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Abstract

In this thesis the evaporation from and condensation on a plane liquid
surface have been studied by analysis and molecular dynamics simulations.
The effect of the condensation coefficient on the inverted temperature gra-
dient for a two-surface evaporation-condensation geometry is investigated
by the moment method. The influence of the molecular exchange phe-
nomenon on the gas-kinetic treatment of evaporation and condensation
is shown to be neglible under certain assumptions. Methods to simulate
half-space steady evaporation or condensation in Direct Simulation Monte
Carlo simulation are adapted to Molecular Dynamics (MD). A microscopic
definition of evaporation and condensation is introduced and values for
the evaporation and condensation coefficients are calculated from MD.
The velocity distribution functions for the evaporation and condensation
modes have been calculated and compared with the standard assumptions
in gas-kinetic calculations.
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Chapter 1

Introduction

1.1 Preliminaries

Flows involving evaporation and condensation are widespread both in natu-
ral processes and in industrial applications. Examples are condensation heat
transfer, vacuum distillation, vacuum vapor deposition of thin films in micro-
electronics technology, isotope separation, laser induced vaporization of metals,
growth of droplets in the earth atmosphere that might have an effect on the
green house effect, and space applications such as outgassing from surfaces of
satellites.

Evaporation and condensation are surface phenomena, molecules that change
phase pass through a thin region dividing the phases called the interphase. In
kinetic theory treatment of phase change, the Boltzmann equation describes
the gas and the effect of the interphase is modeled by an appropriate bound-
ary condition. The standard boundary condition contains a parameter called
the condensation coefficient, which may be interpreted as the fraction of the
incident molecules that condenses. Values for the condensation coefficient for
various substances are poorly known, for instance, reported values for water|[1]
vary between 0.01 and 1, and often the condensation coeflicient has been set to
1 without much justification. However, the results from gas-kinetic calculations
are strongly dependent upon the condensation coefficient. The evaporation or
condensation mass-flux is an almost linear function of the condensation coeffi-
cient. Gas-kinetic calculations shows the theoretical possibility of an inverted
temperature profile from what seems physically reasonable in the region between
two dense-phase surfaces, kept at slightly different temperatures, with net evap-
oration from one surface and net condensation on the other. The criterion
for the occurrence of the inverted temperature gradient is critically dependent
upon the value of the condensation coefficient. Gas-kinetic calculations also
predict the so-called blocking effect for condensation; the maximum subsonic
Mach number attainable for steady condensation depends strongly on the value
of the condensation coefficient.
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1.2 Objective and scope
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Figure 1.1: Definition sketch for the evaporation/condensation problem

Fig.1.1 shows a sketch of a plane liquid or solid surface and its corresponding
vapor to the right. Net evaporation or condensation may occur, depending on
conditions in the liquid, such as the temperature 717,, and conditions in the gas
phase far from the interphase, for instance the temperature 7T, and the pressure
Poo- The gas-liquid system contains at least two length scales: in the liquid the
effective molecular diameter, d.s¢, and in the gas the mean free path A. The
mean free path depends on the density of the gas, but is typically several orders
of magnitude larger than the molecular diameter. Studies of the interphase must
be performed on the molecular scale, for instance with molecular dynamics.
Kinetic theory, on the other hand, is valid for dilute gases only, and can resolve
the flow in the gas region outside the interphase. The traditional way to model
evaporation and condensation has been to specify the distribution functions
f¢ and f" outside the interphase for evaporated and reflected molecules, the
calculation is then reduced to a well defined gas-kinetic problem. The reflection
distribution depends upon the incoming distribution f~, which is a result of the
computation, hence the boundary condition is coupled to the solution.

The initial motivation for this study was to calculate the condensation co-
efficient and the related evaporation coefficient for a gas-liquid interphase in
equilibrium, with molecular dynamics simulation. Later, methods to simulate
net evaporation and condensation were developed. It was then decided that
the boundary condition itself needed a closer examination, and the distribu-
tion function outside the interphase was calculated with data from molecular
dynamics.
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1.3 Organization of the report

Chapters 2 and 3 introduce the reader to the fields of kinetic theory and molec-
ular dynamics simulation. Chapter 2 presents the Boltzmann equation and the
gas kinetic formulation of the evaporation/condensation problem. Then various
methods of solution are discussed. In chapter 3, the basic principles of equi-
librium molecular dynamics are introduced, some preliminary results for a gas
obeying the Soave-Redlich-Kwong (SRK) equation of state are also included
and the definition of the interphase is discussed.

The author’s contribution starts in chapter 4. The moment solution for
slightly weak condensation is trivially extended to the case of evaporation and
condensation coefficients differing from each other. Then the criterion for the
inverted temperature gradient phenomenon in the two plate geometry is derived
for equal evaporation and condensation coefficients. At the end of chapter 4
is an equilibrium molecular dynamics simulation of gas-liquid coexistence, the
condensation coefficient is calculated directly from its definition and implications
on gas-kinetic predictions for the inverted temperature gradient are examined.

Chapter 5 is a short digression to the molecular exchange phenomenon. An
article entitled ”Molecular exchange and its influence on the condensation co-
efficient” with content closely resembling this chapter has been accepted for
publication in the Journal of Chemical Physics.

Chapter 6 deals with intense, or strong evaporation. The moment solution
is trivially extended to the case of evaporation and condensation coefficients
different from each other, and the effect of nonunity coefficients on the Knudsen
layer is discussed. A molecular dynamics simulation algorithm for net evapora-
tion is presented, and various ways of calculating the condensation coefficient
are discussed. The distribution function outside the interphase is sampled and
a comparison with the standard boundary condition in gas-kinetic modelling of
evaporation is made.

Chapter 7 deals with intense, or strong condensation. The general transfor-
mation is trivially extended to the case of evaporation and condensation coef-
ficients different from each other. A molecular dynamics simulation algorithm
for net condensation is presented. The condensation coefficient and the distri-
bution function outside the interphase are calculated from simulation data and
a comparison with the standard boundary condition in gas-kinetic modelling of
condensation is made.
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Chapter 2

Kinetic theory of interphase
mass transfer

2.1 Boltzmann equation

A kinetic equation is a closed equation for the time-development of the one-
particle distribution fy(ry,cq,t), where fi(ry,cy,t)dride; gives the number of
molecules in a volume element dr; and velocity element dcy. ¢ is the molecular
velocity vector with components ¢, ¢, and c,. In general the one-particle dis-
tribution fi(ry, ¢1,%) depends on the two-particle distribution fa(rq,c1,re,ce,t)
and so on, thus forming an infinite hierarchy. For dilute gases Boltzmann derived
the famous equation named after him which is a closed equation for fi(ry,cy,t),
henceforth denoted f(r,c,t),[2]

o af K 0
a_{+°'a_f+ﬁ : a—i = C(f) (2.1)

The left hand side of the Boltzmann equation is analogous to the substantial
derivative in fluid dynamics, but here the molecular velocity is also an indepen-
dent variable. K is the net external force acting on a particle. On the right
hand side, C(f) is the nonlinear collision integral

C(f) = / / [F(e)f(el) — f(e)flen)] e — cilodQey (2.2)

that gives the rate of change of the distribution function due to binary collisions
between the molecules. Primed variables denote post collisional velocities that
must be expressed as functions of ¢ and ¢y, and odf) is the differential cross
section[2],[3]. The Boltzmann equation can resolve flow structures on the scale
of the mean free path.

For the Boltzmann equation, inflow boundary conditions must be specified
at boundaries of the computational domain,

5



URN:NBN:no-3346

6 CHAPTER 2. KINETIC THEORY OF INTERPHASE MASS TRANSFER

f(c) = fue(c), c-n>0 (2.3)

where n is normal to the boundary and directed into the domain. It is assumed
here that the boundary is not moving. Equivalently, the inflow differential
flux (c-n) fic could be specified instead. The distribution for ¢ - n < 0 at the
boundary is a result of the solution.

The Boltzmann equation is valid only for dilute gases, it is assumed that the
range of the intermolecular force is small compared to the intermolecular spacing
which in turn is small compared to the average distance a molecule travels
between collisions[4]. Hence only two-particle interactions, or ’collisions’, need
to be taken into account. Between collisions the molecules travel in straight-
line trajectories if the external force is neglected. It is also implicit in the
derivation that two molecules are uncorrelated before a collision, this is the
so-called 'molecular chaos’ assumption[5].

2.2 Boundary condition outside the interphase

Since the pioneering work of Hertz[6] and Knudsen[7], it has been known that
evaporation and condensation require the use of kinetic theory for an accurate
description. In kinetic theory the interphase is modeled as a surface of zero
thickness. A molecule that strikes the interphase is either captured, i.e. con-
densed, or reflected. It is usually assumed that the condensation probability is
independent of the incoming velocity. A fraction o, of the incoming molecules
condenses on the surface, the fraction 1 — o, is reflected, see Fig. 2.1. o, is
often called the condensation coefficient. The distribution function is split into
modes for evaporated and reflected molecules. The evaporation mode is usually
assumed to be Maxwellian with a liquid temperature T}, and no drift velocity.
This is approximately the same distribution as in the liquid, the liquid is close to
local equilibrium, and the liquid drift velocity is small compared to the drift ve-
locity in the gas in case of net evaporation or condensation. Hence it is assumed
that the evaporation mode passes through the interphase unaltered, which is
not particularly plausible as the interphase can be regarded in mean field the-
ory as a potential jump[8]. The reflection mode is usually modeled as diffuse
or specular or a combination of both. On the molecular level the interphase is
not smooth, the interphase molecules are of course identical to the incoming gas
molecules, and there is no reason to assume specular reflection. The diffuse as-
sumption is also convenient since solutions for nonunity condensation coefficient
can be obtained from ideal solutions, if the temperature in the reflection mode
is assumed to be 77, i.e. complete accommodation to the liquid temperature[9].
Contrary to the specular model, for diffuse reflection a nonunity condensation
coefficient has an important influence on the results[2].

The number density must also be specified, a convenient scale for the evap-
oration mode is the saturation density n,(77), since it is usually assumed that
the evaporation flux is independent of the degree of nonequilibrium and only
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Figure 2.1: Molecular fluxes at the interphase

depends upon T7,. An ’evaporation coefficient’ is introduced to account for the
deviation of the number density for the evaporating molecules from the satura-
tion density. For the reflection mode it is convenient with a reference density n;
that scales as the flux of reflected molecules. This is the reason for introducing
the factor 1 — o, in the boundary condition, Eq.(2.4), and as will be seen later,
cancellation occurs in the expression for n;. The boundary condition is written
as

fTHe)=nTF" =[owns+ (1 —0.)n] Fy ¢z >0 (2.4)
where
1 2 +c2+c2
h=— _r Yz 2.5
@rRTL )2 " ( 2Ry, ) (25)

Here R = k/m, the gas constant per unit mass. f¥ is the complete distribution
function, it includes both the density n™ and the velocity probability distribu-
tion F'T. Lower-case index indicates reference quantities with the distribution
normalized to 1 on —oco < ¢, < 00, upper-case indicates physical quantities
where the distribution has been normalized to 1 on ¢, > 0. The reference
density n; for reflected molecules follows from the reflected flux

/ cz(1 — o )n;Fsde = / (1—0.)les| fde (2.6)

e >0 e <0



URN:NBN:no-3346

8 CHAPTER 2. KINETIC THEORY OF INTERPHASE MASS TRANSFER

Hence

Ry,

7’L¢=J_/ o

(2.7)

where J~ is the incident flux defined by

7= [ el g e (2.8

In equilibrium n; is equal to the saturated vapor density ns. The introduction of
the condensation coefficient in the boundary condition hinges on the assumption
that the condensation probability is independent of velocity so that the factor
1 — 0, can be taken outside of the integrals in Eq.(2.6).

The evaporation coefficient is often defined in terms of fluxes instead of
densities. The evaporation flux is

J¢ = /o’enﬂFSdcac (2.9)
e >0

Hence o, may be written as

0e=J%)J, (2.10)

where J;, = nsq/RTTTL. 0. and 0. can not be calculated using kinetic theory,

but must be found from measurements, nonequilibrium statistical mechanics
or molecular dynamics. In equilibrium, the net flux J through the interphase
is zero and the temperature of the system is uniform. J; and J~ are hence
equal since the Mawellians have the same temperature and density, and we
must therefore have

Oe=0,=0 (2.11)

at equilibrium, where o denotes the common equilibrium value. It has been
customary to set o, and 0. equal outside equilibrium too, we suspect that this
is more due to ignorance about their true values than theoretical considerations.
We have for example never seen a rigorous theoretical derivation of the boundary
condition, Eq.(2.4).

In this work the plane, two-phase gas-liquid configuration of a monatomic,
one-component substance has been considered. The one-component assumption
is crucial. Surface active substances and impurities tend to accumulate in the
interphase and reduce the mass transfer by diffusional resistance[10]. The pres-
ence of a small amount of noncondensible gas has a dramatic effect on the mass
flux in condensation. The noncondensible gas is dragged along by the condens-
ing gas and accumulates near the interphase. Condensing gas molecules then
have to diffuse through a layer of the noncondensible gas and the condensation
flux is considerably reduced[11],[12].
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2.3 Methods of solution

In the last thirty years, a large amount of papers have been devoted to evapo-
ration and condensation within the context of kinetic theory, and most of these
have used the moment method, the BKW equation or the DSMC method, which
will be briefly described. Assuming steady state, the gas region above the plane
interphase is described by the one-dimensional Boltzmann equation, neglecting
gravity.

af
Cw% =

The moment method can give an approximate closed form solution of the
one-dimensional Boltzmann equation and has been used extensively in this the-
sis. If we multiply both sides of the one-dimensional steady Boltzmann equa-
tion, Eq.(2.12), by functions @; (¢) forming a complete set, and integrate over
the molecular velocity, we obtain infinitely many relations, called moment equa-
tions, to be satisfied by the distribution function f.

c(f) (2.12)

T [eurie= [cinQuie=alQl (2.13)

The idea of the so-called moment method[13] is to satisfly only a few moment
equations, usually the conserved moments for which A [@Q;] = 0 (mass, momen-
tum and energy) and at least one non-conserved moment. This leaves the distri-
bution function largely undetermined and an ansatz is used that complies with
the boundary conditions and contains a few adjustable parameters to be deter-
mined by the chosen moment equations. The moment method was introduced
by Mott-Smith[14] who considered a shockwave in a dilute gas and assumed
that the distribution function within the shock may be represented by a linear
combination of the Maxwellian distribution functions that apply upstream and
downstream of the shock. Liu and Lees[15] applied the moment method to the
Couette flow between two infinite flat plates sliding in opposite direction, the
distribution function was assumed to be a combination of two half Maxwellians,
i.e. with molecular velocities restricted to ¢, < 0 and ¢, > 0, respectively.
Assuming diffuse reflection at the plates, the ansatz of the distribution func-
tion fulfills the boundary conditions. Combining the ideas of Mott-Smith and
Liu and Lees, Anisimov[9] and Ytrehus[16],[17] introduced the moment method
for the evaporation/condensation problem. The two most significant sources of
inaccuracies in the moment method are the a priori assumption for the distri-
bution function and the fact that the result is highly sensitive to the choice of
non-conserved moments.

Due to the complexity of the collision term in the Boltzmann equation,
collision models have been introduced that give reasonable results if finer details
are not required. The most widely used collision model is the Bhatnagar, Gross
and Krook(BGK) model[18]
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CPEE(f)y =v(fm = 1) (2.14)

Here v is a collision frequency proportional to the density and it may also
depend on the temperature, but it is assumed to be independent of the molecular
velocity. Here fy; is the local Maxwellian distribution, i.e. Maxwellian with the
same density, temperature and drift velocity as f. The corresponding kinetic
equation is called the Krook equation or BKW equation. The Kyoto group
has worked extensively with analytical and numerical solutions of the BKW
equation applied to evaporation and condensation[19],[90],[20][21].

Finite difference solution of the Boltzmann equation is awkward since in
general a 6-dimensional space (r, ¢) must be discretised, it is not clear how to
set the bounds in velocity space, and the 5-dimensional integral in the colli-
sion term is difficult to approximate numerically. In practice, the Boltzmann
equation is often solved by a particle method called Direct Simulation Monte
Carlo(DSMC), introduced, and to a large extent, developed by Bird[22],[23].
The particle interactions, or ’collisions’ are carried out in an approximate way.
The space domain is divided into cells, and particles in the same cell are allowed
to collide, with a randomly chosen impact parameter and a collision probability
proportional to the relative velocity. Between the collisions, the particles move
in straight lines if field forces like gravity are neglected.

The various models and methods have proven to give results that are in
good agreement with each other. Recent reviews of kinetic theory applied to
evaporation and condensation can be found in Refs.[2],[24],[25].
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Chapter 3

Molecular Dynamics
Simulation

In molecular dynamics, the classical equations of motion are solved for every
molecule in the system. By calculating the motions of individual molecules, one
hopes to gain insight into the sometimes puzzling behavior of large collections
of molecules. The first successful molecular dynamics simulation, for a sys-
tem of hard spheres, was published in 1957. Alder and Wainwright[26] showed
that a hard sphere gas has a gas-solid phase transition. The first successful
simulation of particles interacting via a Lennard-Jones potential was published
by Rahman[27] in 1964. In the following years the usefulness of the molecu-
lar dynamics method has increased as more powerful computers have become
available.

Standard molecular dynamics simulation in a box of volume V' and periodic
boundary conditions automatically conserves the number of particles N and
the total energy F/, and averages correspond to the microcanonical ensemble in
statistical mechanics. In experiments, the temperature T' is often fixed instead
of F, then the canonical ensemble is sampled. A crude way of implementing the
canonical ensemble in molecular dynamics simulations is simply to rescale the
velocities of the molecules at certain time-step intervals[28]. A more refined way
to simulate the canonical ensemble of statistical mechanics is to use a so-called
Nose-Hoover thermostat[29],[30]. Artificial ’friction’ like forces with ’friction
coefficients’ that can be both positive and negative are introduced that on the
average maintain the system at a temperature 7" and the system samples the
canonical ensemble.

In the study of equilibrium behavior, molecular dynamics is used to probe
systems that, at least in principle, can be studied by statistical mechanics.
However, when one departs from equilibrium, very little theoretical guidance is
available, (with the notable exception for dilute gases and the Boltzmann equa-
tion) and molecular dynamics is an indispensable tool[31]. In nonequilibrium
molecular dynamics(NEMD), a system can be maintained in steady nonequilib-

11
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rium by introducing boundary regions where particles are made to interact with
external particle, momentum or energy reservoirs[32]. This is sometimes called
boundary driven NEMD.

There is also another approach to NEMD, called synthetic NEMD in Ref.[30],
then the equations of motion are perturbed by fictional driving forces. These
driving forces homogeneously interact with the molecules in order to mimic
precisely the bulk response of a real system to externally imposed temperature or
velocity gradients. The system is homogenous and periodic boundary conditions
are used[33],[34],[35],[36].

3.1 Principles of equilibrium molecular dynam-
ics

This section gives a brief introduction to the principles of equilibrium molecular
dynamics. For a more in-depth description, see the textbook by Haile[37].

For molecules heavier than hydrogen and for temperatures above a few
Kelvins, classical dynamics gives sufficient accuracy for the translational and ro-
tational degrees of freedom for molecules in the vibrational ground state[35],[38].
Henceforth only spherically symmetric molecules will be considered. The trans-
lational motion of each molecule is calculated according to Newtons second law

Fi ="ma; (3.1)

F; is the sum of all forces acting on molecule i, it is often approximated as the
sum of pair interactions between the molecules.

The resulting system of nonlinear differential equations is solved numerically.
In this study, a variant of the Verlet algorithm[40], called velocity Verlet[39],
has been used. For each time-step, the positions and velocities of the molecules
are updated according to[33] :

ri(t+At) = ri(t) +vi(t) At + %ai(t)AtQ (3.2)
vit+Al) = vi(t)+ % [ai(t) + a;(t + At)] At (3.3)

The time-step must be smaller than the shortest relaxation time of the system.
For spherical molecules with no internal structure at typical liquid densities, the
time-step is of the order 10~* s, depending on the numerical method used.
The number of molecules in a molecular dynamics simulation is severely lim-
ited. Nowadays simulations with 10000 molecules are common, and although
a million molecules have been simulated, this is far short of the number en-
countered under experimental conditions(~ 10?%). A simulation box with hard
physical boundaries would give a large percentage of the molecules sensing the
wall, and the effect of the wall would dominate the dynamics. To simulate a
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bulk fluid, that is a fluid where wall interactions are not important, periodic
boundary conditions must be used [37], see Fig. 3.1 below.
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Figure 3.1: Periodic boundary conditions. From Ref. [41]

In this method the rectangular box containing the molecules, is surrounded
on all sides by copies of itself. Particles in different boxes interact. Image
molecules in image boxes follow trajectories that are exact duplicates of those
followed by the molecules in the primary box. Hence molecules that leave the
primary box are in effect inserted on the opposite side with the same veloc-
ity. The cut-off distance of the interactions is usually much smaller than the
dimensions of the box, and hence only molecules near one edge of the primary
box interact with molecules on the opposite side of the box. Periodic boundary
conditions preserve both energy and momentum, and the exact microcanoni-
cal ensemble is not sampled, but denoting the number of molecules by N, the
perturbation is of the order 1/N and can be neglected[37].

The most time consuming part of a molecular dynamics algorithm is calcu-
lation of the forces. In principle, at each time-step, N (N —1)/2 distances must
be calculated. Computing distances longer than the cut-off distance r. of the
potential wastes computer time. Verlet[40] introduced a neighbor list to reduce
this problem. For each molecule 7, a list containing all neighbors with distances
less than 7, is maintained, only those neighbors are used in force calculations.
ry, is slightly larger than 7. so that the same neighbor-list can be used for sev-
eral time-steps. A new neighbor-list must be constructed when the maximum
distance a molecule has moved since the last update exceeds (rp — r.)/2, it is
then possible that it has got new neighbors within the cut-off distance.
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Sampling of macroscopic properties is based on the ergodic hypothesis[33]
which states that for a macroscopically stationary system, the ensemble average
(A) equals the time average,

where At is the length of the sampling period.

3.2 Properties of the LJ-spline system

In the simulations a Lennard-Jones-spline (LJ-spline) potential[42] has been
used.

e ](3)" = ()" rer
ULg—spline =\ ky(r —re)3 4+ ka(r — )2 1 <7 <o (3.5)
0 r> 7.
where
26\ /6 67
re = <7> ro ~ 1.24r¢, T, = Ers ~ 1.73r (3.6)
and
387072 ¢ 24192 ¢
=- = - 3.
! 61009 73 2 3201 72 (3.7)

Here rg is the inter-molecular separation where the pair-potential is zero, and ¢
is the potential depth. The LJ-spline potential deviates from the Lennard-Jones
potential only in the tail, a cubic spline is fitted from the point r,; of inflection
so the potential goes smoothly to zero at r.. Calculation of the forces with the
spline potential is much faster than the conventional Lennard-Jones potential
cut at 2.5 rg, since the neighbor-list is much shorter with the spline. The
LJ-spline fluid is a model fluid for spherical molecules, it does not correspond
exactly to any substance.

The potential parameters ro and ¢, in addition to the molecular mass and
Boltzmann’s constant, are used to make nondimensional quantities, which are
denoted by an asterisk. Some frequently used nondimensional quantities are
given in Table 3.1.

The Lennard-Jones-spline potential has triple-point temperature 73 ~ 0.55
and critical temperature 7 = 0.9 [43], the phase diagram is shown in Fig.3.2.



URN:NBN:no-3346

3.2, PROPERTIES OF THE LJ-SPLINE SYSTEM 15

density n* =rgn

. 1
time t*—aq/%t

speed ch = y/mjecy

temperature T* = &L
pressure p* = r§/gp
: _ _k

heat capacity Cp=1m 2 Cp

4 1 r
viscosity w= J—m I
distribution F*(ck) = /e/mF
differential flux  ¢*(c}) = rg¢
force F*=2F

Table 3.1: Nondimensionalized quantities

In Ref.[43], an approximate Soave-Redlich-Kwong (SRK) equation of state
for the LJ-spline fluid in the gas phase was fitted from simulation data. In
Lennard-Jones units the SRK-equation is

. T* ot
PSRE = v v — o+ (3.8)
where
v = 1/n b* =0.0867— (3.9)
‘ 2
T*

ot = e'|1+d" (1— T_,;*) (3.10)

T*Q
d* = 0.487 e* =0.428 c* (3.11)

(&3
TF = 0.897 ps =0.0776 (3.12)

Since the gas is not ideal, the speed of sound is derived from the equation of
state[44], but it turns out that the deviation is small.

G PG G,
c' = = =4/— ¥ 3.13
\/(ap* . \/’Y ap* - ’Y a,U* T ( )

The ratio of the heat capacities, v = ﬁﬁ, can also be found from the equation

of state. Using the cyclical rule[45], [46], the specific heat capacities are related
by
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Figure 3.2: Phase diagram for LJ-spline. From Ref.[43]

v
3 / (82p*) )
ey = =+ [T = | v’ (3.14a)
v 2 J ar<J,
2
Op*
ap* ov* (BT*)
e, = T = -1 L 3.14b
= % (8T*)U(8T*) (QL) (3.140)
Au* T
2
Op*
o, ()
! ! (‘9”*)T
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Using the SRK equation of state, the partial derivatives are

ap _ T ot
(3U*)T* - (U*—b*) U*Q(U +b) U*(U ) (3.15)

(3]3* ) - 1 erd’ 1+ (1 \/7:) (3.16)

o1

¢ T*
ar+2 J .. 27\/TT; v (v* +b*)
1 e*d*? 1

- 3.17
2T Ty v (v +b¥) (3:17)
and combining with Eq.(3.14a), we finally have
3 1 de* v* 4 b*
a(T*v)==—+—-———==(d"+1)In 3.18

The Mach number far from the interphase is Moo = too/c, with ¢ = \/YRT
being the speed of sound. In kinetic theory the speed ratio defined as

u
S = —=_ 3.19
o 2R, (3.19)

is often used. When comparing our MD simulations with kinetic theory calcu-
lations, equal Mach numbers should be used, and speed ratio is simply derived

from the Mach number by S., = \/%Moo, and not from the kinetic definition.

There is a small difference in the two sets of values.

The usual way to define the mean free path for an arbitrary intermolecular
potential is to extend the hard sphere result A = w /5t7- In the Chapman-
Enskog expansion the distribution function is ertten as a power series in the
Knudsen number and the viscosity is expanded in Sonine polynomials. In re-
duced units the first term is[4]:

5
2 T*
w = = (3.20)

*2
oy [ 9700 expl— i) dg’

*
Te

ol(g") = 27r/b*sin2%db* (3.21)
0
x = =g (3.22)
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where o;,(g*) is the viscosity cross-section. The deflection angle » = x(g*,b*)
was calculated by solving the equivalent one-body problem with reduced mass
#* = 1/2 numerically for various g* and b*’s. The resulting approximation to
the viscosity is shown as a function of reduced temperature in Fig.3.3. The
viscosity for the LJ-spline potential is close to the viscosity for the standard
Lennard Jones potential cut at 2.5rp, the potential tail is apparently not so
important for this property.

— cut
o011
v
0.04
0.0%
0055 06 07 08 09 1
T

Figure 3.3: Viscosity as a function of reduced temperature for the LJ-spline
potential and the LJ potential cut at 2.5r¢.

In kinetic theory calculations of phase change, it is customary to use a refer-
ence mean free path evaluated for an equilibrium gas with a temperature equal
to the temperature at the liquid side of the interphase[24].

=

(T} T
A= () [T (3.23)
ny(Ty) \ 217,
This mean free path is independent of the strength of the phase change, i.e.
it does not change with M., contrary to a physical reference mean free path
defined from conditions at infinity

~ o Vor
An effective 'hard sphere diameter’ can be defined from the above value for

Aso- Using the hard sphere result A% = m, we have
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1

:ff =T =
AV 2nE AL

dgss is always between 7y and 7. An alternative definition of an equivalent
hard sphere diameter can be found in Ref.[47].
The average distance between molecules is given by the density :

(3.25)

1
5 =\ — 3.26
- (3.26)
The degree of rarefaction can be expressed by 6"/d; ;. Bird[23] uses
8 /s, > T (3.27)

as a limit for the dilute gas approximation. For a LJ-spline gas-liquid system in
equilibrium, this limit is actually never attained. For high Mach number evap-
oration the density of the gas is approximately 1/4 of the saturation density for
a condensation coefficient of 0.7[24] and a maximum 6" /d;;; ~ 4 was attained
in our simulations.

A% is proportional to 1/nf, and hence A, ~ 6. The distance from the
interphase measured in A\’ ’s, for which equilibrium flow is attained, is a function
of the Mach number. Hence, with a potential that fulfills the 6"/d},, > 7
criterion, the MD simulation box would have to be very long to contain the
given mean free paths, and since the time for reaching steady state is related to
the time it takes a sound wave to traverse the box, just relaxing the system to
steady state would take a very long time, beyond the capabilities of computers
we had access to.

3.3 Microscopic definition of evaporation and con-
densation

A precise definition of where the interphase ends and the gas phase begins,
is necessary for measurement of the velocity distribution function used as the
boundary condition in gas-kinetic calculations. The boundary condition should
be put as near the liquid as possible, as long as the Boltzmann equation is valid.
The Boltzmann equation implies the ideal equation of state, but for the chosen
potential the gas in a two-phase gas-liquid equilibrium deviates from ideal for
all temperatures down to the triple point, so the ideal gas criterion can not be
used.

In a recent simulation of net condensation[43], the Soave-Redlich-Kwong
(SRK) equation of state for the LJ-spline fluid in the gas phase was used to
find the ’dividing line’ between the gas and the interphase, here called the gas
boundary. We have defined the gas boundary as the position 'near the liquid’

URN:NBN:no-3346
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0.02%

0.02-
gas boundary
0.015% "
Pspk
0.01+

*

p

0.00%

-0.005¢
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Figure 3.4: Deviation of SRK equation near the interphase

where |p — psri| is greater than the maximum of |p — psrk| in the gas phase,
i.e. larger than statistical fluctuations. This is indicated in Fig.3.4.

For net evaporation, there is a Knudsen layer in which 7| and 7', are differing
significantly, see Fig.6.10 on page 68. Tj| and T are defined by

1

1
Ni==%,

— 2 e —
(cz —u)*fde T, 5B

(¢, +¢2) fde (3.28)
The gas is not in local equilibrium in the Knudsen layer and the validity of
the equilibrium equation of state is far from obvious. For evaporation, moment
solutions and DSMC simulations for strong evaporation give T increasing to-
wards the interphase as 1" does, but 7} is decreasing. In the liquid there is local
equilibrium and 7] is equal to T'. Hence the derivative of T}, has to change sign,
and the position where this happens is a possible definition of the gas bound-
ary. It turns out that the two criteria for finding the gas boundary gives almost
identical results. In Fig.3.5 the position of the gas boundary from the SRK def-
inition is plotted together with the temperatures for a Mach number at infinity
Moo = 0.78. The minimum in 7], indicated by an x in the figure, is 0.67¢ from
the SRK definition of the gas boundary. In Fig.3.5 the liquid boundary has also
been plotted, its exact definition will be given shortly.

The SRK criterion for the gas boundary gives a reasonable result both for
evaporation and condensation, and since it is easier to apply the SRK criterion
than the 7] criterion for small Mach numbers for evaporation, the SRK defini-
tion of the gas boundary was chosen both for evaporation and condensation.

It is desirable to split the distribution function into contributions from evap-
orated and reflected molecules so comparison with the assumptions made in
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Figure 3.5: Temperatures in the interphase region. X denotes minimum in
1) /Ty

gas-kinetic calculations can be made. Then microscopic definitions of evapora-
tion and condensation are necessary. The most obvious suggestion is perhaps
to monitor the potential energy of each molecule and define evaporation or con-
densation as the potential energy exceeding certain limits. However, in this
work it was decided to use sharply divided liquid, interphase and gas regions.
A molecule is considered as evaporated if it originated in the liquid region and
crosses the interphase into the gas region, condensed if it originated in the gas
region, crosses the interphase and enters the liquid region, and reflected if it
originated in the gas region, crosses into the interphase and moves back to the
gas region without having been in the liquid region, as indicated in Fig. 3.6.

Since evaporation, condensation and reflection are not instantaneous, the
molecules have to enter or cross the interphase, it is necessary to have a start-
up period after the stationary state has been reached so all molecules that
were originally in the interphase are or have been outside of the interphase.
Then the history of all the interphase molecules is known, and when a molecule
crosses the gas boundary from the interphase, it is immediately clear if this is
an evaporation or a reflection.

It is necessary to define a liquid boundary between the liquid and the in-
terphase analogously as was done for the gas boundary. The SRK equation
describes a phase transition, but liquid state points were not taken into account
when the parameters in SRK equation of state, Eq.(3.8), was adjusted from
molecular dynamics simulations of the Lennard-Jones-spline fluid[43]. If the
liquid boundary is positioned into the bulk liquid phase, it may happen that
some of the molecules that are in the corresponding interphase region at the
beginning, do not leave the region during the entire simulation. Hence we used
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a rather ad hoc definition of the liquid boundary that shifts the liquid boundary
a little away from the liquid. A classical way to define the thickness of a shock
wave is the distance required to span the density change by the maximum den-
sity gradient within the wave, the so-called density-gradient thickness[44], [4].
The liquid boundary here is defined by a similar construction. In a plot of the
density in the interphase region, a tangent line is attached to the point where
the density equals (neo + njjy™)/2. Here njjy™ is the maximum density in the
liquid, for evaporation the density is highest close to the interphase where the
temperature is lower than in the bulk. The liquid boundary is defined as the

position where the tangent line crosses the line given by Njg s see Fig. 3.6.

0.8_ max
. Niig
n ; tangent
line
0.6~
Liquid Interphase Gas
0.4 Liquid Gas
boundary boundary
] ~» Evaporation
9% Condensation«— P
ondensation
Ve
Reflection
-qs -10 -5 0 5 10
x/r,

Figure 3.6: Definition of liquid boundary and microscopic definition of evapo-
ration and reflection

The "liquid” temperature T}, used in gas-kinetic calculations of interphase
transfer is associated with the temperature at the liquid boundary in molecular
dynamics simulations.
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Chapter 4

The inverted temperature
gradient

4.1 Introduction

The evaporation from and condensation on a liquid or solid surface have been
the subject of a variety of studies because of its importance in various fields
of physics, chemistry and engineering. The classical Hertz-Knudsen mass flux
formula across the interphase is still popular today because of its simplicity,
despite an approximative nature and severe limitations on the theoretical side.
The formula was significantly improved by Schrage[48] who took into account
the bulk velocity of the gas, but without solving the gas-kinetic equations for
the problem. The case of weak, linear processes was considered by Patton and
Springer[49], Pao[50], [51], Shankar and Marble[11] and by Cipolla et al. [52].
Pao[50] noted the theoretical possibility of an inverted temperature profile in
the region between two dense-phase surfaces, kept at slightly different tempera-
tures, with net evaporation from one surface and net condensation on the other.
If the normalized latent heat per unit mass, L/RT}, is larger than a critical
parameter (3, the temperature profile in the gas may be inverted of what seems
physically reasonable. For a unity evaporation and condensation coefficient,
0 = 1, the value of 3, is approximately 4.8. For water L/RT}, is approximately
13. This remarkable finding has been recomputed and confirmed by several au-
thors, for instance Murakami and Oshimal[53], Gajewski et al. [54], Sone and
Onishi[55], Matshushita[56] and Aoki and Cercignani[57]. Koffman et al[58]
suggested that the boundary conditions at the interphase could be responsible
for the 'unphysical’ temperature profiles, and Cercignani et al.[59] subsequently
generalized these conditions and looked at their effect on the inverted temper-
ature gradient. Cercignani et al. used the moment method with nonunity con-
densation coefficient and specular reflection, but the value of 3, did not change
much when the condensation coefficient was varied from 0 to 1. However, Sone
et al.[60] had considered the same problem with diffuse reflection for a gas of

23
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hard spheres between two parallel plates, they solved the linearized Boltzmann
equation numerically and found a modified critical Ec strongly dependent upon
0. Ytrehus[61] used the moment method to calculate the half-space problem
for slightly strong condensation and the two-surface evaporation-condensation
problem with a common condensation and evaporation coefficient ¢ = 1, and
later[62] considered the condensation half-space problem with nonunity coeffi-
cient and diffuse reflection at the interphase. In the latter problem the special
condition of a saturated state at infinity was assumed, and an inverted temper-
ature profile for a modified critical 3, with o-dependence similar to Sone et al.
was found, i.e.

_ 1—
5, =48+8—2

- (4.1
A condensation coefficient less than 0.5 would be sufficient to avoid the inverted
temperature gradient for water. In this chapter we have extended Ytrehus’
solution to show the effect of the condensation coefficient on the two-surface
evaporation-condensation problem, and in particular the inverted temperature
gradient. The saturation condition at infinity is then not necessary. The critical
parameter for the inverted temperature gradient still turns out to be identical
to Eq.(4.1). Then, the condensation coefficient is calculated with molecular
dynamics for a spherical symmetric model potential. The inverted temperature
gradient phenomenon is predicted for this particular potential for temperatures
close to the triple point, but it disappears at higher temperatures.

4.2 Half-space condensation

We consider a monatomic vapor at temperature Tt approaching its colder con-
densed phase at temperature T7,, assuming that a steady state has been reached.
We assume a "slightly strong” flow process[63] such that

oo |
S| = —2 << 1 4.2
[Sec| 2RT, (42)

where o, is the bulk speed of the gas far from the interphase and R = k/m is
the gas constant per unit mass. The flow is divided into two regimes as shown in
Fig. 4.1 : a Knudsen layer on the scale of the molecular mean free path A next to
the boundary, and an external Navier-Stokes region on the scale A/ |Soo| >> .
It is further assumed that the flow is uniform far from the interphase, at given
temperature T, and pressure peoo.

4.2.1 Navier-Stokes solution

In the Navier-Stokes region a perturbation solution to first order in the speed
ratio Ss has been given[55],[64] :
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Figure 4.1: Sketch of the half-space problem

U = Uso P = Poo (4.3)

The temperature satisfies the equation

dr d*r
PoclicoCp o = Ky (4.4)
where K is the thermal conductivity, which is regarded as a constant since
Lﬁ{—TK is assumed to be of the order | S| << 1. For a monatomic gas, ¢, = %R.
The boundary conditions are

TO)=Tx  T(c0) =Tw (4.5)

where Tk is the temperature at the external edge of the Knudsen layer. The
solution to Eq.(4.4) is

T=Too = (Tie = Too) exp (22250 (4.6)
There is a well-behaved solution for us, < 0, i.e. only for condensation. For
evaporation the matching is to be done directly between the Knudsen layer and
the external equilibrium state[65]. The solution Eq.(4.6) was derived already by
Plesset[66], although the matching to the Knudsen layer was missing.
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4.2.2 Knudsen layer solution

In the Knudsen layer, an approximate solution of the Boltzmann equation (2.1)
can be found in this case from the moment method[9],[16],[24],[61]. Assuming
partial condensation and diffuse reflection of the molecules at the interphase,
the boundary condition at the interphase is given by Eq.(2.4).

Outside the Knudsen layer, there is a Navier-Stokes region. An approximate
form of the corresponding Chapman-Enskog distribution function is[4]

I = fu(ng, Tk ug) - [1 — @] (4.7)

where

P

202 G, ((12 5) K dT (4.8)

' 5/RTx 2RIk \2RTx  2) ngkTx dz i

and fj; is the local Maxwellian

n (cz —w)? 42 + 2
fM(n, T, u) = nFM(T, u) = W exp (— ORT 4 (49)

and C, = ¢, — u,. The Navier-Stokes solution, Eq.(4.6), gives

dar dar 5 Poo ool
= =T = (T — Tk)=RFeleel 4.10
de |k dx|o (Too = T )3 R0 (410)

The pressure from the Navier-Stokes solution is constant, hence the ideal gas
equation of state gives ng kT = NookTs.

The order of magnitude of the correction ®; in the distribution function
is estimated as follows : \/T?%_TT—K ~ 1, we assume Ang = ﬂlnLL”L and ATg =

T—Tr U Uog
— are of order o, and furthermore Soo = — o= i equal to NeTziv to

first order. This gives for the perturbation ®; in Eq.(4.7):

V2RTk nookTno K K V2RTx  Two

Hence ®; ~ S% and can be neglected. The distribution function at the edge of
the Knudsen layer is therefore approximated by a drifting Maxwellian, which is
next linearized around the reference Maxwellian at the interphase, fy = ng F, =

fM(nSaTLaO)a

By ~ (4.11)
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e = fu(w,Th,uk)
- fM(ns,TL,o)-paaf—:(nK—ns)+aa]c—%w(TK—TL)+ag—fux
- fs.[1+AﬁK+(%—g) Afx+3§rﬂ
= f,- [1 + APy + (2;;: - g) ATk + c‘;’;;o:| (4.12)

where ug = uo, from the Navier-Stokes solution. We have furthermore intro-
duced the nondimensional pressure difference Apy across the Knudsen layer
~ — Vs T
AP = Pk —Ps _NKIK 4
Ds NsPs
= (1+Ang)(1+ATk) —1=Ang + ATk (4.13)

The factor AﬁKAfK has been neglected, which is consistent with the lineariza-
tion. Since the pressure is constant in the Navier-Stokes region, it also follows
that

Aﬁszk_pS:poo_ps:Aﬁoo (414)

s Ps
where ps; = psai(11) is the saturation pressure.
A trimodal ansatz for the distribution function[9],[16],[61] is assumed in the
Knudsen layer

f=a0(@)f" +aj(2)f + (L+6(x)fx (4.15)

where fl'{" and fj are half range restrictions of fx, Eq.(4.12), and by lineariza-
tion §(x) is assumed to be of order Si.

The boundary conditions for ag(), aj;(x) and §(x) follow from Eq.(2.4) and
the fact that at infinity f = fg,

r=0: aqy=1 a}:O 6= 6o

r=00: a=0 af=1 §=0. (4.16)

Here g is an unknown that must be obtained from the solution. z = oo is here
at the end of the Knudsen layer. Terms of second order are dropped, and the
distribution function for the incident molecules at the interphase is

f(0) (1+80) fre

2
— nE [1 AP+ (

Czloo
RTY,

c 5 ~
WTL — 5) ATk + + 6o - (4.17)
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Here f; = n,F; is the usual half range restriction for ¢; < 0. With the form of
/™ known, the density in the reflected mode n; can be calculated from Eq.(2.7)

ni = ng (—\/7?500 + 14 APos — %AfK + 60) (4.18)

The linearized form of the trimodal ansatz is therefore expressed as

. R
f = aolx) [ae+(1—ac) <—\/7_TSOO+1+ApOO—§ATK+6O) I
ot () |14 A+ (o — 2 ATy 4 Cle] 4 (4.19)
Ur Pe T \2RT, ~2) 'K T RL, |0 '
N c? 5\ 4 Calloo N
+[1+Apoo+<2RTL—§>ATK+R—TL+5(1’)} £

The moment method is based on integrals in velocity space of the one di-
mensional, steady Boltzmann equation, Eq.(2.12), multiplied with a function
Q(c) of the molecular velocity c.

d
= / c.Qfde = A[Q)] (4.20)

The continuity, z-momentum and energy equation follow from the collision in-
variants () = {m, Mey, %ch}, with the collision integral A [Q)] then being zero,
which leads to

/chfdc = const = /cfoch (4.21)

i.e. the fluxes of the collision invariants are constant. The mass flux normalized

with mng RT?TL’ reads in detail

ao(z) [ae +(1-0,) (1 + 80 — /TS0 — AT) + Aﬁm)}
a5 (@) [1+ VSo — $ATic + A (1.22)

—8(x) = 1 4+ /TS0 + L ATk — Afns
= 2T 5%

The momentum flux normalized with mn,RT7},, reads

a0(@) [oe + (1 = 02) (1480 — V7S — AT + A )|

4.23
+aj () [1+%SOO+A1300] +8(x) = 80 = 1+ Apoc (423)
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The energy flux normalized with 2mmn; %LRTL, similarly reads

a0(w) [0z + (1= 02) (1+ 80 = V7o — $ATk + Apic )|

+ajk(x) {1 + 5\ /T80 + S AT + Aﬁoo:| (4.24)
1= 8(2) + §/T 00 — 30T — Afc

NG

Introducing the boundary conditions at the interphase, x = 0, the state at
the interphase is related to the state outside the Knudsen layer by the system

Oc— 0, (1 + 80 — /T So — %Aﬁ{ + Aﬁoo> = 2/7mS.(4.25a)
O — 0o (14680 — /TS — LATK + Ao
(AO\/_ 27K p) = 0 (4.25b)
+260 — L ATy — (\/i; + ﬁ) S
0o — 0. (1 + 80 — /TS0 — %AfK + Aﬁoo> — ATy = 3\/7?50@(4.25@

This is a linear system of three equations and four variables 6¢, S, AfK and
ADwo. Hence only one parameter of these four can be chosen freely. The pressure
difference ADy, is usually considered as the driving 'force’ of the flow, and hence
the remaining unknowns are expressed in terms of ADy.

% 1 —0Oc \/7?(0-c - 2) 4 Aj;K UcAﬁoo — O¢ + O¢
%—5 —0'c+2 \/7?0'5—\/_—7; . (50 = UcAﬁoo_o'e"'o'c
%—1 —0¢ \/7?(08_%) SOO UcAﬁoo_O'e"'O'c
(4.26)
The solution to the system reads
~ _1 o~ ~
ATk gﬂ_%;z(oc)l[Ap °°A+ Ad] R
o = 4—1@(%) [APoo + AT (4.27)
1 ~ ~
Soo RV RTS) [ADoo + AD]

Here A& has been introduced, the deviation between the condensation and
evaporation coefficients :

AG === (4.28)

and
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1—-o0,

EC(UC) = Bc + 8 (429)

Oc

where 3, is a numerical factor, 3, = %;ﬁ ~ 4.8. In terms of ATy the solution

4
18 easler:

AP B.(0) ATk — AG
8o = S AT (4.30)
Soo —%ATK

The temperature of the gas at the interphase may be calculated from Eq.(4.30)
and the standard definition of temperature. We have

1 [ (e o)+ ey + ] [fT+ (L +80)f] de

T(0) = , 4.31
=35 T+ 1 +6,)fx] de (43D

which yields in nondimensional form :
T(O)—TL_(37T+8)2 (4.32)

Ty =T, 61 0.

From this result we observe that the evaporation and condensation coefficients
have an influence on the resulting temperature T(0) only if the coefficients
have different values. In the case of 0. = 0, = 0, the temperature becomes
independent of that common value. As has been remarked before[24],[62], most
of the temperature jump is over the interphase for weak transfer processes. We
have in the special case of 0. = o, that [T'(0) —Tp]/ [Tk — 1] = 0.92, and
hence only 8 percent of the temperature change takes place in the gas phase.
The condensation mass flux follows from Eq.(4.27) :

| RTy, _ |RTy,  ~
mng\| == 20/ S0 = —8mins 5 ATk (4.33)
[RT, 1 - .
—8mngy| ——= APoo + A
o 2m BC(UC) [ g U]

where it is anticipated that the speed ratio S, is negative since us, < 0 for
condensation.

For equilibrium, we have o0, = 0, = o, and it is often assumed that the
coeflicients are also equal outside equilibrium and equal to the equilibrium value.
Hence we assume from now on that A¢ is of second order in S, or smaller, so
AG can be neglected and 3,(0.) is replaced by 3,(0) in Egs.(4.27) and (4.30),
where o is assumed to be the equilibrium value.

Im
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From numerical simulation of the BKW and Boltzmann equations it has been
inferred that two parameters in steady subsonic condensation can be fixed, for
instance the temperature ratio between the gas and the liquid, and the pressure
ratio or the velocity at infinity[21],[67], [68]. From the linearized moment solu-
tion above it seems as if there is only one free parameter, but remember that the
Navier-Stokes solution left T, unspecified. In this particular moment solution
for slightly strong condensation, 75, does not influence the solution. This can
be justified by noting that a nonlinear moment solution for condensation[24]
for 0 = 1 was only weakly dependent upon T, /77, and that this dependence
disappeared in the limit of weak flow rate[55],[62].

In Ref.[62], half-space condensation was considered, and the state at infinity
was assumed to be saturated(’worst case’), and hence predictions for an inverted
temperature gradient in the Navier-Stokes region could be made. Since the state
at infinity is in general not saturated, we will refrain from this step here and
rather look at the inverted temperature gradient in connection with the two-
surface problem.

4.3 The two-surface problem

The flow in the gas region between two dense-phase surfaces, kept at slightly
different temperatures with evaporation from one surface and condensation on
the other, Fig. 4.2, can be found by matching two Knudsen layer solutions for
evaporation and condensation, provided that Kn = % << 1, where [ is the
distance between the surfaces and A is a characteristic mean free path. In half-
space evaporation, there is no external Navier-Stokes region, the Knudsen layer

is to be matched directly to the external equilibrium flow([61],[65],[69].

—1 Condensing  Evaporating [
surface surface
uoo
—
T T
/
A
Kn=M\l<<1

Figure 4.2: Two-surface geometry

The Chapman-Enskog distribution function at the edge of the Knudsen
layer for condensation was linearized, resulting in a simple, drifting Maxwellian.
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Hence the Knudsen layer equations for slightly strong evaporation and con-
densation are identical, as are the solution, Eq.(4.27), the temperature jump,
Eq.(4.32) and the mass flux, Eq.(4.33).

Defining A reverse for evaporation, A¢® = ¢7 — ¢}, and taking into account
that the plates are opposite to each other, the positive direction for velocity at
the evaporating plate is opposite to that of the condensing plate, the Knudsen
layer solutions for condensation and evaporation are as follows:

Condensation:
AT, 7, APk
86 = | E_chﬁf{ (4.34)
S — 7 Ak
Evaporation :
AT, 7 APk
5| = | ek A (135

where AD§, = PP and APy = Ej;—fi.

Since the veloéity is constant in the Navier-Stokes region for condensation,
the velocities at the edge of the Knudsen layers for evaporation and condensation
are to be matched, S% = S%. Hence

Apf = AD% (4.36)
and furthermore
ATE = ATy (4.37)
and
86 = —65 (4.38)

The reference states at the interphases are per definition saturated, and the
Clausius-Clapeyron equation[46] is valid :

dp Lp
- = T7e (4.39)

Here L is the latent heat per unit mass, which equals the difference in specific
enthalpies in the gaseous and liquid states. We have assumed that the specific
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volume of the dense phase is negligible compared to that in the vapor. The
linearized version follows from approximating Ed% with %%, which yields

L o~ N
Ap = ——AT = BAT 4.40

P= % BAT, (4.40)

where AT = Zf%ﬁ and § = RLTL. The states are assumed to be so close

that L can be considered constant, and any of the states may be used in the
denominator of 3, Ap and AT. The pressure is constant in the Navier-Stokes
region, hence

e _ C
Af= pSp—pS = AFS + AP = 2055 (4.41)
8
Here p; is either p¢ or pS, to first order, the result is the same. The temperature
jump over the two Knudsen layers together is 2AT¥;, which can be related to
the total temperature jump by using the Clausius-Clapeyron equation.

A I
AT = = = = = = AT 4.42
k=30 B0 B (442

An inverted temperature profile in the Navier Stokes region is therefore predicted
if 2ATE > AT, ie. if

8> B.(0) (4.43)

This is identical to the condition Ytrehus[62] derived for an inverted temperature
gradient in half-space weak condensation, with the upstream state at infinity
assumed to be on the saturation curve.

As noted in Ref.[62], 3,(0) is significantly larger than the ideal (0 = 1) value
B, =~ 4.8 if 0 is considerably less than 1, say 0.5 or below, as is shown in Fig. 4.3.
Sone et al.[60] considered the same two-plate problem for a gas of hard spheres.
They solved the linearized Boltzmann equation numerically for arbitrary o and
obtained a critical parameter Bc (o) for the inverted temperature gradient almost

identical to our expression (4.29). The expression for 3., Eq.(4.29), with equal
evaporation and condensation coefficients, may be written as

1—0 1—0

= _ <
Fe=0.+ o o o

a, (4.44)

where 3, = 9—727"73—2 ~ 4.80 and a, = 231;32 ~ 3.20. The latter equality follows
from the fact that a. + 5, = 8. Sone et al. obtained the values 3, = 4.70 and
_ 237-32
A = = 3.06.
Let the saturation pressure be denoted p, = ng kT, The Clausius-Clapeyron

equation can be used to show that the gas outside the evaporation Knudsen
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20-

15

1G

Figure 4.3: The inverted temperature gradient is predicted if 5 = RLTL lies above

the curve 3,(0), for a given value of o.

layer is supersaturated if 5 > Bc. This is schematized in Fig.4.4, from which
supersaturation is found to occur if

Apf < BLATE, (4.45)

which is equivalent to

AP < BATE (4.46)

since B4 is the derivative of the vaporization curve. From Apf = BCAT/;;}
follows the criterion for supersaturation :

8> B, (4.47)

This could also have been seen directly by comparing Eq.(4.35) with the lin-
earized Clausius-Clapeyron equation, Eq.(4.40). Expression (4.47) is identical
to the criterion for the inverted temperature gradient phenomenon in two-plate
geometry. This means that the gas has already been through a metastable state
prior to a temperature inversion, as observed by Ytrehus[24] in the present case
of 0 # 1, and by Hermans and Beenakker[70] among others in the ideal case of
o=1.
The mass flux across the gap follows from Eqgs.(4.34) and (4.41).

[RT;, RT;, AP
I = —2/7Sg =4 —_— 4.48
m mng o \/7_T K mng omr 65(0') ( )
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Supersaturation
Liqui

iquid (TLe’ pse )

P
Bp/T Superheating

Gas
%
T

Figure 4.4: Part of the vaporization curve

where ng can be n§ or ng, 11, can be Tf or 17, to first order, it does not matter
which ones are used. As seen from this formula and from Fig.4.3, the mass flux
is strongly dependent upon the value of o through $.(¢) in the denominator.

4.4 Equilibrium molecular dynamics simulation

In molecular dynamics, Newtons 2. law

F =ma (4.49)

is solved numerically for every molecule in the system.

Here the Verlet method [40] has been used for a system of 1800 particles.
The simulation is conducted in a rectangular box that is elongated in the -
direction, so the gas region can be relatively long with the number of liquid
molecules limited. We are not interested in the dynamics in the liquid, and
calculation of the trajectories of liquid molecules is computationally expensive
since the liquid molecules have more neighbors than the gas molecules. But
the interphase must be correctly reproduced, and this requires a liquid slab
of say 10 molecular diameters thickness. A usual setup is a liquid slab in the
middle of the simulation box surrounded by two gas regions, it is then easier
to keep the liquid in place by for instance specifying that the center of mass is
fixed. Other authors have constrained the liquid at a wall, using a short range
potential which mimics the attractive forces that would be the result from a
uniform liquid phase on the other side of the wall[71],[72], but then unphysical
ordering near the wall makes it necessary to simulate a thicker liquid phase. In
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Figure 4.5: Simulation box for molecular dynamics

Fig.4.5, a snapshot of the configuration in an equilibrium simulation of 1800
molecules is shown for the case L,/L, = 16. L, is not shown in the figure, but
is equal to L, and the simulation box has a quadratic cross-section.

The standard periodic boundary condition has been used in the simulations.
Molecules that cross the box boundary are inserted on the opposite side with
the same velocity, as though the simulation box were periodically replicated. A
molecule interacts with periodic images of the other molecules if the distances
are smaller than the cut-off distance of the potential.

In the middle of the liquid and at the far left and far right in the gas regions
the temperature is thermostatted by simple velocity rescaling. Fluctuations of
the center of mass of the liquid can be larger than the width of the interphase.
Such behavior would ’smear out’ density profiles, etc. Therefore the liquid
slab is kept in the middle by shifting the z-coordinates, this does not change
the relative distance between the molecules. The shifting is determined by the
requirement that there shall be an equal number of molecules in both halves of
the box. Particles that are moved outside of the z-boundaries in the centering
algorithm are inserted on the opposite side with the same velocity.

4.4.1 Calculation of the condensation and evaporation co-
efficients

The evaporation and condensation coefficients are calculated from their defi-
nitions in terms of fluxes, as indicated in Fig.2.1. The definitions in terms of
fluxes, as discussed in chapter 2.2, are

(4.50)

(4.51)

I
Js
Je
T, = J—_
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Here J, = f ngFyde, = ’I’qu/%}, J¢ is the evaporated flux, J¢ is the con-
e >0
densation flux, and J~ is the incident flux on the gas boundary.

To determine if the criterion for the inverted temperature gradient is vi-
olated, the parameter § = RI:;L = ﬁA_TZ must be calculated. The enthalpy
difference is defined as Ah = hy — hy, where h, and h; are the specific enthalpies
in the gas and liquid respectively. The specific enthalpy is calculated from the

molecular dynamics simulation as

h=wu,+3/2RT +p/p (4.52)

Here w,, is the internal potential energy, and p is the mass density. Some results
from equilibrium simulations are listed in Table 4.1 and are shown graphically
in Fig.4.6 together with results of Rgsjorde et al.[73], and Tsuruta’s results for
a Lennard-Jones potential, cut at 3.5r (private communication).

To calculate BC(O'), an average of o, and o, has been used. An inverted
temperature profile and supersaturation outside the evaporating boundary is

predicted for weak flow conditions if RLTL > 3.(0). The B,(0) curve crosses the

RLTL curve for o = 0.75. From Table 4.1 it is seen that L/(RTy) and o are
monotone decreasing functions of T, and hence for the Lennard-Jones-spline
fluid in our simulations, the RLTL > Bc(o) condition is fulfilled, and hence an
inverted temperature gradient is predicted, for 7* < 0.61.

From Table 4.1 we see that the evaporation and condensation coefficients are
equal, as they should be in equilibrium, and their values decrease with increasing
temperature. The degree of rarefaction can be expressed by §/d.ys, where § is
the mean molecular spacing, § = n~ /3, and deyy is an effective hard sphere
molecular diameter, here defined from the mean free path at infinity,

N
< \/inoowdgff'

Bird[23] uses &/dess > 7 as a limit for dilute gas as discussed at the end of
chapter 3.2. For our Lennard-Jones-spline potential, this limit is actually never
attained for the gas in two-phase gas-liquid equilibrium. In our simulations the
maximum value of §/d.r; was 3.9, and a comparison with results from gas-
kinetic calculations must therefore be interpreted with caution.

(4.53)

4.4.2 Comparison with other MD simulations of the con-
densation coefficient for spherically symmetric molecules

Values for the condensation coefficient for the ordinary Lennard-Jones potential
used by most authors, and from the Lennard-Jones-spline potential we have used
in our simulations, are not directly comparable since many physical characteris-
tics, for instance the saturation density, deviate significantly for the same value
of T*. Besides, since there is no unique microscopic definition of evaporation

URN:NBN:no-3346
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Figure 4.6: Plot of normalized latent heat vs. condensation coefficient from
various molecular dynamics simulations; our own, Rgsjorde et al.[73] and Tsu-
ruta(private communication). For our own and Tsuruta’s simulations, both o
and the normalized latent heat are monotone decreasing functions of the tem-
perature, as shown by the arrow.

and condensation of a single molecule, different approaches used by the vari-
ous authors contribute to a spread in the simulated values of the condensation
coefficient.

Resjorde et al.[73] used the same Lennard-Jones-spline potential as in this
study. The resistivity to mass transfer was measured in simulations of weak
condensation. An expression for the resistivity to mass transfer involving the
condensation coefficient has been derived[52],[74] by comparing expressions for
weak heat and mass transfer from kinetic theory and from irreversible ther-
modynamics. From the measured values of resistivity to mass transfer it was
then possible to calculate the condensation coefficient. Rgsjorde et al.[73] found
values of the condensation coefficient scattered around o = 0.82. It should be
remarked that their ’surface temperature’ is not calculated at a specific position
as our 17, but is calculated as an average over molecules in a suitably defined
interphase region. Since there is a lot more molecules on the liquid side of the
surface region than on the gas side, we conclude that their surface temperature
deviates little from our 77, and in the figure 4.6 they are treated as equal.

Yasuoka and Matsumoto[76] used the Lennard-Jones potential with cut-off
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T Oc Oe RI%, 6c(0) 6/d5ff
0.575 0.81 080 83 6.7 3.9
0.6 077 077 7.7 7.2 3.5
0.625 073 073 72 77 3.1
0.65 0.67 0.67 6.8 88 2.9

Table 4.1: Results for equilibrium simulations

at 4.4rg and simulated two-phase coexistence in equilibrium. Their ’coefficient
of self-condensation’ corresponds to our condensation coefficient. Yasuoka and
Matsumoto looked at the depletion of molecules initially in the gas that have
not condensed and related the rate of depletion to the condensation coeflicient.
For T* = 0.67 and T* = 0.83 the values for the condensation coefficient were
0.85 and 0.88, respectively. Their results are not plotted in Fig.4.6 since values
for the latent heat are not available.

Tsuruta[77] used the Lennard-Jones potential, cut at 3.5r9. For T* = 0.70
and T = 0.85 the values for the condensation coefficient were reported to be
0.93 and 0.79, respectively. Values for the normalized latent heat were not
given in the article but has been obtained through a private communication.
Corresponding values for o and RLTL have been plotted together with our results
in Fig.4.6. Although the intermolecular potential Tsuruta used is not the same
as ours, the o versus RLTL values do not differ significantly. The two sets of
data lead essentially to the same general conclusion, namely that an inverted
temperature gradient may occur at low temperatures close to the triple point,
but not for higher temperatures.

4.5 Conclusion

The inverted temperature gradient phenomenon is critically dependent upon the
value of the condensation coefficient for the given substance. If gas-kinetic pre-
dictions can be applied to the slightly non-ideal gas in our molecular dynamics
simulations, then the inverted temperature gradient phenomenon is predicted
to occur for temperatures close to the triple point. To verify this result, direct
molecular dynamics simulations of the two-plate geometry for weak flow con-
ditions, and carefully designed experiments, are therefore required to see if the
inverted temperature phenomenon really occurs. The very basis of kinetic the-
ory applied to interphase transfer, the assumed form of the distribution function
at the interphase, must also be checked from molecular dynamics simulations,
before the final word can be said on the inverted temperature gradient.
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Chapter 5

Molecular Exchange

5.1 Introduction

When a molecule condenses, potential energy is converted into kinetic energy
which is dissipated by collisions. There is then the possibility that a con-
densing molecule may kick out a molecule in the interphase or in the liquid,
Matsumoto[78] calls this effect 'molecular exchange’. Matsumoto reported a
strong correlation between condensation and evaporation fluxes and introduced
a redefined condensation coefficient taking molecular exchange into account.
The redefined condensation coefficient was calculated from molecular dynam-
ics simulations for several substances and a considerable number of papers was
published[79],[80],[81], [82]. Since the redefined condensation coefficient always
is equal to or smaller than the original definition of the coefficient, it was
thought that the molecular exchange mechanism might remove the seemingly
unphysical inverted temperature gradient phenomenon predicted by gas-kinetic
calculations,[50],[51],[62].

However, the simulation expression Matsumoto et al. used, appears to be
erroneous, it has inconsistent dimensions. In this paper it is shown that molec-
ular exchange, under suitable assumptions, has no influence on the gas-kinetic
treatment of phase change, but anyway, a correlation expression for the fraction
of condensing molecules that induces molecular exchange is derived.

5.2 Molecular exchange

In this chapter the notation for the fluxes is a bit different than in the rest of
the thesis. In addition to the averaged values of the fluxes, instantaneous values
are also required. Hence J is here instantaneous flux and (J) is the averaged
flux. Egs.(2.7) and (2.10) can then be written

41
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o= (1) ok (5.1)

() Gas

/

\Q

Figure 5.1: Molecular exchange mechanism

Molecular exchange is modeled by assuming that certain molecules that con-
dense, kick out one molecule each from the liquid or the interphase, as indicated
in Fig. 5.1. The evaporation and condensation fluxes are hence split into two
modes, taking molecular exchange into account.

JO = J:ffective + anduced (53)
JO = Jecffective + Jicnducing (54)

The subscripts have been written out here to ease the interpretation of the vari-
ous fluxes. J; peppie 18 the "true” evaporation flux, independent of the incoming
flux. Jg, j,ceq 15 the evaporation flux due to molecular exchange which depends
on the incoming flux. It pective 18 the flux of molecules condensing which is not

inducing molecular exchange. J¢ ;..in g is the flux of the condensing molecules
inducing molecular exchange. The averaged fluxes (J£, ,..cq) @04 (IS quein g>

are equal and opposite since it has been assumed that each condensing molecule
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which excites molecular exchange, only excites one molecule to evaporate. The
common value is denoted by <Jezc}“m95> or short (J**), Je s fective Will be written
Jes s henceforth.

<Jienduced> = < icnducing> = <Jez> (55)

inducing and

The ’effective’ index in Eq.(5.3) is hence appropriate since <J e
(S5, quceq) cancel each other, they do not contribute to the net flux. Matsumoto[78]
defined an effective condensation coefficient taking molecular exchange into ac-

count, in our notation it can be written as

C oy (Fawene) ey 56)

o= =0, — —g. -/
© ) ‘ (J7) )

The effective condensation coefficient is equal to or smaller than the original

condensation coefficient. We extend Matsumoto’s treatment by also defining a

new evaporation coefficient. The new one, not counting the induced evaporated

molecules, is

. <J:ff> _ (Jinduced) () (5.7)

g, = =0, — ————— =0 —
Js

N Js Js

If there is no molecular exchange then o, = ¢/, and 0. = 0.
The molecular exchange flux may be written in two ways,

(J0) = ()= (JEy) =(0c—0L) (J7) (5.8a)
(J°0) = (%) = (JEpy) = (0e — 00) s (5.8b)

We will now show that the gas-kinetic treatment of phase change is unaffected
by molecular exchange, if we do the assumption that the molecular exchange
molecules are emitted from the interphase with a half-Maxwellian distribution
with the liquid temperature 77,. At the interphase one more mode for the
evaporated molecular exchange molecules must be added, a half-Maxwellian
with unknown number density n'. As will be shown later, it is convenient to
extract the factor (0. — 0}).

[ = (e —ol)n'F; (5.9)

n' is determined from a flux condition

RT;
(0 — o)) / n'Fyde =(0. — o, )n'y/ 2—7TL = (0. —0L)J; (5.10)

Ce >0
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The last equality follows from Eq.(5.8b). Here J; = ’I’qu/%}‘, hence n' = n,

and

[ = (0 — o )ns F (5.11)

The evaporation distribution is

[ = feor+ 17
= onsFy + (0. — 0L)nsFy = 0.nsFs (5.12)

as though molecular exchange was not present. The complete distribution func-
tion at the interphase is

[t = olngF, + (0. — 0, F, + (1 — 0)n;F,
= |oens + (1 —o.)n] Fi (5.13)
Eq.(5.13) is identical to Eq.(2.4). Hence, molecular exchange, if it exists, has
no effect upon the kinetic theory results, for instance mass flux formulas are
unaltered.

The distribution for the evaporated molecular exchange molecules can also
be written as

[ = (0. — o' F, (5.14)

Here n'’ is determined from the following flux condition

(0,—0.) / n'' Fyde =(o, —o,)n'/ % =(0.—0,){J7) (5.15)

e >0

The last equality follows from Eq.(5.8a). Hence

n'' % =(J7) (5.16)

Comparing with Eq.(2.7), it is seen that n'' = n,.
The complete distribution function at the interphase can be written as

[T = onsFs+ (0. —0ol)niFs + (1 —o)nFs
= l|olns + (1 —ol)n] F; (5.17)

The distribution function is similar to Eq.(2.4) without molecular exchange, the
only difference is that o, is replaced by ¢/, and 0. by 0. This description of
molecular exchange is equivalent to Eq.(5.13), but as we will see later, it is much
harder to calculate ol and o/, than 0. and o, hence the redefined coeflicients
taking molecular exchange into account should not be used in the boundary
condition.
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5.3 Molecular dynamics simulation expression

We will now derive an expression for the fraction of condensing molecules that
induces molecular exchange. First we look at the induced evaporation flux.
There is a time delay before gas molecules crossing the gas boundary can ex-
cite 'molecular exchange molecules’ in the interphase or the liquid and those
molecules cross the gas boundary. The most general linear relationship between
the instantaneous flux 4 and the incoming numberflux J~ outside the
interphase is assumed

€
induce

o0

¢ uoealt) = / ot ) (t — t')ar (5.18)
0

a(t') is the so-called memory function. Hence the average of Eq.(5.3) can be
written as

(o)

(%) = (JEs4) +/a(t’) (J=(t—t))at (5.19)

0

Equilibrium is not assumed, it is only necessary that macroscopic values are
stationary, i.e. may have net condensation or evaporation. We want to find
an expression for the memory function so that (J{ ;. ...) can be calculated.
Substraction of Eq.(5.3) with Eq.(5.19) gives

AJE(H) = A :ff(t)+/a(t’)AJ*(t—t’)dt’ (5.20)
0

Here A means deviation from the average. Then Eq.(5.20) is multiplied by
AJ™ (t1) and averaged, here t; <.

(AT (t)AT(t)) = (AT (t)AT (L))

+/o¢(t/)<AJ’(t1)AJ’(t—t’)>dt’ (5.21)
0

The fluxes J ™ (¢1) and JZ; ;(¢) should be uncorrelated since the flux-dependent

part of the evaporation flux is Jg, ;... Hence

(AT (1) AT (1)) =0 (5.22)
In Eq.(5.21), t = ¢4 + 6t is introduced

(AT~ (t) AT (ty + 1)) = /a(t’) (AT (t)AT (ty + 6t —t'))dt'  (5.23)
0
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It is assumed that the fluctuations of the incoming flux J~ have a correlation
time 7 which is small compared to the time it takes before a(t’) is significantly
different from 0. Hence (AJ™ (t1)AJ®(t; + 7)) = 0 and we can assume that
6t >> 7 in the subsequent discussion. We model the autocorrelation function
inside the integral as a Gaussian curve.

(AT (t)AT (G +6t—1')) = (AT AT ) e‘(;/__j%)g (5.24)

The actual form of the autocorrelation function is not important, any function
that is 1 if 6t = ¢’ and gets narrower as T gets smaller can be used as long as
it is properly normalized. The expression for the autocorrelation function must
be consistent with a common definition of the correlation time[83],

o0

/ 5 J AJ >(t)>dt. (5.25)

o

Then Eq.(5.23) becomes

(AT~ (1) AT (s +6)) = (AT A7) / at)e ) @ (s.0)
0

(' —st \2
Since e (2/ v T) is a very narrow function centered on 6t, there will be no signif-

icant contribution to the integral outside a couple of 7’s distance from 6t. oz(t/)
varies little over 7 and may hence be approximated with a Taylor expansion.

a(t') = a(8t) + o' (8t) (' — 6t) (5.27)

The first term gives an integral

76(2t7//jt?)2dt, =7+erf o T (5.28)
=Thel (o= .
0

T is assumed to be small, 6t >> 7, hence erf (27‘/%\/;) ~ 1 and we have

o0

_( t’—ét)
/e 2/VE) dt ~ 2T (5.29)
0

Then Eq.(5.26) simplifies to

(AT~ (L) ATty + 61)) = (AT~ AJ7) [2ra(6t) + 2—;2{(%5/%)204’(&)
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2
Since 7 << 6t, we have e_(zf/b") ~ 0, hence the last term in Eq.(5.30) may
be neglected and

(AT~ (1) AT (ty + 6t)) = 27a(6t) (AT~ AT ) (5.31)

This result is equivalent to the correlation function (AJ~ (£1)AJ~ (1 + 6t —t'))
written as

(AT (L) AT (t + 6t — 1)) =27 (AT~ AT ) §(t' — bt), (5.32)

then Eq.(5.31) follows directly from Eq.(5.23). The purpose of introducing
Eq.(5.24) was to calculate the prefactor 27 in Eq.(5.32). The Dirac delta func-
tion in Eq.(5.32) physically means that we have a finite autocorrelation con-
centrated over a correlation time 7 much shorter than all the other relevant
timescales of the problem.

Matsumoto et al.[78][79],[80],[81],[82] apparently used

(AT () AT (ty + 6t — 1)) = (AT AT ) §(' — 6t) (5.33)

The only explicit statement of Eq.(5.33) in the many papers of Matsumoto et al.
can be found in Ref.[85]. The dimensions in this equation are not consistent since
the dimension of a §-function is the inverse of the dimension of its argument[84].

As has been remarked before, the actual representation of the correlation
function used in Eq.ﬁ5.24) does not matter. For instance, it is straightforward
to show that e~ 1*' =%/ also gives Eq.(5.31). From Eq.(5.31), an expression for
the memory function «o(t') follows

o= L OT AT ) 6

The induced evaporation flux follows from averaging Eq.(5.18). Since the
system is stationary, {; is arbitrary and is set to O.

(AT (0)AJTE(E)) dt!

< ienduced> = <J_>/Oé(t/)dt, = <J2_> (535)
0

(AT (0) A () dt’

S —8|e =3

Here 7 has been replaced, using Eq.(5.25). Since the correlation time 7 as-
sociated with (AJ~(0)AJ~(¢')) is much smaller than the relevant time-scale
for (AJ=(0)AJe(t")), (AT (0)AJ (t')) and hence 7 should be calculated with
shorter sampling intervals than is necessary for (AJ~(0)AJ¢(t')). The fraction
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of condensing molecules that induces molecular exchange, using Eq.(5.5), is

<Jicnducing > _ 1

(Jey 20,

(AT (0)AJTE(E')) dt!

(5.36)
(AT (0)AJ (¢)) dt’

S —=gle—3

Here o, = (J¢)/{J ) is the average condensation probability, i.e. the con-
densation coefficient. The expression (5.36) is suitable for molecular dynamics
simulation.

The effective condensation coeflicient can be written as

C Vs (i)

(J7)

TAT (AT (1)) dt’

= (5.37)
/

(AT~ (0)AJ- () dt’

A similar formula for o/ can be given using Eqgs.(5.7) and (5.35). Matsumoto
et al. used

o0

ol =1L / (AT (O)AT*(t')) d’ (5.38)

(@777)4

where J7T is the total flux out from the interphase, the sum of the total evap-
oration and reflection fluxes. Eqs.(5.37) and (5.38) are not directly compara-
ble, but the dimensions in Matsumoto’s expression obviously are not consis-
tent, o/, is dimensionless but the last term in Eq.(5.38) has dimension of time.
Hence, the values Matsumoto et al. found for the condensation coefficient in
Refs.[78][79],[80],[81],[82] seem to be not correct.

5.4 Conclusion

If the molecular exchange mode is assumed to be the standard non-drifting half
Maxwellian with the liquid temperature, molecular exchange has no effect on the
gas-kinetic description of evaporation and condensation, the boundary condition
outside the interphase is not altered by the inclusion of the exchange mechanism.
The fraction of condensing molecules that kick out another molecule can be
calculated in molecular dynamics simulations from the correlation between the
incident flux and the evaporation flux.
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Chapter 6

Strong Evaporation

6.1 Introduction

The nonlinear case of strong evaporation for sonic conditions downstream was
considered in a moment solution by Anisimov[9]. Ytrehus[16] extended the
moment solution to arbitrary subsonic Mach numbers and calculated the struc-
ture of the Knudsen layer. Finite difference solutions of the BKW equation
and Monte Carlo simulations of strong evaporation further clarified the field.
Yen[86] showed that the type of kinetic equation or intermolecular potential
had little influence on properties like the density ratio, pressure ratio and mass
flux. Murakami [53] showed that evaporation into vacuum gave a maximum
Mach number of unity. Sone et al.[87] and Kogan and Abramov [68] clarified
the existence region for steady evaporation in a half-space.

Experimental results on the temperature profile in the evaporation Knudsen
layer is very limited, but Mager et al.[88] considered sublimation of solid iodine
into a low-density environment. The effect of non-unity evaporation and con-
densation coefficients for diffuse reflection was considered by Kogan[89], Sone
and Sugimoto[90] and by Ytrehus[24]. There have been many attempts to mea-
sure the condensation coeflicient for various substances, but this appears to be
an extremely difficult task, for instance, values for the condensation coefficient
for water at a given temperature vary by a factor of 10, see recent reviews[1],[10].
The majority of the kinetic theory results rest upon the assumption that the
gas is monatomic, or that internal degrees of freedom do not play any important
role. Incorporation of polyatomic effects have been considered by Cercignani[91]
and by Frezzotti[92].

Away from the critical point, the interphase between gas and its condensed
phase is typically a couple of molecular diameters thick, and molecular dynam-
ics (MD) simulation[37] can resolve this region. Tsuruta[93] used molecular dy-
namics to simulate stationary evaporation and condensation between two liquid
slabs kept at different temperatures. Zhakhovskii and Anisimov[94] simulated
evaporation into vacuum by removing all molecules that left the gas region of

51
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the simulation cell, i.e. a completely absorbing wall.

In this chapter only evaporation into an infinite half-space will be considered.
At asymptotically large distances from the interphase the flow parameters are as-
sumed to reach uniform values. The Boltzmann equation Eq.(2.1), together with
Eq.(2.4) at the interphase and a drifting Maxwellian 1o Fias (Tho, oo ) at infinity
as boundary conditions, have been solved by a variety of methods. From physical
arguments[16] and numerical simulations[68],[95] of the BKW and Boltzmann
equations for ¢ = 1, it has been inferred that only one downstream parameter
in steady evaporation can be fixed, for instance the velocity at infinity or the
pressure ratio between the gas and the liquid. As will be shown later, nonunity
condensation coefficient with diffusive reflection leads only to a stretch of the
Knudsen layer in the z-direction, and the general predictions for ¢ = 1 holds
also for o # 1.

6.2 Moment solution for evaporation for o, # o,

Ytrehus[16] extended Anisimov’s moment solution[9] to arbitrarily Mach num-
ber below 1 and calculated the structure of the Knudsen layer for Maxwell
molecules by adding an equation for the non-conserved moment ¥ = mc2. The
original work was for ¢ = 1, but Ytrehus later extended the solution to equal
condensation and evaporation coeflicients by means of a transformation[24].
Here the moment solution will be calculated directly for 0. # o.. An approxi-
mate form of the distribution function is chosen with a few adjustable parame-
ters determined by the boundary conditions and four moment equations. Using
Anisimov’s and Ytrehus’ ansatz

fo= ao(@)fT +al(2)nee F + as(x)noc Firg
ao(x) [oens + (1 — o)) Fi + ol (2)neo FS, + a, (x)neo Fly, (6.1)

the boundary conditions can be written as[16]

ap(0) = 1 ap(00) =
00) = 0 ab(co) = (6.2)

The amplitude of the back-scattering mode at z = 0, 8 = a__(0), is an unknown
that must be obtained from the solution. In fact, 8 in the general nonlinear case
corresponds to 1 + 6p of Eqs.(4.16) and (4.17) in chapter 4 for the linear case.
The Maxwellian distribution at the wall, F;, is affected by a + superscript
to underline that it is a restriction of a Maxwellian distribution to ¢, > 0.
Likewise, Fif and F_ are halfrange restrictions of the distribution function F,
at infinity,
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Co — w2 4 2 + 2
= or 132 P Gl e A (6.3)
(27 RTL,) 2RToo
Eq.(2.7) gives
27 T
"=\ / Caog (0) o0 Froodey = nm/T—jﬁE‘ (6.4)

Ce <0

where E~ is defined in Eq.(6.6).

Using the 3 conserved moments, the state at the interphase and the external
equilibrium state are related by

| RT, | RT.
Oellg —L_ 0N _OOBE* = Nooloo (6.53)
2 2
1 1 -
UEQnSRTL + QnooRTooﬁa — noougo + nooRTOO (6.5b)

+(1 = 00) g0 RV T L Too BE~
0c2n, RTy, /2
1 5
— 2o R/ Bl 11~ = Noolleo <5u30 + §RTOO> (6.5¢)
+(1 = 00)2RT no0 | B BE~
independent of the particular type of intermolecular potential. Here the func-

tions K, G~ and H~ are the same as those used by Ytrehus [16], except that
we denote by ¥~ the quantity that was originally denoted by F'~.

B = TSw(—1+erfSy) +e %= (6.6)
2 >
— _ 2 _ —_— — _Soo
G- = (25, +1)(1 —erfSx) NG o€ (6.7)
H™ = @(Sﬁo+g)(—l+erfsw)+%(sfo +2)e 5% (6.8)
Soo = e (6.9)
2RT,

The solution to Egs.(6.5a),(6.5b) and (6.5¢) is obtained like in Ref.[16] and is
expressed as
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Teo T I
2o = Mg 41482 6.10
T, g Do TG (6.102)

2(252%, + 1)/ F= — 275
B = (6.10b)
B 4 =G

n, 1—0—“/ = /TS B™ + 0.2 B (252 + 1) + VT 52 0o G-

Too E+\/7G

We see that 3 and % are independent of 0. and o.. The density ratio -*= can
be written as

T _ _
ny 0 2exp(= —S2%) %= 1—0(;2\/7?3 Teo = +G
Moo e - + /=G e T 4 [T
L
_ Oc Ng —0O¢ TOO
= — + 2/ | == Seo (6.11)
Oc \ Moo J =1 O¢ 17,
where (nﬂﬂ—) ) is the density ratio if 0. = 0, = 1,
o0 o=
(n) 2ot o
Moo o=1 E7 + %&G,
L

The net evaporated number flux is given by Eq.(6.5a),

| RT | RT. _
J(TL,SOO,O'E,O'C) = 0eMg 2_7T_L — OcNeo 2_7:06E s (613)

where N and T, are given by Eqgs.(6.11) and (6.10a). If 0. = 0, = 0, then

Ry, Rl .-
s\ 5 = Moo\ 5 BE ] (6.14)

The number flux for ¢ = 1 given by the moment solution is surprisingly accurate
for all speed ratios except close to the sonic state[24]. This holds also for o #
1 since the transformation rule for the moment solution and more accurate
solutions of the Boltzmann equation like DSMC is the same, with the slight

J(T1,5%,0) =0

modification of more accurate values of (nﬂL) and ﬁ
< Jo=1
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Let 77, and hence ng; be constant. n.. is affected if o is altered, so the

mass flow for a given S, is not linear in o, as may otherwise be expected from
Eq.(6.14). We have

1 — Poo

J(T1,500,0) _ R
S T o), o

Mg

(6.15)

where (%‘f) ) is given by Eq.(6.12). Fig. 6.1 gives a plot of J/J,—1 as a

o=
function of ¢ for various values of S,

Figure 6.1: Number flux versus o

The dramatic effect from lowering the coefficient ¢ can better be seen in
a plot of a normalized number flux J—JS = L = 2\/%&&5001/% versus

RT; s

s 27
pressure ratio, as was done by Ytrehus[24], see Fig. 6.2. When ¢ is lowered, the
pressure ratio necessary to achieve the sonic state increases dramatically.

The structure of the Knudsen layer can be found from a forth non-conserved
moment. Using the non-conserved moment mci and inverse fifth power repulsive
Maxwell molecules, Ytrehus[16] found the following solution for o = 1:
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Figure 6.2: Number flux vs pressure ratio, from Ref. [24]

5(05) = % [ace(@) = 1] ¢y +1 (6.16)
32?;) {2530 +3+ [am (@) — 1] ¢y — 2530%} (6.17)
n("") {1 +282 (1 %)} (6.18)
222) {[aco(@) = 1] ¢ +2} (6.19)

where || and L means parallel and normal to the drift velocity respectively, and

where
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Go(®) =1 B=1 _pa-pya/ac
ac(x)—1r  B-r (6.20)
T Noo 2 Teo T
P= 35 (n—s)(r: 7, (0= D10/ (1 - T—L) (6.21)
=t % + (6.22)

b, = ( ) —2+[3(1—erf5'00)> (6.23)

-1 ((%)m ZTTLO —2+p0 - erfSoo)> (6.24)

o=1 : o=1 _ _pu(Tr)
Here \]™" is a reference mean free path, \; ne =T/ 2 AT

Eq.(6.20), there is an approach to equilibrium, az, = 1, only for » < 1, which
confines Sy, to the interval [0,0.907]. This corresponds to an upper Mach num-

’ Q’

P9

=

. As seen from

ber of My, = \/ESOO = 0.994. Given the approximate nature of the moment

solution this is interpreted as an upper limit at Mach 1, i.e. at the sonic singu-
larity.

Although the jump conditions are independent of the interaction law, the
structure and in particular the relaxation towards equilibrium flow are not,
[86]. This is evident from the above relations, since the collisional properties
of Maxwell molecules are the basis for the relaxation exponent P(1 —7)/AJ=",
and must be born in mind when comparing moment solutions with molecular
dynamics simulations.

For diffuse reflection of molecules at the interphase, the Knudsen layer struc-
ture for o # 1 can be found from an equivalent 0 = 1 solution. This is seen
from the boundary condition, Eq.(2.4). The two solutions are identical if the
saturation densities are related by

2

i RT,

g=1 =0eNs + (1 - Uc)ni =0eNs + (1 - UC)J7 (625)

Eq.(6.25) is the basis for the standard transformation of densities and pressures
originally given in Ref.[89] and also considered in Refs.[90],[24]. But n¢=! can

also be calculated from Eq.(6.12), holding n.. fixed, since ﬁz is only a

o=1
function of the speed ratio So. This is a different interpretation of Eq.(6.11)
than in the original derivation, ns, can be kept fixed while nJ=! vary. Since
the solution for o = 1 with n7=1 given by Eq.(6.25) is equivalent to the o # 1

solution, the ideal value (nﬂL) is used in all expressions for the Knudsen
>/ o=1

layer, but then the solution is given in terms of x/ )\;":1. It is better to use the
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physical n, and plot the Knudsen layer in units of Ag,

wTe) [_m 1
. = = . 6.26
° Ps 2RTL,  \/2nymd? T (6.26)

We regard o here as a free parameter that can be varied independently of y and
degy. The "real” mean free path is related to the ideal o0 = 1 case by

1 no=t 1 (Ns/M00) gy \ o
A, = = = g=1\o=1 6.27
T 20, wdgff Mg \/ing=17rd§ff Ns /Moo (6:27)

The last equality follows since the Knudsen layers are equal and n., in the
nominator and denominator is invariant. When the Knudsen layer is plotted in
units of A, a solution for ¢ = 1 can be transformed to 0. # 0. # 1 just by
scaling the z-axis or stretching the graph in the x-direction. If the evaporation
and condensation coefficients are equal, 0. = 0, = 0, 0 < 1 gives a stretch of
the graphs in the z-direction (active viewpoint) relative to the o = 1 solution,
or equivalently a compression of the x/\;-axis (passive viewpoint).

To test the transformation of the Knudsen layer, two DSMC simulations are
performed for the same Mach number (My, = 0.78) but for different values of the
common parameter 0, = 0. = . In the first simulation ¢ = 1, and in the second
simulation ¢ = 0.7. Then —"%{"=  ~ 1.35 and the 0 = 1 solution stretched

('”‘S/'”‘OO)U:I
in the x-direction by a factor 1.35 overlaps the direct ¢ = 0.7 simulation, see

Fig.6.3. The small discrepancy between the graphs is due to statistical noise
in the DSMC simulation, and two corresponding BKW solutions would overlap
completely.

c=07
and transformed

/ o = 1 solution

0 10 20

30 40 50 60
x/xs

Figure 6.3: Transformation of DSMC simulations, M., = 0.78
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The moment solution of the Knudsen layer structure for . # o, can be
given directly, Eq.(6.27) is inserted into Eq.(6.20) with the result

CLO:O(IL') -1 — B _ 1€_P(1 r)%‘:—lz/)\ (6.28)
aoo(z) —1  B—7

where 1g /N0 and (15 /Moo ), are given respectively by Eqgs.(6.11) and (6.12).
Note that (ﬂa) in Bgs.(6.21), (6.22), (6.23) and (6.24) shall not be replaced
o=1

by —L, as could be concluded from a statement made by Cercignani[2], page
291, ’we can easily modify all the formulas obtained for the case 0 = 1, by simply
replacmg ns, whenever it occurs by the expression (6.11)’. For evaporation, if
the evaporation and condensation coefficients are equal, 0 < 1 gives a stretch
of the Knudsen layer in the z-direction (active viewpoint) relative to the o =1
solution, or equivalently a compression of the x/\s-axis (passive viewpoint).
This can also be seen from the characteristic length I in a__ () given by Eq.(6.28)

i — nﬂ/noo 1
As (s /noo)yy P(1—7) (6.29)

The scaled length /\i is a function of S, and o, for high Mach numbers /\LS is

very sensitive to the value of the condensation coeflicient, as can be seen in Fig.
6.4

Figure 6.4: Characteristic length in the Knudsen layer, from Eq.(6.29)

All solutions related by the transformation would be equal if they were plot-
ted on a x/\,.-scale instead of 2/ \;-scale. This can be accomplished by replac-
ing A7=" in Eq.(6.20) by
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1 n 1 n
Ag:l — — © — ( oo) A 6.30
V2ng=tnd?, ng=t\2nmd?,, Mo ) ooy (6:30)

where (%&) ) is a function of S, only, the moment method gives Eq.(6.12).
s o=

Aoo I8 Invariant.

6.3 Molecular dynamics

Molecular dynamics [37] techniques offer the possibility to study the liquid-gas
interphase in detail. The condensation coefficient and the distribution func-
tion outside the interphase can be determined by counting the molecules that
condense and evaporate.

6.3.1 Simulation box

The molecular dynamics simulation is conducted in a box of non-cubic shape, see
Fig.4.5. An elongated box in the z-direction is used so the gas region can be rel-
atively long with the number of liquid molecules limited. We are not interested
in the dynamics in the liquid, calculation of the trajectories of liquid molecules
is computationally expensive since the liquid molecules have more neighbors
than the gas molecules. But the interphase must be correctly reproduced and
this requires a liquid slab of say 10 molecular diameters thickness.

The dimensions of the box is given by L, which is the longest side, and L,
and L, that are equal. The ratio between length and width of the simulation
box has been varied from 16 for equilibrium simulations to 100 for high Mach
number evaporation simulations. In the middle of the liquid a thermostat keeps
the temperature fixed. Fluctuations of the center of mass of the liquid can
be larger than the width of the interphase. Such behavior would ’smear out’
density profiles, etc. Therefor the liquid slab is kept in the middle by shifting the
z-coordinates, this does not change the relative distance between the molecules.
We may specify the condition that the center of mass of all the particles should
not move[98], but in our simulations the length of the gas phase divided by
the thickness of the liquid layer is comparable to the liquid density divided by
the gas density, hence fluctuations in the gas density far from the interphase
may perturb the center of mass. Instead, the shifting is determined by the
requirement that there shall be an equal number of molecules in both halves
of the box, a primitive bisection search algorithm is used. Particles that are
moved outside of the z-boundaries in the centering algorithm, are inserted on the
opposite side with the opposite z-component of velocity since the drift velocities
in the two halves are opposite. This algorithm conserves momentum only on
the average.
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6.3.2 Quasi-periodic boundary conditions

In equilibrium simulations periodic boundary conditions are used, as though the
simulation box were periodically replicated. A molecule that crosses one side of
the simulation box is inserted on the opposite side with the same velocity, and
assuming that the cut-off distance for the potential is small compared to the
box size, only molecules near one boundary of the box interact with molecules
on the opposite boundary. During net evaporation there is a flow away from
the liquid, i.e. the drift velocities are opposite in the two parts of the box.
The boundary conditions for a nonequilibrium simulation have to be adjusted
compared to the completely periodic version for equilibrium, a quasi-periodic
approach is used here.

A molecule crossing boundaries with y- or z-constant can be treated as in the
equilibrium case, the position is shifted to the opposite side and the velocity is
retained. "Periodic’ interaction across the cell boundaries is also correct since the
neighboring molecules experience the same environment, macroscopic variables
such as temperature and drift velocity should on the average be equal. But
a molecule close to the boundary z-constant interacts with neighbors in the
adjacent box with opposite drift velocity. This is not correct and an error is
introduced, its effect will be discussed later. What happens to a molecule that
crosses the constant 2 boundary is the key to a successful evaporation algorithm
and this will be considered in the next chapter.

6.3.3 Evaporation algorithm

In the gas region there is a flow away from the liquid due to the net evaporation
of molecules at the interphase. The density, temperature and velocity in the
gas phase vary in the x-direction until a uniform state is reached far from the
interphase, here denoted oo.

We now look at the right half of the simulation box in Fig.4.5, the treatment
of the other half differs only in the sign of the z-component of the velocity. The
gas phase has length L where L is big enough so the fluid reaches the equilibrium
flow conditions far out in the gas phase. In evaporation, only one parameter
can be specified[2], we chose the velocity at ’infinity’. The way the velocity
is specified is to force the velocity distribution function at I to be symmetric
about U, see Fig. 6.5, as was done by Frezzotti[99] in a DSMC simulation
of evaporation. No assumption on the shape of the distribution function is
made, if the simulation domain is long enough the distribution should become
a drifting Maxwellian. The mirrored velocity about ., corresponding to c is
¢/ = 2uxX — ¢. Then for the x-component Us, — €, = ¢ — Uno, 1.€. Symmetric
about u.,. Hence we stipulate

Foo(c') =F 5 (2u0cX — ¢) = Fixo(c) (6.31)

When a molecule with velocity c, leaves the box at x = L, it is reinjected
at the boundary if ¢, < 0 with a probability |c,|/c,. The probability con-
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0.6r

0.4
rejected

F.

0.2
probability
le.l/¢,
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Figure 6.5: Boundary condition at oo

dition follows from the ratio of the differential fluxes for molecules entering,
el noo Foo(€'), and leaving the box, ¢;Ne Foo(C),

[l oo Foo (¢) _ || (6.32)
CaNoo Foo(C) Cy

since Fyo(c') = Fix(c). Hence only a fraction |¢}| /¢, of the molecules with
mirrored velocity ¢,, < 0 should be reinjected. The temperature and hence
Mach number is a result of the computation.

3

WAGI W

v

Figure 6.6: Insertion of a molecule in the liquid. The molecular diameter is not
drawn to scale, the molecules actually have large overlaps

The molecules that are not allowed to reenter the gas domain are inserted in
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the liquid to maintain a steady evaporation flux. Just inserting the molecule at
a random position in the middle of the liquid should not be attempted since that
may cause large overlaps of the repulsive cores giving unphysically large repulsive
forces that can cause numerical failure of the finite-difference algorithm. Instead
we locate a small hole nearby the randomly chosen position and try to expand it
in a controlled way. The algorithm works as follows : Pick the molecule nearest
the random position chosen, here denoted molecule 1. Its closest neighbor is
denoted molecule 2. A molecule 3 is chosen among the other successively nearest
neighbors of molecule 1 so that the angle v between the vectors ro—r; and r3—ry
is between 30 and 90 degrees. The molecule removed from the gas is inserted in
the middle of the triangle given by the center of the nodes, (r;+rs+rsz)/3. This
procedure is shown in Fig.6.6. The algorithm ensures that there are no molecules
closer to the inserted molecule than those in the triangle. Assuming a nearest
neighbor distance of r¢, the distances between the inserted molecule and the
molecules at the nodes of the triangle are approximately 0.6 r¢. The forces are
strongly repulsive and the inserted molecule creates a larger hole by itself. To
avoid unphysically large velocities, the speeds of the inserted molecule and the
3 molecules in the triangle are rescaled for some timesteps after the insertion,
the direction is maintained, but the speed is cut at 3 equilibrium standard
deviations. The velocities are rescaled for so many timesteps it takes a molecule
with the rescaled velocity to move 0.4rg. After the procedure, the distances
between the inserted molecule and the nearest neighbors are approximately rg.
The excess kinetic energy is removed by the thermostat.

The simulation is started with the molecules in a lattice, or in an old con-
figuration for a different state if it is available. In our simulation the number of
molecules and the average density are specified. If a lattice is used, an auxiliary
high temperature thermostat in the ’gas end’ of the box is used in the beginning
together with the thermostat in the liquid to set up a two-phase system. To
speed up the formation of an initial liquid layer, all molecules in the simulation
box can be thermostatted with a staircase temperature profile. Afterwards the
temperature in the gas is decreased until it has the same temperature as the lig-
uid thermostat. Then the evaporation algorithm described above is activated.
The system needs considerable time to relax to the steady state. As a rule
of thumb, a start-up period of 10 times the time it takes for a soundwave to
travel through the gas phase is not included in the sampling of the macroscopic
quantities.

If Mo > 0.4, the gas can be so rarefied that the average density including the
liquid is comparable with the gas saturation density at the liquid temperature.
To avoid that the liquid film disappears when the temperature of the auxiliary
thermostat is lowered, the average density is set larger in the beginning and
gradually lowered to the desired value as the evaporation algorithm is activated.

Two trial simulations were performed to test the algorithm. With ug, .., =
0.025 the set velocity was reached, see Fig.6.7, but in Fig.6.8 the velocity un-
dershoots 4% of the set value for u%, ., = 0.2.

This may be due to the fact that the interactions are not represented cor-
rectly at the constant x boundary: there is an interaction between molecules
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Figure 6.7: Macroscopic velocity, ug, ., = 0.025

with opposite drift velocity. The forces are not ’periodic’ in the z-direction
but this feature was retained from the equilibrium implementation because it
makes the programming easier. Of course an infinite box can not be simulated.
An alternative way would be to completely remove the periodic force in the -
direction, as though there were no molecules outside the vertical boundary, but
that would introduce an error of the same order, as was also evident in a test
simulation. How to achieve the set velocity was not resolved. But quasiperi-
odic boundary conditions give profiles that are stationary and flat far from the
interphase as they should be. Hence, the solutions should be valid for the new
velocity that deviates slightly from the set value, and this approach is used in
all calculations henceforth.

6.4 Tabulated results

We have performed 20 molecular dynamics simulations of net evaporation, cover-
ing Mach numbers from 0.025 to near sonic conditions. The number of molecules
varied from 4680 for simulation with low Mach numbers to 10800 for high Mach
numbers. The time interval of sampling after steady state has been reached, is
typically £* = 30000. The target temperature of the thermostat in the liquid
was Tl’;q = 0.65 in all simulations. But strong heating due to molecule inser-
tions made the temperature in the liquid slightly higher than 7j;;. The liquid
temperature 77 used in gas-kinetic calculations and here associated with the
temperature at the liquid boundary in MD, varies between 0.642 and 0.649 in
the simulations. The reference mean free path \; is only a function of the liquid
temperature and varies slightly around 7.87g.
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Figure 6.8: Macroscopic velocity, ug, o, = 0.2

In Fig. 6.9, Two/TrL, which according to gas-kinetic calculations is indepen-
dent of o, has been plotted as a function of M,,. The MD values have been
compared with a numerical solution of the BKW equation[100], DSMC solution
of the Boltzmann equation for hard spheres[99], and Anisimov’s and Ytrehus’
moment solution. The experimental values are for sublimation of iodine, the
values have been taken from a plot in an article[88] and are only approximate.
It is seen that the MD values for LTf correspond nicely with the gas-kinetic
calculations.

MOO J/JS Too/TL To/TL noo/ns no/ns /\;O
0.097 024 097 0.96 0.81 0.85 9.3

020 042 092 0.92 0.69 0.74 11

030 054 088 0.89 0.60 0.67 12.5
041 061 0.84 0.87 0.52 0.61 14.7
052 065 0381 0.85 0.45 0.57 16.3
0.62 069 0.77 0.84 0.40 0.54 17.6
073 070 0.74 0.82 0.36 0.54 19.1
078 072 0.72 0.83 0.34 0.53 19.1
083 072 071 0.82 0.33 9.53 20.3
091 070 0.68 0.82 0.30 0.53 22.9
094 071 0.67 0.82 0.29 0.53 234

Table 6.1: Simulation results for net evaporation

Various characteristics of the simulations have been summarized in Tables
6.1 and 6.2. The width of the Knudsen layer is denoted xgx. Formally the
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Figure 6.9: Temperature ratio versus Mach number. The simulated val-
ues from molecular dynamics are compared with numerical solution of the
BKW equation[100], DSMC solution of the Boltzmann equation for hard
spheres[99], Ytrehus’ moment solution[16] and experimental values for subli-
mation of iodine[88].

Knudsen layer ends at the point where the flow has reached local equilibrium.
A more practical criterion is used instead, xk is here defined as the position
where the difference between the parallel temperature 7} and the normal tem-
perature 7', given by Eq.(3.28) is less than 1%. As expected, the width of
the Knudsen layer increases with the Mach number. 2§, is the position where
u(r) = 0.99uq,. o is the length of the gas phase and the position where the
boundary conditions are applied. 6o, = n;ol/ ® is the mean molecular spacing.
deyy is the effective molecular diameter and 6o /deyy is a measure of deviation
from ideal gas, Bird[23] uses 6o /desy > 7 as limit for dilute gas, this is never
fulfilled in our simulations. The thickness of the interphase was approximately
5.5r¢ in all simulations. The compression factor Z.,, = Fl% varied from 0.9
for low M, to 0.92 for close to critical conditions, hence the correction due to
attractive interaction dominates over the repulsive interaction.
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Moo -'L'K/)\s .’L'gg/)\s -'L'oo/)\s 5:0 6oo/deff

0.097 0.6 4.7 35 4.3 3.1
020 23 3.8 34 4.6 3.3
0.30 3.7 3.5 37 4.8 34
041 50 7.3 36 51 3.6
052 13 10 40 54 3.7
0.62 15 17 74 55 3.8
073 16 19 113 56 3.9
078 17 30 121 5.7 3.9
083 24 45 119 58 3.9
091 24 72 144 6 4.1
094 22 69 146 6.1 4.1

Table 6.2: Simulation results for evaporation, continued

6.5 Knudsen layer

In strong evaporation, there is a Knudsen layer where 7]; and 7' are differing
significantly, see Fig.6.10. The same thickness Az = 0.3r¢ of the sampling
intervals has been used both in the liquid and in the gas, the thickness has been
determined by the requirement that the interphase shall be resolved.

As noted by Yen[86] and implicit in works of Mager[88] and Frezzotti[99] and
also seen in Fig. 6.9, for the one-dimensional evaporation problem, properties
like the density ratio, pressure ratio and mass flux do not depend much upon the
type of kinetic equation, i.e. Boltzmann or BKW, or intermolecular potential
used, for identical condensation coefficient. But the relaxation rate towards
the uniform state at infinity is not the same for the Boltzmann and BKW
solutions,[86].

Let us assume for the moment that the evaporation and condensation coeffi-
cients are equal, and denote the common value by 0. Fig. 6.11 shows a compar-
ison for M., = 0.78 between the MD simulation for LJ-spline molecules and the
Ytrehus’ moment solution of the Boltzmann equation[16] for Maxwell molecules,
for two different values of 0. For the MD plot, A, is given by Eq.(3.23), as usual.
The MD simulation and the moment solutions look rather similar, except for
the parallel temperature at the smaller x/\;-values.

From the 7| plot it may look as though the gas boundary in the MD simula-
tion has been put too far from the interphase. But if the gas boundary is shifted
closer to the liquid, T‘]‘W D will actually increase. This is shown in Fig.6.12 which
is a plot of 7]| in the interphase and in the Knudsen layer. The drop in 7] is
much larger for the moment solution with Maxwell molecules than for the MD
simulation with LJ-spline potential. For a DSMC simulation of hard spheres

the discrepancy is still there, but only half as big.
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Figure 6.10: Plot of the temperatures for My, = 0.78

6.6 Boundary condition at the interphase

The Boltzmann equation can only describe the behavior in the gas phase. In
gas-kinetics, the dynamics in the interphase is replaced by a boundary condition
at the gas boundary. Here we will use molecular dynamics to determine this
boundary condition and compare it with existing models.

6.6.1 Condensation coefficients

There are several ways to calculate the condensation coefficient, any relation
given by the moment solution can be compared with molecular dynamics sim-
ulations. We will first make the common assumption that the evaporation and
condensation coeflicients are equal. The distribution function Eq.(2.4) reduces
to

[T =nTF* =[ons + (1 — 0)ny] Fi (6.33)

where the number density is given by

2nT =ong + (1 —o)ny (6.34)

The factor 2 comes from different normalization of F* and F,, F'T is normalized
to 1 on ¢, > 0 whereas F) is normalized on —oc0 < ¢, < c0. A 'microscopic’
condensation coefficient can be defined from the number density as
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Figure 6.11: Knudsen layer in strong evaporation, My, = 0.78. The solid line
is a molecular dynamics simulation, and the dashed lines are moment solutions
for c =0.7 and 0 = 1.

Ny — Ns

Py (6.35)

Omicro =

In our simulations, n™ is calculated in a small control volume of thickness /6 ~
As/45.

A "macroscopic’ relation involving o can also be used to define an effective
coefficient. The 0 = 1 case has been extensively studied by moment and DSMC
solutions of the Boltzmann equation. For ¢, = 0, = o, the transformation of
the density, Eq.(6.11) simplifies to

Ng Ny l-0o Too
= (noo)(,:l +— 2(/my/ T Seo (6.36)

Here (ﬁ:) is a function of S, only, and ¢ can then be determined from a

o=1
given value of = from MD. We therefore define a 'macroscopic’ condensation
o0
coefficient as
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Figure 6.12: Parallel temperature calculated by different methods, M., = 0.78.

2/ S0y | L2
T - (6.37)
;_g)ml + e+ 20/ [ 72

Both Egs.(6.35) and (6.37) are indeterminate at equilibrium. But the value of
o at equilibrium is of no interest, any value may be used, cancellation occurs
and Eq.(6.33) collapses to f™ = n, Fj.

Omacro = (

Moo oJ Omacro _ Omicro O¢ Oc

0 - - - 0.67 0.67
0.097 0.73 0.78 0.69 0.71 0.60
020 0.80 0.86 0.76 0.74 0.61
030 0.83 0.88 0.77 0.76 0.60
041 0.84 0.88 0.75 0.78 0.60
052 0.83 0.86 0.75 0.78 0.57
062 0.84 0.88 0.75 079 0.54
073 085 0.87 0.76 0.79 0.53
078 0.85 0.89 0.75 0.80 0.51
083 0.86 0.89 0.75 0.80 0.483
091 0.84 0.88 0.76 0.79 0.50
094 085 0.88 0.76 0.80 0.50

Table 6.3: Coefficients calculated from various definitions

The condensation coefficient appears as a parameter in many other expres-
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sions, for instance T(0)/Tr, and n(0)/ns. In practical applications the evapo-
ration mass flux is important, hence a condensation coefficient defined to give
the correct mass flux is useful. The number flux is given by Eq.(6.14), and a
’condensation’ coefficient denoted o; can be defined to fit the flux. Here we
have used values for N, Too and B from the moment solution. In Table (6.3),
simulated values for o, according to the various definitions, have been listed.
The coefficients 07, Omacro and Opmicro are essentially constant for M., > 0.2.
For low Mach numbers and ¢ > 0.4, the mass flux is not much dependent upon
the actual value of o, as can be seen in Fig. 6.1, hence the value of o; for
Moo < 0.1 is difficult to calculate accurately. ¢ miero has nominator and denom-
inator that follow from substraction of two nearly equal numbers and it is very
difficult to calculate 0,;ero accurately for small Mach numbers.

FEach method gives a slightly different ¢ and the theory can not be exact
at this point. For high Mach numbers the evaporation mode dominates. Since
Omicro defined from the density is lower than o; defined from the mass flux,
one explanation may be that there is a drift velocity in the evaporation mode.
But first we will check if o, = 0, is a good assumption. In Table 6.3, values for
0. and o, calculated from the definitions in terms of fluxes,

€

- § (6.38)
C

oy = jT (6.39)

have been listed. The evaporation and condensation coefficients are not equal,
the evaporation coefficient increases with My, and the condensation coefficient
decreases with M, for net evaporation.

The evaporation and condensation coefficients can also be calculated from
the number density. Looking at the boundary condition, Eq.(2.4), we see that
2n° = 0ens and 2n” = (1 — 0,)n;. The factor 2 comes from different normal-
ization of F'® and F", and Fj, as already remarked. The coefficients calculated
from the flux and the number density turn out not to be equal. The number
density evaporation coefficient is almost constant, 2n¢/n, = 2x, =~ 0.66, x, is
listed in Table 6.5(chapter 6.6.3). The number density condensation coefficient
equals 1 — 2n" /n; = 1 — 2x, which varies with My, X, is listed in Table 6.5.
Hence the boundary condition as it is written in Eq.(2.4), and repeated for equal
evaporation and condensation coeflicients in Eq.(6.33), can not be correct and
this is a further motivation for calculating the detailed distribution function at
the interphase.

6.6.2 Calculation of the distribution function at the inter-
phase

It is easy to sample the differential flux ¢™(c,) of molecules leaving the inter-
phase and entering the gas region. ¢ can furthermore be split into fluxes for
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Figure 6.13: Differential flux at the gas boundary for My, = 0.78.

evaporation and reflection. The distribution function is related to the differen-
tial flux by

[T (e) = ¢ (ca)/Ca (6.40)

But division by ¢, amplifies errors in the flux for small values of ¢, hence
this method for calculating the distribution function was not used. Instead
evaporating and reflecting molecules are tagged as they leave the interphase
and their velocities are sampled in a thin control volume of width r¢/6 = \s/45
at the gas boundary. In Fig.6.13 it is shown that this algorithm works, the
differential flux calculated from the distribution function, gb}", is compared with

the differential flux ¢ calculated directly, for M., = 0.78.

In Fig. 6.14 the velocity probability distribution F*(¢;) for molecules cross-
ing from the interphase into the gas is plotted for M., = 0.78. F'* is normal-
ized to 1 for ¢; > 0. Then nT in the total distribution function f* = ntF+
is the physical density of particles crossing the gas boundary. Contrary to the
usual assumption in gas-kinetic boundary conditions, there is a drift velocity
in F*(c;) that can not be neglected, it is comparable to the drift velocity at
the gas boundary, u(0). The distribution looks like a Maxwellian, but is not
completely symmetric about the maximum. However it is tempting to try to fit
a Maxwellian. The natural logarithm of a Maxwellian is a second order poly-
nomial. Using the least squares principle, effective values of temperature and
drift velocity can be found, but the In function makes the lower values of the
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F*

Figure 6.14: Distribution function for molecules crossing into the gas, My, =
0.78.

distribution function for higher velocities count more than the more important
higher values at lower velocities, and the interval of least squares regression is
cut arbitrarily at ¢; = 1.7. This Maxwellian is denoted F}, in Fig.6.14. In
Table 6.4 some values for the effective temperature T‘T and drift velocity u™

in F'*(c,) have been tabulated. The u™ and T‘T values are only meant as an

illustration. F'* is not Maxwellian, but the values for u™ and T‘T give a fair
overall fit.

In Fig. 6.15 the distribution for the ¢,-component for molecules entering the
gas is compared with Maxwellians with temperatures Ty, and Ty, where T is the
temperature at the gas boundary, for My, = 0.78. The distribution looks very
much like a Maxwellian, and an effective temperature Ti' is calculated from
F*(cy). It looks as though Ti' corresponds to the local temperature somewhere
in the interphase. This is also the case for other Mach numbers, see Table 6.4.

The normalized distribution function for the ¢;-component of the incoming
molecules has been plotted in Fig. 6.16 for M, = 0.3 and M., = 0.78 along with
the Maxwellians given by least squares regression. The effective velocity «~ and
temperature TH_ are listed in Table 6.4. The drift velocity v~ in the Maxwellian
increases with M., hence the distribution for M., = 0.78 is more shifted to the
right and has relatively more molecules with small incoming c,-velocity than
the M., = 0.3 distribution. The distribution function for the ¢,-component of
the incoming molecules is well described by a Maxwellian, some values for the
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Figure 6.15: Distribution function at the interphase for the normal component
of velocity

temperature 7' is listed in Table 6.4.

Mo TF/Ty TF)T, —==— e T /TL T /T, e
0.25 0.86 0.95 0.17 0.19 0.91 0.93 0.22
0.41 0.84 0.94 0.21 0.28 0.86 0.90 0.39
0.73 0.75 0.93 0.30 0.37 0.70 0.83 0.43
0.83 0.71 0.93 0.35 0.38 0.73 0.84 0.50

Table 6.4: Effective temperatures and velocities for interphase distributions

There is no evidence of a discontinuity at ¢, = 0 in F(c,) for low Mach num-
bers, but that should not be expected either, since we have effectively averaged
the distribution function over a small interval. For M., > 0.75 the results are
inconclusive, a discontinuity shows in some plots.

To explain the deviation from the standard boundary condition in kinetic
theory, it is tempting to use a "mean free path” argument. It is assumed that
the molecules, on the average, bring with them the local drift velocity and
temperature a mean free path away. Fig.6.17 shows the drift velocity in the
interphase region, and Fig.6.10 shows the various temperatures. In the standard
boundary condition it is implicit that an evaporating molecule does not collide
in the interphase, but this is not a very realistic assumption. In the middle of
the interphase the average distance between the molecules is just 1.38 ro. Hence
it is probable that both an evaporating and a reflecting molecule collide for the
last time somewhere in the interphase before they cross the gas boundary. If
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Figure 6.16: Distribution function for incoming molecules.

the mean free path argument is taken literally, the drift velocity as well as the
parallel and normal temperatures of F'*(c) should correspond to values in the
interphase. At the edge of the interphase 7] is smaller than T, 1" is between
Ty, and Ty, and u is between 0 and ug, which is consistent with the values for
T‘T, TI and u™.

6.6.3 Evaporation and condensation distribution functions

Evaporating and reflecting molecules are tagged. In Fig.6.18 the velocity prob-
ability distribution for the evaporated molecules for the component of velocity
parallel to the drift velocity, F*©(c,), is plotted for various My, together with an
average over all simulations. The distributions are normalized to 1 for ¢, > O.
The plots are very similar, it looks like the normalized distribution for evapo-
ration is independent of M.,. Contrary to the assumption in most gas-kinetic
calculations, F'¢ has a drift velocity away from the interphase. The average is
not symmetric about the peak and a drifting Maxwellian gives a rather poor fit.

Fig.6.19 shows the probability distribution for the component of velocity
parallel to the drift velocity for the reflected molecules, F"(c,) is plotted for
various M, along with the average over all simulations. All distributions are
normalized to 1 on ¢; > 0. The plots are again similar, the normalized distri-
bution for reflection is rather independent of M., except for very small c;, but
that is not so important since it is the flux ¢, f" that is used in implementation
of the boundary condition. The average looks similar to a Maxwellian with a
drift velocity towards the interphase, but least squares regression with a drifting
Maxwellian gives a poor fit. This is not unexpected: if F'® and F" really are
independent of M., then they should not be Maxwellians since the sum of two
Maxwellians with different drift velocity can not give a Maxwellian with zero
drift velocity in equilibrium.

The shape of F" in Fig. 6.19 shows that reflecting molecules are not ’ther-
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Figure 6.17: Drift velocity in the interphase region.

malized’ in the interphase before they are reflected. The form of F" is similar
to what would be expected for high Mach numbers if reflection were specular
for evaporation, but F" has the same shape also for condensation, see Fig. 7.10
on page 100. Besides, reflection can neither be specular nor diffuse or a combi-
nation in equilibrium, since it would imply in all cases a Maxwellian with zero
drift velocity for the reflection mode, contrary to our results. Tsuruta[93] has
also reported similar shifts for the differential flux ® ~ ¢, F' for evaporation and
condensation.

We have also calculated the evaporation and condensation velocity distribu-
tions when the gas and liquid boundaries have been moved arbitrarily a couple
of 0’s. The general shape of shifted evaporation and condensation distributions
was always observed.

Moo Xe n"/ns X,

0.097 0.29 0.17 0.22
0.20 032 0.13 0.24
0.30 0.33 0.10 0.27
0.41 0.34 0.08 0.28
0.52 0.34 0.07 0.29
0.62 0.34 0.06 0.32
0.73 0.34 0.06 0.33
0.78 0.34 0.06 0.33
0.83 0.33 0.06 0.36
0.90 0.34 0.06 0.35
094 0.34 0.06 0.36

Table 6.5: Evaporation and reflection mode densities
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Figure 6.18: Evaporation mode for various Mach numbers.

Number densities for the evaporated and reflected molecules can be calcu-
lated, nT = n° 4+ 7", i.e. the density of the molecules escaping from the inter-
phase. The probability distributions in Figs. 6.14, 6.18 and 6.19 are related
by

fT=nT"Ft=n°F°+n"F" (6.41)

It is convenient to tabulate n° in terms of n, and a dimensionless constant X,
defined as

ne
= — 6.42
Xe =11 (6.42)
n" is proportional to the reflected flux, and hence a reference density for the
reflection mode that scales as J” ought to be used. That quantity is not avail-

able and n; = J~/ RT?TL is used instead. If the condensation coefficient were

constant, then J" would be proportional to J~. This is not the case, and the
derived quantity

. [RTy
Xp=—="mn _—

" S (6.43)

will depend upon My,. 1" /n; is also tabulated since it indicates the diminishing
influence of reflected molecules for high Mach numbers. The factor x, = n®/n; is
almost independent of M., hence the complete evaporation distribution func-
tion f¢ = x_nsF*° can be regarded to be constant, independent of the Mach
number. It is only the dependence of X, on M, that makes f* depend on M.
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Figure 6.19: Reflection mode for various Mach numbers.

6.6.4 Interpretation of the evaporation and reflection modes
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Figure 6.20: Mean force on the molecules

The shift in f* can be ’explained’ from the fact that the evaporation mode
dominates over the reflection mode in evaporation, n® is much larger than n".
The shifts in the evaporation and reflection distributions are harder to under-
stand quantitatively, but they may be related to collisional effects in the in-
terphase region, as already suggested at the end of section 6.6.2. It is obvious
that the assumed form for the evaporation mode used in most gas-kinetic cal-
culations, nondrifting half Maxwellian with the liquid temperature, can not be
correct. Then the interaction the molecules experience while passing through the
interphase is completely neglected. The molecules in the interphase experience
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a mean force towards the liquid, due to the collective effect of increasing number
of molecules towards the liquid side, see Fig. 6.20. A molecule that evaporates
has to cross a potential barrier. Assume for the moment that there is no noise in
the mean force, which corresponds roughly to the fact that there are no repulsive
collisions, only the smooth longer range attraction. The molecules that cross
the liquid boundary into the interphase have approximately a half Maxwellian
distribution for the velocity normal to the interphase. Only those molecules that
have a c¢,-velocity such that the kinetic energy contribution from ¢,, 1/ 2mc§,
is larger that the potential difference, can cross the interphase and evaporate.
The distribution for evaporated molecules is then the rescaled right tail of a
Maxwellian with drift velocity towards the interphase. But we now argue that
collisions in the interphase lead to a depletion of small velocities and hence the
distribution looks more like a Maxwellian with a drift velocity away from the
interphase. Fast molecules are less likely than slow molecules to be scattered
significantly, this can be measured by the velocity dependent viscosity or mo-
mentum cross sections which are roughly equal to the classical cross section
mr2/rg for small relative velocities ¢g* << 1, but smaller than mrd/r§ = 7 for
g* >> 1. 1o is the relative distance where the potential changes from negative
to a positive value. A molecule that has diffused out into the interphase where
the density is lower, may escape into the gas if it has kinetic energy greater
than the remaining potential barrier. The last obstacle is collisions with other
molecules at the edge of the interphase. A slow molecule experiences attractive
forces for a longer time during an encounter with an other molecule than a fast
one, hence the slow molecule can be drawn so close to the colliding partner that
they repulse each other, i.e. they have a large cross section. A fast molecule is
less likely to experience a head-on collision at the edge of the interphase and it
will retain a greater share of its original kinetic energy after the binding energy
has been subtracted. Hence the peak of the distribution function for evaporated
molecules is shifted towards higher velocities.

The shape of the reflection distribution may be explained in a similar way.
Fast gas molecules entering the interphase have smaller cross sections and are
more likely to penetrate far into the interphase, where the density is higher,
before undergoing the first "head on’ repulsive interaction. Since the density is
higher, it is likely that the incoming molecule will scatter several times and lose
its kinetic energy. This is consistent with the condensation probability being
larger for molecules with large velocity normal to the interphase, see the conden-
sation probability o.(¢c;) in Fig. 6.22. An incoming molecule with small velocity
is more likely to collide with a molecule at the edge of the interphase that also
has small velocity. They will attract each other and then scatter significantly
due to the repulsive short range force. One or a few such collisions may reflect
the incoming molecule out of the interphase and the molecule has on the aver-
age not gained more kinetic energy and hence most reflected molecules have low
velocity and the reflection distribution function looks more like a Maxwellian
with drift velocity towards the interphase.

If this interpretation was correct, the majority of the molecules should be
reflected at the edge of the interphase. That is not completely true. Fig.6.21
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Figure 6.21: Frequency plot of the innermost position in the interphase of re-
flected molecules

shows a typical frequency plot of the innermost position in the interphase of
molecules that are reflected. Although the highest probability is that a molecule
is reflected just inside the interphase, half of the molecules penetrate further
inside before they are reflected back into the gas.

6.6.5 Condensation probability and velocity dependent co-
efficients

It has been shown by Tsuruta[93] that the condensation probability is velocity
dependent, contrary to the usual assumption in gas-kinetic calculations. The
higher the velocity normal to the interphase is, the higher is the probability
for condensation, which is a reasonable result. In gas-kinetic calculations the
condensation probability is assumed to be a constant, equal to the condensation
coefficient.

If 0. and o, are defined from the conventional boundary condition, Eq.(2.4),
in terms of non-drifting Maxwellians, the coefficients will be velocity dependent.

fe(e) = n°F°=o0c(cz)nsFi(c) (6.44)
file) = n'F" =1 - o0,(cs)|nuFi(c) (6.45)

The redefined coeflicients take into account the deviation from a Maxwellian
with no drift velocity for the cz-probability distributions and give the correct
number density. The c,- and c,-distributions are not affected, they are the
standard Maxwellian distribution with temperature 77,. This is only an ap-
proximation, as can be seen from Table 6.4, TI is 5-10% lower than Ty,. The
reference density n, has not been specified but it should be equal to n, in
equilibrium.

We have used the term ’reflection’ coefficient since it is not immediately
apparent that the reflection coefficient in general is equal to the condensation
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probability, i.e. velocity dependent condensation coefficient. However, in equi-
librium

T =loe(ca)ns(Tr) + (1 — or(cz)) ny) Fs = ng Fy (6.46)

and n, = ng, hence o.(c;) = 0,(¢;). In equilibrium the evaporation and
condensation fluxes are equal.

/ CpOe(Cyp)ns Fydey, = / oc(les]) |ca|m™ F~ dey (6.47)

ce >0 Ce <0
Also ngFs =n~ F~, and 0.(¢;) = 0e(¢z) = 0r(¢z) in equilibrium. The surpris-
ing result of non-Maxwellian distribution functions for evaporation and conden-

sation is equivalent to a velocity dependent condensation probability, which is
plausible.

o7 04,

204 5 (c,)

o 02 04 06 08 _ 1 12 14 16

Figure 6.22: Velocity dependent coefficients for the case of My, = 0.78.

It is sometimes claimed that o.(c;) = 0(c;) also in nonequilibrium(101],[102],
but to the best of our knowledge a proof is still lacking. Our simulations indi-
cate that the velocity dependent coefficients are not equal outside equilibrium.
In Fig. 6.22, 0.(c;) and 0.(c;) have been plotted for M., = 0.78.

The condensation and evaporation coefficients listed in Table 6.3 should be
interpreted as the average condensation probability and the average evaporation
coefficient.
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I oclleallea| f~de

— ce <0
= 6.48
7 f 2| f~dc ( )
e <0
[ ocles)es fsde
— ce >0
= = 6.49
e [ cafsde (6.49)
Ce >0

6.6.6 Representation of the boundary condition

Our simulations indicate that there is no simple representation of the distri-
bution function just outside of the interphase. The evaporation distribution
fe(cy) = n°F*° and the normalized reflection distribution F"(c,) are roughly
independent of M,,. They are probably dependent upon the liquid tempera-
ture and the type of substance, but this has not been checked. F*(c,) is a
Maxwellian with a temperature slightly less than 77, but the deviation will
be neglected. The best representation of the boundary condition outside the
interphase seems to be

7 (c) nTFY & [n°F(c,) + 0" F"(¢,)] Far(ey, ¢, T1,)

[XeneFe + XrniFr] Fy (cya Cyz, TL) (6-50)

where Y, is independent of M,,. Values for x, and X, are given in Table 6.5 for
the Lennard-Jones-spline potential. The ’base functions’ I’ and F" must also
be parameterized.

An alternative way is suggested by Figs.6.14 and 6.15. The distribution
function may be approximated with

f+ = n+F+ = [nsamicro + (1 - Umicro)ni] FM(cwa u+aﬂT)FM(cya Cyz, TL)
(6.51)

Some values for ut and T‘T are given Table 6.4.

6.7 Conclusion

The evaporation algorithm presented makes it possible to do molecular dynamics
simulations for net evaporation for arbitrary Mach number below 1. It is then
feasible to do comparisons between molecular dynamics simulations and results
from gas-kinetic calculations, and in addition verify if the conventional boundary
condition used in most gas-kinetic calculations is accurate.

The simulated temperature ratio 7o, /77, as a function of the Mach number
agrees very well with gas-kinetic calculations. Contrary to a common approx-
imation, the average condensation and evaporation coefficients found are not
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equal outside equilibrium, the condensation coefficient decreases with increas-
ing Mach number, the evaporation coefficient increases with increasing Mach
number. A significant drift velocity shows in f*(c,) that can not be neglected,
it is comparable to the drift velocity at the gas boundary. The evaporation and
reflection distribution functions deviate from the conventional representation as
nondrifting half-Maxwellians, the evaporation mode has a drift velocity away
from the interphase, and the reflection mode has a drift velocity towards the in-
terphase. However, the evaporation and reflection velocity probability functions
appear to be independent of the Mach number.

If the observed form of the distribution function f* can be extrapolated to
weak conditions, the gas-kinetic prediction for an inverted temperature profile
in chapter 4, based upon nondrifting Maxwellians, may not be correct.

Acknowledgement 2 Financial support from the Norwegian Council of Re-
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Chapter 7

Strong Condensation

7.1 Introduction

The case of net condensation of a vapor on a liquid surface is of equal impor-
tance as is evaporation, and the gas-kinetic formulations of the two problems
have been developed more or less in parallel over the last three decades. The
nonlinear case of strong condensation was considered in various moment solu-
tions by Labuntsov & Kryukov[96], Hatakeyama & Oguchi[97] and Ytrehus and
Alvestad[17]. Sone et al. [87] and Aoki et al.[21] used numerical solutions of the
BKW equation and Kogan and Abramov|[68] used DSMC to find the existence
region for steady condensation in a half-space. If the condensation coefficient
is less than approximately 0.97, subsonic condensation solutions do not exist
above a critical Mach number, this is the so-called blocking effect[68],[24].

The interphase between the gas and its condensed phase is typically a cou-
ple of molecular diameters wide, and molecular dynamics (MD) simulation[37]
is hence ideally suited. Tsuruta[93] used molecular dynamics to simulate sta-
tionary evaporation and condensation between two liquid slabs kept at differ-
ent temperatures. Hafskjold[98] simulated condensation on a liquid film with
molecules inserted in a 'molecule reservoir’ a couple of mean free paths from the
interphase to maintain steady condensation flux.

Here only condensation of a gas in an infinite half-space will be considered.
At asymptotically large distances from the interphase the flow parameters reach
uniform values. The Boltzmann equation (2.1) together with Eq.(2.4) at the in-
terphase and a drifting Maxwellian at infinity, 7eoFi(Too,steo), as boundary
conditions, has been solved by a variety of methods. From numerical simulation
of the BKW and Boltzmann equations for ¢ = 1 it has been inferred that two
parameters in steady condensation can be held fixed, for instance the tempera-
ture ratio between the gas and the liquid, and the pressure ratio or the velocity

at infinity[21],[67], [68].

85
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7.2 Effect of nonunity condensation coefficient

For 0¢,0. # 1 and diffuse reflection, values for ;= can be found from an equiv-
alent 0 = 1 solution. For evaporation this was shown from the moment solution
but it results from a general transformation[89],[90], [24]. This is seen from the
boundary condition, Eq.(2.4). The 0.,0. # 1 and 0 = 1 solutions are identical
if the saturation density nJ=1 of the latter is given by

2w
RTYy,

7=l = gong + (I1—o0)ny=0ens + (1 —0.)J”

n (7.1)

The solutions are identical in all respects, except for quantities depending upon
ng, which is different in the two cases. The number flux at the interphase is

J = / cofTde+ / cef dc (7.2)
ce >0 Ce <0
The first integral can be evaluated from the assumed form of the boundary

distribution function, Eq. (2.4), the second we denote by J~. The number flux
at infinity is NecUee and

RT
ng=t 2—7TL —J7 = Noolieo (7.3)

Since J~ is the same, Eq.(7.1) simplifies to

- 2
on?=t =o.ns — (1 —0,) R; Noo oo (7.4)
L
Dividing by 1., we have
s s 1— T
s _ Ze (” ) + 2o m\ |25, (7.5)
Moo Oc \ Moo J 5—1 Oc TL

e { Mg 1—0, (10 [Ty
= —_— e _M '6
o (nw)a=1+ o V3 7, Moo (7.6)

Eq.(7.5) is identical to the transformation rule for evaporation derived directly
from a moment solution, Eq.(6.25), but for condensation the speed ratio S, =

Uog _ Uog : P
T and the Mach number M., = JEr are negative. For monatomic ideal

gases the ratio of the heat capacities v = ¢, /¢, equals 5/3 and My, = \/ésoo

Eq.(7.5) can be used in two different ways. If we stipulate that the solutions
are equal, then the equation gives the connection between n, for nonunity co-
efficients and ng=! for 0 = 1. But we can also keep ns, and for instance S
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and lﬁ“ constant and vary the coefficients, the solutions are then no longer
equivalent and n., will change. If we hold S, and T4, /T, constant and assume
that o, = 0, = 0, then the effect of the transformation is easy to predict. For
condensation, if o decreases, the effect is :

ng fixed =— n., increases

Neo fixed = n, decreases

For evaporation, if o decreases, the effect is :

ng fixed =— n. decreases

Neo fixed = n, increases

For the one-dimensional evaporation problem properties like the density ra-
tio, pressure ratio and mass flux does not depend much upon the type of kinetic
equation (Boltzmann or BKW) or intermolecular potential used as long as the
condensation coefficient is the same. But the relaxation rate towards the uni-
form state at infinity differs[86]. We will assume that the same applies for the
one dimensional condensation problem also, hence (%) = ¢(S, 7} ) can
be calculated from numerical solution of the simpler BK\?‘V_equatlon instead of
DSMC[23] solution of the Boltzmann equation.

The number flux J for condensation is given approximately by the Schrage
expression[48],[24]

J(T1, T, S00,0¢,0:) = oensw 27r — Ocloo | 27T°°E (7.7)
= Uensv O cNeo OOE+ |Soo| )

where N is given by Eq.(7.5) and

ET(Sx)
E™ (S«)

VTS0 (1 +erf Soo) + € 5% (7.9)
VTS0 (—1 +erf Soo) + ¢ 5% (7.10)

Here we have used £~ (S ) = ET(—5x), since So is negative for condensation.

There is a transformation of the number flux similar to the transformation for
number density[24]. First it is assumed that all quantities except the saturation
density are equal. From Eq.(7.4) we have

RTy, O -0, Nooloo RTL
J, = Ty )y =L = | 22 2 1/
s (T 50 5, ()o= 1+ VT TL RI
1
= L)y T (7.11)
UE e
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and

Js o. [ Js 1—-o0.

—=—1— —_— 7.12

J Oe (J)a'=1+ Oe ( )
J

(J_s) ) is a function of ;JL': or S, and %, but the dependence upon lﬁ“ is
o=

weak([24]. Tt is more interesting to keep ns and hence J; constant and see what
happens to J when the coefficients are varied for the same values of 9., and
LTf. If 0. = 0. = 0, it is easy to see that the absolute value of the number flux
for o0 < 1 is always less than for 0 = 1.

For diffuse reflection of molecules at the interphase, the Knudsen layer struc-
ture for 0 # 1 can be found from an equivalent ¢ = 1 solution with n¢="! given
by Eq.(7.1). But if A is used to make the distance nondimensional, the relax-
ation rate will depend upon o, and o, since n, and nJ=! are different. The
mean free path is related to the ideal 0 = 1 case by Eq.(6.27) derived in chapter
6, here repeated

WS S (YA PENP (7.13)
° \/ﬁnswdgff N /Moo 8

If the evaporation and condensation coefficients are equal, 0, = o, = o, for
condensation o < 1 gives a compression of the graphs in the z-direction (active
viewpoint) relative to the 0 = 1 solution, or equivalently a stretch of the z/\;-
axis (passive viewpoint). For evaporation the situation is opposite.

To test the transformation of the Knudsen layer for condensation, two DSMC

simulations are performed for the same Mach number (M, = —0.284) and
temperature fraction (7w, /17, = 1.63), but different 0. In the first simulation
o = 1 and in the second ¢ = 0.85. Then %El ~ 1.3 and the 0 = 1

solution compressed in the z-direction by a factor 1.3 overlaps the direct 0 =
0.85 simulation, see Fig. 7.1, the small discrepancy is due to statistical noise in
the DSMC simulations. All solutions related by the transformation would be
equal if they were plotted on a /Asc-scale instead of 2/As-scale.

7.3 Molecular Dynamics Simulations

7.3.1 Simulation box

As for evaporation, the simulation is conducted in a elongated box so the gas
region can be relatively long with the number of liquid molecules limited. Fig.
4.5 shows a snapshot of the configuration in an equilibrium simulation. The
ratio between the temperatures far out in the gas and in the middle of the
liquid is %TZ = 1.75 in all simulations. The ratio between length and width has
been varied from 30 for moderate Mach numbers to 80 for lowest Mach number
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1.8

6=0.85
and transformed
o = 1 solution

1.4

ol\)
[6)]
—_
o

15 20

Figure 7.1: Test of transformation, o = 0.85 compared with transformed o = 1
solution.

simulated, Moo = —0.11. The drift velocity ’compresses’ the nonuniform region
in condensation.

In the middle of the liquid the temperature is kept fixed by a thermostat. The
thermostat has been implemented by a crude method, the velocity is rescaled
to give the desired temperature. A temperature gradient keeps the liquid in the
middle of the box, but fluctuations of the center of mass of the liquid can still
be larger than the width of the interphase. Such behavior would ’smear out’
density profiles, etc., in the interphase. Therefor the liquid slab is kept in the
middle by shifting the z-coordinates, this does not change the relative distance
between the molecules. The shifting is determined by the requirement that there
shall be an equal number of molecules in both halves of the box. Molecules that
are moved outside of the z-boundaries in the centering algorithm are inserted
on the opposite side with the opposite z-component of velocity since the drift
velocities in the two halves are opposite.

7.3.2 Condensation algorithm

Two parameters in steady condensation can be fixed, here the temperature ratio
between the gas and the liquid and the velocity at infinity are chosen. In the gas
regions there is a flow towards the liquid, i.e. the drift velocities are opposite in
the two parts of the box. The density, temperature and velocity in the gas phase
varies in the z-direction until a uniform state is reached far from the interphase.
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It is the boundary conditions that sets up the condensation flow. A molecule
crossing boundaries with 4 or z constant can be treated as in the equilibrium
case, it is inserted on the opposite side with the velocity retained. 'Periodic’
interactions across y or 2 cell boundaries are also correct since the neighboring
molecules experience the same environment, macroscopic variables as temper-
ature and drift velocity should on the average be equal. But a molecule close
to the boundary z-constant interacts with neighbors in the adjacent box with
opposite drift velocity. This is not correct and an error is introduced, the effect
of this 'quasi periodic’ boundary condition will be discussed later. There is no
velocity scaling thermostat in the gas phase, the temperature there is set by
specifying the distribution for the molecules inserted.

In simulation of condensation, the liquid is used as a molecule reservoir to
replace the gas molecules that have condensed. Particles are removed from the
liquid and inserted in the gas phase to exactly cancel the net condensation flux.
The molecules must be inserted in the gas with a Maxwellian distribution with
a given temperature and velocity. The problem is then how often molecules
should be moved, since we already have fixed two parameters, the condensation
flux can not be specified.

We now look at the left half of the simulation box in Fig. 4.5 , the treatment
of the other half differs only in the sign of the z-component of the velocity. For
the left half the drift velocity ., and condensation flux are positive. The gas
phase has length L, where L is big enough so the fluid reaches the equilibrium
conditions far out in the gas phase, here denoted co. The distribution function
far from the interphase should be a drifting Maxwellian with temperature Ty,
and drift velocity tng.

1 (cw —uoo)feitel
Folc) = ———e" 2RToo (7.14)
(2rRT )2

The velocity distribution for molecules inserted at the left end of the box is
hence the corresponding normalized differential flux[23], for ¢, > 0 we have

CeFoo(Cy)
i) T oNTT) 7.15
(cz) [ caFocdcy (7.15)
¢ >0
— Cz 1 e czl_%’;m &

W=

w2
[%& + %&6_ TRl + oo erf(\/ﬁ;T*:) (27 RT)
For the right boundary, the negative of samples from ®(c,) are used. The
probability distribution for tangential components of velocities are the standard
Maxwellians. Samples from this distribution is generated by the acceptance-
rejection method[23], then ®/®™** must be calculated. The maximum value of

® is attained for a value c**
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|
cmax — %"’ + 5 V/ud FART, (7.16)

and we have

Co— oo )
P _czeXp( 2RToo +3 - 2\/W\/2RT +2+4RT)

e (% +3 VL +1RTL)

(7.17)

Since only two parameters can be specified in condensation, here chosen to
be Two /Tr, and U, the net mass flux can not be specified and is a result of the
molecular dynamics simulation. The fluxes of molecules entering and leaving
the left boundary are

Jn = / CaMoo Pt (Uoo, Tho )de (7.18)
cy >0
and
Jowt = / |2 Moo Fat (oo, Tio )de. (7.19)
Cyp <0

J™ and J°% are here defined to be positive. The molecule density at infinity,
Moo, 18 unknown, but it does not appear in the fraction J*/Jout,

I ISuel T o erf(|Seel)Seel /7 ¢ 5
= T T S+ ert (el [SeclyT + ¢ F

Here S, = \/ﬁLT:’ the speed ratio. Absolute values have been used since .y, is

(7.20)

defined positive for evaporation and negative for condensation. J"/J°% is only
a function of Ty, and .., which are specified in advance. Instantaneous values
of J°% is calculated and averaged over a short period so rapid fluctuations are
absent, in this work an averaging interval of At* = 200 was used.

The molecules crossing the vertical boundary of the box are inserted im-
mediately with new velocities drawn from the distribution ®(c). The flux of
molecules that is moved from the liquid to the gas is equal to the net flux

J = J’i’n Jout Jout( 1) (7.21)

and the same for the right part. The moves are implemented as a Poisson
process, for every step there is a probability that a molecule will be moved such
that on the average the correct flux is achieved.
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The simulation is started with the molecules in a lattice or in an old config-
uration for a different state, if it is available. In our simulation the number of
molecules and the average density are specified. If a lattice is used, an auxil-
iary high temperature, velocity rescaling thermostat in the ’gas end’ of the box
is used in the beginning together with the thermostat in the liquid to set up
a two-phase system. To speed up the formation of an initial liquid layer, all
molecules in the simulation box can be thermostatted with a staircase temper-
ature profile. Then the condensation algorithm described above is activated.
The system needs considerable time to relax to the steady state. This can be
seen for instance from the number of liquid molecules plotted as a function of
time. As a rule of thumb the start-up period is 10 times the time it takes for a
soundwave to travel through the gas phase. The start-up period is not included
when the macroscopic quantities are sampled. The box must be so long that the
gas relaxes to a uniform state, the uniform region should be at least a couple of
mean free paths.

117
T 1t
09
0.8
07

15 20 25 30

0 5 10 15 20 25 30
x/)»s

Figure 7.2: Molecular dynamics simulation of condensation

A trial simulation to test the algorithm was performed with Tl’;q = 0.6,
T% = 1.05 and |So| = 0.2. The temperature profile from the simulation and

the dimensionless drift velocity S = —p7— are shown in Fig. 7.2. A, =
w(Tp) 7— is a reference mean free path, n, is the saturation density, i.e. gas

mmng 2RTY,

density in two-phase equilibrium, and g is the viscosity for the Lennard-Jones-
spline potential. The set temperature in the gas was attained but the speed
ratio overshoots 2% the set value. This may be an effect of the fact that the
interactions are not represented correctly at the constant z boundary, there is
an interaction between molecules with opposite drift velocity. The forces are not
'periodic’ in the z-direction, but this feature was retained from the equilibrium
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Moo |J|/Js Too/Tr To/Tr  MNoo/Ts  (Moo/Ns)yy  M0/Ts  As/T0

0.11  0.32 1.73 1.15 0.68 0.73 1.06 12.6
0.17  0.54 1.72 1.23 0.77 0.82 1.11 11.1
022  0.85 1.68 1.31 0.92 0.95 1.24 9.2
0.25 1.07 1.69 1.34 1.01 1.01 1.33 9.5
0.28 1.34 1.65 1.35 1.15 1.10 1.48 8.3
0.31 1.62 1.68 1.39 1.24 1.16 1.57 9
0.35 2.08 1.66 1.45 1.46 1.27 1.76 8

Table 7.1: Simulation results for condensation

implementation because it makes the programming easier. Of course an infinite
box can not be simulated. An alternative way would be to completely remove
the periodic force in the x-direction, as though there were no molecules outside
the vertical boundary, but that would introduce an error of the same order,
as was also evident in a test simulation. How to achieve the set speed ratio
was not resolved. But quasi-periodic boundary conditions gives profiles that
are stationary and flat far from the interphase as they should be. Hence, the
solutions should be valid for the new speed ratio that deviates slightly from
the set value, and this approach is used in all calculations henceforth. For the
simulations shown in Fig. 7.2, So, = —0.204 is the achieved value. For larger
Seo, the deviation increases, for a set value |So| = 0.3 the attained speed ratio
is 5% larger than the set value.

7.4 Results

We have performed 7 molecular dynamics simulations of net condensation, cov-
ering Mach numbers from —0.11 to —0.35, for T4, /Tjq = 1.75. The ratio be-
tween length and width has been varied from 30 for moderate Mach numbers
to 80 for low Mach number, the drift velocity ’compresses’ the nonuniform re-
gion in condensation. The number of molecules varied from 2700 for simulation
with moderate Mach numbers to 8600 for the smallest Mach number simulated,
My = 0.11. We did not attempt to simulate smaller Mach numbers since a
finite large temperature difference and small drift velocity makes the nonuni-
form region very long. The time interval of sampling after steady state was
reached, was typically t* = 30000. The target temperature of the thermostat in
the liquid was Tl’;q = 0.6 in all simulations. T}, the liquid temperature used in
gas-kinetic calculations and here associated with the temperature at the liquid
boundary in MD simulations, is slightly higher and varies in simulations due to
heat conduction in the liquid and the fact that the thickness of the liquid layer
is not the same in all simulations.

Various characteristics of the simulations have been tabulated in Tables 7.1
and 7.2. 2§, is the position where u(z) = 0.99uq,. Zoo is the length of the gas

phase and the position where the boundary conditions are applied. §oo = Moo
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[Moo|  Aso/T0  @8e/Ns  Too/As  Ooo/T0  boo/deyy Zoo

0.11 23.2 35.7 67 5.5 4.3 0.99
0.17 18.1 21 37 5<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>