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Thesis Outline

The thesis consists of the following four parts:

Part 1: T-distributed Random Fields – A Parametric Model for

Heavy-Tailed Random Fields

Jo Røislien, Henning Omre. Paper submitted for publication.
Part 2: Continuous Near-Well Bayesian Linearized AVO Inversion

Jo Røislien, Henning Omre. Report.
Part 3: Discrete Representations of Continuous Random Fields

Jo Røislien, Alberto Malinverno, Michael Prange, Nick Bennett. Report.
Part 4: Prediction of Oil Production Conditioned on the

Breakthrough Time

Jo Røislien, Peter R. King, Eduardo Lopez, Sergey V. Buldyrev,

H. Eugene Stanley, Shlomo Havlin. Paper submitted for publication.

All parts are self-contained, and can be read in any order.

Thesis Introduction

A brief introduction to the topic under study is given, together with a short summary of
each of the four parts.

Reservoir Characterization

When describing a reservoir, several reservoir variables are of interest. These include dis-
crete variables as rock type and fluid filling, as well as continuous variables as porosity and
permeability. An important intermediate step is to determine the elastic material param-
eters P -wave velocity, S-wave velocity and density, alternatively some reparametrization
of these. No direct observations are available, but indirect measurements can be provided.
This results in a so-called inversion problem. Inverse problemse arise naturally when seek-
ing to determine a cause given an effect. The opposite, determining an effect given a cause,
is the forward problem. For a more on inverse problems, see Tarantola (1987), Kitanidis
(2001) and Kolbjørnsen (2002).

In reservoir characterization the available information is typically sparse, and geophysical
inversion problems are generally underdetermined and ill-posed. From a statistical point
of view, as we are interested not only in a best guess, but also the attached uncertainty,
Bayesian inversion is well-suited for the task. The solution in Bayesian inversion is a pos-
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terior probability distribution, which formally is proportional to a prior distribution times
the likelihood model. In the prior distribution, assumptions on the preferred solution can
be introduced in the model, guaranteeing that a stable and unique solution to the inversion
problem can be found. The likelihood model connects the data with associated observation
error models to the variables of interest. Using the notation m for the elastic material pa-
rameters of interest, d for the available data, and letting f(·) denote a probability density
function (pdf), the goal is to determine f(m|d), which represents the pdf of m given d.
Bayes’ theorem reads

f(m|d) = const × f(d|m)f(m)

with normalizing constant
[∫

f(d|m)f(m)dm
]

−1

. This Bayesian inversion approach is ap-
plied in reservoir characterization by Buland and Omre (2003). The prior pdf for the elastic
material parameters, f(m), is where prior knowledge of the model under study can be in-
troduced. In the following, we assume that m is a continuous random field, see Christakos
(1992) and Chiles and Delfiner (1999) for more on random fields. The likelihood function
f(d|m) provides the link between the observations and the elastic material parameters.
This function contains the aforementioned forward model with associated observation er-
ror models, and this function will thus be defined through geophysical relations like the
Zoeppritz equation. Such relations are often non-linear, see Sheriff and Geldart (1995).
The observations themselves are weighted averages over space, so the likelihood model will
include some spatial dependece.

Observations

When describing a reservoir, there are three types of information available: Seismic data,
well observations and production history data.

There are several different kinds of seismic data. In this thesis, the focus is on surface seis-
mics collected from vessels, in particular prestack AVO data. Seismic data generally exist
on a large scale, often throughout the entire reservoir. The data, however, are sampled
on a coarse grid, typically 25m×25m horisontally and 1ms vertically. Also, they are aver-
aged in the vertical direction weighted by the wavelet, being of magnitude 101m at typical
reservoir depth. Different types of seismic data are associated with different uncertainties
and noise levels.

Well observations mainly consist of well logs. All well observations are generally rather
sparse compared to seismic data, as they only exist along the well paths in the existing
wells. However, the observations are sampled on a very fine grid along this path, typically
every 0.15m. These measurements are much more detailed than seismic data, as they
are averaged only with the size of the logging tool, typically being of order 100 − 10−1m,
depending on the logging method. The uncertainty associated with these measurements is
also generally very low.
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Production history data are collected during the production process in production wells.
Examples of such measurements are production rates, pressure data and fractional flow
data. The observations will normally be crucially dependent on the recovery process actu-
ally used, and global features of the reservoir have impact. This global dependence make
production data different from seismic data and well observations, which are of local type.
Production data rarely suffice to characterize heterogeneous reservoirs, and a large amount
of uncertainty still remains after history matching of geostatistical models.

Continuous Random Fields

A continuous random field {Z(x); x ∈ D ⊂ R
n} is a function whose value for any x ∈ D is

a random variable Z(x) ∈ R
1. In geostatistics random fields is a natural way of describing

continuously varying spatial phenomena, such as porosity, permeability and elastic material
properties. A general random field can be described by the cumulative distribution

Fx(z) = Fx1,...,xn
(z1, . . . , zn) = Prob{Z(x1) ≤ z1, . . . , Z(xn) ≤ zn}

for any integer n ≥ 1 and any configuration {xi}
n
i=1

with xi ∈ D. Assuming they exist, the
two first moments of the random field,

µ(x) = E{Z(x)}

Σ(x, y) = Cov{Z(x), Z(y)},

can be expressed through Fx(z) as Stieltjes integrals in R
1 and R

2, respectively, see Billings-
ley (1986). The most frequently used continuous random field model is the Gaussian ran-
dom field (GRF), which is fully described by the two first moments, {µ(x); x ∈ D} and
{Σ(x, y); x, y ∈ D ×D}. Further, the corresponding multivariate distributions are simple,
and so are estimation and inference. See Christakos (1992) and Chilés and Delfiner (1999)
for more on random fields.

The correlation function for a random field is defined as

ρ(x, y) =
Σ(x, y)

σ(x)σ(y)

with
σ2(x) = Σ(x, x)

being the variance. The covariance function must be a positive definite function, i.e.

n
∑

i=1

n
∑

j=1

cicjΣ(xi, xj) > 0

for any integer n ≥ 1, any set of weights {ci}
n
i=1

with ci ∈ R
1, and any set of locations

{xi}
n
i=1

with xi ∈ D. It can be shown that the class of correlation functions coincide
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with the class of positive definite functions where Σ(x, x) = 1. As the two first moments
uniquely defines a GRF, the study of GRFs is mainly a study of correlation functions,
making positive definiteness a fundamental property of interest.

Often some symmetries in the random field can be assumed. A random field is said to
be stationary in the strict sense if all finite-dimensional distributions are invariant under
translation, see Abrahamsen (1994) for a definition. Stationarity in the strict sense implies
stationarity in the wide sense, defined by stationarity of the two first moments;

µ(x) = µ

Σ(x, y) = Σ(y − x).

Consequently, stationarity in the wide sence is sufficient to have a stationary GRF. Note
that generally, stationarity in the wide sense does not imply stationarity in the strict
sense. The covariance function of a stationary random field, called a stationary covariance
function, must have constant variance

Σ(y − x) = σ2ρ(y − x).

Further, a stationary random field in the wide sence is termed an isotropic random random
field if the covariance function depends on distance alone;

Σ(x, y) = Σ(|y − x|)

Isotropy entails translation, rotation and reflection invariance. Other symmetries, as well
as non-stationary random fields, can also be modelled. See the aforementioned references
for more.

Contents of Thesis

An outline of the contents of all four parts follows.

In Part 1 T -distributed random fields (TRF) are adressed. The main contribution of this
paper is the introduction of a new, analytically tractable, heavy-tailed continuous random
field model, namely the TRF model. In Gunning (2002) a related random field model is
discussed. Based on a motivating example from a well log from the Gullfaks field in the
North Sea, it is demonstrated how the T -distribution is able to describe the variability
in the geophysical data better than the frequently used GRF model. This flexibility is
obtained by introducing a new parameter, the degrees of freedom. The qualities of TRFs
are defined in detail, together with results for hiearchical representations, simulation and
estimation of model parameters. It is shown that the TRFs are analytically tractable, with
several properties equal, or similar, to the GRF. Also, the TRF includes the GRF as a
limiting case when the degrees of freedom parameter goes to infinity. The heavy-tailed
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effect is observable only cross-realization, and not in-realization, implying that several
independent realizations of the random field is needed in order to formally estimate the
degree of freedom parameter. Both the TRF and GRF models are estimated on a real
well-log observations from the Gullfaks field, and the TRF model appears to be superior
to existing Gaussian-based models, as well as Lévy-Stable random field models.

In Part 2 inversion of well log observations and seismic data is performed. The goal is the
elastic parameters, P -wave velocity, S-wave velocity and density. The main contribution
of this paper is that a spatially continuous approach is used in the inversion, allowing the
information to be included in their exact spatial locations, not having to be forced into
a grid representation. Also, scaling differences between well log observations and seismic
data are implicitely taken care of. The paper is an extension of parts of the work done by
Buland and Omre (2003). A priori, the the elastic parameters are defined as a log-Gaussian
random field. This results in a posterior distribution for the log of the elastic parameters
being approximately a continuous Gaussian random field. Thus, the result of the inversion
is analytically available when performing a linearization of the well log observations. As the
posterior pdf is given on a spatially continuous form, grid refining is easy. Also, prediction
in any arbitrary location can be performed.

In Part 3 the problem of discretizing continuous random fields is adressed. The main con-
tribution of this paper are general formulas for representation of any random field, by any
set of basis functions. Assume a reparameterization of a continuous random field through
a given set of spatial basis functions, and a corresponding set of random parameters. That
is, the continuous spatial random field is split into a continuous spatial part, and a stochas-
tic part. It is demonstrated how the stochastic properties of the continuous random field
are inherited by the discrete set of random parameters, given the set of spatial basis func-
tions. The results are demonstrated for different sets of basis functions, both orthogonal
and non-orthogonal. Wavelet bases and results for GRFs are studied in more detail. See
Walter and Shen (2001) for more on orthogonal systems.

In Paper 4 a data analysis on synthetic production data genereated from a percolation
system is performed. The main contribution of this paper is the demonstration of to which
extent the knowledge of the breakthrough time increases precision in forecast of oil produc-
tion. This is done by estimation of the two first moments. Clear trends in the behaviour
of the empirical mean and variance, when conditioning on different breakthrough times,
are observed. This suggests that there might exist general results being independent of the
given percolation system. The two first moments are also introduced into a more formal
statistical setting; as parameters in a Gaussian distribution. This can be used to quanti-
tatively compare conditional and unconditional production data, and thus quantifying the
increased knowledge of future oil production the breakthrough time provides. See Stauffer
and Aharony (1992) for an introduction to percolation theory.

In summary, Parts 1-3 contains the core of the thesis, focusing on near-well description of
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reservoirs, and the modelling of elastic material parameters as continuous random fields.
Part 2 applies the frequently used continuous GRF model in a Bayesian inversion procedure,
resulting in an analytical, continuous GRF posterior distribution for the elastic material
parameters given both well log observations and seismic data. However, it is a well-known
fact that the GRF model is not capable of explaining all the variability in geophysical
measurements. Part 1 introduces a new analytically tractable, continuous random field
model with a more heavy-tailed pdf, the TRF model. When working with continuous
random fields, at some point a discretization must take place. Part 3 adresses the problem
of discretizing continuous random fields given a set of basis function. Results for any
random field in general, and GRFs in particular, are provided. Finally, Part 4 is an
empirical study of synthetic production data generated from a percolation system. It
thus differs from the first three parts in several ways, mainly in fact that the full field is
considered, and that continuous random fields is not the main concern.
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T -distributed Random Fields:

A Parametric Model for Heavy-tailed

Random Fields

Jo Røislien

Department of Petroleum Engineering and Applied Geophysics

Norwegian University of Science and Technology

Henning Omre

Department of Mathematical Sciences

Norwegian University of Science and Technology

Abstract

Histograms of observations from spatial phenomena are often found to be more

heavy-tailed than Gaussian distributions, which makes the Gaussian random field

model unsuited. A T -distributed random field model with heavy-tailed marginal

probability density functions is defined. The model is a generalization of the fa-

miliar Student-T distribution, and it may be given a Bayesian interpretation. The

increased variability appears cross-realizations, contrary to in-realizations, since all

realizations are Gaussian-like with varying variance between realizations. The T -

distributed random field model is analytically tractable and the conditional model

is developed, which provides algorithms for conditional simulation and prediction,

so-called T -kriging. The model compares favourably with most previously defined

random field models. The Gaussian random field model appears as a special, limit-

ing case of the T -distributed random field model. The model is particularly useful

whenever multiple, sparsely sampled realizations of the random field are available.

The properties of the T -distributed random field model is demonstrated on well log

observations from the Gullfaks field in the North Sea.
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1 Introduction

In recent years, a series of papers have been presented on parametric stochastic models for
continuous random fields (RF) with non-Gaussian marginal probability density functions
(pdf). Gaussian RF (GRF) models are of course most widely used in practice, see Chilès
and Delfiner (1999). The normal-score approach makes a univariate φ-transform of the
random variables (RV) into a Gaussian marginal pdf, for then to assume a GRF model. The
normal-score model, φ−1-GRF model, is widely used as a model for RF with non-Gaussian
marginal pdfs, see Chilès and Delfiner (1999). The advantage of the φ−1-GRF model is
its simplicity and flexibility, but its disadvantage is the lack of analytical tractability. In
the current paper RFs with symmetric, unimodal marginal pdfs, heavy-tailed or not, are
considered. In a recent paper, Gunning (2002), the use of Levy-Stable RFs (LSRF) as
models for such RFs is discussed. Gunning presents an interesting discussion on desirable
features of stochastic models for continuous RFs, and the LSRF is evaluated with respect
to these features. The current paper can be seen as an extension of Gunnings work. We
elaborate on his list of features, but suggest another class of RF models. Our list of
desirable features of parametric stochastic models for continuous RFs is as follows:

• Fully specified probabilistic model
This is a requirement for simulation of the RF. RF models based on contrasts and in-
crements often leave parameters in the trend unspecified, and hence they are unsuited
for simulation.

• Permutation invariance
The RF model must be exchangeable in its components. This is a requirement for
RF models, see Yaglom (1962).

• Probabilistic consistency
Finite dimensional marginal pdfs of different dimensions defined by the RF model
must be such that they coinside when non-common dimensions are integrated out.
This is another requirement for RF models, see Yaglom (1962).

• Marginal invariance
Finite dimensional marginal pdfs defined by the RF model should all belong to the
same parametric class of pdfs. This makes it easier to ensure probilistic consistency,
and simplifies analytical work.

• Additivity closed
Often, observations are collected as averages over sampling volumes, so-called sam-
ple support. The objective is frequently to determine spatial averages over a given
volume. If spatial averages define an integrated RF which belongs to the same para-
metric class as the initial RF, this will normally simplify the analytical work.
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• Analytical tractability
The objective is usually to determine the conditional RF model conditioned on a set
of observations in arbitrary locations. In order to define this conditional RF model,
the non-observed dimensions of the RF model must be integrated out. This is very
difficult to do in RF models unless the model is analytically tractable. Numerical
integration in such high dimensions is virtually impossible. Analytical tractability
will also make it easier to define efficient simulation algorithms for the RF.

• General model
It is of course desirable that the parametric RF model is general in the sense that the
admissible range of parameter values define a large variety of RF models. It would
of course be convenient if marginal pdfs of all kinds could be modeled. Moreover,
it would be fine if certain parameter combinations provide familiar RF models, the
GRF model in particular.

• Model parameter inference
The parametric RF model is by definition fully specified by a set of parameters. It is
of course desireable that the number of parameters is low, and that the parameters
are interpretable. Most important, however, is that reliable estimators can be defined
based on a set of observations from the RF.

• Diminishing spatial dependence
The random variables in two locations should approach independence as their inter-
distance increases. This property is related to the ergodic characteristics of the RF,
and will make estimators for model parameters more reliable. Without diminishing
spatial dependence one may not be able to define consistent estimators for the model
parameters based on observations from one single realization of the RF.

GRF models are by far the most used in practice, and the GRF is normally defined as
follows:

Definition 1 Gaussian Random Field (GRF)
A RF {Z(x); x ∈ D ⊂ R

n} is termed a GRF if

Z = [Z(x1), . . . , Z(xm)]T ∼ Nm(µ, Φ)

with pdf

f(z) =
1

(2π)m/2
|Φ|−1/2 exp

{

−
1

2
(z − µ)T Φ−1(z − µ)

}

for all configurations (x1, . . . , xm) ∈ D×. . .×D and all m ∈ N+ where Nm(µ, Φ) represents
the multivariate Gaussian distribution with parameters (µ, Φ) of proper dimensions. The
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GRF is parametrized Gx(µx, φxx) where

µx : {µ(x); x ∈ D}

φxx : {φ(x′, x′′); (x′, x′′) ∈ D ×D}

with µx the expectation function over D, and φxx a positive definite covariance function
over D ×D.

The GRF model meets most of the desirable features listed above. General model is the
only feature really being violated. The GRF model constitutes an extreme case among
RF models in the sense that it maximizes entropy, i.e. it is the smoothest model possible
given the model parameters. This is also related to the central limit theorem – everything
averages out to the GRF. The GRF model exhibits two unfavorable features in particluar:
The Gaussian marginal pdf has extremely light tails, and the prediction variance is only
dependent on the location configuration of the observations – not on the values actually
observed.

The objective of the current paper is to define a RF model with symmetric, unimodal
marginal pdfs with large flexibility in tail behaviour. The T -distributed RF (TRF) model
is introduced and its properties explored. The TRF model can also be given a Bayesian
interpretation as an extension of the work in Kitanidis (1986), Omre (1987) and Hjort and
Omre (1994).

The paper is organized as follows. The next section contains a motivation for the study.
Section 3 contains the definition of the TRF and a discussion of its properties. In Section
4 T -kriging is introduced, while Section 5 contains definitions of estimators for the model
parameters of the TRF model. A case study on the real data explored in Section 2 is
included in Section 6. Lastly, the two last sections contain a discussion of the characteristics
of the TRF model and some concluding remarks.

2 Motivation

Consider the density log from a well in the Gullfaks field in the North Sea, see the left
display of Figure 1. The well seems to penetrate several horisontal sedimentary layers with
varying properties, and a segmentation into layers is made in the right display of Figure
1. The layered structure is assumed to be caused by abrupt changes in the depositional
processes. The list of layer averages and empirical variances of the nine layers is presented
in Table 1. If a classification of the layers based on the average values is made, layer 1,
2, 3, 5, 7 and 9 will be pooled in one class. One could of course have used empirical
variances for further classification, but we have chosen not to do so here, because empirical
variances are often very sensitive to individual samples. In Figure 2 the histograms of the
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six pooled layers are displayed, and they look fairly dense with light tails. The pooled
histogram from the six layers in the left display of Figure 3, however, appears as peaked
with relatively heavy tails. In the right display of Figure 3, a kernel-smoothed pooled
histogram is presented together with maximum likelihood adapted Gaussian and Student-
T pdfs. Note that the Student-T pdf reproduces the histogram much more reliably than
the Gaussian one.

To summarize, by compiling relatively dense, light-tailed histograms from the individual
layers, one obtains a composite peaked, heavy-tailed histogram. This change in shape ap-
pears since the layer-histograms have different variances. Recall that identical centering is
ensured by the initial classification. Statisticians are aware that the composite of Gaussian
RVs, identically centered with varying variances, may appear as Student-T distributed, se
Walpole and Myers (1993). In the current study, the well logs in the individual layers are
considered to be GRFs, equally centered but with different variances, which appears as
outcomes from a unifying TRF.

The evaluation above is made in a well with numerous observations in each layer. If only
a few observations in each layer are available, as for example core plug samples, one may
wish to interpolate or simulate along the entire well trace and extend this into the three-
dimensional reservoir. The layers may be classified with respect to averages, while further
classification based on empirical variances may be considered unreliable. The composite
histogram may appear Student-T like, hence a RF model with Student-T marginal pdf
would be prefered. Based on this RF model, interpolation and simulation in the individual
layers conditional on the few available obervations in that particular layer can be made.
This setting constitutes the challenge of the study.

3 T -distributed Random Fields

In order to define a suitable RF model for the data presented in Section 2, a survey of
multivariate T -distributed RVs is presented in the first subsection. In the subsequent
subsections, TRFs, simple and conditional, are defined.

3.1 Multivariate T -distriubted random variables

The multivariate T -distributed RV is a generalization of the Student-T distributed RV
introduced in most introductory courses in statistics. The exposure here is mainly based
on results in Cornish (1954), Johnson and Kotz (1972) and Welsh (1996).

Definition 2 T -distributed random variable

5

URN:NBN:no-3476



A RV Z ∈ R
m is multivariate T -distributed

Z ∼ Tm(µ, Ω, ν)

if its pdf is

f(z) =
Γ(ν+m

2
)

Γ(ν
2
)(νπ)m/2

|Ω|−1/2

[

1 +
1

ν
(z − µ)T Ω−1(z − µ)

]− ν+m
2

where Γ(x) is the gamma function, and with µ ∈ R
m a centering vector, Ω ∈ R

m × R
m a

positive definite scale/dependence matrix, and ν ∈ R+ the degrees of freedom.

This definition specifies a spherical-symmetric pdf centered at µ with Ω controlling scale
and multivariate dependence, while ν controls the tail behaviour, see Mardia et al. (1979).
In Figures 4 and 5 T2(0, Ω, ν) are displayed for varying values of Ω and ν. Note that
all bivariate pdfs have spherical contour lines, but the general shape appear with varying
peakedness and heavy-tailedness.

The properties of the multivariate T -distributed RV are summarized below:

Result 1 Properties of T -distributed random variables
Let Z ∈ R

m have pdf as in Definition 2, then the following properties can be demonstrated:

1. Special cases:

Tm(µ, Ω, ν)
ν→∞
−→ Nm(µ, Ω)

Tm(µ, Ω, 1) = Cm(µ, Ω)

where Nm(µ, Ω) and Cm(µ, Ω) are the multivariate Gaussian and Cauchy distribu-
tions, respectively.

2. Moments:

E{Z} = µ ; ν ≥ 2
Cov{Z} = ν

ν−2
Ω ; ν ≥ 3

while for ν less than the specified values the moments are infinite.

3. Linear transform:
Let A be an arbitrary known (k × m)-matrix, and

ZA = AZ,

then

ZA ∼ Tk(Aµ, AΩAT , ν).

Note that this entails that all marginal pdfs of Z are T -distributed as well.
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4. Conditional distributions:
Let ZA be defined as in Point 3. Then

[Z|ZA = zA] ∼ Tm

(

µ·|zA
, Ω·|zA

, ν + k
)

where

µ·|zA
= µ + ΩAT (AΩAT )−1(zA − Aµ)

Ω·|zA
= ξ(zA)

[

Ω − ΩAT (AΩAT )−1AΩ
]

with

ξ(zA) =
1

1 + k
ν

[

1 +
1

ν
(zA − Aµ)T (AΩAT )−1(zA − Aµ)

]

Note that this entails that all pdfs conditional on arbitrary linear combinations are
T - distributed.

5. Non-independence:
Let Z be arbitrarily decomposed as follows:

Z =

[

Z1

Z2

]

, µ =

[

µ1

µ2

]

, Ω =

[

Ω11 Ω12

Ω21 Ω22

]

with Z1 ∈ R
m1 and Z2 ∈ R

m2 and m = m1 + m2, then

Tm(µ, Ω, ν) 6= Tm1
(µ1, Ω, ν) × Tm(µ, Ω, ν) ; ν < ∞

even for the particular case Ω12 and Ω21 being matrices containing only zeros. Note
that Z1 and Z2 will not be independent even if Ω is a block matrix for ν < ∞.
For ν → ∞ independence will be obtained in the limit for this case, since then the
multi-Gaussian case is reached.

6. Decomposition:
Let H and U be independent RVs, then

Z = µ + H− 1

2 Ω1/2U

with

νH ∼ χ2(ν)

U ∼ Nm(0, Im)

where χ2(ν) is a univarite chi-squared distribution with ν degrees of freedom and Im

is a (m × m) unit-diagonal matrix.
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7. Hierarchical representation:
Let Z conditional on the random parameters (β, φ2) be

[Z|β, φ2] ∼ Nm(Gβ, φ2ΦZ
0 )

where G is an arbitrary known (m× k) matrix, β is a random (k× 1) vector, φ2 is a
univariate RV and ΦZ

0 is a known positive definite (m × m) correlation matrix, with

[β|φ2] ∼ Nk

(

µβ, φ2Φβ
0

)

φ2 ∼ IG

(

ν

2
,
νω2

2

)

where µβ and Φβ
0 are expectation vector and correlation matrix of appropriate dimen-

sions, and IG(κ, λ) represents the inverse gamma pdf

f(φ2) =
1

Γ(κ)
λκ

(

1

φ2

)κ+1

e
− λ

φ2 ; κ, λ > 0, φ2 > 0.

Then

Z ∼ Tm(µ, Ω, ν)

where

µ = GT µβ

Ω = ω2Ω0 = ω2[ΦZ
0 + GT Φβ

0G].

Note that this representation can be interpreted in a Bayesian setting with (β, φ2)
being random hyperparameters.

3.2 T -distributed random field

The TRF is defined by the multivariate T -distributed RVs along the lines of the GRF in
Definition 1.

Definition 3 T -distributed Random Field (TRF)
A RF {Z(x); x ∈ D ⊂ R

n} is termed a TRF if

Z = [Z(x1), . . . , Z(xm)]T ∼ Tm(µ, Ω, ν)

for all configurations (x1, . . . , xm) ∈ D× · · · ×D and all m ∈ N+ where Tm(µ, Ω, ν) repre-
sents the multivariate T -distribution with parameters (µ, Ω, ν). The TRF is parametrized
Tx(µx, ωxx, ν) where

µx : {µ(x); x ∈ D}

wxx ; {ω(x′, x′′); (x′, x′′) ∈ D ×D}
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with µx the centering function over D and ωxx a positive definite scale/dependence function
over D ×D, and ν the degrees of freedom.

Note that from the definition of TRFs and Result 1.1 it is obvious that a TRF tends
towards a GRF whenever ν → ∞. T -distributed RVs are in Result 1.3 shown to be closed
under linear operations. This entails that a differential TRF, if it exists, also will be a
TRF. The same holds for an integrated TRF.

In Figures 6 through 9 realizations of Tx(0, ωxx, ν) with varying ν are displayed. The
scale/dependence function ωxx has form

ω(x′, x′′) = exp
{

−α(x′′ − x′)2
}

with α = 1

50
, and ν takes values 1, 3, 7, and ∞. Note that the variability seems to decline

as ν increases and the TRF approaches a GRF. The effect of Result 1.7 can be observed
by each realization being Gaussian-like, with large cross-realization variability.

The hierarchical representation of T -distributed RVs in Result 1.7 can be used to define:

Result 2 Hierarchical representation of TRF
Let {Z(x); x ∈ D} conditoinal on the random parameters (β, φ2) be:

{[Z(x)|β, φ2]; x ∈ D} ∼ Gx(g
T
x β, φ2φZ

0xx)

where

gx : {g(x) =
(

g1(x), . . . , gk(x)
)T

; x ∈ D}

φZ
0xx : {φZ

0 (x′, x′′); x′, x′′ ∈ D ×D}

with gx and φZ
0xx known trend functions and spatial correlation functions respectively, and

β a random (k × 1) vector and φ2 a univariate random variance. Further, let

[β|φ2] ∼ Nk

(

µβ, φ2Φβ
0

)

φ2 ∼ IG

(

ν

2
,
νω2

2

)

where µβ and Φβ
0 are expectations and correlation matrix of appropriate dimensions, then

{Z(x); x ∈ D} ∼ Tx(µx, ωxx, ν)

with

µx : {µ(x) = g(x)Tµβ; x ∈ D}

ωxx : {ω(x′, x′′) = ω2ω0(x
′, x′′)

= ω2[φZ
0 (x′, x′′) + g(x′)T Φβ

0g(x′′)]; x′, x′′ ∈ D ×D}
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This hierarchical represenation of the TRF can be given a Bayesian interpretation where
the model paramters (β, φ2) in a GRF is assigned appropriate prior models. Note that this
corresponds to the Bayesian kriging models discussed in Kitanidis (1986), Omre (1987),
Le and Zidek (1991), Handcock and Stein (1993) and Hjort and Omre (1994).

The hierarchical representation in Result 2 can be used for simulation of TRFs, and a
suitable algorithm is as follows

Algorithm 1 Simulation of TRF

Simulate TRF {Z(x);∈ D} ∼ Tx

(

gT
x µβ, ω2[φZ

0xx + gT
x Φβ

0gx], ν
)

by

• generate φ2 from IG(ν
2
, νω2

2
)

• given φ2, generate β from Nk(µβ, φ2Φβ
0 )

• given (β, φ2), generate

{Z(x); x ∈ D} ∼ Gx(g
T
x β, φ2φZ

0xx)

This algorithm can of course be very efficient since β and φ2 are low-dimensional, and any
fast algorithm for simulation of GRFs can be used.

3.3 Conditional T -distributed random field

Consider a TRF {Z(x); x ∈ D} and let Zd = [Z(x1), . . . , Z(xn)]T be a set of observations in
arbitrary locations (x1, . . . , xn) ∈ D× . . .×D with associated realization zd = (z1, . . . zn)T .
The conditional TRF is denoted {[Z(x)|zd]; x ∈ D}. From Result 1.4 the conditional TRF
is given as

Result 3 Conditional TRF
A TRF {Z(x); x ∈ D} ∼ Tx(µx, ωxx, ν) conditioned on the (n × 1)-dimensional vetor of
observations Zd = zd is:

{[Z(x)|zd]; x ∈ D} ∼ Tx

(

µx|zd, ωxx|zd, ν + n
)

where

µx|zd :
{

[µ(x)|zd] = µ(x) + ωT
xdΩ

−1

dd (zd − µd); x ∈ D
}

ωxx|zd :
{

[ω(x′, x′′)|zd] = ξ(zd)
[

ω(x′, x′′) − ωT
x′dΩ

−1

dd ωx′′d

]

; (x′, x′′) ∈ D ×D
}
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with

µd = (µ(x1), . . . , µ(xn))T

ωxd = (ω(x, x1), . . . , ω(x, xn))
T

Ωdd =







ω(x1, x1) · · · ω(x1, xn)
...

. . .
...

ω(xn, x1) · · · ω(xn, xn)







ξ(zd) =
1

1 + n
ν

[

1 +
1

ν
(zd − µd)

T Ω−1

dd (zd − µd)

]

Note that this entails that all conditional TRFs are TRFs themselves. The conditional
TRF also has a hierarchical representation that follows from Result 2:

Result 4 Hierarchical representation of conditional TRF
Let

{

[Z(x)|zd]; x ∈ D
}

conditional on the random parameters (β, φ2) be:

{

[Z(x)|zd, β, φ2]; x ∈ D
}

∼ Gx

(

µx|zd,β, φ2φZ
0xx|zd,β

)

where µx|zd,β, φ2 and φZ
0xx|zd,β are the conditional expectation function, the variance and

the conditional correlation function of a Gx(g
T
x β, φ2φZ

0xx). Otherwise the notation is as in
Result 2. Further, let

[β|zd, φ2] ∼ Nk

(

µβ|zd, φ2Φβ
0|zd

)

[φ2|zd] ∼ IG
(

η1|zd, η2|zd

)

where µβ|zd and Φβ
0|zd are the conditional expectation and correlation matrix of a Nk

(

µβ, φ2Φβ
0

)

,

while η1|zd and η2|zd are the conditional parameters of a IG(η1, η2) with η1 = ν
2

and η2 = νω2

2
.

Then

{

[Z(x)|zd]; x ∈ D
}

∼ Tx

(

µx|zd, ωxx|zd, ν + n
)

with

µx|zd :
{

[µ(x)|zd] = g(x)T µβ + ωT
xdΩ

−1

dd [zd − GT
d µβ]; x ∈ D

}

ωxx|zd :
{

[ω(x′, x′′)|zd]

= ξ(zd)
[

ω(x′, x′′) − ωT
x′dΩ

−1

dd ωx′′d

]

; (x′, x′′) ∈ D ×D
}
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where

Gd =
(

g(x1), . . . , g(xn)
)

ωxx :
{

ω(x′, x′′) = ω2
[

φZ
0 (x′, x′′) + g(x′)T Φβ

0g(x′′)
]

; (x′, x′′) ∈ D ×D
}

ξ(zd) =
1

1 + n
ν

[

1 +
1

ν
(zd − GT

d µβ)T Ω−1

dd (zd − GT
d µβ)

]

otherwise the notation is as in Result 2 and 3. The exact expressions are given in Appendix
A.

This hierarchical representation can of course be seen as the posterior model in a Bayesian
setting. Moreover, this representation provides a suitable simulation algorithm for condi-
tional TRFs:

Algorithm 2 Simulation of conditional TRF
Simulate conditional TRF {[Z(x)|zd]; x ∈ D} ∼ Tx(µx|zd, ωxx|zd, ν + n) with notation as in
Result 4 by

• given zd, generate φ2 from IG
(

ξ1|zd, ξ2|zd

)

• given zd and φ2, generate β from Nk

(

µβ|zd, φ2Φβ
0|zd

)

• given zd and (φ2, β), generate {Z(x); x ∈ D} ∼ Gx

(

µx|zd,β, φ
2φz

0xx|zd,β

)

This algorithm can of course be very efficient, since β and φ2 are low-dimensional, and any
fast algorithm for simulation of conditional GRFs can be used.

4 Prediction in T -distributed Random Fields

A predictor for Z(x+) in an arbitrary location x+ ∈ D based on the observations in Zd =
[Z(x1), . . . , Z(xn)]T with (x1, . . . , xn) ∈ D × . . .D having realizations zd = (z1, . . . , zn)T

can be obtained from the definition of TRF in Definition 3 and Result 1.4. It is reasonable
to term this predictor the T -kriging predictor.

Definition 4 T -kriging predictor
A RV Z(x+) from a TRF {Z(x); x ∈ D} ∼ Tx(µx, ωxx, ν) can be predicted from the (n×1)-
dimensional vector of observations Zd = zd by:

[Z(x+)|zd] ∼ T1

(

[µ(x+)|zd], [ω(x+)|zd], ν + n
)
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where

[

µ(x+)|zd
]

= µ(x+) + ωT
x+dΩ

−1

dd (zd − µd)
[

ω(x+)|zd
]

=
[

ω(x+, x+)|zd
]

= ξ(zd)
[

ω(x+, x+) − ωT
x+dΩ

−1

dd ωx+d

]

with notation as in Result 3. From Result 1.2 one has

E{Z(x+)|zd} =
[

µ(x+)|zd
]

for ν + n ≥ 2

Var{Z(x+)|zd} =
ν + n

ν + n − 2

[

ω(x+)|zd
]

for ν + n ≥ 3

Note that the conditional expectation predictor, which is optimal under squared error loss,
when it exists, is linear in zd, and coinsides with the traditional kriging predictors. The
prediction variance, however, is also dependent on zd. This is contrary to traditional kriging
where the prediction variance is dependent on the location configuration (x1, . . . , xn) only.

Note further that when the number of conditioning observations increase, i.e. n → ∞,
the T -kriging predictor tends towards the traditional kriging predictor, since the degrees
of freedom in the predictor pdf tends towards infinity which entails Gaussianity. Broadly
spoken, the T -kriging predictor takes into account the fact that the variance of the RF
is unknown and must be estimated. In traditional kriging the estimation uncertainty of
the variance is ignored. These considerations have a parallel in the use of Student-T
distributions in traditional statistical inference.

5 Parameter Estimation in T -distributed Random Fields

In this section a TRF {Z(x); x ∈ D} ∼ Tx

(

gT
x µβ, ω2[φZ

0xx + gT
x Φβ

0gx], ν
)

with notation

as in Result 2 will be considered. Focus is on model parameter estimation. Assume
that several independent outcomes of this TRF exists: {Zi(x); x ∈ D}; i = 1, . . . , m. In
each of these outcomes a number of observations are made Zd

i = [Zi(xi1), . . . , Zi(xini
)]T ;

i = 1, . . . , m with realizations zd
i = (zi1, . . . , zini

)T . The objective is to estimate the model
parameters (µβ, ω

2, φZ
0xx, Φ

β
0 , ν) from these observations. The spatial correlation function

φZ
0xx is particularly difficult to determine and it is assumed known in the exposition below.

Procedures for estimating φZ
0xx may be developed based on estimation of spatial correlation

functions in GRF models, see Chilès and Delfiner (1999).

It is of course possible to specify the full likelihood function based on the definition of
the TRF and perform maximum likelihood estimation. It turns out that the parameter ν,

13

URN:NBN:no-3476



which defines the tail behaviour of the marginal pdf of the TRF, is particularly hard to
determine by this approach. This is unfortunate, since this tail behaviour is of primary
interest in the study. An alternative estimation procedure, termed hierarchical maximum
likelihood, is recommended here, since it appears to provide more stable estimates of ν in
particular.

The hierarchical maximum likelihood estimator is based on the hierarchical representation
of TRF in Result 2. It draws on the property that given (β, φ2) the individual outcomes
of the TRF will be GRFs. Hence, based on the m outcomes, (βi, φ

2
i ); i = 1, . . . , m can be

estimated by maximum likelihood estimators. The parameters of interest (µβ, ω2, Φβ
0 , ν)

can thereafter be estimated by maximum likelihood estimators based on (βi|φ2
i ) and φ2

i ; i =
1, . . . , m and their pdfs as specified in Result 2.

The likelihood function for (βi, φ
2
i ); i = 1, . . . , m is

L(β1, . . . , βm, φ2

1, . . . , φ
2

m) =
m
∏

i=1

1

(2πφ2
i )

ni/2

∣

∣ΦZ
0didi

∣

∣

−1/2
exp

{

−
1

2φ2
i

Md
i

}

with

Md
i = (zd

i − GT
di

βi)
T (ΦZ

0didi
)−1(zd

i − GT
di

βi)

where Gdi
=
(

g(xi1), . . . , g(xini
)
)

is a known (k × ni) matrix and ΦZ
0didi

is a (ni × ni)-
correlation matrix defined by φZ

0xx. The corresponding maximum likelihood estimates are

β̂i = [Gdi
(ΦZ

0didi
)−1GT

di
]−1Gdi

(ΦZ
0didi

)−1zd
i ; i = 1, . . . , m

φ̂2

i =
1

ni

M̂d
i ; i = 1, . . . , m

with M̂d
i being Md

i where β̂i is substituted for βi. The likelihood function for (µβ, Φβ
0 ) is

L(µβ, Φβ
0 ) =

m
∏

i=1

1

(2πφ̂2
i )

ni/2
|Φβ

0 |
−1/2

· exp

{

−
1

2φ̂2
(β̂i − µβ)

T (Φβ
0 )−1(β̂i − µβ)

}

By maximizing this likelihood function, one obtains the following estimators:

µ̂β =
1

∑m
i=1

1

φ̂2
i

·
m
∑

i=1

β̂i

φ̂2
i

Φ̂β
0 =

1

m

m
∑

i=1

1

φ̂2
i

(β̂i − µ̂β)(β̂i − µ̂β)T
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Finally, the likelihood function for (ω2, ν) is

L(ω2, ν) =

m
∏

i=1

1

Γ(ν
2
)

(

νω2

2

)ν/2
(

1

φ̂2
i

)
ν+2

2

exp

{

−
νω2

2φ̂2
i

}

,

and maximizing provides the following expressions, defining the maximum likelihood esti-
mators;

ω̂2 =

[

1

m

m
∑

i=1

1

φ̂2
i

]−1

Γ′(ν
2
)

Γ(ν
2
)
− ln

ν

2
= ln

[

m
∏

i=1

1

φ̂2
i

]1/m

+ ln ω̂2

where Γ(x) and Γ′(x) is the gamma function and its derivate, respectively. The last equa-
tion must be solved numerically in order to define the estimate of ν.

Properties of maximum likelihood estimators in RF in general are discussed in Stein (1999).
For this particular hierarchical maximum likelihood aproach one has: β̂i and φ̂2

i are con-
sistent estimators in the sense that ni → ∞ by expanding D → R

n, then µ̂β, Φ̂β
0 , ω̂2 and ν̂

are consistent estimators in the sense that m → ∞. Note in particular that both ni → ∞
by expanding D and m → ∞ are required to ensure consistent estimators for the model
parameters of interest.

One interesting case appears if φ̂2
i ; i = 1, . . . , m all turn out identical to for example φ̂2.

Then it is easy to show that ω̂2 = φ̂2 and ν̂ = ∞. This entails that the inferred TRF
coinsides with a GRF. Hence the degrees of freedom, ν, is related to the dispersion in
φ̂2

i ; i = 1, . . . , m.

One other interesting case appears when only one realization is available, i.e. m = 1.
Hence zd

1 = (z11, . . . , z1n1
)T is the only available data vector. With n1 ≥ 2 estimates of

β1 and φ2
1 can be obtained, and the estimators are consistent in the sense specified above.

The estimate of µβ is obtainable while Φβ
0 is left unspecified. Assume for the moment that

β is a constant vector µβ which makes Φβ
0 irrelevant. The interesting feature, however, is

that ω2 and ν are estimated to φ̂2
1 and ∞. This entails that the inferred TRF collapses

into a GRF, since they coinside for ν = ∞. Consequently, one cannot make inference
about TRFs with observations from one realization of the RF only. This is related to the
fact that TRFs do not exhibit diminishing spatial dependence, and the heavy-tailedness
only appear cross-realizations and not in-realizations. Recall that all realizations appear
GRF-like with parameter values varying between realizations.
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6 Case Study

Consider the density log from the well in the Gullfaks field in the left display in Figure 1.
Assume that the log has only been sampled every third meter, while the layer geometry
has been determined from elsewhere, see Figure 10. The layers are classified with respect
to the average value in each layer, which results in layer 1, 2, 3, 5, 7 and 9 being pooled,
as in Section 2. The variance estimates, however, are highly unreliable when based on so
few samples in each layer, and are therefore not used for classification. The composite
histogram of all samples in the pooled layers is displayed in the left display in Figure 11.

Two alternative modelling approaches can be seen. In the traditional GRF modelling ap-
proach, the layers are considered to be realizations from one common GRF model. The
variances in all layers are considered to be identical, and the differences in empirical vari-
ances are tributed to the sampling variance. The compiled set of observations can of course
be used for inference about the parameters of the GRF model. Alternatively, a TRF mod-
elling approach can be used, where the layeres are considered to be realizations from a
unifying TRF model. This approach gives room for different variances in the individual
layers. Also in this case, the compiled set of observations can be used for model parameter
inference. Consequently, the difference in the two approaches is the interpretation of the
varying empirical variance in the layers. Note further that the TRF model contains the
GRF model as a limiting case, and hence the former can be seen as a generalization of the
latter.

In this case study both the GRF and the TRF approach will be used and the results
based on each of them compared. The two models are Gx(µ, φ2φ0xx) and Tx(µ, ω2ω0xx, ν)
respectively, with µ a constant level. The spatial correlation function φ0xx and the spatial
dependence function ω0xx will with constant µ have similar interpretation, see Result 2,
and they are assumed known to be

φ0xx = ω0xx = ̺(x′, x′′) = exp {−α(x′′ − x′)}

with α = 1/0.65, which is in good agreement with the data. The maximum likelihood
estimators based on the GRF model provides µ̂ = 2018 and φ̂2 = 6047. Alternatively,
the TRF model provides hierarchical maximum likelihood estimates according to Section
5: µ̂ = 2018, ω̂2 = 1383 and ν̂ = 1.71. The kernel smoothed histograms of the compiled
observations and the inferred marginal pdfs from the two models are presented in the right
display of Figure 11. The TRF model seems to reproduce the observations better than the
GRF model.

Layers 2 and 3 are studied in more detail under the two competing models, since they
constitute the extremes with respect to variability. Each of the layers are considered
as independent realizations of the respective models, and they are evaluated under the
two models inferred above. In Figure 12 conditional realizations in the two layers under
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the inferred GRF and TRF model respectively, are presented. Under the GRF model
the inferred variance is considered to be the true one, and hence not adapted to the
observations in the layer under study. In layer 2 this entails that the variablity in the
conditioning observations completely dominates the variability of the model. The opposite
effect is observed in layer 3, since the variability in the observations is less. Under the
TRF model simulation is made according to Algorithm 2. The variability of the model is
adaptive to the value of the available observations and the realizations look much more
trustworthy. To summarize, the adaptivity of the variance in the conditional TRF model
make the realization more realistic than under the GRF model with non-adaptive variance.

In Figure 10 two non-observed locations are marked, one in each of the layers. In Figure
13 the predictive conditional pdfs in these two locations under the inferred GRF and TRF
model respectively, are displayed. Under the GRF model the simple kriging predictor
with inferred model parameters is used. The conditional pdf is Gaussian with expectation
dependent on the value of the observations and variance dependent on the location of the
observations only. Hence the prediciton variances in the two layers appear very similar.
Under the TRF model the prediction is made according to the results in Section 4. The
conditional pdf is T -distributed with expectations coinsiding with the expectations under
the GRF model. The prediction variances, however, are adaptive to the actual values of
the observations in the layer under study. Hence the prediction variance in layer 2 is much
larger than in layer 3. Moreover, the degrees of freedom in the conditional T -distribution
increases with the number of observations, since the estimation of the variance is accounted
for. Hence the conditional pdf in layer 3 is more Gaussian-like than the one in layer 2.
To summarize, the adaptive prediction variance in the TRF model makes the predictive
pdfs more realistic than under the GRF model, where the variability is averaged over the
layers. Moreover, the prediction is T -distributed under the TRF model, and accounts for
the fact that the variance is unknown and estimated. Under the GRF model, the estimated
variance is considered to be the true one, and the esimation effect is ignored.

One may argue that the empirical variance obtained from the observations in layers 2 and
3 are so different that the layers should not be pooled when making inference of the GRF
and TRF models. It may be so, but in order to evaluate some of the really thin layers, some
pooling must be made in order to infer a RF model. Then the effect demonstrated above
will appear, although not as dramatic as seen here. If each layer is considered individually
and inference of a GRF model is done, the results will be overly optimistic because the
uncertainty in estimating the variance is not accounted for.

7 Characteristics of T -distributed Random Fields

The motivating example in Section 2 demonstrates that a RF with heavy-tailed marginal
pdfs may appear from a composite of RFs with light-tailed marginal pdfs with similar
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expectations but varying variances. The individual RFs may be GRF with identical ex-
pectations, but varying variances, and this may be modeled by a unifying TRF.

The TRF model has most of the favourable properties for parametric models listed in
Section 1. The model is fully specified; it exhibits permutation invariance and probabilistic
consistency; it has marginal invariance; is additivity closed and it is analytically tractable.
The TRF model is a fairly general RF model since it can reproduce a large class of RFs with
symmetric, unimodal marginal pdfs, heavy-tailed or not. Moreover, the GRF model is a
limiting case of the TRF model, while the Cauchy RF model apperas as a special case. The
generality of the TRF model has clear limitations, however, since RFs with neither skewed
nor multimodal marginal pdfs can be reproduced. Model parameter inference is somewhat
complicated, since consistent estimators can only be defined from sets of observations
from several realizations of the TRF. If observations from only one single realization are
available, the inferred TRF model collapses into a GRF model. The TRF model does not
exhibit diminishing spatial dependence, and this is the reason for lack of consistency of the
estimators based on observations in one realization only.

The TRF model compares favourably with the GRF model. The fact that the GRF is a
special, limiting case of the TRF model emphasizes this. The TRF model can be seen as a
composite of GRF models with identical expectation but varying variance. The heavy tails
of the marginal pdf of TRF models are caused by cross-realization variability and not in-
realization variability, since all realizations are GRF-like with varying variance parameters
from one realization to the other. For GRF models the variance parameter is a fixed
constant. If sets of observations from several realzations are available, assuming the more
general TRF model will increase flexibility. Inference under the TRF and GRF models
coinside if observations from only one realization is available. Conditional TRF models
will have both expectations and variances which depend on the values of the observations,
while conditional GRF models will have only expectations depending on these values. The
corresponding variance is only dependent on location of these observations. The TRF
model accounts for the fact that the model variance is largely unknown and must be
estimated, while the GRF model considers the estimated variance to be the true value.
Consequently, prediction variances will generally be larger under the TRF model than
under the GRF model. To summarize, by consequently using a TRF model one will obtain
the corresponding GRF model when that is appropriate and otherwise benefit from the
additional flexibility of the TRF model. Larger mathematical complexity constitutes the
down-side of this approach. Moreover, by assuming a GRF model, extensions are sometimes
easier to make, for example when adding measurement error to the observations.

The TRF model compares favorably with φ−1-GRF models for RFs, see Chilès and Delfiner
(1999), with symmetric, unimodal marginal pdfs. Note, however, that φ−1-GRFs can be
used for a larger class of RF although the reliability of the results is hard to judge. The φ−1-
GRF model is generally not additivity closed and it lacks analytical tractability, hence most
results must be obtained through simulation or approximations. Lastly, strong assumptions
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about spatial stationarity of the RF are required in order to make inference about the φ-
transformation. Consequently, the TRF model is considered as favorable to the φ−1-GRF
model when they both apply.

The TRF model compares favorably with LSRF models as defined in Gunning (2002).
Both models apply for RFs with symmetric, unimodal marginal pdfs. The LSRF models
lack analytical tractability and most results must be obtained through simulation. The
fact that the LSRF model is only defined through its characteristic function with no closed
form expression for the corresponding pdf demonstrates this lack of analytical tractability.
Both the TRF and the LSRF models lack diminishing spatial dependence. This seems to
have less consequences for the former than the latter, since the analytical tractability of the
TRF model makes it possible to define efficient simulation algorithms even for conditional
TRF models.

In practice, the most favourable case for TRF models is in evaluation of RFs where multiple,
sparsely sampled realizations are available. Inference of the TRF model is made on the
compiled set of observations, and evaluation is done on each realization individually, based
on the inferred TRF model. In reservoir evalutaion, several similar geological layers may be
penetrated by a well and a limited number of core samples may be collected in each layer.
Note further that the TRF model is defined for a reference space of arbitrary dimensions,
hence extending the model into three dimensions representing the entire geological layer is
simple.

8 Conclusions

Histograms of observations from spatial phenomena are often found to be more heavy-
tailed than Gaussian distributions. Well log data in petroleum applications constitute
one example. The heavy-tailedness of well log histograms may be caused by the well
penetrating several layers with similar well log averages, but varying variances. A param-
eteric T -distributed random field (RF) model able to capture this heavy-tailedness in the
marginal pdf is defined. The model appears as a generalization of the familiar Student-T
distribution, and it may be given a Bayesian interpretation. The large variability appears
as cross-realization variability, contrary to in-realization variability, since all realizations
are Gaussian-like with varying variances between the realizations. This T -distributed RF
model exhibits many favourable features: It is a fully defined, valid random field model;
it defines a class of RF models closed for linear operators; it is analytically tractable; for
RFs with symmetric, unimodal marginal pdfs it is fairly general, and contains the Gaus-
sian RF model as a limiting case; and reliable parameter estimators are defined based on
observations from multiple realizations.

An alternative RF model with heavy-tailed marginal pdfs could be imagined. A Gaussian
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RF model with the variance being a RF would also exhibit heavy-tailed marginal pdfs.
However, we have so far not been able to define a parametric RF model of this type which
is analytically tractable.

The T -distributed RF model compares favourably with the Gaussian, φ-transformed and
Levy-Stable RF models. The model appears as a generalization of Gaussian RF models,
and captures heavy-tailed marginal pdfs. It is analytically tractable, which is not the case
for neither the φ-transform nor the Levy-Stable RF models. Hence, for RFs with sym-
metric, unimodal marginal pdfs, the T -distributed RF model provides a recommendable
alternative.
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Appendix

A Parameters in Hierarchical Conditional TRF

The exact relations defined in Result 4 are defined here:

µx|zd,β :
{

[µ(x)|zd, β] = g(x)Tβ + (φZ
0xd)

T (ΦZ
0dd)

−1(zd − GT
d β); x ∈ D

}

φZ
0xx|zd,β :

{

[φZ
0 (x′, x′′)|zd, β] = φZ

0 (x′, x′′) − (φZ
0x′d)

T (ΦZ
0dd)

−1φZ
0x′′d; x

′, x′′ ∈ D ×D
}

with

φZ
0xd =

(

φZ
0 (x, x1), . . . , φ

Z
0 (x, xn)

)T

ΦZ
0dd =







φZ
0 (x1, x1) · · · φZ

0 (x1, xn)
...

. . .
...

φZ
0 (xn, x1) · · · φZ

0 (xn, xn)







Gd =
(

g(x1), . . . g(xn)
)

µβ|zd = µβ + Φβ
0Gd

[

ΦZ
0dd + GT

d Φβ
0Gd

]−1

(zd − GT µβ)

Φβ
0|zd = Φβ

0 − Φβ
0Gd

[

ΦZ
0dd + GT

d Φβ
0Gd

]−1

GT
d Φβ

0

η1|zd = η1 +
n

2

η2|zd = ξ(zd)

[

η2 +
ω2n

2

]
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Table 1: Averages and empirical variances in the layers of Figure 1

layer average empirical variance

1 1962 351
2 1986 56402
3 2038 744
4 2331 54659
5 2014 147
6 2361 67417
7 1997 448
8 2554 41636
9 2053 5969
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Figure 1: Left: Bulk density log from well C33 of the Gullfaks field in the North sea. Right:
Layer interpretation of the log.
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Figure 2: Histogram of density observations in each of the pooled layers. Upper: Layer
1,2,3. Lower: Layer 5,7,9.
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Figure 3: Left: Histogram of density observations in pooled layers. Right: Kernel estimate
of pdf (—); Gaussian estimate of pdf (· · · ); and Student-T estimate of pdf (−−−).
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Figure 4: Upper: T2(0, Ω, 1)-distribution with unit variance and no correlation. Lower:
T2(0, Ω, 1)-distribution with unit variance and correlation 0.5.
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Figure 5: Upper: T2(0, Ω, 7)-distribution with unit variance and no correlation. Lower:
T2(0, Ω, 7)-distribution with unit variance and correlation 0.5.
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Figure 6: Realizations of T -distributed RFs with ν = 1.
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Figure 7: Realizations of T -distributed RFs with ν = 3.
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Figure 8: Realizations of T -distributed RFs with ν = 5.
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Figure 9: Realizations of T -distributed RFs with ν = ∞, i.e. Gaussian RFs.
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Figure 10: Bulk density log observations from well C33 from the Gullfaks field in the North
sea with layer interpretation. The two locations to be predicted is marked (×).
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Figure 11: Left: Histogram of density observations in pooled layers. Right: Kernel estimate
of pdf (—); Gaussian estimate of pdf (· · · ); and Student-T estimate of pdf (−−−).
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Figure 12: Left: Ten conditional realizations from the inferred Gaussian RF model. Right:
Ten conditional realizations from theand inferred TRF model.
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Figure 13: Prediction pdf based on the inferred Gaussian RF model (· · · ) and the inferred
T-distributed RF model (−−−) in layer 2 (left) and layer 3 (right).
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Abstract

Most existing geophysical inversion methods within the Bayesian framework are

based on gridding of the prior distribution, and then performing the inversion on this

grid. This paper introduces a grid free approach to Bayesian geophysical inversion,

making it easy to combine both seismic observations and well log data in the same

model, while accounting for their exactly correct locations. By assuming that the

joint prior distribution for the elastic parameters P -wave velocity, S-wave velocity

and density is a log-Gaussian random field, and performing a linearization of the

well log data, the posterior distribution for the elastic parameters given both seismic

observations and well log data is analytically available, and approximately a Gaus-

sian random field. As the solution is given on a continuous form, the grid design

does not have to be decided prior to the inversion. The continuous representation is

useful in estimation of depth conversion and wavelet parameters, in fluid flow simu-

lation with grid refinements, and in real-time drilling management. The inversion is

demonstrated on real data from the Sleipner field in the North Sea.
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1 Introduction

The objective of geophysical inversion is to describe the properties of the underground,
given some geophysical measurements like seismics and well logs. Geophysical inversion is
inherently ill-posed, meaning that no one, stable solution is obtainable. In order to obtain
a stable solution on the material properties, one needs to provide, directly or indirectly,
information on the preferred solution. As stated by Backus (1988), any geophysical inverse
problem has both an existence half, and a uniqueness half. From a statisticial point of
view, this is essential, as one does not only strive for the most probable solution, but also
seeks to be able to quantify the uncertainty of this estimate.

The Bayesian framework is well suited for this task. Here the constraints on the solution
is introduced through a prior distribution on the geophysical parameters of interest. This
prior is often assumed to be a stationary Gaussian random field, due to the simplicity
of the solutions when solving linear inverse problems, see Tarantola (1987). The prior
distribution is then coupled with the likelihood function; the link between the physical
measurements and the geophysical parameters. The complete solution in a probabilistic
framework is provided by the posterior distribution, which formally is proportional to the
product of the prior distribution and the likelihood.

One of the measurements at hand is seismic data, for example amplitude versus offset
(AVO) data. If these data are pre-processed, Bayesian linearized AVO inversion can be
performed, see Buland and Omre (2003a) for a discussion on the matter. Here a Gaussian
random field is assumed for the prior, resulting in an analytical solution for the posterior.
In Buland et al. (2003d) this method is expanded to a full 3D model, with full spatial
correlation, again with an analytical solution. The inversion is very fast, using the fast
Fourier transform. In this model, also the wells are taken into consideration, and inversion
results are conditioned on the well information. This is achieved by forcing the well loca-
tions to coinside with the seismic grid. However, due to the large area of study, the effects
of doing so are negligible.

In the near vicinity of the well, the geometry is of utter importance. We seek a grid free
representation to be able to incorporate all information in its correct location close to a
well, and invert to find P -wave velocity, S-wave velocity and density. In the near-well
area, the uncertainty in the well measurements are of importance, too, so these need to be
stochastically modelled. By assuming that the elastic variables are a priori log-Gaussian
random field, a continuous analytical solution is obtained for the posterior distribution,
conditioned on both seismic data and well log measurements. Thus, one can freely discretize
the posterior random field itself. The problem of discretizing a continuous random field
using any set of basis functions is addressed in Røislien et al. (2004). The inversion is
demonstrated on real data from the Sleipner field.

This article is organized as follows; in Section 2 the link between seismic data, well log data
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and the elastic parameters is described mathematically; in Section 3 a stochastic model
for the problem is introduced, and a Bayesian inversion is performed; in Section 4 the
inversion approach is demonstrated on real data from the Sleipner field in the North Sea;
finally, Section 5 contains a summary.

2 Linearized Models for the Observations

Consider a volume surrounding a deviated well, and assume that within this volume there
are both surface seismic observations on some grid and well observations along the well-
path. See Figure 1 for a schematic overview. Here ds denotes the seismic observations and
dw the well observations. Seismic AVO data is well suited for for extracting information
about the elastic subsurface parameters, as the inversion problem may be linearized if the
data has been appropriately prosessed, see Buland and Omre (2003a). The well data is
information gathered from well logs. Examples of logging techniques are accoustic logging
for measuring P - and S-wave velocities, and gamma ray for measuring the bulk density.
Though the velocity data is linked to the measuring of travel times of the P - and S-waves,
these raw time data are rarely available. The same holds for the density data. The well
data can thus be viewed as direct measurements of the elastic parameters.

An isotropic, elastic medium is fully described by the vector [α, β, ρ] of elastic variables,
with α representing the P -wave velocity, β the S-wave velocity and ρ the density. This
vector is continuous in both the lateral and temporal direction, and can be written as a
continuous spatial random vector field; {α(x, t), β(x, t), ρ(x, t);x ∈ D ⊂ R

2, t ∈ T ⊂ R+}.
For more on random fields, see Adler (1981), Christakos (1992) and Abrahamsen (1997).
We apply the notation R = D×T for the space spanned by D and T and the short-hand
notation m(x, t) = [α(x, t), β(x, t), ρ(x, t)] for the elastic parameter vector. The interest
lies in describing the random field {m(x, t); (x, t) ∈ R} statistically within R, conditioned
on both seismic data and well observerations. The seismic data and the elastic variables
are related through the Zoeppritz equation according to the right hand side of Figure 2,
whereas the well observations and the elastic variables are related through a model at left
hand side of Figure 2. In the following subsections, these two relations will be defined
mathematically.

2.1 Linearized Model for Seismic Observations

In general, a seismic observation in location (x, t) for some angle θ is a convolution between
a wavelet ψ(x, t) and some measurable function hθ

s

(

m(x, t)
)

of the elastic variables;

dθ
s(x, t) =

∫

Ls

ψ(x, t− v)hθ
s(m(x, v))dv + ǫθs(x, t), (1)
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with ǫθs(x, t) an error term. Allowing the wavelet to be angle dependent is straightforward,
see Buland and Omre (2003a,b,c). Seismic traces are assumed to be vertical, implying that
the integration Ls is a line integral over T only.

A weak contrast approximation to the PP reflection coefficient extended to a time contin-
uous reflectivity function reads

cPP (x, t, θ) = aα(x, t, θ)
∂

∂t
lnα(x, t)

+aβ(x, t, θ)
∂

∂t
ln β(x, t) + aρ(x, t, θ)

∂

∂t
ln ρ(t) (2)

with

aα(x, t, θ) =
1

2

(

1 + tan2 θ
)

(3)

aβ(x, t, θ) = −4
β2(x, t)

α2(x, t)
sin2 θ (4)

aρ(x, t, θ) =
1

2

(

1 − 4
β2(x, t)

α2(x, t)
sin2 θ

)

, (5)

see Buland et al. (2003d). For simplification, we introduce the vector notation a(x, t, θ) =
[aα(x, t, θ), aβ(x, t, θ), aρ(x, t, θ]

T for these functions. Assuming a background model with
a constant β/α-ratio, so that a(x, t, θ) = a(θ), expression (2) can be rewritten in compact
form as

hθ
s(m(x, t)) = cPP (x, t, θ) = a(θ)T ∂

∂t
lnm(x, t) . (6)

Using the notation mL(x, t) = lnm(x, t) = [lnα(x, t), lnβ(x, t), ln ρ(x, t)], expression (1)
may now be rewritten as

dθ
s(x, t) =

∫

Ls

ψ(x, t− v)a(θ)T ∂mL(x, v)

∂v
dv + ǫθs(x, t), (7)

which is linear with respect to the the time derivative of mL(x, t).

Seismic data are available as a discrete set in given locations. Assume that the observed
seismic gathers are available in locations (x, t)i; i = 1, . . . , np and for angles θj ; j = 1, . . . , nθ

in each gather. This results in the seismic observation vector

ds =







d1
s
...
dns

s






(8)

with ns = np × nθ, where each of the seismic observations di
s; i = 1, . . . , ns are given from

expression (7).
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2.2 Linearized Model for Well Observations

In general, a well observation in location (x, t) is a convolution between a wavelet ξ(x, t)
and some measurable function hw(m(x, t)) of the elastic variables;

dw(x, t) =

∫

Lw

ξ(x− u, t− v)hw(m(u, v))dudv + ǫw(x, t), (9)

with ǫw(x, t) an error term. We allow non-vertical well-paths, so that the integral Lw is a
line integral along the well trace in R.

A general linear model is assumed for the well observations,

hw(m(x, t)) = Bm(x, t) (10)

with B a 3 × 3 matrix. Due to the data aquisition process, B will often the identity
matrix. However, we will use a general B throughout this paper for demonstrational
purposes. Expression (9) may now be rewritten as

dw(x, t) =

∫

Lw

ξ(x − u, t− v)Bm(u, v)dudv + ǫw(x, t) (11)

which is linear with respect to m(x, t).

Well data are available as a discrete set in given locations. Assume that the well obser-
vations are available in locations (x, t)i; i = 1, . . . , nw. This results in the well observation
vector

dw =







d1
w
...
dnw

w






(12)

where each of the well observations di
w; i = 1, . . . , nw are given from expression (11).

3 Stochastic Model

We cast the near-well inversion problem in a Bayesian framework. The mathematical
relations between the elastic parameters and the data were outlined in Section 2. Here,
additional stochastic properties are discussed, and the posterior distribution of the randon
field {α(x, t), β(x, t), ρ(x, t); (x, t) ∈ R} conditioned on both the seismic and well data is
developed.

5

URN:NBN:no-3476



3.1 Likelihood model

We model the seismic errors as zero mean Gaussian residuals for each of the seismic ob-
servations;

ǫs = [ǫ1s, . . . ǫ
ns
s ]T ∼ Nns (0,Γǫs) (13)

with Γǫs being a (ns × ns)-dimensional covariance matrix defined by

γxtθ
ǫs

= Cov
{

ǫθ1

s (x1, t1), ǫ
θ2

s (x2, t2)
}

(14)

Thus, from Section 2.1 we have that
[

ds|mL(x, t)
]

∼ Nns

(

µds|mL
,Γds|mL

)

(15)

with µds|mL
a (ns × 1)-dimensional expectation vector defined by

µxtθ
ds|mL

= E
{

dθ
s(x, t)|mL(x, t)

}

(16)

=

∫

Ls

ψ(x, t− v)a(θ)T ∂mL(x, v)

∂v
dv (17)

and Γds|mL
being a (ns × ns)-dimensional covariance matrix identical to Γǫs.

We model the well errors as zero mean Gaussian residuals for each of the well observations;

ǫw = [ǫ1w, . . . ǫ
nw
w ]T ∼ Nnw (0,Γǫw) (18)

with Γǫw being a (nw × nw)-dimensional covariance matrix defined by

γxt
ǫw

= Cov {ǫw(x1, t1), ǫw(x2, t2)} (19)

Thus, from Section 2.2 we have that
[

dw|mL(x, t)
]

∼ Nnw

(

µdw|mL
,Γdw|mL

)

(20)

with µdw|mL
a (nw × 1)-dimensional expectation vector defined by

µxt
dw|mL

= E {dw(x, t)|mL(x, t)} (21)

=

∫

Lw

ξ(x− u, t− v)B exp{mL(u, v)}dudv (22)

and Γdw|mL
being a (nw×nw)-dimensional covariance matrix identical to Γǫw . Note that the

well likelihood is slightly changed from expression (11), since it is now made conditional
on mL(x, t) rather than m(x, t). An appropriate transformation is made in expression (22)

For the complete observation vector d = (dT
s , d

T
w)T , we now have

[

d|mL(x, t)
]

= [(dT
s , d

T
w)T |mL(x, t)] ∼ Nnd

(µd|mL
,Γd|mL

) (23)
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with (nd × 1)-dimensional expectation vector

µd|mL
=

[

µds|mL

µdw|mL

]

(24)

and (nd × nd)-dimensional covariance matrix

Γd|mL
=

[

Γds|mL
0

0 Γdw |mL

]

, (25)

and nd = ns +nw. Assuming that the seismic errors ǫs and well errors ǫw are independent,
results in the off-diagonal blocks to be all zeros.

3.2 Prior model

We assume that {m(x, t); (x, t) ∈ R} is a continuous log-Gaussian random field. This
implies that {mL(x, t); (x, t) ∈ R} is a continuous Gaussian random field in x and t,

mL(x, t) ∼ Gxt

(

µxt
mL
, γxt

mL

)

(26)

with expectation function

µxt
mL

= E{mL(x, t)} (27)

=
[

E{lnα(x, t)},E{lnβ(x, t)},E{ln ρ(x, t)}
]T

(28)

= [µα(x, t), µβ(x, t), µρ(x, t)]
T (29)

for all x ∈ D and t ∈ T , and covariance function

γxt
mL

= Cov{mL(x1, t1), mL(x2, t2)} (30)

= Γ0̺(ξ, τ) (31)

for all x1,x2 ∈ D and t1, t2 ∈ T . The last equality is the result of assuming stationarity.
Here Γ0 is a (3 × 3)-dimensional location invariant covariance matrix between lnα(x, t),
ln β(x, t) and ln ρ(x, t), and ̺(ξ, τ) is a spatial correlation function where ξ = |x2 − x1|
denotes lateral distance and τ = |t2−t1| temporal distance. That is, the covariance function
may be divided into a part consisting of the covariances between (lnα, lnβ, ln ρ), and a
spatial correlation function. This correlation function must be positive definite. For more
on such functions, see Abrahamsen (1997).

3.3 Linearized stochastic models

The seismic observation in expression (7) is a linear operator with respect to ∂tmL(x, t),
with ∂t denoting the t-derivative, plus random noise. As differentiation is a linear operator,
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the differentiation with respect to t results in a new vector field in x and t which will also
be Gaussian,

∂tmL(x, t) ∼ Gxt

(

∂tµmL
(x, t), ∂t1∂t2γ

xt
mL

)

(32)

see Christakos (1992), Abrahamsen (1997) and Buland and Omre (2003a). In the case of
stationarity,

∂t1∂t2γ
xt
mL

= γxt
m′

L
= Cov {∂t1mL(x1, t1), ∂t2mL(x2, t2)} (33)

= −Γ0∂
2
τ̺(ξ, τ) (34)

One will also need the cross-covariance between mL(x, t) and ∂tmL(x, t), which is

∂t1γ
xt
mL

= γxtxt
m′

LmL
= Cov {∂t1mL(x1, t1), mL(x2, t2)} (35)

= sign(t1 − t2)Γ0∂τ̺(ξ, τ). (36)

where the last equality is the result of assuming stationarity.

The well observation (11) is a linear operator with respect to m(x, t) plus random noise.
Linearizing the log-Gaussian random field m(x, t), it can be shown that

m(x, t) = exp{mL(x, t)}
∼
→ Gxt

(

µxt
m , µ

x1t1
m γxt

mL
µx2t2

m

)

(37)

with
∼
→ denoting approximation in distribution, see Appendix B.1 for proof of the result in

the discrete case. Expression (37) holds whenever the location parameter becomes much
larger than the scale parameter. The expectation function is

µxt
m = exp{µxt

mL
} = exp

{

E{mL(x, t)}
}

. (38)

One will also need the crosscovariances between mL(x, t) and exp{mL(x, t)}, and ∂tmL(x, t)
and exp{mL(x, t)}, which are

γxtxt
mLm = Cov

{

mL(x1, t1), exp{mL(x2, t2)}
}

(39)

= γxt
mL

exp
{

µx2t2
mL

+ γx2t2
mL

}

(40)

γxtxt
m′

Lm = Cov
{

∂t1mL(x1, t1), exp{mL(x2, t2)}
}

(41)

= ∂t1γ
xt
mL

exp
{

µx2t2
mL

+ γx2t2
mL

}

. (42)

see Appendix B.2 for a proof in the discrete case.
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3.4 Posterior model

With the likelihood being Gaussian and linear in the conditioning variable, and the prior
distribution being Gaussian, the posterior distribution will also be Gaussian. Thus, with
the linearization in expression (37) for the well information, the distribution of the elas-
tic parameter vector conditioned on both seismic and well data, d, is approximately a
continuous Gaussian random field in x and t;

[

mL(x, t)|d
]

∼ Gxt

(

µxt
mL|d , γ

xt
mL|d

)

(43)

with expectation function

µxt
mL|d = µxt

mL
+ γmxt

L dΓ
−1
d (d− µd) (44)

for x ∈ D and t ∈ T , and covariance function

γxt
mL|d = γxt

mL
− γ

m
x1t1
L d

Γ−1
d γ

dm
x2t2
L

(45)

for x1,x2 ∈ D and t1, t2 ∈ T , with

γmxt
L d =

[

Cov{mL(x, t), d1}, . . . ,Cov{mL(x, t), dn}
]T

(46)

having elements defined by

Cov
{

mL(x1, t1), d
θ
s(x2, t2)

}

=

∫

Ls

ψ(x2, t2 − v)γx1t1x2v
mLm′

L
a(θ)dv (47)

Cov {m(x1, t1), dw(x2, t2)} =

∫

Lw

ξ(x2 − u, t2 − v)γx1t1uv
mLm BT dudv (48)

for all x1,x2 ∈ D, t1, t2 ∈ T and θ ∈ [0, 2π). Further

Γd =

[

Γds Γdsdw

Γdwds Γdw

]

, (49)

and

µd =

[

µds

µdw

]

(50)

see Appendix A for a complete definition of expressions (49) and (50). Expressions (47)
and (48) are the crosscovariance between the elastic variables and a seismic observation,
and the crosscovariance between the elastic variables and a well observation, respectively.
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3.5 Discretization of the posterior distribution

Having the solution (43) on a continous form allows for discretizing of the solution, rather
than having to discretize before the actual inversion, having to carry that choice through. In
Røislien et al. (2004) it is shown how to discretize a continous random field {Z(y); y ∈ R}
with respect to any set of basis functions, using the expansion

Z(y) = lim
n→∞

n
∑

i=1

Aifi(y) (51)

with {fi(y)}
n
i=1 a set of known basis functions, an A = [A1, . . . , An]T a vector of unknown

stochastic parameters. If n < ∞ expression (51) is an approximation. As an example;
using orthogonal box basis functions, each of the n stochastic parameters can be described
as

Ai =
1

|Vi|

∫

Vi

Z(u)du ; i = 1, . . . , n (52)

with Vi ⊂ R, and |Vi| denoting the volume of integration defined by the box basis functions.
The expectation and covariance for the random variables is

E(Ai) =
1

|Vi|

∫

Vi

µ(u)du ; i = 1, . . . , n (53)

Cov(Ai, Aj) =
1

|Vi||Vj|

∫

Vi

∫

Vj

C(u, v)dudv ; i = 1, . . . , n (54)

with µ(y) and C(y1, y2) the expectation and covariance function of Z(y), respectively. In
the special case of {Z(y); y ∈ D} being a Gaussian random field, A will be a multivariate
Gaussian random vector.

3.6 Computational aspects

The posterior distribution in expression (43) is an update of the prior distribution (26) with
respect to the data d. In order to calculate the posterior expectation function µxt

mL
|d and

posterior covariance function γxt
mL

|d for [mL(x, t)|d] in some location, given in expressions
(44) and (45) respectively, we need to update the prior expectation function µxt

mL
and prior

covariance function γxt
mL

. This is done by calculating γmxt
L d, Γd and µd, defined by line

integrals given in Section 3 and Appendix A. Each of these integrals generally need to be
solved numerically and separately. For each new location in the posterior discretization,
preprogrammed subroutines calculating these integrals are then called. Thus, adding new
locations in the posterior grid is straightforward once the numerical subroutines have been
implemented.

10

URN:NBN:no-3476



If the number of posterior grid nodes becomes large, it can be computationally faster to
discretize the problem aforehand, turning the problem into a matrix inversion problem, see
Appendix C for details. However, after having performed this matrix inversion for a given
grid, grid refinements can then be consistengly added where desired, using the continuous
solution.

In Buland et al. (2003d) Bayesian AVO inversion is performed using the FFT, resulitng in
a very fast inversion, as well as low CPU demand. The FFT approach can, however, not
be applied here, due to the optional gridding design and the discretizing of the posterior
rather than the prior. The cost of the added flexibility in this continuous approach is
increased computing time and complexity.

4 Inversion of Sleipner Data

The Sleipner Øst Field is located in the South Viking Graben in the Norwegian Block
15/9. For more detail about the dat set and the seismic processing, see Buland and Omre
(2003a).

In the inversion, a rectangular piece of the seismic survey limited by inlines 1625-1633 and
crosslines 1290-1295 is used. Within this small area most seismic traces are fairly similar,
see Figure 3 for a complete angle gather for the 9 available angles [5o, 9o, 13o, . . . , 37o]. We
have, however, restricted the inversion to the four angles [5o, 9o, 13o, 17o] in order to speed
up the process. As for the temporal direction, we have chosen depth 2280ms to 2350ms.
Within this volume, a non-vertical well is embedded. The complete well logs for P -wave
velocity, S-wave velocity and density are shown in Figure 4. As the well log data are given
as a function of depth in metres, the well log data are converted to depth in time.

4.1 Model parameter estimation

The most important piece of information for estimating parameters is the well logs. For the
assumed constant background model we find µ̂α = 7.951, µ̂β = 7.319 and µ̂ρ = 7.701 using
standard estimators, corresponding to P -wave velocity 2838m/s, S-wave velocity 1508m/s
and density 2211kg/m3. The elements of the stationary covariance matrix

Γ0 =





σ2
ln α σln ασln βcαβ σln ασln ρcαρ

σln βσln αcβα σ2
ln β σln βσln ρcβρ

σln ρσln αcρα σln ρσln βcρβ σ2
ln ρ



 (55)

from expression (31) are also estimated using standard estimators. We find σ̂2
ln α = 0.0117,

σ̂2
ln β = 0.0350 and σ̂2

ln ρ = 0.00163 for the variances ofmL, and ĉαβ = 0.8857, ĉαρ = −0.1651,
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ĉβρ = −0.4266 for the correlations between (lnα, lnβ, ln ρ). As the expectations are of
magnitude 1 and the the variances of magnitude 10−2 the use of the approximation (37)
in Section 3.3 is justified.

The spatial coupling is introduced through a temporal and a lateral correlation function,
with the total correlation function is the product of these. The empirical correlation
function in the temporal direction is estimated for several time lags in the well, and fitted
by eye by an ordinary Bessel correlation function,

̺J(τ ; ν1, ν2) = Γ(ν2 + 1)2ν2(ν1τ)
−ν2Jν2

(ν1τ) (56)

with Γ(x) here denoting the gamma function, see Figure 5. The parameters used are
ν1 = 0.33 and ν2 = 0.5. The fit is satisfactory. The correlation in the lateral direction can
be found from the seismics, and is fitted by a first order exponential function,

ρξ(ξ;Rξ) = exp

{

√

ξ2
1 + ξ2

2

Rξ

}

, (57)

with range Rξ = 250m, see Buland and Omre (2003a). In the simulation, however, we
have used Rξ = 25 in order to demonstrate the behaviour around the well with less CPU
demand.

In Buland and Omre (2003a) the seismic wavelets for this set of data was estimated from
the well log data separately for each angle. However, as all wavelets are fairly similar
for the four chosen angles, we apply the same Ricker wavelet for all angles, using peak
frequency 25Hz. The zero-phase Ricker wavelet is given as

ψθ(t;φ) = ψ(t;φ) = c(1 − 2π2φ2t2) exp(−π2φ2t2) (58)

with φ being the peak frequency and t the travel times, and c a normalizing constant.
Introducing different wavelets for different angles is straightforward. Estimation of wavelets
from the data is discussed in Buland and Omre (2003b,c). The well measurements are
subject to an averaging having the size of the tool. Thus, for the well data, a uniform
averaging function with width 7× 15.24cm, corresponding to the whole length of the tool,
has been used for both the velocity and density data. In Figure 6 the seismic wavelet and
the averaging function for the well data are compared. The difference in scale is dramatical,
but posesses no real problem in the inversion, as the upscaling is implicitely taken care of.

The seismic noise is assumed to be a mixture of white and coloured noise,

ǫθs(x, t) = e1 + Se2(θ) (59)

The first term represents white noise, e1 ∼ N(0, σ2
1). Letting e1 = e1(x, t) is straightfor-

ward. The other term is an angle dependent error. For each angle θi, the error term e2(θi)
is white noise, but correlated between different angles by

ρθ = exp

{

−
|θi − θj |

Rθ

}

(60)
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Using standard estimators, the parameters were estimated to be σ̂2
1 = 0.0114, σ̂2

2 = 0.0001
and R̂θ = 10o, see Buland and Omre (2003a). For other ways of modelling the error, see
for example Buland et al. (2003d). All well errors are assumed to be independent and
Gaussian,

ǫw(x, t) = ǫw ∼ N(0, σ2
w) (61)

with σ̂2
w = 1000, corresponding to an accuracy of 95% for the well measurements. For more

on density log errors, see for example Frykman and Deutsch (2002).

4.2 Simulation results

We invert the 3D-volume defined by inlines 1625-1633, crosslines 1290-1295 and depth
2280ms to 2355ms. This corresponds to 5 inlines and 6 crosslines, a total of 30 seismic
gathers, covering an 100m×62.5m area. The well penetrates this volume, see Figure 7 for
a schematic overview in the x-plane.

We calculate the results of the inversion along a 2D cut between crosslines 1292 and 1293,
for a regular grid with locations every 4m in the lateral direction and every 1.5ms in the
temporal direction. The well runs through this 2D cut in a single point.

The conditional mean after the inversion along the 2D cut conditioned on the seismic ob-
servations only, is shown in the left display of Figure 8. The result is laterally very smooth,
and varies little throughout the domain of study. It does, however, reveal the main verti-
cal behaviour of the elastic parameters. As was mentioned in Buland and Omre (2003a)
the AVO inversion reveals little about the bulk density, so this is by far the smoothest
display. For a more detailed view, see Figure 9. Here an inversion along the well path,
conditioned on the seismic observations only, is shown. Again, we observe how the seismic
AVO inversion captures the main trends in the elastic parameters.

The conditional mean after the inversion along the 2D cut conditioned on the well log data
only, is shown in the right display of Figure 8. The result reveals a lot of information about
the elastic parameters close to the well. Further away from the well, however, the assumed
constant background model is the only piece of information. For a more detailed view, see
Figure 10. Here an inversion along the well path, conditioned on the well log data only,
is shown. Observe that since a uniform averaging function was assumed for the well log
data, the results after the inversion are even less smooth than the actual well logs.

The conditional mean and the conditional variance after the inversion conditioned on both
seismic and well data, is shown in Figure 11; the left display shows the mean, whereas
the rigth display shows the variance. The mean is detailed close to the well, whereas
further away from it, it is the information from the seismics that dominates. The variance
is smaller close to the well, and increases with increasing distance. Samples from this
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posterior distribution are shown in Figure 12. As the variance is lower close to the well,
the variation between samples is lower in this area. Further away from the well, the
difference between the samples increases.

5 Conclusion

A continuous linear Bayesian AVO inversion method is developed, combining both seismic
AVO data and well log data. The difference in scale for the two different types data is
implicitely taken care of in the model. The result of the Bayesian inversion is an analytically
available posterior for the elastic parameters P -wave velocity, S-wave velocity and density.
This posterior is approximately a continuous Gaussian random field. The inversion is tested
on real data from the Sleipner field. It is demonstrated how the inversion conditioned on
both seismics and well data reveals detailed information about the elastic parameters close
to the well, whereas further away from the well, the less informative seismic data is the
main contributor in the inversion.

One may benefit from this continuous representation of the posterior model in depth con-
version and wavelet estimation along the lines of Buland and Omre (2003b,c) since all
information is correctly located. Moreover, grid refinement in fluid flow simulation and
real-time drilling management can be done consistently under the model defined here.
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Appendix

A Marginal Distribution for Observations

From expressions (13) and (32) and the properties of the Gaussian distribution, the seismic
observations ds will be multivariate Gaussian distributed,

ds ∼ Nns

(

µds ,Γds

)

(62)

with µds a (ns × 1)-dimensional expectation vector defined by

µxtθ
ds

= E
{

dθ
s(x, t)

}

(63)

=

∫

Ls

ψ(x, t− v)a(θ)TE

{

∂mL(x, v)

∂v

}

dv (64)

and Γds a (ns × ns)-dimensional covariance matrix defined by

γxtθ
ds

= Cov
{

dθ1

s (x1, t1), d
θ2

s (x2, t2)
}

(65)

=

∫

Ls

∫

Ls

ψ(x1, t1 − v1)a(θ1)
Tγxv

m′

L
a(θ2)ψ(x2, t2 − v2)dv1dv2 + γxtθ

ǫw
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From expressions (18) and (37) and the properties of the Gaussian distribution, the well
observations will be approximately multivariate Gaussian distributed,

dw ∼ Nnw

(

µdw ,Γdw

)

(66)

with µdw a (nw × 1)-dimensional expectation vector defined by

µxt
dw

= E {dw(x, t)} (67)

=

∫

Lw

ξ(x − u, t− v)BE
{

exp{mL(u, v)}
}

dudv (68)

and Γdw a (nw × nw)-dimensional covariance matrix defined by

γxt
dw

= Cov {dw(x1, t1), dw(x2, t2)} (69)

=

∫

Lw

∫

Lw

ξ(x1 − u1, t1 − v1)Bµ
u1v1

m γuv
mL
µu2v2

m

·BT ξ(x2 − u2, t2 − v2)du1du2dv1dv2 + γxt
ǫw

For the joint distribution of the seismic and well observations we have

d = [dT
s , d

T
w]T ∼ Nnd

(µd,Γd) (70)

with µd the (nd × 1)-dimensional expectation vector

µd =

[

µds

µdw

]

(71)

and Γd the (nd × nd)-dimensional covariance matrix

Γd =

[

Γds Γdsdw

Γdwds Γdw

]

. (72)

Here Γdsdw = ΓT
dwds

is a (ns × nw)-dimensional cross-covariance matrix defined by

γxtθxt
dsdw

= Cov
{

dθ
s(x1, t1), dw(x2, t2)

}

(73)

=

∫

Ls

∫

Lw

ψ(x1, t1 − v1)a(θ)
Tγx1v1u2v2

m′

Lm

·BT ξ(x2 − u2, t2 − v2)du2dv1dv2

The notation is as in Section 3.
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B Results

Result B.1 Convergence of Multivariate Lognormal distribution

Assume that Y ∼ Nn(µ, C) and U ∼ Nn(0, I).

If Prob
{

(diag(µ))−1C
1

2U ≪ 1n

}

→ 1n, then

eY ∼
→ Nn

(

eµ, diag(eµ) C diag(eµ)
)

(74)

with
∼
→ denoting convergence in distribution and 1n being a vector of n ones.

Proof

If Y ∼ Nn(µ, C) then Y = µ + C
1

2U with U ∼ Nn(0, In). Thus the ith component of Y
may be expressed as Yi = µi+

∑n
j=1 aijUj for i = 1, . . . , n with {aij}

n
i,j=1 being the elements

of C
1

2 . With eY =
[

eY1 , . . . , eYn
]T

one finds

eYi = exp

{

µi

(

1 +
1

µi

n
∑

j=1

aijUj

)}

(75)

≈ 1 +

∞
∑

k=1

µk
i

k!

(

1 +
k

µi

n
∑

j=1

aijUj

)

(76)

= eµi + eµi

n
∑

j=1

aijUj (77)

for i = 1, . . . , n where the approximation is valid under the assumtion of the theorem, as

1

µi

n
∑

j=1

aijUj ∼ N

(

0,

n
∑

j=1

(
aij

µi
)2

)

, (78)

which approaches a Dirac Delta function, as
aij

µi
→ 0 whenever n <∞. Returning to vector

notation the result follows.

Result B.2 Covariance between multivariate Gaussian, differentiated Gaussian and Log-
normally distributed random variables

If the random variable Y = Y (t) is n-variate Gaussian distributed, Y ∼ Nn(µ, C), then
exp(Y ) ∼ LogNn(µ, C) and ∂tY ∼ Nn(∂tµ, ∂t∂sC). Further, if C = C(t, s) is symmetric,

1. Cov {Y, exp(Y )} = CDµ,C
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2. Cov {exp(Y ), Y } = Dµ,CC

3. Cov {∂tY, exp(Y )} = ∂tCDµ,C

4. Cov {exp(Y ), ∂tY } = Dµ,C∂tC

with Dµ,C = diag (exp {µ+ diag(C)}).

Proof

We have

E = E{exp(Y )} (79)

= cµ · c

∫

Rn







ey1

...
eyn






exp

{

−
1

2

(

yTAy − yTAµ− µTAy
)

}

dy (80)

= cµ · c

∫

Rn

I(y)dy (81)

with c = 1
(2π)n/2

·|A|1/2, cµ = exp
{

−1
2

(

µTAµ
)}

, A = C−1, and I(y) defined from expression

(80). The kth element of I(y) is

Ik(y) = exp

{

−
1

2
yTAy +

1

2

n
∑

i=1

n
∑

j=1

yiaijµj +
1

2

n
∑

i=1

n
∑

j=1

µiaijyj + yk

}

= exp

{

−
1

2

(

yTAy −
n
∑

i=1

yi

n
∑

j=1

µj(aij + aji) − 2yk

)}

(82)

= exp

{

−
1

2
(y − bk)TA(y − bk)

}

(83)

for k = 1, . . . , n. By completion of the square one finds

bk = µ+ Ck

for k = 1, . . . , n whenever C is symmetric. Here Ck is the kth column vector of C. Now

Ek = cµc

∫

Rn

exp

{

−
1

2
(y − bk)TC−1(y − bk)

}

dx · exp

{

1

2
(bk)TC−1bk

}
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for k = 1, . . . , n. As the integrals are equal to c−1, we have

E{exp(Y )} = exp

{

−
1

2
µTC−1µ

}







exp
{

1
2
(b1)TC−1b1

}

...
exp

{

1
2
(bn)TC−1bn

}







= exp

















CT
1 C

−1(µ+ 1
2
C1)

...
CT

nC
−1(µ+ 1

2
Cn)

















= exp

















CT
1
...
CT

n






C−1µ+

1

2
diag







CT
1 C

−1C1 . . . CT
1 C

−1Cn
...

. . .
...

CT
nC

−1Cn . . . CT
nC

−1Cn

















= exp











µ+
1

2
diag







1

n







CT

...
CT







T 





C 0
. . .

0 C







−1 





C
...
C























= exp

{

µ+
1

2
diag(C)

}

Proof of 1.
We have

Cov{Y, exp(Y )} = E{Y exp(Y )T} − µE{exp(Y )T}.

with

E{Y exp(Y )T} = c

∫

Rn







y1
...
yn






[ey1 . . . eyn ] exp

{

−
1

2
(y − µ)TA(y − µ)

}

dy (84)

which, by comparison with the previous calculations, is reduced to n2 factors of the kind

Ekl =

∫

Rn

c yl exp

{

−
1

2
(y − bk)TC−1(y − bk)

}

dy

·cµ exp

{

1

2
(bk)TC−1bk

}

= E{Yl}|N(bk,C) E{exp(Yk)}

= bkl E{exp(Yk)}

for k, l = 1 . . . n. Thus, with

B =







b11 . . . bn1
...

. . .
...

b1n . . . bnn






= µT 1n×n + C
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and 1n×n being an n× n-matrix of all ones,

Cov{Y, exp(Y )} = Bdiag (E[exp(Y )]) − µE[exp(Y )T ]

= (µT 1n×n + C) diag

(

exp

{

µ+
1

2
diag(C)

})

−µ

[

exp

{

µ+
1

2
diag(C)

}]T

= C diag

(

exp

{

µ+
1

2
diag(C)

})

Proof of 3.
We have

Cov{∂tY, exp Y } = E{∂tY (expY )T} − ∂tµcµDb (85)

with

E{∂tY (expY )T} = c

∫

Rn

∂tY (expY )T exp

{

−
1

2
(y − µ)TA(y − µ)

}

dy

which, by comparison with the previous calculations, is reduced to n2 factors of the kind

Ekl =

∫

Rn

c [∂ty]l exp

{

−
1

2
(y − bk)TC−1(y − bk)

}

dy · cµ exp

{

1

2
(bk)TC−1bk

}

= E{∂tYl}|N(bk ,C) E{exp(Yk)}

= ∂tb
k
l E{exp(Yk)}

for k, l = 1 . . . n. Thus

Cov{∂tY, exp(Y )} = ∂tBdiag (E{exp(Y )}) − ∂tµE{exp(Y )T}

= ∂t(µ
T 1n×n + C) diag

(

exp

{

µ+
1

2
diag(C)

})

−∂tµ

[

exp

{

µ+
1

2
diag(C)

}]

T

= ∂tC diag

(

exp

{

µ+
1

2
diag(C)

})

Proof of 2 and 4.
Since













y1
...
yn






[ey1 . . . eyn ]







T

=







ey
1
...
eyn






[y1 . . . yn]

the result follows.
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C Discretization process

A discretized version of the convolution (7) for the seismic data in the jth trace is

dsj
= Sj(Ajm

′
L,sj

) + esj
(86)

for all observed traces in an angle gather. Here Sj is a matrix version of the source
wavelet, Aj a matrix of constants dependent on the seismic angle, mL,sj

the logarithm of
the elastic parameters in the trace, esj

the associated error term, and the prime denoting
partial differentiation with respect to time t. For details on the individual elements of these
matrices, see Buland & Omre (2003a). In Section 3.1 the seismic error term was modelled
as Gaussian,

esj
∼ N

(

0, Cesj

)

, (87)

and in Section 3.2 the elastic parameters m were assumed to a priori Log-Gaussian, result-
ing in m′

L being Gaussian

m′
L,sj

∼ N
(

µm′

L,sj
, Cm′

L,sj

)

, (88)

In (87) and (88) Cesj
, µm′

L
and Cm′

L
are the discrete counterparts of the corresponding

continuous functions, with appropriate dimension. Having nd seismic observations in a
trace and nθ angle gathers, we find

dsj
∼ Nnd·nθ

(

SjAjµm′

L,sj
, Sj(AjCm′

L,sj
AT

j )ST
j + Cesj

)

(89)

for j = 1 . . . nt, where nt is the number of seismic traces. For the collection of all seismic
gathers ds = [dT

s1
, . . . , dT

snt
]T within the 3D volume, expression (86) generalizes to

ds = SAm′
L,S + eS (90)

with S = diag[S1, . . . , Snt ], A = diag[A1, . . . , Ant ], eS = [eT
S1
, . . . , eT

Snt
]T and m′

L,s =

[m
′T
L,s1

, . . . , m
′T
L,snt

]T . Thus the nt seismic gathers are jointly Gaussian distributed

ds ∼ Nnd·nθ·nt

(

SAµm′

L,s
, SACm′

L,s
ATST + CeS

)

(91)

with µm′

L,s
= [µT

m′

L,s1

, . . . , µT
m′

L,snt

]T and

Cm′

L,s
=







Cm′

L,s1
. . . Cm′

L,s1
,m′

L,snt
...

. . .
...

Cm′

L,snt
,m′

L,s1
. . . Cm′

L,snt







Ces =







Ces1
. . . Ces1 ,esnt

...
. . .

...
Cesnt

,es1
. . . Cesnt






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under the assumption that Cov(m′
sj
, esk

) = 0 for j, k = 1, . . . nt. If one assumes that
the errors associated with each seismic trace is individual, that is, Cov(esj

, esk
) = 0 for

j, k = 1, . . . nt , j 6= k, then Ces will be block diagonal.

A discretized version of the convolution (11) for the well data is

dw = TBwmw + eT (92)

Here T is a matrix version of the averaging function and Bw an expanded matrix version
of B, and mw the elastic parameters along the well, and eT the associated error term. In
Section (3.1) we modelled the well error term as Gaussian,

eT ∼ N (0, CeT
) , (93)

and in Section 3.2 the elastic parameters m were assumed to be a priori Log-Gaussian,
resulting in mw being approximately Gaussian through result B.1

mw
∼
→ (µmw , Cmw) . (94)

In (93) and (94) CeT
, µmw and Cmw are the discrete counterparts of the corresponding

continuous functions, with appropriate dimension. We find

dw
∼
→ Nnw

(

TKµmw , TBwCmwB
T
wT

T + CeT

)

(95)

with nw the sum of observations of α, β and ρ in the well.

In total, for the posterior distribution (43), the model parameters µds and Cds are thus
found from expression (91), and µdw and Cdw from expression (95), whereas

CmL,ds = Cov(mL, SAm
′
L,s + eS)

= CmL,m′

L,s
ATST ,

CmL,dw = Cov(mL, TBwmw + eT )

= CmL,mwB
T
wT

T ,

Cds,dw = Cov(SAm′
L,s + eS , TBwmw + eT )

= SACm′

L,s,mwB
T
wT

T .

and so on, with CmL,m′

s,L
, CmL,mw and Cm′

s,L,mw being the discrete counterparts of the
corresponding continous functions defined in Section 3 and Appendix A.
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Figure 1: Schematical overview of seismic and well observations within a 3D volume.
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Figure 2: Graph of connections between the elastic parameters and the observations dw and
ds. Seismic wavelet function ψ and well averaging function ξ.
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Figure 3: A typical seismic gather in the area of study.
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Figure 4: Well logs from the Sleipner field: P -wave velocity (left), S-wave velocity (middle)
and bulk density (right).
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Figure 5: Empirical correlation function (· · · ) with the inferred ordinary Bessel correlation
function (—).

26

URN:NBN:no-3476



−30 −20 −10 0 10 20 30
−0.5

0

0.5

1

−30 −20 −10 0 10 20 30
−0.5

0

0.5

1

Figure 6: Seismic zero phase Ricker wavelet ψ (upper) and uniform well averaging function
ξ (lower).
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Figure 7: Location of seismic gathers (×), 2D cut of inversion traces (− · − · −) and well
from depth 2280ms to 2355ms (—). Entry point for the well is at the upper right, exit at
the lower left.
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Figure 8: Conditional mean after inversion conditioned on seismic observations only (left)
and well logs only (right). The star marks where the well penetrates the 2D cut. Above the
star the well lies ”behind” the display, below the star the well lies ”in front of” the display.
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Figure 9: Conditional mean (− · −) along the well path after inversion conditioned on
seismic observations only.Well log data (—).
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Figure 10: Conditional mean (−·−) along the well path after inversion conditioned on well
logs only. Well log data (—).
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Figure 11: Inversion conditoned on both seismic and well information: Conditional mean
(left) and conditional variances (right). The star marks where the well penetrates the 2D
cut. Above the star the well lies ”behind” the display, below the star the well lies ”in front
of” the display.
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Figure 12: Two samples (left and right) from the posterior distribution. The star marks
where the well penetrates the 2D cut. Above the star the well lies ”behind” the display,
below the star the well lies ”in front of” the display.
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Abstract

In geophysical inverse problems, continuous fields of material properties must be

approximated by a discrete basis function representation, which in its simplest form

entails gridding. The inverse problem is then to determine the uncertainty in the

coefficients of these basis functions given a set of noisy measurements. This work

explores the relationship between the statistical properties of a continuous random

field and the corresponding statistical properties of the basis function coefficients.

The mean and covariance of the coefficients of a set of basis functions for a given

mean and spatial covariance function of a continuous random field is determined. The

established connection between a discrete representation of a property field and the

underlying continuous field makes it possible to probabilistically compare different

discrete representations. Moreover, consistency between different discrete representa-

tions can be ensured. The use of uniform averaging, linear interpolation and wavelets

as discretization procedures are discussed.
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1 Introduction

Geophysical inverse problems deal with the issue of making inference about subsurfacae
properties, based on some geophysical measurements. These problems are generally ill-
posed and non-unique. In a statistical setting such inverse-problems are naturally stated
in a Bayesian setting, leading to solutions represented by a posterior probability density
function (pdf) on the subsurface property space. This pdf is usually represented on a grid,
which constitutes a discretization of the solution, see for example Buland and Omre (2003).

Another example is the choice of the prior distribution in Bayesian inference. The prior
distribution has the role of regularization, limiting the space of possible solutions, see for
example Malinverno (2002). The choice of prior becomes increasingly important when
the available data is sparse. Then the finitie dimensional representation of the infinite-
dimensional prior should be handled with care.

Even though the subsurface properties are continuous, and most methodologies are based
on discrete vector representations of these, little attention has been paid to the discretiza-
tion itself. This work establishes a connection between a continuous random field and the
discrete representation of this field using some set of basis functions. Not surprisingly, the
results simplify for Gaussian random fields, for which some general litterature exist, see
for example Lifshits (1995) and Jansson (1997).

The article is organized as follows; in Section 2 the discretization procedure is outlined
and the main results are established; Section 3 contains a discussion on how to evaluate
and compare different choices of basis fuctions, whereas Section 4 contains some examples
using different sets of basis functions; finally, Section 5 contains a summary.

2 Inversion to Basis Function Parameters

Assume a continuous random field {m(x); x ∈ R
q}. We would like to represent this random

field through a given set of basis functions Φn = {fi(x)}
n
i=1

as an expansion of the form

m(x) = lim
n→∞

n
∑

j=1

θjfj(x) (1)

with θ = [θ1, . . . , θn]
T a vector of random variables. If n <∞ expression (1) is an approxi-

mation of m(x) onto a discrete, finite set of parameters. Setting f(x) = [f1(x), . . . , fn(x)]
T

the approximation (1) can be written in compact notation as

mΦn
(x) = f(x)T θ. (2)

2
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A random field on R
q is a function whose values are random variables for any x ∈

R
q, see Abrahamsen (1994) or Lifshits (1995) for more formal definitions. Through the

reparametrization (2) we seek to split the properties of the random field m(x) into a de-
terministic spatial part f(x) and a stochastic part θ.

Assume that the distribution of the random field {m(x); x ∈ R
q} is known, with expectation

{µ(x); x ∈ R
q} and spatial covariance function {C(x, y); x, y

∈ R
q}, and that the set of basis functions Φn is given. We are interested in how the

stochastic properties of m(x) are inherited by θ. We concentrate on L2 spaces, with inner
product

〈r, s〉 =

∫

Rq

r(x)s(x)dx (3)

for functions r(x) and s(x). From the basis function expansion (1) we then have

〈m, fi〉 =

n
∑

j=1

θj〈fj, fi〉 (4)

for i = 1 . . . n ≤ ∞. Introducing the notations

m̂i = 〈m, fi〉 (5)

f̂ij = 〈fi, fj〉, (6)

expression (4) results in the matrix equation







m̂1

...
m̂n






=







f̂11 . . . f̂n1

...
. . .

...

f̂1n . . . f̂nn













θ1
...
θn






(7)

written in compact notation as

m̂ = Fθ (8)

with m̂ and F = F T defined from expression (7). We then have

θ = Hm̂, (9)

with H = F−1 having elements {hij}
n
i,j=1. As long as the fi’s are linearly independent, F

will have full rank. For each of the components of θ we have

θi =

n
∑

j=1

hijm̂j (10)

with the hij being scalars. From expression (5) we observe that m̂i is the smoothed random
field ofm(x) with respect to the weighting function fi(x), see Appendix A. Thus, expression

3
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(10) states that θi is a linear combination of n smoothed random fields. The case where Φn

is an orthogonal set of basis functions is just a special case for the transformation H = F−1,

with H = diag
(

f̂−1
11 , . . . , f̂

−1
nn

)

. Expression (10) then reduces to

θi =
m̂i

f̂ii
. (11)

Under orthonormality f̂ii = 1 and F = H = I.

If m(x) is a Gaussian random field, the expectation and variance of m̂i is

E{m̂i} =

∫

fi(x)µ(x)dx (12)

Cov{m̂i, m̂j} =

∫ ∫

fi(x)C(x, y)fj(y)dxdy, (13)

see Appendix A.2. The distribution of m̂ is

m̂ ∼ N (µm̂, Cm̂) (14)

with µm̂ and Cm̂ defined from expressions (12) and (13) respectively. Thus

θ = Hm̂ ∼ N
(

Hµm̂, HCm̂H
T
)

. (15)

Further, the reparametrization mΦn
(x), see expression (2), will be a continuous Gaussian

random field with expectation and covariance function

E{mΦn
(x)} = f(x)THµm̂ (16)

Cov{mΦn
(x), mΦn

(y)} = f(x)THCm̂H
Tf(y). (17)

3 Evaluating the Discretization

So far we have been concentrating on the properties of the parameter vector θ under the
reparametrization (2) given the sets M = {µ(x), C(x, y)}and Φn = {fi(x)}

n
i=1

. Clearly,
the choice of basis functions Φn with respect to a given M is not indifferent, as some
choices are better than others. Figure 1 shows two different fits to a given µ(x) resulting
from two different sets of basis functions. The approximation error at a location x for the
reparametrization, using the notation (2) for mΦn

(x), is

m∆(x) = m(x) −mΦn
(x) (18)

= m(x) − f(x)TH

∫

f(x)m(x)dx (19)

= K(m(x)) (20)
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with K(m(x)) denoting the linear transformation defined from expression (19). If m(x) is
a Gaussian random field, the approximation error m∆(x) is also a Gaussian random field
when conditioning on the choice of set of basis functions Φn. This new Gaussian random
field has expectation and variance

µ∆(x) = µ(x) − f(x)TH

∫

µ(x)f(x)dx (21)

C∆(x, y) = C(x, y) (22)

−

∫

C(x, v)f(v)TdvHTf(y) (23)

−f(x)TH

∫

C(y, u)f(u)du (24)

+f(x)TH

∫ ∫

f(u)C(u, v)f(v)TdudvHTf(y) (25)

respectively, see Appendix B for calculations. Assuming that Φn is an orthonormal set of
basis functions, the approximation variance in a location x is

σ2
∆(x) = C∆(x, x) (26)

= C(x, x) − 2

n
∑

i=1

∫

fi(x)C(x, v)fi(v)dv (27)

+

n
∑

i=1

n
∑

j=1

fi(x)

∫ ∫

fi(u)C(u, v)fj(v)dudvfj(x) (28)

with C(x, x) = σ2(x) the local variance of m(x). The results will thus depend on the
correlation function.

A global measure of misfit on the domain D of interest given a specific choice of Φn and M,
is the Mean Integrated Squared Error (MISE), see Boyd and Steele (1978). It is defined as

MISE(Φn) = E

∫

D

m2
∆(x)dx (29)

=

∫

D

E{mΦn
(x) −m(x)}2dx+

∫

D

Var{mΦn
(x)}dx (30)

which is the sum of the square integrated bias and the integrated variance. To compute
expression (30), we generally need to rely on numerical methods. The MISE also allows
for comparison of different choices of sets of basis functions. We can calculate MISE(Φn)
for sets Φn given n and M, and then use

Φ̂n = argminΦn
{MISE(Φn)} (31)

as a criterion for choosing a certain set Φn of basis functions.
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4 Examples of Basis Functions

We will here show examples of different sets of basis functions. The orthogonal basis used
in uniform averaging is discussed in subsection 4.1, and the non-orthogonal linear inter-
polation basis is presented in subsection 4.2. Finally, wavelets are discussed in subsection
4.3.

4.1 Layered model – Uniform averaging

Assume a continuous Gaussian random field {m(x); x ∈ L ⊂ R
1} with mean µ(x) and

covariance function C(x, y). We wish to approximate this continuous Gaussian random field
with a layered model having n homogenous layers, see Figure 2. That is, we seek to project
a continuous random field onto a discrete set of n random parameters θ = [θ1, . . . , θn]

T using
orthogonal basis functions fj(x), j = 1, . . . , n, see expression (2). Each function fj(x) is
chosen to average m(x) over an interval, leading to the set of functions

fj(x) = wjI(xj−1 < x < xj) for j = 1, . . . , n and x ∈ L, (32)

with I(A) denoting the indicator function for the event A, and the wj’s being scalars, see
Figure 3. The functions (32) form an orthogonal basis as a straightforward calculation
leads to

〈fi, fj〉 =

{

0 , i 6= j
w2
j∆xj , i = j

, (33)

with ∆xj = xj − xj−1 . With the piecewise uniform weighting function described by
expression (32), each of the n intervals are effectively averaged into a single value given by

m̂j =

∫

L

wjI(xj−1 < x < xj)m(x)dx (34)

= wj

∫

Lj

m(x)dx (35)

(36)

with Lj = (xj−1, xj) . The expectation and covariance are

E {m̂j} = wj

∫

Lj

µ(y)dy (37)

Cov {m̂i, m̂j} = wiwj

∫

Li

∫

Lj

C(u, v)dudv. (38)

The parameter vector θ is distributed according to expression (15) with H being diagonal
and

hjj =
1

w2
j∆xj

. (39)
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Componentwise we thus have

θj =
1

wj∆xj

∫

Lj

m(x)dx (40)

from expression (11), with

E{θj} =
1

wj∆xj

∫

Lj

µ(x)dx (41)

Cov {θi, θj} =
1

wiwj∆xi∆xj

∫

Li

∫

Lj

C(u, v)dudv. (42)

The calculations of these integrals depend on the explicit form of the mean µ(x) and
the covariance function C(x, y). For calculations using the the exponential correlation

function ρ(|x− y|) = exp(− |x−y|
λ

), see Appendix C. For more on correlation functions, see
Abrahamsen (1994). As m(x) is a Gaussian random field, θ will be multivariate Gaussian
distributed, see expression (15).

As for choosing the weights wj , a natural choice is to choose them such that the θj ’s contain
the layer averages of m(x), yielding

wj = 1. (43)

However, this is not a necessary criterion; for example, setting

wj =

√

1

∆xj
(44)

makes the basis (32) orthonormal, but lacks an intuitive physical interpretation.

4.2 Linear interpolation basis

The linear interpolation basis

fi(x) =















0 , 0 ≤ x < xi−1

wi
x−xi−1

xi−xi−1
, xi−1 ≤ x < xi

wi
x−xi+1

xi−xi+1
, xi ≤ x < xi+1

0 , xi+1 ≤ x

, (45)

for i = 1, . . . , n shown in Figure 4, is a non-orthogonal basis. Straightforward calculations
yield

〈fi, fi〉 =
w2
i

3
[(xi+1 − xi) + (xi − xi−1)] =

2

3
w2∆x (46)

〈fi, fi+1〉 =
wiwi+1

6
(xi+1 − xi) =

1

6
w2∆x (47)
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where the rightmost expressions are the results of assuming equidistant spacing, xi−xi−1 =
∆x and wi = w for i = 1, . . . , n. Note that we will have a special case of expression (46)
at the boundaries,

〈f1, f1〉 = 〈fn, fn〉 =
1

3
w2∆x. (48)

We observe that the matrix F in expression (8) now will be tridiagonal, for example

F =









1

3

1

6
0 0

1

6

2

3

1

6
0

0 1

6

2

3

1

6

0 0 1

6

1

3









(49)

for n = 4. As a result, H = F−1 will in general be a full matrix and the calculation of

θ = F−1〈m, f〉 (50)

can be rather resource demanding for large n. From expression (10) we see that each θj
thus includes contributions from possibly distant elements of m̂ = 〈m, f〉. However, the
results from Section 2 still apply, and expression (50) defines the distribution of the vector
θ as a linear transformation of the distribution of m̂.

4.3 Wavelets

In this section we will use wavelet bases to perform the reparametrization (1). The starting
point is discretization of the continuous wavelet transform through multiresolution analysis.
For general references on wavelets, see Daubechies (1992) and Vidakovic (1999).

4.3.1 Wavelet bases

Assume some scaling function φ(x) for x ∈ R
1. The functions

φij(x) = 2j/2φ(2jx− i), (51)

for j = 0 . . . n and i = 0 . . . 2j − 1 are orthonormal, and the vector space

V j = span{φij(x)}
2j−1
i=0 . (52)

will span the space of any function, through a basis expansion of the form (2) as j → ∞.
From the scaling function φ(x) one can derive a unique wavelet function ψ(x), often called
the mother wavelet, see Vidakovic (1999). From ψ(x) we define the wavelet functions

ψij = 2j/2ψ(2jx− i) (53)
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for j = 0 . . . n and i = 0 . . . 2j − 1. The wavelet functions (53) are orthonormal and we
define the vector space

W j = span{ψij(x)}
2j−1
i=0 (54)

for j = 1, . . . , n. For wavelets, the property

V j+1 = V j ⊕W j (55)

holds, with ⊕ being the outer product. Thus

V n = V 0 ⊕W 0 ⊕W 1 ⊕ . . .⊕W n−1, (56)

allowing for controlled and increased resolution when expanding a function using the basis
formed by the wavelet functions. This can be written as the basis expansion

mψ(x) = θφ00φ00(x) +

n
∑

j=0

2j−1
∑

i=0

θjiψij(x) (57)

with θji playing the same role as θi in expression (2), but with double subscript for differ-
entiating between location and scale, and the function φ00(x) from expression (51) defining
the overall average of the decomposed function around which the wavelet functions (53) add
increasing levels of detail. Performing a similar analysis as in Section 2 on the expansion
(57) yields

θpq = 〈m,ψpq〉 (58)

θφ00 = 〈m,φ00〉 (59)

for p = 0, . . . , n and q = 0, . . . , 2p − 1 due to the orthonormality of the wavelet functions
and the scaling function, see expression (11) for reference. Expressions (58) and (59) state
that the wavelet coefficients are smoothed versions of the random field m(x) with respect
to the wavelet functions ψij(x) and the scaling function φ00(x).

Example: The Haar wavelet basis

The Haar scaling function is the box-car function

φ(x) =

{

1 , x ∈ [0, 1)
0 , x /∈ [0, 1)

, (60)

see Figure 3, with the corresponding Haar wavelet function being

ψ(x) =







1 , x ∈ [0, 1

2
)

−1 , x ∈ [1
2
, 1)

0 , x /∈ [0, 1)
. (61)
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Expansion through the Haar wavelet functions is equivalent to an approximation by step
functions whose values are the averages of the function over appropriate dyadic intervals.
Figure 5 shows the Haar approximation of the function

g(x) = exp(−x2) + 0.7x · I(0.5 ≤ x ≤ 1) , x ∈ [0, 1] (62)

with resolution n = 2. The function I(A) is the indicator function for the event A.

Returning to the general wavelet formulation, one has from expressions (12) and (13) that

E{θij} =

∫

µ(x)ψij(x)dx (63)

Cov{θij , θpq} =

∫ ∫

ψij(x)C(x, y)ψpq(y)dxdy (64)

and similarly for θφ00. If m(x) is a Gaussian random field, θ will be multivariate Gaussian
distributed, see expression (15).

4.3.2 Biorthogonal wavelets

The Haar wavelet is the only known wavelet that is compactly supported, orthogonal
and symmetric. In order to construct more families of compactly supported, symmet-
ric wavelets, biorthogonal wavelets have been introduced. For a more detailed outline
on biorthogonal wavelets, see Cohen et al. (1992), Vidakovic (1999) and Walter and
Shen (2001).

Assume that we have a wavelet expansion (57), but that the basis {ψjk} is not orthogonal,
and the spaces V j and W j are not orthogonal. We introduce another set of basis functions
{ψ̃jk} called the dual of {ψjk}, having the properties

〈φ̃ij, φik〉 = δjk (65)

〈ψ̃ij, ψi′k〉 = δii′δjk (66)

〈ψ̃ij, φik〉 = 0 (67)

〈φ̃ij, ψik〉 = 0 (68)

instead of the orthogonality conditions of subsection 4.3.1. Here δpq is the Kronecker delta
function. We assume that the function space and its dual space are the same, thus any
function can be represented in a biorthogonal basis as

mψ(x) =
∑

ij

〈m, ψ̃ij〉ψij(x) =
∑

ij

〈m,ψij〉ψ̃ij(x) (69)

For details on construction of biorthogonal wavelets, see Daubechies (1992). Following the
outline of subsection 4.3.1 with the basis {ψij} and the wavelet expansion (57), we now
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have θij = 〈m, ψ̃ij〉 and

E{θij} =

∫

µ(x)ψ̃ij(x)dx (70)

Cov{θij, θpq} =

∫ ∫

ψ̃ij(x)C(x, y)ψ̃pq(y)dxdy. (71)

If m(x) is a Gaussian random field, then

θ ∼ N(µθ, Cθ) (72)

with the mean and variance µθ and Cθ to be calculated from expressions (70) and (71)
respectively.

5 Summary

We have shown how to discretize a continuous random field onto a discrete set of stochastic
parameters given a set of basis functions. This is of importance in for example seismic
inversion and the definition of prior distributions, as well as discretization of continuously
available posterior distributions. The discretization is valid for any set of basis functions,
as well as any statistical distribution. The Mean Integrated Square Error (MISE) can be
used as a criterion for evaluting different choices of sets of basis fuctions.
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Appendix

A Stochastic integration

A.1 General results for R
1

Assume a zero mean random variable m(x) with covariance function C(x, y). Further,
assume the random variable defined by the Riemann integral

J =

∫ b

a

g(x)m(x)dx (73)

with I = [a, b] some finite or infinite interval, and g(x) a non-random function. If C(x, y)
is continuous in I2, and g(x) is such that

Q =

∫ b

a

∫ b

a

g(x)g(y)C(x, y)dxdy <∞ (74)
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then the integral J exists as the quadratic mean limit of the associated Riemann sum, and

E {J} = 0 (75)

E
{

|J |2
}

= Q. (76)

Stochastic integrals of the form (73) possess ordinary formal properties of integrals. For
more on stochastic integration, see Cramér and Leadbetter (1967), Adler (1981) and Chris-
takos (1992).

A.2 Gaussian

Assume that {m(x); x ∈ R
q} is a continuous Gaussian random field with mean µ(x) and co-

variance function C(x, y). That is, the random field might be non-stationary both in mean
and variance. Generally an averaging Gaussian random field is defined by the Riemann
integral

Z(x) =

∫

V

w(x, y)m(y)dy (77)

with V ⊂ R
q, and w(x, y) piecewise continuous and bounded on R

q ⊗ R
q, and is again a

Gaussian random field. Further

E{Z(x)} =

∫

V

w(x, y)µ(y)dy (78)

Cov{Z(x), Z(y)} =

∫

V

∫

V

w(x, u)C(u, v)w(y, v)dudv (79)

The weighting, or smoothing, function will typically be a function of some distance measure,
w(x, y) = w(x − y). For reference, see Abrahamsen (1994). The fact that an averaged
Gaussian random field is again a Gaussian random field can be stated more formally, see
for example Janson (1997).

B Distribution of a linear transformation of

a continuous Gaussian random field

Assume a Gaussian random field m(x) with mean µ(x) and covariance function C(x, y).
We seek the distribution of

m∆(x) = m(x) − f(x)TH

∫

m(u)f(u)du (80)
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with f(x) and H defined in Section 2. As m∆(x) is only a linear transformation of the
GRF m(x), m∆(x) will be a GRF as well, with mean

µ∆(x) = µ(x) − f(x)TH

∫

µ(u)f(u)du (81)

and covariance function

C∆(x, y) = E
{

[m∆(x) − µ∆(x)][m∆(y) − µ∆(y)]T
}

(82)

= E

{

[m(x) − µ(x) − f(x)TH

∫

(m(u) − µ(u))f(u)du] (83)

·[m(y) − µ(y) − f(y)TH

∫

(m(v) − µ(v))f(v)dv]T
}

(84)

For the quadratic terms we have

E
{

[m(x) − µ(x)][m(y) − µ(y)]T
}

= C(x, y) (85)

and

E

{

[

f(x)TH

∫

(m(u) − µ(u))f(u)du

][

f(y)TH

∫

(m(v) − µ(v))f(v)dv

]T
}

(86)

= f(x)TH

∫ ∫

f(u)C(u, v)f(v)TdudvHTf(y) (87)

respectively. The crossterms are

E

{

[m(x) − µ(x)]

[

f(y)TH

∫

(m(v) − µ(v))f(v)dv

]T
}

(88)

= E

{
∫

(m(x) − µ(x))(m(v) − µ(v))f(v)TdvHTf(y)

}

(89)

=

∫

C(x, v)f(v)TdvHTf(y) (90)

and

E

{[

f(x)TH

∫

(m(u) − µ(u))f(u)du

]

[m(y) − µ(y)]T
}

(91)

= E

{

f(x)TH

∫

(m(y) − µ(y))(m(u)− µ(u))f(u)du

}

(92)

= f(x)TH

∫

C(y, u)f(u)du (93)
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respectively. Thus m∆(x) is a Gaussian random field having mean (81) and covariance
function

C∆(x, y) = C(x, y) (94)

−

∫

C(x, v)f(v)TdvHTf(y) (95)

−f(x)TH

∫

C(y, u)f(u)du (96)

+f(x)TH

∫ ∫

f(u)C(u, v)f(v)TdudvHTf(y) (97)

C Exponential covariance function in a layered medium

Assume a Gaussian random field described as in Section 4.1.

C.1 Integration of covariance function

Restating the results for θ, using the weights (43), wj = 1, we have

θj =
1

∆xj

∫ xj

xj−1

m(x)dx (98)

with

E{θj} =
1

∆xj

∫ xj

xj−1

µ(x)dx (99)

Cov {θi, θj} =
1

∆xi∆xj

∫ xi

xi−1

∫ xj

xj−1

C(u, v)dudv. (100)

for i, j = 1, . . . , n. Assume a stationary covariance function, for example the exponential,

C(u, v) = C(|u− v|) = σ2 exp

(

−
|u− v|

λ

)

(101)

where λ is a correlation length. For more on correlation functions, see Abrahamsen (1994).
Figures 6 and 7 show two different possibilites when performing the integrations.

In Figure 6 we have u > v, that is i > j and xi−1 ≥ xj , thus being the integration for the
covariances. Figure 7 shows what happens when i = j, that is, the variance. Performing

15

URN:NBN:no-3476



the integrations yields

Cov {θi, θj} =
σ2

∆xi∆xj

∫ xj

xj−1

∫ xi

xi−1

exp

(

−
|u− v|

λ

)

dudv (102)

=
(σλ)2

∆xi∆xj

[

exp

(

−
xi − xj−1

λ

)

− exp

(

−
xi − xj
λ

)

(103)

+ exp

(

−
xi−1 − xj

λ

)

− exp

(

−
xi−1 − xj−1

λ

)]

(104)

and

Var {θi} =
2σ2

(∆xi)2

∫ xi

xi−1

∫ xi

v

exp

(

−
|u− v|

λ

)

dudv (105)

=
2(σλ)2

(∆xi)2

[

exp

(

−
xi − xi−1

λ

)

− 1 +
xi − xi−1

λ

]

(106)

C.2 Simplifications and limits

Assume that all layers have the same thickness xi−xi−1 = xj−xj−1 = ∆x for i, j = 1, . . . , n.
Starting from x0 = 0 we then have xj = j∆x. Further, set γ = ∆x

λ
. We obtain, due to

symmetry,

Cov {θi, θj} = σ2 ·
1

γ2

[exp(−γ) − 1]2

exp(−γ)
exp (−γ|i− j|) . (107)

That is, the correlation function for the parameters is exponential as well, but with an
adjusted scaling parameter depending on γ. For the variance we have

Var {θi} = 2σ2 1

γ2
[exp (−γ) + γ − 1] (108)

We observe that the variance is not found directly from setting i = j in (107).

Assume ∆x ≫ λ. That is, we approach a white noise phenomena, as the correlation length
is too short to have any impact. With γ large we have

Cov {θi, θj} ≈ 0 (109)

directly from (107). For the variance we find from (108)

Var {θi} ≈ 2σ2 1

γ
(110)

= σ2 2λ

∆x
(111)
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As ∆x becomes larger, Var {θi} becomes smaller because we are averaging over greater
length.

Assume then λ ≫ ∆x. The high correlation length will now make the individual layer
thicknesses un-noticeable. Then γ ≪ 1, and

lim
γ→0

Cov {θi, θj} = σ2 exp (−γ|i− j|) (112)

as

lim
γ→0

[

1

γ2
·
(1 − exp(−γ))2

exp(−γ)

]

= 1, (113)

see Gradshteyn and Ryzhik (1994), and

lim
γ→0

Var {θi} = σ2 (114)

as

lim
γ→0

[

2

γ2
[exp(−γ) + γ − 1]

]

= 1, (115)

see Gradshteyn and Ryzhik (1994). So, for the parameter θ we have a situation similar
to that for the original field m(x): The variance is σ2, and the correlation function is
exponential with the same parameter as the continuous field.
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Abstract

The prediction of future oil production is very difficult, as hydrocarbon reservoirs

are extremely complex structures. Modern reservoir models typically take hours of

cpu time to run. In this work it is shown how knowledge of the breakthrough time

reduces the uncertainty in future predictions, by analyzing production data from a

simulated reservoir cast in the framework of percolation. The two first empirical

moments are estimated, and then fitted to a probability density function. There

are clear trends in the functional behaviour of the estimated empirical moments in

these data, indicating the existence of more general results for the moments, either as

analytical functions, or as general curves. As only one percolation system has been

analyzed, more work should be done along these lines.
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1 Introduction

Hydrocarbon reservoirs are extremely complex geological structures with heterogeneities
on all scales, from microns (cores) to tens of kilometres (basins). Analysing the flow of oil,
water and gas through the reservoir is very difficult, and yet crucial for development of
effective production strategies. In particular, it is important to be able to predict the time
it takes for an injected fluid, usually water, to travel from an injection well to a production
well. This displacement process is the most common way that oil is produced worldwide.
It is also important to be able to predict how rapidly the oil production rate declines with
time after the breakthrough has occurred.

There are two important issues that limit our ability to make these predictions. One is
that we cannot resolve all the details required in numerical flow simulations. The ratio of
volumes of an oil reservoir to pore scale volumes is around 1020, and it is clearly impractical
to try to model at this scale. However, even if one considers the scale of core plugs, which is
where direct measurements of flow properties are made, the ratio of volumes is of the order
of 1013. So, conventionally we have to use a range of upscaled or effective flow properties.
Even so, modern reservoir models are very complex, and can take many hours of cpu time
to run. It is desireable to be able to reduce this computational time as much as possible.

The other issue is that we really do not have this level of detailed knowledge of where all the
reservoir heterogeneities are, so we need to consider a number of possible alternative models
in order to estimate the uncertainty arising from this lack of knowledge. As such, we would
expect that models with little input or conditioning data would have a larger uncertainty.
The key contribution of this paper is to show how knowledge of the breakthrough time
reduces the uncertainty in forward predictions.

In this paper we addresss these issues using percolation theory. We shall assume that
the rocks in the reservoir can be ascribed to one of two types; either permeable (sand) or
impermeable (shale). This is typical of a number of systems, such as fluviale or turbidites.
The approach could also be used for fractured systems where the fracture network is the
main flow path. For the sand-shale system, the volume fraction of sand is then the net
to gross ratio. This corresponds to the probability that a random point in space is lying
within the permeable rock. As such, it also corresponds with the percolation occupancy
probability p in a continuum percolation model.

The assymptotic mean behaviour of unconditional oil production in an infinite percolation
system is discusssed in King et al. (1999a). The probability distribution of the break-
through itself is analyzed in King et al. (1999b) and King et al. (2002). This paper is also
motivated by some of the work shown in Buldyrev (2002).

The paper is outlined as follows; in Section 2 the problem is described in more detail,
and a brief analysis a set of production data generated from a given percolation system is
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performed; in Section 3 the behaviour of the two first empirical moments for the data set
is discussed; in Section 4 these results are put into a more formal statistical framework; in
Section 5 we investigate the correlation between the breakthrough time and the half time,
the time when the production is half of the initial production; finally, Section 6 contains a
summary.

2 Problem Description and Data Analysis

Assume an oil reservoir penetrated by two wells. One oil producing well A, and one well
B where some fluid, most often water, is being injected. In the initial fases after the
injection of water, only oil will be produced at A. However, as time passes, sooner or later
water will find its way from B to A, resulting in the net oil production at A dropping,
until only water is being produced. As water flows more easily than oil, it is clear that
this drop in oil production will be rapid. We describe this reservoir in the framework of
percolation, see Stauffer and Aharony (1994) for an introduction to percolation. For a
review of oil reservoirs described by percolation, see King (1990). We let L denote the size
of the reservoir, l the shortest path between wells A and B, r the well spacing and p the
probability of permeable rock in an arbitrary location.

In Figure 1 production data generated from integrating travelling time distributions of a
percolation system with L/r = 11, L = 514 bonds and r = 46, in total 141 production
curves, is displayed. The time has not been transformed to correspond with real oil fields.
Since the travelling time distributions are smooth, the resulting production data curves
are smooth as well. Actually, parts of these data are average curves, implying that the
following analysis should be made on rougher production data at some later stage. Also,
let C ∈ [0, 1] denote oil production in fractions of only oil being produced.

First, we note that as the breakthrough time increases, the production curves become
steeper. This seems natural. With early breakthrough, a lot of the system is yet to be
explored, which then will happen gradually. With late breakthrough, most of the system is
already explored, and all possible paths in the percolation system leading from from B to
A will then reach the producing well A within a very short time frame after breakthrough.

Figure 2 shows production curves conditioned on breakthrough time tbr ∈ [50 − δ, 50 + δ]
with δ = 3, a total of 18 traces. A similar δ-adjustment has been used for all conditioning
on breakthrough times throughout the paper. As a result, the variances will be slightly
overestimated.

In Figure 3 kernel density estimates of the production in Figure 1 at times [0, 9, 18, . . . , 135]
are shown. As expected, at early times the probability mass is located close to production
C = 1, and as time evolves, the mass slowly shifts towards C = 0. In Figure 4 kernel
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density estimates for the production data conditioned on tbr = 50 in Figure 2 at times
[50, 54, . . . , 110] are shown. We observe the same general behaviour as for the unconditional
production data: Up until breakthrough the probability mass is located at C = 1, then
shifts towards C = 0 as time passes. However, note that for the conditional data, the
transition from C = 1 to C = 0 is far more defined, and it also takes place within a much
shorter time frame than for the unconditional production data. This is as expected.

3 Empirical Moments

In order to describe the behaviour of the conditional production data in Figure 2, we
calculate the empirical mean µ̂ and variance σ̂2 for different times conditioned on some
breakthrough time;

µ̂(t)|tbr = d̄(t)|tbr =
1

nt

∑

i

di(t)|tbr (1)

σ̂2(t)|tbr =
1

nt − 1

∑

i

[

di(t)|tbr − d̄(t)|tbr
]2

(2)

with d(t)|tbr = [d1(t)|tbr, . . . , dnt
(t)|tbr]

T being the nt data points at time t given the break-
through time tbr. We do this for breakthrough times tbr = [40, 50, . . . , 90], resulting in
Figure 5; the conditional empirical means are shown in the upper display, and the condi-
tional empirical variances in the lower display.

3.1 Empirical mean

The empirical means µ̂(t)|tbr for different breakthrough times are very similar in their
functional behaviour. After breakthrough, they all drop from 1 towards 0 in a similar
manner, with a slightly steeper drop as the breakthrough time increases. In Figure 6 three
different transformations of the behaviour of µ̂(t)|tbr is shown. The upper left display shows
the original empirical means, whereas the upper right display is a log-log plot of these.
The lower left and lower right displays show the log of the empirical means plotted against

log
(

t
tbr

)

and log (t − tbr), respectively. We observe that the shift transform collapses the

data nicely. The scaling transform t
tbr

is not as successful as the shift transform, but one

should not exclude transforms like t
tα
br

with α 6= 1. Also, a combination of scaling and

shift might turn out to be successful in collapsing the data, as we have observed that the
empirical means become slightly steeper as the breakthrough time increases. Other sets
of data and other percolation systems should be analyzed, in order to look for a general
transform.
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3.2 Empirical variance

The empirical variances σ̂2(t)|tbr for different breakthrough times also have similar shapes.
After breakthrough, they increase from 0, reach a maximum value, before decreasing to-
wards 0 as time evolves. In Figure 7 the same three transforms as for the empirical means
are shown; the upper left and right displays show the empirical variances and a log-log
plot of these, respectively, whereas the lower left and right displays show the log of the

empirical variance plotted against log
(

t
tbr

)

and log (t − tbr), respectively. The empirical

variances are not as easily collapsed as the empirical means, but the scaling transform
almost does the job. As with the mean, the correct scaling might be with respect to tβbr,
for β 6= 1. Again, other sets of data and other percolation systems should be analyzed, in
order to look for a general transform.

3.3 Prediction of oil production

The collapsions of µ̂(t)|tbr and σ̂2(t)|tbr, shown in Figures 6 and 7 respectively, indicate that
there might exist some universal curves, or general functions, describing the behaviour of
the empirical mean and variance of conditional production data. These functions might or
might not have simple analytically closed forms. But, knowing the analytical expressions
explicitely is not essential. Having the exact universal curves allows for numerical inversion
from given breakthrough time to first and second order empirical moments, allowing for
controlled prediction of future production, both the mean and the attached variance.

3.4 Empirical moments of unconditional production data

So far in this section, we have focused on the conditional production data. However, we can,
of course, calculate the two first empirical moments of the original production data as well.
Figure 8 shows the behaviour of the empirical mean and variance for the unconditional
production data, and for the production data conditioned on tbr = 50. We observe that
the two empirical moments for the conditional and unconditional data posess the same
behaviour as for the conditional data, but that the mean for the conditional data has a
more defined drop point and decreases more rapidly towards 0 than the empirical mean for
the unconditional production data. As for the variance, it is dramatically reduced when
conditioning, both in width and overall level. In conclusion, knowing the breakthrough
time clearly increases the precision in the prediction of future oil production.
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4 Probability Density Functions

In the previous section, a way of predicting future oil production given the breakthrough
time by estimation of the two first empirical moments was outlined. This conditional
prediction was also compared to the unconditional prediction. In this section we introduce
the empirical moments into a probabilistic framework.

4.1 Fitting a probability density function

Having the emprical mean and variance for some data, one can fit a statistical distribution
having these values as their two first moments. In our setting, this implies analytically
approximating the kernel density estimates in Figures 3 and 4.

For the conditional production data, we observe a rather well defined, symmetric bell shape
travelling from C = 1 to C = 0 in Figure 4. One of the distributions having this symmetric
bell shape is the well-known Gaussian distribution. We may therefore approximate the
kernel density estimates in Figure 4 with a truncated Gaussian probability density function
(pdf). Truncated Gaussian approximations for the production data conditioned on tbr =
50, using the associated empirical mean and variance discussed in Section 3, is shown in
Figure 9. The Gaussian estimate provides a fairly good fit.

The Gaussian pdf may seem to underestimate the tail behaviour. However, it is not evident
whether this is due to the actual behaviour in the data, the smoothing from the kernel
density estimate, or just the sparse amount of conditional data available. If the data
actually are more heavy-tailed than the Gaussian distribution, one could try fitting a more
heavy-tailed, symmetric, bell-shaped distribution, see Evans (2000) for more statistical
distributions. However, the Gaussian distribution has the advantage of being analytically
tractable, in addition to the fact that it appears to fit the conditional production data
reasonably well.

For the unconditional data, Figure 3, the aforementioned peak-travelling behaviour is not
similarly apparent. However, we can still fit a Gaussian distribution to the unconditional
production data. The result is shown in Figure 10. As the level and width of the empirical
variance for the unconditional production data is much larger than for the conditional
production data, the result is a much wider Gaussian pdf approximation.
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4.2 Comparing conditional and unconditional probability

density functions

Let f(·) denote a pdf and f(·|·) a conditional pdf. The problem described in Section 2
can now be restated as finding f (Ct|tbr, r) and f (Ct|r), and comparing the two. Here
Ct denotes oil production at time t. Note that the reservoir parameters ρ = {l, L, p} are
absent, as we want the pdfs to be independent of the percolation system. We assume that
r is deterministically known. From probability theory, we have

f (Ct|tbr, r) =

∫

f (Ct|ρ, tbr, r) f(ρ|tbr, r)dρ. (3)

Bayes’ law yields

f(ρ|tbr, r) =
f(tbr|ρ, r)f(ρ|r)

f(tbr|r)
, (4)

where

f(tbr|r) =

∫

f(tbr|ρ, r)f(ρ|r)dρ (5)

is merely a scaling constant. The pdf for the breakthrough time conditioned on the system,
f(tbr|ρ, r), is discussed in King et al. (1999b), whereas the pdf for the system parameters,
f(ρ|r), is discussed in Nikolay et al. (1999). Thus, having some functional form for
f(Ct|ρ, tbr, r), for example the Gaussian pdf, as was discussed in the previous subsection,
the pdf in expression (3) may be found. Not having explicit functional forms for the two
first moments in f (Ct|ρ, tbr, r), but universal curves, the integration has to be performed
numerically. As for the pdf for the unconditional production, we can perform

f (Ct|r) =

∫

f (Ct|tbr, r) f(tbr|r)dtbr, (6)

again by numerical integration.

Neither of the pdfs (3) nor (6) will have simple, known closed analytical forms. Meaning
that in order to draw samples from these distribution to visualize the uncertainty in the
pdf, one will have to rely on stochastic simulation techniques, see Ripley (1994) for more
on this topic.

5 Prediction of the Half-Time

The conditional production data curves, whether conditioned on an early or late break-
through time, are very similar. Once water has broken through in the producing well,
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the production drops rapidly and with similar shape, almost unaffected of what tbr is.
The empirical means and variances are also very similar for different breakthrough times.
This indicates that the half time t1/2, or any time t > tbr, is highly correlated with the
breakthrough time. For our data, the correlation between the tbr and t1/2 is as high as
0.9747.

Figure 11 displays kernel density estimates of tbr and t1/2. We see that the density estimates
are almost identical, only with the density estimate for t1/2 slightly scaled and shifted
compared to the density estimate for tbr. The log-log plot of t1/2 against tbr in Figure 12
indicates a clear linear trend. Stated as a probabilistic linear regression problem, we have

(log t1/2)i = a + b(log tbr)i + ǫi ; i = 1, . . . , n (7)

with a and b constants, ǫ = [ǫ1, . . . , ǫn]T independent zero mean stochastic error terms, and
n the number of data points. Using standard estimators, we find the estimates â = 0.5414
and b̂ = 0.7637. The fact that b̂ < 1 is no surprise; as the breakthroug time increases,
the production curves become steeper. However, the fact that b̂ < 1 also implies that the
linearity assumption in expression (7) has a limited range of validity, as we have the lower
limit t1/2 > tbr.

The upper display of Figure 13 shows a histogram of the residuals ǫi, i = 1, . . . , n, whereas
the lower display shows a kernel density estimate together with a Gaussian pdf assuming
independent errors, ǫi ∼ N(0, σ2

ǫ ), i = 1, . . . , n. For our data, σ̂2

ǫ = 8.833 × 10−4 using the
standard estimator. This is very low. Thus, given the breakthrough time, expression (7)
states that

(log t1/2| log tbr)i ∼ N
(

a + b(log tbr)i, σ
2

ǫ

)

(8)

with ∼ meaning ’distributed as’. The mean of the distribution (8) differs only slightly from
the time where the variance is at its maximum value, see Figure 14. As t1/2 appears where
the production curves are at their steepest, this seems reasonable. Further, this tells how
small the variance actually becomes when knowing the breakthrough time. As a result,
predicting tq for q small or large compared to 1/2 will be even more precise.

Taking the exponential of expression (7) results in

t1/2 ∝ 10εtbbr. (9)

with ∝ meaning ’proportional to’. In the framework of percolation, expression (9) states
that the half time scales as a power of the breakthrough time. Further, expression (9)
also states that if one knows the analytical distribution of the errors ǫ as a function of
the reservoir parameters, one can caclulate the pdf for t1/2. As the variance of residuals
ǫi, i = 1, . . . n decreases, the pdf f(ǫ) approaches a Dirac delta function, resulting in the
distribution of t1/2, as shown in expression (9), being merely a scaled power transform of
the distribution of tbr. From Figure 11, this kind of behaviour is expected, as for this set
of data σ̂2

ǫ is very small.
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6 Summary and Discussion

In this report we have shown how knowing the breakthrough time increases precision in
prediction of future oil production. This is done by estimating and analyzing the two first
empirical moments. We have then used these two empirical moments to fit a Gaussian pdf
to the production data, placing the analysis in a more probabilistic setting. We have then
shown how this can be used for quantitatively comparing the decrease in variance which the
increased knowledge tbr results in. Finally we have shown that there is a strong correlation
between the breakthrough time and the half-time, or any other time after breakthrough,
thus allowing for precise prediction of when a given fraction of the reservoir is produced.

Note that we have only analyzed average production data from one specific percolation
system. In order to make our findings more general, work must be done on several differ-
ent percolation systems with different system parameters. However, our analysis indicates
that there exists some systematic behaviour in empirical means and variances within a per-
colation system, as well as strong correlations between the half-time and the breakthrough
time.

We are aware that there are problems with our set of data. These problems divide into
two different categories. First of all, our production data are integrated from travel time
distributions. That is, they are not real production curves, but represent a smooth, average
beaviour. Thus, the systematic behaviour might be more apparent in our data than would
be in real production data. Secondly, we have very few data. The total of 141 traces result
in only 10-20 traces for each of the conditional sets of data. Thus our analysis, particularly
in the empirical variances, is very sensitive to outliers, and the difference in numbers of data
for each breakthrough time highly affects possible trends and, thus, conclusions. We would
assume that the empirical variances would have some sort of trends, like the empirical
means have.

These shortcomings aside, the analysis shows that more work should be done along these
lines.
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Figure 1: Production data, integrated from travelling time distributions.
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Figure 2: Production data, integrated from travelling time distributions and conditioned
on breakthrough time tbr = 50.
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Figure 3: Kernel density estimates for the unconditional production data in Figure 1 for
t = [0, 9, 18, . . . , 135].
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Figure 4: Kernel density estimates for the conditional production data in Figure 2 for
t = [50, 54, . . . , 110].
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Figure 5: Empirical mean µ̂(t) (upper display) and empirical variance σ̂2(t) (lower display)
when conditioning on breakthrough times tbr = [40, 50, . . . , 90].
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Figure 6: Different transforms of the empirical means in Figure 5.
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Figure 7: Different transforms of the empirical variances in Figure 5.
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Figure 8: Empirical mean µ̂(t) (upper display) and empirical variance σ̂2(t) (lower display)
for the unconditional data in Figure 1 (solid line) vs. the conditional data in Figure 2
(dotted line).
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Figure 9: Kernel density estimates for the conditional data in Figure 2 (solid line), together
with Gaussian probability density function estimates based on empirical mean and variance
(dotted line).
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Figure 10: Kernel density estimates for the unconditional data in Figure 1 (solid line),
together with Gaussian probability density function estimates based on empirical mean
and variance (dotted line).

16

URN:NBN:no-3476



0 20 40 60 80 100 120 140 160
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Figure 11: Kernel density estimate for the breakthrough time (solid line) and half time
(dotted line) for the 141 traces of the production data in Figure 1.
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Figure 12: Log-log plot of t1/2 vs tbr, together with dotted line having slope 1 and solid
line having slope 0.7637.
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Figure 13: Upper display: Histogram of residuals from the linearization in Figure 12. Lower
display: Kernel density estimate of residuals from the linearization in Figure 12 (solid line)
and Gaussian probability density function approximation (dotted line).
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Figure 14: Empirical mean µ̂(t) (upper display) and empirical variance σ̂2(t) (lower display)
given breakthrough time tbr = 50 (left dotted line), together with the linearly predicted
t1/2 (right dotted line).
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