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Abstract

T
his thesis analyses models for two-
phase flows and methods for the nu-
merical resolution of these models. It

is therefore one contribution to the develop-
ment of reliable design tools for multiphase
applications. Such tools are needed and expec-
ted by engineers in a range of fields, including
in the oil and gas industry.

The approximate Riemann solver of Roe
has been studied. Roe schemes for three dif-
ferent two-phase flow models have been im-
plemented in the framework of a standard
numerical algorithm for the solution of hyper-
bolic conservation laws. The schemes have
been analysed by calculation of benchmark
tests from the literature, and by comparison
with each other.

A Roe scheme for the four-equation one-
pressure two-fluid model has been implemen-
ted, and a second-order extension based on
wave decomposition and flux-difference split-
ting was shown to work well and to give im-
proved results compared to the first-order
scheme. The convergence properties of the
scheme were tested on smooth and discon-
tinuous solutions.

A Roe scheme has been proposed for a
five-equation two-pressure two-fluid model
with pressure relaxation. The use of analog-
ous numerical methods for the five-equation
and four-equation models allowed for a dir-
ect comparison of a method with and without
pressure relaxation. Numerical experiments
demonstrated that the two approaches con-
verged to the same results, but that the five-
equation pressure-relaxation method was sig-
nificantly more dissipative, particularly for
contact discontinuities. Furthermore, even
though the five-equation model with instant-

aneous pressure relaxation has real eigenval-
ues, the calculations showed that it produced
oscillations for cases where the four-equation
model had complex eigenvalues.

A Roe scheme has been constructed for the
drift-flux model with general closure laws. For
the case of the Zuber–Findlay slip law describ-
ing bubbly flows, the Roe matrix is completely
analytical. Hence the present Roe scheme is
more efficient than previous fully numerical
Roe schemes for the drift-flux model.

An isentropic discrete-equation multiphase
model has been presented. The incorporation
of different interfacial-pressure models was
discussed, and examples were given. With the
adequate models for the interfacial pressure
and velocity, the agreement was very good
between the discrete-equation model and the
five-equation Roe scheme.

The flux-limiter centred (flic) scheme was
tested for the four-equation two-fluid model.
Only the first-order version (force) of the
scheme was found to work well, but it was
rather diffusive.

The purpose of the multi-stage (musta)
method is to come close to the accuracy of
upwind schemes while retaining the simpli-
city of centred schemes. Here it has been ap-
plied to the drift-flux model. As the number of
stages was increased, the results of the musta
scheme approached those of the Roe method.
The good results of the musta scheme were
dependent on the use of a large-enough local
grid. Hence, the main advantage of the musta
scheme is its simplicity.

A multiphase characteristic-based
boundary-condition method has been tested,
and it was shown to be workable for transient
problems.
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Sammendrag

F
lerfasestrømning er av betydning i en
lang rekke anvendelser, blant annet i
olje- og gassindustrien, i den kjemiske

og i prosessindustrien, inkludert i varmepum-
pende systemer, samt i sikkerhetsanalyse av
kjernekraftverk. Denne avhandlingen analyse-
rer modeller for tofasestrømning, og metoder
for numerisk løsning av disse modellene. Den
er derfor ett bidrag til å utvikle pålitelige in-
geniørverktøy for flerfase-anvendelser. Slike
verktøy trengs og forventes av ingeniører i
industrien.

Den tilnærmede Riemann-løseren framsatt
av Roe har blitt studert. Roe-skjema for tre
ulike modeller for tofasestrømning har blitt
implementert i rammen av en standard nu-
merisk algoritme for løsning av hyperbolske
bevaringslover. Disse skjemaene har blitt ana-
lysert ved hjelp av referanse-regnestykker fra
litteraturen, og ved sammenlikning med hver-
andre.

Et Roe-skjema for den fire-liknings ett-
trykks tofluid-modellen har blitt implemen-
tert, og det har blitt vist at en andreordens
utvidelse basert på bølge-dekomponering og
fluksdifferanse-splitting virker godt, og gir
forbedrede resultater sammenliknet med det
førsteordens skjemaet.

Det har blitt foreslått et Roe-skjema for
en fem-liknings totrykks tofluid-modell med
trykkrelaksering. Bruken av analoge numeris-
ke metoder for fire-liknings- og fem-liknings-
modellene gjorde det mulig med en direkte
sammenlikning av en metode med og uten
trykkrelaksering. Numeriske eksperiment de-
monstrerte at de to framgangsmåtene kon-
vergerte til samme resultat, men at den fem-

liknings trykkrelakserings-metoden var be-
tydelig mer dissipativ, særlig for kontakt-
diskontinuiteter. Videre viste beregninger at
selv om fem-liknings-modellen har reelle egen-
verdier, så produserte den oscillasjoner for
tilfeller der fire-liknings-modellen hadde kom-
plekse egenverdier.

Et Roe-skjema har blitt konstruert for
driftfluks-modellen med generelle lukningslo-
ver. Roe-matrisen er helt analytisk for det til-
fellet at man kan anvende Zuber–Findlay-slipp-
loven som beskriver boblestrømning. Dermed
er dette Roe-skjemaet mer effektivt enn tidli-
gere fullt numeriske Roe-skjema for driftfluks-
modellen.

En isentropisk diskret-nivå-flerfasemodell
har blitt presentert. En diskusjon av hvor-
dan man kan ta hensyn til ulike interfase-
trykkmodeller har blitt gitt. Med de passen-
de modellene for interfase-trykk og -fart, var
samsvaret svært godt mellom diskret-nivå-
modellen og det fem-liknings Roe-skjemaet.

Multi-steg- (musta) metoden har som sikte-
mål å komme nær oppstrøms-metodene i nøy-
aktighet, samtidig som den bevarer enkelhe-
ten til sentrerte skjema. Her har metoden blitt
brukt på driftfluks-modellen. Når antallet steg
økes, nærmer resultatene fra musta-metoden
seg det man får med Roe-metoden. De gode re-
sultatene til musta-metoden er avhengige av
at man bruker et stort nok lokalt grid. Derfor
er hovedfordelen med musta-metoden at den
er enkel, snarere enn at man sparer regnetid.

En karakteristikk-basert metode for å spe-
sifisere grensebetinglser for flerfase-modeller
har blitt testet, og funnet å virke godt for tran-
siente problem.
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Mon rêve serait de faire un travail de
longue haleine qui se corrige au cours de
sa progression, qui soit également ouvert
tant aux réactions qu’il provoque qu’aux
conjonctures qu’il croise en chemin et,
peut-être aussi, ouvert à de nouvelles
hypothèses. Ce que je souhaite, c’est un
travail dispersé et changeant.

La volonté de savoir
Michel Foucault
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There arises from a bad and unapt
formation of words a wonderful
obstruction to the mind.

Francis Bacon

Latin letters
a Acoustic impedance (ρc) . . . . . . . . . . . . . . . . . . . . kg/(m2 s)
a Interfacial area density, Sec. 2.4.1 . . . . . . . . . . . . . . . . . m2/m3

A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

A Coefficient matrix for composite variables, see (3.2), (3.34), (3.43) . –
A Control surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

A±∆Qi−1/2 Fluctuations defined by (3.54) . . . . . . . . . . . . . . . . . . . . . –
b Body-force field vector . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

B Displacement factor, see (2.107) . . . . . . . . . . . . . . . . . . . . . . –
B Coefficient matrix for primitive variables, see (3.3) . . . . . . . . . . . –
c Speed of sound, see (2.88) . . . . . . . . . . . . . . . . . . . . . . . . m/s
C Courant–Friedrichs–Lewy (cfl) number. C = ‖λ‖∞∆t/∆x . . . . . . –
C Constant in interphasic friction model, see (4.19) . . . . . . . . . . . –
C Matrix, see (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
Ci Control ‘volume’ number i . . . . . . . . . . . . . . . . . . . . . . . . . m
cv Specific heat at constant volume . . . . . . . . . . . . . . . . . . . J/kg
D Matrix, see (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
e Vector for source terms, see (3.13) . . . . . . . . . . . . . . . . . . . . . –
E Ensemble, Section 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
E Error, see (3.99) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
f Flux function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
F Momentum source, see (4.18), (7.162) . . . . . . . . . . . . . . . . N/m3

F Numerical approximation to f . . . . . . . . . . . . . . . . . . . . . . . –
F̃ High-resolution correction flux vector, see (3.57) . . . . . . . . . . . . –
F Matrix containing the fluxes, see (5.5) . . . . . . . . . . . . . . . . . . . –
F lag Matrix of Lagrangian fluxes, see (5.31) . . . . . . . . . . . . . . . . . . –
g Gravitational acceleration . . . . . . . . . . . . . . . . . . . . . . . m/s2

Hs Mean curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/m
H Right-hand side of semi-discrete formulation, Chap. 8 . . . . . . . . –

xv
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I Volumetric momentum, Ik = αkρkuk, Chap. 7 . . . . . . . kg/(m2 s)
I Unitary tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
J Transformation matrix, see (3.4) . . . . . . . . . . . . . . . . . . . . . . –
k Constant in interphasic friction model, see (4.19) . . . . . . . . . . . –
kD Differential constant, see (6.14) . . . . . . . . . . . . . . . . . . . . . . . –
kI Integral constant, see (6.14) . . . . . . . . . . . . . . . . . . . . . . . . . –
kP Proportional constant, see (6.14) . . . . . . . . . . . . . . . . . . . . . . –
K Distribution parameter in the Zuber–Findlay relation, see (7.11) . . –
lT Left eigenvector (row vector) . . . . . . . . . . . . . . . . . . . . . . . . –
L Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L Vector in boundary procedure, see (6.3) . . . . . . . . . . . . . . . . . –
m Mass, Sec. 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
m Measure, Sec. 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
m Volumetric mass, mk = αkρk, Chap. 7 . . . . . . . . . . . . . . kg/m3

mik Interfacial momentum source, Chap. 2 . . . . . . . . . . . . . . N/m3

M Number of sub-cells, Sec. 5.3.3 . . . . . . . . . . . . . . . . . . . . . . . –
M Number of stages in the musta scheme, Chap. 8 . . . . . . . . . . . . –
n Order of convergence, see (3.104) . . . . . . . . . . . . . . . . . . . . . –
n Unit normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
N Half the number of cells on the local musta grid, Chap. 8 . . . . . . –
Nint,i Number of internal interfaces in Ci . . . . . . . . . . . . . . . . . . . . –
O Order of magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
p Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
δp Local pressure variation, see (2.22) . . . . . . . . . . . . . . . . . . . . Pa
P Probability, see (5.44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
q Vector containing the composite variables, see (3.1), (3.32), (3.41),

(5.4), (7.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
Qni Numerical approximation to the cell average of q(x(i), tn) . . . . . –
rp Pressure-relaxation parameter, see (2.96) . . . . . . . . . . . . 1/(Pa s)
ru Velocity-relaxation parameter, see (2.98) . . . . . . . . . . . . Pa s/m2

r Right eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
R Matrix containing right eigenvectors as its columns . . . . . . . . . . –
s Source term in momentum equation . . . . . . . . . . . . . . (N/m3)
s Specific entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg K)
s Wave speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
s Source-term vector for composite variables, see (3.1), (3.35), (3.44) . –
S Drift velocity in the Zuber–Findlay relation, see (7.11) . . . . . . . . . –
S Matrix of non-conservative source terms, see (5.27) . . . . . . . . . . –
t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
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T Time scale or period, see (6.14) . . . . . . . . . . . . . . . . . . . . . . s
T Stress tensor, T = −pI + τ . . . . . . . . . . . . . . . . . . . . . . . . . Pa
u Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
u Velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
v Specific volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3/kg
v Vector containing the primitive variables, see (3.3), (3.11), (3.36) . . –
V Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

Vm Variable defined in (5.56) . . . . . . . . . . . . . . . . . . . . . . . . . . . –
V Control volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

w Characteristic-variable vector, see (6.6) . . . . . . . . . . . . . . . . . . –
w Parameter vector, Chap. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . –
W Wave, see (3.68) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
W̃ Limited wave, see (3.83) . . . . . . . . . . . . . . . . . . . . . . . . . . . –
x Length coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek letters
α Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
β Quantity in hyperbolicity analysis, see (3.48) . . . . . . . . . . . . . Pa
β Wave strength, see (3.66) . . . . . . . . . . . . . . . . . . . . . . . . . . . –(
β(k,l)m−1/2

)+
Variable defined in (5.57) . . . . . . . . . . . . . . . . . . . . . . . . . –(

β(k,l)m+1/2
)−

Variable defined in (5.58) . . . . . . . . . . . . . . . . . . . . . . . . . –
γ Constant in (3.103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
γ Factor in the cathare model, see (2.109) . . . . . . . . . . . . . . . . –
γ Quantity in hyperbolicity analysis, see (3.49) . . . . . . . . . . m2/s2

δ Parameter in the smoothed absolute-value function, see (3.80) . . . –
ζ Velocity derivative, see (7.18) . . . . . . . . . . . . . . . . . . . . . . . . –
η Dynamic (molecular) viscosity, Chap. 7 . . . . . . . . . . . . . . . . Pa s
η Sub-cell spatial coordinate, Sec. 5.3.3 . . . . . . . . . . . . . . . . . . . –
θ Smoothness measure, see (3.84) . . . . . . . . . . . . . . . . . . . . . . –
κ Quantity in pressure differential, see (7.31) . . . . . . . . . m5/(kg s)
λ Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
λ Vector containing eigenvalues . . . . . . . . . . . . . . . . . . . . . m/s
Λ Diagonal matrix containing eigenvalues . . . . . . . . . . . . . . . m/s
µ Realization, Sec. 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
µg Slip derivative, see (7.15) . . . . . . . . . . . . . . . . . . . . . m4/(kg s)
µ` Slip derivative, see (7.16) . . . . . . . . . . . . . . . . . . . . . m4/(kg s)
µv Slip derivative, see (7.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . –
ξ Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
ξl Interface number l, see Figure 5.1 . . . . . . . . . . . . . . . . . . . . . –
ρ (Mass) density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3
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% Pseudo mass, see (7.19) . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σ Constant related to surface tension etc., see (2.89) . . . . . . . . . . Pa
σ Surface-tension coefficient . . . . . . . . . . . . . . . . . . . . . . . N/m
ς Source-term vector for primitive variables . . . . . . . . . . . . . . . . –
τ Viscous stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
φ Flux-limiter function, see (3.83) . . . . . . . . . . . . . . . . . . . . . . . –
φ Test function, Sec. 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . –
φδ Smoothed absolute-value function, see (3.80) . . . . . . . . . . . . . . –
Φ Interphase friction parameter, see (4.19) . . . . . . . . . . . . . . . . . –
Φ Slip relation, see (2.114) . . . . . . . . . . . . . . . . . . . . . . . . . m/s
χ Phase-indicator function . . . . . . . . . . . . . . . . . . . . . . . . . . . –
ψ General function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
Ω Calculation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –

Subscripts
◦ Reference, see (5.22)
0 Initial / Reference
c Critical
f Pertaining to phase f
g Gas
i Interface
int Interface, Chap. 5
i Spatial index
j Sub-cell spatial index, Sec. 5.3.3
j Time-step index, Chap. 8
k Pertaining to phase k
l Left-hand side
l Pertaining to phase l
` Liquid
L Left-hand side
m Mixture
n Local spatial index, Chap. 8
n Time-step index
r Right-hand side
R Right-hand side
s A known state, see (5.77)
w Wall

Superscripts
◦ Initial
◦ Reference, see (2.88)
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∗ Value in Riemann-problem solution, see Figure 5.2
d Drag
(g) Pertaining to the gas phase
h High-order, see (4.10)
j Time-step index, Chap. 8
(k) Pertaining to phase k
(l) Pertaining to phase l
(`) Pertaining to the liquid phase
l Low-order, see (4.6)
l Low-order, see (8.3)
L Left-hand side
LF Lax–Friedrichs, see (4.7)
m Local time-step index, Chap. 8
− Corresponding to negative eigenvalues, Sec. 6.2
− Left-hand side value, Chap. 5
− Negative part
n Time-step index
p Related to the pth eigenvalue
+ Corresponding to positive eigenvalues, Sec. 6.2
+ Positive part
+ Right-hand side value, Chap. 5
R Richtmyer, see (4.9)
R Right-hand side
Ru Rusanov, see (4.17)

Other symbols
ψ Average (context dependent)
ψ Ensemble average of ψ, see Sec. 2.4.3
ψ̌ ‘Conventional’ equation system, see (5.66)
ψ̂ Roe average of ψ
[ψ] ψ+ −ψ−
ψ̃ Augmented equation system, see (5.39)
ψ̃ Quantities in Section 4.1
ψ̃ Various averages, Chap. 7

Abbreviations
ausmd Advection upstream splitting method
cfl Courant–Friedrichs–Lewy
cpu Central processing unit
eos Equation of state
flic Flux-limiter centred
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hll Harten, Lax and van Leer
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tvd Total variation diminishing



1 Introduction

Upon those who step into the
same rivers different and ever
different waters flow down.

Heracleitus, c. 540–c. 480 BC

1.1 Motivation for the thesis

Multiphase flows are important in a large range of industrial applications, such
as in the oil and gas industry, in the chemical and process industry, including
in heat-pumping systems, as well as in the safety analysis of nuclear power
plants.

In Norway, the oil and gas industry is of particular importance. A growing
number of oil and gas fields are situated far from the shore, and at great
depths. This increases the drive towards field developments based on sub-sea
processing and multiphase flow transportation. Therefore, it is of significance
to be able to predict the flows in greater detail, not only in pipelines, but also
inside process equipment with complex geometries. To do that, one needs
good and rigorous mathematical models, and accurate numerical methods to
solve them. This is the topic of the present thesis.

1.2 Multiphase modelling

Depending on the problem at hand, the desired level of detail, and the com-
putational resources available, a range of techniques are employed for the
numerical simulation of multiphase flows. These may be divided into the
following categories:

Interface-tracking methods The interfaces between the phases are fully re-
solved.

Particle-tracking methods The bubbles, droplets or solid particles are treated
as point particles, and their individual trajectories are calculated.

Multifluid methods The various phases are treated as fluids, and no explicit
information of the interface is retained.

1
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The interface-tracking methods are generally the most cpu-intensive for a given
physical domain. The multifluid methods are less so, whereas the particle-
tracking methods reside somewhere in between.

The interface-tracking methods can be classified as Lagrangian, Eulerian, or
combined Lagrangian–Eulerian methods (see e.g. Hansen, 2005; Singh et al.,
2005, for an overview). Lagrangian methods use a body-fitted grid that deforms
with the interface. The grid is modified after each time step. The Eulerian
methods, such as the volume-of-fluid (vof) (see Scardovelli and Zaleski, 1999)
and level-set methods (see Osher and Fedkiw, 2001; Sethian, 2001), solve
the governing equations on a fixed grid. They are often referred to as front-
capturing methods. In the vof method, the interface is reconstructed based on
the calculated mass fraction. The level-set method employs a scalar function
advected with the interface velocity. From this function, the interface and
its geometric properties are calculated. The combined Lagrangian–Eulerian
methods are often called front-tracking methods (see Tryggvason et al., 2001).
They solve the fluid-flow equations on an Eulerian grid, but use a set of mass-
less markers to track the interface. As the interface evolves, some markers
must be added and others deleted to maintain a reasonable marker spacing.
The algorithms needed to reconstruct a moving and deforming interface are
complex. Among the combined Lagrangian–Eulerian methods one finds the
continuous interface methods, such as the immersed boundary methods (see
Peskin, 2002), and sharp interface methods.

The particle-tracking methods are usually Eulerian–Lagrangian methods,
where the fluid flow is calculated on a fixed grid, whereas the point particles,
being smaller than the grid size, are tracked in a Lagrangian manner. This is
often called the discrete-particle model (dpm) or discrete-element model (dem).
Particle-particle, particle-wall, particle-fluid and fluid-particle interactions can
be accounted for (see e.g. Loth, 2000; van der Hoef et al., 2005, for an over-
view). A range of techniques are employed to reduce the computational cost
(Melheim, 2005). It is possible to increase the system size by considering each
numerical particle to be a group of physical particles. To do this, however,
closure relations must be added.

At the other end of the scale, lattice Boltzmann models or standard compu-
tational fluid dynamics models may be employed to fully resolve the flow field
around the particles, which are then larger than the grid size. This can be used
for instance for finding drag laws.

Smooth particle hydrodynamics (sph) (see Cleary et al., 2005) is a Lagrangian
continuum method. The fluid (or solid) is discretized and the properties of each
of these elements are attributed to their centres, which are then interpreted as
particles. The method has been applied for solving incompressible, partially
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enclosed free-surface flow problems.

In multifluid methods, or continuum methods, all the involved phases, such
as particles, droplets, bubbles or liquids, are considered to be fluids. Hence,
in principle, quite large systems can be calculated, but this comes at the cost
of modelling challenges. These include formulating a well-understood and
well-posed basic mathematical model, finding closure relations for the involved
phenomena, and devising robust and accurate numerical methods for solving
the models.

Not every method is suited for calculating every kind of flow. One example is
the assumption of point particles in the particle-tracking methods. On the other
hand, it is possible to combine elements from the above-mentioned methods,
if desired.

Different applications involve diverse flow topologies. At the same time,
the various modelling methods have their strong points for different flow
topologies. The existence of a range of modelling approaches may therefore be
regarded as an advantage.

In this thesis, we study multifluid methods, but restrict the number of phases
to two.

Even in one spatial dimension, two-phase flows are often highly complicated,
and display topological changes as a function of the thermodynamical and flow
parameters. The observed patterns can be divided into flow regimes. The terms
and classifications used vary with the author. Taitel (1990) employs four main
classes;

1. Stratified flow,

2. Intermittent flow,

3. Annular flow,

4. Bubble flow.

For example, the intermittent flow is in the form of liquid slugs which fill the
pipe and are separated by gas zones in a form of elongated bubbles which
contain a stratified liquid layer flowing along the bottom of the pipe. This is
perhaps the most challenging flow regime to model.

In the present work, the emphasis is on numerical methods and basic models,
and constitutive relations are not analysed in depth. Incidentally, in some
instances, even simple models may provide reasonable results (Munkejord
et al., 2005).
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Simulation codes Much of the early development of numerical two-phase
models was conducted by the nuclear industry for the purpose of reactor
safety analysis. Among the codes are trac, relap (see Trapp and Riemke,
1986; Mahaffy, 1993, for an overview) and cathare (Barre and Bernard, 1990;
Bestion, 1990).

Modelling work has also been performed in the petroleum industry, leading
to codes such as olga (Bendiksen et al., 1991), employing the two-fluid model,
and the slug-tracking model PeTra (Larsen et al., 1997). These are employed for
the design of pipelines and top-side facilities. There also exist codes based on
the drift-flux model. Examples are tacite (Pauchon et al., 1994) and RF-Kick
(Vefring et al., 1995).

Several commercial computational fluid dynamics (cfd) codes are equipped
with multiphase flow models. One example is described in Brown (2002).

1.3 Previous work

This section provides a brief literature review regarding the models and meth-
ods analysed here. Further details may be found in Chapters 3, 7–8 and 5.

1.3.1 Two-fluid models

For the numerical solution of flow models, the approximate Riemann solver of
Roe (1981) is an attractive candidate, since it provides an upwind resolution of
all wave phenomena inherent in the models, and as it requires only the solution
of a linear Riemann problem at each cell interface. Among the problems
encountered for the two-fluid model, is the complicated eigenstructure, as well
as the appearance of non-conservative terms (Toumi, 1996).

Sainsaulieu (1995) introduced a Roe-type Riemann solver for the case of
incompressible liquid droplets suspended in a gas, that is, for small liquid
volume fractions. More general configurations were considered by Toumi
(1996), and a Roe-type method for the isentropic two-fluid model was presented
by Toumi and Kumbaro (1996). However, also in the latter works, the liquid
density was assumed to be constant. That assumption was not used in the
method by Evje and Flåtten (2003).

A different approach has been to consider two-pressure models, whose
mathematical properties have been found preferable (Ransom and Hicks, 1984).
On the other hand, for many cases, the latter kind of methods needs a pressure-
relaxation procedure.

Saurel and Abgrall (1999) presented a two-velocity two-pressure two-phase
model of seven equations, where pressure and / or velocity relaxation could be
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performed after the hyperbolic time step. The model can be thought of as an
extension of that of Baer and Nunziato (1986). It was expanded to several space
dimensions by Saurel and LeMetayer (2001), and it was stated to be suitable
for compressible multiphase flows with interfaces, shocks, detonation waves
and cavitation. Murrone and Guillard (2005) discussed a five-equation diffuse
interface model where the two phases had common pressures and velocities.
Different pressure-relaxation procedures were tested by Lallemand et al. (2005).

The approximate Riemann solver employed by Saurel and Abgrall (1999) was
a modified Harten, Lax and van Leer (hll) scheme. Other authors have later
presented similar methods using other solvers. Niu (2001) applied a modified
advection upstream splitting method (ausmd) and solved the seven-equation
model in one and two dimensions, also adding a k–ε turbulence model. A
Roe-type scheme for the seven-equation model was presented by Karni et al.
(2004).

1.3.2 Drift-flux model

For several flow regimes, it is possible to correlate the relative velocity between
the phases, the slip velocity, as a function of the flow variables (see e.g. Zuber
and Findlay, 1965; Ishii, 1977; Hibiki and Ishii, 2002). This a priori knowledge
of the flow can be employed to reduce the number of transport equations to be
solved, and the result is called the drift-flux model.

The closure law for the slip velocity is often a complicated function of
the state variables and flow parameters. As has been pointed out by several
researchers (Baudin et al., 2005a,b; Evje and Fjelde, 2002, 2003; Faille and
Heintzé, 1999; Romate, 1998), the complexity of these laws severely restricts
the possibilities for constructing a Roe solver by purely algebraic manipula-
tions. Nevertheless, Roe-type schemes have been proposed for this model.
Romate (1998) presented a method for constructing a Roe matrix using a fully
numerical approach. This method was used as the conservative part of the
hybrid primitive-conservative method of Fjelde and Karlsen (2002). Faille and
Heintzé (1999) proposed a linearized Riemann solver which may be interpreted
as a simplified version of the approach of Romate. However, their suggested
scheme does not satisfy the Roe conditions, with the consequence that the
numerical fluxes are generally discontinuous if there is a change of sign in an
eigenvalue between neighbouring cells.

A more formal approach was undertaken by Toumi and Caruge (1998) for a
related model involving a mixture mass equation and a mixture energy equation.
Based on a splitting of the flux into a ‘mixture’ and ‘drift’ part, they described
how a Roe matrix could be obtained using the parameter-vector approach of
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Roe (1981).
Baudin et al. (2005a,b) suggested a relaxation scheme of the type proposed

by Jin and Xin (1995). This is somewhat related to the Roe scheme in that one
needs only to solve a linear Riemann problem at each cell interface.

Upwind schemes are known to be accurate, but they are relatively complic-
ated. Centred schemes, on the other hand, are simpler, but more dissipative
(Chen and Toro, 2004). The multi-stage (musta) method proposed by Toro
(2003); Titarev and Toro (2005) is aimed at coming close to the accuracy of
upwind schemes while retaining the simplicity of centred schemes. In this
approach, the solution of the Riemann problem at the cell interface is ap-
proximated numerically by employing a first-order centred scheme on a local
grid.

1.4 Present contribution

This thesis analyses models for two-phase flows and methods for the numerical
resolution of these models.

Roe schemes for three different two-phase flow models have been implemen-
ted in the framework of a standard numerical algorithm for the solution of
hyperbolic conservation laws (LeVeque, 2002, Chapter 15).

The Roe scheme of Evje and Flåtten (2003) for the four-equation one-pressure
two-fluid model has been implemented, and a second-order extension based
on wave decomposition and flux-difference splitting was shown to work well
and to give improved results compared to the first-order scheme.

A Roe scheme has been proposed for a five-equation two-pressure two-fluid
model with pressure relaxation. The use of analogous numerical methods for
the five-equation and four-equation models allowed for a direct comparison
of a method with and without pressure relaxation. The hypothesis was put
forth that the five-equation model with instantaneous pressure relaxation can
be regarded as providing an alternative numerical method for solving the
four-equation model. Numerical experiments showed that the two approaches
converged to the same results, but that the five-equation pressure-relaxation
method was significantly more dissipative, particularly for contact discontinu-
ities. Furthermore, even though the five-equation model has real eigenvalues,
numerical evidence showed that the five-equation method with instantaneous
pressure relaxation produced oscillations for cases where the four-equation
model had complex eigenvalues.

A Roe scheme has been constructed for the drift-flux model with general
closure laws. For the case of the Zuber–Findlay slip law describing bubbly flows,
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the Roe matrix is fully analytical, thus addressing computational efficiency
issues associated with previous Roe schemes for the drift-flux model.

An isentropic version of the discrete-equation multiphase model of Abgrall
and Saurel (2003) has been presented. The incorporation of different interfacial-
pressure models was discussed, and examples were given. With the adequate
models for the interfacial pressure and velocity, the agreement was very good
between the discrete-equation model and the five-equation Roe scheme.

The multi-stage (musta) centred-scheme approach has been applied to the
drift-flux model. It has been shown that the good results of the musta scheme
are dependent on the use of a large-enough local grid. Hence, the main benefit
of the musta scheme is its simplicity, rather than a speed-up of the calculations.
A second-order extension based on a semi-discrete muscl scheme was shown
to provide enhanced results.

The multiphase characteristic-based boundary-condition method of Olsen
(2004) was shown to be workable for transient problems, and the faucet case
was employed as an example.

1.5 Structure of the thesis

Even though this thesis appears as a monograph, some of the chapters are
self-contained. In particular, this is true for Chapter 5, co-authored by Mikael
Papin (Munkejord and Papin, 2005), and Chapter 7, co-authored by Tore Flåtten
(Flåtten and Munkejord, 2006), and partly for Chapter 8, co-authored by Tore
Flåtten and Steinar Evje (Munkejord et al., 2006). The interested reader may
read them first, if desired.

Chapter 2 treats basic multiphase flow models. The volume-averaging and
ensemble-averaging approaches are reviewed in some detail. Thereafter, the
employed model formulations are presented. Chapters 3–6 concern the two-
fluid model, while Chapters 7–8 are about the drift-flux model.

In Chapter 3, two numerical methods for solving the two-fluid model are
discussed. Both are Roe-type methods, but one method employs pressure
relaxation, and the other does not. Basic testing of the general numerical
algorithm is performed.

Chapter 4 provides some tests and discussion of the flux-limiter centred
(flic) scheme.

The discrete-equation multiphase model is presented in Chapter 5. Different
models for the interfacial pressure are discussed, and a comparison with the
Roe-type method is provided.

Some results regarding the use of characteristic-based boundary conditions
using pid controllers for transient problems are given in Chapter 6.
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In Chapter 7, a Roe solver for the drift-flux model is derived and discussed.
Chapter 8 explores the multi-stage (musta) centred-scheme approach for the

drift-flux model, discusses the involved parameters describing the local grid,
and compares the scheme to the Roe and force schemes.

Chapter 9 draws the main conclusions of this thesis and gives suggestions
for further work.



2 Basic multiphase flow models

Exception, n. A thing which takes the liberty to differ from
other things of its class, as an honest man, a truthful
woman, etc. ‘The exception proves the rule’ is an
expression constantly upon the lips of the ignorant, who
parrot it from one another with never a thought of its
absurdity. In the Latin, ‘Exceptio probat regulam’ means
that the exception tests the rule, puts it to the proof, not
confirms it. The malefactor who drew the meaning from
this excellent dictum and substituted a contrary one of his
own exerted an evil power which appears to be immortal.

The Devil’s Dictionary
Ambrose Bierce

This chapter reviews the derivation of the multifluid model, which is achieved
by averaging the single-phase equations. Several averaging procedures can
be employed, most notably time, volume and ensemble averaging. The two
former techniques are convenient in that time and volume-averaged quantities
may easily be observed in the laboratory. However, the latter technique seems
to be more general. Here we review the volume-averaging and the ensemble-
averaging approaches in some detail. As will be seen, the resulting model has
the same form in both cases.

Several authors have proposed to repeatedly apply one or more of the
averaging processes on the governing equations, particularly for the purpose of
turbulence modelling. This approach leads to correlations whose interpretation
is less than straightforward, and it will not be considered here.

In the following, we do not attempt to provide a full literature review re-
garding the various developments of multiphase models, but rather to cite
expositions that were found useful or instructive in the present work.

At the end of the chapter, the simplifying assumptions employed in the
present work will be outlined, and some comments regarding well-posedness
will be given.

9
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2.1 Basic equations

This section briefly reviews the balance equations for single-phase flow, and
for a phase interface.

2.1.1 Equations for a pure phase

The balance equations for a pure phase are well known, and are therefore
stated here without derivation. The continuity equation1 is

∂
∂t
ρk +∇ · (ρkuk) = 0, (2.1)

and the momentum equation is

∂
∂t
(ρkuk)+∇ · (ρkuk ⊗ uk) = −∇pk +∇ · τk + ρkb, (2.2)

where uk ⊗ uk = ui,kuj,kei ⊗ ej is the tensor product between the velocities.
Henceforth, we drop the tensor multiplication sign, that is, the tensor product
will be denoted as for instance ukuk. For simplicity, the energy equation has
not been considered in this work (see also Section 2.5.2 on page 29).

2.1.2 Interface relations

To derive interface relations for multiphase flow, it is necessary to consider
a control volume with more than one phase inside. Such a control volume
and the interacting phases are shown in Figure 2.1 on the next page. Vk is the
volume of phase k inside the control volume V , and V is the total volume of
V . The control surface Ak has an area Ak and is the interface between phases
k and f inside V . Generally, other phases l might also be present, but they are
not considered when discussing the interaction between the phases k and f .

The mass and momentum balances at the interface between phases k and f
are represented by

ρk(uk − ui) · nk + ρf (uf − ui) · nf = 0, (2.3)

1In the following, Einstein’s summation rule is not to be applied to the indices k and f , which
are being used to denote phases.
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Figure 2.1: Control volume and interacting phases.

and

−∇sσ︸ ︷︷ ︸
(i)

+2σHsn︸ ︷︷ ︸
(ii)

−ρkuk(uk − ui) · nk︸ ︷︷ ︸
(iii)

−ρfuf (uf − ui) · nf︸ ︷︷ ︸
(iv)

+ (−Ipk + τk) · nk︸ ︷︷ ︸
(v)

+ (−Ipf + τf ) · nf︸ ︷︷ ︸
(vi)

= 0, (2.4)

where nk is the outward unit normal vector from phase k, H−1
s is the mean

radius of curvature along nk, σ is the coefficient of surface tension, ∇s is the
surface gradient operator, and I is the unitary tensor. The interfacial velocity
is given by ui and Hs is positive when the associated radius of curvature is
pointing outward. The effect of change in the mean curvature is ignored.

The equation (2.3) plainly states that the mass transfer from phase k to
phase f must be equal in size and opposite to the mass transfer from phase
f to phase k. If uk = ui = uf , or if (uk −ui) ·nk = 0 at the interface, then no
mass transfer takes place.

The momentum balance (2.4) is written in force per length (N/m) units, where
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term (i) is due to changes in the surface tension along the interface, for ex-
ample due to temperature or composition gradients2,

term (ii) is because the radius of curvature will cause the surface tension to
yield a resultant force normal to the interface,

term (iii) is due to mass transfer from phase k to phase f ,

term (iv) is due to mass transfer from phase f to phase k,

term (v) is due to pressure and stresses in phase k, and

term (vi) is due to pressure and stresses in phase f .

When no mass transfer takes place, the terms (iii) and (iv) will disappear
from the interface momentum equation (2.4), because (uk − ui) · nk = 0 at
the interface. That is, for a flow without mass transfer, the surface-tension
forces are balanced by pressure and stress forces. If furthermore the surface
tension is negligible, then the pressure and stress of each phase are equal at
the interface.

The computational domain has been divided into small control volumes V
according to Figure 2.1 on the preceding page. The finest level of detail of the
computation is the control-volume level. The basic equations, however, are
written on a microscopical level. Therefore it is necessary to introduce a proper
averaging technique, something which will be done in the following section.

2.2 Averaging approaches

The fluid flow in engineering applications varies over so many orders of mag-
nitude in both length and time scales, that it is computationally intractable to
directly solve the full balance equations (2.1)–(2.2), except in detail studies. An
additional problem in multiphase flow is that in the general case, the configura-
tion and location of the interfaces cannot be rigorously defined even initially.
Therefore, a proper averaging procedure is needed.

Averaging may be seen as a sort of low-pass filtering which is employed to
reduce the amount of computational power required to solve the equations.
It is necessary to introduce models to account for the physics behind what
happens on the scales which are ‘filtered away’. A model can be defined as a
simplified view of a physical phenomenon (physical model) and mathematical
expressions describing this view (mathematical model) (see Ertesvåg, 2000,
pages 31–33 or Aris, 1962, page 1 ff.). In this respect, no model is also a model.

2That is, σ = σ(p, T ,ni), where ni indicates the material components involved.
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The multifluid model can be deduced from the basic equations of single-
phase flow. Several approaches have been used, for instance temporal aver-
aging, volume averaging, and ensemble averaging (see e.g. Ishii, 1975; Soo,
1989; Drew and Passman, 1999). It is also possible to derive the multifluid
model without averaging, but by introducing distributions, i.e., generalized
functions (Kataoka, 1986). The different deductions lead to equations having
the same form. However, the form of the unclosed terms and the interpretation
of the variables in the equations may differ.

2.2.1 Time versus volume averaging

In his two-fluid model, Ishii (1975, page 61) applied time averaging to the basic
balance equations. He argued that since time averaging has proven useful in
single-phase turbulent flow analysis, it is natural and logical also to apply time
averaging to two-phase flow. Ishii identified two main consequences of time
averaging, namely

1. to smooth out turbulent fluctuations in the same sense as in single-phase
flow, and

2. to bring two phases, which are alternately occupying a volume element,
into two continua simultaneously existing at the same point with a prop-
erly defined expectation for each phase.

Soo (1989, page 49), on the other hand, maintained that volume averaging
is convenient in expressing dynamic phases in terms of volume fractions,
while an a priori time averaging yields fraction residence times of phases. He
further stated that dynamic and thermodynamic properties of a mixture are
not cumulative with fraction residence time, but with volume fractions, and
that the fraction residence time is equal to the volume fraction only in the
instance of one-dimensional uniform motion in a mixture. Therefore, the time
and volume averaging operations are not commutative. Soo recommended
to carry out time averaging after volume averaging to account for the high
frequency fluctuations retained by instantaneous volume averaging.

The above-cited authors do not seem to have thoroughly discussed whether
different averaging techniques may or may not express the same thing.

2.2.2 Ensemble averaging

The ensemble averaging is defined and discussed by Drew and Passman (1999,
Chapter 9). The ensemble average allows for the interpretation of the phe-
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nomena in terms of the repeatability of the multiphase3 flows. The ensemble
corresponding to a given motion can be thought of as a very large set of realiz-
ations, with observable variations. The initial conditions and calculated fields
are interpreted as expected values. Drew and Passman point out several implic-
ations of using the ensemble average as the basis for the theory of multiphase
flows:

1. In situations where time and / or volume averaging are appropriate, these
averages can be used as ‘samples’ of the ensemble.

2. Ensemble averaging does not require that a control volume contain a large
number of particles in any given realization. (See (2.15).)

3. An elementary concept of averaging involves adding the observed values
and dividing by the number of observations. From the point of view of
ensemble averaging, this represents sampling the distribution implicit in
the description of the ensemble a finite number of times. The difficulty is
in describing the set of observations, for instance; if the initial position
of the bubbles is changed, they may coalesce, something which may be a
fundamental variation.

4. The ensemble-average view of a physical event allows for an interpretation
that all realizations are only approximations of the ideal. Consider for
instance a system where the variability is contained in the locations of
the particles or bubbles at the initial instant. If the observer were able to
control the initial locations more precisely, the ensemble could be viewed
as smaller. For the flow of a single particle, whose initial position was
exactly determined, in a fluid flow without fluctuations, the ensemble
would contain only one realization, and the ‘averaging’ would lead to the
exact equations and jump conditions.

2.3 Volume-averaged equations

In this section, we review the volume-averaging approach as presented by Soo
(1989, 1990). Much of the material presented here is from Munkejord et al.
(2000).

3Drew and Passman prefer the term ‘multicomponent’.
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2.3.1 Volume averaging of a phase in a mixture

The volume averaging, when applied to any scalar, vector or tensor, ψk, associ-
ated with phase k, is defined by

〈ψk〉 =
1
V

∫
Vk
ψk dV, (2.5)

when averaged over the volume V , and when averaged over Vk, the result is the
intrinsic average:

i〈ψk〉 =
1
Vk

∫
Vk
ψk dV. (2.6)

That is, 〈ψk〉 is averaged over the whole control volume V , whereas i〈ψk〉 is
averaged only over the part of the control volume where phase k is present,
Vk.

To achieve a mathematically more rigorous fundament, the definition of
volume averaging in equation (2.5) may instead be written as

〈ψk〉 =
1
V

∫
V
ψkχk dV. (2.7)

Now the integration is performed over the whole control volume V . The factor
χk is defined as 1 inside Vk and as 0 outside Vk. Analogously we get for the
intrinsic average in equation (2.6):

i〈ψk〉 =
1
Vk

∫
V
ψkχk dV. (2.8)

When the averaging relations (2.5) and (2.6) are applied to a specific quantity
such as density, we have:

〈ρk〉 =
1
V

∫
Vk
ρk dV = αkρk, (2.9)

and
i〈ρk〉 =

1
Vk

∫
Vk
ρk dV = ρk. (2.10)

Herein the volume fraction of phase k is defined as αk = Vk/V . The latter
equalities are for uniform material density ρk of phase k.

Some points are worth noting (Soo, 1989, page 51):

1. Intrinsic averaging gives rise to quantities inside Vk.
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2. Volume averaging will spread phase k over the whole volume V , su-
perposing on phase f , which is correspondingly averaged in the same
manner. So, for instance, the density 〈ρk〉 is averaged over V and is equal
to αki〈ρk〉.

3. Volume averaging can only be applied to quantities per volume or area.
These include density, momentum per unit volume, energy per unit
volume, and gradients of stresses and fluxes for ψk in the equations
(2.5) and (2.6). Therefore, for instance, the intrinsic average of the phase
velocity is given by

i〈uk〉 =
1

i〈ρk〉Vk

∫
Vk
ρkuk dV = 1

〈ρk〉V

∫
Vk
ρkuk dV. (2.11)

One sees that only i〈uk〉 and ∇ · i〈uk〉 are meaningful.

4. Stresses and fluxes in a formulation can be expressed as 〈ψk〉 = αki〈ψk〉;
the physical meaning is represented in the ‘volume average’ where all
interactions are represented.

〈τk〉, the viscous stress, is not necessarily contributed by the viscous stress
inside phase k. It may represent the resistance to transfer of momentum
by bodily displacement of one phase through another. That is, 〈τk〉 has two
contributions; one from within the phase and one from its surface. The same
applies to

〈
pk
〉
.

In the derivation of the multifluid model, relations are needed for the volume
average of derivatives. The volume average of the divergence and gradient
terms are rewritten using the Slattery averaging theorem (Slattery, 1967; Whi-
taker, 1969):

〈∇ψk〉 ≡
1
V

∫
Vk
∇ψk dV =∇ 〈ψk〉 +

1
V

∫
Ak
ψknk dA, (2.12)

or

〈∇ ·ψk〉 =∇ · 〈ψk〉 +
1
V

∫
Ak
ψk · nk dA, (2.13)

while an expression for the volume average of time derivatives is found by
employing the Reynolds transport theorem:〈

∂
∂t
ψk
�
= ∂
∂t
〈ψk〉 −

1
V

∫
Ak
ψkui · nk dA. (2.14)

Herein, ui · nk is the speed of displacement of the interface.
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The volume-averaging approach is subject to the restriction that

{characteristic lengths of phases or pores}
� {characteristic length of averaging volume V}

� {characteristic length of physical system}. (2.15)

Therefore, the control volume V under consideration cannot be arbitrarily
small or become infinitesimal. Furthermore, the control volume V needs to be
much larger than the size of the phases or pores, so that a small translation of
the control volume will not influence the magnitude of the averaged variables
〈ψk〉. Yet in order that the average be representative of the local variations, the
control volume must be small, such that its characteristic dimension is smaller
than that of the physical system under consideration.

Inserting ψk = 1 in (2.5) yields

〈1〉 = 1
V
Vk = αk. (2.16)

Using (2.16) in (2.14) then gives

∂
∂t
αk =

1
V

∫
Ak
ui · nk dA, (2.17)

and analogously for the equation (2.12):

∇αk = −
1
V

∫
Ak
nk dA. (2.18)

2.3.2 Volume-averaged balance equations

Continuity

As the average of a sum equals the sum of averages, the averaging relations
(2.12)–(2.14) can be applied term-wise to the continuity equation (2.1):

∂
∂t
〈ρk〉 −

1
V

∫
Ak
ρkui · nk dA+∇ · 〈ρkuk〉 +

1
V

∫
Ak
ρkuk · nk dA = 0, (2.19)

so that

∂
∂t
〈ρk〉 +∇ · 〈ρkuk〉 = −

1
V

∫
Ak
ρk(uk − ui) · nk dA = Γk, (2.20)

where Γk is the rate of generation of phase k per unit volume of V as the
interface displaces outward relatively to phase k.
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Momentum

Similarly to what was done in the preceding subsection, applying the averaging
relations to the momentum equation (2.2) yields:

∂
∂t
〈ρkuk〉 +∇ · 〈ρkukuk〉 = −∇

〈
pk
〉
+∇ · 〈τk〉 + 〈ρk〉b

+ 1
V

∫
Ak
(−pknk + τk · nk)dA− 1

V

∫
Ak
ρkuk(uk − ui) · nk dA, (2.21)

where the force field per unit mass, b, is assumed to be constant in V . The
last two terms are transfer integrals, and it is necessary to give them a careful
physical interpretation. They account for the transfer of pressure, viscous
stresses and inertia forces across the interface per unit volume.

In principle, the equations (2.20) and (2.21) (together with the energy equa-
tion) are the basic integro-differential equations of multiphase flow.

The transfer integral due to pressure and viscous stresses needs to be
modelled. However, the pressure pk on the interface is generally unknown. It is
therefore convenient to assume that it may be written as the sum of the mean
pressure in the control volume, and a local variation:

pk = i〈pk〉+ δpk. (2.22)

A similar splitting was made by Drew and Passman (1999, Section 11.3.2), see
also Section 2.4.5 on page 27.

Insert (2.22) and (2.18) into the pressure-part of the transfer integral of the
equation (2.21):

1
V

∫
Ak
−pkI · nk dA = i〈pk〉∇αk − 1

V

∫
Ak
δpknk dA. (2.23)

For the pressure-gradient term of the equation (2.21), we have:

−∇
〈
pk
〉
= −αk∇i〈pk〉− i〈pk〉∇αk, (2.24)

and the i
〈
pk
〉
∇αk term from the pressure-gradient term and from the trans-

fer integral are seen to cancel. Therefore, the volume-averaged momentum
equation may be written as

∂
∂t
〈ρkuk〉 +∇ · 〈ρkukuk〉 = −αk∇i〈pk〉+∇ · 〈τk〉 + 〈ρk〉b

+ 1
V

∫
Ak
(−δpkI + τk) · nk dA− 1

V

∫
Ak
ρkuk(uk − ui) · nk dA. (2.25)
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Interface balances

The volume-averaged interface balance equations are arrived at by integrating
equations (2.3) and (2.4) over the interface Ak and dividing by the control
volume. The mass balance is given by:

Γk = −
1
V

∫
Ak
ρk(uk − ui) · nk dA = 1

V

∫
Ak
ρf (uf − ui) · nf dA = −Γf . (2.26)

Note that the first and second equalities constitute two independent relations
because Γk is given by the physical and phenomenological relations at the
interface.

The (linear) momentum balance is given by:

1
V

∫
Ak
(−∇sσ + 2σHsn)dA

− 1
V

∫
Ak
ρkuk(uk − ui) · nk dA− 1

V

∫
Ak
ρfuf (uf − ui) · nf dA

+ 1
V

∫
Ak
(−Ipk + τk) · nk dA+ 1

V

∫
Ak
(−Ipf + τf ) · nf dA = 0. (2.27)

For bubbles and droplets, the first integral gives the capillary pressure (denoted
by subscript c) difference:

1
V

∫
Ak
(−∇sσ + 2σHsn)dA = 1

V

∫
Ak
(pc,k − pc,f )dA. (2.28)

The equations in the present section include averages of products as well
as local values in the interface transfer integrals. The configurations of the
interface and its motion are given by ui, nk, and Ak. A solution of equations
(2.20) and (2.21) calls for expressing averages of products in terms of products
of averages and to express the integrals in terms of averaged dependent
variables by introducing proper constitutive relations.

Recall the expression for the intrinsic average of the phase velocity from
equation (2.11) on page 16. Analogously, we may now write for the volume
averaged rate of change of momentum flux of phase k per unit area:

〈ρkukuk〉 ≡
1
V

∫
Vk
ρkukuk dV = 〈ρk〉

1
i〈ρk〉Vk

∫
Vk
ρkukuk dV

= 〈ρk〉 i〈ukuk〉 = αki〈ρk〉 i〈ukuk〉 . (2.29)

In the second and in the last equality, we have used that

αk =
Vk
V
= 〈ρk〉

i〈ρk〉
. (2.30)



20 2. Basic multiphase flow models

To express the average of the velocity product, i〈ukuk〉, as a product of averages,
it is necessary to introduce modelling assumptions.

2.4 Ensemble-averaged equations

In this section, we briefly review the ensemble-averaging approach as presented
by Drew and Passman (1999).

The starting point for the derivation of the ensemble-averaged equations
is, of course, the same single-phase balance equations (2.1)–(2.2) and jump
conditions (2.3)–(2.4) as before (see also Drew, 1983).

2.4.1 Ensemble-average basics

Definition

Drew and Passman (1999, Chapter 9) define an ensemble as a set of motions
‘possible’ in the system. A realization of the system is denoted by µ, and the
set of all realizations µ is the ensemble, E.

The ensemble average of ψ is defined by

E (ψ(x, t)) =
∫
E
ψ(x, t;µ)dm(µ), (2.31)

where dm is the density for the measure (probability) on the set of all processes
E. Further details and definitions can be found in Drew and Passman (1999).

Reynolds rules

Let c1 and c2 be constants, and ψ1 and ψ2 be fields. Drew and Passman (1999)
show that the linearity property

E (c1ψ1 + c2ψ2) = c1E (ψ1)+ c2E (ψ2) , (2.32)

hold if ψ1 and ψ2 are realizations in the same ensemble E, or if ψ1 and ψ2 are
realizations in different ensembles E1 and E2, respectively. Furthermore,

E (E (ψ1)ψ2) = E (ψ1)E (ψ2) , (2.33)

ifψ1 andψ2 are realizations in the same ensemble E. Hence the usual ‘Reynolds
rules’ of averaging apply to the ensemble averaging as well.



2.4. Ensemble-averaged equations 21

Derivatives of generalized functions

In multiphase flows, the fields may be discontinuous. Therefore, ∂ψ/∂t and
∇ψ are generalized functions, and they are defined by∫

Ω
φ(x, t)

∂ψ(x, t)
∂t

dV dt = −
∫
Ω

∂φ(x, t)
∂t

ψ(x, t)dV dt, (2.34)

and ∫
Ω
φ(x, t)∇ψ(x, t)dV dt = −

∫
Ω
∇φ(x, t)ψ(x, t)dV dt, (2.35)

where φ is a test function, that is, it has compact support4 and derivatives to
all orders. Ω is the space-time integration domain.

Characteristic function

Each phase k is separated theoretically by the phase-indicator function, or
characteristic function, χk. It is defined by

χk(x, t;µ) =

1 if x ∈ k in realization µ,
0 otherwise.

(2.36)

Interface delta function

The quantity ∇χk will appear in the description of the multiphase flow, and it
needs an interpretation. Let φ be a test function. Then we have∫

Ω
φ(x, t)∇χk(x, t)dV dt = −

∫
Ω
∇φ(x, t)χk(x, t)dV dt (2.37)

= −
∫
Ωk
∇φ(x, t)dV dt (2.38)

and by using the divergence theorem, we get

= −
∫
∂Ωk
nkφ(x, t)dAdt (2.39)

= −
∫
Ω
nkδ(x − xi, t)φ(x, t)dV dt. (2.40)

4φ(x, t) has compact support if it is identically zero outside some bounded region in space
and time, as well as on the boundary.
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Herein, Ωk is the intersection of Ω with k, and ∂Ωk denotes the phase interface,
nk is the unit normal to it in the direction exterior to phase k, xi is the position
of the interface, and δ is the Dirac delta function. The last equation shows that

∇χk = −nkδ(x − xi, t). (2.41)

Topological equation

In the averaging process, the result

∂χk
∂t

+ ui ·∇χk = 0 (2.42)

will be used. It can be derived in two ways. The first and less rigorous way is
simply to claim that it is logical that the phase-indicator function be advected
with the interface velocity. The second way is to use results for generalized
functions: Let φ be a test function. Then∫

Ω
φ
∂χk
∂t

dV dt = −
∫
Ω

∂φ
∂t
χk dV dt,∫

Ω
φ∇χk dV dt = −

∫
Ω
∇φχk dV dt.

(2.43)

Thus∫
Ω
φ
(
∂χk
∂t

+ui ·∇χk
)

dV dt =
∫
Ω

(
φ
∂χk
∂t

+φ∇(ui∇χk)−φχk∇·ui

)
dV dt

(2.43)=
∫
Ω

(
−χk

∂φ
∂t

− uiχk∇φ−φχk∇ · ui

)
dV dt

= −
∫
Ω

(
∂φ
∂t

+∇ · (φui)
)
χk dV dt. (2.44)

Consider the Reynolds transport theorem (see e.g. Wesseling, 2001, page 10)

d
dt

∫
V (t)

φdV =
∫
V (t)

(
∂φ
∂t

+∇ · (φu)
)

dV, (2.45)

where V (t) is a material volume. This gives

−
∫
Ω

(
∂φ
∂t

+∇ · (φui)
)
χk dV dt = −

∫∞
0

∫
Vk(t)

(
∂φ
∂t

+∇ · (φui)
)

dV dt

= −
∫∞

0

d
dt

∫
Vk(t)

φdV dt

= −
[∫
Vk(t)

φdV
]t=∞
t=0

= 0,

(2.46)
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since φ has compact support. Hence the integrand in (2.46) and in (2.44) is
zero, and (2.42), referred to as the topological equation, is valid. The left-hand
side is the material derivative of χk following the interface. For a point that
is not on the interface, either χk = 1 or χk = 0, and the partial derivatives
both vanish, so that the left-hand side of the topological equation vanishes.
For a point on the interface, moving at the interface velocity, the jump in χk is
constant, so that its material derivative following the interface vanishes.

Gauss and Leibniz rules

If ψ is sufficiently well behaved so that the limiting process of integration and
differentiation can be interchanged, then the definition of the ensemble average
gives that

E
(
∂ψ
∂t

)
= ∂E (ψ)

∂t
, (2.47)

and
E (∇ψ) =∇E (ψ). (2.48)

Further, we have, for example

E
(∫
ψdV dt

)
=
∫
E (ψ)dV dt. (2.49)

Now we will derive an expression for∇(χkψ). By the definition of derivatives
for generalized functions, we have∫

Ω
φ∇(χkψ)dV dt = −

∫
Ω
χk∇φdV dt = −

∫
Ωk
∇φdV dt. (2.50)

Assuming that ψ is well behaved in Ωk, and applying the divergence theorem,
we get

−
∫
Ωk
∇φdV dt = −

∫
Ωk
∇(φψ)dV dt +

∫
Ωk
φ∇ψdV dt

= −
∮
∂Ωk
nφψik dAdt +

∫
Ω
φχk∇ψdV dt,

(2.51)

where ψik is the value of the function ψ evaluated on the phase k-side of the
interface. Using the equation (2.39), we see that∫

Ω
φ∇(χkψ)dV dt =

∫
Ω
φψik∇χk dV dt +

∫
Ω
φχk∇ψdV dt, (2.52)

and hence
∇(χkψ) = χk∇ψ+ψik∇χk. (2.53)
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Ensemble-averaging and applying (2.48) gives

E (χk∇ψ) =∇E (χkψ)−E (ψik∇χk) , (2.54)

which is called the Gauss rule. A similar sequence of calculation leads to

E
(
χk
∂ψ
∂t

)
= ∂
∂t
E (χkψ)−E

(
ψik
∂χk
∂t

)
, (2.55)

which is termed the Leibniz rule5. These equations are similar to (2.12)–(2.14)
for volume averaging.

2.4.2 Ensemble-averaged balance equations

Armed with the ensemble-averaging arsenal from the previous subsection, we
are ready to find the averaged balance equations. The single-phase balance
equations can be written in the form

∂
∂t
(ρψ)+∇ · (ρψu) =∇ · J + ρs. (2.56)

The continuity equation is recovered by setting ψ = 1, J = 0 and s = 0, and the
momentum equation is given by ψ = u, J = T = −pI + τ and s = b.

By using the product rule for derivatives, and by applying the topological
equation (2.42) to ∂χk/∂t , we get

χk
∂
∂t
(ρψ) = ∂

∂t
(χkρψ)− ρψ

∂χk
∂t

= ∂
∂t
(χkρψ)+ ρψui ·∇χk. (2.57)

Multiply the equation (2.56) by χk. Using the above equation and the product
rule for derivatives, we obtain

∂
∂t
(χkρψ)+ ρψui ·∇χk +∇ · (χkρψu)− ρψu ·∇χk

−∇ · (χkJ)+ J∇ · χk − χkρs = 0. (2.58)

Ensemble averaging and applying (2.47)–(2.48) gives

∂
∂t
E (χkρψ)+∇ ·E (χkρψu)−∇ ·E (χkJ)−E (χkρs)

= E
([
ρψ(u− ui)− J

]
·∇χk

)
. (2.59)

5The Leibniz rule in Drew and Passman is not the same as the Leibniz rule for differentiation
of a definite integral which can found in calculus books.
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Thus we obtain the ensemble-averaged continuity equation

∂
∂t
E (χkρ)+∇ ·E (χkρu) = E

([
ρ(u− ui)

]
·∇χk

)
, (2.60)

and the ensemble-averaged momentum equation

∂
∂t
E (χkρu)+∇ ·E (χkρuu)

=∇ ·E (χkT)+E (χkρb)+E
([
ρu(u− ui)− T

]
·∇χk

)
(2.61)

which are comparable to the volume-averaged equations (2.20) and (2.21). The
equations contain averages of products which need to be ‘dissolved’ before
they can be employed for calculations.

2.4.3 Definition of average variables

As for the volume-average, some care has to be taken when defining the average
variables. The average of the phase-indicator function is

αk = E (χk) . (2.62)

It is customarily called the volume-fraction, even for the ensemble-averaged
equations. The correct interpretation is that αk is the expected value of the
ratio of the volume of phase k to the total volume, in the limit as the volume
approaches zero. Following Drew and Passman (1999, Section 11.2), we employ
weighted averages for the remaining variables: The average density is

ρk =
E (χkρ)
αk

, (2.63)

the average velocity is

uk =
E (χkρu)
αkρk

, (2.64)

the average stress tensor is

Tk =
E (χkT)
αk

, (2.65)

and the average body force is

bk =
E (χkρb)
αkρk

. (2.66)
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The transfer integrals appearing in the volume-averaged formulation have
their ensemble-averaged analogue in the ∇χk terms. In particular, the interfa-
cial stress momentum source is

mk = −E (T ·∇χk) . (2.67)

The mass source is
Γk = E (ρ(u− ui) ·∇χk) , (2.68)

and the corresponding momentum source due to mass transfer is

um
ikΓk = E (ρu(u− ui) ·∇χk) , (2.69)

where the mean mass-transfer velocity um
ik is defined by the above equation.

2.4.4 Fluctuations

The instantaneous field value at a point may vary from the average value due to

–– turbulence,

–– the distribution of the phases.

This fluctuation has implications on the ∇ · E (χkρuu) term. The velocity
fluctuation is expressed by

u′k = uk − uk. (2.70)

Other variables may also fluctuate, but pressure and density fluctuations were
not considered by Drew and Passman (1999).

We have:

E (χkρuk) = E
(
χkρ

E (χkρu)
E (χkρ)

)
= E (χkρ)

E (χkρu)
αkρk

= E (χkρ)uk. (2.71)

Further, the equations (2.63) and (2.64) imply that

E (χkρ)uk = E (χkρ)
E (χkρu)
αkρk

= E (χkρu) . (2.72)

At the same time, we get from (2.70):

E (χkρu) = E (χkρuk)+E
(
χkρu′k

)
, (2.73)

whence
E
(
χkρu′k

)
= 0. (2.74)
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Therefore, we get for the momentum flux:

E (χkρuu) = E
(
χkρ(uk + u′k)(uk + u′k)

)
= E (χkρ)ukuk +E

(
χkρu′ku

′
k

)
= αkρkukuk −αkT t

k,

(2.75)

where

T t
k = −

E
(
χkρu′ku

′
k

)
αk

(2.76)

is often called the Reynolds-stress tensor. It should be noted, however, that it
is not the same as the Reynolds-stress tensor of single-phase flow, since the
latter comes from time averaging, and, in addition, does not contain the effect
of the phase distribution. That is, T t

k may be non-zero for a laminar flow.

2.4.5 Manipulations

It is convenient to write the pressure terms as one ∇pk term and one ∇αk
term. This is done by adding the contributions from the ‘usual’ pressure term
and from the interfacial term. The interfacial pressure is defined by

pik =
E
(
pnk ·∇χk

)
ak

= E
(
pδ(x − xi)

)
E (δ(x − xi))

. (2.77)

Herein, ak is the interfacial area density of phase k:

ak = −E (nk ·∇χk) = E (δ(x − xi)) . (2.78)

Similarly, the interfacial shear stress is

τik =
E (τnk ·∇χk)

ak
= E (τδ(x − xi))
E (δ(x − xi))

. (2.79)

The interfacial force densitymk may be split as

mk = E
(
p∇χk

)
−E (τ ·∇χk) = pik∇αk +mik, (2.80)

where the termmik contains the remainder:

mik = E
(
(p − pik)∇χk

)
−E (τ ·∇χk) . (2.81)
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2.4.6 Ensemble-averaged balance equations revisited

Using the results from Sections 2.4.3–2.4.5, we can write the ensemble-averaged
continuity equation (2.60) as

∂t
∂t
(αkρk)+∇ · (αkρkuk) = Γk, (2.82)

and the ensemble-averaged momentum equation (2.61) as

∂
∂t
(αkρkuk)+∇ · (αkρkukuk)

= −αk∇pk − (pk − pik)∇αk +∇ ·αk(τk + T t
k)+αkρkbk +mik + um

ikΓk.
(2.83)

The above equations are exact, that is, no modelling assumptions have been
introduced. To close the equation system, several such assumptions will have
to be made. This is addressed in the next section.

2.5 Model formulation

This section presents the employed model formulations. First, the exact equa-
tions from the preceding section are simplified so as to render the problem
tractable. Next, the two-fluid model and the drift-flux model are described.

2.5.1 Simplifying assumptions

Even though the energy equation has been neglected, the equations (2.82)–
(2.83) still pose serious challenges regarding the modelling of the interfacial
terms and turbulence, and regarding the numerical solution algorithm. In the
present case, several simplifying assumptions are appropriate:

–– One-dimensional flow.

–– Inviscid flow: τk ≡ 0.

–– No turbulence or phase-distribution effects on the average: T t
k ≡ 0.

–– No mass transfer: Γk ≡ 0.

–– Most often, no interfacial forces are considered: mik ≡ 0. An interfacial
drag term is employed in some instances, where specified.
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Furthermore, we consider only two phases. In practical applications, one or
more of the mentioned effects can be important. In the present work, on the
other hand, we wish to focus on the mathematically essential parts of the
two-phase flow model, keeping the number of parameters low.

Real fluids have a non-zero viscosity. Nevertheless, the assumption of inviscid
flow is beneficial for several reasons:

–– It makes the equations simpler.

–– The inclusion of a viscosity would make it less straightforward to assess
the artificial viscosity introduced by the numerical schemes.

–– A numerical scheme for a two-phase flow model should be sufficiently
robust so as to not be dependent upon a certain viscosity to yield stable
results.

2.5.2 Four-equation system

Following the discussion of the preceding subsection, and dropping the explicit
average notation for simplicity, we write the continuity equation as

∂
∂t
(αkρk)+

∂
∂x
(αkρkuk) = 0, (2.84)

and the momentum equation as

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k
)
+αk

∂pk
∂x

+ (pk − pik)
∂αk
∂x

= sk, (2.85)

where sk is a momentum-source term. It can be written as sk = bk+mik, where
bk is a body force and mik is the interfacial momentum exchange. The body
force that will be considered here is gravity:

bk = αkρkgx, (2.86)

where gx is the acceleration of gravity in the x direction. mik might contain
interfacial friction. Most often one would like the interfacial exchange term to
obey Newton’s third law, that is,

mik = −mif (2.87)

for the two phases k and f .
Due to the term pik∂αk/∂x , the equation system cannot be written on

conservation form in terms of the variables αkρk and αkρkuk. Therefore,
special care is needed for the spatial discretization of the system.
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In addition to the above equations, an equation of state is needed. Here we
take the linear model

pk = c2
k(ρk − ρ◦k), (2.88)

where the speed of sound, ck, and the ‘reference density’, ρ◦k, are constants
for each phase. In this work we consider two phases, air (gas, denoted by the
subscript g) and water (liquid, denoted by the subscript `), with the properties
given in Table 2.1 (unless otherwise stated). These values correspond to the
ones used by Evje and Flåtten (2003). A constant speed of sound in the equation
of state (eos) is an implicit assumption of isentropic flow. This is shown in
Section 2.5.5 on page 34. As can be seen from Toumi (1996), the entropy waves
are advected with the fluid velocities, that is, they are uncoupled from the
remaining wave structure, which can therefore be studied by considering an
isentropic model.

Moreover, an expression is needed for the relation between the pressures in
the phases, for example

pk = pf + σkf ∀k ≠ f , (2.89)

where σkf is a constant pertaining to the relation between the phases k and
f . In this work we shall take σkf = 0. Finally, of course, a relation for the
interfacial pressure pik must be specified.

The equation system described in this subsection will be called the four-
equation system.

2.5.3 Five-equation system

The ensemble-average of the topological equation (2.42) on page 22 is

∂αk
∂t

+E (ui ·∇χk) = 0. (2.90)

Assume that

E (ui ·∇χk) = uik · E (∇χk) = uik ·∇αk, (2.91)

Table 2.1: Constants in the equation of state

ck (m/s) ρ◦k (kg/m3)
air (g)

√
105 0

water (`) 1000 999.9
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where uik is an adequately averaged interfacial velocity. In the one-dimensional
case we get:

uik =
E (uinx ·∇χk)
∂αk/∂x

, (2.92)

that is, the mean interfacial velocity is the ‘grad α-weighted’ average of the
local interfacial velocity. Dropping the overbar for notational convenience, we
write

∂αk
∂t

+uik
∂αk
∂x

= 0, (2.93)

which expresses that the volume fraction is advected with the mean interfacial
velocity. This equation can be added to the basic-equations system (2.84)–(2.85),
as was similarly done by Saurel and Abgrall (1999); Baer and Nunziato (1986).

Interfacial-velocity models

Some model has to be specified for the average interface velocity, since the
numerator in (2.92) cannot be calculated in a straightforward way. Saurel and
Abgrall (1999) took the average interface velocity to be the mass-weighted
velocity:

uik = ui =
∑
∀kαkρkuk∑
∀kαkρk

. (2.94)

This will be the default model in the present work.
Another model can be found by considering the continuous limit of the

discrete-equation model of Abgrall and Saurel (2003) (Papin, 2005, Chapter 6)
(see also Chapter 5):

uik = ui =
agug + a`u` + (p` − pg) sgn(∂αg/∂x)

ag + a`
, (2.95)

where a = ρc is the acoustic impedance.

Pressure relaxation

When the energy equation is disregarded, the Saurel and Abgrall model can be
written as

∂αg

∂t
+ui

∂αg

∂x
= rp(pg − p`), (2.96)

∂
∂t
(αkρk)+

∂
∂x
(αkρkuk) = 0, (2.97)

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k
)
+αk

∂pk
∂x

+ (pk − pik)
∂αk
∂x

= sk + ru(uf −uk).
(2.98)
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Herein, sk is a momentum-source term. The parameters ru and rp deserve
some attention. ru is a velocity-relaxation parameter, and a large value of
ru will force equality of the two phasic velocities. In this work we shall not
consider velocity relaxation, and henceforth

ru ≡ 0. (2.99)

In the cases where interphasic friction is accounted for, that phenomenon will
be put into the source term sk. See for instance (4.18) on page 111.
rp is a pressure-relaxation parameter. It is the inverse of the compaction

viscosity discussed by Baer and Nunziato (1986), something which can be
confirmed by checking that the unit of rp is the inverse of that of the molecular
viscosity. For rp = 0, the two phasic pressures are linearly independent, and
when rp →∞, they are equal.

The system (2.96)–(2.98) with (2.99) will be referred to as the five-equation
system.

With the addition of the equation (2.96) to the system, the condition (2.89)
is no longer needed. However, for many two-phase flows, including the ones
considered here, the phasic pressures are not independent. This dependence
is accounted for by the pressure-relaxation procedure. That procedure was
discussed by Saurel and Abgrall (1999) for the full seven-equation system. Here
the situation is somewhat simpler, since the energy equation is not considered.

Finite pressure relaxation Since the source term in the equation (2.96) may
be large, it is necessary to solve the five-equation system using a suitable
numerical method. Here, we employ a fractional-step method: First, the ‘hyper-
bolic part’ of the system (2.96)–(2.98) (that is, with rp ≡ 0) is advanced one step,
∆t, in time using a method to be described in Chapter 3. Next, the ‘relaxation
part’ is considered:

dαg

dt
= rp(pg − p`), (2.100)

d
dt
(αkρk) = 0, (2.101)

d
dt
(αkρkuk) = 0. (2.102)

With the solution from the hyperbolic step as initial condition, the above system
can be also be advanced one step ∆t in time, using an ode solver. The resulting
solution is then passed to the hyperbolic solver for the next time step, etc.
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Instantaneous pressure relaxation Specific values for the pressure-
relaxation parameter rp are most often unknown. However, the assumption of
equal phasic pressures is widespread. Such situations can be catered for by set-
ting rp to a large value. However, instead of solving the system (2.100)–(2.102)
of ordinary differential equations, it is numerically more efficient to solve the
problem directly. After the hyperbolic operator has been applied, the volume
fraction is modified so as to render the two pressures equal, keeping αkρk
and αkρkuk constant. This leads to a second-degree equation with positive
solution

α` =
−ψ2 −

√
ψ2

2 − 4ψ1ψ3

2ψ1
, (2.103)

where

ψ1 = c2
`ρ

◦
` − c

2
gρ◦g, (2.104)

ψ2 = −c2
`
(
α`ρ` + ρ◦`

)
+ c2

g
(
−αgρg + ρ◦g

)
, (2.105)

and

ψ3 = c2
`α`ρ`. (2.106)

When solving the five-equation system, we will be employing instantaneous
pressure relaxation, unless otherwise stated. For the case of instantaneous
pressure relaxation, the volume-fraction equation (2.96) becomes singular. A
difference between the phasic pressures would then cause an immediate change
in the volume fraction so as to render the pressures equal. Since the rest of the
five-equation system is equal to the four-equation system, the solution of the
former should approach that of the latter. Indeed, it is hypothesized that the
five-equation system with instantaneous pressure relaxation can be regarded
as providing an alternative numerical method for solving the four-equation
two-fluid model. This hypothesis will be tested in Chapter 3.

2.5.4 Interfacial-pressure models

Several models for the interfacial pressure have been proposed in the literature.
However, their physical content is often debatable.

The model of Soo (1990, pages 319–321) reads

pk − pik = (1− Bk)pk, (2.107)
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where Bk is a ‘displacement factor’ close to unity, and it can be regarded as a
simplified model for forces causing dispersion of the volume-fraction profile,
e.g. in intermittent flow.

Saurel and Abgrall (1999) suggested taking

pk − pik = pk −
∑
∀k
αkpk (2.108)

in conjunction with their seven-equation model (that is, basically the five-
equation model with an energy equation for each phase in addition). This
seems like a reasonable first approximation. Unfortunately, it yields complex
eigenvalues in the four-equation model.

In the cathare code, the following expression was employed for non-
stratified flows (Bestion, 1990):

pk − pik = ∆pik = γ
αgα`ρgρ`
αgρ` +α`ρg

(ug −u`)2, (2.109)

where γ is a factor not appearing explicitly in Bestion (1990). It is remarkable
that the above expression was employed without physical argumentation, but
rather ‘simply to provide the hyperbolicity of the system’, which, indeed, it
normally does, at least when there is slip between the phases, that is, (ug −
u`)2 ≠ 0. On the other hand, the cathare expression has the redeeming
feature that it approaches zero in the case of stagnant fluids, which seems
reasonable when no surface-tension effects are accounted for. Because of this,
and because it is commonly cited, the cathare model will be our default
expression for the interfacial pressure difference, and we will take γ = 1.2,
following Evje and Flåtten (2003), unless otherwise stated.

2.5.5 Thermodynamics

In the present work, the energy equation is not considered, and the equation of
state (2.88) with constant coefficients is employed. We will now show that this
implies the assumption of both an isentropic and an isothermal flow.

First, (2.88) is derived assuming constant entropy. Consider the general
equation of state p = p(ρ, s), which means that

dp =
(
∂p
∂ρ

)
s

dρ +
(
∂p
∂s

)
ρ

ds. (2.110)

For constant entropy, ds = 0, we obtain

dp =
(
∂p
∂ρ

)
s

dρ = c2 dρ, (2.111)
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which can be integrated between the states (pref, ρref) and (p, ρ). If we assume
a constant speed of sound, this gives

p = c2[ρ − (ρref − pref/c2)], (2.112)

yielding the equation (2.88) if we define ρ◦ = ρref − pref/c2.
The fact that the equation (2.88) with constant c and ρ◦ also implies an

isothermal flow, can be seen by considering the relation

ds = cv
T

dT +
(
∂p
∂T

)
v

dv, (2.113)

which can be found in a thermodynamics textbook (e.g. Moran and Shapiro,
1993, Section 11.4). Herein, v is the specific volume, v = 1/ρ. Differentiating
(2.88) with respect to T while keeping ρ constant, yields 0. At the same time,
(2.88) has been derived under the assumption of constant entropy, or ds = 0.
Therefore, the equation (2.113) dictates dT = 0, or isothermal flow.

2.5.6 Drift-flux model

For several flow regimes, it is possible to correlate the relative velocity between
the phases, the slip velocity, as a function of the flow variables (see e.g. Zuber
and Findlay, 1965; Ishii, 1977; Hibiki and Ishii, 2002). This can be written as

ug −u` = Φ(αg, p,ug) (2.114)

where the function Φ is referred to as the slip relation, and p = αgpg +α`p`
is the mixture pressure. This a priori knowledge of the flow can be employed
to reduce the complexity of the model, and the result is called the drift-flux
model. It is most easily derived by considering the two-fluid model (2.84)–(2.85),
where, in the momentum equation, the interfacial pressure is assumed to be
the same for both phases, pig = pi` = pi. Then the momentum equation for
the gas is added to that of the liquid, to yield an equation for the mixture
momentum. Thus the drift-flux model consists of two continuity equations
and one momentum equation:

∂
∂t
(αgρg)+

∂
∂x
(αgρgug) = 0, (2.115)

∂
∂t
(α`ρ`)+

∂
∂x
(α`ρ`u`) = 0, (2.116)

∂
∂t
(αgρgug +α`ρ`u`)+

∂
∂x

(
αgρgu2

g +α`ρ`u2
` + p

)
= bg + b`. (2.117)
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It is also possible to formulate the drift-flux model in other ways. Ishii (1977),
for example, employed a mixture continuity equation, a continuity equation for
the dispersed phase, a mixture momentum equation, and a mixture enthalpy
equation.

Since the gradient of the volume fraction is equal and opposite for the two
phases, the pi∇α terms do not appear in the drift-flux model. Hence the
model can be written on conservation form, and the difficulties associated
with the discretization of the ‘non-conservative’ terms are avoided. Another
simplification occurs due to the cancellation of the interfacial momentum-
source terms mik. With a slight abuse of terms, we will in some instances add
a wall-friction source to the right-hand side of (2.117).

2.6 Well-posedness

2.6.1 Two-fluid model

The one-pressure ‘plain’ two-fluid model (with pk = pik in the equation (2.85))
has complex eigenvalues, resulting in an ill-posed initial-value problem, where
there is an unphysical and unbounded growth of small-wavelength disturbances.
Nevertheless, Stewart (1979) showed that numerical calculations can be well-
behaved provided there is sufficient momentum transfer between the phases,
and that the spatial grid is not too fine. However, the determination of which
grid is ‘not too fine’ is not necessarily obvious in complex calculations. The ill-
posedness will produce instabilities if not balanced by exchange terms (which
damp low frequencies) and by numerical diffusion (at high frequencies) (see
also Stewart and Wendroff, 1984).

The eigenvalues can be rendered real by adding differential terms to the
model. Several effects have been considered, such as surface tension (Ramshaw
and Trapp, 1978), interfacial pressure forces (Stuhmiller, 1977), virtual mass
(Lahey et al., 1980) and viscous stresses (Travis et al., 1976; Arai, 1980).

While forcing real characteristics by including differential terms seems more
satisfactory mathematically and numerically than relying on having a sufficient
amount of numerical diffusion, it is not automatically more physical. Drew
and Passman (1999, Chapter 20) noted that while it is true that a viscous
system (with other effects neglected) has real characteristics, in the limit of
vanishing viscosity, the complex characteristics of the inviscid system give rise
to small-scale instabilities which are artefacts of the model, and not physically
real. In this respect, Drew and Passman believed that the systematic inclusion
of all terms arising in the averaged momentum equations, each soundly based
on physics, will yield an appropriate working model, and that hope appears
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still to be the state of the art.

2.6.2 Drift-flux model

The drift-flux model (2.115)–(2.117) is less ‘problematic’ than the two-fluid
model with respect to well-posedness, and normally, no modification of the
model is necessary. Even if the Jacobian matrix (see Chapter 7) has complicated
expressions for its eigenvalues and eigenvectors, and cannot be shown to be
diagonalizable in general, practical calculations indicate that it is diagonalizable
for many relevant flow conditions.

2.7 Summary

In this section, we have reviewed the derivation of the multifluid model. Both
the volume-averaging and the ensemble-averaging approaches were employed,
and the resulting equations were seen to have the same form, even though the
interpretation differ. The ensemble-averaging approach seems to be preferable,
since it is more general. Among other things, it permits taking limits as the
volume approaches zero.

In this work, three two-phase flow models will be considered; the four-
equation model (Section 2.5.2 on page 29), the five-equation model (Section 2.5.3
on page 30), and the drift-flux model (Section 2.5.6 on page 35).





3 Roe-type methods for two-fluid models

Like a malign version of the
Cheshire cat, the rogue
eigenvector might seem to have
disappeared, but its hideous grin
stays and is bound to thwart our
endeavours.

A First Course in the Numerical
Analysis of Differential Equations

Arieh Iserles

Two strategies for the numerical resolution of a two-fluid model have been
investigated. Both methods employ a Roe-type scheme. The first method (Roe4)
solves the four-equation, one-pressure, isentropic two-fluid model directly.

The second strategy (Roe5) is to add an evolution equation for the volume
fraction. In the present case, that results in a five-equation two-pressure model,
where it is necessary to employ pressure relaxation to calculate the typical two-
phase problems that have been tested: The water faucet and three benchmark
shock tube problems known from the literature.

The numerical calculations showed that the Roe4 and Roe5 schemes converge
to the same solution when instantaneous pressure relaxation is employed in
the Roe5 scheme. This is true both with and without the use of high-resolution
flux-limiter functions. However, the Roe5 scheme was found to be significantly
more diffusive than the Roe4 scheme. The diffusion is a strong function of the
chosen time-step length, the grid size, whether a limiter function is employed
or not, and also the liquid speed of sound.

As the pressure-relaxation parameter in the Roe5 scheme was increased,
the solution gradually approached that obtained using instantaneous pressure
relaxation.

Furthermore, the results indicate that the approach of two pressures and
instantaneous pressure relaxation does not provide an easy way to overcome
the problem of complex eigenvalues in the one-pressure two-fluid model.

A shortened version of this chapter has been submitted for publication as an
article (Munkejord, 2005a).

39
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3.1 Introduction

For the numerical solution of flow models, the approximate Riemann solver of
Roe (1981) is an attractive candidate, since it provides an upwind resolution of
all wave phenomena inherent in the models, and as it requires only the solution
of a linear Riemann problem at each cell interface. Among the problems
encountered for the two-fluid model, is the complicated eigenstructure, as well
as the appearance of non-conservative terms (Toumi, 1996).

Sainsaulieu (1995) introduced a Roe-type Riemann solver for the case of
incompressible liquid droplets suspended in a gas, that is, for small liquid
volume fractions. More general configurations were considered by Toumi
(1996), and a Roe-type method for the isentropic two-fluid model was presented
by Toumi and Kumbaro (1996). However, also in the latter works, the liquid
density was assumed to be constant. That assumption was not used in the
method by Evje and Flåtten (2003).

A different approach has been to consider two-pressure models, whose
mathematical properties have been found preferable (Ransom and Hicks, 1984).
On the other hand, for many cases, the latter kind of methods needs a pressure-
relaxation procedure.

Saurel and Abgrall (1999) presented a two-velocity two-pressure two-phase
model of seven equations, where pressure and / or velocity relaxation could be
performed after the hyperbolic time step. The model can be thought of as an
extension of that of Baer and Nunziato (1986). It was expanded to several space
dimensions by Saurel and LeMetayer (2001), and it was stated to be suitable
for compressible multiphase flows with interfaces, shocks, detonation waves
and cavitation. Murrone and Guillard (2005) discussed a five-equation diffuse
interface model where the two phases had common pressures and velocities.
Different pressure-relaxation procedures were tested by Lallemand et al. (2005).

The approximate Riemann solver employed by Saurel and Abgrall (1999) was
a modified Harten, Lax and van Leer (hll) scheme. Other authors have later
presented similar methods using other solvers. Niu (2001) applied a modified
advection upstream splitting method (ausmd) and solved the seven-equation
model in one and two dimensions, also adding a k–ε turbulence model. A
Roe-type scheme for the seven-equation model was presented by Karni et al.
(2004).

In this work, we perform a direct comparison between a one-pressure four-
equation approach, and a two-pressure five-equation approach, employing a
Roe-type method in each case. A priori, both strategies have advantages. For
the five-equation system, simple, analytical expressions for the eigenvalues and
eigenvectors are available. On the other hand, the four-equation system has
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one less equation to be solved. Only the five-equation system can be used if
the physical system to be modelled has two independent pressures. Here we
explore the effect of varying pressure-relaxation parameter in the five-equation
system.

In Section 3.2, the equation systems are written in characteristic form, and
the Roe matrices are detailed. The Roe method is described in Section 3.3. In
Section 3.4, numerical tests are performed. Finally, in Section 3.5, the main
conclusions are drawn.

3.2 Characteristic form of the basic equations

To be able to solve the system of transport equations using well-established
numerical methods, we would prefer to write it on conservation form:

∂q
∂t
+ ∂f (q)

∂x
= s(q), (3.1)

where q is the vector of composite variables (see the equation (3.32)), f (q)
is the corresponding flux function, and s(q) is the vector of source terms.
Unfortunately, this cannot be done, because of the ∇αk terms appearing in the
momentum equation (2.85). One way around this would be to discretize the
∇αk terms using central differences. Another way is to use a Roe solver, to be
described later.

First, it is necessary to devote some attention to the characteristic form of
the equation system. We seek to write this system on the following quasi-linear
form:

∂q
∂t
+ A(q)

∂q
∂x

= s(q). (3.2)

However, for the multifluid equations, it is tricky to derive the matrix A from
the governing equations presented in Section 2.5 on page 28. On the other hand,
it is straightforward to write the equation system (2.84)–(2.85) on quasi-linear
form using the vector of primitive variables v (see the equation (3.11)):

∂v
∂t
+ B(v)

∂v
∂x

= ς(v). (3.3)

From the form (3.3), we can calculate the matrix A in the following manner:
Define the transformation matrix J as

J = ∂q
∂v
, (3.4)
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whence

J−1 = ∂v
∂q
. (3.5)

Using the chain rule on the equation (3.3), we get

∂v
∂q
∂q
∂t
+ B

∂v
∂q
∂q
∂x

= ς, (3.6)

or

J−1 ∂q
∂t
+ BJ−1 ∂q

∂x
= ς, (3.7)

which implies that

A = JBJ−1, (3.8)

and

s = Jς. (3.9)

In the following subsections, the matrices A and B will be derived for the
four- and the five-equation systems.

3.2.1 Characteristic form of the four-equation system

To obtain the coefficient matrix B(v), we first seek to write the four-equation
system (see Section 2.5.2 on page 29) on the form

C
∂v
∂t
+D

∂v
∂x

= e, (3.10)

where v is the vector containing the chosen linearly independent primitive
variables:

v =
[
αg pg ug u`

]T
, (3.11)

This enables us to calculate

B = C−1D, (3.12)

and

ς = C−1e. (3.13)

In the following subsections, we will find expressions for C , D and e, and hence
for B and ς.
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Continuity equation

By using the product rule of differentiation, we can write the continuity equa-
tion (2.84) as

αk
∂ρk
∂t

+ ρk
∂αk
∂t

+αkρk
∂uk
∂x

+αkuk
∂ρk
∂x

+ ρkuk
∂αk
∂x

= 0. (3.14)

The equation of state (2.88) implies that

∂ρk
∂pk

= 1

c2
k
. (3.15)

This gives:

αk
1

c2
k

∂pk
∂t

+ ρk
∂αk
∂t

+αkρk
∂uk
∂x

+αkuk
1

c2
k

∂pk
∂x

+ ρkuk
∂αk
∂x

= 0. (3.16)

Substituting k with g, we get the desired continuity equation for the gas:

ρg
∂αg

∂t
+αg

1

c2
g

∂pg

∂t
+ ρgug

∂αg

∂x
+αgug

1

c2
g

∂pg

∂x
+αgρg

∂ug

∂x
= 0, (3.17)

and since the equation (2.89) implies that

∂pg

∂x
= ∂p`
∂x
, (3.18)

where ` denotes the liquid phase, and, since

∂αg

∂x
= −∂α`

∂x
, (3.19)

we can write down the following continuity equation for the liquid:

−ρ`
∂αg

∂t
+α`

1

c2
`

∂pg

∂t
− ρ`u`

∂αg

∂x
+α`u`

1

c2
`

∂pg

∂x
+α`ρ`

∂u`
∂x

= 0. (3.20)

Momentum equation

The momentum equation (2.85) is manipulated in a similar manner as the
continuity equation. By using the product rule of differentiation, the relations
between the gradients of the gas and liquid volume fractions and ditto for the
pressures, as well as by employing the continuity equation to cancel the terms

uk
∂
∂t
(αkρk)+uk

∂
∂x
(αkρkuk) = 0, (3.21)
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we get for the gas:

αgρg
∂ug

∂t
+ (pg − pig)

∂αg

∂x
+αg

∂pg

∂x
+αgρgug

∂ug

∂x
= αgρggx, (3.22)

and for the liquid:

α`ρ`
∂u`
∂t

− (p` − pi`)
∂αg

∂x
+α`

∂pg

∂x
+α`ρ`u`

∂u`
∂x

= α`ρ`gx. (3.23)

Results

The results from the preceding subsections imply that

C =


ρg αg/c2

g 0 0
−ρ` α`/c2

` 0 0
0 0 αgρg 0
0 0 0 α`ρ`

 , (3.24)

and

D =


ρgug αgug/c2

g αgρg 0
−ρ`u` α`u`/c2

` 0 α`ρ`
(pg − pi) αg αgρgug 0
−(p` − pi) α` 0 α`ρ`u`

 . (3.25)

Calculating C−1, we obtain the coefficient matrix

B(v) =



ψ
κ

α`αg(ug −u`)
c2

gc2
`κ

α`αgρg

c2
`κ

−αgα`ρ`
c2

gκ
ρ`ρg(ug −u`)

κ
ζ
κ

ρ`αgρg

κ
ρgα`ρ`

κ
∆pig

αgρg

1
ρg

ug 0

−∆pi`
α`ρ`

1
ρ`

0 u`


, (3.26)

with

ψ = α`ρgug/c2
` +αgρ`u`/c2

g , (3.27)

ζ = αgρ`ug/c2
g +α`ρgu`/c2

` , (3.28)

κ = α`ρg/c2
` + ρ`αg/c2

g , (3.29)

∆pik = pk − pik, (3.30)
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and the source-term vector

ς =
[
0 0 gx gx

]T
. (3.31)

The vector of composite variables is

q =
[
αgρg α`ρ` αgρgug α`ρ`u`

]T
. (3.32)

Therefore, the transformation matrix J becomes

J =


ρg αg/c2

g 0 0

−ρ` α`/c2
` 0 0

ρgug αgug/c2
g αgρg 0

−ρ`u` α`u`/c2
` 0 α`ρ`

 , (3.33)

and hence one can calculate the coefficient matrix:

A(q) =



0 0 1 0
0 0 0 1

αgρ` +∆pigα`/c2
`

κ
−u2

g

αgρg −∆pigαg/c2
g

κ
2ug 0

α`ρ` +∆pi`α`/c2
`

κ
α`ρg +∆pi`αg/c2

g

κ
−u2

` 0 2u`

 .
(3.34)

This could not be shown to be the Jacobian such that A = ∂f/∂q, since the flux
function f has not been found. Hence, the standard numerical methods for
conservation laws cannot necessarily be straightforwardly applied for solving
the present equation system.

The vector of source terms becomes

s =
[
0 0 αgρggx α`ρ`gx

]T
. (3.35)

The matrices A and B have the same characteristic polynomial and hence
the same eigenvalues. However, it is unfeasible to derive exact closed-form
expressions for them. The approximate expressions of Evje and Flåtten (2003)
are given in Appendix A on page 251.

3.2.2 Characteristic form of the five-equation system

In the present subsection, we repeat the analysis of subsection 3.2.1 on page 42
for the five-equation system (see Section 2.5.3 on page 30). Note that we re-use
the notation of that section, in order not to introduce too many symbols.
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The five-equation system can be written directly in the form (3.3), using the
following vector of linearly independent variables:

v =
[
αg ρg ug ρ` u`

]T
, (3.36)

The volume-fraction equation (2.93) is already on the desired form. The
continuity equation (2.84) can be rewritten by using the product rule of differ-
entiation and inserting the equation (2.93), and the result is:

∂ρk
∂t

+ ρk
αk
(uk −ui)

∂αk
∂x

+uk
∂ρk
∂x

+ ρk
∂uk
∂x

= 0. (3.37)

The momentum equation (2.85) can then be written in the characteristic form
by inserting c2

k from equation (3.15), using the product rule of differentiation
and by using the equation (2.84):

∂uk
∂t

+ ∆pik
αkρk

∂αk
∂x

+uk
∂uk
∂x

+
c2
k
ρk
∂ρk
∂x

= 0. (3.38)

System matrix

Noting that ∂αg/∂x = −∂α`/∂x , we can write down the coefficient matrix:

B(v) =



ui 0 0 0 0
ρg

αg
(ug −ui) ug ρg 0 0

∆pig

αgρg

c2
g

ρg
ug 0 0

−ρ`
α`
(u` −ui) 0 0 u` ρ`

−∆pi`
α`ρ`

0 0
c2
`
ρ`

u`


, (3.39)

and the vector of source terms

ς =
[
0 0 gx 0 gx

]T
. (3.40)

The vector of composite variables is

q =
[
αg αgρg αgρgug α`ρ` α`ρ`u`

]T
, (3.41)
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and hence the transformation matrix J = ∂q/∂v for the five-equation system is

J =


1 0 0 0 0
ρg αg 0 0 0
ρgug αgug αgρg 0 0
−ρ` 0 0 α` 0
−ρ`u` 0 0 α`u` α`ρ`

 , (3.42)

whence the coefficient matrix for the composite-variable system is found to be

A(q) =


ui 0 0 0 0
0 0 1 0 0

∆pig − ρgc2
g c2

g −u2
g 2ug 0 0

0 0 0 0 1
−∆pi` + ρ`c2

` 0 0 c2
` −u

2
` 2u`

 , (3.43)

with the source-term vector

s(q) =
[
0 0 αgρggx 0 α`ρ`gx

]T
. (3.44)

Eigenstructure and hyperbolicity

The matrices A and B have one advantage over their counterparts in Sec-
tion 3.2.1 on page 44 in that their eigenvalues are available as simple analytical
expressions:

λ =
[
ui ug − cg ug + cg u` − c` u` + c`

]T
. (3.45)

These eigenvalues are always real, and moreover, they are mostly distinct,
except for the ‘transonic difficulty’ when one of the phasic velocities passes
through its phasic speed of sound. The eigenvector matrix, R, with the right
eigenvectors ri of A as its columns, was found as

R =



1 0 0 0 0

−
(−∆pig + ρgc2

g)
(ug −ui)2 − c2

g
1 1 0 0

−
(−∆pig + ρgc2

g)ui

(ug −ui)2 − c2
g

λ2 λ3 0 0

(−∆pi` + ρ`c2
`)

(u` −ui)2 − c2
`

0 0 1 1

(−∆pi` + ρ`c2
`)ui

(u` −ui)2 − c2
`

0 0 λ4 λ5



, (3.46)
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where λi is element i of the vector λ in equation (3.45). Further, the eigenvector
ri corresponds to the eigenvalue λi.

The matrix R−1, with the left eigenvectors lTj of A as its rows, is given by:

R−1 =



1 0 0 0 0

1
2

(−∆pig + ρgc2
g)

(λ2 −ui)cg

1
2
λ3

cg
− 1

2cg
0 0

−1
2

(−∆pig + ρgc2
g)

(λ3 −ui)cg
−1

2
λ2

cg

1
2cg

0 0

−1
2

(−∆pi` + ρ`c2
`)

(λ4 −ui)c`
0 0

1
2
λ5

c`
− 1

2c`
1
2

(−∆pi` + ρ`c2
`)

(λ5 −ui)c`
0 0 −1

2
λ4

c`
1

2c`



. (3.47)

Since here the left eigenvectors are taken from from R−1, the left and the right
eigenvectors are orthonormal: lTi rj = δij .

For the five-equation system to be hyperbolic, the matrix A must be diag-
onalizable with real eigenvalues. Therefore, the right eigenvectors ri must be
linearly independent, and it is easy to show that r2, r3, r4 and r5 are so. r1,
on the other hand, needs special attention. Ransom and Hicks (1984) studied
a five-equation two-pressure two-fluid model whose coefficient matrix was
mathematically analogous to the one considered here. They showed that the
hyperbolicity depends on the quantities

βk = −∆pik + ρkc2
k , (3.48)

and
γk = (uk −ui)2 − c2

k . (3.49)

There are four cases, concerning the eigenvector r1 associated with λ1 = ui:

1. When γg ≠ 0 and γ` ≠ 0, then r1 as given by the equation (3.46) is linearly
independent of the other eigenvectors for all values of βg and β`.

2. When γg = 0 and γ` ≠ 0, then there exists a linearly independent r1 if
and only if βg = 0. It is given by

r1 =
[

1 0 0
(−∆pi` + ρ`c2

`)
(u` −ui)2 − c2

`

(−∆pi` + ρ`c2
`)ui

(u` −ui)2 − c2
`

]T
. (3.50)
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3. When γg ≠ 0 and γ` = 0, then there exists a linearly independent r1 if
and only if β` = 0. It is given by

r1 =
[

1 −
(−∆pig + ρgc2

g)
(ug −ui)2 − c2

g
−
(−∆pig + ρgc2

g)ui

(ug −ui)2 − c2
g

0 0

]T
. (3.51)

4. When γg = 0 and γ` = 0, then there exists a linearly independent r1 if
and only if βg = 0 and β` = 0. It is given by

r1 =
[
1 0 0 0 0

]T
. (3.52)

Here we mainly consider low-speed flows, and the restriction uk ± ck ≠ ui is
not thought to be of very much concern. Thus we find that the five-equation
system is not quite unconditionally hyperbolic, but it is much more so than the
four-equation system.

It is interesting to note that for the five-equation system, the interfacial
pressure difference ∆pik may very well be equal to zero. For the four-equation
system, on the other hand, this quantity must not be too small. This can be
shown by numerical experiments or analytical considerations (see e.g. Ramshaw
and Trapp, 1978). As a result of this, several researchers have dedicated
their efforts to inventing large-enough expressions for the interfacial pressure
difference, leading, conveniently, to a diagonalizable A. One example is Chung
et al. (2002).

Since the relaxation terms in (2.96)–(2.98) do not contain derivatives of q, the
hyperbolicity of the five-equation system is not influenced by them. However,
the case of instantaneous pressure relaxation might be interesting to study
mathematically in more detail, but that is outside the scope of the present
work.

3.3 Numerical algorithm and Roe solver

In this section, a Roe-type method for the multiphase equations will be de-
scribed. For basic notions about hyperbolic conservation laws and numerical
methods to solve them using Riemann solvers, reference is made to the books
of LeVeque (2002) and Toro (1999).
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3.3.1 Framework

A high-resolution extension of Godunov’s method can be written as (LeVeque,
2002, Section 15.4)

Qn+1
i =Qni −

∆t
∆x

(
A−∆Qi+1/2 +A+∆Qi−1/2

)
− ∆t
∆x

(
F̃i+1/2 − F̃i−1/2

)
, (3.53)

where Qni denotes the numerical approximation to the cell average of the
vector of unknowns q(x(i), tn), that is, in control volume i at time step n.
Quantities without a time index are evaluated at time step n. The symbol
A−∆Qi+1/2 denotes the net effect of all left-going waves at xi+1/2, that is, at
the control-volume boundary midway between xi and xi+1, while A+∆Qi−1/2
measures the net effect of all right-going waves at xi−1/2. The waves and wave
speeds from the approximate Riemann solution are used to define

A−∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)−Wp
i−1/2,

A+∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)+Wp
i−1/2,

(3.54)

where Wp
i−1/2 is the pth wave arising in the solution to the Riemann problem

at xi−1/2, that is, it is a vector with one component for each equation. m is the
number of waves, and since we will be using a linearized Riemann solver, it is
equal to the number of equations. spi−1/2 is the wave speed of the pth wave,
and (

spi−1/2
)+ = max(spi−1/2,0),

(
spi−1/2

)− = min(spi−1/2,0), (3.55)

which can also be written as(
spi−1/2

)± = 1
2

(
spi−1/2 ±

∣∣spi−1/2
∣∣). (3.56)

The flux vector F̃i−1/2 is what LeVeque calls the high-resolution correction. It
is given by

F̃i−1/2 =
1
2

m∑
p=1

∣∣spi−1/2
∣∣(1− ∆t

∆x
∣∣spi−1/2

∣∣)W̃p
i−1/2, (3.57)

where W̃p
i−1/2 is a limited version of the wave Wp

i−1/2 (see Section 3.3.4 on
page 56).
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It should be noted that (3.54) leads to a conservative method only if the
condition

f (Qi)− f (Qi−1) =
m∑
p=1

spi−1/2W
p
i−1/2 (3.58)

is satisfied (LeVeque, 2002, Section 15.3). This is precisely what the Roe method
does.

3.3.2 Roe linearization

The Roe (1981) linearization of conservation laws is well explained by LeVeque
(2002, Section 15.3). Here some of the key points are repeated, after which the
multifluid extension is presented.

Conservation law basics

To define an approximate Riemann solution, the nonlinear problem

∂q
∂t
+ ∂
∂x
f (q) = 0 (3.59)

is replaced by a linearized problem defined locally at each cell interface;

∂ q̂
∂t
+ Âi−1/2

∂ q̂
∂x

= 0. (3.60)

The matrix Âi−1/2 is an approximation to f ′(q), valid in a neighbourhood of
the data Qi−1 and Qi, and it is called the Roe matrix. It should satisfy the
following conditions:

1. Âi−1/2 is diagonalizable with real eigenvalues,

2. Âi−1/2 → f ′(q̄) as Qi−1,Qi → q̄,

3. Âi−1/2(Qi −Qi−1) = f (Qi)− f (Qi−1).

Condition 1 ensures that (3.60) is hyperbolic, condition 2 makes it consistent
with the original conservation law (3.59), and condition 3 guarantees that
(3.54) yields a conservative method. Hence the Lax–Wendroff theorem (given
in LeVeque, 2002, Section 12.10) states that the method, if it converges, will
converge to a weak solution of the conservation law (3.59).

Moreover, the latter condition is derived from imposing the property on
Âi−1/2 that if Qi−1 and Qi are connected by a single wave Wp =Qi −Qi−1 in
the true Riemann solution, then Wp should also be an eigenvector of Âi−1/2:
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If Qi−1 and Qi are connected by a single wave, then the Rankine-Hugoniot
condition (that is, conservation across a discontinuity) gives:

f (Qi)− f (Qi−1) = s(Qi −Qi−1), (3.61)

where s is the wave speed. If this is also to be a solution to the linearized
Riemann problem, then we must have

Âi−1/2(Qi −Qi−1) = s(Qi −Qi−1), (3.62)

which shows that the wave Wp should be an eigenvector of Âi−1/2. Combining
the two above equations gives condition 3.

For the Roe solver, we have the interpretation that

A±∆Qi−1/2 = Â±i−1/2(Qi −Qi−1). (3.63)

Herein,
Â±i−1/2 = R̂i−1/2Λ̂±i−1/2R̂−1

i−1/2, (3.64)

where R̂i−1/2 is the matrix having the right eigenvectors r̂i−1/2 of Âi−1/2 as
its columns, and Λ̂+i−1/2 and Λ̂−i−1/2 are the diagonal matrices containing the

positive and negative eigenvalues, respectively, of Âi−1/2.
The approximate Riemann solution consists of m waves proportional to the

eigenvectors r̂i−1/2 of Âi−1/2, propagating with speeds

spi−1/2 = λ̂
p
i−1/2 (3.65)

given by the eigenvalues. The proportionality coefficients βpi−1/2 can be found
by solving the linear system

Qi −Qi−1 =
m∑
p=1

βpi−1/2r̂
p
i−1/2, (3.66)

and βpi−1/2 can be interpreted as wave strengths (Toro, 1999, Section 2.3.3). The
solution of the equation (3.66) is

βi−1/2 = R̂−1
i−1/2(Qi −Qi−1), (3.67)

whence the waves can be found as

Wp
i−1/2 = β

p
i−1/2r̂

p
i−1/2. (3.68)

One disadvantage of using a linearized Riemann solver is that the approx-
imate Riemann solution consists only of discontinuities, with no rarefaction
waves (LeVeque, 2002, Section 15.3.5). This may require the use of an entropy
fix, see Section 3.3.3 on page 55. For the result presented here, no entropy fix
is employed unless otherwise stated.
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Multifluid extension

Given the definitions of the previous subsection, the remaining chief difficulty
is actually finding the Roe matrix Âi−1/2. It is done by finding a special average
Q̂i−1/2 of Qi−1 and Qi such that

Âi−1/2 = f ′(Q̂i−1/2) (3.69)

has the desired properties. Roe (1981) devised a method for hyperbolic conser-
vation laws (3.59), which is explained by LeVeque (2002, Section 15.3).

The multifluid equations pose a problem, since they cannot be written in
the conservation form (3.59). Nevertheless, a Roe-type method was derived
by Toumi (1996) for the multifluid equations (including the energy equation),
and a version for the isentropic multifluid equations was presented by Toumi
and Kumbaro (1996). In those articles, the liquid density was assumed to be
constant. Under the additional assumption of smooth solutions, the equation
system could be written in conservation form, and a Roe matrix was derived,
using some manipulations.

In the present work, we do not wish to make the above-mentioned assump-
tions. Hence we follow the approach of Evje and Flåtten (2003), who simply
opted at showing that their candidate for a Roe matrix fulfilled the ‘weak’
conditions of Toumi and Kumbaro (1996). Here these conditions are given as
stated by Evje and Flåtten (2003):

1. Âi−1/2 is diagonalizable with real eigenvalues,

2. Âi−1/2 → A(q̄) smoothly as Qi−1,Qi → q̄,

3. Âi−1/2(Qi −Qi−1) = ∆F(Qi−1,Qi).

The two first conditions are relatively straightforward. The last one involves
some trickery. Herein,

∆F(Qi−1,Qi) =


{αgρgug}
{α`ρ`u`}

{αgρgu2
g} + {αg∆pig} +αg{pg −∆pig}

{α`ρ`u2
`} + {α`∆pi`} +α`{p` −∆pi`}

 , (3.70)

where
{x} = xi − xi−1. (3.71)

The definition of ∆F(Qi−1,Qi) is motivated by regrouping terms in the
momentum equation (2.85) on page 29, to get

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k + (pk − pik)αk
)
+αk

∂pik
∂x

= αkρkgx. (3.72)
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In the presence of discontinuities, the equations must be put in integral form
in order for a solution to exist. In the momentum equation cast as above, the
αk∂pik/∂x term poses problems, for the integral∫ q2

q1

αk
∂pik
∂ξ

dξ (3.73)

is dependent on the path ξ(q) between the two states q1 and q2. Toumi and
Kumbaro (1996) suggested writing such integrals as∫ q2

q1

αk
∂pik
∂ξ

dξ = αk
(
αk,1, αk,2

)(
pik,2 − pik,1

)
, (3.74)

defining the path ξ implicitly through the choice of an averaging function
αk(αk,1, αk,2). The expression derived by Toumi and Kumbaro (1996) was,
somewhat inconveniently, not symmetric with respect to phasic indices. Evje
and Flåtten (2003) proposed

αk
(
(αk,1, αk,2

)
= 1

2

(
(αk,1 +αk,2

)
(3.75)

instead, which is adopted here. Evje and Flåtten (2003) used an average state
Q̂i−1/2 given by the following expressions, where the phasic indices have been
dropped:

û = ui−1
√
(αρ)i−1 +ui

√
(αρ)i√

(αρ)i−1 +
√
(αρ)i

,

α̂ = 1
2
(αi−1 +αi),

ρ̂ = 1
2
(ρi−1 + ρi),

∆̂p = 1
2
(∆pi−1 +∆pi),

(3.76)

where ∆p is the interfacial pressure difference (3.30) on page 44. Putting all this
into the coefficient matrix (3.34), A(Q̂) = Â(Qi−1,Qi), using the equation of
state (2.88) to remove the densities, and assuming that the phasic pressures are
different only by a constant, one can confirm that condition 3 on the previous
page is satisfied.

Considerations for the five-equation system

The verification of condition 3 on the preceding page was performed for the
four-equation system. However, the same exercise can be performed for the
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five-equation system, that is, the coefficient matrix (3.43). In doing that, it is
necessary to define the average interfacial velocity. Here, similarly to what was
done in the equation (3.75), we took

uik =
1
2
(uik,1 +uik,2), (3.77)

and, in addition to equation (3.76), we set

ûi =
1
2
(ui,i−1 +ui,i). (3.78)

Contrary to the case for the four-equation system, here the phasic pressures
can be linearly independent.

Karni et al. (2004) presented results for a Roe-type scheme for a seven-
equation system, that is, without assuming isentropic flow, contrary to what
is done the present work. Karni et al. (2004) did not use quite the same Roe
average as the one employed here (equations (3.76) and (3.78)). In particular,
they used the average α̂ρi =

√
(αρ)i−1(αρ)i.

3.3.3 Sonic entropy fix

For transonic rarefactions, that is, when an eigenvalue λp is negative to the
left of the p-wave, Wp, and positive to the right, a scheme using a linearized
Riemann solver may converge to an unphysical solution, violating the entropy
condition (LeVeque, 2002, Section 15.3.5).

Several remedies are conceivable. Here we will outline two entropy fixes, as
presented by LeVeque.

In the Roe scheme, the numerical viscosity is proportional to the eigenvalues.
Hence, when an eigenvalue is close to zero, the amount of numerical viscosity
might be too small to prevent an entropy-condition violation.

Harten’s entropy fix

Harten’s entropy fix (Harten, 1983) can be regarded as an addition of numerical
viscosity to the pth field if the eigenvalue λ̂pi−1/2 is too close to zero. In the
present framework, this is achieved by redefining the functions (·)+ and (·)−
employed for the wave speeds in the equation (3.53) (but not those in (3.57)):

(λ)− ≡ 1
2
[λ−φδ(λ)],

(λ)+ ≡ 1
2
[λ+φδ(λ)].

(3.79)
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Herein, φδ(λ) is a smoothed version of the absolute-value function that is
always positive, staying above some value δ/2:

φδ(λ) =

|λ| if |λ| ≥ δ,
(λ2 + δ2)/(2δ) if |λ| < δ.

(3.80)

An advantage of this approach is its easy implementation. A disadvantage, on
the other hand, is that the parameter δ must typically be tuned to the problem.

Note that the definition (3.79) agrees with the usual one (3.56) when φδ(λ) =
|λ|.

The LLF entropy fix

The local Lax–Friedrichs method (llf) can also be used as an approach for
adding more numerical viscosity. As for Harten’s entropy fix, it can be viewed
as a redefinition of (λ)± to be employed in the equation (3.53):

(
λ̂pi−1/2

)± ≡ 1
2

[
λ̂pi−1/2 ±max

(∣∣λpi−1

∣∣,∣∣λpi ∣∣)]. (3.81)

Here, λpi−1 and λpi are the pth eigenvalues evaluated at the states Qi−1 and Qi,
respectively.

An advantage of the llf approach is that it contains no parameters to be
tuned. However, it has the disadvantage of adding numerical viscosity to all
fields, whether or not there is a transonic rarefaction. Nevertheless, whenever
the solution is smooth, we have λ̂pi−1/2 ≈ λ

p
i−1 ≈ λ

p
i , and so (3.81) is not far

from the standard definition (3.56).
From a numerical point of view, the llf entropy fix has another disadvantage:

It involves additional evaluations of the eigenvalues of the coefficient matrix,
something which may be computationally expensive.

3.3.4 High-resolution terms

The high-resolution correction terms defined by the equation (3.57) is a way of
obtaining good accuracy while avoiding to introduce spurious oscillations: The
spatial discretization approaches second order when the solution is smooth,
but it becomes first order at steep gradients.

As stated in Section 3.3.2, the wave speeds spi−1/2 are taken to be the eigenval-

ues of the Roe matrix. The limited waves W̃p
i−1/2 are found by comparing the

wave Wp
i−1/2 with the upwind wave Wp

I−1/2 (see LeVeque, 2002, Section 9.13),
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where

I =

i− 1 if spi−1/2 ≥ 0,
i+ 1 if spi−1/2 < 0.

(3.82)

We write
W̃p
i−1/2 = φ(θ

p
i−1/2)W

p
i−1/2, (3.83)

where φ is a flux-limiter function, and θpi−1/2 is a measure of the smoothness
of the pth characteristic component of the solution:

θpi−1/2 =
Wp
I−1/2 ·W

p
i−1/2

Wp
i−1/2 ·W

p
i−1/2

, (3.84)

where · denotes the scalar product in Rm. LeVeque (2002, Section 6.11) presents
various flux-limiter functions that can be used together with the above-defined
smoothness measure θpi−1/2:

Linear methods

The upwind method is first-order, while the Lax–Wendroff, Beam–Warming, and
Fromm methods are second-order.

First-order upwind : φ(θ) = 0,
Lax–Wendroff : φ(θ) = 1,

Beam–Warming : φ(θ) = θ,

Fromm : φ(θ) = 1
2
(1+ θ).

(3.85a)

High-resolution limiters

The high-resolution limiters produce methods that are formally first-order, but
they approach second-order methods for smooth solutions.

minmod : φ(θ) = minmod(1, θ),

van Leer : φ(θ) = θ + |θ|
1+ |θ| .

mc : φ(θ) = max(0,min((1+ θ)/2,2,2θ)),
superbee : φ(θ) = max(0,min(1,2θ),min(2, θ)),

(3.85b)

The minmod function is defined by

minmod(a, b) =


0 if ab ≤ 0,
a if |a| < |b| and ab > 0,
b if |a| ≥ |b| and ab > 0.

(3.86)
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The mc (monotonized central-difference) limiter appears to be a good default
choice for a wide class of problems (LeVeque, 2002, Section 6.10). One might
choose a different limiter function for each of the m waves. Some experiments
were made in this respect, without obtaining better results.

3.4 Numerical tests

In this section, we analyse the Roe-type scheme for the four-equation sys-
tem (Roe4), and for the five-equation system (Roe5) by performing numerical
simulations.

For the numerical results presented in this chapter, simple boundary con-
ditions were used. The variables not being set as boundary conditions, were
extrapolated to the boundaries from the inner domain.

3.4.1 Water faucet test case

The water faucet case is described in Ransom (1987), and it has become a
common test case for one-dimensional two-fluid models.

Problem description

The problem consists of a vertical tube 12 m in length and 1 m in diameter.
Here, of course, it is represented one-dimensionally. A schematic is shown
in Figure 3.1 on the next page. The top has a fixed volumetric inflow rate of
water at a velocity of u◦` = 10 m/s, a liquid volume fraction of α◦` = 0.8 and
a temperature of T = 50 °C. The bottom of the tube is open to the ambient
pressure, p = 1.0 · 105 Pa, and the top of the tube is closed to vapour flow.

Initially, the flow is uniform throughout the computational domain, and the
initial conditions are equal to the inlet conditions. A thinning of the liquid jet
will take place due to the effect of gravity.

Analytical expressions for volume fraction and velocity

Ransom (1987) stated that when pressure variation in the vapour phase is
ignored, the transient problem has a simple analytical solution. Nevertheless,
this solution was not provided. Coquel et al. (1997) provided the solution for
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(a) Initial
state

(b) Transi-
ent

(c) Steady
state

Figure 3.1: Sketch of the water faucet test case. In the transient phase, a
volume-fraction discontinuity propagates towards the exit.

the gas volume-fraction profile:

αg(x, t) =


1−

α◦`u
◦
`√

2gx + (u◦`)2
if x ≤ u◦`t +

1
2gt

2,

1−α◦` otherwise,
(3.87)

and the expression for the liquid velocity is given by Evje and Flåtten (2003):

u`(x, t) =


√
(u◦`)

2 + 2gx if x ≤ u◦`t +
1
2gt

2,
u◦` + gt otherwise.

(3.88)

Trapp and Riemke (1986) partially described the solution procedure, which we
give here for completeness.

One can arrive at the above expressions by a simplified analysis considering
the liquid alone.1 That is, the analytical solution is not a solution of the full
multifluid equations, but it is assumed that it is very close in this case.

Any pressure variation in the gas, and consequently in the liquid, is ignored.
Hence, the density is constant. We first consider the stationary part of the
solution. When the transient terms are deleted, the continuity and momentum
equations reduce to

∂
∂x
(ρu) = 0, (3.89)

1Therefore, phasic indices are dropped henceforth in this subsection.
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and
∂
∂x
(ρu2) = ρg, (3.90)

respectively. Straightforward integration of the momentum equation yields

u(x) =
√

2gx + (u◦)2 (3.91)

for the velocity. The expression for the liquid volume fraction then follows
from continuity:

α◦ρu◦ = α(x)ρu(x) (3.92)

or

α(x) = α
◦u◦

u(x)
. (3.93)

A liquid particle leaving the faucet at t = 0 will mark the border between
the initial condition and the following transient solution. Since the pressure is
constant, the speed of this particle will be that of a particle falling under the
influence of gravity. Newton’s second law gives

mg =mdu
dt

(3.94)

and integrated,

u(t) = gt +u◦. (3.95)

The position of the article is, of course, given by

dx
dt

= u(t), (3.96)

inserting (3.95) and integrating gives

x(t) = gt2 +u◦t + x◦, (3.97)

and since x◦ = 0,

x(t) = u◦t + gt2. (3.98)

The above considerations lead to the equations (3.87) and (3.88).
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Grid convergence and limiter functions

The grid convergence of the Roe4 method was tested on numerical grids ranging
from 51 to 1601 grid points, using the different limiter functions described in
Section 3.3.4 on page 56. The time step was set to ∆t = 1.97 · 10−5 s, which
corresponds to a Courant–Friedrichs–Lewy cfl number of C = 0.9 for the finest
grid. For all the calculations presented in the present section, the cathare
model (2.109) was used for the interfacial pressure difference.

No limiter First, liquid volume-fraction profiles are presented at time t =
0.6 s in Figure 3.2 on the next page. In Figure 3.2(a), no limiter function was
employed; this is called the first-order (upwind) method2. It is seen that the
convergence was steady, but slow. In fact, the convergence was less than first
order, even if the scheme is formally first-order accurate in space. This is due
to the discontinuity in the solution. For discontinuous solutions, the smooth-
solution order of the scheme can normally not be attained (see LeVeque, 2002,
Section 8.7). In Figure 3.2(a), a data set is added for 3201 grid points to further
illustrate the convergence. For this calculation, a cfl number of C = 0.9 was
used, that is, the time step was shorter than for the other grids.

High-resolution limiters Figure 3.2(b) shows the results for the minmod
limiter. It is known as the most diffusive of the limiter functions, and it is
perhaps surprising that it gave overshoots in front of the discontinuity in
this case. The magnitude of the overshoots diminished by grid refinement,
however. All the high-resolution methods gave overshoots for the coarsest grid
of 51 points, but this is only shown for the monotonized central-difference
(mc) limiter in Figure 3.2(d). The results for the van Leer limiter are given in
Figure 3.2(c). Both the van Leer and the mc limiter performed well in this case,
and can be regarded as good all-round limiters.

Volume-fraction profiles calculated using the superbee limiter can be seen in
Figure 3.2(e). The superbee limiter performed similarly to the van Leer and the
mc limiter on the very finest grid, but on the 201-point grid it gave a somewhat
distorted top of the volume-fraction profile, and on the 101-point grid it gave
overshoots.

Second-order limiters The linear limiter functions corresponding to the Lax–
Wendroff, the Beam–Warming and the Fromm methods have been tested, and

2Sometimes it is only referred to as the upwind method. This is slightly confusing, as the
methods arising from the use of limiter functions are also upwind methods.
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Figure 3.2: Gas volume fraction for the water faucet. Grid convergence of the
Roe4 method for different limiter functions.
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Figure 3.2: (Continued) Gas volume fraction for the water faucet. Grid conver-
gence of the Roe4 method for different limiter functions.

the resulting volume-fraction profiles are shown in Figure 3.3 on the following
page for a 101-point grid and C = 1. These methods are second-order in space,
yet, as the figure shows, that is no guarantee for a good solution. The Lax–
Wendroff method produces oscillations travelling slower than the discontinuity,
whereas the Beam–Warming method creates oscillations which are faster. This
behaviour is discussed by LeVeque (1990, Chapter11) for the scalar case, by
showing that the methods, while being second-order approximations to the
advection equation, are third-order accurate approximations to a dispersive
equation. That discussion is somewhat shorter in the new edition (LeVeque,
2002, Section 8.6).

In the present case, the Fromm method gives the best results among the
linear methods. The oscillations seem to occur ahead of the discontinuity, but
they are weaker than the ones produced by the Beam–Warming method.

Pressure The pressure is by far the most sensitive variable in the faucet case.
It is shown in Figure 3.4 on the next page for the mc limiter and for the first-
order scheme. It can be observed that the first-order and the mc schemes seem
to converge to the same value, and that the latter converges much faster. The
pressure profile is also sensitive to the boundary treatment. See Section 6.4.1
on page 160.
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Figure 3.3: Gas volume fraction for the water faucet. Roe4 method and linear
limiter functions on a 101-point grid.
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Figure 3.4: Pressure for the water faucet. Grid convergence of the Roe4 method
with and without a limiter function.
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Figure 3.5: Velocities for the water faucet. Grid convergence of the Roe4
method.

The remaining physical variables, namely the gas and liquid velocities, are
displayed in Figure 3.5. As shown in Figure 3.5(b), the Roe4 method reproduced
the analytical solution for the liquid velocity accurately, except just at the
location of the volume-fraction discontinuity.

A comparison between the first-order scheme and the high-resolution method
using the mc limiter function is given in Figure 3.6 on the following page. It is
clear that the first-order method needs over ten times more grid points than
the high-resolution method to produce a comparable volume-fraction profile.

Results for the Roe5 scheme Figure 3.7 on page 67 displays the results
of computations performed using the Roe5 method with the mc limiter and
numerical grids from 26 to 10001 points. The time-step length was the one
corresponding to C = 0.9 for the finest grid, in this case ∆t = 1.06 · 10−6 s.
What is most striking about the figure, is that the results for the grids between
101 and 10001 points are virtually identical. This was not expected, and an
explanation has yet to be found. Further, it can be seen that the Roe5 method
is much more diffusive than the Roe4 method for the intermediate and fine
grids. For the very coarse grid of 26 points, on the other hand, the Roe5 results
are surprisingly good, and better than those of Roe4.

The same exercise has been performed without using any limiter function,
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Figure 3.6: Gas volume fraction for the water faucet. Comparison of the first-
order and the MC-limiter methods with the Roe4 scheme.

that is, with the first-order Roe5 method. The results are given in Figure 3.8
on page 68. The results for the fine grid of 10001 points are equal to those of
the mc-limited Roe5 method. However, for the coarser grids, the first-order
method shows the expected behaviour of producing more diffusive results.

Reference is made to Chapter 5, where results obtained with the Roe5 scheme
are shown to agree very well with those from a five-equation version of the
discrete-equation method of Abgrall and Saurel (2003).

Convergence order The error of the numerical approximationQ to a physical
variable q at any time step is given by

E = Q− q. (3.99)

To quantify the error in the calculation domain Ω, we measure it using the
p-norms

‖E‖p =
(
∆x

∑
∀i∈Ω

|Ei|p
)1/p

, (3.100)

which are discrete analogues of the function-space norms

‖E‖p =
(∫

Ω
|E(x)|p dx

)1/p

. (3.101)
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Figure 3.7: Water faucet. Grid refinement for the MC-limited Roe5 scheme.
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Figure 3.8: Water faucet. Grid refinement for the first-order Roe5 scheme.
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The 1-norm (with p = 1) is commonly used for conservation laws, since integrals
of the solution itself are of particular importance (LeVeque, 2002, Section 8.1.1).

A numerical method is said to be accurate of order n in space if

‖E‖ = O(∆xn) as ∆x → 0. (3.102)

If we assume that the norm can be written as

‖E‖ = γ(∆x)n, (3.103)

where γ is a constant, then the order of convergence between two grids with
regular spacings ∆x1 and ∆x2 is given by

n = ln
[
‖E(∆x2)‖/‖E(∆x1)‖

]
ln
[
∆x2/∆x1

] . (3.104)

The convergence of the Roe4 method by grid refinement has been assessed
using the 1-norm. It was calculated for the faucet case with the error in the gas
volume fraction as error measure, that is, setting

E = αg −αg,ref (3.105)

in (3.100). The reference volume fraction was calculated using the mc limiter
on a very fine grid of 10001 points with a cfl number of C = 0.9. For the test
grids, the time-step length was ∆t = 3.17 · 10−6 s, corresponding to C = 0.9 on
the reference grid.

The results are given in Table 3.1 on the next page for three different limiter
functions: The first-order method (no limiter), the mc limiter, and the Fromm
method. The latter method is second-order in space. The grid spacings ∆x
of 0.48, 0.24, 0.12, 0.06, 0.03 and 0.012 m correspond to grids of 26, 51, 101,
201, 401 and 1001 points, respectively. Hence, the fine grid of 10001 points
has a control volume whose centre position corresponds exactly to that of the
control-volume centres in each of the employed test grids.

The data under the label ‘all domain’ have been calculated for all inner
control volumes, whereas the other data have been calculated for inner control
volumes positioned to the left of x = 4 m, that is, where the volume-fraction
profiles of Figure 3.2 seemed to be smooth.

The convergence rate n is for the line it stands on, compared to the previous
line. For instance, the convergence rate for the first-order method as ∆x was
refined from 0.48 to 0.24 m, was 0.54.

The table shows that
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Table 3.1: Water faucet. Roe4 method. 1-norm of the error in gas volume
fraction by grid refinement and for different limiter functions.

All domain For x < 4 m
Limiter ∆x(m) ‖E(αg)‖1 n ‖E(αg)‖1 n

First-Order 0.48 4.276 · 10−1 − 7.162 · 10−3 −
0.24 3.041 · 10−1 0.49 3.408 · 10−3 1.07
0.12 2.111 · 10−1 0.53 1.584 · 10−3 1.11
0.06 1.389 · 10−1 0.62 8.219 · 10−4 0.95
0.03 8.945 · 10−2 0.63 4.099 · 10−4 1.00
0.012 4.755 · 10−2 0.58 1.655 · 10−4 0.99

MC 0.48 1.208 · 10−1 − 5.292 · 10−4 −
0.24 2.413 · 10−2 2.32 1.734 · 10−4 1.61
0.12 2.618 · 10−2 −0.12 7.169 · 10−5 1.27
0.06 1.467 · 10−2 0.84 2.783 · 10−5 1.37
0.03 6.157 · 10−3 1.25 1.478 · 10−5 0.92
0.012 2.164 · 10−3 1.14 5.700 · 10−6 1.04

Fromm 0.48 2.188 · 10−1 − 3.815 · 10−4 −
0.24 1.342 · 10−1 0.71 1.735 · 10−4 1.14
0.12 7.281 · 10−2 0.88 7.182 · 10−5 1.27
0.06 3.045 · 10−2 1.26 2.792 · 10−5 1.36
0.03 1.276 · 10−2 1.25 1.474 · 10−5 0.92
0.012 4.362 · 10−3 1.17 5.694 · 10−6 1.04
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–– None of the methods attain a convergence rate corresponding to their
formal order when the whole domain is considered.

–– For the smooth part of the solution, all the methods have a first-order
convergence rate.

–– The mc-limited scheme has the lowest error for the whole domain.

For the smooth part of the solution, the mc limiter and the Fromm method
perform equally, except at the very coarse grid of 26 points. Both have a
significantly lower error than the first-order method. However, second-order
convergence is not attained. The convergence rate is higher than one for all
but one point (from 201 to 401 grid points), but it is never higher than 1.6. It is
conceivable that this is due the effect of the discontinuity spreading, even to
the ‘smooth portion’ of the solution. This is certainly possible, regarding the
wave-propagation speeds. Some support of this hypothesis is also offered in
Section 3.4.2 on page 76, where a nice and smooth solution is studied, and the
expected convergence rates are found.

Time-step convergence

Roe4 The effect of time-step refinement, using a 101-point grid and the mc
limiter, is shown in Figure 3.9 on the next page. For cfl numbers below 0.5,
the effect of time-step refinement is very slight.

Roe5 Results for the Roe5 scheme regarding the effect of time-step refinement
is shown in Figure 3.10 on the following page for a grid of 101 points. The
difference between the first-order scheme in Figure 3.10(a) and the mc-limiter
scheme in Figure 3.10(b) is very large. In the latter figure, the differences
between the curves are striking compared to the miniscule ones for the Roe4
method in Figure 3.9. Furthermore, the difference between the first-order
scheme and the mc-limiter scheme is very large. For the latter one, as can be
seen in Figure 3.10(b), for C = 0.9, the volume-fraction profile is very smeared
indeed. For C = 0.01, on the other hand, it lies between the profiles calculated
using the mc-limited and first-order (no-limiter) Roe4 method (Figure 3.2 on
page 62). As the cfl number is reduced to miniscule values (C = 0.0001), the
curves seem to converge. Unfortunately, there is a slight overshoot to the left
of the discontinuity.

Figure 3.10 shows that the method resulting from combining the method (3.53)
for (the hyperbolic part of) the equation system and an instantaneous pressure-
relaxation procedure, is not of high order in time.
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Figure 3.9: Gas volume fractions for the water faucet. Time-step refinement for
the Roe4 method using the MC limiter.
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Figure 3.10: Gas volume fraction for the water faucet. Effect of time-step length
on the Roe5 scheme with and without MC-limiter.
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Figure 3.11: Gas volume fraction for the water faucet. Effect of liquid speed of
sound on the Roe5 scheme.

Effect of liquid speed of sound

The Roe5 scheme is rather diffusive, and it is tempting to try to remove some
of the diffusion. One way of doing that, is by reducing the liquid speed of
sound. While this changes the problem under consideration, it illustrates the
behaviour of the scheme. An investigation of the effect of the speed of sound
is shown in Figure 3.11. The calculations have been performed on a grid of 101
points, using the mc limiter and the same time-step length of ∆t = 1.06 ·10−4 s,
corresponding to C = 0.9 for the case of the highest (that is, closest-to-physical)
liquid speed of sound. The only thing being varied, is the liquid speed of sound,
c`, together with a corresponding variation of ρ◦` to maintain the same initial
liquid density, ρ` = 1000 kg/m3.

First, we tried to obtain the same maximum eigenvalue as for the four-
equation system. At t = 0.6 s, the four-equation system has λmax ≈ 340 m/s,
and the maximum liquid speed is about 16 m/s. Hence the liquid speed of
sound was set to c` = 324 m/s. The figure shows that this gave less diffusion,
but it is still far from what one obtains using the Roe4 scheme.

Next, as an educated guess, c` = 55.5 m/s was tried. This helped considerably
on the volume-fraction profile, which is now better than the one produced with
the first-order Roe4 method on the same grid (see Figure 3.2(a) on page 62).
Still, it does not reach the volume-fraction profile from the mc-limited Roe4
method (Figure 3.2(d)).
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We remark that the phasic speeds of sound have an effect on the Roe4 scheme
as well, but to a much lesser extent than on the Roe5 scheme. This is thought to
be due to the pressure-relaxation being performed in the latter scheme. Indeed,
in the pressure-relaxation procedure, the densities (and hence pressures) are
tightly linked to the volume fraction. Hence fast-moving pressure waves are
transferred to the volume fraction, and this may be an explanation of the
smeared volume-fraction profiles of the Roe5 scheme.

Wave propagation speed

The different eigenvalues for the four-equation system and the five-equation
system might lead one into thinking that sonic waves in the two systems would
propagate at different speeds (for instance Flåtten, 2003, Section 3.3.1); for the
faucet case at t = 0.6 s, the maximum eigenvalue in the four-equation system
is about 340 m/s, while it is 1013 m/s in the five-equation system.

However, the above simple consideration does not take the instantaneous
pressure-relaxation procedure into account. To illustrate this, we study the
following example calculation: In the faucet case, a wave forms at the inlet
at t = 0, and it travels towards the outlet. This is shown in Figure 3.12 on
the facing page. Calculations have been performed using the Roe4 and Roe5
schemes, and both schemes were run using about C = 0.2 (that is, a shorter
time-step for the Roe5 scheme) and the mc limiter. Figure 3.12(a) shows
snapshots of (αρu)g at ∆t = 0.005 s intervals, while the time history of the
same variable at x = 12 m is shown in Figure 3.12(b).

Figure 3.12(a) clearly shows that the disturbance propagates with the same
velocity in the two schemes. Moreover, no faster-moving disturbances could be
observed in any of the variables in the Roe5 scheme.

As can be seen from Figure 3.12(b), the wave reached the boundary at about
t = 0.037 s. At this time, there was virtually no difference between the Roe4
and the Roe5 schemes.

The wave propagation speed was found to be 12 m/0.037 s ≈ 324 m/s,
whereas the maximum eigenvalue of the coefficient matrix of the four-equation
system was 317 m/s at t = 0.005 m/s, increasing to 324 m/s at t = 0.2 m/s.
The correspondence is clear.

As can be seen for instance in Figure 3.12(b), (αρu)g immediately starts to
increase. The reason for this, is the action of gravity.
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Figure 3.12: Gas volumetric momentum for the water faucet. Comparison of
wave propagation in the Roe4 and the Roe5 schemes.

Non-hyperbolic underlying model

One of the advantages of the Roe5 method perceived in Section 3.2.2 on page 45,
is that the coefficient matrix remains hyperbolic, even when the ‘0 model’

∆pik = 0 (3.106)

is taken for the interfacial pressure difference. For such cases, the ‘underlying’
four-equation model is non-hyperbolic with complex eigenvalues.

Figure 3.13 on the following page shows the water-faucet gas volume-fraction
profile calculated on a grid of 101 points using the mc limiter and a quite
short time-step length of ∆t = 1.06 · 10−6 s. Two models have been employed
for the interfacial pressure difference; the cathare model (2.109) and the
0 model (3.106). Further, two different liquid speeds of sound were tried;
c` = 1000 m/s and c` = 55.5 m/s, as commented upon on page 73.

As can be observed, the use of the 0 model for the interfacial pressure
difference together with the low liquid speed of sound results in a severe
undershoot in front of the discontinuity, whereas the curve for the cathare
model and the low liquid speed of sound is quite well-behaved. This may
indicate that the use of the Roe5 scheme and similar methods provides no easy
way to avoid the problem of complex eigenvalues in the four-equation model.
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Figure 3.13: Gas volume fraction for the water faucet. Roe5 scheme. Results for
the 0 model and the CATHARE model for the interfacial pressure
difference, for two liquid speeds of sound, c` = 1000 m/s (lines)
and c` = 55.5 m/s (with �).

For the high liquid speed of sound, no anomalies were incurred by the 0
model. This might be a result of the high liquid speed of sound providing
‘enough’ diffusion in the Roe5 scheme. Indeed, this was the case even on a fine
grid of 20001 points.

Karni et al. (2004) reported undershoots for their Roe-type solver with pres-
sure relaxation and the 0 model for the interfacial pressure difference, even for
equation-of-state parameters giving a high liquid speed of sound, speculating
that this might be due to the ill-posedness of the underlying one-pressure
two-phase model.

3.4.2 Advection of a ‘hat’

This test case has been designed to test the convergence properties of the Roe4
scheme employing the mc limiter in a case where the solution is smooth. A
smooth ‘hat’ in the volume fraction is advected along a computational domain
of length L = 12 m. The initial volume-fraction profile is given by

αg(x) =


{
1+ 0.49[1+ tanh(2x − L/3)]

}
− 0.99 if x < L/2,{

1+ 0.49[1+ tanh(−2x − 2L/3)]
}
− 0.99 otherwise .

(3.107)
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Figure 3.14: Advection of a smooth volume-fraction profile. Initial condition
and solution after t = 0.12 s for the MC limiter.

The other variables are initially uniform: The initial pressure is p = 10 ·
105 Pa, and the initial velocities are ug = u` = 10 m/s. The equation-of-state
parameters are, as usual, given by Table 2.1 on page 30.

For equal phasic velocities, the coefficient matrix (3.34) has complex ei-
genvalues when the interfacial pressure-difference is zero. Hence the Soo
model (2.107) was employed, with the displacement factor Bk = 0.999999.

Grid refinement with constant time-step length

Solutions for different grid sizes were compared at t = 0.12 s. The tested grids
had 51, 101, 201, 401 and 1001 points, corresponding to a grid spacing, ∆x,
of 0.24, 0.12, 0.06, 0.03 and 0.012, respectively. The reference solution was
calculated on a 10001-point grid. The time-step length for all the calculations
was ∆t = 3.18 · 10−6 s, corresponding to a cfl number of C = 0.9 for the
reference grid.

Figure 3.14 shows the initial condition for the volume fraction, as well as
the solution after t = 0.12 s. Since the solution is smooth, even the coarse-grid
solution is not far away from the reference solution.

Table 3.2 on the next page shows the 1-norm of the volume-fraction error by
grid refinement. The norm and the convergence order n were calculated in the
same way as for Table 3.1 on page 70, as described in Section 3.4.1. The data
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Table 3.2: Smooth volume-fraction advection test case. 1-norm of the error in
gas volume fraction by grid refinement with a constant time-step
length of ∆t = 3.18 · 10−6 s.

∆x(m) ‖E(αg)‖1 n
0.24 6.886 · 10−2 −
0.12 1.811 · 10−2 1.93
0.06 4.448 · 10−3 2.03
0.03 1.092 · 10−3 2.03
0.012 1.725 · 10−4 2.01

Table 3.3: Smooth volume-fraction advection test case. 1-norm of the error in
gas volume fraction by grid refinement with a constant CFL number
of 0.9.

∆x(m) ‖E(αg)‖1 n
0.24 6.595 · 10−2 −
0.12 1.695 · 10−2 1.96
0.06 4.126 · 10−3 2.04
0.03 1.012 · 10−3 2.03
0.012 1.603 · 10−4 2.01

shows that the method (3.53) using the mc limiter is second-order in space.

Grid refinement with constant CFL number

The exercise in the preceding subsection has been repeated, but with a constant
cfl number of 0.9. The 1-norm of the volume-fraction error is shown in
Table 3.3. As one can see, the mc-limited Roe4 method may be called second-
order.

Time-step refinement with a given grid

The convergence-rate by time-step refinement has also been tested for a grid
of 101 points. The reference solution was calculated using a time-step length
of ∆t = 1.0 · 10−6 s, and the 1-norm of the error in the volume fraction can be
seen in Table 3.4 on the facing page. It is clear that the convergence rate in this
case is first-order.
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Table 3.4: Smooth volume-fraction advection test case. 1-norm of the error in
gas volume fraction by time-step refinement with a 101-point grid.

∆t(s) ‖E(αg)‖1 n
1.2 · 10−4 4.543 · 10−4 −
6.0 · 10−5 2.259 · 10−4 1.00
3.0 · 10−5 1.112 · 10−4 1.02
1.5 · 10−5 5.373 · 10−5 1.05

Table 3.5: Initial conditions in the large relative velocity (LRV) shock tube

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.29 0.30

Pressure p (kPa) 265 265
Gas velocity ug (m/s) 65 1

Liquid velocity u` (m/s) 1 1

Discussion

The grid-refinement results show that the method (3.53) employing a limiter
function is second-order for smooth solutions. However, the ‘smooth hat’
test case did not include source terms. In the present work, source terms are
accounted for by adding a term, ∆tSi, on the right-hand side of (3.53). This
corresponds to a Forward Euler time integration. Therefore, the second-order
convergence rate may well not be attained for cases with source terms.

The first-order convergence obtained by time-step refinement is a result of the
∆t/∆x term appearing in the flux-correction term (3.57). Therefore, the method
cannot be written in semi-discrete form, unless first-order spatial accuracy is
found to be sufficient, such that F̃ ≡ 0. A semi-discrete formulation would
have been an advantage, as that would have allowed for employing accurate
and stable ode solvers, such as suitable Runge–Kutta methods (Kraaijevanger,
1991; Carpenter and Kennedy, 1994; Spiteri and Ruuth, 2002; Ketcheson and
Robinson, 2005). One semi-discrete method is discussed in Chapter 8 for the
drift-flux model.

3.4.3 Large relative velocity shock tube

The large relative velocity (lrv) shock was investigated by Cortes et al. (1998);
Evje and Flåtten (2003). The initial left and right states are given in Table 3.5.
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Roe4 The result of grid refinement for the Roe4 method is shown in Fig-
ure 3.15 on the facing page for the primitive variables at t = 0.1 s. The calcula-
tions were run with a time-step length of ∆t = 2.35 · 10−5 s, corresponding to
C = 0.9 for the finest grid, and the mc limiter was used.

As Evje and Flåtten (2003) pointed out, the wedge that can be seen in the
volume fraction, and also in the gas velocity, at x = 50 m, is two volume-
fraction waves. This detail is shown for the volume fraction in Figure 3.16.
In the figure, data have been added for a grid of 40001 points and C = 0.9,
something which clearly shows the convergence.

The resolution of sonic waves is dependent on the cfl number. Time-
step refinement is shown in Figure 3.17 on page 83 for a grid of 101 points.
As can bee seen, the resolution of the sonic waves (at about x = 25 m and
x = 85 m) improves with increasing cfl number, whereas the resolution of
volume-fraction waves (at x = 50 m) is largely unaffected. The latter effect was
also seen for the faucet case in Section 3.4.1.

An improving sonic-wave resolution with increasing cfl number is in ac-
cordance with what is known about upwind methods. For instance, an upwind
method can solve the advection equation exactly for C = 1.

The effect of the limiter function is displayed in Figure 3.18 on page 84. It
can be observed that employing the mc limiter function gives a significantly
improved resolution of both the sonic waves (Figure 3.18(a)) and the volume-
fraction waves (Figure 3.18(b)). Still, the effect in the present case is perhaps
less striking that what was observed for the faucet case in Figure 3.2 on page 62.
The calculation of Figure 3.18(b) has been performed on a finer grid, since the
volume-fraction wedge is confined to a small area.

Roe5 Figure 3.19 on page 85 shows the result of grid refinement for the Roe5
scheme using the mc limiter. The time-step length was ∆t = 8.99 · 10−6 s,
corresponding to C = 0.9 on the finest grid of 10001 points. The results
obtained with the Roe4 method on the fine grid are drawn as a reference.
The figure shows that the results of the Roe5 scheme converge towards those
of the Roe4 scheme. However, for the volume fraction wave at x = 50 m,
the convergence is very slow. This is thought to be mainly due to the high
diffusivity of the Roe5 scheme, and it can be seen in Figure 3.19(a) for the liquid
volume fraction, where the focus is on the middle of the shock tube. In that
figure, results from the Roe5 method on a very fine grid of 40001 points, using
C = 0.05, have been added to illustrate the effect of further grid and time-step
refinement. In addition to slow convergence, the Roe5 method suffers from
instabilities at the left-hand-side of the volume-fraction wedge.

Time-step refinement is displayed in Figure 3.20 on page 86 for a grid of
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Figure 3.15: LRV shock tube. Grid refinement for the Roe4 (MC) scheme.
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Figure 3.16: LRV shock tube. Close-up of volume-fraction waves.

Table 3.6: Initial conditions in the modified large relative velocity (modified
LRV) shock tube

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.30 0.90

Pressure p (kPa) 265 265
Gas velocity ug (m/s) 65 50

Liquid velocity u` (m/s) 10 15

101 points. Similarly to the Roe4 method, the sonic waves are slightly better
resolved for the highest cfl number. Contrary to the Roe4 method, however,
the resolution of the liquid velocity at the discontinuity at x = 50 m is strongly
time-step dependent. This is shown in Figure 3.20(c). Here, the resolution is
increasingly poor for increasing cfl numbers.

3.4.4 Modified large relative velocity shock tube

The modified large relative velocity shock tube is based on the lrv shock tube
presented in the previous subsection, and was introduced by Evje and Flåtten
(2003). As shown in Table 3.6, a jump in the liquid velocity has been imposed,
and the volume-fraction jump has been increased.

The liquid volume fraction, the pressure, and the velocities calculated using
the Roe4 method are shown in Figure 3.21 on page 87 at t = 0.1 s, for numerical
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Figure 3.17: LRV shock tube. Time-step refinement for the Roe4 (MC) scheme
on a grid of 101 points.



84 3. Roe-type methods for two-fluid models

p (104 Pa)

0 20 40 60 80 100
26.5

26.6

26.7

26.8

26.9

27

27.1

27.2 MC
upwind
MC, 10001 pts

x (m)
(a) Pressure. 101 grid points.

α` (–)

49.5 50 50.5 51 51.5 52
0.6975

0.698

0.6985

0.699

0.6995

0.7

MC
upwind
MC, 10001 pts

x (m)
(b) Liquid volume fraction. 1001 grid points.

Figure 3.18: LRV shock tube. Effect of limiter function for the Roe4 scheme,
with fine-grid data as reference. C = 0.9.

grids between 101 and 10001 points. As usual, the time-step length, ∆t =
2.35 · 10−5 s, was chosen to correspond to C = 0.9 for the finest grid. This
time, however, the minmod limiter was applied, as the mc limiter produced
instabilities at the middle of the tube.

The small wedges that can be seen at x = 50 m in the pressure and the
gas velocity, form part of the volume-fraction wave. In Figure 3.21(a), the
convergence at the volume-fraction wedge has been further illustrated by the
addition of data calculated on a 40001-point grid with C = 0.9.

The results of grid refinement of the Roe5 scheme employing the minmod
limiter are given in Figure 3.22 on page 88. The employed time-step length
was the one corresponding to C = 0.9 for the finest grid, in this case ∆t =
8.86 · 10−6 s. Similarly to the non-modified lrv shock tube, the results of the
Roe5 scheme seem to converge towards those of the Roe4 scheme, but very
slowly at the discontinuity at x = 50 m. This can be seen in Figure 3.22(a) for
the liquid volume fraction, where an extra plot for a grid of 10001 points and
C = 0.05 has been added. Further, the convergence is slow for the plateau
between about x = 25 m and 50 m seen for the pressure in Figure 3.22(b).
The Roe5 scheme also produces a curious roller-coaster pattern with a local
maximum and a local minimum in the liquid velocity at x = 50 m. It is visible
for the finest grid in Figure 3.22(c), at about (50 m,11 m/s). This behaviour is
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Figure 3.19: LRV shock tube. Grid refinement for the Roe5 (MC) scheme.
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Figure 3.20: LRV shock tube. Time-step refinement for the Roe5 (MC) scheme
on a grid of 101 points.
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Figure 3.21: Modified LRV shock tube. Grid refinement for the Roe4 (minmod)
scheme.
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Figure 3.22: Modified LRV shock tube. Grid refinement for the Roe5 (minmod)
scheme.
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Table 3.7: Initial conditions in Toumi’s shock tube

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.25 0.10

Pressure p (MPa) 20 10
Gas velocity ug (m/s) 0 0

Liquid velocity u` (m/s) 0 0

thought to be unphysical. In fact, it can be removed by the use of the acoustic-
solver model (2.95) for the interfacial velocity. It also disappears if Harten’s
entropy fix is employed with δ = 80, but that introduces some additional
numerical diffusion.

3.4.5 Toumi’s shock tube

Problem description

The present problem was introduced as a test case by Toumi (1996) for his
Roe-type solver for a six-equation model. It has also been studied by Tiselj
and Petelin (1997); Paillère et al. (2003) and Evje and Flåtten (2005a), the
latter researchers using a four-equation model. The initial values are given in
Table 3.7, and no source terms are considered.

First we consider the Roe4 method. Unfortunately, with the cathare expres-
sion (2.109) for the interfacial pressure difference, the coefficient matrix (3.34)
is not diagonalizable for the initial condition ug = u`. Hence, an ad hoc
approach was taken, combining the cathare and the Soo models:

pk − pik = ∆pik = γ
αgα`ρgρ`
αgρ` +α`ρg

(ug −u`)2 + (1− Bk)pk, (3.108)

where the displacement factor was set to a high value; Bk = 0.999999, that
is, giving negligible additional diffusion, but making the coefficient matrix
diagonalizable. Furthermore, following Paillère et al. (2003); Evje and Flåtten
(2005a), γ = 2 was employed for this problem.

No source terms were considered.

Naïve approach

The result of grid refinement is shown in Figure 3.23 on page 91 for t = 0.08 s.
The first-order scheme was used, that is, no limiter function was applied. The
time-step length was ∆t = 9.13 · 10−6 s, which corresponds to C = 0.5 for the
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finest grid. The calculations were also performed with Bk = 0.9999, that is,
more additional diffusion. This gave identical results to plotting accuracy.

The scheme seems to converge and all is fine – at first sight. However, in
Figures 3.23(a) and 3.23(d) for the gas volume fraction and the gas velocity,
respectively, six plateaux are visible. This is not at all expected for a four-
equation model with four waves. Four waves should give five plateaux. Indeed,
Toumi (1996) observed seven plateaux for his six-equation model, and Evje
and Flåtten (2005a) produced five plateaux with their four-equation model. It
is therefore unlikely that the results displayed in Figure 3.23 are physically
obtainable.

Entropy fix

An inspection of the eigenvalues calculated in the case shown in Figure 3.23
revealed that one of them became negative, and then rapidly turned positive,
immediately before x = 50 m. This, together with the fact that the results
seemed physically implausible, motivated the recalculation of the case employ-
ing an entropy fix. The results for various values of the parameter δ in Harten’s
entropy fix (3.80) are shown in Figure 3.24 on page 92. The grid had 1001
points, and the mc limiter was used. Figure 3.24(a) shows the volume fraction
for the whole shock tube, while Figure 3.24(b) displays a close-up of the middle
section of the tube.

First, it is interesting to note that for ‘no’ entropy fix (δ = 1), the mc-limited
Roe4 scheme displayed more problems than what was seen in Figure 3.23 for
the first-order Roe4 scheme. The spurious wave in the middle of the tube
is more pronounced, there is a peak at x = 60 m, and also an overshoot at
x = 25 m.

As the parameter δ was increased, the spurious wave at x = 50 m gradually
weakened, and for δ = 20 it more or less disappeared. As δ was further
increased, the solution between about 52 and 60 m started resembling a plateau,
while the edges in the solution got more rounded. In the present case, the
solution for δ = 50 seemed reasonable.

The volume-fraction profile obtained using the llf entropy fix is also shown
for comparison. It can be observed that the llf entropy fix introduced perhaps
too little smoothing in the middle part of the tube, leaving a local maximum in
the volume fraction at about 59 m.

Figure 3.25 on page 93 shows the case of Figure 3.23 recalculated employing
the mc limiter and Harten’s entropy fix with δ = 50. As can be seen, the strange
behaviour at the middle of the tube has disappeared.
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Figure 3.23: Toumi’s shock tube. Grid refinement for the Roe4 (first-order)
scheme without entropy fix.



92 3. Roe-type methods for two-fluid models

αg (–)

0 20 40 60 80 100

0.1

0.15

0.2

0.25

δ=1
δ=10
δ=20
δ=50
LLF

x (m)
(a) Gas volume fraction

αg (–)

50 55 60

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

δ=1
δ=10
δ=20
δ=30
δ=40
δ=50
δ=60
LLF

x (m)
(b) Gas volume fraction (close-up)

Figure 3.24: Toumi’s shock tube. The Harten entropy fix with varying δ and the
LLF entropy fix for the Roe4 (MC) scheme on a 1001-point grid.

Roe5 scheme

It was just seen that the Roe4 scheme had problems calculating Toumi’s shock
tube, and that it was necessary to introduce additional diffusion. This was done
by employing Harten’s entropy fix (3.79) with δ = 50, and also the combined
model (3.108) for the interfacial pressure difference. For the Roe5 scheme, the
use of the combined interfacial pressure-difference model was unnecessary,
and, indeed, for Bk = 0.999999 and Bk = 1 (that is, a tiny bit and no additional
diffusion), the results were the same to plotting accuracy. Regarding the
entropy fix, since no eigenvalues changed sign, it had only a minor effect. That
is, the amount of additional diffusion that was completely necessary for the
Roe4 scheme, made no difference for the Roe5 scheme.

A comparison of the first-order (no limiter) Roe4 scheme employing Harten’s
entropy fix, and the first-order Roe5 scheme is shown in Figure 3.26 on page 94.
The grid size was 10001 points, and the cfl number was C = 0.9. No limiter
was employed in this case, since for the Roe5 scheme, both the minmod, the
van Leer and the mc limiter introduced instabilities at the middle of the tube.
For the temporal and spatial resolutions investigated, the results were different
in the middle section of the shock tube, between about x = 50 m and x = 60 m.
For the Roe5 scheme, the volume fraction and the velocities in this section
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Figure 3.25: Toumi’s shock tube. Grid refinement for the Roe4 (MC) scheme
employing Harten’s entropy fix with δ = 50.
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Figure 3.26: Toumi’s shock tube. Comparison of the Roe4 (first-order and
entropy fix) and Roe5 (first-order) schemes on a grid of 10001
points.
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all had gradients, whereas the Roe4 scheme produced plateaux. The latter
behaviour corresponds to those of other methods (Evje and Flåtten, 2005a).
Furthermore, the discontinuity at x = 60 m is more sharply resolved by the
Roe4 scheme.

3.4.6 Water–air separation

This phase-separation problem was proposed by Coquel et al. (1997). It consists
of a vertical tube of length L = 7.5 m, closed at both ends. Initially it has a
uniform pressure of p = 1 · 105 Pa and volume fraction of α` = 0.5. At t = 0,
the phases start to separate under the influence of gravity, which is the only
source term considered.

Evje and Flåtten (2003) derived approximate analytical solutions for the
liquid velocity and volume fraction by assuming that the liquid is accelerated
by gravity only, until it is abruptly brought into stagnation at the lower part of
the tube:

α`(x, t) =


0 for x < 1/2gt2,
0.5 for 1/2gt2 ≤ x < L− 1/2gt2,
1 for L− 1/2gt2 < x,

(3.109)

and

u`(x, t) =


√

2gx for x < 1/2gt2,
gt for 1/2gt2 ≤ x < L− 1/2gt2,
0 for L− 1/2gt2 < x.

(3.110)

After the time

t =
√
L
g
≈ 0.87 s, (3.111)

the phases should be fully separated in the idealized case.
The water-air separation problem is in fact a difficult one. The presently im-

plemented Roe4 scheme breaks down unless considerable amounts of artificial
diffusion are added. As far as I know, no one has successfully calculated this
problem using a Roe-type scheme.

One problem with the Roe scheme is that the positivity of the solution is
not guaranteed (LeVeque, 2002, Section 15.3.6). However, in this case, the
calculations did not break down because of negative volume fractions. The
instabilities occurred at the large volume-fraction gradient. The eigenvalues
of the coefficient matrix are a strong function of the volume fraction, and this
could be a reason for the failure of the Roe4 scheme in this case.
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Figure 3.27: Gas volume fraction for the water faucet. Effect of pressure-
relaxation parameter rp on the Roe5 (MC) scheme for a grid of
101 points.

The Roe5 scheme failed, too, but for a different reason: At the bottom of
the tube, the air volume fraction approached zero in a steep way, causing it to
become negative, and hence the numerical method to fail.

3.4.7 Effect of the pressure-relaxation parameter

In the preceding subsections, instantaneous pressure relaxation was always
used in the Roe5 method. Now we will investigate the effect of varying the
pressure-relaxation parameter, rp, in the equation (2.96).

Water faucet case

Consider Figure 3.27, showing the gas volume fraction for the water faucet
case. The calculations have been performed using a 101-point grid, the mc
limiter and a time-step length of ∆t = 1.06 · 10−6 s. The curve labelled ‘instant’
has been calculated with instantaneous pressure relaxation, and it is equal to
that already shown in Figure 3.7(a). The other curves have been calculated
using the fractional-step method outlined in Section 2.5.3 for a finite pressure-
relaxation coefficient. The effect of the pressure-relaxation parameter, rp, is
clearly seen in the figure: The smaller the rp, the flatter the volume-fraction
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profile becomes. For rp = 0, the volume-fraction remains constant. This can
be understood by considering the volume-fraction evolution equation (2.96).
Initially, ∂αg/∂x = 0, and since rp = 0, ∂αg/∂t = 0, which means that the
volume fraction does not change.

It should also be noted that the transition between instantaneous and finite-
rate pressure relaxation is smooth.

Toumi’s shock tube

A further example of the effect of the pressure-relaxation parameter is shown in
Figure 3.28 on the next page. Here, Toumi’s shock tube has been calculated on a
grid of 1001 points using no limiter and a time-step length of ∆t = 8.87·10−6 s.
However, as opposed to the case of the one-pressure calculations, here, the
results are shown at t = 0.04 s. This has been done to avoid interaction with
the boundaries.

Figure 3.28(b) shows an interesting plot of the liquid velocity. For a low value
of the pressure-relaxation parameter, rp, the two sonic waves can be seen to
have reached about x = 10 m and x = 90 m. As rp is increased, those two fast
sonic waves are gradually suppressed, and the effect of the gas phase becomes
more and more visible.

The approximate speed of the sonic waves can be read from the figure. For a
low rp, the average speed of the right-going wave is 40 m/0.04 s = 1000 m/s,
which closely corresponds to the eigenvalue u`+c`. As the pressure-relaxation
coefficient is increased, the sonic speed is reduced to that of the four-equation
model, as was seen for instance in Figure 3.26 on page 94.

The discontinuity at the middle of the tube moves to the right with a speed
corresponding to the interfacial velocity, ui, (see (2.94)), which is practically
equal to the liquid velocity.

The gas and liquid pressures are displayed in Figures 3.28(d) and 3.28(e), and
it can be observed how the two independent pressures converge to one as rp is
increased.

3.4.8 Summary

A Roe-type scheme for the four-equation system (Roe4) has been tested on
various cases from the literature. In the present work, the high-resolution
approach of LeVeque (2002) has been successfully applied to the multifluid
equations. For discontinuity problems such as the water-faucet case, a signific-
ant improvement was achieved compared to the conventional first-order Roe
scheme.
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Figure 3.28: Toumi’s shock tube at t = 0.04 s. Effect of the pressure-relaxation
parameter rp in the Roe5 (first-order) method for a grid of 1001
points.
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Figure 3.28: (Continued) Toumi’s shock tube at t = 0.04 s. Effect of the
pressure-relaxation parameter rp in the Roe5 (first-order) method
for a grid of 1001 points.

In the large relative velocity (lrv) and modified lrv shock tube problems,
the effect of the high-resolution correction was less pronounced than for the
faucet case. The resolution of sonic waves was seen to be time-step dependent.

A Roe-type scheme for the five-equation system has been derived (Sections 3.2
and 3.3): The two-velocity, two-pressure two-fluid model is first advanced in
time, then a pressure-relaxation procedure is performed, yielding the same
pressure in the two phases. The resulting scheme, Roe5, has been tested and
compared to Roe4.

The Roe5 scheme was found to be significantly more diffusive than the Roe4
scheme. The diffusion is a strong function of the chosen time-step length, the
grid size, whether a limiter function is employed or not, and also the liquid
speed of sound.

Interestingly, for the faucet case, the mc-limited Roe5 scheme performed
better than the Roe4 scheme for the very coarse grid of 26 points.

For fine grids and short time steps, the Roe5 scheme mostly converges to
the same results as the Roe4 scheme. The differences seen are thought to be
mainly due to the high diffusivity of the Roe5 scheme.

It was found that the sonic wave-propagation speed is the same in the Roe4
and the Roe5 schemes.
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For Toumi’s shock tube, it was required to use an entropy fix with the Roe4
scheme. For the Roe5 scheme, on the other hand, no fix was necessary, but the
produced results were slightly less plausible.

The coefficient matrix employed in the Roe5 scheme is diagonalizable with
real eigenvalues even in the case of zero interfacial pressure difference. This is
a main difference between the Roe5 and the Roe4 schemes. Even so, oscillations
normally associated with complex eigenvalues were produced for a low liquid
speed of sound in the water-faucet test case. This may indicate that the
Roe5 scheme and similar methods provide no easy remedy against complex
eigenvalues in the two-fluid model.

The effect of finite-rate pressure relaxation in the Roe5 method was tested.
As the pressure-relaxation parameter was increased, the solution gradually
approached that obtained using instantaneous pressure relaxation.

The good correspondence between the results obtained using the Roe4
scheme and those of the Roe5 scheme with instantaneous pressure relaxation,
indicates that the latter may be regarded as a numerical method to solve the
four-equation system.

3.5 Conclusions

–– The Roe5 scheme with instantaneous pressure relaxation can be regarded
as a numerical method to solve the four-equation system. It is significantly
more diffusive than the Roe4 scheme. This is true with or without the use
of high-resolution limiters.

–– As the pressure-relaxation parameter in the Roe5 scheme is increased, the
instantaneous-relaxation results are recovered. Instantaneous pressure
relaxation annihilates the fastest waves, so that the solution approaches
that of the four-equation system.

–– It appears that the approach of two pressures and instantaneous pressure
relaxation does not provide an easy way to overcome the problem of
complex eigenvalues in the four-equation system.



4 The flux-limiter centred scheme

The numerical schemes presented in Section 3.3 are computationally quite ex-
pensive, especially for the four-equation system, where the coefficient matrix is
diagonalized numerically on every cell-interface on every time step. Therefore,
the flux-limiter centred (flic) scheme of Toro (1999, Section 14.5.2) (see also
Toro and Billett, 2000), with an adaptation for the non-conservative term, was
tested for the four-equation system. This scheme does neither make direct use
of wave-propagation information in the construction of the numerical flux, nor,
indeed, does it explicitly employ the coefficient matrix.

4.1 Description of the scheme

The system was written in the form

∂q
∂t
+ ∂ f̃ (q)

∂x
= s̃(q), (4.1)

with the ‘modified’ flux function

f̃ =


αgρgug

α`ρ`u`
αgρgu2

g +αgpg

α`ρ`u2
` +α`p`

 , (4.2)

and the right-hand side

s̃ =


0
0

pig
∂αg

∂x +αgρggx

pi`
∂α`
∂x +α`ρ`gx

 . (4.3)

The ∇αk terms were discretized using second-order central differences.
The scheme can be stated as

Qn+1
i =Qni −

∆t
∆x

(
Fi+1/2 − Fi−1/2

)
+∆tSi, (4.4)

101
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where F is the numerical approximation of f̃ and S is the numerical approxim-
ation of s̃.

The centred flux-limiter approach is different from the method presented in
Section 3.3 in that the characteristic variables are not considered. Instead, the
numerical fluxes Fi−1/2 are taken as a combination of a low-order monotone
flux F l

i−1/2 and a high-order flux Fh
i−1/2 as

Fi−1/2 = F l
i−1/2 + φ̃(θ̃i−1/2)

(
Fh
i−1/2 − F l

i−1/2
)
, (4.5)

where φ̃ is a centred flux limiter, described below.

Here, the low-order flux is the first-order centred (force) flux, given by

F l
i−1/2 =

1
2

(
FLF
i−1/2 + FR

i−1/2

)
, (4.6)

where FLF
i−1/2 is the Lax–Friedrichs flux

FLF
i−1/2 =

1
2

(
f̃ (Qi−1)+ f̃ (Qi)

)
− 1

2
∆x
∆t

(
Qi −Qi−1

)
, (4.7)

and FR
i−1/2 is the Richtmyer flux. It is computed by first defining an intermediate

state

QR
i−1/2 =

1
2

(
Qi−1 +Qi

)
− 1

2
∆t
∆x

(
f̃ (Qi)− f̃ (Qi−1)

)
, (4.8)

and then setting

FR
i−1/2 = f̃ (QR

i−1/2). (4.9)

The high-order flux is taken to be the Richtmyer flux:

Fh
i−1/2 = FR

i−1/2. (4.10)

Toro (1999, Section 14.5.2) lists some centred flux-limiter functions. They
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are analogous to the corresponding upwind flux limiters.

minbee/minmod : φ̃(θ̃) =


0 if θ̃ ≤ 0,
θ̃ if 0 < θ̃ ≤ 1,
1 if θ̃ > 1,

van Albada : φ̃(θ̃) =


0 if θ̃ ≤ 0,
θ̃(1+θ̃)
1+θ̃2

if 0 < θ̃ ≤ 1,

φg + (1−φg)θ̃(1+θ̃)
1+θ̃2

if θ̃ > 1,

van Leer : φ̃(θ̃) =


0 if θ̃ ≤ 0,
2θ̃

1+θ̃
if 0 < θ̃ ≤ 1,

φg + 2(1−φg)θ̃
1+θ̃

if θ̃ > 1,

superbee : φ̃(θ̃) =


0 if θ̃ ≤ 0,
2θ̃ if 0 < θ̃ ≤ 1/2,
1 if 1/2 < θ̃ ≤ 1,
min(2,φg + (1−φg)θ̃) if θ̃ > 1.

(4.11)
The function φg is given by

φg =
1− C
1+ C , (4.12)

where C is the cfl number.
One chooses a component qj in the vector of unknowns, on which to apply

the smoothness measure. Then the smoothness measure is calculated to the
left and to the right

θ̃left
i−1/2 =

∆qji−3/2

∆qji−1/2

and θ̃right
i−1/2

∆qji+1/2

∆qji−1/2

, (4.13)

where ∆qji−1/2 = q
j
i − q

j
i−1. The limiter to be applied in equation (4.5) is

φ̃ = min
(
φ̃(θ̃left

i−1/2), φ̃(θ̃
right
i−1/2)

)
. (4.14)

For the Euler equations, Toro recommends taking qj to be the total energy.
For other systems, some experimentation might be necessary. Toro suggests
applying (4.13)–(4.14) to every component, qj , j = 1, . . . ,m, of the vector of
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conserved variables to obtainm limiters φ̃j , and then selecting the final limiter
as

φ̃ = min(φ̃j), j = 1, . . . ,m. (4.15)

4.2 Numerical tests of the FLIC scheme

In the present section, we will perform numerical tests of the flic scheme.
Neither the coefficient matrix (3.34) nor its eigenvalues appear explicitly in

the flic scheme. To estimate the time-step length from the cfl criterion, we
used the approximate eigenvalue expressions presented by Evje and Flåtten
(2003), and which are reproduced in Appendix A on page 251.

4.2.1 Water faucet test case

We commence the discussion by considering the water faucet test case (see
Section 3.4.1 on page 58).

Choice of limiting procedure

It is first necessary to consider the choice of a limiter function, and a variable
on which to apply it. Toro (1999, Section 14.5.2) considered various shock-
tube cases for the Euler equations. As mentioned in Section 4.1, he reported
satisfactory results when the total energy was used as the basis variable for the
limiting procedure. Here, on the other hand, since we consider an isentropic
model, we cannot make that choice. Instead, Toro’s second recommendation
was tried, that is, to calculate the limiter based on each of the composite
variables, and then selecting the final limiter as the smallest one. Unfortunately,
this did not work well. Then each of the composite variables, and the volume
fraction, were tried individually as a basis for finding the limiter, but no stable
calculations of the faucet case could be made. Hence it seems that further
work is required to make the flic scheme work for the multifluid equations.
Henceforth we therefore use the flic scheme without any limiter, that is, we
use the force scheme.

One small improvement was found to work, though: The Lax–Friedrichs flux
was substituted by the Rusanov flux, that is, instead of employing (4.6), the
force flux was calculated from the formula

F l
i−1/2 =

1
2

(
FRu
i−1/2 + FR

i−1/2

)
, (4.16)
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where FRu
i−1/2 is the Rusanov flux

FRu
i−1/2 =

1
2

(
f̃ (Qi−1)+ f̃ (Qi)

)
− 1

2
|λ|max

(
Qi −Qi−1

)
, (4.17)

where |λ|max is the maximum eigenvalue in the computational domain. If the
cfl number is C = 1, then the Rusanov and the Lax–Friedrichs fluxes are equal.

Grid refinement

The effect of grid refinement is shown in Figure 4.1 on the next page. The time-
step length was ∆t = 3.16 · 10−6 s, corresponding to C = 0.9 for the finest grid.
It is clear that the force scheme is rather diffusive. However, a comparison
with Figure 3.8 on page 68 reveals that it is less so than the first-order Roe5
scheme. For the finest grid of 10001 points, it is also less diffusive than the
mc-limited Roe5 scheme, as can be seen by likening with Figure 3.7 on page 67.

Effect of liquid speed of sound and time-step length

Contrary to the case of the Roe5 scheme, in force, there is hardly anything to
gain with respect to the volume-fraction profile from reducing the liquid speed
of sound. This is mainly since the force scheme is a central scheme. The
small effect there is, is due to the appearance of |λ|max in the equation (4.17).
However, the maximum (approximate) eigenvalue at t = 0.6 s is only reduced
from 342 m/s to 320 m/s by reducing the liquid speed of sound from 1000 m/s
to 55.5 m/s. If the Lax–Friedrichs flux is employed instead of the Rusanov flux,
then the effect of a reduction in the liquid velocity is not noticeable in the
volume-fraction plot.

There is, of course, an effect on the pressure, due to the change of liquid
compressibility.

Regarding the time-step length, the force scheme behaves similarly to the
Roe4 scheme; for small-enough time steps, the effect of the time-step length is
moderate.

Comparison with the Roe4 scheme

In Figure 4.2 on page 107, we have plotted the data for the finest grid of 10001
points from Figure 4.1 on top of the corresponding results obtained from the
mc-limited Roe4 scheme on a grid of 201 points and C = 0.9. For the gas
volume fraction in Figure 4.2(a), the Roe4 scheme is clearly superior. As for
the pressure shown in Figure 4.2(b), it is not completely clear which scheme is
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Figure 4.1: Water faucet. Grid refinement for the FORCE scheme.
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Figure 4.2: Water faucet. Comparison of the FORCE scheme and the Roe4
scheme.

better, but the results are at least comparable. Hence, for the faucet case, the
Roe4 scheme is able to produce equal or better results than the force scheme
using a fraction of the grid size and far longer time steps. This more than
outweighs the fact that the Roe4 scheme is computationally expensive. For the
results presented here, the cpu time of the Roe4 scheme was less than 1 % of
that of the force scheme.

Non-hyperbolic underlying model

In the original force scheme, using the Lax–Friedrichs flux (4.7), neither the
coefficient matrix (3.34) nor its eigenvalues appear explicitly. Hence one might
be tempted to employ the scheme for solving a non-hyperbolic model. This
has been done in Figure 4.3 on the next page, where the 0 model (3.106) has
been taken for the interfacial pressure difference. The figure shows the effect
of grid refinement using a time step of ∆t = 3.16 · 10−6 s. For the coarse
and intermediate grids, the results seem trustworthy, albeit diffusive. As one
can see, for the 101-point grid, the scheme has been rendered almost totally
diffusive. This is due to the ∆x/∆t term of the Lax–Friedrichs flux. By grid
refinement, however, high-frequency disturbances are introduced, and they are
not damped out. The liquid velocity is similarly oscillatory, and the gas velocity
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Figure 4.3: Gas volume fraction for the water faucet. Grid refinement for the
FORCE scheme with the Lax–Friedrichs flux, using the the 0 model
for the interfacial pressure difference.

and the pressure even worse.
The arising of instabilities by grid refinement is expected for a model with

complex eigenvalues (see e.g. Ramshaw and Trapp, 1978). This indicates that
the coefficient matrix and its complex eigenvalues do indeed stay lurking in
the background, even if we try to forget them. What is more, for a model
which does not converge by grid (and time-step) refinement, it is impossible to
separate the numerical errors from the ones incurred by simplified physical
modelling.

4.2.2 Toumi’s shock tube

Recall Toumi’s shock tube presented in Section 3.4.5 on page 89. A comparison
between the force, the Roe4 and the Roe5 schemes for a 101-point grid is
shown in Figure 4.4 on the next page. The employed cfl number was C = 0.5.
Both Roe-type schemes were used together with the mc limiter.

It was seen in the previous subsection that the force scheme strongly
smeared contact discontinuities. Figure 4.4 shows that the force scheme also
smeared the rarefaction wave (to the left), but perhaps less dramatically than
for contact discontinuities. For the present shock (to the right), however, the
force scheme is too sharp (compressive), and hence becomes oscillatory, even
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Figure 4.4: Pressure for Toumi’s shock tube. Comparison of the FORCE, the
Roe4 and the Roe5 schemes on a 101-point grid.

for a somewhat reduced cfl number of 0.5.

Another comparison of the three schemes is shown in Figure 4.5 on the
following page, here for a finer grid of 10001 points. The cfl number was 0.5.
Still, as can be seen in the figure, a small spike persists for the pressure and
the velocities for the force scheme. The cfl number had to be reduced to 0.1
to (almost) get rid of those.

It can be observed that the schemes converge to similar results. The largest
differences between the schemes occur in the middle of the tube: The Roe4
scheme gives the sharpest resolution, and the Roe5 scheme produces slight
gradients in the volume fraction and in the velocities.

4.2.3 Water–air separation

The water–air separation problem was presented in Section 3.4.6 on page 95. It
is a challenging problem for two reasons:

1. The occurrence of sharp gradients, and

2. The tendency of the volume fractions to approach 0 and 1.
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Figure 4.5: Toumi’s shock tube. Comparison of the FORCE, the Roe4 (MC limiter
and entropy fix) and the Roe5 (first-order) schemes on a grid of
10001 points.
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Interphasic friction

In a frictionless model, the gas velocity may attain very large values at the end
of the tube, where the gas is disappearing. In the present case, it approached
values of several thousand metres per second, leading to stability problems.
Similar problems were also noted by Flåtten (2003, paper 2). Here we follow
the Flåtten approach and include an interfacial drag term as a source term in
the momentum equations:

Fd
g = −Φαgα`ρg(ug −u`), (4.18)

where Φ is positive and Fd
` = −Fd

g . A similar formulation was also used by
Paillère et al. (2003).

We adopt the friction parameter Φ of Flåtten (2003, paper 2). It is given by

Φ = Ce−kαg , (4.19)

where C = 5 · 104 1/s and k = 50. The values of the latter parameters were not
discussed by Flåtten. Here we do likewise. The purpose, however, of the above
choice of Φ is to impose the interfacial friction in the near-one-phase liquid
regions, where the gas is expected to dissolve in the liquid.

Grid and time-step convergence

Figure 4.6 on the following page displays the results of grid refinement. Since
the cfl number was held constant at C = 0.5, the effect of time-step refinement
is also present. The data are for t = 0.6 s, that is, before a steady state
is reached. It should be noted that the plotted analytical solution (given in
Section 3.4.6) is approximate, and more so than the solution to the water faucet
case.

Consider Figure 4.6(a) for the liquid volume fraction. Notice that the res-
olution of the shock (to the right) is significantly sharper than that of the
discontinuity (to the left). The results for the fine grid of 10001 points are
not too far away from the analytical solutions, but it should be noted that
other methods (Evje and Flåtten, 2003; Flåtten, 2003; Paillère et al., 2003) attain
similar profiles on grids being one to two orders of magnitude coarser.

Results for t = 1 s, that is, when the steady state has ideally been reached,
are shown in Figure 4.7 on page 113. For fine grids, the expected sharp volume-
fraction profile is attained (Figure 4.7(a)), and likewise for the hydrostatic
pressure profile (Figure 4.7(b)). The physical interpretation of the calculated
velocity profiles is not obvious, since the velocity is non-zero mainly where the
phase is practically absent (Figures 4.7(c) and 4.7(d)).
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Figure 4.6: Water–air separation at t = 0.6 s. Grid and time-step refinement for
the FORCE scheme. C = 0.5.

Figure 4.7(d) shows that the interfacial friction model has succeeded reason-
ably well in limiting the gas velocity. One exception is at the interface, that is,
where the volume fraction varies strongly. There, the gas is still present, but
the interfacial friction is low due to the exponential term in the equation (4.19).

For the 101-point grid, spurious oscillations occurred at the water-side of
the tube. This is clearly visible for the gas velocity, and also for the pressure.

It should be remarked that for the separation case, it is important that the
tube is not leaking from the ends, particularly at the water side. Here this was
achieved by simple extrapolation of the variables to the boundaries, such that
the mass fluxes at the boundaries were zero. Fortunately, it is easy to check
that the tube is water and air tight: The integral∫ L

0
αkρk dx,

where L is the tube length, should remain constant for each phase.

4.2.4 Summary

The flic scheme of Toro (1999, Section 14.5.2) has been adapted to the four-
equation system. The suggested centred flux-limiter approaches have been
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Figure 4.7: Water–air separation at t = 1 s. Grid and time-step refinement for
the FORCE scheme. C = 0.5.
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tested, but none has been found to work well. Hence, the first-order version
(force) of the scheme has been used. Herein, the Rusanov flux was employed
instead of the Lax–Friedrichs flux, since that was found to give somewhat better
results.

The force scheme resolves shocks reasonably well, but sometimes intro-
duces spurious oscillations. The scheme is highly diffusive on contact discon-
tinuities. However, it succeeded in calculating the water–air separation case,
where the Roe-type schemes failed.

4.3 Discretization of the non-conservative terms

As was observed in Section 4.2.2 on page 108, the force scheme has a tendency
to produce oscillations at shocks. This is in part related to the discretization
of the non-conservative terms, which will be shown in the present section.

In Section 4.1, the non-conservative terms were discretized centrally. At the
cost of having to consider the discrete equations in detail, we can instead write
the scheme on a quasi-conservation form. Recall the continuity equation

∂
∂t
(αρ)+ ∂

∂x
(αρu) = 0, (4.21)

and the momentum equation

∂
∂t
(αρu)+ ∂

∂x
(
αρu2)+αk ∂p∂x +∆p∂α∂x = 0, (4.22)

where phasic indices have been dropped and source terms neglected. Herein,
∆p refers to the interfacial pressure difference.

In the following, superscripts refer to time steps, and subscripts to the spatial
grid.

4.3.1 Lax–Friedrichs scheme

The Lax–Friedrichs scheme (see e.g. Toro, 1999, Section 5.2.2) for (4.21)–(4.22)
can be written as follows:

Continuity equation

The continuity equation (4.21) is discretized as

(αρ)n+1
i = 1

2

[
(αρ)ni−1 + (αρ)ni+1

]
+ ∆t

2∆x

[
(αρu)ni−1 − (αρu)ni+1

]
, (4.23)
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which can be written in conservation form,

(αρ)n+1
i − (αρ)ni
∆t

+ Fi+1/2 − Fi−1/2

∆x
= 0, (4.24)

with

Fi+1/2 =
1
2

[
(αρu)ni + (αρu)ni+1

]
+ 1

2
∆x
∆t

[
(αρ)ni − (αρ)ni+1

]
. (4.25)

Momentum equation

The momentum equation (4.22) is analogously discretized as

(αρu)n+1
i = 1

2

[
(αρu)ni−1 + (αρu)ni+1

]
+ ∆t

2∆x

[
(αρu2)ni−1 − (αρu2)ni+1

]
+ ∆t

2∆x

{
(∆p)ni

[
αni−1 −αni+1

]
+αni

[
pni−1 − pni+1

]}
, (4.26)

but it cannot be written in conservation form. However, it can be written in the
quasi-conservation form

(αρu)n+1
i − (αρu)ni
∆t

+
F right
i+1/2 − F left

i−1/2

∆x
= 0, (4.27)

with

F right
i+1/2 = Fi+1/2 +

1
2
(∆p)ni

[
αni +αni+1

]
+ 1

2
αni
[
pni + pni+1

]
, (4.28)

and

F left
i+1/2 = Fi+1/2 +

1
2
(∆p)ni+1

[
αni +αni+1

]
+ 1

2
αni+1

[
pni + pni+1

]
, (4.29)

where

Fi+1/2 =
1
2

[
(αρu2)ni + (αρu2)ni+1

]
+ 1

2
∆x
∆t

[
(αρu)ni − (αρu)ni+1

]
. (4.30)

4.3.2 Richtmyer scheme

The Richtmyer scheme (see e.g. Toro, 1999, Section 14.5.1) is a two-step version
of the Lax–Wendroff scheme. One can interpret it as taking two steps with
the Lax–Friedrichs scheme detailed in the preceding subsection. The first step
(predictor step) determines the state Qn+1/2

i+1/2 , and in the second step (corrector
step), the sought state Qni is found.
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Predictor step

Note that that in the following, the stencils are narrow, whereas they where
broad for the Lax–Friedrichs scheme. Hence this is a kind of staggering.

Continuity equation

(αρ)n+1/2
i+1/2 =

1
2

[
(αρ)ni + (αρ)ni+1

]
+ ∆t

2∆x

[
(αρu)ni − (αρu)ni+1

]
. (4.31)

Momentum equation

(αρu)n+1/2
i+1/2 =

1
2

[
(αρu)ni + (αρu)ni+1

]
+ ∆t

2∆x

[
(αρu2)ni − (αρu2)ni+1

]
+ ∆t

2∆x

{
(∆p)ni+1/2

[
αni −αni+1

]
+αni+1/2

[
pni − pni+1

]}
. (4.32)

Herein, the cell-interface values are found by linear interpolation:

(∆p)ni+1/2 =
1
2

[
(∆p)ni + (∆p)ni+1

]
, (4.33)

and

αni+1/2 =
1
2

[
αni +αni+1

]
. (4.34)

Corrector step

In the corrector step, the intermediate state from the predictor step is employed
to yield the state at the next time step.

Continuity equation The continuity equation can be written in the conserva-
tion form (4.24) with the numerical mass flux given by

Fi+1/2 = (αρu)n+1/2
i+1/2 . (4.35)

Momentum equation The momentum equation is now written as

(αρu)n+1
i − (αρu)ni
∆t

+
(αρu2)n+1/2

i+1/2 − (αρu2)n+1/2
i−1/2

∆x

+ (∆p)ni
αn+1/2
i+1/2 −α

n+1/2
i−1/2

∆x
+αni

pn+1/2
i+1/2 − p

n+1/2
i−1/2

∆x
= 0, (4.36)
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which can be written in the quasi-conservation form (4.27) with

F right
i+1/2 = (αρu2)n+1/2

i+1/2 + (∆p)ni α
n+1/2
i+1/2 +αni p

n+1/2
i+1/2 , (4.37)

and

F left
i+1/2 = (αρu2)n+1/2

i+1/2 + (∆p)ni+1α
n+1/2
i+1/2 +αni+1p

n+1/2
i+1/2 . (4.38)

4.3.3 FORCE2 scheme

The force scheme is assembled as

Qn+1
i =Qni −

∆t
∆x

(
Fright
i+1/2 − F left

i−1/2

)
, (4.39)

taking

Fi+1/2 =
1
2

(
FLF
i+1/2 + FR

i+1/2

)
(4.40)

for the numerical mass fluxes, where the Lax–Friedrichs flux, FLF
i+1/2, is calcu-

lated using (4.25), and the Richtmyer flux, FR
i+1/2, is given by (4.35).

For the non-conservative numerical momentum ‘fluxes’ one takes

Fright/left =
1
2

(
FLF

right/left + FR
right/left

)
, (4.41)

with the Lax–Friedrichs flux from (4.28) or (4.29), and the Richtmyer flux from
(4.37) or (4.38).

This scheme will be referred to as ‘force2’. It differs from the force scheme
described in Section 4.1 regarding the discretization of the non-conservative
terms. In particular,

1. The need for the interpolation (4.33)–(4.34) introduces some numerical
diffusion.

2. The non-conservative terms count in the calculation of the intermediate
state (4.32).

4.3.4 Toumi’s shock tube revisited

The influence of the discretization of the non-conservative terms is illustrated
in Figure 4.8 on the next page. The calculations have been performed on a
101-point grid with a cfl number of C = 0.9. The label ‘LxF’ means that
the Lax–Friedrichs flux has been used, while the label ‘Rus’ denotes that the
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Figure 4.8: Toumi’s shock tube. FORCE-scheme variants. Influence of the
discretization of the non-conservative terms, as well as ‘base flux’,
on a 101-point grid.

Rusanov flux has been taken as the low-order flux, that is, for force2, ∆x/∆t
has been substituted by λmax in the equations (4.25) and (4.30), and similarly
for force.

The figure shows that when the Rusanov flux is used with the force scheme,
an overshoot occurs at the shock. This is reduced by employing the Lax–
Friedrichs flux instead. The overshoot is further reduced for the combination
of the force2 scheme with the Rusanov flux. However, in this case, it is only
the force2 scheme with the Lax–Friedrichs flux that avoids overshoots.

It is perhaps surprising that for the liquid velocity in Figure 4.8(a), the force2
scheme seems to give a sharper resolution than force of the discontinuity
at about x = 60 m, but situated a bit too far to the left. For the pressure in
Figure 4.8(b), on the other hand, the force2 profile appears more smeared.
This latter tendency, however, is reversed by grid refinement.

At the rarefaction on the left-hand side, the differences are small, but force2
is slightly more diffusive.
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4.4 Summary

The force scheme could be employed where the Roe4 and Roe5 schemes failed.
Another use of it is for quick tests, since it is computationally less expensive
for a given grid. However, it is not necessarily computationally cheaper for a
given accuracy; an example was found of the opposite.

The tendency to produce oscillations at shocks is influenced by the dis-
cretization of the non-conservative terms. The approach of including the
non-conservative terms in the numerical fluxes (force2) produced preferable
results for Toumi’s shock tube.





5 The discrete-equation multiphase model∗

Abgrall and Saurel (2003) presented a discrete-equation two-pressure two-
phase model of seven equations. A main characteristic of that model is that
the Riemann problems are solved between two pure fluids, and that phase
interaction is determined by the Riemann solver.

Here we propose a five-equation isentropic simplification of the discrete-
equation model, and by examples we show how existing and new models for
interfacial closures can be incorporated into it. The interfacial pressure has a
determining effect on the final solution.

We further show that the discrete-equation model can reproduce results for
two-phase shock tubes given in the literature when the adequate interfacial-
pressure model is employed. Finally, we compare the present results with those
obtained using the Roe5 scheme on a continuous model, and obtain very good
agreement.

The notation in this chapter is slightly different from that of the rest of the
thesis, in that the phases are indicated by superscripts, to avoid ‘conflict’ with
the often-needed spatial and other subscripts.

5.1 Introduction

5.1.1 Background

Multiphase flows are relevant in a large and increasing amount of applications,
including in the oil and gas industries, in the chemical and process industries, in
heat pumping applications and in nuclear power plants. Still, the mathematical
modelling and numerical simulation of multiphase flows is, as a whole, not a
mature science. Only in specialized areas is the state of the art satisfactory.

In the present work, we focus on two-phase flows. In recent years, progress
has been made regarding the understanding of the mathematical properties
and the proper spatial discretization of two-phase models. However, these
questions are challenging, and hence, in the research papers presented, one
has often not been able to attend to the constitutive terms in need of physical
modelling and experimental verification.

∗This chapter is based on the article by Munkejord and Papin (2005).

121
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Here we investigate ways to model the interfacial pressure in the framework
of the discrete-equation model of Abgrall and Saurel (2003).

5.1.2 Previous work

Saurel and Abgrall (1999) presented a two-velocity two-pressure two-phase
model of seven equations, where pressure and / or velocity relaxation could be
performed after the hyperbolic time step. The model was expanded to several
space dimensions by Saurel and LeMetayer (2001), and it was stated to be
suitable for compressible multiphase flows with interfaces, shocks, detonation
waves and cavitation.

The approximate Riemann solver employed by Saurel and Abgrall (1999) was
a modified Harten, Lax and van Leer (hll) scheme. Other authors have later
presented similar methods using other solvers. Niu (2001) applied a modified
advection upstream splitting method (ausmd) and solved the seven-equation
model in one and two dimensions, also adding a k–ε turbulence model. A
Roe-type scheme for the seven-equation model was presented by Karni et al.
(2004).

One of the main difficulties of the above-mentioned two-phase model, is the
occurrence of non-conservative products. Abgrall and Saurel (2003) proposed
a discrete-equation two-phase model aiming to avoid the problems of the non-
conservative terms by considering Riemann problems between pure phases.
This approach leads to the phase interaction being defined through the Riemann
solver.

5.1.3 Outline of chapter

The present chapter analyses the interfacial pressure and the discrete-equation
model. Section 5.2 briefly repeats the multiphase model. The discrete-equation
numerical scheme of Abgrall and Saurel (2003) is revisited in Section 5.3.
Furthermore, similarities to, and differences from, the continuous model are
pointed out, and the pure-phase Riemann problem is explained. The continuous
model used for comparisons is briefly referred to in Section 5.4. Test calcula-
tions are presented in Section 5.5, and conclusions are drawn in Section 5.6.
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5.2 Multiphase model

We recall that the one-dimensional, inviscid, isentropic multiphase flow is
customarily described by the continuity equation

∂
∂t
(α(k)ρ(k))+ ∂

∂x
(α(k)ρ(k)u(k)) = 0, (5.1)

and the momentum equation

∂
∂t
(α(k)ρ(k)u(k))+ ∂

∂x

(
α(k)ρ(k)

(
u(k)

)2
)
+α(k) ∂p

(k)

∂x
+ (p(k)−p(k)int )

∂α(k)

∂x
= 0,
(5.2)

when gravity, mass transfer, wall friction, interface friction and other effects
are neglected. This model is arrived at by volume-averaging the governing
equations for each phase, and by considering a cross-section of a pipe. Due to

the term p(k)int ∂α(k)/∂x , the equation system cannot be written in conservative
form. The Riemann problem for non-conservative systems is not always unique,
and it is in general difficult to define its solution (Andrianov and Warnecke,
2004).

A discrete mathematical and numerical model for compressible multiphase
flows was introduced by Abgrall and Saurel (2003). Since the two-phase mixture
was considered at the discrete, pure-phase level, the problem of the ∇α terms,
which render the system of equations non-conservative (Saurel and Abgrall,
1999), was avoided. For the sake of clarification, the main elements of the
Abgrall and Saurel (2003) model are given here in detail. Further, we adapt their
model to isentropic problems, something which represents a simplification.

5.2.1 Transport equations

For an inviscid, isentropic flow, each pure fluid k is governed by the (isentropic)
Euler equations:

∂q(k)

∂t
+∇ · F (k) = 0, (5.3)

where q(k) is the vector containing the ‘conservative’ variables,

q(k) =
[
ρ(k), ρ(k)u(k)

]T
, (5.4)

and F (k) is the corresponding flux matrix:

F (k) =
[
ρ(k)u(k), ρ(k)u(k) ⊗ u(k) + p(k)I

]T
. (5.5)
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Denote the phase-indicator function (characteristic function) for phase k as
χ(k). It is equal to one inside phase k and zero otherwise. It is obvious that
phase k is advected with the velocity of phase k. Hence the same is true for
the phase-indicator function, which gives

∂χ(k)

∂t
+ u(k) ·∇χ(k) = 0. (5.6)

∇χ(k) = 0, except at the interface of phase k. Therefore it is natural to write

∂χ(k)

∂t
+ u(k)int ·∇χ(k) = 0, (5.7)

where u(k)int is the interface velocity of phase k. The above equation is derived
in detail by Drew and Passman (1999, Section 9.1.3). For two phases, we have
u(1)int = u

(2)
int = uint.

Here we follow the ensemble-averaging approach of Drew and Passman (1999,
see Section 9.1 and Chapter 11). The ensemble-averaging operator, E (·), is
assumed to commute with differentiation in space and time, so that

E (∇ψ) =∇E (ψ) , (5.8)

and

E
(
∂ψ
∂t

)
= ∂
∂t
E (ψ) , (5.9)

where ψ is a general function. Further, we have, for example∫
E (ψ)dx dt = E

(∫
ψdx dt

)
. (5.10)

Drew and Passman (1999) derived a relation for the ensemble average of the
gradient (or divergence) of a general function ψ:

E
(
χ(k)∇ψ

)
=∇

(
E
(
χ(k)ψ

))
−E

(
ψ(k)int∇χ(k)

)
, (5.11)

which is similar to the Slattery averaging theorem (Slattery, 1967; Whitaker,
1969) for volume averaging. The subscript ‘int’ denotes the value at the inter-
face, which is ‘picked up’ by the ∇χ(k) operator.

The expression for the ensemble average of a time derivative is

E
(
χ(k)

∂ψ
∂t

)
= ∂
∂t

(
E
(
χ(k)ψ

))
−E

(
ψ(k)int

∂χ(k)

∂t

)
. (5.12)
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Thus we can write the averaged balance equations for each phase as

∂E
(
χ(k)ρ(k)

)
∂t

+∇ ·E
(
χ(k)ρ(k)u(k)

)
= E

(
ρ(k)(u(k) − u(k)int ) ·∇χ(k)

)
, (5.13)

and

∂E
(
χ(k)ρ(k)u(k)

)
∂t

+∇ ·
[
E
(
χ(k)ρ(k)u(k) ⊗ u(k)

)
+E

(
χ(k)p(k)

)]
=

E
((
ρ(k)u(k) ⊗ (u(k) − u(k)int )+ p(k)I

)
·∇χ(k)

)
. (5.14)

Defining the volume fraction of phase k as

α(k) = E
(
χ(k)

)
, (5.15)

the average density as

ρ(k) =
E
(
χ(k)ρ(k)

)
α(k)

, (5.16)

the average velocity as

u(k) =
E
(
χ(k)ρ(k)u(k)

)
α(k)ρ(k)

, (5.17)

etc., assuming

E
(
χ(k)ρ(k)u(k) ⊗ u(k)

)
= α(k)ρ(k)u(k) ⊗ u(k), (5.18)

and omitting the overline symbol for notational convenience, we get:

∂α(k)ρ(k)

∂t
+∇ ·

[
α(k)ρ(k)u(k)

]
= E

(
ρ(k)(u(k) − u(k)int ) ·∇χ(k)

)
, (5.19)

and

∂α(k)ρ(k)u(k)

∂t
+∇ ·

[
α(k)ρ(k)u(k) ⊗ u(k) +α(k)p(k)I

]
=

E
((
ρ(k)u(k) ⊗ (u(k) − u(k)int )+ p(k)I

)
·∇χ(k)

)
. (5.20)

Herein, the quantities on the left-hand side are averaged. The averaged topolo-
gical equation is

∂α(k)

∂t
+E

(
u(k)int ·∇χ(k)

)
= 0. (5.21)
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5.2.2 Thermodynamics

In the present work, the energy equation is not considered, and the following
equation of state is employed:

p(k) =
(
c(k)

)2(ρ(k) − ρ(k)◦ )
, (5.22)

where the speed of sound c(k) and the ‘reference density’ ρ(k)◦ are constants
for each phase. The above equation corresponds to the stiffened-gas equation
of state, p = (γ − 1)ρe − γp◦, where e is the internal energy, if one takes
c2 = (γ − 1)e and γp◦ = c2ρ◦.

This equation of state (5.22) has been derived under the assumption of
an isentropic flow. In fact, it also implies isothermal flow, as was shown in
Section 2.5.5 on page 34.

Since we are interested in two-phase mixtures, pure single-phase flow has not
been explicitly accounted for. This restriction is not thought to be of practical
importance in most applications.

5.3 Numerical scheme

Henceforth we treat only one spatial dimension for simplicity. Consider the
non-averaged balance equations (5.3) for each phase. They are multiplied by
the phase-indicator function χ(k) and integrated over a control volume Ci as
follows: ∫

Ci
χ(k)

∂q(k)

∂t
dx +

∫
Ci
χ(k)∇ · F (k) dx = 0, (5.23)

or ∫
Ci
χ(k)

∂q(k)

∂t
dx +

∫
∂[Ci∩{χ(k)=1}]

χ(k)F (k) · nds = 0, (5.24)

where n is the outward-pointing unit normal vector. Using the commutation
property (5.10), we can ensemble-average (5.23):

E
(∫

Ci

{
∂χ(k)q(k)

∂t
+∇ · (χ(k)F (k))− q(k) ∂χ

(k)

∂t
− F (k) ·∇χ(k)

}
dx
)
= 0,

(5.25)
and using (5.7), to obtain, analogously to (5.19) and (5.20):∫

Ci

∂α(k)q(k)

∂t
dx +

∫
Ci
∇ · (α(k)F (k))dx =

∫
Ci
E
(
S(k)

)
dx, (5.26)

where

S(k) =
[

ρ(k)(u(k) − u(k)int ) ·∇χ(k)(
ρ(k)u(k) ⊗ (u(k) − u(k)int )+ p(k)I

)
·∇χ(k)

]
. (5.27)
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However, the topological equation (5.7) cannot be written in the form (5.3),
and must therefore be treated differently. Still, we may integrate it,∫

Ci

∂χ(k)

∂t
dx +

∫
Ci
u(k)int ·∇χ(k) dx, (5.28)

and take the ensemble average:

∫
Ci

∂E
(
χ(k)

)
∂t

dx = −
∫
Ci
E
(
u(k)int ·∇χ(k)

)
dx. (5.29)

Since we consider a two-phase flow at the discrete level, E
(
χ(k)

)
= χ(k) = 1

inside phase k and 0 otherwise, and the above equation reads 0 = 0 except at
the interface, where the size of the jump in χ(k) equals 1.

5.3.1 Lagrangian fluxes

The right-hand sides of (5.26) and (5.29) give rise to the Lagrangian fluxes
F lag,(k) treated in Abgrall and Saurel (2003). They are sometimes called transfer
integrals in the multiphase literature. For example, in 1D we have

S(k) = F lag,(k) ∂χ(k)

∂x
, (5.30)

where
F lag,(k) = F (k) −u(k)int q

(k). (5.31)

The phase velocity u(k) at the interface and the corresponding interface

velocity u(k)int are different if there is mass transfer between the phases. Since in
the present work we assume that no interphase mass transfer takes place, we
get:

S(k) =
[

0
p(k)I ·∇χ(k).

]
. (5.32)

Integrate (5.26) over Ci × [t0, t0 +∆t]:∫∫
Ci×[t0,t0+∆t]

(
∂α(k)q(k)

∂t
+ ∂α

(k)F (k)

∂x

)
dx dt =

∫∫
Ci×[t0,t0+∆t]

E
(
S(k)

)
dx dt.

(5.33)
Consider the space–time control volume shown in Figure 5.1 on the next page.
The shaded areas are pure fluid k, where α(k) = χ(k) = 1, and the white areas
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PSfrag replacements

t0

t0 +∆t

xi−1/2

ξ0 ξ1 ξ2 · · ·· · · ξl ξN−1

xi+1/2

ξN

Ci

Figure 5.1: Space–time control volume.

represent the other fluid, where χ(k) = 0. The dashed lines at xi−1/2 and xi+1/2
are the control-volume boundaries fixed in space. The dotted lines represent
the trajectories of the interfaces between the two fluids. We can use Green’s
theorem, and the left-hand side of (5.33) becomes∫∫

Ci×[t0,t0+∆t]

(
∂α(k)q(k)

∂t
+ ∂α

(k)F (k)

∂x

)
dx dt

=
∫
Ci(t0+∆t)

α(k)(x, t0+∆t)q(k)(x, t0+∆t)dx−
∫
Ci(t0)

α(k)(x, t0)q(k)(x, t0)dx

+
∫ t0+∆t
t0

(
α(k)(xi+1/2, t)F (k)(xi+1/2, t)−α(k)(xi−1/2, t)F (k)(xi−1/2, t)

)
dt.

(5.34)

Inserting (5.34) in (5.33), dividing by ∆x and by ∆t and taking the limit as
∆t → 0 gives:

d
dt

(
α(k)i q

(k)
i

)
+ 1
∆x

(
E (χF)(k)i+1/2 −E (χF)(k)i−1/2

)
= 1
∆x

∫
Ci
E
(
S(k)

)
dx. (5.35)

The right-hand side of the above equation can be estimated by assuming a
distribution of S(k) in the control volume Ci. First, we assume that S(k) is
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constant in Ci, to obtain a first-order approximation. The second-order scheme
will be outlined in Section 5.3.3 on page 131.

The volume-fraction evolution equation (5.29) may also be integrated over
Ci × [t0, t0 +∆t]:∫∫

Ci×[t0,t0+∆t]

∂α(k)

∂t
dx dt = −

∫∫
Ci×[t0,t0+∆t]

E
(
u(k)int ·∇χ(k)

)
dx dt, (5.36)

or∫
Ci(t0+∆t)

α(k)(x, t0 +∆t)dx −
∫
Ci(t0)

α(k)(x, t0)dx

= −
∫∫
Ci×[t0,t0+∆t]

E
(
u(k)int ·∇χ(k)

)
dx dt. (5.37)

Divide by ∆x and ∆t and take the limit as ∆t → 0:

dα(k)i
dt

= −
∫
Ci
E
(
u(k)int ·∇χ(k)

)
dx dt. (5.38)

This permits us to include the volume-fraction evolution equation into our
system of equations, by writing

d
dt

(
α(k)i q̃

(k)
i

)
+ 1
∆x

(
E
(
χF̃
)(k)
i+1/2

−E
(
χF̃
)(k)
i−1/2

)
= 1
∆x

∫
Ci
E
(
S̃(k)

)
dx, (5.39)

where

q̃(k) =
[
1, q(k)

]T
, (5.40)

F̃ (k) =
[
0, F (k)

]T
, (5.41)

and

S̃(k) =
[
−u(k)int ·∇χ(k), S(k)

]T
. (5.42)

The discretization of the volume-fraction evolution equation is explained by
Abgrall and Saurel (2003). Henceforth we use q̃(k), F̃ (k) and S̃(k), but drop the
tilde for convenience.

A main hypothesis in the Abgrall and Saurel (2003) article is that it is reason-

able to approximate the interface velocity u(k)int (ξl) by the velocity of the contact
discontinuity given by the Riemann problem between the states to the left and
right of ξl. This is denoted by

S(k)(x) =

−F lag,(k)(q(k)(x−),q(l)(x+)) if [χ(k)] = −1,
F lag,(k)(q(l)(x−),q(k)(x+)) if [χ(k)] = 1,

(5.43)
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where k is the phase under consideration and l is the other phase. x− is
the coordinate to the left of x and x+ is to the right. The jump in χ(k) at x,
[χ(k)] = χ(k),+ − χ(k),− = ±1 is negative when we have phase k to the left and
phase l to the right, since then, χ(k) = 0 to the left and χ(k) = 1 to the right.

To estimate the right-hand side of (5.35), we must consider the boundaries
and the interior of the control volume Ci separately. At the boundary xi−1/2,
the discontinuity will only count if the interfacial velocity is positive, else it
will be counted in the control volume to the left. Conversely, at the boundary
xi+1/2 the discontinuity will only count if the interfacial velocity is negative.

It is also necessary to consider the probability of having phase k to the
left of xi+1/2 and phase l to the right, etc. These probabilities are denoted
by Pi+1/2(k, l), and, as explained by Abgrall and Saurel (2003), reasonable
estimates are

Pi+1/2(k, k) = min(α(k)i , α
(k)
i+1),

Pi+1/2(k, l) = max(α(k)i −α(k)i+1,0),

Pi+1/2(l, k) = max(α(l)i −α(l)i+1,0),

Pi+1/2(l, l) = min(α(l)i , α
(l)
i+1).

(5.44)

Using all this, we get for the boundary part of the right-hand side of (5.35):∫
Ci
E
(
S(k)

)
bound

dx =
∫
Ci
E
(

F lag,(k) ∂χ(k)

∂x

)
bound

dx

= −max
{
0, sgn

[
u(k)int

(
q(k),−i−1/2,q

(l),+
i−1/2

)]}
Pi−1/2(k, l)F lag,(k)(q(k),−i−1/2,q

(l),+
i−1/2

)
+max

{
0, sgn

[
u(k)int

(
q(l),−i−1/2,q

(k),+
i−1/2

)]}
Pi−1/2(l, k)F lag,(k)(q(l),−i−1/2,q

(k),+
i−1/2

)
+min

{
0, sgn

[
u(k)int

(
q(k),−i+1/2,q

(l),+
i+1/2

)]}
Pi+1/2(k, l)F lag,(k)(q(k),−i+1/2,q

(l),+
i+1/2

)
−min

{
0, sgn

[
u(k)int

(
q(l),−i+1/2,q

(k),+
i+1/2

)]}
Pi+1/2(l, k)F lag,(k)(q(l),−i+1/2,q

(k),+
i+1/2

)
.

(5.45)

The part of the right-hand side of (5.35) arising from internal interfaces,
is called relaxation terms by Abgrall and Saurel (2003). Denote the expected
number of internal interfaces by Nint,i. Similarly to what was done above, and
using the midpoint rule, this gives:∫

Ci
E
(
S(k)

)
relax

dx =
∫
Ci
E
(

F lag,(k) ∂χ(k)

∂x

)
relax

dx

= Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i )

−F lag,(k)(q(k)i ,q(l)i )), (5.46)
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where the second equality depends on the assumption that F lag,(k)∂χ(k)/∂x is
constant in Ci. Hence,∫

Ci
E
(
S(k)

)
dx =

∫
Ci
E
(
S(k)

)
bound

dx +
∫
Ci
E
(
S(k)

)
relax

dx, (5.47)

using (5.45) and (5.46).

5.3.2 Conservative fluxes

Now consider the flux terms on the right-hand side of (5.35). For the control-
volume boundary at xi+1/2, we have, of course, a contribution to the phase
k-equation if there is phase k on both sides. Moreover, there is a contribution
if phase k exists on the left-hand side and phase l on the right-hand side, if the
interface velocity is positive (phase k exits), and finally there is a contribution if
phase l exists on the left-hand side and k on the right-hand side, if the interface
velocity is negative (phase k enters). If we have phase l on both sides, there is
no contribution to the phase k-equation. Hence,

E (χF)(k)i+1/2 = Pi+1/2(k, k)F (k)
(
q(k)i ,q

(k)
i+1

)
+max

{
0, sgn

[
u(k)int

(
q(k)i ,q

(l)
i+1

)]}
Pi+1/2(k, l)F (k)

(
q(k)i ,q

(l)
i+1

)
+max

{
0, sgn

[
−u(k)int

(
q(l)i ,q

(k)
i+1

)]}
Pi+1/2(l, k)F (k)

(
q(l)i ,q

(k)
i+1

)
.

(5.48)

At the control-volume boundary at xi−1/2 the situation is similar, that is,

E (χF)(k)i−1/2 = Pi−1/2(k, k)F (k)
(
q(k)i−1,q

(k)
i
)

+max
{
0, sgn

[
u(k)int

(
q(k)i−1,q

(l)
i
)]}
Pi−1/2(k, l)F (k)

(
q(k)i−1,q

(l)
i
)

+max
{
0, sgn

[
−u(k)int

(
q(l)i−1,q

(k)
i
)]}
Pi−1/2(l, k)F (k)

(
q(l)i−1,q

(k)
i
)
.

(5.49)

5.3.3 Second-order scheme

With (5.45)–(5.49), we can advance (5.35) in time using an appropriate scheme.
Abgrall and Saurel (2003) proposed to use a modified muscl-Hancock scheme
(van Leer, 1984) (see Toro, 1999, Section 14.4) to get second-order accuracy
in space and time. This will not be repeated here, except that one point will

be made: Extra terms arise in E
(
S(k)

)
bound

for the second-order scheme. This

is due to the fact that for a first-order Godunov method, the variables are
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assumed to be constant in each control volume Ci, whereas in the second-order
method, they are assumed to be linearly varying.

To see how the extra terms arise, divide the cell Ci into M + 1 sub-cells
(xi−1/2 = η0−1/2, . . . , ηj−1/2, . . . , ηM+1/2 = xi+1/2; j ∈ {0,1, . . . ,M+1}; ∆η =
ηj+1/2 − ηj−1/2 = ∆x/(M + 1)) in which the volume fraction α(k)j is supposed
to be constant. Both fluids can exist in each of these M + 1 sub-cells. Then
divide each of the sub-cells into N sub-sub-cells containing pure phase k or l.
Hence the first-order scheme previously found can be directly applied to each
of the M + 1 sub-cells. However, since the volume fraction α(k)j is supposed
to be constant for each j, it is necessary to let M →∞ to obtain the assumed
linear distribution.

Apply the semi-discrete scheme to the M + 1 sub-cells:

d
dt

(
α(k)j q

(k)
j

)
+ 1
∆η

(
E (χF)(k)j+1/2 −E (χF)(k)j−1/2

)
= 1
∆η

∫
x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+E
(
S(k)

)
relax

}
dx. (5.50)

To obtain an equation for the cell Ci, multiply the above equation with ∆η and
sum it term-wise. The first term becomes

M∑
j=0

∆η
d

dt

(
α(k)j q

(k)
j

)
=

M∑
j=0

∆x
M + 1

d
dt

(
α(k)j q

(k)
j

)

= ∆x d
dt

(
1

M + 1

M∑
j=0

α(k)j q
(k)
j

)
, (5.51)

that is, we calculate the mean of the conserved variables. The Eulerian fluxes
are evaluated in the following way:

M∑
j=0

(
E (χF)(k)j+1/2 −E (χF)(k)j−1/2

)
= E (χF)(k)M+1/2 −E (χF)(k)1/2 , (5.52)

that is, the sum telescopes. The right-hand side becomes

M∑
j=0

∫
x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+E
(
S(k)

)
relax

}
dx, (5.53)
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where

∫
x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+E
(
S(k)

)
relax

}
dx =

−max
{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}
Pj−1/2(k, l)F lag,(k)(q(k)j−1,q

(l)
j
)

+max
{
0, sgn

[
u(k)int

(
q(l)j−1,q

(k)
j
)]}
Pj−1/2(l, k)F lag,(k)(q(l)j−1,q

(k)
j
)

+min
{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
Pj+1/2(k, l)F lag,(k)(q(k)j ,q(l)j+1

)
−min

{
0, sgn

[
u(k)int

(
q(l)j ,q

(k)
j+1

)]}
Pj+1/2(l, k)F lag,(k)(q(l)j ,q(k)j+1

)
+
Nint,j

2

(
F lag,(k)(q(l)j ,q(k)j )

−F lag,(k)(q(k)j ,q(l)j )). (5.54)

First consider the terms of the type F lag,(k)(q(k)m ,q(l)m+1

)
, that is,

M∑
j=0

{
min

{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
Pj+1/2(k, l)F lag,(k)(q(k)j ,q(l)j+1

)
−max

{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}
Pj−1/2(k, l)F lag,(k)(q(k)j−1,q

(l)
j
)}

=
M∑
j=0

{
min

{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
max(α(k)j −α(k)j+1,0)F

lag,(k)(q(k)j ,q(l)j+1

)
−max

{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}

max(α(k)j−1 −α
(k)
j ,0)F

lag,(k)(q(k)j−1,q
(l)
j
)}
.

(5.55)

Define

Vm = max(α(k)m −α(k)m+1,0)F
lag,(k)(q(k)m ,q(l)m+1

)
, (5.56)

(
β(k,l)m−1/2

)+
= max

{
0, sgn

[
u(k)int

(
q(k)m−1,q

(l)
m
)]}
, (5.57)

and (
β(k,l)m+1/2

)−
= min

{
0, sgn

[
u(k)int

(
q(k)m ,q

(l)
m+1

)]}
, (5.58)
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so that the sum in (5.55) can be written as

M∑
j=0

{(
β(k,l)j+1/2

)−
Vj −

(
β(k,l)j−1/2

)+
Vj−1

}
=

M∑
j=0

(
β(k,l)j+1/2

)−
Vj −

M−1∑
j=−1

(
β(k,l)j+1/2

)+
Vj

=
(
β(k,l)M+1/2

)−
VM −

(
β(k,l)−1/2

)+
V0 +

M−1∑
j=0

{(
β(k,l)j+1/2

)−
−
(
β(k,l)j+1/2

)+}
Vj

=
(
β(k,l)M+1/2

)−
VM −

(
β(k,l)−1/2

)+
V0 −

M−1∑
j=0

Vj . (5.59)

The two first terms on the right-hand side above correspond to the interactions
with the cells Ci+1 and Ci−1, respectively. The last term is

M−1∑
j=0

Vj =
M−1∑
j=0

max(α(k)j −α(k)j+1,0)F
lag,(k)(q(k)j ,q(l)j+1

)

=
M−1∑
j=0

(ηj+1 − ηj)max(−δiα(k)i ,0)F lag,(k)(q(k)j ,q(l)j+1

)

= max(−δiα(k)i ,0)
M−1∑
j=0

(ηj+1 − ηj)F lag,(k)(q(k)j ,q(l)j+1

)

= max(δiα
(l)
i ,0)

M−1∑
j=0

(ηj+1 − ηj)F lag,(k)(q(k)j ,q(l)j+1

)
, (5.60)

where δiα
(k)
i is the slope of the volume fraction in the ith cell, given by the

chosen limiter function. The last sum is a Riemann sum, and therefore

lim
M→∞

M−1∑
j=0

Vj = max(δiα
(l)
i ,0)

∫ xi+1/2

xi−1/2
F lag,(k)(q(k)(η),q(l)(η))dη. (5.61)

The above integral can be estimated using the second-order midpoint method:

∫ xi+1/2

xi−1/2
F lag,(k)(q(k)(η),q(l)(η))dη ≈ F lag,(k)(q(k)i ,q(l)i )∆x. (5.62)

Here, q(k)i is evaluated at (xi+1/2 − xi−1/2)/2 = xi.
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Using exactly the same arguments, but reversing the phasic indices k and l,
we arrive at the corresponding expression for F lag,(k)(q(l)m ,q(k)m+1

)
, namely,

M∑
j=0

{
max

{
0, sgn

[
u(k)int

(
q(l)j−1,q

(k)
j
)]}
Pj−1/2(l, k)F lag,(k)(q(l)j−1,q

(k)
j
)

−min
{
0, sgn

[
u(k)int

(
q(l)j ,q

(k)
j+1

)]}
Pj+1/2(l, k)F lag,(k)(q(l)j ,q(k)j+1

)}
≈ max(δiα

(k)
i ,0)F

lag,(k)(q(l)i ,q(k)i )
∆x + boundary terms. (5.63)

For the relaxation terms, we obtain analogously, using the midpoint rule:

M∑
j=0

{Nint,j

2

(
F lag,(k)(q(l)j ,q(k)j )

−F lag,(k)(q(k)j ,q(l)j ))}

≈ Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i )

−F lag,(k)(q(k)i ,q(l)i )), (5.64)

so that the final, second-order expression for phase-interaction terms becomes:

M∑
j=0

∫
x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+E
(
S(k)

)
relax

}
dx ≈

I



−max
{
0, sgn

[
u(k)int

(
q(k),−i−1/2,q

(l),+
i−1/2

)]}
Pi−1/2(k, l)F lag,(k)(q(k),−i−1/2,q

(l),+
i−1/2

)
+max

{
0, sgn

[
u(k)int

(
q(l),−i−1/2,q

(k),+
i−1/2

)]}
Pi−1/2(l, k)F lag,(k)(q(l),−i−1/2,q

(k),+
i−1/2

)
+min

{
0, sgn

[
u(k)int

(
q(k),−i+1/2,q

(l),+
i+1/2

)]}
Pi+1/2(k, l)F lag,(k)(q(k),−i+1/2,q

(l),+
i+1/2

)
−min

{
0, sgn

[
u(k)int

(
q(l),−i+1/2,q

(k),+
i+1/2

)]}
Pi+1/2(l, k)F lag,(k)(q(l),−i+1/2,q

(k),+
i+1/2

)
+Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i )

−F lag,(k)(q(k)i ,q(l)i ))
II

 −max(δiα
(l)
i ,0)F

lag,(k)(q(k)i ,q(l)i )∆x
+max(δiα

(k)
i ,0)F

lag,(k)(q(l)i ,q(k)i )
∆x.

(5.65)

Herein, (I) represent the muscl method and relaxation terms, and (II) are
correction terms. Note that they involve Riemann problems between the two
phases, centred in the computational cells and not at the cell interfaces. As
shown above, they arise from the non-conservative terms, F lag,(k), in (I). Further
details are discussed by Papin (2005, Part II, Chapter 3).
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5.3.4 Comparison with ‘conventional’ model

The ‘conventional’, continuous model given by (5.1) and (5.2) can be written as

∂α(k)q̌(k)

∂t
+∇ ·

(
αkF̌ (k)

)
= Š(k), (5.66)

where

q̌(k) =
[
ρ(k), ρ(k)u(k)

]T
, (5.67)

F̌ (k) =
[
ρ(k)u(k), ρ(k)

(
u(k)

)2 + p(k)
]T
, (5.68)

and

Š(k) =
[

0, p(k)int
∂α(k)

∂x

]T
. (5.69)

Recall the present (semi-) discrete model (5.39):

d
dt

(
α(k)i q

(k)
i

)
+ 1
∆x

(
E (χF)(k)i+1/2 −E (χF)(k)i−1/2

)
= 1
∆x

∫
Ci

{
E
(
S(k)

)
bound

+E
(
S(k)

)
relax

}
dx, (5.70)

where

q(k) =
[
1, ρ(k), ρ(k)u(k)

]T
, (5.71)

F (k) =
[
0, ρ(k)u(k), ρ(k)

(
u(k)

)2 + p(k)
]T
, (5.72)

and

S(k) =
[
−u(k)int

∂χ(k)

∂x
, 0, p(k)

∂χ(k)

∂x

]T
. (5.73)

The system (5.70) has one more equation than (5.66); it is the volume-fraction
equation. Hence, (5.70) has a priori two independent pressures, while (5.66)
has only one (See Section 5.3.6 on page 141). In the ‘conventional’ model, the
volume fraction can be found using the equation of state (5.22), the pressure
equality and the relation αg +α` = 1, whereas in the discrete-equation model,
the volume fraction is found from a transport equation.

Except for the above-mentioned differences, the left-hand sides are analogous.
q̌(k) is (implicitly) volume-averaged, while q(k) is ensemble-averaged. F̌ (k) is
implicitly volume-averaged, while the ensemble-averaging of F (k) is shown
explicitly.
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The correspondence between the right-hand sides is more subtle. The right-
hand side of (5.70) can be substituted by the right-hand side of (5.65). The
expression Š(k) for the ‘conventional’ model is simpler, but a lot of necessary
modelling effort is hidden away in the interfacial pressure p(k)int . Several of
the interfacial-pressure models presented in the literature seem to be chosen
such that the eigenvalues of the resulting system coefficient matrix are real
for a range of suitable flow conditions. One of the main advantages of the
present method, on the other hand, is that it avoids several problems regarding
hyperbolicity. This is discussed somewhat further in Section 5.3.7.

Note that the pressure p(k) in (5.73) is the pressure at the interface, hence
there is a connection to the ‘conventional’ model (5.69). However, in the discrete
model, the interfacial pressure and velocity come from the solution of Riemann
problems at the interface. We hypothesize that this might be a useful point of
view with respect to the modelling of the interfacial quantities.

5.3.5 The Riemann problem

Due to the discrete nature of the present model, the Riemann problems to be
solved are between two pure fluids. Hence, the equations defining the Riemann
problems are the isentropic Euler equations with the addition of an advection
equation for the phase-indicator function. The employed equation of state may
have different parameters in the two states.

The solution to the Riemann problem for fluid dynamics is described by Toro
(1999); LeVeque (2002). However, LeVeque (1990) gives details with respect to
the isentropic Euler equations.

For the isentropic Euler equations, there is no contact discontinuity, therefore
one cannot distinguish between the fluids on the right-hand and on the left-
hand sides. However, in the present case there is also an advection equation
for the phase-indicator function, which adds the required contact discontinuity.
Hence the hypothesis of Abgrall and Saurel (2003) that the volume fraction is
advected by the speed given by the corresponding Riemann problem, often
denoted by u∗, see Figure 5.2 on the following page. On each side of the point
moving with speed u∗, we have pure phase k or l. Moreover, the Rankine-
Hugoniot relations imply that at this point, there must be equality of pressure
(denoted by p∗) between the left-hand and right-hand states. Therefore, the
Riemann problem can be solved.
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Figure 5.2: Structure of the solution to the Riemann problem.

The equations defining the Riemann problem are

∂χ(k)

∂t
+u(k)int

∂χ(k)

∂x
= 0,

∂
∂t
(
χ(k)ρ(k)

)
+ ∂
∂x

(
χ(k)ρ(k)u(k)

)
= 0,

∂
∂t
(
χ(l)ρ(l)

)
+ ∂
∂x

(
χ(l)ρ(l)u(l)

)
= 0,

∂
∂t
(
χ(k)ρ(k)u(k)

)
+ ∂
∂x

(
χ(k)ρ(k)u(k)u(k) + χ(k)p(k)

)
= 0,

∂
∂t
(
χ(l)ρ(l)u(l)

)
+ ∂
∂x

(
χ(l)ρ(l)u(l)u(l) + χ(l)p(l)

)
= 0,

(5.74)

where we take u(k)int = u∗. Since either χ(k) or χ(l) is zero on each side of the
contact discontinuity, it suffices to solve the Riemann problem corresponding
to the pure-phase isentropic Euler equations, using the appropriate equation of
state.
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Another way to look at (5.74), is to write

∂χ(k)

∂t
+uint

∂χ
∂x

= 0,

∂
∂t
(
ρ
)
+ ∂
∂x

(
ρu

)
= 0,

∂
∂t
(
ρu

)
+ ∂
∂x

(
ρuu+ p

)
= 0,

(5.75)

where the equation of state is p = p(ρ,χ(k)), that is, the equation of state of
phase k is employed when χ(k) = 1 and the equation of state of phase l is used
otherwise. The velocity u is constant across the contact discontinuity, that is,
u∗l = u∗r . Moreover u = uint there. Hence the Rankine-Hugoniot conditions

[ρ(u−uint)] = 0,
[ρu(u−uint)+ p] = 0,

(5.76)

imply that p∗l = p∗r .
The velocity as a function of pressure through a rarefaction wave is given by

u(k)(p(k)) = u(k)s ± c(k) ln

{
p(k) + ρ(k)◦ (c(k))2

p(k)s + ρ(k)◦ (c(k))2

}
, (5.77)

where the negative sign corresponds to the eigenvalue λ(k)1 = u(k) − c(k) and

the positive sign corresponds to λ(k)2 = u(k) + c(k). The subscript s denotes the

known state, that is, the left state for λ(k)1 and the right state for λ(k)2 .
Across a shock, the velocity function is

u(k)(p(k)) = u(k)s ± p(k) − p(k)s
c(k)

√(
p(k) + ρ(k)◦ (c(k))2

)(
p(k)s + ρ(k)◦ (c(k))2

) , (5.78)

when the equation of state (5.22) is used, where again the negative sign corres-

ponds to the eigenvalue λ(k)1 = u(k) − c(k) and the positive sign corresponds to

λ(k)2 = u(k) + c(k). If p∗ > pl, then the 1-wave is a shock, else it is a rarefaction.
Similarly, if p∗ > pr, then the 2-wave is a shock, else it is a rarefaction. Using
this, equations (5.77) and (5.78), as well as the procedure described by Toro
(1999, Section 4.5), an exact Riemann solver has been written. However, for the
presently-considered test problems, an acoustic solver, or ‘primitive-variables
Riemann solver’ (pvrs), (Toro, 1999, Section 9.3) gave very similar results, and
shorter (in the order of 50 %) cpu times.
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Figure 5.3: Solution to a liquid–gas Riemann problem.

The principle of the acoustic solver is a linearization of the shock and
rarefaction waves. In the present work, we have chosen to use the acoustic
solver for two reasons: Simplicity and robustness. The robustness is required
since we solve Riemann problems between two pure fluids with possibly very
different equation-of-state parameters. Other possible choices for approximate
Riemann solvers are hll-type schemes, relaxation schemes, etc.

Consider the solution to the liquid–gas Riemann problem shown in Fig-
ure 5.3(a). The left-hand state is gas, whereas the right-hand state is liquid.
The input data correspond to the ‘Shock tube 2’ test case, described in Sec-
tion 5.5.2 on page 147. The curves in the figure are plots of (5.77). The legend
‘q1l’ denotes the curve corresponding to λ1 going through the left-hand state.
Analogously, ‘q2r’ is for λ2 and goes through the right-hand state, etc. The
curves for the liquid have a much smaller gradient than those for the gas, since
the liquid has a higher speed of sound. The exact solution to the Riemann
problem, denoted by ‘ex’ in the figure, lies, in this case, on the intersection
between the 1-rarefaction from the left and the 2-rarefaction from the right.
As can be observed in Figure 5.3(b), the solution given by the acoustic solver
(‘PVRS’) was not much off; the predicted velocity was 0.02 % too high and the
pressure was 0.9 % too low. The curves plotted using (5.77) and (5.78) were
very nearly linear and hardly distinguishable.

More physical phenomena, for instance surface tension, can be accounted
for in the discrete-equation model by including them in the Riemann-problem
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definition. This, as well as viscous flows and other equations of state, is
discussed in more detail by Papin (2005). It is also possible to treat phase
transition (Le Métayer et al., 2005).

5.3.6 Pressure relaxation

For the two-phase flows considered here, neglecting surface tension and other
effects, it is reasonable to assume pressure equality between the phases. This
has been achieved by performing an instantaneous pressure relaxation at each
time step, as described by Saurel and Abgrall (1999). The present case was
simpler, however, since the energy equation needed not be accounted for. In
short, after the hyperbolic operator has been applied, the volume fraction
is modified so as to render the two pressures equal, keeping α(k)ρ(k) and
α(k)ρ(k)u(k) constant. This leads to a second-degree equation with positive
solution

α(`) =
−ψ2 −

√
ψ2

2 − 4ψ1ψ3

2ψ1
, (5.79)

where

ψ1 =
(
c(`)

)2ρ(`)◦ −
(
c(g)

)2ρ(g)◦ , (5.80)

ψ2 = −
(
c(`)

)2(α(`)ρ(`) + ρ(`)◦ )
+
(
c(g)

)2(−α(g)ρ(g) + ρ(g)◦ )
, (5.81)

and

ψ3 =
(
c(`)

)2α(`)ρ(`). (5.82)

The instantaneous pressure relaxation can be thought of as eliminating
the volume-fraction equation. The present model is conditionally hyperbolic,
whereas the equal-pressure models are dependent upon a suitable choice for
the interfacial pressure p(k)int , that is, they have more restrictive conditions.

5.3.7 Interfacial-pressure modelling

When the expected number of internal interfaces Nint in a control volume
is larger than 0, the last term of (I) in (5.65) will tend to drive the velocities
and pressures of the two phases together, hence the name ‘relaxation term’.
The effect increases with increasing Nint. In other words, Nint is a relaxation
parameter for both velocity and pressure, such that a large Nint will cause
equality of pressure and no slip (relative velocity) between the phases. This
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is so because the present model is purely one-dimensional: Fluid particles
moving in only one dimension cannot pass each other. The ‘conventional’
multiphase model has been averaged over a control volume (or cross-section)
and is therefore able to account for some two-dimensional phenomena, such
as slip. A similar cross-sectional averaging could be performed for the present
model. However, the calculations would be tedious and are outside the scope
of the present work. Instead, we introduce these ‘two-dimensional’ effects in a
more simplistic manner, as described in the following, by setting Nint = 0 and
by modifying the expression for p∗.

Standard p∗

A simple and linearized solution to the Riemann problem is given by the acous-
tic solver, or ‘primitive variable Riemann solver (pvrs)’ (Toro, 1999, Section 9.3).
The expression for the ‘star value’ of the pressure (see Figure 5.2 on page 138)
is

p∗ = 1
al + ar

[
arpl + alpr + alar(ul −ur)

]
, (5.83)

where a ≡ ρc can be called the acoustic impedance and the subscripts ‘l’ and
‘r’ denote the left-hand and right-hand states, respectively. This expression will
be referred to as the ‘standard p∗’.

CATHARE model for p∗

In the cathare code, the following expression was employed for non-stratified
flows ‘simply to provide the hyperbolicity of the system’ (Bestion, 1990):

p(g) − p(g)int = p(`) − p
(`)
int = γ

α(g)α(`)ρ(g)ρ(`)

α(g)ρ(`) +α(`)ρ(g) (u
(g) −u(`))2. (5.84)

In Bestion (1990), the factor γ does not appear explicitly. Evje and Flåtten
(2003) took γ = 1.2.

Even though it might be difficult to derive the above expression in a rigorous
way, we propose setting

p∗ = p − γ α(g)α(`)ρ(g)ρ(`)

α(g)ρ(`) +α(`)ρ(g) (u
(g) −u(`))2, (5.85)

with γ = 1.2 in the gas–liquid Riemann problems.



5.4. Reference method 143

The 0 model for p∗

It is often beneficial to take a simple model when the applicability of more
complex models is unknown or difficult to evaluate. Consider the following
simple model for the interfacial pressure:

p(k) − p(k)int = 0. (5.86)

It is not in widespread use, however, for it yields complex eigenvalues in the
four-equation equal-pressure model. The present model, on the other hand,
does not, a priori, share this problem. Instead of the expression (5.85), one
may take

p∗ = 1
2
(p(`) + p(g)) = p, (5.87)

where the last equality stems from the fact that we use instantaneous pressure
relaxation in the present work.

5.4 Reference method

To verify the numerical results obtained using the discrete-equation model,
we will compare them with those of an independent numerical method, the
‘Roe5’ scheme, presented in Chapter 3. That scheme is based on the continuous
multiphase equations and instantaneous pressure relaxation, and it uses a
Roe-type Riemann solver.

Some care has to be taken when seeking to compare the results obtained
using the standard p∗ model (5.83) with those of a continuous model. It is ne-
cessary to provide the continuous model with interface-models corresponding
to the ones of the discrete model in the limit of a fine grid. The continuous
limit of the discrete-equation model has been studied by Papin (2005, Part II,
Chapter 3) in two spatial dimensions, for Riemann solvers whose ‘star values’
can be written in the form

p∗ = 1
a1 + a2

[
a1p2 + a2p1 + a1a2(u2 −u1)

]
, (5.88)

and

u∗ = 1
a1 + a2

[
a1u1 + a2u2 + p2 − p1

]
, (5.89)

for some choice of a1 and a2. Among the Riemann solvers fitting into the
above scheme are the acoustic solver, the hllc solver and the relaxation solver
(Papin, 2005).
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Table 5.1: Parameters used in the shock tube test problems.

Quantity Value Unit
cfl number, C 0.9 –
Liquid speed of sound, c(`) 1000 m/s
Gas speed of sound, c(g)

√
105 m/s

Liquid reference density, ρ(`)◦ 999.9 kg/m3

Gas reference density, ρ(g)◦ 0 kg/m3

Number of interfaces per control volume, Nint 0 –

Here we present the limit expressions for 1D, and the case of no surface
tension. The interfacial pressure is

p(g)int = p
(`)
int =

1

a(g) + a(`)
[
a(g)p(`) + a(`)p(g) + a(`)a(g)(u(`) −u(g)) sgn(∂α(g)/∂x)

]
, (5.90)

whereas the interfacial velocity is given by

u(g)int = u
(`)
int =

1

a(g) + a(`)
[
a(g)u(g) + a(`)u(`) + (p(`) − p(g)) sgn(∂α(g)/∂x)

]
.

(5.91)
Here we take a to be the acoustic impedance, and the above expressions
are equal to those for the ‘star values’ of the acoustic solver, except for the
appearance of the sign function.

In the following, results from the Roe5 scheme will be shown together with
the present results for comparison.

5.5 Test calculations

Here we consider the two two-phase shock-tube problems investigated by Evje
and Flåtten (2003). They were presented in Chapter 3, but are repeated here
fore convenience. The problems consist of a 100 m long tube, where the initial
state is constant in each half. These test problems enable the investigation of
various properties of the numerical scheme. However, it is difficult to envisage
a laboratory setup that might realize them.

The employed parameters are given in Table 5.1. The values for the speed of
sound and reference density used in the equation of state are equivalent to the
ones used by Evje and Flåtten (2003). The calculations have been performed
using the acoustic Riemann solver, our second-order scheme and the van Leer
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Table 5.2: Initial states in the large relative velocity (LRV) shock tube problem.

Quantity Left value Right value Unit

Liquid volume fraction, α(`) 0.71 0.70 –
Liquid velocity, u(`) 1.0 1.0 m/s
Gas velocity, u(g) 65 50 m/s
Liquid density, ρ(`) 1000.165 1000.165 kg/m3

Gas density, ρ(g) 2.65 2.65 kg/m3

Pressures, p(`) = p(g) 2.65 · 105 2.65 · 105 Pa

slope-limiter function. The Courant–Friedrichs–Lewy (cfl) number is defined
by

C = ∆t
∆x

max
∀k,∀i

(
|u(k),∗i | + c(k)i

)
. (5.92)

5.5.1 Large relative velocity shock tube

The large relative velocity (lrv) shock was introduced by Cortes et al. (1998).
However, since they plotted other variables, a direct comparison with their
results is not feasible. The initial states can be found in Table 5.2.

Standard p∗

The results are plotted in Figure 5.4 on the following page at time t = 0.1 s.
Here, the ‘standard’ expression (5.83) for p∗ has been employed. The graph of
the liquid volume fraction in Figure 5.4(a) is focused on the middle of the tube,
where differences between the grids appear more clearly.

Compared to the results of Evje and Flåtten (2003) (see also the results for
the cathare p∗ model in the next subsection), some differences can be seen:

–– The present method has less numerical diffusion (see e.g. the gas-velocity
profile for the 100-cell grid).

–– There is an instability at x = 50 m in the liquid velocity plot, Figure 5.4(c)
on the next page.

–– The ‘plateaux’ in the velocities are somewhat different.

–– The jump in pressure at x = 50 m is larger in the present case, and
contrary to the case of Evje and Flåtten (2003), the highest pressure is on
the left-hand side.



146 5. The discrete-equation multiphase model

α(`) (–)

48 49 50 51 520.696

0.698

0.7

0.702

0.704

0.706

0.708

0.71

0.712

10001 pts, Roe5

48 49 50 51 520.696

0.698

0.7

0.702

0.704

0.706

0.708

0.71

0.712 100 cells
1000 cells
10000 cells

x (m)
(a) Liquid volume fraction (close-up)

p (104 Pa)

0 20 40 60 80 10026.5

26.6

26.7

26.8

26.9

27

27.1

27.2

10001 pts, Roe5

0 20 40 60 80 10026.5

26.6

26.7

26.8

26.9

27

27.1

27.2 100 cells
1000 cells
10000 cells

x (m)
(b) Pressure

u(`) (m/s)

0 20 40 60 80 100

0.98

1

1.02

1.04

1.06

1.08

10001 pts, Roe5

0 20 40 60 80 100

0.98

1

1.02

1.04

1.06

1.08 100 cells
1000 cells
10000 cells

x (m)
(c) Liquid velocity

u(g) (m/s)

0 20 40 60 80 10050

52

54

56

58

60

62

64

100 cells
1000 cells
10000 cells

0 20 40 60 80 10050

52

54

56

58

60

62

64
10001 pts, Roe5

x (m)
(d) Gas velocity

Figure 5.4: LRV shock tube, calculated using the ‘standard’ p∗.
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Figure 5.4 also shows results obtained using the Roe5 method on an
equidistant grid with a grid spacing, ∆x, equal to that of the 10000-cell grid
of the discrete-equation model. The employed interfacial closures were the
ones in (5.90)–(5.91). It is clear that the discrete-equation model and the Roe5
method give the same solution for fine grids.

CATHARE model for p∗

The case of the previous subsection has been recalculated employing the
cathare model (5.85) for p∗. The results are shown in Figure 5.5 on the
following page. The clearest difference from the preceding case, is that the
pressure jump at x = 50 m is much smaller. Moreover, the plateaux in the
velocities and in the pressure are straight, and in the case of the gas velocity,
the levels of the middle plateaux are slightly higher.

Figure 5.5 shows very close agreement between the present model and the
Roe5 scheme.

The 0 model for p∗

Results for the 0 model (5.87) are plotted in Figure 5.6 on page 149. As can
be observed, they are similar to the results in Figure 5.5 obtained using the
cathare model, except that the 0 model yields an undershoot in all variables
at x = 50 m, particularly in the liquid volume fraction and in the liquid velocity.
Furthermore, the undershoot increases with grid refinement. The results agree
closely with those of the Roe5 scheme, which, indeed, also displays undershoots
at x = 50 m. This behaviour might be a result of the complex eigenvalues of
the ‘underlying’ one-pressure four-equation two-phase model.

5.5.2 Modified large relative velocity shock tube

The second shock tube problem features a liquid velocity jump, as well as
a larger jump in the volume fraction, that is, it is a modified large relative
velocity (LRV) shock tube problem. The initial states are displayed in Table 5.3
on page 151.

Standard p∗

Numerical results for the ‘standard’ expression for p∗ are shown in Figure 5.7
on page 150. Again, the calculations performed using the discrete-equation
model agree very well with those of the Roe5 scheme. However, the pressure
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Figure 5.5: LRV shock tube, calculated using the CATHARE model for p∗.
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Figure 5.6: LRV shock tube, calculated using the 0 model for p∗.
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Figure 5.7: Modified LRV shock tube problem, calculated using the ‘standard’
p∗.
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Table 5.3: Initial states in the modified large relative velocity (LRV) shock tube
problem.

Quantity Left value Right value Unit

Liquid volume fraction, α(`) 0.70 0.10 –
Liquid velocity, u(`) 10 15 m/s
Gas velocity, u(g) 65 50 m/s
Liquid density, ρ(`) 1000.165 1000.165 kg/m3

Gas density, ρ(g) 2.65 2.65 kg/m3

Pressures, p(`) = p(g) 2.65 · 105 2.65 · 105 Pa

and gas-velocity profiles are quite different from those of Evje and Flåtten
(2003). This has numerical, but above all, modelling reasons, as can be seen by
comparing with the results obtained using the cathare interfacial-pressure
model in the following subsection.

CATHARE model for p∗

The results for the cathare model for p∗ are given in Figure 5.8 on the
following page. The fine-grid results are quite similar to those of Evje and
Flåtten (2003).

Comparing with the results obtained using the standard p∗ in Figure 5.7
reveals that the main differences occur for the pressure (Figures 5.8(b) and
5.7(b)) and the gas velocity (Figures 5.8(d) and 5.7(d)), where the plateaux in the
middle section of the tube are on different levels. For the cathare model, the
pressure in the tube is nowhere higher than the initial value of 26.5 · 104 Pa.
For the standard p∗ model, on the other hand, the pressure in the middle-left
section is 27 · 104 Pa. The situation for the gas velocity is reversed: It is for
the cathare model that gas velocities occur which are higher than the initial
value.

These differences are a result of the interfacial closure models, and there-
fore it would have been interesting to be able to compare the calculations to
experimental data.

The 0 model for p∗

Figure 5.9 on page 153 shows the results obtained using the 0 model (5.87) for
p∗. Like in the case of the lrv shock tube, the results are similar to those of
the cathare model for p∗. There are some differences, however: The pressure
plateau to the left of x = 50 m (Figure 5.9(b)) is lower than that of Figure 5.8(b),
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Figure 5.8: Modified LRV shock tube problem, calculated using the CATHARE
model for p∗.
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Figure 5.9: Modified LRV shock tube problem, calculated using the 0 model for
p∗.
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so that the pressure jump at x = 50 m is higher. Further, the plateau in the gas
velocity to the left of the middle of the tube in Figure 5.9(d) is higher than that
in Figure 5.8(d).

The plots for the 0 model in Figure 5.9 have more under- and overshoots
than those for the cathare model in Figure 5.8, but this is somewhat less
noticeable than for the lrv shock tube (Figures 5.6 and 5.5).

5.6 Conclusions

We have presented a five-equation isentropic version of the discrete seven-
equation two-phase model of Abgrall and Saurel (2003). In the discrete-equation
model, Riemann problems are solved between pure fluids. Hence, the difficulty
of non-conservative products is avoided while solving the Riemann problem.
Another characteristic of the discrete-equation model is that the properties of
the Riemann solver influence the phasic interaction.

We have shown how different interfacial-pressure expressions can be in-
corporated into the discrete-equation model. One example is the cathare
expression, often cited in the literature.

Two shock-tube problems from the literature (Evje and Flåtten, 2003) have
been considered. The numerical results were strongly dependent on the em-
ployed expression for the interfacial pressure. The convergence properties of
the scheme were also affected.

When the cathare interfacial-pressure model was employed, our results
were similar to those presented by Evje and Flåtten (2003).

The correspondence between the discrete-equation model and the ‘conven-
tional’ continuous model has been discussed. Continuous-limit expressions for
the interfacial pressure and velocity were given for the discrete model. These
expressions were employed in the Roe5 scheme (Chapter 3), a continuous
model. Very good agreement between the discrete-equation model and the
Roe5 scheme was obtained.



6 Characteristic-based boundary treatment

This chapter deals with partially-reflecting boundary conditions for the four-
equation, one-pressure, isentropic two-fluid model. Using pid controllers, this
boundary treatment allows waves to pass the boundaries, while keeping the
boundary values close to their set-point values, even when the equation system
contains source terms.

We consider the water faucet test case. Using the partially-reflecting bound-
ary conditions, the method reaches the correct steady-state solution, and,
moreover, in the transient period, the pressure profiles closely resemble the
ones produced using non-reflecting boundary conditions.

A version of this chapter will be published as an article (Munkejord, 2005b).

6.1 Introduction

Physical systems with inlets and outlets, have, unlike the numerical models used
to describe them, no abrupt boundaries. Therefore, the numerical boundary
conditions may be called artificial, but anyhow, they are required to arrive at a
numerical solution.

The specification of open boundaries for flow systems without source terms
is relatively straightforward (see e.g. Toro, 1999, Section 6.3.3). However, source
terms, such as gravity, often have to be considered. In such cases, the use of
the simple, open boundary conditions will most often lead to drifting boundary
values. Hence, for example, one cannot maintain a constant pressure at the
outlet boundary.

Here we consider the four-equation, one-pressure, isentropic two-fluid model,
assuming both phases to be compressible. Little work has been published
regarding open boundary conditions for this system. Indeed, when numerical
methods are tested in the literature, the computations are usually halted before
the important waves reach the boundaries, to avoid reflected waves interacting
with the solution in the inner domain. While that is perfectly justifiable for
testing a numerical method, it is not difficult to conceive cases where it would
be of interest to conduct longer simulations of the system.

In the present chapter, we employ the boundary-specification method of
Olsen (2004, Chapter 3), who extended the single-phase method of Thompson
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(1987, 1990) to the two-fluid model, and introduced Proportional-Integral-
Derivative (pid) controllers to maintain the boundary quantities close to their
desired values. This boundary treatment can be called ‘partially-reflecting’,
since a part of the waves reaching the boundary is reflected. The theory of pid
controllers can be found in a control-engineering textbook (e.g. Haugen, 1994).

The focus of Olsen (2004) was on essentially stationary cases. The primary
aim of the present contribution is to demonstrate the applicability of the Olsen
method for a transient case. Furthermore, the pid-controller approach involves
three parameters. Hence it is our secondary aim to give an example of how
these parameters can be estimated.

Section 6.2 reviews the characteristic-based boundary treatment, while in
Section 6.3, an alternate way of reaching the steady-state solution is outlined.
Numerical tests are performed in Section 6.4, with the water-faucet case as the
main example. Conclusions are drawn in Section 6.5.

The reader might want to review the two-fluid model formulation described
in Section 2.5 on page 28, and the characteristic form of the equations detailed
in Section 3.2 on page 41.

6.2 The theory

The present boundary treatment is based on the work of Olsen (2004, Chapter 3),
who applied the method of Thompson (1987, 1990) to the four-equation sys-
tem, and introduced a pid controller to specify the conditions at the partially-
reflecting boundaries. Here we briefly review the key points of the Olsen
approach.

While Olsen (2004) wrote the coefficient matrix A in terms of the primitive
variables v, here the composite variables q are employed instead, and this is
found to work equally well. This choice is based on practical reasons: The wish
to use the same vector of unknowns in the inner domain and at the boundaries.

Since A is diagonalizable with real eigenvalues, we have:

R−1AR = Λ = [λjδij], (6.1)

that is, Λ is a diagonal matrix with the eigenvalues of A along its diagonal.
Multiply the equation (3.2) by R−1 from the left:

R−1 ∂q
∂t
+ R−1A

∂q
∂x

= R−1s, (6.2)

and define the vector

L ≡ ΛR−1 ∂q
∂x

≡ R−1A
∂q
∂x
. (6.3)
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Then component j of L becomes

Lj ≡ λjlTj
∂q
∂x
. (6.4)

The equation for the (time dependent) boundary conditions is

∂q
∂t
+ RL = s. (6.5)

We define the vector of characteristic variables, w, by the relation

dw = R−1 dq. (6.6)

Using the chain rule, we obtain from (3.2), neglecting source terms:

∂q
∂w

∂w
∂t

+ A
∂q
∂w

∂w
∂x

= 0, (6.7)

Multiply from the left by ∂w/∂q = R−1:

∂w
∂t

+Λ∂w
∂x

= 0, (6.8)

or

∂wj
∂t

+ λj
∂wj
∂x

= 0 (6.9)

in component form. This is an advection equation for each wj with λj as the
characteristic (advection) speed. A system of advection equations represents
waves, and λj is the wave speed. Therefore, the solution of the nonlinear
system (3.2) consists of several interacting waves.

The interpretation of L is less obvious, but the equations (6.8) and (6.3)
show that in the case with no source terms, L is equal to the negative of the
time-derivative of the vector of characteristic variables, w. Thus L is related
to the time-variation of the wave amplitude. The boundary conditions are
therefore specified in terms of L.

Boundary conditions can only be specified for incoming characteristics.
Hence split the boundary-condition equation (6.5) in the following way:

∂q
∂t
+ R+L+ + R−L− = s. (6.10)

R+ contains the eigenvectors corresponding to the positive eigenvalues (and
zero-vectors otherwise), while R− does the converse.
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Hence, for the left boundary, the L+j s must be specified as boundary condi-

tions, while the L−j s are calculated from the definition (6.4). Conversely, on

the right boundary, the L−j s are the boundary conditions, while the L+j s are
calculated from their definition (6.4).

To specify a function value qj at the boundary, one sets ∂qj/∂t = 0, so that
the equation (6.10) in component form gives:

R∓j L∓ = −R±j L± + sj . (6.11)

Here, Rj denotes row j of R.
It is also possible to specify a spatial gradient. The equation (6.3) implies

that

(A−1R)jL =
∂qj
∂x

(6.12)

or

(A−1R∓)jL∓ =
∂qj
∂x

− (A−1R±)jL±. (6.13)

Non-reflecting boundaries are set by specifying L∓ ≡ 0. However, in several
cases with non-zero source terms, this may lead to ‘drifting’, or undetermined,
values at the boundaries (Olsen, 2004, Section 3.3).

Drifting values can be avoided by making the boundaries partially-reflecting.
A good way of doing that, is by thinking of the boundary treatment in terms of
pid controllers (Olsen, 2004, Chapter 3). Hence write

R∓j L∓ = (R∓j L∓)◦ +
kP

T
∆qj +

kI

T 2

∫ t
0
∆qj dτ + kD

∂qj
∂t
. (6.14)

Herein, (R∓j L∓)◦ is a start term. If the initial conditions are ‘good’, a suitable

value for the start term is −R±j L± + sj . ∆qj = qj − qref
j is the discrepancy

between the desired value qref
j and the actual one. kP, kI and kD are the

proportional, integral and differential constants, respectively. T is an integral
time scale.

Substitute ∂qj/∂t in (6.14) by using the equation (6.10) in component form:

∂qj
∂t

= −R±j L± − R∓j L∓ + sj . (6.15)

This gives:

R∓j L∓ = (1+kD)−1[(R∓j L∓)◦+ kP

T
∆qj+

kI

T 2

∫ t
0
∆qj dτ−kD(R±j L±−sj)

]
. (6.16)
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Using the above equations for the boundary conditions is here, as in Olsen
(2004), referred to as the mpcbc (multiphase characteristic-based boundary
conditions) method.

6.3 Steady-state solution

A steady-state solution of the governing equations may, if it exists, be found
by carrying out a simulation until the variation in the solution is small enough
to be called steady. Another, and computationally far cheaper method, is by
making a dedicated steady-state solver. In the present work, this was done for
the four-equation system by deleting the transient term of the equation (3.3).
The resulting system

dv
dx

= B−1(v)ς(v) (6.17)

can then solved using a suitable ode solver if B is invertible. It is invertible if it
has non-zero eigenvalues.

Finding the steady-state solution using this method has advantages due to its
efficiency, for instance when one wants to test the effect of interface relations.
It is also instructive to test whether transient methods are able to attain the
steady-state solution.

6.4 Numerical tests

We have chosen the water faucet of Ransom as a test case for the multiphase
characteristic-based boundary conditions (mpcbc). The water-faucet test case is
described in Section 3.4.1 on page 58. Since gravity is included, simply setting
L∓ ≡ 0 would not work for specifying open boundary conditions, as that would
cause a drifting outlet pressure. Hence the approach of the equation (6.16) is
needed.

The results shown in the following have been calculated using the monoton-
ized central-difference (mc) limiter function in (3.57). It approaches second
order when the solution is smooth. Details and calculations regarding limiter
functions, and convergence order of the schemes, can be found in Chapter 3.
Further, the Roe4 method was employed with a cfl number of C = 0.9 and a
101-point grid, unless otherwise stated.
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Figure 6.1: Pressure for the water faucet. Grid convergence of the Roe4 method
for fixed and characteristic-based boundary conditions (MPCBC).

6.4.1 Pressure

As was already shown in Figure 3.4 on page 64, the pressure is by far the most
sensitive variable in the faucet case. It is shown in Figure 6.1 for the for simple,
fixed boundary conditions, and mpcbc. As in Section 3.4.1 on page 61, the
time step was set to ∆t = 1.97 · 10−5 s, which corresponds to a cfl number of
C = 0.9 for the finest grid. It can be observed that the solution is quite different,
depending on how the boundary conditions are specified. The fixed boundary
conditions employed in Figure 6.1(a) give a larger pressure difference across
the computational domain than the mpcbc method shown in Figure 6.1(b). This
is further discussed in the following.

For the volume fraction and the velocities, on the other hand, the effect of
the boundary treatment is not obvious until the volume-fraction discontinuity
reaches the outlet.

6.4.2 Estimation of controller parameters

Recall the equation (6.16) on page 158 for the pid-controller boundary condition.
It is necessary to estimate some reasonable values for the controller parameters
appearing there. Here, this was done by using a slightly modified version of
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Table 6.1: Controller parameters used for calculating the faucet case by the
Roe4 method

kP kI kD T (s)
150 1667 3.3 1

the closed-loop method by Ziegler and Nichols (1942) as presented in the
control-engineering textbook by Haugen (1994, Section 7.3).

In the present work, we assign the value T = 1 s for the time scale in the
equation (6.16), which is sufficient, since we shall not discuss the controller-
parameter values and the time scale independently. Assume that the ‘critical
gain’, kc, and the corresponding ‘critical period’, Tc, can be estimated. Then the
Ziegler–Nichols method corresponds to setting

kP = 0.6kc, kI =
2kPT
Tc

, and kD =
kPTc

8T
, (6.18)

where kP, kI and kD, are defined by the equation (6.16).
The pressure, p, was used as the ‘control variable’ for determining kP, kI and

kD. In normal control theory, the critical gain, kc, is determined by setting kI

and kD equal to zero and increasing the gain (corresponding to kP) until the
appearance of standing waves. Here, however, it is not the pressure, p, that is
controlled, but its time derivative. Hence a steady state could not be attained
without the integral term, and the proportional term was found instead by trial
and error.

The period Tc was estimated by setting reasonably good ‘trial-and-error’
values for the controller parameters, and then measuring the period of the
pressure fluctuations at the outlet. Values of kP = 300, kI = 650 and kD = 0
were taken. This gave a value for the period of Tc ≈ 0.18 s. The period was only
a weak function of the controller parameters in this region.

Setting kP = 150 gave, using Tc = 0.18 s, kI = 1667 and kD = 3.3, (repeated
in Table 6.1). These values gave satisfactory results, that is, not too large initial
fluctuations, and small fluctuations in the steady state. Doubling and halving kP

was also tried, calculating the corresponding kI and kD using Tc = 0.18 s each
time. However, kP = 300 gave unacceptably large fluctuations in the ‘steady’
state, and kP = 75 gave rather large initial fluctuations. Hence, kP = 150 was
found to be a good compromise and retained for all the faucet-case calculations
by the Roe4 method.

The above method for determining the controller parameters is undoubtedly
improvable, but, as will be demonstrated in the following, it did indeed give
reasonable results.
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Figure 6.2: Pressure for the water faucet. Dependence on choice of inlet and
outlet boundary conditions. The ‘fixed,open’ curve is related to the
right-hand ordinate.

6.4.3 Influence of boundary-condition ‘reflectiveness’

Consider Figure 6.2. It is similar to Figure 6.1 on page 160, but instead of grid
refinement, it shows the dependence on the choice of boundary conditions
on the inlet and the outlet. The label pairs shown in the figure, for instance
‘fixed,pid’, indicate the boundary conditions on the left-hand and on the right-
hand sides, respectively. ‘pid’ means that the boundary conditions are set using
the equation (6.16), while ‘fixed’ indicates that the equation (6.11) is used, that
is, that the boundaries are reflecting. ‘Open’ means that the Ljs are set to zero
for incoming characteristics.

When the outlet boundary condition is ‘open’ (the �— curve), the pressure
will drop. Hence the curve for the open outlet condition is drawn using the
right-hand ordinate. The other curves relate to the left-hand ordinate. Both
ordinates have the same span of 480 Pa, and the right-hand ordinate has been
set such that the outlet pressure corresponds to 10 · 104 Pa on the left-hand
ordinate.

The boundary-specification method giving by far the lowest pressure change
across the domain, at the particular time of t = 0.6 s, was the use of pid
controllers at both boundaries. The use of fixed boundary conditions produced
the largest pressure changes at the inlet. When an open boundary was set at
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Figure 6.3: Gas velocity for the water faucet. Dependence on choice of inlet
and outlet boundary conditions.

the outlet, it did not matter whether the inlet condition was fixed or pid.

Among the different combinations of reflecting and partially-reflecting bound-
ary conditions, the one with a pid controller at both ends was the one that gave
a pressure profile that best matched the shape of the profile calculated using
the open boundary condition at the outlet. This shows that for the faucet case,
the pid-controller boundary conditions succeeded in

–– Keeping the outlet pressure from deviating too far from the set-point
pressure of 1.0 · 105 Pa, and

–– Giving results closely resembling those obtained using open boundary
conditions at the outlet.

For the volume fraction and the liquid velocity, all the boundary conditions
gave virtually the same result. Regarding the gas velocity, however, there
were some differences, as shown in Figure 6.3. The three combinations of pid
conditions gave very similar gas-velocity profiles, whereas the most negative ve-
locity occurred for the fixed inlet–fixed outlet condition, and the least negative
velocity was calculated using the open-outlet condition.
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Figure 6.4: Pressure for the water faucet. Comparison of steady-state solution
as obtained with the Roe4 solver with and without PID-controller
boundary conditions, and with the stationary solver.

6.4.4 Calculations towards steady state

The steady-state solution of the faucet case was calculated by two different
methods:

1. By carrying out simulations with the Roe4 method until t = 3 s, and

2. By solving the steady-state system (6.17) on page 159 using a standard
ode solver.

Again the pressure was the most sensitive variable, and the result is displayed
in Figure 6.4. For Figure 6.4(a), the Roe4 method was run using pid controllers
at both boundaries. At t = 3 s, the correspondence between the Roe4 solution
and the stationary solution is very good, and this result is not obtained by
chance: Using a non-pid boundary condition at any boundary would lead to the
Roe4 method utterly failing to produce the stationary pressure profile. This
is shown in Figure 6.4(b). Note that the scale of the ordinate is different; in
Figure 6.4(b), the shown pressure interval is 2400 Pa, while it is 41.25 Pa in
Figure 6.4(a).

The pressure profiles obtained in Figure 6.4(a) are different from the linear
shape one would expect in a case where gravity is the only source term. In
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Figure 6.5: Gas volume fraction for the water faucet. Time series for fixed and
PID-controller boundary conditions.

fact, this is a result of the use of the cathare correlation (see page 34) for the
interfacial pressure difference. Indeed, when calculations were performed with
a vanishing interfacial pressure difference, the pressure profile approached a
linear shape. Physically, this can be explained by considering the liquid falling
in stagnant air. The air is stagnant, and it will have a hydrostatic pressure
profile. At the same time, it is reasonable that the air and water have the same
pressure at each cross section, since no surface tension or other effects causing
different phasic pressures are present.

Figure 6.5 displays a time series of the volume fraction calculated using
the Roe4 method. The different boundary conditions do not influence the
volume-fraction profiles on a scale that is visible on the plot.

The difference in pressure arising from the use of pid or fixed boundary
conditions is noticeable, however, and it is further illustrated in Figure 6.6,
showing a time series calculated using the Roe4 method. In Figure 6.6(a), a
pid controller has been used at both boundaries, and in Figure 6.6(b), fixed
conditions were employed. As can be seen, the amplitude of the pressure
fluctuation at the inlet is about three times larger in the case of fixed boundary
conditions compared to pid-controller conditions. Hence, if the pressure is
important in itself, or if one wants, for instance, to calculate mass transfer due
to flashing, a proper choice of boundary conditions is of significance.
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Figure 6.6: Pressure for the water faucet. Time series showing the influence of
boundary conditions.

À propos Another question is how the pressure calculated using different
boundary conditions would compare with the pressure in the physical system
for which the faucet case is a simplified model. Furthermore, as can be seen
from the equation (6.4), the Ljs are proportional to the left eigenvectors, which
are not unique. Hence, the transient behaviour at a pid-controlled boundary is
dependent on the choice of eigenvectors as well as on the controller parameters.
These are two interesting issues beyond the scope of the present work.

6.5 Conclusions

For compressible flow, the specification of open boundary conditions is non-
straightforward when the system of equations contains source terms, because
they can cause drifting boundary values.

In this work, we have studied the one-dimensional one-pressure two-fluid
model, solving it using a Roe-type method. The multiphase characteristic-based
boundary condition (mpcbc) method of Olsen (2004) was employed. It uses
pid controllers at the boundaries to avoid drifting values, while keeping the
solution close to the desired set-point values.

We have aimed to demonstrate that the mpcbc method is applicable to transi-
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ent cases. Furthermore, we have illustrated how the pid-controller parameters
can be estimated. With the water-faucet case of Ransom (1987) as an example, it
has been shown that mpcbc can yield a reasonable approximation to physically
‘open’ boundary conditions. Specifically, during the transient period, the mp-
cbc method gave a pressure profile closely resembling that of open boundary
conditions, and the correct steady-state solution was attained. The pressure
profile obtained using fixed boundary conditions was noticeably different from
that obtained using pid controllers at the boundaries.

It is believed that the mpcbc method can be used for the simulation of
systems with open boundaries, even after important waves have reached the
boundaries.





7 A Roe scheme for the drift-flux model∗

We construct a Roe-type numerical scheme for approximating the solutions
of a drift-flux two-phase flow model. The model incorporates a set of highly
complex closure laws, and the fluxes are generally not algebraic functions of
the conserved variables. Hence, the classical approach of constructing a Roe
solver by means of parameter vectors is unfeasible.

Alternative approaches for analytically constructing the Roe solver are dis-
cussed, and a formulation of the Roe solver valid for general closure laws is
derived. In particular, a fully analytical Roe matrix is obtained for the special
case of the Zuber–Findlay law describing bubbly flows.

First and second-order accurate versions of the scheme are demonstrated by
numerical examples.

7.1 Introduction

To avoid excessive computational complexity, workable models describing
two-phase flows in pipe networks are conventionally obtained by means of
some averaging procedure. Models thus obtained are mathematically tractable,
but there is a significant loss of information associated with the averaging
process.

Hence additional information must be supplied to the system in the form of
closure laws. The different physical assumptions leading to such laws result
in different formulations of the two-phase flow models (Murrone and Guillard,
2005; Abgrall and Saurel, 2003; Ransom and Hicks, 1984; Stewart and Wendroff,
1984). It is useful to divide such models into two main classes:

–– Two-fluid models, where equations are written for mass, momentum and
energy balances for each fluid separately.

–– Mixture models, where balance equations are written for the two-phase
mixture.

For reasons of accuracy and robustness, it is desirable to use a numerical
method able to provide an upwind resolution of all wave phenomena inherent

∗This chapter corresponds to the article by Flåtten and Munkejord (2006).
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in the models. The approximate Riemann solver of Roe (1981) is an attractive
candidate, as it requires only the solution of a linear Riemann problem at each
cell interface.

In the context of two-phase flows, this method has been extensively used.
Sainsaulieu (1995) proposed a Roe-type Riemann solver for a model describ-
ing incompressible liquid droplets suspended in a gas. Karni et al. (2004)
implemented a Roe scheme for a two-fluid model with velocity and pressure
relaxation (Saurel and Abgrall, 1999).

A classical two-fluid model (Stewart and Wendroff, 1984) assumes pressure
equilibrium between the phases. Toumi and Kumbaro (1996) presented a Roe
scheme for such a model including a virtual mass force term. A generalization
allowing for a pressure-modification term at the gas-liquid interface was presen-
ted in Toumi (1996). An alternative Roe scheme for this model was presented
by Evje and Flåtten (2003). Furthermore, Cortes et al. (1998) proposed an
efficient method for calculating the wave structure of the Roe linearization for
such a model.

In this work, we consider a mixture model describing two-phase flows where
the motions of the phases are strongly coupled. The model, commonly denoted
as the drift-flux model, consists of a mass conservation equation for each
phase, in addition to a momentum balance equation for the two-phase mixture.
Supplementary relations are required to obtain the information necessary for
determining the motion of each phase separately.

These relations are most often expressed in terms of a hydrodynamic closure
law giving the relative velocity between the phases as a function of the flow
parameters:

ug −u` = Φ(mg,m`, ug), (7.1)

where uk is the velocity andmk is the volumetric mass of phase k. The relative
velocity ur = ug−u` between the phases is often referred to as the slip velocity;
for this reason, the closure law (7.1) is also known as the slip relation.

In general, the closure law Φ is commonly stated as a complex combination of
analytic expressions valid for particular flow regimes, experimental correlations,
and various switching operators. To the investigator, it may be viewed as a
black box. In addition, thermodynamic closure laws must be specified for each
phase to relate the phasic density to the mixture pressure. These relations are
often given only in tabular form.

As has been pointed out by several researchers (Baudin et al., 2005a,b; Evje
and Fjelde, 2002, 2003; Faille and Heintzé, 1999; Romate, 1998), the complexity
of these laws severely restricts the possibilities for constructing a Roe solver
by purely algebraic manipulations. Nevertheless, Roe-type schemes have been
proposed for this model. Romate (1998) presented a method for constructing
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a Roe matrix using a fully numerical approach. This method was used as the
conservative part of the hybrid primitive-conservative method of Fjelde and
Karlsen (2002). Faille and Heintzé (1999) proposed a linearized Riemann solver
which may be interpreted as a simplified version of the approach of Romate.
However, their suggested scheme does not satisfy the Roe conditions, with the
consequence that the numerical fluxes are generally discontinuous if there is a
change of sign in an eigenvalue between neighbouring cells.

A more formal approach was undertaken by Toumi and Caruge (1998) for a
related model involving a mixture mass equation and a mixture energy equation.
Based on a splitting of the flux into a ‘mixture’ and ‘drift’ part, they described
how a Roe matrix could be obtained using the parameter-vector approach of
Roe (1981). Unfortunately, the success of this approach relies heavily on the
simplicity of the flux Jacobian of their model. Furthermore, their framework
leads to integrals over the closure laws for which closed-form solutions do not
generally exist.

Baudin et al. (2005a,b) suggested a relaxation scheme of the type proposed
by Jin and Xin (1995). This is somewhat related to the Roe scheme in that one
needs only to solve a linear Riemann problem at each cell interface. However,
the relaxation procedure introduces two additional artifical wave phenomena,
which complicate the matrix calculations required to advance the numerical
solution. In addition, the relaxation parameters must be chosen with care to
avoid excessive numerical dissipation.

In this work, we propose an alternative method for constructing a Roe solver
for the drift-flux model. To as large a degree as possible, we construct our
Roe solver based on analytically derived averages. By this, we address com-
putational complexity issues associated with previously derived Roe solvers.
Furthermore, we are able to isolate the effect of the closure law on the mathem-
atical structure of the Roe linearization.

The chapter is organized as follows: In Section 7.2, we describe the two-
phase flow model that we will be working with. In Section 7.2.2, we derive
an analytical expression for the flux Jacobian of the model. In Section 7.3.1,
we discuss various strategies for analytically constructing a Roe solver for
systems of conservation laws. In Section 7.3.2, we adapt these strategies to the
drift-flux model supplied with general closure laws. In Section 7.3.3, we present
a method for obtaining a fully analytical Roe matrix for the special case of the
Zuber–Findlay closure law. In Section 7.3.4, the main results of Section 7.3 are
summarized. The numerical algorithm is described in Section 7.4.

In Section 7.5 we present numerical simulations, demonstrating accuracy
and robustness properties of the scheme. Finally, our results are summarized
in Section 7.6.
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7.2 The drift-flux model

7.2.1 Model formulation

The model that we will be concerned with may be written in the following
vector form

∂q
∂t
+ ∂f (q)

∂x
= s(q), (7.2)

where q is the vector of conserved variables, f is the vector of fluxes, and s(q)
is the vector of sources. They are given by

q =

 ρgαg

ρ`α`
ρgαgug + ρ`α`u`

 =
 mg

m`
Ig + I`

 , (7.3)

f (q) =

 ρgαgug

ρ`α`u`
ρgαgu2

g + ρ`α`u2
` + p

 =
 Ig

I`
Igug + I`u` + p

 (7.4)

and

s(q) =

 0
0
−Fw

 . (7.5)

The volume fractions satisfy

αg +α` = 1. (7.6)

Dynamic mass andenergy transfers are neglected; we consider isentropic or
isothermal flows. In particular, this means that the pressure may be obtained
as

p = p(ρg) = p(ρ`). (7.7)

Thermodynamic submodels

For the numerical simulations presented in this chapter, we assume that both
the gas and liquid phases are compressible, described by the simplified ther-
modynamic relations

ρ` = ρ`,0 +
p − p`,0
c2
`

(7.8)

and

ρg = ρg,0 +
p − pg,0

c2
g

, (7.9)
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where
pk,0 = p(ρk,0).

Hydrodynamic submodels

By far the most important aspect of the model is the hydrodynamic closure law,
which is commonly expressed in the following general form

ug −u` = Φ(mg,m`, ug). (7.10)

The formulation of this law has a large effect on the flux Jacobian of the
drift-flux model, and hence on the construction of the linearized Roe solver.
A general approach for handling this difficulty is described in Section 7.3.2,
where we explicitly express the Roe matrix as a function of Φ.

A special case of interest is the Zuber and Findlay (1965) relation

ug = K(αgug +α`u`)+ S, (7.11)

where K and S are flow-dependent parameters. The validity of (7.11) has been
experimentally established for a broad range of parameters for both bubbly and
slug flows (Bendiksen, 1984; França and Lahey, 1992; Hibiki and Ishii, 2002).

In the following calculations, the wall-friction term, Fw, is set equal to zero
unless otherwise stated.

7.2.2 The Jacobian matrix

An alternative formulation of the system (7.2) is the quasi-linear form

∂q
∂t
+ A(q)

∂q
∂x

= s(q), (7.12)

where the flux Jacobian A(q) is defined as

A ≡ ∂f
∂q

=
[
∂fi
∂qj

]
. (7.13)

In the following, we will derive an expression for A. Towards this aim, we will
follow the common practice of thermodynamics and take(

∂X
∂Y

)
a,b

(7.14)

to mean the partial derivative of X with respect to Y under the assumption of
constant a and b.
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Some definitions

We now define the following basic abbreviations:

µg =
(
∂Φ
∂mg

)
m`,ug

(7.15)

µ` =
(
∂Φ
∂m`

)
mg,ug

(7.16)

µv =
(
∂Φ
∂ug

)
mg,m`

(7.17)

ζ =
(
∂u`
∂ug

)
mg,m`

. (7.18)

We further define the pseudo mass % as

% =mg + ζm`. (7.19)

Remark 1 We observe that by writing (7.1) as

dΦ = dug − du`, (7.20)

we obtain from (7.17) and (7.18) the basic relation

µv = 1− ζ. (7.21)

2

We may now derive the following differentials:

Differential 1 (Gas velocity) We may expand dq3 as

dq3 =mg dug +ug dmg +u` dm` +m` du`. (7.22)

Using (7.20) and
dΦ = µg dmg + µ` dm` + µv dug, (7.23)

we obtain

dug =
1
%

((
m`µg −ug

)
dq1 +

(
m`µ` −u`

)
dq2 + dq3

)
. (7.24)

2
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Differential 2 (Gas momentum) Using

dIg =mg dug +ug dmg (7.25)

we obtain from (7.24)

dIg =
1
%

((
mgm`µg + ζm`ug

)
dq1 +

(
mgm`µ` −mgu`

)
dq2 +mg dq3

)
.

(7.26)

2

Differential 3 (Liquid momentum) Using

dq3 = dIg + dI` (7.27)

we obtain from (7.26)

dI` =
1
%

(
−
(
mgm`µg + ζm`ug

)
dq1 −

(
mgm`µ` −mgu`

)
dq2 + ζm` dq3

)
.

(7.28)

2

Differential 4 (Pressure) Writing αg +α` = 1 as

mg

ρg(p)
+ m`
ρ`(p)

= 1, (7.29)

we obtain by differentiation

dp = κ
(
ρ` dq1 + ρg dq2

)
, (7.30)

where

κ = 1(
∂ρg/∂p

)
ρ`αg +

(
∂ρ`/∂p

)
ρgα`

. (7.31)

2

Differential 5 (Gas momentum convection) We have

d
(
Igug

)
= Ig dug +ug dIg. (7.32)

Hence from (7.24) and (7.26) we obtain

d
(
Igug

)
= 1
%

((
2mgm`ugµg + (ζm` −mg)u2

g

)
dq1

+
(
2mgm`ugµ` − 2mgugu`

)
dq2 + 2mgug dq3

)
. (7.33)

2
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Differential 6 (Liquid momentum convection) We have

du` = dug − dΦ = ζ dug − µg dmg − µ` dm`. (7.34)

From (7.24) we obtain

du` =
1
%

(
ζ dI −

(
mgµg + ζug

)
dmg −

(
mgµ` + ζu`

)
dm`

)
. (7.35)

Hence from
d
(
I`u`

)
= I` du` +u` dI` (7.36)

we obtain

d
(
I`u`

)
= 1
%

(
−
(
2mgm`u`µg + 2ζm`ugu`

)
dq1

−
(
2mgm`u`µ` + (ζm` −mg)u2

`

)
dq2 + 2ζm`u` dq3

)
. (7.37)

2

The Jacobian matrix

Using these differentials, we see that the Jacobian matrix can be written as

A(q) = 1
%

 mgm`µg + ζm`ug mgm`µ` −mgu` mg

−(mgm`µg + ζm`ug) mgu` −mgm`µ` ζm`
a31 a32 2(mgug + ζm`u`)

 ,
(7.38)

where

a31 = κ%ρ` + 2mgm`µg(ug −u`)+ (ζm` −mg)u2
g − 2ζm`ugu` (7.39)

and

a32 = κ%ρg + 2mgm`µ`(ug −u`)− (ζm` −mg)u2
` − 2mgugu`. (7.40)

7.3 The Roe linearization

7.3.1 Linearization strategies

The essence of Roe’s method (Roe, 1981) is the replacement of the original
nonlinear problem

∂q
∂t
+ ∂
∂x
f (q) = 0 (7.41)
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by a linearized problem defined locally at each cell interface;

∂ q̂
∂t
+ Âi−1/2

∂ q̂
∂x

= 0. (7.42)

In the context of Roe’s method, the matrix Âi−1/2 is expressed as a function of
the left and right states as Â(qL,qR), and must satisfy the following conditions:

R1: Â(qL,qR)(qR − qL) = f (qR)− f (qL)

R2: Â(qL,qR) is diagonalizable with real eigenvalues

R3: Â(qL,qR)→ A(q) smoothly as qL,qR → q.

The main difficulty with the construction of such a matrix Â resides with the
condition R1. In the event that the flux function f is a rational function of the
components of q, Roe (1981) discusses two strategies to meet the condition
R1:

Strategy 1 (Direct algebraic manipulation) The following are discrete vari-
ants of the differential rules for rational functions:

∆(p + q) = ∆p +∆q, (7.43)

∆(pq) = p̄∆q + q̄∆p, (7.44)

∆(1/q) = −∆q/q̃2, (7.45)

where (̄·) denotes an arithmetic and (̃·) denotes a geometric mean value. Hence
the flux difference can be written as a sum of terms

fi(qR)− fi(qL) =
∑
r
Âij

(
qR
j − qL

j

)
, (7.46)

where Âij , constructed by application of (7.43)–(7.45), are the entries of Â. 2

Strategy 2 (Parameter vectors) We assume that f and q may be expressed as

f = f (w) (7.47)

q = q(w), (7.48)

for some parameter vector w, where the components of f are at most quadratic
polynomials in the components of w. Then, by (7.43) and (7.44), any jump in f
is related to jumps in w exclusively through arithmetic averages, and the Roe
matrix may be obtained as

Â = A
(
q
(

1
2
(w1 +w2)

))
. (7.49)

2
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Roe (1981) presented a successful application of the parameter-vector ap-
proach to the three-dimensional Euler equations. He also made the observation
that several other systems of conservation laws possess a sufficiently simple
structure allowing for a generalization of the approach.

When applicable, the parameter-vector approach has the advantage of satis-
fying an additional assumption which we may write as

R4: Â(qL,qR) = A(q̂) for some Roe-averaged state q̂(qL,qR).

Here

q̂ = q
(

1
2
(w1 +w2)

)
. (7.50)

Although not a formal requirement of a Roe matrix, the satisfaction of R4
can nevertheless be advantageous. For instance, if the eigenstructure of A is
analytically available, the same is also true for Â. This property R4 is by no
means guaranteed by the application of Strategy 1.

Strategies 1 and 2 are both based on the assumption that the flux vector
is a rational function of the conserved variables. We would here like to draw
attention to the fact that for the most general case, an alternative approach
exists where the Roe matrix may be expressed as a function of f and q directly.
This may be achieved by replacing the Jacobian by suitable numerical flux
derivatives, as described below.

Strategy 3 (Flux Differences) Assuming that q is an N-vector, we may write
the flux function f as

f (q) = f (q1, q2, . . . , qN). (7.51)

We now introduce the p-component flux difference symbol ∆(p), defined by

∆(p)f (qL,qR) = f (qR
1 , . . . , q

R
p, q

L
p+1, . . . , q

L
N)− f (qR

1 , . . . , q
R
p−1, q

L
p, . . . , q

L
N),
(7.52)

for left and right states qL and qR, where p ∈ [1, . . . ,N].
We may now state the following theorem:

Theorem 1 The N ×N matrix Â given by

Â(qL,qR) =
[
Âij

]
, (7.53)

where

Âij =


∆(j)fi(qL,qR)
qR
j − qL

j
for qL

j ≠ q
R
j

∂fi
∂qj

(qR
1 , . . . , q

R
j , q

L
j+1, . . . , q

L
N) otherwise,

(7.54)

satisfies the Roe conditions R1 and R3 for all sufficiently smooth functions f (q).2
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proof By substitution of (7.53)–(7.54) into the Roe condition R1, all flux terms
except f (qL) and f (qR) cancel, leaving us with a trivial identity.

Furthermore, by writing

qR = qL + ε, (7.55)

it follows from the definition of the partial derivative that

lim
ε→0
Âij =

∂fi
∂qj

, (7.56)

which is the requirement R3. �

Remark 2 The requirement R2 cannot be proved in general, as it depends on
the particular functional relationship f (q). In principle, this applies to all
Strategies 1–3.

However, Harten and Lax (Harten et al., 1983) have shown that if (7.41) has an
entropy function, there exists a choice of parameter vector such that a matrix
Â, satisfying all requirements R1–R3, can always be obtained using Strategy 2.
In this case, (7.49) is not necessarily satisfied. 2

Remark 3 Strategy 3 has the advantage of not making any assumptions about
the flux function. On the other hand, if Strategies 1 and 2 are applicable, they
generally lead to computationally cheaper algorithms. 2

7.3.2 Considerations for the drift-flux model

As previously discussed, the formulations of the hydrodynamic and thermody-
namic closure laws are in general not available as analytical expressions. This
leads to the conclusion that the parameter-vector approach will not be fruitful
for the drift-flux model in general.

Instead, we will base our approach on Strategies 1 and 3 above. In this work,
we wish to emphasize a somewhat unrecognized advantage associated with
Strategy 1 – the large amount of freedom it presents us with in the construction
of the Roe solver. In particular, we will take advantage of the following theorem:

Theorem 2 Let the flux vector f (q) be written as a sum of individual contribu-
tions

f (q) =
∑
r
fr (q). (7.57)
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Assume that with each fr , there is an associated matrix Âr satisfying the Roe
conditions R1 and R3 with respect to fr . Then the matrix

Â =
∑
r

Âr (7.58)

satisfies both

(i) the Roe condition R1

(ii) the Roe condition R3

with respect to f (q). 2

proof From the Roe condition R1, (i) directly follows by linearity of matrix
multiplication. Furthermore, (ii) follows from the limit rule

lim
a→b

(
x(a)+y(a)

)
= lim
a→b

x(a)+ lim
a→b

y(a) (7.59)

applied to the definition of the partial derivative. �

A flux-splitting strategy

To derive our scheme, we apply the Roe condition R1 sequentially to the various
parts of the equation system (7.2). In particular, by Theorem 2 we express the
Roe matrix Â as a sum of individual contributions

Â = Âm + Âg + Â` + Âp. (7.60)

Hence, by not insisting that the Roe matrix must satisfy the condition R4, we
are able to construct a valid matrix that

–– consists almost entirely of simple arithmetic averages;

–– allows the Roe-averaging of the closure laws to be isolated as fully inde-
pendent problems.

We then demonstrate that Strategy 3 allows us to obtain a Roe-averaging of the
closure laws with general validity. For the special case of the Zuber–Findlay
closure law (7.11), an approach based on Strategy 1 allows us to directly obtain
a fully analytical Roe matrix expressed in terms of the physical variables.
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Mass equations

We first look for appropriate Roe averages for the mass conservation part of
the system, i.e. we seek the submatrix

Âm =
1
%̂

 m̂gm̂`µ̂g + ζ̂m̂`ûg m̂gm̂`µ̂` − m̂gû` m̂g

−(m̂gm̂`µ̂g + ζ̂m̂`ûg) m̂gû` − m̂gm̂`µ̂` ζ̂m̂`
0 0 0

 (7.61)

corresponding to the convective mass-flux vector

fm =

mgug

m`u`
0

 . (7.62)

The Roe condition R1 yields two equations, which in vector form become

Âm(qR − qL) = fm(qR)− fm(qL). (7.63)

Following (7.19) and (7.21), we insist that

%̂ = m̂g + ζ̂m̂` (7.64)

µ̂v = 1− ζ̂. (7.65)

Given that the flux function fm is quadratic in the variables (mk, uk), the
following averages are suggested by (7.44):

m̂g =
1
2

(
mL

g +mR
g

)
(7.66)

m̂` =
1
2

(
mL
` +m

R
`

)
(7.67)

ûg =
1
2

(
uL

g +uR
g

)
(7.68)

û` =
1
2

(
uL
` +u

R
`

)
. (7.69)

By these substitutions, (7.63) reduces to

µ̂g

(
mR

g −mL
g

)
+ µ̂`

(
mR
` −m

L
`

)
+ µ̂v

(
uR

g −uL
g

)
= ΦR −ΦL, (7.70)

which is directly satisfied when (µg, µ`, µv) are constant, by the definitions
(7.15)–(7.17). Non-constant (µg, µ`, µv) are discussed in Sections 7.3.2 and
7.3.3.
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Momentum convection

We split the convective momentum flux as follows:

fI =

 0
0

mgu2
g +m`u2

`

 = fg + f`, (7.71)

where

fg =

 0
0

mgu2
g

 (7.72)

and

f` =

 0
0

m`u2
`

 . (7.73)

Gas momentum convection

We now seek Roe averages for the Jacobian submatrix

Ag =
∂fg

∂q
= 1
%

 0 0 0
0 0 0
ag,31 ag,32 2mgug

 , (7.74)

where
ag,31 = 2mgm`ugµg + (ζm` −mg)u2

g (7.75)

and
ag,32 = 2mgm`ugµ` − 2mgugu`. (7.76)

In particular, we observe that if we look for Roe averages of the form

Âg,31 =
1
%̂

(
2m̂gm̂`ũgµ̂g + 2ζ̂m̂`ûgũg − (ζ̂m̂` + m̂g)ũ2

g

)
(7.77)

Âg,32 =
1
%̂

(
2m̂gm̂`ũgµ̂` − 2m̂gũgû`

)
(7.78)

Âg,33 =
1
%̂

(
2m̂gũg

)
, (7.79)

involving the assumption of two different Roe-averaged gas velocities ũg and
ûg, we may write (7.77)–(7.79) as

Âg,31 = 2ũgÂm,11 − ũ2
g (7.80)

Âg,32 = 2ũgÂm,12 (7.81)

Âg,33 = 2ũgÂm,13, (7.82)
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where Âm is the mass Roe matrix (7.61).

Remark 4 Note that Âg,31 can equivalently be written as

Âg,31 =
1
%̂

(
2m̂gm̂`ũgµ̂g + (ζ̂m̂` − m̂g)ũ2

g + 2ζ̂m̂`ũg(ûg − ũg)
)
, (7.83)

where the last term vanishes when ûg = ũg (in accordance with the condition
R3). 2

By the gas mass equation (7.63), the condition R1 on Âg simply becomes

ũ2
g

(
mR

g −mL
g

)
− 2ũg

(
mR

guR
g −mL

guL
g

)
+ (mgu2

g)R − (mgu2
g)L = 0, (7.84)

the solution of which is the standard Roe-averaged velocity, familiar from the
Euler equations:

ũg =

√
mL

guL
g +

√
mR

guR
g√

mL
g +

√
mR

g

. (7.85)

Here the gas mass mg takes the place of the density ρ.
Hence a Roe average Âg for the gas momentum convection submatrix (7.74)

is obtained rather nicely; the ‘hat’ averages of (7.77)–(7.79) are the simple
arithmetic averages (7.66)–(7.69), whereas the ‘tilde’-averaged gas velocity ũg

of (7.77)–(7.79) is given by (7.85).

Remark 5 The simultaneous application of two different velocity averages
ũg and ûg allows for a significantly simplified algebraic structure of the Roe
matrix Â. Imposing the conditon R4, hereby forcing a unique expression
for the velocity average, would in this case have led to highly complicated
expressions. 2

Liquid momentum convection

We seek Roe averages for the Jacobian submatrix

A` =
∂f`
∂q

= 1
%

 0 0 0
0 0 0
a`,31 a`,32 2ζm`u`

 , (7.86)

where
a`,31 = −(2mgm`u`µg + 2ζm`ugu`) (7.87)

and
a`,32 = −(2mgm`u`µ` + (ζm` −mg)u2

`). (7.88)
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We proceed in a fully equivalent fashion as for the gas momentum convection,
i.e. we look for Roe averages of the form

Â`,31 = −
1
%̂

(
2m̂gm̂`ũ`µ̂g + 2ζ̂m̂`ûgũ`

)
(7.89)

Â`,32 =
1
%̂

(
2m̂gũ`û` − 2m̂gm̂`ũ`µ̂` − (m̂g + ζ̂m̂`)ũ2

`

)
(7.90)

Â`,33 =
1
%̂

(
2ζ̂m̂`ũ`

)
. (7.91)

Remark 6 Note that Â`,32 can equivalently be written as

Â`,32 =
1
%̂

(
−(2m̂gm̂`ũ`µ̂` + (ζ̂m̂` − m̂g)ũ2

`)+ 2m̂gũ`(û` − ũ`)
)
, (7.92)

where the last term vanishes when û` = ũ` (in accordance with the condition
R3). 2

As for the gas momentum convection, we may express (7.89)–(7.91) in terms
of the mass Roe matrix Âm (7.61) as

Â`,31 = 2ũ`Âm,21 (7.93)

Â`,32 = 2ũ`Âm,22 − ũ2
` (7.94)

Â`,33 = 2ũ`Âm,23. (7.95)

By the liquid mass equation (7.63), the Roe momentum equation now reduces
to

ũ2
`

(
mR
` −m

L
`

)
− 2ũ`

(
mR
`u

R
` −m

L
`u

L
`

)
+ (m`u2

`)
R − (m`u2

`)
L = 0, (7.96)

with corresponding solution

ũ` =

√
mL
`u

L
` +

√
mR
`u

R
`√

mL
` +

√
mR
`

. (7.97)

In summary, a Roe average Â` for the liquid momentum convection submat-
rix (7.86) is obtained as follows; the ‘hat’ averages of (7.89)–(7.91) are the simple
arithmetic averages (7.66)–(7.69), whereas the ‘tilde’-averaged liquid velocity
ũ` of (7.89)–(7.91) is given by (7.97).
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Pressure terms

We here seek the Roe submatrix

Âp =

 0 0 0
0 0 0
κ̂ρ̂` κ̂ρ̂g 0

 (7.98)

corresponding to the flux vector

fp =

0
0
p

 . (7.99)

Writing (7.31) as

κ̂ =
(
∂̂pρgρ̂`α̂g + ∂̂pρ`ρ̂gα̂`

)−1
, (7.100)

we obtain the equation

ρ̂`
(
mR

g −mL
g

)
+ ρ̂g

(
mR
` −m

L
`

)
∂̂pρgρ̂`α̂g + ∂̂pρ`ρ̂gα̂`

= pR − pL (7.101)

by the Roe condition R1.

The averages ∂̂pρk indirectly involve the thermodynamic closure law, which,
as previously discussed, may not be available in algebraic form. We hence
suggest to apply Strategy 3 for the Roe-averaging of these terms. Taking
advantage of the fact that we assume density models of the form (7.7), we
suggest approximating these compressibility terms as

∂̂pρk =


ρR
k − ρL

k
pR − pL

for pL ≠ pR(
∂pρk

)L
otherwise.

(7.102)

Substituting (7.102) in (7.101) we obtain

ρ̂`
(
mR

g −mL
g

)
+ ρ̂g

(
mR
` −m

L
`

)
= ρ̂gα̂`

(
ρR
` − ρ

L
`

)
+ ρ̂`α̂g

(
ρR

g − ρL
g

)
, (7.103)

which is satisfied by the arithmetic averages

α̂` =
1
2
(αL
` +α

R
`) (7.104)

α̂g =
1
2
(αL

g +αR
g) (7.105)

ρ̂g =
1
2
(ρL

g + ρR
g ) (7.106)

ρ̂` =
1
2
(ρL
` + ρ

R
` ), (7.107)
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where we have used that

mk = ρkαk. (7.108)

The slip relation

We now aim to obtain Roe averages (µ̂g, µ̂`, µ̂v) valid for general hydrodynamic
closure laws Φ(mg,m`, ug). Remark 3 consequently suggests that we should
apply Strategy 3 to obtain these averages.

As noted in Section 7.3.2, the condition R1 dictates that the averages must
satisfy

µ̂g

(
mR

g −mL
g

)
+ µ̂`

(
mR
` −m

L
`

)
+ µ̂v

(
uR

g −uL
g

)
= ΦR −ΦL. (7.109)

Application of Strategy 3 directly yields

µ̂g =


Φ(mR

g ,m
L
`, u

L
g)−Φ(mL

g,m
L
`, u

L
g)

mR
g −mL

g
for mL

g ≠mR
g

µg(mL
g,m

L
`, u

L
g) otherwise

(7.110)

µ̂` =


Φ(mR

g ,m
R
` , u

L
g)−Φ(mR

g ,m
L
`, u

L
g)

mR
` −m

L
`

for mL
` ≠m

R
`

µ`(mR
g ,m

L
`, u

L
g) otherwise

(7.111)

µ̂v =


Φ(mR

g ,m
R
` , u

R
g)−Φ(mR

g ,m
R
` , u

L
g)

uR
g −uL

g
for uL

g ≠ uR
g

µv(mR
g ,m

R
` , u

L
g) otherwise.

(7.112)

7.3.3 The Zuber–Findlay law

Although the averages derived in Section 7.3.2 are valid for general formulations
of the hydrodynamic closure law, they may not always be optimal in terms of
computational efficiency, as noted in Remark 3.

In this section, we derive explicit averages for the special case of the Zuber–
Findlay slip relation (Zuber and Findlay, 1965)

ug = K(αgug +α`u`)+ S, (7.113)

which may be equivalently expressed as

Φ = (K − 1)ug + S
Kα`

. (7.114)
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The slip derivatives for this particular relation are found to be

µv =
K − 1
Kα`

(7.115)

µg = (ug −u`)κ
∂ρ`
∂p

(7.116)

µ` = −(ug −u`)κ
αg

α`

∂ρg

∂p
. (7.117)

Roe-averages for these slip derivatives are now found by applying Strategy 1 to
the requirement (7.109), as described below.

A splitting of the slip relation

We first note that Φ can be written as

Φ = f(ug) · g(α`), (7.118)

where

f(ug) = (K − 1)ug + S (7.119)

and

g(α`) = (Kα`)−1. (7.120)

By (7.44) and (7.118) we obtain

ΦR −ΦL = 1
2

(
f(uL

g)+ f(uR
g)
)(
g(αR

`)− g(α
L
`)
)

+ 1
2

(
g(αL

`)+ g(α
R
`)
)(
f(uR

g)− f(uL
g)
)
, (7.121)

which suggests a natural splitting of (7.109) into two separate equations:

µ̂g(mR
g −mL

g)+ µ̂`(mR
` −m

L
`) =

1
2

(
f(uL

g)+ f(uR
g)
)(
g(αR

`)− g(α
L
`)
)

(7.122)

and

µ̂v(uR
g −uL

g) =
1
2

(
g(αL

`)+ g(α
R
`)
)(
f(uR

g)− f(uL
g)
)
. (7.123)



188 7. A Roe scheme for the drift-flux model

The velocity slip derivative

We now express the Roe-average of (7.115) as

µ̂v =
K − 1
Kα̃`

. (7.124)

By (7.119) and (7.120), (7.123) then becomes

K − 1
Kα̃`

= K − 1
2K

(
1

αL
`
+ 1

αR
`

)
, (7.125)

which yields α̃`(αL
`, α`

R) as the harmonic mean:

α̃` = 2
αL
`α

R
`

αL
` +α

R
`
. (7.126)

The mass slip derivatives

We write the Roe-averages of (7.116) and (7.117) as

µ̂g = Φ̂κ̂∂̂pρ` (7.127)

and

µ̂` = −Φ̂κ̂
α̂g

α̂`
∂̂pρg. (7.128)

By writing

Φ̂ = (K − 1)ûg + S
Kα̃`

, (7.129)

where

ûg =
1
2
(uL

g +uR
g) (7.130)

α̃` = 2
αL
`α

R
`

αL
` +α

R
`
, (7.131)

(7.122) can, by use of (7.45), be rewritten as

−Φ̂
αR
` −α

L
`

α̂`
= Φ̂κ̂∂̂pρ`(mR

g −mL
g)− Φ̂κ̂

α̂g

α̂`
∂̂pρg(mR

` −m
L
`), (7.132)

where we define

α̂k =
1
2
(αL
k +αR

k). (7.133)

We now observe that the averages κ̂ and ∂̂pρk, obtained in Section 7.3.2, do
in fact also satisfy (7.132); together with (7.129) they yield valid Roe averages
(7.127) and (7.128).
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7.3.4 The Roe matrix

The preceeding analysis of Sections 7.3.2–7.3.3 may be summed up by the
following Proposition:

Proposition 1 The matrix

Â(qL,qR)

= 1
%̂

 m̂gm̂`µ̂g + ζ̂m̂`ûg m̂gm̂`µ̂` − m̂gû` m̂g

−(m̂gm̂`µ̂g + ζ̂m̂`ûg) m̂gû` − m̂gm̂`µ̂` ζ̂m̂`
â31 â32 2(m̂gũg + ζ̂m̂`ũ`)

 ,
(7.134)

where

â31 = κ̂%̂ρ̂` + 2m̂gm̂`ũgµ̂g + 2ζ̂m̂`ûgũg − %̂ũ2
g − 2m̂gm̂`ũ`µ̂g − 2ζ̂m̂`ûgũ`,

(7.135)

â32 = κ̂%̂ρ̂g + 2m̂gm̂`ũgµ̂` − 2m̂gũgû` + 2m̂gũ`û` − 2m̂gm̂`ũ`µ̂` − %̂ũ2
`

(7.136)

and

%̂ = m̂g + ζ̂m̂`, (7.137)

obtained by the arithmetic averages

m̂g =
1
2

(
mL

g +mR
g

)
(7.138)

m̂` =
1
2

(
mL
` +m

R
`

)
(7.139)

ûg =
1
2

(
uL

g +uR
g

)
(7.140)

û` =
1
2

(
uL
` +u

R
`

)
(7.141)

ρ̂g =
1
2

(
ρL

g + ρR
g

)
(7.142)

ρ̂` =
1
2

(
ρL
` + ρ

R
`

)
, (7.143)
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as well as the Roe-type averages

ũg =

√
mL

guL
g +

√
mR

guR
g√

mL
g +

√
mR

g

(7.144)

ũ` =

√
mL
`u

L
` +

√
mR
`u

R
`√

mL
` +

√
mR
`

, (7.145)

and where κ̂ is obtained as described in Section 7.3.2, satisfies the Roe conditions
R1 and R3 for the drift-flux model described in Section 7.2, provided that the
Roe-averaged slip derivatives µ̂g, µ̂` and µ̂v ≡ 1− ζ̂ satisfy

µ̂g

(
mR

g −mL
g

)
+ µ̂`

(
mR
` −m

L
`

)
+ µ̂v

(
uR

g −uL
g

)
= ΦR −ΦL. (7.146)

2

Furthermore, following the discussions of Sections 7.3.2 and 7.3.3, we make
the following definitions:

Definition 1 The matrix Â described by Proposition 1, used in conjunction
with the averages µ̂g, µ̂` and µ̂v described by (7.110)–(7.112), satisfies the
Roe conditions R1 and R3 for the drift-flux model supplied with a general,
sufficiently smooth slip relation Φ. The Roe scheme obtained by solving the
linearized Riemann problem defined by this matrix Â will in the following be
termed the RoeGen scheme. 2

Definition 2 The matrix Â described by Proposition 1, used in conjunction
with the averages µ̂g, µ̂` and µ̂v described in Section 7.3.3, satisfies the Roe
conditions R1 and R3 for the drift-flux model supplied with a Zuber–Findlay
type slip relation Φ, as expressed by (7.114). The Roe scheme obtained by
solving the linearized Riemann problem defined by this matrix Â will in the
following be termed the RoeZF scheme. 2

Remark 7 We have not been able to obtain explicit conditions under which
RoeGen and RoeZF satisfy the condition R2. In fact, this condition is non-trivial
for the given drift-flux model for the following reasons:

–– The eigenstructure, and hence the hyperbolicity, of the model itself is
sensitive to the choice of closure laws. Even the rather simple Zuber–
Findlay law (7.11) leads to highly complex expressions for the eigenvalues,
and only conditional hyperbolicity (Benzoni-Gavage, 1991).
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–– As noted by Baudin et al. (2005a), the system cannot be provided with
an entropy pair except for highly restrictive choices of Φ. Hence the
approach of Harten and Lax, discussed in Remark 2, will not work in this
case.

However, the numerical evidence indicates that if qL and qR are in the hyper-
bolic region of the model, the RoeGen and RoeZF solvers tend to produce real
eigenvalues and a hyperbolic linearization. No instance of complex eigenvalues,
i.e. violation of R2, occurred for any calculations performed in the prepara-
tion of this chapter. Approximate eigenvalues of the model can be found in
Appendix B. 2

7.4 Numerical algorithm

The present section provides a brief overview of the employed numerical
algorithm, which is based on the wave-propagation (flux-difference splitting)
form of Godunov’s method presented by LeVeque (2002, Chapter 15). We start
by giving a description of the general numerical method, and proceed with an
explanation of how it relates to the Roe scheme.

7.4.1 Framework

A ‘high-resolution’ extension of Godunov’s method can be written as

Qn+1
i =Qni −

∆t
∆x

(
A−∆Qi+1/2+A+∆Qi−1/2

)
− ∆t
∆x

(
F̃i+1/2− F̃i−1/2

)
, (7.147)

where Qni denotes the numerical approximation to the cell average of the
vector of unknowns q(x(i), tn), that is, in control volume i at time step n.
Quantities without a time index are evaluated at time step n. The symbol
A−∆Qi+1/2 denotes the net effect of all left-going waves at xi+1/2, that is, at
the control-volume boundary midway between xi and xi+1, while A+∆Qi−1/2
measures the net effect of all right-going waves at xi−1/2. The waves and wave
speeds from the approximate Riemann solution are used to define

A−∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)−Wp
i−1/2,

A+∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)+Wp
i−1/2,

(7.148)



192 7. A Roe scheme for the drift-flux model

where Wp
i−1/2 is the pth wave arising in the solution to the Riemann problem

at xi−1/2, that is, it is a vector with one component for each equation. m is the
number of waves, and since we will be using a linearized Riemann solver, it is
equal to the number of equations. spi−1/2 is the wave speed of the pth wave and

(
spi−1/2

)+ = max(spi−1/2,0),
(
spi−1/2

)− = min(spi−1/2,0). (7.149)

The flux vector F̃i−1/2 is the higher-order correction. It is given by

F̃i−1/2 =
1
2

m∑
p=1

∣∣spi−1/2
∣∣(1− ∆t

∆x
∣∣spi−1/2

∣∣)W̃p
i−1/2, (7.150)

where W̃p
i−1/2 is a limited version of the wave Wp

i−1/2. With the correction
terms, the method approaches second order for smooth solutions.

In the present work, we have taken account of source terms by adding the
term ∆tSi to the right-hand side of (7.147).

7.4.2 Considerations for the Roe solver

As noted in Section 7.3, the Roe scheme defines an approximate Riemann
solution by replacing the nonlinear problem

∂q
∂t
+ ∂
∂x
f (q) = 0 (7.151)

by a linearized problem defined locally at each cell interface;

∂ q̂
∂t
+ Âi−1/2

∂ q̂
∂x

= 0. (7.152)

For the Roe solver, we have the interpretation that

A±∆Qi−1/2 = Â±i−1/2(Qi −Qi−1). (7.153)

Herein,
Â±i−1/2 = R̂i−1/2Λ̂±i−1/2R̂−1

i−1/2, (7.154)

where R̂i−1/2 is the matrix having the right eigenvectors r̂i−1/2 of Âi−1/2 as
its columns, and Λ̂+i−1/2 and Λ̂−i−1/2 are the diagonal matrices containing the

positive and negative eigenvalues, respectively, of Âi−1/2. Further, to satisfy
the condition R1, we must have that

Âi−1/2(Qi −Qi−1) =
m∑
p=1

spi−1/2W
p
i−1/2. (7.155)
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The approximate Riemann solution consists of m waves proportional to the
right eigenvectors r̂i−1/2, propagating with speeds

spi−1/2 = λ̂
p
i−1/2 (7.156)

given by the eigenvalues. The proportionality coefficients βpi−1/2 can be found
by solving the linear system

Qi −Qi−1 =
m∑
p=1

βpi−1/2r̂
p
i−1/2, (7.157)

and βpi−1/2 can be interpreted as wave strengths (Toro, 1999, Section 2.3.3). The
solution of the equation (3.66) is

βi−1/2 = R̂−1
i−1/2(Qi −Qi−1), (7.158)

whence the waves can be found as

Wp
i−1/2 = β

p
i−1/2r̂

p
i−1/2. (7.159)

Eigenstructure

As noted in Remark 7, the eigenstructure of the Roe matrix Âi−1/2 is quite com-
plicated, and it is difficult to obtain analytical expressions for the eigenvalues
and eigenvectors. Hence, in the present work, the eigenstructure was found
numerically.

Entropy solution

For transonic rarefactions, that is, when an eigenvalue λp is negative to the
left of the p-wave, Wp, and positive to the right, a scheme using a linearized
Riemann solver may converge to an unphysical solution, violating the entropy
condition (Osher, 1984).

Several remedies are conceivable, e.g. using Harten’s entropy fix (Harten,
1983). However, for the calculations presented in the following, the problem of
entropy-condition violations did not occur.

7.5 Numerical simulations

In this section, we illustrate the ability of the Roe method to produce accurate
and non-oscillatory results for some numerical benchmark problems, including
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Table 7.1: Initial states in the pure rarefaction test problem.

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.6 0.68

Pressure p (MPa) 1.66667 1.17647
Gas velocity ug (m/s) 34.4233 50.0

Liquid velocity u` (m/s) 34.4233 50.0

Table 7.2: Parameters employed in the pure rarefaction test problem.

ck (m/s) ρ◦k (kg/m3)
gas (g) 100 0

liquid (`) 1000 998.924

non-linear slip laws and transition to near-single-phase flow. Furthermore, for
the case of the Zuber–Findlay slip relation, we show that the general method
for the drift-flux model derived in Section 7.3.2 and the specific method of
Section 7.3.3 give identical results.

The method (7.147) can be shown to be total variation diminishing (tvd) for
scalar problems under the restriction that the Courant–Friedrichs–Lewy (cfl)
number be smaller than 1/2 (LeVeque, 2002, Section 12.8). The calculations
presented here were thus run using a cfl number of 1/2.

7.5.1 Pure rarefaction

The first test case is a Riemann problem constructed by Baudin et al. (2005a),
and whose solution is a pure rarefaction. Baudin et al. took the liquid to have a
constant density. Here, however, both phases are treated as compressible. The
considered horizontal tube is 100 m long, and there is a jump in the initial state
at x = 50 m. The initial values are given in Table 7.1, and the equation-of-state
parameters are reported in Table 7.2. Herein,

ρ◦k ≡ c−2
k (p − pk,0). (7.160)

In the present problem, the no-slip law is used, that is, Φ ≡ 0. In this case, the
Roe average derived for the Zuber–Findlay slip relation (Section 7.3.3), and the
general Roe average (Section 7.3.2), give the same numerical scheme.

Pressure profiles at t = 0.8 s are presented for various grid sizes in Figure 7.1.
Figure 7.1(a) shows the results obtained using the first-order scheme, that is,
without the use of a limiter function, while in Figure 7.1(b), the monotonized
central-difference (mc) limiter has been employed. The first-order Roe scheme



7.5. Numerical simulations 195

p (MPa)

0 20 40 60 80 100

1.2

1.3

1.4

1.5

1.6

1.7
50 cells
100 cells
200 cells
400 cells
800 cells
1600 cells
3200 cells
3200 cells (MC)

x (m)
(a) No limiter (first-order)

p (MPa)

0 20 40 60 80 100

1.2

1.3

1.4

1.5

1.6

1.7
50 cells
100 cells
200 cells
400 cells
800 cells
1600 cells
3200 cells

x (m)
(b) MC limiter

Figure 7.1: Pressure for the pure rarefaction test problem. Convergence of the
Roe method with and without a limiter function.

compares very well with the results presented in Baudin et al. (2005a), and it
can be seen that the use of the mc limiter provides an improved resolution of
the rarefaction wave. The remaining physical variables are shown in Figure 7.2.

7.5.2 Shock-tube problem 1

We next consider a shock-tube problem where the solution consists of a 1-
shock, a 2-contact and a 3-shock. This case was also studied by Baudin et al.
(2005a) for the case of constant liquid density. The initial states can be found
in Table 7.3, and the equation-of-state parameters are given in Table 7.4. The
slip is given by the Zuber–Findlay relation (7.11) with K = 1.07 and S = 0.2162.
Therefore, we employ the Roe average derived in Section 7.3.3 (RoeZF).

The convergence of the RoeZF scheme employing the mc limiter is shown in
Figure 7.3, where the results are plotted at t = 0.5 s. Both the shocks and the
contact discontinuity are very sharply resolved.
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Figure 7.2: Gas volume fraction and velocity for the pure rarefaction test prob-
lem. Convergence of the Roe method using the MC limiter.

Table 7.3: Initial states in the Shock Tube 1 problem.

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.6 0.55

Pressure p (kPa) 522.825 803.959
Gas velocity ug (m/s) 29.5138 2.5582

Liquid velocity u` (m/s) 24.7741 1.7372

Table 7.4: Parameters employed in the Shock Tube 1 problem.

ck (m/s) ρ◦k (kg/m3)
gas (g) 300 0

liquid (`) 1000 999.916
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Figure 7.3: Shock Tube 1. Convergence of the RoeZF method using the MC
limiter.
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Table 7.5: Initial states in the Shock Tube 2 problem.

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.55 0.55

Pressure p (kPa) 80.450 24.282
Gas velocity ug (m/s) 12.659 1.181

Liquid velocity u` (m/s) 10.370 0.561

Table 7.6: Parameters employed in the Shock Tube 2 and pipe-flow problems.

ck (m/s) ρ◦k (kg/m3)
gas (g)

√
105 0

liquid (`) 1000 999.9

7.5.3 Shock-tube problem 2

An alternative shock-tube problem has previously been studied by Evje and
Fjelde (2002) and Fjelde and Karlsen (2002), for the case of constant liquid
density. The initial states are given in Table 7.5, whereas Table 7.6 shows
the equation-of-state parameters. In this problem, the Zuber–Findlay slip
relation (7.11) is employed with K = 1.07 and S = 0.216.

Numerical results for grid refinement are displayed in Figure 7.4 for t = 1 s.
The solution at the shocks is non-oscillatory for all the variables, while the
discontinuity is sharply resolved.

7.5.4 Comparison of RoeGen and RoeZF

In Section 7.3.3, we derived a Roe average specially for the Zuber–Findlay slip
relation (RoeZF). Figure 7.5 shows numerical results for Shock Tube 1 obtained
using RoeZF plotted on top of the solution calculated with the general Roe
average (RoeGen) of Section 7.3.2. As can be seen, they are exactly the same.

Figure 7.6 shows a similar comparison between RoeZF and RoeGen for Shock
Tube 2. Again, the results are exactly the same. This gives confidence in the
applicability of RoeGen for general slip relations.

7.5.5 Pipe-flow problem

The final test simulates a practical pipe-flow problem, and includes such chal-
lenges as a more complex, non-linear slip relation and near-single-phase flow.
The problem was introduced as Example 4 by Evje and Fjelde (2003).
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Figure 7.4: Shock Tube 2. Convergence of the RoeZF method using the MC
limiter.
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The equation-of-state parameters are given by Table 7.6. In the slip rela-
tion (7.11), K = 1 is constant, but S is now a non-linear function of the volume
fraction:

S = S(αg) =
1
2

√
1−αg. (7.161)

Further, a wall-friction model is included:

Fw =
32umηm

d2
, (7.162)

where um is the mixture velocity,

um = αgug +α`u`, (7.163)

and the dynamic mixture viscosity, ηm, is taken to be

ηm = αgηg +α`η`, (7.164)

with ηg = 5 · 10−6 Pa s and η` = 5 · 10−2 Pa s.
The problem consists of a horizontal pipe of length l = 1000 m and inner

diameter d = 0.1 m. Initially, it is filled with stagnant, almost-pure liquid,
with αg = 1 · 10−5. Furthermore, the details of the simulation are specified as
follows:

–– The simulation lasts for 175 s.

–– Between t = 0 and t = 10 s, the gas and liquid inlet mass-flow rates are
linearly increased from zero to 0.08 kg/s and 12.0 kg/s, respectively.

–– From t = 10 s to t = 175 s, the inlet liquid mass-flow rate is kept constant.

–– The inlet gas mass-flow rate is kept constant between t = 10 s and
t = 50 s.

–– Between t = 50 s and t = 70 s, the inlet gas mass-flow rate is linearly
decreased from 0.08 kg/s to 1 · 10−8 kg/s, after which it is kept constant.

–– At the outlet, the pressure is kept constant at p = 1 · 105 Pa.

Calculations were performed using the RoeGen method. The physical vari-
ables are plotted in Figure 7.7 for various grids. It can be observed that for
the 200-cell grid, the numerical solution is already close to the one obtained
on fine grids. The present results compare favourably with those presented
in Evje and Fjelde (2003). Furthermore, one may note that the transition to
near-single-phase flow is handled well.
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Figure 7.7: Pipe-flow test problem. Convergence of the RoeGen method using
the MC limiter.
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7.6 Summary

A quasi-linear formulation of the general drift-flux model, describing the flow of
two-phase mixtures in pipelines, has been presented. Based on this formulation,
a linearized Riemann solver of the type proposed by Roe has been derived.

The complexity of the closure laws inherent in the model prevents us from
using the parameter-vector strategy originally proposed by Roe. Instead, we
satisfy the Roe conditions using alternative strategies, enabling us to

–– split the problem into independently solvable parts;

–– handle general formulations of the closure laws within a single framework.

Hence, we are able to construct a genuine Roe scheme purely by algebraic
manipulation of the flux Jacobian.

Even for the most general case, our proposed linearized Riemann solver
is to a large extent constructed from arithmetic averages; it is consequently
relatively efficient. Numerical examples have been presented, illustrating that
the solver possesses the accuracy and robustness properties one may expect
from a Roe-type method.

Finally, we would like to put forth the suggestion that the approach here
presented may be extensible to other systems of conservation laws where the
flux vector is only partly available in algebraic form.



8 The multi-stage centred-scheme approach∗

For two-phase flow models, upwind schemes are most often difficult do derive,
and expensive to use. Centred schemes, on the other hand, are simple, but
more dissipative. The multi-stage (musta) method is aimed at coming close
to the accuracy of upwind schemes while retaining the simplicity of centred
schemes. So far, the musta approach has been shown to work well for the
Euler equations of inviscid, compressible single-phase flow. In this chapter, we
explore the musta scheme for a more complex system of equations: the drift-
flux model, which describes one-dimensional two-phase flow where the motions
of the phases are strongly coupled. As the number of stages is increased, the
results of the musta scheme approach those of the Roe method. The good
results of the musta scheme are dependent on the use of a large-enough local
grid. Hence, the main benefit of the musta scheme is its simplicity, rather than
cpu-time savings.

8.1 Introduction

In this chapter, we consider the drift-flux model presented in Section 7.2. It is
a two-phase model arising from averaging the equations for single-phase flow
(see Chapter 2), and it consists of a continuity equation for each phase, and a
momentum equation for the mixture, and it is employed to describe bubbly
flows and other two-phase flows where the motions of the phases are strongly
coupled.

Since the momentum equation is for the two-phase mixture, a supplementary
hydrodynamic closure law, commonly denoted as the slip relation, is required
to determine the velocity of each phase. In addition, thermodynamic closure
laws are needed for each phase to relate the phasic density to the mixture
pressure. The drift-flux model can be written on conservation form, and it has
shown to be hyperbolic for a reasonable range of input parameters (Romate,
1998). However, even for simple closure relations, the Jacobian of the model
becomes rather complicated.

∗The content of this chapter has been submitted for publication as an article (Munkejord
et al., 2006)
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8.1.1 Riemann solvers

A popular class of methods for solving systems of hyperbolic equations for
flow problems are the Godunov-type methods (see e.g. LeVeque, 2002; Toro,
1999, for a review). The basic scheme involves the solution of the Riemann
problem at each cell interface. This solution is used to compute the intercell
flux. Since they employ wave-propagation information in the construction
of the numerical flux, these schemes are often called upwind or upstream
schemes. The Riemann problem can be exactly solved for models such as the
Euler equations of inviscid, compressible single-phase flow. However, an exact
Riemann solution for the drift-flux model may be derived only for some special
cases, since the model is sensitive to the formulation of the closure laws.

It is often adequate to employ an approximate Riemann solver. An attractive
candidate is that of Roe (1981), in which the original model is linearized at each
cell interface, and a representation of all the wave phenomena in the model is
provided. To that end, the Jacobian of the model is diagonalized.

As has been pointed out by several researchers (Baudin et al., 2005a,b; Evje
and Fjelde, 2002, 2003; Faille and Heintzé, 1999; Romate, 1998), the complexity
resulting from the closure laws employed in the drift-flux model severely
restricts the possibilities for constructing a Roe solver by purely algebraic
manipulations. Nevertheless, Roe-type schemes have been proposed for this
model. Romate (1998) presented a method for constructing a Roe matrix using
a fully numerical approach, whereas in Chapter 7, an analytical Roe matrix
was derived for fairly general closure laws. Still, that approach relied on a
numerical diagonalization of the Roe matrix, and on the closure laws not
including differential terms. Such terms were discussed e.g. by Bouré (1997).

8.1.2 Centred schemes

A simpler method for calculating the intercell flux is to employ centred stencils
which do not explicitly make use of wave-propagation information in the
construction of the numerical flux. However, the centred schemes are generally
more dissipative than the upwind ones (see e.g. Toro, 1999).

The force flux has been proposed by Toro as an interesting basic centred flux,
and it is known that the force scheme possesses various good properties (Toro,
1999; Toro and Billett, 2000; Chen and Toro, 2004). It has been shown to be
monotone, to possess the optimal stability condition, and to have the smallest
numerical viscosity among centred schemes when it is considered for a scalar,
linear conservation law. Moreover, entropy consistence has also been shown
for a general nonlinear system of conservation laws, and convergence results
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have been obtained for special systems like the isentropic Euler equations and
the shallow-water equations (Chen and Toro, 2004).

However, a main drawback of force is clearly observed when considering
its truncation error for a linear advection equation with constant speed a;
∂u/∂t+a∂u/∂x = 0. In this case, the truncation error is inversely proportional
to the Courant–Friedrichs–Lewy (cfl) number C = a∆t/∆x (Titarev and Toro,
2005). In particular, the force scheme cannot resolve a stationary discontinuity
exactly.

8.1.3 The multi-stage approach

The multi-stage (musta) method proposed by Toro (2003); Titarev and Toro
(2005) is aimed at coming close to the accuracy of upwind schemes while
retaining the simplicity of centred schemes. In this approach, the solution
of the Riemann problem at the cell interface is approximated numerically by
employing a first-order centred scheme on a local grid. More precisely, by
using 2N spatial grid cells, M local time steps, and a local cfl number, Cloc =
a∆tloc/∆x, Titarev and Toro (2005) showed that the truncation error for the
linear advection equation with constant wave speed could be strongly reduced.
In particular, this musta scheme was demonstrated to behave similarly to the
upwind Godunov scheme for the linear advection equation. Motivated by this,
the authors applied their scheme to the Euler equations and observed that
the new musta scheme could effectively match the accuracy of the Godunov
method with state-of-the-art Riemann solvers.

An important motivation for the development of the musta scheme was
the possibility to use it for more complex systems, such as those occuring in
multiphase fluid dynamics. The main purpose of this work is to take one step
in this direction.

The analysis behind the construction of the musta scheme proposed by
Titarev and Toro (2005) is based on the linear advection equation and mono-
tonicity considerations related to this simple equation. Therefore, it may not
be obvious that the good properties of the musta scheme for the scalar case
in fact carry over to the case of more complicated systems of conservation
laws. Titarev and Toro demonstrated that the musta scheme works well for
the Euler equations. However, in order to resolve the local Riemann problem,
appropriate choices are needed for the parameters M and N for the local grid.
These depend on the specific model under consideration. Consequently, there
is a need for exploring the musta approach also for other models than the
Euler equations. The aim of this work is thus to explore the musta approach
for a two-phase model, the drift-flux model, and reveal more insight into the
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potential of this approach when it is applied to a relatively complicated system.

8.1.4 The drift-flux model

A main feature of the drift-flux model is that it possesses two fast waves (sound
waves) and one slowly moving wave (mass wave). In particular, if we have a
transition from two-phase to pure liquid flow, the speed of sound can change
from the order of 10 m/s to the order of 1000 m/s. Consequently, for such flow
scenarios (which are highly relevant for the petroleum industry), one is forced
to take very small time steps according to the cfl condition. A main purpose
of this work is to demonstrate to what extent the improved musta scheme of
Titarev and Toro (2005) is able to give an accurate resolution of the important
slowly moving mass waves. Due to the possible large gap between the smallest
and largest eigenvalues, the drift-flux model may represent a harder test for the
musta scheme than the Euler equations. Specifically, we also want to explore
in what way the resolution properties of the musta scheme depend on choices
related to the local grid represented by the parameters M and N.

The rest of this chapter is organized as follows: The numerical algorithm, in-
cluding a second-order extension, is detailed in Section 8.2. Section 8.3 presents
numerical simulations aimed at demonstrating the accuracy and robustness
properties of the musta scheme, as well as to highlight the importance of
the involved parameters. Further, the section shows the differences between
the musta scheme and the Roe scheme. The main results are summarized in
Section 8.4, and conclusions drawn in Section 8.5.

8.2 Numerical algorithm

The drift-flux model (7.2) can be integrated over a control volume to yield the
semi-discrete formulation

d
dt
Qi(t) = −

1
∆x

(
Fi+1/2 − Fi−1/2

)
+ Si. (8.1)

A simple way of integrating (8.1) in time is to use the Forward Euler method:

Qj+1
i −Qji = −

∆t
∆x

(
Fi+1/2 − Fi−1/2

)
+∆tSi. (8.2)

Herein, Qji denotes the numerical approximation to the cell average of the
vector of unknowns, q(x(i), tj), that is, in control volume i at time step j.
Quantities without a time index are evaluated at time step j.
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A method for specifying the cell fluxes Fi−1/2 is needed. In the Godunov
method, the solution of the local Riemann problem at the cell interfaces is
employed. For two-phase flow models, an exact solution to the Riemann
problem is not easy to find. Even the derivation of approximate Riemann
solvers, such as those of the type of Roe (1981), involves a good deal of work.

8.2.1 FORCE flux

A simple method for calculating the numerical flux Fi−1/2 is to use the first-
order centred (force) scheme of Toro (1999, Section 14.5.1) that was described
in Chapter 4. We restate it here for convenience. The force flux is given by

Fi−1/2 =
1
2

(
FLF
i−1/2 + FRi

i−1/2

)
, (8.3)

where FLF
i−1/2 is the Lax–Friedrichs flux

FLF
i−1/2 =

1
2

(
f (Qi−1)+ f (Qi)

)
− 1

2
∆x
∆t

(
Qi −Qi−1

)
, (8.4)

and FRi
i−1/2 is the Richtmyer flux. It is computed by first defining an intermediate

state

QRi
i−1/2 =

1
2

(
Qi−1 +Qi

)
− 1

2
∆t
∆x

(
f (Qi)− f (Qi−1)

)
, (8.5)

and then setting
FRi
i−1/2 = f (QRi

i−1/2). (8.6)

As was seen in Chapter 4, the force scheme is rather dissipative.

8.2.2 The MUSTA approach

In the multi-stage (musta) approach (Toro, 2003; Titarev and Toro, 2005),
the solution of the Riemann problem at the cell interface is approximated
numerically by employing a simple first-order centred method on a local grid.
This solution can then be used in (8.2) or (8.1).

Here we employ the improved musta scheme of Titarev and Toro (2005)
using multiple cells on the local grid.

Note that the force flux (8.3) can be written as

Fi−1/2 = F(Qi−1,Qi) = F(QL,QR). (8.7)

That is, it is only a function of the value to the left and to the right of the cell
interface, and it gives rise to a three-point scheme.
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In the musta approach, the numerical fluxes Fi−1/2 in (8.2) or (8.1) are found
by transforming the Riemann problem at xi−1/2 to a local grid:

∂Q
∂t

+ ∂F
∂ξ

= 0, Q(ξ,0) =

Qi−1 =QL if ξ < 0,
Qi =QR if ξ ≥ 0.

(8.8)

Herein, the position ξ = 0 corresponds to xi−1/2. This local Riemann problem
is then solved approximately by employing the force scheme. We index the
local grid by n, and, following Titarev and Toro (2005), we set ∆ξ ≡ ∆x. Hence
the force flux F(Qn−1,Qn) is calculated using the formulae

F(Qn−1,Qn) =
1
4

(
Fn−1 + 2F∗ + Fn −

∆x
∆tloc

(Qn −Qn−1)
)
,

Fn−1 = f (Qn−1), Fn = f (Qn),

F∗ = f (Q∗), Q∗ = 1
2

(
Qn−1 +Qn

)
− 1

2
∆tloc

∆x
(
f (Qn)− f (Qn−1)

)
.

(8.9)

First, the fluxes are computed using (8.9), where ∆tloc is the time-step length
calculated using the cfl criterion on the local grid:

∆tloc =
Cloc∆x

max
1≤n≤2N

(
max

1≤p≤d
|λpn|

) , (8.10)

where d is the dimension of the system (7.2), and the local cfl number, Cloc, is
a parameter in the method. Next, the local solution is advanced by use of the
formula

Qm+1
n −Qmn = −

∆tloc

∆x

(
Fn+1/2 − Fn−1/2

)
. (8.11)

The local time-stepping is performed a fixed number of times, M , and the local
grid has 2N cells, in addition to two boundary cells. The initial conditions and
the numbering of the local grid are illustrated in Figure 8.1 on the facing page.
The algorithm for the musta flux can be summarized as follows:

1. For each local cell n = 1, . . . ,2N, compute the fluxes on the data from
stage m using (8.9).

2. If m = M then return the force flux FMN+1/2, else continue.

3. Apply extrapolation boundary conditions; Qm0 =Qm1 and Qm2N+1 =Qm2N .

4. Update the local solution using (8.11) for n = 1, . . . ,2N. Repeat from 1.
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Figure 8.1: Initial values and cell numbering for the local MUSTA grid.

Thus the musta flux Fi−1/2 to be employed in (8.1) or (8.2) is the force flux
FMN+1/2 found on the local grid.

In the above notation, the original force scheme is nearly recovered for
M = 1 and 2N = 2. One notable difference, however, is that in the musta
approach, the fluxes in (8.9) are calculated using a local cfl criterion, while in
the force scheme, the global time-step length is used throughout. Here we
follow Titarev and Toro (2005) and set the local cfl number to Cloc = 0.9 for
all the calculations.

Note that the cell size of the local grid is without significance, since we are
only interested in the solution FMN+1/2 after a particular number of steps, and
not at a particular ‘time’.

The musta scheme is constructed to have some of the advantages of up-
stream schemes. Indeed, for increasing M and N, the musta flux is expected to
approach the Godunov flux using the exact Riemann solver (Titarev and Toro,
2005).

In the following, we will denote the M-stage musta scheme with 2N local
cells by mustaM−2N .

8.2.3 Higher-order extension

Titarev and Toro (2004) suggested to employ weighted essentially non-
oscillatory (weno) schemes in conjunction with musta to produce higher
spatial order. Here we propose a different and simpler approach, namely
to use a semi-discrete version of the monotone upwind-centred scheme for
conservation laws (muscl) (van Leer, 1979; Osher, 1985).

In the muscl approach, we construct a piecewise linear function using the
data {Qi(t)}. Then at the interface xi−1/2 we have values on the left and right
from the two linear approximations in each of the neighbouring cells. These
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are denoted by

QR
i−1 = Qi−1 +

∆x
2
σi−1 and QL

i = Qi −
∆x
2
σi, (8.12)

where σi is a slope calculated using a suitable slope-limiter function. Some are
listed by LeVeque (2002, Section 9.2). The minmod slope is

σi = minmod

(
Qi −Qi−1

∆x
,
Qi+1 −Qi

∆x

)
, (8.13)

where the minmod function is defined by (3.86) on page 57. The superbee slope
is

σi = maxmod
(
σ (1)i , σ (2)i

)
, (8.14)

where

σ (1)i = minmod

((
Qi+1 −Qi

∆x

)
,2
(
Qi −Qi−1

∆x

))
,

σ (2)i = minmod

(
2

(
Qi+1 −Qi

∆x

)
,
(
Qi −Qi−1

∆x

))
,

and the maxmod function is given by

maxmod(a, b) =


0 if ab ≤ 0,
a if |a| > |b| and ab > 0,
b if |a| ≤ |b| and ab > 0.

(8.15)

The monotonized central-difference (MC) slope (van Leer, 1977) is

σi = minmod

((
Qi+1 −Qi−1

2∆x

)
,2
(
Qi −Qi−1

∆x

)
,2
(
Qi+1 −Qi

∆x

))
. (8.16)

We also have the van Leer (1974) (see van Leer, 1977) limiter

σi =


2
(
Qi −Qi−1

)(
Qi+1 −Qi

)(
Qi −Qi−1

)
+
(
Qi+1 −Qi

) if sgn
(
Qi −Qi−1

)
= sgn

(
Qi+1 −Qi

)
,

0 otherwise.
(8.17)

The slope limiting is applied component-wise to the vector of unknowns.
There are different possible choices regarding which variables to use in the
slope-limiting procedure, for instance; the composite variables, the primitive
variables, or the characteristic variables. The latter would correspond more



8.2. Numerical algorithm 213

closely to the scalar case, but would require the diagonalization of the Jacobian
matrix, thus defying the purpose of the musta scheme, which is to be simple.
Here we use the primitive variables [αg, p,ug].

When the piecewise linear reconstruction has been performed, the musta
flux Fi−1/2 = F

(
QR
i−1,Q

L
i
)

is computed as described in the previous subsection.
To obtain a second-order solution in time, we employ the semi-discrete for-
mulation (8.1) in combination with the two-stage second-order strong-stability-
preserving (ssp) Runge–Kutta (rk) method (see e.g. Ketcheson and Robinson,
2005).

With the semi-discrete formulation (8.1) of the form

dQ
dt

=H (Q), (8.18)

the two-stage second-order ssp-rk method can be written as

Q(1) =Qj + 1
2
∆tH (Qj)

Qj+1 = 1
2
Qj + 1

2
Q(1) + 1

2
∆tH (Q(1)).

(8.19)

Herein, Qj is the vector of unknowns from time step j, Qj+1 is the sought
values at the next time step, while Q(1) represents intermediate values.

Wave-speed estimates

To obtain the local and global time-step lengths, it is necessary to employ the
cfl criterion. The cfl number is

C = ‖λ‖∞∆t
∆x

, (8.20)

where ‖λ‖∞ is the maximum eigenvalue in the computational domain. This
shows that even though no information of the eigenstructure of the model is
directly used in the calculation of the musta flux, an estimate of the maximum
eigenvalue is still needed.

In this work, we employed the approximate eigenvalues derived by Evje
and Flåtten (2005b) using a perturbation technique, see Appendix B. It should
be noted that the computed results are not very sensitive to the eigenvalue
estimate. For instance, we have carried out some experiments using the simple
estimate by Evje and Fjelde (2003) based on a no-slip assumption, and only
minor differences were observed in the numerical results.
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8.3 Numerical simulations

In this section, we will analyse the performance of the musta scheme and
its muscle extension by conducting basic numerical tests and by running
benchmark cases from the literature. Comparisons with the Roe scheme of
Chapter 7 and the force scheme will also be provided. The main aim of the
section is to

–– Clarify the dependence of the musta scheme on the parameters M and
N,

–– Explore the performance of the musta scheme for cases where there is
a large difference between the largest and the smallest eigenvalue. In
particular, we want do demonstrate the importance of the fact that the
musta scheme is semi-discrete, which is an essential difference compared
to the force scheme.

All the computations in this work have been performed using a local cfl
number of Cloc = 0.9 in (8.10).

8.3.1 Advection of a ‘hat’

First we perform a basic validation of the muscl-musta scheme by testing
its convergence properties when the solution is smooth. The test case was
introduced in Section 3.4.2 on page 76 and it consists of a ‘smoothed hat’
volume-fraction profile which is advected with the flow (see Figure 3.14 on
page 77). In the present calculations, the no-slip law was employed.

Grid refinement with constant time-step length

Calculations were performed for various grid sizes, each using a time-step
length of ∆t = 9.82 · 10−6 s. The volume-fraction profiles obtained after
t = 0.12 s were compared to that calculated on a fine grid of 10000 cells
using the minmod limiter. Table 8.1 on the facing page displays the 1-norms
and the corresponding convergence rates obtained when using the minmod
limiter and the mc limiter. The mc limiter gave second-order convergence, but
the convergence rate calculated when using the minmod limiter was slightly
lower. This is due to the latter limiter’s stronger clipping of the solution. The
difference might have been smaller for an even smoother initial solution.

This test seems to indicate that it is preferable to employ the mc limiter, but
unfortunately, as will be shown in the following, the mc limiter and other sharp
limiters gave oscillatory solutions for the shock-tube benchmark test.
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Table 8.1: Smooth volume-fraction advection test case. 1-norm of the relative
error in gas volume fraction by grid refinement with a constant
time-step length of ∆t = 9.82 · 10−6 s.

minmod limiter mc limiter
∆x(m) ‖E(αg)‖1 n ‖E(αg)‖1 n
0.24 9.951 · 10−2 − 7.323 · 10−2 −
0.12 2.990 · 10−2 1.73 1.823 · 10−2 2.01
0.06 9.219 · 10−3 1.70 4.452 · 10−3 2.03
0.03 2.705 · 10−3 1.77 1.097 · 10−3 2.02
0.012 4.759 · 10−4 1.90 1.740 · 10−4 2.01

Table 8.2: Smooth volume-fraction advection test case. 1-norm of the relative
error in gas volume fraction by time-step refinement with a 101-point
grid.

∆t(s) ‖E(αg)‖1 n
1.0 · 10−3 2.046 · 10−4 −
5.0 · 10−4 5.121 · 10−5 2.00
2.5 · 10−4 1.280 · 10−5 2.00
1.25 · 10−4 3.196 · 10−6 2.00
6.25 · 10−5 7.930 · 10−7 2.01

Time-step refinement with a given grid

The convergence-rate was also calculated for time-step refinement on a grid of
100 cells, and the results are given in Table 8.2. Here, the minmod limiter was
employed, and the reference solution was computed using ∆t = 6.25 · 10−6 s.
As can be seen, the convergence-rate was of second order, and hence it can
be concluded that the muscl-musta scheme is second order in space and
time when the two-stage second-order ssp-rk method is used for the time
integration.

8.3.2 Shock tube

This subsection presents calculations of the shock-tube test case of Baudin
et al. (2005a) described in Section 7.5.2 on page 195. First, we will investigate
the dependence upon the parameters M and N, that is, the number of stages
and the number of local cells. Thereafter, the convergence of the basic musta
scheme and the muscl-musta scheme will be tested.
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Figure 8.2: Gas volume fraction for the shock-tube test case. Dependency on
the number of stages, M, for the MUSTAM−2 scheme.

Effect of number of stages and local cells

Figure 8.2 shows the volume fraction calculated on a 50-cell grid using a cfl
number of C = 0.9 in (8.20). The solution obtained with the mc-limited Roe
method on a 3200-cell grid is shown for reference. The data in the figure have
been calculated using two local cells, or N = 1, and the number of local time
steps, M , has been varied. The difference between musta1−2 and force is
that in force, only the global time-step length is employed, while musta1−2

uses a local cfl criterion for the calculation of the intercell fluxes. This is also
the difference between the mustaM−2 scheme discussed here and the two-cell
musta scheme proposed by Toro (2003). For the present case, there is only a
small difference between the results produced with musta1−2 and those from
force.

When M is increased from 1 to 2, the performance of the scheme is clearly
improved. However, as M is further increased, the monotonicity is lost and
grave oscillations occur. This is in contrast to what was reported by Toro
(2003) for the Euler equations. There, satisfactory results were shown for the
four-stage two-cell musta scheme.

Figure 8.3 on the facing page shows why musta cannot be expected to give
good results in general when the number of stages, M , is greater than the
number of cells, N, on each side of the discontinuity. The figure displays the
gas velocity as calculated in the local musta procedure for a varying number
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Figure 8.3: Gas velocity on the local MUSTA grid for the shock tube. Results
after four local MUSTA time steps for varying number of local cells.

of local cells, 2N. The right and left states are the same as in the shock-tube
test case, and the results are shown after M = 4 local time steps. Figure 8.3(a)
shows the whole domain, while Figure 8.3(b) highlights the results for the
middle cells. It is the values from these cells that are used to compute the
intercell flux. As can be seen in Figure 8.3(a), the calculation domain grows as
the number of local cells is increased.

Figure 8.3(b) shows a clear discrepancy between the values obtained with
N = 1 (two local cells) and N = 2 (four local cells). On the left-hand side, a
small difference can also be seen between the values calculated for N = 2 and
N = 3 (six local cells). The results for N = 3 and N = 4 are identical in the two
middle cells.

Due to the cfl criterion, a wave can travel one cell per time step. For N = 2,
that is, with two internal cells on each side of the Riemann discontinuity, a
wave may travel to the boundary, be (partially) reflected, and return to the
origin in four time steps. On the other hand, for N = 3, the wave has no longer
the time to return. This is why there is a difference between the N = 2 and
N = 3 results, while the results for N = 3 and N = 4 are equal.

As a conclusion, we may say that to be certain that boundary effects do
not interfere in the calculation of the musta flux, one must choose M < 2N.
However, the results in Figure 8.3 indicate that M = 2N may also give good
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Figure 8.4: Gas volume fraction for the shock-tube test case. Dependency
on the number of local cells, 2N, for the four-stage MUSTA4−2N
scheme.

results.

The bad results for M > 2N may be due to the rather simplified boundary
treatment in the local musta procedure, which has as a consequence that
when N is set too low, information disappears from the calculation domain
in an unmotivated way. This is because every variable at the boundaries
is found from the inner domain by zeroth-order extrapolation. Hence the
boundary conditions are not set according to the number of positive and
negative characteristics, as they ought to be. However, instead of enforcing
a rigorous boundary treatment in the local musta procedure, it is adequate
simply to choose a sufficiently large local grid.

Figure 8.4 shows the effect of the number of local cells, 2N, for the four-stage
musta4−2N scheme. Again, a 50-cell grid has been employed, and the cfl
number was C = 0.9. As already shown, oscillations are produced in the case of
N = 1 (two local cells). Even though a boundary effect can be present for N = 2,
in this case, the results for N = 2 and N = 3 are equal to plotting accuracy.

The effect of the simultaneous increase of the number of stages, M , and the
number of local cells, 2N, is shown in Figure 8.5 on the facing page. As can be
seen from the plot, it is primarily the resolution of the contact discontinuity
that is improved for an increased number of stages. However, the difference
between four and eight stages is small. In the graph we have also plotted data
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Figure 8.5: Gas volume fraction for the shock-tube test case. Effect of varying
number of stages and local cells in the MUSTAM−2N scheme.

obtained with the first-order Roe method on the same grid and using the same
cfl number. It is noticeable that the musta results approach those of the Roe
scheme when the number of stages is increased. For eight stages, the results
obtained with the musta scheme are very similar to those calculated using the
Roe method.

Some comparisons with the FORCE scheme

Figure 8.6 on the next page shows volume-fraction profiles for computations
performed on a 50-cell grid using various time-step lengths (cfl numbers).
Results for musta1−2 are displayed in Figure 8.6(a), while Figure 8.6(b) gives
profiles for the force scheme. It can be seen that the force scheme becomes
increasingly diffusive as the time-step length is decreased. This is due to the
∆x/∆t term of the Lax–Friedrichs flux, and it reflects the fact that the force
scheme has no semi-discrete form. The results of the musta1−2 scheme, on
the other hand, converge for decreasing time-step lengths, and there is only a
small difference between the results for C = 0.1 and those for C = 0.01. This
behaviour is expected from a semi-discrete scheme, even though it does not
prove in itself that the scheme is semi-discrete.

There are two main reasons for the differences between musta and force. In
musta, as opposed to in force, the intercell fluxes are calculated using a local



220 8. The multi-stage centred-scheme approach

αg (–)

0 20 40 60 80 100
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

cfl=0.9
cfl=0.5
cfl=0.1
cfl=0.01
Roe, 3200 cells

x (m)
(a) MUSTA1−2

αg (–)

0 20 40 60 80 100
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

cfl=0.9
cfl=0.5
cfl=0.1
cfl=0.01
Roe, 3200 cells

x (m)
(b) FORCE

Figure 8.6: Gas volume fraction for the shock-tube test case. Comparison of the
MUSTA1−2 scheme and the FORCE scheme for varying CFL number
(time-step length). 50 grid cells.

cfl criterion. Furthermore, in musta, when more local time-steps are taken,
the neighbouring global cells do not interfere in the calculation. In force,
when the global grid is refined, more time steps are performed due to the cfl
criterion. Therefore, more neighbouring cells are affected, since information
propagates one cell per time step.

Convergence of basic scheme

Figure 8.7 on the facing page displays data obtained on various grids with the
musta4−4 scheme, that is, the four-stage musta scheme with four local cells.
The cfl number was C = 0.9. As can be seen, the results are non-oscillatory,
and both the shocks and the contact discontinuity are quite sharply resolved.
In fact, the results are similar to those of the first-order Roe scheme, except
that the contact discontinuity is slightly more smeared.

Higher-order scheme

Figure 8.8 on page 222 shows a comparison between the first-order musta4−4

scheme and its muscl extension. The employed grid had 50 cells and the cfl
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Figure 8.7: Shock tube. Convergence of the MUSTA4−4 scheme.
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Figure 8.8: Gas volume fraction for the shock-tube test case. Comparison of the
first-order and the MUSCL-MUSTA4−4 scheme with different limiter
functions on a 50-cell grid.

number was C = 0.5. Results obtained with the mc-limited Roe method are also
shown for comparison. Employing muscl-musta4−4 with the minmod limiter
gave a sharper resolution of both the shocks and the contact discontinuity,
compared to the first-order musta4−4 scheme. However, as can be observed,
the Roe-mc scheme gave a still better resolution, particularly for the right-hand-
side shock. Unfortunately, using less diffusive limiters than the minmod limiter
gave oscillations with the muscl-musta4−4 scheme. This is shown in the figure
for the van Leer limiter. Henceforth we therefore only consider the minmod
limiter.

The convergence for muscl-musta4−4 using the minmod limiter is displayed
in Figure 8.9 on the facing page for C = 0.5. The results are non-oscillatory,
and both the shocks and the discontinuity are well resolved. Nevertheless, the
corresponding plots for the mc-limited Roe scheme in Figure 7.3 on page 197
show a sharper resolution.

Computational cost

A comparison of the cpu-time consumption of different mustaM−2N schemes
and the Roe scheme is shown in Table 8.3 on page 224. The calculateions were
run using a cfl number of 0.9. Data are only shown for a 800-cell grid, since no
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Figure 8.9: Shock tube. Convergence of the MUSCL-MUSTA4−4 scheme using
the minmod limiter.
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Table 8.3: Shock-tube test case. Comparison of CPU-time consumption.

M − 2N mustaM−2N/Roe m-mustaM−2N/Roe-mc
1− 2 0.19 0.40
2− 2 0.32 0.67
4− 4 0.78 1.58
8− 8 2.28 4.65

grid dependency was detected. The second column shows the cpu time of the
mustaM−2N schemes divided by that of the first-order Roe scheme, while the
third column shows the figures for the muscl-mustaM−2N schemes employing
the minmod limiter and the Roe scheme using the mc limiter.

The table shows that as the number of local time steps,M , and local cells, 2N,
are increased, the computational cost of the musta schemes strongly grows.
As noted in the previous subsections, the musta scheme comes quite close
to the accuracy of the Roe scheme for M = 4 and 2N = 4. Therefore, it is
most relevant to compare the cpu-time consumption of the (muscl-) musta4−4

scheme and that of the Roe method.
While care has been taken during the implementation of both types of

schemes not to waste too much cpu time, optimizations are undoubtedly
possible. Particularly for muscl-musta, there are some degrees of freedom
regarding the implementation. Therefore, instead of declaring a ‘cpu-time
winner’, one may only conclude that

–– The cpu-time consumption of the musta4−4 scheme and the Roe scheme
are of the same order of magnitude,

–– The cpu-time consumption of muscl-mustaM−2N is relatively larger than
that of mustaM−2N .

It is perhaps surprising that the centred scheme musta4−4 is not computa-
tionally much cheaper than the Roe scheme for a given grid size and time-step
length. The reason is that the numerical diagonalization and matrix manipula-
tions performed in the Roe scheme are roughly balanced by the extra computa-
tions carried out on the local musta grid. This includes extra evaluations of
the equation of state and the slip relation.

The second-order Roe scheme is relatively cheaper than the muscl-musta4−4

scheme, since in the Roe scheme, the high-resolution terms are already mostly
calculated during the diagonalization of the Jacobian matrix. In muscl-musta,
on the other hand, the piecewise reconstruction of the data comes fully in
addition to the calculations done in the basic scheme.
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Figure 8.10: Pressure for the pure rarefaction test problem. Convergence of
the MUSTA4−4 scheme and its MUSCL extension.

8.3.3 Pure rarefaction

We now study the pure-rarefaction problem of Baudin et al. (2005a), see Sec-
tion 7.5.1 on page 194. Pressure profiles for various grid sizes are presented in
Figure 8.10. The employed cfl number was C = 0.5. Figure 8.10(a) shows the
results for the basic four-stage musta scheme with four local cells. Data for the
first-order Roe scheme on a 50-cell grid are shown for comparison, and it can
be observed that the results are very similar, see also Figure 7.1(a) on page 195.
As can be seen from Figure 8.10(b), the muscl extension using the minmod
limiter represents an improvement. However, the resolution is not quite as
good as that obtained using the mc-limited Roe scheme (see also Figure 7.1(b)).

8.3.4 Transonic rarefaction

Transonic rarefactions, that is, when an eigenvalue λp is negative to the left
of the p-wave, Wp, and positive to the right, are not automatically handled by
the Roe scheme if an entropy fix is not implemented. It is therefore interesting
to compare the performance of the Roe and musta schemes in such a case.

A transonic rarefaction (and some other waves) can be produced by decreas-
ing the pressure and increasing the velocities on the right-hand side of the
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Table 8.4: Initial states in the transonic-rarefaction test problem.

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.6 0.68

Pressure p (MPa) 1.66667 0.7
Gas velocity ug (m/s) 34.4233 70.0

Liquid velocity u` (m/s) 34.4233 70.0

Table 8.5: Parameters employed in the transonic-rarefaction test problem.

ck (m/s) ρ◦k (kg/m3)
gas (g) 100 0

liquid (`) 1000 998.924

pure-rarefaction test case. The initial states are listed in Table 8.4, and the
equation-of-state parameters are given in Table 8.5.

The plot in Figure 8.11 on the facing page shows pressure profiles obtained
after t = 0.3 s on a 100-cell grid, using a cfl number of C = 0.5. The mc-limited
Roe scheme produced a rarefaction shock, something which is unphysical.
As shown, this can be remedied by employing Harten’s entropy fix (see Sec-
tion 3.3.3 on page 55). Here we took the parameter δ = 20. It can also be
seen from the figure that both the musta4−4 scheme and the muscl-musta4−4

scheme using the minmod limiter gave physically plausible solutions.

8.3.5 Static discontinuity

We next consider a static discontinuity. This test case reveals differences
between upwind and central schemes. Upwind schemes are known to preserve
a static discontinuity, whereas central schemes will gradually smear it out.

This test consists of a discontinuity in the volume fraction, while the other
variables are uniform. The velocities are zero. The initial states are given in
Table 8.6, and Table 8.7 shows the parameters employed in the equation of
state.

Figure 8.12 on page 228 shows gas-volume-fraction profiles after t = 10 s
calculated on a 100-cell grid using C = 0.9. As expected, the performance of
the musta schemes improved as the number of stages was increased. The
curve labelled m-musta is for the muscl extension using the minmod limiter,
and it shows that the muscl approach provided some improvement. The figure
also shows that the force scheme is the most diffusive, whereas the first-order
Roe scheme perfectly preserves the discontinuity.
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Figure 8.11: Pressure for the transonic-rarefaction problem. Comparison of
the MUSTA4−4 scheme, the MUSCL-MUSTA4−4 scheme using the
minmod limiter, the MC-Roe scheme, and the MC-Roe scheme
employing Harten’s entropy fix with δ = 20. 100 grid cells.

Table 8.6: Initial states in the static discontinuity test problem.

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.2 0.8

Pressure p (kPa) 100 100
Gas velocity ug (m/s) 0 0

Liquid velocity u` (m/s) 0 0

Table 8.7: Parameters employed in the static discontinuity test problem.

ck (m/s) ρ◦k (kg/m3)
gas (g)

√
105 0

liquid (`) 1000 999.9
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Figure 8.12: Gas volume fraction for the static discontinuity. Comparison of
the FORCE scheme, various MUSTAM−2N schemes and the MUSCL-
MUSTA4−4 scheme with the minmod limiter. 100 grid cells.

It should be noted that the musta scheme keeps smearing the discontinuity
even when both the local and global cfl numbers are set equal to 1.

8.3.6 Moving discontinuity

Now we let the discontinuity move. The initial conditions are similar to those
of the static-discontinuity case, except that both phases have a velocity of
u = 10 m/s. There is no slip between the phases. Instead of a single jump
in the volume fraction, there is now a ‘hat’. Periodic boundary conditions are
employed.

Figure 8.13 on the next page displays volume-fraction profiles after t = 10 s,
that is, the volume fraction ‘hat’ has traversed the calculation domain once. As
for the static-discontinuity case, the grid had 100 cells and the cfl number
was C = 0.9. The initial profile is plotted for reference. For this case, the
first-order Roe scheme (labelled ‘upw’) has no particular advantage compared
to the musta4−4 scheme. Results for musta8−8 are not shown, since they were
very similar to those of musta4−4. The Roe scheme employing the mc limiter
gave the best resolution, while the muscl-musta4−4 scheme lay in between
that and the first-order schemes. Nevertheless, the most interesting point is
that the performance of the musta4−4 scheme is rather close to that of the Roe
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Figure 8.14: Gas volume fraction for the pipe-flow test problem. Compar-
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MUSTA4−4 scheme with the minmod limiter. The first-order (up-
wind) Roe scheme and the MC-limited Roe scheme are also shown.
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scheme.

8.3.7 Pipe-flow problem

We finally turn to the pipe-flow problem which was introduced as Example 4 by
Evje and Fjelde (2003). It was described in Section 7.5.5 on page 198. This is a
demanding test, particularly regarding mass transport, and it includes such
challenges as a more complex, non-linear slip relation and near-single-phase
flow. Moreover, the near-single-phase flow causes a large difference between
the eigenvalues.

A comparison between different musta variants, the force scheme and the
Roe scheme is given in Figure 8.14. The computations were performed on a
200-cell grid using C = 0.5. The solution obtained with the mc-limited Roe
scheme on a fine grid is shown for reference. First, it is obvious that the force
scheme is useless for this kind of calculation due to its smearing of volume-
fraction waves. The time-steps calculated according to (8.20) became very small
because of the transition to single-phase flow, and we observe a behaviour
which is similar to the one seen in Figure 8.6 on page 220. Next, it is somewhat
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surprising that already musta1−2 provided a noticeable improvement, the only
difference between the two schemes being that the latter employs a local cfl
number of 0.9 in the calculation of the intercell fluxes. For an increasing
number of stages, the musta scheme gave better results, but even musta8−8

did not quite attain the volume-fraction profile of the first-order Roe scheme.
Similarly to what has been seen in the previous test problems, muscl-musta4−4

with the minmod limiter gave quite good results, but not as sharp as those of
the Roe scheme using the mc limiter.

It is interesting that the difference between the volume-fraction profile of
musta1−2 and that of muscl-musta1−2 is significantly larger than the difference
between musta4−4 and muscl-musta4−4. Furthermore, the volume-fraction
profile of muscl-musta1−2 is not far from that of muscl-musta4−4. Hence
the former scheme may be of interest for practical calculations, since it is less
cpu-intensive.

Calculations performed with the muscl-musta4−4 scheme for various grids
using C = 0.5 are plotted in Figure 8.15 on the next page. The results are non-
oscillatory, and it can be observed that the near-single-phase flow is handled
well. The results are comparable to those presented for the second-order
ausmd scheme in Evje and Fjelde (2003). Still, the resolution is not quite as
good as the one obtained using the mc-limited Roe method, see also Figure 7.7
on page 203.

8.4 Summary

The multi-stage (musta) centred scheme has been analysed for the drift-flux
model. In this scheme, an approximate solution to the Riemann problem at
the cell interfaces is found by running the first-order centred (force) scheme a
given number of time-steps (M) on a 2N-cell local grid. The scheme is of special
interest, since it uses no explicit information of the eigenstructure of the model,
while giving a significantly improved solution compared to the force scheme.
Still, the scheme is dependent on an estimate of the maximum eigenvalue to be
able to employ the cfl criterion.

To avoid interference from the boundaries in the local musta procedure, it is
necessary to choose M < 2N. However, in the present computations, M = 2N
also gave good results. Choosing M > 2N may yield oscillatory solutions and
should be avoided.

The four-stage musta scheme with four local cells (M = 4 and N = 2)
gave results quite close to those of the first-order Roe scheme. In contrast to
the Roe scheme, however, musta did not preserve a static discontinuity. On
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the other hand, musta handled a transonic rarefaction without producing an
entropy-condition violation.

To achieve higher order in time and space, we have proposed to use the
musta flux in a semi-discrete muscl formulation. The resulting muscl-musta
scheme employing the minmod limiter produced improved and non-oscillatory
results. A pipe-flow problem emphasizing volume-fraction waves and near-
single-phase flow was well resolved, albeit with a less sharp resolution than the
one obtained with the mc-limited Roe scheme. Unfortunately, muscl-musta
could not in general be used with less-diffusive limiters, since they produced
oscillatory solutions for the tested shock tube.

Provided the number of stages is chosen within the bounds described above,
the musta scheme possesses robustness properties comparable to those of the
Roe scheme. In particular, it generally resolves shock fronts in a non-oscillatory
manner and seems to be able to handle the transition to single-phase flow while
preserving positivity of volume fractions.

Since its computational cost increases quite quickly with the number of stages
and local cells, the main advantage of the musta scheme is its simplicity.

8.5 Conclusions

–– The musta scheme has been successfully applied to the drift-flux model,
which is relatively complicated compared to the Euler equations. In
particular, the scheme worked well for a test problem with a large gap
between the eigenvalues.

–– The results of the basic musta scheme approached those of the first-order
Roe scheme. However, the muscl-musta scheme did not quite attain the
results of the second-order Roe scheme based on wave decomposition.
This is mainly since it was necessary to employ a more diffusive limiter
function in muscl-musta.

–– The computational cost of the musta scheme is comparable to that of
the Roe scheme.

–– musta seems to be an appropriate choice of numerical scheme if

1. It is desired to employ closure laws for which the Roe scheme is not
valid,

2. One wishes to avoid programming the numerical diagonalization
performed in the Roe scheme,

3. One wants to avoid possible problems due to transonic rarefactions.





9 Conclusions and recommendations

The farther one travels, the less
one knows.

George Harrison

9.1 Conclusions

There is a need for well-understood models for multiphase flow, as well as
robust and accurate numerical methods to solve them. This topic has been
analysed in the present work, and the main conclusions are given below.

9.1.1 Modelling

The volume-averaging and the ensemble-averaging approaches for deriving
the basic equations of multiphase flow have been reviewed. The form of the
equations was seen to be the same, albeit with a different interpretation of the
terms.

It was seen that the assumed model for the interfacial pressure difference
influences the eigenstructure of the two-fluid model. The interfacial pressure
difference also had a significant effect on the solution of two-phase shock-tube
problems.

9.1.2 Roe-type methods

The locally linearized, approximate Riemann solver of Roe gives an upwind
resolution of all waves in the flow model under consideration. It is therefore
known to be accurate. Roe-type methods have been employed to solve three
different two-phase flow models. The Roe4 scheme was employed to solve the
four-equation isentropic two-fluid model, and the Roe5 scheme was proposed
to solve the five-equation isentropic two-fluid model with pressure relaxation.
Furthermore, a Roe scheme was constructed for the drift-flux model.

The Roe4 and the Roe5 schemes were analysed by numerical experiments,
which yielded the following main conclusions:

–– The Roe5 scheme with instantaneous pressure relaxation can be regarded
as a numerical method to solve the four-equation system. It is significantly
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more diffusive than the Roe4 scheme, whether high-resolution limiters
are used or not.

–– As the pressure-relaxation parameter in the Roe5 scheme is increased, the
results converge towards those obtained using instantaneous relaxation.
Instantaneous pressure relaxation annihilates the fastest waves, so that
the solution approaches that of the four-equation system.

–– It does not seem that the problem of complex eigenvalues in the four-
equation system can be easily solved by the approach of two pressures
and instantaneous pressure relaxation.

Regarding the derivation of the Roe scheme for the drift-flux model, the
complicated structure of the model with its closure relations made it unfeasible
to employ the parameter-vector method originally proposed by Roe. Instead,
alternative strategies were demonstrated, and they allowed

–– splitting the problem into independently solvable parts;

–– handling general formulations of the closure relations within a single
framework.

The proposed Roe scheme for the drift-flux model was, even for the most
general case, constructed from arithmetic averages. Hence it is relatively
efficient.

9.1.3 Discrete-equation multiphase model

A five-equation isentropic version of the discrete seven-equation two-phase
model of Abgrall and Saurel has been presented. In the discrete-equation
model, Riemann problems are solved between pure fluids. Hence, the difficulty
of non-conservative products is avoided while solving the Riemann problem.
Another characteristic of the discrete-equation model is that the properties of
the Riemann solver influence the phasic interaction.

It has been shown how different interfacial-pressure expressions can be
incorporated into the discrete-equation model.

The correspondence between the discrete-equation model and the ‘conven-
tional’ continuous model has been discussed. Continuous-limit expressions for
the interfacial pressure and velocity were given for the discrete model. These
expressions were employed in the Roe5 scheme. Very good agreement between
the discrete-equation model and the Roe5 scheme was obtained.
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9.1.4 Centred schemes

Since upwind schemes explicitly make use of the mathematical structure of
the model, they are often complicated. Centred schemes, on the other hand,
are simple, but do normally not provide the same accuracy. The flux-limiter
centred (flic) scheme has been tried for the four-equation two-fluid model.
More work is required to obtain good results. The first-order version of the
scheme (force) was found to be robust, but diffusive.

The intention with the multi-stage (musta) method is to come close to the
accuracy of upwind schemes while keeping the simplicity of centred schemes.
Here it has been successfully applied to the drift-flux model. As the number
of stages was increased, the results of the musta scheme approached those
of the Roe method. To obtain good results, one must use the musta scheme
with a sufficiently large local grid. Therefore, the main advantage of the musta
scheme is its simplicity, rather than a speed-up of the calculations.

The second-order version based on the muscl technique did not quite attain
the results of the second-order Roe scheme based on wave decomposition. The
main reason for this is that it was necessary to employ a more diffusive limiter
function in muscl-musta.

Choosing the musta scheme appears to be suitable if

1. It is desired to employ closure laws for which the Roe scheme is not valid,

2. One wishes to avoid programming the numerical diagonalization per-
formed in the Roe scheme,

3. One wants to avoid possible problems due to transonic rarefactions.

9.1.5 Characteristic-based boundary treatment

The multiphase characteristic-based boundary condition (mpcbc) method of
Olsen was discussed. The method uses pid controllers at the boundaries to
avoid drifting values, while keeping the solution close to the desired set-point
values.

It has been aimed to demonstrate that the mpcbc method is applicable to
transient cases. Furthermore, it has been illustrated how the pid-controller
parameters can be estimated. With the water-faucet case as an example, it has
been shown that mpcbc can yield a reasonable approximation to physically
‘open’ boundary conditions.
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9.2 Recommendations for further work

–– An extension to two and three spatial dimensions should be considered.

–– For the two-fluid model, the effect of the closure terms, such as the inter-
facial pressure, should be more thoroughly investigated. Comparisons
with data from physical experiments should also be carried out.

–– An investigation might be executed to analyse why the Roe4 method fails
on the water-air separation case.

–– A comparison between the two-fluid and the drift-flux model might be
performed.

–– It may be worthwhile to analyse the musta scheme for the two-fluid
model. The discretization of the non-conservative terms then needs
attention.

–– Methods for obtaining a semi-discrete formulation might be examined in
more detail, since it is convenient to have a method where the temporal
and the spatial accuracy are decoupled.

–– Implicit or semi-implicit schemes may be studied if it is desired to speed
up calculations where detailed knowledge of sonic waves is not required.
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A Approximate eigenvalues of the two-fluid model

In this appendix, we state the approximate eigenvalues of the coefficient mat-
rix (3.34) of the four-equation system. They were derived by Evje and Flåtten
(2003), using a perturbation technique suggested by Toumi and Kumbaro
(1996). Some further details may be found in Flåtten (2003).

Introduce the perturbation parameter

ε = ug −u`
ĉm

(
1+ α`ρg

αgρ`

) , (A.1)

where ĉm is an approximate mixture speed of sound given by

ĉm =
√

αgρ` +α`ρg(
∂ρg/∂p

)
αgρ` +

(
∂ρ`/∂p

)
α`ρg

. (A.2)

It can be shown that the eigenvalues corresponding to pressure waves can
be written as

λ{1,2} = up ± cm, (A.3)

and that the eigenvalues corresponding to volume-fraction waves can be ex-
pressed by

λ{3,4} = uu ± υ. (A.4)

Herein,

up =
αgρ`ug +α`ρgu`
αgρ` +α`ρg

+ ĉmO
(
ε3), (A.5)

uu =
αgρ`u` +α`ρgug

αgρ` +α`ρg
+ ĉmO

(
ε3), (A.6)

cm = ĉm
[
1+O

(
ε2)], (A.7)

and

υ =

√√√√∆pi(αgρ` +α`ρg)−αgα`ρgρ`(ug −u`)2
(αgρ` +α`ρg)2

+ ĉmO
(
ε3). (A.8)

Note that ∆pi = 0 renders υ imaginary and hence λ{3,4} complex. Furthermore,
the above equation shows that when the cathare model (2.109) is employed,
one needs to take the factor γ > 1.
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B More on the drift-flux model

In this appendix, we give some further mathematical details of the drift-flux
model of Chapters 7–8. First, the approximate eigenvalues derived by Evje and
Flåtten (2005b) are reproduced. Then transformation matrices are presented
for calculating the Jacobi matrix as a function of the primitive variables and
the ‘mass-flux’ variables.

B.1 Approximate eigenvalues

Using a perturbation technique, Evje and Flåtten (2005b) derived approximate
eigenvalues of the Jacobian matrix (7.38) of the drift-flux model under the
assumption that the slip relation Φ satisfies the differential equation

α`

(
∂Φ
∂α`

)
p
+Φ = 0. (B.1)

(For instance, this is not the case when the relation (7.161) on page 202 is
employed.)

With the perturbation parameter

ε = ug −u`√
κ%(αg − ζα`)

, (B.2)

the eigenvalue corresponding to the material wave was found to be

λm = ug −
αgα`

αg + ζα`
µg
(ug −u`)2

κ
+O

(
ε3), (B.3)

and the eigenvalues corresponding to the sonic waves were calculated as

λp = up ± cm, (B.4)

where

up =
mgug + ζm`u`
mg + ζm`

+α`mgµg
ρ` − ρg

2%
+ αgα`
αg + ζα`

µg
(ug −u`)2

2κ
+O

(
ε3),
(B.5)
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and the mixture sonic velocity is

cm =
1
2
ψ1ψ3 +

ψ2

ψ3

ρ`
%

[
2− ζα`

(ρ` − ρg

%

)]
(ug −u`)+O

(
ε2), (B.6)

with

ψ1 =
√
κ%(αg + ζα`),

ψ2 =
α`mg

ψ1
µg,

ψ3 =

√√√√ψ2
2

(ρ` − ρg

%

)2

+ 4
ρ`ρg

%2
.

(B.7)

B.2 Jacobi matrices for different variables

For the composite variables

q =
[
αgρg α`ρ` αgρgug +α`ρ`u` + p

]T
, (B.8)

the Jacobi matrix A(q) of the drift-flux model is given by (7.38) on page 176.
For some purposes, for instance characteristic-based boundary treatment, it is
necessary to express the Jacobi matrix as a function of the primitive variables

v =
[
αg p ug

]T
. (B.9)

The transformation matrix J = ∂q/∂v becomes

J =


ρg αg

∂ρg

∂p 0

−ρ` α`
∂ρ`
∂p 0

ρgug − ρ`u` αgug
∂ρg

∂p +α`u`
∂ρ`
∂p αgρg + ζα`ρ`,

 (B.10)

so that we can calculate
B(v) = J−1AJ (B.11)

similarly to what was done in Section 3.2 on page 41.
The Jacobi matrix may also be written in terms of the ‘mass-flux’ variables

w =
[
p αgρgug α`ρ`u`

]T
. (B.12)

To this end, we use the transformation matrix

J̃ ≡ ∂w
∂v

=


0 1 0

ρgug αgug
∂ρg

∂p αgρg

−ρ`u` α`u`
∂ρ`
∂p ζα`ρ`

 . (B.13)
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Since
∂w
∂q

= ∂w
∂v
∂v
∂q

= J̃J−1, (B.14)

we can calculate
B̃(w) = K−1AK, (B.15)

where K =
(
J̃J−1

)−1
.
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