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Introduction

In this thesis we consider problems related to finding the rate of convergence of
approximation schemes for first order Hamilton-Jacobi equations and second order
degenerate elliptic and parabolic equations. In particular, we will consider (i) a
source term splitting technique, (ii) the vanishing viscosity method, (iii) monotone
finite difference methods, and (iv) so-called control schemes.

The equations under consideration are nonlinear partial differential equations of
the form

(1) ug + H(t,z,u,Du) =0 in Qr:=(0,T) xRV,
(2) ug + F(t,x,u,Du,D*u) =0 in Qr,
(3) F(z,u,Du,D*u)=0 in RV,

where u is the unknown function, and u;, Du, D?u denote the time derivative, the
spatial gradient, and the spatial Hessian matrix of u respectively. Furthermore, the
following assumption has to hold for f = F, H:

f is continuous; for each R > 0 there exists vz € R such that
f(t,.Z',T,p,_X) - f(t,.’E,S,p,Y) > ’YR(T - S) when X < YJ s < T,

(4) and (t,z) € Qr, —~R<s<r<R,peRN and X,Y € S(N),
where S(N) is the space of symmetric N x N matrices.

This assumption is standard [13], and will be a basic structure assumption in this
thesis. It implies that f is degenerate elliptic (take s = r and you get the defi-
nition), and satisfies a coercivity condition (take X = Y). Now (1), (2), and (3)
are called Hamilton-Jacobi, degenerate parabolic, and degenerate elliptic equations
respectively. In the elliptic case it is standard [13] to assume g > 0.

Important examples of such equations in general and for this thesis in partic-
ular, are the elliptic and parabolic Hamilton-Jacobi-Bellman equations of optimal
stochastic control, which in the parabolic form looks like

(5)  ug+ sup { — tr[a?(t, ) D?*u) — b°(t,2) Du + % (t, x)u — fO(t, a:)} =0
$€0

in Qr, where a? is positive semidefinite, ¢? > 0, © is a compact metric space, and
all coefficients are continuous in (¥,t,z). If a? = 0 for all ¥, then (5) becomes a
first order Hamilton-Jacobi equation. Note that because of the coercivity condition
(4), nonlinear conservation laws do not form a subclass of the class of equations
described above.

Because of the nonlinear nature and the degeneracy of such equations, they do
not have classical solutions in general, not even when the equation and the boundary
data both are smooth [14]. A notion of weak solutions is therefore needed. The
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2 INTRODUCTION

correct notion is the notion of wviscosity solutions. This notion was introduced by
Crandall & Lions in [14] for first order equations [12, 46, 26, 49, 55]. Later on
this theory was extended to certain second order equations (HJB equations) by
Lions [47, 48], but it was only after the breakthrough of Jensen [30] (the Jensen
maximum principle), that the theory was extended to the general class of second
order equations described above [31, 11, 27, 29, 13]. We refer to the User’s Guide
[13] for an overview of the theory, and for more detailed treatments and some
applications, to the lecture note [4], and the books by Barles [3], Bardi & Capuzzo-
Dolcetta [2], and Fleming & Soner [21].

The main strength of the viscosity solutions theory is the powerful uniqueness
(comparison) machinery, which allows one to obtain comparison principles under
very weak structural and regularity assumptions. The comparison principle says
that if v and v are sub- and supersolutions respectively, and u < v on the boundary,
then u < v in all of the domain. A comparison principle implies of course uniqueness
of solutions, and what is more, if we have a so-called “strong comparison principle”,
then we also get existence via Perron’s method [26, 13]. We also mention that
small variations of the uniqueness proof yield regularity results and continuous
dependence on the coefficients and boundary data results for solutions.

The uniqueness machinery is based on a doubling of variable procedure which
has similarities with, and was inspired by, the Kruzkov theory for conservation
laws [37]. For second order, possibly degenerate equations, the key ingredient in
this procedure is the Jensen maximum principle [30]. This is a deep analytical
result involving measure theory; for a readable proof consult the book by Fleming
& Soner [21]. Today, this result is not used directly, instead one uses the so-called
“maximum-principle for semicontinuous functions” [11, 13] which is derived from
it.

We also mention that the notion of viscosity solutions has been extended to
certain systems of equations (so-called monotone systems), and that an existence
and uniqueness theory now exists for such systems [18, 28, 35]. See Ishii & Koike
[28] for a general account.

Now we will very briefly recall some of the developments in the numerical analysis
of viscosity solutions which are relevant for this thesis. Since the birth of the
viscosity solutions theory in the early 1980’s, many different approximation schemes
have been analyzed in this setting, especially schemes for first order equations. We
will list some of the schemes and give a few references for each, we remark that
the list of references are far from being exhaustive. Monotone finite difference
schemes have been considered in [41, 15, 54, 16, 39, 40]; so-called control schemes
in [8, 19, 20, 23, 50, 7]; ENO schemes in [51, 52]; central schemes in [44, 38]; finite
volume schemes in [36, 1]; finite element methods in [6, 25]; relaxation schemes in
[32]; spectral viscosity methods in [43]; and front tracking methods in [22, 33, 34, 58].
We also mention the vanishing viscosity method, see [14, 55, 15, 9], and operator
splitting methods (trotter products) [56, 5, 57].

There is today a general convergence theory by Barles & Souganidis [5], roughly
speaking stating that any consistent, monotone, and stable scheme will converge
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to the viscosity solution of the approximated equation. Many of the above men-
tioned schemes fall within the scope of that theory. A more challenging question
is to estimate the rate of convergence. For first order equations, there are quite
general results in this direction by Souganidis [54] (for monotone schemes), and
many other authors have considered this problem, see e.g. [15, 19, 53, 36, 45, 43].
For second order degenerate equations, the situation is completely different. Until
the appearance of the papers by Krylov [39, 40] in 1998 and 2000, there were to
the author’s knowledge no results providing the rate of convergence of approxima-
tion schemes for such equations. In these papers, Krylov established estimates on
the rate of convergence for monotone finite difference schemes for the Hamilton-
Jacobi-Bellman equation (5). By now, two more papers have come to the author’s
attention: A paper on the convergence rate for a monotone difference scheme for
the mean curvature equation by Deckelnick [17], and a paper by Cockburn et.al.
[9] where the rate of convergence is established for the vanishing viscosity method
for certain degenerate parabolic equations.

We now give a brief outline of the papers contained in this thesis. We also give
some motivation and point out some open problems.

PAPER 1

On the convergence rate of operator splitting for Hamilton-Jacobi equations
with source terms.

Coauthors: K. H. Karlsen and N. H. Risebro.
Short version published in STAM J. Numer. Anal. 39(2):499-518.

In this paper we establish a rate of convergence for a semi-discrete operator
splitting method applied to first order Hamilton-Jacobi equations with source terms:

ug + H(t,z,u,Du) = G(t,z,u) in Qr, u(0,2) = ug(z) in RY.

The method is based on sequentially solving a Hamilton-Jacobi equation and an
ordinary differential equation. The Hamilton-Jacobi equation is solved exactly while
the ordinary differential equation is solved by an explicit Euler method.

To be more explicit, let us explain the method and results for the following
simplified equation:

(6) ug + H(Du) = G(u) in Qr, u(0,x) = uo(x) in RV.

Let v(t,z) = S(t)w(x) formally denote the viscosity solution of the homogeneous
Hamilton-Jacobi equation

vi + H(Dv) =0 in Qr, v(0,2) = w(z) in RY,
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where S(t) is so-called solution operator associated to this problem. Next, let E(t)
denote the explicit Euler operator, i.e. v(z,t) = E(t)w(z) is defined by

v(z,t) = w(z) + t G(w(x)).
Our operator splitting method then takes the form
(7) u(z,iAt) & [S(AL)E(AL)] uo(x),
where At > 0 is the splitting (or time) step and ¢ = 0,...,n with nAt =T.
Under appropriate assumptions on (6), we prove that this splitting approxima-
tion converges as At — 0 to the unique viscosity solution of (6). More precisely,
we prove that the L error associated with the time splitting (7) is of order At:
®) max Hu(-,iAt) _ [S(At)E(At)]"uOHL vy S OB
i=1,...,n oo

RN)
for some constant C' > 0 depending on the data of the problem but not At.

The proof of the result is inspired by an idea in Langseth, Tveito, and Winther
[42]. In that paper, the authors proved a linear L' convergence rate for operator
splitting applied to one-dimensional scalar conservation laws with source terms.
However our method of proof uses viscosity solutions methods only, so it does
not rely on the equivalence between the notions of viscosity [14] and entropy [37]
solutions, which exists only in the one-dimensional homogeneous case.

As an easy by-product of our analysis, we also obtain an error estimate of the
form (8) for a variant of (7) in which the Euler operator E(¢) is replaced by the
exact solution operator associated to corresponding ordinary differential equation.
This error estimate is an improvement of an earlier estimate by Souganidis in [56].
In [56], an L™ error estimate of order v/At is obtained for the general operator
splitting procedure, where G is allowed to depend also on the gradient Du. This
low convergence rate reflects the lack of regularity of the viscosity solution and is the
“usual” convergence rate obtained for (finite difference and viscous) approximate
solutions of Hamilton-Jacobi equations, see [15, 54].

In the one-dimensional case we present a fully discrete splitting method by re-
placing the exact solution operator S(t) by a numerical method. We consider an
unconditionally stable front tracking method [24, 33], we prove that this fully dis-
crete splitting method has a linear convergence rate. Moreover, numerical results
are presented to illustrate the theoretical convergence results.

Comments: An abridged version of this paper appeared in SIAM Journal of Nu-
merical Analysis vol. 39 no. 2.

The methods used in this paper are extended in PAPER 2 to weakly coupled
systems of first order Hamilton-Jacobi equations, and in PAPER 3 to a class of
second order degenerate parabolic equations.
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PAPER 2

On the convergence rate of operator splitting for weakly coupled systems of
Hamilton-Jacobi equations.

Coauthors: K. H. Karlsen and N. H. Risebro.
To appear in the Proceedings of The Eighth International
Conference on Hyperbolic Problems, 2000, Magdeburg.

In this paper we consider weakly coupled systems of first order Hamilton-Jacobi
equations of the form

6Ui
H(t i, Du;) = Gyt i i =1,...
(9) ot + l( y Ly Ugs uz) l( ,$,’Lb) m QTJ ? ) , M,
u(z,0) = uo(z) in RY,
where u = (u1,...,un,) and H; only depends on u; and Du; (and ¢t and ), i.e. the
equations are coupled only through the source term G = (G, ...,Gn)-

Assuming appropriate regularity of (9) and existence and uniqueness of a bounded
Lipschitz continuous viscosity solution, we establish a linear L* convergence rate
for a semi-discrete operator splitting method. This method is the natural extension
to systems of the form (9) of the semi-discrete operator splitting method defined in
PAPER 1.

The proof of this result relies on introducing an intermediate decoupled system of
equations. Then the corresponding semi-discrete operator splitting method decou-
ples too, so the linear L* convergence rate for this problem follows from applying
the results of PAPER 1. Using this result in a careful way, we then prove that the
solutions of the two splitting methods lie close to one another, the L>° difference
being proportional to splitting step At. Combining these two estimates then yields
the result.

To illustrate the theoretical results, we present numerical simulations of a fully
discrete splitting method, using the front tracking algorithm described in [33].

PAPER 3

A convergence rate for semi-discrete splitting approzimations of viscosity solutions
of nonlinear degenerate parabolic equations with source terms.

Coauthor: K. H. Karlsen.

This paper extends the methods of PAPER 1 to a class of degenerate parabolic
equations
(10) ug + F(t,z,u, Du, D*u) — tr[A(t, Du)D*u] = G(t,z,u) in Qr,

where f, A, and g satisfy appropriate structural conditions, in particular, F' is
bounded in the D?u variable.
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We study the extension of the semi-discrete splitting method of PAPER 1, which
consists of solving sequentially the homogeneous version of (10) and the explicit
Euler scheme for vy = G(t,z,u). Using the results in Barles & Souganidis [5], one
can prove that the semi-discrete splitting approximation converges to the desired
(exact) viscosity solution as the splitting step At tends to zero. However, in this
paper we consider the more difficult problem of providing a precise estimate of the
convergence rate. We establish the L>° convergence rate O(v/At) for the semi-
discrete splitting method.

Compare this result with the O(At) rate obtained in PAPER 1 for first order
equations. The loss of rate is due to the presence of a second order differential
operator in (10), while the solutions are only Lipschitz continuous (in space). This
means that the “gap” in regularity is bigger than in PAPER 1.

The main obstacle to extending the results of PAPER 1 to the second order
case, was the lack in the literature of a sufficiently general so-called “continuous
dependence on the non-linearities” result. Such a result is needed here to estimate
the difference of the exact solution and a certain approximate solution. For first
order equations this result was proved by Souganidis [55], while for second order
equations we only know of the partial results by Cockburn et. al. [9]. A general
“continuous dependence on the non-linearities” result is established in PAPER 4,
and with the use of that result, we could complete this paper.

Comments: We do not know if the result in this paper is optimal. However, to
the best of our knowledge the rate 1/2 is the best rate proved for any type of
approximation scheme for second order degenerate parabolic or elliptic problems.
This rate is obtained for the vanishing viscosity method, see [9] and PAPER 4, and
for certain equations using finite difference methods, see PAPER 6. However, for
general equations, existing results on finite difference methods provide the rate 1/3
or lower, see [39, 40] and PAPER 6.

We would like to mention two extensions of the above result. First we can re-
place F, A by F? A? and in the equation take the supremum of ¥ € © (compact
metric space). If F? A? satisfy all assumptions on F, A uniformly in 4, then all
results in this paper still hold! Even the proofs remain essentially unchanged. This
means in particular that Hamilton-Jacobi-Bellman equations (5) with z indepen-
dent diffusions can be handled by this method. This extension was omitted for the
sake of clarity and brevity.

The second extension, is the extension to weakly coupled systems, i.e. systems
of equations of the form (10) where the only coupling occurs in the G term. Fol-
lowing the arguments of PAPER 2, we would easily obtain the O(v/At) rate for
this problem.
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PAPER 4

Continuous dependence estimates for viscosity solutions
of fully nonlinear degenerate parabolic equations.

Coauthor: K. H. Karlsen.
To appear in J. Differential Equations.

In this paper we establish a general “continuous dependence on the nonlineari-
ties” estimate for viscosity solutions of fully nonlinear degenerate parabolic equa-
tions with time and space dependent nonlinearities. Let us be more explicit. Con-
sider the following two degenerate parabolic equations

(E:) wui+ sup{ff(t,m,ui,Dui,DQui) — tr[Af(t,m,Dui)D2ui]} =0, i=1,2.
)

Under mild structural assumptions, if u!/u? are bounded upper/lower semicon-
tinuous viscosity sub/super solutions of E;/E,, we prove essentially the following
estimate:

«a a +
sup (! (r,2) —u?(r,y) — Glz —y/?) < sup(u' (0,2) —w*(0,9) = G Iz ~uP’)
t 0

+ tsups f2(r,y,m,p, X) — f2(r,z,7 X)+aK|a19(7'$ ) —al(r )|2 i
D‘E) 2 Y, 7, D, 1 » L, T, Py 1 » T, P 2 Y, P ’

for some constant K (independent of o). The sets E and D¢ give the bounds on
(r,z,y,r,p, X). These bounds will depend on the regularity of u; and wus, but in
general we have at least 7 < t, |r| < C and o®/?|z — y|,a'/?|p|,|X| < Ca for some
constant C' independent of a.

This result generalizes a result by Souganidis [55] for first order Hamilton-Jacobi
equations and a recent result by Cockburn, Gripenberg, and Londen [9] for a class
of degenerate parabolic second order equations.

The proof is very close to the uniqueness proof for second order degenerate equa-
tions [13], and hence relies on the so-called maximum principle for semicontinuous
functions [11, 13].

We apply the result to a rather general class of equations and obtain: (i) Explicit
continuous dependence estimates. (i) L> and spatial Holder regularity estimates.
(iii) A rate of convergence for the vanishing viscosity method. Finally, we illustrate
the results (i) — (iii) on the Hamilton-Jacobi-Bellman equation (5) associated with
optimal control of a degenerate diffusion process over a finite horizon. For this
equation such results are usually derived via probabilistic arguments, which we
avoid entirely here.

Comments: The basic result in this paper is used in PAPER 3 to derive an explicit
rate of convergence for a semi-discrete operator splitting method.

One obvious omission in this paper is estimates on the time regularity. Actually,
such estimates follow directly from what we called “explicit” continuous dependence
estimates (under additional structural assumptions), see PAPER 3 where such an
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argument is given. However, this procedure seems to the author not to give the
most general results. It seems to be better to use the equation directly plus spatial
regularity of the solutions, to estimate the time regularity via an approximation
argument.

For boundary conditions in the viscosity sense and extensions of the above result,
see the comments under PAPER 5.

PAPER 5

Continuous dependence estimates for viscosity solutions
of fully nonlinear degenerate elliptic equations.

Coauthor: K. H. Karlsen.
Submitted.

This paper establishes a continuous dependence on the nonlinearities result for
degenerate elliptic equations in whole space (3). The statement of this result is
different from the statement of the corresponding result in PAPER 4. To see this,
consider for simplicity a bounded domain (2, and assume u and u are Lipschitz
continuous and satisfy in the viscosity sense F[u] < 0 and F[a] > 0 in €, and are
0 on the boundary ). Furthermore if F, F both satisfy (4) with yg > v > 0, and

F(z,r,a(@ —y),X) = Fly,r,a(e = y),Y) < C(lz =yl +m +alle —y* + ),

fora >0, 2z,y e RV, r € R, |r|] < C, and X,Y € S(N) satisfying (§ %) <

Ca ( fI ’II ) (C is independent of ), then this paper states that the following
“continuous dependence” result holds for some K > 0

sup(u — @) < = (1 +11).
Q 2

The motivation for this paper was to generalize the results in PAPER 4 and
to give clean and much shorter presentation and proofs. As opposed to PAPER 4,
the results here are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs’s
equations of zero-sum, two-player stochastic differential games.

The rest of the paper is devoted to (existence, uniqueness, and) Holder continuity
results for bounded viscosity solutions of (3) under weak structural assumptions.
We also provide an estimate of the rate of convergence for the vanishing viscosity
method for such equations.

Comments: For simplicity we have considered equations without boundary con-
ditions. But the techniques herein can be applied to the classical Dirichlet and
Neumann problems. The Neumann condition can be handled as in [9], and the
Dirichlet condition can be handled as the initial condition is in PAPER 4. How-
ever, we are not able to treat so-called boundary conditions in the viscosity sense
[13, section 7C]. This is an interesting open problem.
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An even more interesting problem would be to find continuous dependence results
for singular equations like the mean curvature equation and the p-Laplace equation
for 1 < p < 2. Recently, partial results in this direction were obtained by Deckelnick
[17] on the mean curvature equation.

PAPER 6

On the convergence rate of approximation schemes
for Hamilton-Jacobi-Bellman equations.

Coauthor: G. Barles.
To appear in M2AN Math. Model. Numer. Anal.

In this paper we establish a general result on the rate of convergence of a certain
class of monotone approximation schemes for stationary Hamilton-Jacobi-Bellman
equations with variable coefficients

(11) sup { — tr[a® (@) D%u] — b% (2)Du + ¢ (x)u — fﬂ(w)} =0 inRN.
9EO

Then we show that this class of schemes is broad enough to encompass control

schemes based on the dynamic programming principle [8, 50, 7] and monotone finite

difference schemes [41, 40]. However in the last case we need further restrictions

on the diffusion coefficients.

General results have been obtained earlier by Krylov for finite difference schemes
in the stationary case with constant coefficients [39] and in the time-dependent
case with variable coefficients [40]. In the variable coefficients case Krylov uses
a mixture of analytical (PDE) and probabilistic methods to obtain his results.
Menaldi established estimates on the rate of convergence of control schemes in [50],
but in a classical setting.

The method used here is based on a tricky idea of Krylov: Consider the solution
u® of the following perturbed version of (11)

(12) max [F(z + e,u®(z), Du®(z), D*u(z))] =0 in RV,

[ 13

where F' has the obvious meaning. Regularize u¢ (by mollification), and use
convexity of F in u, Du, D?*u to prove that the resulting function denoted by
ue is a (smooth) subsolution of (11). Now, if we can prove precise bounds on
|lu — ucl| oo (r~vy and the derivatives of u., we get half the result, namely an upper
estimate of u — up. To see this, one just has to plug u. into the scheme and use the
consistency condition in addition to some comparison properties for the scheme.

The other estimate (a lower estimate of u—wuy,) is a priori more difficult to obtain,
and here Krylov is using probabilistic estimates, at least in the variable coefficients
case. Our idea to obtain this lower estimate is very simple: to interchange in the
above argument the role of the scheme and the equation. This idea was already
used by Krylov in the constant coefficients case. As in the case of the equation,
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we are lead to introduce the solution uj of the perturbed version of the scheme, a
discrete analog of (12).

At this point we face two main difficulties which explain the limitations of this
approach: In order to follow the related proof for the upper bound, first we need
existence and precise regularity estimates for u; (the solution of the scheme) and
uf,, and secondly a precise bound on [|up — uf ||z ®~). Of course, a natural idea
is to copy the proofs of the related results for (11). They rely on the doubling
of variables method which, unfortunately, does not seem to be extendable to all
types of schemes. Roughly speaking, we are able to obtain rates of convergence for
approximation schemes for which we can extend this method.

Comments: As opposed to Krylov, we do not use control theory and probabilistic
arguments. In our opinion our way is much simpler than that of Krylov, and for
the cases we can treat, it yields a better rate of convergence than Krylov obtained
in the variable coeflicients case. Menaldi on the other hand obtained a better rate
of convergence than we do, but in his case the solutions are smoother than in ours.

It would be very interesting to understand how to obtain results for finite differ-
ence schemes for general variable coefficients equations without resorting to prob-
abilistic methods. In this case Krylov most probably gets too low a rate (1/27), so
another problem (hopefully related) is to derive the correct rate (1/37).

Another open problem is how to handle equations which are not convex as is the
Hamilton-Jacobi-Bellman equation. Convexity is a fundamental property in this
paper, how can one get rid of it?

PAPER 7

On the rate of convergence of approrimation schemes for time-dependent
Hamilton-Jacobi-Bellman equations.

In this paper we provide general estimates on the rate of convergence for explicit
approximation schemes for time-dependent Hamilton-Jacobi-Bellman equations (5).
These results are parabolic versions of the results in PAPER 6. For an explanation
of the method used and for more references, see the section on PAPER 6. As in
PAPER 6, we are able to handle control schemes and finite difference schemes. And
for finite difference schemes we can not handle variable diffusion coefficients, but
for the cases we can handle, we get better results than Krylov [40].

Because of the presence of a time variable, this paper is somewhat more involved
than PAPER 6. First of all we need estimates on the time regularity of solutions of
the equation and the schemes, and to obtain such estimates we need other methods
than what we used to obtain spatial regularity in PAPER 6. Another problem
encountered here, is that our regulariztion procedure introduces a shift in time. This
problem is solved using ideas from Krylov [40]: For the perturbed equation/scheme
(see under PAPER 6) we have to consider initial value problems with shifted initial
time. Finally, we mention that to have a solution of the scheme defined for all



INTRODUCTION 11

times, we need initial condition not in ¢ = 0, but on the interval [0, At), where At
is the time step in our approximation scheme.

Comments: We remark that the method presented is not restricted to explicit
schemes, which for the sake of brevity are the only ones analyzed here. Actu-
ally, for implicit schemes the analysis is almost identical to what we present here.
More general schemes can also be handled.

See under PAPER 6 for open problems.
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ABSTRACT. We establish a rate of convergence for a semi-discrete operator
splitting method applied to Hamilton-Jacobi equations with source terms. The
method is based on sequentially solving a Hamilton-Jacobi equation and an
ordinary differential equation. The Hamilton-Jacobi equation is solved exactly
while the ordinary differential equation is solved exactly or by an explicit
Euler method. We prove that the L° error associated with the operator
splitting method is bounded by O(At), where At is the splitting (or time)
step. This error bound is an improvement over the existing O(v/At) bound
due to Souganidis [40]. In the one dimensional case, we present a fully discrete
splitting method based on an unconditionally stable front tracking method for
homogeneous Hamilton-Jacobi equations. It is proved that this fully discrete
splitting method possesses a linear convergence rate. Moreover, numerical
results are presented to illustrate the theoretical convergence results.

1. INTRODUCTION

The purpose of this paper is to study the error associated with an operator
splitting procedure for non-homogeneous Hamilton-Jacobi equations of the form

ug + H(t,z,u,Du) = G(t,z,u) in Qr=RN x (0,T),
u(z,0) = ug(z) in RV,

where u = u(z,t) is the scalar function that is sought, ug = ug(z) is a given initial
function, H is a given Hamiltonian, and D denotes the gradient with respect to
x = (x1,...,zn). Hamilton-Jacobi equations arise in a variety of applications,
ranging from image processing, via mathematical finance, to the description of
evolving interfaces (front propagation problems).

In general problems such as (1.1) do not have classical solutions. In fact, it is
well known that solutions of (1.1) generically develop discontinuous derivatives in
finite time even with a smooth initial condition. However, under quite general con-
ditions they possess generalized solutions, i.e., solutions that are locally Lipschitz
continuous and satisfy the equation almost everywhere. Usually, the generalized

(1.1)
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solutions are not unique and an additional selection principle, a so-called entropy
condition, is needed to single out physically relevant generalized solutions.

To resolve the issue concerning non-uniqueness of generalized solutions, the no-
tion of viscosity solutions was introduced by Crandall and Lions [8], see also [6]. The
major advance contained in this notion of weak solution is that indeed uniqueness
of the viscosity solution can be proven for a very wide class of equations without
requiring a strong convexity assumption as in, e.g., [27]. A viscosity solution is by
assumption continuous, but need not be differentiable anywhere. However, a vis-
cosity solution which is locally Lipschitz continuous will satisfy the equation almost
everywhere. Generalized solutions obtained by the well-known method of vanish-
ing viscosity belong to the class of viscosity solutions in the sense of [8]. Since the
appearance of [8], the theory of viscosity solutions has been intensively studied and
extended to a large class of fully nonlinear second order partial differential equa-
tions. We refer to Crandall, Ishii, and Lions [7] for an up-to-date overview of the
viscosity solution theory for such general partial differential equations.

It is well known that (homogeneous) Hamilton-Jacobi equations are closely re-
lated to (homogeneous) conservation laws. In the one-dimensional case, the notion
of viscosity solutions of Hamilton-Jacobi equations is equivalent to the notion of
entropy solutions (in the sense of Kruzkov [29]) of scalar conservation laws, see
[5, 21, 23, 27, 33, 21] for details. In the multi-dimensional case (d > 1), this one-to-
one correspondence no longer exists. Instead the gradient p = Du satisfies (at least
formally) a non-strictly hyperbolic system of conservation laws, see [21, 24, 27, 33]
for details. Exploiting this “correspondence” between Hamilton-Jacobi equations
and conservation laws, many numerical methods have been developed to accurately
capture solutions of Hamilton-Jacobi equations with discontinuous gradients: see
[9, 34] for finite difference schemes of upwind type (see also [28]); [1, 26] for finite vol-
ume schemes; [36, 37] for ENO schemes; [32, 30] for central schemes; [4, 19] for finite
element methods; [21] for relaxation schemes; and [24] for front tracking methods.
Using operator splitting, it is also possible to use “homogeneous” Hamilton-Jacobi
solvers as building blocks in numerical methods for non-homogeneous problems. In
the present context, operator splitting means “splitting off” or isolating the effect
of the source term G (see the discussion below).

Operator splitting for Hamilton-Jacobi equations, or more generally fully non-
linear second order partial differential equations [7], have been used by Souganidis
[40], Barles and Souganidis [3], Sun [42], and Barles [2]. Among these, the paper by
Souganidis [40] is the most relevant one for the present work. In that paper, gen-
eral operator splitting formulas are analyzed and shown to converge to the unique
viscosity solution of the governing Hamilton-Jacobi equation as the splitting step
tends to zero. The generality in [40] allows for dimensional splitting as well as
“splitting of” the source term as we do in the present paper.

In Barles and Souganidis [3], the authors consider fully nonlinear second order
elliptic or parabolic partial differential equations and propose an abstract conver-
gence theory for general (monotone, stable, and consistent) approximation schemes.
This theory is then applied to splitting methods as well as many other types of nu-
merical methods. In Barles [2], the author studies, among other things, splitting
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methods for nonlinear degenerate elliptic and parabolic equations arising in option
pricing models. In Sun [42], the author studies a dimensional splitting method for
a class of second order Hamilton-Jacobi-Bellman equations related to stochastic
optimal control problems.

We now summarize the operator splitting procedure analyzed in this paper and
state briefly the obtained theoretical result. To ease the presentation, let us for the
moment, consider the simplified non-homogeneous Hamilton-Jacobi equation

(1.2) ug + H(Du) = G(u), u(z,0) = uo(x), z€RN te(0,T).

A presentation of the splitting procedure and the corresponding theoretical result
in the general case (1.1) can be found in §3. Let v(x,t) = S(t)vo(x) denote the
unique viscosity solution of the homogeneous Hamilton-Jacobi equation

(1.3) vy + H(Dv) =0, v(z,0) = vo(x), zeRN, ¢t>0,

where S(t) is the so-called solution operator associated with (1.3) at time ¢. Next,
let E(t) denote the explicit Euler operator, i.e., v(z,t) = E(t)vo(z) is defined by

v(z,t) = vo(z) + t G(vo(2)).
Our operator splitting method then takes the form
(1.4) u(z,iAt) = [S(AL) B(AL)] ‘ug(x),

where At > 0 is the splitting (or time) step and ¢ = 0,...,n with nAt =T.

In this paper, we prove that this splitting approximation converges as At — 0 to
the unique viscosity solution of (1.2). More precisely, we prove that the L error
associated with the time splitting (1.4) is of order At:

(1.5) max

i=1,...,n

u(-iAt) — [S(At)E(At)]inHLm < KAt

for some constant K > 0 depending on the data of the problem but not At.

In passing, we mention that the proof of (1.5) is inspired by an idea used in
Langseth, Tveito, and Winther [31]. In that paper, the authors proved a linear
L! convergence rate for operator splitting applied to one-dimensional scalar con-
servation laws with source terms. Having said this, we stress that our method of
proof uses “pure” viscosity solution techniques and do not rely on the equivalence
between the notions of viscosity [8] and entropy [29] solutions, which exists (only)
in the one-dimensional homogeneous case.

As an easy by-product of our analysis, we also obtain an error estimate of the
form (1.5) for a variant of (1.4) in which the Euler operator E(t) is replaced by the
exact solution operator associated with the ordinary differential equation

(1.6) ug = G(t, z,u), v(z,0) = vo(x), zeRY, ¢t>0.

This error estimate is an improvement of an earlier estimate by Souganidis in [40].
In [40], an L™ error estimate of order v/At is obtained for a more general operator
splitting procedure, which also includes source splitting. This low convergence rate
reflects of course the lack of regularity of the viscosity solution and is the “usual”
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convergence rate obtained for (finite difference and viscous) approximate solutions
of Hamilton-Jacobi equations, see [28, 33, 9].

In applications, the exact solution operator S(t) must be replaced by a numerical
method. In this paper, we consider the one-dimensional case and replace S(t) by
an unconditionally stable front tracking method [15, 23]. Furthermore, we prove
that this fully discrete splitting method has a linear convergence rate and present
two numerical examples.

We would like to mention that the main results obtained in this paper also
hold for weakly coupled systems of Hamilton-Jacobi equations. The details will be
presented in a future paper.

Although operator splitting methods have to some extent been studied and used
as computationally tools for Hamilton-Jacobi (and related) equations, we feel that
these methods have not reached the same degree of popularity as they have for
hyperbolic conservation laws. In fact, the first order dimensional splitting method
was first introduced by Godunov [14] as a method for solving multi-dimensional
conservation laws. Later this method was modified by Strang [41] to achieve formal
second order accuracy. Rigorous convergence results (within the Kruzkov frame-
work of entropy solutions [29]) for dimensional splitting methods appeared two
decades later with the paper by Crandall and Majda [10], see also Holden and
Risebro [17]. More recently, L' error estimates of order v/At were obtained inde-
pendently by Teng [44] and Karlsen [22]. Splitting methods for scalar conservation
laws with source terms have been analyzed by Tang and Teng [43] and, as already
mentioned, Langseth, Tveito, and Winther [31], see also Holden and Risebro [18]
for conservation laws with a stochastic source term. Operator splitting methods for
conservation laws with parabolic (diffusive) terms have been analyzed by Karlsen
and Risebro [25] and Evje and Karlsen [13], see also the lecture notes [12] (and the
references therein) for a thorough discussion of viscous splitting methods and their
applications. Finally, splitting methods for conservation laws with dispersive terms
have been used very recently by Holden, Karlsen, and Risebro [16].

The rest of this paper is organized as follows: In §2, we collect some useful
results from the theory of viscosity solutions for Hamilton-Jacobi equations. In
83, we provide a precise description of the operator splitting and state the main
convergence results. In §4, we give detailed proofs of the results stated in §3.
In §5, we present and analyze a fully discrete operator splitting method for one-
dimensional equations. Furthermore, we present numerical examples illustrating

the theoretical results. Finally, in §6 we give a proof of a comparison result used in
84.

Remark: A shorter version of this paper have been printed in SIAM Journal of
Numerical Analysis, see [20].

2. PRELIMINARIES

We start by stating the definition of viscosity solutions as well as some results
about existence, uniqueness, and regularity properties of such solutions. These



ON THE RATE OF CONVERGENCE OF OPERATOR SPLITTING 5

results will be needed in the sections that follows. Proofs of these results (or
references to proofs) can be found in [39], see also [40].

Let us introduce some notation. If U is a set, and f : U — R is a bounded mea-
surable function on U, then |[|f|| := ess sup,cy|f(z)|. Furthermore let BUC(U),
Lip(U), and Lipy(U) denote the spaces of bounded uniformly continuous functions,
Lipschitz functions, and bounded Lipschitz functions on U respectively. Finally, if
f € Lip(U), we denote the Lipschitz constant of f by ||Df||.

For F € C([0,T] x RN x R x RY), we consider throughout this section the
following general equation

(2.1) ug + F(t,z,u,Du) =0 in Qr,
with initial condition
(2.2) u(z,0) =ug(z) in RV,

where ug € BUC(RY). Note that (1.1) is a special case of (2.1) and (2.2).

Definition 2.1 (Viscosity Solution). Let F € C([0,T] x RY x R x RY).
1) A function v € C(Qr) is a viscosity subsolution of (2.1) if for every ¢ €
CY(Q7), if u — ¢ attains a local mazimum at (zo,t9) € QT, then
di(x0,t0) + F(to, 2o, u(o, to), Dp(x0,10)) < 0.
2) A function u € C(Qr) is a viscosity supersolution of (2.1) if for every ¢ €
CY(Qr), if u— ¢ attains a local minimum at (x9,ty) € Qr, then
di(x0,t0) + F(to, 2o, u(o, to), Dp(x0,10)) > 0.

3) A function u € C(Qr) is a viscosity solution of (2.1) if it is both a viscosity
sub- and supersolution of (2.1).
4) A function u € C(Qr) is viscosity solution of the initial value problem (2.1)
and (2.2) if u is a viscosity solution of (2.1) and u(x,0) = ue(z) in RV .
In order to have existence and uniqueness of (2.2), we need further conditions
on F'.

F e C([0,T] x RN x R x RY) is uniformly continuous
(F1) on [0,T] x RN x [-R, R] x Bx(0, R) for each R > 0,
where By (0,R) := {z € RN : |z| < R}.

(F2) There is a constant C' > 0 such that C' = supg,. |F(t,,0,0)| < .

For each R > 0 there is a yg € R such that for (¢,z) € Qr, p € RV,
and _RSSSTSRa F(t,.’lf,’f',p)—F(t,(E,S,p)Z’)/R(T'—S).
For each R > 0 there is a constant Cr > 0 such that for |r| < R,
(F4) z,y,p € RN and t € [0,T],

|F'(t,z,7,p) = F(t,y,7,p)| < Cr(1 +|p|)|z —yl-

We now state a comparison theorem for viscosity solutions.

Theorem 2.1 (Comparison). Let F : [0,T] x RN x R x RN — R satisfy (F1),
(F3), and (F4). Let u,v € BUC(Qr) be viscosity solutions of (2.1) with initial

(F3)
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data ug,vy € BUC(RY) respectively. Let Ry = max(||u|,||v|]) end v = yr,. Then
for every t € [0,T],
l[u(-st) = v( )] < e |lug — woll-
The next theorem concerns existence of viscosity solutions.

Theorem 2.2 (Existence). Let F : [0,T] x RN x R x RY — R satisfy (F1)-(F4).
For every ug € BUC(RN) there is a T = T(||uo||) > 0 and u € BUC(Q1) such
that u is the unique viscosity solution of (2.1) and (2.2). If, moreover, yg in (F3)
is independent of R, then (2.1) and (2.2) has a unique viscosity solution on Qr for
every T > 0.

The following two results are about the behavior of viscosity solutions under
additional regularity assumptions on ug and u.
Proposition 2.1. Let F : [0,T] x RY x R x RY — R satisfy (F1)-(F4). If uo €
Lipy(RY ), and u € BUC(RY) is the unique viscosity solution of (2.1) and (2.2) in
QT, then u € Lipy(QT).
Proposition 2.2. Let F : [0,T] x RY x R x RN — R satisfy (F1), and (F3) with
vr < 0 for every R > 0. Assume that for ug € BUC(RY), u € BUC(QT) is a
viscosity solution of (2.1) and (2.2). Let R > ||u|| and v = yr. Then the following
statements are true for every t,s € [0,T):

(a) If H satisfies (F2), then ||u(-,t)|| < e~ (||uo|| + tC), where C is given by

(b) If F satisfies (F4) and u(-,t) € Lipy(RY) for every t € [0,T] with L :=

supjo, 77 | Du(-, t)|, then

1 Du(-, )l < e (|| Duol| + tCr(1 + L)),
where Cg are given by (F4). Moreover
L< eT(2CR6_7T7'Y)(||Du0|| + TCR).

(C) If up € Llpb(RN)7 ||U(,t) - U0|| < e~ Sup(w,t)EQT |F(t,$,’f',p)|.
|7I<lluoll
[p|<|| Duol|

(d) If u(-,t) € Lipy(RYN) for every t € [0,T] and L := supyo, 7 || Du(-, t)||, then
u € Lipy(QT) and

[|u(-,t) —u(, 9)|| < |t — s|e_'YT sup |F(t,z,r,p)|.

Finally, we will need the following stability result whose proof is given in the
appendix.

Proposition 2.3. Let F: [0,T] x RY x R x RN — R satisfy (F1), and (F3), and
let f be a nonnegative, bounded function that belongs to C(RN x [0,T]). Assume
that u € Lipy(Qr) is the viscosity solution of (2.1), and v € Lipy(QT) is a viscosity
solution of

(2.3) |vg + F(t,xz,v,Dv)| < f(z,t) in Qr.
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Let Ry = max(||ul|,||v|]) and v = yr,- Then for 0 < s<t<T,

(1) = v( Ol < €flul, s) = (-, 8)|| +/ e f (-0l do

s
Remark 2.3. This is essentially Theorem V.2 (iii) in [8]. The proof we give in the
appendix is different from the proof given in [8]. We use techniques from [39], and
the proof resembles the proof of Proposition 1.4 in [39].

3. STATEMENT OF THE RESULTS

We will study the convergence of operator splitting applied to the Hamilton-
Jacobi equation (1.1), where ug € Lipy(RY) and H and G satisfies the following
conditions.

Conditions on H.

H e C([0,T] x RY x R x RY) is uniformly continuous
on [0,T] x RN x [-R, R] x Bx(0, R) for each R > 0.
(H2) There is a constant Cy > 0 such that Cg = supg,. |H(t,z,0,0)| < oo.

There is a constant Ly > 0 such that for (t,2) € Q7, p€ RV, r,s € R,
|H(t,z,r,p) — H(t,z,s,p)| < Lg|r — s|.
For each R > 0 there is a constant Cg,g > 0 such that for |r| <R,
(H4) z,y,pe RN, te[0,T],
|H(t,2,r,p) — H(t,y,7,p)| < Cu.r(1+ |p|)|z —yl.
For each R > 0 there is a constant Ng,g > 0 such that for |r| < R,
(H5) x,p€e RN, and t,t € [0,T],
|H(t,@,r,p) — H(t,z,r,p)| < Nu,r(1+[pl)|t — 1.
For each R > 0 there is a constant Mg > 0 such that for |r|, |p|, |¢| < R,
and (z,t) € Qr, [H(t,z,r,p) — H(t,2,7,9)| < Mg|p—ql.
Conditions on G.
(G1) G € C([0,T] x RN x R) is uniformly continuous
on [0,7] x RY x [-R, R] for each R > 0.
(G2) There is a constant C > 0 such that Cg = supg,. |G(t,,0)| < cc.
There is a constant Lg > 0 such that for (t,z) € Qr, r,s € R,

(H1)

(H3)

(H6)

©3) G (t,2,7) - Glt,2,9)] < Lalr — 5.

(GA) For each R > 0 there is a constant Cg,gr > 0 such that for |r| < R,
vy €RY, ¢ €[0,T], |G(t,z,r) — G(t,y,7)| < Ca,rle —y|-

(G5) For each R > 0 there is a constant Ng g > 0 such that for |r| < R,

TE RN: tafe [07T]7 |G(t,$,7’) - G(t_,.’lf,'f')| S NG’,R|t_ﬂ'

Conditions (H1), (H2), and (H4) are conditions (F1), (F2), and (F4) from §2
in the case F(t,z,u, Du) = H(t,z,u, Du). The condition corresponding to (F3) is
replaced by the stronger condition (H3). The other conditions on H are needed for
proving error estimates. The conditions on G are just the corresponding conditions
when there is no Du dependence.
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By these assumptions the function F(t,z,r,p) = H(t, z,r,p) — G(t,z,r) satisfies
conditions (F1)-(F4). Condition (H3) and (G3) implies condition (F3), with yg =
—Lg — Li. Note the minus sign! Also note that this constant is independent of
R. So by Theorem 2.2 there exist a unique viscosity solution u of (1.1) on any time
interval [0, 7], T > 0. By Proposition 2.1, u € Lipy(QT).

First we will state an error bound for the splitting procedure when the ordinary
differential equation is approximated by the explicit Euler method. To define the
operator splitting, let E(t,s) : Lipy(RY) — Lipy(RY) denote the Euler operator
defined by

(3.1) E(t, s)vo(z) = vo(z) + (t — s)G(s, z, vo(x))

for 0 < s <t < T and vy € Lipy(RV). Furthermore, let S(t,s) : Lipy(RV) —
Lipy(RY) be the solution operator of the Hamilton-Jacobi equation

v+ H(t,z,v,Dv) =0 in RN x (s,T),

(3.2) v(z,s) =wvo(z) in RV,

where vy € Lipy(RY). Note that S is well-defined on the time interval [s,T],
since (3.2) is basically a special case of (1.1). More precisely, there exists a unique
viscosity solution v € Lipy(RN x [s,T"]), for any T" > 0.

The operator splitting solution {v(z,t;)}? ,, where t; = iAt and ¢, < T, is
defined by

v(z,t;) = S(ti, ti 1) E(ti, ti1)v(, ti1)(2),

(3:3) v(z,0) = vo(z).

Note that this approximate solution is defined only at discrete t-values. The first
result in this paper states that the operator splitting solution, when (3.2) is solved
exactly, converges linearly in At to the viscosity solution of (1.1).

Theorem 3.1. Let u(x,t) be the viscosity solution of (1.1) on the time interval
[0,T] and v(x,t;) be the operator splitting solution (3.8). There exists a constant
K >0, depending only on T, |luol|, ||Duol|, ||voll, ||Dvell, H, and G, such that for
t1=1,...,n,

llu(-sti) = v(5 ta)ll < K(lluo — voll + At).

We will prove this theorem in the next section.

Our second result gives a convergence rate for operator splitting when the explicit
Euler operator E is replaced by an exact solution operator E. More precisely, let
E(t,s) : Lipy(RVN) — Lipy(RY) be the exact solution operator of the ordinary

differential equation

v =G(t,z,v) in RN x(s,T),
(3.4) ¢ = G(t,z,v) N (s,T)
v(z,s) =wvo(x) in RY,

where vy € Lipy(RY). Note that E is well defined on the time interval [s,T]. In
fact, the assumptions (G1)—(G5) made on G are sufficient for (3.4) to have a unique
solution u € C([s, T"]; Lipy(RN)), for any T" > 0.
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Let us define the following operator splitting solution {o(z,t;)}? , where t; =
iAt and t, < T, by

o(z, ;) = S(ti ti 1) E(ti, ti 1)0(, ti1)(2),
¥(z,0) = vo(x).

The following result is consequence of Theorem 3.1.

(3.5)

Corollary 3.1. Let u(x,t) be the viscosity solution of (1.1) on the time interval
[0,T] and v(x,t;) be the operator splitting solution (3.5). There exists a constant
K > 0, depending only on T, ||uoll, ||Duoll, ||voll, [|Dwol|, H, and G, such that for
t=1,...,n,

lu(- i) — 0(- )|l < K([luo — vol| + At).

We also prove the corollary in the next section.

Remark 3.2. Corollary 3.1 improves Theorem 4.1 (b) in [40] for the splitting defined
in (3.5). Note that the generality in [40] allows for a G function also depending
on the gradient. The convergence rate O(v/At) is obtained for this more general
operator splitting.

4. PROOFS OF THEOREM 3.1 AND COROLLARY 3.1

In this section, we provide detailed proofs of Theorem 3.1 and Corollary 3.1,
starting with the proof of Theorem 3.1. An important step in this proof is to
introduce a suitable comparison function.

a) Introducing a comparison function.

Before we can introduce the comparison function, we need an auxiliary result.
For 0 < s <t <T,let wi-,t) = S(t,s)we denote the viscosity solution of the
Hamilton-Jacobi equation (3.2) with initial condition wy. For a given function
Y € CHRYN x [s,T]), we introduce the function

q(z,1) := w(z,t) + P(z,1).

Assuming that w is C?, it follows that ¢ is a C' solution of the following initial
value problem

qt+H(t7$7q_¢7Dq_D¢)=¢t in RNX(SJT)J
q(z,8) = wo(z) +¢(z,s) in RN.

Moreover, this is still true if w and ¢ are only required to be viscosity solutions of
equations (3.2) and (4.1) respectively.

(4.1)

Lemma 4.1. Let w be a viscosity solution of equation (3.2) and ¢ € C*(RN x
[s,T]), then q := w + 1) is a viscosity solution of equation (4.1).

Proof. Assume ¢ € C*(RN x(s,T)) and that ¢—¢ has a local maximum at (xg, ) €
RY x (s,T). This means that w — (¢ — 1) has a local maximum at (z¢, ). Since
(¢ — 1) is a C! test-function and w is by assumption a viscosity solution of (3.2),
the definition of a viscosity subsolution yields

(¢t — ) (o, t0) + H (to, o, (¢ — ¥) (0, t0), (D¢ — Dp)(z0, t0)) <0,
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where we replaced w(zg,t9) by (¢ — ¥)(xo,t0).- The inequality holds for any test
function ¢ and for any local maximum of ¢ — ¢. So ¢ is a viscosity subsolution of
(4.1). Similarly you can show that ¢ is a viscosity supersolution of (4.1). O

Let j be such that 1 < 7 < n. Recall that to compute the operator splitting
solution v at time t; = jAt, we do j steps. In each step we first apply the Euler
operator E for a time interval of length At. Then we use the resulting function
as an initial condition for problem (3.2) which is also solved for a time interval of
length At. The main step in the proof of Theorem 3.1 is to estimate the error
between u and v for one single time interval of length At. Hence we are interested
in estimating

||u(-,ti) - S(t@', ti_l)E(ti, ti_l)’l}(',ti—l)”a i1=1,...,n,

where v(z,0) = vo(x).
Now fix i = 1,...,n, and define the function ¢ : RV x [t;_1,t;] — R as follows

C(@,t) =St ti1)E(ts, ti1)v(- tio1) ().
Observe that
¢(z, v(z,ti).-

ti) =
To estimate the difference between u( i) and v(-,t;), we need to introduce the
comparison function ¢° : RN x [t;_1,t;] — R defined by

(4.2) ¢’(z,1) = ((z,) +4°(z,1),
where ¢ : RV x [t;_1,t;] = R is defined by

43) @) = —(ti— t)/ 15(2)G (tio, @ — 2,0(x — 2, t;1)) dz.
RN
Here 715(x) := 5 n(%), where 7 is the standard mollifier satisfying

n € CEMRY), n(x) =0 when |z| > 1, / n(z)dx = 1.
RN

The introduction of the function ¢° is inspired by the comparison function used in
[31].
For each z € RN we see that ¢°(z,t;) = v(x,t;) and we will later show that

¢ (x,ti—1) = v(z,ti1) as § = 0.
The difference
u(-t:) = o(- ) = u(-t:) — ¢ (- ti)
will be estimated by deriving a bound on the difference
u(+t) — (1),  VtE[ti1,ti]-
To this end, observe that ¢° is a viscosity solution to
44) g +H(t,z,¢" —¢°,D¢" = DY) =4 in RV x (tio1, 1),
(4.5) Oz, ti1) = C(x, ti1) + 92 (2, t;_1) in RV,
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This is a consequence of Lemma 4.1 since 1)’ € C* (RN x[t;_1,;]). Now we proceed
by deriving a priori estimates for u, v, 1/°, and ¢’ that are independent of At.
b) A priori estimates for u, v, ¢¥°, and ¢°.
We start by analyzing S and E. Let w € Lipy(RY). Assume that
(4.6) R, := max{supogsgth 1E(t, s)wll, SUPo<s<t<T 1S (t, s)wl|} < oo.

For0< s <t<T,let w(z,t—s) = S(¢t,s)w(x). This function is a viscosity solution

of equation (3.2) on [0,T — s] when H (¢, z,r,p) is replaced by H(7 + s,z,7,p). The

initial condition is w(x,0) = w(z). Applying Proposition 2.2 (a), (b), and (c) to w

and then using S(7 + s, s)w(z) = w(z, 7), we get the following estimates

A7) IS s)wll < e* ) (||w]| + (¢ - 5)Cr),

(4.8) [ID{S(t,s)w}|| < eFHHFAEDE )| Dw|| + (¢ - 5)Crr,gy (1 + TEK1(R1))},
15(¢, s)w — w]|

(4.9) La(t—s) _

< (t—s)e sup{|H(t,z,r,p)| : (z,t) € Qr,|r| < [Jw]],|p| < [[Dw]|},
where
(4.10) Ki(R) = Cu,pexp {2Cg rTe """ + TLy}, R>0.

Note that v = —Ly, and that in the expression (4.8), the constant L in Proposition
2.2 (b) is replaced by its bound.
Let us turn to E. The following estimates are consequences of the definition

(3.1) of E and the properties of G, w:

(4.11) IE®, s)w|| < (14 La(t - s))[lwl| + (¢t — 5)Ca,

(4.12) ID{E(t, s)w}|| < (1 + La(t = s))||Dw|| + (¢t — 5)Ca,r
(4.13) IE(t, s)w — w]| < (t — 5)(Ca + La|lwl])-

Now we see that assumption (4.6) holds. Just replace t — s by T' in expressions
(4.7) and (4.11).
Let us introduce some notations which will be useful in what follows:

L :=2max(Ly, Lg),
C:=Cug+Cg,

(4.14)
Cr:=CH+C§ for R>0,

NR = NH,R+NG’,R for R > 0.

Lemma 4.2. There ezists a constant Ry independent of At such that max [[o(-, )]
<i<n

< Ra. Moreover, for every 1 <i <mn,

(a) |lo(-sta)ll < e (Jluol| + :0),
(0) 1Dv(-, t:)l| < eFHFAEDEL Do || + 8:C, (1 + TE1(R2))}-
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Proof. Assume there is a constant Rs independent of At such that

. 1)l < Ra.
(1.15) masx [, )] < Re

In expressions (4.7) — (4.13) replace R; (whenever it appears) by Ry, t by t;, s by
ti—1, and w by v(-,t;—1). Successive use of expressions (4.7) and (4.11) yield (a),
and similarly (b) follows from (4.8) and (4.12). In (a), replace t; by T and we see
that the assumption (4.15) holds. O

From the definition (4.3) of 9%, we see easily that the following lemma is valid:

Lemma 4.3. For every 1 <i <n andt € [t;—1,t;],

(a) |[9°(, 1)l < (ti — t){Cq + Lallv(-, ti-1|l},
(6) 1D (-, )|l < (t; — £){Ca,r, + LallDu(-, ti-1)][}-

Now we are in a position to prove a corresponding result for ¢°.

Lemma 4.4. For every 1 <i <n andt € [t;—1,t;],

(@) 1|° D)l < €224l 8[| + 2At0),
(0) IIDG (-, )| < ePEHFUEDAY (- 4;_1)|| + At 20R, (1 + TK1(Rp))},
(c) There exists at constant M independent of t, i, and At such that

(-, t) — v(- ticr)|| < MAC.

Proof. We only give the proof of (c). The other statements are easy consequences
of expressions (4.7), (4.8), (4.11), (4.12), and Lemma 4.3. By estimate (4.9) we get

||S(t7ti—l)E(tthi—l)U('Jti—l) - E(tiati—l)v('ati—l)” < AteLHAt
X sup{|H(t,x,r,p)| (t7 $) € Q_T; |T| < ”E(ti:ti—l)v('ati—l)ua

Ipl < ID{B(t, i 1)o(, i)} -

This supremum is bounded independently of ¢ and At¢. This follows since by Lemma,
4.2 and estimates (4.11) and (4.12) there are constants L' and R' independent of
and At such that

|E(ti, tim1)v(- tic1)|| < R and  [|D{E(t;, ti—1)v(-, ti—1)}| < L.

Now we can use (H2), (H3), and (H6) to write |H(¢t,z,r,p)| < Cu + |r|Lg +
|P|Mimax¢r’,r'y- So we have showed that

||S(t,ti_1)E(ti,ti_l)v(-,ti_l) - E(ti,ti—l)v(‘,ti—l)” < Const At,

where the constant is independent of ¢, ¢ and At. By using expression (4.13) and
Lemma 4.2 we can show that

|E(ti,ti—1)v(-, tim1) — v(-,ti—1)|| < Const At,

where the constant is independent of ¢ and At. By Lemmas 4.3 and 4.2 we can find
a constant independent of ¢, ¢ and At such that

|0 < Const At.
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We finish by noting that by the definition (4.2) of ¢°,

l8° (-, t) = v(, tict) || < IS tic1) Etis tim1)v( tie1) — E(ti tio)o(- tima) ||
+ 1B (ti, tima)v( tima) — (s tim) | + [[9°)]-

O

Finally we come to (the exact solution) u. Using Proposition 2.2 with F'(t, z,r,p)
= H(t,z,r,p) — G(t,z,r) (see also the derivation of (4.7) and (4.8)), we get the
following result:

Lemma 4.5. There exist a constant R3 such that maxjo 7 |lu(-,t)|| < Rs. More-
over for t € [0,T], the following statements hold

(a) Jlu(,0)l| < e (tC + [|uoll),
(0) [IDu(:, )| < ePHEDH | Dug|| + tCR(1 + TK2(R3))}, where

K»(R) = Crexp {2CRTJT + TE} :

There is a constant R, independent of ¢, i, and At such that ||¢°(-,#)|| < R4. This
follows from Lemma, 4.4 a) by replacing ||[v(-, t;—1)|| by R2 and At by T'. Similarly
there is a constant Rs independent of ¢, i, and At such that [[1/°(-,t)|| < Rs. Define

(416) R .= maX(Rz,R3,R4,R5).

By a similar argument there is an L independent of ¢, 7, and At such that

(4.17)

max ”DU('ati)”a sup ||D¢6(7t)||a sup ||Dq6('at)”7 sup ||DU(,t)” < L.
tsisn [0,7]

i—1,ts ti—1,t;
Furthermore we set
(418) M= M, max{L,R}-

We will need the M to be this big because of equation (4.1). We are now in a
position to prove Theorem 3.1.

¢) The proof of Theorem 3.1
We prove Theorem 3.1 by applying Proposition 2.3 to u and ¢°. Let us start by
deriving an inequality of the form (2.3) from the equation (4.4) satisfied by the
comparison function ¢°.

Let ¢ be a C' function, and assume that ¢° — ¢ has a local maximum point in
(t,x) € [ti—1,t;] x RNV . Then by the definition of viscosity subsolution and equation
(4.4) we get

(4.19) Gu(x,t) + H(t, 2, ¢’ (2, 1) — 2 (x,t), Dd(x,t) — DY (x,t)) < ¢f(w,t).
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Now we estimate ¢ (z,t) and H(t,z,q°(z,t) — ¢°(z,t), Dp(x,t) — Dy (x,t)) as
follows:

|’(bf(fl;,t) - G(tiflawaqé(wat)ﬂ

= ‘/ n5(2)G(ti 1,2 — z,0(x — 2,t;1))dz — G(ti1,7,q° (z,t))
RN
< / 15(2)|G (i, 7 — 2,0(x — 2,ti-1)) — Gltior, @ — 2,0 (@ — 2,1))|d2
RN
+ / 5(2)|Gti 1,5 — 2,6 (@ — 2,1)) — Glti 1,2, (& — 2,8))|dz
RN

+/ 15(2)|G(ti-1, 2,4’ (x — 2,t)) — G(ti—1,7,¢’(x,1))|dz
RN
< LMAt + Cgré + LLG,

where we have used (G3), (G4), and M is given by Lemma 4.4 (c). Using this
estimate and (G5), we see that

o (z,t) < G(t,z,¢°(x,1)) + |G(tiz1, 2,4’ (x,1)) — G(t, x,¢°(x,1))|
(4.20) 108 (@,8) = Gltir, 2, (@, )|
< G(t,z,¢°(x,t)) + At {LM + Ng} + 6{Cr + LL}.
We get the following estimate for H:
H(t, 2,4 (2,t) = ¢°(2,1), Dé(w,t) — DY’ (z,t))
(4.21) > H(t,x,q’(z,1), Dp(x,1)) — Ly° (z,t)| — M|Dy’ (z,1)]
> H(t,z,q (z,t), Dp(z,t)) — At{L(C + LR) + M(Cg + LL)},
where we have used (H3), (H6), and Lemma 4.3. Define the constant My by
(4.22) My :=L{C + LR} + M{Cg + LL} + LM + Ng.
Substituting (4.20) and (4.21) into (4.19), we get
$u(w,1) + H(t,3,4" (3,1), Dp(w,1)) — G(t, 3,4 (2,1)) < f (1),
where
(4.23) f(z,t) := At Mo + 6{Cg + LL}.

In a similar way we can show that if ¢ is C* and ¢° — ¢ has a local minimum in
(z,t) € [ti_1,t;] x RV, then

b¢(x,t) + H(t,z,¢°(x,t), Dd(x, 1)) — G(t, z, ¢’ (x,t)) > —f(x,1).
This means that ¢ satisfies
¢} (z,t) + H(t, 7,4’ (2,1), D (2,1)) — G(t, 2,4’ (x,1))| < f(x,1)

in the viscosity sense, where f is given by (4.23).
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Now we are in a position to apply Proposition 2.3 to u and ¢°. Let 7 € [t;_1, t;]
and note that

/ e~ f(-,0)|ldo < A Mo + At5{Cp + LL}.
ti—1

Applying Proposition 2.3 we get

(4.24) e lu(-, ) — ¢ ()|

<e Pti-1|lu(- t;i1) — (-, tish)|| + At* My + At 6{Cr + LL}.

Next, observe that
(@, ti-1) — ¢ (@, ti 1))
= [v(@, ti 1) = E(ti, ti1)v(-, ti1)(2) — 90 (2,85 1))|
= |AtG(tio1, @, v(m, ti 1)) + 0 (@, ti1))|
<t [ ns(a)|Gltir,z,v(oti0))
RN

— G(ti—1,x — z,v(x — 2,t;—1))| dz
< AtSL||Do(-,ti—1)|| + At 6Cr,

(4.25)

where the last estimate follows from the triangle inequality, (G3), (G4), and Lips-
chitz continuity of v(-,¢;—1). By (4.24) and (4.25), we get

||u(7tl) - U(‘,t,’)” = ||u('>ti) - q6(7t1)||

(4.26) _ ‘ , o
< ePAY|u(z, ti1) — v(x, tioy)|| + At> Moelt + 26At {Cr + LL}e .

Since ¢ = 1,...,n was arbitrary, successive use of (4.26) gives

llu(t5) = v 25)l

— - J = _ = J =
(4.27) < eltif|lug — wol| + A2 Mget™ Z eLiAt L 95AL {Cr+ LL}eLT Z eliAt
i=1 i=1

< K(|Juo — vo|| + At) + 26T{Cgr + LL}e*'T, forj=1,...,n,

where K = (1 + MoT)e*rT and M, defined in (4.22). So, by the definition of L
and My, Lemmas 4.2 - 4.5, K is a constant depending on H, G, T, ||uo||, || Duol|,
[lvo|, and ||Dvg|| but not At.

Now we are done since sending § — 0 in inequality (4.27) produces the desired
result.

d) The proof of Corollary 3.1
We end this section by giving the proof of Corollary 3.1. To this end, we need
Theorem 3.1 and the following estimate

(428) ||U(.’L‘,tz) _’E(w7ti)|| S CAt7 i= 17"'7”7
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where C is a constant depending on G, H, T, ||uo||, ||Duol|, ||vel|, and || Dwo|| but
not At. Equipped with (4.28), we get, for every i =1,...,mn,

llul-, i) — v )l < llul- i) — v )l + o t:) — o(, )l
< K(|luo — woll + At) + CAt.
Let K = K + C and we can immediately conclude that Corollary 3.1 holds.
It remains to show (4.28). Let w € Lipy(Qr) be a solution of (3.4) and let
0 < s <t <T. By the definition of £, conditions (G2) and (G3), |E(t, s)w(=,t)[; <
C + L|w(z, s)| for a.e. z. Gronwalls inequality then yields
|Et, s)w(-, )| < "= (lw(-, s)|| + AtC) .
If you go through the proof of Lemma 4.2 replacing (4.11) by the above expression,
you will get that there is a constant R’ > 0 independent of At, j such that for
t € [tj,tj] _
“E(t7 tj)’lj(-, tj)” < R
Now, from the definitions of E and E we can write
|E(ti, tim1)v(z, ti1) — E(ti, tim1)o(z, tic1)| < Jo(z,ti1) — 0(, ti-1))]

(4.29) n /ti |G(ti—1,z,v(z,ti1)) — G(1, 2, E(1, t;1)0(z, ti1))| dr.

tioa
Using (G3) and (G5) we can estimate the last term the following way,
|G(ti1,2,0(z,tim1)) — G(1, 2, E(1, ti1)0(2, ti1)) |
< |G(ti-1,z,v(x,ti—1)) — G(ti—1, z,0(z,ti—1))]
(4.30) +|G(ti—1,2,0(2, ti—1)) — G(ti—1, 2, B(r,ti_1)0(z, ti1))|
+ |G(tiz1, 2, E(r,tic1)0(2, ti1)) — G(7, 2, E(1,ti1)0(, ti1)) |
< L|v(w,ti1) — 0(z,ti—1)| + LLy(T — ti—1) + N (T — ti_1).
The constant Ly denotes the time Lipschitz constant of E(r,#;_1)9(z,t;—1). Using

equation (3.4), conditions (G2) and (G3), and Gronwall’s inequality we find the
following bound for Ly,

(4.31) Ly < sup{|G(t,z,7)| : (t,x) € Qr,|r| < R'} < " (LR + TC).

By estimates (4.29)—(4.31) we get the existens of a constant C' independent of At
and ¢ such that

\E(ti,ti1)v(e, tio1) — Bti, tio1)0(z, ti1)| < P2 o, tior) — B(w, tim1)|+C' AL,
Now using this and Theorem 2.1 we find that

llv(- ) —v(-, )l

= ||S(ti, tic1 ) E(ti, tima)v(-, tim1) — S(ti, tima) E(ts, tim1)0 (-, ti) ||

< A Eti tima)o(stict) — Etistima)o (-, tict) |

<A (ol tia) = ot + CTAE).

(4.32)
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Since that ©(x,0) = wvo(x), repeated use of inequality (4.32) gives (4.28). This
completes the proof.

5. A FULLY DISCRETE SPLITTING METHOD FOR ONE-DIMENSIONAL EQUATIONS

In this section we describe a fully discrete operator splitting method that actually
possesses a linear convergence rate. There are not many numerical methods that are
likely to produce linear convergence, since numerical methods for Hamilton-Jacobi
equations are usually based on numerical methods for conservation laws. Most
methods for conservation laws (even “higher order” methods) have an L' conver-
gence rate of 1/2 (or less). Roughly speaking, this translates to a L* convergence
rate for the Hamilton-Jacobi equations of 1/2. Therefore the linear error contribu-
tion O(At) (see Theorem 3.1) coming from the temporal splitting is swamped up by
the method-dependent error, unless one uses a method that possesses a convergence
rate of at least 1 for the Hamilton-Jacobi equation (3.2). The only methods likely to
achieve this are translations of front tracking methods for conservation laws. Since
these methods are first order (or higher [35]) only in the one-dimensional case, this
section is entirely devoted to one-dimensional equations.

The front tracking method we shall use here was first proposed by Dafermos [11]
and later shown to be a viable method for conservation laws by Holden, Holden
and Hgegh-Krohn [15]. An extension of this method to Hamilton-Jacobi equations
was studied in [23].

Without modification it applies to the initial value problem for the scalar con-
servation law

pe+ H(p)o =0,
which is equivalent (see the discussion in §1) to the Hamilton-Jacobi equation
(5.1) ug + H (ug) =0, u(z,0) = uo(x).
The Riemann problem for this is the case where

f
(5.2) uo(@) = up(0) + {717 Tr T <D,
prx for x>0,

where p; and p, are constants. We now briefly describe the solution of (5.2). Let
H_ (p;pi, pr) denote the lower convex envelope of H between p; and p,, i.e.,

(5.3)
H_ (p;pi,pr) = sup{G(p) | G" > 0 and G(p) < H(p) for p between p; and pr}.

Similarly, let H~ (p;p;, pr) denote the upper concave envelope of H between p; and
pr. Let also

B (pipi,py) = H_ (pipi,pr) i pr < pr,
e H’“ (p;plapr) lfpl > Dp.
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Note that H'(p) is monotone between p; and p,, hence we can define its inverse
and set

(5.4)

m forx<tmin{f{’(pl),ﬂ’(pr)},

N1 . .

()" (3) for tmin {f (p) , F' ()} <=

p(z,t) = . N
< tmax {H (), H' (pT)},

r forwztmw{ﬁ’(pz),ﬁ’(pr)}-
Then the viscosity solution of the Riemann problem (5.2) is given by (see [23])
(5.5) u(z,t) = ug(0) + zp(z,t) — tH(p(x,t)).

Note that in the case where H is convex, this formula can be derived from the
Hopf-Lax formula for the solution to (5.1).

Note that the above construction (5.4) and (5.5) only requires that H is Lipschitz
continuous, not differentiable. Exploiting this, let § be a small positive number and
set

) . H((@+1)6) — H(id
(6.6)  H(p) = H(d) + (p—in) T D) = HED
If H is Lipschitz continuous, then H % is piecewise linear and Lipschitz continu-
ous. Furthermore, also H? will be piecewise linear and ((H?)")~! will be piecewise
constant. Now set u® to be the viscosity solution of the Riemann problem for the
equation

for i0 < p < (i +1)6.

ul + H° (ul) =0.
;From (5.5) we then see that u® will be piecewise linear. The discontinuities in u

will move with constant speed in the (z,t) plane.
This construction can be extended to more general initial values. Assume that

é

xz

u$(z) is a continuous piecewise linear function such that
(5.7 lim ||ug - u0|| =0.

d—0
Then one can solve the initial Riemann problems located at the discontinuities of
ugm according to (5.5). At some t; > 0, two of these discontinuities will interact,
thereby defining a new Riemann problem at the interaction point. This can now
be solved and the process repeated. Note that this amounts to solving the initial

value problem for the conservation law
4+ H° (p‘s)z =0  p’(z,0) = u, ().

In [15] it was shown that this yields a piecewise constant function p°(z,t), which is
constant on a finite number of polygons in the (z,t) plane. Let u’(x,t) denote the
result of applying (5.5) at each interaction of discontinuities. From [23], we have
the following lemma:

Lemma 5.1. The piecewise linear function u®(x,t) is the viscosity solution of
(5.8) ul + HO (ud) =0, u®(z,0)=ul().
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Now we can state our main result:

Theorem 5.1. Let u(x,t) be the viscosity solution of

(5.9) ug + H (ug) = G(z,t,u), u(z,0) =uo(z).

Let S° be the solution operator for (5.8), and let

(5.10) V(1) = S (tiytio1) E (tiy tio1) 00 (-, ti_1), fort € (ti_y,ti],
with

uo((j + 1)Az) — uo(jAz)
Az

Then there is a constant K, depending only on ||luol|, ||uo,z||, H, G and Ty, such

that

(5.11) [u(t) = ()] < K (5+ At+Az),  Vte (0,Tm).

02 (2,0) = uo(jAZ)+(z—jAx) , for x € [jAz, (j + 1)Axz].

Proof. Let w® denote the viscosity solution of
(5.12) w! + H° (wl) =G (t,z,0°), w’(z,0) =uo().

Then Theorem 3.1 and the fact that w? is Lipschitz in time ensures the existence
of a suitable constant K such that

(5.13) |w® (-, 8) =, )| < K ([|[v° (-, 0) — uo| + At) .

By the definition of v’ (x,0) and since ug € Lipy(R),

(5.14) [°(-,0) —uo| < KA=.

Also, from Proposition 1.4 in [39], we find that

(5.15) [u(,t) =’ 8)]| < K suwp |H() - H'(p)| < K3,
pI<

since we assume that H is locally Lipschitz. The result now follows from (5.13) and
(5.15). O

Remark 5.2. If H and ug are twice continuously differentiable, then the estimates
(5.14) and (5.15) can be replaced by

||v‘5(-,0) — uOH < KAz®> and ||u(-,t) — w‘s(-,t)” < K§?
respectively. Thus the final error estimate (5.11) is found to be
(5.16) (- t) = t)|| < K (62 + Az® + At).

Therefore, if H and uo are C?, then § and Az can be chosen much larger than At
without loss of accuracy.

Example 5.1. We now illustrate the above result with a concrete example, and
test the operator splitting method (5.10) on the initial value problem

sin(rz) for |z| <1,

3

1 3
5.17 — =u, ,0) =
( ) us + 3 (ue) u, u(@,0) {0 otherwise.
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opsplit 20 steps

N ~
08l opsplit 2 steps ’ \ N 4 08l
— - upwind method \
- initial value

- -~ upwind method / \
- initial value ’

06

04

02f

Ficure 1. Left: u(z,1/2) with At = 0.25, right: wu(z,1/2) with
At = 0.025.

The approximate solution operators are front tracking for the Hamilton-Jacobi
equation

uet 3 () = 0,
3

and Euler’s method for the ordinary differential equation u; = u. Figure 1 shows the
approximate solution found using Az = 0.02 and § = 2Az, as well as the upwind
approximation (5.18) with the same Az. To the left we see the approximation
u(z,1/2) obtained by two splitting steps, i.e, At = 0.25, and to the right we have
used At = 0.025. To check the convergence rate (5.11), we compared the splitting
approximations to a difference approximation on a fine grid. We used the upwind
stencil

. ) 3
i At (Ul —ub

(5.18) uit = (1+ Atyuf — 5 (#) ,
with (hopefully) self-explanatory notation. For the reference solution we used Az =
1/250. In Table 1, we list the percentage relative L™ error for three difference
sequences of approximations: Az = 0.04, Az = 0.02, and Az = 0.01. In all cases
0 = 2Az. We compared the approximations at ¢ = 1/2. In the left column are the
number of splitting steps (At = 1/24#steps) and in the other columns we show the
errors. From this table we see that the numerical convergence rate is linear in all
three cases, confirming (5.11).

Example 5.2. As another example where we test the convergence rate (5.16), we
compute approximate solutions of the initial value problem

(5.19) ut + % (ug)® =u, u(z,0)=sin(rz).
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100 x relative L°-error
#steps | Az =0.04 | Az =0.02 | Az =0.01
1 41.2 38.4 39.9
2 22.8 23.2 23.2
4 11.3 14.5 11.8
8 6.2 7.4 5.9
16 3.3 3.0 2.9
32 1.6 1.8 1.4

TaBLE 1. Convergence of operator splitting applied to (5.17).

416 4

— reference solution
Nstep=1

-—-- Nstep=2

1.8 - - Nstep=4 4 4

E— Nstep=8

-24

-2.6 - N

FIGURE 2. Approximate solutions of (5.19) at ¢ = 1, with At =
1/Nstep and Nstep = 1,2,4,8.

As a reference solution, we have used the Engquist-Osher (or generalized upwind)
scheme

. o2 . . 2
) . 1 ut — ut ut —u_
u}:u;-(1+At)—§ min <%$J,O> + max <]le,0> )

with Az = 1/2000 (special millennium value). We compared the approximations
at t = 1. In Figure 2 we show the approximate solutions with 1, 2, 4 and 8 steps
as well as the reference solution at ¢ = 1. Also, instead of the splitting described
above, one can use the Strang splitting

u(-,iAt) ~ [E(At/2)S(A) E(At/2)] ue.



22 JAKOBSEN, KARLSEN, AND RISEBRO

100 x relative L*°-error

#steps | Godunov | Strang
1 18.80 3.32

2 7.46 1.73

4 4.04 0.93

8 1.67 0.48

16 0.80 0.21

32 0.48 0.10

64 0.19 0.05

TABLE 2. Convergence of Godunov and Strang splitting.

This gives formal second order convergence, and one would expect it to be better
than the Godunov splitting in practice. To take advantage of (5.16), we set

At = 1/4steps, Az =+/At/25, and 0 =+/At/10

as parameters for the front tracking scheme. In Table 2 we list the results. From
this we see that in both cases the convergence rate is linear, but Strang splitting
gives a much smaller error.

6. APPENDIX: PROOF OF PROPOSITION 2.3

In this section we present the proof of Proposition 2.3. The proof follows rather
closely the proof of Proposition 1.4 in [39].

In what follows, we shall need the following Grénwall type result for viscosity
solutions.

Lemma 6.1. Let T >0, v € R, and v, h € C([0,T]). Suppose that v satisfies
(6.1) v'(t) +yo(t) < h(t)
in the viscosity sense. Then, for 0 < s<t<T,

6.2) o(t) < 7 u(s) + / ITh(r) dr.

The proof of this result can be found in §I.11 in [8].

Remark 6.1. Condition (6.1) means that for every ¢ € C*((0,7)), if v — ¢ attains
a local maximum at to € (0,T), then ¢'(to) + yv(to) < h(to)-

In order to prove Proposition 2.3 we will proceed as follows. Assume that we
have a certain comparison principle involving u(z,t) — v(y,t) where |z — y| < ¢,
for £ > 0. We start by showing that Proposition 2.3 follows from this comparison
principle when we let € — 0. Then we prove the comparison principle. It is this
proof that is similar to the proof of Proposition 1.4 in [39].

a) A comparison principle to close the proof of Proposition 2.3.
In order to state the comparison principle we need to define some quantities. Let
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g > 0, Ry be as defined in Proposition 2.3, and 3 (z) := B(z/¢), where 8 € C§°(RY)
is such that

(63)  0<B<1, BO)=1, |DF <2 Bla)=0when fo|> 1.
Let 0 < s <7 <T, and define D, as follows

(6.4) D. ={(z,y) : 2,y € RV, |z —y[ < e}.

We will prove the following comparison principle

(6.5)

e sup {|u(z,7) —v(y,7)| +3Roe" "B (x — y)}

(z,y)€D.
.
<e”® sup {lu(z,s) —v(y,s)| + 3RoBe(z —y)} + / e[|+, 0)lldo + Kw(e),
(z,y)€D: 8

where + is defined in Proposition 2.3, K is some constant, and w is some modu-
lus. We recall that a modulus w is a positive, nondecreasing, continuous function
satisfying lim, o w(r) = 0.

Now note that

l[u(-s7)=v(7)[|+3Roe™ "™ < sup {|u(z,7)—v(y,T)|+3Roe "B (z—y)}.
(z,y)€De

Using this fact, the comparison principle (6.5), and letting ¢ — 0, we get
" {|lu(-; 7)=v (-, 7)|[+3Roe™ 77} < 6”3{||U('78)—v(',S)||+3Ro}+/ £ (:,0)ll do,
s

which is Proposition 2.3. We will now prove the comparison principle (6.5).

b) An alternative statement of the comparison principle.
We start by defining m*,

(6.6) mE(r) = . syl)lgD {(u(z,7) —v(y,7))* + 3Roe_7(T_s)ﬁg(x -9},

where ()~ = min(-,0) and (-)* = max(-,0).
The comparison principle (6.5) follows if we can show

e"mE (1) < e’*mT(s) + /T e || f (-, 0)|| do + Kw(e).

8
Thanks to Lemma 6.1, since m* € C([0,T]) it is sufficient to show that m¥ is a
viscosity solution in (0,7) of
(m®) (r) +ym* (1) <[IF (1)l + w(e).

We only prove this for m*, since the proof for m~ is similar.
So let n € C*((0,T)) and let # € (0,7) be a strict local maximum point of
mt —nin [ :=[f — a,7 + a] for some a > 0. We want to show that

(6.7) n'(7) +ym*(7) < IF (Dl + w(e).
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If m*(7) = 3Roe "%, then 7 is the maximum point of 3Rge 7" ~*) —n(r) in I,
and (6.7) is obviously satisfied. So assume

(6.8) mt(#) > 3Rpe™ (7%

¢) “Doubling of variables”.
For 8 > 0,1et ® : RV x RV x I x I = R be defined by

¥(z,y,7,7) = (u(z,7) = v(y,)" +3Roe T I p.(z —y)
+ (3Ro + 2Ry,)vs (T — 1) — n(T ;— T),
where R, := sup;c;|n(t)], v € C§°(R) is such that 0 < v < 1, 4(r) = 0 when

|7| > 1, and 75 (r) := y(r/é8'). Since ® is bounded on RV x RN x I x I for every
8" > 0, there is a point (z1,y1,71,71) € RY x RN x I x I such that

(6.9)

®(z1,y1,71,71) > sup d — 4.
RNXRNxIxI

Next select ¢ € C$*(RY x RY) satisfying 0 < ¢ < 1, {(z1,y1) = 1, |D¢| < 1, and
define ¥ : RV x RV x I x I — R by

(6.10) ¥(z,y,7,7) = ®(z,y,7,7) + 20'¢(2,y).
Since ¥ = ® off the support of ¢ and

U(z1,y1,71,71) = ®(21,91,71,71) + 26" > sup ®+0,
RNXRNXIXI

there exists a (zo, Yo, 70,70) € RY x RY x I x I such that

(6.11)  ®(zo,y0,70,70) > ¥(z,y,,7) for every (z,y,7,r) € RV x RN x I x I.
d) Some properties of the mazimum point (o, Yo, To,T0)-

We claim that the following properties hold:

Lemma 6.2. (i) If ' < &21, then |19 — ro| < ¢'.
(i) |zo — yo| < & when

(6.12) 28" + sup{|n(r) = n(t)| : |[r — t| < d'/2} < Ro.
IxI

(iii) 10,70 = T as ' — 0.
(iv) As ' — 0,

r0+ro
(u(z0,70) — v(y0,7m0))* + 3Roe™ "= =) B, (o — o)
= u(zo,70) — v(yo,70) + 3Rge " S ~9B. (zo — yo) = mF (7).

Proof. (i) Assume to the contrary that §' < %Q and |19 —7o| > &'. So ys (To—10) =
0, and by (6.11) we get

2Ry + 3Rpe (THe=9) _ n(TOTm) + 26’
Z lI;(:L'an():”-()JTO) Z \I’(SL',QJ',’f' + 05,7: + Oé)
> 3Roe "7 te=%) L 3R, + 2R, — n(F + @),
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ie.,

Ry

—T0+T0) > Ry sothat ¢ > 5

26’2R0+2Rn—n(%+a)+n( 5

which is a contradiction.
(i1) Let &' be so small that (6.12) hold. If |zg — yo| > €, then (6.3), (6.11), and (i)
implies

2R0 + 3R0 + ZRn — H(MTTO) + 26, Z \I,(Z'O;yO;TO:TO) Z \I’(.'L',(E,T(),To)
> 3Rpe "% + 3Ry + 2R, — n(n),

ie.,
T0 + 7o

25""”(7'0)—”( ) > Ry,

which is a contradiction.

(#4) Since I is compact, there is a 7 € I such that 79,79 — 7 along a subsequence as
6" — 0 (we denote the subsequence in the same way as the sequence). If we assume
(6.12), then it follows from (6.6), (6.11), and (ii), that for every (z,y) € RNV x RV
and 7 € I,

o+rg
e " I (u(yo, T0) — v(yo, o))t +mT(m0) — ”(
Z \I’(QZanOaTOaTO) 2 ‘I’(ZU,Z/J; T)
Z 3R0 + 2Rn + (U(LIL‘,T) - U(yaT))+ + 3R0ﬂ5($ - y) - n(T)7

i.e., since x and y are arbitrary,

To + To
2

) +26' + 3R, + 2R,

Totro

e I 0y, 1) = vlyo, 7o) +mH () — (P 0) +267 >t (7) = ().

Remember that v € Lipy(Qr) and let §' — 0, we then get
m*(7) —n(7) > m* (1) — n(r) for envery 7 € I.

But then T = 7, since 7 is a strict maximum of m* —n on I.
(iv) As before, we use (6.11) to obtain the following:

T0t+ro

(u(0, T0) — v(yo,70))* + 3Roe™" "2 =9 B, (x9 — yo)

+3Ro + 2R, —n( 21 428

2 lI’('(L.07:l/07/7-07r0) Z lI’('Z.7y77ﬁ77c)
> (u(z, ) —v(y,7))" +3Roe™ """ B.(z — y) + 3Ry + 2R, — n(7).

Here z,5 € RV are arbitrary, so

0470

(u(z0,70) — v(Yo,70))" + 3Roe™ " "= =) B, (w9 — o)
+/A TO"'TO _ A\ 7]
> m*(7) +n( 250 ) —n(7) - 20

and this implies that

hgnirolf{(u(woﬁo) —v(yo,m0))t + 31'%06_7(70?0 _S)ﬁs(xo —y0)} >m* (7).
I —
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Now by the above limit inferior and since 7 is the global maximum in I of m* —n,
we get
m*(7) = n(7)
ro+ro

> lim sup{ (u(z0, 70) ~ v(ao, 7)) + 3Rae ™55, (20 o)} — ()
’—

> lign igf{(u(xoaﬂ)) — 0(y0,70))" + 3Roe 7" 3 =) B (x0 — yo)} — n(7)
r—

> m™*(7) — n(7).

Finally, if along some subsequence limg: o (u(xo, 70)—v(yo,70)) T = 0, then m™*(7) <
3Roe~""=%) which contradicts (6.8). So now we have proved the claim. O

e) Using the equations to close the proof of the comparison principle.
By Lemma 6.2 d) let &' be so small that (u(zo,70) — v(v0,70))T = u(xo, 7o) —
v(yo,r0). Now observe that by (6.11), (zo,70) € Q1 is a local maximum for u — ¢,

and (yo,70) € Qr is a local minimum of v — ¢, where we define

é(z,7) := — 3Roe "FE 9 B.(z — yo) — (3Ro + 2Rn) s (T — 7o)
(6.13)

— 26'¢(2, yo) +n(”;’"°),
61 By, ) :=3Ree™ """ =93, (o — y) + (3Ro + 2Rn) vy (10 — )

+26'¢(z0,y) —n(TO;_T).

Recall that u and v are viscosity solutions of equation (1.1) and inequality (2.3),
respectively. By the definition of viscosity sub- and supersolutions, we get

é¢(x0,70) + F (10,0, u(20,70), DP(20,70)) <0,
é¢(yo,m0) + F(ro,Y0,v(Y0,70), DP(Y0,70)) > —f(Yo,70)-

Now we compute ¢; (o, 7o) and ¢;(yo, 7o) and subtract the two inequalities, yielding

¥3Roe™ T =98, (g — yo) + 1’ (w)
(615) S F("'O;:UO;U(:’/O;”IO):Dé(yO:rO))

— F(70,%0,u(%0,70), Dd(20,70)) + f(¥0,70)-

We will estimate the various terms on the right hand side of this inequality in order
to obtain inequality (6.7). We assume that ¢’ is so small that (6.12) is satisfied.
Define L := max{supy 1} || Du(-,t)||,supjo 7} [|Dv (-, ?)[|}. Since u,v € Lipy(Q1),
L < oo. Since (u — ¢)(xg,70) > (u — ¢)(xg + th, 1) for all t € R, h € RV, we have
by (6.13)
o+

#(x0,70) — p(z0 + th,10) = — 3R0€_7( 209 (Be(wo — yo) — Be(wo + th — yo))
—28'(¢(20,90) = C(20 + th,yo))
<u(zo,70) — u(zo +th,70) < L[t[|Al.
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By letting t — 0" and ¢ — 0~ we see that
3Roe ™2 (020 D, (20, y0) + 20' D ((20, 40)| < L.

This means that ||D@|| < L and in a similar way we can show that ||Dé|| < L.

Let wg be the modulus given by (F1) when R = max(Rp,L). Furthermore,
let w, denote the modulus of continuity of u. To derive the desired estimates, we
will also use condition (F3). To use this condition, we have to distinguish between
two cases: (i) u(zo,70) — v(yo, 7o) is nonnegative and (i) u(xg,70) — v(y0,70) is
nonpositive. Since the result is the same and the calculations are similar in both
cases, we only treat case (i).

We compute D¢ (x¢,79) and D¢(yo, s0) and use (F1), (F3), and the fact that
u,v € Lipy. The result is

(6.16)
F(To,.’L‘(),u($0,T0),D¢(.Z‘0,T0))
= F(ro,90,v(Y0,70),

é(yo,so))
+ F(70,Y0,v(y0, 7o),
0);
0);
0),

D (90,30)) — F(ro,Y0,v(Y0,70), D (yo,So))
D (yo, s0)) — F(10, 0, v(Y0,70), D (Z/O,So))
+ F (70, 20, u(%0,70), DP(yo0, 50)) — F (70, %0, v(Y0,70), Db (Yo, 50))
+ F (19, z0,u(z0,70), Dd(x0,70)) — F (70, T0,u(20,70), DP(y0, 50))
> F(r0,Y0,v(Y0,70), D (Yo, 50)) — wr (|70 — ro]) — wr(|Zo — yol)
+ (u(@o, 70) — v(yo, 70)) — wr (20'(|DC(0,y0)| + [Dy( (20, 30)]))
> F(r0,90,v(40,70), D(yo, 50)) — wr(8') — wr(e)
+7lu(zo,70) — v(yo,0)| — [7|wu(d") — wr(4d"),
where we also have used |D(| < 1.
By (6.15) and (6.16), we get

+ F(7-07$07 (yO:

T0+7r0
2

) + v{u(zo,0) — v(yo,70)| + 3Roe ™" =) B.(z0 — yo)}
<f(yo,m0) + wr(8'") + wr(e) + |¥|wu(d') + wr(4d").

Now, by letting §' — 0, we get inequality (6.7). This follows from Lemma 6.2 and
the fact that (u(zo, s0) — v(yo, 50))T < |u(zo,50) — v(Yo, 0)|- This ends the proof
of the comparison principle.
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ON THE CONVERGENCE RATE OF OPERATOR SPLITTING
FOR WEAKLY COUPLED SYSTEMS OF HAMILTON-JACOBI
EQUATIONS

E. R. JAKOBSEN, K. H. KARLSEN, AND N. H. RISEBRO

ABSTRACT. Assuming existence and uniqueness of bounded Lipschitz continu-
ous viscosity solutions to the initial value problem for weakly coupled systems
of Hamilton-Jacobi equations, we establish a linear L*° convergence rate for
a semi-discrete operator splitting. This paper complements our previous work
[3] on the convergence rate of operator splitting for scalar Hamilton-Jacobi
equations with source term.

1. INTRODUCTION

The purpose of this note is to study the error associated with an operator split-
ting procedure for weakly coupled systems for Hamilton-Jacobi equations of the
form

aui
ot
(1.1)

u(z,0) = ug(z) in RN,

+ H;(t, x,u;, Du;) = Gi(t,z,u) in Qr =RN x(0,7), i=1,...,m,

where the Hamiltonian H = (Hy,...,H,,), is such that H; only depends on wu;
and Du; (and z and t). The equations are only coupled through the source term
G = (G1,...,Gn).

We assume that the present problem has a unique bounded, Lipschitz continuous
viscosity solution. We mention that existence of viscosity solutions for systems
of fully nonlinear second order equations of the form Fj(z,t,u, Du;, D*u;) = 0,
i =1,...,n, was shown in [2] if F' is quasi-monotone and degenerate-elliptic. In
our setting we can therefore assume that H — G is quasi-monotone.

Our semi-discrete splitting algorithm consists of alternately solving the “split”
problems

s
;z%—Hi(t,m,ui,Dui):O, fori=1,...,m,
ug = G(t,z,u), u= (U1, Unm),

sequentially for a small time step At, using the final data from one equation as

initial data for the other. We refer to Section 2 for a precise description of the

operator splitting. We prove that the operator splitting solution converges linearly

in At (when measured in the L® norm) to the exact viscosity solution of (1.1). This
1
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is a generalization of the results in [3], where convergence of a splitting algorithm
was proved in the scalar case.

Before stating our results, we start by defining our notation and state the neces-
sary preliminaries, for more background we refer the reader to Souganidis [6], see
also [1].

Let ||f|| := ess sup,cy|f(z)|. By BUC(X), Lip(X), and Lipy(X) we denote
the spaces of bounded uniformly continuous functions, Lipschitz functions, and
bounded Lipschitz functions from X to R respectively. Finally, if f € Lip(X) for
some set X C RY | we denote the Lipschitz constant of f by ||Df]|.

Let F € C([0,T] x RY x Rx RY) and ug € BUC(RY) and consider the following
initial value problem

(1.2) u+F(t, z,u,Du) =0 in Qr,
(1.3) u(z,0) = up(z) in RV,
where ug € BUC(RY).

Definition 1.1 (Viscosity Solution).  1): A function u € C(Q1;R) is a viscos-
ity subsolution of (1.2) if for every ¢ € C*(Qr), whenever u — ¢ attains a
local mazimum at (zg,to) € QT, then

é¢(z0,t0) + F(to, o, u, Dp(x0,10)) < 0.

2): A function u € C(QT;R) is a viscosity supersolution of (1.2) if for every
¢ € C1(Qr), whenever u — ¢ attains a local minimum at (x9,t9) € Q, then

é¢(zo,t0) + F(to, o, u, Dp(x0,10)) > 0.

3): A function u € C(Qr;R) is a viscosity solution of (1.2) if it is both a
viscosity sub- and supersolution of (1.2).

4): A function u € C(QT;R) is viscosity solution of the initial value problem
(1.2) and (1.3) if u is a viscosity solution of (1.2) and u(z,0) = ug(z) in RV .

From this the generalization to viscosity solutions of the system (1.1) is imme-
diate. In order to have existence and uniqueness of (1.3), we need more conditions
on F.

(F1): F € C([0,T] x RV x R x RY) is uniformly continuous on [0,7] x RY x

[-R, R] x By (0, R) for each R > 0, where By(0,R) = {z € RV : |z| < R}.

(F2): supg, |F(t,z,0,0)| < co.

(F3): For each R > 0 there is a yg € R such that F(t,z,r,p) — F(t,x,s,p) >

yr(r—s) forallz e RN, ~R<s<r<R,t€[0,T],and p € RN.

(F4): For each R > 0 there is a constant Cg > 0 such that |F(¢t,z,r,p) —

F(t,y,r,p)] < Cr(1 + |p))|z — y| for all t € [0,T], |r] < R, and z, y and
pe RN,

Under these conditions the following theorems hold, see [6]:

Theorem 1.1 (Uniqueness). Let F : [0,T] xRN xRxRN — R satisfy (F1), (F3),
and (F4). Let u,v € BUC(QT) be viscosity solutions of (1.2) with initial data
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uo,v0 € BUC(RY), respectively. Let Ry = max(||ul],||v||) and v = yr,. Then for
every t € [0,T1,
llu,t) = v(, )l < e |lug — voll.

Theorem 1.2 (Existence). Let F : [0,T] x RY x R x RN — R satisfy (F1), (F2),
(F3), and (F}). For every ug € BUC(RN) there is a time T = T(||uo||) > 0 and
function v € BUC(Qt) such that u is the unique viscosity solution of (1.2) and
(1.8). If, moreover, yg in (F3) is independent of R, then (1.2) and (1.8) has a
unique viscosity solution on Qr for every T > 0.

Proposition 1.1. Let F : [0,T] x RY x R x RN — R satisfy (F1), (F2), (F3),
and (F4). If ug € Lipy(RY), and u € BUC(RY) is the unique viscosity solution of
(1.2) and (1.3) in Qr, then u € Lipy(QT).

2. OPERATOR SPLITTING AND MAIN RESULTS

We now give conditions on G and H which in the scalar case (m = 1) will
be sufficient to get existence and uniqueness of a viscosity solution in Lipy(QT).
Moreover these conditions are strong enough to give a linear convergence rate for
the operator splitting.

We assume that H and G satisfy the following conditions:

(H1 — H4): For each i, H; satisfies conditions (F1) — (F4).

(H5): There is a constant L > 0 such that

|Hi(ta$7,r7p) - Hi(t,ib', Sap)l S Lle - Sl

fort€[0,T],z,peRY,r,s €eR, andi=1,...,m.
(H6): For each R > 0 there is a constant N& > 0 such that

|Hi(t,1‘,7",p) - Hi(famaTap” < NII%I(]' + |p|) |t - ﬂ

for t,€[0,T)], |r| <R, z,pe RN jandi=1,...,m.
(H7): For each R > 0 there is a constant Mg > 0 such that

|Hz'(t,ﬂ},7',p) - Hi(t,m,'f', q)| S MR|p - q|

fort € [0,T], |r| < R, z, p, ¢ € RN such that |p|, |[¢f < R,andi=1,...,m.
(G1): G e C([0,T] x RN x R™;R™) is uniformly continuous on [0, 7] x RY x
B,,(0, R) for each R > 0.
(G2): There is a constant C% > 0 such that C¢ = supg,. |G(t,z,0)| < .
(G3): For each R > 0 there is a constant C§ > 0 such that
|G(t,$,’l“) - G(t7 y,r)| < Cg|$ - y|
for t € [0,T), |r| < R, and z, y € RV.
(G4): There is a constant LY > 0 such that
|G(t,z,r) — G(t,z,s)| < LYr — s

for (t,z) € Qr and r,s € R™.
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(G5): For each R > 0 there is a constant N§ > 0 such that
|G(t,$,’f’) - G(E,ZU,T’)l < Ng |t - ﬂ
fort,€[0,T), |r| < R, and z € RV.
Note that by the conditions (F2) and (G2) we can assume that H; satisfies H;(t,x,0,0) =
0. If this were not so, we could simply redefine H as H(t,z,u,p) — H(t,z,0,0) and
G as G(t,z,u) — H(t,z,0,0).

We assume that uy € Lipy(RY; R™) and that there exists a unique solution
u € Lipy(Qr,R™) to the initial value problem (1.1).

First we will state an error bound for the splitting procedure when the ordinary
differential equation is approximated by the explicit Euler method. To define the
operator splitting, let

E(t,s) : Lipy(RY;R™) — Lipy(RY; R™)
denote the Euler operator defined by
(2.1) E(t, s)w(z) = w(z) + (t — 5)G(s, 7, w(z))
for 0 < s <t <T and w € Lipy(RY; R™). Furthermore, let
Su(t,s) : Lipy(RY) = Lipy(RY)

be the solution operator of the scalar Hamilton-Jacobi equation without source
term

(2.2) ug + H(t,z,u, Du) =0, u(z, s) = w(x),

i.e., we write the viscosity solution of (2.2) as Sy (t, s)w(x).
We let S denote the operator defined by

S(t7 S)w = (SH1 (t7 S)wla ) SHm (t7 S)wm)

for any w = (wy,...,wy) € Lipy(RY;R™). Now we can define our approximate
solutions: Fix At > 0 and set t; = jAt, set v(z,0) = vo(z) and
(2.3) v(x,t5) = S(tj,t-1)E(tj, tj-1)o (- tj-1) (@),

for 7 > 0. Note that this approximate solution is defined only at discrete ¢-values.
Our first result is that the operator splitting solution, when (2.2) is solved exactly,
converges linearly in At to the viscosity solution of (1.1).

Theorem 2.1. Let u(x,t) be the viscosity solution of (1.1) on the time interval
[0,T], and v(z,t;) be defined by (2.8). There exists a constant K > 0, depending
only on T, ||uol|, ||Duol|, ||voll, ||Dwol|, H, and G, such that for j =1,...,n

llu(,t5) = v(- )|l < K(lluo — voll + At).

We will prove this theorem in the next section.

Our second theorem gives a convergence rate for operator splitting when the
explicit Euler operator F is replaced by the exact solution operator E. More
precisely, let E(t,s) : Lipy(RY;R™) — Lipy(RY;R™) be the solution operator
of the system of ordinary differential equations

(2.4) ug = G(t,x,u) u(z, s) = w(x).
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where w € Lipy(RY; R™). Note that x acts only as a parameter in (2.4), and that
the assumptions on G ensure that FE is well defined on the time interval [s, T].
Analogously to (2.3) we define the approximate solution {(z,;)}7_,,

(2.5) o(z,t5) = S(tj,tj-1)E(t;, tj-1)0(, tj-1) (),
for j > 0 and 9(z,t9) = vo. Then we have:

Theorem 2.2. Let u(z,t) be the viscosity solution of (1.1) on the time interval
[0,T] and 9(x,t;) be defined by (2.5). Then there exists a constant K > 0, depending
only on T, ||uo||, || Duoll, ||voll, ||Dwol|, H, and G, such that for j =1,...,n

llu(, ;) = 3, 85Il < K(lluo — voll + At).

Remark 2.3. Theorems 2.1 and 2.2 are generalizations of Theorems 3.1 and 3.2
in [3].

3. PROOFS OF THEOREMS 2.1 AND 2.2

We will proceed as follows: First we give some estimates we will need later. Then
we introduce an auxiliary approximate solution and prove linear convergence rate
for this solution. This proof involves the scalar version of Theorem 2.1. We proceed
to show that the operator splitting solution converges to this approximate solution
with linear rate. This completes the proof of Theorem 2.1. Finally we give a proof
of Theorem 2.2. This proof is similar to the proof of Theorem 3.2 in [3].

We start by stating the relevant estimates on S. Let w,w € Lipy(RY), 0 < s <
t <T,and Ry = sup, ,, [|Si(t, s)w]|, then

(3.1) 185t s)w]| < e )l
(3:2) ID{Si(t, s)w}|| < " TKEDE9) (1 D|| + (¢ — 5)K(R1)},
(3.3) 1S5(t, s)w — Si(t, )| < e =9 ||lw — @],

where K (R) is a constant depending on R but independent of 4, t, and s. Estimate
(3.3) is a direct consequence of Theorem 1.1. Note that in this case v = L.
Estimates (3.1) and (3.2) correspond to estimates (4.7) and (4.8) in [3].

Regarding the approximation defined by (2.3), v(-,t;), we have the following
estimates:

Lemma 3.1. There is a constant R independent of At such that Juax lo(-, )]l <
<i<n
R. Moreover for every 1 < j <n,
(@): o)l < m B +mE ]| +1,09),
(b): ID(-, t5)[| < m e HmETHEEL (| Dyg|| + t5(CF + K (R))}-

Proof. To prove a) and b), we need (3.1), (3.2), and the definition of the operator
E. We only give the proof of a). The proof of b) is similar. By (3.1) we get

(34)  ||Si(ts,ti1) {Bj,t;—1)v( t-1) ]| < XA [{B @, t—1)v(t—1) ]| -
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We then use the definition of E (2.1) and (G3), (G4) to get
I{E (@, t5-1)o(t5- 1)l < loiCt5- 1)l + At (CF + LG |lo(, t5-1)]) -
Note that [[v(-,tj—1)]| < 31ty [|vi(-,¢j—1)||- Now using this and summing over ¢ in

inequality (3.4), we get

D NSitsstio){E (), ti-1)o( ti-1) bl

=1 m
< eLHAf{ (1+ AtmL%) Y i 1)l + mCGAt}
m i=1
(35) < et mEDBES oy ty-0) + mCOt .
i=1

The result in a) now follows from successive use of (3.5) and an application of the
inequalities |z| < Y"1, |z;| < mlz| for z € R™. Replacing ¢; by T in a), we see
that the existence of R is assured. O

Proof of Theorem 2.1.
Let u denote the solution of (1.1) and define

(36) é’i(t7m7r) =G; (ta z, Ul(.fL',t), R uifl(mat)a Ty Uit1 (IL', t)7 s 7um(x> t)) )
fori =1,...,m. Note that the function G; satisfies (G1)-(G5) for alli = 1,...,m.
Using G, we can rewrite (1.1) as a series of “uncoupled” equations

681?' + Hi(t,z,u;, Duy) = Gi(t,z,u;), i=1,...,m.

Of course, the viscosity solution of (1.1) u is also the unique viscosity solution of
the system of equations (3.7).

Now we want to do (scalar) operator splitting for each equation in (3.7). To this
end, for any z = (21,... ,Ty) € R™, let @i = (T1,- -, Tim1, Tit1s-- -5 Tm). NOW
for any w € Lipy(RY ; R™) let E;(t, s)w; be given by

(3.7)

Ei(t, s)w; = w; + (t — 5)Gi (s, z,w;) .

Now we define the following operator splitting solution ¥ = (91, ..., 7y),

(3.8) bi(w,t5) = Si(ty, ti—1) Ei(ty, t-1)0(w, tj1),

for j > 1, and ¥;(x, tg) = uo;(x). Note that E; is the Euler operator for the equation
6u,~ =
ot = Gi(ta T, ’U/Z)

Hence by the results of [3]:

Lemma 3.2. Let u(z,t) be the viscosity solution of (1.1) on the time interval [0,T]
and 0(z,t;) be the operator splitting solution (3.8). There exists a constant K' > 0,
depending only on T, ||uol|, ||Duol|, H, and G, such that for j =1,...,n,

llu(-,t;) — (. t5) Il < K'At.
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Using the above lemma, we wish to estimate ||3(-, t;) —v(-, t;)||, and start by using
the definition of the operator splitting solutions (2.3) and (3.8) and the estimate
(3.3). Then

|0i (z,t5) = vi (2, t5)| <[Si(ts,tj—1)Bilty, tj—1)0(e,t;_1)
= Siltj, tj-1) (E(tj, tj—1)v(z,tj-1));]
<e" A Bity, t-1)i(w, 1) — (B(ty,t1)v(z, t51),] -
By the Lipschitz continuity of G, we have that
B (tj,tj-1) 0 (2, tj-1) = (B (t,tj-1) v(-,tj-1));]
< (@ — i) (@, 1)) +At‘G,~ (g Tyt 1)y s Um)
-G (n(z,tjm1),. .. ,'Um(x,tj_l))‘
< (@ = vi) (@, b5 1)| + LA (|(win — via) (2,15 1) | + | (T — vi) (2, 151)])
< 1(5s = ) (@, tj-1)] + LE A (I(win = 362) (@, £-1)] + | @i = vi2) (@, 15-0)]
+ [(%; — Ui)(matjflﬂ)
< (@ — i) (z,t1)| + LYK' A + LEV2AL [5(z, 1) — v(z,ti-1)] -

Summing the resulting inequality over ¢ yields

m

> fvi(e, ;) — vila, b))
i=1 m
< el (mK'LGAt2 + (L+mLoV2At) Y |Bi(x,t; 1) — vi(x,tj1)|>
i=1
< e(LH+m\/§K'LG)tj (Z |U0,i($) _ UO,z’(x)l + mKILthAt>
i=1
Hence Theorem 2.1 holds. O

Proof of Theorem 2.2. We end this section by giving the proof of Theorem 2.2.
Assume for the moment that

(3.9) o (z,t;) — 0 (2,1;)]| < CAt

for all j, where C is a constant depending on G, H, T, ||luol|, ||Duol|, ||vo||, and
[|Dvo|| but not At. Using (3.9) and Theorem 2.1, we find

lu(5t5) =0t < Hlu s t5) —o G )+ [lo (5 85) = oG 85) ]
< K (|luo — woll + At) + CAt.

Setting K = K + C, we conclude that Theorem 2.2 holds. It remains to show (3.9).
Using the same arguments as when estimating the local truncation error for the
Euler method we find that

Z {E@tj1, tj)o(e,t;) — E(tjy1,t5)0(z, )}
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G m ~
<€A {u(@, t) — O, 1) hil + CAP,
i=1

where C' = mL%(LYR+C%) +mN§. Here R > max (|| E(t;,)0(-,t;)||, lv(-,£)Il),
R is finite by arguments similar to those used in the proof of Lemma 3.1. Now
using this we find that

Z {v (- tj41) = 0(, tj41) il
- ZH{S(tj+1,tj)E(tj+1,tj)U('atj)
=t — S(tj+1,tj)E(tj+1;tj)ﬁ('vtj)}i

m
< P IAN N B, t)v(, t) — Bty )00, ) 1|
=1

m
(3.10) < MDA (ST o 15) = 5, 1) hall + CAL).
i=1
Since that o(z,0) = vo(z), repeated use of inequality (3.10) gives (3.9). O

4. A FULLY DISCRETE SPLITTING METHOD

In this section we present a simple numerical example of the splitting discussed
in this paper. For simplicity we shall consider a system of two equations in one
space dimension

(41) ut+H(uw) :f(uav)a Ut+G(U:c) :g(u,v).

When testing this numerically, we must replace the exact solution operator S by
a numerical method. As most numerical methods for Hamilton-Jacobi equations
are have convergence rates of 1/2 with respect to the time step, we use a front
tracking algorithm, which has a linear convergence rate with respect to the time
step. This front tracking algorithm is described in [4] and we shall only give a very
brief account of front tracking here.

Front tracking uses no fixed grid and the solution is approximated by a piecewise
linear function. The discontinuities in the space derivative, the so-called fronts, of
the approximate solution are tracked in time and interactions between these are
resolved. This algorithm works for scalar equations in one space variable of the
form

ug + H(ug) = 0.

For equations in several space dimensions, front tracking can be used as a building
block in a dimensional splitting method, see [5].

For weakly coupled systems of the form (4.1), the approximate solution operator
E depends on both u and v. Therefore, after the action of F, we must add fronts
in the approximation of u at the position of the fronts in v and vice versa. In this
situation we cannot in general find a global bound on the total number of fronts to
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FIGURE 1. u(z,1) and v(z,1)

TABLE 1. At versus 100 x L error.

At 1 1/2 | 1/4 | 1/8 |1/16|1/32| 1/64
Error | 32.0 | 27.3 (24.2 169 | 105 | 6.3 3.8

track. In order to avoid this problem we use a fixed grid z; = iAz, for ¢ € Z, and
set

(4.2) S :=moSH

where 7 is a linear interpolation to the fixed grid and STt is the front tracking algo-
rithm. Unfortunately, this restricts the order of the overall algorithm to O(Az!/?).
Nevertheless, we do not have any inherent relation between Az and At, and we
used Az = At? to check whether we obtain a linear convergence for the range of
At’s we use.

We have tested this on the initial value problem

1
w+ 5 (uz)? = 4v(u +1)

1 u(z,0) =v(z,0) =1—|z|, forze[-1,1],
Vt —+ 5 (Uz)2 = u2 + ’U2

and periodic boundary conditions. In figure 1 we show the approximate solution
at t = 1 using At = 1/8. To find a “numerical” convergence rate, we compared
the splitting solution with a reference solution computed by the Engquist-Osher
scheme with Az = 1/2000. Table 1 shows the relative supremum error for different
values of At. These values indicate a numerical convergence rate of roughly 0.53,
i.e., error = O (At%%%), much less than the rate using an exact solution operator
for the homogeneous equation. Nevertheless, we observe that the rate increases if
we measure it for smaller At’s.



10

(1]

JAKOBSEN, KARLSEN, AND RISEBRO

REFERENCES

M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1-67, 1992.

H Ishii and S Koike. Viscosity solutions for monotone systems of second-order elliptic PDEs.
Comm. PDE., 16(6&7):1095-1128, 1991.

E.R. Jakobsen, K. H. Karlsen and N. H. Risebro. On the convergence rate of operator splitting
for Hamilton-Jacobi equations with source terms. SIAM J. Numer. Anal., 39(2):499-518,
2001.

K. H. Karlsen and N. H. Risebro. A note on front tracking and the equivalence between
viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation
laws. To appear in Nonlinear Anal. (TMA).

K. H. Karlsen and N. H. Risebro. Unconditionally Stable Methods for Hamilton-Jacobi Equa-
tions Available at the URL http://www.math.ntnu.no/conservation.

P. E. Souganidis. Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential
Equations, 56(3):345-390, 1985.

(Jakobsen) DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE

AND TECHNOLOGY, N-7034 TRONDHEIM, NORWAY

E-mail address: erj@math.ntnu.no

(Karlsen) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BERGEN, JOHS. BRUNSGT. 12, N-

5008 BERGEN, NORWAY

E-mail address: kennethk@mi.uib.no

(Risebro) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, P.O. Box 1053, BLINDERN,

N-0316 OsLo, NORWAY

E-mail address: nilshr@math.uio.no



PAPER 3

A convergence rate for semi-discrete splitting
approximations of viscosity solutions of nonlinear degenerate
parabolic equations with source terms.
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A CONVERGENCE RATE FOR SEMI-DISCRETE SPLITTING
APPROXIMATIONS OF VISCOSITY SOLUTIONS OF
NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH
SOURCE TERMS.

ESPEN ROBSTAD JAKOBSEN AND KENNETH HVISTENDAHL KARLSEN

ABSTRACT. We study a semi-discrete splitting method for computing approx-
imate viscosity solutions of the initial value problem for a class of nonlinear
degenerate parabolic equations with source terms. It fairly standard to prove
that the semi-discrete splitting approximations converge to the desired (exact)
viscosity solution as the splitting step At tends to zero. The purpose of this
paper is, however, to consider the more difficult problem of providing a pre-
cise estimate of the convergence rate. Using viscosity solution techniques we
establish the L convergence rate O(v/At) for the approximate solutions.

1. INTRODUCTION

The purpose of this paper is to study the error associated with a time-splitting
method for computing approximate viscosity solutions of the initial value problem
for a class of nonlinear degenerate parabolic equations. The present paper rep-
resents a continuation of our previous one [16] on time-splitting methods for first
order Hamilton-Jacobi equations.

A good representative for the class of equations that we study herein is the
following Hamilton-Jacobi equation perturbed by a nonlinear possibly degenerate
viscous term:
ug + F(Du) — ¢(Du)Au = G(u) in Q7 =RN x (0,7),

u(z,0) = uo(x) in RV,

Here, u(z,t) is the scalar function that is sought, ug the initial function, F' is
the Hamiltonian, ¢ > 0 is a scalar function representing “diffusion” effects, G is
the source term, D denotes the gradient with respect to £ = (z1,...,2n), and
D? denotes the Hessian with respect to z. Note that the first order Hamilton-
Jacobi equation is a special case of (1.1). We shall later consider more general
equations than (1.1) (see (3.1)), but for the moment it is sufficient to restrict our
attention to (1.1). Although we will not pursue this here, it is possible to consider

(1.1)
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weakly coupled systems of nonlinear degenerate parabolic equations. We refer to
[15] for details in the case of weakly coupled systems of first order Hamilton-Jacobi
equations.

Degenerate parabolic equations arise in a variety of applications, ranging from
image processing, via mathematical finance, to the description of evolving interfaces
(front propagation problems), see the lecture notes [1] for an overview. Due to the
possibly degenerate diffusion operator, problems such as (1.1) do not have classi-
cal solutions and it becomes necessary to work with a certain type of generalized
solutions. More precisely, it turns out that the correct mathematical framework
in which to analyze nonlinear partial differential equations such as (1.1) as well
as their numerical solutions is provided by the theory of viscosity solutions. We
refer to Crandall, Ishii, and Lions [10] for an up-to-date overview of the theory
of viscosity solutions for fully nonlinear first and second order partial differential
equations.

In this paper, we are concerned a semi-discrete numerical method for calculating
approximate viscosity solutions of (1.1). Roughly speaking, the method studied
herein is based on “splitting oft” or isolating the effect of the source term G. This
operator splitting technique has been used frequently in the literature to extend
sophisticated numerical methods for homogeneous first order partial differential
equations to more general non-homogeneous first order partial differential equa-
tions, see, e.g., [16, 15, 21, 24, 23]. The present paper represents one of the first
attempts to thoroughly analyze this source splitting technique for second order
partial differential equations.

To describe the operator splitting method in our “second order” context, let
v(z,t) = S(t)vo(x) denote the unique viscosity solution of the homogeneous second
order viscous Hamilton-Jacobi equation

(1.2) vy + F(Dv) — ¢(Dv)Av =0, v(z,0) = vo(z), zeRY, t>0.

Here S(t) is the so-called solution operator associated with (1.2) at time ¢. Fur-
thermore, let E(t) denote the explicit Euler operator, i.e., v(z,t) = E(t)vo(z) is
defined by
v(z,t) = vo(x) + t G(vo(x)).

Observe that E(t) is a (fully discrete) approximate solution operator associated
with the ordinary differential equation v; = G(v). Fix a splitting (or time) step
At > 0 and an integer n > 1 such that nAt = T'. Our operator splitting method
then takes the form

(1.3) o(@, t;) = [S(At)E(At)]iuo(:c),

where t; = iAt, i = 1,...,n. It fairly easy to prove that the approximate solutions
generated by (1.3) converge to the exact viscosity solution of (1.1) as At — 0,
thereby justifying the term “approximate solution”. The main result of this paper
is, however, that these approximate solutions converge with an explicit rate as
At — 0 (see below).

The convergence analysis of numerical methods for degenerate parabolic (or el-
liptic) equations has been conducted by many authors. We do not intend to give
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a survey here but refer only to a few papers currently known to the authors: Bar-
les and Souganidis [6], Barles [2], Barles and Jakobsen [4], Barles, Daher, and
Romano [3], Camilli and Falcone [7], Davis, Panas, and Zariphopoulou [11], Flem-
ing and Soner [13], Krylov [17, 18], Kuo and Trudinger [19], Kushner and Dupuis
[20]. Following the guidelines set forth by Barles and Perthame [5] and Barles and
Souganidis [6], many authors exploit the strong comparison principle for viscosity
sub- and supersolutions when proving convergence of their approximate viscosity
solutions. The disadvantage with the Barles-Perthame-Souganidis approach is that
it seems difficult to get an explicit estimate of the rate of convergence, i.e., an er-
ror estimate. Very few papers seem to provide such estimates. We only know of
the following papers that provide explicit convergence rates for their approximate
viscosity solutions of degenerate parabolic (or elliptic) equations: Krylov [17, 18],
Barles and Jakobsen [4], Cockburn, Gripenperg, and Londen [8], Jakobsen and
Karlsen [14], and Deckelnick [12]. Krylov [17, 18] and Barles and Jakbosen [4] deal
with the degenerate Bellman equation and convergence rates for its finite difference
approximations and monotone approximation schemes (including finite difference
schemes) respectively. Deckelnick [12] deals with a certain finite difference approx-
imation for the mean curvature equation. Cockburn, Gripenperg, and Londen [8]
and Jakobsen and Karlsen [14] deal with continuous dependence estimates, and
they get as a corollary convergence rates for vanishing viscosity approximations.

For smooth solutions, it is not difficult to show via a classical truncation error
analysis that the approximate solutions generated by the splitting method (1.3) are
first order accurate. We are, on the other hand, interested in the accuracy of (1.3)
when the solutions of (1.1) are non-smooth. Indeed, the main result of this paper
is that the L error associated with the time splitting (1.3) is of order v/At. More
precisely, we prove that

(1.4)  max

i=1,...,n

U(,t,) - /U(wati)

. <KVA,

for some constant K > 0 depending on the data of the problem but not At. It
is interesting to compare the convergence rate in (1.4) with the linear rate O(At)
obtained in [16] for first order Hamilton-Jacobi equations. Roughly speaking, the
loss of convergence rate of 1/2 is due to the second order differential operator in (1.1)
and the fact we are working with functions that are merely Lipschitz continuous in
space.

Although there are similarities, the proof of an explicit convergence rate for the
time-splitting method is much more involved here in the second order case than
in the first order Hamilton-Jacobi case [16]. The proof of (1.4) consists of several
steps. Here we will comment only on one of them. As in [16], we introduce a
conveniently chosen comparison function ¢(z,t;) which is “close” to the splitting
solution v(x,t;) for each i (see Section 4 for details). A central idea of the proof is
then to estimate (instead of u(-,t) — v(-,t)) the quantity

Hu('ati) —q(-t:)

‘L for all t € [t;—1,t;) for each i.
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As it turns out, the function ¢(z,t) satisfies (in the sense of viscosity solutions) a
nonlinear degenerate parabolic equation of the form

@t + F(z,Dq) — &z, Dg)Aq = G(z) in RY x (ti_1,t;),

1.5
( ) q(xati—l) = qz(w) in ]RNa

where ¢;(z), F, and & are “close” to v(z,t;_1), F, and ¢, respectively. Moreover,
G(z) is “close” to G(g(z,t)). Consequently, the proof of (1.4) is reduced to hav-
ing an explicit continuous dependence estimate for viscosity solutions of nonlinear
degenerate parabolic equations. A new aspect here is the need for a continuous
dependence estimate for the coefficient ¢ in the second order differential operator in
(1.1). Estimates of this type are not a part of the standard theory of viscosity solu-
tions [10]. In fact, continuous dependence estimates for viscosity solutions of second
order equations were obtained only recently by Cockburn, Gripenperg, and Lon-
den [8]. These authors considered a certain class of nonlinear degenerate parabolic
equations without space and time dependent coefficients. Jakobsen and Karlsen
[14] generalized their estimates to a larger class of nonlinear degenerate parabolic
equations with space and time dependent coefficients. This class is large enough
to include (1.5), the degenerate Bellman equation, the minimal surface equation,
and the timedependent p-Laplacian with p > 2. As is the case nowadays with the
comparison/uniqueness proofs for viscosity solutions of second order equations, the
continuous dependence estimates in [8, 14] are direct consequences of the maximum
principle for semicontinuous functions [9, 10].

The rest of this paper is organized as follows: In Section 2, we state existence,
uniqueness, comparison, and regularity results for viscosity solutions of the problem
under consideration. Then we recall a continuous dependence estimate from [14]
and use it to derive some a priori regularity estimates for exact viscosity solutions.
In Section 3, we state the operator splitting algorithm precisely as well as the main
convergence results. In Section 4, we give detailed proof of the result stated in
Section 3.

2. DEFINITIONS AND PRELIMINARY RESULTS

In this section we first recall the notion of viscosity solutions, and give existence,
uniqueness, and comparison results for the class of equations we shall study. We
then recall a stability (continuous dependence) result from [14] (see also [8]), and
derive from it some a priori estimates for exact viscosity solutions. Finally we state
regularity results for our solutions.

We need to introduce some notation. First let |- | denote the Euclidean norm in
RY and also the Frobenius matrix norm |A4| = tr[AT 4] for any matrix 4, where AT
denotes the transpose of A and tr denotes the trace. If X is a set, and f : X - R
is a bounded measurable function on X, then ||f|| := ess sup,x|f(z)|. For any
continuous function f : RY x I — R, where I C [0, 0) is a time interval, D f(z, t) is
the spatial gradient of f(z,t) in the sense of distributions. In particular ||Df|| < oo
means that |f(z,t) — f(y,t)| < ||[Df|||z — y| for all t € T and z,y € RY, that is
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Lipschitz continuity in = (uniformly in t). For functions f : RV — R, the same
holds, just remove any mention of time ¢.

We let C(X;Y), Cp(X;Y), Lip(RV), and Lipy(RY) denote the spaces of con-
tinuous functions, bounded continuous functions, Lipschitz functions, and bounded
Lipschitz functions from X to Y (some set) and RV to R respectively. Let S(N)
denote the spaces of N x N symmetric matrices. In this space we have the follow-
ing partial ordering <, defined as follows, X <Y, whenever eXe < eYe for every
e € RV, Finally, let Q7 = RN x (0,7).

In the rest of this section we shall consider the following initial value problem:

(2.1) ug + f(t,z,u, Du, D*u) — tr[A(t, Du)D*u] =0 in Qr,
(2.2) u(0,x) = uo(z).

We do not display the source term in this equation (think of it as hidden in the f
term) because we want to give general definitions and results. In particular, (1.1)
is special case of (2.1) with f(¢,z,u, Du, D*u) = F(Du) — G(u) and A(t, Du) =
c¢(Du)I.

There are several equivalent ways to define viscosity solutions [10]. We will need
only one of these definitions in this paper:

Definition 2.1 (Viscosity Solution). Suppose f € C([0,T],RY,R,RY S(N)) is
non-increasing in its last argument and A > 0.

1. A functionu € C(QT) is a viscosity subsolution (supersolution) of (2.1) if for
every ¢ € C?(Qr), if u— ¢ attains a local mazimum (minimum) at (zo,t) €
QT, then

¢¢(zo, to)+ f (to, To, (0, t0), D(z0, to), D*¢(z0, o))
— tr[A(t, Dg(o, t0)) D*$(20, t0)] < 0 (> 0).

2. A function u € C(Qr) is a viscosity solution of (2.1) if it is both a viscosity
sub- and supersolution of (2.1).

3. A function u € C(Q7) is viscosity solution of the initial value problem (2.1)
and (2.2) if u is a viscosity solution of (2.1) and u(z,0) = ug(z) in RY.
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We will require that (2.1) satisfies the following conditions:

FfeC(0,T] xRV x R x RN x S(N)) is uniformly continuous
(C1) on [0,T] x RNV x [-R, R] x Bn(0,R) x Bnxn (0, R) for each R > 0,
where B,,,(0,R) = {z € R™ : |z| < R}.
For every t,z,r,p, if X, Y € S(N),X <Y then
f(t7 'Z-J T7p7 X) Z f(t7 x? /,‘7p7 Y)'
(C2) For every t,z,p, X and for R > 0, there is yg € R
such that for —R<s<r<R
f(taxaraan) - f(taxasaan) > 'YR(T - 8).
For every t,p, A(t,p) = a(t,p)a(t,p)T for some
matrix a € C([0,T] x RN ; RV*F).

(04) Cf = SupQTXS(N) |f(t,.fL',0,0,X)| < oo.

For each R > 0 there is a constant C,J; > 0 such that

(CS) |f(t,.fL',T‘,p, X) - f(t7yarap7 X)| S CIJ;(]' + |p|)|$ - y|7
fort € [0,T),|r| < R, z,y,p € RV, X € S(N).

Remark 2.2. It is sufficient only to consider yg < 0 in (C2), because if yg > 0
the inequality still holds if you set the right hand side to zero. It is also sufficient to
consider only symmetric matrices A in (C3). This is a consequence of the fact that
the trace of a matrix equals the trace of the symmetric part of the same matriz.

(C3)

We have the following result concerning existence, uniqueness, and comparison
of viscosity solutions of (2.1):

Theorem 2.3 (Existence, uniqueness, and comparison). Assume that (C1)-(C5)
hold, that v in (C4) is independent of R, and that ug € Lipy(RN). Then there
exists a unique bounded viscosity solution u of the initial value problem (2.1) and
(2.2).

Moreover the following comparison result holds: Let u and v be viscosity solutions
of (2.1) with initial data ug and vy respectively, where ug,vo € Lipy(RN), then

sup(u-,£) = (1)) < e[| (uo — o) |l

We give the outline of a proof inspired by Zhan [25].

Outline of proof. 1. Conditions (C1)—(C3) and (C5) imply that a strong compar-
ison result holds for bounded viscosity solutions. It is by now quite standard to
prove this result, and we omit this proof. This result implies uniqueness.

2. The comparison result stated in the theorem follows from the strong compar-
ison result in the following way: Check that w(t,z) = u(t,z) — e 7||(uo — vo)™||
is a subsolution of (2.1) and note that w(0,z) < wo(z). Strong comparison then
yields w(t, z) < v(t,z) in Qr which is the desired result.

3. Take u. to be the solution of (2.1) with smooth initial data wg . := ug * pe,
where p. is a mollifier (a smooth function with unit mass and support in B(0,€)).

4. Since ug. € W3®(RM) and (C4) holds, it is easy to check that for K. big
enough, + K.t + ug () are classical sub and supersolutions of (2.1).
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5. Perrons method then yields the existence of a bounded continuous function
ue solving (2.1) in the viscosity sense, satisfying — K.t +uo -(z) < u(t,2) < K.t +
uo,e(z). This also means that u. takes the initial values ug .

6. The sequence {u.}. is Cauchy in C(Q7). This follows from an easy applica-
tion of the comparison result: |uc(t,-) — ue (t,-)]o < €7 |uge —uoerlo < Cle +¢').

7. Since Cy(Qr) is complete (under the supremum norm), the existence of

lim, ,oue: =: u € Cp(Qr) follows. Moreover by the stability result for viscosity
solutions (Lemma 6.1 in [10]) u is the viscosity solution of (2.1), so the proof is
complete. O

We state a result about the z-regularity of viscosity solutions of (2.1). This
result is part b) of Theorem 3.3 in [14].

Proposition 2.4 (Regularity in z). Assume (C1) - (C3) and (C5) hold. In ad-
dition, let w € C(Qr) be a bounded viscosity solution of (2.1) with initial data
ug € Lipy(RY). Then for every t € [0,T], u(t,-) € Lip(RN) and ||Dul| < oo.

Now we state a very crucial result for this paper, namely a continuous dependence
on the nonlinearities estimate. Consider two equations of the following form

(EQ) ul + fi(t,z,ut, Dut, D*u?) — tr[A;(t, Du)D*ui] =0, i=1,2,

then the following theorem, which is proved in [14] (Theorem 3.2 b)), gives an

estimate of u' — u?:

Theorem 2.5 (Continuous Dependence Estimate). Assume (C1)—(C3) and (C5)
hold for f; and A; with constants v% for i = 1,2. Furthermore assume that there
are functions ut € C(Q1) with ||u?]|,||Duf|| < oo fori = 1,2, such that u' and u?
are respectively a viscosity subsolution of (EQ1), and a viscosity supersolution of
(BQu). Let Ro = max(||ul[|,|[u?[)), 7 = min (vh,,73,), and Dy be the following
set

Dy = {(T,w,r,p) 17 € [s, ],z € RV, |r| <77 min (|lu' (], lu?]]) ,

1 < ¢ min(Dal |04, X € S .
Then for 0 < s <t < T there ezists a constant M depending only on T,%C}f{,
and ||Du|| for i = 1,2, such that
| (u (t,-) — u(t,) T < flut(s, ) — u?(s, )

; sup{(t — eI fy (72,7, p, X) = folr 2,7, p, X)|
D+

+ M(t - 5)'/ |ai (r,p) — as(r, p)| }

Note that if u* and u? are solutions (not only semisolutions), then by interchang-
ing the roles of u! and w2, the above result yields an estimate of ||u! — u?||. From
Theorem 2.5 we can derive the following a priori estimates:
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Corollary 2.6 (A priori estimates). Assume (C1)-(C5) hold, and let u € C(QT)
be a viscosity solution of (2.1) with initial data uo. Moreover assume that R :=
||u|| < 00 and L := ||Du|| < oo, and define v := yr. Then the following statements
are true for every t,s € [0,T]:
(a) Ify = g is independent of R, then ||u(-,t)|| < e™7(||uo|| + tC), where C is
given by (C4).
(b) |Du(-,t)|| < e (|| Duo|| + tCr(1 + L)) where Cr are given by (C5) and L
satisfies the following bound:

L< eT(QCRe_’YT_'Y)(”DuO”+TCR)_
(c) There is a finite constant Ko > 0 such that ||u(-,t) — u(-, s)|| < Ko/|t — s|,

where
Ko=¢" UM sup |a(r,p)| + V|t — s|(C+ws; (1)1 + R+ L))}.
Te[s’t]7
|p|<e=7*L

M s defined in Theorem 2.5, wy is the modulus of continuity of f(t,x,r,p,X)
provided by (C1) when |r| < R and |p| < L, and C is defined in (C4).

Proof. (a) Note that 0 is a viscosity solution of u; — tr[A(¢, Du)D?*u] = 0. The
result now follows by applying Theorem 2.5 to u and 0 and also using (C4).

(b) Let v(z,t) = u(x + h,t), then v is the viscosity solution to the following
initial value problem,

v + f(t, + h,v, Dv, D*v) — tr[A(t, Dv)D*v] = 0, v(z,0) = ug(z + h).
By Theorem 2.5 and (C5) we get
e llut,-) —v(t, )| < [[u(0,-) = v(0, )| + tCR(1 + L)h.
This is exactly the first inequality in b).

The prove the second part of (b), we use an inductive argument by Souganidis
[22]. First choose an m such that

T
0< &e*’YT <
m

DN | =

Define Q; := RN x (2T, LT], Q; := RN x [&
m m m
supg, |Du(z,t)|. Then u; is the viscosity solution

ui(z, =LT) = u(z, =1T). By part one, we get

LT), u; == u |g,, and L; :=
2.1) in @; with initial value

1

T
Li<eTm (Lifl + CRE(l + Lz’))-
Solving this inequality for L;, we get
-1 T . - T
L; < e—T<Li71 + CR_> < 20rme Ty (Liq + CR_)-
1-Cg %67’7; m m
The last inequality follows from the fact that for 0 < z
ing this formula we get the second part of (b).

IN
[y
‘H
IN
[4:}
[
8
o
<
=
@D
=
&



ON THE RATE OF CONVERGENCE OF OPERATOR SPLITTING 9

(c) Let v(t,z) = wu(z,s) for all t € [s,T], that means that v is the viscosity
solution of the initial value problem v; = 0, v(z,s) = u(z,s). As in (a) we use
Theorem 2.5 to get

(-, 1) — u(- 8)| = €7 lu(-, 1) o, 1)

<0+ (t — s)sup | f(r,2,7,p,X)| + (t — 5)"/* M sup |a(r, p)|,
D+ D+

The proof is complete with the estimation of the first supremum: Using (C3) and
(C4) we get

sup |f(T,.ZL',’I“,p,X)| < sup f(T,JI,0,0,X) +f(T7m7T7p7X) - f(Tal'aO:O;X)
Ds

s,t

< C+wp(sup lu(, 1)l + sup [Du(,7Il) < € +wp(1)(1+ R+ L),
T [0,T]

0’

The term supp, , |a(7, p)| is bounded by (C3). O

As a direct consequence of part c) in the previous corollary and Proposition 2.4,
we get the following result about the regularity in ¢:

Proposition 2.7 (Regularity in t). Assume (C1)-(C5) hold, uo € Lipy(RY), and
u is the bounded viscosity solution of the initial value problem (2.1) and (2.2). Then
there is a constant K > 0 such that |u(t, z) —u(s,z)| < K|t—s|'/? for allt,s € [0, T]
and z € RV .

3. STATEMENT OF THE MAIN RESULT

In this section we state the main results concerning the convergence of the semi-
discrete splitting method for the scalar initial value problem

ug + F(t,z,u, Du, D*u) — tr[A(t, Du)D*u] = G(t,z,u) in Qr,

(3.1) u(z,0) = up(x) in RV.

Observe that (3.1) is more general than (1.1). In applications, normally the F-term
would not depend on u. However this u dependence is irrelevant for the analysis,
so we keep it for the sake of generality.

We start by giving conditions on the data of the problem (3.1).
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Conditions on F'.

(F1)

(F2)

(F3)

(F4)

(F5)

(F6)
(F7)

(F8)

FeC(o,T] x RN x R x RY x S(NV)) is uniformly continuous
on [0,T] x RNV x [-R, R] x Bn(0,R) x Bnxn(0, R) for each R > 0.

cF .= SUPG, x S(N) |F(t,z,0,0,X)| < oo.

For each R > 0 there is a constant C%, > 0 such that
|F(t,.Z',T,p,X) - F(t,y,T‘,p,X)| S Cg(]' + |p|)|l1)’ - y|
fort € [0,7), |r| < R, z,y,p € RV, and X € S(N).
For each R > 0 there is a constant N > 0 such that
|F(t,z,r,p, X) = F(t,z,r,p, X)| < Ng (1 +[p])/It = ]
for t,£ € [0,T], |r| < R, z,p € RN and X € S(N).
There is a constant LY > 0 such that

|F(t,z,r,p,X) = F(t,z,5,p,X)| < L"|r — 5]
for t € [0,T], z,r,p € RN, and X € S(N).
For each R > 0 there is a constant M7 > 0 such that
|F(t,z,7,p,X) — F(t,2,7,q,X)| < Mf|p— g
for t € [0,T], |r| < R, z,p,q € RN and |p|,|¢q| < R, and X € S(N).
F(t,z,r,p,X) is non-increasing in X for every t,z,r,p.
For each R > 0 there is a constant Pr > 0 such that
|F(t,$,7’,p,X) - F(t,SU,T,p,Y)| S PR|X - Yl
for t € [0,T), |r| < R, z,p € RY and |p| < R, and X € S(N).

Remark 3.1. The X -dependence in F is very restricted. There can be no growth
at infinity, and F is both non-increasing and Lipschitz in X. An example of such an
F is F(t,z,r,p,X) = —H(t,z,r,p) arctan(tr X), where H is a function satisfying
(F'1)-(F6).

Conditions on G.

(G1)
(G2)

(G3)

(G4)

(G3)

G € C([0,T] x RN x R) is uniformly continuous
on [0,7] x RY x [-R, R] for each R > 0.
C% :=supg, |G(t,z,0)| < 0.
For each R > 0 there is a constant C§ > 0 such that
|G(t,z,7) — G(t,y,r)| < CElz —y|
fort € [0,T), |r| < R, z,y € RY.
For each R > 0 there is a constant NS > 0 such that
|G(t,z,7) — G, z,7)| < N§+/|t — 1
for t,t € [0,T], |r| < R, x € RN.
There is a constant LE > 0 such that
|G(t,z,7) — G(t,z,8)| < LE|r — 5|
for t € [0,T), z,r € RN

Conditions on A.
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(A1) For every t,p A(t,p) = a(t,p)Ta(t,p),a € C([0,T] x RN ; RF*N),

For each R > 0 there is a constant Mg > 0 such that

(A2) " \a(t,p) - alt,q) < Malp—q| fort e [0,T], p€ RV, and |p| < R.

We note that under these assumptions and ug € Lipy(RY), the conditions of
Theorems 2.3 and 2.5, Propositions 2.4 and 2.7, and Corollary 2.6 are all satisfied
for the initial value problem (3.1). In particular we have existence and uniqueness
of bounded Holder continuous viscosity solutions:

Theorem 3.2. If (F1)-(A2) hold and ug € Lipy(RY), then there exists a unique
viscosity solution u € Cy(QT), to the initial value problem (3.1). Moreover, there
is a K > 0 such that for all t,s € [0,T] and z,y € RY

lu(@,t) = uly, s)| < K(je -yl + [t — s['/?).

To define the operator splitting for (3.1), let E(t,s) : Lipy(RY) — Lipy(RY)
denote the Euler operator defined by

(3.2) E(t,s)vo(z) = vo(z) + (t — )G (s, z,vo(x))

for 0 < s <t < T and vy € Lipy(RY). Furthermore, let S(¢,s) : Lip,(RY) —
Lipy(RY) be the solution operator of the homogeneous parabolic equation

vy + F(t,z,v, Dv, D*v) — tr[A(t, Dv)D*] =0 in RN x (s,7),

3.3
3.3 v(z,s) =wvo(z) in RV,
where vg € Lipy(RY). Note that S is well-defined on the time interval [s,T] by
Theorem 3.2, since (3.3) is a special case of (3.1).

The operator splitting solution {v(z,t;)}%,, where t; = iAt and ¢, < T, is
defined by

v(z,t;) = S(ti, tiz1) E(ti, tim1)v(-, tim1) (),

(34) v(z,0) = vo(x).

Note that this approximate solution is defined only at discrete t-values. The
main result in this paper states that the operator splitting solution, when (3.3) is
solved exactly, converges with rate 1 in At to the viscosity solution of (3.1).

Theorem 3.3. Assume that conditions (F1)-(A2) hold. If u(z,t) € Cy(Qr) is the
viscosity solution of (3.1) and v(x,t;) is the operator splitting solution (3.4), then
there exists a constant K > 0, depending only on T, ||uol|, ||Duoll, ||vol|, ||Dvoll,
F, a, and G, such that fori=1,...,n

[ t:) = v (-, t)ll < K (lluo = voll + VAd).

We will prove this theorem in the next section.
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4. PROOF OF THE MAIN RESULT

In this section, we provide a detailed proof of Theorem 3.3. As in Jakobsen,
Karlsen, and Risebro [16], a key step is to introduce a suitable comparison function.

a) Introducing a comparison function.

We start by giving an auxiliary result. For 0 < s <t < T, let w(-,t) = S(¢t, s)wg
denote the viscosity solution of the homogeneous parabolic equation (3.3) with
initial condition wg. For a given function 1 € C?(Qr), we introduce the function

q(z,1) := w(z,t) + P(z,1).

Assuming that w is C?, it follows that ¢ is a C? solution of the following initial
value problem

qt +F(t,x,q—zp,Dq—Dd},DQq—Dzw)
(4.1) —tr [A(t, Dg — Dy)(D*’q — D*¢)] =4 in RN x (s,T),
4(@,5) = wo(z) + ¥(z,5) in RV
Moreover, it is easy to prove that this is still true if w and ¢ are only required to
be viscosity solutions of equations (3.3) and (4.1) respectively (see [16]).
Lemma 4.1. Let w be a viscosity solution of equation (3.8) and ¢ € C*(Qr), then
q:=w + 1 is a viscosity solution of equation (4.1).

The main step in the proof of Theorem 3.3 is to estimate the error between v and
v for one single time interval of length A¢. Hence we are interested in estimating

lu- t:) = S(ti, i) E(ts tim)o( ticn)ll,  i=1,...,m,
where v(z,0) = vo(x).
Now fix i, i = 1,...,n, and define the function ¢ : RN x [t;_1,t;] = R as follows

C(@,t) == St ti1)E(ts, ti1)v(- tio1) ().
Observe that ((z,t;) = v(z,t;). To estimate the difference between u(-, ;) and
v(+,t;), we introduce the comparison function ¢° : RN x [t;_1,t;] — R defined by

(4.2) ¢ (z,1) = ((z,1) +4°(z,1),
where 9% : RV x [t;_1,t;] — R is defined by

(43) (e t) = —(ti - t)/ 05(2)G (b1, — 2,0(@ — 2, ti1)) dx.
RN
Here 15(x) := 5w n(%), where 7 is the standard mollifier satisfying
(@4) neCEE), Dl <2 g =0whenls|>1, [ n@)ds=1.
RN
For each z € RV we see that ¢°(z,t;) = v(z,t;) and we will later show that
qd(.’E,tifl) - ’U(.Z‘,tifl) as 6 — 0.

The difference
u( ;) — (-, t) = ult:) — (-, ta)
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will be estimated by deriving a bound on the difference
u(-,t) — ¢°(-,t) for all t € [t;_1,1;].
To this end, observe that ¢° is a viscosity solution to
¢ +F(t,2,¢° = ¢, D¢’ — Dy’, D?¢* — D)
(4.5) —tr [A(t,Dg’ — Dy°)(D?¢® — D*¢%)] = ¢! in RN x (t;_1,t),
@z, tii1) = (@, tim1) +¥° (2, tim1)  in RN

This is a consequence of Lemma 4.1 since ¢ € C®°(Qr). Now we proceed by
deriving a priori estimates for u, v, ¢°, and ¢° that are independent of At.

b) A priori estimates for u, v, ¢°, and ¢°.
We start by analyzing S and E. Let w,w € Lipy(RY). Assume that

(46)  Rii=max{supge,<,er 1B $)wll, supoc,<icr 1S )l } < oo.

For 0 < s <t <T,let w(z,t—s) = S(ts)w(x). This function is a viscosity
solution of equation (3.3) on [0,T — s] when F(t,z,r,p, X), A(t,p) is replaced by
F(r+s,z,r,p,X), A(T + s,p) respectively. The initial condition is w(z,0) = w(zx).
Applying Corollary 2.6 (a), (b), (c), and the comparison principle from Theorem
2.3 to @ and then using S(7 + s, s)w(z) = w(x, T), we get the following estimates

(A7) IS¢ s)wll < " (] + (£ - 5)CT),

(48)  [ID{S(t syw}| < e HAENC I Dy 4 (¢ - 5)Ch, (1 + TK (Ra)) |,
(4.9) 1St 5)w — S(t, s)ll < =" Jw — ],

(410) [IS(t,5)w —wl < KovE—s,

where

(4.11) K1(R) = CETCR THLT)

and K is as defined in Corollary 2.6 by replacing v by w, and depends on f, a, w
in such a way that ||w||, ||[Dw|| < oo implies Ky < co. Note that v = —L*, and that
in the expression (4.8), the constant L in Lemma 2.6 (b) is replaced by its bound.
Let us turn to E. The following estimates follows from the definition of E,
E(t,s)w(z) = w(z) + (t — s)G(s,z,w(z)), and the properties of G and w:

(4.12) 1B, s)wll < (1+ LE(t — 5))llwl| + (t - 5)C¢
(4.13) ID{E(t, s)w}| < (1+LE(t - 5))l|Dwl + (t - 5)CF,
(4.14) IE(t, s)w — w|| < (¢ = $)(C7 + LE|lw]))

Now we see that assumption (4.6) holds. Just replace t — s by T in expressions
(4.7) and (4.12).
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Let us define some notation which will be useful in the following,
L :=2max(L¥, LY),
C:=CF+CC,
(4.15) Cr:=CE+C§ forevery R>0,
Ng:= NE+N§ forevery R>0,

Mp = max{ME, Mg} for every R > 0.
Now we give the a priori estimates.

Lemma 4.2. There ezists a constant Ry independent of At such that max [|v(-, )|
<i<n

< Ry. Moreover with Ki(R) defined in (4.11), for every 1 < i < n the following
statements hold:

(a) llo:, )| < P (Jluoll + 6:C),
(b) IDu(- )| < eEHREDEL || Dug|| + £,Cp, (1 + TK: (B2)) }.

Proof. By the definition of v (3.4), v(z,t;) = S(ti, ti—1)E(t;, ti—1)v(-, t;i—1)(z) and
v(x,0) = vo(x). Assume there is a constant R, independent of At such that

(4.16) lrél%xnﬂv(-,ti)ﬂ < Ry

In expressions (4.7) — (4.14) replace R; by R», t by t;, s by t;_1, and w by v(-,¢;_1)-
Successive use of expressions (4.7) and (4.12) yield (a), and similarly (b) follows
from (4.8) and (4.13). In expression (a), replace t; by T and we see that the
assumption (4.16) holds. O

Lemma 4.3. Let Viy denotes the volume of the unit ball in RN . Then for every
1<i<n andt€ [ti1,t;],

(@) 8¢9l < (6 ={CF + LEIlo( ti-)II
(0) IDY* (1| < (8 = H{CF, + LEIDv(-, i)}
(¢) 1D (D)l < L4522V Vi (CF, + LEIDw(-, tin)])).

Proof. From the definition (4.3) of 4 it is easy to see that (a) and (b) holds. We
will only prove (c). Let e; be the j-th basis vector in RV, and h € R. We then
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calculate

[Wa.a; (2,0)] = (t = t:)

(G i1, V(s tim1)) * Mogys, } )|

= (6~ 1) Tim [{ Gt 1,00, t-1) 3 (105, es) = 155, () } @)
= (¢ =) lim {5 (Gltimr, = ey, (- = hes, ti0)) = Gltios, 00 ti) s, } ()|
< (s = ] (CF, + LONDu b0 ) 53 0 Vi

where the first equality is a property of convolutions, the second equality follows
from the definition of the (partial) derivative and Lebesgues Dominated Conver-
gence Theorem, and the third equality is a change of variables. Finally the inequal-
ity follows from the M L-inequality and the following estimates

o2, @) = | seres ()] < s> and

|G(ti,1,w — hej,v(x — hej, ti—1)) — G(ti_l,x,v(x,ti_l))|
< CRy bl + LIDu( tiy)||R]-
The last estimate follows from (G3) and (G5). O
Now we are in a position to prove the following estimates:.
Lemma 4.4. Let K1(R) be defined in (4.11). For everyl <i <n andt € [t;—1,t;],
(a) I, )l < 22 (|foC-, ti0)l| + 286C),
() 1D (O] < CTFIEDAL o 1, y)]| + At Oy 2+ TE(Ra) ),
(c) There exists at constant M independent of t, i, and At such that
18°(-,t) = o(-, ti1)l| < MVAE

Proof. We only give the proof of (c). The other statements are easy consequences
of expressions (4.7), (4.8), (4.12), (4.13), and Lemma 4.3 a) and b).
By Lemma 4.2 and estimates (4.7), (4.8), (4.12), and (4.13) there are finite
constants R', L' (independent of i and At) such that
sup |IS(t,ti—1)E(ti, tim1)o(-, tim1)l| < R,
[tiz1,ti]

|D{S(t,ti—1)E(tisti—1)v(-tiz1)}| < L.

sup
[ti—1,t:]

Because of these bounds, estimate (4.10) gives the existence of a finite constant K
(also independent of ¢ and At - see the the remarks below (4.10)) such that

I1S(t,tim1) E(ti, tim1)o(-s tim1) — E(ts tic1)v(, tim1) || < KoV AL
By using expression (4.14) and Lemma 4.2 we can show that

Bt ti1)v(-ti 1) —v(-,t;i1)|| < Const At,
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where the constant is independent of ¢ and At. By Lemmas 4.3 and 4.2 we can find
a constant independent of ¢, i and At such that

l4°|] < Const At.
We conclude the proof by noting that At < +/T+v/At and that by the definition
of ¢°, expression (4.2),
lg° () = o tima)ll <IIS(#s tim1) B (tis tim1)o(stim1) = E(ts ti1)o(, i) |
+ | B(tis tim1)o(tim1) = 0 i)l + [[9°]].
([l

Finally we come to u. Using Lemma 2.6 with f(¢t,z,7,p,X) = F(t,z,7,p, X) —
G(t,z,r) we get the following estimates (see also the derivation of (4.7) and (4.8)):

Lemma 4.5. There exists a constant Rz such that maxy 7 ||u(-,t)|| < R3. More-
over with K»(R) = Crexp {T(2Cre"T +L)}, fort € [0,T)] the following statements
hold:

(a) lluC )]l < e (Jluoll + ¢C),

(1) 1D, 1) < eE D | Dug | + 1CR(1 + TEx(Rs)) }.

There is a constant R4 independent of ¢, i, and At such that ||¢°(-,#)|| < R4. This
follows from Lemma, 4.4 a) by replacing ||[v(,#;—1)|| by Rz and At by T'. Similarly
there is a constant R independent of ¢, i, and At such that [[1/°(-,t)|| < Rs. Define
(4.17) R:= max(Rg,Rg,R4,R5).

By a similar argument there is an L independent of ¢, 7, and At such that
(4.18) max [|Du(,t:)ll, sup [[DY°(t)ll, sup ||Dg’(-,t)ll,sup || Du(-t)|| < L.

1<i<n ti—1,t; ti—1,t; [O,T]

Furthermore we set
(419) M= M, max{L,R}> P=PF max{L,R}-

We will need M and P to be this big because of equation (4.1). We are now in a
position to prove Theorem 3.3.

¢) The proof of Theorem 3.3
We prove Theorem 3.3 by applying Theorem 2.5 to u and ¢°. To do this we will
prove that ¢° is a subsolution of a certain equation and a supersolution of another
(closely related) equation. Actually we will find a function A and a constant k(At, §)
such that ¢° solves |v; + F[v] — tr[A[v]D?v]| < k(At,4) in the viscosity sense.

Let ¢ be a C? function, and assume that ¢’ — ¢ has a local maximum point in
(z,t). Then by the definition of viscosity subsolution and equation (4.5) we get

¢t(mat) - 1/)?(3&', t)
(4.20) +F(t, 2,4 (z,t) — ¢’ (2,1), Dd(x,t) — DY’ (2,1), D*¢(x,t) — D*¢°(a,1))
< tr [A(t, Dé(,1) = DY (w,1)) (D*(x,t) — D*4%(,1)) .
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We estimate ¢ (z,t) and F(t,, ¢’ (z,t) —¢°(z,t), Dp(z,t) — DY (x,t), D2 ¢(z,t) —
D%y%(z,t)). We first calculate

¥ (2,1) — G(ti-1, 7,4 (x,1))|
‘ /RN TM 1—17 Z,’U(.’L’ - zat’i—l))dz - G(t’i—lawaqé('xat))‘

5/ 7)5(z)|G(ti,1,$—z,v(av—z,t,-,l))—G(ti,l,x—z,q‘s(az—z,t))‘dz
RN
+ [ 1@)|Gltir o~ 2,00~ 2) - Gltior, 6@ - 2,8)|dz
RN

+ [ 15@)|Gltir, 2 5 = 2,8) = Gl 0,4 (0, 0)| s
RN

< LMV At + Cré + LLS,

where M is given by Lemma 4.4 (¢). We also used (G3) and (G5). Using this
computation and (G4), we see that

¢§(.Z‘,t) < G(t7m7q6($7t)) + |G(ti—17$7q6($7t)) - G(t,:c,qd(x,t))|
(421) + |¢6t(m7t) - G(ti717$7q6(x>t))|
< G(t,z,¢’(z,1)) + VAt {LM + Ng} + 6{Cr + LL}.

We get the following estimate for F":

F(t,z,¢’(x,t) — ¢’ (z,t), Dp(z,t) — DY’ (z,t), D*¢(x,t) — D*¢° (=, 1))
2 F(t,m,q‘s(m,t),D(b(w,t),D2¢(m,t))—i|¢6($,t)|—M|D1/)6(x,t)|—P|D2w6(m,t)|
> F(t,z,q"(z,t), Dé(x,t), D> (x,t)) — At{L(C + LR) + M(Cg + LL)}

A
- TtQNPVN(CR +IL).

Here we have used (F5), (F6), (F8), and Lemma 4.3. We turn to the trace term.
Using the fact that (z,t) is a maximum point, we can estimate |D¢(z,t)|, and get
|Dé(z,t)] < L. We will use this fact to bound |a(t, Dg(x,t) — D (¢, ))|. By (A2)
and (4.18) we get

|a(t,D¢(m,t) - D¢5(t7 SC))'
< la(t,0)| + M|D¢(x,t) — Dy’ (t, )|

< sup |a(t,0)| + 2M L.
[0,7]



18 JAKOBSEN AND KARLSEN

Now we note that |[tr X| < N|X]| for any N x N matrix X. Using Lemma 4.3
enables us to get the following estimate,

tr [A(t7D¢(x7t) - D¢6(t,x))(D2¢(m,t) - D2¢6(t7m))]

(4.23) < tr [A(t, Dg(z,t) — DY’ (t,2))D*¢(x, )]

_ N2At _
+ ((sup [a(t,0)| + 20 L) 22N>V (Cr + LL).
[0.7] Y
Define the constants My, M; by

My := VTL{C + LR} + VTM{Cg + LL} + LM + Np,

(4.24) My := 2NVn(Cg + LL) (P + N(sup |a(t,0)| + 2]\7[[,)2).
[0,7]

Substituting (4.21), (4.22), and (4.23) into (4.20), we get
¢t($, t) + F(ta T, q6($7 t)a D¢($7 t)7 D2¢($, t)) - G(t7 z, qd(ma t))
—tr [A(t, Dg(z,t) — Dy’ (t,2)) D?¢(z,1)] < k(At,d),
where
(4.25) k(At,8) := VAt My + 6{Cr + LL} + %Ml.

In a similar way we can show that if ¢ is C? and ¢° — ¢ has a local minimum in
(z,t), then

ét(l’,t) + F(t,$,q6($,t),D(E(.’E,t),D2($($,t)) - G(t7$7q6(m7t))
—tr [A(t,D¢($,t) - D¢6(t> .CL'))D2¢(IE,t)] Z _k(At76)'

Two applications of Theorem 2.5 to u and ¢° on the time interval [t;_1,t;] yields,

e A lu(, ) — ¢ ( ta)ll < llulstina) — ¢ (- tim)l| + At k(At, )
+ VAt K sup |a(t,p) —a(t,p+ D¢6($:t))|-

Di;_q.;

(4.26)

The quantities Dy,_, ¢, and K are defined in Theorem 2.5, and from the definition
of K we see that it is independent of At and i.

Remember that ¢°(z,t;) = v(z,t;). To finish the proof we must estimate
|lu(-,ti—1) — ¢°(-,t;_1)|| and the a-term and choose d in an appropriate way. First
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note that
(@, ti 1) — ¢ (2,1 1)
= |’U(.Z',tz'_1) — E(ti, ti—1)v(- ti1)(z) — w‘s(x,ti_l)|
= |AtG(ti_1,x,v(x,ti_1)) + ¢6(x,ti_1)|

(4.27)

G(ti—1,z,v(z,ti—1))

< At/RN ns(2)

= G(timt,@ = 2,0(@ = 2, ti-1)|dz
< AtSL||Dv(-,ti—1)|| + At dCR,

where the last estimate follows from the triangle inequality, (G5), and (G3). Fur-
thermore using (A2) and Lemma 4.3 we get

(4.28)
sup |a(t,p) —a(t,p+ Dwd(x,t))| <M sup |Dy°(z,t)| < AtM(Cg + LL).

Combining (4.25), (4.26), (4.27), and (4.28), we get
e F 8 ul- ) — (-, ta) | = e FAlul t) — ¢, 8a)
< ||u(x,ti,1) — U(l‘, tz',l)” + 0At {CR + .EL}

D

_ At? _ _
+ (A2 Mo + At 6{Cp + LL} + TtMl) + ABPKM(Cr + LL).

We choose § = v/ At, and with this choice we see that there is a constant K’ such
that

lu-st) — vl ta)ll < ePAu(@, timy) — v(@, timt)|| + AtVALK,

and K' does only depend upon ||ug|l, ||[Duol|, |voll, |Dwel|, F, G, a, and T, but not
At. This follows from the definition of L, My, M;, and Lemmas 4.2 — 4.5.

Since the fixed number 4,7 = 1,...,n, was arbitrary, successive use of the previ-
ous formula gives us

_ i
(-, t5) = o(- 1)l < €™ [lug — vol| + AtVALE' Y "
=1
< eMi||ug — vo|| + VALK'TeT for j=1,...,n.

Let K := (1 + K'T)eX" | and our theorem is proved.
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Using the maximum principle for semicontinuous functions [2, 3], we
establish a general “continuous dependence on the nonlinearities” estimate
for viscosity solutions of fully nonlinear degenerate parabolic equations with
time and space dependent nonlinearities. Our result generalizes a result by
Souganidis [10] for first order Hamilton-Jacobi equations and a recent result
by Cockburn, Gripenperg, and Londen [1] for a class of degenerate parabolic
second order equations. We apply this result to a rather general class of
equations and obtain: (i) Explicit continuous dependence estimates. (ii) L
and Holder regularity estimates. (iii) A rate of convergence for the vanishing
viscosity method. Finally, we illustrate the results (i) — (iii) on the Hamilton-
Jacobi-Bellman partial differential equation associated with optimal control
of a degenerate diffusion process over a finite horizon. For this equation such
results are usually derived via probabilistic arguments, which we avoid entirely
here. In [8], the basic result given herein is used to derive an explicit rate of
convergence for certain numerical approximations.

Key Words: nonlinear degenerate parabolic equation, Hamilton-Jacobi-Bellman
equation, viscosity solution, continuous dependence estimate, vanishing viscosity
method, convergence rate, Holder estimate.
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1. INTRODUCTION

Fully nonlinear degenerate parabolic partial differential equations arise
in a variety of applications, ranging from image processing, via optimal
stochastic control theory, to the description of evolving interfaces (front
propagation problems). Due to a possibly degenerate second order opera-
tor, such nonlinear partial differential equations do not in general possess
classical solutions and it becomes necessary to interpret them in the sense
of viscosity solutions. Here we study viscosity solutions of fully nonlinear
degenerate parabolic equations of the type

ug + F(t,z,u,Du,D?u) =0 in Q7 := (0,T) x RV, (1.1)

where u : Q7 — R is the scalar function that is sought; D denotes the
gradient with respect to z = (z1,...,2x5) € RY; D? denotes the Hessian
with respect to x; and the nonlinearity F' = F(¢,z,r,p, X) is a function
that is nonincreasing in its last (matrix) argument X.

Since the introduction [4] of the theory of viscosity solutions for first
order Hamilton-Jacobi equations in the early eighties, the theory (exis-
tence, uniqueness, stability, regularity, etc.) has by now been intensively
studied and extended to a large class of fully nonlinear second order par-
tial differential equations. A part of this theory is an impressive unique-
ness (comparison) machinery based on the so-called maximum principle for
semicontinuous functions [2, 3]. The uniqueness machinery applies to (1.1)
under rather general assumptions on F. We refer to Crandall, Ishii, and
Lions [3] for an overview of the viscosity solution theory.

In this paper, we are concerned with the problem of finding an upper
bound on the difference between a viscosity subsolution u of (1.1) and a
viscosity supersolution v of

ug + G(t,z,u,Du, D*u) =0 in Qr,

where G = G(t,z,r,p, X) is another nonlinearity that is nonincreasing in
its last argument. The sought upper bound for u(¢,-) —v(t, -) should in one
way or another be expressed in terms of the difference between the initial
data 4(0,-) —v(0,-) and the difference between the nonlinearities “F — G”.
A continuous dependence estimate of the type sought here was obtained
by Souganidis in [10, Proposition 1.4] for first order Hamilton-Jacobi equa-
tions. For degenerate parabolic second order equations, a straightforward
applications of the comparison principle [3, p. 50] gives for any 0 < ¢t < T
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the estimate

sup (u(t,a:) —(t, :E)) < sup (u(O,m) - v(O,:U))+

z€ERN zERN
t v (12
+/ sup (G(S7'T7Ir7p7X) _F(57$7T7p7X)) dS,
0 (z,r,p,X)€E
RN XxRXRNxS(N)

where S(IN) denotes the set of symmetric N X N matrices and a™ =
max(a,0). This estimate can be applied, for example, when G is of the
form F + h for some function h = h(z). In general, this estimate is not
particularly useful since the set over which the supremum inside the integral
is taken is unbounded. For example, it cannot be used to obtain a conver-
gence rate for viscous approximations vy + F(t,z,v, Dv, D?>v) — vAv = 0.

Recently, Cockburn, Gripenperg, and Londen [1] showed how one can im-
prove the continuous dependence estimate in (1.2) for simplified equations
of the type

ug + f(u, Du, D*u) — k(Du)Au =0 in Qr, (1.3)

where the nonlinearity f = f(r,p, X) is nondecreasing in its first argument
and nonincreasing in its last argument while the “diffusion coefficient” k& =
k(p) is nonnegative. Note that equation (1.3) can be viewed as a special case
of ug + f(u, Du, D*u) = 0. However, as observed in [1], sharper results are
obtained by not doing so. Let u be a viscosity subsolution of (1.3) and let v
be a viscosity supersolution of (1.3) with f, k replaced by g,! respectively.
Roughly speaking, the result in [1] states that for any 0 < ¢ < 7T and a > 0

sup (u(t, x) — v(t,x)) < sup <u(0,m) — U(O,JI))Jr

z€RN z€RN
+ sup (Ju(0,2) = u(0,9)| Alv(0,2) = v(0,9)| - Sz —yI?)
o O ! : R (1.4)
2 +
+1 sup (g(T7p7X)_f(T7p7X)+3aN(Vk(p)_ Vl(p)) ) ’
(r,p,X)ED~

where a A b = min(a,b). The second term on the right-hand side in (1.4)
measures the “amount of continuity” that the initial values u(0,-),v(0,-)
possess. In third term on the right-hand side in (1.4), the supremum is
taken over a bounded set D* C R x RY x S(IV) that depends on the free
parameter a. The set D* becomes unbounded as a — oo. The idea is that
in each particular case one can choose the parameter « in (1.4) so as to
obtain optimal results. The proof of (1.4) (as well as (1.6) below) is very
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similar to the proof of the comparison principle [3] and uses the maximum
principle for semicontinuous functions [2, 3].

Motivated by applications, we seek in this paper to generalize the con-
tinuous dependence result in [1] to more general equations of the form

ug + f(t,z,u, Du, D*u) — tr[A(t,z, Du)D*u] =0 in Qr, (1.5)

where the nonlinearity f = f(¢,z,r,p, X) is nonincreasing in its last argu-
ment, the N x N matrix A = A(t, ,p) is of the type a(t, z,p)a(t, z,p)T for
some N x P matrix a = a(t, z,p), and ¢r denotes the trace operator. Equa-
tion (1.5) generalizes (1.3) in three ways: (i) The nonlinearities are allowed
to depend explicitly on the temporal and spatial variables. (ii) The second
order operator tr[A(t,z, Du)D?u] is rather general and contains the oper-
ator k(Du)Aw in (1.3) as a simple special case. (iii) f = f(¢,z,r,p, X) is
not restricted to be monotone in the r variable.

Our main result (Theorem 3.1) is an upper bound on u — v where u is a
viscosity subsolution of (1.5) and v is a viscosity supersolution of (1.5) with
f, A replaced by g, B respectively, where B(t, z,p) = b(t, =, p)b(t, z,p)T for
another N x P matrix b = b(t,z,p). Assume for simplicity of notation that
f = f({t,z,r,p, X) is nondecreasing in the r variable and that the viscosity
sub- and supersolutions are merely semicontinuous (see Section 3 for the
general case). Roughly speaking, our main result (Theorem 3.1) then states
that for any 0 <t < T and a >0

o
sup (u(t,@) —v(t,y) - Slo —yP?)
(z,y) ERN XRN

le—y|<Cy/T

[e% +
< sup (u(0,2) = v(0,9) - Slz—yl?)
(z,y) ERVXRN

|wfy|§C\/g (16)

+1 sup <g(7,y,r,p,X) — f(r,z,7,p, X)
(T,W,y)e[o,t)XRNxRN

|$*y\§0\/gy (T,p,X)ED“
9 +
+ 306 [a(r, 2,p) — b(r,,p)] ) ,

where D C Rx RY x S(N) is again a bounded subset for each fixed o but
becomes unbounded as a — oo, C' > 0 is a constant independent of a, and
¢ = N A P. We note that (1.6) is different from (1.4) in that a quadratic
penalization term also occur on the left-hand side of the inequality. In view
of their respective proofs, we feel that (1.6) is a more natural statement than
(1.4). One can, however, quite easily derive from (1.6) an upper bound that
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resembles (1.4). Estimate (1.6) can be viewed as a direct generalization to
second order equations of Proposition 1.4 in Souganidis [10] for first order
equations. The main technical tool that makes this extension possible is of
course the maximum principle for semicontinuous functions [2, 3].

Our treatment actually allows us to consider a fully nonlinear version of
(1.5). In fact, later we shall state and prove our main result (Theorem 3.1)
for the fully nonlinear equation

ug + sup {fﬂ(t,a:,u,Du,Dzu) —tr [Aﬂ(t,x,Du)Dzu]} =0 inQr, (P)
V€O

where O is a given index set and f?, A? are of the same type as f, A respec-
tively for each ¥ € © (see Section 3 for the precise conditions on f?, A?).
To illustrate our main result (Theorem 3.1), we apply it to a rather general
class of equations and obtain: (i) Ezplicit continuous dependence estimates
for continuous viscosity solutions of (P). (ii) A priori L™ and x - Holder reg-
ularity estimates for continuous viscosity solutions of (P). (iii) An explicit
rate of convergence for vanishing viscosity approximations of x - Hdélder
continuous viscosity solutions of (P). Using the results mentioned in (ii) we
prove also uniform (in the small artifical diffusion parameter) L* and z -
Holder regularity estimates for the vanishing viscosity approximations.

The general form of (P) implies that many well known partial differen-
tial equations drop out as special cases. Quasilinear examples include the
equation for mean curvature flow of graphs and the p - Laplace diffusion
equation with p € [2,00). One significant fully nonlinear example is the
dynamic programming (or Hamilton-Jacobi-Bellman) equation of optimal
stochastic control theory. In Section 4, we discuss this equation in particu-
lar and present a result about the continuity of the value function (viscosity
solution) with respect to the coefficients in the Hamilton-Jacobi-Bellman
equations. To best of our knowledge, results of this type have up to now
only been available through probabilistic arguments (see, e.g., [5, 9]).

Finally, we mention that our main result (Theorem 3.1) has been used in
[8] to establish a rate of convergence for certain numerical approximations
for a class of degenerate parabolic second order equations.

The rest of this paper is organized as follows: In Section 2, we introduce
the notation that will be used throughout this paper. Moreover, we recall
the notion of viscosity solutions along with the maximum principle for
semicontinuous functions. In Section 3, we state our results. In Section 4,
we illustrate (apply) our results to the Hamilton-Jacobi-Bellman equation.
Finally, the detailed proofs of our results are given in Section 5.
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2. PRELIMINARIES

In this section we introduce some notation (spaces, norms, etc.) that
will be used frequently in this paper. We also recall the notions of viscosity
solutions as well as the so-called maximum principle for semicontinuous
functions.

Let |- | denote the 2-norm in R™ with m € N. We also let | - | denote
the matrix norm defined by |C| = sup,cgs %, where C' € R™*? is an

m X p matrix and m,p € N. The Frobenius norm is defined as |C|% =
tr[CTC) = tr[CCT]. We recall that there is a constant ¢ = min(m, p) such
that |C|r < ¢|C|. The ball with center in 0 € R™*? and radius R > 0 is
the following set, Bp,xp(0, R) := {x € R™*? : || < R}. If p = 0, we write
B,,(0,R). Let S(m) denote the space of m X m symmetric matrices. On
this spaces we have the usual partial ordering <, that is, X <Y whenever
eXe < eYe for every e € R™. By ey,...,e, we denote the usual unit
vectors in R™.
In what follows, let U be some set. If f:U — R™*P_ then

71l = sup [f(z)]-
zeU

Note that we allow for ||f|| = oo. For a locally bounded function f :
U — R™*P, the upper and lower semicontinuous envelopes of f are defined
respectively as

f(2) =limsupf(y),  fu(x) = liminff(y).

y—T y—z
yeU yeU

We let USC(U;R™*P), LSC(U;R™*P), and C(U;R™*P) denote the
usual spaces of upper semicontinuous, lower semicontinuous, and continu-
ous functions from U to R™*? respectively. If p,m = 1, we write USC(U),
LSC(U), and C(U). Let f: I x RN — R, I C [0,00). Then, for u € (0,1],
we define the following Holder seminorms:

|f(t,.’l?) — f(t:y)|

[£(#)]u = sup

?

z,yeRN |'Z' - ylﬂ
z#y
[f] =sup sup |f(T,ZL') _f(Tay)|
# 7€l z,yeRN |$ - y|ﬂ
z#y

By C*(I x RY) we denote the set of functions f : I x RN — R for which
the norm || f|| + [f], is finite. We shall also need the usual Holder space
C*(RN) of functions g : RV — R such that ||g|| + [g], is finite.
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There are several equivalent ways to define viscosity solutions. We will
need only one of these definitions in this paper. Consider the following
general equation

ug + H(t,z,u, Du, D*u) =0 in Qr. (2.1)

Since the purpose here is only to introduce the notion of viscosity solutions,
we only need to assume that H : [0,7]xRY x Rx RN x S(N) — R is locally
bounded and nonincreasing in its last argument. We start by introducing
the notion of semijets:

DEeFINITION 2.1. For a function u belonging to USC(Qr) (LSC(QT))
that is locally bounded, the second order parabolic superjet (subjet) of u
at (t,z) € Qr, which is denoted by P>+ (u(t, z), is defined as the set of
triples (a,p, X) € R x RV x S(N) such that

u(s,y) < () ult,z) +als —t) +(p,y — 2) + 5(X(y — 2),y — 2)
+o(ls — 1 + [y — =),

as Qr > (s,y) — (t,x). We define the closure f2’+(_)u(t,x) as the set of

(a,p,X) € R x RN x S(N) for which there exists (t,,Zn,Pn, Xn) € R X
RY x RN x S(N) such that (t,,Tn,u(Tn,tn),Pn Xn) = (t,z,u(t,z),p, X)
as n — oo and (an, pn, Xn) € P> Ou(t,, x,) for all n.

Following [3, 6], we state the following general definition of a viscosity
solution:

DEFINITION 2.2. (i) A locally bounded function u : @7 — R is a viscos-
ity subsolution of (2.1) if, for every (¢,z) € Qr and (a,p, X) € P>tu*(t, ),

a—}—H*(t,:L',u*(t,:L'),p,X) SO (22)

(ii) A locally bounded function u : @7 — R is a viscosity supersolution
of (2.1) if, for every (t,z) € Qr and (a,p, X) € P>~ u.(t, ),

a—l—H*(t,x,u*(t,x),p,X) 20 (23)

(iii) A function u : Q7 — R is a viscosity solution of (2.1) if it is simul-
taneously a viscosity sub- and supersolution of (2.1).

Remark 2. 1. Observe that because H, and H* are lower and upper
semicontinuous respectively, (2.2) and (2.3) remain true with P>+ and

P2~ replaced by P and P~ respectively.
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Remark 2. 2. In a typical situation, H and the viscosity solution u of
(2.1) are continuous functions so that H, = H* = H and u. = u* = u.

For the reader’s convenience, we restate here the parabolic version of the
maximum principle for semicontinuous functions [2, 3]:

THEOREM 2.1 (Crandall, Ishii, and Lions [2, 3]). Letuy(t, ), —ua(t, z)
belong to USC(Qr). Let ¢(t,z,y) be once continuously differentiable in
t € (0,T) and twice continuously differentiable in (z,y) € RY x RY. Sup-
pose (ty,Ty,Yp) € (0,T) x RV x RN is a local mazimum of the function

(t,m,y) — ul(tv .73) - uQ(tay) - ¢(t,$, y)

Suppose that there is an r > 0 such that for every M > 0 there is a C such
that

a < C whenever (a,p, X) € P2 Tuy(t,z),

lz — o] + |t —to| <7, ur(t,2) + |p| + [X] < M,
b > C whenever (b,q,Y) € P2 uy(t,z),

|z —zy| + [t —to| <7, Jua(t,z)| + |g| + Y] < M.

Then for any k > 0 there exist two numbers a,b € R and two matrices
X,Y € S(N) such that

—2.+

(a; D$¢(t¢aw¢7y¢)7X) eP Ul(t¢,$¢),
—2,—

(ba —Dy¢(t¢,x¢,y¢),Y) eP UZ(tdnde)a

1
_<E + |D2¢(t¢,w¢,y¢)|)1 < ()(f —0Y>

< ¢(t¢a$¢’y¢) + H[D2¢(t¢,$¢,y¢)]2,

(2.4)

and a — b = ¢(ts, 4, Yp)-

3. STATEMENTS OF RESULTS

In this section we state our main result and several applications of this.
The proofs of these results are given in Section 5. We start by specifying
the class of equations we consider and then introduce some more notation
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which is needed for our main result. So in what follows, N, P € N are fixed
and ¢ always belong to some index set ©®. We will consider equations of
the form (P) that satisfy the following conditions:

For every R > 0, f% € C([0,T] x RY x R x R x S(N))
is uniformly continuous uniformly in ¥ on the set (C1)
[0,T] x RN x [~R, R] x BN(0,R) X Bnxn (0, R).
For every t,z,r,p,d, if XY € S(N),X <Y then

fﬂ(t7w7T7p,X) 2 f’ﬂ(tJ :I:, T7p’ Y)'
For every t,z,p, X,?¥ and for R > 0, there is yg € R (C2)
such that for —R<s<r<R

fﬂ(t,l',’f‘,p,X) - fﬂ(t,.’E,S,p,X) > ’YR(T - S).
For every t,z,p, 9, AY (t,z,p) = a®(t,z,p)a’ (t,z,p)T for some
matrix a’ € C([0,T] x RV x RY; RV*P). Furthermore for every
R > 0,a” is uniformly continuous on [0,T] x RY x Bx(0, R)
uniformly in 4.

(C3)

In what follows, let u! and u? be bounded sub- and supersolutions re-
spectively of the following two equations (i=1,2):

ul + Slelg{ff(t,a:,ui, Dul, D?*ut) — tr[A? (¢, z, Dui)Dzui]} =0. (EQ,)

Before presenting our main continuous dependence result (Theorem 3.1),
we shall need to introduce two sets over which “continuous dependence” is
“measured”:

EZ, = {(T,m,y) 18 <1<t (x,y) € Aa} (3.1)
and

DS, = {(r2,9,7,p,X,9) : p = a(w — y)e T, (1,2,y) € B,

Il < @ min ([l |, ), 1X] < 3ae009,9 € 0},
(3.2)

where a > 0 is a free parameter, v and ¥ are constants to be specified
in Theorem 3.1 below, and 0 < s < t < T. The set A® appearing in
definitions of the set E¢', depend on the regularity of u! and u2. We give
the definition in the different relevant cases.

Case (i): Assume ul, —u? € USC(Q7). We then define

A% = {(:U,y) eERN : |z —y| < \/2 sup (u! —u2)t a*%}.
Qr
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Case (ii): Assume u',u? € C(Qr) in the sense that there exist moduli of
continuity wi,ws such that

ju(t, ) — wit, ) <willo —yl), VEEO,T], i=12  (33)
We then define
A% = {(@,y) € B :alz -y — (|2 —y|) - wallz —y)) <O},

Case (iii): Assume u', —u? € USC(Qr) and that either u' or u? lies in

C'(Qr). We then define
A% = {(g;,y) € RN : |z — y| < Nmin ([u']s, [v*)) ofl}.

We can now state our main result:

THEOREM 3.1. Assume that conditions (C1) — (C3) hold for f? and
A? with constants v%, for i = 1,2. Let u' and u® be bounded viscosity
sub- and supersolutions of (EQ1) and (EQ2) respectively. Assume that
u' and u® have regularity as stated in one of the Cases (i) — (iii). Set
R := max (||u'],[[u?]]) and v = min (vk,~%). Then for 0 < s <t <T,
¥>0,anda>0

(r—8) (1 a2 _ X =8, _ 2
up (e7 (' (r,2) —u*(ry)) — 577 yl)

o +
< sup (u'(s,2) —v*(5,) ~ Sl — )

D&

¥, 8t

+ =9 sup { N B 070,30 - S0 0}

+
#3020 ol (r.5) ~ af (rpop) = G267 Na P}

where the sets B¢, and DS ., are defined in (3.1) and (3.2) respectively via
the set A® defined in Case (i) — Case (ii).

Remark 3. 1. Note that we have introduced an exponential factor in the
quadratic penalization term on the left hand side in the above inequality.
As a consequence of this, we get a quadratic penalization term on the right
hand side also. By appropriately choosing the exponent 7 > 0, we will see
that in most of the following applications we do not need to make any a
priori regularity assumptions on the solutions. In such cases the set A®
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does not play any role. However this is not the case when for example
a?(t,z,p) is only Holder continuous in x with exponent 3 < 1. For certain
values of 3, we can still obtain results, but only when we use the extra
information provided by A%. We will not consider this case in this paper.

In the remaining part of this section, we shall see examples of how The-
orem 3.1 can be applied. We state some rather general results conserning
i) explicit continuous dependence estimates, ii) L and Holder estimates
for viscosity solutions, and finally iii) a convergence rate for the vanishing
viscosity method. In order to obtain these results, we must have stronger
assumptions on the data. We shall consider the following conditions:

There is a constant C¥ > 0 such that
ct .= SUPEx (1 |f?(t,,0,0,0)| < occ.
Let p € (0,1] and f°(t, z,7,p, X) = ¢°(t, z,7,p, X) + b*(t, z,p) p.
For each R > 0 there are constants Cy, C® > 0 such that
|gﬂ(t7$araan) - gﬂ(t,y,T,p,Xﬂ S C‘Iq{|x - yl“) (05)
b (t,2,p) = b° (¢, y,p)| < C*|lz —y|
for Y€ ®©,te[0,T], |r| <R, z,y,p e RY, X € S(N).
Let p € (0,1]. For each R > 0 there is a constant C{z >0
such that
|fﬂ(t,$,T,p,X) - fﬂ(t7y,7‘,p,X)| S C}fz (|p||$ - y| + |$ - y|ﬂ) )
for € ®,te[0,T], |r| <R, z,y,p € RV, X € S(N).
For each R > 0 there is a constant C}’; > 0 such that
|fﬂ(t,m,7‘,p,X)—fﬂ(t7y,T,p,X)| SC}];|$_Z/|7 (07)
for 9 € ©,t € [0,T), |7, |p| < R,z,y € RV, X € S(N).
For each R > 0 there is a constant C§ > 0 such that
|a19(t,a:,p) - aﬂ(tayap)l < C?{lm - yla (CS)
forv€®©,te[0,T], z,y € RN, |p| < R.

(C4)

Note that (C5) — (C7) are three different assumptions on the x - regular-
ity of f7. We use the least general (but most explicit) assumption (C5) to
derive an explicit continuous dependence estimate without assuming any
a priori regularity on the solutions, see Theorem 3.2 a). We do not know
how to make such an explicit estimate more general the way we choose to
present this theory. However, if we were only interested in regularity esti-
mates as in Theorem 3.3 b), the more general assumption (C6) is sufficient
and is probably more or less optimal in our presentation. When we assume
a priori that solutions are Lipschitz continuous, we get an explicit compar-
ison theorem using assumption (C7), see Theorem 3.2 b). This assumption
implies some sort of local Lipschitz continuity in p and is therefore more
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general than an assumption like (C6). Note that if we were interested in
a priori regularity estimates in this case, then (C7) is too general. In fact,
then we need to consider assumption (C6) with u = 1. We will not prove
this here, but just remark that assumption (C6) is the “correct” assumption
for first order Hamilton-Jacobi equations, see Souganidis [10].

In the next theorem we state two explicit continuous dependence esti-
mates. In the first one we consider the case with no a priori regularity on
the solutions, while in the second one we consider Lipschitz solutions. Note
well that in order to get the explicit continuous dependence estimates, it
suffices to require that assumptions like (C5) — (C8) hold for only one of
the two problems being compared. This is the meaning of the assumption
“if there are ¢, j,k € {0,1}...” below.

THEOREM 3.2 (Continuous Dependence Estimate). Assume (C1)-(C3)
hold for f7 and AY with constants v% for i = 1,2. Furthermore assume
that u',u? € C(Qr) are bounded viscosity solutions of (EQ;), (EQ3) re-
spectively. Let Ry = max(||ull],||u?|]), ¥ = min (7}20,712[20), and Dy be the
following set

D, = {(T,x,r,p, N :Te0,t],z€ RY, Ir| < e~ " min (||u1||, ||u2||) ,

peRY X € S(N),¥ ¢ @}.

a) If there are i,j,k € {0,1} such that u*(0,-) € C*(RY) and f} and
ay satisfies (C5) and (C8) respectively, with constants Cg, C%, and C*.
Note that C* does not depend on R! Then for 0 < t < T there exists a
constant M depending only on T,~,C3 ,C%,C% and [u¥(0,-)], such that

et (t,-) = u?(, )l < Jlu’ (0,) = w*(0, )]

+ sgp{teﬂg?(ﬂwmp,X) — g3 (7, z,7,p,X)|
t

+ Mth/? (|b’19(r,w,P) — b5 (r,2,p)|" + |af (1,2, p) — ag(T’x’p)|u) }

b) Define Dy := {(r,z,r,p,9) € Dy : |p| < e "min([u']y,[w?]1)}. If
there are i,j,k € {0,1} such that u’ € C*(Qr), f]'-9 and a? satisfies (C7)

and (C8) respectively, with constants CIf{ and CgF. Then for 0 <t <T
there exists a constant M depending only on T, C};j ,Cgr, and [ut]; such
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that
elu'(t,-) —u®(t, )| < [l (0,-) — (0, )|

+ sup{te’YT|f]‘f9(Ta$aT7an) - fg(T,.’L’,T’,p,X)|
D,

M |0l (r,2,p) — 0 2,p)| }

We next state the regularity and a priori results.

THEOREM 3.3 (Regularity Estimates). Assume (C1) — (C3) hold. In
addition, let u € C(Q1) be a bounded viscosity solution of (P) with initial
data ug. Define R := ||u|| and v := yg. Then the following statements are
true for every t € [0,T]:

a)If 7 satisfies (C4), then |[u(t,-)|| < e~ (||u0|| + te"+th).

b)Assume that f¥ and a’ satisfy (C6) and (C8) respectively, and the con-
stant in (C8) is independent of R. Moreover if ug € C*(RN), then

(e, W < K {u(0, )], + 2L )

where K < 4 and 4 = 2(C} + 3¢2(C%)% +1) + |4/

Finally we turn to the problem of finding a convergence rate for the
vanishing viscosity method. The vanishing viscosity method considers the
following equation as an approximation to (P):

uy + sup{f’?(t,m,u",Du",D2u") — tr[A? (t,m,Du")DZU"]} =vAu”.
YEO
Pv)

We are interested in the L°*° convergence of u” to the unique viscosity
solution w of (P) as v — 0. By now it is classical to use the Barles-
Perthame weak limit method (see, e.g., [3]) to prove convergence of the
viscous approximations u”. The idea is that so-called upper weak limit @
and the lower weak limit u, defined by

u(t,z) = lim s(1)1p* u”(t, ), u(t,x) = lim_j(r)lf* u’(t, ),
v—> v

are respectively viscosity sub- and supersolutions of (P). On one hand, we
always have u < @ in Q7. On the other hand, the (strong) comparison
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principle [3] implies that & < w in Qr and thus v = 7 in Q7. Finally, it
is easy to see that this equality implies local L™ convergence of u” to the
function v := u = w as v — 0, which turns out to be the unique bounded
continuous viscosity solutions of (1.1).

The advantage of the method of weak limits is that it allows passages to
the limits with only an L*° estimate on u”. The disadvantage is that the
method does not say anything about the rate of convergence, which is the
content of the next theorem.

THEOREM 3.4 (Viscous Approximations). Assume that (C1) — (C4),
(C6) and (C8) hold, and that the constant in (C8) is independent of R.
Furthermore assume that there exists a bounded viscosity solution u” €
C(Qr) of (P,) for each v > 0. Then there ewists a viscosity solution
u € C*(Qr) of (P) such that for every 0 <t < T

e, ) = (8, )| < K (Iju(0,7) = (0,1} + %)

for some constant K independent of v.

A special case worth mentioning for which the results of this section ap-
ply, is the Hamilton-Jacobi-Bellmann equation. The results for this equa-
tion will be detailed in the next section.

4. HAMILTON-JACOBI-BELLMAN EQUATION

Let (Q, F,{Fi}t>0, P) be a filtered complete probability space satisfying
the usual hypotheses. Let © be a closed subset of Euclidian space. On
O x [0,00) x RY, we are given a N x P matrix-valued function o?(t,z),
an RY - valued function b?(¢,z), and R - valued functions c¢?(¢,z) > v €
R, f%(t,z), g(x). We assume that o?(t,z), b%(t,z), ¢’ (t,z), fP(t,x) are
bounded and continuous in ¢, z and §. Furthermore, we assume that h = ¢?
and h = b? possess the following Holder regularity condition with § = 1:

|h(t,z) — h(s,y)| < Const (|x —yl®+ |t - s|‘5/2) , (4.1)

where the constant should be independent of 9. Similarly, we assume that
h =c? and h = f? satisfy (4.1) with § = p. Finally we assume g € C*(RV).
Let Wy be P - dimensional Wiener process with respect to {F;}:+>0 and let
¥ = {¥¢}+>0 be an adapted control process taking values in ©. Consider
then the (controlled) stochastic differential equation

dX, =b% (s, X,)ds + 0% (5, X;)dW,,  s>t. (4.2)
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Under the assumptions given above, there exists a unique solution
Fs,t,x
Xs =X+

of (4.2) with initial condition X; = z. For a given (t,z) € (0,7) x RY
and an adapted control process ¥ = {¥}¢>0, the finite horizon optimal
stochastic control problems is to maximize the functional

T s
T (t, x;9) = EH-S? [/ 1P (s,X,)exp (—/ & (r, XT)dr> ds
t t

+9(Xr) exp<_ /t " o . X) dr)]‘ (4.3)

As usual, to solve this optimization problem we introduce the value function

V(t,z) = sup J (t, z;9), (t,z) € [0,T] x RV. (4.4)
9

It is well known that the value function V(¢,z) is bounded, and satisfies
(4.1) with h =V and § = p (see, e.g., Krylov [9]).

As a consequence of the dynamic programming principle (see, e.g., Flem-
ing and Soner [5]), the value function (4.4) is the unique viscosity solution
of the Hamilton-Jacobi-Bellman partial differential equation

ug + sup {tr [A?(t,2)D?u] + b (t,2)Du — ¢ (t,z)u + f(¢, w)} =0,
9€0
(4.5)
w(T,z) = g(x), (4.6)

where A?(t,z) = 107(t,2)0” (t,2)7.

Remark 4. 1. Note that (4.5) is a terminal value problem. To convert
this to an initial value problem of the type studied in this paper, one has
to introduce the change of variable t — T —t.

We are interesting in estimating the change in the the value function (4.4)
(hence the viscosity solution of (4.5)) when the coefficients in (4.2) and (4.3)
(hence in (4.5)) are changed. From Theorem 3.2 a), we immediately get
the following result:

TurEOREM 4.1 (Continuous Dependence Estimate). Let V' be the value
function defined in (4.5). Let V denote the value function obtained by

replacing the coefficients o¥, b?, ¢, f?, g in (4.2) and (4.3) by 57, Eﬂ,
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—0
e, F , g respectively. Then there exists a constant K > 0 such that the
following estimate holds for 0 <t <T':

V) =Vt < llg -9l
+K  sup {(T - t)(|c’9(T, x) — (1, x)| + |f’9(T, x) — 70(7, x)|)

T€[T—t,T],z,9

+ (T — t)H/? (|bﬂ(T, 2) =8 (r,2)|" + |o? (r,2) - 5°(, x)|”) }

A similar continuous dependence estimate can be proved by means of
probabilistic arguments, see, e.g., Fleming and Soner [5, p. 181]. From
Theorem 3.4, we also get the following rate of convergence for the vanishing
viscosity method:

THEOREM 4.2. Let V be the value function defined in (4.5). Let V¥ be
the solution of (4.5) with a wiscosity term vAu added on the right-hand
side of the equation. Then there exists a constant K independent of v such
that

IV (t,") — V()| < Kve.

Also this result is well-known (see, e.g., [5]). Its proof, however, usually
relies on probabilistic arguments, which we avoid entirely here.

5. PROOFS OF RESULTS
5.1. Proof of Theorem 3.1
We begin with giving a lemma that will be needed in the proof.

LEMMA 5.1. Let f € USC(RN) be bounded and define m,m. > 0 and
z. € R as follows: m. = maxger-{f(x) — €|z|?} = f(z.) — ¢|zc|? and
m = sup,crn f(z). Then ase — 0, m: - m and e|z:|> — 0.

Proof. Choose an 7 > 0. By the definition of supremum there is an
z' € RY such that f(z') > m —n. Pick an €’ so small that &'|z|?> < 5, then
the first part follows since

m > ma = faw) —lea > f@) —'le2 > m - 20,
Now define k. = ¢|z.|?. This quantity is bounded by the above calculations

since f is bounded. Pick a converging subsequence {k.}. and call the limit
k (> 0). Note that f(z.) — ke < m — ke, so going to the limit yields
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m < m—k. This means that k < 0, that is ¥ = 0. Now we are done since if
every subsequence converges to 0, the sequence has to converge to 0 as
well. |

Case v = 0. Now f’(r,x,r,p, X) is nondecreasing in r for i = 1,2. We
let M :=supg, (u'— u2)+ and
f}?(’]—, $7 T’p’ X) = ff(T,m,T,p’ X) - tT[Af(TJ a:.Jp)X]J
‘7:59(7—7'2:77.7p7 X) = fg(T7x7T7p7X) - tT[Ag(TJ a:’p)X]-

For £ > 0, define

+
By i=sup (' (s,2) — u’(s,y) = lo —y[?) ", and (5.1)
Eg, 2

o := —FEy + sup {ul(T, z) — u?(1,y)
B=,

3= 2+ & (122 + )2) + —5— 2
(G a=oP+ S Gal +1) + 51 62

We shall derive an (positive) upper bound on ¢, so we may assume that
o> 0. Let § € (0,1), choose e7*=%)a > 5¢, and define

¢(T;$;Z/) ::u,l('r, 'Z.) - UZ(T,y) - %O’
3 A=) 12 1 E (12 2 €
{2e o=y + 5 (I + ) + -

Note that if f,g : U — R are functions on some set U and sup;; f < oo,
o(r7—

then supy(f — g) > supy f — supy g- Let g := (t_:)a, f=1v+yg, and

U := E,. Then we get

SUpw(ﬂx;y) Z o+ EO — 00 = (1 - (5)0' + E(). (53)

s,t

Since u' and u? are bounded, and since v tends to —oo as T tends to ¢ and
|z|, |y| tend to oo, sup4) is obtained on a compact in [s,t) x RY x RV . It
follows that there is a point (79,0, y0) € [s,t) X RY x RY such that

¢(7'07$07y0) Z ¢(T;$;Zl)7 V(T7w7y) € [S7t) X RN X ]RN
On the other hand, we have by (5.3) since Eg > 0 and o > 0 that
0 S d}(TOaxO:yO)

+ & ~(ro— €
<sup (u' —u?)" — {567(7" 9zo — yol® + 5 (2o + |?JO|2)} )
Qr
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so with M := supg,. (u' — u2)+ it follows that

2M 1/2 2M 1/2
|zo — yo| < (7) ; |zol, [yo] < (?) ; (5.4)

which corresponds to Case (i). If u!,u? are more regular, we can get better
estimates. By considering the inequality

24(79,20,Y0) > ¥(70,Z0, o) + ¥(70,Y0,Y0),
we find
046'7(“’_5)@0 —yol?® < u' (70, 20) — u' (10,0) + u” (10, 70) — u*(10,¥0).
Using (3.3), we get
alzo —yol® = wi(|zo = yo) — wa(|wo — yo|) <0, (5.5)

which corresponds to Case (ii). Finally, let either ul or u2_belong to
CY(Qr). Since (19, ,yo) has its maximum in zg, there is a § > 0 such

that ¥ (70, z,90) < ¥(70,%0,Y0) for z € Bg(xg,0). Using this and letting
e; € RV be a basis vector and h a real number, we find that

~([zol? = [z + esh]?) + 5707 (fo — yol” — o + eih — yol*)
< ul(ro,20) — ul (10,20 + €5h) < [u1]1|h|.
Taking the limits as h — 0%, we get
lezo; + ae? ™™ (z0; — yo,)| < [u']s.
Similarly we use ¥ (79, Zo,y) to get
leyo; — ae? ™) (zo; — yo,)| < [u?lh
Summing up, we have shown that
Ip| = lae™7 =) (o — yo)| < Nmin{[u']s,[w’]i} + N (2Me)'*,  (5.6)

which corresponds to Case (iii) plus an error term of order €'/ /a.

Note that the bounds on zy and yg in (5.4) can be improved using Lemma
5.1. Because by this Lemma there is a continuous nondecreasing function
m : [0,00) — [0, 00) satisfying m(0) = 0, such that

|zol, lyo| < e7/*mi(e). (5.7)
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Now we prove that 79 > s. Suppose 79 = s, then by (5.3), (5.4), and
(5.1)

Eo + (1 —=0)o < ¢(s, wo,yo)

<sup( )—%|$—y|2)+=E0.

This means that ¢ < 0, which contradicts the assumption that o > 0. So
we have 19 > s.
We define our test function

o(r —s)
t—s

¢(T7 'CL-J y) =

o+ {%e”_’(“s)m -y + % (J=* + |y|*) + ; f T} .

We can now apply Theorem 2.1 to conclude that there are numbers a, b
and symmetric matrices X,Y such that

—2,+
(aaDwd)(TOaxO:yO)aX) €P ul(TOwTO):
—2,—
(ba _Dy¢(T0;$0ay0)aY) eP U2(Tg,y0),
2
where a—b = ¢4(70,%0,¥0) and for A = ( 22f g ¢) and v > 0,
w¢ y¢ (70,%0,Y0)
the following holds

1 10\ _ (X 0 )
_(Z+|A|) (0 I) < (0 —Y) <A+vAS

Let & := €7(™~%) ¢ and v = @ '. Then, after some calculations, we get
_ 10 X 0
—(3a+s)(0 I)S(O —Y)
(5.8)
_ I —I (2 +e)I 0
<< (Ba+2 + (e .
—{(a )<—I I) ( 0 (%+6)I)}

By the definition of viscosity sub- and supersolutions,

a—+ Sgpff(T():anul(TOaxO)aDw¢(T07$07y0)7X) S 07

b+ Sgpf§(7-07y05u2(707y0)5 _Dy(b(TO;xO)yO)aY) Z 0.
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Subtracting the above two inequalities gives us

¢t(T0:$0;y0) S sgp{fg(TanOau2(T05y0)a _Dy¢(7—05x07y0))y)
(5.9)
_‘7:}.9(7-07anul(T07x0)7D$¢(707$03y0)7X)}'

By (5.3) we must have u!(r,z9) > u?(70,40). We can now use (C2) to
rewrite (5.9) in terms of either u!(r,zo) or u?(79,10). The argument is
symmetric, and we rewrite the inequality in terms of the quantity with
smallest norm. Assuming [|ul|| < ||u?||, we get

f219(7-7$7u2(7-07y0)7p7X) S fg(T,x,Ul(To,,Z‘o),p,X).

We use this expression to rewrite inequality (5.9) in the following way:

é¢(70,T0,Y0) < Slép{fﬁg(Toayoaul(Toawo); —Dy¢(10,%0,%0),Y)

(5.10)
_ff(TOaanul(TO:xO)aqus(TOJwanO)aX)}‘
Then we estimate the left hand side:
917070, 90) =L + LT g — o 4 =
ORI T s T 2 (t — 70)2
oo a_ -

> —5eV(T0=8) |20 — yo 2. 11
>t 57 |zo = Yol (5.11)

Let (1,2,y,7,p0,D) € [5,t) x RY x RV x R x RV x RY. From (5.8) it
follows that

X <Y +4el, |V],|X| <3779 4 4e. (5.12)
Using this and (C2) and get
fr,z,rp,Y) < f3 (r,2,r,p, X — 4el). (5.13)

Following Ishii [7], let C,D € RV*F be two matrices and note that the
following 2N x 2N matrix is symmetric and positive semidefinite:

5_ (CCT DCT
—\cDT pDT )"
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Consider B ()5 —0Y> and use inequality (5.8) to obtain the following es-

timate

tr[CCTX — DDTY] < (3ae?™~% 4 2¢)|C — D|% + 2¢ (|C|% + | D|%) -

Recall that there is a constant ¢ such that |- | < ¢| -], see Section 2. If we
let C = a¥(r,z,p) and D = a3 (7,y,p), then we get

t’l"[A?(T, 'Z'ap)X] - tT‘[Ag(T, y:ﬁ)y]
< (3™ ™) 4 26)P|a? (7, x,p) — a3 (1,y, D) ?
+2¢¢ (|af (7, 2,p)” + a3 (1,4, D)|") -

Let p := ae¥(09)(xy — yo), p* := exq, and p¥ := eyo. Then we define
the following set

Fop = {(T,w,y,zz,zy,r,p,p””,py,X,ﬁ) :
(r2..70. X, 0) € DGy e 2e], 2yl <mle),  (5.14)
al=], ale¥], [p7], [p*] < (V +1) 2M2)"/?),

where Dg ., is defined in (3.2) via (3.1) and A® as defined in Cases (i)
- (iii). Now from (5.4) — (5.7), (5.11) — (5.1) using (5.10) we obtain the
upper bound on o

oo
t S SSu {fg(Tay+zy;r;p_pan_4€I) —ff(T,iL‘-sz,T,p-i—pw,X)
— FoE

s,t

+ (3ae™=%) 4 26)c? |af (1@ + 2%, p+ P°) — al (1, y + 2%, p —py)|2

- "ye"_’(r’s)%p: —y+2° - 2¥?

+
+ 2sc2(|a’f(r,x + 25, p+ )" + [ad(r,y + zy,p—py)|2)} :
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By the definition of F;° (5.14) and by the uniform continuity assumed in
(C1) and (C3), there exists a modulus of continuity w such that

" s Ssup {fg(T,y,T,p,X)—ff(T,.’L',T,p,X)
— F:ﬁiz

+ 3™ |ad (r, 2,p) — a3 (r,y,p)|”
- «a
=3I Tl =y w((2]+ (] + |57+ Y] +)
+
9 T z\ |2 ? y |2
+ eConst (|a1(r,x+z ,Dp+p )| +|a2(r,y+z yP—D )| )} -

Let (7,2,y) € E¢;. By the definition of o (see (5.2)), we have

) 11
u* (r,z)—u?(r, y)—%@”(“s)lﬂc—yl2 <o+Eo+e {; +5 (l2” + Iy\2)} :

Combining the two previous inequalities gives

o s t—s +
wr0) = r) - 3o - yP < B+ s {
+e 1 + 1 (Jz> + |y|?) (5.15)
t—1 2 ’ ’

Sending e — 0 in (5.15), the only questionable terms are those of the
form gla?(r,z + 2%, p + p®)|?, where (7,z,2%,p, p”) comes from F.r. But
uniform continuity (C3) and (5.14) implies a linear growth condition in the
z-variable, so with € < 1 we get

elaf (r,z + 2%, p+ p")|? < eConst (1 + |z + )
< Conste(1 + e~ 'm?(e)) < Const m?(g).

Since m is continuous and m(0) = 0 these terms tend to 0 as € — 0. So by
first letting € — 0 and then letting § — 1 in (5.15), we have proved:

LEMMA 5.2. Assume that conditions (C1) — (C8) holds for f7 and A?
with constants v = 0 for i = 1,2. Let u' and u® be bounded viscosity
sub- and supersolutions of (EQ1) and (EQ2) respectively. Assume that u'
and u? have reqularity as stated in one of the Cases (i)-(iii). Then for
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0<s<t<T,¥y>0anda>0

sup (u!(r,2) — u?(r,y) = ST — yP?)
E;"’t

o +
< sup (u'(5,2) ~w(s,9) = 5o —P’)

+ (t - S) SEP {fg(Tay:raan) - ff(T,.’l]',T’,p,X)
0,s,t
+3ac? ) |ad (1,2, p) — al (r,y,p)| — 3779 %lﬂf - ylz}-

Case v # 0. Let vi(7,2) = "= 9)ui(r,z), i = 1,2. Then v, i = 1,2 are
viscosity sub- and supersolutions respectivly of the following equations:

vf — yvi +e7(779) Sug{ff(ﬂ z,e” 1Tyt e=(T=8) Dyl =1(7=9) D2yi)
€

_e—'y(r—s)tr[Aﬂ(T’m’ e—’v(r—s)Dvi)Dzvi]} =0, i=1,2. (5.16)

The idea is now to apply Lemma 5.2 to v*, i = 1, 2.
If we introduce the functions

~f;9 (TJ T, TP, X) = -r + GW(Tis)fz:ﬁ(Tﬂ z, 677(7—78)7‘, eiw(Tis)p; ei’Y(Tis)X)

and
Af (7—7 1‘,1)) = Aﬂ (7—7 z, e—’y(‘r—s)p)7
then we can write (5.16) in the following way

vi + 3161g{ff(ﬂaf,vi,Dvi,D%") - tr[A”(T,w,Dvi)Dzvi]} =0, =12

Note that ff and A? satisfy conditions (C2) and (C3) respectively, with

constants 7, = 0 and Q% < Q' _, ..y, for i = 1,2. So by using Lemma
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5.2 we get
sup (v*(r,2) = *(r) - Sz — vP?)

+
< sup (v!(s,2) = v2(s,9) — Sl —y?)
E;s

+ (t - 8) sup {fg(Tiyaraan) - ff(T,Z’,T,p,X)

Dg s 4
+3ac?e77) |a (r,0,p) = af (7,y,p)|* =767~ o - yIQ}-
Back-substitution now yields
sup (70 ul(r,2) = 1 NuP(r,y) = ST Ia —y )
Eg,

o +
< sup (u'(5,2) = v(s,9) = 5lo — P’

+(t—s) sup {eV(T—”{fg(T, y,e=1T=9)p = 1(T=3)p o=7(1=9) x)
DCt

0,s,t

— f2(r,z,e 1Ty e T (7 0) X)}

+ 3ac?e’(7—9)

2
a’f (Tﬂ x’ e_’Y(T_S)p) - ag (T’ y’ e_W(T_S)p)

o +
< sup (u'(s,2) ~ w(s,) = 5o~ )

+ (t - 8) Ds}!lp {CW(T_S){fg(TJy7T7p7X) - f119(T7'Z-7T7p7X)}

; - a
+ 3ac?e’(779) |af(7’,$,p) - ag(r,y,p)|2 - 767(7_5)§|$ - y|2},

which completes the proof of Theorem 3.1.

5.2. Proof of Theorem 3.2.

a) Note well that in this proof the indices i, j, k are fixed as defined in
the statement of the result. Let us start by using Theorem 3.1 to compare
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u' and u2. To this end, notice that

e sup (u' (t,z) — u?(t, 2))
RN

< sup (7! (7,2) — "7u’(ry) — 57 |e — g,
Eg,

o +
i}ip (ul(O,x) —u*(0,y) — §|x - y|2)
0,0

2

< (0, = w20, )1+ g0~ (w0, ).

The first inequality is obvious, while the second inequality follows from
maximizing the function hA(r) = [u*(0,-)],r* — $r? with r = |z —y|. An
application of Theorem 3.1 together with conditions (C5) and (C8) (with
constant independent of R) now yields for every 0 <t < T

7 sup (u' () = u?(t,)) < [ 0,) = w0, )|+ 5o~ [u! (0, )

w1 sup {7 (0,1, X) = S5m0, X)| + € CH o =
5,0,
- 2 - _——
+ 20" |b’19(r,w,p) — bg(r,w,p)| + 207 |z — y|? + ae’"CY% |z — y|?
+6ac’e’” |a} (1, 2,p) — ag(T,;c,p)|2 + 6ac?e’™C%*?|x — y|?

+
_a s
—75€7 e - yl2} :

(5.17)
where p := a(z — y)e"=")7 and we have used the following estimates:

|.Z' - y||b119(7-7$7p) - bg(T7$7p)| S 2|.CL' - y|2 + 2|b119(7',$,p) - b129(7_7x7p)|27
|(1119(7',.’L',p) - ag(Tayap)P S 2|G/119(7',."L',p) - ag(’l',.’l},p)|2

+ 2|a129(T,.5L’,p) - ag(77y7p)|2'

In (5.17), we collect all terms involving a|z — y|>¢7". Then by choosing ¥
appropriately, we see that

- ) 1
alz —y2e’” (Cf{o +(2+C%) +6c*(C™)? — 3

5) = Q29T
7) 2Im y|[*e™".
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The remaining “unwanted” terms inside the supremum we treat in a similar
way as we treated the initial data:

2
i @ Y £ 5 = .\ 2=x
GWTCI');JOLCL' — yl“ _ §|m — y|2e’YT < =a” gf# e’r <e(’y—'y)7-01f2]0) 22— )

1
2
Summing up what we have done with (5.17) so far, the terms with explicit
dependence in « read: Const a#/(2~#) 4+ ¢ Const M2, s, where

).

@ YT 2 2
M’y,O,t = Sllp e’ (|b119(7',£13,p) - bg(T,.fE,p)| + |a119(7',.’1:,p) - ag(T,.’L’,p)|

7,0,

Note that the minimum of h(r) = Cyr#/ (2=1) 4 Cyr is less than or equal to
201(2_”)/26'5‘/2. So let r = a, C; = Const, and Cy =t Const M2, ;. Then
we obtain

e'yt sup (ul (ta ) - u2 (ta ))
RN
< a1 (0,-) = u?(0,-)|| + ¢ sup €| fo — fr] + 2072 CH.

Dy 0.t

After an application of the following inequality in R, (a2 + b?)*/2 < |a|* +
|b|#, this proves Theorem 3.2 a) since the argument is symmetric in u! and
u?.

b) Note that the indices i, j, k are predefined and fixed, see the statement
of this result. Now let ¥ = 0, L = e "% [u];, and R = max(Rp,L). As in
Case (i), we use Theorem 3.1 and estimate the different terms. After an
application of conditions (C7) — (C8) and substitution of the bounds for
|z —y| (in Case (iii)), we get

1.
sup (u (1)~ 02(t,) < [l (0,°) = 020, + e [0,
- N[u?
+ ¢ sup {67T|f]1_9(7—;$;7‘;an) — fzﬂ(T,m;T;p;X” + Cg [;L ]1
D+ 0,t

2 1 .
+ 60 af (1) — a2, p) + 662 (O

Note that all the terms which explicitly depends on a can be written as
Const a + Const a~!. This can be minimized with respect to a as in a).
We thus obtain a constant M such that the result holds.

5.3. Proof of Theorem 3.3
(a) This result is not a consequence of Theorem 3.1. But the proof is very
similar. What we need to do is to go through the proof of Theorem 3.1
with 0 and u as sub- and supersolutions.



CONTINUOUS DEPENDENCE ESTIMATES 27

We assume first that v = 0. In the first case, we get from (5.10) and
(5.11) with u! =0, s =0,7 =0, and € € (0,1] that

)
Ta <sup {fﬁ(ro,yo,o, Const £1/2, X — Const 1)
9

— tr[A? (70, yo, Const £/2)(X — Const EI)]},

where (0, X) € P?>%0. The gradient is Const £!/2 by (5.6). By (C2) and
(5.12), we have replaced Y by X — Const 1.

The fact that (0,X) € P%*0 means X > 0. If we use the monotonicity
properties of fU(t,z,r,p,-) and tr[A®(t,z,p)-], we get

670 < sup {fﬂ(’ro,yo, 0, Const e'/2, —Const ) 4+ Const m(a)}.
9

The last term follows from the growth condition in (C3) and (5.7). Now
we continue as in the proof of Theorem 3.1. The result after having taken
the limits € — 0 and § — 1 is the following

—infu(t,-) < ||uo|| +t sup |f®(r,z,0,0,0)|.
R OxQ.

In a similar way, by interchanging the roles of 0 and u, we get

supu(t,-) < |luol| +¢ sup |f(r,,0,0,0)].
RN OxXQ:

This completes the proof of part (a) for the case v = 0. The case v # 0
follows from the case v = 0 as in the proof of Theorem 3.1.

(b) Let f@ = f% = f% a? = af = a’, and u! = w? = u and apply
Theorem 3.1. This proof consists of simplifying the resulting expression
using assumptions (C6) and (C8). At the end there should appear an
inequality like

u(z) — u(y) < ko~ 77 + ko|z — y[2a, (5.18)
for arbitrary z,y € RY. Then we are done since

inf {kla_f—y_n + ka|z — y|2a} < 2k PR g — g, (5.19)
(64

and the argument is symmetric in  and y.
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Now let us prove (5.18). First choose ¥ = 2(0}; +3c2(C*)% + 1) + 4.
Then using (C6) and (C8), remembering that p = a(z — y)e(~7, we get

e’YT(f(T7$7,r7p7X) - f(T,y,r,p,X))
+3c2e7 |a(T, z,p) — a((1,y,p)|* — %"ﬂx —y|2e™™
< e Chlz —y|* + alz —y[eTT (C}; +3c(C*)? - %)
< Chlw —y* — ajz — y|?e7 < H(CL)FRa TR,

The last inequality follows from sup,>o{cim# — cor?} < cf/@_”)c;“/@_”)
for ¢y,co > 0. Using the same result on the initial data yields

o 2 B
u(0,2) —u(0,y) - Slo - y|* < 2[u(0,")]i " a" .

Now fix z,y € RY and 0 <t < T. An application of Theorem 3.1 now
yields

e T (ult,2) — u(t,y) — " Sl — y?
< (2[u(0, )i +teT™ ()T a5

So we have an inequality like (5.18). Now the final simplifications are

7\ M2 B
(7> < and

2—p
2

(2[u(0, NE* +te”+t(0{2)ﬁ) < 2[u(0, )], + €7t #2CT

5.4. Proof of Theorem 3.4

The existence of a bounded viscosity solution follow from the Barles-
Perthame weak limit procedure, as discussed after Theorem 3.2. Further-
more it follows from Theorem 3.3 that the functions u and u” are in C*(Qr)
with bounds that are uniform in v.

It remains to prove the convergence rate. This result is a consequence
of the continuous dependence result in Theorem 3.1. Consider first u as a
subsolution and u” as a supersolution. In this case

fg(’r7 '%-7 T7p7X) = f’ﬂ(T7x7,r7p7 X) -V t,r[X]7

P = fY and A? = A for i = 1,2. Let R = e~ T max (||u|,sup, ||[u|]).
We estimate the non zero terms after the application of Theorem 3.1. As
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in the proof of Theorem 3.2 we get

et sup(u(t, ) —u”(t,) < sup (€ u(r,2) — 7w (1,9) = Sl — yP?)
RN Eg, 2

and

o +
sup (u(0,2) — u”(0,) — o — y?)

EGo
< [Ju(0,-) — u*(0,-)|| + Const a~ 7.

By Youngs inequality, |z — y|* < 25£a~#/(2=#) 4 Lq|z — y|2. Moreover,
using (C6), (C8), and p = Const a|z — y|?, we obtain

fl(T7$7T7p7X) - f2(T7y7r7an) S C}]; (|p||$ - y| + |$ - y|ﬂ) + U|tT[X]|
< Const (a_ﬁ +alz —y|* + 1/|tr[X]|).

Since |a? (T, z,p) — a®(7,y,p)| < C%|z — y| by (C8), this term contributes
with a term of the form Consta|z — y|?>. Choosing 4 appropriately elimi-
nates all terms of the form Const a|z — y|?. Using the bounds X in Dg ,,
we see that v|tr[X]| < Const av. Consequently, an application of Theorem
3.1 yields

sup(u(t,-) — u”(t,)) < e "[u(0,-) — u”(0,-)]| + Const (a’ﬁ + Va) :
RN

The result now follows by setting o = v=3" and then reversing the roles
of u and u”.
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CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY
SOLUTIONS OF FULLY NONLINEAR DEGENERATE ELLIPTIC
EQUATIONS

ESPEN R. JAKOBSEN AND KENNETH H. KARLSEN

ABSTRACT. Using the maximum principle for semicontinuous functions [3, 4],
we prove a general “continuous dependence on the nonlinearities” estimate for
bounded Holder continuous viscosity solutions of fully nonlinear degenerate
elliptic equations. Furthermore, we provide existence, uniqueness, and Holder
continuity results for bounded viscosity solutions of such equations. Our results
are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs’s equations
of zero-sum, two-player stochastic differential games. An immediate conse-
quence of the results obtained herein is a rate of convergence for the vanishing
viscosity method for fully nonlinear degenerate elliptic equations.

1. INTRODUCTION

We are interested in bounded continuous viscosity solutions of fully nonlinear
degenerate elliptic equations of the form

(1.1) F(z,u(z), Du(z),D?*u(z)) =0 in RN,

where the usual assumptions on the nonlinearity F' are given in Section 2 (see also
[4]). We are here concerned with the problem of finding an upper bound on the
difference between a viscosity subsolution u of (1.1) and a viscosity supersolution
@ of

(1.2) F(z,a(x), Da(z), D*u(z)) =0 in RN,

where F is another nonlinearity satisfying the assumptions given in Section 2. The
sought upper bound for v — u should in one way or another be expressed in terms
of the difference between the nonlinearities “F — F”.

A continuous dependence estimate of the type sought here was obtained in [7]
for first order time-dependent Hamilton-Jacobi equations. For second order partial
differential equations, a straightforward applications of the comparison principle [4]
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2 E. R. JAKOBSEN AND K. H. KARLSEN

gives a useful continuous dependence estimate when, for example, F is of the form
F = F + f for some function f = f(x). In general, the usefulness of the continuous
estimate provided by the comparison principle [4] is somewhat limited. For example,
it cannot be used to obtain a convergence rate for the vanishing viscosity method,
i.e., an explicit estimate (in terms of v > 0) of the difference between the viscosity
solution u of (1.1) and the viscosity solution u” of the uniformly elliptic equation

(1.3) F(z,u”(z), Du”(z), D*u”(2)) = vAu”(z) in RN.

Continuous dependence estimates for degenerate parabolic equations that imply,
among other things, a rate of convergence for the corresponding viscosity method
have appeared recently in [2] and [5]. In particular, the results in [5] are general
enough to include, among others, the Hamilton-Jacobi-Bellman equation associated
with optimal control of a degenerate diffusion process. Continuous dependence
estimates for the Hamilton-Jacobi-Bellman equation have up to now been derive
via probabilistic arguments, which are entirely avoided in [5].

The main purpose of this paper is to prove a general continuous dependence
estimate for fully nonlinear degenerate elliptic equations. In addition, we establish
existence, uniqueness, and Hélder continuity results for bounded viscosity solutions.
Although the results presented herein cannot be found in the existing literature,
their proofs are (mild) adaptions (as are those in [2, 5]) of the standard uniqueness
machinery for viscosity solutions [4], which relies in turn on the maximum principle
for semicontinuous functions [3, 4]. In [2, 5], the results are stated for nonlinearities
F, F with a particular form, and as such the results are not entirely general. In this
paper, we avoid this and our main result (Theorem 2.1) covers general nonlinearities

We present examples of equations which are covered by our results. In particular,
an explicit continuous dependence estimate is stated for the second order Hamilton-
Jacobi-Bellman-Isaacs equations associated with zero-sum, two-player stochastic
differential games (see, e.g., [8] for a viscosity solution treatment of these equations).
For these equations such a result is usually derived via probabilistic arguments,
which we avoid entirely here. Also, it is worthwhile mentioning that a continuous
dependence estimate of the type derived herein is needed for the proof in [1] of
the rate of convergence for approximation schemes for Hamilton-Jacobi-Bellman
equations.

The rest of this paper is organized as follows: In Section 2 we state prove our
main results. In Section 3 we present examples of equations covered by our results.
Finally, in Appendix A we prove some Hdélder regularity results needed in section
2.

Notation. Let |- | be defined as follows: |z|> = Y, |z;|* for any z € R™ and
any m € N. We also let | - | denote the matrix norm defined by |M| = sup,cp» %,
where M € R™*P is a m x p matrix and m,p € N. We denote by S¥ the space of
symmetric N X N matrices, and let Bg and Bg denote balls of radius R centered at
the origin in RY and S respectively. Finally, we let < denote the natural orderings
of both numbers and square matrices.
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Let USC(U), C(U) and Cy(U) denote the spaces of upper semicontinuous func-
tions, continuous functions, and bounded continuous functions on the set U. If
f: RY — R™*? is a function and p € (0,1], then define the following (semi)
norms:

flo= swp F@ [/l = S‘;{;NW’ and  [fl, = flo + [flu.
T z,y
TFY

By Cp*(RN) we denote the set of functions f : RY — R with finite norm |f|,.

2. THE MAIN RESULT

We consider the fully nonlinear degenerate elliptic equation in (1.1). The follow-
ing assumptions are made on the nonlinearity F : RN x R x RY x §¥ = R:

For every R > 0,F € C(RN x R x RY x S¥) is uniformly continuous
on RN x [-R, R] x Bg x Bg.

(C2) For every z,r,p, if X,Y € SV, X <Y, then F(z,r,p,X) > F(z,r,p,Y).

For every z,p, X, and for R > 0, there is yg > 0 such that
F(xaraan) —F(.T,S,p,X) ZVR(T_S)a for _RS B} S r S R.

Our main result is stated in the following theorem:

(€1)

(C3)

Theorem 2.1 (Continuous Dependence Estimate). Let F' and F be functions sat-
isfying assumptions (C1) — (C3). Moreover, let the following assumption hold for
some 1, 2 >0, p € (0,1], and M, K > 0:

F(z,r,0(z —y) +2X) = F(y,r,a(z —y) +2,Y)
(2.1) A
<K(lo =yl +m +a (o -y + 1) + |2+ (1+ 2 + ) ),

fora,e >0, z,y,2€ RN, r € R, |z],|r| < M, and X,Y € SV satisfying

1 /X 0 I I I 0
o L 0 el Aol ).
If u,u € C,?’”O(RN), o € (0,u], satisfy in the viscosity sense Flu] < 0 and

Fla) > 0, and R := max(|ulo, |@i|o), v := YR, then there is a constant C > 0 such
that:

sup(u — ) < < (m + m°)-
RN Y

Remark 2.2. For simplicity, we consider only equations without boundary condi-
tions. However, the techniques used herein can be applied to the classical Dirichlet
and Neumann problems. The classical Dirichlet boundary condition can be handled
in the same way as the initial condition is in [5]. The Neumann boundary condition
can be analyzed as in [2]. On the other hand, we are not able to treat so-called
boundary conditions in the viscosity sense [4, section 7C].

Before giving the proof, we state and prove the following technical lemma:
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Lemma 2.3. Let f € USC(RY) be bounded and define m,m. > 0, z. € R" as
follows:

me = max{f(z) —elz|’} = f(z.) —elzc|’,  m= sup f(a).
T TER™

Then as € — 0, me = m and €|z |> = 0.

Proof. Choose any n > 0. By the definition of supremum there is an 2’ € RV such
that f(z') > m —n. Pick an ¢’ so small that €'|z'|? < 7, then the first part follows
since

m > me = f(o.) - &'foa 2> f@) — &P > m— 2.

Now define k. = e|z.|?. This quantity is bounded by the above calculations since f
is bounded. Pick a converging subsequence {k.}. and call the limit k£ (> 0). Note
that f(z.) — k. < m — ke, so going to the limit yields m < m — k. This means that
k <0, that is kK = 0. Now we are done since if every subsequence converges to 0,
the sequence has to converge to 0 as well. |

Proof of Theorem 2.1. Assume that F' satisfies (C1) — (C3) and that u is Holder
continuous as in the statement of the theorem. Now define the following quantities

a €
$@,9) == Slz =yl + 5 (|2 + ly*) ,
¢($7y) = U(.Z) - ’I](y) - ¢($7y)5
g .= Ssup '(p(may = 1/)(370;3/0);
z,yeRN
where the existence of xg,yo € RY is assured by the continuity of ¢ and precom-
pactness of sets of the type {¢(z,y) > k} for k close enough to . We shall derive
a positive upper bound on o, so we may assume that ¢ > 0.
We can now apply the maximum principle for semicontinuous functions [4, The-
orem 3.2] to conclude that there are symmetric matrices X,Y € S such that
—2,+ —2,— _
(Dz¢(x07y0)7X) eJ u(.CL'()), (_Dy¢($0,y0),y) eJ U(yo), where X and YV
satisfy inequality (2.2) for some constant K. So by the definition of viscosity sub-
and supersolutions we get

(2.3) 0 <F(yo,@(yo), —Dyd(x0,%0),Y) — F (0, u(20), De¢(20, y0), X).

Since o > 0 it follows that u(zo) > @(yo). We can now use (C3) (on F') and the
fact that u(zo) — @(yo) = o + ¢(x0,%0) > o to introduce o and to rewrite (2.3) in
terms of @(yo):

F($07u(m0)7Dw¢(x0>y0)7X) - F(mo,ﬂ(yo),quﬁ(mo,yo),X)

(2.4) > v(u(zo) — u(yo)) > o,

so that (2.3) becomes
(2.5) v0 <F(yo,(yo), —Dy(z0,%0),Y) — F (w0, (yo), Dab(z0,%0), X).
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Furthermore, by Lemma 2.3 there is a continuous nondecreasing function m :
[0,00) — [0, 00) satisfying m(0) = 0 and

(2.6) |20/, lyo| < e7%m(e).

This implies that |Dyé (2o, yo) + Dyd(zo,Y0)| = €|zo + yo| < m(e). So by (C1) we
may replace D ¢ by —D,¢ in (2.4) such that

(2.7) F(20,%(y0), Dz ¢(20,0), X) > F (w0, u(yo), —Dy$(20,Y0), X) — wr(m(e)),
where wp denotes the modulus of continuity of F. Hence we may replace (2.5) by
(2.8)

vo <F(yo,@(yo), =Dy(z0,Y0),Y) = F(z0,4(yo), —Dyd(20, Y0), X) + wr(m(e)).

Since —Dyé(x0,y0) = a(To — Yo) — €Yo, We set z = —eyp in (2.1). Then by (2.1)
and (2.8), the following estimate holds:

(29) vo < Const [|$0—y0|"°+771 + o (|lzo — yol* +n3)
2.9
+m(e) + (1+ [zo]* + Iyol?) | +wr(m(e))-

By considering the inequality 2¢(zo,v0) > ¥ (zo,Z0) + ¥ (yo,v0), and Holder
continuity of u and u, we find

a|zo — yo|® < w(zo) — u(yo) + u(zo) — u(yo) < Const |zo — yol*°,

which means that |zo — yo| < Const @ 1/(27#0), Using this estimate and (2.6), we
see that (2.9) is equivalent to

(2.10) ~vo < Const [aiﬁ +m + a T + ang] + w(e),

for some modulus w. Without loss of generality, we may assume 72 < 1. Now we
choose a such that a—#0/(2=#o) = a3, and observe that this implies that o > 1,
which again means that a—#/(2-#0) < q—#o/(2=r0)  Thus we can bound the the
smaller term by the larger term. By the definition of o, u(z) — @(z) — 2|z < o
for any = € RV, so substituting our choice of a into (2.10), leads to the following
expression

y(u(z) — @(x)) < Const (g1 + 175°) + w(e) + ve2l|z|?,
and we can conclude by sending ¢ to 0. O
Next we state results regarding existence, uniqueness, and Holder continuity

of bounded viscosity solutions of (1.1). To this end, make the following natural
assumptions:
There exist p € (0,1], K > 0, and Yor, Y1r, Kr > 0 for any R > 0 such
that for any a,e > 0, 2,y € RV, —R<r < R, X,Y € SV satisfying (2.2)
|F($=T=a($ - y),X) - F(yar:a(m - y),Y)l
< orle —y|* + mrelz —y|* + Kge (1+ [z +[y]?) ,
(C5) Mp :=supgw~ |F(2,0,0,0)| < oco.

(C4)
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Theorem 2.4. Assume that (C1) — (C5) hold and that yr = v is independent
of R. Then there exists a unique bounded viscosity solution u of (1.1) satisfying
Ylulo < Mp.

Proof. Under conditions (C1) — (C4) we have a strong comparison principle for
bounded viscosity solutions of (1.1) (see also [4]). By assumptions (C3) and (C5) we
see that M /vy and —MF /-~ are classical supersolution and subsolution respectively
of (1.1). Hence existence of a continuous viscosity solution satisfying the bound
v|ulo < M follows from Perron’s method, see [4]. Uniqueness of viscosity solutions
follows from the comparison principle. O

Remark 2.5. The condition that vg be independent of R and condition (C5) are
not necessary for having strong comparison and uniqueness.

Theorem 2.6. Assume that (C1) — (C5) hold and that yr = v is independent
of R. Then the bounded viscosity solution u of (1.1) is Hélder continuous with
exponent po € (0, ).

Proof. This theorem is consequence Lemmas A.1 and A.3, which are stated and
proved in the appendix. O

The final result in this section concerns the rate of convergence for the vanishing
viscosity method, which considers the uniformly elliptic equation (1.3). Existence,
uniqueness, boundedness, and Holder regularity of viscosity solutions of (1.3) fol-
lows from Theorems 2.4 and 2.6 under the same assumptions as for (1.1).

Theorem 2.7. Assume that (C1) — (C5) hold and that yg = v is independent of
R. Let u and u” be C,?’“O (RN wiscosity solutions of (1.1) and (1.3) respectively.
Then |u — u”|p < Const v#o/2,

Proof. Tt is clear from Theorem 2.4, Lemma A.l, and the proof of Lemma A.3
that |u”|,, can be bounded independently of v. Now we use Theorem 2.1 with
Flu] = F[u] — vAu. This means that

F(z,r,a(r —y),Y) - F(y,r,ala —y),X)
< —vtrY +yorl|z — y[* + viralz — y* +eKr (1 + |2 + |y?) ,

with R = Mp/v. From (2.2) it follows that if e; is a standard basis vector in
RY, then —e;Ye; < K(a +¢€), so —trY < NK(a + ¢€). This means that (2.1) is
satisfied with 1, = 0 and 93 = NKv. Now Theorem 2.1 yield u —u” < Const v#0/2,
Interchanging u, F and u”, F in the above argument yields the other bound. |

3. APPLICATIONS

In this section, we give three typical examples of equations handled by our as-
sumptions. It is quite easy to verify (C1) — (C5) for these problems. We just remark
that in order to check (C4), it is necessary to use a trick by Ishii and the matrix
inequality (2.2), see [4, Example 3.6].
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Example 3.1 (Quasilinear equations).
—tr[o(z, Du)o(z, Du)” D*u] + f(z,u,Du) +yu =0 in RN,

where v > 0, for any R > 0, ¢ is bounded and uniformly continuous on RY x Bpg,
f is uniformly continuous on RY x [~R, R] x Bg, and for any R > 0 there are
K, Kg > 0 such that the following inequalities hold:

U(.I,p) Z 07 |0'(.fE,p) - 0(y,p)| S K|.CC _y|7
|f(z,t,p) = f(y,t,p)| < Kr (|pllz —y[ + |z —y[*), for|t| <R,
f(@,t,p) < f(@,s,p) whent <s, |f(2,0,0)| <K,
for any z,y,p € RY and t,s € R.

Example 3.2 (Hamilton-Jacobi-Bellman-Isaacs equations).
(3.1)

sup inf { — tr [0 (z)0*" (2)T D*u] — b*# (2)Du + c¢*P (z)u + fa’ﬁ(a:)} =0
ac ABEB

in RV where A, B are compact metric spaces, ¢ > v > 0, and |o%8]|;, [b%#|;,

|c*P) ., | f*P|, are bounded independent of a, 3.

Example 3.3 (Sup and inf of quasilinear operators).

sup inf { —tr [0*# (2, Du)o®” (z, Du)" D*u] + f**(z,u, Du) + 'yu} =0
acABEB

in RN, where A, B are as above, v > 0, and o, f continuous satisfies the same

assumptions as in Example 3.1 uniformly in «, 8.

We end this section by giving an explicit continuous dependence result for second
order Hamilton-Jacobi-Bellman-Isaacs equations associated with zero-sum, two-
player stochastic differential games with controls and strategies taking values in
A and B (see Example 3.2).

We refer to [8] for an overview of viscosity solution theory and its application to
the partial differential equations of deterministic and stochastic differential games.

Theorem 3.4. Letu and @ be viscosity solutions to (3.1) with coefficients (o,b, ¢, f)
and (G,b,¢, f) respectively. Moreover, assume that both sets of coefficients satisfy
the assumptions stated in Example 3.2. Then there is a po € (0,p] such that
u,@ € Cy"* (RN) and

lu —a|o < C( sup [|a°"5 - &a’5|5° + |b°"ﬁ - Bo"ﬁmo]
AxB
+ sup [|ca’ﬁ — &Py + |fP — fa’ﬁ|0]),
AxB

for some constant C'.
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Proof. With

m = sup I:lcaﬁ_éaﬁb+|fa,,3_fa,[3|0 , ng = sup I:laaﬁ_(}a,ﬂh?)+|ba,ﬂ_5a,5|g]’
AxB AxB
we apply Theorem 2.1 to u — % and then to 4 — u to obtain the result. O

APPENDIX A. HOLDER REGULARITY
We consider the two cases v > 2v; and 0 < v < 27, separately.

Lemma A.1. Assume that (C1) - (C5) hold and that u is a bounded viscosity
solution of (1.1). Let R = |ulo, define v := g, and similarly define vo,71, K. If
v > 27, then u € Co*, and for all z,y € RV,

Y

u(@) —ufy)| < 5
Proof. This proofis very close to the proof of Theorem 2.1, and we will only indicate
the differences. Let o, ¢, Zo, yo be defined as in Theorem 2.1 when 9 (z,y) = u(z) —
u(y) — 2é(z,y). Note the factor 2 multiplying ¢. We need this factor to get the
right form of our estimate! A consequence of this is that we need to change «,¢
t0 2a,2¢ whenever we use (C4) and (2.2). Now we proceed as in the proof of
Theorem 2.1: We use the maximum principle and the definition of viscosity sub-
and supersolutions (u is both!), we use the uniform continuity (C1) to get rid of
unwanted terms in the gradient slot of F', we use (C3) together with

|z —yl*.

u(zo) — u(yo) = o + alzo — yol* + & (|zol” + |yo[*) > o + alzo — yol*,
and finally we use (C4) and all the above to conclude that

(A1) 70 < volzo — yol* — (v — 2m)alzo — yol” +w(e),
for some modulus w. Here we have also used the bounds (2.6) on zg,yo. Compare
with (2.9).
Note that for any kq, ks > 0,
(A.2)
. I __m _ o) P n =25
rllzagc {kir* — ksar®} = E1k; ™" (aks) 2%  where & = <§) - (5) "
Furthermore for fixed a, Lemma 2.3 yields
limo = sup (u(z)—uly)—calz—y*) =m.
e—=0

z,yERN

So let k; = 40 and ky = v — 271 (> 0 by assumption), and go to the limit ¢ — 0
for a fixed in (A.2). The result is

=2
2

2—p -2 Py
(A.3) m < ki m Ela’ﬁ < 7 71( o )2 ”Ela’ﬁ < ka’ﬁ,
N Y Y= 2m

2

where k = (7—_'3%1) . Since, in view of (A.3),

w(z) —u(y) <m+alz —y|? < ka~ 75 +alz —y,
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we can minimize with respect to a obtain
u(z) — uy) < m>ig {ka_ﬁ +alz — y|2} = 62k2_;&|w —yl*,
az

= 4
where &5 = (L) + (2_—”) .

2—p 7

2—p
Now we can conclude by substituting for k£ and observing that ¢;¢,> =1. O

Remark A.2. Lemma A.l is not sharp. It is possible to get sharper results using
test functions of the type ¢(z) = L|z — y|° + £ (|z|* + |y|?) and playing with all
three parameters L, §, . However assumption (C4) is adapted to the test functions
used in this paper, so changing the test functions, require us to change assumption
(C4) too.

We will now use the previous result and an iteration technique introduced in
[6] (for first order equations) to derive Holder continuity for solutions of (1.1) for
0 < v < 2v;. Note that since Lemma A.1l is not sharp, our next result will not
be sharp either. We also note that in the case v = 2+v; the Holder exponent is of
course at least as good as for v = 2y, — ¢, € > 0 small.

Lemma A.3. Assume that (C1) — (C5) hold and that u is a bounded viscosity
solution of (1.1). Let R = |ulo, define v := g, and similarly define vo,v1, K. If
0<v< 2y thenu € C’,?’”O(RN) where pg = ,u%.

Proof. Let A > 0 be such that v+ A > 2v; +1 and let v € C,?’“(]RN) be in the set
X:={feCR"):|flo< Mr/v}.

Then note that +Mp /v are respectively super- and subsolutions of the following
equation:

(A.4) F(z,u(z), Du(z), D*u(x)) + Mu(z) = lv(z) vz € RV,

Let T denote the operator taking v to the viscosity solution u of (A.4). It is
well-defined because by Theorem 2.4 there exists a unique viscosity solution u
of equation (A.4). Furthermore by Theorem A.l1 and the fact that +Mp /vy are
respectively super- and subsolutions of (A.4), we see that

T:CP*RY)NX = CP*RY) N X.

For v,w € Cy*(RN) N X we note that Tw — |w — v|oA/(y + ) and Tv — |w —
v[oA/(y + A) are both subsolutions of (A.4) but with different right hand sides,
namely Av and Aw respectively. So by using the comparison principle Theorem 2.4
twice (comparing with Tv and T'w respectively) we get:

A
(A.5) |Tw — Tw|o < mm —vlp  Vw,v € CPFRY)NX.

Let u®(z) = Mg /v and u™(z) = Tu™ ' (z) for n = 1,2,... . Since Cp*(RN) N X
is a Banach space and T a contraction mapping (A.5) on this space, Banach’s fix
point theorem yields 4™ — u € C,? #(RN) N X. By the stability result for viscosity
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solutions of second order PDEs, see Lemma 6.1 and Remark 6.3 in [4], u is the
viscosity solution of (1.1). Since
k
|u _ un|0 < |u _ un+k|0 + Z |un+i _ un+z’—1|07
i=1
using (A.5), sending k — oo, and then using (A.5) again, we obtain

(A.6)
1 A A\ 2M A o\l
|u _ unlo < 7)\|un+1 _ unlo < %(—)\) |u1 _u0|0 < _F(_)\) X
1- 2 v+ v \y+
Furthermore by Theorem A.1 we have the following estimate on the Holder semi-
norm of u™:

(A7) [u"]us”"“[“”_”“s( A ) (], + K)

THA=2m T+A=2m
where the constant K does not depend on n or A(> 1). Now let m = n — 1,
z,y € RV, and note that

u(z) —u(y)| < fu(z) —u™(2)| + [u"(z) —u"(y)] + |[u"(y) — u(y)].
Using (A.6) and (A.7) we get the following expression:

w8 o) -l < onst { (25) "+ (2 ) le-ui )

Now let t = |z — y| and w be the modulus of continuity of u. Fix ¢t € (0,1) and
define A in the following way:

2
N Znm
p log 3
Note that if m; is sufficiently large, then m > m; implies that A > 7;. Using this
new notation, we can rewrite (A.8) the following way:

wy 1y 1\ ™ v —2m 1y 1\ "
t) < t o ( 1+ —1 - )= 1 —1 =)= t* 5.
w(t) < Cons {(WLZAY1 Og(t)m> +(+u o og(t -

Letting m — oo, we obtain

w(t) < Const {tu'r/271 + tmﬂ’h—utu} .

Now we can conclude since this inequality must hold for any ¢t € (0,1). O
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ON THE CONVERGENCE RATE OF APPROXIMATION
SCHEMES FOR HAMILTON-JACOBI-BELLMAN EQUATIONS

GUY BARLES AND ESPEN ROBSTAD JAKOBSEN

ABSTRACT. Using systematically a tricky idea of N.V. Krylov, we obtain gen-
eral results on the rate of convergence of a certain class of monotone approxi-
mation schemes for stationary Hamilton-Jacobi-Bellman Equations with vari-
able coefficients. This result applies in particular to control schemes based on
the dynamic programming principle and to finite difference schemes despite,
here, we are not able to treat the most general case. General results have been
obtained earlier by N.V. Krylov for finite difference schemes in the stationary
case with constant coefficients and in the time-dependent case with variable
coefficients by using control theory and probabilistic methods. In this paper
we are able to handle variable coefficients by a purely analytical method. In
our opinion this way is far simpler and, for the cases we can treat, it yields
a better rate of convergence than Krylov obtains in the variable coefficients
case.

1. INTRODUCTION

Optimal control problems for diffusion processes have been considered in a great
generality recently by using the dynamic programming principle approach and vis-
cosity solution methods: the value-function of such problems was proved to be the
unique viscosity solution of the associated Hamilton-Jacobi-Bellman equations un-
der natural conditions on the data. We refer the reader to the articles of Lions
[15, 16, 17] and the book by Fleming and Soner [8] for results in this direction and
to the User’s guide [6] for a detailed presentation of the notion of viscosity solutions.

In order to compute the value function, numerical schemes have been derived
and studied for a long time : we refer, for instance, the reader to Lions and Mercier
[18], Crandall and Lions [7], and Kushner [13] for the derivation of such schemes
(see also the books of Bardi and Capuzzo-Dolcetta [2] and Fleming and Soner [8]),
and to Camilli and Falcone [4], Menaldi [19], Souganidis [20] and the recent work
of Bonnans and Zidani [3] for the study of their properties, including some proofs
of convergence and of rate of convergence.
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The convergence can be obtained in a very general setting either by probabilis-
tic methods (see Kushner [13]) or by viscosity solution methods (see Barles and
Souganidis [1]). But until recently there were almost no results on the rate of con-
vergence of such schemes in the degenerate diffusion case where the value-function
is expected to have only C%% or W™ regularity (see the above references). Vis-
cosity solution methods were providing this rate of convergence only for first-order
equations (cf. Souganidis [20]), i.e. for deterministic control problems, or for z-
independent coefficients (cf. Krylov [11]). Results in the spirit of our paper but
requiring more regularity on the value-functions were anyway obtained by Menaldi
[19].

Progress were made recently by Krylov [11, 12] who obtained general results
on the rate of convergence of finite difference schemes by combining analytic and
probabilistic methods. Using systematically an idea by Krylov, we present here
a completely analytic approach to prove such estimates for a large class of ap-
proximation schemes. This approach is, at least in our opinion, much simpler.
Unfortunately, for reasons explained below, it can not yet handle finite difference
schemes in the most general case.

In order to be more specific, we consider the following type of HJB Equation
arising in infinite horizon, discounted, stochastic control problems.

(1.1) F(z,u,Du,D?*u) =0 in RV,

with

F(a,t,p,M) = sup { - 5 la(z,0)M] ~ b(a, 0)p + c(z, )t — f(z,9) }.
where tr denotes the trace of a matrix, ©, the space of controls, is assumed to be
a compact metric space and a, b, ¢, f are, at least, continuous functions defined on
RN x © with values respectively in the space SV of symmetric N x N matrices,
RN and R. Precise assumptions on these data will be given later on. From now
on, for the sake of simplicity of notations and since ¥ plays here only the role of a
parameter, we write ¢’ (-) instead of ¢(-,%) for ¢ = a, b, ¢ and f.

Under suitable assumptions on a, b, ¢ and f, it is well-known that the solution
of the equation which is also the value-function of the associated stochastic control
problem, is bounded, uniformly continuous ; moreover it is also expected to be in
CO%(RN) for some § if a, b, c and f satisfy suitable regularity properties.

An approximation scheme for (1.1) can be written as

(1.2) S(h,z,up(z),[up)?) =0 forall z € RV,

where h is a small parameter which measures typically the mesh size, up : RY — R
is the approximation of u and the solution of the scheme, [uy]" is a function defined
at x from wy. Finally S is the approximation scheme.

The natural and classical idea in order to prove a rate of convergence for §S is to
look for a sequence of smooth approximate solutions v of (1.1). Indeed, if such a
sequence (v.). exists with a precise bound on ||y —v|| e (r~) and on the derivatives
of v, in order to obtain an estimate of |[v: —up||~(®~) one just has to plug v, into
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S and to use the consistency condition in addition to some comparison properties
for S. This estimate immediately yields an estimate of [|u — up||re®n~) which
depends on € and h and the convergence rate’s result then follows from optimizing
with respect to .

Unfortunately, such a program cannot be carried out so easily and, to the best
of our knowledge, until now, nobody has been able to prove the existence of such a
sequence when the data a, b, c, f depends on x. However Krylov had a very tricky
idea in order to build a sequence which is doing “half the job” of the v.’s above :
his key idea was to introduce the solution u® of
(1.3) lm‘a<|x [F(z +e,u®,Duf, D*uf)] =0 in RV,

[ g
and to regularize it in a suitable way, taking advantage of the convexity of F' in
u, Du, D?>u. He was getting in this way a sequence of subsolutions (instead of
solutions) which provides “half a rate”, namely an upper estimate of u — up. A
detailed proof of this estimate is given in Section 2.

The other estimate (a lower estimate of u —wy,) is a priori more difficult to obtain
and this is where Krylov is using probabilistic estimates, at least in the z-dependent
case. In fact it is clear that all the arguments used above are much simpler in the
z-independent case. Our idea to obtain this lower estimate is very simple : to
exchange in the above argument the role of the scheme and the equation. This
idea was already used by Krylov in the z-independent case. As in the case of the
equation, we are lead to introduce the solution of uj, of
(1.4) max [S(h, + e,uj (=), [uf )] =0 in B

e g

At this point we face two main difficulties which explain the limitations of this
approach : in order to follow the related proof for the upper bound, we need two
key results. First we have to show that there exists 0 < § < 1 independent of h
and ¢ such that the uj, and u§ are in C%° N L>(RY) ; moreover we need a rather
precise control on their norms in this space and also a rather precise estimate on
llun —uf|| oo (mvy- Of course, a natural idea is to copy the proofs of the related results
for (1.1). They rely on the doubling of variables method which, unfortunately, does
not seem to be extendable to all types of schemes. Roughly speaking, we are able
to obtain rates of convergence for approximation schemes for which we can extend
this method.

At this point, it is useful to consider a simple 1—d example, namely

—%a(x)u” +Au=f(z) in R,

where a = 02 with o,f € W»*(R) and A > 0. We consider two ways of con-
structing numerical schemes approximating this equation. The first one is to use
the stochastic interpretation of the equation and to build what we call a “control
scheme”

_1-=Xh

5 [un(z + o()Vh) + up(z — o(x)Vh)] + hf(z) inR.

up(x)
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Such schemes are based on the dynamical programming principle and are easily
extendable to more general problems (cf. Section 3). For this type of schemes,
it is not so difficult (although not completely trivial) to obtain the sought after
properties of u, and uj.

On the contrary, we do not know how to do it in the second case (at least in a
rather general and extendable way), namely for finite difference schemes like

—%a(m) up(x + h) — Zu};:2(a:) + up(z — h) +wun(@) = f(z) inR

Indeed we face here the same difficulties as one faced for a long time for the PDEs,
but without here the help of the so-called “maximum principle for semicontinuous
functions”, i.e. Theorem 3.2 in [6].

Since we do not know how to solve this difficulty in a general way, we are going to
introduce an assumption on the scheme (Assumption 2.4) which has, unfortunately,
to be checked on each example. We do it in Section 3 for control schemes which were
studied by classical methods in Menaldi [19] and by viscosity solutions’ methods
by Camilli and Falcone [4], and in Section 4 for finite difference schemes.

Finally we want to point out that, if the equation and the scheme satisfy sym-
metrical properties, our approach provides the same order in h for the upper and
lower bound on u — uy. This is the case for example if one assumes the discount
factors to be large enough compared to the various Lipschitz constants arising in
F and S. But, since this rate of convergence relies a lot on the exponent § of the
C%9 regularity of u, and also on the possibly different exponent § of the regularity
of up and uj}, this symmetry cannot be expected in general.

This paper is organized as follows: in the next section, we state and prove the
main result on the convergence rate. In Sections 3 and 4, we study the applications
to control schemes and to finite difference schemes. The Appendix contain the
proofs of the most technical results of the paper.

2. THE MAIN RESULT

We start by introducing the norms and spaces we will use in this article and in
particular in this section. We first define the norm denoted by | - | as follows: for
any integer m > 1 and any z = (;); € R™, we set |z[> = Y7"_, 2. We identify
N x Ny matrices with RN *N2 vectors. For such matrices, |M|? = tr[M T M] where
MT denotes the transpose of M.

If f : RN — R™ is a function and § € (0, 1], then define the following semi-norms

B _ @) - W)
flo= sup f@], U= sup Zo—p
z#yY

and  |fls = |flo + [f]s-

By C%°(RY) we denote the set of functions f : RV — R with finite norm |f|s.
Furthermore for any integer n > 1 we define C™(R") to be the space of n times
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continuously differentiable functions f : RY — R with finite norm

n
flns =Y D flo +[D" fls,

i=0
where D!f denotes the vector of the i-th order partial derivatives of f. Note that
CO%(RM) and C™%(RY) are Banach spaces. Finally we denote by C(RY), Cy(RY)
and C*°(RY) the spaces of continuous functions, bounded continuous functions,
and infinitely differentiable functions on RY. Throughout the paper “C” stands
for a positive constant, which may vary from line to line, but which is independent
of the small parameters h and € we use.

The assumptions we use on the Hamilton-Jacobi-Bellman Equation (1.1) are the

following

(A1) For any ¢ € O, there exists a N x P matrix ¢ such that o’ = %07
Moreover there exists M > 0 and § € (0, 1] such that, for any ¥ € ©,
|0ﬂ|17 |b19|17 |C19|57 |f19|5 <M.

(A2) There exists A > 0 such that, for any z € RN and 9 € 0, ¢?(z) > A.

We will also use the following quantity

(2.1)
(1 [0@ - o’®) (@) — o’ W)"] | (@) — b ),z —y)
Ao = }2{2 o -y * o= yP? }
€

By assumption (Al), we have 0 < A\g < 3M/2. The next two (almost) classical
results recall that, under assumptions (A1) and (A2), we have existence, uniqueness,
and Holder regularity of viscosity solutions of (1.1).

Theorem 2.1. Under assumptions (A1) and (A2) there exists a unique bounded
continuous viscosity solution of (1.1). Moreover for u,v € Cx(RY), if u and v are
viscosity sub- and supersolutions of (1.1) respectively, then u < v in RV,

The proof of this result is classical and left to the reader. The second result is

Theorem 2.2. Assume that (A1) and (A2) hold, and assume that u is the (unique)
bounded viscosity solution of (1.1). Then u € COO(RN), where § is defined as
follows: (i) when A < dA¢ then § = /\—’\0, (ii) when A\ = 6o then o is any number in
(0,6), and (i4) when X > 6Xo then § = 4.

This result is proved in [15, 16, 17] in the case § = 1. The case § < 1 follows

after easy modifications in this proof. We now state the assumptions on the ap-
proximation scheme (1.2).

(C1) (Monotony) There exists A > 0 such that, for every h > 0, z € RV, t € R,
m > 0 and bounded functions «, v such that v < v in RV then

S(hyz,t+m,[u+ m]’;) > S(h,z,t, [v]’;) +Am.
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(C2) (Regularity) For every h > 0 and ¢ € Co(RY), z — S(h,z,$(z),[4]?) is
bounded and continuous in RN and the function t — S(h,=,t,[¢]?) is uniformly
continuous for bounded ¢, uniformly with respect to z € RV .

To state the next assumption, we use a sequence of mollifiers (p.). defined as
follows

1 _
(2:2) pe(a) = Sp(3) where pe CX®Y), [ p=1, and supp(p} = B0, D).
RN

The next assumption is

(C3) (Convexity) For any & € (0,1] and v € C%%(RN), there exists a constant K > 0
such that for h > 0 and z € RV

S(h,z,v(x —e€),[v(- —e)]")p.(e)de > S(h,z, (v * pc)(x), [v * p:]) — Ked .
RN

(C4) (Consistency) There exist n € N, dp € (0,1], and k£ > 0 such that for every
v € C™%(RN), there is a constant K > 0 such that for h > 0 and z € RY

|F(a:,v,Dv,D2v) —S(h,z,v(z), [v]g)| < I_(|v|n,50hk .

Condition (C1) is a monotonicity condition stating that S(h,z,t, [u]?) is nonde-
creasing in ¢ € R and non-increasing in [u]" for bounded (possibly discontinuous)
functions u equipped with the usual partial ordering. In the schemes we are going
to consider in this article A = X, but it is also natural to consider schemes where
X # \. Condition (C3) is satisfied with K = 0 by Jensen’s inequality if S is convex
in ¢ and [u]?. Finally, condition (C4) implies that smooth solutions of the scheme
(1.2) will converge towards the solution of equation (1.1).

In the sequel, we say that a function u € Cy(RY) is a subsolution (resp. super-
solution) to the scheme if

S(h, z,u(z), [u]") <0 (resp. >0) forallzeRY .

Condition (C1) and (C2) imply a comparison result for continuous solutions of
(1.2).

Lemma 2.3. Let u,v € Cy(RY). If u and v are sub- and supersolutions of (1.2)
respectively, then u < v in RV,

Proof. We assume m := supgn~(u — v) > 0 and derive a contradiction. Let {zn}n
be a sequence in RY such that u(z,) — v(z,) =: 6, = m as n — oco. For n large
enough d,, > 0, and now (C1) and (C2) yield

0> S(h, Tn,ul@n), [u]?) — S(h,zn,v(@n), []")
> S(h, T, v(z0) + 0, [v + M)k ) = S(h, T, v(z0), [v]")
> A, —w(m —6,),
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where w(t) — 0 when ¢ — 07 is given by (C2). Letting n — oo yields m < 0 which
is a contradiction, so the proof is complete. O

The uniqueness of continuous solutions of (1.2) is a consequence of the previous
lemma. Now, in order to follow Krylov’s method, we have to consider the existence
and regularity of solutions, not only for (1.2) but also for a perturbed version of it,
namely equation (1.4).

In our approach, we need the solution of (1.4) to exist, to have a suitable regu-
larity and to be close to the solution of (1.2). Unfortunately, as mentioned in the
introduction, we are unable to prove that such results follow from (C1) — (C4) and
we are lead to the following assumption:

Assumption 2.4. For h > 0 small enough and 0 < e < 1, the scheme (1.4) has
a solution u5, € Cy(RY). Moreover there exists a 6 € (0,6] (& defined in Theorem
2.2), independent of h and €, such that

lusl; <C  and |uf —uflo < Ce® .

Note that u is the solution of (1.2). This assumption is a key assumption and,
at least for the moment, this is the limiting step in our approach. In Section 3
and 4, we verify it for each of the examples that we have in mind.

We need a last assumption on the scheme

(C5) (Commutation with translations) For any h > 0 small enough, 0 < e < 1,
yeRN te R, veCy(RY) and |e| < g, we have

S(h,y,t, []y_c) = S(h,y, t, [v(- = e)]}) -

Our main result is

Theorem 2.5 (Convergence rate for HIB). Assume that (A1) and (A2) hold, and
that the scheme (1.2) satisfies (C1) — (C5) and Assumption 2.4. Let u € C%9(RN)
and up € CO’S(RN) be the viscosity solution of (1.1) and the solution of (1.2)
respectively. Then the following two bounds hold

(i) u—uhSC’h"i—’f‘o and (i1) u—uhZCh"i—kJO.

As we already mentioned, the bounds (i) and (ii) do not need to coincide. We
proceed by proving Theorem 2.5. We start by proving the bound (i) using mostly
properties of the equation (1.1). Then we prove the bound (ii) using mainly prop-
erties of the scheme (1.2).

Proof of bound (i) in Theorem 2.5.
As we mentioned in the Introduction, this bound was proved by Krylov [11, 12] ;
we provide a proof for the sake of completeness and for the reader’s convenience.

1. We first consider the approximate HJB equations (1.3) : the existence and the
properties of the solutions of (1.3) are given in the following lemma whose proof is
given in the Appendix.



8 BARLES AND JAKOBSEN

Lemma 2.6. Assume that (A1) and (A2) hold and let 0 < ¢ < 1. Equation (1.3)
where F' is given by (1.1) has a unique bounded viscosity solution u® € C**(RN)
satisfying |u®|5 < C and |u® — ulo < C'&°, where § is defined in Theorem 2.2.

2. Because of the definition of equation (1.3), it is clear, after the change of variables
y = z + e, that u®(- — e) is a subsolution of (1.1) for every |e| < ¢, i.e. that, for
every |e| < e, u®(- — e) satisfies in the viscosity sense

F(y,u(-—e),Du*(- —e),D*u°(- —€)) <0 in RV .

3. In order to regularize u, we consider the function u. defined in RV by
u(o)i= [ o - epele)de,
RN
where (pe). are the standard mollifiers defined in (2.2). We have

Lemma 2.7. The function uc is a viscosity subsolution of (1.1).

The proof of this lemma is also postponed to the Appendix. )
4. By properties of mollifiers, since the u® are uniformly bounded in C%%, we have
u: € C(RV) N C®(RY) with |uc|n,s, < Ce® "%, Then using the consistency
property (C4), we obtain

F(y,us(y),Dus(y),DQuE(y)) > S(h,y,ue(y), [UE]Z) - I_(|us|n,60hk in RV .

From Lemma 2.7, we deduce that S(h,y,ue(y), [uc]?) < Chked—n=% in RN

5. By (C1) we see that u, — Chke¥="=% /X is a subsolution of the scheme (1.2).
Hence by the comparison principle for (1.2) (cf. Lemma 2.3)

ue —up < ChFed—n=% in RN .

6. The properties of mollifiers and the uniform boundedness in C%9 of the u®’s
imply |u® — uc|o < Ce®. Moreover from Lemma 2.6 it follows that |u — u®|o < Ce?.
All in all we conclude that

lu —uclo < cel.
7. Finally, gathering the information obtained in step 5 and 6 yields
u— up < Chked-n—% 4 08 in RN |

The conclusion follows by choosing an optimal &, namely e"*t% = h*¥. And the
proof is complete.

Proof of bound (ii) in Theorem 2.5.

We follow exactly the same method as for the bound (i), changing the role of the
equation and the scheme.
1. Let u§ be the C%° solution of the scheme (1.4) provided by Assumption 2.4.
From the scheme (1.4), by performing the change of variables y = z + e, and using
(C5), we see that S(h,y,u;,(y — €), [u5 (- — €)]%) <0 for all |e] <e and y € RY.
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2. Let (pc)e be the standard mollifiers defined in (2.2). Multiplying the above
inequality by pe(e), integrating with respect to e and using (C3) yield

0> /RN pe(e)S(h, y,uj(y — €), [up(- — e)]Z)de

2 S(h‘7 Y, (u;—b * ps)(y); [Ui * pE]Z) - K65 ’
where
i 4 pu(@)i= [ uila = pelede.
R

Note that all the above integrals are well-defined since the integrand is continuous
by (C2).
3. Because of the properties of 4}, given in Assumption 2.4 and the properties of
mollifiers, u5 * p. € C%(RN) N C®(RY) with [uf * pe|n,s, < Ce® "%, By (C4)
we then have

S(ha Y, (ui * pé‘)(y)a [Ui * pé‘]]’;)

> F(y,u, % pey D(u§, % po), D*(u5, % p.)) — K, % pel o, h¥
4. Gathering all this information, we have

F(y,u§, * pe, D(u§, % p.), D*(u§,  p.)) < C(e° + hreb—m=00) in RN

5. By (A2) we see that us, % p. — C(e° + hked=n=00) /X is subsolution of (1.1), and
by the comparison principle for (1.1) (c¢f. Theorem 2.1)

up *x pe —u < C(ES + hkag_"_éo) in RV .

6. Again by the properties of mollifiers and the co regularity of uj we get that

us —u xp.|o < Ce’. Moreover, by Assumption 2.4, it follows that |up —u|o < Ce®.
h T Up*P h
All in all we conclude that

lup, — uj, * pelo < Ce®  inRY .
7. Finally, we deduce from step 5 and 6 that
up —u < C(sg + hkag_"_%) in RY .

In order to conclude, we choose again an optimal &, namely "% = h*. And the
proof is complete.

3. APPLICATION 1 : CONTROL-SCHEMES.

In this section, we consider general so-called control schemes. Such schemes were
introduced for first-order Hamilton-Jacobi equations (in the viscosity solutions set-
ting) by Capuzzo-Dolcetta [5] and for second-order equations (in a classical setting)
by Menaldi [19]. We will consider the schemes as they were defined in Camilli and
Falcone [4]. Actually, we will consider a slight generalization where ¢’ is not as-
sumed to be constant. We also consider an other extension: In [4] there is the
condition that A > dAg. We treat the general case where A is only assumed to be
positive.
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The scheme is defined in the following way

(3.1) un(@) = min { (1 = he? (@) un (@) + hf*(@) },

where II? is the operator:

N
I} () = % mZ:j (¢(@ +hb*(2) + Vhod, (2)) + 6(z + B’ (@) — VR, () ),

and a}’;b is the m-th row of ¢?. We note that this is not yet a fully discrete method
because the placement of the nodes varies with z. In [4] a fully discrete method is
derived from (3.1) and analyzed in the case ¢’ (x) = A. The authors also provide the
rate of convergence for the convergence of the solution of the fully discrete method
to the solution of the scheme (3.1). We now complete this work by giving the rate
of the convergence of the solution of the scheme (3.1) to the solution of the equation
(1.1) as h — 0.

To do so, we first rewrite the scheme (3.1) in a different way. Indeed, on one
hand, because of Assumption 2.4 and (C5), the role of the different z-dependences
in the scheme need to be defined precisely. On the other hand, the consistency
requirement has to be satisfied. Therefore, we are going to define S(h,y,t,[¢]")
where ¢ is a bounded, continuous function in RY . First, for any z, 2z € RV we set
[#]2(2) = ¢(x + 2) and then

(32)  S(hy,t,[gly) =

{—Hatop6n -0+ Cwi-rw) .

sup

)

where A is given by
A(h,9,y,[¢l5) =

1 —he’(y) S h(pp?d 9 h(ppd 9
2 3 (@180 () + Vhot ) + (G40 (4) ~ Vhahm))) -

m=1
It is easy to see that S defines a scheme which is equivalent to (3.1) and, in the

sequel, we will use one or the other indifferently.
We start by checking that conditions (C1) — (C5) hold.

Proposition 3.1. Assume that (A1) and (A2) hold. Then the scheme (3.2) satisfy
conditions (C1) — (C5) with A=\, K=0,k=1,n=3, and o = 1.

Proof. First, conditions (C1) and (C2) follow easily from conditions (A2) and (A1)
respectively. It is worth noticing that we have here A = A. Condition (C3) holds
with K = 0 because for any function g(z, ),

pe * g(-,9)(x) < pe x sup g(+,9)(x) = sup p: * g(-,9)(x) < pe * sup g(-,9) ().
JYEO €O PASLS)]

The consistency condition (C4) takes the following form:

|F (2,0, Dv, D*v) — S(h, z,v(x), [v]3)| < Klv|3,1h



CONVERGENCE RATE FOR HJB EQUATION 11

for any v € C>'(RV). And finally (C5) holds since, for any bounded, continuous
function ¢, [¢];_. = [¢(- — €)];. 0

We have the following result on existence, uniqueness, and regularity of solutions
of (3.1).

Theorem 3.2. Assume that (A1) and (A2) hold. Then there exists a unique
bounded solution of the scheme (3.1) satisfying the following bound

9
|urlo < sup { |/ |0} .
veo L A

Moreover, if X > §\g where Ao = supy([0?]2/2 + [b°]1), then up € COO(RN) and
the following bound holds

[unls < sup
9€O

{ [cﬂ]akuzjoé;[fﬂ]é } ‘

This result was proved in [4] in the case where ¢’ (x) = A. The extension to non-
constant ¢ (z) is easy. We proceed by using an iteration technique due to Lions
[14] to obtain regularity in the case A < dXo.

Theorem 3.3. Assume that (A1) and (A2) hold and that 0 < X\ < 6Xo. If up is
A
the solution of (3.1), then uj € C* %o (RN).

Proof. Let v > 0 be such that A+~ > dA¢ and let v € C®*(RY) be in the set
X :={we C@RN): |wlp < M/A}. Consider the following equation

(3.3) S(h, z,u(z), [u]?) + yu(z) = yv(z) in RV,

Let T denote the operator taking v to the viscosity solution u of (3.3). It is well-
defined because by replacing ¢?, f?, X by ¢? +, f? — v, A + 7, Theorem 3.2 yield
existence and uniqueness of a solution u € C®(RY) of equation (3.3).

Now we note that by (A1), (A2), and the definition of v, £ M /X are semisolutions
of (3.3) as well as (3.1). By comparison, Lemma 2.3, this implies that |u|o < M/A.
So we see that T : C*%(RY)NX — C%°(RV)NX. For v,w € C°>°(RY)NX we note
that Tw — |w — v]oy/(A + ) and Tv — |w — v|oy/(A + ) are subsolutions of (3.3)
with right hand sides yv and yw respectively. So by using the comparison principle
Lemma 2.3 twice we get

(3.4) |Tw —Tolg < L|w — o Yw,v € CO9(RY) N X.

A+
Let u)(z) = M/X and u}(z) = Tu} '(z). Since X is a Banach space and T a
contraction mapping (3.4) on this space, the contraction mapping theorem yields
the existence and uniqueness of u, € X where u} — u, € X and uy solves (3.1).

Since |up — uPlo < |up — uftFlo + 28 [ultt — w71 using (3.4) and sending
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k — o0, and then using (3.4) again, we obtain

1
lun — uplo < ﬁluﬁ+l — uplo
Aty

(3.5) < %(%ﬁy)nm}l —ug|o
n—1
()

< — ('
- A \A+47y

Furthermore since A + v > )¢, Theorem 3.2 yield the following estimate on the
Holder seminorm of ujy

. K +~y[uf™s ( Y >n1 ( 0 K )
. < 2 < - s
(3.6)  [upls < Nty —oh =\ AT —ong [unls + Nty —on0)

where the constant K does not depend on n or 7. Since v > §X\g — A, we can
replace the last parenthesis in (3.6) by a constant not depending on n or y. Now let
m=n—1,z,y € RV, and note that |up(z) — un(y)| < |ur(z) — ul(z)| + [ul(z) —
ull(y)| + |uf(y) — un(y)|. Using (3.5) and (3.6) we get the following expression

a0 e -wolsc{(;5) + (1) et}

Let t = |z — y| and w be the modulus of continuity of u. Fix t € (0,1) and define
v in the following way

m5\0

7'=log%'

Note that if m; is sufficiently large, then m > m; implies that v > §Ag. Using this
new notation, we can rewrite (3.7) the following way

A 1 1\ " A—68Xo 1 1\ ™,
< — -] — - )=
w(t)_C{(1+)\0 log(t> m) +(1+ " log(t> m) t },

and letting m — oo we obtain w(t) < C{t**0 4 t}/20=9t3} Now we can conclude
since this inequality must hold for any ¢ € (0,1). O

Finally we need a continuous dependence type of result to bound the difference
between uj, of (3.1) and solution uj, of (1.4). The “direct” method used in the
proof of Theorem 3.2 to prove Holder regularity seems not to work so well here. In
order to overcome this difficulty, we use “discrete viscosity methods”. That is, we
double the variables and replace the solution by a test-function. The difficulty is
to work without the maximum principle for semicontinuous functions. This is done
by constructing schemes for the doubling of variable problem in R?>Y. Let us state
the result corresponding to Assumption 2.4.

Theorem 3.4. Assume that (A1) and (A2) hold and let 0 < e < 1 and h < 1.
Then the scheme (1.4) has a unique bounded solution u5 € CO°(RN) satisfying
[us |5 < C and |ui —uplo < Ce°, where up, = u) is the solution of (3.1), and where
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8 :=X/Xo when X\ < X0, & := § when X\ > §Xq, and & is any number in (0,8) when
A= X\g6.

Proof. We write S; (h, z,u(z), [u]}) := sup|. <. S(h, = +e,u(z), [u]}), and note that
(C1) holds for this scheme with the same constant A. By replacing ¥ by (9, e), we
see that existence, uniqueness and the Hélder norm bound follow from Theorems
3.2 and 3.3.

We turn to the bound on uj, —uy. First notice that because of the very definition
of the scheme (1.4), uj, is a subsolution for the S—scheme and Lemma 2.3 implies
that u$ < wup in RV.

Therefore we have just to prove that up — uj, < Ce’ and, to do so, we consider
the R2N —scheme which can be written either as

w(z,y) = sup { (1 = he @)} “w(z,y)},

9€O
le|<e
where Hi’e is the operator:
N
H'“ = Z { x+hb’9 )+\/ﬁa,‘fl(w),y+hbﬂ(y+e)+\/Ea,’2l(y+e))

+9(z + hb’(z) — Vho? (x ),y+hb’9(y+e)—\/ﬁa}’;(y+e))},

or, equivalently, in the following way

g { = 5 @ w(a,y) — w(y) + @iy} =0.

lel<e

We denote by D.(h,z,y,w(z,y), [w]gy) the right-hand side of this equation with
[w]’;’y(zl,zg) =w(x + 21,y + 22) for any z,y, 21,2 € RV.

We first remark that this scheme satisfies the RV version of (C1), even with the
same constant A, and (C2).

Then we consider the function w : RV x RV — R defined by w(z, y) h(:c) -
u5(y). By the definitions of S, S., D, and using the inequality inf{-- <
sup{---} —sup{---}, we obtain

Ds(h; T, yaw(x; y)a [w]g,y) < S(ha T, ’Lth(.'L'), [uh]g) - Ss(ha yaui(y)a [UZ]Z)

(3.8) +(z—y| + 5)‘5151363){ {[®)s|us| + [£1s} -

and since up, uj, are respectively the solutions of the S and S, schemes, we have

(3.9)
D.(h,z,y,w(z,y),[w]’ ) < (lz —y| +¢)° rqglgéc{[cﬂ]ﬂuﬂ +[f%s} inRY xRV
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Next we introduce ¢(z,y) := a|z —y|*> + n(|z|? + |y|?). (Here and below we drop
any dependence in a and 7 for the sake of simplicity of notations.) By straightfor-
ward computations and using (A1), it is easy to show that

(3.10) De(h,z,9,6(z,9),[81%,) > ~C(allz — P +&) +nlal + ly + ) -

Finally we consider ¢ (z,y) = up(x) — u5(y) — é#(x,y). Since up and u§ are
bounded, there exists zq,yo € RV such that my , := sup, ,er~ ¥(2,y) = ¥(Zo,Yo)-
We note that w — mq,, < ¢ with equality holding at (x¢,yo). Moreover, from the
inequality 2¢(zo,y0) > (20, z0) + ¥ (yo,yo0) and the Holder regularity of up and
uj, (which is uniform w.r.t h and €) we see that

2a|zo — yol? < [unlzlzo — yol® + [u5]5]T0 — yol°

and therefore we can conclude that |zo — yo| < Ca™'/ (2-9) which again implies
that

5 _ 5
(3.11) alze — yo|* < Ca” 23 and |zo — yo|® < Ca~ 27 .

Furthermore for fixed o, Lemma A.2 yields lim,_,07n(|zo|*> + |y0]?) = 0 and
limg,_,0 Mq,; > m, where m = suppn {up — uj,}.

Now we use the information given by (3.9) and (3.10) at (zo,yo) together with
(C1) : since maxyee([c®]ls|us|o + [f?®]s5) is bounded independently of h and e, we
have

C(le - yo‘é + 66) Z Ds(h) Zo, y(),UJ(CE'(), yO)J [w]go,yo)

> D.(h, 20, yo,w(xo,Y0) — Ma,n, [w - ma,n]go,yo) + Ama,y

> Dc(h, 0,0, $(z0, Yo), [BlR, 4o) + AMa,y

(
> Amg,, + C(a(|x0 —yol|* +¢%) —n(|zol® + |yo|* + 62)).
We can therefore conclude that
(3.12) Mg,y < C(lzo — yol® + alzo — yol* + ° + a? + n(|zo|* + |yo|> + £%)).

Finally, using the estimates (3.11) into (3.12) and passing to the limit n — 0 for
a fixed, we get

(3.13) Am < C(ag? +65+a72%3 +ofﬁ).
For k1, k2 > 0, by optimization with respect to «, we obtain
5 < o~ 3 2-8
(3.14) Fra+ ko 27 < &3, 8)k2k,7
and
2-3
(3.15) kia + ke 2- 2% < &(é, ki 5+5k2 A

where &(s, ) is positive and finite for 0 < s < ¢ < 1. We note that for 0 <4 < § < 1,

g < 2_§+6. So with k1 = &2 < 1 we get ké/(z 5+9) < ké/z. Combining (3.13),
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(3.14) and (3.15), then yield Asuppn(up — uf) = Am < Ce®. And the proof is
complete. |

From Definition 2.1 of Ao, we see that A\ > X¢. Assumption 2.4 holds by
Theorem 3.4. Hence we can conclude from Proposition 3.1 and Theorem 2.5 that
the following result holds.

Theorem 3.5. Assume that (A1) and (A2) hold. Let Ao be defined in Theorem
3.2 and define § as follows : (i) when X\ > 6Xg then & = 8, (i) when X\ < §Xg then
6 = %, (i) when X = Xod then § € (0,8) (any number). Let u and uy be the
solutions of (1.1) and (3.1) respectively, then

|u - uh|0 S Chg/4

Remark 3.6. We remark that & defined in Theorem 2.2 is greater than or equal
to 4. This means that for the scheme (3.1) the bound (i) in Theorem 2.5 is always
at least as good as the bound (ii). When A > §\g where )g is defined in Theorem
3.2, then the upper and lower bounds coincide.

Next, we consider a deterministic optimal control problem (a? = 0 for any ¥).
In this case, condition (C4) takes the following form

|F(z,v, Dv) — S(h,z,v(z), [v]})| < K|v|11h,
for v € CLHL(RY). It is then clear that Theorem 2.5 yields the following result.
Theorem 3.7. Assume that (A1) and (A2) hold and that 0® = 0 for any 9. Let A\

be defined in Theorem 3.2 and & as in Theorem 3.5. Let u and uyp, be the solutions
of (1.1) and (3.1) respectively, then

lu —uplo < Cho/2.

When 6 = 1 and A > Xg = supy[b?]1, this result is in agreement with [2,
Appendix 1].

4. APPLICATION 2: FINITE DIFFERENCE SCHEMES

In this section we consider a finite difference scheme proposed by Kushner [13,
8] for the N-dimensional Hamilton-Jacobi-Bellman equation (1.1). We use the
notation for these schemes introduced in the books [13, 8].

In this section, we assume that (A1) and (A2) hold, that a? is independent of
z, and that the following two assumptions hold

(4.1) af = la%| >0, i=1,...,N,
J#i
N
(4.2) Y {a?i =3 Jad| + |b;?(x)|} <1 inRV.
i=1 j#i

Condition (4.1) is standard (see [13, 8]) : it implies that the Kushner scheme is
monotone. We also refer to Lions and Mercier [18] and to Bonnans and Zidani [3]



16 BARLES AND JAKOBSEN

for a discussion of this condition. Conditions (4.2) may be viewed as normaliza-
tion of the coefficients in (1.1). We can always have this assumption satisfied by
multiplying equation (1.1) by an appropriate positive constant.

In order to simplify matters, in this section we make the additional assumption
that (A1) holds with 6 = 1. Contrarily to assumption (4.1) which we cannot
remove, to treat the case 0 < § < 1 is a little bit more tedious but does not present
any real additional difficulty. Roughly speaking, the 0 < § < 1 case can be deduce
from the § = 1 case by using the continuous dependence (w.r.t the sup-norm) of u
and uy, in the ¢?’s and f¥’s and a suitable regularizing argument.

The difference operators we use are defined in the following way

A% w(z) = :i:%{w(a: + e;h) — w(z)},
A2 w(z) = hiz{w(a: + e;h) — 2w(z) + w(z — e;h)},
Ajw]w(a:) = #{210(:1:) +w(z + e;h +ejh) + w(r —e;h —ejh)}

1
- ﬁ{w(w + eih) + w(z — e;h) + w(z + ejh) + w(z —ej;h)},

1
A g w(x) = W{w(x +e;h) + w(z — e;h) + w(z + e;h) + w(z — ejh)}
1

- W{Qw(m) +w(z +eih —ejh) + w(z —e;h +€;h)}-

Let bt = max{b,0} and b~ = (—=b)*. Note that b = b* — b~. For each z, t, pi,

Aii, A5, 0,5 =1,...,N, let

9+ a’l?‘—
Af+-4 A;j)

a;;
2

N 9
~ a¥.
F(z,t,p}, Aii, A7;) = sup { Z [— %Am’ + Z (—
i J#i
— b @)pF + 0 (@7 | + (@)t — () }.
Now we can write the Kushner scheme in the following way
(43) ﬁ'(l‘, uh($)7 Aiuh(a")a Ai,uh(a))a A;t;wjuh(m)) =0.

We remark that this is a monotone finite difference scheme which is consistent
with (1.1). Before we check conditions (C1) — (C5), we shall derive an equivalent
scheme to the scheme (4.3). This new scheme will be better suited to proving
existence, regularity and continuous dependence results. We are going to rewrite
(4.3) as a “discrete dynamical programming principle”. In this way, it will appear
under, essentially, the same form as the scheme presented in Section 3. This point
of view was introduced by Kushner, see eg. [13]. But, as opposed to Kushner, we
use purely analytical methods in the following. Let h < 1 and define the following
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“one step transition probabilities”

p’(e.2) =1-3 {al, = 3 lal| + hb] ()]},

i=1 J#i
HExE: »h)—a—i Z' G4 b (),
Pz, x=xen)= 2 29
J#i
v+

P’ (z, 2 + e;h £ ejh) = 12] ,

alF
p’(z, 2 — e;h £ ejh) = g ,

and p?(z,y) = 0 for all other y. Note that by (4.1) and (4.2), 0 < p’(z,y) < 1 for
all ¥,z,y. Furthermore }°__,,~p’(z, 2z +2) =1 for all ¥, z.

Tedious but straightforward computations show that u, satisfies the following
equation which is equivalent to (4.3)

(44)  up(x) :grelg{H—Tlcﬂ(x)( Z pﬂ(x,x+z)uh(x+z)+h2fz9(w))}.

ZERZN

It is worth noticing that this formulation is analogous to (3.1).
Analogously to what we did in Section 3, we now define the scheme S. For
¢ € Cyp(RY), we set [¢)"(-) :== ¢(x + -) and S is given by

Syt 1612) = sup {—hi l > P+ Al —t

zERZN

+c(z)t — f”(y)} :

It is easy to see that S defines a scheme which is equivalent to (4.4), note also the
similarities with (3.2). Using this new notation, let us now check that conditions
(C1) — (C5) are satisfied.

Proposition 4.1. Assume that (A1) with 6 =1 and (A2) hold. Then the scheme
(4.3) satisfy conditions (C1) - (C5) with A=\, K=0,k=1,n=2, and do = 1.

Proof. With S in this form is not difficult to see that conditions (C1) (with A = X)
and (C2) follow from (A2) and (Al). Condition (C3) holds with K = 0 because for
any function g(z,),

pe * g(-,9)(x) < pe x sup g(+,9)(x) = sup pe * g(-,9)(x) < pe * sup g(-,9) ().
JYEO €O J€O

The consistency condition for (4.3) reads
|F(z,v, Dv, D*v) — S(h,z,v(z), [v]")| < K|v|2,1h,

for any v € C>'(RV). Finally, (C5) follows directly from the above definition of
[6]%- O

We use fix point arguments to prove Assumption 2.4 in the case § = 1.
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Proposition 4.2. Assume that (A1) with § =1 and (A2) hold. Then there exists
a unique solution up € Cy(RN) of the scheme (1.2). Moreover if A > Xg =
2v/N supy[b?]1, then |up|s < C.

Proof. Let T}, : C»(RY) — Cy(RY) be the map defined by in the following way: for
any v € Cp(RY)

Tpo(z) := inf {;( Z Y (z, 2 + 2)v(z + 2) + h2f’9(:c)) }

d9eo | 1+ h2c?(x) At
z

We first prove that T}, is a contraction in Cy(RY) equipped with the sup-norm.
For u,v € Cy(RY), we subtract the expressions for Thu and Thv. After we use the
inequality inf(---) —inf(---) < sup(---—--- ), the probability interpretation of p?,
and (A2), we obtain

1
T, - T, < —- v -
@) = Tho(z) < 1 SUP Lg;Np (0,3 + 2)lulz +2) — v(a + 2)|

1
1+ Ah2?
Combining this inequality and the inequality obtained by reversing the roles of u
and v, we have a contraction. Since Cy(RY) is a Banach space, the contraction
mapping theorem yields the existence and uniqueness of a u € Cy(RY) solving
(4.4).

We proceed by proving that up has a bounded Lipschitz constant. First we
make the simplifying assumption that ¢?(z) = A. Given v € C%'(RY) we prove
that Thv € C%1(RY). Subtracting the expressions for Tv(z) and Tyv(y), we obtain

< |u — vlo.

Tho(w) = Tro(y) < 1557 50 { 3 [ea sttt —u+2)

+ 0y +2) (0" (@, + 2) = 0" (1,5 + 2) | + B2 (@) - W) }-

In the right-hand side, the first sum is bounded by [v]:|z — y|, and by using the
definition of p?, the second sum is equivalent to

By (67 (@) = b () A o) = (67 (2) = b/~ () AL 0(0)]

< 2VNR? B’ (2) = b (y)|[v]:.

By the above expressions, and by exchanging the roles of z and y, we obtain the
following estimate

(45)  |Twle) - Tl < 1+ Ah”) o]y + 1 suplf s |7 — .

1+ Ah2 [(

By assumption A > Ao, if [v]y < M/(A—Xo) with M defined in (A1), then [Thv]y
satisfies the same inequality. In particular, for any n € N, [T}*0]; < M/(X — Xo)
and since, by the contraction mapping theorem, the sequence (77'0), converges
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uniformly to up, this means that [u]1 < M/(A— Xo), and the proposition is proved
in the case c?(z) = \.

In the case of non-constant ¢?(x) we would obtain an expression like (4.5) with
supy[f?]1 replaced by supy([f?]1 + [¢]1([v]o + h%|f?|0)), hence the lemma would
hold again. |

Now let us consider the scheme (1.4). In the expressions defining p?, replace
bE(x) by bf(x + e) and call the resulting functions for p?¢. Then it is clear that
(1.4) is equivalent with the following “dynamic programming principle”

(4.6)

lel<e 2€hZN

Now by arguing as in the proof of Proposition 4.2, we obtain the following propo-
sition.

Proposition 4.3. Assume that (A1) with § = 1 and (A2) hold. Then for any
€ > 0 there erists a unique solution uj € Cj (RN of the scheme (4.6). Moreover if
A > Ao (defined in Proposition 4.2), then |uj |1 < C.

Using the same technique as in the proof of Proposition 4.2, we now prove that
|up — u5lo < Ce.

Proposition 4.4. Assume that (A1) with § = 1 and (A2) hold and that A\ > g
(defined in Proposition 4.2), then |up — u$|o < Ce.

Proof. We only give the proof in the case where ¢’ (z) = \.

As in the proof of Theorem 3.4, we first notice that, because of the very definition
of the scheme (4.6), uj, is a subsolution for the S—scheme and Lemma 2.3 implies
that u§ < up, in RY. Hence, again, we only need to have an upper estimate of
Up — Uy,

Let T} be the operator for (4.6) corresponding to Tj. After similar manipulations
as in the previous proofs we obtain the following inequality

Toun(e) = Tini o) < 1y sup{ Y [p7@e+2)unla +2) —ui(o +2)
zERZN

+ui(z+ 2)(P° (z,z + 2) — pP°(x, x + 2))
+ R (@) = [@+e)) .

Since the p?’s are positive and sum up to 1, the first sum is bounded by |up, — u5o-
The second sum is equivalent to the following expression

N
BY [0+ (@) = b (@ + ) AL ui (o) = (47 () — b (2 + ) Ag i (a)].
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By Proposition 4.3, |uj |, is bounded independent of h and . Combining this fact
with (A1), we see that the above expression can be bounded by Ch2e. All in all we
have obtained

Thup(z) — Truf(x) lun — uflo + CshQ] .

<1 [

— 1+ Ah?
We can now conclude the proof using the fact that Thup = up and Truj, =

uj,. O

From Definition 2.1 of Ao, we see that Ag > Ag. Therefore when (A1) and (A2)
hold with 6 =1 and A > Ao (defined in Proposition 4.2), by Theorem 2.2, we have
d = 1. Under the same conditions, Propositions 4.3 and 4.4 yield that Assumption
2.4 is satisfied with § = 1. Therefore we can conclude from Proposition 4.1 and

Theorem 2.5 that the following result holds

Theorem 4.5. Assume that (A1) with § = 1 and (A2) hold, that, for any 9, o’
is independent of x, and that X > Ao (defined in Proposition 4.2). If u and uy are
solutions of (1.1) and (4.3) respectively, then

lu —uplo < ChY/3.

Remark 4.6. It is worth noticing that, in this case, we obtain the same exponent
in the upper and lower bounds on « — up,. This, and the value 1/3, is in agreement
with Krylov’s paper on constant coefficients [11]. In his paper on variable coefficient
parabolic equations (including z-dependence in a?), he gets different exponents for
the upper and lower bound on u — up, the one being 1/3 and the other being 1/27.

Remark 4.7. In order to have u € C®'(R"), by Theorem 2.2 we need A > Ao.
But to handle the scheme, we needed the stronger condition A > A¢. From their
definitions we see that Ag > 2v/N)o.

Next, we consider first-order equations (a® = 0 for any 9). Condition (C4)
then takes the following form |F(z,v, Dv) — S(h,z,v(z),[v]?)| < K|v|1,1h for v €
CHY(RN). Tt is now clear that Theorem 2.5 yields the following result.

Theorem 4.8. Assume that (A1) with § = 1 and (A2) hold, that c” = 0 for any
9, and that A > g (defined in Proposition 4.2). If u and up, are solutions of (1.1)
and (4.3) respectively, then

|lu —uplo < Ch'/2.

This is the expected rate. The same rate was obtained in e.g. [7, 20] for time-
dependent problems.

Remark 4.9. It is possible to handle certain type of equations and schemes in the
case of non-constant a? provided they are equivalent to equations and schemes with
constant a?. Here is a typical example we have in mind.

Let k¥ : RV — R be functions such that |k?|; < M (independent of ¥) and, for
each 9, either k? is a nonnegative constant or k? satisfies k¥(z) > k& > 0 in RV.
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Furthermore assume that a? is constant for any ¥ and that (A1) and (A2) hold.
We consider the following equation

(4.7 sup { - %kﬂ(z’) tr[a® D?u] — b% (z) Du + % (z)u — fﬁ(x)} =0.
9€0

Since for every ¥ where k” is non-constant, 0 < k < k¥ < M, we may divide

inside the supremum by K?(z), where K?(z) is equal to 1 for every ¢ where kY

is constant, and otherwise equal to k”. We then obtain new coefficients which still

satisfies (A1) and (A2), but with new constants min(A/k, A) and max(M/k, M).

The new coefficients in front of the second-order terms are now constants.

More important, since the problem comes mainly from the scheme, we can do
the same for the scheme (4.3) corresponding to (4.7), that is the solution uy to (4.3)
is the solution of an other finite difference scheme which can be handled directly
by Theorem 4.5.

A simple special case of (4.7) is the following 1-dimensional problem

max { —a(@)" = b(@)u' + c(@)u — f(z), =b(z)u’ + &(z)u — f(m)} -0,
where a(z) > k > 0 and (A1) and (A2) hold.

APPENDIX A. RESULTS NEEDED IN THE PROOF OF BOUND (I) IN THEOREM 2.5.

In this section we will prove Lemmas 2.6 and 2.7 which were stated in the proof
of bound (i) in Theorem 2.5. In order to prove Lemma 2.6, we use the following
continuous dependence result.

Theorem A.1. For u € (0,1], let u,v € CO#(RN) be solutions of (1.1) with coef-
ficients {a?, b7, ¢?, £} and {@’, b?, &, fU} respectively. Moreover assume that
(A1) and (A2) hold for both sets of coefficients with constants M, M and X = \. If
p < &, then there is a constant C' depending only on M, M, X, u, and § such that

Au —v|o < C sup {|0’9 — b+ — 5’9|g}
€O
+ sup {|ufo A [vlo|c? — %o + | f? - ]w|o}.
€0

Here a A b = max(a,b). Before giving the proof, we prove the following classical
lemma.

Lemma A.2. Let f be a bounded upper-semicontinuous function in RY and define
m,me > 0 and z. € R" as follows : m. = m%X{f(w) —elz|*} = f(x.) — €|z |* and
TER™

m = sup f(z). Then as e = 0, mc = m and g|z.|> — 0.
zeR™

Proof. Take an arbitrary n > 0. By the definition of the supremum, there exists
z' € RY such that f(z') > m —n. If ¢ is small enough in order to have ¢|z'|? < 7,
then the first part follows since

m Z me = f(.’L'E) - €|$E|2 Z f("L'I) - 6|wl|2 Z m — 277-
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Now define k. = ¢|z.|?>. This quantity is bounded by the above calculations since
f is bounded. We consider a converging subsequence {k. }- and call the limit &
(which is non-negative by definition). We remark that f(z.) — ke < m — ko and
passing to the limit yields m < m — k. This means that £ < 0, that is £ = 0. Now
we are done since if every subsequence converges to 0, the sequence converges to 0
as well. O

Proof of Theorem A.1. Define m := supgn(u — v), ¢(z,y) = alz — y|?> + &(|z|? +
ly[?), and ¥(z,y) = u(z) — v(y) — #(z,y) in RY x RY. Then we set mqy,. =
sup, yernv ¥(2,y). By classical arguments, there exists xo,yo € RN such that
Ma,e = Y(Tg,Y0). Here and below we drop any dependence in a and & when
there is no possible ambiguity.

By the maximum principle for semicontinuous functions, Theorem 3.2 in [6],
there are X, Y € SV such that (D, ¢(z0,y0), X) € T**u(zo) and (—Dy¢ (w0, ¥0),Y)
€ J%> v(yo). Moreover, the following inequality holds for some constant k& > 0

(A1) (Jg _°Y> < ka (_II ‘II> + ke (é ?) .

Subtracting the viscosity solutions’ inequalities we obtain after using the definitions
of viscosity sub- and supersolutions, and using the inequality sup(- --) —sup(---) <

sup(---— - )

1
0 < sup { -3 tr[a’ (yo)Y — a” (20) X]
9€0

(A2 5" (40) (220 — y0) — 2ey0) + b’ (o) (2(z0 — o) + 2ew0)
+ 2 (yo)v(yo) — ¢ o)u(@o) — 7 (yo) + f(w0) }-

By the computations given in Ishii and Lions [9, p. 35] and (A.1), and the inequality
(s +1)? < 2(s? +t2) for s,t € R, we get

—tr{a@’ (yo)Y — a” (w0) X] < 2ka{ 5" (y0) — o” (yo)[* + |o” (y0) — o (z0) |’}
+ k5{|06($0)|2 + |6’9(y0)|2} .
Furthermore the following estimates hold
— (6% (yo) — b°(20)) (z0 — vo)
< 2[6%(yo) — b (y0)[* + 2|0 — yol* + [b” (o) — b’ (0)[|w0 — wol,
519(1/0)“(2/0) - Cﬂ(xo)u(xo)
< [o(y0)[1e%(y0) — " (yo)| + [u(zo)[|c*(y0) — (o) | = A1mgz.

In the second estimate we used that u(zo) = v(yo) + &(Z0,Y0) + Ma,e > v(Yo) +Mae
and (A2). Inserting all these estimates into (A.2) and using (A1) yield

(A.3)
Amg . <2ka sup {|a’9 4+ - 1_7'9|(2)} + sup {|v|o|cﬂ —&o + £ - ]W|0}
€O €O

+ kralzo — yol|* + koo — 50|’ + 2 C(1 + |mo|* + |yo|?)
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where k1 = supyco{k[o?] +4 + 2[b%]1} and ko = supyee{|ulo[c’]s + [f?]s}-
From the inequality 2¢(zq,y0) > ¥ (z0,Z0) + ¥ (yo,yo) and Holder regularity of
u and v, we see that

2alz0 — yol” < [ululwo = ol + [v]ulzo — yo|".

And we can conclude that |zg — yo| < Ca~'/(=#) which again implies that

(A4) a|zo —yo|? < Ca~ 7% and lzo — yol® < Ca~ 7%,
Furthermore for fixed o, Lemma A.2 yield lim. oe(|zo|> + |y0/?) = 0 and

lim, 9 mq . > m. Hence if we insert (A.4) into (A.3) and pass to the limit € — 0
for « fixed, we get

am < 2kasup {|o”— 672 + 26 = 0?2} + Cla 277 + o 70)

(A.5) < 9 _ 0 9_ 7o

+ sup {[vfole” = "lo + [~ F7lo}-
9€0

Let k1, k2 > 0 and note that by optimization with respect to a, we obtain
(A.6)
R _ % Q_T” __5 _ ﬁ 23—_1_1—5
ka4 kaa™ 2-0 < &(p, p)k ky and kia + koo™ 2r < é(p, Ok kg

where ¢(s, t) is positive and finite for 0 < s <t < 1. Wenotethat for0 < u < § <1,
5 < 3=0rs- Therefore, assuming k; < 1 we get B/ G0 < kR Now let
k1 = 2ksupycoi|o?—a?2+2(6"-b?|2}/C, where by boundedness of the coefficients,
the constant C > 0 is chosen so big that k; < 1. Combining (A.5) and (A.6) then

yield
— J=3 —
Am < C sup {|a19— a2 + [b? - bﬂ|g} 2 + sup {|v|0\c’9— o+ |7 - f’9|0}.
9€O 9€O

Note that we could have arrived at the above inequality interchanging |v|g by |ulo.
Finally we can conclude since (s? 4 t2)#/2 < [t|* + |s|* for any s,t € R, and since
the argument is symmetric in v and v. O

For a more detailed proof of a similar result, see [10]. Now we give the

Proof of Lemma 2.6. Equation (1.3) can be considered as a special case of equation
(1.1) by replacing the control parameter ¥ by ¥ = (9, ¢e). Now the corresponding
conditions (Al) and (A2) hold with the same constants as in the unperturbed
problem. So existence, uniqueness and regularity follows from Theorems 2.1 and
2.2. The second part is a direct consequence of Theorem A.1 and (A1l). O

Finally we prove Lemma 2.7. The proof relies on the following lemma.

Lemma A.3. Assume that (A1) and (A2) hold and that, for u',--- ,u™ € Cyp(RV)
are viscosity subsolutions of (1.1). If A1,---, A, are positive numbers such that
YA =1, then Y Aut is still a viscosity subsolution of (1.1).
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Proof. We first show the result in the linear case and when n = 2. This means that
all coefficients in (1.1) are independent of 9.

We consider a function x € C?(R") and assume that A;u! + Aou? — x has a strict
local maximum at some point z € RV let’s say in B where B is a ball centered at
z.

We introduce ¥(z,y) = Mul(x) + A2u?(y) — Aix(x) — Aax(y) — ¢(z,y) where
#(z,y) = alz — y|?, and let m, = sup, , g5 ¥(z,y). Since B is compact, this
supremum is attained at some point (z4,y,) € B x B and, by classical arguments
using mainly that Z is a strict maximum point of A;u! + Au? — x in B, it is easy to
show that z4,Ys — Z and a|z, — ya|?> — 0 (see Lemma 3.1 in [6]). In particular,
Zao,Ya € B for a large enough and from now on we assume that we are in this case.

By the maximum principle for semi-continuous functions (Theorem 3.2 in [6]),
we get the existence of X,Y € S¥ such that (D.¢(Zq,¥a) + MDx(z4),X) €
T?F Mul(z4) and (Dyé(Ta,Ya) + A2DX(Ya),Y) € T Aau*(ya). Moreover the
following inequality holds for some constant k > 0:

(A.7) ()0( 3) < ka (_II _II> + (AlDZ(;( (72) /\2D2(;<(ya)> '

Now using the definition of viscosity subsolutions for both u! and u? and adding
the obtained inequalities yield

0>~ trfaea)X + alya)Y]

(A.8) — b(20) (Do (za) + MDX(a)) — b(ya)(Dey(ya) + A2Dx(ya))
+e(@a)Mut (Za) + c(ya) A2 (Ya) — M f(Za) = Ao f (Ya)-

By the argument of Ishii and Lions [9, p. 35] and (A.7) we are lead to

)
tr[a(@a) X + a(ya)Y] < trA1a(2a) DX (%) + Aoa(ya) D*x(ya)]
)

A9
(4.9 +ka|o(xa) — (Yo

By (A.9) and the Lipschitz continuity of ¢ and b, we can rewrite the (A.8) in the
following way

_ %tr[)\la(ma)sz(wa) + X2a(ya) D*X(ya)]

(A.IO) - )qb(.’l?a)DX(.Z'a) - ’\Zb(ya)DX(ya)
+ c(xa))‘lul(xa) + C(ya))@uz(ya) =M f(za) = A2f(Ya)
S COL|£L'a - ya|2 -
We let a tend to oo in this inequality, using the properties of z, and y, together
with the continuity of u',u?, x and the coefficients. We obtain the following

—% tr[a(z) D*x(2)] - b(Z)DX(Z) + ¢(@)(\u' () + Aou®(2)) — £(7) < 0.

This completes the proof in the linear case.
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To treat the case where the coefficients depend on ¥, we just notice that (1.1) is
equivalent to

(A.11) —% tr[a® (z) D?u(x)] — b% () Du(z) + ¢ ()u(z) — f(z) <0 in RV,

for all ¥ € ©. We can therefore argue by fixing 9 : A\ju! + Au? is a subsolution of
(A.11) by the linear case. Now this holds for all ¥ € O, so Aju! + A2u? must be a
subsolution of (1.1).

Finally, the general result follows by induction. To convince ourselves of this,
we consider the case n = 3. Consider the following convex combination of 3 subso-
lutions of (1.1):

)\1’11.1 + /\2u2 + (]. - )\1 - )\2)11/3

_ A1 1 A2 2 3
= (/\1 +/\2) (/\1 +)\2u -+ )\1+)\2u ) —|—(1—/\1 —)\g)u .

Let w denote what is inside the big parenthesis. Note that w is a convex combination
of two subsolutions of (1.1). So by the result for the case n = 2, w is a viscosity
subsolution of (1.1). This means that (A.12) is in fact a convex combination of two
subsolutions w and u3, so we can conclude using once more the results for the case
n = 2. This completes the proof of Lemma A.3. O

(A.12)

We can now complete the

Proof of Lemma 2.7. Let Q% = e + [—h/2,h/2)N, p.(e,h) = fQi p(y)dy and
In(z) := ) cpzn us(z — e)pe(e, h). By a classical result, the function I, obtained
through a discretization of the convolution integral, converges uniformly to u¢. On
the other hand, Ij is a convex combination of subsolutions of (1.1) and therefore,
by Lemma A.3, I} is itself a viscosity subsolution of (1.1).

We can conclude that . is a viscosity subsolution of (1.1) using the stability
result for viscosity solutions of second-order PDEs (Lemma 6.1 in [6]). O
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On the rate of convergence of approximation schemes for
time-dependent Hamilton-Jacobi-Bellman equations.

E. R. Jakobsen.







ON THE RATE OF CONVERGENCE OF APPROXIMATION
SCHEMES FOR TIME-DEPENDENT
HAMILTON-JACOBI-BELLMAN EQUATIONS.

ESPEN ROBSTAD JAKOBSEN

ABSTRACT. We provide estimates on the rate of convergence for explicit ap-
proximation schemes for time-dependent Hamilton-Jacobi-Bellman equations.
These results are parabolic versions of results in a recent paper by Barles &
Jakobsen. The method presented is purely analytic and rather general. So-
called control schemes based on the dynamic programming principle and finite
difference methods are treated as applications. However, our method can not
handle finite difference methods in the most general case. The problem for
finite difference methods was studied in the full generality by Krylov using a
mixture of PDE and control theory methods. Our method seems to be much
simpler, and for the cases we can treat, it yields a better rate of convergence
than Krylov gets in the most general case. Finally, we note that the method
presented is not restricted to explicit schemes, which for the sake of brevity
are the only ones analyzed here.

1. INTRODUCTION

Optimal control problems for diffusion processes have recently been considered
in great generality by using the dynamic programming principle approach and vis-
cosity solution methods: The value-functions of such problems was proved to be
the unique viscosity solution of the associated Hamilton-Jacobi-Bellman equations
(from now on HJB equations) under natural conditions on the data. We refer the
reader to the book by Fleming and Soner [10] for results in this direction and to
the User’s guide [5] for a detailed presentation of this notion of solution.

In this paper we will be concerned with error analysis for approximation schemes
for degenerate parabolic HJB equation. Today there are two popular numerical
schemes for such equations: Control schemes based on the dynamic programming
principle and finite difference schemes. For the analysis of control schemes, we refer
for instance to Capuzzo-Dolcetta [4], Falcone [7], Capuzzo-Dolcetta & Falcone [8],
Menaldi [16], and Camilli & Falcone [3]. The two last references concern second
order equations, and in [16] error bounds (and hence the rate of convergence) were
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Key words and phrases. Hamilton-Jacobi-Bellman equation, viscosity solution, finite difference
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obtained in a “classical” setting. Error bounds in the viscosity setting were obtained
only recently by Barles & Jakobsen [1].

Finite difference methods for HJB equations have been consideredsince the 1970’s.
We refer to Kushner & Dupuis [15] (see also Fleming & Soner [10]) and Krylov
[13, 14] for the analysis of such schemes. Krylov [13, 14] was the first to solve the
problem of finding error bounds for finite difference schemes. He developed a new
method combining both analytic (PDE) arguments and probabilistic ones. How-
ever his results are not quite satisfactory in the general, variable coefficients case,
because he most probably gets a too low rate of convergence (1/27). For a subclass
of HJB equations, where the diffusion coefficients do not depend on time and space,
Krylov’s results are improved in Barles & Jakobsen [1].

We also mention the general convergence theory of Barles and Souganidis [2].
This is a PDE approach using viscosity methods and in particular so-called “weak
limits”, stating roughly that any “stable, monotone, and consistent” scheme will
converge to the viscosity solution of the approximated equation. This theory em-
braces in particular finite difference methods and control schemes, but it seems not
to be possible to obtain the rate of convergence via this theory.

In the recent paper by Barles & Jakobsen [1], the rate of convergence was ob-
tained for a rather general class of monotone approximation schemes. Included in
this class is control schemes in the general case, and finite difference methods in
the case of constant diffusion coefficients. The results on finite difference meth-
ods yield as already mentioned, a better rate of convergence than Krylov obtained
for the more general case (the rate obtained in [1] is 1/3). In Barles & Jakobsen
[1] a modified version of Krylov’s approach is used, which is purely analytical (no
probabilistic arguments), and to the authors’ opinion much simpler than Krylov’s
approach.

This paper is an attempt to write a parabolic version of [1]. While that paper
considered elliptic problems in whole space, we will here study Cauchy problems.
Again we will give a general method for obtaining the rate of convergence, however
for simplicity we restrict ourselves to explicit schemes. Then we apply this method
to control schemes and finite difference methods. As was the case in [1], we do not
use probabilistic arguments, and for the finite difference methods considered, we
get higher rates of convergence than did Krylov.

Let us now be more specific. We will consider the following type of HJB initial
value problem arising in a finite horizon, discounted stochastic control problem.

(1.1) ug + F(t,z,u,Du,D*u) =0 in Qr:=(0,T] x R,
(1.2) u(0,z) =ug(z) in RN,
with

1

F(t,a,r,p, M) = sup { — 3 trla’(t,2)M] = bt 2)p — (1, 2)r = (1, ) }.
€

where ug € Cy(RY) and a > 0, b, ¢, f are continuous functions defined on Q7 x ©

with values respectively in the space S(INV) of symmetric N x N matrices, RV and

R. ©, the space of controls, being assumed to be a compact metric space.
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Under suitable assumptions on a, b, ¢ and f, it is well-known that the solution
of the equation which is also the value-function of the associated stochastic control
problem, is bounded and uniformly continuous. Furthermore it is expected to be
Holder continuous if o, b, ¢ and f satisfy suitable regularity properties.

We will consider explicit approximation schemes for (1.1). The following notation
will be used for such schemes:

up(t + hi,z) = up(t, ) — hiS(ha,t, z, up(t, x), [urltz) and wup(0,z) = upe(x),

where h = (h1, h2), and hi, hy are small parameters which measure typically the
mesh sizes in the ¢ and z directions, uy is the approximation of v and the solution
of the scheme, [up]t . is a function defined at (¢, z) from wup, upo is the initial value
for the scheme, and finally S denotes the approximation of the F-term in (1.1).
The idea is that S may be any suitable approzimation of the stationary version of
(1.1).

Note that the function uy, is defined only at discrete times. The standard way to
do numerical analysis in our setting, is now to introduce a continuous interpolant
for uy, (also called up) that satisfies the scheme in “every” point in Q7. To have
an interpolant defined for every t € [0,T], since up(t,-) depends on up(t — hq,-), we
have to give initial conditions on the interval [0, h1). In this paper the interpolation
function wuy, is a function uy, : Q7 — R satisfying the following initial value problem:

(13) uh(t + ha, m) = uh(ta m) - hlS(hQJta z, uh(ta (E), [Uh]t,z) in QTth
(1.4) up(t,) = gn(t,z) in [0,hs) x RY,

where g5, : [0,h1) x RY — R is the initial value and satisfies g5 (0,-) = ugp. The
precise form gj is only needed for the applications, so we specify g then. Finally,
we remark that we could have written the scheme as

up(t, ) = up(t — h1,x) — hiS(he,t — hi, z,up(t — h1, ), [Un]t—h,,2)

in [hy, T])x RN . We will not use this form, since it does not have as good consistency
properties as (1.3). The solution w} (¢, ) of the last scheme is consistent with
u(t — h1, ) (the solution of (1.1)), while the solution up (¢, z) of (1.3) is consistent
with u(t, z) which turn out to be an advantage in the estimates.

A good explanation of the technique used here, can be found in [1]. We only give
a very brief outline. Our methods are based on a tricky idea of Krylov: Consider
the solution u® of the following perturbed version of (1.1)
(1.5) wi(t,z) + sup F(t+s,z+e,u(t,x), Du®(t,z), D*u®(t,x)) = 0 in Q%,

5€(0,e2)
le|<e

(1.6) w®(—€%,2) =uo(z) in RV,

where Q% = (—€2,T] x RN and where the coefficients have been appropriately
extended to t > T (to be equal to their values at ¢ = T). Regularize u® by a
suitably chosen mollification, and use convexity of F in u, Du, D?u to prove that
the resulting function denoted by u. is a (smooth) subsolution of (1.1) in Q. Now,
if we can prove precise bounds on |lu — u. ||~ g~y and the derivatives of u., we get
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“half the result”, namely an upper estimate of u — up. To see this, one just has
to plug u. into the scheme and use the consistency condition in addition to some
comparison properties for the scheme.

The other estimate (a lower estimate of u—wuy) is then obtained by interchanging
the role of the scheme and the equation in the above argument. This leads us to
introduce the solution uj} of the perturbed version of the scheme (1.3)

(1.7)
Ui(t + hlam) = ui(t,x) - hl sup S(h27t + S, T + e,ui(t,:p), [ui]t,w) in Q_%’—hla
s€(0,e2)
le|<e

(18) ui(t7 .'E) = gh(t + 527$) in [_527 hy — 52) X RN;

with appropriately extended coefficients. The difficulties with this procedure are
discussed in [1] and lead to restrictions in the class of schemes that can be consid-
ered.

We will comment on some of the differences between this paper and Barles &
Jakobsen [1]. First of all, the presence of initial conditions makes this paper more
involved than [1]. As we have already seen, this makes it slightly more complicated
to define the a solution of the scheme (1.3) in every point. In the applications, this
causes some extra work. In addition we have some technical difficulties caused by
our mollification procedure (see the next section). We actually introduce —e? shift
in time which has to be compensated. This is done following ideas by Krylov [14]:
We introduce initial value problems for (1.5) and (1.7) with shifted initial time,
see (1.6) and (1.8), hence the strange domain Q%. Another difference is that since
this paper treats parabolic problems, we need here to estimate the time regularity
of solutions. This requires methods not used in [1]. Finally the form of the as-
sumptions on the scheme is different here. We will require the scheme to satisfy
five conditions which are essentially (i) consistency, (ii) convexity, (iii) commuta-
tion with translation, (iv) comparison of solutions, and (v) “existence of a Holder
continuous solution” of (1.7) “which is close to the solution of (1.3)” (Assumption
2.6). These are the assumptions needed for the proof of the abstract method. In
[1] the authors state extra explicit conditions on the scheme, like monotonicity and
regularity conditions, which make it possible to prove “comparison of solutions”.
But they were not able to find sufficiently general explicit conditions on the scheme,
that would assure that (v) also holds. So a version of (v) is used in [1] as well. Since
the author of this paper does not know how to write down explicit conditions on
the scheme that will suffice, he will for simplicity stick to the “abstract” conditions
needed in the abstract proof. However in practice, the schemes considered here will
have to be “monotone” and “continuous”.

We remark that with very small changes to this paper we could have treated
implicit schemes instead: wp(t,2) = up(t — h1,z) + h1S(ho,t, 2, un(t, 2), [Uurlte)-
Actually, the technique we use, which essentially was developed in [1], is very general
and not restricted to either implicit or explicit schemes.

This paper is organized as follows: In section 2 we state and prove an abstract
method for obtaining the rate of convergence for approximation schemes. Then in
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sections 3 and 4 we consider explicit control schemes and explicit finite difference
schemes respectively. Here we verify for each scheme the assumptions of the abstract
method and state the corresponding results about the rates of convergence. Finally,
the Appendix contains the proofs of some technical results.

2. AN ABSTRACT RESULT

We start by introducing the norms and spaces we will use in this paper. First,
we define the norm denoted by | - | as follows: for any integer m > 1 and any
z=(2); € R, weset [2]> = }7"_| z7. Weidentify N; x N matrices with RN N>
vectors. For such matrices, |M|?> = tr[MT M] where M7 denotes the transpose of
M. The constant C' will denote a constant independent of ¢, z, h = (hy, hs), and €.

Let I C [0,00) be an interval. Let Ny, N2 be nonnegative integers, and f :
I xRN — RN1*N2 he g function, then we define the following (semi) norms:

[flo=sup [f(t,2)],

(t,z) EIXRN

|f(t,2) — f(t,7)| |f(t,z) — f(t,2)]

[fls= sup - [fls/2, = _sup py
tel,z,z€RN |z — 2| ’ / tielzery |t —1[3/2 ’
THT tAE

furthermore [fls = [f],s + [f]s/2, and |fls = |flo + [fls- By C°(Qr) we denote
the set of functions f : Qr — R with finite norm |f|s. Furthermore for integers
m,n > 1 we define C"™™(Qr) to be the space of functions f : Q7 — R with finite
norm

[flmn = D_18i flo+D_ D flo,
i=1 i=0

where 8} f, D' f denotes the vectors of the i-th order partial derivatives of f with
respect to t, .
We state the assumptions on the coefficients in the HJB equation (1.1):
For any 9 € O, there exists a N x P matrix o such that a® = 6%¢?" .
(A) Moreover there exists M > 0 and ¢ € (0, 1] such that, for any ¥ € 0,

|0.19|15 |b19|17 |Cﬂ|5a |f19|(5 S M.

The following result states that under assumption (A), we have existence and
uniqueness in C?(Q7) of viscosity solutions of (1.1) and (1.2).

Theorem 2.1. Assume (A) holds, then there exist a unique viscosity solution of
(1.1) and (1.2) in C°(Q1). Moreover let ¢ := supg,. o ¢ and letu, —v € USC(Q7)
be viscosity solutions of

ug + F(t,x,u, Du, D*u) < k and v¢ + F(t,x,v, Dv, D*v) > 0,
where k > 0 is a constant, then for (t,z) € Qr
ult, 7) — v(t,2) < e (| (u(0,) — 0(0,))*lo + th).
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This result is now classical within the theory of viscosity solutions. Note that
T > 0 is arbitrary.
We state the assumptions on the scheme (1.3):

Assumption 2.2 (Consistency). There exists an integer n > 0 and a K > 0 such
that for every ¢ € C™(RN) with |@|on@ny =D 1g [D'@lo < C, ha >0, z € RY,
|F(t7 T, ¢7 D¢7 D2¢) - S(h27 t,x, ¢(IL'), [¢]t7$)| < K|¢|C"(RN)h'2'
Note that this assumption defines hs.
Assumption 2.3 (Convexity). Let B(0,1) := {z € RY : |z| < 1} and p €

Cs°((0,1) x B(0,1)) be nonnegative and have unit mass, and define p.(t,z) =
e N72p(t/e?,x[e). Then for any v € Co(QT), hi,ha >0, (t,z) € Q7_,,,

S(ha, t,z,v(t — s,z —e),[v(- — 8, — €)]t,2)p (s, e)dsde
Qr
> S(ha,t,z, (v *pe)(t, ), [V * pelt,z)-
Assumption 2.4 (Commutation with translations). For any ha > 0 small enough,
0<e<1, (t,y) € Qrn,, r €R v € Cy(QF), 0 < s, e’ < &, we have
S(hZa t,y,r, [U]t—s,y—e) = S(h%ta Y, 7, [U( — 8= e)]t,y)-

Assumption 2.5 (Comparison). Let k > 0, and assume that up,vy, € Cy(QT)
solve

up(t+ h1,2) <up(t,z) + haS[up] + &k and  vp(t + hi,2) > vp(t, z) + h1.S[vs],
in Qr_p,. Then for any t,t —nhy € [0,T], n €N,
|(un(t,-) = va(t, ) lo < C(Jun(t = nha,-) — vt = nhi,-)|o + nhik).
Assumption 2.6 (Perturbed Scheme). For any hi,ha > 0 sufficiently small and
0 < e <1, there is a unique u5 € C°(Q%) which is the solution of (1.7) in Q7_n,>
and satisfies |us|s < C and |up(t,z) — u5(t,z)| < Ce in Q.
Note that u) = uy, is the solution of the scheme (1.3) in Qr_p,. In particular

this assumption yields existence, uniqueness, and regularity results for solutions of
(1.3). We will check this assumption for each application.

Remark 2.7. As we mentioned in the introduction, monotonicity and regularity
assumptions on the scheme are needed for proving the last two assumptions.

Now we state the main result which says that the scheme (1.3) converges to the
viscosity solution of (1.1) with given a priori error estimate.

Theorem 2.8 (The Rate of Convergence). Assume (A) and Assumptions 2.2 -
2.6 hold, let u € C°(QT) be the viscosity solution of (1.1) and (1.2), let up € C°(Qr)
be the solution of the scheme (1.3) and (1.4), and finally let n be as defined in As-
sumption 2.2. Then if |h| is sufficiently small

s s
|u—uh|o SC(|U0—’uh0|0+h14 +h2").
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We proceed to prove Theorem 2.8, noting that the proof we give is, up-to adjust-
ments to take care of the time dependence, the same as the corresponding proof in
Barles & Jakobsen [1]. We follow essentially Krylov [14] in the way we handle the
time dependence. The proof consist of two bounds which are proved separately.
First we derive an upper bound for the difference u — uy,, using mostly properties of
the equation (1.1), and then a lower bound using mainly properties of the scheme
(1.3).

Proof of the upper bound for u — up in Theorem 2.8.

1. Let t € [0, hy]. By the regularity of u and uyp, we have |u(t,-) — up(t,-)|o <
|uo — unolo + Chf/z. The rest of the proof is devoted the case t € (hy,T].

2. We first consider the perturbed HJB equation (1.5). The existence and the
properties of the solutions of (1.5) are given by

Lemma 2.9. Assume that (A) hold and let 0 < ¢ < 1. Then there is a unique
u® € CO(Q%) which is the viscosity solution of (1.5) and (1.6), and satisfies |u°|5; <
C and [uf(t,z) —u(t,z)| < Ce® in Qr.

Proof. Existence, uniqueness, and regularity of a bounded viscosity solution follow
from Theorem 2.1 by considering (¥4, s, €) as the new control parameter, © x (0,&2) x
B(0,€) as the new space of controls, and, via a scaling in time, Q% as the new
domain. The inequality for |u®(¢t, z) —u(¢, z)| follows from the regularity of the data
(A), the boundedness and z-regularity of v and «®, and the continuous dependence
result [12, Theorem 3.3 b)]. O

3. Because of the definition of equation (1.5), the following inequality hold in
the viscosity sense for every s € (0,¢2) and |e| < ¢
ui(t,z) + F(t + s,z + e,u(t,x), Duf (t,z)D*u (t,2)) <0 in Q%F.
After a change of variables, this implies that u®(¢t — s, x — e) is a subsolution of (1.1)
in Q7 for every s € (0,€2) and |e| < e.
4. We regularize v° and define u. = u® * p., where {p.}. are the standard

mollifiers defined in Assumption 2.3. Note that u. is only well-defined on Q7 and
not on Q7. We have

Lemma 2.10. The function uc is a viscosity subsolution of (1.1) in Qr.

The proof of this lemma, is postponed to the Appendix.
5. By properties of mollifiers, u. € C>™(Qr)NC>®(Q1) with |u.|2,0 < C(g?)%/2~2
and |uc|o,, < Ce’~". By consistency (Proposition 2.2) we then have in Qr_p,
uE(t + hl: y) — ua(ta y)
ha

1 _
< Opuc(t,y) + F(t,y,ue(t,y), Duc(t,y), D*uc(t,y)) + §|Us|2,0h1 + Klue|o,nh2,

+ S(hQ: t,y,ue (t: y)a [us]t,y)

and using Lemma 2.10 we deduce that

uc(t + hi,y) —ue(t,y)
hi

+ S(h2; ta Y, Us(t, y); [Us]t,y) S C(h156_4 + h256_n)-
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6. By the comparison principle (Assumption 2.5) we see that for (¢, z) € (h1,T]X
RN, t—nh; >0,and n € N:

ue(t,x) — un(t, ) < C(|uc(t — nhy,-) —up(t —nhy,-)|, + hae® * + hae® ™).
7. The properties of mollifiers and the uniform boundedness in C°(Q%) of {u®}.
imply |uf(t,7) — u.(t,z)| < Ce? in Q7. Moreover from Lemma 2.9 it follows that

|u(t, ) — u(t,z)| < Ce® in Qr, so we can conclude that |u — uc|o < Ce’.
8. If we choose e = min{hi/‘l, hé/"}, then 6. and 7. yield for (t,z) € (hy, T] xRN

u(t,z) = un(t,2) < C (Jult = nhy, ) = un(t = nhy, Yo + bt + byt ).
Now by choosing n such that t — nh; € [0, hy), 1. yields
u(t,x) —up(t,z) < C (|U0 — upolo + hit + hzg) .

This completes the proof of the upper bound.
Proof of the lower bound for u — u in Theorem 2.8.

We follow the same method as for the upper bound, interchanging the role of
the equation and the scheme.

1. Let u§, be the C?(Q%:) solution of the scheme (1.7) provided by Assumption 2.6.

From the scheme (1.7), by performing the change of variables (7,y) = (t+s,2 +e),
and using Assumption 2.4, we see that

up(r—s+hy,y—e) <uj(r—s,y—e)
- hls(hZaTayau;(T —S$Y— e): [Ui( — 8= e)]‘ny)

in Qr_p, for all s € (0,2), |e| <e.

2. Let p. be the mollifier defined in Assumption 2.3. Multiplying the above
inequality by p.(s, e), integrating with respect to (s,e), and using Assumption 2.3
yield

(uf * pe) (T + h1,y) — (uj, * p) (T, y)
< —h1 / ps(sa G)S(hz, T, y,UZ(T —8Y— 6), [us( -8 = e)]‘r,y)d“jde

< = S(he, 7.y, (uf, * p)(7,9), [uf, * pelr.y)-

3. Because of the properties of uj, given in Assumption 2.6 and the properties
of mollifiers, upe := uj * p. € C>™(Q1) N C®(Qr) With |upe|20 < C(e2)%/272 and
[uhelon < Ce®~™. Using Assumption 2.2 in Qr—_n, We get

1 _
6tuhs + F(t,m,uhs, Duhs; D2uh5) - §|uh5|2,0h1 - K|uh5|0,nh2

< Upe(t + h1,2) — upe(t, 2)

< Iy
4. By 2. and 3. we have that dyun. + F(t, 2, upe, Dupe, D*up.) < C(h1e®~* +
h2e?~™) in Qr_p,- So by the comparison principle for (1.1) (Theorem 2.1), the

+ S(h27 t7 Z, uhs(t; 'Z')a [uhs]t,:c)-
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following inequality holds in Qr—p,
upe(t, ) —u(t,z) < C(|uh5(0, ) —u(0,-)|o + hie?=* + h266_n).

5. Again by the properties of mollifiers and the C°(Q%) regularity of u$ we get
that |upe(t, ©) — u5 (¢, 2)| < Ce’ in Qr. Moreover by Assumption 2.6 it follows that
lun(t, x) — us (¢, z)| < Ce® in Q7. All in all we conclude that |up — upc|o < Ce°.

6. If we choose & = min{h|’* hy/™}, then in Qr_p, 4. and 5. yield

up(t,z) —u(t,z) < C (|u0 — Upolo + hlg + h2%> .

7. Because u and uy, are uniformly bounded in C°(Q7), |u(t,z) — u(t — h1,7)|,
|un(t, z) —un(t —hi,z)| < C’h‘f/2 in [T — hq,T] x RY. Using these estimates and 6,
we can extend estimate 6 to (T — hq,T] x RY.

This completes the proof of Theorem 2.8.

3. APPLICATION 1: CONTROL-SCHEMES

In this section, we consider explicit schemes where the F-term in (1.1) is approx-
imated by a so-called control scheme. For the sake of simplicity we only consider
CH(Qr) coefficients, and hence solutions; i.e. the case § = 1. Control schemes were
introduced for first-order Hamilton-Jacobi equations (in the viscosity solutions set-
ting) by Capuzzo-Dolcetta [4] and for second-order equations (in a classical setting)
by Menaldi [16]. We will consider the schemes as they were defined in Camilli and
Falcone [3].

We remark that control schemes for time-dependent (first order) problems was
considered by Falcone & Giorgi [9]. Their scheme is in fact a discrete version of
the dynamical programming principle. Any scheme satisfying a discrete version of
the dynamical programming principle must be implicit. Therefore our scheme does
not satisfy such a principle. However the implicit version of our scheme does, and
this scheme can also be analyzed by our method. In fact, as we mentioned in the
introduction, the analysis in the implicit case is essentially the same as what we
present for the explicit case.

The scheme is defined in the following way

(31)  wn(t+h2) = min {(1 — he? (t,2))Tun(t, ) + hf (¢, :z:)} in Qr_n,

where H’Z is the operator:

N

I (t, ) = % > (q)(t,a: + WY (t,z) + Vhol (t,x))

m=1

+ 6t @ + Wb (t,3) = VRl (t,2))),
and a}’;b is the m-th row of ¢?. We note that this is not yet a fully discrete method

because the placement of the nodes varies with . In [3] it is explained in the
stationary case how to derive a fully discrete method from a scheme like (3.1). The
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authors also provide error bounds for the convergence of the solution of the fully
discrete method to the solution of the stationary version of (3.1), but not for the
full convergence to the solution of the stationary equation.

Now we rewrite the scheme (3.1) to put it in the form (1.3), i.e. we have to define
what we mean by S and [-]¢,;. First, let h = hy = ho and for any ¢ € Cy(QT), we
set [@]¢,z(-) = ¢(t,x + -) and then

S(h7 t: y,r, [d’]t,w)

— int {1 - 1e?(.)

42 (A(h,9,t,,[Ble,0) — 1) + () + (¢, y)} :

S =

where A is given by
N

A(haﬁataya [¢]t,a:) = % Z ([¢]t,z(hbﬂ(t7y) + \/Eai(ta y))

+ [Ble (07 (8, ) — VR (,9)) )

It is easy to see that S defines a scheme which is equivalent to (3.1) and, in the
sequel, we will use one or the other indifferently. In the next proposition we check
that our choice of hy really is consistent with Assumption 2.3. Let us check that
Assumptions 2.2 — 2.5 hold.

Proposition 3.1. Assume that (A) hold. Then the scheme (3.2) satisfy Assump-
tions 2.2 — 2.5 with n = 4, and ha = h.

Proof. Assumption 2.2 holds because for any function g(z, ),
pe * 9(-,0)(@) < pe x sup g(-,9)(x) = sup pe * g(-,9)(x) < p * sup g(-,J)(x).
9€O =C) 9€O
The consistency condition takes the following form:
|F(ta T, ¢a D¢7 D2¢) - S(ha t,z, ¢(ta SU), [¢]t,$)| < K|¢|C4(]RN)h >

for any ¢ € C*(RY), |§|cawny < 00, so Assumption 2.3 is satisfied with n = 4
and he = h. Assumption 2.4 holds since, for any bounded, continuous function ¢,
[@li—s,z—e = [¢(- — S, — €)]t,z- And finally the comparison principle, Assumption
2.5, easily follows from subtracting the sub and supersolutions, using the scheme
(3.1), and iterating. O

In order to prove existence, uniqueness, and regularity of up, we need some a
priori estimates on the solution of (3.1). Let v be a solution of (3.1), then the
following estimate holds for ¢, — nh € [0, T]:

(33)  [olt,)lo < e (folt — nh, o +nhsup| o),
(]
where Cj := supg |c’|o. If v is bounded then
G4 () e (o —nh, )+ nhsup {olole’]s +[/]1}]

where C; := supg{[b?]1 + %[oﬁ]?l)}.
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We shall not prove these estimates here. We just remark that (3.3) follows
almost directly from the definition of the scheme (3.1), and by subtracting v(t +
h,z) —v(t + h,y) and using (3.1) and (A), (3.4) follows after some computations.
Similar estimates have been proved in [3], and in the next chapter we prove for
finite difference schemes the result for corresponding to (3.4) — see (4.6).

To proceed we now need to specify the initial values (1.4) for the scheme (3.1).
We need gy, : [0,h) x RY — R to have the same regularity as uy, is assumed to have
in Assumption 2.6, and it has to interpolate upo and uy(h, ) continuously since uy,
is continuous. So we define g; by linear interpolation:

%)uho(w) + %uh(h,:ﬂ) Y(t,z) € [0,h) x RN

This defines gp for the rest of this section. We are now in a position to prove
existence and uniqueness of bounded solutions:

gh(ta .’L') = (1 -

Proposition 3.2. Assume that (A) holds and T > h > 0, then there exists a
unique bounded function uyp, : Qr — RN solving (3.1) and (1.4).

Proof. Note that by (3.3) and the definition of gy, any solution of (3.1) and (1.4)
is bounded. Now since the equation is explicit, existence of a solution follows by
induction. (By continuity in ¥ and compactness of ©, we always achieve the infi-
mum.) Assuming there are two solutions, subtracting their corresponding equations
(3.1) and iterating, show that they have to coincide. This proves uniqueness. O

Now to proceed we state a continuous dependence on the nonlinearities estimate.
The proof is quite technical but rather standard, and is given in the appendix.

Proposition 3.3. Let T > h > 0 and let u; and us be continuous sub and super
solutions of (3.1) in Q_p, with coefficients (o”,b%,¢c%, f%) and (57,b%,27, %) re-
spectively. If |u1lo, |u2lo, [u1]1, [u2]1 are bounded and independent of h, then there
are constants v, K > 0 independent of h such that t € [0,T)

e (ur(t,-) — ua(t, ) "o < sup Jur (7, -) = uz(7,)o
0,h

+ VtK sup [|a79 — %o+ b7 - Bﬁ|o] +tsup [|u1|o A lusglole” — o + | £ — JW|0]-
e )

Here |ug|o A |uz|o = min(|ug|o, |uz|e). In order to prove regularity of up, we need
to know the regularity of gj. This question is answered by the next result.

Proposition 3.4. Assume (A) holds. Then for any z,y € RN t,s € [0,h), the
function gy, satisfies

lgn(t,2)| < C and |gn(t;2) = gn(s,9)| < CIt = s|'* + |z —y]).

Proof. By (A), (3.3), and (3.4) we see that upo(z) and up(h, ) are bounded and
z-Lipschitz with bounds independent of h. By definition then, these bounds carries
over to gn. What remains is to show the regularity in ¢. Let uj, = upo * p. and
uj,(h, z) denote the solution of the scheme at ¢ = h when the initial value is uj,.
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Now, using (1.3) we get the following bound
|uf (h, 2) — ujo(®
h

< 15,0, 2, w50 (@), [ufoes)|

<c (1 + uo (@) + sup |(T1F - 1)uzo<m>|)

< O (1+ |unolo + [uro] (1 +€7 1),

where we have used that |Du$ o, £|D?u$glo < Clunol,1- By properties of mollifiers,
assumption (A), and Proposition 3.3, we get |uf —unolo, [uf,(h, ) —un(h,-)|o < Ce.
Combining these estimates and choosing & = h'/? we have |u(h, -) —upolo < Ch/?,
and the proof is complete by noting that for t,s € [0, h)

lgn(t,-) = gn(s,)o < M“_ s| < Ch=2R12)¢ — g|1/2.

From the two previous results it is easy to deduce the regularity of uy.

Proposition 3.5. Assume that (A) hold, and let up be the solution of the initial
value problem (3.1) and (1.4). Then uy € C*(Qr) and |up|, < C.

Proof. By Proposition 3.4 and (3.3) and (3.4), it is clear that |us|o and [up]1 are
bounded independently of h. These two estimates, the fact that uy is continuous
(by its definition), and Proposition 3.3 makes up, 1/2-Holder continuous in ¢ on
[h, T] with bound independent of h. This follows by taking u1(t,z) = up(t + s, z)
and ua(t, ) = up(t+ 5, 2)X[o,n) (t) +un(s, ) x[n,1(t) (where x7(t) =1 for t € I and
0 otherwise) in Proposition 3.3. Time regularity in [0, h] follows from Proposition
3.4. |

Now we verify that Assumption 2.6 hold.
Proposition 3.6. If (A) hold, then Assumption 2.6 is satisfied.

Proof. Existence, uniqueness, boundedness, and regularity follow from Propositions
3.2 and 3.5, since (1.7) can be considered as a special case of (3.1) by introducing the
new control parameter (1, s, €), the new control space © x (0,£2) x B(0,¢), and via
a rescaling in time, the new domain Q%_,. The fact that |us(t,z) —uj,(t,z)| < Ce
in Qr, follows after appropriate applications of Proposition 3.3. O

Now by Propositions 3.1 and 3.6, and Theorem 2.8, we have the following result
about the rate of convergence for the scheme (3.1):

Theorem 3.7. Assume (A) holds, that u is the solution of (1.1) and (1.2), and
that wup, is the solution of (3.1) and (1.4). Then

|u — uh|0 < C(|u0 — uh0|0 + h1/4).

This result is in agreement with Barles & Jakobsen [1]. Note that for first
order equations, the rate is 1/2 (see Falcone & Giorgi [9]), and the same rate was
obtained by Menaldi [16] for second order equations but under stronger regularity
assumptions on the solutions.
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4. APPLICATION 2: FINITE DIFFERENCE SCHEMES

In this section we will define and analyze a rather general class of explicit finite
difference schemes which have been discussed for instance in Kushner & Dupuis
[15] and Fleming & Soner [10]. We will borrow from their notation. We assume
that (A) holds with § = 1 (for simplicity), that a? is independent of (¢, ), and that
the following two conditions hold for every ¥ € ©:

(4.1) ajy = laj;| >0, i=1,...,N,
J#i
At

(4.2) =

N

{ad =" laf| + Azfp?lo} + Atle’]o < 1.
i=1 i
Assumption (4.1) is standard [15, 10] and states that a” has to be diagonally dom-
inant. Assumption (4.2) is the CFL condition for the explicit scheme (4.3). The
two conditions together will make our scheme (4.3) monotone.

Now to define the finite difference schemes, we will introduce notation for the
relevant differencing operators. Let {e;}Y; be the standard basis in R, and define

AZw(t, ) = iAiw{w(t,x + Ages) — w(t, o)},

A2 w(t, ) = ﬁ{w(t,w + Azes) — 2w(t,z) + w(t,z — Azes)},

Ajﬂjw(t, x) = A ——{2w(t, ) + w(t,z + Aze; + Awe;) + w(t,r — Aze; — Awe;)}
- 2A1 s{w(t,z + Awe;) + w(t,z — Awe;) + w(t, v + Aze;) +w(t,z — Aze;)},

Ayt z) = W{Qw(t, z) + w(t,x + Aze; — Aze;) + w(t,x — Aze; + Azxe;)}

+ {w(t,z + Aze;) + w(t,z — Aze;) + w(t, z + Aze;) + w(t,z — Aze;)}.

2A2?
Let bt = max{b,0} and b~ = (—b)*. Note that b = b* — b~. For each z, t, pi,
Aji, AZ], ,J=1,...,N,let

9—

ﬁ(t,x,t,pf,Aii,A = 31618 { ; [ “A“ 4 Z ( “ Aij + a2 Aij)

b0t @)pf + b0 (L o)py | - O, x)t - ['(t2)}
Let up, denote the solution of the schemes, then the scheme can be stated as follows:
up(t + At, z)
(4.3) = up(t, z) + AtF(t, z,up(t, 2), A up(t, z), A2 up(t, z), A
for any (t,z) € {t1,ta,...,tNn,} X AzZN.

We proceed to derive an equivalent scheme to (4.3) which will have similarities
with a discrete dynamical programming principle. This new scheme will be better

:wt,:mjuh(t7 'Z.))7
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suited to proving existence, regularity and continuous dependence results. Define
the following “one step transition probabilities”

N
At
Ptea) =1- {ag. -5 Jad)] +Aa:|b;?(t,a:)|},
T = i
At A a?’.
p’(t,z,z £ Aze;) = ﬁ{% — Z | ;’| —}—Amb?i(t,m)},
J#i
9+
At a;:
PO (t, 2, + Aze; + Aze;) = AP g ,
o7
At a;;
pY(t,x,x — Aze; + Aze;) = 2 g ,

and p?(t,z,y) = 0 for all other y. Note that by (4.1) and (4.2), 0 < p?(t,z,y) < 1
and ) a7 p’(t,z,x + 2) = 1 for all ¥,z,y. A simple but tedious calculation
now shows that that (4.3) can be written in the following way:

— 9
up(t + At, x) _érelg{ Z pY(t,z,x + 2)up(t, T + 2)
(44) zEAZZN
+ At (t, x)up (t, x) + Atf(t, m)}
Now we proceed to check Assumptions 2.2 — 2.6. We start by defining precisely

what we mean by S and [];,. Let hy = At and hy = Az, for ¢ € Cp(RY), set
[#lt,2(-) := ¢(t,x + -), and define S by

S(A$7 ta y,r, [¢]t,z)
zsgg{%ﬁ S Pyt 2)Gles(x) —

zEAZZN
It is easy to see that S defines a scheme which is equivalent to (4.3). In the next
proposition we check that our choice of hy really is consistent with Assumption 2.3.
With this new notation, we are in a position to verify Assumptions 2.2 — 2.5.

Proposition 4.1. Assume that (A) holds. Then the scheme (1.3) satisfy Assump-
tions 2.2 — 2.5 with hea = Az and n = 3.

Proof. Assumption 2.2 holds because for any function g(z, ),

pe * g(+,9)(x) < pe * sup g(+,9)(z) = sup p. * g(-,9)(x) < p- * sup g(-,9)(z).
PISC) JeO PISC)]

+0(ty)r + fﬁ(t,y)} :

The consistency relation for the F-part of (4.3) reads
|F(t,z,¢, D, D*¢) — S(Az,t, 2, ¢(t, 2), []s.2)] < C(ID?dlo + |D?¢lo)Ax,

for any ¢ € C3(RY). Assumption 2.4 holds since, for any bounded, continuous
function ¢, [¢li—s,z—e = [¢(- — s,- — €)]t,.- And finally the comparison principle,
Assumption 2.5, easily follows from subtracting the sub and supersolutions, using
the scheme in the form (4.4), and iterating. O



CONVERGENCE RATE FOR HJB EQUATIONS 15

In order to prove existence, uniqueness, and regularity of up, we need some
a priori estimates on the solutions of (4.3). Let v be a solution of (4.3) with
coefficients (a”,b?,c?, f?). Then the following estimate holds for ¢, —nAt € [0, T,
neN:

(4.5) [u(t,-)|o < e"AtC°(|v(t — nAt,-)|o + nAtsup |f19|0),
e

where Cy := supg |c’|o. If v is bounded then

[o(t, )1 < enAUO* D [u(t — nAt)],

4.6
(4.6) +nAt stép{lvlo[cﬁ],l + [fﬂ]’l}]’

where Cy := SPP@{Z}LJ[I)?JF],I + [7711)}. Let w be a solution of (4.4) with
coeficients (a?,b?,2?, f?) (same second order coefficients as v!). If v is both bounded
and z-Lipschitz continuous, then

[ot, ) = w(t, Yo < ™% (Jo(t — nAt, ) = w(t AL,

(4.7) N ]
+nitsup (20011 30 187 = BJo + [olole” = &lo + 1£7 = o] )-

i=1

These estimates are easy to prove using the (4.4) version of (4.3). We only prove
(4.6), and this proof is postponed till after the existence result.

To proceed we now need to specify the initial values (1.4) for the scheme (3.1).
We need gy, : [0,At) x RN — R to have the same regularity as uy, is assumed to
have in Assumption 2.6, and it has to interpolate upg and up(At,-) continuously
since wuy, is continuous. So we define g, by linear interpolation:

t t
gn(t, ) == (1 — ——)upo(z) + ~—un(At,z) Y(t,z) € [0,At) x RV,
At At
This defines g for the rest of this section. We are now in a position to prove
existence and uniqueness of bounded solutions:

Proposition 4.2. Assume (A) and (4.1) — (4.2) hold, then there erists a unique
bounded function up : QT — R solving (4.3) and (1.4).

Proof. Note that by (4.5) and the definition of gp, any solution of (4.3) and (1.4)
is bounded. Now since the equation is explicit, existence of a solution follows by
induction. (By continuity in ¥ and compactness of ©, we always achieve the infi-
mum.) Assuming there are two solutions, subtracting their corresponding equations
(4.4) and iterating, shows that they have to coincide. This proves uniqueness. [
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Proof of (4.6). Let t > 0 be such that ¢t + At € (0,T]. Using (4.4) we see that
v(t + At,z) — v(t + At, z)

<owp{ 3 pltrat 2ol +) - vlty+2)
zEAzZN

+ > vty +2) @'tz +2) = (ty,y + 2))
2€AZZN

+ At(cﬂ(t, x)v(t,x) — cﬁ(t, y)v(t, y)) + At(fﬁ(t, x) — fﬂ(t, y)) }

By the definition of p” we have Y. 1,7~ P° (2,2 + 2) (v(t, 2 + 2) —v(t,y + 2)) <
[v(t,-)] 1|z — y|. Furthermore since

9 3 9 3 At ad 9 9

i=1

_ ﬁ(b;?i(t, z) — b)*(t,y)),

pﬂ(t,.’l;',.'l,' + Amei) _pﬂ(tayay + Awel) - ASL'
we see that

S vty + 2@ e,z +2) - (ty,y + 2)
z€AzZN

< Atfolole” (t,z) — ¢ (t,y)|

N
+ ALY [0 (@) — b ()AL o(t,2)

i=1

+ (077 (t,2) — 077 (t,)) AL v(t, 7) |

Estimating the ¢’-terms and combining all the above estimates yield
v(t + At,z) — v(t + At,y)
|z -yl

N
< {1 at(Co-+ sup 3@+ B Hote L + Atsup {llofe + 1170}

By interchanging the roles of v(t + At,z) and v(t + At,y), we see that the same
bound holds for |v(t + At,z) — v(t + At,y)| as well. By iterating the last estimate
we get the estimate on the Lipschitz norm. O

We proceed to find the regularity of up. First, we need to know the regularity
of gn. This question is answered by the next result.

Proposition 4.3. Assume (A) and (4.1) — (4.2) hold. Then for any z,y € RV,
t,s € [0, At), the function gn satisfies

lgn(t,2)| < C  and |gn(t,z) — gn(s,y)| < C(t — 8"/ + |z — y]).
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Proof. By (A), (4.5), and (4.6) we see that upo(x) and up (At, z) are bounded and z-
Lipschitz with bounds independent of At. By definition then, these bounds carries
over to gn. What remains, is to show the regularity in ¢. Let uf, = upo * p- and
uj,(At, z) denote the solution of (4.3) at ¢ = At when the initial value is u},. Now,
using the definition of the scheme (4.3) we get

|uj, (AL, 2) — ujo(2)|
At
S |F(0’m’uio(m)aAiuio(m)aAiiuio(m)JAi@“io(wm
< C(L+ |ujo(@)] + AT uho(2)] + A7, ufo ()] + AT uho (7))
< C(1+ |unolo + [unol 1 (1 +€71),

where we have used that |Dus|o, g|D?u5glo < Cluno),1- By properties of mollifiers
and estimate (4.7), we get |uf, — unolo, |uf,(At,-) — up(At,-)|o < Ce. Combining
these estimates and choosing ¢ = At!/? we have |uy(At,-) — upolo < CAt/2 and
the proof is complete by noting that for ¢, s € [0, At)

< |un (At, -) — upolo

A [t —s| < CAtTY2AL 2|t — s|'/2.

|gh(t7 ) - gh(87 )|0

O

We return to the problem of finding the regularity of u;,. By Proposition 4.3
and (4.5) and (4.6), it is clear that |up|o and [up] 1 are bounded independently of
Az and At. But the time regularity remains, and this result is more involved. We
state the full result:

Proposition 4.4. Assume (A) and (4.1) - (4.2) hold, and let up be the solution
of the initial value problem (4.4) and (1.4). Then up € CH(Qr) and |up|; < C.

Proof. We only have to prove regularity in time. Let ¢,t + & € [nAt, (n + 1)At),
where (n+1)At < T, and v (t,z) = up(t+0,x). This means that at time ¢, vy (¢, )

is the solution of (4.4) with initial values g (t, ) = gn(t + 6, ), and coefficients a?,

b (t,z) = b (t + 6,x), & (t,x) = c’(t + 6,z), and fU(t,xz) = f%(t + 8,x). So by the
continuous dependence result (4.7), we have

|Uh(t, ) - uh(t + 57 )|0 < C(|g(t - nAt, ) - g(t +0— TLAt, )|0
+5up [167(,) =0 4+8, o 167, ) =€ 48,900+ 1F7(,) = £+ ).

Assume for the moment that coefficients and initial data are Lipschitz in ¢, then
we have the following bound:

(4.8) lun(t, ) —un(t +96,-)|o < C8(10eglo + 966”0 + [0ec” |0 + 87 |o)-
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In fact this bound holds for arbitrary ¢,t 4+ € [0,T] (with the same Lipschitz
constant), because if ¢t € [mAt, (m + 1)At),t + 6 € [IAt, (I + 1)At) then

lup(t, ) —un(t+6,2)| < |up(t, ) — un(Ems1, )| + |up(t, 2) —up(t + 6, 2)|
I—m—1
+ Z [un(tmtis ®) — un(tmtit, )],
i=1

and we get the conclusion by using (4.8) on each subinterval and adding up.

The coefficients and initial data are only Holder 1/2 in time, so by extending
them appropriately and ¢t-mollifying them, we obtain t¢-Lipschitz functions. Let
b0e, %=, f9¢ and g5 be these smoothed functions, and let u§ denote the solution of
the problem with these (smoothed) coefficients and initial data. By the continuous
dependence result (4.7) and the t-Holder regularity of the coefficients and initial
data (Proposition 4.3), |up(t,2) — u5,(t,2)| < Ce'/? in Qr. Furthermore, by the
properties of mollifiers |8:b%o, |8sc |0, |8:f % |0, Begtlo < Ce™'/2. We can now
conclude that

lun(t,) — un(t + 6,0 < |ua(t,-) = uj(t,-)o + [ug(t,-) — ui(t+6,-)lo
+ |ug,(t+0,-) —up(t +9,-)|o
< CeM? 4 ce 1?5 < 052
Here we have chosen € = 4. O

Proposition 4.5. If (A) and (4.1) — (4.2) hold, then Assumption 2.6 is satisfied.

Proof. Existence, uniqueness, boundedness, and regularity follow from Propositions
4.2 and 4.4, since (1.7) can be considered as a special case of (4.3) by introducing
the new control parameter (¥, s, €), the new control space © x (0,e2) x B(0,¢), and
via a rescaling in time, the new domain Q%_,. The comparison principle and the
fact that |us(t,z) — u5(¢,2)] < Ce in Qr, follow after appropriate applications of
(4.7). O

Now by Propositions 4.1 and 4.5, and Theorem 2.8, we have the following result
about the rate of convergence for the scheme (3.1):

Theorem 4.6. Assume (A) and (4.1) - (4.2) hold, that u is the solution of (1.1)
and (1.2), and that up, is the solution of (3.1) and (1.4). Then

lu —uplo < C(Juo — unolo + Az'/?).

Note that here we also used the CFL condition (4.2) to get the estimate At <
CAz?. The result is in agreement with Barles & Jakobsen [1]. For first order
equations, the rate is 1/2, see Souganidis [17].

APPENDIX A. PROOF OF LEMMA 2.10.

This proof is similar to the proof of the elliptic version of this result given in
[1], but we give it for the sake of completeness. The proof relies on the following
lemma which states that a finite convex combination of subsolutions of (1.1) is still
a subsolution of (1.1).
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Lemma A.l. Assume that (A) holds and that {u'}?_; C Cy(QT) is a set of viscos-
ity subsolutions of (1.1). Furthermore let {\;}_, be a set of non-negative numbers
such that Y7, A\; = 1. Then >, A\ju® is a viscosity subsolution of (1.1).

Proof of Lemma A.1. We start by proving the result in the linear case and when
n = 2. This means that all coefficients in (1.1) are independent of ¥. Consider a
function n € C?(Qr) such that Aju! + A\ou? —n has a strict local maximum at some
point (¢,Z) € Qr, let us say in some compact set I X B C Q.

Define (t, z,y) := hiu' (t,2) + Xow?(t,y) — Min(t, z) — han(t,y) — ¢(z,y) where
d(x,y) = alz —y|*, and let mq = sup, ,eper¥(t, ,y). We note that this supre-
mum is attained at some point (to, To,yo) € I X B, and that it is easy to show that
to = £, 0,90 — T and a|zg — yo|> = 0 as @ = oo (see Lemma 3.1 in [5]).

By the maximum principle for semi-continuous functions [5, Theorem 8.3], we get
the existence of a,b € Rand X,Y € S(N) such that (a, D, ¢(xo,yo)+A1Dn(t, zo), X)
€ P>+ \u' (to, o) and (b, Dy¢(0,y0) + Ao D(t,y0),Y) € P>+ Aau?(to, yo). More-
over a + b = A (to, zo) + Aame(to,yo) and the following inequality holds for some
constant k > 0:

X 0 R A1 D?n(to, o) 0
(A.1) (0 Y) < ka (—I I ) + ( 0 A2D?1(to,90) )

! and u? yield:

Now the definitions of viscosity subsolutions for both u
(A.2)

A1 (to, To) + Aame(to, yo) — %tr[a(toa z0)X + a(to, yo)Y]

— b(to, z0) (Dzd(x0, y0) + A1 Dn(to, zo)) — b(to,yo) (Dy¢(xo,ya) + A2Dn(to, o))

— ¢(to, wo) A1 ul (to, T0) — c(to, yo)A2u?(to, yo) — A1 f(to, zo) — A2 f (to, yo) < O.
By the argument of Ishii and Lions [11, p. 35] and (A.1) we are lead to

(A.3)
tra(to, o)X + alto,yo)Y] < tr [Ara(to, o) D?*n(to, zo) + A2a(to, y0) D*1(to, yo)]

2
+ ka|a(to,$0) - U(t07y0)|

By (A.3) and the Lipschitz continuity of ¢ and b, we can rewrite the (A.2) in the
following way:

A1 (to, zo) + A2me(to, yo)
1
3 tr [Ma(to, z0) D*n(to, o) + A2a(to, yo) D*n(to, yo)]
(A4) — Aib(to, 2o) Dn(to, zo) — A2b(to, yo) Dn(to, yo)

— c(to, o) Mu' (to, To) — c(to, Yo) A2u?(to, Yo) — A1 f(to, zo) — A2 f (to, Yo)
< Calzo — yol*.



20 E. R. JAKOBSEN

We let a tend to oo in this inequality, using the properties of z¢ and yy together
with the continuity of u',u2,n and the coefficients. We obtain the following

_ 1 _ _ _ _
m(t:7) - 5 tr[a”(,2)D*n(t, 7)) — b(t, ) Dn(t, Z)
—c(t,7)(Mut(,7) + (£, 7)) — f(£,7) <O0.
This completes the proof in the linear case.

To treat the case where the coefficients depend on ¥, just note that (1.1) is
equivalent to

(A.5)
ug(t, ) — %tr[aﬂ(t, z)D?u(t,z)] — b%(t, x) Du(t, z) — c®(t,2)u(t,z) — f(t,x) <0

in Qr, for all ¥ € ©. So fix ¥, then A\ju! + A\u? is a subsolution of (A.5) by the
linear case. Now this holds for all ¥ € ©, so Aju! + Ayu? must be a subsolution of
(1.1).

Finally, the general result follows by induction. To convince ourselves of this,
we consider the case n = 3. Consider the following convex combination of 3 subso-
lutions of (1.1):

)\1“1 + )\2’LL2 + (]. - )\1 - )\2)U3
(A.6)

A1+ A /\1+/\2u

Let w denote what is inside the big parenthesis. Note that w is a convex combination
of two subsolutions of (1.1). So by the results for the case n = 2, w is a viscosity
subsolution of (1.1). This means that (A.6) is in fact a convex combination of two
subsolutions w and u3, so we can conclude using once more the results for the case
n = 2. This completes the proof. |

A A
=(A1+Az)< ——ul 4 2 2)+(1—/\1—)\2)“3-

Proof of Lemma 2.10. Let Q3¢ = (s + [0,0)) x (e + [—6/2,6/2)N), p-(s,e;8) =
fQS,e pe, and

Is(t,z) == Z u(t — s,z —e)p:(s,e;0).
(s,e)€
SZXSZN

Note that 2(576)6(%)(621\, Pe(s,€;0) = 1, and that by a standard argument I, ob-
tained through a discretization of the convolution integral, converges uniformly to
ue. On the other hand I is a finite convex combination of subsolutions of (1.1), so
I; is itself a subsolution of (1.1) by Lemma A.1.

Now we can conclude that u. is a viscosity subsolution of (1.1) using the stability
result for viscosity solutions of second order PDEs (Lemma 6.1 in [5]). O

APPENDIX B. THE PROOF OF PROPOSITION 3.3

We start by remarking that if w is the solution of (3.1) then by multiplying the
equation by e~ 7(tth) we see that v(t, z) = e~ " u(t, x) is the solution of the following
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equation:
(B.1) v(t+h,z) = glei(g {(1 — he?(t, x))e MY w(t, ) + hg (t, .7:)},

where g7 (t,2) = e~ "¢+h) f9(¢ z). Define v; = e~ "u; and v2 = e "uy for some
positive v to be determined later.

We will now give a doubling of variables argument based on v; and vy, which
mimics the corresponding PDE proof. In place of the so-called maximum principle
for semicontinuous functions, we introduce new schemes for the problem in [0, 7] x
R?N . These schemes will be related to the original Q7 schemes in such a way that a
v1(t, ) — v (t,y) will be either a subsolution or a supersolution. Moreover they will
operate on the test function |z — y|? in the way we hope for. These new schemes
are roughly speaking based on replacing the operator IIY in (B.1) by the operator
A? defined as

Ajg(t,z,y) =
1 & _
v 2 [9(t o+ b7 (t,2) + Vhol, (¢, ),y + W (t,y) + VRGD, (t,y))

m=1

+ gt + W (t,2) — Vhot, (t,2),y + W (1 y) — Vhoh(t,)) |,

and letting the new scheme act on functions defined on [0,7] x R*V.
We proceed with the doubling of variable argument. First we give some defini-
tions. The sets E} and E:

h 2\ T
Ey = sup (Ul(svx) —v2(s,y) — alz —y| ) )
[0,h] xR2N

E=-B+ sip {ui(s,2) —uvs(s,9) —ale - yf? —e(a* + [y }.
[0,8] x R2N

The functions ¢ and ¢:

0FEs

7,11(8,37,3}) = ’Ul(S,IL') - UZ(say) - T - ¢(way) where

d(z,y) = alz —y|* +e(|z* + |y*).

The purpose of the following calculations is to establish an upper bound on E.
We may therefore assume that E > 0 (if not, 0 would be the upper bound). By
a compactness/continuity argument there is a point (sg,Zo,%o) € [0,%] x RV such
that

m = sup ¢ = w(SOawanO)'
[0,£] xR2N
Furthermore sy ¢ [0,h]. Note that supy > E} + (1 — §)E > E, so assuming
that so € [0, ] leads to a contradiction since then sup ¢ < vy (s, Zo) — v2(S0,y0) —

#(z0,y0) < E}.
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Now subtract vy(sg,zo) and va2(so,yo), use (B.1), the inequality inf{---} —
inf{...} <sup{---—...}, and the fact that A (v1(s,7) — va(s,y)) = Mvi (s,z) —
MYvy(s,y) to get the following:

v1(80,Z0) — v2(50,%0)
< sup {(1=he?(s0 = h,w0))e ™" TT]v1 (50 — b, 30)
— (1= 2&%(s0 — h,y0))e” """ Tjva (0 — h, o)
+h([g°) 1170 — vol + 19” = 3°lo)}
(B2)  <sup {(1=he?(s0 = h,w0))e™ ™ Af (01 (s0 — hym0) = v (50 — By 30))
+he™ " [vso([¢”]1]z0 — yo| + [’ —€”[o)
+ h([g%] 1lwo — vol + 19" = 3°lo) }.

Now since 9(89,Z0,%0) > ¥(so — h,Zg,yo) the following hold:

(SES()

v1 (80, o) — v2(S0,Y0) = M + r + ¢(20,%0),
0E(sg—h
v1(s0 — h,To) — v2(s0 — h,y0) <m + % + é(z0,%0)-
Furthermore note that AY (m + w) =m+ w, and easy computations

using (A), show that at time s

N
_ h B
Aflz —y* = |z —y + A" (s,z) — b°(s,9))]> + N Z lop,(s,2) — o (s,9) [

m=1

< C(lz—y> +hlo” =575 + hlp” — b3),

In a similar way A?(|z|? + |y|?) < C(1+ |z|> + |y|?). Making substitutions in (B.2)
using the above estimates yield
(B.3)

0E
m + %0

+ é(x0,Y0)

0E(sog —h
< el (m + 22O g — o] + alzo —of?) +2C(1 +Jeof? + ol
+ hsgp {aC(|a’9 =3+ (0% = b°13) + |valolc” — %o + |9¥ — g%}

where ¢ = supg |¢?|o. Now choosing v = ¢, rearranging and approximating terms
in (B.3) then yield

oF _ . _ _
- < sup {aC(IUﬂ =13+ (b7 = b°3) + [vao|c? — %o + |gp — gflo}

eC

21+ [zl + [yol?).

+C(|zo — yo| + alzo — yol*) +
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Since 2¢(s0, %0, Y0) > ¥ (s0,%0,%0) +¥ (50,0, o), we have a|zo —yo|* < v1(s0,%0) —
v1(80, Yo) + v2 (S0, To) — v2(S0, Yo), and using z-Lipschitz regularity of v and vy yield
|To — yo| < Ca~'. Furthermore by a standard argument (see e.g. [1, Lemma A.2])
e(|zo|®> + |yo]3) — 0 as ¢ — 0. To continue, we also need to estimate EF. To
do this note first that sup,sq(kr — ar?) = Ca™', then write v (7,z) — v2(7,y) =
v1(7, x) — v2 (T, ) + v2 (T, ) — v2(7,y), finally we conclude by z-Lipschitz continuity
of vy that Ef < supyg ) |v1(7,-) —va(7,-)|o + Ca~". Now by the definition of E, for
any z € RN and s € [0,#] we have vy (s,z) — v2(s,z) < E} + E + 2¢|z|?. Using the
previous estimates we get:

1
v1(8,2) —va(s,x) < sup v (T,-) — v2(7,)|o + Ca™ + EO(E) + 2¢|z|?
[0,h]

t B _ _ -
+ 55up {luzlole” —e’lo + lgf — gflo + aC(lo” —o” g +[0° ~ ') }.

Letting ¢ — 0, § — 1, minimizing with respect to «, doing back substitution to
get an estimate for u; and wus, and finally further approximations, we have the
following;:

e " (u(t,-) —ua(t,))lo < [Sup] [ui (7, ) = ua(T, )0
0,h

+ tsgp {|u2|o|c19 — Eﬂ|o + |f’9 — Jw|o} + \/Engp {|a'9 — 6’9|g —+ |b19 — 5’9|O}.

The proof is complete by noting that in the proof we could have interchanged
|uz]o with |ui]o (so we get the factor |ui]o A |uzlo in front of the |c¢? — &7y term).
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