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SummaryA computational study of vortex shedding behind blu� bodies is presented. The mainfocus of this work is the study of vortex shedding and wake ow behaviour behind taperedcircular cylinders in the laminar ow regime. However, a stepped circular cylinder inlaminar ow as well as uniform circular cylinders in the turbulent ow regime have beeninvestigated as well.In the laminar ow regime, the ow behaviour behind tapered and stepped circularcylinders is rather di�erent than behind a uniform circular cylinder. Because the taperedand the stepped circular cylinders are three-dimensional objects, as opposed to uniformcircular cylinders which are nominally two-dimensional, secondary ows are generatedalong the cylinder span causing complex three-dimensional ow patterns which are stillnot completely understood. The main motivation of the thesis is thus to contribute toimprove knowledge of vortex shedding phenomena.This thesis is consists of two main parts. Firstly, a brief description of the work isgiven, as well as the numerical tools used, the vortex shedding phenomenon in laminarand turbulent ow regimes. In addition, some of the results are presented. Secondly, theappendices in which published and submited papers on the subject are enclosed. Theaim of the �rst part is to provide details and/or questions which are not included in thelatter papers in order to form a more comprehensive document.
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Part IIntroduction1 MotivationTake a look around you, what do you see? Many di�erent geometrical shapes. We areliving surrounded by objects with di�erent forms. In everyday life, because we are usedto these objects, we are not conscious of the fact that they have usually been designedand built on purpose. In engineering, the shape of the objects is especially important andmiscalculations or lack of knowledge can lead to great disasters. One of the most famousexamples of an engineering failure is the spectacular collapse of the \Tacoma NarrowsBridge". The bridge was of an unusually light design, peculiarly sensitive to high winds.Rather than resist the forces of the wind, it tended to sway and vibrate. Unfortunately,this was discovered too late. On November 7, 1940, in a 64-kilometer-per-hour wind, thecenter span began to sway and vibrate, then twist. The combined forces of the wind andthe internal stress was too great for the bridge, and it self-destructed. It is importantto know the reasons why such catastrophes happen in order to prevent similar failuresin the future. There are two complementary ways to do so: risks analysis and academicstudies. The former investigates the risks of existing systems to be destroyed or damagedby any possible e�ects, as well as the consequences of the resulting damages. The latteris devoted to improving the knowledge of the physical phenomena which could cause,contribute to, or originate such disasters. The project presented here is in keeping withthis more academic investigation.Why should one spend time on studying, by means of numerical methods, the shed-ding of vortices behind blu� bodies rather than another physical problem? This questionis twofold. Firstly, why study the shedding of vortices? Besides the fact that it is aninteresting and complex phenomenon, it can be one of the physical phenomena leadingto engineering failures. Indeed, Theodore von K�arm�an, who studied the collapse of theTacome bridge, was the �rst to associate this collapse with the periodic shedding of vor-tices which frequency matching the bridge resonance frequency. Secondly, why \behindblu� bodies"? To answer this, we need to know what \blu� body" means. As de�nedby Zdravkovich [1] (page 3), \blu� bodies may have sharp edges on their circumferences,such as at plates, triangular, rectangular, and polygonal cylinders, or may be roundedlike circular, elliptical, and arbitrary oval cylinders". One of the main di�culties instudying ow over round edges is that the ow separation points are not �xed (as isusually the case with sharp edges), but can move in response to the ow structure inthe separated region. Today, based on theoretical studies, experiments, and numericalsimulations, the behaviour of the ow around a uniform circular cylinder and the vortex-shedding phenomenon occurring in its wake ow are quite well known for any kind ofReynolds number [1, 2]. Surprisingly, few studies can be found in literature on other typesof circular cylinders such as stepped or tapered circular cylinders, despite their obviousindustrial use (pillars of o�shore plateforms, factory chimneys). This is probably due tothe fact that these three-dimensional objects give rise to a di�erent and much more com-plex three-dimensional wake than a nominally two-dimensional uniform circular cylinder.Because of this lack of knowledge, it has been found interesting to investigate the vortexshedding behind stepped and tapered circular cylinders, thereby contributing to a better1
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0(b)Figure 1: Sketch of the blu�-body geometries: (a) stepped circular cylinder, (b) taperedcircular cylinder.understanding of this phenomenon. Today, with the present computer capabilities, it hasbecome possible to study such cases numerically. Among other advantages, numericalsimulations are cheaper and easier to perform than experimental investigations. More-over, simulations provide important supplementary information not readily accessiblein laboratory (such as vorticity). Hence, all these di�erent reasons formed the motiva-tions of the present project: \computational simulation of vortex shedding behind blu�bodies".2 Description2.1 ProposalIn the original proposal to The Research Council of Norway for funding of this project,the stated aim of this work was to perform numerical simulations behind two di�er-ent in�nitely long stepped circular cylinders and three di�erent linearly tapered circularcylinders. A stepped circular cylinder can be regarded either as a uniform circular cylin-der with a sudden change in diameter, or two uniform circular cylinders piled up oneon the other (see Figure 1(a)). A linearly tapered cicular cylinder is a circular cylinderwith a constant change of diameter all along the spanwise direction (see Figure 1(b)).The stepped cylinder is characterized by its diameter ratio r = dL=dS , whereas the taperratio RT = l=(dL � dS) characterizes the tapered cylinder. Here, l is the length of thecylinder, while dL and dS denote respectively the large and small diameters. Then, basedon the large diameter, the Reynolds number is de�ned as: RedL = U:dL=� where U is theuniform incoming ow velocity and � is the kinematic viscosity of the uid. Althoughthese two blu�-body geometries are not too di�erent from the classical uniform circularcylinder, each con�guration has its own typical wake-ow behaviour.In the proposal, both laminar and turbulent ow regimes were under consideration.Firstly, laminar ow past the �ve di�erent stepped or tapered cylinders was to be studied.2



Table 1: Laminar ow: simulations set-upStepped r RedLa dS=dL lL=dLb lS=dLcCylinder 1.34 99 0.747 40 35RT RedLa dS=dL l=dL CaseTapered 100:1 178 0.625 37.473 ACylinders 75:1 131 0.556 33.461 B75:1 163 0.556 33.461 CaRedL = U:dL=�, i.e. Reynolds number based on the largest diameterblL: length of the large diameter partclS: length of the small diameter partFor laminar ow, the vortex shedding phenomenon is particularly amenable to detailedinvestigations, since the time-dependent ow �eld can be computed by the numericalsolution to the Navier-Stokes equations without any semi-empirical turbulence model.After validation of the computational results against experimental data, the proposalcalled for a more thorough analysis in order to learn more about this particular ow.Secondly, turbulent ow past the same objects was to be simulated. This would havebeen accomplished by means of large-eddy simulation rather than with the help of tur-bulence models based on Reynolds Averaged Navier-Stokes (RANS) equations becausethe inherent averaging procedure is not directly applicable to unsteady ows, and themethod does not utilize the potential of �ner grids to enhance the resolution of turbulentquantities. Similar in spirit to Direct Numerical Simulation (DNS), Large Eddy Simu-lation (LES) is based on simulating the turbulent uctuations that can be resolved inthe mesh as an integral part of the ow solution. Only turbulent uctuations with alength scale smaller than the grid spacing is modeled. Instead of an averaging procedureas in RANS, a Sub Grid Scale (SGS) model is introduced to account for the turbulentmotion too small to be captured by the grid resolution. In addition to the possibilities formore accurate simulation of turbulent ows, LES also o�ers the advantage of producingmore information about the ow �eld, as no averaging procedure is applied to large scaleturbulent structures. The SGS models to be used for these tasks were the Smagorin-sky model and a dynamic model (see for example [3, 4] for details), the latter was tobe implemented during the project. The aim of a dynamic model is to circumvent theproblem of choosing the constant which enters into the Smagorinsky model. However,before performing simulations of the turbulent ow past these �ve cylinder shapes, auniform circular cylinder was prescribed as a test case in order to validate the di�erentSGS models. The choice of a uniform circular cylinder is justi�ed by the plethora ofresults available in the literature for turbulent ows around this con�guration.2.2 ProjectWhen one decides to undertake a doctoral thesis, one must be aware that one will cer-tainly encounter many di�culties which can impede and/or prevent the achievement ofsome of the original aims, as well as realize that some of the proposed investigations arenot feasible. This doctoral thesis is not an exception.For the laminar ow regime, numerical simulations of vortex shedding behind three3



Table 2: Turbulent ow: simulations set-upUniform Red l=dCylinder 3900 3Tapered RT RedLa dS=dL l=dLCylinder 51.3:1 3900 0.822 9.112aRedL = U:dL=�, i.e. Reynolds number based on the largest diameterdi�erent circular cylinders have been performed: one stepped circular cylinder (see Ap-pendix A) and two tapered circular cylinders (see Appendixes B and C). The di�erentcon�gurations, as shown in Table 1, have been chosen in order to �t the experimentsof Lewis & Gharib [5] on stepped circular cylinders and Piccirillo & Van Atta [6] ontapered circular cylinders. For an exact reproduction of the experiments [5] the lengthratios lL=dL and lS=dL of the stepped circular cylinder given here (cf. Table 1), shouldboth have been equal to 145. This would have required a computational grid far toobig in terms of cpu-time consumption and computer storage even with todays computercapabilities. According to the experimental results [5], the e�ect of the step on the wakeis quite limited in the spanwise direction and does not spread more than about 25dL fromthe step towards both the large and small diameter parts of the cylinder (see AppendixA). Hence, the use of the present geometry is justi�ed. On the other hand, the threecomputer simulations of ow past tapered circular cylinders reproduced exactly the ex-perimental geometries used by Piccirillo & Van Atta (1993). The present cases denoted:Case A, Case B and Case C in Table 1, represent the experiments labeled Run 14, Run22 and Run 23 in reference [6], respectively (see Appendix C).For the turbulent ow regime, only the test case de�ned earlier as the simulationof the ow past a uniform circular cylinder, and a single tapered circular cylinder havebeen studied (see Appendix D). As in the laminar case, the geometries have been care-fully chosen (shown in Table 2) to �t other studies (see Appendix D). Because manyexperimental and DNS results are available for ow around a uniform circular cylinderat Re = 3900 (see for example [2, 7] and [8], respectively) this was found to be the bestchoice for LES validation. On the other hand, the tapered circular cylinder case repro-duced one of the experiment done by Hsiao & Chiang [9] except for a slight di�erencein Reynolds number between the numerical and the experimental studies, Re = 3900instead of 4000 in [9]. According to the existing results for uniform circular cylinders,Re = 3900 is quite far from a critical value corresponding to a transition between twoow regimes [1]. A ow regime is when a distinct ow pattern with a limited variationpersists over a range of Reynolds numbers. Both Re = 3900 and Re = 4000 are in therange 103 � 2 � 103 < Re < 20 � 103 � 40 � 103 corresponding to the second phase of theso-called \Transition-in-shear-layers" ow regime [1]. Based on these observations andon the study done by Hsiao & Chiang [9], it has been assumed that the ow regime fortapered circular cylinders at Re = 3900 and Re = 4000 will be identical. As a result,not only were comparisons between numerical and experimental results possible, butcomparisons between simulations for uniform and tapered circular cylinders at identicalReynolds numbers could be made as well.Firstly, however, it was found advantageous to perform two-dimensional numerical4



simulations of ow past circular cylinders. These allowed us to estimate optimum valuesof di�erent parameters such as time step, convergence criterion, as well as ratios such asmesh size/cpu-time or accuracy/cpu-time (see Section IV and Appendix B). These teststurned out to be of great help because almost no further initial tests were needed whenthree-dimensional simulations were performed.Chronologically, tapered circular cylinders were investigated �rst (see Appendixes Band C). Here, some di�culties in programming or modifying post-treatment softwareswere encountered. Hence, because more time than expected was used, and because allthe main features of the ow behaviour behind tapered circular cylinders apparently weresuccessfully reproduced, it was decided to move directly to the simulation of ow behind astepped circular cylinder rather than to carry out a simulation of a third tapered circularcylinder.The main problem with the simulation of the stepped circular cylinder was the highcpu-time consumption. As shown in Table 1, the dimensions of the stepped cylinder aremuch larger than the tapered cylinders considered. Thus, the stepped cylinder mesh islarger than these for the tapered cylinders, and the more nodes a grid has, the morecpu-time is required. Then, with the lack of time a dilemma occured: should a completeinvestigation of this geometry be done in order to attempt to reproduce all the character-istics of the ow described by Lewis & Gharib [5], or should the feasibility of performingLES of turbulent ow be studied? The second alternative was chosen. Consequently,only a single stepped circular cylinder case was reproduced (see Appendix A).Even if large-eddy simulations allow to use less grid points than DNS, a very �nemesh is needed to get detailed turbulent structures. With 2.4 million points, the secondtest case (see Appendix D) almost reached the Cray T3E capabilities. The tapered cir-cular cylinder being three times bigger than the uniform circular cylinder, a grid with 7.2million points was needed to get same accuracy. Fortunately, another computer, the SGISuper-Origin 3800 became available. The change of computer led to the implementationand testing of the code on the new machine. The resulting delays and the long time (bothcpu and wall clock time) required by the simulation to be achieved did only allow thestudy of a single tapered circular cylinder. Large eddy simulation of a stepped circularcylinder being, at that time, an utopia. This is also the reason why only Smagorinskysub-grid scale model has been tested and no Dynamic model implemented.Part IINumerical ToolsBefore presenting the results obtained, a brief description of the numerical tools used isprovided.1 ComputersSeveral computers have been used for di�erent purposes. A Silicon graphics (SGI) Irix64release 6.5 workstation with four 75 Megahertz (MHz) processors and 512 Megabytes5



(MB) Random Access Memory (RAM) was used to create the grids.The ow simulations were run on two super-computers located at the NorwegianUniversity of Science and Technology (Norges Teknisk-Naturvitenskapelige Universitet).Firstly, a Cray T3E consisting of 96 DEC alpha EV5 processors. Each running at 300MHz and containing 128 MB RAM. Secondly, a Super Origin 3800 consisting of 220 PEsat 400 MHz with 1000 MB RAM.The visualizations were performed on a Personal Computer (PC), consisting of oneIntel Pentium II processor at 450 MHz and 768 MB RAM.2 SoftwareThe grid generator called Omega used to create the grids was developped at NTNUby H. Holm. Using OpenGL interface available on the SGI Irix machine, Omega is aninteractive program for multiblock mesh generation. The procedure is decomposed intosix steps. First, an input �le including the coordinates of the basic geometry such asa cylinder for example, is read. Then the user plots the nodes which will form the\corners" of the blocks. The next two steps consist of de�ning: i/ the lines, or moreexactly the segments, delimited by two neighbouring nodes ii/ the patches or surfacesusing four connected lines. Then, the hexahedral blocks are de�ned by three pairs ofpatches. Finally, depending on the code used for the simulations the format in which themesh will be written and the type of grid boundaries (no slip, slip, far �eld conditions)must be chosen.All visualizations of the results have been made with the commercial software GLview,a registered trademark of ViewTech AS 1. Glview is a three-dimensional visualizationprogram using the graphic standard OpenGL. GLview requires at least two di�erent�les written in a speci�c format. The �rst one includes the coordinates and the nodesconnexion table of the mesh. The second or other �les concern the results which can bescalars or vectors. The size of the latters �les being equal to the number of nodes de�ningthe mesh. Then, results can be plotted on the mesh boundaries or visualized in cutting-planes. Isosurface value of scalar results can be shown as well. Moreover, animations areeasily made if several result �les of the same type are available. For instance, if severalresult �les for the pressure of a time-dependent ow simulation are obtained, one pertime step for example, animations of the time evolution of the pressure behaviour onmesh boundaries or inside the mesh (cutting-planes, isosurface values) can be created.All �gures appearing in the appendixes have been produced with GLview. All draw-ings (except hand drawings in Appendix C) have been made with the free software XFIGavailable on UNIX system. All curves have been plotted with the free software XMGRexcept Figure 3 in Appendix C and Figure 2 in Appendix A where a free version of thecommercial software MATLAB has been used. Both programs were available on UNIXsystem.3 Concurrent Block JacobiThe code used to perform numerical simulations of ow past stepped or tapered circularcylinders is called \Concurrent Block Jacobi" (CBJ). It was originally developed and1http://www.viewtech.no 6



implemented by Carl Birger Jenssen as part of his doctoral thesis [10] and has later beenextensively modi�ed at CERFACS 2 and SINTEF.CBJ is a parallel implicit multiblock time-accurate Navier-Stokes solver, using acoarse grid correction scheme (CGCS), based on the Finite Volume Method. The codeconsits of a rather short main program and a large set of subroutines which encapsu-late every basic operation. Thus, all occurences of an operation in the entire programcan be modi�ed just by making changes in a single subroutine, while leaving the restof the program unchanged. To facilitate future changes in the program, the di�erentparts of the algorithm, such as the calculation of inviscid or viscous numerical uxes,the imposing of boundary conditions, and the solution to the linear system are writtenin separate subroutines. This has also been done so that these subroutines are based onthe governing equations in a form as general as possible.3.1 Governing EquationsThe governing equations are the Navier-Stokes equations. These equations can be writtenin several ways, for example in conservative form:8>><>>: @�@t + @�ui@xi = 0 Continuity@�ui@t + @�ujui@xj = �fi � @P@xi + �@2ui@x2j + (� + �) @2uj@ui@uj Momemtum@�E@t + @@xi �(�E + P )ui � k @T@xi � (�(@uj@xi + @ui@xj ) + �(@ui@xi ))uj� =Wf + qH Energy(1)8i and 8j such that i 2 f1; 2; 3g and j 2 f1; 2; 3g. Here, the Einstein convention hasbeen used so that whenever the same index appears twice in any term, summation overthe range of that index is implied. For example in the continuity equation: @�@t + @�ui@xi =@�@t + @�u@x + @�v@y + @�w@z = 0 where xi (i=1, 2, 3) or (x, y, z) are the Cartesian coordinatesand ui or (u, v, w) are the Cartesian components of the velocity. In Equation 1, t is thetime, � is the density, E is the total energy per unit mass given by E = e+ 12 (u2+v2+w2),where e is the internal energy per unit mass. fi are the Cartesian components of theexternal forces andWf the work performed by these external forces. qH denotes the heatsources. � is the dynamic viscosity of the uid. The kinematic viscosity � introduced inthe de�nition of the Reynolds number in Part I Section 2.1 is equal to: � = �=�. � and� are related by the Stoke's relation: 2�+ 3� = 0 (2)The CBJ solver has been written for an ideal gas. Hence, in the energy equation (Equa-tion 1), T denotes the absolute temperature de�ned byT = e � 1R (3)where R is the gas constant. In this work, however, � is constant based on the speci�edReynolds number. De�ning the speci�cs heat at constant pressure and constant volumecP and cV , respectively, the coe�cient  is de�ned by:  = cP =cV . In Equation 1, k2Centre Europ�een de Recherche et de Formation Avanc�ee en Calcul Scienti�que7



is the thermal conductivity coe�cient, k = � cP� where � is the thermal di�usivitycoe�cient which must be de�ned empirically. k can be expressed in terms of the Prandtlnumber Pr: k = �1 RPr�. For air at standard conditions  = 1:4, R = 287m2=(s2K) andPr = 0:72.The term P appearing in Equation 1 is the pressure related to � and e by the equationof state: P = ( � 1)�e (4)Although CBJ is a compressible code, it has been theoretically shown that for verylow Mach numbers, the ow can be considered incompressible. Usually, the criterionapplied is: 12M2 < 0:05, where M is the Mach number (see [11] page 10). Then, forM � 0:31 the ow can be considered incompressible. Consequently, the value of theMach number has been �xed to M = 0:2 for all the numerical simulations of the presentwork. Jenssen and Weinerfelt [12] showed that CBJ with M = 0:2 reproduced accuratelyexperimental data and computations done by other authors for incompressible ows.Finite volume formulation implies the use of the integral form of the Navier-Stokesequations. Assuming no external forces or heat sources and a Newtonian uid, thefollowing condensed form of Equation 1 is obtained:@@t Z Z ZV (t) UdV + Z ZS(t) ~F � ~ndS = 0 (5)where U denotes the conserved variables:U = 0BBBB@ ��u�v�w�E 1CCCCA (6)~F is the ux vector and ~n the outwards pointing normal vector to the surface S(t)enclosing the arbitrary volume V (t). The ux vector can be seen as the summation oftwo parts, a convective (~FC) contribution and a di�usive (~FD) contribution also calledinviscid and viscous contributions (see for example [13] pp.597-599). Then, Equation 5becomes: @@t Z Z ZV (t) UdV + Z ZS(t) ~FC � ~ndS � Z ZS(t) ~FD � ~ndS = 0 (7)From Equation 1, the components of ~FC and ~FD are:FCi = 0@ �ui�uiuj + P�ij j=1:::3(�E + P )ui 1A i = 1 : : : 3 (8)FDi = 0BB@ 0�� @ui@xj + @uj@xi �+ ��@uj@xj � �ij j=1:::3�� @ui@xj + @uj@xi �uj + ��@uj@xj �ui + k @T@xi 1CCA i = 1 : : : 3 (9)8



If nx, ny, nz are the cartesian components of the normal vector and if vn = u � nx + v �ny + w � nz denotes the velocity component along ~n, then ~FC � ~n becomes:~FC � ~n = 0BBBB@ �vn�uvn + Pnx�vvn + Pny�wvn + Pnz(�E + P )vn 1CCCCA (10)Introducing the following primitive variables V:V = 0BBBB@ �uvwP 1CCCCA (11)and applying the chain rule to express all derivatives of ~FD (Equation 9) in terms ofderivatives of the primitive variables (Equation 11), ~FD � ~n becomes:~FD � ~n = An;i @V@xi (12)The three coe�cient matrices being:An;x = 0BBBB@ 0 0 0 0 00 (2�+ �)nx �ny �nz 00 �ny �nx 0 00 �nz 0 �nx 0knx @T@� (2�unx + �vn) �(vnx + uny) �(wnx + unz) knx @T@P 1CCCCA (13)
An;y = 0BBBB@ 0 0 0 0 00 �ny �nx 0 00 �nx (2�+ �)ny �nz 00 0 �nz �ny 0kny @T@� �(uny + vnx) (2�vny + �vn) �(wny + vnz) kny @T@P 1CCCCA (14)
An;z = 0BBBB@ 0 0 0 0 00 �nz 0 �nx 00 0 �nz �ny 00 �nx �ny (2�+ �)nz 0knz @T@� �(unz + wnx) �(vnz + wny) (2�wnz + �vn) knz @T@P 1CCCCA (15)In CBJ, the inviscid and viscous uxes are programmed as de�ned by Equations 10to 15. 9
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Figure 2: Numbering of nodes, cell centers and cell interfaces in a two-dimensional viewof the computational mesh.3.2 DiscretizationThe governing equations are discretized in space using a cell centered �nite volumemethod on a conventional multiblock structured mesh. In the �nite volume formula-tion, the discretization is performed on the conservative form of the system of governingequations so that the resulting di�erence equations remain conservative. For the vis-cous uxes, derivatives of second-order accuracy are �rst calculated with respect to thegrid indices, and then transformed to derivatives with respect to the physical spatialcoordinates (x, y, z) by means of the chain rule.On the computational mesh, Equation 5 is applied to hexahedrons with corners de-�ned by intersecting mesh lines. As shown in Figure 2, the cells are numbered by triplets(i, j, k) corresponding to their positions along the axes of the curvilinear coordinatesystem. Vi;j;k denotes the volume of the cell (i, j, k). The cell interfaces are described by(~n S)i� 12 ;j;k, (~n S)i;j� 12 ;k and (~n S)i;j;k� 12 where the various ~n are the vectors normal tothe surfaces of the cell interfaces, and S the surface area of the cell interfaces. The cor-ners of a hexahedron are the points that make up the mesh. Their cartesian coordinatesare: xl;i� 12 ;j� 12 ;k� 12 (l = 1 : : : 3). Then, Equation 5 applied to Vi;j;k becomes:Vi;j;k @@tUi;j;k +Xl ~Fl � (~n S)l = 0 (16)with Ui;j;k the cell average of U and ~Fl the numerically approximated ux through ~nlS,the summation being over l = (i� 12 ; j; k); (i; j � 12 ; k); (i; j; k � 12 ).As mentioned in Appendix B, the convective part of the uxes is discretized witha third-order, upwind-biased method based on Roe's scheme. The viscous uxes areobtained using central di�erencing. Implicit and second-order-accurate time stepping10



is achieved by a three point, A-stable, linear multistep method, usually denoted bybackward di�erenciation 3.The two parts of the uxes are treated separately. This technique can be used withexplicit or implicit schemes. In CBJ, the resulting linear system is solved with a non-factored iterative ADI (Alternating Direction Implicit) technique. With a non-factorediterative ADI scheme, the linear system remains second-order accurate in time.The Roe's scheme for a system of non-linear hyperbolic equations in one dimension,is given by:FCi+12 = 12 �FC(U�i+ 12 ) + FC(U+i+ 12 )�� 12 �A+i+ 12 �A�i+ 12��U+i+ 12 � U�i+ 12 � (17)FCi+12 denotes the convective ux through the surface (~ni+ 12 � dS). A�i+ 12 is de�ned by:A�i+ 12 = Ri+ 12��i+ 12R�1i+ 12 (18)where Ri+ 12 is the right eigenvector matrix of Ai+ 12 which is the Jacobian matrix ofFC taken at Ui+ 12 . ��i+ 12 being the diagonal matrices made up with the positive (+)or negative (-) eigenvalues of Ai+ 12 . The state Ui+ 12 is given by Roe's Riemann solverde�ned by the equation:F (U+i+ 12 )� F (U�i+ 12 ) = A(Ui+ 12 )(U+i+ 12 � U�i+ 12 ) (19)where A(U) is the Jacobian matrix to F (U) (cf. [13] Section 20.5.3).The �rst order version of Roe's scheme is obtained by simply setting U�i+ 12 = Uiand U+i+ 12 = Ui+1. Schemes of higher order are obtained by de�ning U�i+ 12 and U+i+ 12 byhigher order extrapolations. The scheme used here is based on an extrapolation of thecharacteristic variables. First a forwards and backwards �nite di�erence approximationto the change in the characteristic variable at node i is de�ned:!�i+ 12 = R�1i (Ui+1 � Ui)!+i+ 12 = R�1i (Ui � Ui�1) (20)where R�1i = R�1 �Ui; 12 � ~ni� 12 + ~ni+ 12��. Extrapolating the characteristic variablesand transforming back to conserved variables, the right and left states U�i+ 12 and U+i+ 12are given by: U�i+ 12 = Ui +Ri � 1+�4 !+i� 12 + 1��4 !�i+ 12�U+i+ 12 = Ui �Ri � 1+�4 !�i+ 12 + 1��4 !+i� 12� (21)where Ri is de�ned in the same way as R�1i and � is an accuracy parameter used tocontrol the truncation error and upwind biasing. For example � = �1 gives a second-order fully upwind scheme and � = 1=3 gives a third-order upwind biased scheme. Allthe results of this work have been produced with a third-order scheme.3Note: Equation 3 in Appendix B has a mistake which has been corrected in Equation 3 Appendix D11



This extrapolation procedure was implemented as part as a TVD (Total VariationDiminishing) scheme. This TVD scheme was switched o� for the present work as theow was assumed to be incompressible.The extension to two or three dimensions is uniform forward by applying the one-dimensional scheme independently in each coordinate direction.The viscous part of the ux ~FD � ~n de�ned by Equation 12 can be re-written:~FD � ~n = Axl @�m@xl @V@U @U@�m (22)�m (m = 1 : : : 3) being the curvilinear coordinates. Then, the derivatives @@�m can be cal-culated directly on the computational mesh using interpolation and central di�erencing.For any scalar quantity f , at a surface de�ned by a constant value i+ 12 , this gives:� @f@�i�i+ 12 ;j;k � fi+1;j;k � fi;j;k� @f@�j �i+ 12 ;j;k � 14 (fi;j+1;k + fi+1;j+1;k � fi;j�1;k � fi+1;j�1;k)� @f@�k �i+ 12 ;j;k � 14 (fi;j;k+1 + fi+1;j;k+1 � fi;j;k�1 � fi+1;j;k�1) (23)and similarly for surfaces de�ned by a constant value j + 12 and k+ 12 . The metrics @�m@xlare obtained by analytically taking the inverse of the matrix whose elements are @xl@�m(8l; l 2 f1; 2; 3g and 8m;m 2 f1; 2; 3g), which are calculated by central di�erencing.The time integration is briey described in Appendix B Secion 2 and in [12]. Itis achieved by a three-point, A-stable linear multistep method. A-stability meaningunconditional stability for any time step size (from [14] page 423). The general form ofthe time integration used is:(1 + �)Un+1 � (1 + 2�)Un + �Un�1 = �t � ��Hn+1 + (1� � � �)Hn � �Hn�1� (24)which represents the most general consistent two-step linear multistep method. H isa non-linear function acting on the vector U originating from the space discretization.Depending on the values of the three parameters (�, �, �), this equation will be ofdi�erent orders and will correspond to di�erent schemes. A partial list of one- andtwo- step methods can be found in [14] Table 11.1. The numerical simulations for thelaminar cases performed here, were made with a \Backward second-order" scheme: � = 1,� = 1=2, � = 0. However, this scheme was found to damp the solutions of the turbulentcases too much. Therefore, other schemes such as \one-step trapezoidal second-order"have been used for simulations at high Reynolds numbers.3.3 Boundary ConditionsThe boundary conditions can be of three types: slip, no-slip or \far �eld". They areapproximated by extending the computational mesh to include \ghost points" outsidethe boundaries. Slip condition means that the values of the solution vector at the cellinterface are equal to these in the cell itself. No-slip condition is usually encountered withwalls. Values in ghost cells are set so that the interpolated solution on the cell interfacerepresenting the wall satis�es the boundary conditions. There, u = v = w = 0, and12



from boundary-layer theory @P@n = 0 (see [11] for instance). Moreover, for an adiabaticor isothermal wall, the boundary conditions for temperature are de�ned by: @T@n = 0 orT = Twall. The far �eld is assumed to start at the limit of the computational mesh inthe streamwise and crosswise directions, outside the mesh. In the far �eld, U = U1 isconstant. At the interface between the far �eld and the computational mesh two sorts ofboundary conditions are applied: Dirichlet type and Neumann type. For a given scalara at node i, Dirichlet type implies ai = a1, whereas Neumann type implies �@ai@t = 0.The Dirichlet and Neumann conditions are applied to the so-called Riemann invariantsusing the following procedure:From Equation 7, the one-dimensional Euler equation in integral form can be deduced.@U@t + @FC@X = 0 (25)where X denotes the coordinate. This can be written:@U@t +A@U@X = 0 (26)where A = @FC@U . Because ~FC � ~n is an endomorphism, Equation 26 is an eigenvalueproblem. An endomorphism being a linear application of a vector space in itself, usuallyR4 (space and time) and R2 in one-dimension (one space dimension and time). Then,det (A� �I) = 0 implies �k eigenvalues. The eigenvector Xk being associated to theeigenvalue �k, such that: (A) (Xk) = �kXk. Moreover, if there is an eigenvectors basethen A has a matrix in it which is diagonal:A = L�L�1 (27)L is the matrix of eigenvectors and � the diagonal matrix whose elements are the eigen-values. Then Equation 26 becomes:L�1 @U@t +�L�1 @U@X = 0 (28)Riemann introduced a new set of characteristic variables such as: �W = L�1�U , �Wrepresenting an arbitrary variation, either @=@t or @=@X of W . Hence, the characteristicform of the one-dimensional Euler equation can be decoupled in the W variables andwritten as: @W@t +�@W@X = 0 (29)The three characteristic variables or Riemann invariants are strictly conserved duringtheir propagation along the characteristics de�ned by:C0 : dxdt = uC+ : dxdt = u+ cC� : dxdt = u� c (30)c being the sound velocity and (u; u + c; u � c) the eigenvalues. Then, knowing W theconserved variables U are known and the values in the ghost cells de�ned. Dirichlet condi-tions are used for Riemann invariants with negative eigenvalue and Neumann conditions13



for Riemann invariants corresponding to positive eigenvalue. The positive direction be-ing out of the domain, so that Dirichlet condition is used for waves traveling into thedomain, and Neumann condition for waves traveling outside the domain. The interestedreader can read [13] Chapter 16 for further details.3.4 MiscellaneousThe iterative solution procedure is summarized in Appendix B Section 2. Usually, a max-imum of 20 Newton iterations is su�cient to reach the convergence criterion. After eachNewton iteration, once a solution in every block is obtained, a Coarse Grid CorrectionScheme (CGCS) is used to compensate for treating the block interface conditions in anexplicit manner by adding global inuence to the solution. This accelerates convergenceof the multiblock implicit cheme. Therefore, when using the CGCS, the implicit multi-block scheme can be used to solve time-dependent ow. The CGCS described in [15]is a two-level multigrid algorithm applied to a linear system of equations. The maindi�erence from standard multigrid techniques is that it consists of only one �ne and onecoarse grid. Moreover, a solver, and not a smoother, is employed both on the coarse gridand in each block of the �ne grid. The coarse mesh is built by merging several �ne cellstogether (5 in our cases) in each of the spatial directions. If h denotes the �ne mesh andH the coarse mesh, the method can be briey described as follows. In matrix form thelinar system to be solved at each Newton iteration can be written as:Ah�Uh = Rh (31)However, because the coupling between blocks is ignored, an incorrect system is solved. If"h denotes the error by solving the incorrect system, "h = �Uh� g�Uh then Equation 31becomes: Ah"h = Rh �Ah g�Uh (32)As in traditional multigrid methods, restriction (IHh ) and prolongation (IhH ) operatorsare used in the de�nition of the coarse grid representation. The coarse grid system solvedis then AH�UH = RH (33)where AH = IHh AhIhH and RH = IHh (Rh � Ah g�Uh). The solution to Equation 33 istransformed to the �ne grid by means of IhH , and �nally the �ne grid solution is updatedby gg�Uh = g�Uh + IhH�Uh (34)It has been shown [15, 12] that the use of a CGC Scheme required three time lesscpu-time than a simple block Jacobi method to reach convergence for the same level ofaccuracy on a representative test case. 14



Part IIIVortex SheddingOne of the �rst to describe the vortex shedding phenomenon was Leonardo da Vinci. Hissixteenth century drawings of ow �elds are well known. In 1911, Theodore von K�arm�andescribed a regular vortex-street pattern occuring behind a circular cylinder in laminarow. The vortex shedding phenomenon has for a long time been a subject of curiosityand great interest in science and engineering. The case which has been most studied iswithout any controversy the vortex shedding occuring behind a uniform circular cylinder.As the Reynolds number increases (from zero to in�nity) several di�erent modes of vortexshedding can be distinguished. As seen in [1] Table 1.1, �ve di�erent states, each includ-ing di�erent regimes of vortex shedding, are de�ned. Every single regime corresponds toa speci�c range of the Reynolds number. In order to give a general understanding aboutwhat is the vortex shedding phenomenon, a brief description for the case of uniformcircular cylinders at the Reynolds numbers studied in this project is provided. Theseregimes are the third of the \Laminar" state (30 � 48 < Re < 180 � 200) and the sec-ond of the \Transition in Shear Layers" state (1000 � 2000 < Re < 20 000 � 40 000)as de�ned in [1]. In addition, it has been found interesting to generally describe also athird case: an incoming linear shear ow past a uniform circular cylinder. As stated inAppendix C, there are many similarities between a uniform incoming ow past a linearlytapered circular cylinder and an incoming linear shear ow past a uniform circular cylin-der. Therefore, the main characteristics of the latter con�guration are also provided. Adetailed description of the vortex shedding behind stepped and tapered circular cylindersare found herein in the \Results" part and in the Appendices.1 Periodic Wake Regime of Laminar StateBelow Re = 30 a steady, elongated and closed near-wake is formed behind the cylinder.The two free shear layers meet at the conuence point thereby forming a \bubble" behindthe cylinder; Figure 3(a) provides a sketch of this con�guration. At the conuence pointthe velocity is zero. The bubble is composed by two symmetrically placed vortices oneach side of the wake, it is then considered as a region of stagnation ow. Moreover, thetrail of the wake does not sway.When the Reynolds number is increased (Re � 30), transverse oscillations can be�rst seen far away from the standing eddies. These oscillations are similar to Tollmien-Schlichting waves. This undulation moves progressively towards the cylinder and itsamplitude increases with increasing Reynolds number. Once the total wake (until theconuence point) is swaying, some uid particles are entering the bubble from the con-uence point. Hence, there is a mass transfer, and a back-ow is generated inside thebubble from the conuence point towards the cylinder. This region is then a recirculationregion and the two vortices become asymmetric. At Re = 40, the width and the length ofthe recirculation zone are nearly one and two cylinder diameters, respectively. The twoasymmetric vortices start to oscillate in turn, while beyond them, each of the separatedshear layers alternately rolls up at crests and troughs into opposite vortices. Thus, thetwo bubble vortices are elongated in turn until their downstream parts detatches. This15
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d (b)Figure 3: Sketch of vortex shedding in cross sectional view: (a) at Re < 49, (b) atRe > 49 (K�arm�an vortex street).periodically reduces their sizes and leads to the alternate shedding of uid rotating inopposite directions. Then, the vortices are carried downstream with a speed slightlylower than that of the free stream. Consequently, two stable regular rows of vortices, instaggered arrangement and aligned on each side of the downstream centerline, take placebehind the recirculation region. The alternately shed vortices form what is known as theK�arm�an vortex street, as it is sketched in Figure 3(b). As mentioned by Williamson [16],this results from an absolute instability in the near wake which involves the establish-ment of the self-sustained oscillation, while further away from the cylinder, a convectiveinstability is found. By de�nition, a ow is said to be absolutely unstable when \an im-pulsively generated, small-amplitude transient grows exponentially in place, i.e. at thelocation of its generation". A convective instability is when the transient is convecteddownstream leaving the ow at the location of its generation undisturbed. Provansal etal. [17] showed that K�arm�an vortex shedding from a cylinder was a limit-cycle oscilla-tion of the near wake, resulting from a time-ampli�ed global instability. Moreover, theydescribed the wake dynamics by a Stuart-Landau nonlinear equation. The equation forthe complex amplitude used was dAdt = �A� �jAj2A (35)for complex coe�cients � and �. From stability analysis, Provansal et al. showed thatthe real part of �, �r, played the role of a Hopf bifurcation parameter, which is equal tozero at Re = Recrit (Recrit � 49 being the critical value of Reynolds number for whichK�arm�an vortex shedding �rst occur). They stated that the �rst order approximationfor �r and the limit cycle amplitude A followed the laws: �r = k(Re � Recrit) andA = �(Re� Recrit) 12 with � and k constants (k > 0).Another important feature of the vortex shedding behind circular cylinders is theexistence of two modes of shedding: oblique and parallel. The vortices can be sheddedeither parallel to the cylinder axis either by forming an angle relatively to the cylidneraxis. Williamson [18, 19] showed that these two types of vortex shedding are linked. In16



the investigation of circular cylinder wake ows, many authors have noticed the occurenceof discontinuities in the Strouhal-Reynolds number relationship. The Strouhal number isa dimensionless frequency de�ned as: St = f �d=U , where d is the cylinder diameter, U theincoming ow velocity and f the vortex-shedding frequency. The inverse of the Strouhalnumber can be seen as a dimensionless time scale for the vortex shedding phenomenon.The interpretation of the discontinuities gave rise to some debate (see for example thepapers of Tritton [20, 21] and Gaster [22, 23]). Williamson [18, 19] showed that withparallel shedding, the Strouhal-Reynolds number curve was completely continuous andthat the discontinuities were due to a changeover from one mode of oblique sheddingto another oblique mode, as the Reynolds was increased. Moreover, the experimentaloblique shedding data could be closely collapsed onto the parallel shedding curve by theuse of a simple trigonometric relation:Sparallel = Soblique=cos(�) (36)where � is the angle between the shedded vortices and the cylinder axis. This break-through led to the de�nition of a universal Strouhal-Reynolds number curve [18]:St = ARe +B + C � Re (37)where A = �3:3265, B = 0:1816 and C = 1:600�10�4. As mentioned in Appendix C, in1998, Williamson & Brown [24] showed that a more accurate St� Re relationship thanthe one established ten years earlier could be given by:St = A+ BpRe + CRe (38)where A = 0:2850, B = �1:3897 and C = 1:8061. In the same paper, Williamson &Brown presented another St�Re curve based on DNS computations for two-dimensionallaminar shedding over a larger range of Reynolds numbers (up to Re = 1000) than ispossible to obtain experimentally. As can be seen in Figure 4(a), the three curves arealmost not distinguishable. At higher Reynolds numbers, Figure 4(b), a large discrep-ancy exists between the 1988 relationship and the two others. According to Williamson& Brown [24], the \new" curves accurately represent the experimental data in bothlaminar and three-dimensional wake turbulent regimes, \although the validity of theserepresentations at these higher Re needs further support". However, these curves do notrepresent the breakdown of the experimental data curves due to the transition to tur-bulence occuring in the range 190 < Re < 260. Above Re = 190, the primary sheddingvortices become unstable to a spanwise waviness called mode A [25] corresponding witha somewhat lower Strouhal number. Between Re = 230 and Re = 260 a transition toa mode B occurs, which involves �ner-scale streamwise vortices appearing in the nearwake.It has been shown [19] that the particular boundary conditions at the spanwise endsof the cylinder dictate the angle of shedding over the whole span, even for a cylinderwith high aspect ratios (length/diameter > 100). Consequently, by manipulating theend conditions, parallel shedding can be achieved. For example, Williamson [19] usedendplates whose leading edges were angling inwards, whereas Eisenlohr & Eckelmann [26]used larger coaxial cylinders at the two extremities of the cylinder span. The e�ect of such17
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Williamson 1998 (DNS)(b)Figure 4: Strouhal-Reynolds number curves established by Williamson in 1988 and1998 [18, 24]. (a): close-up in the laminar regime 49 < Re < 190; (b) comparisonsof the curves over a wide range of Reynolds number 49 < Re < 1200.techniques is to slightly speed up the ow near the ends. According to Williamson [16], alocal incident velocity increase of 1.5% above the free stream velocity can trigger parallelshedding over the whole span. The same results has been shown by Norberg [7] whoachieved parallel shedding at very large aspect ratios (length/diameter > 2000).When there is oblique shedding a cellular structure of the wake in the spanwise direc-tion can be seen. Each cell has one constant vortex-shedding frequency, two neighbouringcells having two di�erent frequencies. At a given Reynolds number, the lowest frequencyis found in the cell closest to the ends of the cylinder span. The shedding frequencyassociated with each cell increases from the end cell to the central cell of the wake. Withidentical boundary conditions at the two extremities of the cylinder a \chevron" pat-tern [18, 19] can be observed. At the boundaries between cells, because vortices on eachside are moving in and out of phase with each other, vortex dislocation [19] or vortexsplitting [26] can occur. Leweke et al. [27] proposed a mechanism for the formation ofshedding cells in wakes of uniform circular cylinder at low Reynolds numbers. That isthe successive spatial destabilization of oblique shedding patterns by the Eckhaus in-stability, initiated at the ends of the cylinder span. Eckhaus instability is a secondaryinstability [28] which renders the oblique vortex shedding unstable, leading to a breakupinto cells when the shedding angle exceeds a critical value. A corollary is that the valueof the shedding angle is entirely determined by the nature of the end conditions.Another feature of the uniform circular cylinder wake ow for the periodic wake regimeof laminar state occurs aboveRe = 100. In the far wake (100-150 diameters downstream),the vortex street does not remain stable during its downstream development but becomesmore and more deformed and breaks down. But, very far away from the cylinder (600diameters) in the downstream direction, a second regular vortex street with a larger cross18



spacing and a much larger wavelength than the �rst vortex street, appears and persistsover a quite long distance (1000 diameters) [1]. This secondary street seems to be dueto hydrodynamic instability and no direct relationship should be expected between thefrequencies in the primary and secondary regions [16]. According to Williamson [16], the\characteristic that actually forges a connection between the near and far wakes is thesensitivity to free-stream disturbances. The far wake, being a convectively unstable ow,will tend to amplify extremely small frequency peaks in the free".2 Intermediate Regime of Transition in Shear LayersStateWhen transition waves, which are second-order instabilities, appear along the free shearlayers, three-dimensional vortex interactions and the �rst manifestation of turbulenceoccur. Transition eddies are formed as a chain along free shear layers and precede thetranstion to turbulence [1]. As a result of the appearance of the transition waves, thevortices convected downstream contain unstable uid which become progressively turbu-lent under the inuence of the transverse ow induced by the free vortices themselves [2].Then, the wake becomes completely turbulent and three-dimensional over a distancecloser and closer to the cylinder as Reynolds increases. Similarly, the turbulent transitionpoint moves upstream towards the separation point with increasing Reynolds numbers.Except for turbulent e�ects (dispersion, dissipation: : : ), the ow topology is similarto that of the laminar regime with a vortex street con�guration having a stable Strouhalnumber close to 0.2. One of the �rst characteristics which can be clearly visualized isthat the transverse spacing of the vortex street decreases drastically. Thus, the vortexcenters are almost located on the wake centerline. The decrease of the recirculationregion, which is also called the formation zone, is easily seen. At Re � 2000, the lengthof the recirculation area is almost two diameters. This length decreases with increasingReynolds number. There are several methods to estimate this length, as summarized byZdravkovich [1] page 103:i/ the disappearance of low frequency irregularitiesii/ the crossing of the wake axis by the entrained streamiii/ the location of maximum streamwise velocity uctuations in the wakeiv/ the location of minimum mean Cp (pressure coe�cient) along the wake axis, whichcorresponds to the station where the eddies are fully developed.The resulting length decreases from 2d, where d is the diameter of the cylinder, at Re =2000 to 1:1d at Re = 14 000. This diminishing is partly due to the small-scale vorticesformed at the edge of the recirculation region. When the intensity of the transitionwaves has become su�ciently energetic, they roll up into small-scale vortices which areconvected downstream by the main K�arm�an vortices, \ridging on their perimeter" [2].Some of them gather together thereby forming bigger structures, some migrate furtherdownstream and vanish. Then, they contribute to accelerate the transition to turbulence,acting as a kind of catalyst. Another e�ect of the three-dimensional instabilities of theshear layer vortices seems to be the appearance of streamwise vortices in the wake [16].Bloor [29] investigated the instability vortices appearing in the free shear layers. Byconsidering the laminar boundary layer thickness and the velocity at the separationpoint, Bloor showed that the normalized shear layer instability frequency, fSL, scaled19



with Re1=2. If f� denotes the K�arm�an vortex shedding frequency, then: fSLf� / Re1=2.Nevertheless, according to Williamson [16], a best �t to all of the studies combined wouldbe proportional to Re0:67.As in the laminar ow regime, a secondary vortex street seems to occur in the far-wake. The primary turbulent vortex street breaks down at a downstream distance ap-proxiamtely equal to 80 � 100 diameters and is apparently not much dependent on theReynolds number [2]. Further downstream, a secondary vortex street with organizedstructures occurs, but at a larger distance from the cylinder than in the laminar regimeand with a greater dispersion.Quite recently, Prasad & Williamson [30] showed that oblique and parallel sheddingcould be triggered at high Reynolds number (Re = 5000) by manipulating the endconditions as in the laminar ow regime. This is really important because the phase ofthe shedding and the spanwise correlation a�ect the total integrated unsteady forces onthe uniform circular cylinder. As pointed out by Williamson [16], most of the attentionin the literature has been given to the case of low aspect ratios, for which the vorticesare shed almost in phase across the span. But, \the question of the conditions underwhich dislocations and cellular shedding may appear at high Reynolds numbers requiresfurther understanding" [16].3 Linear Shear FlowWhen the ow behaviour past tapered circular cylinders at low Reynolds numbers wasinvestigated (see Appendix B and Appendix C), the results obtained and the di�erentow characteristics observed appeared to be, at least, qualitatively similar to what wasreported in the literature on linear shear ows past uniform circular cylinders. This is thereason why it has been found interesting to give a brief description of the main featuresof the latter con�guration. Here, however, the following description is restricted to thelaminar ow regime and to the case where the pro�le of the velocity gradient is located ina streamwise-spanwise plane, as it can be seen in Figure 5. The two sketches (a) and (b)in Figure 5 represent the di�erence between a nonlinear shear incoming ow and linearshear incoming ow, respectively.The ow behaviour behind a uniform circular cylinder with linear shear incomingow is strongly dependent on (at least) three parameters: the Reynolds number, theaspect ratio and the shear parameter �. The aspect ratio is de�ned as Ar = l=d, whereasthe shear parameter is de�ned as � = dum @u@z , where um denotes the average free streamvelocity. It is not known precisely how many ow parameters inuence the behaviour ofthe wake ow [31].The �rst di�erence between linear shear ow and uniform ow past a uniform circularcylinder is that, with the former, the ow is three-dimensional and not nominally two-dimensional, as expected with the latter. As the free stream approaches the circularcylinder, the shear velocity establishes a spanwise pressure gradient. This induces asecondary ow along the stagnation line from the high-velocity end towards the low-velocity end. On the opposite side of the cylinder, however, the pressure gradient inducesa secondary ow towards the high-velocity end [1]. In a streamwise-crosswise plane, thevorticity �laments appear to be distorted by the cylinder, thus two streamwise �lamentsare emited behind the cylinder (see Figure 15.24(c) in [1]). The streamwise vorticity20
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(b)Figure 5: Sketch of two types of shear ow. (a) nonlinear shear ow; (b) linear shearow.induces a convective velocity at both sides of the cylinder directed towards the low-velocity region.Although a cellular pattern has been observed, the vortex shedding phenomenon inthe linear shear ow along the span has been found to be di�erent to that of uniformow. The continuous variation of the free stream velocity does not lead to a continuousvariation in shedding frequency [1]). The span of the cylinder can be divided into severalcells, each of them being characterized by one shedding frequency. The length of thecells observed experimentally (see the review by Gri�n [32]) as well as these computedby Mukhopadhyay et al. [31] vary between three and seven diameters. Within eachcell, the Strouhal number based on the mean velocity is constant, while the Strouhalnumber based on the local velocity varies linearly, with sudden \jumps" across the cellboundaries [31]. Mukhopadhyay et al. [31] noticed that due to the complex uid dynamicinteractions that are occuring in the near wake, the Strouhal number for linear shearow was lower than the Strouhal number for uniform ow. This seemed to be a result ofcontinuous spanwise energy redistribution. Based on the centreline free stream velocity,the Strouhal number ranged roughly 0:13� 0:20.Another characteristic which has been described both experimentally [33] and numer-ically [31] is that the cell boundaries moved in time along the span and were not �xed.Moreover, it has been shown that the end conditions had a strong inuence on the cellpattern and the wake ow dynamic. Mair & Stansby [33] noticed that the e�ect of theend conditions were much more pronounced when a cylinder with a small aspect ratiowas used than with cylinder with large Ar. With Ar < 20, no cells could be determinedbetween the two end cells, the whole span was a�ected by the end conditions. However,Mair & Stansby showed that it was possible to get cells by using end plates placed at theextremities of the cylinder. Moreover, large end plates proved to have a stabilizing e�ecton the cell pattern. Mukhopadhyay et al. performed computations with and withoutend plates at the extremities of the cylinder span. The end wall boundary layers, due to21



the end plates, did not produce much distortion in the vorticity results compared to thecase without end plates. At last, vortex dislocations were observed in both cases nearthe high-velocity end of the circular cylinder and there were convected downstream.Part IVResultsThe results obtained from the simulations done for this project have been reported inseveral papers which are presented herein in the Appendices. Nevertheless, for the sakeof completion, it has been decided to provide some details and \extra" results which donot appear in these papers.1 Laminar FlowThree di�erent kind of simulations have been performed at low Reynolds numbers: two-dimensional numerical simulations of ow past a circular cylinder (see Appendix B),and three-dimensional numerical simulations of ow past a stepped circular cylinder (seeAppendix A) and past tapered circular cylinders (see Appendix B and Appendix C).1.1 Two-Dimensional SimulationsThe two-dimensional numerical simulations allowed us to perform several tests on di�er-ent parameters at a relatively low cost in cpu-time. The Reynolds number was �xed at200 for which comparisons with experimental and other numerical results were possible.The aim was to determine a set of parameters giving the best ratio accuracy/cpu-timeconsumption. These parameters were the time step and the convergence criterion for theNewton iteration (previously described in Part II). Moreover, the e�ect of the mesh sizeon the choice of parameters have been investigated too. The complete results for all thetests performed, from which Table 1, Table 2 and Figure 1 in Appendix B are extracted,are reported here.Besides the results of our simulations given in Table 3, experimental (Roshko), the-oretical (Williamson) and other numerical (Multigrid, Belov et al., Braza et al.) resultsare reported. They are described in Appendix B Section 3.Firstly, the e�ect of the mesh size has been investigated. The set of parameters usedwas: 10�2 for the convergence criterion and 0.1 for the dimensionless time step �tUd .The convergence criterion for the Newton iteration is de�ned as the ratio of the RootMean Square (RMS) of the residual at the given iteration to the RMS of the residualat the �rst iteration. When the total cpu-time consumption per vortex shedding periodper grid point is considered, the 200 � 200 mesh appears to be the best compromise.The 100 � 100 and 200� 200 meshes had similar ratio cpu-time/grid point: 0.216 and0.243, respectively, whereas the 400 � 400 had a ratio of 0.305. This is because moreNewton iterations are needed for a given convergence criterion on the �ner mesh. Thus,the 200 � 200 mesh gave the best accuracy relatively to a low cpu-time consumption.Secondly, once the mesh size had been chosen, the e�ect of di�erent sets of parameters22



Table 3: Comparison of drag coe�cient (Cd), lift coe�cient (Cl) and Strouhal number(St) for two-dimensional vortex shedding at Re = 200. cc: convergence criterion, ts:time step. Reference Cd Cl St100� 100 (cc = 10�2, ts = 0:1) 1.395 � 0.661 0.1926200� 200 (cc = 10�4, ts = 0:05) 1.413 � 0.686 0.1963200� 200 (cc = 10�4, ts = 0:1) 1.411 � 0.684 0.1952200� 200 (cc = 10�4, ts = 0:2) 1.405 � 0.659 0.1917200� 200 (cc = 10�3, ts = 0:05) 1.413 � 0.686 0.1963200� 200 (cc = 10�3, ts = 0:1) 1.411 � 0.684 0.1952200� 200 (cc = 10�3, ts = 0:2) 1.405 � 0.659 0.1916200� 200 (cc = 10�2, ts = 0:05) 1.413 � 0.684 0.1964200� 200 (cc = 10�2, ts = 0:1) 1.409 � 0.678 0.1933200� 200 (cc = 10�2, ts = 0:2) 1.404 � 0.657 0.1909400� 400 (cc = 10�2, ts = 0:1) 1.410 � 0.687 0.1956Multigrid 1.2a � 0.68a 0.195Belov et al. 1.232 � 0.64 0.193Braza et al. 1.3 � 0.775 0.20Williamson - - 0.197Roshko - - 0:18� 0:20aPressure forces onlyon the ratio accuracy/cpu-time consumption was investigated. The best compromise wasfound to be for a convergence criterion equal to 10�3 and a time step equal to 0.1. Thiscan be seen in Table 3 and Table 4, herein, and in Figure 1 Appendix B where resultsfor Strouhal number are compared. Increasing the accuracy further by any of the meansconsidered, only marginally changes the results for Cd, Cl and St.1.2 Three-Dimensional SimulationThe results of the three-dimensional numerical simulations we performed at low Reynoldsnumbers have been reported in three papers (see Appendixes A through C). Appendix Apresents the results obtained for the simulation of ow past a stepped circular cylinder,whereas the ow past tapered circular cylinders is concerned in Appendixes B and C.1.2.1 Stepped Circular CylinderAs mentioned in Part I, the aim was to reproduce the experimental investigations doneby Lewis & Gharib [5] for a uniform ow past stepped circular cylinders. Lewis & Gharibperformed an extensive series of experiments on 5 di�erent stepped circular cylinders.Each cylinder being characterized by its diameter ratio r = dL=dS (see Figure 1(a)). Thediameter ratio can also be expressed with the Reynolds numbers based on the small andlarge diameters, such that: r = ReL=ReS.In the experiments, two distinct types of wake behaviour, called the direct and indirectmodes of interaction by Lewis & Gharib, were found. Because a stepped cylinder has two23



Table 4: Comparison of total cpu-time consumption per period of two-dimensional vortexshedding at Re = 200. cc: convergence criterion, ts: time step.Reference Number of Total cpu-timeaProcessors per period100� 100 (cc = 10�2, ts = 0:1) 8 36200� 200 (cc = 10�4, ts = 0:05) 16 557200� 200 (cc = 10�4, ts = 0:1) 16 335200� 200 (cc = 10�4, ts = 0:2) 16 215200� 200 (cc = 10�3, ts = 0:05) 8 392200� 200 (cc = 10�3, ts = 0:1) 8 220200� 200 (cc = 10�3, ts = 0:2) 8 133200� 200 (cc = 10�2, ts = 0:05) 8 261200� 200 (cc = 10�2, ts = 0:1) 8 162200� 200 (cc = 10�2, ts = 0:2) 8 87400� 400 (cc = 10�2, ts = 0:1) 32 781ain minutesdi�erent diameters, the vortices of the small diameter part will be shedded at a di�erentfrequency than those of the large diameter part. Hence, an interaction region betweenthe wakes of the two parts of the cylinder will occur at the interface. The interfacezone, which originates from the step, is de�ned by the plane where the vortex lines areinterrupted [5].The occurence of the direct and indirect modes seemed to be a function of the diameterratio and the Reynolds number. Based on the diameter ratio, Lewis & Gharib classi�edthe interaction region into three categories:r < 1:25: direct mode dominates,1:25 < r < 1:55: transitional (mode is a function of Re),r > 1:55: indirect mode dominates.The indirect mode is characterized by three distinct vortex-shedding frequencies, fSand fL for the small and large part of the cylinder and a third one, noted f3 alwaysinferior to fS and fL. The region where the third frequency occurs, close to the interfacein the large-diameter wake, is called the modulated zone. This region is said to act as abu�er between the two wake frequencies fS and fL [5]. At the interface zone, the vorticeslink along a line almost orthogonal to the cylinder axis. Another main feature of theindirect mode is the occurence of an inclined interface at a frequency f = fL � f3 whichextends spanwise across the modulated zone on a signi�cant angle [5].The direct mode is characterized by the two distinct vortex-shedding frequencies fSand fL. They interact directly in the interaction region, said to be a zone of quasiperiodicfrequency interaction. A feature of the direct mode is the vortex linkage at the interfacezone. \The vortices connect across the interface zone when they are in phase (or nearlyso). As they become more out of phase, the vortices form linkages to one another onthe same side of the interface. As a result, a hole is formed in the vortex pattern,representing an absence of vortex tubes" [5]. Moreover, there are more vortices sheddedon the small part of the cylinder than on the other one, leading to some \extra" vortices.24



An \extra" vortex will be not linked across the interface to another of the large diameterpart. Hence, this extra vortex will form a \half-loop" [5]. The linkage phenomenon takesplace at �5dL in the spanwise direction from the interface.Another distinctive characteristic of the direct mode is the appearance of angledshedding throughout the wake, and especially behind the the large-diameter part. Lewis& Gharib [5] noticed that the shedding angles in the small-diameter wake remained lowwhereas in the large-diameter wake they were steep. However, both of them remainedconstant and �xed for each of the direct mode cases they studied. In fact, Lewis &Gharib [5] noticed that the \direct mode of interaction only occurred for the range ofReynolds number for which the dL wake shedding angle was steep and �xed". The globalrange of Reynolds number was: 70 < Re < 134 for cylinders with diameter ratio equalto 1.34 and 1.53. The indirect mode occurring below and above this Reynolds numberrange. Figure 19 in [5], depicts the mode appearance as a function of Reynolds numberand diameter ratio.The results for the case undertaken compared quite well with the experimental studymade by Lewis & Gharib [5] (see Appendix A). Qualitatively, all the di�erent charac-teristics of the direct mode of interaction were reproduced: the shedding angle of thevortices (almost parallel to the cylinder axis in the small-diameter wake and steep inthe large-diameter one), the hole-shaped pattern and the half-loop phenomenon. Quan-titatively, however, some small discrepancies have been found. They are assumed to bedue to the di�erence in boundary conditions between the experimental works and thenumerical study.1.2.2 Tapered Circular CylindersThe numerical investigations of ow behaviour behind tapered circular cylinders at lowReynolds numbers performed in this project, have been reported in the papers placed inAppendix B and Appendix C.The numerical simulations aimed at reproducing the experimental work done by Pic-cirillo & Van Atta [6]. They used four di�erent tapered circular cylinders, each of themcharacterized by their taper ratio RT = l=(dL�dS). Figure 1(b) depicts a typical taperedcircular cylinder.Piccirillo & Van Atta [6] noticed that the more tapered the cylinder was (which meanssmall RT ), the less ordered the cell structure and the wake ow were. At �rst, we wereinterested in the wake ow di�erences between tapered circular cylinder and uniformcircular cylinder. This is the reason why the cylinder with RT = 100 : 1 had been cho-sen. Indeed, the slight di�erence in geometry induced rather di�erent wake phenomena.Moreover, the fact that the cylinder with RT = 100 : 1 was the more \ordered" cylinderrendered the comparisons between numerical simulation and experimental results easier.Then, in order to provide more detailed comparisons between the two studies, a secondtapered circular cylinder was chosen. It appeared that the cylinder for which the mostresults were available, was the tapered circular cylinder with RT = 75 : 1. With thiscylinder, we have been able to reproduce all the main characteristics described by Pic-cirillo & Van Atta. Especially the vortex splitting occuring at the narrow end of thetapered circular cylinder of our Case B.When the results from Appendix B and Appendix C are compared for our Case A,a di�erence in the number of cells can be seen. In Appendix B, we stated that three25



shedding cells were found, the same as in the experiments, while in Appendix C, wedescribed �ve shedding cells, the same as in the numerical simulation performed byJespersen & Levit [34] ten years earlier. In fact, it appeared that we did not run thesimulation su�ciently long enough to get a fully established periodic wake when wereported our results in Appendix B. By looking at animations of the time evolution ofthe wake ow, we realized that new shedding cells were created. At last, the cell structurewas made up of �ve cells.Figure 6 in Appendix C represents the Strouhal-Reynolds relationships from oursimulations compared with other results. It would have been possible to plot our resultsdi�erently. If for each shedding cell, the Strouhal numbers had been calculated with themean diameter of the shedding cell, then the curves would have been a succession ofplateau because the vortex shedding frequency is constant within each cell. Moreover,to exactly compare our results with the experiments done by Piccirillo & Van Atta [6],we should have plotted only one Strouhal number value per shedding cell, as they did.Instead of these methods, we decided to calculate the Strouhal numbers based on thelocal diameter thereby plotting local Strouhal number versus local Reynolds number.This had the advantage to allow us to see the e�ect of a vortex splitting on the vortexshedding frequency. This would have been di�cult or impossible to see by using the twoother methods. Consequently, we did not loose this important information.As mentioned in Appendix C, most of the vortex shedding phenomena occuring be-hind tapered circular cylinders were similar to these described by Mukhopadhyay etal. [31] for linear shear ow past a uniform circular cylinder. In a recent numerical inves-tigation, Willden & Graham [35] performed simulations of linear shear ow past uniformcircular cylinders at low Reynolds numbers, using a quasi three-dimensional method.This method means that multiple two-dimensional computational planes are placed alongthe cylinder span. They performed two kind of simulations, with and without vibratingcylinders in a range of Reynolds number similar to Mukhopadhyay et al. [31]. For thecase of a stationary cylinder, the spanwise evolution of the Strouhal number seems to bein good agreement, though they are slightly overestimated compared to [31]. Figure 7in [35] presents the time evolution of the lift coe�cient, Cl, acting on the cylinder. Unfor-tunately, this cannot be compared with other results. Nevertheless, it seems, due to thebending of the lines on the top of the �gure, that a vortex splitting occur near t = 260.Surprizingly, the global pattern of this �gure looks more like what we obtained when weperformed simulation of ow past a stepped circular cylinder. Although absolutely noconclusions can be drawn from this observation, it contributes to the question whetheror not linear shear ow past uniform circular cylinder and uniform ow past taperedcircular cylinder can be compared. This requires further investigations to be answeredand understood.2 Turbulent FlowLarge-eddy simulation of turbulent ow have been performed for two uniform circularcylinders. The results are presented in Appendix D. The objective was to prove that ourcode, CBJ, was able to solve turbulent ow by means of large-eddy simulation. Therefore,simulations for two di�erent uniform circular cylinders were performed as test cases.Uniform circular cylinder were chosen because of the large amount of experimental andnumerical results available in the literature. Moreover, a brief description of the turbulent26
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x/d=7 (d)Figure 6: Statistics in the near wake region. Evolution in the streamwise direction of:variance of the streamwise velocity component, (a) LES and (b) DNS; shear stress, (c)LES and (d) DNSow behaviour past a tapered circular cylinder at high Reynolds number expected to benumerically obtained is also provided.2.1 Uniform Circular CylinderThe �rst test case, called Case 1 in Appendix D, had a quite coarse mesh. This enabledus to investigate di�erent parameters (time step, time di�erenciation) at a somewhat lowcost in cpu-time.With Case 2, care was taken to have good resolution close to the cylinder. Here,the �rst grid point was almost equal to the Kolmogorov length scale: 0:2 � 10�3d atRe = 3900. At this Reynolds number the transition to turbulence takes place in the freeshear layers (see Part III), then on the cylinder the boundary layer remains laminar. Arough estimate of the boundary layer size �, is given by [11, 1]: � = 5=pRe. Thus, with27



Re = 3900, � � 0:08. Here, with our mesh, there are 33 grid points across the boundarylayer from the cylinder to the free stream. Five diameters downstream from the cylinder,the size of the cells in planes orthogonal to the cylinder axis was 3.5 times larger. At thefar �eld boundary, 20 diameters downstream, the size of the cells in the same planes was200 times the Kolmogorov length scale. In the spanwise direction, the size of the cellswere 37.5 times bigger than the Kolmogorov scale. Consequently, as shown in Table 1Appendix D, the total cpu-time consumption for Case 2 was 10 times bigger than forCase 1.The results for Case 2 compared favourably with both experimental and DNS results.However, besides the results presented in Appendix D, it has been found interesting toprovide a comparison, between our data and the DNS done by Tremblay et al. [8], ofthe evolution in the streamwise direction of: i/ the variance of the streamwise velocitycomponent (Figure 6(a) and Figure 6(b)); ii/ the shear stress pro�les (Figure 6(c) andFigure 6(d)). The results are in quite good agreement, the di�erent pro�les are similarand the behaviour identical. Nevertheless, the LES results underestimate slightly theDNS results for the variance of the streamwise velocity component. It must be noticedthat the shear stress at x=d = 7 in our LES results begins to be no more symmetricrelatively to the abscissa axis. This means that our grid is not �ne enough from x=d = 7to x=d = 1 to resolve the small structures. However, both LES and DNS results inFigure 6 are 70 percent lower at x=d = 3:5� 4 than those at x=d = 1:5.As mentioned in Appendix D, periodic boundary conditions in the spanwise directionhave been used to mimic in�nitely long cylinders. This can be a source of debate. InPart III Section 2 we reported the recent work of Prasad & Williamson [30], namely thatoblique shedding mode could occur at high Reynolds numbers for cylinders with largeaspect ratios. With periodic boundary conditions it is assumed that the vortices areshedded in phase along the span, thus only parallel shedding is simulated. Consequently,when one wants to reproduce numerically the turbulent ow past a uniform in�nitelylong (large aspect ratio) circular cylinder, periodic boundary conditions should not beused. But, because the occurence of oblique vortex shedding mode at high Reynoldsnumbers is still not well understood, the question of whether or not periodic boundaryconditions can be used remains open.2.2 Tapered Circular CylinderThe aim of the large-eddy simulation of ow past the tapered circular cylinder consideredhere is to reproduce one of the experiment done by Hsiao & Chiang in 1998 [9]. The choiceof this geometrical con�guration (detailed in Table 2) is justi�ed by its use in severalstudies in the laminar ow regime [6, 34] as well as in the turbulent ow regime [9].Moreover, the shear parameter � used by Mukhopadhyay et al. [31] in their study oflinear shear ow past uniform circular cylinders, was � = 0:02 which is equivalent to ataper ratio RT of 50 : 1, as mentioned in Appendix C. Hence, this geometry seems toprovide the possibility to compare results from a broad range of di�erent works.The main characteristics of the turbulent ow behind a tapered circular cylinder athigh Reynolds numbers are similar to the characteristics observed in the laminar owregime. The vortices are shedded with an angle relative to the cylinder axis and thespan of the cylinder can be divided into several shedding cells, each cell having its ownconstant vortex shedding frequency. The vortex splitting phenomenon, as previously28



described (see Part IV Section 1.2.2 and Appendix C), can also be observed. The vortexshedding frequency is higher at the narrow end of the cylinder than at the wide end.One of the main di�erences between the laminar ow and the turbulent ow pasta tapered circular cylinder is that in the case of turbulent ow, the whole span of thecylinder is always shedding vortices [9]. Moreover, for the case considered here, only twovortex shedding cells with identical size are expected to occur. Their size being equal tohalf the cylinder span.The expected Strouhal number would be in range of 0:18 < St < 0:20. According toHsiao & Chiang [9], at a given taper ratio, the range of Strouhal number increases withthe Reynolds number (for Re = 1:4� 104 the range is 0:20 < St < 0:22). The averageStrouhal number is then higher than the average observed by Piccirillo & van Atta inthe laminar ow regime. Compared to the range of Strouhal numbers obtained for thecase of the turbulent ow past a uniform circular cylinder, the Strouhal number valuesfor the ow past a tapered circular cylinder are somewhat lower. The same is observedin the laminar ow regime (see Appendix C).Part VConcluding RemarksA computational study of vortex shedding behind di�erent types of blu� bodies has beendone. By using the Concurrent Block Jacobi solver, it has been possible to performthree-dimensional numerical simulations of ow behind stepped and tapered circularcylinders in laminar ow regime and behind uniform circular cylinders in turbulent owregime. The main characteristics of these ows which have been reported in the literaturefor experimental, theoretical and numerical investigations, were successfully reproduced.Moreover, numerical simulations yield much more detailed information than experimentsas all the data is known at every grid point for all time steps. This can contribute to abetter understanding of the vortex shedding phenomenon.However, this study clearly shows that it is still not possible today to reproduce nu-merically all the types of ow encountered in daily life. Despite the great improvementof computer capabilities, we are still limited by the memory usage and the storage capac-ity required by the simulations. These limitations have been encountered in this study,especially when large-eddy simulation of ows past circular cylinders were undertaken.Although the present work has shown many of the aspects of the vortex sheddingphenomenon and wake ow three-dimensionalities occuring behind circular cylinders,much has still to be down before one will understand perfectly all the details of suchows. Hence, future investigations should concentrate on: for the laminar ow regime,the completion of the stepped circular cylinder study in order to reproduce the indirectmode of interaction and to explore the areas in the \diameter ratio-Reynolds number"diagram of Lewis & Gharib [5], for which the mode of interaction is unknown. It wouldalso be interesting to perform other numerical simulations of ow past tapered circularcylinders in order to precisely compare the results with those of linear shear ow pastuniform circular cylinders. For the turbulent ow regime, a thorough investigation ofthe vortex shedding behind tapered circular cylinders should be done, this case being of29
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Oblique Vortex Shedding behind Tapered Cylinders�Brice Vall�es1 Helge I. Andersson1 Carl B. Jenssen21 Department of Applied Mechanics, Thermodynamics and Fluid DynamicsNorwegian University of Science and Technology, N-7491 Trondheim, Norwaybrice.valles@mtf.ntnu.no helge.i.andersson@mtf.ntnu.no2 Statoil R & D Centre, N-7005 Trondheim, Norway. CABJ@statoil.comJuly 31, 2001AbstractThe vortex shedding in the wake behind linearly tapered circular cylinders has been consideredfor the two taper ratios 75 : 1 and 100 : 1. The Reynolds number based on the velocity of theincoming ow and the largest diameter was in the range from 130 to 180. The low Reynolds numberassured that laminar ow prevailed in the entire ow �eld. The full unsteady three-dimensionalNavier-Stokes equations were solved numerically with the view to explore the rather complex vortexshedding phenomena caused by the variation of the natural shedding frequency along the span ofthe cylinder. The accurate computer simulations showed that this variation gave rise to discreteshedding cells, each with its own characteristic frequency and inclined with respect to the axisof the cylinder. Flow visualizations revealed that vortex dislocation and splitting took place inthe numerically simulated ow �elds. The computer simulations compared surprisingly well withthe extensive laboratory experiments reported by Piccirillo & Van Atta (J. Fluid Mech. 246, pp.163-195, 1993) under a range of comparable conditions and enabled detailed analyses of other owvariables (notably pressure and vorticity) than those readily accessible in a physical experiment.However, distinct di�erences in the vortex dynamics are observed in some of the cases.1 IntroductionThe potentially severe consequences of vortex shedding behind blu� bodies was a completely unknownphenomenon among civil engineers until the collapse of Tacoma bridge some 50 years ago. Today, thevortex dynamics in wakes behind geometrically simple objects are quite well understood as long as theshedding is nominally 2-D; see the excellent review by Williamson (1996). 3-D vortex shedding is by farmore complex from a physical point of view and therefore relatively less understood. Three-dimensionalwake phenomena may for example occur behind circular cylinders if U=D varies along the span ofthe cylinder, i.e. if either the cylinder diameter D or the incoming velocity U (or both) changes. Ageometrically simple con�guration, and yet of great practical relevance (e.g. chimneys and oil-platformlegs), is the uniform ow past a linearly tapered circular cylinder, of which a slender cone represents aspecial case. Following the pioneering experimental studies by Gaster (1969, 1971), in-depth laboratoryinvestigations of vortex shedding behind tapered cylinders were performed by Piccirillo & Van Atta(1993), and Papangelou (1992) for the special case of cones, and more recently by Hsiao & Chiang(1998).Until recently, the majority of investigations of 3-D vortex shedding were performed in the laboratory.Computer simulations, which require accurate solutions of the time-dependent three-dimensional Navier-Stokes equations, have only become feasible in the last decade, e.g. Jespersen & Levit (1991). The�This paper is based on an oral presentation at the IUTAM Symposium on Blu� Body Wakes and Vortex-InducedVibrations held in Carry-le-Rouet outside Marseille, France, June 13-16, 2000.1



objective of the present study is to perform detailed computer simulations of the three-dimensionallaminar vortex shedding behind a linearly tapered cylinder with a two-fold aim: i) to demonstrate howclosely the experimental �ndings of Piccirillo & Van Atta (1993) can be reproduced numerically; andii) to explore the simulated ow �elds with the view to provide details of the complex shedding patternnot readily available in a laboratory experiment. First, however, a brief summary of the most strikingvortex shedding phenomena is provided.2 Vortex Shedding PhenomenaThe vortex shedding behind a straight circular cylinder in a uniform incoming ow is a classical exampleof naturally occuring unsteadiness in uid dynamics. Following Roshko in 1954, numerous authorshave contributed both experimentally, theoretically and numerically to the understanding of intricateand fascinating phenomena such as vortex shedding, vortex splitting, oblique versus parallel shedding,and occurence of ow instabilities (Mode A and Mode B) in the transition-to-turbulence process; seeWilliamson (1996) for details. For example, a subject of controversy has been the origin of discontinuitiesin the Strouhal-Reynolds number relationship in the laminar shedding regime, Gaster (1969, 1971) andTritton (1959, 1971). Williamson (1988) showed that in the parallel shedding regime, the Strouhal-Reynolds number curve was completely continuous. Moreover, the experimental oblique-shedding dataclosely collapsed onto the parallel-shedding curve de�ning a universal Strouhal-Reynolds number curve:St = ARe +B + C � Re (1)where A = �3:3265, B = 0:1816 and C = 1:600 � 10�4, and the Reynolds number is de�ned as:Re = U:D=�, with � the kinematic viscosity of the uid. Similarly the Strouhal number, which isa dimensionless frequency parameter, can be de�ned as: St = f:D=U , where f denotes the vortexshedding frequency. Williamson & Brown (1998) showed that a more accurate St � Re relationshipcould be given by: St = A+ BpRe + CRe (2)where A = 0:2850, B = �1:3897 and C = 1:8061. According to Williamson & Brown (1998), equa-tion (2) with this set of coe�cients is \distinctly more accurate than existing traditional �ts".Next, in order to investigate a somewhat more complex problem, two variants can be studied: achange in incoming ow (even if the uniformity assumption can often be made, in reality this neverhappens) or a change in geometry (for industrial applications). The former con�guration consists of anincoming linear shear ow past a uniform circular cylinder; linear shear ow meaning that the velocity uof the incoming stream varies linearly along the z-axis which is the cylinder axis (see Figure 1(a)). Thelatter case is that of a uniform incoming ow (U) past a tapered circular cylinder; tapered meaning aconstant change in diameter d all along the spanwise (see Figure 1(b)). The former is characterized by ashear parameter: � = (D=um)(@u=@z), where D is the diameter of the circular cylinder and um denotesthe average free stream velocity. The latter is characterized by the taper ratio: RT = l=(d2 � d1),where l is the length of the cylinder and d2 and d1 denote the diameters of the wide and narrow endsof the cylinder, respectively. The two ow con�gurations depicted in Figure 1 may at �rst sight appearas fundamentally di�erent. However, the observed vortex shedding phenomena turn out to be quitesimilar (see the review on vortex shedding from blu� bodies in shear ow by Gri�n (1985)). Indeed,by assuming that the same uid is considered in both cases and that um = U , the relation � = 1=RT iseasily shown, thereby justifying at least qualitative comparisons. This suggest the alternative de�nition(d2 � d1)=l of the taper ratio.Nevertheless, an important distinction between the linear shear ow and the uniform ow past atapered cylinder should be pointed out. In the former case, the local stagnation pressure varies essentiallyproportionally to u2, as does the base pressure along the lee side; see e.g. Zdravkovich (1997). The2
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(b)Figure 1: Sketch of: (a) linear shear ow, (b) tapered cylinderassociated pressure gradients along the span give rise to a pressure-driven secondary ow along thestagnation line from the high-velocity end towards the low-velocity end, and an oppositely directed owalong the lee side of the cylinder. In the tapered case, on the other hand, the stagnation pressure andthe base pressure are practically constant along the span and no such secondary motions are set up.Another particularly attractive feature of the ow over a tapered cylinder is that end e�ects canbe completely eleminated by proper choice of boundary conditions in the spanwise direction. This isin contrast with the linear shear ow case, in which the inuence of end conditions cannot be avoided(Mukhopadhyay et al. 1999), as shown in the investigation of end e�ects by Mair & Stansby (1975).This motivates the present computer experiments on ow phenomena in the wake behind a taperedstraight circular cylinder in an originally uniform stream.Three main features of the vortex dynamics in tapered cylinder wakes can be noticed: the char-acteristic cell pattern, the oblique shedding angle, and vortex dislocation (Williamson 1989) or vortexsplitting (Eisenlohr & Eckelmann 1989). Since the earliest work of Gaster (1969), the vortex cell shed-ding has been proved to be an important characteristic of the vortex dynamics in the wake of a taperedcylinder (Noack et al. 1991) and sometimes also of the wake behind a non-tapered straight cylinder(Williamson 1996). Piccirillo & Van Atta (1993) showed that the spanwise of a tapered cylinder couldbe divided into a certain number of cells. Each cell was characterized by its own constant vortex shed-ding frequency. This means that two neighbouring cells have their shedding frequencies di�erent fromeach other. Moreover, the size of the cells could be determined by the variation of the vortex sheddingfrequency along the spanwise: a sudden change in frequency indicated a change of cell.After many years of controversy it was pointed out by Williamson (1989), that the oblique sheddingbehind non-tapered straight circular cylinders was caused by the end e�ects; i.e. disturbances originatingfrom one end being propagated along the span from one shed vortex to another. For the taperedcylinders, on the contrary, it has been found by Piccirillo & Van Atta (1993) that the vortex sheddingpattern was practically una�ected by end conditions. Hence, it seems that the oblique vortex sheddingphenomenon of the tapered cylinders has a pure geometric origin. Piccirillo & Van Atta (1993) noticedthat the bending of the vortex lines and the vortex splitting phenomenon were linked. A vortex splittingis said to occur when vortex lines of one core split apart to merge into the o�set cores of neighboringvortices (Eisenlohr & Eckelmann 1989). The angle between the shed vortices and the cylinder axis wasobserved to increase from 5� to 25� before the vortex splitting occured. During each split, the vortexlines far away continue to steepen (up to 50�). After the split, the vortex lines again become continuousand slightly inclined with respect to the cylinder axis. They moreover noticed that this vortex linesbending around the vortex split lead to a decrease in the local frequency of vortex shedding.3



Table 1: Computer simulationsCase RT l=d2 d1=d2 dm=d2 Red2a RunA 100:1 37.473 0.625 0.707 178 14B 75:1 33.461 0.556 0.631 131 22C 75:1 33.461 0.556 0.631 163 23aRed2 = U:d2=�, i.e. Reynolds number based on the largest diameter3 Computational ApproachPiccirillo & Van Atta (1993) considered laminar vortex shedding behind four di�erent circular cylinderswith di�erent taper ratios. In this paper computer simulations are reported for three di�erent cases,namely their Run 14 with RT = 100 : 1 called Case A and their Run 22 and Run 23 with RT = 75 : 1called Case B and Case C, respectively. See Table 1 for further details.Each tapered cylinder was embedded in a 3-D computational mesh with 256 000 points. Basedon the results of previous two-dimensional simulations (Vall�es et al. 2001), this mesh size was foundto be the best compromise between cpu-time consumption, storage requirements and resolution. Themesh was divided into 28 blocks. The cross-sectional view in Figure 2 shows how: 6 �ne blocks forma ring surrounding the cylinder with 8 coarser blocks outside the �rst ring in the x-y plane (cylindercross-section). Two subdivisions were made in the z-direction, i.e. along the cylinder axis.The parallelized Navier-Stokes solver CBJ (Concurrent Block Jacobi) adopted here is a parallel im-plicit multiblock time-accurate Navier-Stokes solver, with a coarse-grid correction scheme (CGCS). TheCBJ code has been extensively tested and used by Jenssen (1994) and Jenssen & Weinerfelt (1995,1998) to compute both steady and unsteady ow �elds. The full time-dependent Navier-Stokes equa-tions, written in integral form, were solved on the structured multiblock grid. The convective part of theuxes was discretized with a third-order, upwind-biased method based on Roe's scheme. The viscousuxes were obtained using central di�erencing. Derivatives of second-order accuracy are �rst calculatedwith respect to the grid indices and then transformed to derivatives with respect to the physical spatialcoordinates. Implicit and second-order-accurate time-stepping was achieved by a three-point, A-stable,linear multistep method:32 (Vi=�t)Un+1i � 2(Vi=�t)Uni + 12 (Vi=�t)Un�1i = R(Un+1i ) (3)where the operator on the right-hand side denotes the sum of the ux into volume Vi of the grid cell i,

Figure 2: Three-dimensional mesh: view perpendicular to the axis of the cylinder. Left: complete view.Right: close-up. 4



�t is the time step and n refers to the time level. To eleminate some of the end e�ects, Neumann-typeboundary conditions were imposed on the x� y planes at the two ends of the cylinder.The computations were performed on a Cray T3E. The CBJ code ran on 8 processors, each processorhandled 32 000 points. The time step was �xed as 0:1d2=U , or about 1=50 of the shedding period.Each simulation was run for 500 time steps, i.e. roughly corresponding to ten shedding cycles. Thedimensionless convergence criterion for the Newton iteration was 0.001 with a maximum of 20 Newtoniterations per time step. The total consumption of cpu-time, after 500 time steps, was approximately425 hours both for Case A and Case B. This implies an average consumption of 6 cpu sec per grid point,whereas the wall-clock time for each run was approximately 62 hours. Thus, the use of 8 processors inparallel on a Cray T3E enabled each simulation to be completed 7 times faster than on a computer withonly a single processor.4 Results and DiscussionThe cellular features of the vortex shedding can be visualized in di�erent ways. Figure 3 gives the timeevolution of the pressure �eld. The pressure values are taken on a line, parallel to the cylinder axis,at x = 2:5dm and y = 1dm, where dm is the mean diameter given in Table 1. This detection line waso�set 1dm from the cylinder centerline in order to detect only one side of the vortex street. The time-traces to the right in Figure 3 mimicked hot-wire outputs, and from these signals the vortex sheddingfrequencies at each spanwise location were calculated. By considering the variation in frequency betweentwo neighbouring positions (cf. Section 2), in combination with both visualizations and animations ofthe ow, the number of shedding cells was determined for each of the three cases.Instantaneous ow �elds are shown in Figure 4. The characteristic cell pattern is clearly visible,both in the isosurfaces of pressure (to the left) and in the isocontours of the spanwise vorticity (tothe right). When the end e�ects at the extremities of the cylinder are discarded, as in the study ofPiccirillo & Van Atta (1993), four distinct shedding cells can be identi�ed in Figure 4 for Case B,i.e. fully in accordance with the number of cells seen in the experiment. Although the positions ofthe cells were not completely �xed, the spanwise locations of the cell centers could be estimated onthe basis of the computer simulations. These locations are shown versus local Strouhal number andlocal Reynolds number in Figure 5 and compared with experimental data for Case B. The results ofthe computer experiments and the laboratory experiments show the same overall tendency, and theclose correspondence between the local Reynolds numbers and the cell center positions are particularlyencouraging. The situation is somewhat di�erent for Case A, for which the time histories are shown inthe top of Figure 3 and instantaneous ow �elds in Figure 4. This ow �eld appears to be more regularthan the two others (Case B and Case C), with the cell positions being gradually shifted in the positivez-direction, i.e. towards the narrow end of the cylinder. The same observation was made by Piccirillo& Van Atta (1993), namely that the ow �eld tends to be more chaotic with increased tapering (i.e.for lower taper ratios RT ). However, the isobars reveal the existence of 5 distinct cells, in accordancewith the observed shift in the vortex shedding frequency, as deduced from the pressure time-histories.This latter �nding is in conict with the three shedding cells observed in the laboratory experiment.Analogous ow visualizations for Case C are shown at the bottom of Figure 3 and in Figure 4. Carefulexamination of the pressure contours to the left in Figure 3 suggests that a new cell is being createdafter about 200 time steps about midway between the cylinder ends. Similarly, a new cell is beingformed after about 500 time steps. Altogether, four cells are visible at the same time. The experimentssuggested that new cells were created near the wide end of the cylinder and gradually shifted towardsthe narrow end, just as in the present Case A. In Case C, however, the cells formed near the wide endof the cylinder are only shifted spanwise to about z=d2 = 15.A decade ago, Jespersen & Levit (1991) conducted similar three-dimensional simulations for laminarow past a tapered cylinder with taper ratio RT = 100 : 1 in a Reynolds number range from 90 to 145,i.e. somewhat lower than those considered in the present work. Their computations were performed onthe massively parallel Connection machine with an implicit, approximate-factorization central-di�erence5
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Figure 3: Time evolution of the pressure along the spanwise taken at x = 2:5dm and y = 1dm. Fromthe top to the bottom: Case A, Case B and Case C. At left, isopressure contours; at right, pressurevalues at selected spanwise positions. 6
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Figure 4: Instantaneous ow �eld. From the top to the bottom: Case A, Case B and Case C. At left,isopressure surface; at right, spanwise vorticity.
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Simulation (b)Figure 5: Cell midpoint locations for Case B (Simulation), compared with experimental data fromPiccirillo & Van Atta (1993) (Experiment). (a) versus local Strouhal number, (b) versus local Reynoldsnumber.code for the full Navier-Stokes equations in generalized curvilinear coordinates and with a three-pointimplicit second-order time-stepping method.Their results showed the same qualitative ow behavior as the experiments of Piccirillo & Van Atta(1993) (i.e. velocity-time trace, vortex shedding), but some quantitative comparisons di�ered, like thenumber of shedding vortex cells. An interesting result is that they got �ve cells, i.e. the same as in thepresent simulation.The reason why both computer simulations were unable to reproduce the laboratory experimentsin every detail is not clear. One explanation could be that the ow past a tapered circular cylinderwith high taper ratio (RT = 100 : 1) is more sensitive to end e�ects at the extremities of the cylinderthan in cases with lower RT . Indeed, tapered cylinders with taper ratios in the range consideredhere and by Jespersen & Levit (1991) are not very di�erent from a uniform cylinder, the latter forwhich Williamson (1989) found that the end cells had very strong e�ects on the main vortex sheddingregion. Moreover, Piccirillo & Van Atta noticed that: \For the 100:1 cylinder with U = 0:5 cm/s theposition of the cell boundaries changed by up to 1.0 cm, when nominally identical runs were compared".Consequently, we ought to state the same conclusion as them, namely that \care must be taken whenusing the cell boundary positions in quantitative analysis". The same behavior was also described byMonkewitz (2000) during the recent IUTAM Symposium. It is noticeable that in the study of linear shearow past straight uniform circular cylinders, essentially the same ow phenomena have been observedboth experimentally by Mair & Stansby (1975), Stansby (1976) and Gri�n (1985) and numerically byMukhopadhyay et al. (1999).In order to provide further qualitative comparisons, St(Re) curves were plotted in Figure 6. This�gure compares the Strouhal-Reynolds relationships deduced from the present simulations with theresults of the experiments by Piccirillo & Van Atta (1993). The curve-�t they employed was given bythe relation Stc = 0:195 � 5:0=Re, where Stc is the Strouhal number associated with an individualshedding vortex cell. The St(Re) relations deduced from the simulations of Case A and Case C are ingood agreement with the experimental curve along one half of the cylinders (the narrowest part), i.e.for Re below 150 for Case A and below 115 for Case C; whereas the computations diverge from theexperimental results for higher Reynolds numbers. This is mainly due to the fact that the experimentalcurve is a �t on Strouhal number values taken at the center of each vortex cell only, whereas the presentresults are based on a truly local Strouhal number for each spanwise location. The di�erence in spanwiseboundary conditions in the experiment and the computations may also explain some of the deviations.A comparison between the simulation conducted by Jespersen & Levit (1991) with RT = 100 : 1 and the8
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Figure 6: Local Strouhal number (St) versus local Reynolds number (Re). Case A, Case B and CaseC refer to the present simulations. Jespersen refers to the simulation with RT = 100 : 1 by Jespersen& Levit (1991). Piccirillo refers to curve �tting of all results reported by Piccirillo & Van Atta (1993).Williamson refers to the universal St-Re curve in equation (1) for straight uniform circular cylindersdue to Williamson (1988).present equivalent Case A in Figure 6, shows that the present results �t quite well with the experimentalcurve, while those of Jespersen & Levit (1991) are closer to the universal Strouhal-Reynolds numbercurve for uniform (i.e. non-tapered) cylinders of Williamson (1988). This discrepancy is most likelydue to the much coarser grid resolution used by Jespersen & Levit (1991). In conclusion, the presentcomputer simulations showed that the local Strouhal number for tapered cylinders is lower than thosefor uniform cylinders at the same Reynolds number, fully consistent with earlier observations (Gaster(1969) and Piccirillo & Van Atta (1993)).The St(Re) relation for Case B, however, seems to be in poor agreement with the experimentalresults. The only di�erence between the two simulations Case B and Case C is the Reynolds numberbased on the wide diameter; cf. Table 1. This modest di�erence apparently a�ects the results con-siderably. By comparing the spanwise vorticity �eld in planes parallel to the axis of the cylinder inFigure 4(bottom, right) and Figure 4(center, right), a di�erence near the narrow (upper) end of thecylinder can be observed. In Case B a vortex splitting can be seen. In order to focus on this owphenomenon, Figure 7 shows a time sequence of the vortex splitting. Considering positive spanwisevorticity (in white), a vortex shedded approximately l=3 from the narrow end of the cylinder appears asthree white spots on Figure 7(a). The split begins from the \second spot": a part of the main core of thevortex is merging into another vortex. Then, while the process evolves in time and space, carried awayby the mean ow, the vortex lines surrounding the split seem to steepen more and more. In Figure 7(d)a second part of the main vortex is splitting to merge into the o�set of a second vortex located behindthe �rst one. Finally, in Figure 7(f) a new \main" vortex is shedded from the same location as the �rstone.This vortex splitting phenomenon explains what could be seen near the top of the pressure isocontoursof Figure 3 (Case B). In the early stage of the process, four areas could be seen until the narrow-end cellbegan to grow from time step 250, thereby reducing the neighboring shedding cell. Between time step9



250 and 300 only 3 cells could be seen. Then from time step 300 to 425 a change occured and 4 areascould again be observed, probably due to a change of phase in the vortex shedding frequency. Finally,from time step 425 until the end of the process, the narrow-end cell considerably reduced its length anda new cell appeared with its center approximately located at the interface between the previous cells.Hence, the behavior of the St(Re) relation in the Reynolds number range 95�125 for Case B, i.e. thedecrease in local Strouhal number while the local Reynolds number is increasing, is believed to be dueto the occurence of the vortex splitting at the narrow end of the cylinder. In fact, the simulation showedexactly the same phenomena associated with the vortex splitting, as stated previously in Section 2,namely a decrease in the local vortex shedding frequency together with a bending of the vortex linesaround the vortex split.In the recent CFD analysis by Mukhopadhyay et al. (1999), most of the vortex shedding phenomenadescribed above have been observed. Although they considered ow past a uniform cylinder, theirlinear variation of the incoming ow u caused a spanwise variation of u=D analogous to that in thepresent study. Their shear parameter � was equal to 0.02, and according to the relation in Section 2this corresponds to uniform ow past a tapered cylinder with RT = 50 : 1. Because this taper ratio isquite di�erent from those involved in the present study, no qualitative comparisons have been made.Nevertheless, their numerical results compared well with experiments by Piccirillo & Van Atta (1993)for a tapered cylinder with RT = 50 : 1.5 Concluding RemarksAccurate numerical solutions of the full time-dependent Navier-Stokes equations have been performed inorder to provide an in-depth exploration of the intricate vortex shedding pattern in the wake of linearlytapered circular cylinders. The results for Case A and Case C showed an encouraging consistency withthe observations made by Piccirillo & Van Atta (1993). In particular, several important features ofthe oblique vortex shedding observed experimentally were reproduced by the computer simulations.These include the spanwise variation of the shedding frequency, which gives rise to discrete sheddingcells, each with its own shedding frequency. For the tapered cylinder with RT = 75 : 1, the numberof vortex cells, as well as their inclination with respect to the axis of the cylinder, compared with theexperiment. The instantaneous vorticity �elds mirrored the oblique vortex shedding pattern, whereasthe isopressure contours showed that four distinct vortex cells were shed from the cylinder. Animationsmoreover revealed that the vortex shedding shifts along the span of the cylinder, from the narrow tothe wide end. The vortex splitting phenomenon described by Piccirillo & Van Atta (1993) was observedto occur in the wake of the tapered cylinder in Case B. It is noteworthy that the match with theexperiments is not uniformly good. For instance, the variation of the Strouhal number along the spanmatches the experiments only in some of the cases. In other cases the physics of the computed ow�eld is simply di�erent from that of the laboratory ow and distinct di�erences in the vortex dynamicsare observed for the less tapered cylinders. Finally, striking similarities between uniform ow pasttapered cylinders and linear shear ow past uniform circular cylinders were pointed out. The next stepof this research programme would be to simulate the turbulent wake phenomena for ow past a taperedcylinder at higher Reynolds numbers, typically 3900 < Re < 5000, in order to enable comparisons withthe experimental study of Hsiao & Chiang (1998). This will be accomplished by means of large-eddysimulations, in which parts of the turbulent uctuations are accounted for by a sub-grid-scale model.AcknowledgmentsThis work has received support from The Research Council of Norway (Programme for Supercomputing)through a grant of computing time. The �rst author was the recipient of a research fellowship o�eredby The Research Council of Norway under contract no. 121279/410. The authors are grateful to thereferees for some helpful suggestions. 10
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(f)Figure 7: Time sequence of the instantaneous spanwise vorticity showing vortex splitting for Case B.Time step (from the left to the right and from the top to the bottom): (a) 463, (b) 470, (c) 477, (d)484, (e) 491, (f) 498 11
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