NTNU 2002:31

Hybrid Intelligent Systems in Manufacturing
Optimization

Application Methodologies of Computational Intelligence
in Integrated Design and Manufacturing

Doctoral Thesis
By

Hirpa Lemu Gelgele

Submitted to the Norwegian University of Science and Technology (NTNU),
Department of Production and Quality Engineering, in partial fulfillment of the
requirements for the Norwegian degree of Doctor of Engineering (Dr.Ing.)

Trondheim, 2002

URN:NBN:no-2332



©NTNU, 2002 Trondheim
Printed by Tapir

ISBN 82-471-5425-0
ISSN 0809-103X

URN:NBN:no-2332



URN:NBN:no-2332

To my parents Dessie Yadeta and Lemu Gelgele

and most of all ......

to my brother Tabsaye Jabeessa, whom I missed a lot.

“Tabsu, oto hawwi fi dandeetti guddaa qabdu,
dheebu barumsa oto hin bahin darbuu keef itti yaadanno haa tatu!”



URN:NBN:no-2332



PREFACE

The work presented in this dissertation was carried out at the Department of
Production and Quality Engineering, the Norwegian University of Science and
Technology (NTNU) within the period February 1997 to January 2002.
Professor Kesheng Wang, at the Department of Production and Quality
Engineering, has been the supervisor of the work. The course work was funded
by the Norwegian State Educational Loan Fund, while the major part of the
study (research and write up) was carried out parallel with employed work as a
Scientific Assistant at the Department of Production and Quality Engineering,
NTNU.

This dissertation would not have been possible without the inspiration, support
and encouragement of many people. With much pleasure, I would like to take
the opportunity to thank all who stood beside me through my graduate studies.

First, I would like to thank my supervisor Professor Kesheng Wang for his
invaluable guidance, advice and encouragement. His constant confidence in my
works and his persistent availability, stimulating discussions and friendliness has
been and will always be inspiring to me. I would like to express my gratitude for
the Management and other Faculty members of the department who allowed me
to work as a Scientific Assistant parallel with my doctoral studies. I highly
appreciate the administrative and technical personnel of the department for their
cooperation and willingness when requested. My special thanks are also due to
the Norwegian Government for allowing me to study at this university and for
the financial support during the initial phase of this study.

This work could not have been a reality without the help of personnel at the
SINTEF Industrial Management Division and the workshop personnel of the
department. Therefore, I would like to acknowledge the cooperation of Kristian
L. Aas and Per Kristian Sanns in acquisition of test data for the EDM process.
The cooperation of Hans Bruvik as well as that of Jan T. Hikvag and his co-
workers at the workshop is also highly appreciated.

My family members, relatives and friends have always surrounded me with love
and support. I would like to thank my wife Ayantu Geneti and our children
Siddise and Fran’ol for their love, support, encouragement and patience during
the whole period of my graduate studies. Most of, I am very grateful to Ayantu
for taking care of our children and her limitless tolerance during my long office
hours including weekends.

URN:NBN:no-2332



Finally yet importantly, I appreciate all my friends who directly or indirectly
supported me during my graduate studies. I am particularly grateful to my friend
Rabbira Garba and his family who stood beside me both in family matters and
for the stimulating discussions we had related with dissertation writing. I am also
grateful to the viewpoints and good ideas I used to harvest from the friendly
discussions with Dr. Adunga Tolera. I would like also to use this opportunity to
thank Galata Feyisa, File Eddosa and Wirtu Eddosa whose support I cannot
express in words. I would like also to convey my special appreciation to all my
Oromo friends around the globe who in one or another way encouraged me
during this doctoral study.

ii

URN:NBN:no-2332



SUMMARY

The main objective of the work reported in this thesis has been to study and
develop methodologies that can improve the communication gap between design
and manufacturing systems. The emphasis has been on searching for the possible
means of modeling and optimizing processes in an integrated design and
manufacturing system environment using the combined capabilities (hybrids) of
computational intelligence tools particularly that of artificial neural networks
and genetic algorithms.

Within the last two decades, a trend of interest towards use of computers has
been observed in almost all business activities. This has forced the industrial
business to undergo dynamic profound changes with automation through
information and communication technology being on the forefront of business
success. Business in manufacturing engineering is no exceptional to this trend.
Several functions in the manufacturing field such as design, process planning
and manufacturing have enjoyed the recent advances in information and
communication technology. However, the earlier isolated automations in each
function have created a significant hindrance to smooth flow of information
particularly because there has been a very high system incompatibility among
the computerized systems.

One of the most difficult problems in modern manufacturing is the inability of
production systems to mimic the basic human capabilities such as adjusting
appropriately to the ever-changing environment. From past studies, it has been
possible to witness that advances in theory and application methodology of
artificial intelligence techniques can overcome many of the obstacles existing in
manufacturing discipline. Today, the emergence of advanced computational
methods in the artificial intelligence world such as genetic algorithms and neural
networks, both inspired by the natural evolutionary process, has created a new
field of research and application referred to as computational intelligence (CI)
approach.

Accordingly, the thesis focuses on the application of computational intelligence
tools from two main perspectives. On the one hand, instead of the isolated
automation of each manufacturing function, the CI techniques have been
considered as powerful tools that allow all functions to operate within a fully
integrated and intelligent manufacturing system. Particularly, since process
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planning is the main linking element between design and manufacturing
functions, an automated and optimized process planning function creates a much
more powerful environment that leads to the optimization of the whole process.
Particularly, being able to integrate feature recognition and operation sequence
optimization is an important element in the manufacturing system chain that can
highly contribute to the automation and flexibility of the integrated design and
manufacturing system. On the other hand, the computational intelligence
techniques themselves have certain weakness of their own in solving the
complex manufacturing process as a stand-alone form. In a hybrid form,
however, they can either support or complement each other.

To realize these two points, this thesis has focused on the development of
theories and application methodologies of hybrid computational intelligence
systems to model and optimize complex manufacturing processes. The aim is to
exploit the strong side of one computational intelligence tool and support or
complement the weakness of the other. To this effect, qualitative analysis and
reasoning of computational intelligence based hybrid systems are
comprehensively discussed. The developed theoretical backgrounds and
methodologies are further used in key problem areas of the manufacturing
system such as operation sequencing, machining economics analysis using
multi-objective optimization approach and modeling and optimization of
unstructured data collected from a non-conventional machining environment
(electro-discharge machining). The results from the hybrid CI application to
model and optimize the electro-discharge machining show that the methodology
is important not only to the industrial activities using this technology, but also
promotes further research and application in the discipline. Though the focus in
this thesis has been on discrete part manufacturing industries, it is important to
mention that the facts, the developed methodologies and the discussed issues in
the study are applicable to other industrial businesses.
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Chapter 1. Introduction 1

CHAPTER 1

INTRODUCTION

1.1. Overview

Manufacturing system management has been significantly influenced by the
changes in market demands. In addition to the growing complexities in the
manufacturing system itself, the demand for higher efficiency, greater flexibility,
better product quality and lower cost have kept the manufacturing practices in a
continuous change. Until the end of sixties, low costs were the driving forces for
production. The demand for high quality products was increasingly important in
the seventies and early eighties. The emphasis on manufacturing system
flexibility together with the developments of information technology has been
the characteristics of the late eighties and nineties. As part of this dynamic
process, companies have been facing a continuous demand for decreased product
life cycle and an increased product variety as well as shorter and more reliable
delivery time.

With advances in information and communication technology (ICT), industries
have also shown a trend of interest towards the use of computers in each phase
of the manufacturing process. This puts the overall industrial activity to undergo
profound changes with computerization being on the forefront of success in
business. However, the application of computers in this area has been limited to
specific tasks such as numerical analysis, process control, simulation and
mechanical automation. On the other hand, a new understanding of the nature of
manufacturing, namely that manufacturing is in principle a system, has
appeared. With the aid of ICT, this system should operate not only as a flexibly
automated system, but also be integrated and optimized.

In the search for a more computerized system that leads to faster product
development, higher productivity and flexibility, lower costs and better quality
products, two basic concepts, integration and intelligence; have emerged in the
manufacturing vocabulary. For example, computer integrated manufacturing
(CIM), integrated computer-aided design and manufacturing (CAD/CAM),
intelligent manufacturing systems (IMS), intelligent machines, intelligent
planning systems, intelligent sensors etc. are becoming common expressions in
today’s, surely in tomorrow's manufacturing environment. Though it is not
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2 1.2 Manufacturing as a System

simple to find unique definitions for these concepts, the wide use of the concepts
gives a general impression that most of the users seem to refer to a
manufacturing system that operates seamlessly and untended or operates better
than before.

Nowadays, having an integrated system is an important competitive factor in
manufacturing industry. Thus, the use of integration concept in manufacturing
implies a seamless linking of [manufacturing] systems that used to be automated
as stand-alone units. This is because integrated manufacturing systems can
improve product quality and competitiveness, have better flexibility and
productivity and reduce production costs. In short, integration brings different
functions of the manufacturing system together so that they function as a unified
system allowing the tasks of initial concept generation to the realization of a
finished product executed within one system.

The concept of manufacturing intelligence refers to the ability of the
manufacturing system to act appropriately in an uncertain environment. This
directly implies the automation of the manufacturing system using computers,
particularly the emergence of the artificial intelligence (Al) technology and its
applications. The following definition of Al is commonly used in the literature:

Al is a branch of computer science dealing with intelligence in human
behavior, including reasoning, learning, self-improvement, goal seeking,
self-maintenance, problem solving and adaptability.

In a broader sense, Al is a discipline concerned with the development and
application of symbolic and computational tools that mimic or are inspired by
natural intelligence to execute tasks with performances similar to or better than
those of natural systems. Thus, the focus on the two concepts, integration and
intelligence in current research trend implies an attempt to utilize computer-
based systems to intelligently linking different manufacturing functions that can
work as integral units of the whole system and show flexibility in reacting to
changes in their environment.

1.2. Manufacturing as a System

According to Merchant (1984), a manufacturing system can be conceptually
thought of being an integrated whole of complex interacting subsystems
organized in such a way to endeavor towards a common goal of transforming an
idea to a saleable physical product. Each subsystem or activity handles different
stages of the process and represents a unique discipline.
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"Rules" from
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Figure 1.1: Manufacturing as a system

Figure 1.1 shows a typical functional representation of a manufacturing system.
In this multi-objective goal seeking process, manufacturing system takes in the
customer needs, feedbacks from different sources, the available technology,
energy and other related information to transform them into products in an
efficient way. The input energy constitutes raw materials, manpower, resources
and common energy forms. From society point of view, the system has also to
deal with waste disposals, recycling of scrap, personnel issues and governmental
and environmental matters. Beside the main product, the process also results in
new technologies that emerge from the innovative ideas put into action and
further advance the manufacturing system.

Depending on the properties of the main product and the mechanisms used to
produce them, a manufacturing system can generally be categorized into two
groups: discrete part manufacturing and continuous process manufacturing.
While the former refers to a process where a product undergoes a finite number
of production and assembly processes, the latter indicates a manufacturing
process where the product undergoes a continuous change such as
transformation of raw materials into finished products through chemical
reactions. Unless specifically stated, the term manufacturing system refers, in
this thesis, only to the discrete parts manufacturing industry, more specifically,
manufacturing by machining.
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4 1.2 Manufacturing as a System

Design (CAD)

- Generate product specification
- Develop product models

Process Planning (CAPP)

- Select machine tools, operations,
setups, tools and fixtures

- Generate NC codes and instructions

- Estimate machining cost and time

- Estimate expected tool life

4 Machine Shop (CAM, CAQ, CAP..)

Machine level activities Production control
- Determine machining sequence - Perform capacity planning
of products for each machine tool | - Identify production routine

- Dtermine start time for operations

- Aquire data on NC code, machine
tool, tool & monitoring commands

- Monitor progress of operations

- Etc.

Quality control

- Generate product
measurement information

- Develop machine tool
monitoring parameters

v

Figure 1.2: The discrete manufacturing system and its main functions

Figure 1.2 shows the representation of the discrete part manufacturing process in
its simplest form with the main activities involved in it. The design level
represents the initial phase of the process chain in the system where decisions
are taken that influence not only the product geometry specifications, but also
the product life-cycle costs, performances and the general layout of the
manufacturing system. Studies show that 70 % of the production cost of a part is
determined at the engineering stage where decisions concerning the selection of
materials, dimensions, tolerances, surface qualities, etc. give the significant
portion of the product’s shape. Therefore, better understanding of the design
phase has a direct positive impact on the effective performance of other
downstream processes in the system.

To address the requirements of different design tasks, many kinds of software
are nowadays available or under development. These design tools model the part
based on a variety of product modeling methods. Because product modeling
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encompasses a very vast domain, no single design method can satisfy all needs
of today’s dynamic environment. Using one or a combination of the product
modeling methods, CAD systems facilitate solid modeling, visualization, design
analysis and drafting.

Process planning is a critical link between design and manufacturing. It
determines the detailed manufacturing requirements to transform a raw material
into a machined part according to the part design specification. In order to
effectively link design and manufacturing, a computer-aided process planning
system should handle the following tasks:

= Identification of part features

= Selection of operations, machine tools (hereafter referred to as machines),
cutting tools (hereafter referred to as tools) and cutting parameters

= Sequencing of operations by considering various constraints

= Selection of jigs and fixtures and

= Determination of cutting conditions and tool paths

In its widest sense, computer-aided manufacturing encompasses all modern
manufacturing technologies that use computers in a central role. This involves
activities such as programming numerical controlled (NC) machines, material
requirement planning, production planning and scheduling. The NC codes are
often generated based on the part design created by the CAD system, and the
process plan is generated by the CAPP system. The information obtained from
these systems is essential for the efficiency of machining, assembly, quality
control and other manufacturing functions.

The close relation between design, process planning and manufacturing shows
that they have a natural dependence on each other that calls for their integration.
The logical way out for this integration is to use sufficiently high-level product
models that can communicate design information of a product to process
planning and manufacturing.

1.3. Why Integration in Manufacturing?

In order to enhance the productivity of the conventional design and
manufacturing activities, and hence to automate various stages of the product
life cycle, CAD and CAM technologies have evolved over the last decades.
Increasing market demands and the complex structure of manufacturing systems
has necessitated these and other computer assisted systems to be the main tools
of manufacturing system automation.
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Regardless of the positive contribution made by each automated system, the
communication gap between the systems is partially open due to incompatibility
of equipment or software. Since both CAD and CAM systems were
independently developed, each having its own method of representing product
data, many of them still experience communication problems in terms of smooth
flow of information between each other due to the following reasons:

Data format incompatibilities between systems
Lack of an integral database serving all engineering functions
Lack of standardization of CAD/CAM interfaces and

Insufficient automation of choice of tools, machining conditions and
procedures

Ealll S

These issues particularly arise when systems developed by different vendors
cannot understand each other. Sometimes, the required data are available in one
of the systems’ database with different format. For example, CAD data are
frequently incompatible with the information required for process planning. In
short, each of the developed systems formed a sort of ‘islands of automation’ in
manufacturing (Alting and Zang, 1989). Accordingly, the incompatibility of
systems and software is one of the major difficulties of integration efforts in
manufacturing.

1.4. Optimization of Manufacturing Processes

Optimization can be defined as a process of identifying objects or solutions that
are better than the other alternatives. Using a certain measure of utility, often
provided by a mathematical model and a method of calculating that measure,
optimization techniques attempt to identify the best direction to move in search
of the solution.

Starting from 1950s, the optimization of metal cutting has been an active area of
research. Since then, many new concepts and optimization procedures have been
developed that created the theoretical basis of machining operation optimization.
In cost optimization of metal cutting, four cost components are important:
machining cost, tool cost, tool change cost and its setup cost (Figure 1.3).
Traditional optimization techniques evaluate all these cost elements against the
cutting speed as the main parameter. However, manufacturing cost is affected by
not only cutting speed, but also other multivariate control variables. Simplified
approaches are traditionally used because the available techniques cannot treat
the entire control variables and the multi-objectives simultaneously.
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Figure 1.3: Plot of manufacturing cost elements’

The advent of computer technology has resulted in extensive research interests
to develop computer-assisted systems for manufacturing system optimization.
The initial efforts focused on computer-aided selection of limited machining
parameters based on look-up tables and mathematical formulas. The
optimization techniques were limited to more traditional ones such as linear
programming (Ermer and Patel, 1974), geometric programming (Gopalakrishan
and Faiz, 1991), dynamic programming (Shin and Joo, 1992), graphical methods
(Kilic et al., 1993) and simplex method (Agapiou, 1992).

The results from several optimization studies show that these conventional
methods are very sensitive to small variations of parameter values. Compared
with the conventional techniques, genetic algorithms (GAs) appear today as the
best alternatives to get optimal or near optimal global values. Nowadays, several
general-purpose GA programs are available that are aimed to solve industrial
problems. However, the performance of these programs depends on how well a
particular problem is setup, i.e. what representation is adopted.

1.5. Motivation and Goal of This Study

The initial objective of this study was to investigate how the integration of
design and manufacturing can be improved by intelligently automating the
process planning function. After analyzing the flow of information between

' Courtesy: (Stephenson and Agapiou, 1997)
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design and manufacturing and critically reviewing how different tools can be
implemented to solve the problems (Gelgele and Wang, 1998), it has been
understood that the manufacturing system needs not only integration, but also
modeling and optimization tools. Optimization enhances the integration effort
and the benefits of integrated systems. Whereas the optimization of
manufacturing processes presupposes existence of certain form of the process
model, there are manufacturing processes for which it has not been possible to
develop appropriate [mathematical] model yet.

In addition, it has been observed that one of the most difficult problems in
modern manufacturing is the inability of production systems to mimic such basic
human capabilities such as adjusting appropriately to the ever-changing
environment. To support the intelligence required, both the hardware and the
software used in manufacturing area should have the ability to adapt to the
dynamic changes. To solve this problem, the current research direction has been
towards wider application of Al techniques. In particular, recent developments
show the powerfulness of CI technology to resolve these manufacturing
problems of integration, modeling and optimization.

So far, there is no clear definition of the computational intelligence concept
apart from the simple fact that it represents a category of techniques in Al that
can be used for analyzing, designing and developing intelligent systems.
According to the current understanding, this group consists of artificial neural
networks, fuzzy logic systems and genetic algorithms (Figure 1.4 (b)).

Inspired by computation in biological systems, genetic algorithms and neural
networks comprise the major part of the implementation of the CI technology.
GAs are proven search or optimization techniques based on adaptive mechanism
of biological systems (Holland, 1975). In accordance with the Darwinian theory
of evolution, genetic algorithms emulate the biological process of genetic change
and survival of the fittest concept to solve problems in engineering, science and
other disciplines.

Neural networks are computational models of the human brain. In the biological
nervous system, the neuron represents the fundamental element of the
information-processing unit that receives electrochemical stimuli from multiple
sources through its input paths and generates electrical impulses that are
transmitted to other neurons through its output paths. Based on the performance
of this nervous system and the mathematical theories of learning, artificial neural
networks constitute a new approach to computation in the Al field. For example,
the human capability of learning-by-examples is simulated by using an artificial
model through adjustment of weights between the neurons.
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Figure 1.4: Categories of intelligent technologies for manufacturing

The versatility of CI tools has resulted in an extensive research interests both to
get better functionality of the tools themselves and to solve practical problems in
various fields. From functionality point of view, the CI tools have certain
weaknesses to provide the required intelligence in manufacturing, and thus
hybridizing one CI tool with the other(s) to improves the performance or to
complements its functionality has been the recent focus of research.
Hybridization can be considered at different levels including hardware, but in
this thesis, it implies only to mating of software particularly that of intelligence
technologies.

As shown in Figure 1.4 (a), the intelligent technologies for manufacturing
problem solving include various techniques of artificial intelligence such as
expert systems, fuzzy logic systems, genetic algorithms and neural networks.
Putting these technologies on a continuum form, we observe from this figure that
these intelligent technologies can be categorized as symbolic processing
techniques on one extreme such as the expert systems and adaptive processing
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techniques on the other extreme such as neural networks. The latter forms the
category of computational intelligence technology.

Figure 1.4 (b) also illustrates different forms of hybridizing the CI technologies
to solve manufacturing problems. Within the last few years, research has focused
on the application of the CI technologies in manufacturing systems particularly
on their possible hybridization. For example, a survey report by Gen and Cheng
(2000) shows that more than 200 Ph.D dissertations have been published only in
the last decade on studies of GAs and their applications covering diverse
disciplines ranging from biology to engineering optimization. In manufacturing
field, for example, we find the following lists:

= Engineering control (Abido, 1997; Cheng, 1996; Memon, 1995)

= Engineering design (Gold, 1998; Joines, 1996; Tay, 1995; Palmer, 1994;
Bowden, 1992)

= Engineering optimization (Mathew, 1998; Yokota, 1996; Pinon, 1995)
= Planning and scheduling (Li, 1999; Cheng, 1997; Wang, 1995; Wright, 1994)

Similar applications are reported in several journal articles (Kumar and Shanker,
2000; Ong and Khoo, 1999) and conference proceedings. The general view
shows that the studies have focused on design and scheduling problems while
the process planning problem, the most important bridging element in
manufacturing system, has got insignificant attention. Further, some Ph.D
dissertations (Chen, 1997; Arguelles, 1996; Jin, 1996; Hashimoto, 1995) and
other publications (Monostori and Egresits, 1997; Shaffer et al., 1992) have been
reported that attempted to combine genetic algorithms and neural networks,
where most focus is given to explore how to evolve neural architectures with
genetic algorithms.

From those research efforts, it is possible to conclude that (1) there has been
high interest of research in application of CI tools during the last decade and (2)
there are indications of active ongoing researches on application of these tools in
diverse disciplines. Motivated by these observations and the existing problems in
industry, the central theme of this dissertation is to study, analyze and develop
methodologies how the CI technology can be implemented in integrated design
and manufacturing environment. Particular focus is given to how the hybrid of
genetic algorithms and neural networks can be implemented to model and
optimize different manufacturing processes. This is because hybridizing enables
us to utilize the combined capabilities (intelligence) of the CI tools to solve the
complex engineering problems.
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From the author’s point of view, the contribution of this thesis can be seen from
the following points. Combining the feature recognition and classification
capability of neural networks to the powerful search and optimization aspect of
genetic algorithms, the hybrid computational intelligence approach leads to
better automation and optimization of the manufacturing system. The proposed
methodology to map feature information to machining actions and optimization
of the process plan task from direct interpretation of the CAD model truly
establishes the smooth flow of product information from design to
manufacturing.

In addition, regardless of their wider use, our knowledge about some
manufacturing processes such as the electro-discharge machining (EDM) is very
limited. Determining the optimum performance of these difficult-to-model
processes and integrating them with other systems is very difficult. Introducing
the hybrid CI approach to model and optimize the EDM process not only
improves better performance of the process, but also attracts further researches
in the area. Furthermore, the issues raised in analyzing the existing problems and
the outlined methodologies contribute to better understanding of the bottlenecks
in manufacturing system integration and the modern means of modeling and
optimization of the process.

1.6. Outline of the Thesis

The remaining part of this thesis is classified into six chapters. Chapter 2 starts
with discussion of the fundamental bridging elements for integration of design
and manufacturing systems. Because features are the building blocks of modern
CAD systems and the major information carriers for automation of Cam
systems, this chapter first introduces the feature concept in product modeling
perspective and explains the central issues in product modeling, feature
recognition and feature-based design. The required level of manufacturing
system automation cannot be fulfilled if one of its elements in the integrated
system chain is not automated. The industrial practice also shows that process
planning is both the key link as well as the weakest link in the process chain.
Therefore, this chapter focuses on the underlying principles, techniques and
challenges of computer-aided process planning with an objective of improving
this linking element using hybrid CI systems.

Chapter 3 gives comprehensive analysis of the motivations, the principles and
the applications of hybrid CI systems in manufacturing environment. Among
others, the chapter discusses the operation principles and application aspects of
the two main CI components — genetic algorithms and neural networks. As part
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of the intended hybrid CI implementation to automate the process planning
function, the application of neural networks for feature recognition has been
demonstrated. The last section of this chapter explains the development and
implementation principles of different forms of hybridizing genetic algorithms
and neural networks.

As stated earlier, the theme of the study, in brief, is being able to combine the CI
tools, extracting their best capabilities and solving manufacturing problems.
Integration, modeling and optimization are the forefront problem areas where
enhancing manufacturing intelligence is required. Accordingly, Chapter 4
discusses methods of manufacturing system optimization using genetic
algorithms and other CI tools. Adopting the travel salesman approach, this
chapter discusses the developed methodology to solve the combinatorial
optimization of operation sequencing problem.

Chapter 5 takes the optimization problem further in detail and demonstrates
problem formulation for multi-objective optimization. Based on a particular face
milling operation, the chapter discusses a methodology for economic analysis of
machining and the result of the optimization.

Many relations in the manufacturing environment are not amenable for
mathematical modeling approaches. For experimentally collected data in
particular, graphical modeling techniques are often used to visualize the
relationships between the control variables and the performance parameters of
the processes. In most cases, trial-and-error methods are used based on certain
recommendations from machine manufacturers. Electro-discharge machining
(EDM) is one example of such processes where mathematical representation of
the performances as some combination of the input variables is not simple.
Chapter 6 discusses this problem and uses a hybrid CI approach to model and
optimize the process based on experimental dataset.

Finally, Chapter 7 presents the concluding words and indications for further
research and application in the area.
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CHAPTER 2

THE BRIDGING ELEMENTS FOR DESIGN AND
MANUFACTURING SYSTEMS

2.1. Introduction

As introduced in Figure 1.2, the manufacturing system can be thought of as an
organization of many activities working together to function as an integrated
unit. In this integrated system, the design phase represents the product idea in
CAD models; the process planning task transforms the design information into
its manufacturing counterparts, and the manufacturing phase realizes the initial
design concept as a saleable physical object. The realities at the workshop floor
of manufacturing systems show that full integration of design and manufacturing
is not yet achieved. The earlier automation efforts could not address the problem
because the capacity of the hardware and software was limited, and most
research attentions were focused on stand-alone systems where design, process
planning and manufacturing were automated as isolated entities.

Today, process planning is widely accepted as a potential linking element of
design and manufacturing systems if the complete information of the product
idea is embedded into part features. Part features allow the geometric
representation of the part and at the same time carry the product model
information that supports automation of the downstream processes.

For better understanding of this integration problem, it is important to define the
feature concept and the important roles of the concept in product modeling
(design). After discussing some solid modeling techniques and feature
recognition problems, this chapter briefly presents the computer-aided process
planning task and its challenges to solve the integrated design and manufacturing
problem.

2.2. Part Features in Product Modeling

2.2.1. Feature definition

A feature is a very general term that often indicates certain non-unique shapes
realized as a result of some manufacturing processes on a raw material. The term
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may mean different things at different contexts. In the engineering context,
features represent the significance of the geometry of a part or a product
including both simple geometrical shapes such as points, lines and curves; and
rather complex analytical shapes such as holes, slots and pockets. The concept
originates from research in process planning and has been extended into other
engineering applications. Many researchers in the past have defined this concept
in several ways. For example, we find the following different definitions in the
literature:

Table 2.1: Examples of feature definition

Source Definition

Shah, 1990; A feature is a carrier of product information that may

Shah, 1992 aid design or communication between design and
manufacturing or other engineering tasks.

Zhang and A feature is a region of interest in a part model.

Alting, 1994

Mazumder A feature is one that represents a collection of entities

et al. 1995 in an intelligent form that match the way engineers

think and hence provide information at a higher
conceptual level than the purely geometrical
representation like lines, arcs and texts.

Henderson and | A feature is a geometrical and topological pattern of
Prabhakar, 1992 | interest in a part model that represents high-level
entities useful in part analysis.

The list of feature definitions in Table 2.1 shows that some of the definitions are
quite general. For example, Shah’s (1990) definition underlines the context
dependence of a feature and specifies four requirements that it should fulfill.

= It has to be a physical part of a component.

= It ought be mappable to a generic shape.

= [t should have engineering significance.

= [t must have predictable properties.
From the above set of definitions, it is possible to observe that topology and non-
geometry information are not considered as feature elements. To stress the
implication of the topology and non-geometry information, the definition used in

this thesis is that a (design) feature is a geometrical or functional shape with
some engineering significance or meaning. According to this definition, any
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design attributes of a product or components of a product (including material
specifications, surface finishes, and tolerances) are also regarded as features. For
machined parts, however, a feature (manufacturing) represents the portion of the
workpiece that is removed by means of certain machining operations.

The difference in the way designers and process planners perceive the feature
concept (as a design feature and a manufacturing feature) is often debatable.
This difference in view is known as the multiple views problem (Soenen and
Olling, 1995). This multiple views problem can diminish if consensus is
achieved on the feature and its attribute names. This could result in the definition
of highly application dependent features that incorporate both design and
manufacturing information.

2.2.2. Solid modeling

In mechanical design of parts using CAD systems, there are normally four
different ways to represent 3D geometric models: wireframe models, surface
models, constructive models, and boundary models, where the last two modeling
techniques constitute the solid modeling concept. Solid modeling is computer
representation of geometric objects (in CAD systems) that can provide an
unambiguous representation of the part. The aim of such representation is also to
cover all engineering functions from the initial concept to part manufacturing
and reuse. Solid models provide a full 3D representation and a high-level
geometric description of the object.

The constructive models and boundary models mentioned above are usually
designated as constructive solid geometry (CSG) and boundary representation
(B-rep) respectively. Though the two modeling techniques are used to describe
the shape of a typical workpiece precisely, the hybrid of CSG, B-rep and other
modeling techniques are often used in modern CAD systems.

Constructive solid geometry

In CSG, solids are described as combinations of simple primitives or other
“super” solids that are constructed using the so-called building block approach
and a series of Boolean operations’. Typical standard primitives include cone,
cylinder, sphere, plane, block and wedge. Solid models built using CSG method
hold no explicit information about the geometry of the part, but instead describe

* Contrary to applications in set theory, union, intersection and difference are often
referred to as Boolean operators in solid modeling environment.
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how to obtain the part from a series of Boolean operations performed on the
geometrical entities. Therefore, CSG model is often referred to as an implicit
part model.

Formally, application of Boolean operators in solid modeling field can be
defined as follows:

= Union: set of points that belong either to the first or to the second solid
(denoted A U B)

= [ntersection: set of points that belong to both solids (denoted A N B)

= Difference: set of points that belong to the first solid but not to the second
(denoted A — B)

Using these Boolean operations, a new solid is constructed from two intersecting
solids. This technique is common in mechanical engineering since it gives a
precise analytic description of the model. The modeling method is also popular
because adding and subtracting elementary volumes simulates the natural design
process, as well as the process of removing material volume by machining from
the raw material (the initial feature). For instance, Figure 2.1 shows a simple
CSG model with a Boolean subtraction of a cylinder from a block that is
constructed using one of the available parametric feature-based CAD systems,
Pro/Engineer from Parametric Technologies. In this construction, the subtraction
of the cylinder from the block corresponds to a drilling operation.

Developing solid models using features, for example, as carried out in
Pro/Engineer, is strictly sequential, and it adds features whose placement depend
on the prior geometry. The creation of features such as protrusions and cuts
correspond to the Boolean operations of union and difference respectively.

Figure 2.1: A simple CSG model — subtracting cylinder from a block
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The design information in CSG modeling is stored in a tree structure with the
primitives as leaves and the Boolean operators as internal nodes. The internal
data structure of the tree is simple, and its data size is small because it contains
not the actual object, but the instructions for how to make the part again. This
makes easy not only the process of modeling, but also the modification of the
solid. However, only limited operations are available to create and modify the
solid. Generally, it is not easy to implement operations other than Boolean
operations.

btracted
feature (F2)

Final object
Initial feature

(Fo0) .
(a) Feature tree (subtraction)

Added feature
(F21)

Added feature
(F22)

o

Initial feature (F00)

(b) Feature tree (addition)

Figure 2.2: Principles of 3D object modeling using CSG
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The other crucial problem with respect to current demands on solid models is the
difficulty concerning feature recognition. As demonstrated in Figure 2.2, a
number of CSG trees can represent a finite number of CSG models. Thus, the
same object can be saved in several data structures resulting in a non-unique part
representation. Such a tree stores the model information in an unevaluated and
implicit form. Because there is no explicit geometric information in CSG
models, this modeling technique is not so attractive when it comes to feature
identification for process planning purpose.

Boundary representation (B-rep)

B-Rep models represent a solid by bounding surfaces that form a volume
contained in a set of faces together with topological information that defines the
relationships between the faces. Figure 2.3 shows a very simple B-rep model
constructed using six faces. The faces, edges, vertices and the related geometric
information form the basic components of the models. The geometric
information contains the face and edge equations (or information to compute
them) and vertex coordinates. The topology contains the information on the
relation of the components, i.e. how the faces, edges and vertices are connected
together. The boundary of the solid separates points inside from points outside of
the solid.

The data structure in B-rep is simple and easy to implement. The model stores
part data in an “evaluated” form, such that all vertices, edges and faces have an
explicit representation. However, due to the complexity of the construction of
the models, it is not trivial for a designer to build correct models directly. To
implement this technique, the designer needs a sufficient collection of more
well-situated and efficient solid description methods.

B-rep model
Faces

Figure 2.3: A simple B-rep model constructed using six faces
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2.2.3. Part feature implementation issues

The part model represented in a conventional CAD system mainly contains
design primitives that may not always correspond to manufacturing features.
Manufacturing features, on the other hand, are those well suited for defining
manufacturing methods systematically through geometric and technological
information. Thus, the information retained in CAD systems should be
interfaced or integrated with other systems in some way so as to enhance full
automation of manufacturing.

Two main philosophies are generally used to develop such interfacing using
features (Sakurai and Gossard, 1990; Shah and Rogers, 1988):

1. Feature-based modeling: incorporating manufacturing information at the
design stage that can be preserved and transferred to the manufacturing stage
and

2. Feature recognition: designing the part using solid modeling techniques
with explicit specification of manufacturing information where the
manufacturing information is retrieved from the solid model separately.

This implies that the information retained in the CAD system should either be
initially built with manufacturing operations in mind or retrieved or interfaced in
some way to suit the downstream processes. It is commonly accepted that both
approaches are necessary and even complementary (Soenen and Olling, 1995).

2.2.4. Feature-based modeling and CAD/CAM integration

Advances in CAD/CAM related technologies have so far helped reduction of
cost and lead-time of manufacturing parts to a certain extent. Particularly in 3D
CAD systems, feature-based part modeling is an emerging technology that raises
the level of abstraction of the primitives used to conceptually model a part and
helps the system capture the design intent while modeling.

One implication of feature-based design is the reduction of the product
development cycle by creating awareness of manufacturing processes at the
design phase. Accordingly, the technology has currently getting another
dimension in the field of integrated design and manufacturing research. The
notion has also a positive impact on development of CAD systems because
designers were forced to work at a higher abstraction levels than working with
primitive shapes.

There are certain important drawbacks that the feature-based design approach
suffers. Primarily, it may not always be possible to perform a one-to-one
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mapping of part design (form) features to their manufacturing counterparts. As
suggested by many research reports, for example Arikan et al. (1992), unrealistic
or ambiguous feature models may be generated since all manufacturing features
are not well suited for design. Secondly, it is not a natural way to design shapes
using manufacturing requirements because designers may not be familiar with
manufacturing processes.

2.2.5. Recognition of features from CAD models

Why do we need to recognize features?

The initial idea to recognize features for machining can be traced back to the
development of CAPP systems. Process planning, in general, involves a series of
operations each associated with a set of machines, tools, fixtures and other
resources. Feature recognition is an intermediate step that can be taken as a
means to the end. The need for recognizing features from CAD models always
arises with regard to the automation of process planning when retrieval of one or
more of the following are required from the solid model database:

= Manufacturing features like holes, bosses, pockets, keyways etc.
= Topological information like adjacency and neighborhood to other features

= Technological information like tolerance (parallelism, perpendicularity,
concentricity) and surface finish information

=  Material specifications like size, type of material and its properties and

=  Work holding and setup features.

Nowadays, certain CAD systems have inbuilt post processors that can directly
convert the geometrical data to NC codes for direct machining. This form of
integrating design and manufacturing by bypassing process planning is often
designated as integrated CADCAM system. With this respect, one may question
the reason why we need to go through the intermediate step of feature
recognition and process plan generation.

There are many reasons that justify this need. Primarily, direct post processing is
not appropriate technique for mass production. The downstream process in
manufacturing is not limited to only machining. Manufacturing as a system also
highly depends on production planning, quality control, maintenance etc., which
also need the design model information. If design features are not recognized
and process planning is bypassed, then the downstream processes in the
manufacturing chain lack the necessary information. The machining operation
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done based on the direct generated NC-code is also not optimal and
incompatibilities always make human intervention a necessity.

The major obstacle to completely automate the manufacturing process is the
incompatibility and inconsistency of data representations in several of computer
applications in manufacturing. This leads to a conceptual difference in design
features and manufacturing features. Besides, a part may have different
interpretations in different CAD and CAM applications; this also hinders the
reasoning process of the CAD data for manufacturability.

Techniques of recognizing part features

Starting from early 1980’s, many research works have been published in the
field of feature recognition. Though significant milestones have been setup by
those studies, the adopted techniques still suffer to solve several aspects of the
demand to smoothly link CAD and CAM systems. Some of the adopted
approaches will be shortly discussed.

Graph-based approach (Joshi and Chang, 1988; de Floriani, 1989):

This approach uses the graph nature of a B-rep solid model to recognize
features from a CAD model. The graph represents the boundary elements
(face, edge and vertex) as nodes, and the topological relationship as arcs of
a graph. The drawback of using this approach is however, the combinatorial
explosion and existence of sub-graph isomorphism problem in recognizing
interacting features. Extracting the sub-graphs from the complete feature
and defining isolated features results in a large and computationally
difficult search space that can be categorized as NP-complete problem
(Garey and Johnson, 1979).

Volume decomposition approach (Kim, 1994; Sakurai, 1995):

This approach computes the removed volumes from the solid model and
decomposes them into cells for machining purpose. The recognition
method in this approach varies depending on the way the total volume is
partitioned. The approach is effective in handling interacting features, but it
involves very expensive computation and the recognized features are
deficient in topological information.

Rule-based approach (Vandenbrande and Requicha, 1993):

In this approach, sets of rules, written in the form of if-then-else, describe
the topological and geometric information of predefined features. If all
conditions are satisfied, then the features satisfying the rules are

URN:NBN:no-2332



URN:NBN:no-2332

22 2.3. Computer-aided Process Planning

recognized. The rules represent a coded form of human knowledge in a
knowledge base. However, it is impossible to define all rules for all
features, and new sets of rules are required to define features with slight
adjustments. The rules are also non-unique and exhaustive search is
necessary (Lin et al., 1997).

Most recently, the application of artificial neural networks has been suggested to
solve the feature recognition problem (Henderson and Prabhakar, 1992; Dagli,
1994). This application will be further discussed in Chapter 3.

2.3. Computer-aided Process Planning

2.3.1. Backgrounds of process planning

Society of Manufacturing Engineers has defined process planning as: the
systematic determination of the methods by which a product is manufactured
economically and competitively (Tulkoff, 1987). As an element located between
design and manufacturing, process planning transforms design specifications
into manufacturing processes. Computer-aided process planning (CAPP) uses
computers to automate the decision-making tasks of process planning.

The process planning task for machining operations can be broken down into
several subtasks as shown in Figure 2.4. The subtasks are performed based on an
input data of the part design and involve several selections and decision-making
processes including consideration of a number of alternatives. The first and
foremost problem in creating smooth flow of information between design and
manufacturing starts at extraction of the design data for process planning task.
The selection of machining resources and determination of operation sequences
under several constraints represents an optimization problem that decides the
major cost of producing the part (Gelgele and Wang, 2000). Thus, a structured
and well-developed process-planning tool obviously leads to a shorter product
throughput time, lower costs and higher quality of products or services.

2.3.2. Computer-aided process planning methods

Traditionally, and still in most industries, process planning is performed
manually where a skilled process planner, mostly a previous machinist,
examines the part drawing and makes all necessary decisions needed to produce
the part based on his/her knowledge about the process. Such manual process
plans are mostly not elaborate. The quality of such process plans depends highly
on the planner’s knowledge about the manufacturing process environments.
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Figure 2.4: Process planning tasks

Subjective judgments of the process planner such as personal preferences and
exposures to similar problems can also highly influence the generated plan. As a
result, process plans generated by different planners can vary even for the same
part. The planner’s expertise is mostly not documented and retires with the
planner himself.

With the advent of computers, however, computer-based assistance has been
introduced in manufacturing area and several forms of automating the process
planning function have been developed. Among those methods, the variant and
the generative CAPP approaches are often mentioned as the main types.
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The variant CAPP approach

In the variant CAPP approach, a process plan for a part is generated based on an
existing process plan for a similar part in a Group Technology (GT) database.
The method follows the principle that similar parts require similar plans. This
can be considered as an advanced manual method where the search process in a
computer replaces the human memory retrieval process. For a part having a
similar model or matching GT code whose process plan is already generated, the
part is first coded into part families based on its geometrical characteristics. A
computer is then used to retrieve the operation sequence, tooling and other
process planning parameters for that family from the database, a necessary
modification is done for the particular geometry, and the plan is stored for
further use.

In this approach, the major decision still depends on the knowledge or expertise
of the planner. As a result, the effectiveness of the generated plan depends on the
structuring and knowledge accumulation level of the database where the
computer functions only to store data of the planner’s selections and retrieve
upon request.

The advantage of the variant approach is its simplicity. Compared with the
manual method, it advances the process planning task with respect to the
following aspects:

Uses existing manufacturing data and expertise consistently
Frees the process planner from routine clerical work

Uses shorter time to generate new process plans

Enables easy updating and modification and

AN S

Allows company data standardization

However, research and implementation shows that this approach suffers high
inflexibility and inaccuracy because it assumes that a process plan for a new part
is essentially a copy and a modification of an existing part. It also requires input
from an experienced process planner for plan modifications and cannot perform
planning for parts that have no matching GT code.

The generative CAPP approach

Contrary to the variant type, generative CAPP systems attempt to synthesis a
process plan for a part based on information obtained directly from CAD
database or a blueprint as input. The system uses rules and decision algorithms
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to capture process planning information. To perform the process planning tasks,
the approach requires the development of sophisticated data analysis techniques
that emulate human decision-making processes. Shop floor data must be
represented in a form that allows decomposition of a part into elements
corresponding to the necessary operations. The system must also be able to
establish precedence among operations automatically based on the available
geometrical and technological data and optimize if there are several alternative
plans. This requires suitable optimization algorithms or search strategies with
appropriate objective functions. Unfortunately, these tasks are found difficult to
solve in previous researches due to computational complexities.

At its lowest form, generative process planning method reduces the time and
effort required to prepare process plans in more or less consistent way. At its
advanced form, it is expected to provide an industrial environment having a
seamlessly automated interface between design and manufacturing, and in the
process to achieve the complete integration within the manufacturing system.
Compared with the variant approach, a generative CAPP system has better
advantage that it does not require high expertise from human planner, and can
produce plans for parts not belonging to existing part family. However, the
number of parts that the system can handle is limited due to the vast knowledge
requirements in its development. Particularly, representing the planning logic is
a difficult task.

The advent of Al systems has made computers to mimic the logic of making
process planning decisions. Most of the Al based systems developed so far are,
however, rule-based expert systems, where the basic ideas of manufacturing
process and its constraints are represented by rules of the form /F <condition>
then <action>. This principle has been implemented in systems such as GARI
(Descotte and Latombe, 1981) and PART (van Houten, 1990).

2.4. Challenges of Intelligent CAPP Systems to Integrate CAD/CAM

Process planning is still predominantly a labor-intensive activity highly based on
experience, skill and intuition. As seen above, dependence on human intuition
often precludes a thorough analysis and optimization of the whole process. Some
of the previously developed CAPP systems had attempted to assist human
planners to a certain degree in generating process routes. Today, the advent of
Al technologies has given rise for intelligent CAPP (ICAPP) systems that are
meant not only to assist the human planner, but also to replace some functions of
the expert process planner.
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Forced by the demands from industrial applications, integrating design and
manufacturing though ICAPP is today one of the active research areas.
However, most of the research efforts remained short of addressing the problem
partly because people in the computer science field, whose research efforts lack
accommodation of the important challenges in the manufacturing environment,
develop these computer-based (intelligent) systems. The decision-making
approaches considered in those efforts are mostly sequential whereas process
planning requires a combinatorial problem solving approach. As a result, the
developed systems are short of achieving an optimized goal.

To realize the intended integrated design and manufacturing system with a
feature-based part model as input, an ICAPP system should be able to solve the
following outstanding challenges simultaneously:

Map design features to their manufacturing counterparts
Select and optimally sequence operations
Select manufacturing resources (material, machines, tools, jigs, etc.) and

S

Optimize the utilization of manufacturing resources and data.

Numerous factors affect these tasks including: geometric shape, tolerance,
surface finish, part size, material type, quantity and manufacturing method used.

2.4.1. Mapping from design model to manufacturing information

Bridging CAD systems to CAPP systems requires that the system should first be
able to transfer the geometrical and technological information from the CAD
model into a set of manufacturing actions. Though CAD systems are the natural
and obvious source of data for process planning, they still cannot store and
process all data needed by ICAPP systems. It has not yet been possible to
recognize all technological data of necessary attributes including surface finish
and tolerances from CAD systems. Moreover, attributes such as form, type and
size of the raw material used for the part production as well as workshop
capabilities and order information are not possible to extract from CAD systems.

One possible reason for this drawback can be the fact that the technological data
are not recognized as features in existing feature-based design systems, but exist
as text information for human understanding. The conventions used in drawings
as a medium of design grammar are not always amenable for computerized
communications. Certain research efforts attempted to overcome these
limitations by investigating new methods of binding the technological data to the
part model representation (Roy et al., 1989). Some even argue that the need for
feature recognition can be bypassed if the design system itself uses standardized
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features for the construction, representation and storage of the parts (Lee et al.,
1993; Duan et al., 1993). According to these solutions, the designer develops the
part model in CAD system by selecting a blank, and specifying what operations
(drilling, slot cutting etc.) should be performed on the workpiece to produce the
final part. The problem with this type of solution is that it places work burden of
process selection and sequencing on the designer by enforcing the designer to
assume the role of both the design and manufacturing engineer.

In order to map design features to meaningful machining actions, computers
need to mimic the way a human process planner thinks to do similar tasks. A
process planner recognizes machining features by means of the specific actions
needed to convert a raw material into the part specified by the shape, surface
finish and/or size of the part. The actions such as face turning, stepping, taper
turning, drilling, etc., can be interpreted in terms of the combination of
machines, tools, setups and machining parameters. According to the complexity
of the part, a set of either simple or combination of several actions can be
employed where change of several parameters is involved.

The procedure of converting feature information into meaningful machining
operations or process planning actions is carried out using the following steps:

1. Select all operations that match the geometrical and technological
parameters of the feature.

2. For each selected operation, find all combinations of machine tools (MT)
and cutting tools (CT) that can execute the operation.

3. For each (MT, CT) combination, determine all possible setups (SP)
including cutting parameters and tool approach directions.

As demonstrated in Figure 2.5, this algorithm maps a feature to one or several
sets of operations. The cylindrical part model shown is a simplest case to
demonstrate the mapping process. Here, a cylindrical surface such as @1 is
mapped to a turning operation that can be performed by several possible
combinations of machines, tools and setups. For rather complex parts, several
options exist from which we can select a suitable combination.
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Figure 2.5: Mapping from feature sets to machining operations

For example, a flat surface can be mapped to different operations such as
planning, shaping, milling, etc. Each operation can be executed on different
machines or each machine can utilize different tools. In short, an operation can
be realized using different (MT, CT, SP) combinations and up to six normal
directions of tool approach can be assumed to machine certain prismatic objects.

2.4.2. Operation selection and sequencing

For machined parts, operation selection and sequencing is the most critical
activity of process planning. Its essence is to determine what operations possess
the capability to produce the features of the part. Accordingly, the feature type,
its geometry and technological requirements drive the selection process.

Operation sequencing involves determining what order to perform the selected
operations so that the resulting order satisfies the precedence constraint of the
operations. Maintaining the precedence relations and appropriately allocating the
resources of the production plant makes the need to treat operation sequencing
as an optimization problem. In the last decade, GAs have been applied to many
combinatorial optimization problems including job shop scheduling (Biegel and
Daveren, 1990) and other TSP type NP-complete problems (De Jong and Spears,
1989). Due to the similarity in complexity, it is possible to treat operation
sequencing problem (OSP) using the TSP approach (refer Section 4.4).

2.4.3. Selection and optimization of manufacturing resources

Since the solution space of process planning problem involves a number of
selections, decision-making tasks and constraint evaluations, there can exist
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many feasible solutions for a given planning problem, where finding the best
plan among the alternatives requires definition of an evaluation criteria for each
alternative. This is, in short, an optimization task.

The minimum processing time and the related cost are the most commonly used
criteria for evaluating process plans. The later is mostly favored because
accurate calculation of processing time at early stage of selecting operation
methods and their sequences is relatively difficult. On the other hand, the
machining cost can be estimated from machine usage, cutting tool usage and
setup costs. This issue will be discussed in Chapter 5.

2.5. Chapter Summary

In this chapter, an overview of challenges within integrated design and
manufacturing system has been presented. The need to identify the problems that
hinder the effort of increasing the flexibility and intelligence of the
manufacturing system has been the driving force behind the discussions of this
chapter. Presently, CAD systems have automated the geometric modeling of
product idea. Particularly, features are today accepted as the potential carriers of
the product model information that lay the foundation of design and
manufacturing automation. CAPP systems can also assist process planners to a
certain level. However, getting the design information directly from CAD
models and generating optimum operation sequences remains as one of the most
important challenges in the area.

To facilitate the information flow between design and manufacturing using
features, a mechanism of mapping feature sets to machining actions has been
proposed. The issues highlighted in this chapter will be used as a foundation for
developing an operation sequencing methodology in later chapters, where a
special focus is first given to exploring the tools that can create a smooth flow of
information.
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CHAPTER 3

HYBRID INTELLIGENT SYSTEMS AND APPLICATIONS IN
MANUFACTURING

The rapid expansion of the newer intelligent technologies has meant that many
manufacturing fields are increasingly dependant on computational intelligence
(CI) tools. The interest for these tools emanates from two angles. On one hand,
instead of the isolated automation of each manufacturing function, the newer CI
approaches will allow all to be incorporated within a fully integrated and
intelligent manufacturing system. An integrated intelligent system creates a
much more powerful manufacturing environment that is flexible and optimized.
On the other hand, the CI tools have certain weakness of their own in solving the
complex manufacturing problem as a stand-alone form. In a hybridized form,
they can support each other to deliver the required intelligence for
manufacturing systems.

This part of the thesis focuses on the operation principles and development of
hybrid intelligent systems for manufacturing system application. After
highlighting the motivations and challenges of using hybrid intelligence systems
in manufacturing, the chapter focuses on the hybrid of the two CI tools —
artificial neural networks and genetic algorithms.

3.1. Motivations for Hybrid Intelligence in Manufacturing

The progress in computer-aided manufacturing systems is evolving towards a
new phase that can be designated as the phase of intelligent manufacturing
systems (IMS). The computer aids at this phase are challenged to have
capabilities to solve unprecedented and unforeseen problems on the basis of
even incomplete and imprecise information. In short, the demands from the
manufacturing environment that often challenge the research works include:

= Self-learning capability

= (apability to compute tasks in a short time

= Solving problems having incomplete and qualitative data

= Representing knowledge resulting from many years of experience

= Adapting to new situations such as new knowledge directly coming from
production process or laboratory tests
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At the same time, the industrial business is undergoing a profound change, with
knowledge or intelligence being the forefront element of competitiveness. Thus,
IMS itself must be able to manage a tremendous amount of knowledge to offer
the intelligence required. Since the conventional programming tools cannot offer
the required intelligence, the research studies in this field are progressively
directed towards the use of tools and methods developed in the computational Al
world: artificial neural networks, fuzzy logic systems, genetic algorithms and the
like. Al-based systems model the adaptive and complex thinking processes of
the human brain and formulate solutions to the manufacturing system where
traditional approaches cannot be applied. Hybrid of CI tools that can be
innovative, evolutionary and have self-learning capability are specially better
attractive to solve the complex problem.

3.2. Forms of Hybrid Intelligent Systems

Since its inception in the 1950s, the field of Al has produced a variety of tools to
solve manufacturing problems. Table 3.1 summarizes few key functions of Al
techniques in different sectors of manufacturing. It is possible to see from this
table that the capability of the Al techniques varies. At the same time, several of
the techniques have more complementary nature than replacing each other,
which attracts their hybrid form of application.

Table 3.1: Key functions of Al techniques

Al techniques | Key functions Manufacturing sector
Expert Advice, goal seeking, Process planning,
Systems explanation, etc. scheduling, diagnosis
Fuzzy Logic Communication, uncertainty | Control (quality, inventory),
Systems handling, classification scheduling, planning
Genetic Optimization, generalization, | Design, planning, control
Algorithms global search, etc.
Neural Learning, knowledge Diagnosis, monitoring,
Networks acquisition, pattern prediction, modeling,
recognition, optimization, quality control, inspection,
classification, etc. forecasting

Hybrid application of Al systems enhances manufacturing intelligence through
automation, integration and optimization of the system from design to part
production. For example, hybrid expert systems and neural networks are often
recommended both in research and practice because they are often considered as
two sides of the Al coin (Tafti, 1992). This is so because each technique can
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solve certain type of problem that the other one cannot. In other words, neural
networks can provide most of the features that are not suitable for or supported
by expert systems and vice-versa. This helps to extract the best features of one
system and complement its weaknesses from the hybrid (mate).

As an essential element of the IMS, intelligent CAPP systems are one of the
potential areas for fusion of Al tools (Medsker, 1994; Ming et al. 1999).
Similarly, hybrid systems have been implemented in many fault diagnosis and
monitoring problems (Senjen et al., 1993; Tsoukalas and Reyes-Jimenez, 1990).

In CI, mating neural networks with FLSs had been an intensive study to develop
their hybrid offspring often referred to as neuro-fuzzy system (NES). It seems
that Al system hybridization research has highly focused in this direction. NFSs
have mostly the architecture of fuzzy systems and use the neural learning
technique. The hybrid of genetic algorithms and neural networks have been
suggested in many developments related with the improvement of the
performance of neural networks (Winter ef al., 1995).

Within manufacturing, the field of diagnosis and monitoring is the most
attractive area to exploit the potential of NFSs (Monostori and Egresits, 1997;
Ozyurt and Kandel, 1996). The symbolic representation of membership
condition in fuzzy systems and the powerful pattern recognition and
classification capability of neural networks have favored this integrated (hybrid)
application for this particular field.

The main reason for all hybridization efforts is the fact that each Al tool has
certain weaknesses of its own. The best qualities of one tool may lack in the
other. In most cases, one Al tool cannot completely replace the other; they are
rather complementary. Therefore, hybrid application of the tools is obviously a
necessity so that the manufacturing environment can enjoy the full capability of
the tools. Shortly, to give success in manufacturing fields, intelligent systems in
the future are expected to be hybrid, integrated and be modular in nature.

The remaining part of this chapter first briefly discusses the working principles
and applications of two CI systems: artificial neural networks (ANN) and
genetic algorithms (GA). Finally, two approaches of hybridizing the two CI tools
for manufacturing system applications are elaborated.
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3.3. Operation and Application Principles of Neural Networks

3.3.1. The biological system analogy

Artificial neural networks are inspired by the biological nervous system and
mathematical theories of learning, information processing and control. Though
our knowledge about the nervous system is still far from complete,
neuroscientists and others have learned some important facts in the past few
decades. In the biological nervous system, the neuron represents the
fundamental element of the information-processing unit. The neuron is a small
cell that receives electrochemical stimuli from multiple sources through its input
paths (dendrites). Based on the strength of the combined signals, it generates
electrical impulses that are transmitted to other neurons through its output path
(axon), which splits up and connects to other neurons’ input paths through a
junction (referred to as a synapse). The synaptic strength of a junction, which is
chemical in nature, determines the amount of signal that is transferred.

In short, an ANN can be considered as a computational model of the human
brain that is designed to simulate the biological process of the brain in
performing a particular task or function of interest using computers. Due to this
performance analogy, ANNs can be categorized as a family of models that are
based on a learning-by-example principle, where problem-solving knowledge is
automatically generated according to actual examples presented to them.

Figure 3.1 shows the working principle of this artificial model (the fundamental
element of ANN&s).
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Figure 3.1: Model of an artificial neuron
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Associated with each unit of the artificial neuron is a transfer function that
determines how the neuron’s value (or activation) is updated. Typically, the
combination function computes the net input to the neuron usually as the
weighted sum of all inputs. This function is a linear combination given by the
following relation:

Sj:[ZWUXi—ejj (3.1
i=1

where S; is the activation level of the processing element PE;, X; is the input
vector at input node i, Wj represents the synaptic strength of the i to j
interconnection (Wj =0 for i=j), 6; is the threshold value of PE; or the bias term
and » stands for the number of inputs.

Equation (3.1) involves three fundamental operations of the artificial model:
input signal evaluation, summation and comparison with the threshold value. In
this process, the sum of the weight inputs is computed and a very simple
activation function, denoted by f(S;), is applied to the net input. The activation
function transmits the output along links for further processing and limits the
amplitude of the outputs to some finite value usually between O and 1. Step
function, sigmoid function and hyperbolic tangent function represent the three
main types of activation functions in use.

3.3.2. The structure and learning mechanism of neural networks

The functional structure of neural networks is based on our understanding of the
biological nervous system. The neural network structure is built on a large
number of simple and adaptable neurons. A single neuron functions rather
slowly and is of little use, but collectively performs tasks at great speed when
they are interconnected in a network. The way individual neurons are
interconnected and the nature of the connections define the structure of neural
networks.

In terms of their structures, neural networks are divided as feedforward networks
and recurrent networks. The most popular feedforward neural network is the
multi-layer perceptron (MLP) where all signals flow in a single direction from
the input to the output of the network. Figure 3.2 shows a principle sketch of a
MLP structure with its three distinct functional layers and the corresponding
neurons: input, output and hidden. Input and output neurons form the nodes at
which data enters or leaves the network, whereas hidden neurons are internal to
the network. The neurons in the input layer receive data from outside of the
network, whereas those in the output layer contain the network’s results.
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Figure 3.2: Principle sketch of MLP neural network structure

Except for the nodes at the input layer, the net input to each node is the sum of
the weighted outputs of the nodes in the previous layer. These outputs are
transmitted to the following layer through the connections that amplify or
intensify the outputs through weight factors.

Recurrent networks are networks where the outputs of some neurons are fed
back to the same neurons or to neurons in layers before them allowing signals to
flow in both forward and backward directions. While feedforward networks
perform a static mapping between input and output spaces, recurrent networks
are said to have a dynamic memory. The Hopfield network is an example of
recurrent networks.

The learning algorithm governs how the strength of the connections are adjusted
or trained to achieve a desired state of the network. In order to function in a
dynamic environment and react to input signals accordingly, adaptive learning
capability is essential to neural networks. The network is as good as the data
with which it is trained — process of putting knowledge into the network.

Using one or the combination of the above ways of learning, ANNs execute a
change in the memory (weight matrix) that makes them to adapt to the nature of
the input signals and solve our complex problems. Therefore, the structure and
learning algorithm are the two main parameters used to categorize neural
networks.

Some networks can be trained by feeding them with typical input patterns and
expected output patterns. The error between the actual and expected outputs is
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then used to modify the weight of the connections between the neurons. This
method is referred to as supervised learning approach. This emphasizes that the
objective of training the network in supervised networks is to determine the
correlation between a known input and output pattern. A good performance of
the training process highly depends on the ability to provide all ranges of input
variables that affect the outputs, which is, in most cases, very difficult to obtain.

There are also networks that do not need an external example for learning, but
the system relies only upon local information and internal control strategies.
Such learning mechanism is referred to as unsupervised learning approach. The
response of the network in this approach is based on its ability to organize itself.
The only available information to the network is the set of input patterns from
which the network extracts knowledge and develops its own classification rules.

3.3.3. Application areas of neural networks in manufacturing systems

The application area of neural networks in manufacturing is surprisingly broad,
covering nearly all fields from design to final product use and disposal. Table
3.2 summarizes the important applications in process control, quality control,
industrial inspection, modeling and optimization.

The vast majority of these applications use supervised training approach, but
obtaining the input patterns and the correct outputs is sometimes difficult. The
data requirement of unsupervised training is, on the other hand, much easier and
less costly to meet. However, the capability of unsupervised networks is
significantly less than that of supervised training.

Table 3.2: Application areas of ANN in manufacturing

- Steelmaking fusion

- Furnace control

- Molding operation

- Petroleum distillation
- Force prediction

- Etc.

- Fault tracing

- Car troubleshooting
- Welding inspection
- Etc.

Process Control Quality control/inspection | Modeling
- Adaptive control - Nondestructive testing | - Process modeling
- Fault diagnosis - Damage identification - Product design

- Pulp manufacturing
- Etc.

Optimization

- Production Schedule

- Maintenance Schedule
- Delivery of materials

- Etc.
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The useful properties that mostly attract the application of ANNs in all these
fields include the following (Barschdroff and Monostori, 1991):

= High processing speed, due to massive parallelism

= Adaptability by means of efficient knowledge acquisition

= (Capability to process unknown data

=  Compactness for space- and power-constrained applications

It has been repeatedly stressed that the key to the success of manufacturing
organizations is the effective integration of design to downstream applications.
In the efforts done to recognize design features so far, generating a feature
library for all kinds of features or writing rules every time a new feature
appeared has proved to be complex and impossible. To overcome this problem,
neural networks appeared recently as potential tools. The next section highlights
the most important application of neural networks in an integrated design and
manufacturing environment, i.e., the feature recognition problem.

3.3.4. Recognition of design features using neural networks

As a main component of CI, neural networks represent the most recent and
promising approaches to feature recognition . Many research efforts are also
reported concerning this approach with a promising result. For instance, Chan
and Fisher (1996) proposed an artificial neural network methodology that can
interpret the trained features directly from the geometric information instead of
relying on expert-defined rules. Dagli (1994) presented a neural network
approach for 2D features using backpropagation neural network. This approach
uses a matrix of binary numbers as input to the net, which limited the
applicability of the idea for general features. Henderson and Prabhakar (1992)
proposed a five layer neural network using a face adjacent matrix as an input to
the net. The face adjacency matrix used in the work could not capture all the
geometrical information. Hence, the approach could not differentiate between
features that have the same topology but different in dimension of faces.
Similarly, Kumara et al. (1994) proposed a 3D interactive feature recognition
system using graph and neural network approach, where a concept of face-
scores is implemented to classify certain number of features.

The study of the literature shows that several ways of applying neural networks
for feature recognition have been attempted. A number of Ph.D. dissertations
have been dedicated merely to this problem (Chan, 1994; Hwang, 1991). The
coverage in the literature is an indication of the importance of the feature
recognition problem in manufacturing system automation and the good potential
of the neural network tools to solve the problem. However, the diversity in the
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proposed solution approaches indicates that the search for the solution is not yet
over. Regardless of the long training time that appears to be a common difficulty
often encountered, the advantage of neural networks is very promising to
overcome the conflicts and complexities in recognizing design features.

The literature study also shows that features considered in those approaches do
not cover the range of currently implemented feature categories. As part of this
challenge, an approach with new feature classes is proposed here using a multi-
layer backpropagation network.
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Figure 3.3: An architecture of neural network based feature classification
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Figure 3.3 shows a block diagram representation of the architecture of the
approach that converts a B-rep based traditional CAD model to a feature-based
environment. According to this block diagram, feature data containing both
geometry and topology information is evaluated to shape values or face-scores,
whose calculation method is explained elsewhere (Dagli, 1994).

Based on experience on feature-based CAD modeling tools like ProEngineer, we
can identify 10 commonly used feature classes that cover the possible range of
features used in modern CAD models as listed below.

ID Feature ID Feature
1. Hole 6. Pocket
2. Round 7. Protrusion
3. Chamfer 8. Rib
4,  Slot 9. Pipe/shell
5. Step 10. Irregular shapes
Using the class IDs (I =1, 2, ....., 10), the features are defined as input vectors

in terms of edges, faces and vertices to present them for the neural network using
the following relation:

Feature;(t) = f(F;, W) = 2w;{(DF; - 6 3.2)

where F; is a B-rep based face-score, w is the weight vector of the net
interconnections, ¢ is the number of training patterns and 0 is the threshold value.

The major problem that must be addressed in this approach is how to represent
the solid model of a part so that it can be understood by the neural network. The
network cannot be expected to perform any logical operations explicitly.
Accordingly, the solid model has to be coded with identification of the elements
and attributes required to recognize any feature. In depth study has been reported
in the literature (Chan, 1994; Henderson, 1994) how the inputs of the network
can be coded with numerical values as face-scores that describe the geometry
and topology of the feature. The face-scores give the measure of complexity
with respect to the concavity and convexity of the shape. They are calculated
from vertex scores and give the definition of a face in terms of the face geometry
and a set of boundary edges and vertices. Further, they are representations of a
feature as a material removal process. A high concavity score for a face implies
material removal from the face, while a high convexity score defines material
addition to the face.
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According to this approach, a feature is recognized if sets of faces that satisfy
some predefined relationships and fulfill defined characteristics are found in the
test part. For example, a cylindrical face with two adjacent plane faces having
circular common edges, one concave and the other convex, can be recognized as
a [blind] hole feature. After being trained on the input information and the 10
classified features as target, the neural network can be implemented on the input
face-scores.

Features can also be classified using confidence limits that can be set to accept or
reject levels. The accept level gives the minimum value that the output must
reach to belong to a defined feature class, and the reject level gives the
maximum value below which the output must be limited as not belonging to a
defined feature class. For example, a confidence limit ranging between O and 1
can be defined such that an output close to 1 is recognized for a certain feature
class while other limits close 0 are rejected. Accordingly, the task of the network
becomes assigning the each case to one of the 10 feature classes.

The classified features are crucial for downstream manufacturing applications
such as process planning, assembly planning and quality inspection. Having the
classified features, operation sequencing of machining features can be presented
in terms of relations among the features using the geometric and topological
constraints that define precedence of operations.

3.4. Operation and Application Principles of Genetic Algorithms

The inspiration for genetic algorithms (GAs) comes from the principles of
natural genetics and the theories of evolution. According to the Darwinian
theory of evolution, only the most suited elements of the population are likely to
survive and generate offspring, thus transmitting their biological heredity to new
generations. A genetic algorithm emulates this biological process of genetic
change and survival of the fittest concept to solve problems in many
engineering, science and other areas by applying random, and yet structured
parallel search technique.

Goldberg (1998) defines GAs as stochastic global search algorithms based on
the mechanics of natural selection and natural genetics. Though the exact
mechanisms of natural evolution are not well known, there exist some of its
important aspects. For example, evolution works with chromosomes - organic
information carriers containing the exact characteristics of a living being.
Evolution works on these chromosomes instead of the living being they
represent. GAs are essentially the software version of this evolutionary process
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where a solution to a problem is stored in a form of an artificial chromosome
using strings of bits or numbers.

3.4.1. Operation principles of genetic algorithms

Figure 3.4 shows the basic implementation method of the genetic operators of
GAs. As this technology is based upon the principles of Darwinian theory of
evolution, the terminologies used here are drawn from the field of natural
population genetics.

Having an objective (or fitness) function that can ideally represent a problem and
is able to evaluate the merit of the system performance, the search for a solution
starts from a population consisting of a number of randomly generated
chromosomes. Selected chromosomes based on best-fitness create intermediate
populations that are mate to form suitable couples. Genetic operators (crossover
and mutation) are then applied to produce the next generation. Crossover
recombines information currently available by using sections of each parent to
create a child chromosome. Mutation introduces new information by altering the
state of randomly selected individuals.

The general algorithmic implementation of these principles can be represented in
a canonical form as follows:

1. Form an initial population

2. Evaluate the fitness of all solutions in the current population

3. While termination criteria is not met, repeat

{

=  Select parents for crossover

= Generate offspring by crossover

=  Mutate some of the members of the original population

= Remove the least fit solutions from the parent population

=  Merge the new offspring (mutants) to the existing population

}

4. Choose the best-fit solution and the corresponding layout.
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Figure 3.4: Four phases of genetic algorithm operation

It is possible to see from this canonic form that each GA application requires
three main parameters:

= Methods of generating the initial population
= Defining the fitness function and
= Stopping the algorithm run

The initial population could be generated at random or from a problem specific
procedure. A certain form of model that can represent the problem environment
is defined as the objective(s) of optimization. The algorithm run continues by
creating successive new generations and ends when a given stop criterion that
allows enough number of generations is reached. Typically used stop criteria
include specified maximum fitness, a given period of generations, a given
number of total generations or a specified number of generations with
unchanged fitness.

The reproduction operator

Genetic reproduction is a biased selection mechanism to determine which
individuals will continue to the next generation to form a new population.
Taking the encoded individual solution as input, a reproduction operator
computes the value of that solution with respect to the objective function.
Among several reproduction mechanisms (or policies) in use, the proportionate
method (like roulette wheel) and the elitism method are mostly applied in
practice.
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Roulet

18 %

Figure 3.5: Working principle of the roulette wheel selection strategy

According to the proportionate method, individuals become candidates of the
next generation depending on their fitness probability i.e., the probability of an
individual to be selected is proportional to its fitness in the population. Figure
3.5 shows the working principle of the roulette wheel selection. This selection
strategy is the most common proportionate technique in GA.

In the roulette wheel method, the selection probability (P) of an individual that
occupies a portion a; of the wheel and having a fitness of f; can be expressed as:

%Y 7 (33)

For instance, as shown on portion E of Figure 3.5, if a chromosome’s fitness is
10% of the total fitness of the population, then it receives one tenth of the
roulette wheel’s area. The roulette wheel is spun for each free space in the new
population. This space is assigned to the chromosome in the slot the ball lands.
Thus, those chromosomes of greater fitness are expected to receive more spaces
in the new population (such as A) than those with lower fitness (such as C).
Accordingly, this ensures the selection chance of a chromosome be proportional
to its fitness.

While the roulette wheel selection gives only a higher probability for the best-fit
individuals, the elitism strategy selects individuals strictly based on their fitness.
It keeps a copy of the sequence from the best individual to date thus keeping the
fitness function non-increasing. Random selection is implemented if two or more
sequences have the same best fitness. Thus, elitism always allows the best
individuals to pass on to the next generation.



Chapter 3. Hybrid Intelligent Systems in Manufacturing 45

Random cut p1)int After crossover
|CrossoM
Pecross

Figure 3.6: A fixed-length array, a single-point crossover

Genetic crossover operators

Crossover is the main operator of the GA approach and operates on two
chromosomes at a time to produce new offspring from selected pairs of solutions
in the current population. The simplest form of the operator is a single-point
crossover where a random position is chosen and portions of the two parents are
exchanged to form two offspring. A crossover probability peoss 1S used to
identify random-cut point. By generating a random number p between 0 and 1, a
comparison is made between p and Peoss. If P > Peross, then the random-cut
produces two segments, head and tail, of the chromosome strings where the tail
segment of parent 1 creates the tail segment of child 1. The head segments are
then swapped over to produce two new full-length chromosomes. Figure 3.6
illustrates the operation principle of a single-point crossover.

Forced by the demands from real-world problem complexities, more advanced
crossover techniques that fit the problem domain have been designed. Among
these, the partially mapped crossover (PMX), order crossover (OX) and cycle
crossover (CX) are mostly discussed (Goldberg, 1998). Goldberg and Lingle
(1987) initially proposed PMX algorithm as a modification to the simple two-
point crossover in their TSP solution. As with the single-point crossover, PMX
occurs with a probability p that is greater than the crossover probability of p. In
a similar way, the crossover point is selected randomly and the same points are
identified in both parent chromosomes.

As shown in Figure 3.7, PMX has two implementation stages: crossover and
revalidation. The first stage is identical to a simple double-point crossover.
Illegal structures can appear at this stage because it involves multiple values in
some cases while some solution elements are missing in other cases. Stage 2, on
the other hand, reestablishes valid sequences in both children by swamping
elements between the children. At this stage, the elements outside the crossover
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points that are similar to those inside the crossover points are identified, and then
the repeated elements in child 1 are paired and exchanged on a piecewise basis
with repeated elements in child 2 (shown by arrows in stage 2).

The PMX and OX operators are similar. The major difference is, however, that
PMX, because of point-to-point mapping, tends to respect absolute gene
positions, whereas sliding fill of empty spaces makes OX operator to respect
relative gene positions. Further theoretical and empirical analysis of these
operators is available in Goldberg (1989). According to the theoretical analysis
of the article by Oliver and his colleagues (Oliver et al., 1987), the best
crossover operator for problems such as the TSP is OX, followed by PMX and
CX. This result could be expected because only adjacency of genes is important
in TSP type problems. In a similar empirical study, Chan and Tansri (Chan and
Tansari, 1994) have attempted to find out which operator best suites for facilities
layout problem, and contrary to the TSP, they found the order of the better
performing operators to be PMX, OX, and CX.

Qui-paint 1 Qui-paint 2
\ .
2

Parent

Figure 3.7: Principles of PMX operator
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Figure 3.8: Principles of mutation genetic operator

Genetic mutation operators

Mutation is a random modification of one or more elements in the solution
string. It is applied to each child after crossover and has a function of ensuring
the possibility of exploring the space of solutions for any initial population.
Mutation introduces noise in the population that helps to ensure that no point in
the search space has a zero probability of being examined and serves the crucial
role of either (a) replacing the genes lost from the population during the
reproduction process or (b) providing the genes that were not present in the
initial population (Gen and Cheng, 1997). Similar to crossover, mutation occurs
at every cycle according to an assigned probability known as mutation
probability, p,. An element in the string making up the chromosome is randomly
selected and changed when the probability p > p,, is achieved.

The simplest form of mutation is the use of binary strings, where the mutation
operator changes an element (i.e., 0 or 1) to the other elements. In the general
case, however, permutation strings are designed to generate new strings that
fulfill the requirement of the problem. Two elements in the string are randomly
selected with a probability p > p,, and are swapped with each other. Figure 3.9
shows examples of both mutation methods.

3.4.2. Applications of genetic algorithms in manufacturing systems

GAs are designated as one of the next generation tools for intelligent
manufacturing (Gu and Norrie, 1995). Particularly since the 1960’s, there has
been an increasing tendency to imitate human beings to solve difficult
optimization problems in science, research and engineering. Currently, the
technology is under intensive research for several manufacturing system fields,
mainly in scheduling and manufacturing system facilities layout (Syswerda,
1991; Uckun et al., 1993).
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Compared with the traditional optimization algorithms, GAs have the following
important differences:

= They work with coded version of parameters, instead of the parameters
themselves. This allows simultaneous optimization of the whole parameter.

= They search from a population of points simultaneously, not from one single
point. This helps to avoid many local hills.

= They use objective function information instead of derivatives or auxiliary
knowledge. This contributes to their robust function in achieving an optimal
solution.

= They use stochastic reproduction instead of deterministic rules. The
probabilistic approach to solve problems introduces the intelligence
capability to the system.

The scope of GA applications is, however, restricted to those problems where it
is possible to encode the set of solutions as chromosomes and where a fitness
function may be defined. Nowadays, many commercial products of GA
programs are also available on the market. However, experience shows that
applying a standard off-the-shelf GA technology to a particular manufacturing
problem is often not possible. Therefore, a specially tailored GA for the specific
problem is required. Accordingly, the next section of this chapter discusses the
development of a hybridized genetic algorithm with neural networks for
implementation in manufacturing system integration, modeling and
optimization.

3.5. Developing a Hybrid Genetic Algorithm and Neural Network
System

Evolution and learning are the two main processes that improve the adaptation
capabilities of living creatures to a changing world. These two natural processes
have inspired the development of non-traditional problem-solving tools within
computational intelligence field, namely genetic algorithms and neural
networks.

The development of hybrid genetic algorithms and neural networks (in short
HyGANN), as the main CI tools, is necessitated due to the inherent strengths and
weakness of both systems. In design and manufacturing environment, for
example, many problems need the power of the two CI tools simultaneously.
ANNs are known to have the capability to process problem solving through
distributed and parallel search mechanisms that contribute to fast computations
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of the huge manufacturing data. They have shown good performance in feature
classification, modeling and predication problems.

Genetic algorithms have also proved to be versatile and effective approaches in
many engineering optimization problems, among others, due to their parallel and
robust search capability for a global optimum. In most cases, however, GAs can
only find near global optimal solutions because of their randomness
characteristic. These solutions may be satisfactory for some applications, but not
acceptable for others. In this sense, a search method using only GA is not
powerful enough in some complex applications.

Intuitively, since a hybrid search algorithm based on GAs and some other search
techniques can get a much better solution than GAs alone, various optimization
techniques have been developed that combine GAs with other search
mechanisms. One common way suggested in the literature is incorporating local
heuristic search mechanisms into the basic loop of genetic algorithm.

3.5.1. Two forms of hybrid CI system applications

Figure 3.9 shows the two development approaches adopted for a hybrid CI
system application to solve manufacturing system problems.

(a) Hybrid form I - enhancing the capability of one intelligent system tool by
completely embedding the other(s).

(b) Hybrid form II - creating partially embedded or independent, but
complementary applications by combining the strong side of each intelligent
system tool.

a N

Manufacturing System Manufacturing System

Cl Tool A

Cltool B
Cltool B

\_ AN J
(a) Hybrid form | (b) Hybrid form Il

Figure 3.9: Forms of hybrid CI systems in manufacturing
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Type I hybridization (Figure 3.9a) may not be surprising because a good deal of
biological neural system architecture is determined genetically. This form of
hybridization has been suggested in many research reports particularly with
respect to construction of better ANN architecture. For example, genetic based
evolution of the neural system has been reported within the following
applications:

= To set the weights of a MLFF network architecture (Whitley and Devis,
1993)

= To learn neural network topologies for given applications — determining the
number of nodes, the learning rates etc. (Murray, 1994)

= To construct optimal networks for given applications (Bornholt and
Graudenz, 1992)

= To select training data and to interpret the output behavior of neural networks
(Mitchell et al., 1993)

The real problem in most cases is finding an appropriate representation for the
variables and translating into a constrained solution space that is tractable for a
GA solution. Accordingly, there seems much work remaining before the full
benefits of GAs are realized in supporting ANN development efforts.

Type II hybridization is a new trend of implementation where different CI tools
support each other to solve a huge problem domain. The basic idea of
implementing this form of hybridizing using genetic algorithms and neural
networks is aimed to solve the overall problem in integrating design and
manufacturing.

3.5.2. Application based on degree of hybridization

Depending on the level or degree of fusion of genetic algorithms into the
function of neural networks or vice-versa, two further sub-divisions of the
second hybridization form can be considered. Figure 3.10 shows these sub-
divisions together with their potential applications in integrated design and
manufacturing environment. In the first case, the degree of fusion is considered
as “weak‘ because the two CI tools are loosely coupled, maintain their identity
and solve a sequence of problems by sharing data with one another. For instance,
this fusion combines the feature recognition and classification capability of
neural networks and the parallel and global search and optimization capability of
genetic algorithms to enable automated feature recognition and operation
sequence optimization for machining operations.
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Figure 3.10: Hybridization levels of genetic algorithms and neural networks

In an integrated design and manufacturing system, feature recognition from
design models and mapping to a process planning or manufacturing information
stands as one of the most difficult challenges in the field. Having the feature
information, the process planning task has to make selections among many
alternative options under conflicting objectives and constraints. This task
represents a combined combinatorial and multi-objective optimization problem
demanding very powerful search and optimization techniques.

The second sub-division is designated as “strong” because part of the work of
neural networks is assisted by the genetic algorithm’s capability to search and
generalize. This principle is primarily designed to solve problems in
manufacturing systems where it is not possible to accurately define a
mathematical model representing the performance of the processes. Using the
power of neural networks without knowing what is going on inside the network
structure is one of the main challenges facing implementation of hybrid CI tools.
Therefore, defining the neural network structure through genetic evolution and
finding the correlation between the input-output patterns has been proposed for
those manufacturing problems having no optimization model. Accordingly, the
model defines the fitness function that is further optimized using genetic
algorithms. As demonstrated in Chapter 6, the electro-discharge machining
process is such a particular problem area where it has not been possible to define
an analytical optimization model and where this hybrid system can be very
useful. Furthermore, this approach can be implemented for rather complex and
computerized machining processes such as NC machining centers for online
control and optimization of the process parameters.

URN:NBN:no-2332



URN:NBN:no-2332

52 3.6. Chapter Summary

3.6. Chapter Summary

In this chapter, the development and implementation of hybrid CI systems
together with the working principles and application perspectives of genetic
algorithms and neural networks for manufacturing system integration and
optimization have been discussed. The proposed hybrid CI system of GAs and
neural networks can cover the whole process of manufacturing a part - from
product idea generation to the realization of the physical object. The forfront
intention for developing this hybrid system is to combine pattern recognition and
classification power of neural networks with the powerful capacity of genetic
algorithms to global search and optimization in solving a common
manufacturing problem. Having design features appropriately recognized, the
hybrid system performs optimization tasks including, but not limited to design,
operation sequencing, facility layout and production scheduling. In this process,
the GA-based optimizer communicates with the CAD system, the feature library
and the manufacturing resources database to realize not only the integration, but
also the complete intelligence of the manufacturing system.

On the other extreme, there are manufacturing processes that are difficult to
model for optimization. The proposed hybrid CI system is also aimed to solve
such difficult-to-model processes using the neural networks’ learning capability
based on input-output patterns and further feeding of the networks results to
genetic algorithm based optimization.

From these viewpoints, the study in this chapter concluded to classify the
hybrids of GAs and neural networks into two - “weak” and “strong” hybrids. In
the first case, both GA and neural network tools stand more or less as
independent entities and solve the manufacturing problem — GA for optimization
and neural network for feature recognition. In the second case, however, two
strong interdependences of the tools are observable. On the one hand, genetic
algorithms can promote the performance of neural networks to solve a given
problem. On the other hand, neural networks can provide appropriate patterns
for genetic algorithm application whereby the structure of the neural network is
actively used to perform optimization tasks. The following chapters demonstrate
the application of the hybrid system from both perspectives.
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CHAPTER 4

OPTIMIZATION IN MANUFACTURING SYSTEMS

4.1. Introduction

Optimization can be defined as a process of identifying objects or solutions that
are better than the other alternatives. To identify the best alternative(s),
optimization techniques require a measure of the "goodness" or utility of an
object and a method of calculating that measure. A mathematical model that
takes a parametric description of the object and gives the perfection,
effectiveness or functionality degree of the object - known as the objective
function generally provides such a measure of utility.

Traditional optimization techniques use local information to identify the best
direction in which to move such as in the case of 4ill-climbing problem. The hill-
climbing man, after having taken a small step in a given direction, tries to get
new local information to move on, and the process is repeated until no such
improvements can be made. For this technique, there is no possible way to know
whether the best possible solution has been identified or not. The solution may
be better than those values that are local to it, but there is no guarantee that this
solution is better than all other values. Such techniques are, therefore referred to
as local optimization techniques.

One distinguishes between two types of optimization problems: single objective
problems (SOP) and multi-objective problems (MOP). The first case treats only
one scalar-valued criterion in its objective function, whereas the objective
function for the second case involves more than one criterion that are treated
simultaneously (Dev, 1995; Steuer, 1986). Real-world problems in industrial
production often require optimization of more than one measure of performance
at once. Multi-objective optimization approach is necessary in such areas
because the measures may conflict with each other, and it can be unsatisfactory
to combine them into a single optimization objective or reduce them in some
way so that only one is optimized.

SOPs have been extensively studied within the last 50 years to solve our
problems in manufacturing and other industrial functions. As almost every
important real-world problem involves multiple and conflicting objectives, there
has been an increasing interest to search for tools for MOPs since the 1960s. A
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number of scholars such as Pareto (1971), the most recognized pioneer in the
field, have also made significant contributions to the problem. Among the
developed global optimization tools for MOP, genetic algorithms have received
a considerable attention as a novel approach creating a new direction of research
and application known as genetic multi-objective optimization (Gen and Cheng,
2000).

4.2. Categories of Optimization Methods

There are many forms of categorizing optimization problems depending on the
optimization variables, the objective function used, the optimization constraints
and others. The optimization variables can take on continuous or discrete as well
as symbolic values. The objective function can be continuous or discrete. It can
also have linear or nonlinear forms. Constraints can also have linear or
nonlinear forms or even may not exist. From application point of view in the
manufacturing environment, we can focus on two categories of optimization
methods:

1. Optimization using models and
2. Optimization without models

Among the model-based methods, mathematical models have been highly
explored for nonlinear optimization problem researches using analytical,
numerical, graphical and experimental techniques.

In manufacturing, some machining processes are too complicated to warrant
appropriate analytical models and most of the time, the assumptions on which
the analytical models are developed can contradict the reality. More importantly,
it is sometimes difficult to adjust the parameters of the models according to the
actual situation of the machining process. As a result, optimization as well as
optimal control of some processes such as the EDM process (Chapter 6) is
difficult to perform.

As shown in Figure 4.1, artificial neural network approach (Section 3.3) is one
category of model-based optimization method. Such a model defines a pattern
between an input vector x and an output pattern. Because most relations in
manufacturing systems are not simple to model using mathematical modeling
approaches, the neural network technology has recently attracted very wide
application areas in modeling and optimization of manufacturing processes. This
is also partly due to the capability of neural networks to map the input/output
relationships using a sequence of training runs and massive parallel computing.
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Figure 4.1: Example of model-based optimization methods

Optimization without models approach includes one at a time, simplex method
and genetic algorithms. Among these, the one at a time method is the most
widely used, but it is often criticized for being one of the worst optimization
techniques. The implementation of this method, for example for a 2-variable
problem, starts by changing one variable, say x. Keeping the other variable
constant, the response obtained is recorded. Searching for the optimum value of
the other variable, y, then starts by keeping the achieved optimum value of x
constant. Unfortunately, this leads to small and local improvements of solutions,
and the solution obtained extremely depends on initial start point. The actual
optimum value can obviously be hidden away from the search path.

4.3. Multi-objective Optimization

Multi-objective optimization problems are common in manufacturing because
most of real-world industrial problems involve two types of difficulties:

1. Multiple and conflicting objectives — where, instead of a single optimal
solution, competing goals give rise to a set of compromise solutions, and
none of the possible solutions can be said to be better than the others, and

2. A highly complex search space - where an overwhelmingly large and
complex search space creates difficulties for traditional methods

Traditional methods of optimization deal with these problems by allocating
weights to each of the objectives to indicate their importance in the problem.
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Research shows that treating multi-objective problems in this way is very
subjective, may over-simplify the behavior of the problem, and it is often hard to
find weights that can accurately reflect the real-life situation.

Traditional methods also attempt to combine the multiple objectives into a SOP
or reduce them in some way so that only one is optimized. For many of
industrial problems, this is often unsatisfactory because some of them can have
conflicting objectives. Keeping costs low and quality high in manufacturing;
achieving high material removal rate and good surface quality in machining, etc.
are examples of such conflicting objectives in manufacturing. Thus, in the search
for efficient optimization strategies for MOPs, parallel optimization techniques
such as genetic algorithms have been developed. In a complex manufacturing
process optimization scenario, for example, a MOP solution has to minimize the
total operation costs and maximize the production rate simultaneously.
Depending on the application, further objectives may be included that can be
either defined explicitly as separate optimization criteria or formulated as
constraints that cannot be violated.

4.3.1. Basic concepts and terminologies

For optimization to be meaningful there must be an objective function to be
optimized and more than one feasible solution, i.e., a solution that does not
violate the constraints must exist.

Defining the multi-objective optimization concept
Formally, multi-objective optimization can be defined as follows:

A general MOP includes a set of n parameters (decision variables), a set
of k objective functions, and a set of m constraints where the objective
functions and the constraints are functions of the decision variables.

Mathematically, this can be formulated as:

Max Y = f{x) = {fi(x), [(x),..., fi(x)}
Subject to: Cy(x) = {c;(x), ca(x), ...cn(x)} <0

where f(x) is an objective function, x € X is a decision vector X in decision
space X and Ci(x) is an inequality constant of m functions that form an area of
the feasible solution set.
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This means that to achieve, for example, two objectives such as low cost (f;) and
high production rate (f;) under given constraints (C;) for a machining operation,
an optimal solution might be one that achieves maximum performance at
minimal cost and does not violate the ranges of the decision variables and other
constraints of the machining environment. If such a solution exists, then it is a
question of solving only a single-objective optimization problem since the
optimal solution for either objective may be optimum for the other objective. On
the other hand, what makes multi-objective problems difficult is the common
situation when the individual optima corresponding to the distinct objective
functions are sufficiently different. Then, the objectives are conflicting and
cannot be optimized simultaneously. Multi-objective optimization approach
attempts to find a compromise solution, which of course is at the sacrifice of
certain goals.

The optimization search space

A search space specifies the ranges of variable assignments that are explored
during the search process for optimal solutions. The search space may contain
only feasible regions specified by constraints or may contain some infeasible
regions as well. The optimization search space can also be finite or infinite.
Optimization of engineering problems mostly involves finite search space
because the search involves integral number of objects.

For continuous optimization problems in which variables can take on real
values, the search space becomes infinite. In general, the size of the search space
directly affects the computational complexity of the corresponding search
algorithm.

4.3.2. Traditional approaches for MOP

The general method of solving for MOP using traditional methods involves
either obtaining a compromised solution or identifying all near-optimal
solutions. As discussed above, traditional methods such as weighting and the
constraint methods attempt to combine the objectives into a single
parameterized function. These methods rely on assumptions about the problem
functions to make progress towards the optimal solution. For smooth nonlinear
functions, they can compute derivatives or gradients that indicate the directions
in which the functions are increasing or decreasing. For linear functions, they
can move immediately to the extreme values of straight-line functions (as
determined by other constraints) in a single step. The application principles of
these two methods will be briefly discussed.
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Weighting method

This method attempts to convert an original multi-objective problem into a
single objective one by forming a function that is a linear combination
(weighted sum) of the criteria. The difficulty involved in choosing appropriate
weights for the criteria however makes this technique to be unsatisfactory to use
in an area that is very sensitive to variation in weights. Using weighting method,
a maximization problem, for example, can be expressed as:

Maximize Y :f(x):Zwifi (x), subjecttox € X 4.1

i=1

where w; > 0 represents a normalized weight such that 3. w; = 1 and f,(.), ... f,(.)
are n objective functions to be maximized.

Using such formulation, alternative feasible solutions are generated from which
the best solution(s) can be chosen by parametrically varying the weights. It is
obvious that the solution, in general, is not unique for not linearly dependent
functions. With the introduction of the Pareto dominance concept, it is possible
to divide any group of solutions into two subgroups: the dominated and the non-
dominated. Solutions belonging to the second group are the “efficient” solutions,
i.e. the ones for which it is not possible to improve any objective value without
deteriorating the values of the remaining objectives. The main disadvantage of
this technique is that it cannot generate all alternative optimal solution sets.

Constraint method

Another traditional optimization technique used to find multi-objective optimal
solutions is the constraint method. The method arbitrarily chooses one objective
function for SOP solution and transforms k-/of the k objectives into constraints.
After the transformation, the whole optimization process is treated as a nonlinear
optimization problem at the presence of equality and/or inequality constraints.
Due to existence of complex constraints, nonlinear optimization problems are
not easy to solve even though they are very important in practical use. In the last
few years however, there has been a growing effort to apply genetic algorithms
for nonlinear optimization problems (Richardson et al., 1989).

Discussion on traditional methods

The attraction for the traditional optimization approaches and their popularity
comes most probably from the fact that there exist well-studied algorithms that
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can solve single objective problems specially in areas of small search spaces or
where analytical methods are available. Solving such simpler search spaces
using analytical methods involves enumerating, evaluating the objective function
and selecting the best feasible solution.

For large-scale problems, however, hardly any real multi-objective optimization
techniques have been available. By contrast, wide ranges of heuristic methods
have been known that can be used to solve single-objective optimization
problems. Traditional optimization approaches assume also existence of a
continuous function that is simple unimodal and differentiable. Real-world
problems, on the other hand, involve discontinuous functions that are non-
differentiable, complex, multi-modal or noisy. In other extreme cases, we may
not have functions that describe the optimization problem.

The difficulty in terms of sensitivity to change of parameter values is one of the
drawbacks of applying traditional optimization strategies in manufacturing.
Because these methods cannot include all conflicting parameters, their
application can be only to restricted areas. Moreover, all traditional methods
require several optimization runs to obtain an approximate optimal solution. As
the runs are performed independently from each other, combined action is
usually not possible which, in turn, may cause high computation overheads
depending on the application.

Recent research efforts have focused on finding alternatives to traditional
methods through which (1) problems having large search spaces can be handled
and (2) multiple alternative trade-offs can be generated in a single optimization
run. Genetic algorithms are such computational intelligence tools that can be
implemented in such a way that both of the above difficulties can be addressed.

4.3.3. Genetic multi-objective optimization problem

Genetic algorithm takes an alternative approach to the task of optimization based
upon the power of Darwinian evolution to solve complex problems. The
inherent characteristics of multiple directional and global search capability of
GAs demonstrate why genetic search is well suited for MOPs. Particularly,
domains that are traditionally difficult to optimize - discontinuous, multi-modal
and noisy domains are good candidates for this technology. This is because
rather than operating upon the objects themselves, the genetic algorithm
approach operates upon the parametric description of the objects.

The fact that GAs perform optimization by searching from one population of
solutions to another, rather than from one solution to another makes them also

URN:NBN:no-2332



URN:NBN:no-2332
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well suited to multi-objective optimization. The way the principle of the survival
of the fittest is implemented is the key to the successful application of genetic
algorithms for multi-objective optimization.

4.4. Operation Sequence Optimization Using Genetic Algorithms

The power of GAs has meant that many functions in manufacturing area are
interested to solve optimization problems using this approach. In integrated
design and manufacturing environment, optimization of the design process itself
and the operation sequencing task in process planning are the most important
areas where GAs can contribute immensely. The former is extensively studied in
conjunction with the development of CAD system, while research on
optimization of operation sequencing is still at its infant stage.

With respect to the automation of CAPP systems, there is still a question on how
to formulate the operation sequencing problem. Some studies treat the problem
as a combinatorial type (Korde et al., 1992; Zhang et al., 1997), while others
treat it as multi-objective type (Fenton and Gagnon, 1993; El-Sayad and El-
Gizawy, 1997). In some cases, the problem is purposely formulated very
simplified to a solvable degree and thus remain short of solving the rather
complex manufacturing system. The complexity nature of sequencing machining
operations with all possible conditions and constraints has necessitated the use of
trial-and-error and iteration based solutions.

In general, the formulation approaches, combinatorial and multi-objective,
cannot be mutually exclusive. The objective (problem) at hand always dictates
how to treat the problem. Primarily, operation sequencing has to do with
precedence of operations in which finite number of solutions consisting of non-
separable entities such as machines, tools, machine operators and other physical
objects are involved. The combination of these objects defines a huge body of
problems with different features and properties. Though the objects have
different characteristics, the optimization problem can be characterized as
determining the combination of the objects with constraints.

At a particular machine level, on the other hand, the objectives such as minimum
machining cost and high surface quality can be conflicting because the first
objective implies short machining time, whereas the later needs long machining
time. Such problems can be formulated as multi-objective optimization
problems.
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Thus, the conclusion is that depending on the input parameters and the goals, the
operation sequencing problem for process planning can be formulated either as a
combinatorial or a multi-objective optimization problem or combination of the
two with constraints. Generally, the two problem formulation approaches cannot
be seen separately because the solutions to a given sequencing problem require
both approaches at different levels.

4.4.1. Combinatorial optimization of operation sequencing problem

In general, optimization of engineering problems can be categorized as discrete
constrained optimization problems. Based on their computational complexities,
discrete optimization problems can be polynomial or non-polynomial (NP) type.
The former has been extensively studied and a number of algorithmic solutions
exist. However, many discrete optimization problems in real-world applications
do not have such algorithmic solutions or are not solvable in polynomial-time.
Such problem types are referred to as NP-hard optimization problems.

Discrete optimization of manufacturing problems where there is a need for
efficient use of scarce resources is traditionally done using simple enumeration
techniques. For large size problems, such as in machine scheduling, sequencing
and balancing, cellular manufacturing design, etc., this is impossible because the
number of feasible solutions to be enumerated can experience a combinatorial
explosion. This defines an optimization problem type known as combinatorial
optimization problem (COP) - the term combinatorial refers to the fact that only
a finite number of alternative feasible solutions exist.

The COP concept also implies that there are many possible alternatives to
consider and one overall goal determines which of these alternatives is best.
Many engineering problems come under this category because the activities and
the resources such as machines, tools, operators, etc. are discrete and indivisible
items. In addition, some problems have only a finite number of alternatives and
consequently can appropriately be formulated as combinatorial optimization
problems.

The travel salesman problem (TSP) is one of the most studied problems in
combinatorial optimization category. According to this problem, a travel
salesman must visit a given number of cities once and only once and in so doing
attempts to optimize the total distance traveled. TSP is not only combinatorial in
nature, but also a problem type that computer scientists classify as NP-hard -
problem type for which there, most likely, exists no algorithm that can
consistently find the optimum solution in a polynomial time. The technique has
been used as a benchmark model for many other problem areas such as assembly
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process optimization (Fu and Su, 2000) and vehicle scheduling (Karuno et al.,
1997; Malborg, 1996). Due to the difficulties involved in solving TSP type
combinatorial optimization, genetic algorithms are now suggested to be better
tools for this problem category.

Based on the feature mapping procedure outlined in Section 2.4.1, the following
section explains the implementation of the TSP approach for operation
sequencing problem (OSP).

4.4.2. The TSP scenario for operation sequencing

Many application areas are motivated in the work on the travel salesman
problem because TSP provides an ideal platform for the study of general
methods that can be applied to a wide range of discrete optimization problems.
In previous researches, this modeling approach has been proposed for
sequencing of machining operations. For example, Kim and Suh (1998) have
reported a mathematical model for operation grouping and sequencing of
multistage machining system from production scheduling perspective; Irani et
al. (1995) have implemented TSP technique to generate alternate process plans
and rank them in order of increasing cost.

. %ﬂ A A

Figure 4.2: Example of a travel salesman tour of 15 cities
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As illustrated in Figure 4.2 and Figure 4.3, there are certain similarities between
OSP and TSP that motivate the adoption of the TSP approach. Thus, OSP can
reasonably be treated as a combinatorial optimization problem and solved using
the TSP approach together with the following assumptions:

1.
2.

5.

Every operation is traversed once and only once in the machining cycle.

Machining states to be visited by the machined part are defined as the
corresponding cities to be visited by the travel salesman.

Any change of machine or tool or setup or any combination of these actions
establishes a new machining state.

The total cost incurred from start of operation i to start of operation i+/
corresponds to the distance between the cities.

A dummy operation transforms the goal state back to the initial state.

In machining operations, the part (raw material as an initial state) visits the
machining states, and its destination is the goal state of the part as specified in
the part design. The main objective in this formulation is reflected in the fourth
condition where the cost of machining and changing machine, tool and setup are
incorporated. At the same time, it is important to note some of the differences
between the two problem types that hinder direct application of TSP model for
operation sequencing. For the travel salesman, there are only two constraints i.e.,
each city is visited only once, and the length of the tour is minimized.
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Figure 4.3: Model of OSP using the TSP approach
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However, operation sequencing problem has many constraints that are even
more complex. Primarily, the "distance" between the states is not often fixed.
The cost incurred while changing the state of the combination (machine tool
change, cutting tool change or setup change) plus machining cost of the given
feature can vary even between two fixed machining states. Secondly, the travel
salesman completes his tour by visiting all cities in the problem set and returns
to his initial point, while the state of the part upon end of machining can be very
different from its initial state. The geometrical and technological specifications
of the part produced is obviously different from the raw material. To overcome
this difference, a dummy operation, an operation with zero cost (time), is
introduced that can close the loop. If the above-mentioned and other practical
conditions are considered and suitable representations are devised, GAs can
provide a valid option to solve this problem.

Problem formulation and representation

The major step in formulating an OSP for GA solution is to represent or encode
the parameters of the problem in strings that are problem dependent. Two
general categories of coding techniques are often implemented: binary coding
and permutation (real-valued) coding. While binary coding is often used for
function optimization problem, permutation coding is usually used for
combinatorial optimization problems such as scheduling and the TSP. This is
because permutation strings of a set of numerals are more natural to represent
these and other manufacturing problems than the binary strings.

Figure 4.4 illustrates the two coding techniques — binary and real-valued. Strings
consisting of the coded binary or numeral elements are referred to as genotype,
and the solutions decoded from those strings are called phenotype. GAs search in
the genotype world and the optimized solutions are obtained after decoding to
the phenotype world. The binary strings of the genotype world, consisting of “0”
and “1” are often decoded to the parameter value in integer, real number, and so
on in the phenotype. On the other hand, permutation strings consist of numerals
“1” to “n”. For a part having “n” distinct machining features, a string composed
of “n” segments covering all the solution space of the part defines an n-operation
problem for machining.
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Phenotype Genotype
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Figure 4.4: Encoding techniques for GA representation

Each operation set is accordingly assigned an ordinal number of “1” to “n” in the
genotype world where each number corresponds to an operation in the
sequencing problem. A population of an operation sequence for a part having
seven distinct features is thus represented in a form of (2, 5, 3, 7, 6, 1, 4) to
imply that feature number 2 is first machined and followed by feature number 5
and so on. The dummy operation is appended on this sequence. Thus, operations
are processed according to their order in the string. In GA terms, the entire
sequence forms the chromosome where a single operation (machining state) in
the chromosome represents the gene. The number of the genes or individuals in
the population represents the search points in the search space (Figure 4.5).

Putting all together, the entire population consisting of the sequence of
operations represents the total operations done to get the finished part. A
sequence that optimizes the total cost represents the solution of the problem.

Code| Opredtion Cost

] 2 Fadng 1,63

o 5 Turning @1 6,19
§ 3 Drilling 3,87
o 7 T aper furning 5,06
E< [T6 | Cnarfering | 395
S 1 | Threadng@nb | 2,50
4x | Turning @2 5,76

. L0 No operation 0,00

T otal Cost

‘ Gene (MT,CT,SP) ‘ Fitness Function ‘

Figure 4.5: Representation example of operation sets as a chromosome
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Generation of initial population

The initial population is composed of certain number of genetic chromosomes,
in which each element or operation state represents an operation. The initial
population of sequences can be generated randomly from the feasible solution
set. The feasible solution set itself is a feasible sequence but not necessarily
optimal. This feasible sequence is deemed to be one that does not violate any of
the feasibility constraints. These constraints are processed sequentially to
generate the precedence relation (PR) matrix. An initial PR matrix that does not
violate the physical constraints of the machining environment is first established
in a square matrix form. The sequence of operations in this matrix can be read
from top to bottom (on vertical axis) and from left to right (on horizontal axis).
The algorithm to generate this initial population looks as follows:

1. Look for an operation having a column sum of zero i.e. there is no
predecessor (several options can exist).

2. Select an operation at random among those having no predecessors and
append it to the end of the sequence.

3. Remove the constraint of this operation by deleting the row corresponding
to this operation from the PR matrix and go to step 1 until no operation with
column sum = 0 remains.

4. Update the column sum and go to step 1.

For example, Table 4.1 illustrates the above algorithms for a seven-operation
task in a PR matrix form. In this matrix, the cell value (4,6) = 1 implies that
operation 4 is constrained by operation 6, i.e., operation 6 has to be executed
first.

By implementing this procedure for the above example, we get operation 2
preceding all operations, and thus operation 2 can be taken as the first operation.
If the constraint of this operation is removed from the table, we find operation 5
and then operation 3 to be the next possible operations consecutively. At the
third stage, i.e. after removing the constraints of operation 5 and then that of
operation 3, the updated PR matrix looks as shown in Table 4.1 (b). It is possible
to observe in this table that two or more operations can be potential candidates
for the next operation where a random selection is often implemented.
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Table 4.1: Application principles of PR matrix

Operations, x-axis > Operations, x-axis >
s . . 2
N T 1 t 1x] 1
ERE X L[] ] |8 [ 2 |
Y B x 11 = (3|1 [ x 1|1
g 4 X % 4 % X
s 1 <[]t |E 3 1 x|
E 6|1 1 X g 6|10 1 X
o 7 1 X =) 7 % 1
Suml |[3|o0o|1]2]|1]4 Sum2 | 2 % 1 0|3
Sum3 21 -1012-12]1

(a) (b)

Genetic operators

After implementation of elitism and roulette wheel reproduction strategies, the
two alternative sequences are mate to produce new offspring that represent the
genetic structure. The advanced crossover operator PMX has been adopted
because this operator is often recommended for combinatorial optimization
problems (Goldberg, 1989).

To solve this particular problem, three mutation operators: machine tool, cutting
tool and setup mutations are devised. Development of these operators is found
necessary due to existence of alternative machines, tools and setups that can
generate alternative solutions for the same operation. For example, the algorithm
for machine mutation can be outlined as follows:

1. Select an operation (a position in the string) randomly and determine if
machine mutation is necessary using mutation rate of P".

2. Choose a machine tool randomly from all the alternatives that can replace
the current assigned machine.

3. Identify all other operations in the string that have the same machine as the
current assigned machine.

4. Assign the selected alternative machine as current machine for all those
operations.
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Figure 4.6: Working principle of machine mutation

It is also necessary to use certain heuristic rules in implementing this algorithm.
For instance, as cost of changing a machine is higher than that of changing a
tool, machine mutation is first exhaustively applied before tool mutation.
Similarly, tool mutation is implemented before setup mutation. Figure 4.6
illustrates how the proposed machine mutation works. The implementation
mechanisms of both tool and setup mutation are similar to that of machine
mutation as given by the above algorithm.

The fitness function

Generating feasible sequences that do not violate the constraints is the primary
step to apply an optimization algorithm to operation sequencing. Both geometric
and technological constraints require that certain operations be performed before
or after other operations. For instance, rough machining goes before fine
finishes; first drill, then tape a thread; first bore, then ream; etc. Quantitatively,
minimization of the total cost (C,) that includes the machining cost (C,,) and
other costs (Cj) due to the necessary changes of machine tool (MT), cutting tool
(CT) and setup (SP) can be formulated as follows:
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Min (C,) = Q.C,;+>.C,(MT,CT, SP)) 4.2)

Jjki
where

i =1 —n, for n number of features or operations
j=0-—q, for q alternative machines (j = 0 for no machine change)
k = 0 —r, for r alternative tools (k = O for no tool change)

1 =0 —s, for s alternative setups (I = O for no setup change)

Among others, the following conditions should be fulfilled for the optimization:

1. The natural precedence of operations is not violated.

2. The number of machines, tools and setups are minimized

3. The allowable cutting speed, depth of cut, cutting force, etc. are not violated
4

All other physical constraints are not violated

According to this model, the total production cost of all sequences is to be
optimized with the transition of operation states reflected in changes done on
machine, tool or setup including other cutting parameters. For example, the
following are possible transition one can encounter:

= (MT,, CT,, SP,) = (MT,, CT,, SP,) — change of cutting tool for machining
on the same machine and using the same setup (j =1=0)

= (MT,, CT,, SP) = (MT,, CT;, SP,) — change of machine with corresponding
change of tool and setup

For a total number of q, r and s alternative machines, tools and setups
respectively, it is possible to observe the computational burden and the necessity
to utilize the global and parallel search and optimization capacity of GAs.

Sequencing constraints

Knowing the constraints that should not be violated is very important for the
evaluation of the optimal results. From machining perspective, we can roughly
categorize the sequencing constraints into two: dynamic and static sequencing
constraints. Dynamic constraints are those constraints varying with time or some
other variable within the machining environment. This category includes
constraints on cutting speed, force or power, depth of cut, feed, etc. these
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constraints depend on, for example, the raw material property, the cutting tool
type, the coolant used and other factors in the machining environment. How
these constraints are formulated for a particular face milling operation has been
elaborated in Chapter 5. The static constraints, on the other hand, refer to those
constraints that are not affected by the above parameters. Most of the static
constraints are related to the feature being machined and their representation as
equality or inequality form is not straightforward.

The following are examples of static constraints that are important to consider in
operation sequencing:

= Location reference

= Accessibility

= Non-destruction

= Strict operation precedence
= Geometric tolerance

The location constraint involves examination of reference faces that can be used
to locate and fixture the part while machining each feature. This reference
identifies the necessity of machining the locating surface before the associated
feature. At the same time, machining one feature first may cause problem to
fixture the other feature.

To be machined a feature must be accessible. The accessibility constraint thus
evaluates each feature’s accessibility based on the feature type and its location
relative to other features. This is particularly the case when machining secondary
features such as threads and grooves on primary features like diameters, tapers
and flat surfaces. As a result, it makes no sense to make an external thread
before the correct diameter is formed or to make an internal thread before the
appropriate hole is drilled.

By considering the non-destructive constraint, it is possible to ensure that a
subsequent operation does not destroy the properties of the features that are
machined in the prior operations. The natural precedence strictly determined by
the feature type and properties is also equally important. This constraint is of
course considered in almost all operation sequencing optimization cases. For
example, first rough then finish cut, first bore (drill) then ream, first mill then
grind, etc. are some such strict precedence constraints.
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4.5. Chapter Summary

In this chapter, a methodology has been illustrated for the application of genetic
algorithms to optimization of operation sequencing problem. This problem for
machining operations is today one of the bottlenecks in the effort to automate the
process planning function and integrate design and manufacturing systems. The
operation sequencing problem is first defined as a combinatorial problem
involving the combination of several entities such as machines, tools, setups and
machine operators. Based on certain assumptions, the travel salesman problem
approach has been adopted to formulate the operation sequencing problem that
optimizes the total cost of production including machining cost and the cost of
changing machine, tool and setup.

Since problem formulation is an extremely important part of problem solving,
different mechanisms have been devised to represent the optimization objective,
to define the constraints and other genetic operators from genetic algorithm
application perspective. Combined with the multi-objective optimization of
particular operations, as demonstrated in the next chapter, the developed and
illustrated methodology to operation sequencing significantly contributes in the
advancement of manufacturing system integration and optimization.
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CHAPTER §

GENETIC ALGORITHMS FOR OPTIMIZATION OF
ECONOMICS OF METAL CUTTING

5.1. Introduction

Economic consideration is important in design and manufacture of components
primarily because metal cutting is often a wasteful operation involving the
removal of large quantities of material. Although there is no reliable figure to
support this contention, it is possible to mention that only about 70% of the raw
material purchased is converted to a finished product. Moreover, there are
generally more than one alternative approaches to produce a part each alternative
having an associated cost, degree of productivity and part quality. Accordingly,
finding an efficient methodology that can help to identify an optimum approach
to produce the part is necessary. This involves identifying the combination of
best machines, tools, setups and cutting conditions for each approach and
determining the best process(s). The machine tool operator cannot easily take
care of all variables simultaneously to reach at optimum conditions of
machining.

Machining process optimization appears in two basic forms:

1. Determination of a combination of optimum operation parameters and
2. Utilization of optimum resources

The most common method of determining operation parameters such as the
cutting speed, feed rate and depth of cut is use of current practices in the form of
rules of thumb, handbooks and other published guides. The recommended
operation parameters are often given in machining handbooks and user manuals.
These recommendations provide a set of cutting conditions that are mostly
conservative and apply only to a particular machining situation. Their scope is to
define the feasible range of applications, and thus they do not indicate which
value of each parameter gives the best combination with respect to the prevailing
cutting condition.

With the advances in automation of process planning, economic analysis of
machining processes appears today as an important process plan evaluation
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criterion. Many new concepts and optimization procedures are thus developed
that helped the evaluation of process planning results through theoretical
analysis of machining operation optimization. Those studies used two
optimization criteria:

1. Minimum manufacturing costs and
2. Maximum production rates

The minimum manufacturing costs objective alone often leads to a poor
productivity due to the longer production time than the optimum, while
maximum production rate alone results in higher manufacturing costs. Because
of this conflict, subsequent investigations have focused on maximum profit rate
hoping that it yields compromise results (Saravanan et al., 2001). Unfortunately,
the variables involved are not amenable for traditional optimization approaches.
These early studies were also limited to problems without constraints and treated
only single-pass operations, whereas multi-pass operations are often preferred
from economic point of view (Gupta et al., 1994; Agapiou, 1992). Optimization
of multi-pass operation problems involve determination of optimum cutting
speed, feed rate, depth of cut and number of passes simultaneously for a given
depth of cut.

As a part of the OSP treated in the previous chapter using combinatorial
optimization approach, this chapter focuses on the optimization of a particular
operation — face milling. Face milling represents one of the most complex
conventional material removal processes. The parameters involved at the tool-
workpiece interface do not allow effective application of analytical modeling
approaches. Accordingly, the relation between the control variables and the
performance of the process are often determined experimentally. Putting the
existing empirical relations together, the optimization problem of face milling
operation is formulated as a multi-objective optimization problem and its
implementation is demonstrated using GeneHunter — a genetic algorithm tool.

5.2. Optimization Model for Economics of Machining

The steps involved in formulating an optimization model for economics of
machining for genetic algorithm solution include:

Formulating the objective function(s)
Determining the control variables (chromosomes) for the optimization
Defining all constraints applicable to the machining environment

Ll S

Minimizing/maximizing the objective functions subject to the constraints
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The overall formulation requires specification of expressions that represent the
economic and physical parameters of the machining process and the entire
system involving machine, tool and workpiece. The mathematical models are
normally obtained through tests, previous production runs or existing machining
experiences.

5.2.1. Formulating the objective function

Economic analysis of machining normally involves the cost elements, the
material removal rate and the tool life. Two main objectives are considered in
this analysis:

1. Minimizing the total machining cost: this identifies the cutting conditions
that best balance the metal removal rate and tool life for the lowest cost

2. Achieving a maximum productivity in terms of the maximum possible
material removal rate: this objective identifies the cutting conditions that
best balance the material removal rate and the tool life to produce the
highest possible output

Combining these objectives into a SOP is often not possible due to their
conflicting goals. Thus, a multi-objective genetic algorithm (MOGA) approach
is proposed.

For most machining processes, the machining cost depends on the machining
time. Both the machining cost and time can be represented in a similar form as a
function of other machining parameters. Their representation however varies in
many reported studies in the literature. Based on a production batch of Nb that
can be produced with a single setup (setup time = T), the production process of
a part on a machine can be classified into the following major time components:

Setup time for tools, jigs and fixtures (t; = Ty/Nb)
Part loading and unloading time (t;)
Machining time for the specific feature (t,,)

A

Tool change time (t)

Accordingly, the total time to produce the part (T}) is:
Tp=ti+t+t, +tg (5.1)

Including the cost of tools and the necessary jigs and fixtures, the objective
function in terms of the production cost becomes as follows:
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tm tm
CP=C1f+C0 [ts+tl+tm+tct FJ+CIF 5.2)

where,

C,, = production cost (all costs in NOK)

Cjt = cost of jigs and fixtures

C, = overhead cost (including machine and operator rates)
T = tool life [min]

C, = tool cost

In this equation (Equation (5.2)), machining time (t,,) represents the major cost
element. This is particularly the case for operations that have very small material
removal rate such as in grinding operations and non-conventional machining
methods like EDM. This machining time, the actual time during which the
cutting tool is actively removing material, can be expressed as a function of
other machining parameters like cutting speed and feed rate. For example,
machining time is generally expressed by Equation (5.3) for a single cut turning,
boring or drilling operation.

7D,L
[ =
™ 1000vf

5.3)

where,
Dy = cutting diameter [mm]
L = cutting length [mm)]
v = cutting speed [m/min]

f = feed rate [mm/rev]

Similarly, Equation 5.4 gives the general expression of machining time for
milling operations.

- L+1/w](cD—w) 5.4)
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Figure 5.1: Designations in milling operation
where,

L =length of cut [mm]
w = width of cut (often referred to as feed engagement) [mm)]
D = milling cutter diameter [mm]

f = feed speed of workpiece [mm/min]

The cutting tool of milling operations is in contact with the workpiece for only a
portion of the machining time. Therefore, it is necessary to correct for the
proportion Q of the machining time during which the cutting edge is engaged
with the workpiece.

Including this correction factor into the above equations, it is possible to derive
the following generalizing equation for the machining time:

¢ K, , where =larcsin% (5.5)

" Ovf P

K., is an operation constant that depends on the geometry of the part or feature
being machined. In general, it corresponds to the total machining length for the
feature.

The tool life equation is the central focus of any material removal optimization
problem. In cases where accurate tool life data is available, predictive tool life
models and other machinability models can be developed. In this case, Taylor’s
tool life relation for minimum cost, according to Kronenberg’s extended cutting
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speed law, is considered. This relation is expressed as follows (Kronenberg,
1966):

_ KT KT
T= Tz 1 p q (56)

v;A; V;f; d;

where K7y is a constant as given in (5.7), and z, p and n are constants as described
in Table 5.1.

Compared with the simple Taylor’s life equation, which reflects the dominance
of the cutting speed, this extended tool life equation accounts for the smaller but
significant effect of feed and depth of cut. This dominance depends on the
magnitude of the constants q and p whose value is always less than unity. The
clear observation from Equation (5.6) is that the cutting speed must be decreased
in order to increase either the feed rate or the depth of cut so that the tool life is
not deteriorated. If the smaller effect of the depth of cut is neglected, Equation
(5.6) can be simplified as follows:

KT

T = ,
v"’fﬂ

where K, = M

1 p
and a=—, p=—
5 o P= 5.7)
25.4"

Table 5.1 shows the description of the constants used in the above equations and
their recommended values.

Table 5.1: Recommended values of tool life constants’

Material
Symbol | Description Steel | Castiron

Exponent of chip cross sectional area (A) 0.28 0.20
Exponent of feed rate 0.42 0.30
n Tool life constant Carbide tools 0.30 0.25
HSS tools 0.15 0.25

C, Cutting speed constant for | Carbide tools 280 240

a cutting speed of Tm/min | HSS tools 85 50

? Courtesy: (Kronenberg, 1966)
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Setting the relations for machining time and the tool life from Equation (5.5) and
(5.6) into Equation (5.2), the expression for the production cost of a single-tool
operation becomes as follows.

arp
C,=C,+C, (tS+tl)+C0& 141, 2 / +C, K, T (5.8)
rd vf K, K,

This implies that machining cost is directly related to the cutting time that, in
turn, depends on the cutting speed and the size of feed. According to this
equation, large feeds and high cutting speeds reduce the machining costs, but at
the expense of the tool life.

Therefore, the minimization of the total costs optimizes the production costs for
a given setup. Equation (5.8) assumes a single-tool operation where tool-
changing time is a function of the ratio of machining time to tool life. For multi-
tool operations on a part or a feature, tool-changing time for each tool used must
be considered regardless of this ratio (Tolouei-Rad and Bidehendi, 1997). As
discussed in the previous chapter, this is treated as a separate operation with
different machine, tool and setup combination.

The cutting speed and the area of chip removed (A) are the two main
controllable parameters during milling operations. They can be controlled by
setting the depth of cut (d), the width of cut (w) and the feed rate (f). The
product of the area of the chip removed and the feed rate gives the volume of the
material removed (defined as the material removal rate, MRR). This size highly
affects the productivity of the machine and thus finding a means to maximize the
rate of chip removal is of great practical importance in optimization of
machining processes.

MRR=fA=fdw (5.9)

This expression shows that MRR of milling operations is directly proportional to
the feed speed of the workpiece and the chip size. However, technical
constraints impose limitations on both the feed speed and the size of the chip
cross-section. The specifications of the machine, the tool and the workpiece are
the sources of these restrictions on the optimization parameters.

To summarize, Equation (5.8) and (5.9) define the optimization objectives
(fitness functions) that balance the material removal rate and the tool life for low
cost production and high productivity respectively. The former, as the main
objective function, is minimized simultaneous with the maximization of the
latter (the sub-goal) using a multi-objective optimization approach.
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5.2.2. Defining machining constraints

The optimization constraints for machining include the physical constraints
imposed by the machine-tool-workpiece system and the cutting process as well
as the geometric constraints imposed by the natural requirements for operation
precedence. In the previous chapter, these constraints have been categorized as
dynamic and static constraints. The physical constraints should be considered in
the optimization formulation based on experience from the machining

environment.

Table 5.2 gives the formulation of the optimization objectives together with

definition of the ranges of the control variables and some of the constraints.

Table 5.2: Ranges of variable values and constraints

Variables Cutting speed ind feed | v, f
Objective Minimize machining cost | Min. f..., (v, f)
Maximize productivity Max . fyre (v, f)
Raqge of Cutting speed limits v < Viax =TIDN g *10 -3
variables -3
vy . =[IDN . *10
min min
D [mm], N[s" ]
Feed speed limits Soin S fo
Constraints Depth of cut d < dpax
Tool life T 2 nyty, for n, products
Machine power limits P = Prax
Cutting force limits F < Frax

Table 5.3: Technical specifications of a milling machine (INTOS)

Parameter Unit Value
Range of speeds (N) rpm 63 - 3150
Range of feeds (Axis X and Y) (f) mm/min 12 - 3000
Motor output power at 1400 rpm kW 4
Maximum motor power, Pemax kW 8
Max allowable torque on spindle (Mmayx) Nm 500
Longitudinal feed of table (axis X) mm 600
Horizontal feed of milling head (axis Y) mm 400
Vertical feed of table (axis Z) mm 400
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Using the above-derived relations, formulating an
optimization model for a face milling operation
requires knowing values of the constraints that are
specific to a given machine. Particularly, the
maximum and/or minimum limits for cutting
speed, feed rate, power and torque as specified by
the machine manufacturer should be known. In
this model, data for a multipurpose milling
machine from INTOS is used, whose limit values
are given in Table 5.3.

Cutting speed and feed are used as the main control variables in modeling the
optimization problem. In GA terminology, these variables are defined as
chromosomes. The range of these chromosomes is practically constrained by the
tool life, surface finish requirements, depth of cut and the maximum cutting
force allowed. For best economy, parameters that enable the maximum power
utilization are often selected. The power used depends on the cutting conditions
and should not exceed the maximum available power of the machine tool. For
the given maximum allowable torque on spindle (Table 5.3), the constraints on
the cutting power and force can be expressed as in Equation (5.10) and (5.11)

respectively.
* MRR *
P)ZI)S7SP1113>(=2 ﬂ-*Mmu *N (510)
60 60 )
F. =£< ' max =72M'““" (5.11)
v D

where p_ [W.s/mm’] is a material dependent specific energy, MRR [mm’/min] is

the material removal rate, F. and F._ [N] are the actual and the maximum

cutting force, P and P,,,x [W] are the actual and the maximum allowed power
respectively and N [rpm] is spindle speed of the milling cutter.

The highest practically possible depth of cut is often used, mainly in rough
machining, with favorable compromise between the tool life and the material
removal rate. Studies show that a 50% increase in the depth of cut produces only
15% reduction in tool life when the depth of cut exceeds ten times the feed rate
(Stephenson and Agapiou, 1997). The surface finish level of milling operation
depends on the feed rate. Surface finish as an optimization constraint is
important only for finish operations where a specific degree of surface quality is
required. For roughing operations, this constraint can be neglected.
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5.3. Problem Definition and Implementation in GeneHunter

The genetic optimization model is then established in GeneHunter, a tool that
solves problems based on the genetic theory of evolution. GeneHunter is a
genetic algorithm tool that mainly works in Microsoft Excel environment as an
Add-in element. After formulating the problem with the fitness functions, the
chromosomes and constraints appropriately defined in the Excel spreadsheet,
GenHunter is then activated to work on the evolution process. Given the
necessary information including specification of genetic operators, the system
first creates a population of possible solutions to the problem.

5.3.1. Defining the fitness function

As shown in Figure 5.2, the main parameter definitions involved are the
following:

Location of the fitness function cell
Objective of the optimization (max, min or finding a given value)
Location of the cells containing chromosomes

Chromosome type and range of their search space

AR e

Other constraints, sub-goals and genetic operators

GeneHunter

diustable cells (chromosomes):
$B427 146425

constraints % Functions

Reset All

Figure 5.2: Parameter definitions in GeneHunter
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The fitness function tells the location of the cell that contains the formula for the
measure of goodness. For rather complex problems that can be formulated
mathematically, the fitness relations can be created as Visual Basic functions. In
cases where there is no appropriate mathematical formula to describe the
problem, the fitness function can be created in neural network structure and
integrated to the genetic algorithm tool.

5.3.2. Defining the chromosomes

To perform the genetic evolution, the genetic algorithm tool needs information
about the chromosomes the variables whose values are adjusted in the process of
solving the problem. The value of the chromosomes is related in some way to
the fitness function. Two types of chromosomes can be identified: continuous
and enumerated. Though many engineering problems are characterized as
discrete optimization problems with an integral search space, the chromosomes
of this case are defined as continuous type because selection of continuous
cutting speeds and feed rate values are possible. On the other hand, enumerated
chromosomes are used when the problem involves finding an optimal
combination of tasks, resources, duties etc. where only integer values should be
used as adjustable variables such as in combinatorial optimization problems.

5.3.3. Specifying the constraints

Some constraints of constrained optimization problems are often defined in such
a way that they must be satisfied by the solutions. These categories of
constraints are referred to as hard constraints. As shown in Figure 5.3,
GeneHunter provides an easy way to define the range of the search space for
these hard constraints and the restrictions on other sub-goals that should be
fulfilled simultaneously.

o list of
Coranges ) t (" functions

sk of constraints

$C44] <= )
$C441 »=0T=0 P=High

" constraints  { Functions

$C442 = 4 T=1 P=High
$C$43 =0 T=0 P=High

ad

B$36 <= §0436
|$E$36 == $C536

Figure 5.3: Definition of ranges and constraints in GeneHunter
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The system attempts to find solutions that meet these constraints and the sub-
goals referred as soft constraints while optimizing the main fitness function.
Accordingly, multi-objective optimization tasks can be easily defined and solved
using either intervals or functions.

Compared with traditional optimization approaches, the advantage of genetic
algorithms can be clearly seen here that

= Complex problems having several variables can be solved with less
difficulty. This is hardly possible in traditional optimization techniques where
problems more than two variables often encounter complex computation.

= Multi-objective variables with as many objectives as necessary can be treated
simultaneously.

5.3.4. Criteria to terminate genetic evolution

Some optimization problems can be solved within a short time. Unfortunately,
genetic optimization is often used to solve complex engineering problems that
demand long computational time. In certain cases, the quality of the optimal
result depends on the amount of time available for evolution. Hence, method of
terminating the evolution is among the important genetic parameters to be
defined in GA application. Depending on the problem complexity, one of the
following three methods can stop the evolution: time elapsed for the whole
evolution, specific limit for the number of generations or total number of best
generations unchanged.

GeneHunter 1

opulation parameters creenupdate
Population size: ’_ " Mever  Always (% Smart
Chtomosome length; |32-bit vl
Set random seed 11
wolubion parameters ; L o hs . W .
v Show grap v Store grap
Crossover rate: IU,Q
W Find |50
Mukation rate: 10,01 -
Cereration oo ]“E“%W kop esolution when,,,
eneratiol !
- - : I” Time elapsed: §3u i,
¥ Elitist strateqy
v Diversity operatar

best solutions

" Generations >

¥ Best fitness unchanged

Cancel l after § 100 generations

Figure 5.4: Defining genetic operators and stopping criteria




Chapter 5. Genetic Algothims for Economics of Metal Cutting 85

5.4. Discussion on Optimization Results

5.4.1. The population size

The population size is the number of individuals in the genetic breeding pool. In
principle, a sufficiently large population size is favored to represent adequate
members of the solution sets. However, a large population size leads to larger
computation costs in terms of memory requirement and evaluation time. For too
many individuals in the population, a good solution takes far too long to find
because the fitness function must be calculated for every individual in every
generation.

Too low population size, on the other hand, does not allow enough individuals to
be involved in solving the problem. Similar to the behavior of traditional search
techniques, the system can also be trapped at local optima. Generally, the
population size depends on the number of variables involved in the chromosome
and thus, the appropriate population size for a particular problem should be
experimentally decided.

Figure 5.5 shows the variation of the population size against time of evolution.
All the population sizes except the first (pop_size = 10) gave the optimum value.
Considering the computation time required, however, a population size of 50 —
80 has been selected as a reasonable size for this problem.

Plot of Population Size vs. Evolution Time

160
140
120
100
80
60
40
20
0

Evolution time [s]

0 50 100 150 200 250 300 350 400 450 500
Population size

Figure 5.5: Plot of population size vs. evolution time
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5.4.2. The initial population

The quality of the final solution of traditional methods is very dependent upon
the position of the starting point of optimization in the search space. This is
because the choice of the initial population plays a significant role especially for
problems with a large number of local optima. As depicted in Figure 5.6, genetic
algorithms do not suffer as much from this drawback.

Table 5.4 shows a comparison of different initial chromosome values. For the
three cases considered i.e. two cases outside the range of the chromosomes and
one within the range, the final optimum values justify that genetic algorithm
based optimization does not depend on the initial values.

Influence of Initial Population Size

130
% CASEA:V=2,f=5
.i= CASE B: V=150, f =2000
" 129,56
8 =m m = CASE C: V=250, F=4000
=
i 129
@
O
o

128,5

128

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 5.6: Plot of influence of initial population size

Table 5.4: Analysis of the influence of initial population

Case A Case B Case C
v [m/min], 3,96 < v < 198,00 2,00 150,00 250,00
f[mm/min], 12 < f< 3000 5,00 2000,00 4000,00
Initial cost [NOK] 1655,00 129,38 140,93
Initial MRR [mm?®/min] 200,00 80000,00 | 160000,00
Time of generation [s] 52 67 70
Total number of generations 175 204 216
Optimum cost [NOK] 128,39 128,39 128,39
Optimum MRR [mm?®/min] 93889,28 | 93889,28 93889,28
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Though the generation time and the total number of generations run to get the
optimum values seem to have a trend with the initial values, repeated
experiments show no such trend. Because the evolution process does not always
follow the same path, it is not possible to expect equal evolution time or number
of generations even when the same initial values are evaluated several times.
The important thing is that the path of search does not influence the result of the
final goal.

5.4.3. Number of generations and elitism based evolution

As shown in Figure 5.7, using large number of generations for the best fitness as
a stop criterion has no significant influence on the optimization result for elitism-
based evolution (reproduction). This is because elitism strategy takes the elites
into the next generation and thus leads the evolution to the optimum direction
very quickly. In principle, using large number of generations for the best-fit
values increases the accuracy of the result, but at the expense of evolution time.

In addition to the number of generations, Figure 5.7 shows the influence of
number of milling cutters used for machining. The production cost using six
cutters is lower than that of using three cutters. This is obvious because using
multi-point cutters increases the tool life. At the same time, the productivity
increases as the number of cutters on the same cutter size increases with respect
to the material removed per unit time.

Fitness against nr. of Generations and Cutters
130,5
G100, Z3
130 - G100, Z6
§ i G200, Z3
= | I PPPPPPR G200, Z6
ic 1295
0
D
m [
129 =iy
128,5 1 : ; ; ; : | ;
0 20 40 60 80 100 120 140 160
Number of Generations

G = number of generations, z = number of cutter

Figure 5.7: Plot of fitness against number of generations
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Evolution without Elitism
130,5

130 +
129,5
129

128,5

Best Fitness

128

127,5 } } } } } } } f }
1 61 121 181 241 301 361 421 481 541
Generations

Figure 5.8: Evolution without elitism

On the other hand, evolution without elitism needs use of either elapsed time for
evolution or specifying the total number of generations that satisfy the
requirements. It is hardly possible to get a satisfactory number of unchanged best
fitness values in the absence of elitism criterion because the evolution always
starts from scratch and takes a very long time to get such a result. As depicted in
Figure 5.8, the system did not manage even to show a certain trend towards
optimum value even after running more than 500 generations that elapsed four
minutes

5.4.4. Optimization results

From the optimization results shown in Table 5.5, it is possible to conclude that
the results have an acceptable agreement both with manufacturers’ specifications
and practically accepted values. As given in Table 5.3, the motor output power
at 1400 rpm is 4 kW, which of course does not necessarily correspond to an
optimum operation point, but recommended for general-purpose operations. The
optimization results show a power demand of 4,69 kW at a spindle speed of
1510 rpm.

Because the material removal rate in face milling is directly proportional to the
feed speed of the table, the optimum cost of machining with an additional
objective of maximized productivity tends towards the highest feed speed. This
is contrary to the traditional understanding that cutting speed dominates the
performance of machining operations. As expected, the optimum values tend
towards operating at a cutting speed that allows utilization of the highest
possible cutting power
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Table 5.5: Results of the multi-objective optimization

Jigs and fixtures [CJf[NOK] | 50,00 |

Moo =~ CHINOK] | 5000
Nb - Toaun | 8017

Chromosomes| | PangeofValues | SpindieSpeed
[m/min] 94,940 3958 | 197,920

f [mm/min] 2347,232 12,000 |3000,000
fz [mm/tooth] 0,518

Production Costs [NOK]
Cost of jigs and fixtures| 50,00

Torque on spindlg
Cutting force Fe[N] 2,97
Cutting power | P [KW] 4,69 6 |Toolchangecosts | 006
Tool life T [min] 162,41
Depth of cut d [mm] 4,0 Total cost

Width of cut w [mm] 10,0 (Main fitness function)
Tool diameter D [mm] 20,0
LLength of cut L [mm] 500,0 Sub-goal  93889,28
Number of teeth z 3,0

5.5. Chapter Summary

As a continuation of the operation sequencing optimization problem of Section
4.4, an application methodology of MOGA has been developed and
demonstrated in this chapter. Face milling was selected to demonstrate this
problem because it is one of the conventional machining techniques known to
have complex relationships among the variables at the machine-tool-workpiece
interface. Due to the complexities of the material removal process, less in depth
research has been reported for this machining operation compared with other
conventional machining methods such as turning.

With respect to the number of control variables considered here, this example
sounds simple for genetic algorithm application. However, traditional methods
cannot be recommended for the problem due to the following main reasons.
Primarily, this is not the end solution, but it is part and parcel of the rather
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complex combinatorial optimization problem of operation sequencing (process
planning). For n set of operations to be sequenced, (n-1)!/2 alternative
machining options have to be analyzed using this MOGA approach. Secondly,
the conflicting objectives do not lend themselves for traditional methods.
Thirdly, there are other variables such as the cutting temperature, tool geometry,
etc. that are not considered in this example, but those parameters can highly
influence the machining process depending on the workpiece material, tool
material and machine loading conditions. Traditional methods fall short of
solving such complex interaction of variables together with the conflicting
multi-objectives.

The MOGA methodology implemented in this chapter is based on empirical
relations put together from different sources. Those relations are mathematical
models developed from experimental data with certain assumptions and
simplifications. Today, the application of hybrid CI technology can create a
good platform to overcome the error committed due to these assumptions and
simplifications. Training neural networks on known input-output patterns from
the machining environment and using the network structure for optimization of
the parameters is a potential beneficial application area for hybrid CI systems.
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CHAPTER 6

MODELING AND OPTIMIZATION OF EDM PROCESS USING
HYBRID CI APPROACH

6.1. EDM Process Technology

Among known non-conventional machining methods that nowadays have a wide
range of applications on the production floor, electro-discharge machining
(EDM) is the most extensively used technique for die-making, precision
machining and manufacturing of prototypes. EDM is an electro thermal process
where the material removal mechanism is achieved by the erosive effects from
repetitive electrical sparks generated between tool (the anode) and work material
(the cathode) with constant electric field emerged in dielectric fluid.

Figure 6.1 shows a simplified diagram of the working principle of EDM
process. In this process, the feed motion of the tool is controlled by a servo-
controller that maintains a spark gap in the range of 0.025 — 0.05 mm (Bendict,
1987). The workpiece is placed in the dielectric fluid that circulates through a
hole or holes in the tool electrode under pump pressure.

Feed control

Tool
Power

T 1
11
] 1
R A
supply + | V |
| |
[
[

.

—1_ Workpiece ||

High-pressure
dielectric fluid
from resevoir

Back to
reservoir

Figure 6.1: EDM machine and its working principle
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Both the material removal from the workpiece and the wear of the tool electrode
take place without any mechanical interaction between them. A spark is
generated by a pulsating (DC) power supply is connected to the tool and the
workpiece that becomes responsible for this effect by melting and vaporizing
material from both the electrode and the workpiece.

Based on the type of the electrode and the dielectric used, EDM application is
classified into two: die-sinking and wire cutting. Die-sinking has been the major
application so far and much research and development has been concentrated to
advance this technique. Particularly, the process has been made to perform
better, accurate and dependable through the development of pulse generators,
advanced control mechanisms and solid-state circuits that enabled control of the
pulse Ontime and Offtime. This advance has to be accompanied by continuing
investigations of the process and the development of new methods for economic
production. This includes ensuring process stability and repeatability, and
optimized process performance i.e., maximum possible material removal
combined with best possible surface quality and minimized electrode wear.

EDM is also an alternative method of serial or batch production of difficult-
to-cut parts when use of conventional techniques such as milling and grinding
are not possible. Particularly in aerospace industries, the combined effect of poor
machinability of super-alloys used in turbine components and the intricacy of the
geometry makes EDM a natural choice of production method. However, the
machining efficiency is much lower compared to conventional machining
processes.

6.2. The Challenges of EDM Performance Improvement

Although up-to-date computer technologies have been used to control the EDM
process, the variables for process efficiency and part accuracy are still obtained
using empirical methods. The process is also one of the expertise-demanding
processes in the industry, and the mechanism of metal erosion during sparking is
still debatable due to the complex thermal conduction behaviors in the
machining vicinity. This may explain the reason why it is hard to establish
models that accurately correlate the process variables and performances.

This lack of accurate explanation of the thermal process at the tool tip
contributes highly to the complexity of modeling the material removal process.
Though some efforts are going on to be able to explain what takes place at the
tool tip or the spark gap (Van Dijck and Dutre, 1974; Dibitonto et al., 1989), a
complete model that gives the physical process could not yet been described in
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detail. Improving the MRR and surface quality are still the challenging problems
that constrain the expanded application of the technology (Mohri et al., 1997;
Kuneide et al. 1991).

Existing practices have difficulties to identify as which parameters need to be
changed or how they should be modified for best process performance. The
developed models have also helped only to provide approximate conclusions
about the influence of different input variables on performance parameters.
When new and advanced materials appear in the field, it has not been possible to
use existing models and hence experimental investigations are always required,
which manufacturers are sometimes hesitant to use statically designed
experiments because of the purposefully taking the process out of or to the limits
of control. Making frequent tests or many experimental runs is also not
economically justified.

Accordingly, the task of this part of the thesis is twofold. Primarily, developing a
methodology that optimizes the EDM process and other related non-
conventional machining methods based on an appropriate process model is
extremely important for both industry and research. Such a methodology is
particularly necessary to integrate the system with other manufacturing systems
and functions for online control and operation. Secondly, the overall behavior of
the machining process for certain tool-workpiece combinations is not well
defined. Thus, it is not possible today to find the best parameter
recommendations for some newly developed materials. Graphite tool on nickel-
base alloy represents one of such combinations. Thus, analyzing the behavior of
this combination based on experimental dataset is one of the objectives of the
thesis.

6.3. Description of Parameters

The developers of EDM machines normally suggest parameter settings for
optimum performance of the machine with respect to speed, electrode wear and
surface roughness (Aas et al., 2001). Since getting such results for materials of
special interest is often difficult, the search for parameter combinations that
perform better is still far from over. Even many of the suggested parameters are
available only for tools made of steel. Determining optimum parameters for
other materials is, thus based on trial and error.

Achieving a high machining productivity in terms of the material removal rate
with a desired accuracy and surface finish are the most wanted performance
parameters that must be optimized with respect to the input variables. Even a
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highly skilled operator can rarely achieve these required optimum results due to
the large number of variables and the stochastic nature of the process.
Particularly, determining the relation between the controllable input variables
and the performance parameters using suitable mathematical models is not
simple.

Many independent parameters influence the performance of EDM processes
including Ontime, Offtime, peak current, voltage, compression, gain, dielectric
fluid and electrode material. Table 6.1 shows the designations of some of the
input variables. This is important because many EDM machine manufacturers
designate some of the parameters very differently.

Table 6.1: Definition of input parameters

Parameter Symbol | Unit | Definition

Ontime T us | Duration of each spark

Offtime P us | Pause time between two sparks

Peak current | A Maximum current during spark

Voltage ] \ Voltage between gap just before spark
Compression | COMP mm | Distance between electrode and
Gain GAIN - Servo sensitivity to changes in spark

In addition, the main performance parameters of interest while machining on
EDM are defined as follows:

1. Material removal rate, MRR [mm’/min]: MRR is defined as the ratio of the
volume of material removed from the workpiece and the time required for
the removal. Thus, MRR was calculated from measured depth of cut,
measured time of machining and the contact area of the tool tip exposed to
the erosion process. Maximum MRR is the optimum value searched.

2. Surface roughness, SR [Ra]: this is the measure of the surface quality on the
machined part. This parameter can be measured using the average roughness
(Ra) indicator tool. According to this indicator, the lower Ra value gives the
better surface quality.

3. Tool wear [%, mm]: two parameters, relative wear (RWR) and corner wear
(CWR) are used to measure the wear resistance of the tool. Relative wear or
wear ratio gives the relative amount of tool lost compared with the volume
of material removed. This was obtained by measuring the size of the tool
before and after machining.
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Regardless of the tool-workpiece combination, the general phenomenon of EDM
process shows that the duration of the Ontime influences the MRR, the tool wear
and the gap between the electrode and the workpiece. The longer the Ontime, the
higher the wear of the electrode, the MRR drops and the roughness increases.
Lower Ontime has the reverse effect on the machining process. Similarly, the
higher voltage results in larger distance between the tool and the workpiece and
improves the flushing condition as a result. A higher current intensity causes
rougher workpiece surface. Ontime, Offtime and compression are the primary
parameters to optimize the process. The Offtime stabilizes the erosion, but has
no significant effect on the roughness. Longer duration of Offtime, however,
reduces the material removal rate. Compression allows varying the distance of
the working area. Reduced compression increases the gap, but EDM is less
efficient.

In general, high MRR produces a very rough surface finish because of the
molten and re-solidified surface structure. On the other hand, MRR and surface
finish increase with increasing current density and decreasing frequency of
spark. A better surface accuracy can be achieved only at a sacrifice of the
machine productivity. Therefore, establishing a correlation between the input
variables and the performance parameters has been a challenge in the past for
which different techniques have been tried to develop models of the process.

6.4. Modeling EDM for Graphite Tool Material

6.4.1. Tool material (electrode) properties

Similar to conventional machining processes, an EDM tool wears under the
machining process. Therefore, wear resistance is one of the primary
requirements of the tool material. Two parameters are often used to measure the
wear resistance of the electrode tool: front wear and corner wear (Figure 6.2).

The corner wear is often measured in terms of the radius. The relation between
the front wear and the depth of material removed gives the relative wear of the
tool or the wear ratio. Studies show that the wear ratio, ratio of the volume of
metal lost from the tool to the material removal rate, depends on the tool-
workpiece combination. For example, the wear ratio of brass tool with different
workpiece materials looks as listed in Table 6.2.

URN:NBN:no-2332



URN:NBN:no-2332
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Table 6.2: Examples of wear ratio values for brass tool

Tool material Workpiece material Wear ratio
Brass Brass 0.5
Brass Hardened carbon 1.0
Brass Tungsten carbide 3.0

Compared with other materials such as copper and copper-tungsten electrodes,
graphite suffers the highest wear on both front and corner. In addition, a tool
material should have properties of good electrical conductivity and
machinability. Graphite and copper-graphite are by far the most commonly used
tool materials. The former is preferred due to its machinability. Adding copper
to graphite produces copper-graphite that increases the conductivity of graphite
(Boothroyd and Knight, 1989).

Good machinability makes graphite one of the most commonly used tool
material for EDM. Nonetheless, insignificant information exists about the
implementation technology of this material for different workpieces and cutting
conditions. Because commercial EDM machines are optimized mainly for steel
tools, industrial application of a new material often requires an experimental
development of a completely new technology for the specific material. However,
the time to make such tests in the production environment is limited, posing the
demand for a mechanism that enables the modeling and optimization of
parameters within the limits of technology and economy.

Tool
|(Electrode)

Cornerh y
wear y ] i A
- “So ,/. Front
' 1 e
Radius \\‘\',” v wear

Figure 6.2: Designations of electrode wear
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6.4.2. Description of experimental data

Table 6.3 shows the values of the input parameters for the test done on graphite
electrode (size 2,9 x 9,8 mm?) with nickel-base alloy workpiece using AGIE
INNOVATION EDM machine. The variable combinations were generated using
the AGIE TECTRON that generates recommended combinations for good
performance of the process for steel material. Since there is no such data for
graphite tool material on nickel-base alloy, the recommended combinations for
steel were used. Most of the performance parameters are however not possible to
measure directly. Appendix A shows the measured values and the calculated
performance parameters. It is observable from the data that the tool wear values
registered were very insignificant and investigating for these parameters for such
a short time machining tests gives inconclusive results.

Table 6.3: Experimental dataset for graphite tool on nickel-base alloy

Input parameters Performance parameters
T P | U | COMP |GAIN| MBRR| SR | CWR | RBWR
100 | 10 | 21 | 100 | 423 15 400 | 8,87 | 0,10 | 0,00
56 10 | 21 | 100 | 42,3 15 380 | 7,87 | 0,15 | -0,06
42 10 | 21 | 100 | 423 15 682 | 6,37 | 0,20 | -0,03
32 10 | 21 | 100 | 42,3 15 1039 | 544 | 0,20 | 0,02
24 10 | 21 | 100 | 423 15 846 | 554 | 0,30 | 0,05
49 | 56 | 21 | 100 | 35,3 15 628 | 7,14 | 0,20 | 0,02
49 | 37 | 21 | 100 | 35,3 15 578 | 7,00 | 0,20 | 0,01
49 10 | 21 | 100 | 35,3 15 583 | 6,87 | 0,05 | 0,02
49 | 37 | 39 | 100 | 35,3 15 1345 8,06 | 0,20 | -0,01
49 | 37 | 29 | 100 | 35,3 15 1018 | 7,48 | 0,10 | 0,04
49 | 37 | 21 | 100 | 35,3 15 487 | 7,88 | 0,15 | -0,02
49 | 37 | 17 | 100 | 35,3 15 334 | 6,783 | 0,10 | 0,01
49 | 37 | 10 | 100 | 35,3 15 179 | 495 | 0,20 | 0,02
49 | 37 | 21 | 100 | 30,2 15 536 | 7,54 | 0,20 | 0,01
49 | 37 | 21 | 100 | 20,0 15 536 | 7,02 | 0,20 | -0,01
49 | 37 | 21 | 100 | 35,3 20 594 | 6,51 0,18 | 0,02
49 | 37 | 21 | 100 | 35,3 15 526 | 6,983 | 0,20 | 0,02
49 | 37 | 21 | 100 | 35,3 12 503 | 6,55 | 0,15 | 0,02
49 | 37 | 21 | 100 | 35,3 10 484 | 7,29 | 0,10 | 0,00
49 | 37 | 21 80 35,3 15 604 | 6,58 | 0,20 | 0,01
49 | 37 | 21 60 35,3 15 501 6,42 | 0,20 | 0,03
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6.5. The Hybrid CI Approach to Modeling and Optimization

Under the umbrella of hybrid CI approach, the integration of genetic algorithms
and neural networks is seen as a fruitful area of research, where many new and
exciting ways of merging the technologies are emerging. The background for
this interest is that neural networks can find patterns in training sets of data,
learn these patterns, and develop the ability to correctly classify new patterns or
to make forecasting or prediction models. They excel at problems where
modeling by mapping input patterns to output results is important and precise
computational answers are not required.

In addition, genetic algorithms seek to solve optimization problems using
evolution methods. In typical optimization problems, formulas or algorithms that
combine a number of control variables are used to fully model processes. Then,
the problem boils down to finding the values of the variables that optimize the
model in some way. If the model is a formula and very few variables are
involved, then the maximum or minimum value of the formula can be sought
using conventional optimization approaches, which can optimize problems of
this nature for fairly "well behaved" problems. These traditional methods tend to
break down when the problem is not so well behaved.

Modeling EDM process for optimum operation represents a particular problem
type in manufacturing environment where defining the optimization objective
function using a smooth, continuous mathematical formula is not possible. By
combining the capability of the two CI tools, a methodology is developed to
solve both the modeling and optimization problem in a hybridized form. By
using an input-output pattern of experimental data, a hybrid GA and neural
network (HyGANN) approach is implemented for this methodology
development. Figure 6.3 shows the structure of this hybrid system.
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Figure 6.3: HYGANN system for EDM process modeling and optimization

In this hybrid system, the capability of neural networks to model and predict ill-
structured data is exploited together with the power of GAs for optimization.
The fundamental optimization problem for this hybrid system can be expressed
as follows:

Optimize Y = f(X ,W) 6.1)
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100 6.5. The Hybrid CI Approach to Modeling and Optimization

where, Y represents the [output] performance parameters such as the MRR that
is to be maximized and the tool wear and the surface roughness that are to be
minimized during the optimization; X is a vector of the input variables to the
neural network and W is the weight matrix that is evaluated in the network
training process. f(.) represents the model of the process that is to be built
through neural network training. While training, the neural network adjusts the
weights and establishes the correlation between the input variables and the
output parameters. Then, new X values are encoded as chromosomes for genetic
evolution using the weight matrix of the trained network to determine the
optimum Y values.

To achieve the goal of the task, a two-phase hybrid system of genetic algorithm
and neural network has been implemented. These two phases can be categorized
as modeling phase and optimization phase.

6.5.1. Hybridization at the modeling phase

The first phase involves the establishment of the model using multi-layer
feedforward neural network architecture. Instead of the standard
backpropagation error minimization approach, GA is implemented to find the
optimum values of the weights that minimize the error between the measured
and the evaluated (network output) performance parameters. Therefore, genetic
optimization establishes a strong intercommunication between the neural
network pattern identification (modeling) and the genetic algorithm optimization
tasks.

In this phase of hybridization, the weight matrices between input and hidden
nodes; and hidden and output nodes were coded as chromosomes. Then, the
following relation was used to combine the inputs of the network at the nodes of
the hidden layer.

H;=3v;X, (6.2)
where,

H; = the combined input to hidden node j from the nodes in the input layer

vij = the weight between input node i (i = 1, 2. .x) and hidden node j
(G=1,2,..h) for x nodes in the input layer and h nodes in the hidden layer
respectively and

X; = the input value at input node i.
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The outputs of the hidden layer are again combined at the output nodes in a
similar way.

0,=>w,.Z, 6.3)
7
where,

Oy = the combined input to the output node k from the nodes in the hidden layer

wix = the weight between node j of the hidden layer and the output node k
(k=1,2, ... z) for z number of nodes in the output layer

The outputs of both the hidden (Z; = f(H;)) and the output layer (Y, = f(Oy)) can
be calculated by an arbitrary transfer function. For the sake of an experiment,
sigmoid function of the form given in Equation (6.4) has been adopted for both
layers because of its well-known use as a transfer function for many
applications.

¢,
Wi Z;
J

Z,=f(H,) = ——and Y, =(0,) = (6:4)

>
I+e ' l+e

where, ¢, and ¢, are arbitrary constants.

Combining Equations (6.2) and (6.3), we get the following relation for the
output of the network.

Y =fO)=FQwyZ)=f Qw3 ;X)) (6.5)

Clearly, for non-linear function f{.), Yy is a no-linear function of the input vector
X and the network weights W = (v,w), i.e., Y = f(X,W) as given in (6.1). Figure
6.4 shows the above representations and the working principle of the approach.

In application of commercial neural network products, this task of defining the
correlation between the inputs and the outputs is left for the network itself.
Considering the neural network as a “black box”, our task could be determining
how the output of the network can be extracted as a single measure of
performance (fitness function) for the genetic algorithm part, where the major
challenge of hybridizing the two systems lays.
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Figure 6.4: The structure of a genetic learning based neural network

At the end, the output of the network is compared with the measured
performance of the process using a simple mean square error as follows.

E.= i(yk -0’ (6.6)

where, Ey is the mean squared error between the output (Yy) and the target
performance (Qy) of node k.

Thus, the optimization problem of this phase, for example for the material
removal rate, can be expressed as follows:

21
Minimize | E, = /Z(Yk -0,)’ 6.7)
k=l MRR

1. 0<v; <1 (Range of chromosomes for weights from input node i to
hidden node j.

2. 0 <wy <1 (Range of chromosomes for weights from hidden node j
to output node k.

Such that
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6
3. ZVU =1£0,1 (Constraint on contribution of each input variable i
i=1

to hidden node j.

4, 0 f(H j) <1 (Constraint on each hidden node’s activation).

5. 0= f(0,) <1 (Constraint on each output node’s activation).

6. Minimize( E, = /i Y, -0,)> J (Sub-goal of optimization).
k=1 SR

Because of the squashing of the network output to an interval [0, 1], a linear
transformation was used to scale the performance target values within a similar
range [0, 1].

Further, to optimize the error in the neural network structure and define the
correlation, GeneHunter was used with the following genetic parameter

definitions.
Population size =80
Chromosome length =32 - bits
Crossover rate =0,90
Mutation rate =0,01
Elitism strategy Yes, with generation gap of 0,98
Stopping criteria 200 generations with unchanged fitness

Knowing the relative importance of the input variables for each performance is
one of the important goals in this study. For online control purposes, in
particular, it is important to identify as which variable highly creates deviations
on the performance of the process so that system parameter adjustments can be
done as quickly as possible. To make this comparison, three error optimization
cases were considered:

(a) Optimizing using the error between the output of the node for MRR and its

21
target value with E ., = z (Y, —Q,)° as afitness function
k=1

(b) Optimizing using the error between the output node of surface roughness and

21
its target value with E, = ’Z (Y, —Q,)° as afitness function and
k=1
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(c) Optimizing using a MOP approach with the error for MRR

(E - i Y, -0,)? ) as the main fitness function and that of the

k=1

surface roughness (g = fi (Y, -0,)* ) asthe sub-goal.
k=1

This relative importance concept has been used here to establish a simple
measure of how significant each input variable is to predict the process using the
model. For this objective, the range of the chromosomes (weights) was defined
between O and 1 so that higher values are associated with more important
variables. Further, the sum of the weights over all input variables was
constrained to 1£0,1 so that the relative importance values may be thought as the
percent contribution of each respective variable to the model performance. It
does not mean however that a variable having 40% relative importance is twice
as important as that having 20% relative importance. On the other hand, it may
imply that it is possible to omit a variable if its relative contribution in defining
the model structure tends to zero.

Table 6.4 shows the values of the weights resulted from these optimizations and
Figure 6.5 shows the relative importance of the variables for the three cases. The
rest of the results together with the network structure is given in Appendix B, C
and D for the above three cases respectively.

Table 6.4: Weight values (v;;) for the three cases of error optimization

(a) Weight values for material removal rate error optimization case

Node 1 | 02084 0,0989 10,1276 0,1992 0,1634 0,1333 | 0,9307
Node 2 | 02021 10,1322 02519 0,0067 0,3171 3E-08 0,9100
Node3 | 03382 0,092 0,1246 0,0419 0,1049 0,174 | 0,8756
Sum 0,7487 10,3231 0504 02477 05855 0,3073  2,7163

f

Node 1 | 01472 10,1229 04164 0,0003 0,1298 0,1276 0,9442
Node 2 | 0.0742 0,101 0,142 0,104 0,3597 0,1939  0,9903
Node 3 | 01258 0,2155 10,1002 0,4225 0,0622 0,0385 | 0,9648
Sum 0,3472 0,4485 0,6587 0,5331 0,5517 10,3601 | 2,8993
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c) Weight values for multi-objective error optimization case

Sum
Node 1 | 0,6077 0,0196 0,1038 0,0923 0,0077 0,0508 | 0,8818
Node 2 | 0,1132 0,0038 0,364 0,0135 0,0186 0,016 [ 0,5292
Node 3 | 0,1454 0,0875 0,0152 0,0856 0,0008 0,213 | 0,4974
Sum 0,8662 0,1109 0,483 0,1414 0,027 0,2798 | 1,9084

Plot of Relative Importance of Variables
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Figure 6.5: The relative importance of the variables for three test cases

The result for all cases shows an interesting relationship that the current intensity
(D has a relatively uniform high relative importance for the process
performance. At the same time, the pulse Ontime (T) highly influences the
optimization of the material removal rate as well as both performances
simultaneously and the compression has the least relative importance for this
simultaneous case.

The network error for all cases sounds reasonable to accept the network for
further application. In the multi-objective case, for example, the network
optimized error for MRR was 5,60 % while that of the surface roughness was
4,98 % (Appendix D).
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6.5.2. Hybridization at the optimization phase

In the second phase, i.e. after defining the model, the input parameters to the
neural network structure were coded as chromosomes for genetic evolution.
Since the major part of the problem has been already solved in the previous
phase, this is of course the characteristic of most neural network applications;
the implementation phase in this part is straightforward. Figure 6.6 shows the
general structure and principles used in this implementation.

_: Structure of the Hybrid System at the Optimization Phase N\
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Figure 6.6: Structure of the hybrid system at the optimization phase
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Table 6.5: Sample of optimization results

Variables

Units [us] [us] [A] [V] [mm]

Opt. values 25,49 13,73 9,80 33,33 37,76 28,04
Outputs Units Opt. Results Target

MRR [mm*/min] 1038,58 Max

Roughness [Ra] 6,97 Min

In this case, the structure of the neural network is seen as a “black box” (Figure
6.6 (b)) for the user whereas, contrary to use of other commercial neural
networks for such hybridization, the genetic algorithm knows what is going on
inside the structure and uses the structure in the evolution process very actively.
This is because the outputs from the neural network are used as the fitness
Jfunctions for the genetic algorithm based optimization.

The multi-objective optimization was then run using GeneHunter and the results
after several test runs look as shown in Table 6.5. These results are of course
only for demonstration of the methodology, and thus it is important to note that
the numerical values need further verification. This includes the refinement of
the network structure in terms of the number of hidden layers and the number of
nodes in each layer as well as running the model with more experimental data.

6.6. Predicting the Model Performance Using Neural Networks

Beside the modeling and optimization problem, predicting the performance of
EDM processes for some tool-workiece combinations is also very important.
Among existing prediction tools, neural networks appear today as powerful tools
to handle complex datasets. There are also many commercial, but mainly
research-oriented, neural network tools that were developed to solve some of our
problems. The disadvantage of such tools with respect to our hybridization goal
is that their internal activities are often “closed” to the user since it is not
possible to extract the internal structure of the created correlation. Thus, it is
difficult to find the exact combination of contributions of each of the variables
that creates the best predictions. This nature of neural networks makes the major
part of the difficulty to merge the work of the networks with other Al tools.
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6.6.1. Neural network and genetic algorithm based predicator

In cases where only analyzing performances is required, neural networks are
often used as powerful tools to predict the performance of processes. To analyze
our dataset for graphite tool on nickel-based alloy workpiece, NeuroShell®
Predictor was implemented. Two alternative strategies of training input-output
data patterns were implemented. The first uses standard backpropagation
learning approach that dynamically grows the hidden neurons to build a model
and to find optimum network structure for best predictions. In a way, this is a
form of multiple regression analysis because a neural network with no or small
number of hidden neurons behaves like or close to a regression analysis. On the
other hand, using a high number of hidden neurons leads to a risk of over-
training or over-fitting the model. With a possible maximum number of hidden
neuron set to 20, 40 and 80, the network for this model shows that only 13
hidden neurons are necessary for best predictions (optimum results).

The second strategy employs genetic algorithm evolution combined with
statistical estimators to develop the model. Statistical estimators such as
maximum correlation, minimum total error and root mean squared error are
included in the package. The parameter that is very important to determine while
using this approach is the number of generations that the system runs with no
improvement in the network’s best performance. Since a low number of
generations give premature predictions of the model, appropriate number should
be experimentally determined based on the data size, problem complexity and
other factors. To be able to make a rough comparison with the developed model
using the hybrid system (Section 6.5), the same number of generations with
unchanged fitness of 200 was used in this genetic learning process.
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Figure 6.7: Actual vs. predicted values using neural (a) and genetic (b) learning
strategies

The network was trained using these two strategies and the plot of actual vs.
predicted values of the material removal rate looks as shown in Figure 6.7.
Contrary to the NeuroShell® Predictor developers’ indication (NeuroShell,
1998), the neural training strategy shows better correlation between the actual
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and the predicted values of the model than the genetic based learning strategy.
The lower correlation of the genetic based learning strategy can be attributed to
the fact that this strategy cannot predict values that are outside the range of the
training dataset. The plots for both cases show that the material removal rate for
dataset number 9 (Table 6.3) is the highest though the magnitude is lower in
genetic learning case. Compared with the optimization result of the hybrid
system in the previous section, an interesting correlation can be seen concerning
the size of the maximum material removal rate. There are two peak values of the
material removal rate (1015,58 and 1038,68 mm3/min) for the genetic based
prediction that are very close to the optimum value achieved by the hybrid
model (1038,68 mm’/min).

As shown Figure 6.8 the neural network based prediction shows that Ontime has
the highest relative importance to control the material removal process; while the
peak current and the gain show very low relative importance. For the genetic
based model, however, the voltage is the dominating variable while Offtime and
peak current have insignificant role for the process. Comparing these results
with the hybrid system is difficult because contrary to these predictions, the
hybrid system shows a higher relative importance of the peak current for the
material removal rate.
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Figure 6.8: Relative importance of variables for material removal rate
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Figure 6.9: Relative importance of variables for surface roughness

Figure 6.9 shows, on the other hand, higher relative importance of the peak
current and the pulse Ontime for the surface roughness as predicted by the neural
based and the genetic based predicators respectively. Compared with the hybrid
system we find here certain resemblances because, as shown in Figure 6.5
shows, the peak current has the highest relative importance for the surface
roughness.

6.6.2. Practical implementation issues

In practice, processes are often operated at recommended best performance
values than optimum values. This can be because either it is not always simple to
define an optimum point of operation or sometimes it may not be necessary to
find such a point accurately as far as a reasonable range of best performance is
known. The best performance values can be considered as near optimal values
defined within certain plus or minus ranges from the optimum point. To define
such a range, it is important to know the influential variable(s) as addressed in
the above discussions and a method of visualizing the performances.

According to EDM Technical Handbook (1994), the common method of
visualizing the influence of the control variables on EDM performance
parameters is using a diagram showing the parameters as a function of the
Ontime. The results of the above-discussed model show also that this parameter
is highly influential in most of the cases.
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Figure 6.10: Variation of performance parameters with Ontime

Based on this conclusion and knowing the neural network’s optimum structure
of 13 hidden neurons, another backpropagation network was modeled using
NeuFrame from Neurosciences because NeuFrame allows both training and
testing datasets. The trained model was then tested using a randomly generated
test data within the range of the training dataset. Two peak current values were
selected for comparison and the results are shown in Figure 6.10.

Reports for some materials such as polycrystalline diamond (PCD) show that the
material removal rate increases with Ontime to a certain extent and then
decreases (Kozak, ef al., 2001). According to the report, the MRR for both water
and oil dielectric fluid is attained at Ontime of 60 ps. In this analysis, however it
shows a decreasing tendency with very small variations towards higher Ontime
values (Figure 6.10). This result requires further verification because it somehow
contradicts with existing results for other materials. The surface roughness, on
the other hand, agrees with accepted trends with the fact that higher peak current
contributes to a rougher surface. This implies that the longer the pulse Ontime,
the higher is the roughness because of a large quantity of energy transfer to the
material that can produce large craters. Using short pulses, no significant
differences were observed in the roughness for different discharge currents.
However, increased pulse duration tends to increase the roughness in the high
peak current region. This is an indication that good surface quality can be
achieved only at lose of productivity.
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6.7. Chapter Summary

This chapter has addressed one of the most difficult problems in modern
manufacturing industry particularly the modeling and optimization problem of
EDM process. A mechanism that combines the important capabilities of neural
networks and genetic algorithms has been developed as an implementation of the
hybrid CI methodology outlined in Chapter 3. This hybrid CI approach is aimed
to find an integrated solution to the existing problem of modeling and
optimization of manufacturing processes for which formulating an optimization
model is not straightforward. EDM represents a category of manufacturing
processes called non-conventional machining techniques where defining an
appropriate analytical model is often difficult.

The methodology development was divided into two main phases. In the first
phase, a genetic algorithm based learning strategy was used instead of the
standard backpropagation learning to develop a neural network model that can
identify the input-output patterns. This was found necessary primarily because
developing a hybrid system using standard or commercial neural network tools
is very difficult due to the “black box” nature of neural networks. Moreover,
standard backpropagation learning is often criticized to be trapped at local
minimum for relatively large problem domains. Coding the network weights as
chromosomes and the mean square error as the fitness function(s), the network
structure was defined through genetic learning strategy that minimizes the error.

Having the network structure, the second phase was very simple and
straightforward. Defining the input variable as chromosomes, the network output
was used as the fitness function for GA optimization. Finally, different methods
of verifications were implemented to see if the model performance is reasonable.
Comparisons with other predicator tools show that the developed model
performance is satisfactory and most of all, the hybridization model shows a
good potential to achieving a multi-objective optimization of the overall process.

A relative importance approach was used to see which input variables influence
the output performances so that operation and control of the process can target
those most dominating variables. In good agreement with research results for
other tool-workpiece combinations, the result of this investigation shows that
pulse Ontime and the peak current are the most important variables to control
both the material removal rate and the surface roughness.
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In short, the benefits of this hybrid CI system for modeling and optimization of
EDM process is twofold. Primarily, the developed methodology and the
solutions achieved from the investigation using the methodology establish better
knowledge about the interaction between the tool (graphite) and the workpiece
(nickel-based alloy) for the process. The most beneficiaries of this result include
aircraft, automobile and tool-making industries. Secondly, the solution approach
implemented in this chapter opens a new direction for research so that other
manufacturing processes particularly those known to be difficult to model using
existing modeling techniques can be solved using similar approach.
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CHAPTER 7

CONCLUSIONS AND FURTHER WORKS

After going through the critical review and synthesis of previous and ongoing
works in the area, this study focused on the two process planning tasks, namely
mapping design information to manufacturing actions and optimal sequencing of
operations since they are bottlenecks of integrating design and manufacturing.
Today, the industry has a problem of directly transferring design information of
modern CAD models to manufacturing actions because of the lack of common
“language” among the different functions in the manufacturing field. The type of
information needed by CAM systems and other operation, technology and
resource related complexities in the machining environment have also
contributed to the difficulty of optimizing operation sequencing. Accordingly,
the study concluded that the countless alternative options involving resources
and technology used to produce a part together with several constraints represent
a combinatorial optimization task demanding powerful tools that can accomplish
multi-objective solutions simultaneously.

The problem of an integrated design and manufacturing is not only optimization.
To use existing optimization tools, we need also appropriate modeling of the
process. Very important theoretical foundations and mathematical relations are
available for some conventional machining processes such as metal cutting using
a lathe machine. For more complex processes such as face milling operations
however either (a) the existing relations need to be appropriately formulated so
that the existing optimization tools can be used or (b) there exists no
mathematical model that fully represent the process. EDM process represents an
example of the last case, where both modeling and solving for optimum
operation is one objective of this research.

To achieve the goals of the study, some theoretical foundations and solution
approaches (methodologies) have been developed that can enhance the required
manufacturing intelligence using several forms of hybrid computational
intelligence approach. The study done in genetic algorithm and neural network
technologies created the background for the proposed hybridization approaches
and their implementation issues. Motivated by the good capability of neural
networks to recognize features through appropriate training and the global and
robust search capability of genetic algorithms, the study developed the idea of
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hybrid genetic algorithm and neural network (HyGANN) whose implementation
in manufacturing is treated from two perspectives.

1. Hybrid CI approach has been proposed whereby the design information,
having a manufacturing meaning, is recognized by neural networks and
further used as input for operation sequencing optimization using genetic
algorithms. Due to the complexity of the problem, the study concluded that
operation sequencing can be treated, at different levels, as a combination of
combinatorial and multi-objective optimization problem with constraints.
Particularly, an optimization methodology using the TSP approach has been
adopted with certain modifications to the original principle. As a mechanism
of evaluation criterion for process planning, a multi-objective optimization
model for machining economics has been developed and a solution approach
has been demonstrated using a genetic algorithm tool — GeneHunter.

2. Optimization using genetic algorithms needs the figure of merit in certain
form of mathematical model. Though the relation between various variables
and performance parameters in manufacturing can be found through direct
measurements, establishing a formula that represents the relation among the
variables and the parameters is often difficult. Thus, direct application of
genetic algorithms to optimization of such problems is impossible. To
overcome this bottleneck, the study proposed a hybrid CI approach where
neural networks, supported by genetic algorithms, are trained to define the
structure of the network that minimizes the error between the target samples
and the network output. The optimized network structure has been used as
the fitness function of genetic algorithm based optimization. The approach
has been demonstrated using experimental data from an electro-discharge
machining, a non-conventional machining process that is characterized as
difficult-to-model.

Putting all together, the contribution of the thesis to the scientific works in the
field can be summarized as follows:

= The theories and the proposed methodologies of hybrid CI system to map
design information into their manufacturing counterparts for optimization
can advance the existing attempts to bridge design and manufacturing.

= The optimization methodology of operation sequencing and economics of
machining using genetic algorithm approach advances the ongoing research
to find a compromised near optimal operation of manufacturing processes.

= The new approach of using hybrid CI to model and optimize complex
machining environments such as the EDM process not only benefits those
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industrial activities specializing in the field, but also opens a new field of
research for other similar non-conventional operations.

= The highlighted problem areas in integration and optimization of design and
manufacturing can advance better understanding of existing challenges for
further works.

= Finally yet importantly, the facts, solution methodologies and issues
discussed in this thesis can be appropriately applied in other industrial
business.

In general, the thesis has focused on development and demonstration of
methodologies whereby hybrid CI systems are treated merely as application
tools. The central objective has been elevating manufacturing system
intelligence through integration of manufacturing entities and optimization of
processes. This is because an integrated and optimized manufacturing system is
expected to be better flexible and profitable.

It is also natural that the discussed methodologies and the achieved results
require further verifications. For example, the proposed hybridization
methodologies may require improvement in terms of the genetic parameters and
structure of the neural network. More importantly, the EDM modeling and
optimization problem was based on few experimental dataset due to the specific
characteristic of the non-conventional machining environment. The test data was
also collected in accordance with the recommended combinations of parameters
for a particular workpiece (steel). Therefore, the obtained results are subject to
further verification in terms of tests that are more systematic or in
implementation.
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APPENDIX A

The table shows the measured values used to calculate the surface roughness, the

material removal rate and the tool wears.
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APPENDIX B

The table shows the network structure with values of nodes in the input layer, the hidden

layer and the error comparison of the material removal rate at the output layer.
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APPENDIX C

The table shows the network structure with values of nodes in the input layer, the hidden

layer and the error comparison of the surface roughness at the output layer.
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APPENDIX D

The table shows the network structure with the multi-objective error optimization - the

material removal rate and the surface roughness at the output layer.

PSEF UM [e0h-ans  [OzV /L MW UOnauny ssauld

/88 ¥eW GO0 |75 PYEL XEW 9500

9v'3 v/E0 /050 1ES 005 ] 9/20 | S0 |vB0 780 860 Iz
859 9I¥'0 /050 [ Z07E09 | P3E'D g0 [r80 Z80 861 0z
887/ 9650 /050 10rFar | 7920 50 |580 Z80 660 6l
9r5'3 /0F'0 2050 [DEFEDS | 8420 50 | 580 E8'0 660 8l
Z26'3 5050 /050997925 | 8620 g0 |580 E80 660 il
159 8AED /050 [ 985665 | 9520 50 [ 580 80 66D gl
zz0'/ 8750 /050 | 00F'9E5 | 4020 g0 |r80 Z80 660 gl
ors ¢ 1890 /050 B1I'9ES | 90£°0 50 |r80 Z80 660 7l
pSE'y 0000 /050 |02V A2 | 0000 50 [e80 90 86 El
2243 v5r'0 £050 | BFEFEE | EEL'D g0 |r80 80 660 Zl
8/8'7 /v/00 /050 [GEd a8y | #az0 50 |580 80 660 | seopuaddy] )
zar's ard'o /050|315 2101 6140 50 990 990 660 | snowasd ay) 0L
0908 ¥6£0 2050|125 FrEL| 000} 50 [480 60 660 wsespndul 6
0/8'9 06F'0 £05'0[E89'Z85 | avED 50 |60 780 660 awesay @
0002 E750 /050 [E82 445 | ZFED g0 [580 E80 660 L
8cl’/ 8950 /050 | #6E 229 | 5820 50 [88'0 E80 66D g
0rs's 0540 9050 | Z0Ear8 | 2450 30 |££0 8/0 16D 5
Zry's sz2i'0 2050 [FB9 8E01] BEL'O 50 [5£0 80 960 7
pIE'9 EIED gl VA ] 50 [8/0 180 86D 3
084 520 050 [ 9ZE'08E | E£1'0 g0 | 180 80 660 z
898’8 000! /050 01P00F |06L'0 £96000 S0 |90 eSO | |
ey Pafeds 45 [elep med|paieas] bou3) [ o | EN | 2 | I u
ds 18fie ] pdwopnding[  Huw iebie]  fedwo)indingpie) uappiy jo sapofI AW LNdN}saL

URN:NBN:no-2332



124 Appendices

URN:NBN:no-2332



References 125

REFERENCES

10.

11.

12.

13.

URN:NBN:no-2332

Aas, L.M,, P.K. Sannas, H.L. Gelgele, F.O. Rasch, and K. Wang (2001),
Methodology to increase process-efficiency in EDM-machining of jet
engine parts in a nickel-base alloy, Proc. of the 13" Int. Symp. for
Electromachining, ISEM XIII, Bilabo, Spain, Vol 11, 649-660.

Abido, M.A. (1997), Intelligent techniques approach to power system
identification and control, Ph.D. Dissertation, University of Petroleum and
Minerals, Saudi Arabia.

Agapiou, J.S. (1992), The optimization of machining operations based on a
combined criterion, Part 2: Multi-pass operations, ASME Transactions:
Journal of Engineering Industry, 114, 508-513.

Alting, L. and H. Zhang (1989), Computer-aided process planning: A state-
of-the-art survey, Int. Journal of Production Research, 27, 553-585.

Arguelles, D. (1996), Hybrid artificial neural network/genetic algorithm
approach to the on-line optimization of electrical power systems, Ph.D.
Dissertation, George Washington University, USA.

Arikan, M., A. Sahir and O.H. Totuk (1992), Designing using machining
operations. Annals of CIRP, 41, 185-188.

Barschdoff, D. and L. Monostori (1991), Neural networks: Their
applications and perspectives in intelligent machining, Computers in
Industry, 17, 101-119.

Bendict, G. (1987), Nontraditional Manufacturing Processes, Marcel
Dekker Inc, NY.

Biegel, J.E. and J. Davern (1990), Genetic algorithm and job scheduling,
Computers in Industrial Engineering, 19, 81-91.

Boothroyd, G. and W.A. Knight (1989), Fundamentals of Machining and
Machine Tools, Marcel Dekker Inc., NY.

Bornholt, S. and D. Graudenz (1992), General asymmetric neural networks
and structure design by genetic algorithms, Neural Networks, 5, 327-334.

Bowden, R.O. (1992), Genetic algorithm-based machine learning applied to
the dynamic routing of discrete parts, Ph.D. Dissertation, Mississippi State
University, USA.

Chan, C.C. and G.W. Fischer (1996), Automatic feature recognition using a
neural network technique, Int. Sym. on Information Storage and Processing
Systems; ASME, Manufacturing Engineering Division, MED, 4, 731-744.



URN:NBN:no-2332

126

References

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Chan, C.C.H. (1994), Artificial neural network based feature recognition
and grammar based feature extraction to integrate design and
manufacturing, Ph.D. Dissertation, University of lowa, IA, USA.

Chan, K.C., and H. Tansari (1994), A study of genetic crossover operations
on the facilities layout problem, Computers in Industrial. Engineering,
26(3), 537-550.

Chang, C.A. and V. Angkasith (2001), Using Hopfield neural networks for
operational sequencing for prismatic parts on NC machines, Engineering
Applications of Artificial Intelligence, 14, 357-368.

Chen, T. (1997), Hybrid intelligent system for process modeling and control
using neural network and genetic algorithm, Ph.D. Dissertation, The
University of lowa, USA.

Cheng, M.Y. (1996), Control design and robustness measurement for biped
locomotion, Ph.D. Dissertation, University of Missouri-Columbia, USA.

Cheng, R. (1997), Study on genetic algorithm-based optimal scheduling
techniques, Ph.D. Dissertation, Tokyo Institute of Technology, Japan.

Dagli, C.H. (1994), Artificial Neural Networks for Intelligent
Manufacturing, Chapman and Hall, UK.

de Floriani, L. (1989), Feature extraction from boundary models of three-
dimensional objects. IEEE Transaction of Pattern Analysis and Machine
Intelligence, 8, 785-798.

De Jong, K.A. and W.M. Spears (1989), Using genetic algorithms to solve
NP-complete problems, in Proc. of 3 Int. Conf. on Genetic Algorithms,
J.D. Schaffer Eds. San Mateo, CA: Morgen Kaufmann, 124-132.

Descotte, Y. and J.C. Latombe (1981), GARI: a problem solver that plans
how to machine parts. Proc. of the Seventh Int. Joint Conf. on Artificial
Intelligence, Vol 11, 772-776.

Dev, K. (1995), Optimization for Engineering Design: Algorithms and
Examples, Prentice-Hall, New Delhi.

Dibitonto, D.D., P.T. Eubank, M.R. Patel and M.A. Barufet (1989),
Theoretical models of the electrical discharge machining process, 1. A
simple cathode erosion model, Journal of Applied Physics, 66(9), 4095-
4103.

Duan, W., J. Zhou and K. Lai (1993), FSMT: A feature solid-modeling tool
for feature-based design and manufacture, Computer Aided Design, 25(1),
29-38.

EDM Technical Manual (1994), Poco Graphite, Inc.



References 127

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

URN:NBN:no-2332

El-Sayad, J.S. and El-Gizawy (1997), Nonlinear multi-objective
optimization of machining process parameters, Int. Conf. on Computer
Aided Optimum Design of Structures, OPTI, 141-149.

Ermer, D.S. and D. C. Patel (1974), Maximization of production rate with
constraints by linear programming and sensitivity analysis. Proc. of Second
North American Metalworking Research Conference, W1, USA.

Fenton, R.G. and ML.F.J Gagnon (1993), Computer-aided tool material
selection for metal-cutting operations, CIRP Annals, 42(1), 565-568.

Fu, H.P. and C.T. Su (2000), A comparison of search techniques for
minimizing assembly time in printed wiring assembly, Int. Journal of
Production Economics, 63(1), 83-98.

Garey, M.R. and D.S. Johnson (1979), Computers and Interactability - A
Guide to the Theory of NP-Completeness, W. H. Freeman, NY.

Gelgele, H.L. and K. Wang (1998), Part feature applications to integrate
CAD/CAM systems, State-of-the-art Survey Report, No. NTNU 98022,
NTNU, Norway.

Gelgele, H.L. and K. Wang (2000), Application of genetic algorithms for
optimal sequencing of machining operations, To appear in Proc. of the
Nordic-Baltic and Northwestern Russia Summer School, In Application of
Computational Intelligence in Engineering.

Gen, M. and R. Cheng (1997), Genetic Algorithms and Engineering Design,
John Wiley & Sons Nic., NY, USA.

Gen, M. and R. Cheng (2000), Genetic Algorithms and Engineering
Optimization, John Wiley & Sons Nic., NY, USA.

Gold, F.M. (1998), Application of genetic algorithm to the kinematic design
of turbine blade fixtures, Ph.D. Dissertation, Wercester Polytechnic
Institute, USA.

Goldberg, D. E. (1989, 1998), Genetic Algorithms in Search, Optimization
and Machine Learning, Addison Wesley.

Goldberg, D. E. and R. Lingle (1987), Alleles, loci and the travel salesman,
In Proc. of the First Int. Conf. on Genetic Algorithms, Lawrence
ErlbaumAssociates, Hillsdale, N.J., USA.

Gopalakrishan, B. and A-K. Faiz (1991), Machining parameter selection for
turning with constraints: An analytical approach based on geometric
programming, Int. Journal of Production Research, 29(9) 1897-1908.

Gu, P. and D.H. Norrie (1995), Intelligent Manufacturing Planning,
Chapman & Hall, London, UK.



128 References

42. Gupta, R., J.L. Batra and G.K. Lal (1994), Determination of optimal
subdivision of depth of cut in multi-pass turning with constraints, Int.
Journal of Production Research, 33(9), 2555-2565.

43. Hashimoto, Y. (1995), Study on neural network and genetic algorithms on
application to production planning problems, Ph.D. Dissertation,
Ritsumeikan University, Japan.

44. Henderson, M. R. (1994), Manufacturing feature identification, In Artificial
Neural Networks for Intelligent Manufacturing eds. by Dagli, C.H.
Chapman and Hall, UK.

45. Henderson, M. R. and S. Prabhakar (1992), Automatic form-feature
recognition using neural network based technique on boundary
representations of solid models, Computer-aided Design, 7, 381-393.

46. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, University of Michigan Press.

47. Hwang, J.L. (1991), Applying the perceptron to 3D feature recognition,
Ph.D. Dissertation, Arizona State University, USA.

48. Irani, S.A. et al. (1995), Feature-based operation sequence generation in
CAPP. Int. Journal of Production Research, 33(1) 17-39.

49. Jin, K. (1996), Study on optimal neural network design and its application
using genetic algorithms, Ph.D. Dissertation, Hokkaido University, Japan.

50. Joines, J.A. (1996), Hybrid genetic search for manufacturing cell design,
Ph.D. Dissertation, North Carolina State University, USA.

51. Joshi, S., and T.C. Chang (1988), Graph-based heuristics for recognition of
machined features from a 3-D solid model, Computer-aided Design, 20(2),
58-66.

52. Karuno, Y., H. Nagamochi and T. Ibaraki (1997), Vehicle scheduling on a
tree with release and handling times, Annals of Operations Research, 69,
193-207.

53. Kilic, S. E., C. Cogun and T. Sen (1993), A computer-aided graphical
technique for the optimization of machining conditions, Computers in
Industry, 22, 319-326.

54. Kim, L-T. and H.-W. Suh (1998), Optimal operation grouping and
sequencing technique for multistage machining systems. Int. Journal of
Production Research, 36(8), 2061-2081.

55. Kim, Y.S. (1994), Volumetric feature recognition using convex
decomposition. In Advances in Feature-based Manufacturing, J.J. Shah, M.
Mantyla and D.S. Nau (eds) (Amestredam: Elsevier), 39-63.

URN:NBN:no-2332



References 129

56. Korde, U.P., B.C. Bora, K.A. Stelsen and D.R. Rely (1992), Computer-
aided process planning for turned parts using fundamental and heuristic
principles, Journal of Engineering for Industry. 114, 31-40.

57. Kozak, J., K.P. Rajurkar and M. Ravi (2001), Neural network prediction of
abrasive electrode discharge grinding process performance, Proc. of the 13™
Int. Symp. for Electromachining, ISEM XIII, Bilabo, Spain, Vol 1, 405-420.

58. Kronenberg, M. (1966), Machining Science and Application: Theory and
Application for Operation and Development of Machining processes,
Pergamon Press Ltd., Oxford, London, UK.

59. Kumar, N. and K. Shanker (2000), A genetic algorithm for FMS part type
selection and machine loading, Int. Journal of Production Research, 38(16),
3861-3887.

60. Kumara, S.R.T, C.Y. Kao, M.G. Gallagher and R. Kasturi (1994), 3D
interacting manufacturing feature recognition, Annals of the CIRP, 43(1),
133-136.

61. Kuniede, M., S. Furuoya and N. Taniguchi (1991), Improvement of EDM
efficiency by supplying oxygen gas into gap, Annals of CIRP, 40(1), 215-
218.

62. Lee, LB.H., B.S. Lim, and A.Y.C. Nee (1993), Knowledge-based process
planning systems for the manufacture of progressive dies, Int. Journal of
Production Research, 32(2), 251-278.

63. Li, Y.Z. (1999), Study on hybridized genetic algorithms for production
distribution planning problems, Ph.D. Dissertation, Ashikaga Institute of
Technology, Japan.

64. Lin, A.C., S.-Y. Lin and S.-B. Cheng (1997), Extraction of manufacturing
features from a feature-based design model, Int. Journal of Production
Research, 35(12) 3249-3288.

65. Malborg, C.J. (1996), A genetic algorithm for service level based vehicle
scheduling, European Journal of Operational Research, 93(1), 121-134

66. Mathew, R.M. (1998), Applications and limitations of genetic algorithms
for the optimization of multivariate calibration techniques, Ph.D.
Dissertation, Clemson University, USA.

67. Mazumder, S.K., M.K. Muju and K. Shanker (1995), An integrated feature
recognition, operation sequencing and NC code generating for complex
axis-symmetric components. The First World Congress on Intelligent

Manufacturing: Processes and Systems, Proceedings, Vol. 11, Puerto Rico,
Feb. 13-17.

68. Medsker, L.R. (1994), Hybrid Neural Network and Expert Systems, Kluwer
Academic, MA.

URN:NBN:no-2332



130 References

69. Memon, G.Q. (1995), Optimization methods for real-time traffic control,
Ph.D. Dissertation, University of Pittsburg, USA.

70. Merchant, M.E. (1984), Analysis of existing technological forecasts
pertinent to the utilization of artificial intelligence and pattern recognition
techniques in manufacturing engineering, 16” CIRP Int. Seminar on
Manufacturing Systems, 14(1), 11-16.

71. Ming, X.G., K.L. Mak and J.Q. Jan (1999), A hybrid intelligent inference
model for computer aided process planning, Integrated Manufacturing
Systems, 10(6), 343-353.

72. Mitchell, R.J., J.M. Bishop, and W. Low (1993), Using genetic algorithm to
find the rules of a neural network, IEEE Proc. of the Int. Conf. on Artificial
Neural Networks and Genetic Algorithms, Innsbruk, Springer-Verrag, Wien,
664 — 669.

73. Mohri, N., N. Saito and M. Higashi (1995), A new process of finish
machining on free surface by EDM methods, Annals of CIRP, 40(1), 207-
210.

74. Monostori, L. and Cs. Egresits (1997), On hybrid learning and its
application in intelligent manufacturing, Computers in Industry, 33, 111-
117.

75. Murray, D. (1994), Tuning neural networks with genetic algorithm, A/
Expert, 22-32.

76. NeuroShell (1998), NeuroShell User Manual for NeuroPredicator®.

77. Oliver, LM., D.J. Smith and J.R.C. Holland (1987), A study of permutation
crossover operations on the travel salesman problem. Proc. of the 2" Int.
Conf. on Genetic Algorithms, 224-230.

78. Ong, N.-S and L.P. Khaoo (1999), Genetic algorithm approach in PCB
assembly, Integrated Manufacturing Systems, 10(5), 256 -265.

79. Ozyurt, B., A. Kandel (1996), Hybrid hierarchical neural network-fuzzy
expert system approach to chemical process fault diagnosis, Fuzzy Sets and
Systems, 83(1), 11-25.

80. Palmer, C.C. (1994), Approach to a problem in network design using
genetic algorithms, Ph.D. Dissertation, Polytechnic University, USA.

81. Pareto, V. (1971), Manual of Political Economy, translated from Italian by
A.S. Schweir, Macmillan, NY, USA.

82. Pinon, E. (1995), Investigation of the applicability of genetic algorithms to
spacecraft trajectory optimization, Ph.D. Dissertation, University of Texas-
Austin, USA.

URN:NBN:no-2332



References 131

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

URN:NBN:no-2332

Richardson, J., M. Palmer, G. Liepins and M. Hilliard (1989), Some
guidelines for genetic algorithms with penalty functions, in Proc. of the 3™
Int. Conf. on Genetic Algorithms, Morgan Kanfmann Publishers, San
Fransisco, USA.

Roy, U., M.D. Pollard, K. Mantooth and C.R. Liu (1989), Tolerance
representation scheme in solid model: Part I, ASME 15" Design Automation
Conf., Montreal, Canada, 1-10.

Sakurai, H. (1995), Volume decomposition and feature recognition — Part I:
Polyhedral objects, Computer-aided Design, 11, 1269-1285.

Sakurai, H. and D.C. Gossard (1990), Recognizing shape features in solid
models, IEEE Computer Graphics and Applications.

Saravanan, R., P. Asokan and M. Sachithanandam (2001), Comparative
analysis of conventional and non-conventional optimization techniques for
CNC turning process, Int. Journal of Advanced Manufacturing Technology,
17, 471-476.

Senjen, R., M. de Beler, C. Leckie, and C. Rowles (1993), Hybrid expert
systems for monitoring and fault diagnosis, Proc. of the Conf. on Artificial
Intelligence Applications, 235-241.

Shaffer, J.D., D. Whitley and L. Esherman (1992), Combination of genetic
algorithms and neural networks: State-of-the-art, Proc. of Combination of
Genetic Algorithms and Neural Networks, IEEE Computer Society.

Shah, J. and M.T. Rogers (1988), Expert form feature modeling shell,
Computer Aided Design, 20(9).

Shah, J.J. (1990), An assessment of feature technology. Proc. of the CAM-I
Feature Symposium, P-90-PM-02, 55-77.

Shah, J.J. (1992), Features in design and manufacturing. Intelligent Design
and Manufacturing (John Wiley and Sons), 39-71.

Shin, Y. C. and Y. S. Joo (1992), Optimization of machining conditions
with practical constraints, Int. Journal of Production Research, 30, 2907-
2919.

Soenen, R. and G. Olling (1995), Advanced CAD/CAM Systems: State-of-
the-art and Future Trends in Feature Technology, Hartnolls Ltd. Bodmin,
Cornwall, UK.

Stephenson, D.A. and J.S. Agapiou (1997), Metal Cutting Theory and
Practice, NY: Marcel Dekker.

Steuer, R.E. (1986), Multiple Criteria Optimization: Theory, Computation
and Application, Wiley, NY, USA.



URN:NBN:no-2332

132 References

97. Syswerda, G. (1991), Schedule optimization using GAs. In Handbook of
GAs (eds. L. Davis) Van Nostrand, NY, 332-349.

98. Tafti, M.H.A. (1992), Neural networks: A new dimension in expert systems
applications, Data Base, 51-54.

99. Tay, E.H. (1995), Automated generation and analysis of dynamic system
designs, Ph.D. Dissertation, Massachusetts Institute of Technology, USA.

100.Tolouei-Rad, M. and .M. Bidhendi (1997), On the optimization of
machining parameters for milling operations, Int. Journal of Machine Tools
and Manufacture, 37, 1-16.

101.Tsoukalas, L. and J. Reyes-Jimenez (1990), Hybrid expert system-neural
network methodology for nuclear plant monitoring and diagnostics, Proc. of
SPIE - The Int. Society for Optical Engineering, 1293(2), 1024-1030.

102.Tulkoff, J. (1987), Process planning: A historical review and future
perspectives. Proc. of the 19" CIRP Int. Seminar on Manufacturing System
Computer-aided Process Planning, PA, 207-210.

103.Uckun, S., S. Bagchc and K. Kawamura (1993), Managing genetic search in
job shop scheduling, IEEE Expert, 8(5), 15-24.

104.Van Dijck, F.S. and W.L. Dutr¢ (1974), Heat conduction model for the
calculation of the volume of molten metal in electric discharges, Journal of
Physics, 7, 899-910.

105.van Houten, F.J.A.M. (1990), PART: A Computer-aided Process Planning
System, FEBODRUK Enschede, The Netherlands.

106.Vandenbrande , J. H. and A.A.G. Requicha (1993), Spatial reasoning for the
automatic recognition of machinable features in solid models. IEEE
Transactions Pattern Analysis and Machine Intelligence, 15, 1269-1285.

107.Wang, M.Y. (1995), Scheduling in flowshops and pallet requirements,
Ph.D. Dissertation, University of Toronto, Canada.

108.Whitley, J.R. and J.F. Davis (1993), Qualitative interpretation of sensor
patterns, IEEE Expert, 53-63.

109.Winter, G., J. Periaux, M. Galan and P. Cuesta (1995), Genetic Algorithms
in Engineering and Computer Science, John Wiley & Sons Ltd., UK.

110.Wright, T. (1994), Genetic algorithm approach to scheduling resources for a
space power system, Ph.D. Dissertation, Case Western Reserve University,
USA.

111.Yokota, D. (1996), Study on solving system reliability optimization
problems with interval data by genetic algorithms, Ph.D. Dissertation, Meiji
University, Japan.



References 133

112. Zhang, F., Y.F. Zhang and A.Y.C. Nee (1997), Using genetic algorithms in
process planning for job shop machining, IEEE Transactions on
Evolutionary Computation, 1(4).

113. Zhang, H.C. and L. Alting (1994), In Computerized Manufacturing Process
Planning System, Chapman & Hall, London, UK.

URN:NBN:no-2332



134 References

URN:NBN:no-2332



Index

135

INDEX

A

Activation function, 35

Adaptive learning, 36

Adaptive processing, 9

AGIE INNOVATION machine, 97
AGIE TECTRON, 97

Artificial intelligence
definition of, 2
Artificial model, 34

Artificial neural networks, 34

B

Backpropagation, 38, 112

Binary coding, 64

Boolean operations, 15

Boundary representation, 15

B-rep. See Boundary representation
B-rep based CAD

for feature recognition, 40
B-rep based face-score, 40

Building block approach, 15

C

Canonical form
of GA principle, 42
Chromosome, 41, 106
definition for EDM modeling, 100
definition for machining optimization, 83
definition for operation sequencing, 65
Chromosomes
Continuous and enumerated, 83
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Combination function, 35

Combinatorial optimization problem,
61

Combinatorial type optimization, 60
Compression. See Input parameters

Computational intelligence, 31
category of, 9

Computer-aided process planning
generative type, 24
main tasks, 5
variant type, 23
Concavity and convexity, 40
Confidence limits, 41
Constrained optimization problem, 61
Constraint method, 58
of optimization, 57
Constructive solid geometry, 15

Continuous process manufacturing. See
Manufacturing system

Continuous variables. See Optimization
variables

Copper-graphite, 96
Corner wear. See Tool wear

Crossover, 42
cycle crossover, 45
order crossover, 45
partially mapped type, 45
probability, 45
Crossover and revalidation
in PMX, 45

CSG. See Constructive solid geometry

D

Darwinian theory of evolution, 8, 41
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Decision variables
of MOP, 56

Die-sinking, 92

Difference, 16
Difficult-to-cut materials, 92
Discrete optimization, 61

Discrete part manufacturing. See
Manufacturing system

Discrete variables. See Optimization
variables

Dominated. See Pareto method
Dynamic and static constraints, 69

Dynamic programming, 7

E

Economics of machining, 73

EDM modeling and optimization, 117
Elapsed time of evolution, 88
Electrical conductivity, 96
Electro-discharge machining, 11, 91
Electrothermal process, 91

Elitism reproduction, 43
Elitism-based reproduction, 87
Encoding and decoding, 64

Enumeration technique
of traditional optimization, 61

Error optimization, 103

F

Face adjacent matrix, 38
Face milling, 74
Face-score, 38

Feasible sequences, 68

Feature
concept definition, 13

Feature classes, 40

Feature classification, 40

Feature recognition, 18, 19, 38
traditional techniques, 21

Feature recognition and classification
in hybrid CI application, 50
Feature-based design
in integrated CAD/CAM, 19

Feature-based modeling, 19
Feedforward neural network, 35, 100

Fitness function, 42
definition in GeneHunter, 82
for EDM optimization, 101
for the hybrid system, 107

Front wear. See Tool wear

G

GeneHunter, 82, 103, 116
Generation, 42

Genetic algorithm

applications in manufacturing system,
47

Genetic algorithms, 7, 55
principles and applications, 41

Genetic multi-objective optimization,
54

Genetic search, 59
Genotype space, 64
Geometric information, 18
Geometric programming, 7

Graph-based approach
to feature recognition, 21

H

Hard constraints, 83
Hill-climbing problem, 53
Hopfield network, 36

Hybrid CI approach
to EDM process modeling, 98
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Hybrid CI system
forms of hybridization, 49

Hybrid computational intelligence, 31

Hybrid GA and neural network
for EDM process, 98

Hybrid genetic algorithm and neural
network, 48, 116

Hybrid intelligent systems
key functions of, 32

Hybridization levels, 51

Hyperbolic tangent function. See
Activation function

I

Input parameters, 94

Integrated CAD/CAM
bottlenecks of, 6

Integrated CADCAM system, 20
Integrated manufacturing system, 13

Integration
in manufacturing systems, 1

Intelligence
of manufacturing systems, 1

Intelligent CAPP system, 25

Intelligent CAPP systems, 33
challenges of, 26

Intelligent manufacturing systems, 31
Intersection, 16
INTOS. See Milling machine data

Islands of automation, 6

K

Kronenberg’s cutting speed law, 77

L

Learning algorithm, 36
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Learning-by-examples, 8, 34
Linear combination
of weights, 58

Linear form
of objective function, 54

Linear programming, 7

M

Machinability, 96
Machining cost, 75
Machining cost optimization, 6
Machining handbooks, 73
Machining time, 76
Manufacturing cost

traditional optimization, 7
Manufacturing system

category of, 3

Merchant’s definition of, 2
Mapping

design to manufacturing info, 26
Material removal rate

as optimization objective in machining,
79

in EDM process, 93
in machining, 75

Maximum correlation. See Statistical
estimator

Milling machine data, 80
Model-based optimization, 54

Modeling
tools, 8

Modeling phase, 100
Multi-layer perceptron, 35

Multi-objective genetic algorithm
for machining optimization, 75

Multi-objective optimization, 53
definition of, 56

Multi-objective optimization problem,
55
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Multi-pass operation, 74 Optimization constraints
Multiple regression analysis, 108 Jor machining optimization, 80
Multiple views problem Optimization model

of features, 15 for economics of machining, 74

. . r EDM pr , 99
Mutation. See Mutation operators for process

Mutation, 47
probability of, 47 Optimization problem

category of, 54

Optimization phase, 100

Mutation operators

for operation sequencing, 67 Optimization variables, 54

Optimum conditions of machining, 73

N Over-fitting, 108

NC machining centers, 51 P
Network training, 36
Neural networks Parameter settings

applications in manufacturing, 37 for EDM process, 93

Neuro-fuzzy system, 33 Parent and child chromosome, 42
Neuron, 34 Pareto method, 58
NeuroShell Predictor, 108 Permutation coding, 64
Nickel-based alloy, 97 Phenotype space, 64
Non-conventional machining, 91, 113 Polynomial-time, 61
Non-dominated. See Pareto method Population, 42
Nonlinear forms Population size, 85

of objective function, 54 Precedence relation matrix, 66
Non-polynomial type problem, 61 Process planning, 51
NP-complete problems, 28 definition of, 22

NP-hard optimization problem, 61 task break down, 22

ProEngineer, 40

Proportionate method
0 of reproduction, 43

Objective function, 42 Protrusion, 16

Offtime. See Input parameters
Ontime. See Input parameters R
Operation selection and sequencing, 28

Recurrent networks, 35
Operation sequencing problem

vs. the TSP, 62

Optimization
definition of. 6 Reproduction operator, 43

Relative importance, 104

Relative wear. See Tool wear

tools, 8
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Root mean squared error. See Statistical
estimator

Roulette wheel, 43

Rule-based approach
to feature recognition, 21

S

Search and optimization, 50

Search space, 57
finite and infinte, 57
in multi-objective optimization, 55

Sequencing constraints, 69

Setup mutation. See Mutation operators
Sigmoid function, 35, 101

Simplex method, 7, 55

Single objective optimization, 53
Single-pass operation, 74

Single-point crossover. See Crossover
Soft constraints, 84

Solid modeling, 15

Statistical estimator, 108

Step function. See Activation function

Stop criterion
for genetic evolution, 43

Stoping criterion
for genetic evolution, 84
Strong hybridization, 51

Structure
of neural networks, 35

Supervised learning, 37
Surface finish, 93
Survival of the fittest, 8

Symbolic processing, 9
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T

Tool mutation. See Mutation operators
Tool wear, 94

Traditional methods
to optimization, 56

Traditional optimization, 58
Transfer function, 35

Travel salesman problem, 61
TSP approach, 28

U

Union, 16

Unsupervised learning, 37

\Y

Visual Basic, 83

Volume decomposition approach
to feature recognition, 21

w

Weak hybridization, 50
Wear resistance, 95

Weighting method
of optimization, 57

Weights, 105

Wire cutting, 92

Z

Zero cost, 64
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