

Damping ratio ( ) 

The damping ratio describes the structural damping and is defined as 

=
2

 (2.7) 

where  is the nth natural frequency in radians per second,  is linear damping coefficient in 
the nth mode and  is the mass that corresponds to  and the actual restoring force .  

Reduced velocity ( ) 

The reduced velocity is a useful parameter when presenting the structural response in the 
lock-in range.  is the ratio of the path length travelled in one cycle in the flow direction and 
the cylinder diameter. It can be defined as 

= =  (2.8) 

where  is the flow velocity,  is the oscillation period,  is the frequency of oscillation in Hz 
and  is the cylinder diameter. For tests that uses an elastically mounted cylinder, the 
cylinder’s natural frequency, whether in air or in still water, is often used instead of the 
oscillation frequency.  

Nominal reduced velocity 

This parameter is the reduced velocity using the natural frequency in air. 
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True reduced velocity 

This parameter is the reduced velocity using the true vibration frequency. 

Non-dimensional frequency 

This parameter is the inverse of the true reduced velocity. 

Dimensionless response amplitude 

The dimensionless response amplitude is the ratio between the vibration amplitude and the 
cylinder diameter: 

   (2.9) 

where  and  are the vibration amplitudes in the in-line and cross-flow directions, 
respectively. 

Strouhal number ( ) 

The Strouhal number is the proportionality constant of the relationship between the vortex 
shedding frequency and the flow velocity divided by the cylinder diameter. This number is 
written as 

=  (2.10) 

where  is the vortex shedding frequency,  is the flow velocity and  is the cylinder’s 
diameter. 

Reduced damping ( ) 

The reduced damping is very often used to predict the VIV response of structures. It has been 
used in many versions, and it can be found under many names, such as mass damping, 
Scruton number, or (combined) stability parameter. A common definition of the reduced 
damping is 

=
2

 (2.11) 

where  is the cylinder mass per unit length and = 2  is the logarithmic decrement. 

2.3.2 Prediction of VIV  

This section discusses briefly the different methods available for the prediction of VIV of 
slender line-like structures. In principle, any of these methods would require solutions for the 
fluid forces as well as the structural response. The different approaches to solve this coupled 
system can be divided into the following three groups: 

 Computational fluid dynamics (CFD) methods. 
 Pragmatic methods.  
 Empirical methods. 
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The CFD models work in the time domain, and they implement different numerical 
techniques to compute the flow around the structure. These models are generally based on 
solving the Navier-Stokes equations for the fluid and the beam equation for the slender 
structure simultaneously. The CFD models can be two-dimensional (2D) or three-dimensional 
(3D). The 2D models utilise the strip theory. They calculate the 2D flow around the structure 
on a large number of parallel planes distributed over the length of the beam. These planes 
communicate through the motion of the structure. The position of the structure is updated at 
each time step in response to the computed instantaneous flow-induced forces. The 3D 
models are more complex, and they are limited to a lower Reynolds number than the 2D 
models (Chakrabarti [10]). 

The pragmatic methods are quite similar to the two-dimensional CFD models. The only 
difference here is that the solution of Navier-Stokes equations is not required because the 
fluid behaviour is idealised by simpler models, e.g., the wake oscillator model (see [9]).   

The empirical models make no attempt to describe the flow field, and they are generally based 
on the assumption that VIV occurs at a single frequency or at discrete frequencies. Then, 
these models variously use experimental data to identify the amplitudes of the excited modes. 
The empirical models can be solved in the frequency domain and the time domain (see [11]). 

2.3.3 Suppression of VIV 

There are different approaches that are used to suppress the VIV. Blevins [9] stated that, by 
modifying either the structure or the flow, it is possible to reduce the amplitude of vibration 
and the related magnification of the steady drag. Furthermore, he divided the suppression 
options into four categories: 

 Increase reduced damping 
 Avoid resonance 
 Streamline cross section 
 Add a vortex suppression device 

2.3.3.1 Increase reduced damping 

It is possible to increase the reduced damping ( ) by increasing the structural mass and/or 
the structural damping. According to Blevins [9], the peak amplitudes at resonance are less 
than 1% of the cylinder’s diameter when > 64. 

2.3.3.2 Avoid resonance 

Resonance can be avoided if the frequency of vortex shedding is kept lower than the natural 
frequency of the riser, which may be achieved by stiffening the structure, especially if the 
structure is small. 

2.3.3.3 Streamline cross section 

Streamlining the downstream side of the structure minimises the flow separation. 
Accordingly, the vortex shedding and the drag forces are considerably decreased. Blevins [9] 
stated that an effective streamlining requires a taper with an angle that is less than 8º to 10º. 
Streamlined fairing or other trailing edges can be used for this purpose. The main drawback of 
this method is its directionality, which makes it suitable only for cases where the flow 
direction is fixed relative to the structure. The structure must also have sufficient stiffness to 
avoid flutter. 
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2.3.3.4 Add a vortex suppression device 

Different types of vortex suppression devices are available. Zdravkovic [12] classified those 
devices into three categories according to their mechanism of vortex suppression. Jones and 
Lamb [13] repeated to a great extent the same classification as follows: 

 Topographic devices (Zdravkovic: Surface protrusions) 
 Shrouds 
 Wake devices (Zdravkovic: Nearwake stabilisers) 

Topographic devices 

A topographic device modifies the surface of the cylinder without being located 
predominantly in the wake of the cylinder. Topographic devices reduce the VIV by interfering 
with the boundary layer separation and, hence, disturbing the initiation and formation of the 
vortices. Topographic devices can be omnidirectional or unidirectional. Examples of 
topographic devices are helical strakes, wires, fins, studs and spheres.  

Shrouds 

The shroud is a device placed at a certain distance from the cylinder to allow the fluid to flow 
in between the shroud and the cylinder. This arrangement suppresses the VIV by affecting the 
three stages of the vortex shedding process (vortex initiation, formation, and shedding). The 
shroud can be many shapes, such as perforated, gauze, axial rods, and axial slats. Full shrouds 
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may accumulate around the structure in a manner that hinders the operations. All these factors 
must be considered whilst designing offshore structures for the Arctic. 

A typical design of Arctic offshore structures will incorporate sloping surfaces at the 
waterline, e.g., conical structures, wide sloping structures and ship-shaped floaters. The 
conical structures (upward and downward sloping) are omnidirectional, meaning that the ice 
will always interact with a sloping surface regardless of the drifting direction. Ship-shaped 
floaters conversely are unidirectional, and ice vaning is usually required for the ice to interact 
with the sloping surfaces at the bow area. The main benefit of the sloping surfaces is that they 
promote the bending failure in ice over the other modes of failure, which helps to reduce the 
global ice actions. Sloping structures are also favoured because they are less susceptible than 
vertical structures to ice-induced vibrations. Nevertheless, the interaction between ice and 
sloping surfaces is a function of many variables, and it includes several processes, which 
together determine the global ice action.  

A brief discussion of the main factors that govern the ice actions on structures is given in the 
following section. The dynamic ice actions are discussed in Section 2.4.2. Finally, attention is 
paid to the interaction between sloping surfaces and level ice (both intact level ice and broken 
ice), where the different processes are highlighted and their contributions to the global ice 
action are discussed. 

2.4.1 Ice Action Parameters   

There are many factors that govern the severity of ice actions on structures. The structural 
characteristics, the ice properties, and the physical environmental conditions may result in a 
number of interaction scenarios and may cause the ice to fail with different modes of failure, 
which will eventually determine the ice action; see Figure 2.4. 
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Offshore structures in the Arctic are exposed to different types of ice features, e.g., intact level 
ice, broken ice fields, rafted ice, ridges, rubble fields and icebergs. The shape of the ice 
feature, the relative velocity between the ice and the structure, the confinement pressure in the 
ice and whether the ice is first-year or multi-year will have substantial influence on the 
interaction scenario. The spatial and temporal variation of ice properties is also very important 
for the determination of ice actions. 

When an ice feature impacts a structure, the upper limit of the ice action will be bound by one 
of three limiting mechanisms: limit stress, limit energy or limit force. The mass of the ice 
feature, the initial impact velocity, the ice feature properties, the environmental driving forces 
and the structure shape and size will decide which one of these mechanisms is activated, as 
explained below. 

Limit stress 

The internal stresses in the ice increase as the contact force between the ice feature and the 
structure increases. If the stress in the ice exceeds a certain stress level, the ice feature will 
fail, and the contact forces will drop. Hence, the ice actions (contact forces) are limited by the 
internal stress and the ice strength. When the ice feature interacts with a vertical structure, the 
crushing failure mode will most likely dominate, and, therefore, the ice compressive strength 
will set the upper limit of the ice actions. On the other hand, the flexural strength of the ice 
will control the ice actions on the sloping structure because the dominating mode of failure in 
that case is most likely bending failure. In certain circumstances, other modes of failure are 
also possible, e.g., shear, creep, buckling, and splitting. 

Limit energy 

This interaction scenario arises when the kinetic energy of the ice feature is insufficient for 
enveloping the structure. In other words, the ice feature will stop shortly after impacting the 
structure. In the case of broken ice with relatively low concentration and if the structure is 
narrow, the ice feature will most likely travel around the structure. In this case, the actions 
related to the limit energy are generally less than those corresponding to the limit stress 
scenario.  

Limit force 

This scenario occurs if the ice feature stops shortly after impacting the structure and cannot be 
cleared away due to the large width of the structure and/or high concentration of the ice 
around it. Then, this halted ice feature start transmitting actions to the structure exerted by the 
wind, current and surrounding ice features. If these driving forces are sufficiently large, they 
may cause the structure to start penetrating again into the ice, which is usually associated with 
a slow interaction velocity and strong ice, leading to considerable ice actions. In the case that 
the surrounding ice is weaker than the ice feature adjacent to the structure, rafting and ridging 
will occur at the back of the halted ice feature.   

2.4.2 Dynamic Ice Actions 

Offshore structures may be exposed to two types of dynamic ice actions: 

 Impact loading arising due to an impact with, e.g., an iceberg. 
 Quasi-continuous loading resulting from the interaction with level ice. 
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a slow interaction velocity and strong ice, leading to considerable ice actions. In the case that 
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According to the ISO [2], quasi-continuous ice loadings on offshore structures can be divided 
into three primary modes of interaction as follows: 

 Intermittent ice crushing. It may occur if a compliant offshore structure is interacting 
with level ice at low speeds. This type of interaction is quasi-static, i.e., the maximum 
response of the structure coincides with the peak ice force, and transient decaying 
vibrations typically occur right after the peak ice force.  

 Frequency lock-in. It may happen at intermediate interaction speeds when the 
frequency of the ice actions adapts to the frequency of the structural displacements at 
the waterline. The structural response in the lock-in range is in steady-state and is 
almost sinusoidal.      

 Continuous brittle crushing. This scenario can occur at high interaction speeds. 
Here, the ice action and the structural response are random.  

Frequency lock-in vibrations, often denoted as ice-induced vibrations (IIV), may cause fatigue 
damage to offshore structures, and they can disturb the working operation on those structures. 
Vertical structures are more vulnerable to IIV than sloping structures. There are different 
approaches to analyse and predict IIV. Some of the available methods are based on the idea of 
negative viscous damping, which is analogous to galloping. In addition, similarities between 
IIV and VIV can also be utilised, and models are currently being developed based on the idea 
of frequency and amplitude dependent added mass and added damping. 

2.4.3 Level Ice Action on Sloping Structures 

The interaction between level ice and sloping surfaces includes different processes and can be 
divided into several phases: breaking, rotating, sliding and clearing (or accumulating). Figure 
2.5 illustrates in two dimensions the different phases of interaction between level ice and a 
bow of a ship-shaped floater, i.e., a sloping surface. The ice breaking phase begins with a 
localised crushing of the free ice edge at the contact zone. The crushing force increases as the 
structure penetrates into the ice and the contact area increases, which causes the ice sheet to 
deflect and the bending stresses to build up until the ice sheet fails.  

A typical failure pattern will start with the formation of radial cracks in the ice sheet that are 
followed by a circumferential crack. If the contact area is quite wide, circumferential cracks 
may occur before the radial cracks; see Li et al. [15]. The flexural failure (circumferential 
crack) occurs at a distance from the crushing region. This distance, the breaking length, 
depends on the ice thickness and the ship speed, among other factors.  

The broken ice pieces are often called cusps or wedges, depending on their geometry. Upon 
the formation of these cusps and wedges, the pieces start rotating downward until they are 
parallel to the sloping surface. During this rotation, the cusps and wedges push the previously 
broken ice pieces further down. Two important phenomena may occur in the rotating phase, 
depending on the speed of interaction. 1) Ventilation can arise if seawater is unable to 
immediately fill the gap above the rotating ice floes, which causes a substantial increase in the 
hydrostatic forces acting on the floes interacting with the structure, resulting in an increase in 
the global ice action. 2) The other phenomenon is that the structure may experience 
significant impact forces (slamming) at the end of the rotation phase due to the collision with 
the upper surface of the rotating ice floe. In the final phases of interaction, the broken ice 
pieces slide along the structure, and they may be cleared away or possibly accumulate around 
the structure. The interaction between sloping structures and ice floes in a broken ice field is 
slightly different from above, i.e., large ice floes may behave similar to level ice while smaller 
floes will mostly be pushed aside, rotated or submerged. 
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Figure 2.5: Level-ice interaction with a sloping surface (figure reproduced from Kotras et al. 
[16]). 

Valanto [17] studied the level ice resistance for ships moving in ice. He concluded that half of 
the resistance is the result of submerging the ice and the friction between the hull and the 
broken ice blocks travelling under the vessel. The other half of the resistance is caused by the 
processes at the waterline, including breaking the ice, accelerating the broken ice floes, 
ventilation, impact and stem crushing (see Figure 2.6). Croasdale et al. [18] presented a model 
to calculate the level ice action on wide conical structures, and this model was recently 
adopted by the ISO Code [2]. Croasdale divided the total ice force into five components (the 
breaking load is only one of them). Croasdale’s model predicts the contribution of the 
breaking load component to be in the range of 20% to 30% of the total ice force.  

Figure 2.6 shows that the global ice action (resistance) increases with the interaction speed. In 
fact, many field and model observations show similar speed effects; see Matskevitch [19]. 
The effects of the added mass and hydrodynamic damping from the water foundation under 
the ice are more significant at high interaction speeds than at low speeds. The rubble 
accumulation and clearance will also be influenced by the speed of interaction. Finally, high 
interaction speeds may change the mode of failure from bending to shear failure.  
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Figure 2.6: The contributions to the global ice actions (figure reproduced from Valanto [17]).  

The response of structures, especially floaters, can have strong influence on the ice actions. A 
floater has six degrees of freedom (6 DOF), which translates mathematically into six coupled 
equations of motions written as 

+ + + =              ( = 1, … ,6) (2.12) 

where  are the floater motions: surge, sway, heave, roll, pitch and yaw. The dots denote 
time derivatives, i.e.,   are the floater velocities, and  are the floater accelerations.  
and  are the components of the generalised mass and added mass matrices, respectively. 

 and  are the components of the damping and stiffness matrices, respectively.  are the 
excitation forces and moments, which include, e.g., the ice actions. 

Ice actions arise from interactions between the floater and ice. The contact forces between an 
ice floe and the floater are not known a priori but result from the balance between the floater 
motion and ice loading. The balance is often calculated by iterating the crushing depth. 
Another alternative is to couple the ice actions and the floater motion through a feedback 
loop, i.e., the current position of the ice and the previous position of the floater determine the 
contact forces at the present time step, and the calculated forces are used to modify the 
floater’s position for the next time step. 

The pitch motion of a floater, for example, may change the inclination angle of the structure 
against the ice, which will certainly affect the ice actions. If the pitch angle becomes 
sufficiently steep, the failure mode of ice may change from bending to shear or crushing, and 
this will significantly increase the ice actions on the floater and further increase its pitch 
angle. When the ice adjacent to the floater loses its integrity, the floater will try to return to its 
initial position, which may be accompanied by large accelerations that could hinder the 
operations or cause discomfort for the personnel working on the floater. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 
0 

20 

40 

60 

80 

100 

120 

140 

200 

22

 

Figure 2.6: The contributions to the global ice actions (figure reproduced from Valanto [17]).  

The response of structures, especially floaters, can have strong influence on the ice actions. A 
floater has six degrees of freedom (6 DOF), which translates mathematically into six coupled 
equations of motions written as 

+ + + =              ( = 1, … ,6) (2.12) 

where  are the floater motions: surge, sway, heave, roll, pitch and yaw. The dots denote 
time derivatives, i.e.,   are the floater velocities, and  are the floater accelerations.  
and  are the components of the generalised mass and added mass matrices, respectively. 

 and  are the components of the damping and stiffness matrices, respectively.  are the 
excitation forces and moments, which include, e.g., the ice actions. 

Ice actions arise from interactions between the floater and ice. The contact forces between an 
ice floe and the floater are not known a priori but result from the balance between the floater 
motion and ice loading. The balance is often calculated by iterating the crushing depth. 
Another alternative is to couple the ice actions and the floater motion through a feedback 
loop, i.e., the current position of the ice and the previous position of the floater determine the 
contact forces at the present time step, and the calculated forces are used to modify the 
floater’s position for the next time step. 

The pitch motion of a floater, for example, may change the inclination angle of the structure 
against the ice, which will certainly affect the ice actions. If the pitch angle becomes 
sufficiently steep, the failure mode of ice may change from bending to shear or crushing, and 
this will significantly increase the ice actions on the floater and further increase its pitch 
angle. When the ice adjacent to the floater loses its integrity, the floater will try to return to its 
initial position, which may be accompanied by large accelerations that could hinder the 
operations or cause discomfort for the personnel working on the floater. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 
0 

20 

40 

60 

80 

100 

120 

140 

200 

22

 

Figure 2.6: The contributions to the global ice actions (figure reproduced from Valanto [17]).  

The response of structures, especially floaters, can have strong influence on the ice actions. A 
floater has six degrees of freedom (6 DOF), which translates mathematically into six coupled 
equations of motions written as 

+ + + =              ( = 1, … ,6) (2.12) 

where  are the floater motions: surge, sway, heave, roll, pitch and yaw. The dots denote 
time derivatives, i.e.,   are the floater velocities, and  are the floater accelerations.  
and  are the components of the generalised mass and added mass matrices, respectively. 

 and  are the components of the damping and stiffness matrices, respectively.  are the 
excitation forces and moments, which include, e.g., the ice actions. 

Ice actions arise from interactions between the floater and ice. The contact forces between an 
ice floe and the floater are not known a priori but result from the balance between the floater 
motion and ice loading. The balance is often calculated by iterating the crushing depth. 
Another alternative is to couple the ice actions and the floater motion through a feedback 
loop, i.e., the current position of the ice and the previous position of the floater determine the 
contact forces at the present time step, and the calculated forces are used to modify the 
floater’s position for the next time step. 

The pitch motion of a floater, for example, may change the inclination angle of the structure 
against the ice, which will certainly affect the ice actions. If the pitch angle becomes 
sufficiently steep, the failure mode of ice may change from bending to shear or crushing, and 
this will significantly increase the ice actions on the floater and further increase its pitch 
angle. When the ice adjacent to the floater loses its integrity, the floater will try to return to its 
initial position, which may be accompanied by large accelerations that could hinder the 
operations or cause discomfort for the personnel working on the floater. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 
0 

20 

40 

60 

80 

100 

120 

140 

200 

22

 

Figure 2.6: The contributions to the global ice actions (figure reproduced from Valanto [17]).  

The response of structures, especially floaters, can have strong influence on the ice actions. A 
floater has six degrees of freedom (6 DOF), which translates mathematically into six coupled 
equations of motions written as 

+ + + =              ( = 1, … ,6) (2.12) 

where  are the floater motions: surge, sway, heave, roll, pitch and yaw. The dots denote 
time derivatives, i.e.,   are the floater velocities, and  are the floater accelerations.  
and  are the components of the generalised mass and added mass matrices, respectively. 

 and  are the components of the damping and stiffness matrices, respectively.  are the 
excitation forces and moments, which include, e.g., the ice actions. 

Ice actions arise from interactions between the floater and ice. The contact forces between an 
ice floe and the floater are not known a priori but result from the balance between the floater 
motion and ice loading. The balance is often calculated by iterating the crushing depth. 
Another alternative is to couple the ice actions and the floater motion through a feedback 
loop, i.e., the current position of the ice and the previous position of the floater determine the 
contact forces at the present time step, and the calculated forces are used to modify the 
floater’s position for the next time step. 

The pitch motion of a floater, for example, may change the inclination angle of the structure 
against the ice, which will certainly affect the ice actions. If the pitch angle becomes 
sufficiently steep, the failure mode of ice may change from bending to shear or crushing, and 
this will significantly increase the ice actions on the floater and further increase its pitch 
angle. When the ice adjacent to the floater loses its integrity, the floater will try to return to its 
initial position, which may be accompanied by large accelerations that could hinder the 
operations or cause discomfort for the personnel working on the floater. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 
0 

20 

40 

60 

80 

100 

120 

140 

200 

22



Ice vaning is a very important operation associated with the station keeping of floaters in the 
Arctic offshore. The floater must be heading against the ice drift direction to ensure that the 
ice will interact with the bow of the floater. Here, the accurate prediction of the floater 
response is essential for the reliability of such operations. Certain yaw angles can be sufficient 
for the ice to interact with the almost vertical sides of the floater. In this scenario, the ice 
forces on the floater side are very large, and it is quite challenging for the station-keeping 
system (both mooring and DP systems) to function properly.  
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Frequency and Mode Shape Estimates of Marine Catenary Systems using 
Asymptotic Approximations 

 

Raed K. Lubbad1, Geir Moe2 and John M. Niedzwecki3

Abstract 

 

Catenary configurations are commonly found in a wide range of offshore science and 
engineering applications, with the most common being the use of spread mooring systems for 
the station keeping of various floating platforms. Increasingly, attention has been focused 
upon predicting the susceptibility of catenary cables and marine risers to flow-induced 
vibrations. In this research study it is assumed that the dynamics of the catenary in the cross-
flow direction can be determined without considering the motions in the in-line direction. A 
WKB analysis and another asymptotic method denoted ‘local analysis’ are then used as the 
basis to develop closed-form approximate solutions of the cross-flow natural frequencies and 
mode shapes for a catenary. The accuracy of these approximations is established through 
comparison with other analytic solution techniques and with results from numerical finite 
element solutions. The effects of bending stiffness and the effects of approximating the 
tension variation along the catenary by a linear function are discussed. Experimental data on 
the multi-modal in-line and cross-flow response behavior of a towed catenary model provides 
a means to illustrate the usefulness of the presented analytical asymptotic approximations in 
predicting the response frequencies and mode shapes due to the vortex induced vibrations.  

  
Keywords: catenary systems, mooring lines, steel catenary risers, asymptotic 

approximations, in-line response, cross-flow response, frequencies and mode 
shapes, model tests.  

 
1. Introduction 

Mooring lines and spread mooring systems are commonly used to provide station keeping for 
buoys, barges, ships and floating offshore platforms. More recently steel catenary risers 
(SCR) have become integral to the offshore petroleum industry and are typically used as 
flexible pipelines to transport oil and gas from the seafloor or as export flow-lines to transport 
fluids to storage or production facilities. Regardless of the application these long slender 
structural elements are often subject to harsh offshore environments. Therefore, a safe design 
of these structures requires a careful analysis to their dynamic response. Marine risers and 
mooring lines are often modeled as tension dominated cables or beams due to their line 
topology and the applied pretension. The dynamics of these models is complicated by non-
linearities that may be due the geometry, the material properties, hydrodynamic forces, effects 
of structural interaction with the sea bed, or some combination of these factors. 
Mathematically, it is possible to formulate a set of nonlinear coupled partial differential 
equations to serve as the basis for dynamic analyses of catenary structures.  For example, the 
three dimensional dynamic equations of cables were derived by Bliek [1], while the three 
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dimensional equations of beams with large deformation can be found in, for example, the 
doctoral thesis by Kim [2]. Depending upon the complexity of the model, numerical solutions 
may require a substantial computational time and depending on the numerical model they may 
only provide global quantitative response results and consequently little understanding as to 
the relative influences of the various parameters that govern the problem solution.  

An alternate formulation that utilizes asymptotic methods can be used to derive analytical 
approximations for the eigen-frequencies and corresponding mode shapes of a catenary. As a 
consequence of initially assuming that the dynamic response is relatively small, the un-
damped cable or beam formulations lead to distinct natural frequencies and mode shapes that 
depend only on the static configuration and the boundary conditions. The closed-form 
solutions for the eigenvalue problem can be useful in several ways: 1) it enhances the 
understanding of how the different structural parameters affect the structural response to the 
external loadings, 2) it simplifies the modal analysis of the structural response, 3) based upon 
these approximate solutions one can assess whether excitation from the environment is 
sufficiently near any natural frequencies of the catenary that the response could be amplified 
in the damping controlled region, potentially leading to undesirable acceleration of fatigue or 
other design problems, or in other words 4) it can be used for practical problems in order to 
assess whether higher order approximations or more complex analyses are needed to more 
adequately address relevant system nonlinearities.  

Technical articles that are available in the open literature provide an ample source of 
information on the natural frequencies and mode shapes of cables with different geometries 
and boundary conditions, see for example Irvine and Caughey [3], Triantafyllou and Bliek [4] 
and Triantafyllou et al. [5]. In each of these mentioned technical publications the researchers 
utilized a linear two-dimensional theoretical approach to investigate the free vibrations of 
extensible cables. Based upon their analyses they concluded that the out-of-plane dynamic 
response was uncoupled from the in-plane response. However, the in-plane transverse and 
longitudinal motions were coupled and depended upon the ratio of elastic stiffness to catenary 
stiffness. Although the cable elastic waves were neglected in the article by Irvine and 
Caughey [3], the inclusion of elasticity in the equations of motion was enough to explain the 
frequency cross-over phenomenon and the symmetric/anti-symmetric modes in the in-plane 
dynamics of horizontal cables. By retaining the elastic waves it was possible to show the 
existence of hybrid modes in the in-plane motions of inclined cables (Triantafyllou and Bliek 
[4] and Triantafyllou et al. [5]). In addition, it was claimed that the catenary stiffness is 
dominant for inclined cables with large sag and consequently a pure catenary cable can well 
be modeled as an inextensible cable. Moe and Chucheepsakul [6] and Strømsem [7] studied 
the effects of internal flow on the eigenvalue problem solution and found out that under 
normal operating conditions the internal flow has no effects on the natural frequencies and 
mode shapes of nearly vertical cables and that for curved cables the internal flow has minor 
effects on the in-plane natural frequencies, while hybrid mode shapes can occur for high 
internal flow velocities. In this research study, the effects of internal flow are not addressed. 
When bending stiffness of the catenary risers and mooring lines is no longer negligible, the 
eigenvalue problem becomes more complicated. To the authors’ knowledge, there exists no 
closed form solution for this general problem, and closed form solutions are available mainly 
for the case of nearly vertical beams, see Kim [2] and Lubbad and Moe [8].   

A major concern in the development of offshore slender structures is the Vortex Induced 
Vibrations (VIV). These vibrations increase the drag forces and they may cause fatigue 
damage. Therefore, it is of utmost importance to accurately predict such vibrations and to 
have dependable methods by which to suppress them when necessary. Chaplin et al. [9] 
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compared laboratory measurements of VIV of a vertical tensioned riser with blind predictions 
of 11 different numerical models. It was shown there that the frequency domain models 
predicted the frequencies and mode shapes of vibrations well while the motion amplitudes 
were less well predicted. This is a good indicator that the closed-form solutions for the natural 
frequencies and mode shapes of vertical risers can indeed be useful in the analysis of VIV. 
The results from the vertical riser experiments encouraged the authors of this paper to study 
the similarities between the vertical and catenary configurations. In this study we first 
formulate the free-vibrations problem of a catenary in the cross-flow direction. Then we 
derive asymptotic solutions using local asymptotic analysis and WKB (Wentzel-Kramers-
Brillouln) asymptotic methods. A numerical finite-element solution is described and used to 
verify the results of the asymptotic methods. Finally, the calculated frequencies and mode 
shapes are compared with laboratory measurements from an SCR model test program to 
verify the usefulness of the asymptotic solutions in predicting the VIV of catenary 
configurations. 

2. Catenary Cross-flow Free Vibrations 

The pure catenary shape which is formed by a flexible structural element hanging under the 
influence of its own weight and in the absence of any ocean waves or currents is illustrated in 
Figure 1. Initially the catenary shape is envisioned to lie in the two dimensional -  plane that 
has its origin where the catenary touches the seafloor that is the touch-down point (TDP). The 
Lagrangian coordinate s that follows the catenary shape also has its origin at the TDP of the 
catenary. The out-of-plane displacement at any point along  is  while the in-plane 
tangential and normal displacements are  and  respectively. The suspended catenary length 
is , the slope angle of the catenary is , the applied top tension is  and for a pure catenary 
shape the horizontal component of the static tension is constant along the catenary, that is 

= cos( ) where  is the angle measured or observed as the catenary breaks the free 
surface of the ocean. Assuming that the catenary is simply supported at both ends researchers 
have obtained analytical expressions for the quasi-static response of the catenary, see for 
example Triantafyllou et al. [5], and Moe and Arntsen [10]. 

 

Figure 1: The basic pure catenary shape. 

The cross-flow and in-line directions are defined here as the directions normal and parallel to 
the flow direction, respectively. The formulation of the cross-flow dynamics is very important 
for the analysis of VIV and the assumption that the cross-flow dynamics are uncoupled from 
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the in-line dynamics is an important practical simplification of the problem. When the flow is 
in the plane of the catenary, the cross-flow direction becomes parallel to the catenary out-of-
plane direction and the aforesaid assumption is widely accepted among researchers in the field 
of cable dynamics. When the flow acts at an oblique angle to the catenary plane, the 
assumption becomes questionable, especially for oblique angles close to 90º. When the effects 
of bending stiffness are dominating, the decoupling assumption will probably be about as 
accurate as the results for a long, slender, initially straight beam along the vertical axis (i.e. 
the -axis) that experiences moderately large deflections. These equations as presented by 
Kim [2] are coupled through the nonlinear tension regardless of whether the bending stiffness 
is included. Analogously for the cable case, it seems reasonable to assume that even for the 
beam case the catenary cross-flow dynamics are decoupled from those in the in-line direction 
and this assumption is best when the flow is in the plane of the catenary. The equation for the 
cross-flow dynamics can then be approximated and expressed in terms of derivatives along 
the catenary as 

 + =  (1)  

where  is as defined previously.  is the static (effective) tension and it is a nonlinear 
function of . , as from here, is the displacement in the cross-flow direction (same as the 
catenary out-of-plane displacement when the flow is in the plane of the catenary).  is the 
time,  is the bending stiffness,  is the external loading in the cross-flow direction and  is 
the total mass per unit length of the catenary, including external added mass effects (virtual 
mass).  

3. First-Order Asymptotic Solution for a String Cross-flow Model 

When the bending stiffness and the external loading are neglected, equation (1) reduces to the 
equation of a free vibrating string under a variable tension, i.e. 

 + = 0 (2)  

For the case where the tension in the catenary structure is approximated by a linear function, 
exact solutions in terms of Bessel functions, as well as, asymptotic solutions are available, see 
for example Moe and Chucheepsakul [6]. Sparks [11] analyzed equation (2) under a linearly 
varying tension and estimated the of out-of-plane natural frequencies for steel catenary risers. 
On the other hand, one would expect better estimates of the natural frequencies and mode 
shapes if the nonlinear tension variation is considered. In the discussion that follows a so-
called local analysis which is a form of an asymptotic solution method is used to derive closed 
form analytical solutions for the free vibration of a string model of a catenary structure with 
nonlinear tension variation. 

The effective tension in a pure catenary slender structure varies nonlinearly as 

 = 1 +   (3)  

where, = ( ) = tan . The time dependence in equation (2) is expected to be purely 
harmonic, suggesting a solution of the form 

 ( , ) = ( ) cos  (4)  

40

the in-line dynamics is an important practical simplification of the problem. When the flow is 
in the plane of the catenary, the cross-flow direction becomes parallel to the catenary out-of-
plane direction and the aforesaid assumption is widely accepted among researchers in the field 
of cable dynamics. When the flow acts at an oblique angle to the catenary plane, the 
assumption becomes questionable, especially for oblique angles close to 90º. When the effects 
of bending stiffness are dominating, the decoupling assumption will probably be about as 
accurate as the results for a long, slender, initially straight beam along the vertical axis (i.e. 
the -axis) that experiences moderately large deflections. These equations as presented by 
Kim [2] are coupled through the nonlinear tension regardless of whether the bending stiffness 
is included. Analogously for the cable case, it seems reasonable to assume that even for the 
beam case the catenary cross-flow dynamics are decoupled from those in the in-line direction 
and this assumption is best when the flow is in the plane of the catenary. The equation for the 
cross-flow dynamics can then be approximated and expressed in terms of derivatives along 
the catenary as 

 + =  (1)  

where  is as defined previously.  is the static (effective) tension and it is a nonlinear 
function of . , as from here, is the displacement in the cross-flow direction (same as the 
catenary out-of-plane displacement when the flow is in the plane of the catenary).  is the 
time,  is the bending stiffness,  is the external loading in the cross-flow direction and  is 
the total mass per unit length of the catenary, including external added mass effects (virtual 
mass).  

3. First-Order Asymptotic Solution for a String Cross-flow Model 

When the bending stiffness and the external loading are neglected, equation (1) reduces to the 
equation of a free vibrating string under a variable tension, i.e. 

 + = 0 (2)  

For the case where the tension in the catenary structure is approximated by a linear function, 
exact solutions in terms of Bessel functions, as well as, asymptotic solutions are available, see 
for example Moe and Chucheepsakul [6]. Sparks [11] analyzed equation (2) under a linearly 
varying tension and estimated the of out-of-plane natural frequencies for steel catenary risers. 
On the other hand, one would expect better estimates of the natural frequencies and mode 
shapes if the nonlinear tension variation is considered. In the discussion that follows a so-
called local analysis which is a form of an asymptotic solution method is used to derive closed 
form analytical solutions for the free vibration of a string model of a catenary structure with 
nonlinear tension variation. 

The effective tension in a pure catenary slender structure varies nonlinearly as 

 = 1 +   (3)  

where, = ( ) = tan . The time dependence in equation (2) is expected to be purely 
harmonic, suggesting a solution of the form 

 ( , ) = ( ) cos  (4)  

40

the in-line dynamics is an important practical simplification of the problem. When the flow is 
in the plane of the catenary, the cross-flow direction becomes parallel to the catenary out-of-
plane direction and the aforesaid assumption is widely accepted among researchers in the field 
of cable dynamics. When the flow acts at an oblique angle to the catenary plane, the 
assumption becomes questionable, especially for oblique angles close to 90º. When the effects 
of bending stiffness are dominating, the decoupling assumption will probably be about as 
accurate as the results for a long, slender, initially straight beam along the vertical axis (i.e. 
the -axis) that experiences moderately large deflections. These equations as presented by 
Kim [2] are coupled through the nonlinear tension regardless of whether the bending stiffness 
is included. Analogously for the cable case, it seems reasonable to assume that even for the 
beam case the catenary cross-flow dynamics are decoupled from those in the in-line direction 
and this assumption is best when the flow is in the plane of the catenary. The equation for the 
cross-flow dynamics can then be approximated and expressed in terms of derivatives along 
the catenary as 

 + =  (1)  

where  is as defined previously.  is the static (effective) tension and it is a nonlinear 
function of . , as from here, is the displacement in the cross-flow direction (same as the 
catenary out-of-plane displacement when the flow is in the plane of the catenary).  is the 
time,  is the bending stiffness,  is the external loading in the cross-flow direction and  is 
the total mass per unit length of the catenary, including external added mass effects (virtual 
mass).  

3. First-Order Asymptotic Solution for a String Cross-flow Model 

When the bending stiffness and the external loading are neglected, equation (1) reduces to the 
equation of a free vibrating string under a variable tension, i.e. 

 + = 0 (2)  

For the case where the tension in the catenary structure is approximated by a linear function, 
exact solutions in terms of Bessel functions, as well as, asymptotic solutions are available, see 
for example Moe and Chucheepsakul [6]. Sparks [11] analyzed equation (2) under a linearly 
varying tension and estimated the of out-of-plane natural frequencies for steel catenary risers. 
On the other hand, one would expect better estimates of the natural frequencies and mode 
shapes if the nonlinear tension variation is considered. In the discussion that follows a so-
called local analysis which is a form of an asymptotic solution method is used to derive closed 
form analytical solutions for the free vibration of a string model of a catenary structure with 
nonlinear tension variation. 

The effective tension in a pure catenary slender structure varies nonlinearly as 

 = 1 +   (3)  

where, = ( ) = tan . The time dependence in equation (2) is expected to be purely 
harmonic, suggesting a solution of the form 

 ( , ) = ( ) cos  (4)  

40

the in-line dynamics is an important practical simplification of the problem. When the flow is 
in the plane of the catenary, the cross-flow direction becomes parallel to the catenary out-of-
plane direction and the aforesaid assumption is widely accepted among researchers in the field 
of cable dynamics. When the flow acts at an oblique angle to the catenary plane, the 
assumption becomes questionable, especially for oblique angles close to 90º. When the effects 
of bending stiffness are dominating, the decoupling assumption will probably be about as 
accurate as the results for a long, slender, initially straight beam along the vertical axis (i.e. 
the -axis) that experiences moderately large deflections. These equations as presented by 
Kim [2] are coupled through the nonlinear tension regardless of whether the bending stiffness 
is included. Analogously for the cable case, it seems reasonable to assume that even for the 
beam case the catenary cross-flow dynamics are decoupled from those in the in-line direction 
and this assumption is best when the flow is in the plane of the catenary. The equation for the 
cross-flow dynamics can then be approximated and expressed in terms of derivatives along 
the catenary as 

 + =  (1)  

where  is as defined previously.  is the static (effective) tension and it is a nonlinear 
function of . , as from here, is the displacement in the cross-flow direction (same as the 
catenary out-of-plane displacement when the flow is in the plane of the catenary).  is the 
time,  is the bending stiffness,  is the external loading in the cross-flow direction and  is 
the total mass per unit length of the catenary, including external added mass effects (virtual 
mass).  

3. First-Order Asymptotic Solution for a String Cross-flow Model 

When the bending stiffness and the external loading are neglected, equation (1) reduces to the 
equation of a free vibrating string under a variable tension, i.e. 

 + = 0 (2)  

For the case where the tension in the catenary structure is approximated by a linear function, 
exact solutions in terms of Bessel functions, as well as, asymptotic solutions are available, see 
for example Moe and Chucheepsakul [6]. Sparks [11] analyzed equation (2) under a linearly 
varying tension and estimated the of out-of-plane natural frequencies for steel catenary risers. 
On the other hand, one would expect better estimates of the natural frequencies and mode 
shapes if the nonlinear tension variation is considered. In the discussion that follows a so-
called local analysis which is a form of an asymptotic solution method is used to derive closed 
form analytical solutions for the free vibration of a string model of a catenary structure with 
nonlinear tension variation. 

The effective tension in a pure catenary slender structure varies nonlinearly as 

 = 1 +   (3)  

where, = ( ) = tan . The time dependence in equation (2) is expected to be purely 
harmonic, suggesting a solution of the form 

 ( , ) = ( ) cos  (4)  

40



and here  is the natural frequency of the catenary structure. Equation (4) basically suggests a 
separation of variables where ( , ) is written as a function of space only, ( ), multiplied 
by a function of time. For convenience of notation, ( ) is simply written as  in the 
following text. Substituting equation (4) into equation (2) and utilizing the relationship 

= tan =  where  is the value of tan  at =  one obtains an equation of the 
form 

 + = 0 (5)  

where, = . From which it follows that 

 +
1 +

+
1 +

= 0 (6)  

and the primes denote differentiation with respect to  and = .  

The asymptotic method known by the name “local analysis” can now be used to solve 
equation (6). First the solution is assumed on the form = ( ) where upon substitution into 
equation (6) yields 

 + +
1 +

+
1 +

= 0 (7)   

Assuming that , see Bender & Orszag [12], one can solve the resulting quadratic 
equation in  and for large values of , i.e. , one obtains the solution  

 ~
1

2 1 +
± (1 + )  ,          (8)      

Integrating equation (8) with respect to , the solution takes the form 

 = + ( ) (9)      

where, ( ) is an integration function of lower order in  (much smaller in the limit than ) 
and one finds that 

 =
1

4
ln(1 + ) ± (1 + )    (10)  

By neglecting ( ) a first-order approximation to the solution of equation (6) can be written 
as 

 
(1 + )  

     + (1 + )  

(11)  

where,  and  are constants. Noting that the integral is always real since  is real, the 
exponential functions in equation (11) can more conveniently be expressed in terms of 
trigonometric functions, and it follows that 
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(1 + ) sin (1 + )   

    + (1 + ) cos (1 + )  
(12)  

where, again  and  are constants. The boundary conditions for the simply supported case 
are: 

 
( = 0) = ( = 0) = 0 

( = ) = ( = ) = 0 
(13)  

Equation (12) will satisfy the above boundary conditions only if 

 

= 0 

(1 + ) = ,         = 1,2,3 … 
(14)  

Thus, the first-order asymptotic solution for the mode shapes becomes 

 (1 + ) sin (1 + )   (15)  

and the corresponding first-order natural frequencies  can be calculated from the second in 
equation (14) as: 

 = (1 + )   (16)  

The integration of the integrals in equations (15) and (16) is more suitable for numerical 
evaluation. Alternatively one can derive an approximate closed form solution by expanding 
the function (1 + )  around = . It follows then that, the integral (1 + )  can 
be approximated to a maximum error of less than 0.2%, by the following expression  

 
1

2
2

1

3
+

1

28

1

88
+

1

192

8359

4928
 (17)  

where = sinh ( ).  

4. Second-Order Asymptotic Solution for a String Cross-flow Model 

Further improvement to the first-order asymptotic solution for the natural frequency and mode 
shape estimates can be achieved by evaluating the term ( ) in equation (9). Substitute 
equation (9) into equation (7) one obtains the following equation 

 + + + 2 + +
1 +

+ +  
1 +

= 0 (18)   

Next the terms  and  can be neglected since  is much smaller than . The other terms, 
 and , are calculated using equation (10) as  
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=  
1

2(1 + )
+

(1 + )
2(1 + )

 

=
4(1 + )

(1 + ) (1 + )

 

(19)   

Equation (18) can now be solved for the only remaining unknown, , yielding 

 =
4(1 + )

±
( 2)

8 (1 + )

  (20)      

Integrating equation (20) one obtains the second-order correction term  

 ( ) =
1

8
ln(1 + ) ±

1

8

( 2)

(1 + )

  (21)      

Thus, the earlier expression, equation (9) can now be replaced by the expression 

 = + ( ) + ( ) (22)      

where, ( ) is again an integration function much smaller than the second-order correction 
term. Neglecting ( ) and solving for the mode shape and frequency expressions, one obtains 
the following second order approximation for the mode shapes  

 sin +
8

( 3)

( )

 (23)  

where 

 = 1 +  (24)  

The corresponding natural frequencies are the values of  which make the argument of the 
sine function in equation (23) equal to . Unfortunately, it is not possible to solve this 
explicitly and the second order approximation for the natural frequencies can only be 
estimated by solving the following equation for  iteratively.   

  +
8

( 3)

( )

=  (25)  

Triantafyllou and Bliek [4] solved the cable out-of-plane dynamics using the WKB method 
and interestingly their final results for the natural frequencies are the same as the first order 
approximations presented in this discussion. Pesce et al. [13] used the WKB method in order 
to study the in-plane dynamics of catenary cables. However, after neglecting most of the 
nonlinear terms, their problem of the transverse in-plane motion became identical to the 
problem discussed here for the cross-flow dynamics. As were to be expected, Pesce et al. [13] 
arrived at the exact same result as our first-order approximation. Later in this paper, numerical 
examples will compare the effects of linear and nonlinear tension variations on the natural 
frequencies and mode shapes of a catenary. The examples will also be used to compare the 
accuracy of the first and second order approximations derived here. 
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5. Asymptotic Solutions for a Beam Cross-flow Model  

This section discusses the solutions to the problem of free vibrating beam under varying 
tension, i.e., solutions to equation (1) when = 0. This discussion is useful for studying the 
effects of bending stiffness on the cross-flow dynamics of catenary slender structures. Here 
the structures of interest are uniform, i.e. the bending stiffness and the mass per unit length are 
constant. Assuming that the tension is continuous and varies nonlinearly but slowly along the 
structure, Kim [2] used the WKB method and provided an asymptotic solution to equation (1). 
Later Lubbad and Moe [8] studied the free vibrations of beams under linearly varying tension. 
In their study they showed how the WKB solution could be improved and by performing the 
integrations analytically, thus simplifying the final results and allowing the higher order 
approximations to the slope and bending moment. They also improved upon the numerical 
stability of the WKB solution by replacing the hyperbolic sine and cosine with exponential 
functions that originated at the boundaries and decreased uniformly away from these. For a 
simply supported beam the mode shapes as presented by Lubbad and Moe [8] are  

 =
 ( )

cosh( )
 sin

.

2 ( )
2

3
( )  (26)  

and the corresponding natural frequencies are the roots of the following equation. 

 .

2e( )
2

3
e( ) =  (27)  

The variables in the above two equations are defined as follows 

 
=  , =

( )
, = , =  , =   

= sinh
+

2
, = ( = 0) , = ( = 1),     

(28)  

where as before  is the lagrangian coordinate along the catenary,  is the suspended length of 
the catenary,  is the effective tension at the TDP,  is the effective tension at the top end, 

 is the bending stiffness,  is the natural frequencies and  is the virtual mass per unit 
length. The tension of catenary structures, equation (3), varies nonlinearly but fairly slowly. 
This satisfies the inherent assumption in the solution of Kim [2]. As shown later by the 
numerical examples, the effective tension can be approximated by a linear function and 
equations (26) and (27) yield quite good results.  

6. Finite Element Solutions  

The un-damped cross-flow natural frequencies and mode shapes of a catenary can be 
calculated by discretizing the catenary into a number of elements. The governing differential 
equation of each element is described as: 

 + =  (29)  

44

5. Asymptotic Solutions for a Beam Cross-flow Model  

This section discusses the solutions to the problem of free vibrating beam under varying 
tension, i.e., solutions to equation (1) when = 0. This discussion is useful for studying the 
effects of bending stiffness on the cross-flow dynamics of catenary slender structures. Here 
the structures of interest are uniform, i.e. the bending stiffness and the mass per unit length are 
constant. Assuming that the tension is continuous and varies nonlinearly but slowly along the 
structure, Kim [2] used the WKB method and provided an asymptotic solution to equation (1). 
Later Lubbad and Moe [8] studied the free vibrations of beams under linearly varying tension. 
In their study they showed how the WKB solution could be improved and by performing the 
integrations analytically, thus simplifying the final results and allowing the higher order 
approximations to the slope and bending moment. They also improved upon the numerical 
stability of the WKB solution by replacing the hyperbolic sine and cosine with exponential 
functions that originated at the boundaries and decreased uniformly away from these. For a 
simply supported beam the mode shapes as presented by Lubbad and Moe [8] are  
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and the corresponding natural frequencies are the roots of the following equation. 
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The variables in the above two equations are defined as follows 
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where as before  is the lagrangian coordinate along the catenary,  is the suspended length of 
the catenary,  is the effective tension at the TDP,  is the effective tension at the top end, 

 is the bending stiffness,  is the natural frequencies and  is the virtual mass per unit 
length. The tension of catenary structures, equation (3), varies nonlinearly but fairly slowly. 
This satisfies the inherent assumption in the solution of Kim [2]. As shown later by the 
numerical examples, the effective tension can be approximated by a linear function and 
equations (26) and (27) yield quite good results.  

6. Finite Element Solutions  

The un-damped cross-flow natural frequencies and mode shapes of a catenary can be 
calculated by discretizing the catenary into a number of elements. The governing differential 
equation of each element is described as: 
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where  and  are the element axial and transverse local coordinates respectively and  is 
parallel to the cross-flow direction. Cheng et al. [14] used the WKB solution for equation (29) 
and established the so called WKB-based dynamic element stiffness matrix as an alternative 
to the conventional finite element mass and stiffness matrices. This hybrid method presents a 
way of utilizing the asymptotic solutions in the finite element formulations but may be of 
limited practical significance otherwise. Therefore here is used a more traditional finite 
element method where each element has two nodes and three degrees of freedom at each node 
( ,  and ). The element dynamic equation can be written as 

  

[ ]{ } + [ ]{ } = { } 

{ } = [ ]  

{ } = [ ]  

(30)  

where, the double dots denote the second derivative with respect to time and, ,  and  are 
the axial, transverse and rotational degree of freedom, respectively. Since  is parallel to the 
cross-flow direction,  would then represent the element stretching while  and  would be 
the element displacement and rotation in the cross-flow direction, respectively. The equation 
variables ,  and  are the axial force, the shear force and bending moment, respectively 
and, the subscripts indicate the element node number. The local virtual mass matrix is [ ] 
and, the local stiffness matrix is [ ]. The coupling on element level between the axial and 
transverse motions is neglected since the structure as a whole will accommodate axial 
deformation mainly by readjusting its static configuration and allowing a slight degree of 
stretching. 

The stiffness matrix is the sum of the bending and the geometrical stiffness. When the tension 
is assumed constant within the element, the derivations of the mass and stiffness matrices is 
rather simple, see Kwon and Bang [15]. Somewhat improved results are obtained when the 
tension variation within the element is considered. Moe at al. [16] show how the stiffness 
matrix can be modified to account for a linear tension variation. Naturally, the next step is to 
assemble the global mass and stiffness matrices ([ ] and [ ], respectively) and the cross-
flow free vibration equation becomes 

 ([ ] [ ]){ } = 0 (31)  

and { } is the global assembly of the element displacements { }. Equation (31) is an 
eigenvalue problem and can easily be solved for the natural frequencies and the corresponding 
mode shapes. Note that [ ] and [ ] must be modified to account for the proper boundary 
conditions. The finite element method explained above is quite general and can easily be 
adjusted to solve for the in-plane dynamics of a catenary and also for beam or cable cases.  

The un-damped problem discussed above can in all but some very special cases be 
diagonalized so that ends up with a number of one-degree of-freedom equations.  From each 
of these natural frequencies and mode shapes can easily be determined. When damping is 
added to the mass and stiffness terms in equation (30) diagonalization is strictly speaking not 
possible, but various approximate solutions are available. One may e.g. assume that the 
damping matrix is proportional to the stiffness or mass matrices or to a sum of two such 
terms. Often this is not a problem, since the full damping matrix cannot be determined 
anyway, while it may be possible to make a reasonable estimate of the modal damping for the 
most interesting modes. However there exists a method in which one can find the damped 
modes exactly. The essential difference for this case is that it permits the eigenvector to 
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contain phase differences as well as the modal shape which now is an envelope, thus one can 
model travelling waves as well as standing waves. This vector is conveniently expressed by 
means of complex numbers and this technique is therefore often denoted as the use of 
complex modes.  Phase differences will occur when the net energy balance is positive for one 
part of the system and negative in other parts. In some systems the term proportional to 
structural velocity [ ]{ } may in addition to damping also represent so-called gyroscopic 
terms. Therefore the complex mode technique is in general quite useful and its main drawback 
is that it leads to the solution of an eigenvalue problem of a doubled number of degrees of 
freedom, which is with today’s computational tools not a problem. The details of this 
technique may be found in Meirovitch [17] and some information about its application is 
found in Moe and Hoen [18].    

7. Numerical Example 

The above solutions of the cross-flow free vibrations of a catenary will be illustrated by 
means of an example. Table 1 presents the input data for the example. The data in Table 1 are 
taken from an SCR model test program, see Lie [19]. The details of these experiments and the 
analysis of the experimental data are discussed later in this paper.  

Table 1: Riser main data (Lie [19]). 

Total length between pinned ends 12.5 m  

Mass per unit length including content 0.357 kg/m   (1) 

Outer diameter 14 mm  

Wall thickness of riser 0.45 mm  

Density of brass 8980 kg/m3        (2) 

Young modulus of brass 1.5 10  N/m2  (2) 

Axial stiffness 2.01 10  N       (2) 

Bending stiffness 46.2 Nm2            (2) 

Percent relative damping in air  0.2 - 0.6  

Horizontal distance between riser ends 9.253 m  

Vertical distance between riser ends 7.13 m  

Tension, upper end 22.55 N               (3) 

Tension, lower end 8.44 N  (3) 

Angle from vertical, upper end 26º  (3) 

Angle from vertical, lower end 88º (3) 

(1) This corresponds to an equivalent density of pipe content of 1373 kg/m3 and density of    
the pipe with content of 2320 kg/m3 

(2) Nominal value 
(3) Calculated by the program RIFLEX (Finite element model with beam elements) 
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7.1. String Model 

The eigenvalue analysis requires the determination of the static configuration as the first step. 
The boundary conditions of the catenary are simply supported. Therefore, the complete static 
configuration can be calculated analytically by specifying only the total length, the vertical 
distance between the two ends and the cross-section properties of the catenary. Figure 2 
shows the calculated static configuration of the pure catenary cable and it compares the 
nonlinear tension variation along the catenary to a linear approximation of the tension.  

 

Figure 2: The results of the static analysis using the sting model, (a) Static configuration, (b) 
Comparison between the calculated nonlinear tension and a linear approximation.  

In the analysis that follows the added mass coefficient is set equal to 1. Table 2 shows the 
cross-flow natural frequencies calculated using the string model. The calculations utilized the 
asymptotic expressions and an in-house Matlab program that uses the finite element solution 
described in this paper. The first cross-flow mode shape calculated by the different methods is 
shown in Figure 3. 

 

Figure 3: The cross-flow mode shape # 1 calculated using the sting model. 
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Table 2: Cross-flow natural frequencies [rad/s] calculated using the string model. 

Mode 
# 

FEM 

Percent difference in the 
analytical solutions: Linear 

Tension 

Percent difference in the 
analytical solutions: NON-

Linear Tension 

In-house 
MATLAB 
program 

Bessel 
functions 
Ref. [6] 

Asymptotic 
[1 term] 
Ref. [6] 

Asymptotic 
[2 terms] 
Ref. [6] 

First-order 
(Eq. 16) 

Second-order 
(Eq. 25) 

1 1.5688 3.13 3.28 3.12 -1.22 0.99 

2 3.1095 4.17 4.21 4.17 -0.33 0.24 

3 4.6558 4.38 4.40 4.38 -0.15 0.11 

4 6.2037 4.46 4.47 4.46 -0.08 0.06 

5 7.7524 4.49 4.50 4.49 -0.05 0.04 

6 9.3013 4.51 4.51 4.51 -0.04 0.03 

7 10.8505 4.52 4.52 4.52 -0.03 0.02 

8 12.3998 4.53 4.53 4.53 -0.02 0.02 

9 13.9492 4.53 4.53 4.53 -0.02 0.01 

10 15.4986 4.54 4.54 4.54 -0.01 0.01 

 

From the data in Table 2 and Figure 3 it seems that the linear approximation of the tension 
gives quite satisfactory results (the average percent difference is about 4%). On the other 
hand, using the nonlinear variation of the tension improved the results (percent difference 
varied from about 1% in the first mode to about 0.01% in the tenth mode). Again considering 
the nonlinear tension case, the second order asymptotic solution improved the mode shape but 
had little effects on the natural frequencies compared to the first order asymptotic solution.  

7.2. Beam Model 

The bending stiffness modifies the static configuration and that affects the calculation of the 
natural frequencies and mode shapes of the catenary. Figure 4 compares the static 
configuration of the beam model to that of the string model. The beam static configuration is 
calculated using the finite element software RIFLEX since the available analytical closed 
form solutions deal only with the string case. 

As seen from Figure 4, the bending stiffness has noticeable effects on the static configuration 
which indicates that the results of the dynamic analysis for this example will be quite different 
if one uses the beam model instead of the string model. Another measure for the effects of 
bending stiffness on the dynamics of the risers can be obtained by calculating the 
nondimensional number, , suggested by Moe et al. [16]. The bending is important if  is 
order one or smaller. 
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Figure 4: The static configuration of the catenary model: beam vs. string.    
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Using the input data from Table 1,  for 3 is always less than 1. This means that in the 
present problem, starting from the third mode, the bending stiffness is expected to have 
significant effects on the natural frequencies and mode shapes. Table 3 shows the cross-flow 
natural frequencies calculated using the beam model. The first cross-flow mode shape is 
shown in Figure 5. 

 

Figure 5: The cross-flow mode shape # 1 calculated using the beam model. 
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Table 3: Cross-flow natural frequencies [rad/s] calculated using the beam model. 

Mode # 
FEM Analytical solutions 

RIFLEX software In house MATLAB 
program 

Linear Tension 
(Eq.27) 

Non Linear Tension 
Ref. [2] 

1 1.3692 1.4235 1.4908 1.4830 

2 3.4136 3.5075 3.6556 3.6570 

3 6.5069 6.6285 6.8132 6.8215 

4 10.758 10.8881 11.0910 11.1030 

5 16.186 16.3229 16.5359 16.5499 

6 22.808 22.9468 23.1659 23.1811 

7 30.626 30.7658 30.9887 31.0047 

8 39.642 39.7825 40.0080 40.0245 

9 49.857 49.9984 50.2257 50.2426 

10 61.273 61.4142 61.6429 61.6600 

 

The results in Table 3 and Figure 5 suggest that it is possible to approximate the tension in a 
catenary by a linear function and equations (26) and (27) would still yield quite good results 
for cross-flow natural frequencies and mode shapes.  

8. Particulars of the Catenary Riser Experiments 

An industry test program was conducted to investigate the coupled in-line and cross-flow 
induced response behavior on an instrumented catenary model subject to uniform flow. The 
intent was to gain insight into the dynamic behavior of steel catenary risers (SCRs) and to 
evaluate the ability of numerical models to correctly predict the observed behavior. The test 
model was affixed to a towing carriage and was designed to allow the angular orientation of 
the catenary model with respect to the towing carriage direction to be varied along with the 
towing speed.  

As the model test program was designed to gain basic insight the model scale did not 
represent any particular offshore SCR, and the ratio of the length to diameter was 
approximately 890 which was noted to be less than what was typical of actual deepwater 
systems. Ten equally-spaced bi-axial accelerometers, as depicted by the circles along the 
static catenary curves in Figure 6 were affixed to the SCR model and they were sequentially 
numbered starting from the lower end of the catenary curve. In this study, the towing carriage 
speed will be used along with the bi-axial displacement information processed from the 
acceleration measurements. The three force components measured at both of the fixed ends is 
not addressed in this study. The model tests were conducted in a towing tank that was 80 m 
long, 10.5 m wide and 10 m deep, Lie [19]. The catenary model was 12.5 m long and had a 
diameter of 14 mm. The ratio of the horizontal to vertical projection was approximately 1.3.  
The model was towed at speeds ranging from 0.12-0.26 m/s at orientations of 0, 30, 60 and 90 
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9. Experimental Results and Discussions 

The particulars of the experiments are described above and the main data of the catenary 
model are shown in Table 1. The measurements were taken at ten different locations along the 
catenary and the model was towed with four different speeds at four different orientations. 
This accumulated a huge amount of data, e.g., time series, spectral densities and motion 
envelops. Due to space limitation in this paper, only the few cases shown in Table 4 are 
selected for discussion. More details about the data analysis can be found in the articles by 
Niedzwecki and Moe [21] and Niedzwecki and Moe [22]. 
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where  is the reduced velocity,  is the towing speed,  is the natural frequency in Hertz 
calculated from equation (27) and  is the external diameter of the catenary model. Table 6 
shows the calculated reduced velocities at the different towing speeds for the first ten modes. 

Table 6: Reduced velocities at the different towing speeds for the first ten modes.  

Mode # 
Towing speed [m/s] 

0.12 0.24 0.26 0.34 

1 36.78 73.16 78.41 103.64 

2 15.00 29.83 31.98 42.27 

3 8.05 16.01 17.16 22.68 

4 4.94 9.83 10.54 13.93 

5 3.32 6.60 7.07 9.34 

6 2.37 4.71 5.05 6.67 

7 1.77 3.52 3.77 4.99 

8 1.37 2.73 2.92 3.86 

9 1.09 2.17 2.33 3.08 

10 0.89 1.77 1.90 2.51 

 

Lock-in is expected to occur at reduced velocities between 5 and 9. Based on the results in 
Table 6, the towing speed 0.12 and 0.34 m/s will excite the third and sixth modes, 
respectively. The fifth mode will be excited at towing speeds 0.24 and 0.26 m/s. Moe et al. 
[20] used the component of the flow velocity normal to the catenary axis , when calculating 
the reduced velocity. This approach will not change the conclusions made here about the 
dominant excited modes. On the other hand, it would give some additional information about 
other excited modes. Figure 9 shows an example of the reduced velocities calculated using the 
normal velocity component when the catenary model was towed with a speed of 0.26 m/s at 
orientation of 0º. 

Beside the dominant fifth mode, Figure 9 shows that the fourth mode could also be excited 
over a long portion of the catenary. The figure shows also that the lock-in occurs mainly in 
the upper part of the catenary suggesting that the upper end of the catenary will lead its lower 
end during the vibration and most likely there will be a phase difference along the catenary. 
Moe et al. [20] investigated the phase difference for this case and reported an estimated value 
of about 1 radian. 
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Figure 9: The reduced velocities along the catenary model based on the component of the 
velocity that is normal to the axis of the caternary. 

Table 7 compares the natural frequencies calculated from equation (27) for the excited modes 
in the cross-flow direction to the measured dominant vibration frequencies. 

Table 7: Comparison between the calculated and measured frequencies. 

Towing 
speed [m/s] 

Orientation 
[º] 

Excited 
dominant 

mode 

Natural 
frequency 

[rad/s] 

Vibration 
frequency 

[rad/s] 

Percent error 
[%] 

0.12 0 Third 6.8132 7.3631 -7.47 

0.24 0 Fifth 16.5359 16.8738 -2.00 

0.26 0 Fifth 16.5359 16.8738 -2.00 

0.26 30 Fifth 16.5359 17.4874 -5.44 

0.26 60 Fifth 16.5359 18.101 -8.65 

0.34 0 Sixth 23.1659 23.9301 -3.19 

 

For all cases, the discrepancy between the calculated and measured frequencies was less than 
10%. These results are promising and support the use of the asymptotic solutions. On the 
other hand, we must keep in mind that the error of the asymptotic solutions will decrease or 
increase depending on the added mass which has been set equal to the displaced mass herein, 
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motions, i.e. are close to what are normally nodes in the mode shapes. On the other hand, 
mode shapes with amplitudes derived from the spectra are very much a manifestation of 
average behavior. From the measured time series (see Figure 7) we know that the difference 
between average behavior and extremes is large.   

From the above discussion, it is evident that the use of the un-damped mode shapes solution 
to interpret the measurements and to reproduce the measured motion envelops is quite 
challenging. Some very interesting additional results could be obtained by a more in-depth 
analysis of the experimental data. This will require a substantial amount of work and will be 
left for continuation research paper. 

10. Summary and Conclusions 

This paper presents closed form asymptotic solutions of the cross-flow free vibrations of 
catenary cables and beams. The derivation of the solutions is based on the assumption that the 
dynamics of the catenary in the cross-flow direction is uncoupled from those in the in-line 
direction. The effects of bending stiffness on the static configuration of the catenary and on 
the natural frequencies and mode shapes are discussed. The effects of approximating the 
tension variation along the catenary by a linear function are also investigated. A finite element 
solution is presented and an in-house Matlab program based on that solution is used to verify 
the asymptotic expressions. Finally, the usefulness of the asymptotic solutions in predicting 
the dominant VIV frequencies is tested by comparing the calculated natural frequencies with 
data from an SCR model test program. The following list shows the conclusions from the 
present study:   

 A catenary slender structure can be modeled either as a string or as a beam. When the 
dimensionless parameter , equation (32), is less than 1, the bending stiffness 
dominates and the cross-flow natural frequencies and mode shapes must be calculated 
using the beam model. 
 

 For the string case, the asymptotic solutions which approximate the tension by a linear 
function yield quite satisfactory results for the cross-flow natural frequencies and 
mode shapes (relative difference is approximately 4%). On the other hand, the 
asymptotic solutions derived in this paper which account for the non-linear variation 
of the tension has improved the accuracy of the solutions (relative difference varies 
from about 1% in the first mode to 0.01% in the tenth mode). The second order 
asymptotic solution improved the prediction of the mode shapes compared to the first 
order solution but it had a little effect on the natural frequencies. 
  

 For the beam case, equations (26) and (27) give quite good results for the cross-flow 
natural frequencies and mode shapes compared with the solutions that consider the 
non-linear tension variation along the catenary. 
 

 For the experimental catenary model, the effects of bending stiffness were significant 
and therefore the beam model ought to be used to estimate the static configuration and 
also to estimate the cross-flow natural frequencies and mode shapes. 
 

 The experimental data show that the catenary model was vibrating due to the vortex 
shedding with only small number of frequencies and usually the vortex induced 
vibration was dominated by a single frequency. 
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 In the six experimental cases presented in this paper, the discrepancy between the 
measured vibrations frequencies and those calculated from equation (27) was less than 
10%. These results are promising and it promotes the use of the presented asymptotic 
solutions. 
 

 More in-depth analysis of the experimental data is required in order to study the 
relationship between the measured envelops of motion and the calculated un-damped 
mode shapes. 
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 In the six experimental cases presented in this paper, the discrepancy between the 
measured vibrations frequencies and those calculated from equation (27) was less than 
10%. These results are promising and it promotes the use of the presented asymptotic 
solutions. 
 

 More in-depth analysis of the experimental data is required in order to study the 
relationship between the measured envelops of motion and the calculated un-damped 
mode shapes. 
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Abstract  
When level ice interacts with a sloping structure, or when a ship advances in level ice, the ice 
sheet may begin to fail by forming cracks in the radial direction. These radial cracks will be 
lengthened and increased in number until a circumferential crack is formed and consequently the 
ice sheet reaches its ultimate capacity. After the formation of the radial cracks the ice sheet can 
no longer be modelled as a continuum, instead it is common to use the model of adjacent 
wedges. This paper reviews the state-of-the-art in modelling the ultimate failure of an ice sheet 
using the model of adjacent wedge-shaped beams.  
 
In this paper, both the static and dynamic problems are formulated for a floating wedge-shaped 
beam interacting with a sloping structure. For the dynamic interaction, the results of the 
elastohydrodynamic approach are compared with the model of Winkler foundation combined 
with added mass and hydrodynamic damping. The comparison shows that the 
elastohydrodynamic model is more reliable than the Winkler approach. The breaking lengths of 
the ice wedges are also investigated and it is concluded that the breaking lengths increase with 
increasing ice thickness and/or axial compression in the ice; while increasing the drift 
acceleration will always decrease the breaking lengths. The static results match the results of the 
elastohydrodynamic solution for small ice drift accelerations. The calculations are performed 
using the commercial finite element program “Comsol Multiphysics”. 
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1. Introduction 
Accurate predictions of ice actions are vital in order to optimise the design of structures in the 
Arctic regions. A good understanding of the ice-structure interaction process will help 
establishing reliable models to estimate the ice forces. When level ice drifts against a fixed 
structure, or when a ship advances in level ice, the ice forces will increase until the ice sheet fails 
and hence the forces exerted on the structure drop. The failure of the ice sheet may occur in 
different modes, namely crushing, bending, buckling or mixed mode where two or more of the 
failure modes are active at the same time. The ice properties, the structure width and the relative 
drift velocity control the mode of failure of the ice sheet. In the case of an ice sheet is being 
pushed at moderate speeds against a sloping structure, the bending failure of the ice sheet will 
dominate over the other modes of failure. Based on this hypothesis, the theory of an elastic plate 
resting on an elastic foundation “Winkler foundation” has been used to model the interaction 
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solution for a wedge with vertical static distributed load and his solution converges over the 
whole domain. In addition to the vertical force, there exists horizontal force acting on the wedge. 
This horizontal force will modify the stress in the wedge and it may cause the wedge to fail in 
buckling. Nevel (1979) solved the static problem of a wedge beam with horizontal and vertical 
loads analytically. He presented the solution in integral forms and was able to study the bending 
and buckling failure of the ice wedge. Later Nevel (1992) simplified the integral solution and 
republished it in terms of infinite series. In his new solution, Nevel neglected the effects of the 
horizontal force on the bending of the ice wedge and considered it only when calculating the 
flexural stress. The results of the buckling analysis from Nevel were confirmed by a numerical 
analysis conducted by Sodhi (1979). Sodhi used the finite element method (FEM) and considered 
a radial stress field for the in-plan stresses in the ice sheet. 
 
Kerr (1978) provided approximate expressions for the static buckling forces of a semi-infinite 
wedge on elastic foundation. Li and Bazant (1994) examined the use of beam theory to solve the 
ice wedge problem. They used the finite difference method (FDM) together with the plate theory 
and finally concluded that the results of beam theory are sufficiently accurate for wedge angles 
up to 4 . Määttänen and Hoikkanen (1990) used the FEM to solve the static problem of wedge-
shaped beam subjected to axial compression and distributed transverse load by discretizing the 
beam into finite elements and assuming a constant axial load along each element. McKenna and 
Spencer (1993) adopted the theory of beams on Winkler foundation to study the dynamics of the 
ice wedge using the FEM. They derived the mass and stiffness matrices for a wedge-shaped 
beam element and they assumed constant added mass and hydrodynamic drag coefficients when 
solving the dynamic equation of motion. Dempsey and Zhao (1993) investigated the validity of 
using added mass together with Winkler foundation for solving the dynamic problems of a 
floating ice sheet and they concluded that this approach can not model the dynamic response 
accurately because the added mass varies with time and space. Dempsey et al. (1999) presented 
an elastohydrodynamic approach to study the dynamic problem of floating ice beams where the 
ice is modelled as an elastic beam and the water is modelled as a potential flow. This paper 
studies the static and dynamic interaction between sloping structures and floating wedge-shaped 
ice beams. First the problem of dynamic interaction is formulated according to the 
elastohydrodynamic model. Second the model of Winkler foundation combined with added mass 
and hydrodynamic damping is discussed and finally the static problem is presented. The 
commercial finite element program “Comsol Multiphysics” is used to solve the interaction 
problem. The results are shown, discussed and finally conclusions are drawn. 
 

2. Model Description 
Figure 1 shows a wedge-shaped ice beam of thickness, h , and angle, , floating on water of 
constant depth, d , and drifting against an upward sloping structure with slope angle, .  
 
a) Elastohydrodynamic model 
According to the elastohydrodynamic model, the governing differential equation of the floating 
wedge in Figure 1 is 
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Figure 1. A floating ice wedge drifts against an upward sloping structure. 
 
where w  is the transverse deflection of the beam, x  is the space coordinate along the beam, t  is 
the time, i  is the density of ice, E  is the modulus of elasticity, I  is the moment of inertia 

3 12I b h , b  is the width of the beam 0b b x , 0b  is the width of the beam at 1 m from 

the apex (Note: the wedge in this paper is truncated and so the width at 0x  is 0 truncatedb x ), H  
is the in-plane compressive force, ip  is the pressure on the bottom surface of the wedge due to 
the hydrodynamic reaction from the water and q  is the external applied pressure.  
 
The wedge-shaped ice beam is surrounded by adjacent wedges and together they may still 
behave similar to a continuous ice cover. This means that the flow under the ice may well be 
assumed independent of the lateral direction and so a two-dimensional description for the 
hydrodynamic problem becomes justified. Assuming irrotational flow, the motion of the water is 
governed by potential theory where the velocity vector is expressed as the gradient of the 
velocity potential, , ,x z t , see Nevel (1970) and Fox and Chung (2002). The irrotational flow 
is also continuous (the water is incompressible) which means that Laplace equation must be 
satisfied in the water domain 
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Equation 2 is a second order partial differential equation that has the following boundary 
conditions: 
 

0
z

 ,z d  x  (at the sea bed) 
 

w
z t

 0,z   0 x  (at the ice-water interface) 
 

2

2 0g
t z

  0,z  0x  (at the water free surface) [3] 

98

 
Figure 1. A floating ice wedge drifts against an upward sloping structure. 
 
where w  is the transverse deflection of the beam, x  is the space coordinate along the beam, t  is 
the time, i  is the density of ice, E  is the modulus of elasticity, I  is the moment of inertia 

3 12I b h , b  is the width of the beam 0b b x , 0b  is the width of the beam at 1 m from 

the apex (Note: the wedge in this paper is truncated and so the width at 0x  is 0 truncatedb x ), H  
is the in-plane compressive force, ip  is the pressure on the bottom surface of the wedge due to 
the hydrodynamic reaction from the water and q  is the external applied pressure.  
 
The wedge-shaped ice beam is surrounded by adjacent wedges and together they may still 
behave similar to a continuous ice cover. This means that the flow under the ice may well be 
assumed independent of the lateral direction and so a two-dimensional description for the 
hydrodynamic problem becomes justified. Assuming irrotational flow, the motion of the water is 
governed by potential theory where the velocity vector is expressed as the gradient of the 
velocity potential, , ,x z t , see Nevel (1970) and Fox and Chung (2002). The irrotational flow 
is also continuous (the water is incompressible) which means that Laplace equation must be 
satisfied in the water domain 
 

2 2
2

2 2 0
x z

 0d z  x   [2] 

 
Equation 2 is a second order partial differential equation that has the following boundary 
conditions: 
 

0
z

 ,z d  x  (at the sea bed) 
 

w
z t

 0,z   0 x  (at the ice-water interface) 
 

2

2 0g
t z

  0,z  0x  (at the water free surface) [3] 

98

 
Figure 1. A floating ice wedge drifts against an upward sloping structure. 
 
where w  is the transverse deflection of the beam, x  is the space coordinate along the beam, t  is 
the time, i  is the density of ice, E  is the modulus of elasticity, I  is the moment of inertia 

3 12I b h , b  is the width of the beam 0b b x , 0b  is the width of the beam at 1 m from 

the apex (Note: the wedge in this paper is truncated and so the width at 0x  is 0 truncatedb x ), H  
is the in-plane compressive force, ip  is the pressure on the bottom surface of the wedge due to 
the hydrodynamic reaction from the water and q  is the external applied pressure.  
 
The wedge-shaped ice beam is surrounded by adjacent wedges and together they may still 
behave similar to a continuous ice cover. This means that the flow under the ice may well be 
assumed independent of the lateral direction and so a two-dimensional description for the 
hydrodynamic problem becomes justified. Assuming irrotational flow, the motion of the water is 
governed by potential theory where the velocity vector is expressed as the gradient of the 
velocity potential, , ,x z t , see Nevel (1970) and Fox and Chung (2002). The irrotational flow 
is also continuous (the water is incompressible) which means that Laplace equation must be 
satisfied in the water domain 
 

2 2
2

2 2 0
x z

 0d z  x   [2] 

 
Equation 2 is a second order partial differential equation that has the following boundary 
conditions: 
 

0
z

 ,z d  x  (at the sea bed) 
 

w
z t

 0,z   0 x  (at the ice-water interface) 
 

2

2 0g
t z

  0,z  0x  (at the water free surface) [3] 

98

 
Figure 1. A floating ice wedge drifts against an upward sloping structure. 
 
where w  is the transverse deflection of the beam, x  is the space coordinate along the beam, t  is 
the time, i  is the density of ice, E  is the modulus of elasticity, I  is the moment of inertia 

3 12I b h , b  is the width of the beam 0b b x , 0b  is the width of the beam at 1 m from 

the apex (Note: the wedge in this paper is truncated and so the width at 0x  is 0 truncatedb x ), H  
is the in-plane compressive force, ip  is the pressure on the bottom surface of the wedge due to 
the hydrodynamic reaction from the water and q  is the external applied pressure.  
 
The wedge-shaped ice beam is surrounded by adjacent wedges and together they may still 
behave similar to a continuous ice cover. This means that the flow under the ice may well be 
assumed independent of the lateral direction and so a two-dimensional description for the 
hydrodynamic problem becomes justified. Assuming irrotational flow, the motion of the water is 
governed by potential theory where the velocity vector is expressed as the gradient of the 
velocity potential, , ,x z t , see Nevel (1970) and Fox and Chung (2002). The irrotational flow 
is also continuous (the water is incompressible) which means that Laplace equation must be 
satisfied in the water domain 
 

2 2
2

2 2 0
x z

 0d z  x   [2] 

 
Equation 2 is a second order partial differential equation that has the following boundary 
conditions: 
 

0
z

 ,z d  x  (at the sea bed) 
 

w
z t

 0,z   0 x  (at the ice-water interface) 
 

2

2 0g
t z

  0,z  0x  (at the water free surface) [3] 

98



0i w wp gw
t

 0z  x  (linearized Bernoulli equation) 
 

0  0,d z  x    
 
where w  is the density of water and g  is the acceleration of gravity. If the ice sheet is drifting 
with a constant acceleration, a , against the sloping structure, the transverse deflection of the 
wedge at the contact point will be 
 

20, 0.5 tanw t a t  [4] 
 
Solving equation 1 and 2 simultaneously and satisfying their boundary conditions in 3 and 4 will 
couple the physics of the elastic beam with that of the hydrodynamic foundation and this 
elastohydrodynamic solution is hoped to predict accurately the dynamic response of the floating 
beam. Here it is important to mention that the deflection of the ice before the breakup is typically 
much less than the ice thickness and therefore the partial emergence of the ice sheet prior the 
fracture is not considered in the present model. 
 
b) Dynamic model using Winkler foundation and added mass 
Several researchers used the model of elastic beam on Winkler foundation combined with added 
mass and hydrodynamic damping in order to study the dynamics of floating ice. In this case, 
equation 1 is replaced by 
  

2 2 2 2

2 2 2 2

11 ,i a w w w

H td w dw dw d d w d wh c c E I g w q x t
dt dt dt b dx dx b dx

 [5] 

 
where ac  and wc  are the added mass and hydrodynamic damping coefficients, respectively. 
Here, the hydrodynamic damping is mainly due to the viscosity in the boundary layer and 
therefore a linear damping term would be appropriate. However, a quadratic term is used in 
equation 5 following the presentation of McKenna and Spencer (1993) and the influence of this 
on the numerical results was found to be minor. The boundary conditions of equation 5 are the 
same as those of equation 1 and the solving techniques are pretty much the same. However, 
solving Laplace equation is not needed here in order to calculate the pressure under the ice 
wedge. 
 
c) Static model  
For the static and/or quasi-static interaction, the inertia and damping effects diminish and the 
model can be simplified as shown in Figure 2. 
 

 
Figure 2. Wedge-shaped ice beam on elastic foundation (static interaction). 
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The governing differential equation becomes 
 

2 2 2

2 2 2

1 ,w

H td d w d wE I g w q x t
b dx dx b dx

 [6] 

 
The static solution is not influenced by the rate of the deflection and therefore the boundary 
conditions can be applied simply as external static forces, i.e. P  is a vertical force and H is a 
horizontal force, as shown in Figure 2. 
 
In the following, the commercial finite element program “Comsol Multiphysics” is used in order 
to solve the static and dynamic problems of an ice wedge. Comsol Multiphysics solves the Euler-
Bernoulli beam equation by modelling the ice wedge as plane stress where the Poisson's ratio is 
set equal to zero. Table 1 summarises the properties of this numerical model. In Table 1, the 
geometrical properties of the wedge and properties of the ice are chosen similar to those used by 
McKenna and Spencer (1993).  
 
Table 1. The properties of the numerical model. 
Water free surface  300m 300 0mx  

Water depths d  120m 0 120mz  

Wedge length L  300m 0 300mx  

Wedge width at 1 m from the apex 0b   2.0  
Wedge truncated distance truncatedx  2.5m  

Wedge thicknesses h  (0.3, 1.0) m 
Ice flexural strength 500kPa  
Ice modulus of elasticity E  3.5GPa  

Ice density i  3900kg/m  
water density w  31025kg/m  
Structure slope from the horizontal  60  
Drift accelerations a  (0.001, 0.01, 0.1, 0.5, 0.7, 1.0) 2m s  
Added mass coefficient  for Winkler-dynamic 
model ac  1.23 

Hydrodynamic damping coefficient  for Winkler-
dynamic model wc  1.0 

Structural damping No structural damping 
Solver type Implicit 

Wedge boundary conditions 

Prescribed displacement at 0 mx  
(For the static case: Loaded free edge at  

0 mx ) 
Fixed at 300mx  

100

The governing differential equation becomes 
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 3. Results and Discussion 
Figure 3 shows the hydrodynamic reaction forces under the ice wedge at two different drift 
accelerations namely 0.001 and 0.5 m/s2. The wedge thickness is 1 m and the hydrodynamic 
reaction forces are calculated using the elastohydrodynamic and the Winkler-dynamic models.  
 

 
Figure 3. The hydrodynamic reaction forces at the breakup under the 1 m thick ice wedge 
drifting with the constant accelerations a) 0.001 and b) 0.5 m/s2 (the results are according to the 
elastohydrodynamic and to the Winkler-dynamic models). 
 
From Figure 3 it is evident that the results of the elastohydrodynamic and the Winkler-dynamic 
models are very similar at small drift accelerations. However, they diverge considerably at high 
accelerations. Figure 4 presents the flexural stress at the breakup for the same wedge discussed 
above. From the figure one sees that the elastohydrodynamic solution reaches the fracture 
slightly faster than the Winkler foundation solution. The breaking length of the wedge measured 
from the sloping structure is 7.76 m at small acceleration (0.001 m/s2). At high acceleration (0.5 
m/s2), the breaking length is 4.5 m according to the elastohydrodynamic solution and 6.26 m 
according to the Winkler approach.  
 

 
Figure 4. The flexural stress at the breakup of the 1 m thick ice wedge drifting with the constant 
accelerations a) 0.001 and b) 0.5 m/s2 (the results are according to the elastohydrodynamic and to 
the Winkler-dynamic models).  
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The results of the Winkler model presented in Figures 3 and 4 may differ quite much if other 
values of the added mass were used. The Winkler-dynamic model could be improved by using an 
added mass coefficient that varies as a function of the wedge width. But such model will still be 
unable to consider the time variation of the added mass. All this indicates that the 
elastohydrodynamic approach is more reliable and the results obtained using Winkler foundation 
and added mass should be treated with some caution. 
 
In order to investigate more closely the effects of drift acceleration on the breaking lengths of the 
above wedge, the elastohydrodynamic approach is used and the accelerations are varied from 
0.001 to 1.0 m/s2. The results of the flexural stress at the breakup are illustrated in Figure 5 and 
they show clearly that the breaking lengths reduce as the drift acceleration increases. 
 

 
Figure 5. The flexural stress at the breakup of the 1 m thick ice wedge drifting with the constant 
accelerations 0.001, 0.01, 0.1, 0.5, 0.7 and 1.0 m/s2 (the results are according to the 
elastohydrodynamic). 
 
After subsequent breaking of ice, rubbles are created and typically accumulated in front of the 
sloping structures. The rubble accumulation causes the ice wedges to push through the rubbles 
during the interaction with the structure. As a result, the wedge will be subjected to axial 
compression from the rubble in addition to the horizontal and vertical forces from the structure. 
The effect of this axial compression on the breaking lengths of the wedge is examined in this 
paper. An axial force of 22.5 MN is used as an example and the results of the breaking lengths as 
a function of the drift acceleration are shown in Figure 6. Note that emphases are placed on the 
bending failure and any other possible modes of failure e.g. crushing are ignored here.  
 
Figure 6 highlights also the effects of ice thickness on the breaking lengths by presenting the 
breaking lengths of a 30 cm thick wedge as a function of the drift accelerations. The information 
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obtained from Figure 6 suggests that increasing the ice thickness and/or the axial compression in 
ice will increase the breaking lengths; in the mean time increasing the drift acceleration will 
always decrease the breaking lengths. 
 

 
Figure 6. The breaking lengths of several wedges as a function of the ice drift accelerations. 
 
Figure 7 shows the results of the static analysis. The analysis included three wedges. The first is 
0.3 m thick, the second is 1 m thick and the third is 1 m thick and subjected to axial force of 
22.5MN. The vertical static forces that caused failure in these wedges are 33.36 kN, 261.7 kN 
and  320.2 kN, respectively. The breaking lengths are 4.0 m, 7.76 m and 13.51 m, respectively. 
Here, it is interesting to note that these static breaking lengths match well with the dynamic 
breaking lengths calculated from the elastohydrodynamic model for small drift accelerations. 
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4. Conclusions  
This paper looked at the static and dynamic interaction of floating wedge-shaped ice beams and 
sloping structures. The ice is assumed to fail only in bending and any transition in the failure 
mode is not considered. The most important finding are summarised as follows 
 

 The elastohydrodynamic approach is reliable when modelling the dynamic interaction of 
ice wedge and sloping structures.   

 The Finite Element Method provides a powerful tool to solve such elastohydrodynamic 
model. 

 The results obtained using Winkler foundation and added mass should be treated with some 
caution. 

 The breaking lengths increase by increasing the ice thickness and/or the axial compression 
in ice; meanwhile increasing the drift acceleration will always decrease the breaking 
lengths. 

 The static solution matches well with the elastohydrodynamic solution at small ice drifts 
accelerations. 

 
A thorough parametric study is needed in order to understand more the influence of the different 
parameters on the interaction process. In addition to the parameters introduced in this paper, 
several other parameters should also be included in the study such as the water depth, constant 
drift velocities, vertical distributed loads, and the area of the distributed load …etc. 
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8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 
WORK 

 

8.1 Summary and Conclusions 

This thesis highlights some aspects related to the analyses of offshore structures. The thesis 
consists of five papers that can be divided into two main parts as follows.     

Part I: Dynamics of Slender Offshore Structures 

In the present work, two asymptotic techniques, namely, the local analysis and the WKB 
methods, are used to derive closed-form solutions for the natural frequencies and mode shapes 
of marine slender structures. Both the top-tensioned nearly-vertical configuration and the 
catenary configuration are considered in this study. The derived closed-form solutions are 
used to predict the susceptibility of marine slender structures to vortex induced vibrations 
(VIV). Additionally, the efficiency of round-sectioned helical strakes in suppressing the VIV 
of slender offshore structures is investigated in this thesis. The major conclusions are as 
follows. 

a) Dynamics of top-tensioned nearly-vertical slender structures 
 
 The vibrations of a tensioned string are analysed by means of an asymptotic technique 

called “local analysis.” Good approximations to the natural frequency may be found 
by a simple one-term asymptotic solution (Chapter 3: Eq. 22), while a two-term 
asymptotic expression (Chapter 3: Eq. 28) gives excellent approximate results.  
 

 The vibrations of a beam with varying tension are analysed by the WKB method. The 
leading behaviour is described by an exponential function whose argument is an 
integral. Previously, this integral was solved numerically; however, in this thesis, a 
transformation is used so that a closed-form analytic expression is found. The same 
transformation also substantially simplifies the derivation of the next term in the WKB 
expansion. The solution (Chapter 3: Eq. 49) is in the form of exponential functions 
whose arguments are simple algebraic expressions. These expressions are in terms of 
elementary functions and are easily programmed, e.g., in Matlab. In the proposed 
formulation, they are also numerically stable. The example calculations show that the 
results are quite accurate. 
 

 One attractive feature of asymptotic solutions is that the accuracy increases for higher 
mode numbers while conversely finite element methods need an increasing number of 
elements as the mode number increases. Thus, from the fourth mode onwards, both the 
string and the beam results in the example in Chapter 3 are accurate to four digits. 
 

b) Dynamics of catenary slender structures 
 

 A catenary slender structure can be modelled either as a string or as a beam. When the 
dimensionless parameter  (Chapter 4: Eq. 32) is less than 1, the bending stiffness 
dominates, and the cross-flow natural frequencies and mode shapes must be calculated 
using the beam model. 
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 The vibrations of a beam with varying tension are analysed by the WKB method. The 
leading behaviour is described by an exponential function whose argument is an 
integral. Previously, this integral was solved numerically; however, in this thesis, a 
transformation is used so that a closed-form analytic expression is found. The same 
transformation also substantially simplifies the derivation of the next term in the WKB 
expansion. The solution (Chapter 3: Eq. 49) is in the form of exponential functions 
whose arguments are simple algebraic expressions. These expressions are in terms of 
elementary functions and are easily programmed, e.g., in Matlab. In the proposed 
formulation, they are also numerically stable. The example calculations show that the 
results are quite accurate. 
 

 One attractive feature of asymptotic solutions is that the accuracy increases for higher 
mode numbers while conversely finite element methods need an increasing number of 
elements as the mode number increases. Thus, from the fourth mode onwards, both the 
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dominates, and the cross-flow natural frequencies and mode shapes must be calculated 
using the beam model. 
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 For the string case, the asymptotic solutions, which approximate the tension as a linear 
function, yield quite satisfactory results for the cross-flow natural frequencies and 
mode shapes. On the other hand, the asymptotic solutions derived in this thesis, which 
account for the non-linear variation of the tension, improve the accuracy of the 
solutions. The second order asymptotic solution improves the prediction of the mode 
shapes compared to the first order solution, but it has a small effect on the natural 
frequencies.  
 

 For the beam case, Eqs. 26 and 27 in Chapter 4 give quite good results for the cross-
flow natural frequencies and mode shapes compared with the solutions that consider 
the non-linear tension variation along the catenary. 
 

 The experimental data showed that the catenary model was vibrating due to the vortex 
shedding with only a small number of frequencies, and, usually, the vortex induced 
vibration was dominated by a single frequency. 
 

 In the six experimental cases presented in this thesis, the discrepancy between the 
measured vibration frequencies and those calculated from Eq. 27 in Chapter 4 is less 
than 10%. These results are promising, and they support the use of the proposed 
asymptotic solutions. 
 

c) Efficiency of round-sectioned helical strakes in suppressing the VIV of slender structures 
 
 One-start round-sectioned helical strakes (helical strakes with only one rope) are not 

efficient in reducing VIV. This result is valid for all strake pitches and diameters 
tested. The simplest explanation for this finding is that one rope is insufficient to 
create three-dimensional flow over the whole length of the cylinder. This allows two-
dimensional vortices to shed from different parts of the cylinder in a manner sufficient 
to permit VIV to build up. 
 

 The main finding in this thesis concerning round-sectioned helical strakes is that the 
best configuration appears to be three starts, a 5  pitch and a 0.15  strake diameter. 
It reduces the amplitude of oscillation relative to the bare cylinder by 96% in the 
cross-flow direction and by 97% in the inline direction.  
 

 The efficiency of the above-mentioned best round-sectioned helical strakes is not very 
sensitive to the pitch of the strakes. Nearly the same performance was obtained with 
pitches ranging from 3.5  to 8 . 
 

 Surface roughness may moderately reduce the efficiency of the selected configuration 
of round-sectioned helical strakes, as large grits have more influence on the VIV than 
small grits. However, the roughness did not change the trend of the vibration 
amplitudes in the lock-in range. 
 

 The frequency ratio of the test cylinder affects the cylinder response. Within the range 
tested, low frequency ratios give higher amplitudes of oscillations, and high frequency 
ratios present wider lock-in ranges. 
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Part II: Actions of Sea Ice on Floaters 

In this thesis, a numerical model is developed to simulate in real time the process of 
interaction between sea ice and floaters (e.g., conical structures and ship-shaped structures). 
Only level- and broken-ice features are considered. The present work also studies some 
aspects related to the dynamic interaction between ice and floaters. The thesis investigates the 
effects of the seawater on the dynamic bending problem of a floating wedge-shaped ice beam 
interacting with a sloping structure. The major conclusions can be summarised as follows: 

a) A numerical model for real-time simulation of ice-floater interactions 
 
 A numerical real-time simulator for ice-floater interactions has been developed. The 

theoretical foundation of the simulator is explained in detail in Chapter 6. The 
modelling of such a complex process of ice-floater interaction is very demanding and 
often computationally expensive, which typically hinders the chances for real-time 
simulations. This challenge is overcome in the present study, and the real-time 
criterion is achieved in the simulator, which is made possible for the following 
reasons. 
 

o The development of a new analytical closed-form solution of the maximum 
stress in a semi-infinite ice sheet resting on an elastic foundation and loaded 
with a vertical distributed load. 
 

o The use of the PhysX to solve the equations of rigid body motions in 6 DOF 
for all ice floes in the calculation domain.  

 
 The results of the simulator are validated against the experimental data from model-

scale and full-scale tests. The validation tests exhibited a satisfactory agreement 
between the simulator model calculations and the experimental measurements. 
Therefore, it is sound to conclude that the presented theoretical model, even with all 
its limitations, is able to produce results in real time that are quite accurate.  
 

 Finally, the present real-time simulator has large potential in a number of applications. 
It can be used to train personnel for Arctic operations and procedures and to analyse 
the efficiency of different ice management concepts, and, in the future, such 
simulators may be a part of the onboard support systems for station keeping of Arctic 
offshore floaters. 
 

b) Aspects related to the dynamic interaction between level ice and floaters 

This thesis studies the static and dynamic interactions of floating wedge-shaped ice beams and 
sloping structures. The ice is assumed to fail only in bending, and any transition in the failure 
mode is ignored. The most important findings are summarised as follows: 

 The fully coupled elasto-hydrodynamic approach makes it possible to study the effects 
of seawater (the water foundation) on the dynamic interaction of an ice wedge and a 
sloping structure. 
 

 The results obtained using a Winkler foundation and added mass coefficient should be 
treated with some caution because the real added mass varies in time and space. 
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 The breaking lengths increase by increasing the ice thickness and/or the axial 
compression in ice. Meanwhile, increasing the drift acceleration will always decrease 
the breaking lengths. 
 

 The static solution matches well with the elasto-hydrodynamic solution at small ice 
drifts accelerations. 

8.2 Recommendations for further work 

Based on the present study, the following topics can be suggested for further work: 

 When analysing the experimental data obtained from the catenary model undergoing 
VIV, it seems that the deviation between the measured and calculated vibration 
frequencies increases by increasing the oblique angle of the flow direction to the 
catenary plane. This effect can be expected because the assumption of decoupling the 
dynamics in the cross-flow and in-line directions becomes weaker at large angles. 
More cases, however, must be analysed for this conclusion to be firm. 
 

 More in-depth analysis of the experimental data of the catenary model undergoing 
VIV is required to study the relationship between the measured envelopes of motion 
and the calculated cross-flow undamped mode shapes. 
 

 The efficiency of the suggested configuration of round-sectioned helical strakes still 
needs additional verification against the effects of 1) turbulence length scales, 2) 
critical and supercritical Reynolds numbers, and 3) low mass damping parameters of 
the test rig. 
 

 Regarding the numerical model for the real-time simulation of ice-floater interactions, 
the relative significance of each process that contributes to the global ice resistance 
should be examined carefully in future research. Additionally, some attention should 
be given in future research to the processes that are not yet modelled in the simulator, 
e.g., the ventilation and the dependency of the breaking length on the speed.  
 

 The results of the real-time simulator of the ice-floater interaction highlight the ability 
of the Newtonian dynamic calculations to synthesise the data, which agree with the 
experimental measurements. The ice forces calculated from the rigid body motion 
module dominate, and they are speed dependent, which provides a useful insight into 
the effects of speed on the interactions between the ice and, e.g., conical structures. 
The use of the present approach is highly recommended for further investigations into 
the modelling of the speed effects. 
 

 When studying the dynamic interaction between wedge-shaped ice beams and sloping 
structures, the two-dimensional elasto-hydrodynamic model was useful to highlight 
the influence from the water foundation. The next step should be to upgrade the 
current model to a three-dimensional model. 
 

 A thorough parametric study is needed to better understand the influence of the 
different parameters on the dynamic bending of a wedge-shaped ice beam. In addition 
to the parameters introduced in this thesis, several other parameters should also be 
included in the study, such as effect of the water depth, constant drift velocities, 
vertical distributed loads, and the area of the distributed load. 
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