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SUMMARY 

This thesis describes the development of three decision support models for 
long-term investment planning in restructured power systems. The model 
concepts address the changing conditions for the electric power industry, 
with the introduction of more competitive markets, higher uncertainty and 
less centralised planning. Under these circumstances there is an emerging 
need for new planning models, also for analyses of the power system in a 
long-term perspective. The thesis focuses particularly on how dynamic and 
stochastic modelling can contribute to the improvement of decision making 
in a restructured power industry. We argue that the use of such modelling 
approaches has become more important after the introduction of competitive 
power markets, due to the participants’ increased exposure to price 
fluctuations and economic risk. Our models can be applied by individual 
participants in the power system to evaluate investment projects for new 
power generation capacity. The models can also serve as a decision support 
tool on a regulatory level, providing analyses of the long-term performance 
of the power system under different regulations and market designs. 

 
In Chapter 1, we give a brief introduction to the ongoing development 

towards restructuring and liberalisation of the electrical power system. A 
discussion of the operation and organisation of restructured power systems 
is also provided. In Chapter 2, we look more specifically at different 
modelling approaches for expansion planning in electrical power systems. 
We also discuss how the contributions in this thesis compare to previous 
work in the field of decision support models for long-term planning in both 
regulated and competitive power systems. In Chapter 3, we develop a power 
market simulation model based on system dynamics. The advantages and 
limitations of using descriptive system dynamics models for long-term 
planning purposes in this context are also discussed. Chapter 4 is devoted to 
a novel optimisation model which calculates the optimal investment strategy 
for a profit maximising investor considering investments in new power 
generation capacity. The model is based on real options theory, which is an 
alternative to static discounted cash flow evaluations of investments projects 
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under uncertainty. In the model we represent load growth as a stochastic 
variable. A stochastic dynamic programming algorithm is applied in order to 
solve the investment problem. Prices and profits are calculated in a separate 
model, whose parameters can be estimated based on historical data for load, 
prices and installed capacity in the power system. In Chapter 5, we extend 
the stochastic dynamic optimisation model from Chapter 4, so that the 
investor now can choose between two different power generation 
technologies to invest in. An alternative representation of the power market 
is also implemented, which makes it possible to use either a profit or a 
social welfare objective in the optimisation. With this model we can 
compare the optimal investment decisions, and the dynamics of investments, 
prices and reliability, which follow from centralised and decentralised 
decision making.  

 
The main scientific contributions in the thesis lie in the combined use of 

economic theory for restructured power systems and theory for optimal 
investments under uncertainty. With an explicit representation of the power 
market, the dynamic investment models can identify profit maximising 
investment strategies under different regulations and market designs. The 
use of physical state variables in the models also facilitates analyses of the 
long-term consequences for the power system, which result from the 
optimal decentralised investment decisions. Decision support models for 
expansion planning in the regulated power industry do not address the 
aspect of competition and decentralised decision making. At the same time, 
long-term uncertainties and their impact on optimal investment decisions are 
rarely represented in planning models for the competitive industry. The 
stochastic dynamic models in this thesis therefore provide a new framework 
for long-term analysis of investments and prices in restructured power 
systems. 

 
Potential applications of the investment models are demonstrated in a 

number of illustrative examples in the thesis. Through the analyses in these 
examples we have gained increased insight into the complex dynamics of 
prices, investments and security of supply in competitive power systems.  
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Chapter 1 INTRODUCTION 

“The more I see, the more I see there is to see” 
John Sebastian 
 
The importance of a dependable electrical power system is ever increasing 
in the modern world of today. Almost all aspects of society are dependent 
on electrical power in one way or the other to function properly. At the same 
time, the technical complexity of power delivery increases, as new 
technologies are being introduced into power systems with growing demand 
and increasing geographical scope. The technical and societal changes 
nourish the ongoing debate about how the electrical power system should be 
organised, in order to best meet the various demands it serves in the society. 
Different structures for power system organisation are also being 
implemented in various parts of the world. This thesis will shed some light 
into some of the long-term challenges regarding the continued reliance on 
electrical power as a primary energy carrier.  

 
In the introductory chapter we first discuss two fundamental drivers for 

changes in the electrical power system. Then we provide a short overview of 
the different participants involved in the operation of the electrical power 
system, their interaction and how they are regulated. Furthermore, we 
identify which aspects of this complex system that are addressed in this 
thesis. Finally, an outline of the thesis is provided along with the main 
scientific contributions in our work. 

1.1 Two Fundamental Drivers for Changes in the Power 
System 

Two fundamental trends in society are important drivers in the long-term 
development of the electrical power system. The first trend is the demand 
for cost efficiency, which has triggered a wave of deregulation and 
liberalisation initiatives in various industries that used to be operated under 
regulation (e.g. aviation, railway, telecommunication, gas, and electricity). 
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The second trend is the increased public awareness of the environmental 
consequences caused by the increasing use of energy in the world. This 
aspect drives the search for new and cleaner technologies to generate 
electricity. The two trends, economic efficiency and environmental 
responsibility, contribute to change the conditions under which the 
participants in the electrical power system operate. The objective behind 
power system liberalisation is to increase the competition, and thereby also 
the economic efficiency in the operation of the electrical power system. One 
important consequence of the liberalisation is that the traditional regulated 
utilities shift their focus from cost minimisation to profit maximisation in 
the segments of their operation where competition is introduced. At the 
same time, uncertainty plays a more prominent role, as stochastic factors are 
immediately reflected in the power market’s spot prices. This is in contrast 
to the regulated system, where uncertainties very rarely have an effect on 
the regulated tariffs. Another general effect of the corresponding 
restructuring of the power industry, which can also add to the increased 
uncertainty, is a higher degree of decentralised decision making in the 
system. The increased environmental concern is mainly reflected in 
regulations whose aim is to curb polluting emissions from power generation. 
Tradable certificates for renewable power generation and limits, quotas, and 
taxes on emissions from power plants are examples of such environmental 
regulations. While the drive towards competitive markets in general induces 
fewer regulations in the system, the drive towards less environmental impact 
tends to introduce more regulations. 

1.2 Operation and Organisation of Restructured Power 
Systems1 

The shift towards liberalised and competitive power markets has led to a 
major change in how electrical power systems are being operated and 
organised. Electrical power systems are large-scale, integrated, and complex 
engineering systems which need a certain level of centralised coordination 
to function. Besides, electric power has a set of special features which 
makes it different from most other commodities that are traded in 
competitive markets. The list of special features includes instant and 
continuous generation and consumption, nonstorability, high variability in 
demand over day and season, and nontraceability (i.e. a unit of consumed 
                                                
1 The various expressions that are frequently being used to describe the change in how 
electrical power systems are organised can be somewhat confusing. Deregulation is a term 
that fits best to the ongoing reorganisation of power systems in the US, where the traditional 
regulatory structure has been privately owned utilities under public regulation. In contrast, 
the European tradition has been to have publicly owned utilities where the regulation has 
followed more from the direct public ownership. The terms restructuring and liberalisation 
are therefore more general expressions for the reorganisation of the power systems that 
takes place in different parts of the world, and these terms are used throughout this thesis. 
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electricity can not be traced back to the actual producer). At the same time 
electricity is an essential good for society, and we know that blackouts with 
huge detrimental effects can occur if the system is not maintained under 
control. Furthermore, generation and transmission of electricity are highly 
capital intensive businesses. Large up-front investments can easily deter 
new participants from entering the market, and thereby prevent efficient 
competition. It is therefore obvious that special attention is essential in the 
process of liberalising and restructuring the electrical power system. There 
is currently no real consensus among researchers and industry practitioners 
about what is the ideal organisation of a liberalised market for electricity. 
The optimal solution will necessarily depend on the physical character of 
the power system in question, and different market designs are implemented 
in various parts of the world. The purpose of this section is not to give an 
extensive presentation of all the aspects of the different market designs. 
However, we want to give an overview of the main participants that are 
typically involved in the planning and operation of a restructured power 
system, and how the participants interact and are regulated (Figure 1.1). 
With such an overview it is easier to understand the scope and limitations of 
the work presented in this thesis. 

 

 
Figure 1.1 Illustration of the main participants involved in electric power delivery in a 
restructured power system. 
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Figure 1.1 shows a simplified picture of the interaction between the most 
important participants in a fully liberalised power system, with competition 
on the wholesale and supply levels. The organisation of the power system 
can be split into two separate parts, which are operated under different 
regulatory regimes. The transmission and distribution of electric power are 
natural monopolies, and usually subject to strict public regulation. The cost 
of operating the transmission and distribution system is therefore transferred 
to the end users in terms of tariffs. On the other hand, generators and end-
users have open access to the grid and operate in a competitive market. The 
wholesale price of electric power is settled through market mechanisms, and 
transferred to end users through the supply prices. In order to facilitate such 
an arrangement the traditional utilities must be unbundled, i.e. the 
generation and supply parts are separated from transmission and 
distribution. The main participants in the system are briefly described 
below2. 

1.2.1 Transmission and Distribution 
 
System operator 
The system operator plays a very important role in the coordination and 
operation of the power system, and is responsible for always keeping supply 
equal to demand. Trading between generators and end users in the power 
market provides equilibrium between expected supply and demand. 
However, in order to keep the balance in real time under various 
contingencies, the system operator needs to purchase so called ancillary 
services. This is further discussed in section 1.2.3. Congestion management 
and transmission pricing are also the responsibilities of the system operator. 
 
Transmission provider 
The transmission provider owns and operates the high voltage transmission 
grid in the power system. The system operator and the transmission provider 
can be the same entity, like in the Nordic countries, where the system 
operators own the main grids in the respective countries. However, the grid 
can also be owned by separate companies and coordinated through an 
independent system operator (ISO), as is frequently the case in the US. The 
costs related to running the transmission grid (investments, operating costs, 
transmission losses etc.) are recovered from the transmission tariff. 
 
 

                                                
2 For a detailed description of power system operations for the regulated and competitive 
power industry, see Ilic and Galiana [1] chapter 2. Wangensteen [2] gives a comprehensive 
description of power system economics, with special attention to the restructured power 
system in Scandinavia. 
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Distribution company (DistCo) 
The distribution companies are responsible for operating the lower voltage 
grids, and ensure that end users have access to their local network. This is 
also a monopoly service and total costs for investment and operation of the 
distribution grid is reflected in the distribution tariff. 
 
T/D Regulator 
Transmission and distribution (T/D) are regulated as natural monopolies. 
The T/D regulator controls that there is open access to the T/D grid, and also 
regulates the tariffs and revenues for the transmission provider and the 
distribution companies. 

1.2.2 Generation and Supply 
 
Generators 
The generators are responsible for feeding sufficient electricity into the grid. 
With open access to the network there is wholesale competition between 
generators of various technologies and ownership. The generators bid their 
power generation into the market, either through an organised power 
exchange or via bilateral contracts. 
 
End users 
The end users usually participate in the power market through suppliers. 
Competition on the supply level ensures that the end users can buy their 
electricity from which supplier they want. Large scale customers with real 
time metering can also be able to participate directly in the wholesale 
electricity markets, by submitting their bids to the power exchange or 
directly to a generator. 
 
Suppliers 
Suppliers represent end users in the wholesale market for electricity. Their 
bids into the market reflect the preferences of their customers. While the 
distribution company takes care of the physical transfer of power to the end 
users, the suppliers are responsible for the financial transactions between 
end users and generators. The metering of the end users is sometimes also 
the responsibility of the supplier. However, in the Norwegian system the 
distribution companies are mandated to take care of the metering. 
 
Market operator 
The market operator is responsible for organising a public power exchange. 
A range of different products will typically be traded at the power exchange, 
from physical day ahead contracts to financial forward contracts with 
delivery several years into the future. Bilateral contracts serve as 



Chapter 1 

- 6 - 

supplements to the contracts traded at the power exchange. A description of 
the products traded at the Nordic power exchange, Nord Pool, which is a 
separate entity owned by the system operators in Norway and Sweden, is 
provided in Appendix A3. In some other systems, for instance in the 
Northeast US (PJM, New York, New England), the system and market 
operator is the same entity. 
 
G/S Regulator 
Regulation is still needed, even if the supply and demand for electric power 
is organised through a competitive market. An important responsibility for 
the generation and supply (G/S) regulator is to define rules for how the 
power market is operated. This could for instance be in terms of deciding 
time resolution and curtailment policy in the close to real time physical 
markets for electricity. Furthermore, the G/S regulator is also responsible 
for preventing that participants can dominate the market and exercise market 
power. The regulation of G/S and T/D could be accomplished by the same 
regulatory body. However, this is not necessarily the case. In Norway there 
are two different entities involved in regulating the monopolistic and the 
competitive part of the electric power system. 

 
The list presented here of participants in the competitive part of the power 

system is by now means exhaustive. Brokers and traders will for instance 
play important roles in maintaining liquidity for the products traded in the 
power market. Some of the participants in the power market also depend on 
separate balance responsible entities to keep track of the difference between 
scheduled and real time power consumption (or generation). The balance 
responsible entity serves as an intermediary between the market participant 
and the system operator.  

1.2.3 Ancillary Services 
The term “ancillary services” is an expression for the set of system services 
that the system operator relies on in order to maintain real-time balance and 
security of supply in the power system. Different definitions exist for what 
is included in the ancillary services, and the exact list of services will also 
depend on the physical characteristics of the power system4. However, the 
provision of operating reserves together with frequency and voltage control 
through balancing of real and reactive power in the system are always 
important elements of these services. The ancillary services are placed 

                                                
3 Appendix A also gives a brief history of the power system restructuring in Scandinavia, and 
presents an empirical analysis of prices in Nord Pool’s spot and futures markets. 
4 A hydro-dominated power system with a high fraction of generating units that can adjust 
their output on very short notice will typically need a different set of ancillary services than a 
thermal system with a majority of slowly responding generators. 
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between monopoly and competition in Figure 1.1. Some of the ancillary 
services, such as the instant balancing of real power in the system, can be 
organised through a market mechanism. However, a problem when it comes 
to introducing full competition in the provision of ancillary services is that 
the system operator is usually the only participant in the power system that 
can coordinate and determine the demand for these services in real time. 
While competition can be introduced on the supply side, it is difficult to 
create a market for ancillary services with an active and decentralised 
demand side. The cost of providing ancillary services therefore tends to be 
reflected in the transmission and distribution tariffs, although some of the 
costs could also be determined through competition. 

1.2.4 The Balance between Competition and Regulation  
Based on the description so far we see that the electrical power system is a 
demanding system to control, not only from an engineering perspective, but 
also from and economic and regulatory point of view. There is a 
fundamental trade-off between the use of competition and regulation in 
order to provide cost efficiency and lower environmental impact, and at the 
same time maintain the security of supply in the power system (Figure 1.2). 

 

 
Figure 1.2 Illustration of the balancing trade-off between competition and regulation in the 
electrical power system. 

Figure 1.2 can serve to illustrate trade-offs between competition and 
regulation in several parts of the electrical power system. Some of the most 
important trade-offs are: 

 
- Establishing an appropriate line of separation between the monopolistic 

and competitive parts in the operation of the power system (Figure 1.1). 
This is particularly relevant for the organisation of ancillary services. 
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- Design of market rules that ensure efficient economic short-term 
operation of the electrical power system. Correct locational price signals and 
market power mitigation are important topics in this respect. 

 
- Implementation of market rules and regulations that provide sufficient 

incentives for investments in the power system. Such incentives are crucial 
for the long-term security of supply. 

 
- Design of incentives which ensure that environmental considerations are 

taken into account in operation and expansion of the system. This is 
necessary to lower the environmental impacts of power generation. 

1.2.5 New Challenges for the Participants in the Power System 
All the participants in the electrical power system will need to adapt to the 
changing regulative environment in which the system is operated. As 
illustrated in Figure 1.2, the participants that are making the shift from a 
regulated to a competitive regime will need to change their focus from cost 
minimisation to profit maximisation. This is the case for generators and 
suppliers in the restructured power system. Appropriate procedures for risk 
management now become more important as these participants are exposed 
to competitive prices with increased volatility. Participants in transmission 
and distribution will also be affected by increased uncertainty, since future 
decisions concerning investments in the power system are less predictable in 
a system with decentralised decision making. Long-term planning methods 
should be updated accordingly. The main challenge for authorities and 
regulators is to design a system with the correct balance between 
competition and regulation. The ultimate goal is to end up with an electrical 
power system where cost efficiency and low pollutions are achieved, 
without compromising the security of supply. 

 
It is obvious that the participants in the restructured electrical power 

system need to adjust their planning methods in order to adapt to the 
changing environment in which they are operating. This has been pointed 
out by several authors (e.g. Hobbs [3] and Dyner and Larsen [4]). At the 
same time there is also a need for developing mathematical models that can 
provide better decision support under the new planning conditions. 

1.3 Scope and Limitations of the Thesis 
The discussion so far in this chapter illustrates the range of complexities 
involved in the organisation and operation of liberalised and restructured 
electrical power system. Naturally, this thesis only covers a limited part of 
all the challenges that the various participants in the system are facing.  
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The work presented in this thesis focuses on the competitive part of the 
restructured power system, as illustrated by the lower box in Figure 1.1. Our 
main attention is on investments in new power generation capacity, and on 
the long-term balance between supply and demand in restructured power 
systems. In a competitive power market the electricity prices are supposed 
to provide signals for investments in new power generation capacity. 
However, prices and investments depend on the rules and regulations that 
govern the market. In this thesis we study the long-term effects of 
environmental regulations (e.g. CO2-taxation), direct investment incentives 
(e.g. capacity payments or subsidies) and market design (e.g. price caps). 
We also analyse how limited competition and high barriers to entry for new 
participants can possible influence investment levels, prices and system 
reliability. However, a number of important aspects are also left out of the 
analyses. For instance, we do not consider how the general rules for taxation 
of power generation companies’ income influence profitability and 
investment behaviour. Corporate issues related to restrictions on capital and 
optimal equity/debt ratios are also left out of the analyses. We simply 
assume that sufficient capital at a certain interest rate is always available 
when favourable conditions for investment occur in the market. In addition, 
inflation is dealt with by using real interest rates in the investment models. 

 
The objective in this thesis is to use mathematical modelling as a tool to 

increase the understanding of the complex dynamics of investments and 
prices in liberalised power systems. We develop a set of decision support 
models that generation companies can make use of in order to improve their 
investment strategies in the new competitive power systems. We are 
particularly concerned with the power generation companies’ increased 
exposure to uncertainty, and how this affects their optimal investment 
strategies. The decision support models can be used to find optimal 
strategies for investments in new power generation capacity, but they can 
also simulate the development of supply and demand in the power system 
over a multi-year period. Hence, the models can also serve as a decision 
support tool for regulators that want to analyse the effect of various market 
designs and regulations. 

 
The mathematical models presented in this thesis builds upon a number of 

simplifying assumptions. We are mainly concerned with modelling of the 
economic interaction between electricity prices and investments in new 
power generation plants. Decommissioning of existing plants is an 
important aspect which is not taken explicitly into account in our analyses. 
Less emphasis is also given to the representation of all the physical relations 
that determine the power flow between the different components in the 
power system. Transmission and distribution constraints are for instance 
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disregarded, although they can have a major impact on the prices at 
constrained locations in the grid. The implementation of ancillary services 
can also influence the profitability of investments in new power generation, 
but this is not covered in extensive depth in the analysis presented here. 
Furthermore, the operation of the power plants is simply modelled with the 
assumption that units can be switched on and off according to their marginal 
costs. Inter-temporal constraints are neglected. Most of the modelling efforts 
are focused on the dynamics of supply and demand for electricity, and how 
new investments depend on the resulting prices in the power market. 
However, the model frameworks presented in this thesis are of a flexible 
nature, and can easily be extended to take into account at least some of the 
more technical aspects that are mentioned here. 

1.4 Thesis Outline 
After this brief introduction, we look more specifically at different 
modelling approaches for expansion planning in electrical power systems in 
Chapter 2. We also discuss how the contributions in this thesis compare to 
previous work in the field of decision support models for long-term 
planning in both regulated and liberalised power systems. In Chapter 3, we 
develop a power market simulation model based on system dynamics. The 
advantages of using system dynamics models for planning purposes in this 
context are also discussed. Chapter 4 is devoted to a new stochastic dynamic 
optimisation model which can calculate optimal timing of investments in 
new power generation assets for a profit maximising investor in the power 
market. The model is based on real options theory, which is an alternative to 
the use of static net present value evaluations of investment projects. The 
real options theory is presented in the beginning of the chapter, with focus 
on relevant applications to asset valuation in power markets. In Chapter 5, 
we extend the stochastic dynamic optimisation model from Chapter 4, so 
that the investor now can choose between two different power generation 
technologies to invest in. An alternative representation of the power market 
is also implemented, which makes it possible to use either a profit or a 
social welfare objective in the optimisation. With this model we can 
compare the investment dynamics which follows from centralised and 
decentralised decision making. Illustrative examples are provided for all the 
model concepts that are presented in the thesis. In the case studies in 
Chapter 3 and Chapter 4 we use the proposed models to analyse expansion 
projects which are currently relevant in the Norwegian power system. 

 
In the appendices we have added four conference papers that have been 

written during this doctoral project. These papers can be read independently 
from the rest of the thesis. The first two appendices present material which 
is not extensively covered in the main text, since the content is slightly on 
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the side of the main topics in our work. Appendix A and Appendix B are 
still referred to at relevant places in the text. The contents of Appendix C 
and Appendix D are incorporated into Chapter 3 and Chapter 4 respectively. 
The two papers give a compact presentation of the decision support models 
that are presented with more detail in the main chapters. 

1.5 Main Scientific Contributions in the Thesis 
The main scientific contributions in the thesis lie in the combined use of 
economic theory for restructured power systems and theory for optimal 
investments under uncertainty. With an explicit representation of the power 
market, the dynamic investment models can identify profit maximising 
investment strategies under different regulations and market designs. The 
use of physical state variables also facilitates analyses of the long-term 
consequences for the power system, which result from the optimal 
decentralised investment decisions. Decision support models for expansion 
planning in the regulated power industry do not address the aspect of 
competition and decentralised decision making. At the same time, long-term 
uncertainties and their impact on optimal investment decisions are rarely 
represented in planning models for the competitive industry. The stochastic 
dynamic models in this thesis therefore provide a new framework for long-
term analysis of investments and prices in restructured power systems.  

 
The specific contributions of the three decision support models proposed 

in the thesis can be briefly expressed as follows: 
 
- Development of a descriptive system dynamics model for long-term 

analysis of demand, prices, and investments in different power generation 
technologies in a competitive power market. 

 
- Formulation of the expansion planning problem under uncertainty for a 

decentralised profit-maximising investor in the power market. Development 
of a mathematical model based on real options theory and stochastic 
dynamic programming to solve the problem. 

 
- Extension of the stochastic dynamic optimisation model to also calculate 

optimal investments under a social welfare objective, and thereby 
facilitating comparison of optimal investments under centralised and 
decentralised decision making. 

 
Possible applications of the three models are illustrated in the case studies 

provided in the thesis. A number of interesting results also arise from these 
illustrative examples. These results are presented in detail throughout the 
chapters and in the conclusion of the thesis. 
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Chapter 2 DECISION SUPPORT 
MODELS FOR POWER 
GENERATION 
EXPANSION PLANNING 

In this chapter we discuss planning methods and decision support models 
for expansion planning and long-term analysis of electrical power systems. 
First, we describe a number of planning methods that were developed for 
the regulated power industry. Particular attention is paid to multi-criteria 
trade-off analysis and how this planning concept can be adjusted to better fit 
the conditions in restructured power systems. We also discuss new and 
alternative planning methods that can contribute to improve decision 
making in competitive power markets. We then look more specifically at a 
set of general attributes for decision support models, and explain how they 
can address the changing planning conditions for the power industry. A list 
of model properties is presented, and used to illustrate how the new decision 
support models presented in this thesis compare to more traditional planning 
models. The discussion of model properties is also useful in order to 
understand how our model concepts can provide increased value to decision 
makers in the restructured electrical power industry. A final comment is 
made about the similarities between the problem of investing in new power 
generation under uncertainty, and the hydropower production planning 
problem. 

2.1 The Power Generation Expansion Planning Problem 
The general power generation expansion planning problem has at least three 
important dimensions that must be evaluated during the project assessment 
phase. Firstly, the project type must be considered, i.e. choice of technology 
and capacity size for the new plant. Secondly, the timing of the investment 
must be evaluated. Thirdly, the location of the new plant must also be 
decided. A full project evaluation is a large and complex task, which 
requires the use of various planning methods and decision support models. 
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In this thesis we are mainly concerned with the first two of these 
dimensions, while the question of optimal location in the electrical power 
system is not treated in any depth. The focus in our research is on 
developing mathematical models that are better capable of providing 
decision support in competitive power markets. As discussed in Chapter 1 
the restructuring of the electrical power system has drastically changed the 
conditions under which the electrical power industry is operating, and this 
must also be taken into account in the planning methods and decision 
support models. 

2.2 Long-Term Planning Methods under Regulation and 
Competition 

We have seen that the planning conditions for the regulated electric power 
industry, with stable prices, centralised decision making and access to full 
information resulted in low uncertainty for the participants in the system 
Figure 1.2. Under these conditions, forecasting and optimisation are ideal 
long-term planning methodologies, and these methods were also frequently 
used in the regaled power industry, as pointed out by Dyner and Larsen [4]. 
Various planning techniques have been developed in order to optimise 
electricity supply systems under traditional regulation. We briefly present 
some common techniques below, with particular attention to the use of 
multi-criteria methods. A description of a Scandinavian project which builds 
upon theory for multi-criteria decision making is also included in Appendix 
B. At the end of this section we discuss how the competitive industry can 
respond to the new conditions by applying alternative planning methods. 

2.2.1 Generation Expansion and Integrated Resource Planning 
The traditional objective in power generation expansion planning was to 
minimise the cost of accomplishing required expansions of generation 
capacity. The focus was almost entirely on the supply-side of the power 
system, while demand was simply assumed to follow a forecasted growth 
rate. As a response to both increasing cost of electricity supply and also 
environmental constraints the concept of integrated resource planning was 
developed. While the objective of the traditional expansion planning was to 
meet demand for electricity at least cost, the principal goal in integrated 
resource planning is to meet the demand for energy services at least cost 
(Swisher et al. [5]). Hence, integrated resource planning also considers 
options on the demand side, such as energy efficiency programs and 
demand-side management, in order to find the optimal configuration of the 
power system. The concept of integrated resource planning was originally 
developed for the regulated utilities in the US. However, the same 
methodology can also be applied on different geographical and 
organisational levels. Integrated resource planning has been used for 
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planning purposes from the local distribution level to national analyses of 
regulatory policies for the energy sector. 

2.2.2 Multi-Criteria Trade-Off Analysis 
The provision of energy services has a fundamental impact not only on the 
economy, but also on the environment and on the society in general. 
Conflicting objectives frequently arise in long-term infrastructure planning 
within the energy sector, since many interest groups are affected by the 
resource decisions. Planning methods that take into account several of these 
objectives are referred to as multi-criteria decision making methods. Multi-
criteria methods are frequently applied for different planning purposes in the 
electrical power sector, for instance in combination with capacity expansion 
or integrated resource planning. The objective for the multi-criteria methods 
is to help decision makers evaluate the trade-offs between different system 
criteria, such as total costs, emissions and reliability. A systematic 
comparison of the various criteria makes it easier for the decision makers to 
make well-informed and appropriate decisions. The least-cost solution is not 
necessarily the optimal one, when other criteria are also taken into 
consideration.  

 
Several analytical methodologies have been developed in order to aid in 

multi-criteria decision making5. The first step in the planning process is to 
select which system criteria to include in the analysis. This is done by the 
decision makers and possibly also other stakeholders in the system. A power 
system simulation model is then usually applied to estimate the outcomes of 
the selected criteria for different technological configurations of the power 
system. Note that the model does not find the optimal expansion plan itself, 
but simulates the operation of the system for a set of technological options 
that are specified by the people involved in the planning process. A set of 
assumptions about the future (load growth, fuel prices etc.) also has to be 
specified as input to the simulation model. Some of the multi-criteria 
methods are aiming at quantifying the decision makers’ value judgements, 
and thereby finding an optimal system expansion plan. This can be done by 
assigning weights to the different system criteria, adding the weighted 
criteria up, and then compare the total result for the range of investment 
alternatives. Various weighting and multi-objective optimisation techniques 
have been developed for this purpose, as described by Hobbs and Meier [6]. 
An alternative approach is taken by Merrill and Schweppe [7], in their so 
called trade-off/risk method for multi-criteria planning under uncertainty. 
Their approach puts more emphasis on displaying tradeoffs and identifying 

                                                
5 A comprehensive description of multi-criteria decision support methods is given by Hobbs 
and Meier in [6]. 
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plans which are robust for a range of assumptions about the future, instead 
of finding one single plan which might only be optimal under a specific set 
of assumptions. The methodology analyses trade-offs between the selected 
criteria and identifies investment strategies that are strictly or significantly 
dominant with regards to all the criteria. Robust investment strategies can be 
identified both with a deterministic and a stochastic representation of the 
future. Hence, by using the trade-off/risk approach decision makers can find 
strategies that are robust both in terms of selected system criteria and 
relevant future uncertainties. The methodology has been applied for 
integrated resource planning at the utility level several places, for instance at 
the Bonneville Power Administration in the US (Burke et al. [8]). 

 
The principles in the trade-off/risk method have also been applied to 

electric power system planning on regional and national levels. Connors [9] 
uses the methodology for integrated resource planning in the New England 
power system and focuses on the effects of increasing wind power capacity 
and the extent of demand-side management programs. A similar multi-
criteria analysis is also accomplished for the Swiss power system (Schenler 
and Gheorghe [10]). In the Swiss case study the trade-off approach is 
combined with life cycle analysis to examine environmental impacts for the 
entire life cycle of the power system. Another example of using an extended 
version of the trade-off/risk framework is found in a planning project from 
the Shandong province in China (Eliasson and Lee [11]). In all these 
projects there are several decision makers involved in the planning process 
(utilities, regulators, end-user groups etc.). This is in contrast to projects on 
the utility level, where the final decision is made by the utility itself. At the 
same time the total number of other stakeholders also increases when the 
geographical scope of the problem is extended. Therefore, when multi-
criteria trade-off analysis is applied on regional and national levels, it serves 
first of all as a tool for facilitating discussions between stakeholders and 
decision makers, and for providing them with objective simulation results 
for a range of investment strategies. Identification of robust investment 
strategies is still important, in order to avoid counterproductive decision 
making. However, the search for an optimal strategy makes less sense in a 
setting with multiple decision makers.  

 
A multi-criteria planning project, which builds upon the same principles as 

described for the regional and national projects above, is currently also 
being started for the Scandinavian region. The framework of analysis and 
initial assumptions for the project are further described in Appendix B. A 
discussion of the analytical approach and some preliminary simulation 
results are also provided by Bhattacharyya [12]. A new challenge when it 
comes to applying such a centralised planning method in this region is the 
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high degree of liberalisation in the Scandinavian power system. As pointed 
out in Chapter 1, competitive power markets are characterised by 
decentralised decision making. Robust power system investment strategies 
which are identified through the multi-criteria trade-off analysis can 
therefore not be directly implemented, since the degree of centralised 
planning is low. Still, with an extensive and iterative dialogue with decision 
makers and other stakeholders, the discussions and information exchange 
which arise from such a project can serve as valuable inputs also to 
decentralised decision makers. The results from the multi-criteria trade-off 
analysis can also be a good source of information for the public in general. 
Besides, there will always be an extent of centralised planning in the power 
system, through the market rules and regulations in the power system. 
Authorities and regulators can use the outcomes of the multi-criteria trade-
off project to create a system where the desirable results are achieved 
through regulations, investment incentives and appropriate market design. 
However, in order to facilitate such results the project must go beyond 
identifying robust strategies, and also analyse how these strategies can be 
accomplished in a competitive setting. The model concepts that are 
presented in this thesis can serve as useful tools in terms of analysing the 
investment dynamics in competitive power markets. Therefore, the use of 
our models in an extended multi-criteria trade-off analysis can contribute to 
make the project results more relevant in restructured power systems. 

2.2.3 New Planning Methods for the Competitive Industry 
Most of the long-term planning methods that were developed for the 
regulated electrical power industry were based on a centralised system 
optimisation perspective. Prescriptive methods, like the ones described 
above, were used to identify optimal expansion plans for the infrastructure 
in the power system. Decentralised decision making in a perfect market 
gives the same result as centralised system optimisation, according to 
welfare economics. A centralised system optimisation perspective can 
therefore still be used as the starting point for making a benchmark in long-
term analysis of restructured power systems. However, alternative planning 
methods which focus more on how power markets can deviate from the 
long-run equilibrium, and also on how the individual participants can 
optimise their positions with respect to the rest of the system are needed. 
Below we discuss some methodologies which can be used to include the 
effects of decentralised and strategic decision making, and increased 
uncertainty into long-term planning strategies. 

 
The shift towards decentralised and profit maximising decision makers in 

restructured power systems is likely to incur a higher degree of strategic 
decision making. Hence, strategic analyses of the industry as a whole and 
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also of important competitors become more important for the individual 
participants in the power system. Such analyses can be based on purely 
qualitative considerations. However, various mathematical modelling 
techniques can also be applied in order to study the effects of strategic 
decision making. System dynamics is a descriptive modelling methodology 
where the focus is on behavioural simulation of systems at a high level of 
aggregation. The flexible and descriptive approach and the dynamic nature 
of system dynamics models make them well suited to analysis of strategic 
decision making. In Chapter 3 we apply system dynamics to develop a 
simulation model for long-term analysis of the power market. Multi-agent 
modelling is another tool for analysing the interaction between individual 
agents in a system. However, the multi-agent technique is designed for more 
detailed analysis of systems at a lower level of aggregation, where decisions 
occur frequently and decision makers are constantly learning and adapting 
their strategies. In the context of electricity markets multi-agent modelling is 
well suited for short-term analysis of bidding strategies in the spot market 
(Visudhipan [13]). Game theory is another approach which is frequently 
used for analysis of power markets with a limited number of participants 
(duopolies, monopolies), both in a short-term price and long-term 
investment perspective (Ventosa et al. [14]). Multi-agent modelling and 
game theory are not applied in the decision support models presented in this 
thesis. 

 
The increased uncertainty following the restructuring of power systems 

can also be dealt with using both qualitative and quantitative methods. Some 
long-term uncertainties, such as political market regulations and public 
opinion, are difficult to quantify and describe by probability distributions. 
The effect of these uncertainties can still be incorporated into scenario 
planning techniques, where the purpose is not to identify optimal investment 
strategies, but rather to gain increased insight into the range of outcomes 
that the future might bring. On the other hand, quantifiable uncertainties can 
be included formally into decision support models. An extensive literature 
exists on optimisation of investments under uncertainty. The models in 
Chapter 4 and Chapter 5 are inspired by the real options theory, where 
uncertain factors are described by stochastic processes and taken explicitly 
into account in the calculation of optimal investment strategies. Increased 
uncertainty, combined with large-scale irreversible investment decisions, 
makes the real options approach particularly relevant for investments in the 
electrical power system. 
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2.3 Classification of Decision Support Models 
In this section we look more specifically at some important attributes of 
decision support models for long-term planning in electrical power systems. 
We discuss a number of dimensions along which long-term planning models 
can be classified. Our discussion of model attributes is not meant to cover 
all aspects of expansion planning models. However, we focus on the 
dimensions that are of particular concern in a competitive setting, and which 
can be used to illustrate the contributions of the planning models proposed 
in this thesis. In the next two sections we use the model properties discussed 
here to describe and classify existing models for long-term planning in 
power systems, and compare them to the new decision support models 
presented in this thesis.  

2.3.1 Model Purpose and Algorithm 
A decision support model for long-term planning can be either prescriptive 
or descriptive. Prescriptive models are based on optimisation, and their 
purpose is to identify optimal investment strategies. Most planning models 
for the regulated industry are prescriptive. In contrast, a descriptive model 
does not find optimal investment strategies directly. The purpose of 
descriptive models is to increase decision maker’s knowledge, by simulating 
the future development of the system under a set of different assumptions. 
Better knowledge will, in turn, result in improved decision making. The 
relevance of descriptive models has increased following the restructuring 
and decentralisation of decision making in electrical power systems. 
Geographical scope is another model attribute which depends on the 
problems the model is designed to analyse. The geographical system 
boundary can typically vary from a very local area to a multi-national 
region. A range of other properties also define the model’s system 
boundaries. For instance, some models consider the electric power system 
only, while others also include the transportation and demand for alternative 
energy carriers such as gas and district heating.  

 
The objective function in prescriptive decision support models developed 

for the regulated power industry is usually minimisation of total cost, or in 
some cases maximisation of social welfare. In the competitive power 
industry a more appropriate objective for individual participants is the 
maximisation of their expected profits from investing in the system. 
Descriptive models do not have an explicit mathematical objective function. 
However, the simulated investment decisions must still be based on 
assumptions about investors’ priorities and objectives. Another important 
model attribute is the mathematical algorithms which are used to solve the 
model. A planning model can use more than one solution algorithm. For 
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instance, the representation of the short-term operation of the power system 
and the power market is typically a separate part of the planning model, 
which can be based on a different algorithm than the investment decisions. 
Several optimisation methods from operations research (linear/non-linear 
programming, dynamic programming etc.) are frequently used in expansion 
planning models. The planning model’s solution algorithms depend on the 
purpose of the model, and the range of other attributes that are included in it. 
For instance, the extent to which different mathematical algorithms can 
efficiently include representation of uncertainty varies substantially. 

2.3.2 Representation of Investment Decisions 
The representation of investment decisions in long-term planning models 
plays a central role in this thesis. Regulated power system are characterised 
by centralised decision making. Therefore, in traditional prescriptive 
expansion planning models it is usually assumed that all decisions are made 
by one centralised decision maker, which controls the entire system (Figure 
2.1A). As already pointed out, a centralised optimisation can also serve as a 
benchmark for a perfectly competitive market. However, it is also possible 
to explicitly model decentralised decision making, in order to describe the 
conditions in competitive power markets with more realism. In this thesis 
we use two different approaches to represent decentralised decision making 
in planning models. In the first approach the interaction between a number 
of decentralised participants with their own investment strategies is 
modelled. The participants interact through the power market (Figure 2.1B). 
The second approach is to take the perspective of an individual participant 
who wants to optimise his position in the system. The other participants are 
now represented as an aggregate decision maker, whose decisions could also 
depend on feedback from the power market (Figure 2.1C).  

 
Another important dimension in the modelling of investment decisions is 

how the timing of new investments is taken into account. With a static 
representation it is assumed that a new investment must be undertaken 
immediately. Hence, the only concern is to decide whether or not to invest, 
and then also which project to invest in if there are several alternatives. In 
contrast, with a dynamic representation of investment decisions, the timing 
of new projects is also taken into account. Modelling of uncertainties, 
construction delays and investor foresight are also important for the 
investment decision. Long-term trends, such as changes in demand, fuel 
prices etc., can be represented either as deterministic or stochastic variables. 
The representation of investment timing, long-term uncertainties, and 
construction delays can have a substantial impact on the optimal investment 
decisions, as will be shown in this thesis. This is discussed in much more 
detail when the real options theory is presented in Chapter 4.  
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Figure 2.1 Representation of centralised and two types of decentralised decision making in 
long-term expansion planning models. DM – decision maker. 

2.3.3 Representation of Supply, Demand and Electricity Market 
The level of detail in the representation of supply and demand in the power 
system is rather limited in most long-term planning models. This is mainly 
because the gain from adding details in a long-term analysis is usually low, 
while the increase in computational burden can be substantial. The number 
of power generation technologies that can be added to the power system is a 
supply-side attribute which can be very important for the mathematical 
dimension of the expansion planning problem. Technology learning is 
another aspect, which by time can substantially reduce investment costs for 
emerging technologies. Technology learning can be included in expansion 
planning models by using learning rates for the various technologies. On the 
demand side, the time resolution decides how much of the short-term 
demand fluctuations (seasonal, weekly, daily) that can be included in the 
model. Another important dimension is whether or not price elasticity of 
demand is represented. The introduction of competition and increased 
exposure to prices in the power system makes it important to include how 
the demand-side influences and responds to the fluctuating prices. This is 
dependent on the market design. Explicit representation of the power market 
is needed in a competitive market setting, in order to be able to analyse the 
effects on prices and investments of various market designs. In a 
competitive and decentralised setting the market plays a crucial role in 
coordinating the actions between the various participants, as illustrated in 
Figure 2.1. In a model with centralised decision making there is no explicit 
representation of the market, although an exogenous price can be included 
in the input to the model to represent prices outside of the region which is 
included in the model. 

2.4 Expansion Planning Models in Norway 
In this section we present four existing models that have been used for long-
term analysis and expansion planning in the Norwegian power and energy 
systems. All the models have a bottom-up description of the power system.  
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2.4.1 DYNKO 
DYNKO is a centralised and prescriptive expansion planning model which 
minimises the total cost of expanding the energy system within an area. 
Operating costs for different system configurations (combined heat and 
power, gas/oil/electricity boilers etc.) are calculated with merit order models 
for the production of district heating and electricity. The expansion planning 
module uses dynamic programming (DP) to identify the least cost solution, 
based on a deterministic forecast of future load. DYNKO was developed by 
the Norwegian Research Institute of Electricity Supply (EFI) in Trondheim 
for planning purposes at the regulated utility level in the late 1980s 
(Johansen and Wangensteen [15]). 

2.4.2 SDP Model 
The SDP model for expansion planning proposed by Mo et al. [16] is an 
extension of the DYNKO framework. The objective is still to minimise the 
total cost of providing electricity and heating services within a local area. 
However, load growth and oil price are now represented as stochastic 
variables. Stochastic dynamic programming (SDP) is used to find the 
optimal investment plan. The SDP algorithm takes into account the long-
term uncertainties and also the dynamic flexibility in investment timing. 
Construction delays are explicitly represented in the model and will also 
affect the optimal investment strategy.  

2.4.3 MARKAL 
MARKAL is a large-scale linear programming (LP) model which optimises 
the supply of energy services in a region or country, also including the 
transportation sector. The objective function is normally to minimise the 
total cost of meeting the energy demand, although alternative objective 
functions can also be used, such as minimisation of the total emissions from 
the energy system or the total use of fossil fuels. Energy demand is 
represented in the model with a deterministic projection of demand for 
different sectors of society. Operations and expansions of the system are 
jointly optimised with a huge linear programming algorithm. There is no 
explicit representation of the electricity market in the model, but marginal 
operating costs can be found from the dual variables of the restrictions in the 
LP algorithm. The model was originally developed at Brookhaven National 
Laboratory and is used for regional energy system studies in a range of 
countries including Norway (Johnsen and Unander [17]). 

2.4.4 Normod-T 
Normod-T is a partial equilibrium model developed for analysis of the 
Nordic electricity market. The model simulates electric load, generation and 
prices in Norway, Sweden, Denmark and Finland, based on exogenous and 
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deterministic demand forecasts. Normod-T is a multi-area model and 
includes transmission constraints between the countries. Power system 
dispatch and prices are found for each year by maximising the social welfare 
in the system for the given transmission and capacity constraints. The short-
run price elasticity of demand is also taken into account in the model. New 
generation capacity is added as soon as the simulated prices exceed the 
long-run marginal cost of available technologies. Hence, new capacity 
additions in the system are not part of a formal optimisation. Normod-T 
therefore has a more descriptive nature than the other models presented 
here. However, the decision rule for capacity additions makes sure that the 
system is always kept close to the long-run economic equilibrium. Hence, 
the simulated expansions are not allowed to deviate far from the social 
welfare optimum. The model has been developed and used by Statistics 
Norway (Johnsen [18]). 

2.5 The Model Concepts in this Thesis 
In this thesis we propose three new decision support models for long-term 
analysis and investment planning in restructured power markets. The 
models are developed to address the impact of decentralised decision 
making and increased uncertainty following the introduction of competition 
in generation and supply of electricity. The effects of environmental 
regulations, investment incentives and market design can also be analysed 
with the planning models in this thesis. The three model concepts are briefly 
described below. A summary of model properties for the existing and new 
models are summarised at the end of this section in Table 2.1. The selection 
of model properties is based on the discussion in section 2.3. 

2.5.1 System Dynamics Model (SysDyn) 
In Chapter 3 we develop a descriptive simulation model based on system 
dynamics for long-term analysis of a regional power market. The model 
simulates investments in a set of power generation technologies, where each 
technology is represented in the model as a separate decision maker with a 
profit maximising objective (Figure 2.1B). The demand is also represented 
as a decision maker which responds to the prices in the electricity market. 
Both short- and long-term price elasticity of demand is included in the 
model. The market is described with linear supply and demand curves, and 
linear programming is used to calculate the market price at the intersection 
of the two curves for each simulated year. New investments in the different 
generation technologies are based on profitability assessments of total costs 
for the new technologies compare to deterministic projections of the 
simulated prices. Individual construction delays and technology learning 
rates for the various technologies are represented in the model and 
contribute to the simulated investment dynamics. 



Chapter 2 

- 24 - 

2.5.2 Real Options Model 1 (RealOpt1) 
In Chapter 4 we look at investments in new power generation capacity from 
the perspective of an individual decision maker in the power system (Figure 
2.1C). Real options theory is used to develop a prescriptive planning model, 
which optimises the participant’s timing of investments in a specified power 
generation technology. The investment optimisation model is based on 
stochastic dynamic programming, where load growth is represented as a 
stochastic variable. The solution algorithm and description of uncertainty in 
our model is similar to what is used in the SDP model described in [16]. 
However, the objective in the model is now to maximise the profits of an 
individual participant, instead of minimising the total cost of the entire 
system. Other participants in the system can be represented in the model, by 
assuming that their investment decisions are also dependent on the prices in 
the power market. The electricity price is modelled as a probability 
distribution which depends on the load level and the total installed capacity 
in the system. The parameters in the price model can be estimated based on 
historical data. A simulator is also implemented in order to analyse the long-
term investment pattern which follows from the model’s proposed 
investment strategies. 

2.5.3 Real Options Model 2 (RealOpt2) 
The planning model in Chapter 5 is an extension of the model concept in 
Chapter 4 for investments in power generation assets under uncertainty. The 
model has been extended to include investments in two new generation 
technologies, and can therefore calculate the optimal technology choice in 
addition to the optimal timing of the investment. At the same time demand 
is modelled with more detail, by introducing sub periods for base, medium 
and peak demand. The representation of demand is based on the theory of 
peak load pricing. An alternative market description is also included in the 
model, where the electricity price is derived from the intersection of linear 
supply and demand curves. With this representation of the market the model 
can either optimise the investments of a decentralised profit maximising 
participant (Figure 2.1C), or it can optimise the entire system from a 
centralised social welfare perspective (Figure 2.1A). Hence, we can use the 
model to compare investments, prices and reliability under centralised and 
decentralised decision making.  
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Table 2.1 Properties for existing planning models (DYNKO, SDP, MARKAL, Normod-T) 
and the new models proposed in this thesis (SysDyn, RealOpt1, RealOpt2). 
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2.6 A Similar Problem: Hydro Power Production Planning 
In the end of this chapter we comment briefly on the similarities between 
the problem of investing under uncertainty and the hydropower production 
planning problem. The objective in hydropower production planning is to 
optimise the allocation of limited hydro resources. Precipitation determines 
the inflow of water to the reservoirs and is an important stochastic variable 
along with the future electricity price. Just like there is a value in waiting for 
more information about uncertain long-term trends in the investment 
planning problem, there is also a value of waiting for more information 
about future precipitation and prices in the hydropower problem. From a 
mathematical point of view, installed generation capacity and demand level 
are the main state variables in the investment problem, while the reservoir 
level is the most important state variable in the hydropower production 
planning problem. The time horizons are of course different, but the 
problems’ structures, with sequential decision making and gradual unfolding 
of new information, are the same. Therefore, the two problems lend 
themselves to the same analytical approaches, since the common aim for 
their decision support models is to capture the value of having a flexible and 
dynamic strategy in an uncertain environment. It is not a coincidence that 
stochastic dynamic programming, which are used in Chapter 4 and Chapter 
5 in this thesis, are also frequently applied for hydropower production 
planning, both in Scandinavia and other parts of the world (Fosso et al.[19]).  
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Chapter 3 A SYSTEM DYNAMICS 
MODEL FOR LONG-
TERM ANALYSIS OF THE 
POWER MARKET  

In this chapter we present a new model concept for long-term analysis of 
liberalised power markets. In the model we try to capture the main factors 
influencing the long-term development of supply and demand in the power 
system. In liberalised power markets, investment decisions are no longer 
part of centralised planning and optimisation. Investors’ lack of perfect 
foresight, together with permissions and construction delays, could possibly 
result in periods of overcapacity or capacity deficits in the system. By using 
a dynamic description of investments in new power generation capacity we 
are able to include these effects into our model. The average spot price in 
the power market is calculated from year to year, using a linear optimisation 
algorithm based on marginal costs. The price for electricity, in turn, 
influences investments in different technologies, both on the generation and 
end-use sides of the electric power system. System dynamics, which is a 
general dynamic modelling technique with a wide range of applications, is 
used to model these investment decisions. Companies in the electric power 
industry and public authorities are potential users of the model, for learning 
and decision support in scenario planning and policy design. A summary of 
results from a case study of the restructured power market in Norway are 
included to illustrate potential use of the model. 

 
The dynamic investment model outlined in this chapter was presented at 

the 14th Power System Computation Conference, PSCC 2002, (Botterud et 
al. [20]). The paper from the conference proceedings is included in 
Appendix C. 
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3.1 Introduction 
This chapter presents a new model concept for long-term analysis of the 
power market which is based on system dynamics. The model is a possible 
tool for increasing the understanding of the dynamics of supply and demand 
in restructured power markets. It is specifically suitable for scenario 
planning, and we argue that both energy companies and public authorities 
could make use of such dynamic models in their long-term strategic 
planning. In the model we calculate the annual average electricity price 
using a linear optimisation algorithm, while the description of investment 
decisions is based on system dynamics. In the first part of the chapter we 
briefly discuss investment dynamics in the power market, and how this is 
incorporated into traditional and new power market models. The main part 
of the chapter is devoted to a detailed presentation of our new model 
concept. At the end we also briefly present results from a case study of the 
Norwegian power market, to illustrate potential use of the model. Further 
applications and extensions of the model concept are also discussed. 

3.2 Investment Dynamics in the Power Market 

3.2.1 Decentralised and Imperfect Decision Making 
As pointed out in Chapter 1, one important consequence of power market 
restructuring is that many decisions related to operation and planning of the 
power system are now made at more decentralised levels in the system. This 
is indeed also the case for decisions regarding investments in new power 
generation. The introduction of competition in the market has shifted the 
investment focus for utilities and power generation companies from meeting 
load to maximising profits. Under these circumstances it is no longer certain 
that installed generation capacity is always ahead of the development in 
demand. Power plants have a long lifetime and a substantial fraction of the 
total costs are paid up front. At the same time there is high uncertainty 
regarding the future electricity prices. Consequently, investors might be 
reluctant to invest in new generation capacity in time to meet increasing 
demand. Delays caused by the time it takes to obtain construction permits 
and to construct new plants will also contribute to the likelihood for an 
imbalance between load and generation capacity.  

 
The demand side of the power market consists of a large number of 

consumers. Small consumers, such as single households, do not necessarily 
base their investment decisions on purely economic arguments. Their 
behaviour is more likely to be described by bounded rationality6. The direct 

                                                
6 Bounded rationality is a term which is used in behavioural economics to describe real 
decision making processes, where limitations of both knowledge and cognitive  capacity 
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link between electricity price and investments in new end-use technology is 
therefore less clear than on the supply side of the market. It is still 
reasonable to assume that there is a level of price feedback also to demand, 
both in a short- and long-term perspective. The short-term price elasticity of 
demand arises because parts of the electricity consumption can be 
substituted by other energy carriers. There is usually also a potential for 
short-term electricity savings in the system. In the long run investments can 
be made in technologies that change the demand level and also the temporal 
pattern of electricity use. Energy-intensive industries are for instance a 
consumer group that will typically be very sensitive to changes in the 
electricity price, and optimise their production facilities accordingly. At the 
same time, construction delays are also present on the demand side when it 
comes to investments in new end-use technologies. All these factors 
contribute to the dynamics of investments on the demand side of the power 
market. However, the long-run development of electricity demand is also to 
a large extent determined by macro factors such as growth in population and 
changes in economic activity within a region. Such factors are difficult to 
include as endogenous variables in a power market simulation model. 

 
In the model presented in this chapter we try to capture the most important 

relationships that influence the dynamics of supply and demand in the 
power system. We assume that the objective for participants on the supply 
side of restructured power markets is to maximise the market value of the 
company. Investments in new power generation plants will therefore be 
triggered by expectations about future profits. The expected profitability on 
new investments is in turn determined by the future price of electricity. 
Thus, the expected electricity price is clearly the main feedback signal for 
investments on the supply side of a competitive power market. Moreover, 
we argue that the electricity price is also important for the demand side of 
the power market, although the change in demand will also be highly 
dependent on other factors in the society. Interventions from regulating 
authorities, in terms of taxation, subsidies and concession policy, can 
contribute to change the dynamics of both supply and demand in the market. 
By development and use of the dynamic model presented here, we are 
aiming at improving the knowledge about the complex relationships that are 
likely to determine the long-term development of the power market. 

3.2.2 Traditional and New Modelling Approaches 
An overview of modelling approaches for generation expansion planning in 
regulated and restructured power markets is given in Chapter 2. Most of the 

                                                                                                                        
prevents decision makers from making rational choices based on maximisation of their 
expected  utility.  
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long-term planning models for the traditional power industry are based on 
centralised system optimisation, where the objective is to minimise the total 
cost of meeting load within a region. These models usually have an 
underlying assumption of perfect investor foresight. The effect of bounded 
rationality and imperfect decision making that contribute to the investment 
dynamics described above are rarely represented. The substantial delays 
during permit approvals and under construction of new power plants are 
usually also omitted in these models.  

 
Alternative modelling approaches are therefore needed to study the long-

term consequences of decentralised decision making in restructured power 
markets. However, so far most of the models that are being developed for 
the new competitive environment seem to focus on shorter-term issues like 
operation planning, trading, economic risk management and market power 
in the spot market. One of the power market modelling approaches 
developed for the restructured industry that also address the long-term 
investment dynamics on the supply-side of the market is proposed by 
Skantze and Ilic [21]. A model of the spot market for electricity with 
stochastic descriptions of supply and demand is here extended to also 
include investments in new generation capacity. The rate of investments in 
new capacity depends on the relation between the electricity price and the 
total unit cost of new capacity. This is similar to the approach taken in the 
model presented here. However, the model in this chapter focuses more on 
the relations between investments in different technologies and less on the 
stochastic elements of supply and demand. Other recent approaches to 
modelling of investments in liberalised power markets include game theory, 
as described for instance by Chuang et al. [22] and Ventosa et al. [14]. 
These models are designed for analysis of capacity expansions in markets 
which can not be considered as fully competitive, but more realistically 
described as duopolies or oligopolies. 

3.2.3 System Dynamics 
In our model we use system dynamics as a tool for analysing investments in 
the power system. A short introduction to the field is therefore provided 
below7. The theory of system dynamics was developed during the fifties and 
sixties by Jay W. Forrester as a policy design tool for complex management 
problems [23]. System dynamics draws upon control-, organisation-, and 
decision theory, and can be used to model interactions within and between 
social, economic and technological systems. Instead of analysing the details 

                                                
7 A comprehensive description of system dynamics is provided by Forrester [23] and 
Sterman [24]. Forrester lays out the founding principles behind the theory of system 
dynamics in [23], while Sterman gives an up to date description of the field, with examples of 
applications in a range of different industries in [24]. 
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of individual elements in a system, the emphasis in system dynamics is on 
the relationships between the elements that create dynamics in a system. 
Consequently, system dynamics models usually have an aggregate level of 
detail, while the scope of the models can reach beyond what is usually 
included in traditional analytical methods. Systems thinking8, which has its 
foundation in the field of system dynamics, has made an important 
contribution to organisational theory and management. The focus in systems 
thinking is also on understanding how the components of a system interact 
with each others, but with less attention to the development of a 
mathematical formulation of the problem that is being studied.  

 
When developing a system dynamics model, a substantial amount of time 

should be spent in the beginning to develop an understanding of the problem 
that is being investigated. It is very important that the decision makers, 
which are actually going to utilise the results from the model, are involved 
already at the beginning of the analysis. The project group’s mental models 
of the system must be spelled out, and the most important variables in the 
relevant system identified. Causal loop diagrams, which are sketches of the 
causal relationships between the different components of a system, can be 
very useful as a tool of communication in this stage of the model 
development. Such diagrams are used later in this chapter to illustrate the 
main relationships on the supply and demand side of the power market. The 
next step in the analysis is to formalise the causal relations into a 
mathematical model. When sufficient testing is performed, the final model 
can be used to evaluate different policies and decision strategies.  

 
Mathematically, system dynamics is a set of differential equations. The 

state variables in the system are referred to as stocks, while the control 
variables are dependent on the decision strategies and the structure of 
information feedback loops in the system. A system dynamics model is 
usually solved numerically, and can handle both delays and nonlinearities. 
A number of specialised software tools have been developed specifically for 
system dynamics models. The possibility of including optimisation and 
uncertainty into the models is limited. Advanced decision strategies based 
on optimisation can therefore be difficult to implement within the 
framework of system dynamics. However, the purpose of developing a 
system dynamics model is usually to gain better insight into a real world 
system. As pointed out above, real decision makers are rarely entirely 
rational about their decisions. Simulation models based on system dynamics 
is therefore still a valuable tool for descriptive analyses, which in turn can 
result in increased knowledge and thereby improved decision making. 

                                                
8 An important contribution in the field of systems thinking is given by Senge in [25]. 
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System dynamics has been used to analyse dynamic patterns in a range of 
different industry sectors, including the electrical power industry. Bunn and 
Dyner [26] argue that system dynamics can serve as an important tool for 
analysis of the changing conditions in the energy industry. Results from a 
simulation study of consumer choice of electricity substitution by gas in 
Colombia are presented. Market forces in the UK electricity industry are 
also analysed by simulating investments in new power generation capacity. 
It is shown that increased exchange of information between market 
participants can have a stabilising effect on investments and the reserve 
margin. Gary and Larsen also [27] develop a system dynamics model for 
investments in generation capacity in the UK electricity market. Different 
investment strategies are simulated, and the interaction between the 
electricity and gas markets is also included in the model. The results from 
the study are compared to a situation where a constant long-term 
equilibrium price is assumed for gas. Not surprisingly, the results from the 
feedback simulation model deviates substantially from the equilibrium 
prediction. Ford [28] [29] analyses cycles in power plant constructions in 
the western US. Results from a system dynamics model shows that boom 
and bust cycles are likely to occur due to investor’s limited foresight and 
delays in permitting and constructing new plants. However, a capacity 
payment can contribute to dampen these construction cycles. 

 
The model presented in this chapter is in many respects similar to the ones 

mentioned above. However, our model focuses more on the competition 
between different power generation technologies, and therefore on the 
causal relationships that determine technology choice. Although most of our 
attention is also given to modelling the investment dynamics on the supply 
side of the market, we improve the representation of electricity demand by 
introducing feedback from price to demand. 

3.3 The Simulation Model 

3.3.1 General Characteristics 
The model simulates the development of the power system within a region 
for a long period of time (20-50 years). We model the power market with a 
supply and demand curve, and the electricity price is derived from the 
intersection of the two curves. The time resolution in the model is one year, 
using the simplifying assumption that investment decisions can only be 
made at the beginning of each year. New investments in generation and 
demand-side technologies result in a change in the supply and demand for 
electricity. Consequently, we end up with a dynamic description of the 
supply and demand curve, with electricity price as the main feedback 
mechanism. 
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The level of detail in the model is aggregated. Instead of going into details 
on the different parts of the system, we try to focus on the relationships that 
we see as most important for the long-term development of supply and 
demand in the power system. The model is a tool for generating scenarios to 
analyse what is likely to happen under certain circumstances (e.g. about the 
development of fuel prices, taxation, technological improvements etc.). 
Development and use of the model can contribute to learning and improved 
decision making for participants in the power industry. To facilitate 
communication of the model and its results to decision makers we have used 
Powersim9 to implement the dynamic description of the supply and demand 
curves. The price calculation is carried out in Visual Basic with a 
corresponding Excel spreadsheet interface.  

3.3.2 List of Variables and Parameters in the Model 
The list below shows the main variables and parameters in the model, which 
are further referred to in the presentation of the model below. Generation, 
demand and power exchange are represented with a number of capacity 
groups, where each group has a fixed bid in the electricity market. This is 
explained in more detail in the sections below. 

  
General variables: 
p(t) wholesale electricity price [NOK/MWh]10 
t discrete time  [years] 
 

Supply, M generation groups, i ∈ [1,M]: 
gi(t) annual power generation  [TWh/year] 
ncapi(t) new capacity rate [MW] 
acapi(t) approved capacity rate [MW] 

)(ˆ tpi
 price forecast [NOK/MWh] 

RCi(t) remaining energy reserves  [TWh/year] 
GCi(t) annual generation capacity  [TWh/year] 
EICi(t) unit energy investment cost  [NOK/MWh] 
VCi(t) variable generation cost  [NOK/MWh] 
MCi(t) marginal generation cost  [NOK/MWh] 
OCi(t) operation and maintenance cost  [NOK/MWh] 
FCi(t) fuel cost  [NOK/MWh] 
IIi(t) investment incentives  [NOK/kW] 
OIi(t) operating incentives  [NOK/MWh] 

                                                
9 Powersim is one of the software packages developed specifically for system dynamics 
models. The graphical user interface facilitates communication of the model to decision 
makers involved in planning projects. A comprehensive documentation of the software is 
found in [30]. 
10 NOK is the Norwegian currency. Currency rate (October 2003): $ 1 ≈ 7 NOK. 
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CFi(RCi) expected capacity factor of new capacity [hours/year] 
PFi(t) profitability factor  
iri internal rate of return on investment  
rri investors’ required rate of return  
δi deviation in required rate of return  
ici investment cost for initial capacity [NOK/kW] 
ki technology improvement factor  
ni expected lifetime for new plants [years] 
amaxi  maximum permit applications per year  [MW] 
adi approval delay [years] 
cdi construction delay [years] 
api permit approval fraction, api∈[0,1]  
abi project abandonment fraction, abi∈[0,1]  
w(u) adjustment factor for marginal value of  

regulated hydropower, w∈[0.5,2.5] 
 

u stochastic relative inflow, u∼N(1,σu)  
 

Demand, N demand groups, j ∈ [1,N]:  
dj(t) annual load  [TWh/year] 
MDj(t) marginal willingness to pay  [NOK/MWh] 
DCj(t) max annual demand  [TWh/year] 
DTOT(t) max total annual demand  [TWh/year] 
fp(t) flexible fraction of DTOT(t), fp(t)∈[0,1]  
tax(t) electricity end use tax  [NOK/MWh] 
dgref annual demand growth reference  
ε long-term price elasticity of demand  
dd demand adjustment delay  [years] 
pcurt curtailment price   [NOK/MWh] 

 
Power exchange, O import and export groups, k ∈ [1,O]: 
imk(t) annual import  [TWh/year] 
exk(t)  annual export  [TWh/year] 
IMPk(t) import price  [NOK/MWh] 
EXPk(t) export price  [NOK/MWh] 
EXCk(t) power exchange capacity  [TWh/year] 

3.3.3 Supply Side Description 
The power generation is divided into M generation groups, with each group 
representing one specific technology. The main relationships included in our 
modelling of investments in new generation capacity follow the same 
structure for all the generation groups. The causal loop diagram in Figure 
3.1 illustrates this structure.  
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Figure 3.1 The main factors and relationships influencing investments in new power 
generation capacity. The signs on the arrows indicate the signs of the feedbacks for the 
relations between the variables. L1 and L2 represent feedback loops.  

There are two feedback loops in Figure 3.1, and the expansion decision 
can be considered as the control variable for both loops. The first feedback 
loop (L1) states that when generation capacity is increased the electricity 
price is likely to fall. This lowers expectations of future prices, which in turn 
reduces the likelihood of future expansion decisions. L1 is therefore a 
balancing loop that limits the investments in new generation. The second 
feedback loop (L2) is caused by the connection between current installed 
capacity and investment costs. The sign and magnitude of this relationship 
varies for different generation technologies. For renewable technologies like 
hydropower and wind power we assume that locations with the best energy 
resources, or the highest expected capacity factor, are utilised first. The 
investment cost is therefore a function of remaining reserves, which in turn 
are directly linked to installed capacity. Hence, there is a positive link 
between installed capacity and investment costs, so that L2 becomes a 
balancing loop for these technologies. On the other hand, fossil-fuelled 
power plants do not have the same clear link between generation capacity 
and investment cost, since there is usually no constraint on the amount of 
fuel supplied to these plants. The capacity factor for thermal power plants is 
a function of the dispatch of the power plant. The change in dispatch due to 
new installed generation capacity is dependent on the overall power system 
characteristics. We are treating the capacity factors for thermal technologies 
as constants in the investment part of the model. As a result, there is no link 
between installed capacity and investment cost for these technologies in the 
model. However, by including more details in the modelling of the power 
system operation, we could include the relation between installed capacity, 
the expected capacity factor and thereby the unit investment cost for thermal 
technologies. 
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The two bars on the line between expansion decision and generation 
capacity in Figure 3.1 represent a delay. An expansion project goes through 
several stages before it eventually comes on line, as illustrated in Figure 3.2. 
All these stages are represented as stocks (i.e. state variables) in the model. 
The two main delays are concerned with obtaining a permit to build a new 
plant and the time it takes to construct it. These two delays are included in 
the model, and will therefore influence the simulated investment dynamics 
in the system. Furthermore, we assume that the fractions of the permit 
applications that are denied (api) and the construction permits abandoned 
(abi) are constant. These parameters represent the regulating authorities’ 
support and the investors’ willingness to invest in the various technologies. 
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Figure 3.2 The stages in a power plant’s life cycle. 

A technology group’s total cost is of course one of the main input factors 
when investments in new generation plants are considered. We therefore 
need a description of how investment and operating costs are likely to 
change over time. The investment cost per energy unit (EICi) in the model 
depends on initial investment cost, technology learning, expected lifetime, 
capacity factor and possibly also subsidies, as shown in (3-1). 
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The variable costs of a generation group (VCi) are the sum of fuel, and the 

variable part of maintenance and operating costs. The authorities could 
possibly also impose operational incentives such as subsidies for renewable 
power generation or CO2 taxation of generation from fossil fuels. All these 
elements are exogenous inputs to the model, but can still change as a 
function of time, as shown in (3-2). 

 
 )()()()( tOItOCtFCtVC iiii −+=  (3-2) 
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We assume that investments in the new power generation capacity are 
based on purely economic arguments. Power companies invest in the 
available technologies if the expected profitability is high enough to cover 
their required rate of return on capital. The expected profitability on a new 
investment is dependent on total costs of the project and the expected future 
price. We employ a first order exponential smoothing process to forecast the 
price a specific number of years into the future11. The time periods used in 
the backward-looking trend calculation and the forward-looking price 
extrapolation, can be defined individually for each single technology. It is 
for instance reasonable to assume that investors in wind power have shorter 
time horizons for their price forecast than hydropower investors, due to the 
shorter lifetime and construction time for wind power.  

 
With values for investment cost, variable cost and expected future price 

we can find the expected internal rate of return on investments in new power 
generation capacity for the different technologies.  This is simply done by 
setting the expected net present value (NPV) of the project to zero, as shown 
in (3-3). The expected price and variable costs are treated as constants 
within each time period. Hence, we can derive a profitability factor as 
shown in (3-4), which is used as an indicator for the quantity of new permit 
applications and plant constructions. The profitability factor can be 
expressed either in terms of expected price and cost figures, or as a function 
of internal rate of return and lifetime. By using figures for the technology’s 
lifetime and the investor’s required rate of return in the last part of (3-4), we 
can therefore calculate the required profitability factor for investments in 
different generation technologies to take place. The required profitability 
factors are compared to the simulated ones, as given by the first part of 
(3-4), and determine the rate of investment in the various technologies. 
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Figure 3.3 shows how approval applications and new constructions are 

modelled as a function of the simulated profitability factor. We assume that 
a higher profitability factor for a technology i, corresponding to a higher 
expected rate of return, results in an increase in the rate of applications for 
construction permits for that technology. The rate of new constructions 
                                                
11 This is a built-in value forecasting function in Powersim. 
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started is also an increasing linear function of the profitability factor, but 
with a less steep slope. There is an exogenously defined limit to the rate of 
new permit applications equal to amaxi in Figure 3.3. The corresponding 
limit to the rate of new constructions is lower, and equals the fixed approval 
fraction for the technology (api) times amaxi. Furthermore, we assume that 
investors require a higher rate of return to start the construction of new 
plants than what is required to apply for permits. The required rate of return 
(rri) and its deviation (δi), as shown in Figure 3.3, should be set to resemble 
the assumed behaviour of investors in the various power generation 
technologies. The model allows the use of different rri’s and δi’s for the 
different groups of power generation technologies. Differentiated rate of 
return requirements can be used in the case that the risk concerned with 
investing in different technologies varies considerably12. The installed 
generation capacity, GCi, is updated for each time step. (3-5) shows how the 
construction delay is taken into account in the model. The permit approval 
delay is modelled in the same way. Construction and approval delays can 
also vary between the power generation technologies, resulting in different 
patterns of investment dynamics for the different generation groups. 
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Figure 3.3 Illustration of the rate of applications for construction permits (acapi(t)) and 
new constructions started (ncapi(t)) as function of the profitability factor (PFi(t)). 

 
 )()1()( iiii cdtncaptGCtGC −+−=  (3-5) 

 
As explained above, the rates of permit applications and new power plant 

constructions determined by a price extrapolation which is in turn dependent 
on the simulated prices. Capacity under construction and the level of 
permission already granted are not taken into account in the investment 
strategies. Furthermore, the investment decisions are based on static 
assessments where future trends and uncertainties are not taken into account 

                                                
12 A technology’s expected lifetime and the relative proportion of investment costs and 
operating costs are two of the factors that are likely to influence investors’ perceived risk.  
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other than through the price extrapolation. Investment decisions for the 
different technologies are also uncoordinated, in the sense that the rate of 
investment for one technology is independent of investment decisions for 
other technologies. This is clearly a simplified representation of the 
investment strategies that occur in real power markets. However, the 
representation of investment decisions in the model should still be 
sufficiently detailed to gain useful insight in the long-term dynamics of 
supply in a liberalised power market. After all, investors have limited 
foresight about future events and can not be expected to always act 
according to rational expectations. The focus in this chapter is on modelling 
of the main causal relationships for investments in the power system. In the 
following chapters we pay more specific attention to how investors can 
optimise their investments in power generation assets in restructured power 
markets, where the level of uncertainty is increased. 

3.3.4 Demand Side Description 
Our description of the demand curve is more aggregate than the supply 
curve, and a substantial part of the demand in the model is described by 
exogenous input parameters. We still try to capture the most important 
connections between electricity price and demand, both in the short and long 
run. Figure 3.4 illustrates how demand is treated in the model. The feedback 
loop states that increasing demand results in higher end-user prices. This 
will in turn give incentives for energy savings, and will contribute to lower 
the total demand after a time delay (dd). L1 is therefore a balancing loop. 
The dynamic description of total demand is based on a model proposed by 
Sterman in [24]13. We assume a constant long-term price elasticity of 
demand (ε). When the simulated end-user price deviates from the reference 
price, the long-term price elasticity contributes to change the development 
in total demand away from the underlying reference growth, dgref.  
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Figure 3.4 The main causal relationships on the demand side. 

                                                
13 See [24], pp.811-813, for a further description. 
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We distinguish between fixed and flexible demand. Flexible demand is 
defined as the demand that can respond quickly to price signals in the short 
term without additional investments in the system. Hence, the flexible 
demand represents the short-term price elasticity in the model. For instance, 
switching from electricity to oil heating in dual fuelled heat systems 
represents parts of this flexibility. On the other hand, the fixed part of 
demand does not have any substitute in the short run. It still changes in the 
long run, partly due to the underlying general load growth. Investments in 
energy saving technology such as heat pumps and improved insulation 
would also influence the total load development. This is represented in the 
model by the long-term price elasticity of demand 
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Figure 3.5 Representations of the demand curve at two different time steps.   

Figure 3.5 shows how the fixed and flexible demand is represented in our 
model in terms of a demand curve. The total demand, DTOT(t), is updated 
for each time step, while the fixed and flexible demands follow as fractions 
of the total demand. The proportion of flexible demand, fp(t), is an input 
parameter, but can still change as a function of time to describe the expected 
development of the flexibility on the demand side. Figure 3.5 illustrates a 
shift in the demand curve, where the total demand as well as the variable 
fraction increases. For the fixed demand we assume that there is a 
curtailment price, pcurt. The flexible demand is represented by a number of 
linear price steps. Hence, the whole demand curve has a linear 
representation, and can be described by a number (N) of demand groups 
with corresponding prices (MDj) and capacities (DCj) for each group. 

3.3.5 Exchange of Power with Outside Region 
Import of power to the region is handled by adding a number (O) of 
additional supply steps to the supply curve. Similarly, a number of export 
steps are added to the demand function to represent electricity demand 
outside of the region. The exchange capacity is determined by the capacity 
of the transmission lines to surrounding regions, and is an exogenous 
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variable that could be allowed to change with time. The capacity and price 
of each import and export step should be defined to resemble the power 
market conditions in the connected regions. The lowest import price must 
always be higher than the highest export price, to fit into the price 
calculation as described below. 

3.3.6 Electricity Price Calculation 
The average annual price, p(t), in the wholesale electric power market is 
calculated for each simulated year. The price is determined by maximising 
the short-term socio-economic surplus in the market, including imports and 
exports, as illustrated in Figure 3.6.  
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Figure 3.6 The power market is described by the supply and demand curves for each 
simulated time step.  

The variable costs for the generation groups go directly into the price 
calculation, where they are treated as marginal costs (i.e. MCi = VCi), for all 
generation technologies except regulated hydropower. The regulated 
hydropower is divided into five separate supply steps, where the marginal 
value of the most expensive step equals a factor w times the lower import 
price, as shown in (3-6). The marginal values of the other steps are fixed 
fractions of the most expensive step. This is to take into account that 
regulated hydropower is dispatchable, and therefore scheduled according to 
the price of alternative generation.  The alternative generation is usually 
thermal power, and its marginal cost depends on how much of the system 
load it has to serve. This is in turn dependent on the annual inflow to 
hydropower reservoirs. The w value is therefore a function of the inflow, 
u(t), which is drawn from a normal distribution for each time step. w is low 
when inflow is high and vice versa. The representation of the marginal value 
of hydropower is meant to resemble the so-called water value calculations 
that are frequently used in hydropower production planning, as explained by  
Fosso et al. in [19].  
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 MChydropower,max (t) = w(u(t))⋅ IMPlowest(t)  (3-6) 

 
Strictly speaking, the shaded area in Figure 3.6 is not the true socio-

economic surplus, due to the use of alternative costs instead of real marginal 
costs for regulated hydropower. The description still serves as a good 
approximation of the bidding process in the power market, if we assume 
perfect competition14. The linear description with constant marginal values 
for each load and generation group is clearly a simplification of the real 
world. Marginal costs of thermal power plants vary as a function of output 
for both a single plant as well as for a group of plants. The correctness of the 
market description can, however, be improved by increasing the number of 
generation groups.  

 
The annual power generation (gi), consumption (dj) and exchange (imk or 

exk) are found directly by applying Visual Basic’s built-in algorithm for 
linear optimisation on the optimisation problem described in (3-7)-(3-12). 
All the other variables in the equations are treated as constants in the 
optimisations, which take place at each simulated time step. However, these 
variables might also change between each time step, due to the dynamics of 
the supply and demand curve in the system. The electricity price, p(t), 
occurs as the dual value, or shadow price, of the electricity balance in (3-8). 
Other technology specific figures, like capacity factors and generation costs 
are easily derived from the results of the optimisation. Macro economic 
figures, such as consumer’s and producer’s surplus, also follow from the 
solution of the optimisation problem. 
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 14 Modelling of imperfect competition and strategic bidding is more relevant for shorter time 
horizons where peaking effects from daily and seasonal load variations are included. We 
assume that these effects make a negligible impact on the average annual electricity price. 
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The model is, in its current form, an energy model, and does not address 
problems concerning peak demand and short-term capacity deficits. It is 
also a single area model, where transmission losses and reserve margins are 
assumed to be included in the demand groups. Consequently, there is one 
single electricity price for the overall region. Price differences within the 
region due to transmission congestion are not taken into account in the 
model. The aggregate annual price calculation is motivated from the fact 
that it is the average electricity price over the year that is relevant for most 
of the investments we consider, both on the supply and demand side in the 
power system. However, a more detailed market description could easily be 
implemented within the current framework, for analysis of effects that 
requires a shorter time resolution, as for instance investments in peak power 
plants. 

3.4 Illustrative Example: Norwegian Case Study 
To test the model we developed an input dataset for the Norwegian power 
market based on information in [31] and [32]. The initial conditions in the 
system describe year 2000, and the model is simulated for a period of 30 
years. The most important assumptions for the supply and demand side are 
shown in Table 3.1 and Table 3.2. On the supply side the initial generation 
capacity consists almost entirely of hydropower. 4 different power 
generation technologies can be added to the system (hydro-, wind-, gas- and 
gas power with CO2-capturing). Investments in all of these technologies are 
currently under consideration in the Norwegian power system. The demand 
side is described by a few key variables. The system load is slightly above 
average generation capacity in the initial year, and we assume a reference 
relatively low growth in demand of 1 %. The price flexible part of demand 
in assumed to be constant and equal to 14 % of total demand throughout the 
simulation period. 

 
We first run a business as usual scenario (reference), where we assume 

that the authorities take a passive approach and leave it to the market to 
decide on the timing and technology for new generation. In the second 
scenario (green) we assume that the authorities take a more active approach 
and intervene in the market with CO2 taxation (125 NOK/ton from 2002). 
They also show preferences for renewable power generation when giving 
construction permits. This is represented in the model with higher permit 
acceptance fractions for hydro and wind power than for gas power plants. 
All the other assumptions are the same in the two scenarios. In both 
scenarios we assume constant average inflow to the hydro reservoirs. Hence, 
price fluctuations due to the variable precipitation are not taken into 
account. 
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Table 3.1 Input parameter values for new generation technologies in the case study of the 
Norwegian power market. 1Gas power with CO2-capturing. 2Values for the two scenarios 
ref/green. 3CO2 tax introduced in 2002 for gas power. 

 Hydro Wind Gas Gas cap1 Unit 
GCinit 118 0.5 0 0 TWh/year 
RCi 30 80 100 100 TWh/year 
OCi 20 35 25 40 NOK/MWh 
FCi 0 0 100 120 NOK/MWh 

OIi
2,3 0/0 0/0 0/-45 0/0 NOK/MWh 

CFi CFi(RCi) CFi(RCi) 8000 8000 hours/year 
ici 5000 8000 6000 10000 NOK/kW 
IIi 0 0 0 0 NOK/kW 
ni 40 20 30 30 years 
adi 3 2 3 3 years 
cdi 3 1 2 3 years 
ki 0.002 0.014 0.005 0.012  
rri 0.07 0.07 0.07 0.07  
δi 0.02 0.02 0.02 0.02  

api
2 0.5/0.7 0.5/0.7 0.5/0.3 0.5/0.3  

abi 0 0 0 0  
 
 

Table 3.2 Input parameter values for the demand side in case study of the Norwegian 
power market. The parameters are constant throughout the simulation period. 

dgref pcurt ε dd fp tax 
1 % pa. 800 NOK/MWh -0.31 2 years 0.14 100 NOK/MWh 

 
Figure 3.7 shows that the simulated price fluctuates throughout the 30 

years in the reference scenario. Capacity expansions are triggered during the 
periods with high price, but delays cause the expansions to lag behind the 
price development. Most of the expansions are in large-scale gas power, as 
shown in Figure 3.9, since the other technologies are not able to compete. 
The cyclical pattern of prices and investments are similar to the ones 
detected by Ford in [28] and [29]. However, in our model the load also 
responds to the price and shows a similar fluctuating pattern, due to short- 
and long-term price elasticity. The price elasticity of demand contribute to 
lower the price peaks in the system.  

 
In the green scenario the price increases immediately after the CO2-tax is 

introduced in 2002 (Figure 3.8). The price also fluctuates here, but at a 
higher price level and with less regularity than in the reference scenario. The 
generation development is smoother because of a higher fraction of small-
scale renewable generation technologies. Figure 3.10 shows a substantial 
shift from investments in gas power towards the renewable technologies. 
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Wind power is given a major boost due to the reduced competitiveness of 
the gas power technology. Investments in gas power with CO2 capturing 
also occur in the green scenario, although not until close to the end of the 
simulation period. The demand shows a similar trend as in the reference 
scenario, but with lower growth, especially right after the price increase 
following the introduction of the CO2-tax. Note that the generation is always 
lower than load in both scenarios. This is due to an assumption of excess 
import capacity throughout the simulation period. 
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Figure 3.7 Simulated electricity price, generation and load in the reference scenario, 2000-
2030. 
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Figure 3.8 Simulated electricity price, generation and load in the green scenario, 2000-
2030. 



Chapter 3 

- 46 - 

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Simulation year

[T
W

h/
ye

ar
] 

Gas

Hydro

Wind

Gas cap

 
Figure 3.9 Simulated new generation capacity for the four different technologies in the 
reference scenario, 2000-2030. 
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Figure 3.10 Simulated new generation capacity for the four different technologies in the 
green scenario, 2000-2030. 

We only show a limited number of results here, as our main focus is on the 
presentation of the system dynamics model concept and the underlying 
theory. However, by changing the input variables to the model it is possible 
to study different topics, ranging from natural effects like stochastic inflow, 
to effects from authority regulations like subsidies of certain generation 
technologies and changes in end-use taxation. System consequences of 
different investment strategies can also be examined, by modifying the 
decision rules for investments in the various technologies in the model. The 
simulation model can be a useful tool for scenario analysis of the long-term 
development of the power market. The results from such scenarios can serve 
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as input to investor’s decisions regarding investments in new power 
generation assets. Politicians and regulators, who want to enhance their 
understanding of the investment dynamics in restructured power market, can 
also use scenario results as input to their decisions regarding market design 
and investment incentives. However, in order to achieve improved decision 
making through such scenario analysis it is of high importance that decision 
makers are also involved in defining the scope and assumptions for the 
study, and also in the development of the simulation model itself. The full 
value of using system dynamics as a tool for decision support is only 
achieved by actively taking part in the aggregation of knowledge which 
takes place through the different phases of the model development. 

3.5 Extensions of the Model 
The simulation model presented in this chapter was developed in an early 
stage of the doctoral project. Later on, the original model concept has been 
extended in several directions. Vogstad et al. [33] and Maribu [34] 
introduces a finer time resolution in the model so that seasonal variations 
can be taken into account. An alternative formulation for the price formation 
in the spot market is also proposed. Furthermore, the geographical scope of 
the input data set is extended to include Sweden, Finland and Denmark in 
addition to Norway. However, the main feedback loops for capacity addition 
and demand development are still the same as in the model presented above. 
A range of scenarios for the long-term development of the power market in 
Scandinavia are examined in these analyses, with focus on economic and 
environmental consequences of different energy policy options. Vogstad et 
al. [35]  and Slungård Kristensen [36] also extend the scope of the model to 
include the interaction between a restructured electricity market and a 
possible market for tradable green certificates. The complexity of the 
feedback loops and investment dynamics in the system are further increased 
when green certificates are introduced as an incentive to increase 
investments in renewable power generation technologies. 

3.6 Chapter Summary and Concluding Remarks 
In this chapter we have presented a simulation model for long-term analysis 
of the power market. The model is based on the field of system dynamics. It 
simulates the development of supply and demand in a competitive power 
market, where the electricity price is the main feedback signal for new 
investments in the system. In the model we have tried to include the main 
causal relationships that give rise to the long-term investment dynamics in 
the power system. Less attention is paid to detailed representation of short-
term operation of the system. The dynamic simulation model can serve as a 
tool for learning and decision support for participants in the power market 
who want to adapt quickly to the changing conditions caused by the recent 
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trend towards liberalisation and competition. The strength of the modelling 
approach lies in its ability to dynamically simulate feedback systems where 
decisions are decentralised and not necessarily based on perfect foresight 
and rational expectations. Scenarios which resemble real world decision 
making can therefore be analysed.  

 
The model is well suited for scenario planning. The results from the 

Norwegian case study show that the model is able to capture at least parts of 
the long-term dynamics that is likely to occur on both the supply and 
demand side of the power market. We see that cycles of power plant 
constructions can easily occur in competitive power markets. This has also 
been pointed out in previous studies. Not surprisingly, the results also show 
that regulatory intervention in the market, e.g. in terms of taxation and 
permitting policies, can substantially change the choice of new power 
generation technologies. The changes in investment patterns also change the 
price dynamics in the system.  

 
A system dynamics model is mainly a tool for improving decision makers’ 

qualitative understanding about a complex problem. Increased insight will, 
in turn, result in better decision making. However, improved knowledge can 
only to a limited extent be achieved by studying the results from the 
simulation model. In order to obtain the best results from using system 
dynamics for planning purposes, decision makers should be involved in all 
the stages of the model development. 

 
As we have seen, the investment decision rules that are applied in the 

model in this chapter are of a static and rather simplistic nature. In the 
following chapters we will focus on how decision makers can optimise 
investments in a competitive power market, where they are faced with 
increased levels of uncertainty. However, we still use the optimal 
investment strategies to simulate the system over a period of time, in order 
to gain insight in the long-term dynamics of investments and prices in the 
power system. 



- 49 - 

Chapter 4 OPTIMAL INVESTMENTS 
IN POWER GENERATION 
UNDER UNCERTAINTY 

In this chapter we develop a stochastic optimisation model for investments 
in new power generation capacity under uncertainty. The model builds upon 
real options theory, which has been developed over the last two decades in 
order to improve how uncertainty can be taken into account in economic 
evaluations of investment projects. The real options theory is outlined in the 
beginning of the chapter, with focus on its relevance and applicability for 
investment planning in a restructured power system. We also discuss the 
main uncertain factors that will influence the future price of electricity, and 
how these short- and long-term uncertainties influence optimal investment 
decisions. The decision support model in this chapter calculates optimal 
investment strategies for a decentralised investor in the power system. When 
developing the model we first assume that the investor has an exclusive 
permission to construct a new power plant. Under this assumption we 
develop the mathematical framework of the optimisation model, which is 
based on stochastic dynamic programming. More realistic assumptions are 
added to the model, by also representing the investment decisions of other 
participants in the system. In the illustrative examples we use the model to 
identify at which load and price levels it is optimal to invest in a new gas 
power plant in Norway. The analysis is repeated for different assumptions 
about regulatory incentives for investments. We also study the resulting 
effect on capacity and energy balances in the power system. Differences in 
the optimal investment decisions from using stochastic versus deterministic, 
and dynamic versus static project evaluations are also illustrated.  

 
The investment model in this chapter was first presented at the 12th 

Intelligent Systems Applications to Power Systems Conference, ISAP2003 
(Botterud et al. [37]). The paper from the conference proceedings is 
included in Appendix D. 



Chapter 4 

- 50 - 

4.1 Investment Theory and Real Options 

4.1.1 Shortcomings of Discounted Cash Flow and the Static NPV Rule 
According to traditional finance theory the net present value (NPV) is the 
best indicator and decision-aid for companies evaluating a new investment 
project. The static form of the NPV rule states that a project should be 
undertaken as long as the sum of discounted cash flows from the project (i.e. 
the NPV) is positive, while projects with a negative NPV should be rejected. 
However, it has become apparent that the traditional static discounted cash 
flow techniques have severe shortcomings (Dixit and Pindyck [38], Brennan 
and Trigeorigis [39]). First of all, the static assessment only compares the 
two alternatives of making an investment today or not to invest at all. In 
most cases the decision maker has the choice of deferring an investment, 
and then to invest later in the event of favourable investment conditions. In 
addition, the result from applying the static NPV rule is heavily dependent 
on the discount rate applied in the calculation. At the same time we know 
that estimating an appropriate discount factor in many situations can be very 
difficult. A new direction within investment theory has emerged in the 
1980s and 1990s, which is trying to mitigate the shortcomings of the static 
discounted cash flow techniques. The new approach, frequently referred to 
as real options theory, is based on a dynamic analysis of investment 
projects. In the real options theory a new invest project is regarded as an 
option, and it is recognised that the value of such a real option comes from 
three sources (Ross [40]). Firstly, the static NPV given that the project is 
undertaken immediately. Secondly, the value of the embedded options built 
into the project. These embedded option values arise because of uncertain 
future changes in the value of the project itself. Thirdly, the option value 
which is caused by possible future movements in capital costs (i.e. the 
interest rate).  

 
The valuation of an investment opportunity can change considerably if the 

option values are taken into account in addition to the static NPV in project 
evaluations. In order to do so a stochastic dynamic approach is needed. A 
deterministic project assessment based on discounted cash flows can also 
give results that are better than the static NPV rule, as long as the dynamic 
aspect is included. Deterministic dynamic methods15 is frequently applied 
                                                
15 A good theoretical overview of expansion planning methods for the power industry in 
Norway is given by Faanes in [41]. Dynamic programming (DP) is here considered as the 
best method to determine the optimal choice of timing, size and technology for new 
investments in generation capacity. Deterministic DP models find an optimal investment plan 
for the entire planning horizon and do not take the effect of uncertainty into account in the 
optimisation. Stochastic DP models, on the other hand, find the optimal first stage 
investment decision, while future decisions are dependent on how uncertainties unfold. 
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within the electrical power industry, and can be used to find optimal 
investment plans under certainty. The main advantage of the real options 
theory compared to these deterministic approaches is its improved capability 
of dealing with risk, uncertainty, and flexibility in the timing of investment 
projects. Dixit and Pindyck [38], Brennan and Trigeorgis [39] and Ross [40] 
give comprehensive descriptions of the real options theory. An overview of 
the main principles is given in the sections below.  

4.1.2 Real Options, Managerial Flexibility and Irreversible Decisions 
An investment project can have several embedded properties that can be 
viewed as options. The most common options for investment projects are 
listed by Trigeorgis [42]: the option to defer an investment, the time to build 
option (for staged investments), the option to alter operating scale, the 
option to abandon a project, the option to switch inputs or outputs from a 
process and different forms of growth options (e.g. investments in R&D). In 
some projects there are interacting effects between several of these options. 
In addition to the options embedded in the project itself there is always an 
uncertainty in future cost of capital. This will also contribute to the value of 
the option to invest in a new project. The total value of an investment option 
before it is exercised, i.e. the value of a project before an investment 
decision is made, is illustrated in Figure 4.1 and can be expressed as: 

  

( ( )

) ( )

Total value of Static NPV

investment option Value of options from managerial flexibility

+
=  

 

 
Figure 4.1 Illustration of the real options principle. The figure shows the expected NPV of 
the investment option, F(V), and the NPV of the project itself, V-I, as functions of the net 
cash flow from the project, V, which evolves as a stochastic process. I is the investment 
cost, while V* is the threshold where immediate investment becomes optimal. 
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According to the static NPV criterion, it is optimal to invest as soon as the 
NPV of the project turns positive, i.e. when the net cash flow, V, exceeds the 
investment cost, I, in Figure 4.1. However, V is uncertain and can change in 
the future. By investing immediately the investor is unable to take 
advantage of favourable changes in V. The value of having the option to 
invest, i.e. F(V) in Figure 4.1, is therefore higher than the NPV of investing 
immediately, also after the project’s NPV turns positive. Therefore, 
according to the real options theory the optimal investment criterion does 
not occur until the cash flow from the project reaches V*. At this point the 
value of investing immediately becomes more profitable than the expected 
value of holding the option to invest and thereby be able to wait for more 
information about the future to unfold.  

 
When calculating the total value of an investment opportunity the total net 

cash flow, V, can be represented directly as an exogenous stochastic 
variable, as illustrated in Figure 4.1. In more detailed models the value of 
the investment project is usually modelled as a function of one or more 
underlying variables, e.g. product demand or price if the project is a factory. 
Note that both growth and uncertainty in the net cash flow can contribute to 
the option value from managerial flexibility. A deterministic dynamic model 
can capture the part of the option value, which is due to the growth in 
underlying variables. However, a stochastic dynamic model is required to 
also take into account the option value that arises from uncertainty. 

 
In the example illustrated in Figure 4.1 the option value from active 

management is positive, and therefore contribute to the postponement of the 
investment decision. In certain cases the option value might also be 
negative, resulting in earlier investments than what the static assessment 
suggests. This is typically the case when an investment decision develops 
future growth opportunities (growth options).  

 
The part of the total project value that arises from the option value of 

managerial flexibility is highly dependent on the irreversibility of the 
investment decision. In some cases, as for instance investment in a new 
office building or a fleet of transportation vehicles, the investment can be at 
least partially reversed by selling off the assets to other investors. In the case 
of reversible investments the additional option value is low and the static 
NPV criterion would still be appropriate. However, large-scale capital 
investments are very often firm or industry specific and the investment 
decision is therefore to a large extent irreversible due to the projects’ limited 
value for other investors. Irreversibility increases the option value of and 
investment opportunity, and therefore also the importance of taking this into 
account in the project appraisal. New power plants would usually fall into 
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the irreversible category of investment opportunities, as the possibility of 
selling a newly constructed power plant without substantial financial losses 
is very low. Another important factor that influences the value of an 
investment opportunity is the duration of the investment option. A power 
generation company might receive approval from the authorities for 
constructing a new plant, but the permit is usually valid only for a limited 
number of years. In this situation, the option value of the investment 
opportunity would be large in the beginning of the period, while it would 
gradually decrease as the expiration of the permission approaches. 

4.1.3 The Use of Dynamic Programming in Real Option Valuation 
Dynamic programming (DP) is one of the optimisation techniques that is 
appropriate for solving investment problems in accordance with the real 
options theory. DP is a general optimisation technique with applications 
within a range of different areas, including power system planning. The 
central idea in DP is Bellman’s principle of optimality which states that 
[38]: “An optimal policy has the property that, whatever the initial action, 
the remaining choices constitute an optimal policy with the respect to the 
subproblem starting at the state that results from the initial actions”. A DP 
optimisation problem is therefore often solved stepwise, starting either from 
the beginning or the end of the period of consideration. The theory can also 
be extended to infinite horizon problems and continuous time. A continuous 
time version of the so called Bellman equation, as shown in (4-1), can be 
used to solve an investment optimisation problem when the underlying 
uncertainty is described by a continuous stochastic state variable. The 
equation states that under an optimal investment policy the sum of 
immediate payoff from the project and the change in the value of the 
investment option (the right-hand side of the equation), must equal the 
required risk-adjusted return on the investment project (the left-hand side of 
the equation). 

 

 
1

( , ) max ( , , ) ( )
u

F x t x u t E dF
dt

ρ π ⋅ = + 
 

 (4-1) 

where 
F(x,t) value of the investment opportunity (option) 
π(x,u,t) immediate payoff from the investment 
ρ risk-adjusted discount rate for the investment project 
x,u,t state variable, control variable (investment decision), and time 
 
The following simple example illustrates the use of the DP algorithm for 

an investment optimisation problem. A power generation company is 
considering construction of a new hydropower plant. The owners of the 
company have not taken the final investment decision yet, as they are not 
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convinced about the profitability of the new plant. The value of the power 
plant is highly dependent on the future price in the power market, and the 
problem is to decide at what price level it is optimal to build the new plant. 
For simplicity we only consider price uncertainty here, although there are a 
number of other uncertainties that also influence the profitability of the 
power plant. We assume that the uncertain electricity price can be 
represented by a state variable, P, which follows a stochastic process as 
shown in (4-2)16. We also assume that the operating costs for the 
hydropower plant can be neglected. The expected value, V(P), of the hydro 
power plant after the investment decision is taken is therefore as shown in 
(4-3), i.e. V(P) can be expressed as the price for electric power, P, times a 
constant factor, k. 

 
 dP P dt P dzα σ= ⋅ ⋅ + ⋅ ⋅  (4-2) 
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where 
α, σ expected growth rate and variance rate for price, P 
dz Stochastic Brownian motion process, i.e. dz ~ N(0,dt) 
af, ic, T capacity factor, installed capacity, and lifetime for the new 

power plant 
ρ risk-adjusted discount rate for the new power plant 
 
We know that the price has to reach a certain level, P*, before it becomes 

optimal to invest. At this price level the value of the investment option 
equals the NPV of the project (i.e. V(P*)-I). Now consider the price interval 
below P*. In this price interval we know that it is not optimal to invest. 
Hence, there is no immediate payoff from the project and the general 
Bellman equation in (4-1) can be restated as ρFdt = E(dF). By using Ito’s 
lemma17 to expand dF, combined with (4-2) for the underlying stochastic 
state variable, P, a differential equation for the optimal investment problem 
is derived, as shown in (4-4). This is a second-order homogenous 
                                                
16 This stochastic process is called geometric Brownian motion, and is frequently used within 
finance theory to describe the behaviour of financial assets. The famous Black and Scholes 
equations [43] for option pricing are for instance based on the assumption that the 
underlying asset follows a geometric Brownian motion. 
17 Ito’s lemma is often used in financial mathematics when the stochastic state variable is an 
Ito process, i.e. a stochastic processes of the form ( , ) ( , )dx a x t dt b x t dz= + . The lemma 

states that the differential of a function, F(x,t), is 
2

2
2

1

2
( )

F F F
dF dt dx dx

t x x

∂ ∂ ∂= + +
∂ ∂ ∂

 (ref. [38]).  
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differential equation and it is solved by standard techniques. The value of 
the investment option, F(P), and the optimal price level, P*, is then 
determined by specifying a set of boundary conditions18 and ruling out 
infeasible solutions. The results are shown in (4-5) and (4-6). 
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Having developed the closed-form solutions in (4-5) and (4-6) we can now 

investigate the optimal investment for a set of assumptions (Table 4.1). 
First, we assume that there is no expected growth in the price (α = 0). The 
resulting values of the investment option for three different levels of 
uncertainty are shown in Figure 4.2. When there is no uncertainty about 
future price (σ = 0) there is no option value in waiting. The value of holding 
the investment option is therefore zero until the price reaches the level 
where the NPV of the project becomes positive. In this case the optimal 
investment price, P*, is the same as in the static NPV analysis. The figure 
also shows that uncertainty in the price adds value to the investment option, 
so that optimal investments are triggered at higher prices. When a growth 
rate is added to the price process (α = 0.03), we see a similar picture (Figure 
4.3). However, the optimal investment prices are higher, and now there is a 
value in having the investment opportunity, even if there is no uncertainty. 
Hence, both the underlying growth and uncertainty in the price give rise to 
the value of the investment option. 

 
Table 4.1 Input parameters for investment in a new hydropower plant. 

Parameter Description Value Unit 
ic Installed capacity new plant 100 MW 
af Capacity factor 4000 hours/year 
I Inv. cost (@10000NOK/kW) 1000 MNOK 
T Life time 30 years 
ρ Risk adjusted discount rate 0.08 per year 
α Expected price growth rate 0 or 0.03 per year 
σ Standard deviation in price 0, 0.1 or 0.2 per year 

 

                                                
18 Three boundary conditions are used: F(0) = 0, F(P*) = V(P*) – I, and F’(P*) = V’(P*). See 
[38], Chapter 5 and 6, for a more detailed description of similar investment problems. 
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Figure 4.2 The value of the investment option, F(P), with no expected growth in price (α = 
0), and three levels of  price uncertainty (σ = 0, σ = 0.1 and σ = 0.2). The net present value 
of the project, V(P)-I, is also shown. 
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Figure 4.3 The value of the investment option, F(P), with expected growth in price (α = 
0.3) and three levels of price uncertainty (σ = 0, σ = 0.1 and σ = 0.2). The net present value 
of the project, V(P)-I, is also shown.  

The example presented above serves to illustrate how real options theory 
can be applied to identify optimal investment thresholds as a function of the 
underlying state variable(s). The central idea in real options analysis is 
illustrated, namely that the optimal investment criterion can deviate 
considerably from what the static NPV analysis suggests. Our problem 
formulation is very simplistic, as we have assumed that the value of the 
hydropower plant is a function of one state variable only, the electricity 
price. At the same time the price is modelled as a simple stochastic process. 
This is of course a very aggregate representation of the electricity price, as 
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the price in reality is a function of more fundamental variables, such as 
electricity demand, fuel prices, installed generation capacity and the rules 
and regulations of the electricity market. The electricity market also 
contains a high degree of seasonality, which should be taken into 
consideration. Later in the chapter we will return to the problem and 
develop a more fundamental model for optimal investments in power 
generation assets, where a wider range of uncertainties can be taken into 
account. Another problem with the DP approach presented above is that it 
requires the specification of an explicit risk-adjusted discount rate, ρ, for the 
investment project. As already mentioned, it can be difficult to derive an 
appropriate discount rate for the project under consideration. An alternative 
method has therefore evolved for valuation of real options, which better 
takes into account the risk and return characteristics for the investment 
project. This alternative method, called contingent claims analysis, is briefly 
outlined in the following section. 

4.1.4 Contingent Claims Analysis and Risk-Neutral Valuation 
The use of contingent claims analysis (CCA) for evaluation of investment 
projects is closely linked to financial option pricing, which was first 
developed by Black and Scholes [43], and Merton [44] in the early 1970s. 
The idea behind CCA is to create an artificial portfolio of assets that are 
traded in the financial market, so that the portfolio exactly replicates the 
uncertain net cash flow from the investment project. A riskless position can 
then be obtained by holding the option to invest in the project and an 
offsetting short position in the replicating portfolio. The return on the 
riskless position must equal the risk-free interest rate, in order to avoid 
arbitrage opportunities. By setting the return on the riskless portfolio equal 
to the risk-free interest rate, and expanding the change in the value of the 
investment option (dF) using Ito’s lemma, a differential equation can be 
derived for the problem. The value of the replicating portfolio can be 
assessed relative to the total financial market portfolio, for instance by using 
the Capital Asset Pricing Model (CAPM) model19. Consequently, the 
investment project is evaluated according to the total financial market’s 
pricing of risk, and the market value of the project is maximised. The value 
of the investment opportunity can now be expressed without using a specific 
risk-adjusted interest rate for the project. Instead, the risk-free interest rate 
and the market’s required rate of return for the replicating portfolio are used 
to evaluate the investment option. For the investment example presented 

                                                
19 The Capital Asset Pricing Model (CAPM) is described by Brealey and Myers in [45]. The 
CAPM provides an expression which relates the expected return on an asset, rx, to its 
systematic risk, β. CAPM states that: rx  = rf + β*(rm - rf), where rf is the risk-free interest rate, 
rm is the return on the total financial market portfolio and β = σxm/σm

2 is a measure for the 
asset’s systematic (non-diversifiable) risk. 
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above, the differential equation resulting from CCA valuation is shown in 
(4-7). We see that (4-7) bears close resemblance to (4-4). The only 
differences are that the risk-free interest rate, r, is used in place of the risk-
adjusted discount rate, ρ, and the growth rate of the price process, α, is 
replaced by the risk-free interest rate adjusted for dividend, r-δ. 
Furthermore, by comparing (4-4) and (4-7) we see that the investment 
option could be evaluated by discounting with the risk-free interest rate and 
letting the price follow a stochastic process with an alternative growth rate 
(r-δ), as shown in (4-8). This illustrates the principle of risk-neutral 
valuation20, which gives the same result as the no-arbitrage arguments 
behind CCA.  
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where 
r  the risk-free interest rate 
δ dividend (or convenience yield) on the replicating portfolio 

(i.e. δ = rp - α, where rp is the expected return on the 
replicating portfolio according to CAPM) 

 
The use of CCA for valuation of real assets relies on the assumption that a 

portfolio can be established in the financial markets, which exactly 
replicates the uncertainty in the underlying stochastic processes. This is an 
appropriate assumption if the state variable is the price of a commodity that 
is traded in futures markets with high liquidity. However, unless one can 
assume the existence of complete financial markets, there would sometimes 
be situations where the underlying state variables have characteristics that 
are not similar to any portfolio of traded financial assets. In this case the use 
of CCA would not yield correct results. However, the DP algorithm with an 
exogenous discount rate would still apply.  

4.1.5 Limitations of the Continuous DP and CCA Approaches 
If the investment problem is specified in an appropriate way, it is possible to 
find closed-form solutions for the differential equation resulting from either 
the dynamic programming or the contingent claims analysis approaches. 
However, in order to find an analytical solution to the investment problem, 
the state variables have to follow a specific group of stochastic processes. 
Ito and Poisson processes are the only stochastic processes that are suitable 
                                                
20 In the risk neutral valuation paradigm one uses risk-neutral stochastic processes to 
describe the dynamics of the underlying state variables, and discounts all cash flows at a 
risk-free rate. See Hull [46] for a description of risk neutral valuation and derivatives pricing. 
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for solving the problem analytically, according to Dixit and Pindyck [38]. In 
most applications from finance theory it is assumed that the underlying 
stochastic variable(s) can be described either by geometric Brownian motion 
or by a mean-reverting process (both belong to the group of Ito processes). 
The number of state variables is also normally limited to one or two in real 
options applications from finance theory, as analytical solutions rarely exist 
for two or more state variables. To release the strong assumptions for 
finding analytical solutions, it is sometimes better to formulate the 
investment problem in discrete time and also discretise the state variables. 
This allows for a more flexible, detailed and therefore more realistic 
problem formulation. With discrete representation of time it is also possible 
to represent delays, for instance due to the construction time for a project. 
The disadvantage is of course that it is not possible to derive closed-form 
solutions that can be applied directly for decision support. One of the more 
advanced models from finance theory with application in the energy 
industry is proposed by Schwartz and Smith [47]. They develop a stochastic 
model based on two underlying Ito processes to analyse short-term 
variations and long-term dynamics in oil prices. Kalman filtering is applied 
to estimate the parameters in the continuous time model from price data of 
oil futures contracts. Potential use of the model is illustrated with an 
example where they use real options theory to evaluate two different oil 
production projects. In order to find a solution to the real options problem 
they have to formulate it using discrete time SDP. The two underlying state 
variables are also discretised. This serves to illustrate that only under very 
strict assumptions can an analytical solution be derived when there is more 
than one state variable in the model. In addition, the difficulty of estimating 
model parameters also increases rapidly with the complexity of the model.  

4.1.6 Real Options and Competitive Markets 
In the above presentation of real options theory we assume that the company 
has an exclusive opportunity to investment in a new project. In competitive 
markets the option to invest is usually not limited to one firm only. 
Consequently, there is always a risk concerned with postponing an 
investment project, since it gives other investors the possibility to enter the 
market. It is likely that the possibility of investments from other firms will 
influence on the optimal investment criteria. The direct validity of the above 
analysis is therefore limited to a monopoly situation.  

 
So far we have not taken into account the effect on the future price and 

project value from other participants’ investments, unless we can assume 
that other participants’ actions are already included in the underlying 
stochastic processes. In the real options literature there are proposals for 
how this can be done. Dixit and Pindyck [38] start with an investment 
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model similar to the one in the hydropower example above, and assume that 
other participants in the market will invest if the price rises sufficiently high. 
Now there is no longer an option value in postponing the investment, since 
this would result in competitors investing instead. In a fully competitive and 
open market, with homogenous participants where everyone faces the same 
uncertainties, there will be one single optimal investment price for all 
participants. Since there is no option value in postponing a project, 
investments would be made as soon as the net value of the project exceeds 
the investment cost. This optimal price puts an upper barrier on the price 
distribution, so that the expected value of the project is lowered. This is 
illustrated in Figure 4.4. With this simple investment model it turns out that 
the optimal investment price under competition is the same as in the 
monopoly case. However, now it is not the option value in the investment 
that raises the optimal price level above the original static NPV criterion. 
Instead it is the lowered expected value of the project itself, due to the 
barrier in the price distribution created by the competitors, which give a 
higher optimal investment price. 

 

 
Figure 4.4 The value of an investment option and the corresponding investment project as 
function of price in monopoly (m) and perfect competition (c). The optimal investment 
price, P*, is the same in both cases.  Source [38]. 

Smit and Ankum [48] include game-theoretic considerations into the 
valuation of investment opportunities. The net operating cash flow from a 
project is defined as the sum of the opportunity cost of capital and the 
expected economic rent. Economic rents occur when a company has a 
competitive advantage and are naturally permanent in a monopoly situation. 
However, the rent will only exist temporarily in competitive markets 
characterised by costless entry and exit of competitors. This is represented 
with exponentially declining economic rents. A duopoly situation is also 
studied, where two firms are operating so that the behaviour of each 
competitor directly influences the value of the project. In this situation an 
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early investment can contribute to pre-empt the competitor. A two-step 
binomial decision-tree is constructed to evaluate an investment option under 
duopoly. The Nash equilibrium from game theory is applied to identify 
investment strategies and corresponding project and option values at each 
decision node under both symmetric and asymmetric market power. In this 
situation the values depend on the strategy of the other firm, particularly if 
an early investment pre-empts the competitor or results in a competitive 
advantage. The degree of market power for the leading firm and the amount 
of information shared between the firms influence on the optimal 
investment. The level of cooperation between the firms is also important 
when the investment decision is modelled as a game.  

 
Dixit and Pindyck [38] also model a duopoly within their continuous time 

framework. A dynamic game with two players is formulated, and the value 
of an investment project and the corresponding optimal investment criterion 
is derived for both. The result depends on whether the firm is a leader, i.e. 
the firm which invests first, or a follower. The investment threshold is lower 
for the leader, because the option value of waiting is limited due to the risk 
of the other participant investing first instead. However, the option values 
and investment thresholds naturally depend on whether the roles as leader 
and follower are preassigned or not. 

4.1.7 Literature Survey: Real Options in Power System Planning 
The restructuring of the electric power industry has increased the 
uncertainty concerning the profits from investments in new power 
generation. However, the electric utilities were also faced with many of the 
same uncertainties under traditional regulation, although the focus was on 
cost minimisation and not profit maximisation. Models for optimisation of 
investments under uncertainty were therefore also applied within the 
regulated industry. Hobbs [3] gives a good overview of optimisation 
methods for electric utility resource planning under cost minimisation, i.e. 
the selection of power generation and energy efficiency resources to meet 
customer demands for electricity. According to Hobbs most utility planners 
use deterministic methods, such as deterministic equivalents and scenario 
analysis, to assess different expansion plans under uncertainty. More 
advanced methods for stochastic optimisation under uncertainty are rarely 
used, due to the complexity and also the computational requirement 
involved. Still, there are a few proposals for how to better deal with 
uncertainty and flexibility for the regulated industry. Mo et al. [16] use 
stochastic dynamic programming to identify optimal investment strategies 
to meet future heat demand. Heat demand and oil price are represented as 
stochastic variables using Markov chains. The effect of different 
construction times for the candidate technologies is also represented in the 
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model. The model minimises the expected sum of investment and operating 
costs within a DP framework, and therefore takes into account flexibility 
and timing in a similar way as the real options theory. Gorenstin et al. [49] 
also applies stochastic optimisation over long-term uncertainties for 
expansion planning. Load growth is represented as a binomial tree, and 
decomposition techniques are used to couple the operation and investment 
sub problems. A minimax regret criterion is used in the objective function, 
as it is argued that the minimisation of expected cost is not adequate for 
“low frequency” phenomena such as the load level in expanding systems.  

 
Gardner [50] looks at the value of flexibility for different technologies 

under uncertain demand. He defines a technology’s flexibility benefit as the 
difference between its value under certainty and uncertainty. A set of 
features that are important for a technology’s flexibility benefit are 
identified, such as lead time, life time and the ratio between investment and 
operating costs. A decision tree, where the uncertain demand can follow 
three different growth paths between each time period, is used to calculate 
the flexibility benefit. A case study from Canada shows that capital-
intensive long lead-time technologies, such as nuclear generation, have a 
smaller flexibility benefit than low capital cost, short lead-time 
technologies. Gardner and Rogers [51] analyse the electric utility’s problem 
of finding the optimal mix of technologies to meet uncertain demand in a 
specific target year. The traditional approach is to use technology screening 
curves combined with the load duration curve to select supply technologies 
in merit order (i.e. according to increasing operating cost). These traditional 
screening curves can be directly applied when the technologies are 
described by operating and capital cost only. However, Gardner and Rogers 
use a two-stage stochastic program to show that the lead time is also an 
important technology parameter that could change the optimal selection of 
technologies when future demand is uncertain. A numerical example shows 
that some short lead time technologies screened out by standard screening 
methods may enter the optimal solution when differences in lead time are 
considered, while some long lead time technologies may leave. Teisberg 
[52] uses option valuation directly to look at investment in a power plant for 
a regulated utility. This approach does not take into consideration technical 
constraints in the power system, but focuses on the effect of different 
regulatory incentives. The value of the plant is modelled as a stochastic 
process21 where the growth rate is adjusted for different regulative regimes 
for cost allowance. The effect of construction time and sequential cost 

                                                
21 Teisberg uses a geometric Brownian motion similar to (4-8) to describe the value of the 
project and applies contingent claims analysis to find the value of the investment option. 
Different regulating regimes are represented by letting δ be a function of the stochastic 
variable.  
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outlays are represented and analysed using a simplified binomial option 
model, as the corresponding differential equation does not have a closed-
form solution in this case. 

 
New models for evaluation of investments in generation facilities under 

competitive regulation have naturally emerged over the last few years. Some 
of these approaches are linked more directly to the options theory from 
finance. Closed-form analytical solutions for the option value of generation 
assets, assuming that electricity and fuel prices follow either a geometric 
Brownian motion or a mean-reverting process are derived by Deng et al. 
[53]. Futures contracts for electricity and fuel are used to establish a risk-
free portfolio based on the principles for risk-neutral valuation. The same 
logic is used to obtain the value of locational spread options for valuation of 
transmission assets. Dobbe et al. [54] also uses futures based replication for 
real options analysis of new generation assets. Forward prices for gas and 
electricity are used for the valuation of a new gas power plant in Norway, 
under different regulatory regimes for CO2 emissions. Oren [55] looks at 
demand side management, and suggests that customers’ flexibility to curtail 
load can be considered as a real option and evaluated accordingly. The value 
of a “double-call” option22 is derived based on the principles of the Black-
Scholes formulas, with the underlying assumption that the forward price of 
electricity can be described as a geometric Brownian motion. A discrete 
binomial lattice model for real option valuation of two inter-related 
generation units is derived by Min and Wang [56], again assuming that the 
value of the projects evolve over time according to geometric Brownian 
motions. The model is used to evaluate capacity expansion and reduction. 
Venetsanos et al. [57] compares the use of discounted cash flow and real 
option evaluation of investments in wind power plants. The benefits of 
modularity and short lead-time under load growth uncertainty are taken into 
consideration by adjusting the expected investment cost, and the value of 
the investment option is calculated using the standard Black-Scholes 
formulas. The results show that the benefits from modularity and short lead-
time can be substantial for wind power projects, but the option valuation 
still tend to encourage postponement of investment due to the value of 
waiting for future uncertainties to unfold. Short-term operational constraints 
are added to the real option valuation of generation assets by Tseng and 
Barz [58]. A combination of forward moving Monte Carlo simulation and 
backward dynamic programming is used to find a more realistic short-term 

                                                
22 A “double-call” option is defined as a call option with one strike price if executed before 
delivery and another strike price if executed at delivery. It is shown that a forward contract 
bundled with an appropriate double-call option provides a “perfect hedge” for customers that 
can curtail load in response to high spot prices. The curtailment loss is assumed to be lower 
if the decision is made with sufficient lead time. 
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value of generation assets. Here it is assumed that electricity and fuel prices 
follow lognormal mean-reverting processes corrected for hourly patters over 
the week. It is shown that failure to consider physical unit commitment 
constraints may significantly overvalue a power plant. 

 
The literature survey shows that the stochastic planning models for the 

regulated industry tried to include the main technical constraints in the 
power system. However, the objective was to identify optimal strategies to 
meet future load growth, usually in terms of minimising cost, so that the 
price dynamics in the electricity market was of less concern. The more 
recent planning models recognise that it is the uncertain future price, and not 
the load growth by it itself, that triggers new investments in the power 
system. Still, in most of the models it is assumed that the electricity price, or 
the value of a new investment, can be described by fairly simple stochastic 
Ito processes. The advantage is of course that these processes usually can be 
dealt with analytically. However, when it comes to representing the price 
dynamics in the current and future power markets, which is a function of 
both technical constraints and market regulations, the assumptions behind 
these option pricing calculations are probably to simplistic. Our aim is still 
to use the principles behind the dynamic real option valuation to analyse 
investments under uncertainty in new generation assets. By developing a 
model framework that is capable of including more fundamental modelling 
of the price dynamics in the power market, we are better equipped for 
analysing the long-term consequences of power market restructuring.  

4.2 Uncertainties and Real Options in Restructured Power 
Systems 

After the introduction to real options theory we now look more directly into 
the conditions in the restructured electric power sector. As we have seen, 
future uncertainties give rise to the option value of an investment 
opportunity. Therefore, we first give an overview of the most important 
uncertainties that an investor in a new power generation facility is facing, 
and how these uncertainties can be represented mathematically. A 
differentiation is made between long- and short-term uncertainties. It is the 
long-term uncertainties that are most important for real options valuation, 
because they are correlated from year to year and therefore contribute to the 
option value of an investment opportunity. However, the short-term 
uncertainties can also play a role for the investment decision, particularly if 
the investor is risk-averse and sensitive to fluctuations in income from year 
to year. These uncertainties are also important when looking at the system 
consequences, for instance in terms of price stability and system reliability, 
following from optimal investment behaviour. 
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4.2.1 Long-Term Uncertainties and the Value of an Investment Option  
From the real options theory presented above we know that long-term 
uncertainties give rise to the option value of an investment opportunity. The 
most important fundamental uncertainties for investments in new power 
generation facilities are listed below. These long-term uncertainties can 
influence the profitability of a project, either directly as an uncertain cost 
element or indirectly through the market price of electricity, or sometimes in 
both ways.  

 
- Future electricity demand is a major uncertainty that is very important 

also in the restructured power market, as demand naturally is a major price 
driver in the system. Total demand over the year as well as peak demand is 
changing with time and influence the price and profitability of new 
investments. Hence, there could be a value in postponing an investment 
decision to await more information. There are different underlying factors, 
such as growth in population and economy, which in turn cause changes in 
electricity demand. However, in a stochastic investment optimisation model 
it would lead to far to model demand in great detail, due to computational 
complexity. 

 
- Changes in fuel prices can influence directly the operating costs of a new 

investment if it is a thermal unit. It also affects the operating costs of 
existing units and therefore the price level in the electricity market. 
Historical data show that the prices of petroleum products tend to return to 
an equilibrium level in the long run [38]. The value of postponing an 
investment to wait for lower fuel prices might therefore be limited if the 
level of mean reversion is high. 

 
- Climate is another factor that is uncertain in a long-term perspective. 

Climate changes can result in higher or lower demand than expected, and it 
can also influence the availability of energy sources such as hydropower. 
Although there are several forecasts available for long-term climate changes 
the randomness is still high, so that there might be a value in waiting, for 
instance to see if and how the inflow to a prospective hydro reservoir 
changes. 

 
- Investment costs are also to an extent uncertain. This is particularly the 

case for emerging technologies such as solar panels, wind mills and other 
renewable technologies where cost reductions are likely, but still uncertain. 
The uncertainty about future currency rates might also make an impact on 
the actual investment cost, and in such situations it should be taken into 
account in the project appraisal. 
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- Uncertain changes in capital costs, due to future variations in the interest 
rates, can also contribute to the value of a real option to invest in a new 
generation plant.  

 
For the investor there are also other long-term uncertainties, which are not 

really stochastic elements, but rather results of the decisions taken by other 
participants in the power system. These decisions also contribute to the 
value of the investment opportunity, and for the investor they can 
sometimes appear as random. Therefore, in certain situations it would make 
sense to model them as stochastic variables. Such exogenous decisions 
could be: 

 
- Transmission constraints influence the electricity price. The prices in 

deficit areas tend to be higher than in surplus areas, if locational pricing is 
used. However, this can change if new transmission lines are built. Even if 
transmission and distribution is still under regulation, long-term plans for 
investments in new gridlines are rarely present. If investors in new 
generation are exposed to risks concerning future network constraints and 
their impact on the price of electricity at the location of the new plant, an 
option value of postponing investment decisions will arise.  

 
- In a newly liberalised electricity system the market design and system 

regulations are likely to change several times before a stable long-term 
solution settles. The profitability of an investment in a specific technology 
can be highly dependent on the prevailing market design. For instance, the 
mechanisms that are being used for the provision of short-term ancillary 
services and long-term system adequacy will affect generator income. Direct 
economic incentives, in terms of taxes and subsidies, are also important 
factors that can be crucial for the viability of different technological 
alternatives. When there is substantial uncertainty about some of these 
factors it makes sense to postpone investment decisions until more certain 
information about future regulations is available. 

 
- The system’s capacity balance and electricity price is dependent on the 

change in system load and on the investor’s own investment decisions. 
However, investments in new generation from other participants in the 
market also contribute to improve the capacity balance and lower the price. 
These investments could be considered as random variables and thereby 
treated in a similar way as other long-term uncertainties. In a competitive 
industry it is probably a better approach to assume that these investments 
are linked to the price level in the system, and that investments from others 
are being made if sufficiently high prices are reached. The last approach is 
taken in the model presented later in this chapter. Decisions to retire 
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capacity are partly given by the vintage of the existing plants in the system, 
but also by the market conditions. The random element is even lower for 
plant decommissions, and they could be treated either as exogenous 
deterministic inputs or in a similar way as capacity additions.  

 
The list of long-term uncertainties could have been made longer. Although 

the qualitative interpretation of the real options theory applies to most of 
these uncertainties, it is only possible to take a limited number of them into 
account in a mathematical model. A decision maker that wants to quantify 
the value of a real option would therefore have to select the uncertainties 
that are considered as most important, and then use a stochastic description 
of them in the optimisation model. The effect of the remaining uncertainties 
will have to be assessed through qualitative judgements or scenario analysis.  

 
In this thesis we propose using a discrete investment model, in order to 

accommodate more details in the problem formulation than what would be 
possible with a continuous model. If more than one stochastic variable is 
added to the problem, the correlations between the variables have to be 
taken into account. In a discrete model this can be done by defining states 
that are combinations of the underlying stochastic variables and assign 
appropriate state transition probabilities. However, a consequence is that the 
size of the state space grows exponentially, so that the computation time 
increases very quickly with the number of stochastic state variables. The fast 
growing size of the problem is therefore the main analytical challenge with a 
discrete model.  

  
In the process of selecting appropriate stochastic variables for the problem 

one must also consider how to best describe the underlying uncertainty in 
mathematical terms. From the standard real options models we know that 
the fairly simple Ito processes are the ones which are best suited for finding 
analytical solutions. When applying stochastic dynamic programming in 
discrete time the stochastic variables must have Markov properties. 
However, this is still more flexible than the typical Brownian and mean-
reverting continuous time stochastic processes, whose stochastic behaviour 
is strictly described by the normal distribution. Figure 4.5 shows a binomial 
tree for stochastic changes in load.  There are no constraints on the transition 
probabilities, other than the Markov property, i.e. the probabilities at each 
time step are independent of earlier state transitions23. Hence, no assumption 
of normality is required. Another advantage of using a discrete time 

                                                
23 This assumption could also be relaxed by extending the state space, so that it includes 
the states for more than one step ahead in time. This is equivalent to adding additional 
stochastic variables to the model, and the computational burden therefore increases 
accordingly (i.e. exponentially). 
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optimisation is that the transition probabilities do not need to be defined 
exogenously. They can be functions of other states in the system, such as 
capacity balance or electricity price. When modelling electric load one 
could for instance include price elasticity of demand by adjusting the 
transition probabilities for load according to the electricity price. In this way 
the stochastic process can be an endogenous part of the optimisation 
problem.  

 
For the uncertainties that result from decisions made by other participants 

in the power system, the possible outcomes (or states) are sometimes very 
limited. In such situations the required state space expansion is much 
smaller, and the increase in computational burden is therefore less severe. 
Figure 4.6 shows how an economic incentive, in terms of an uncertain CO2-
tax, could be represented in a discrete model. 

 

 
Figure 4.5 Illustration of discrete binomial representation of load level, lk. pup and pdn are 
transition probabilities. 

 

 
Figure 4.6 Illustration of how an uncertain introduction of a future CO2-tax could be 
represented as a stochastic variable with two possible outcomes (0 and ctax). ptax is the 
probability that a CO2-tax is introduced after time step kr. 
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4.2.2 Short-Term Uncertainties 
In this thesis we define short-term uncertainties as stochastic elements that 
are not correlated from year to year. Hence, the short-term uncertainties can 
affect the profits for a power plant from season to season and year to year. 
However, since investments in generation capacity have a long life-time 
(20-40 years), the positive and negative effects from short-term uncertainties 
on profits should level out in the long run. Consequently, there is no value 
in waiting for more information about these uncertainties. The most 
important short-term uncertainties for the generation expansion problem in a 
system with a high amount of renewable resources are factors like 
precipitation and wind. Incidental outages in the system are also important 
in the short-run, as well as deviations in load which again could be caused 
by unexpected temperature conditions.  

 
Although the short-term uncertainties do not contribute to the option value 

of an investment opportunity, it can still be advantageous to represent the 
most important of them in an expansion model. The reason is that the 
operating profits for a power plant, and therefore the expected value of an 
investment project, will depend on the distribution of short-term 
uncertainties. With the presence of a futures market the investor can hedge 
his investment against price fluctuations caused by the short-term 
uncertainties, by selling the power in the futures market instead of the spot 
market. If there is no risk premium in the futures market the investor would 
then earn the expected spot price. Another reason for including the short-
term uncertainties in the model is that it gives us the opportunity to study 
system consequences of optimal investments in the system. From a 
reliability point of view the system will be at its most critical state under 
certain realisations of the short-term uncertainties. 

4.3 A Stochastic Dynamic Model for Optimal Investments  
In this section we describe a stochastic dynamic optimisation model for 
optimal investments in new generation assets in a deregulated power 
market. The main purpose of the model is to analyse the optimal investment 
timing for an investor who has the license to construct a new power plant. 
Although the model only considers one technology at a time, we can 
compare different technological alternatives by changing the input data for 
the new technology. In addition to analyse optimal timing and technology 
choice, we also want to use the model to study the effect on the power 
system if investors behave according to the model’s results.  
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The optimisation model builds on general stochastic dynamic 
programming theory and could be applied to power systems with various 
physical characteristics. Still, the market description and representation of 
short-term uncertainties have been chosen in order to fit the conditions in 
Scandinavia, where hydropower makes up a large share of the existing 
capacity. As discussed in Chapter 2 stochastic dynamic programming has 
also been used for generation planning within the regulated industry (Mo et 
al. [16]). However, the investor’s objective is now to maximise the sum of 
expected profits over the planning horizon, and the profits are a function of 
the prices in the electricity market. Therefore, we need to pay particular 
attention to how the prices are represented. We include the influence of both 
short- and long-term uncertainties on the electricity price. The inclusion of 
the price dynamics adds a new level of complexity compared to the cost 
minimisation problem for the regulated industry. Another important issue, 
which can substantially influence the investment decisions, is the investor’s 
risk preference. These topics are further discussed in this section as the 
model concept is presented. 

4.3.1 Main Assumptions in the Model 
The model builds on a set of simplifying assumptions. The most important 
assumptions are listed below. 

 
- The investor is assumed to have a permit to construct a new plant which 

does not expire. It is the value of this permit (which can be regarded as an 
investment opportunity) that we want to calculate and compare to the value 
of owning the project itself. 

 
- The investor’s objective is to maximise the expected profits from new 

investments. Income is earned by selling power into the spot market for 
electricity. Additional income could also come from investment incentives, 
such as subsidies or capacity payments.  

 
- The investor’s risk preference is represented by using a risk-adjusted 

discount rate. 
 
- The investor does not take into account the possible negative price effect 

on existing generation assets when new investments are considered. Hence, 
the investor acts as a new entrant to the market and does not exercise any 
market power, neither in investment decisions nor in operating strategy.   

 
- Two different assumptions about the market conditions can be 

represented in the model: 1) the investor has an exclusive right to invest in 
the system (monopoly situation, but the investor still acts as a new entrant). 
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2) investments from competitors are triggered when the electricity price 
exceeds a certain threshold. 

 
- Load is the only long-term stochastic variable represented in the model. 

The effect of other long-term uncertainties will therefore only be considered 
in quantitative terms. Furthermore, we assume that there is a constant 
relation between peak load and average load over the year. 

 
- Investment costs are adjusted according to the length of the planning 

period. Furthermore, it is assumed that the investment cost is spread out 
evenly over the construction period, so that the cash flow can be represented 
by one single outlay half way into the construction period. 

 
- New technologies are assumed to have the ability to switch off their 

production whenever the spot price is below the variable operating cost. 
Hence, unit commitment constraints are disregarded.  

 
- Investment decisions can be made once a year, i.e. the time resolution of 

the optimisation model is one year.  
 
- No decommissioning of existing capacity within the planning horizon. 
 
The assumptions in the model are further discussed in the outline of the 

model below. 

4.3.2 Mathematical Description of the Investment Problem 
The overall problem for an investor considering investing in a new 
generation plant can be stated as a stochastic dynamic optimisation problem 
over a planning horizon of T years, as shown in (4-9)-(4-13). The investor’s 
objective is to maximise the sum of discounted profits over the planning 
horizon. We use a one year time resolution and assume that investments can 
only take place at the beginning of each year. Furthermore, we adjust the 
investment costs according to the length of the planning period, so that the 
termination payoff, gT in (4-12), is simply the expected profit in the last 
period under the condition that no new investment is made. In the basic 
formulation we assume that the investor has an exclusive right to invest in 
new power generation. How to represent the effect of other participant’s 
investment decisions is discussed in section 4.3.7. 
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where 

0 0 0( , )J x l  max. expected total profits over  
planning period at initial states 

[MNOK] 

( , , , )k k k k sg x l u ω  expected net profit function, time step k [MNOK/ 
year] 

( , , )T T T sg x l ω  termination payoff, i.e. expected net 
profit in period T 

[MNOK/ 
year] 

kx  investor’s total new installed capacity 
(state variable) 

[MW] 

kl  average load level (state variable) [MW] 

ku  new capacity (decision/control variable) [MW] 

sω  short-term uncertainties  

,l kω  stochastic change in load level   
 r risk adjusted discount rate  
lt construction lead time  

, , , ,s lx l u ω ωΩ  discrete feasible sets for x, l, u, ωs, ωl  

 
The investor’s new installed capacity (xk) and average load over the year 

(lk) are the two state variables in this dynamic optimisation problem. In the 
state transition for new installed capacity we take into account that there is a 
construction delay (4-10). This is done by adding construction states for 
installed capacity (Figure 4.7). However, in order to avoid too much 
increase in the state space we assume that new investment decisions can not 
be taken in these construction states. Hence, the investor can never have 
more than one new plant under construction at the same time.  

 

 
Figure 4.7 Representation of construction delay in the investment model. The black circles 
are decision states, while the white circles are construction states. All state transitions take 
one year. X1 and X2 are discrete feasible levels of new installed capacity.  
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The initial values of the state variables are specified by the model user and 
should be set equal to the current conditions in the system, if the aim is to 
assess an investment project for the near future. The model will indicate 
whether or not it is optimal to undertake an investment today. However, 
since one of the state variables is stochastic, the model can not calculate 
optimal timing for future investments, as the optimal investment strategy 
depends on the realisation of the stochastic variable. Still, by varying the 
initial values of the state variables one can identify state variable threshold 
levels, for which it becomes optimal to investment. This is illustrated when 
we present results from case studies in section 4.4.  

 
The short- and long-term uncertainties differ in respect to how they 

influence the optimal investment decision, as outlined above. Load growth 
is the only long-term uncertainty that is included in the formulation in (4-9)-
(4-13). The load growth is modelled as a binomial Markov tree (see Figure 
4.5). One could easily extend the model to also include other long-term 
uncertainties. Change in fuel prices is another important uncertainty that 
could be treated in a similar way as the load growth by adding an additional 
state variable. However, as mentioned above one should consider mean 
reverting probabilities to better represent the stochastic character of the fuel 
prices. The other category of long-term uncertainties may be revealed at a 
certain time in the future, and can be modelled with only two outcomes, as 
shown in Figure 4.6. Regulatory risks, such as the possible introduction of a 
CO2-tax or a capacity payment, are examples of such risks. Other decisions 
taken outside the model boundary, such as a possible decision to increase 
transmission capacity to surrounding areas, would also fall into this 
category. The increase in the discrete state space by adding this category of 
uncertainties is much lower since there are maximum two possible states in 
each time step. All the long-term uncertainties have to be represented as 
Markov trees in order to apply the SDP formulation.  

 
The short-term uncertainties are represented with one aggregate variable 

in the model. If the investors are sensitive to short-term fluctuations in 
income, the short-term risk might influence the investment strategy, as 
different technologies are exposed to different levels of short-term risks. 
However, the market design has an important impact on the effect of short-
term uncertainties. Futures or forward markets makes it possible to fix the 
electricity price ahead of delivery, and can therefore reduce the short-term 
risk exposure considerably. In our model we maximise the sum of expected 
net profits over the planning horizon. The short-term uncertainties (ωs) only 
have an effect on the net expected profit within the periods (gk), while the 
long-term uncertainties (ωl) influence the state transitions. The short- and 
long-term uncertainties are assumed to be uncorrelated. 
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Since the long-term uncertainty in load is represented as a discrete Markov 
tree, and the annual expected profits are additive we can solve the 
investment problem using stochastic dynamic programming. We use a 
backward SDP algorithm with discrete time and states, as described by 
Bertsekas in [59], to find a solution to the problem. (4-14) shows the 
Bellman equation for the investment problem. 
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The net expected profit function in time step k (gk) is shown in (4-15). It 

consists of the discounted sum of profits from energy sales in the electricity 
market and income from a possible capacity payment (Πenergy,k and 
Πcapacity,k), minus the cost of investment (Cinv,k). The income from energy 
sales depends on the short-term stochastic variable ωs, so we therefore have 
to take the expectation over ωs. The other two components are treated in a 
deterministic way for each combination of state variables. 
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A further description of the three parts in the net profit function in (4-15) 

is given in the sections below. 

4.3.3 Profits from Energy Sales in the Electricity Spot Market 
A good representation of the price for electricity is important in order to 
achieve reasonable results in the market based model. There are several 
price models available that simulates the electricity spot price, including 
bottom-up production cost based models24, bid-based stochastic models25 
and many others. In theory, any of these models could be used to represent 
the price in each combination of states in our optimisation model. However, 
computational efficiency is very important since we have to calculate the 
price for all combinations of states. Therefore, we use an aggregate and 
                                                
24 The EMPS model was originally developed as a hydropower production planning model 
for the regulated Scandinavian power system. It is still the most used model for price 
forecasting in the restructured Scandinavian power market. The EMPS model is described 
by Haugstad and Rismark in [60]. 
25 Skantze and Ilic [21] develops a bid-based stochastic model for the electricity spot price, 
where load and supply are modelled as stochastic processes. 
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simplified description of the electricity spot market. The model still captures 
some of the main causal relations in the spot market for electricity, such as: 

 
- The relation between available generation capacity and load level on the 

one hand compared to the electricity price and its volatility on the other. 
- The relation between short term uncertainties, such as availability of 

hydropower, and electricity price. 
 
We assume that the average electricity price over the year, Pav, is a 

function of the load factor LF, i.e. the fraction of average load to average 
power generation over the year. However, in systems with high amounts of 
renewable resources, the average power generation will vary extensively 
from year to year. The availability of thermal resources can also vary, due to 
maintenance and unplanned outages. Thus, we represent the initial average 
power generation in the system with a discrete probability distribution, 
described by the short-term uncertainty, ωs. Consequently, we also end up 
with a discrete probability distribution for the load factor, LF(xk,lk,ωs), and 
for the average price over the year, Pav(LF). The relationship between ωs, 
LF and Pav is illustrated in Figure 4.8. We also assume that there is a 
functional relationship between the average price and the volatility in the 
spot price. The volatility is usually higher in years with high prices, since 
the system is operating closer to its capacity constraints. Hence, the standard 
deviation in spot price, σs(Pav), is an increasing function of average price. 
The functions Pav(LF) and σs(Pav), as well as the probability distribution for 
ωs are to a high degree dependent on the existing conditions in the system, 
such as the total initial installed capacity (xtot_init). The parameters describing 
the functions can be estimated from historical data or by simulations with 
more detailed price models where new investments can also be included. 

 

 
Figure 4.8 Illustration of the average price over the year, Pav, as a function of load factor, 
LF. LF is a function of the state variables xk and lk (which are assumed constant here), and 
of the short-term uncertainty, ωs. ωs,1, ωs,2 and ωs,3 represent high, medium and low 
availability of initial installed power generation. 
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By combining the estimates of average prices and volatilities in the spot 
market for one combination of state variables, we end up with a number of 
different spot price distributions over the year. The lognormal distribution is 
chosen to represent the spot price distribution over the year, due to its non-
negativity and its asymmetric shape that can partially capture the 
occurrences of high peak-load prices in years when the load factor is high. 
The spot price, Ps,i, is modelled as shown in (4-16), where i refers to the 
discrete value of the short-term stochastic variable ωs,i. 

 
 , , , ,( , ) ~ log ( ( , ), ( ))s i k k av i k k s i av iP x l N P x l Pσ  (4-16) 

 
Figure 4.9 shows an illustration of probability distributions for the spot 

price for one combination of state variables. If an investment in a new 
generation plant is made, the load factors in Figure 4.8 would shift towards 
the left, so that the average prices over the year would decrease accordingly. 
Consequently, the spot price distributions in Figure 4.9 would also shift 
towards lower prices. 
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Figure 4.9 Probability distribution functions for spot price with three different realisations 
of the short-term stochastic variable ωs. 

Having developed the formulas for the electricity spot price, it is 
straightforward to calculate the profit from energy sales in the spot market. 
We assume that the new technology has the flexibility to easily stop the 
generation when the spot price is below operating costs. Short-term unit 
commitment constraints are ignored.  (4-17) expresses the resulting profit 
formula for one realisation of the short-term uncertainty, ωs,i , while (4-18) 
shows the expected profit over all realisations at time step k. 
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where   
af expected availability of the new technology  
VC variable costs for the new technology [NOK/MWh] 

,
( )

s iPf p  continuous probability distribution for Ps,i  

( )
s

sp
ω

ωΩ  discrete probability distribution for ωs  

s
nω  number of possible realisations of ωs  

 
The probability distributions for the spot price, and therefore also the 

expected profits from energy sales, are completely determined by the state 
variables (xk and lk), the short term uncertainty ωs and initial parameters. 
Hence, the profits can be calculated for all combinations of states prior to 
the stochastic dynamic programming algorithm. 

4.3.4 Profits from Capacity Payment 
The introduction of a capacity payment is one possible regulatory market 
intervention that could be used as a means of encouraging earlier 
investments in new power generation capacity. By including a capacity 
payment in the model we can study the resulting effect on the optimal 
investment strategy. We represent a capacity payment by assuming that a 
regulatory body, e.g. the system operator, determines a capacity payment 
(CP) which is a function of the expected peak load (lmax) within the year and 
the maximum available capacity (xmax) in the system. This is illustrated in 
Figure 4.10. The capacity price is only being paid in years when the 
capacity factor, i.e. the ratio of available capacity to peak load, is below a 
certain threshold (CFlimit). We assume that the payment is settled once a 
year, and that it increases as the capacity factor decreases, so that an 
incentive to invest in more capacity is given when the capacity balance is 
low. Note that the capacity payment for a new plant is not known when an 
investment decision is made, since the load growth is stochastic. The annual 
profits from the capacity payment are therefore uncertain, just like the 
profits from energy sales in the electricity spot market. This is in contrast to 
a direct investment subsidy, which would be known at the time of the 
investment decision. The mathematical description of the capacity payment 
and the corresponding profits to the owner of new generation capacity is 
shown in (4-19) and (4-20). 
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Figure 4.10 Illustration of how a capacity payment is represented in the investment 
optimisation model. 
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 , ( , ) ( , )capacity k k k k k kx l af x CP x lΠ = ⋅ ⋅  (4-20) 
 

where 
( , )k kCP x l  annual capacity payment [NOK/MW] 

( )
( , )

( )
max k

k k
max k

x x
CF x l

l l
=  system capacity factor  

_( )max k max init kx x x af x= + ⋅  max available capacity  [MW] 

,( ) ( )max k init k l maxl l l l c= + ⋅  peak load in the system  [MW] 

c1, c2 constants defining a linear 
relationship between CP and CF 

 

cl,max constant ratio between max and 
average system load  

 

4.3.5 Investment Cost 
The representation of the investment cost is closely linked to the objective 
function in (4-9) and the corresponding termination payoff in (4-12). The 
cost of investment is adjusted according to the proportion of the new plant’s 
lifetime that is within the remaining part of the planning horizon. The 
discount rate is used for the adjustment, as shown in the last part of (4-21). 
The resulting adjusted investment cost corresponds to representing the 
investment cost with a fixed annuity for all time steps in the planning 
period. Note that we also adjust the investment cost according to the new 
technology’s construction time (lt), by assuming that the total investment 
payment is made half way into the construction period. This is why the 
adjusted investment cost is discounted with lt/2 in the first part of (4-21). 
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where 

,inv kC  adjusted investment cost at time step k [NOK] 
CFIk unit investment cost at time step k [NOK/MW] 
lt construction time for the new plant [years] 
nt lifetime for the new plant [years] 

4.3.6 The Investor’s Risk Preference and Appropriate Discount Rates 
The optimal investment strategy depends on the investor’s risk preference. 
From the theoretical outline above we know that in real options theory the 
estimation of the correct interest rate can be bypassed by making the 
stochastic processes in the model risk-neutral, and then use the risk-free 
interest rate for discounting instead. As we have a fundamental model of 
price with underlying long-term uncertainty in load growth, we can not 
assume that a replicating portfolio can be established from the existing 
market of financial assets. The use of risk-neutral valuation in our model is 
therefore difficult to justify. However, we could assume that there exists a 
liquid long-term futures market without any risk premium. The expected 
output from a new plant throughout its entire lifetime could then be sold in 
the long-term market as soon as an investment decision is made. Hence, it 
would be possible to obtain a risk-free position by deciding to construct a 
new plant and at the same time fix the price for future power generation in 
the futures market26. In this situation it would make sense to discount the 
project with the risk-free interest rate. However, long-term markets with 
high liquidity rarely exist in liberalised electricity markets. It is therefore 
likely that investors would have to pay a risk premium27 if the output is sold 
in contracts with very long maturity. The majority of investors would 
probably choose to sell most of the power generation in shorter-term 
markets, and therefore expose themselves to fluctuations in the future spot 
price for electricity. We therefore find it more appropriate to use a constant 
risk-adjusted discount rate in the dynamic investment model.   

                                                
26 In a standard futures market this statement only applies as long as there is no uncertainty 
about the future generation from the plant. For investments in thermal base load techn-
ologies this is a reasonable assumption. However, for renewable technologies with high 
variability in generation one would also need to hedge variations in output (volume risk). 
27 A discussion of the risk premium in futures markets for electricity is provided in Appendix 
A. An empirical analysis of Nord Pool’s futures market is also presented. The analysis 
shows that on average there has been a negative risk premium in the long-term market, i.e. 
futures prices have on average been above the realised spot prices in the period of delivery. 
However, Nord Pool’s futures market only has a time horizon of up to 3-4 years into the 
future, so it is not possible to hedge investments in new generation assets there.  
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With a constant discount rate we implicitly assume that investor’s 
assessment of the project’s risk level is independent of future realisations of 
the state variables. This would not be the case unless we can assume that the 
investor is risk neutral. A possible better approach would be to incorporate 
risk preferences in terms of maximising the investor’s expected utility 
instead of the expected profits, and then use the risk-free interest rate for 
discounting. By representing the investor’s utility function explicitly we 
would obtain a more consistent evaluation of the variability in future 
profits28. However, a problem arises when we want to determine the shape 
of the investor’s utility function, as most decision makers would have a very 
hard time expressing their risk preferences in terms of a utility function. 
Despite this problem we consider an explicit representation of the investor’s 
utility function as a possible future extension of the model concept 
presented here.  

4.3.7 Representation of Other Investors in the System 
So far we have assumed that there is only one investor in the system and 
that the prices in the electricity market are functions of the long-term 
uncertainties and the investor’s investment decisions only. This represents a 
monopoly situation. However, in a competitive electricity market the prices 
will also be influenced by actions from other companies in the same market. 
The electricity prices are likely to decrease, also when other participants 
invest in new power plants. This will affect the profitability of new 
investments in two ways. Firstly, the option value of postponing the 
investment decision will be reduced, as postponing the decision could result 
in other participants entering the market prior to the investor. Secondly, the 
upside of the future profit distribution will be lowered, since investments 
from other participants also contribute to bringing the prices down. The two 
effects change the optimal investment decision in opposite directions. 
Which effect is stronger depends on the characteristics of the price model 
and also on the entry price level for other investors.  

 
The effects from other investors on the optimal investment decision can be 

represented by assuming that investments from others are triggered as soon 
as the average spot price exceeds an exogenously defined entry level. This 
representation is shown in (4-22)-(4-24). The investments from other 
participants add to the total amount of new installed capacity in the system, 
and thereby reduce both the prices in the spot market and the capacity 
payment. Notice that we assume that there is no construction delays for the 

                                                
28 An example of a discrete stochastic dynamic optimisation model that uses utility instead of 
profits in the objective function is described by Mo et al. in [61]. This is an integrated risk 
management tool for hydropower producers, and is used for combined optimisation of 
production planning and contract hedging in long-term futures markets. 
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investments from others, and that they are not modelled as separate state 
variables. With this representation of other investments the entry price level 
in reality becomes an upper limit on the average price in the system. The 
entry price level for other investors should be based on expectations about 
the required price for other participants to invest in the market. In a fully 
competitive market where all participants have access to the same 
technologies, the entry price should be the same for all investors. 
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where 
xk’ updated level of new installed capacity after 

investment from others 
[MW] 

vcap new installed capacity of other participants [MW] 

sP  average spot price [NOK/MWh] 

Ps,entry entry price level for other investors [NOK/MWh] 
 
The representation of other investors that is outlined above is of course a 

very simple one. However, it still captures important effects on the value of 
the investment option and of the project itself. It is similar to the approach 
taken by Dixit and Pindyck [38] to model a fully competitive market (see 
Figure 4.4). In order to model a market with several decision makers with 
separate objective functions one would have to develop an agent-based 
model, where different investors are represented with separate state 
variables for installed capacity. However, most applications of agent based 
modelling in electricity markets so far have been concerned with modelling 
repetitive bidding strategies in the spot market (see e.g. Visudhipan [13]). A 
challenge arises when applying agent-based techniques to the investment 
problem, since the frequency of such large-scale investment decisions is 
very low. It will therefore be difficult to specify adaptive investment 
strategies, and also to use historical data to calibrate and test the model. 
Game theory is another possible tool for developing investment strategies 
with multiple investors in the system. The stochastic dynamic investment 
model presented here is limited to include the effect of how a simple and 
aggregate representation of other investors affects the investment decision 
for one single decision maker. However, the application of game theory in 
combination with the stochastic dynamic optimisation framework presented 
here is an interesting area for future research.  
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4.4 Illustrative Examples 
Potential applications of the investment model are illustrated in this section, 
where we use the model to analyse a gas power investment project that is 
similar to projects currently under consideration in the Norwegian power 
system. The first part of the analysis is concerned with identifying optimal 
investment criteria for an investor with permission to construct a new gas 
power plant. We also analyse how certain investment incentives can change 
the optimal criteria. Then we look into potential consequences for the power 
system if the market participants make their investment decisions according 
to the model’s recommendations. We also use the model to examine to what 
extent an investor benefits from using stochastic dynamic optimisation, as 
opposed to other modelling approaches for investment planning. 

 
The optimisation model allows us to analyse the investment problem along 

some of the different analytical dimensions discussed in section 2.3. In the 
analysis we focus on the two dimensions illustrated in Figure 4.11. 
Although the model is primarily developed for full stochastic dynamic 
analysis, it can also be used to analyse the problem from a static and 
deterministic perspective. The model finds both the static and dynamic 
solution in the same optimisation run, since it always calculates the 
expected value of investing immediately (i.e. static view) and compares it to 
the expected value of postponing the investment (i.e. dynamic view). Load 
growth is represented as a long-term uncertainty in the model. The effect of 
using deterministic compared to stochastic representations can be analysed 
by running the model with different input values for standard deviation in 
load growth. Note that short-term uncertainties are treated identically, i.e. on 
an expected value basis, in all the four combinations in Figure 4.11. 

 

 
Figure 4.11 Two important analytical dimensions in investment planning. Solutions for all 
four combinations can be extracted from the stochastic dynamic model. The indices (a, b, c, 
d) will be referred to as decision rules when results from the model are presented. 
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The first parts of this section focus on the investor’s optimal investment 
criteria. A number of results can be derived based on the optimal first period 
decision. However, in order to better assess the long-term dynamics of 
prices and investments, we develop a simulator which simulates investments 
in the system for a number of years.  The simulator is also used to estimate 
the investor’s improved decision making from using stochastic dynamic 
optimisation. Monte Carlo simulations, where investment decisions are 
based on the different decision rules in Figure 4.11 are used for this purpose.  

4.4.1 General Input Data 
We use the model to look at a gas power project which is relevant in the 
Norwegian power system. Therefore, we have estimated parameters in the 
model based on historical data for Norway. Table 4.2 and Table 4.3 show 
key figures for load and generation of electricity in Norway in the period 
after restructuring. Table 4.4 shows corresponding input parameters to the 
model, which are used in all the 4 scenarios presented below. 

 
Table 4.2 Historical data for load in the Norwegian system. Source: Statistics Norway and 
Nord Pool. 

Average annual system load, 90-02 13210 MW 115.7 TWh/year 
Max annual system load (in 2001) 14330 MW 125.5 TWh/year 
Min annual system load (in 1990) 12090 MW 105.9 TWh/year 
Annual load growth, 90-02 142 MW 1.25 TWh/year 
Annual std. dev. in load growth, 90-02 297 MW 2.60 TWh/year 
Average ratio btw. max and average load, 95-02 1.55 
Max ratio btw. max and average load (2000) 1.64 
Min ratio btw. max and average load (2001) 1.49 
 
Table 4.3 Historical data for generation in the Norwegian system. Source: Statistics 
Norway and Nordel.     

Average generation, 1990-2002 13680 MW 119.8 TWh/year 
Max generation (2001) 16300 MW 142.8 TWh/year 
Min generation (1996) 11950 MW 104.7 TWh/year 
Max available capacity (2002) 23500 MW 

        
Table 4.4 Initial input parameters for the investment model.  

Parameter Name in model  Value 
Average initial generation  xtot_init 13500 MW 
Max initial generation xmax_init 23500 MW 
Load growth  lgrowth 140 MW 
St. dev. in load growth lstd 0 or 300 MW 
Max ratio btw. max and average load cl,max 1.6 
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The parameters in the spot price model were estimated with regression 
analysis based on historical load and price data for 1993-2002. Exponential 
functions were used to express the functional relationships between average 
spot price and load factor, Pav(LF), and between standard deviation in spot 
price and average spot price, σs(Pav). The resulting curves are shown in 
Figure 4.12 and Figure 4.13. Not surprisingly, the figures show that both of 
these relationships are increasing. The price tends to be higher when the 
capacity factor is high, and the standard deviation of price also increases 
with higher average prices. Note that we used load and generation data for 
Norway only, while the system price is the unconstrained price for the entire 
Nord Pool power exchange area. This is partly because the Nord Pool area 
has been enlarged several times in the period of analysis (1993-2002)29, and 
Norway is the only country that has been part of the power exchange area 
throughout the period. Also, Norway has more than 60 % of the hydropower 
generation and almost 70 % of the reservoir capacity in the current Nord 
Pool area. Therefore, the system price will still be very dependent on the 
availability of hydropower, and implicitly the load factor, in Norway30.  
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Figure 4.12 Estimated and real data for relationship between load factor in Norway, LF 
(i.e. load/ generation), and Nord Pool’s average system price, 1993-2002. Equation for 
estimated curve: Pav(LF) = 80.8·(20.3)^LF. Lower limit: Pav,min = 70 NOK/MWh. 

                                                
29 A short description of the historical development of Nord Pool, including data for prices, 
loads and generation is given in Appendix A. 
30 There has been extensive exchange of power between the Scandinavian countries, both 
prior to and during the stepwise restructuring of the power markets. The system price has 
therefore been influenced by the energy balance in all four countries throughout the 
reference period (1993-2002). An alternative to using the Norwegian system load in the 
calibration of the spot price model would be to use the total load in the current Nord Pool 
area instead. However, this has not been prioritized in this thesis, and is left for future work. 
Another interesting extension would be to use monthly or even weekly instead of annual 
data, in order to also capture seasonal variations in price and load. 
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Figure 4.13 Estimated and real data for relationship between standard deviation in Nord 
Pool’s system price and average system price, 1993-2002. Equation for estimated curve: 
σs(Pav) =26.6·(1.004)^Pav. 

The availability of hydropower is the most important short-term 
uncertainty in the Norwegian power system, and is the only one we take into 
account in the analysis. We use historical data for inflow from the period 
1961-1990 to estimate the probability distribution for relative availability of 
hydropower generation in the system (RHGi). The inflow data is used as 
input to the EMPS model31, which simulates total hydropower generation in 
Norway for all the 30 inflow scenarios. The results are aggregated into 5 
discrete hydropower availability levels, and the resulting probability 
distribution is shown in Table 4.5. With this representation of short-term 
uncertainties, ωs, the load factor for different realisations of ωs,i can be 
expressed as in (4-25). The load factor will in turn affect the spot price 
distributions, as described in section 4.1.3. 
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⋅ + ⋅
 (4-25) 

 
Table 4.5 Discrete probability distribution for relative availability of hydro generation 
(RHGi) in the initial Norwegian system. The values are based on simulations with the 
EMPS model, using inflow data for 1961-1990. 

Realisation, i  1 2 3 4 5 

,( )
s

s s ip
ω

ω ωΩ =  0.1 0.2 0.4 0.2 0.1 

RHGi 1.174 1.063 0.986 0.939 0.878 
 

                                                
31 The EMPS model is described by Haugstad and Rismark in [60]. 
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Although the investment project that is analysed below is similar to 
projects that are currently under consideration in the Norwegian power 
system, it is important to emphasise that the purpose of presenting these 
results is to illustrate potential use of the model. A more comprehensive job 
on input data and model calibration would be required to use the model for 
decision making in the real world. Investments and decommissioning of 
current capacity in other parts of the Nord Pool system, which would also 
affect the system price, are for instance not considered here. Transmission 
constraints at the specific site for a new plant are also disregarded in the 
analysis. However, many of these aspects could easily be incorporated into 
the model, by using more comprehensive input data and extending the scope 
and detail of the spot price model. 

4.4.2 Gas Power in Norway 
We use the model to analyse an investment in a new large-scale gas power 
plant. It is assumed that the investor has obtained permission from the 
regulators to build the plant, and wants to optimise the timing of his 
investment decision. Technical specifications for the new gas power plant 
are presented in Table 4.6. Furthermore, a planning horizon of 10 years (T = 
10 years) is used in the calculations, and we assume that the investor can 
only construct one plant within this time period, so that the state space for 
the investor’s new capacity consists of two states (0 and 800MW). Four 
different scenarios are considered as described below. 

 
Table 4.6 Technical specification for the new combined cycle gas power plant (CCGT). 

Parameter Symbol in 
model 

Value Unit 

Installed capacity uk 800 MW 
Investment costs CFIk, k =1..T  6000 NOK/MW 
O&M and fuel costs VC 110 NOK/MWh 
Average availability af 0.9  
Construction time lt 3 years 
Life time nt 30 years 
Risk-adjusted discount rate r 8 % pa 

 
Scenario 1: Base Scenario 
In the base scenario we assume that the new gas power plant’s profit is 
earned entirely from sales in the spot market for electricity. The effect of 
other investors entering the market is disregarded. In order to identify 
optimal investment thresholds we run the investment model repeatedly, 
increasing the initial load with a small interval between each run, and 
storing the expected profit from investing and waiting. Results are shown in 
Figure 4.14 and Figure 4.15. 
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Figure 4.14 Profit over planning horizon from investing now and waiting in base scenario. 
la* and lc* are average load levels for which immediate investment becomes optimal under 
deterministic static (a) and deterministic dynamic (c) optimisation. lsdv = 0. 

13500 14000 14500 15000 15500
-500

0

500

1000

1500

Average initial load [MW]

E
xp

ec
te

d 
pr

of
it 

[M
N

O
K

]

wait
invest

l
d
* l

b
* 

 
Figure 4.15 Expected profit over planning horizon from investing now and waiting in base 
scenario. lb* and ld* are average load levels for which immediate investment becomes 
optimal under stochastic static (b) and stochastic dynamic (d) optimisation. lsdv=300. 

The results for the base scenario with deterministic (lsdv = 0) and stochastic 
optimisation (lsdv = 300) are shown in Figure 4.14 and Figure 4.15 
respectively. The dotted line in Figure 4.14 shows the investor’s profit from 
investing in the new gas power plant immediately. If we use a static 
assessment of the project we know that the investor should invest as soon as 
the NPV is positive, i.e. when the average load level over the year reaches 
la*. However, by not investing the investor keeps the opportunity to invest 
open, and the value of this option is equal to the line labelled “wait” in 
Figure 4.14. If we apply a dynamic assessment of the gas power plant we 
therefore conclude that in order to achieve maximum profit the investor 
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should not invest until the average load level reaches lc*. This is when the 
profit from investing immediately exceeds the profit from postponing the 
investment. We see that even in the deterministic case there is a significant 
difference in the optimal investment criterion depending on whether a static 
or dynamic assessment is applied. The reason is that there is an underlying 
load growth in the system, which gives rise to an option value of waiting for 
higher future prices and thereby increased profits for the power plant. It is 
not optimal to invest until the profit gain from waiting for higher future 
loads and prices is exceeded by the loss from not having the gas power plant 
available as soon as possible. This is what happens at lc*. 

 
In the stochastic case we must compare the expected profit from investing 

and waiting. Figure 4.15 shows that the static investment criterion (lb*) is 
lower, while the dynamic criterion (ld*) is higher than in the deterministic 
analysis. The reason for the lower static criterion is that there is a convex 
relationship between load and profits, so that expected profits from the 
project is increased when uncertainty is added in load growth, although the 
growth rate is the same. The increased dynamic criterion is due to the 
uncertainty, which adds on to the option value of postponing the investment. 
The expected profit from waiting and investing can also be expressed as 
functions of the average initial price. The corresponding average prices for 
which investment is optimal in the stochastic case are shown in Figure 4.16. 
Average prices refer to a situation where the short-term uncertainty is 
represented by its mean value. In this analysis, where short-term 
uncertainties are based on inflow statistics, the average price refers to a year 
with average inflow to the hydro reservoirs in Norway.  
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Figure 4.16 Expected profit over planning horizon from investing now and waiting in base 
scenario. *

bP  and *
dP  are average price levels for which immediate investment becomes 

optimal under stochastic static (b) and stochastic dynamic (d) optimisation. lsdv=300. 
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Key figures for the base scenario are summarised in table Table 4.7. Note 
that with the input assumptions used in this analysis, the total unit cost for 
the new gas power plant, using annualised investment costs and taking into 
account the construction delay, adds up to 180 NOK/MWh. Not 
surprisingly, since there is load growth in the planning horizon, the static 
optimal investment prices are below the unit cost. However, the dynamic 
criteria are considerably above the unit cost, and this is due to the option 
value of postponing the investment decision. 

 
Table 4.7 Average load, price and expected profits at investment threshold under different 
analytical project appraisals (a – det/stat, b – stoch/stat, c – det/dyn  ,d – stoch/dyn). 

  a b c d   
Average load   14080 14000 14470 14560 [MW] 
Average price 176 173 192 196 [NOK/MWh] 
Expected profits 0 0 407 590 [MNOK] 

 
From Table 4.7 we see that there is a distinct difference between the 

results for static and dynamic analyses (a vs. c and b vs. d). However, the 
change in results when going from a deterministic to a stochastic analysis (a 
vs. b and c vs. d) seems to be less significant. In order to look further into 
how the uncertainty influences the results we run the model for different 
levels of standard deviation in load growth. The result is shown in Figure 
4.17. As can be seen from the graph the investment threshold increases with 
higher uncertainty, but the effect seems to level off as the standard deviation 
increases. From the graph we also see that the expected profit from 
investing in the project rises with increasing standard deviation. 

 
Figure 4.17 Expected profit from investing now and waiting as function of average load 
and standard deviation in load growth. 
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Scenario 2: Other Investors 
In scenario 2 we introduce the effect of other investor’s decisions into the 
analysis using the aggregate model representation outlined in section 4.3.7. 
We now concentrate on the stochastic analysis (i.e. decision rule b and d in 
Figure 4.11), with a standard deviation in load growth of 300 MW/year. 
First, we assume that investments from others are triggered when the 
average price exceeds 210 NOK/MWh, and that the unit size of these 
investments is 200 MW (i.e. Ps,entry = 210 NOK/MWh and vcap = 200 MW in 
(4-22)). Apparently, our investor then has a competitive advantage since we 
know from scenario 1 that it is optimal for him to invest at a lower price 
level (Table 4.7). Still, the possible entry of other investors affects the future 
expected profits of investing in the new gas power plant, and possibly also 
the investment criteria for our investor. Expected profit from investing and 
waiting when other investors are represented in the model is shown in 
Figure 4.18. 

 
By comparing Figure 4.18 and Figure 4.15 we see that as average initial 

load grows, the expected profit from the gas power project is increasing 
much less than in the basis scenario. This is because the investments from 
others effectively cap the average price in the market at 210 NOK/MWh. 
The static investment criterion (lb*) is increased due to the lower expected 
value of the gas power plant. The lower expected profit from the project also 
contribute to increase the dynamic criterion (ld*). However, at the same time 
the option value is now lower due to the possible entry of other investors. 
The lower option value has an opposite effect on the investment criterion, so 
that in total the optimal investment threshold is close to the one in the base 
scenario (ld*(scenario 1) = 14570 MW, ld*(scenario 2) = 14600 MW).  

 
To further investigate how the representation of other investors influence 

the decision, we have plotted the optimal investment threshold, ld*, and the 
investor’s expected profit, as function of the entry price level for other 
investors (Figure 4.19). We see that the investment criterion is only affected 
for rather low entry prices, as ld* first starts to increase when Ps,entry reaches 
below 220 NOK/MWh. In contrast, the expected profit is significantly 
decreased, also for higher entry prices. The lower expected profit is due to 
the increased competition, which is represented in the lower entry price for 
others investors. The expected profit in Figure 4.19 approaches zero for low 
entry prices for others. This is in accordance with the discussion in section 
4.1.6, where we showed that according to the real options theory there 
should be no expected surplus profit at the optimal investment threshold in a 
fully competitive market (Figure 4.4).  
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Figure 4.18 Expected profit over planning horizon from investing now and waiting in 
scenario 2. lb* and ld* are average initial load levels for which immediate investment 
becomes optimal under stochastic static (b) and stochastic dynamic (d) optimisation. 
lsdv=300. Ps,entry = 210 NOK/MWh. 
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Figure 4.19 Investor’s optimal investment threshold, ld*, and corresponding expected profit 
as function of other investor’s entry price level, Ps,entry. Ps,entry ∈ [185,300]. lsdv=300. 

Scenario 3: Capacity Payment 
We now extend the analysis from scenario 2 to also include the effect of 
introducing a capacity payment as an incentive for earlier investments in 
new power generation. The capacity payment is modelled as explained in 
section 4.3.4, with a constant relationship between average and maximal 
load in the system (cl,max = 1.6). First, in scenario 3a, we assume that there is 
a capacity payment in years when the capacity factor, i.e. the fraction of 
available capacity to peak load, is below 1.05 (CFlimit = 1.05). The 
magnitude of the capacity payment is a linear function of the capacity 
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factor, as shown in Figure 4.10. In order to analyse how the capacity 
payment influence the optimal investment threshold, we run the model for 
different levels of capacity payment. Figure 4.20 shows that the optimal 
investment threshold is lowered as the capacity payment is increased. This 
is what we would expect, as the total profit for the investor now is higher 
due to the additional capacity payment. However, it turns out that the 
investor’s expected profit at the optimal investment threshold also increases. 
The reason behind this observation is less intuitive, but it is due to the 
change in the expected payoff for the new plant. The expected profit 
function from investing immediately becomes steeper when the capacity 
payment is added. At the same time the capacity payment is an uncertain 
income. Together, these two factors increase the option value of postponing 
the investment. Hence, the required profit for investing also increases.  

 
Figure 4.20 Expected profit from investing and waiting as function of average load and 
different levels of capacity payment in scenario 3a. CP(CF=1) is the capacity payment 
when the capacity factor is equal to 1. CFlimit = 1.05.  lsdv=300. Ps,entry = 210 NOK/MWh. 

The effect of the capacity payment is also dependent on the capacity factor 
limit (CFlimit), at which the payment is introduced. So far we have set CFlimit 
to 1.05, which gives a rather steep capacity payment function and in turn, a 
steeper total profit function for the new plant. In scenario 3b we do the same 
analysis with CFlimit equal to 1.15 instead. In practice, this means that there 
is a higher incentive to invest, since there is a capacity payment also when 
the system is further away from a critical capacity balance. This is reflected 
in the results (Figure 4.21), which shows that the investment threshold is 
reduced quicker than in scenario 3a. At the same time the increase in 
expected profit is also lower as the level of the capacity payment is 
increased. This is because the capacity payment function is now less steep, 
so that the option value of postponing the investment is also reduced 
compared to scenario 3a. 
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Figure 4.21 Expected profit from investing and waiting as function of average load and 
different levels of capacity payment in scenario 3b. CP(CF=1) is the capacity payment 
when the capacity factor is equal to 1. CFlimit = 1.15.  lsdv=300. Ps,entry = 210 NOK/MWh. 

Scenario 4: Investment Subsidy  
A direct investment subsidy is an alternative incentive, which would also 
trigger earlier investments in new generation facilities. A subsidy is a certain 
payment to the investor, and it would increase the expected profitability 
from the new plant independent of the load in the system. In the model we 
represent an investment subsidy, simply by reducing the investment cost of 
the new plant. The effect of subsidising the gas power plant with 20 % of 
the investment cost is shown in Figure 4.22.  
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Figure 4.22 Expected profit over planning horizon from investing now and waiting, without 
(scenario 2) and with (scenario 4) 20% investment subsidy. ld*,scen2 and ld*,scen4 are average 
initial load levels for which immediate investment becomes optimal. lsdv=300. Ps,entry = 210 
NOK/MWh. 



Chapter 4 

- 94 - 

From Figure 4.22 we see that effect of the investment subsidy on the 
expected profit from investing in the project immediately is a parallel shift 
upwards, compared to the situation without a subsidy (scenario 2). The 
expected profit from waiting and thereby keeping the option to invest open 
also shifts upwards. However, the shift in the option value is not parallel, 
and for low load levels there is only a small increase. Consequently, the 
resulting optimal investment criterion is reduced with almost 500 MW, 
while the increase in expected profit at the investment threshold is only 
modestly increased. 

 
Centralised investment incentives should only be introduced if there are 

externalities present in the power market. According to economic theory, an 
externality arises if the actions of one economic agent affect the interests of 
another agent other than by affecting prices. One externality in the power 
market could for instance be that the market does not price reliability 
properly, so that the market prices alone do not provide adequate investment 
incentives. The result could be that an externality cost is imposed on the 
end-users, in terms of low reliability and too high frequency of outages32. In 
general, the use of specific investment incentives can only be justified if the 
cost of the incentives is lower than the cost of the externality. Therefore, it is 
important to design an incentive scheme that achieves the desired result with 
as low extra cost as possible. 

 
We have looked at the effect of capacity payments and direct investment 

subsidies on the optimal investment criterion. The investor’s extra profit 
from these investment incentives must be covered by some other part in the 
system. It is likely that the extra cost is transferred to the end-users through 
a system of tariffs or taxation. We can now use the stochastic dynamic 
analysis to compare the extra cost of using these two alternatives to trigger 
investments at a specific load level. Assume that the optimal investment 
level for the system (ld*,optimal) is at an average load of 14130 MW. This is 
the same level as the optimal investment criterion in scenario 4, with 20 % 
investment subsidies (ld*,scen4). The same effect on the investment threshold 
can be achieved by choosing appropriate parameters for the capacity 
payment in scenarios 3a and 3b. Table 4.8 summarises the cost of the 
investment incentive and the expected profit for the investor with the 
different incentives, also including the situation with no incentive (scenario 
2). The expected profit from sales in the spot market is calculated from 
scenario 2, and is slightly negative (-5 MNOK) at the desired optimal 
investment level. However, when the additional income from a capacity 

                                                
32 Common problems in restructured electricity markets, which could result in long-term 
imbalance between supply and demand, and thereby possible externality costs, are further 
discussed in Chapter 5. 
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payment or an investment subsidy is taken into account, it becomes optimal 
to invest in the new plant. As we can see from Table 4.8 and Figure 4.23, 
the required incentive to trigger investment is higher with a capacity 
payment (scenario 3a and 3b) than with a direct investment subsidy 
(scenario 4). The reason for this is that the capacity payment is uncertain, 
and also increasing as function of the load, and therefore gives rise to a 
higher option value of waiting than the constant investment subsidy. This is 
also why scenario 3a, with the steepest capacity payment function, gives the 
highest expected incentive cost. 

 
Although the analysis presented here is by no means sufficient to make a 

decision about whether to use capacity payments or investment subsidies in 
the case of an externality that requires investment incentives, it still shows 
some interesting consequences for the system’s cost. A more comprehensive 
assessment of the two incentives would have to include more details in the 
analysis of demand side effects. A capacity payment would for instance give 
an incentive to end-users to reduce their peak load, since the payment is a 
function of installed capacity and peak load in the system, whereas the 
constant investment subsidy does no have the same feedback to the end-
user33. Another advantage for the capacity payment, when it comes to the 
implementation of the incentives, is that it is spread out through the new 
plant’s lifetime. The investment subsidy, on the other hand, requires a huge 
capital outlay up front, and can therefore be more difficult to get public 
accept for. These are some of the factors that would have to be considered in 
an extended analysis of the different alternatives for investment incentives. 

 
Table 4.8 Investment threshold, cost of investment incentive and investor’s expected profit 
over planning horizon with no incentive (scenario 2),  capacity payment (scenario 3a and 
3b) and investment subsidy (scenario 4). Scenario 3a: CFlimit =1.05, CP(CF=1) = 386000. 
Scenario 3b: CFlimit =1.15, CP(CF=1) = 188000. Scenario 4: CFIk = 4800 NOK/MW. 

Investment threshold Cost of incentive  Expected profit Scen-
ario Average 

load 
 

[MW] 

Average 
spot price 

[NOK/ 
MWh] 

Investment 
subsidy 

 
[MNOK] 

Expected 
cap. 

payment 
[MNOK] 

In spot   
market  

 
[MNOK] 

Total 
 
 

[MNOK] 
2 14600 198 0 0 315 315 
3a 14130 178 0 947 -5 942 
3b 14130 178 0 523 -5 518 
4 14130 178 396 0 -5 391 

                                                
33 An investment subsidy could also be a function of the capacity balance in the system, in 
the same way as the proposed capacity payment. The same feedback to the end-users 
would then be achieved, but an option value of postponing the investment would also arise, 
since the future level of the investment subsidy would now be uncertain. This alternative is 
not explored further here. 



Chapter 4 

- 96 - 

13500 14000 14500 15000 15500
-500

0

500

1000

1500

2000

2500

Average initial load [MW]

E
xp

ec
te

d 
pr

of
it 

[M
N

O
K

]

wait scenario 3a
invest scenario 3a
wait scenario 3b
invest scenario 3b
wait scenario 4
invest scenario 4

l
d
*
,optimal

 
Figure 4.23 Expected profit over planning horizon from investing now and waiting, in 
scenario 3a, 3b and 4. All scenarios give the same desired investment criterion ld*,optimal. 
Scenario 3a: CFlimit =1.05, CP(CF=1) = 386000. Scenario 3b: CFlimit =1.15, CP(CF=1) = 
188000. Scenario 4: CFIk = 4800 NOK/MW. lsdv = 300. Ps,entry = 210 NOK/MWh. 

In the end it is interesting to note that the cost analysis presented here with 
the stochastic dynamic investment model, could not be carried out with a 
static model. With a static assessment all the investment decision would be 
triggered at a zero NPV. Consequently, the expected cost of the incentive 
would always be equal to the expected loss in a scenario with no incentive, 
whether a capacity payment or an investment subsidy is being introduced. 
Hence, a static analysis would not be able to differentiate the cost of the 
alternatives, since it does not take into account the difference in the value of 
postponing the investment in the two incentive scenarios. 

4.4.3 System Consequences of Optimal Investments 
An advantage of modelling physical state variables (such as installed 
capacity and load) as opposed to non-physical variables (such as the price 
directly) is that the consequences on the physical system can be analysed in 
greater detail. After having identified optimal investment criteria, we can 
now analyse the reliability of the system under various operating conditions. 
We assume that the investors in the system make their investment decisions 
according to the recommendations from the model, and that gas power is the 
most competitive technology that will be chosen ahead of other, more 
expensive, technologies. For the gas power plant, the investment decision 
has to be taken 3 years before the new plant is available online. The most 
critical situation for the energy and capacity balance in the system is in the 
last year before new capacity is added, i.e. two years after the investment 
decision is made. Table 4.9 shows the state of the system at this point in 
time if the growth in average load follows the expected trend, i.e. 140 



Optimal Investments in Power Generation under Uncertainty 

- 97 - 

MW/year. We see that without an investment incentive the capacity balance 
is negative before the new plant is available. The energy balances are also 
negative, not only with low inflow, but also in a normal inflow scenario. 
This means that we usually will have to rely on considerable amounts of 
import in order to meet the energy demand over the year, and also to meet 
the peak load in the system.  In the scenarios with investment incentives we 
see improved supply reliability, and the capacity balance is now positive. 
The energy deficits are also reduced, although still negative with normal 
precipitation. Table 4.9 also shows that the investment incentive reduces the 
average price over the year in the low inflow situation with 36 NOK/MWh.  

 
Table 4.9 Capacity balance, energy balances and average electricity price over the year in 
Norway 2 years after investment decision is taken. Normal and low inflow refers to average 
and the lowest ( 5,sω ) realisations of inflow in short-term uncertainties. 

Scenario Capacity 
balance 
[MW] 

Energy balance 
(normal inflow) 

[TWh] 

Energy balance 
(low inflow) 

[TWh] 

Average price 
(low inflow) 
[NOK/MWh] 

No incentive 
(scenario 1, 2) 

-308 -12.1 -26.5 318 

Inv. incentive 
(scenario 3, 4) 

+444 -8.0 -22.4 282 

 
We can also use the results from the model to analyse the long-term price 

and investment dynamics in the system, resulting from optimal investment 
behaviour. A simulator is therefore implemented, which uses the 
optimisation model to simulate optimal investments over time, by updating 
initial model parameters (i.e. load and installed capacity) for each simulated 
time step, as shown in Figure 4.24. We can now simulate investments in the 
system under different investment rules and market designs, and for various 
realisations of the uncertain load growth (ωl,k).  

 
Here, we look at the development of prices and investments when the 

average load grows according to its mean value (i.e. ωl,k = lgrowth = 140 
MW/year). We use an initial average load of 14100 MW, which is equal to 
the real average load in 2000. Investments in new gas power plants in the 
Norwegian system are simulated over a time period of 30 years, while 
investments in other technologies are disregarded. A constant planning 
horizon of 10 years is used in the optimisations. We assume that there are 
always participants in the power market that are willing to invest as soon as 
the conditions are favourable for new entrants. Figure 4.25 shows simulated 
investments in new capacity for scenario 2 and 4, when the stochastic 
dynamic decision rule (d) is applied. It is apparent that the investment 
subsidy in scenario 4 contributes to trigger earlier investments in the system.  
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Figure 4.24 Flow chart for simulator which uses the investment model to simulate optimal 
investment decisions (uk,opt) and corresponding profit (gk,opt) with feedback from the 
realisation of the load growth (ωl,k) for each time step k. 
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Figure 4.25 Additions of new gas power capacity in the Norwegian power system in 
scenario 2 (no investment incentive) and 4 (investment subsidy). Investment decisions are 
based on stochastic dynamic optimisation. l2000 = 14100MW, lgrowth = 140 MW/year. 

The difference in investment timing is also reflected in the prices (Figure 
4.26), with lower prices in scenario 4 due to earlier investments. An 
interesting observation in scenario 2, without investment incentives, is that 
the average price is always above the total unit cost for the new gas power 
plant, even right after a new plant becomes available. The total unit cost can 
be considered as the long-run marginal cost (LRMC) of system expansion, 
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and with a static analysis investments would be made so that prices are kept 
near or below LRMC34. However, we see that when investment decisions 
are based on stochastic dynamic optimisation, the investor’s optimal 
investment policy is to delay investments so that the average price level 
exceeds LRMC. This is the case even if we have assumed in the model that 
no market power is exercised. In scenario 4, when an investment subsidy is 
introduced, we see that the price level is brought down and fluctuates 
around LRMC. In both scenarios we see that the difference between prices 
in low and high inflow situations is reduced by time. This is due to the 
increasing proportion of gas power in the system, for which the generation 
over the year is not dependent on the short-term uncertainties in the model. 
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Figure 4.26 Simulated prices in the Norwegian power system in scenario 2 and 4, and total 
unit cost for new gas power. High, normal and low inflow refers to high, average and low 
realisations of inflow in short-term uncertainties (ωs).  

                                                
34 A more comprehensive discussion of the long-run marginal cost in power generation 
expansion planning is provided in the next chapter. 
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Table 4.10 summarises the simulated investment schedule for scenario 2 
under all four possible decision rules, and compares them to the result for 
rule d in scenario 4. We see that with static decisions for scenario 2 (i.e. 2a 
and 2b), the simulated investment schedule is very close to scenario 4. This 
means that with a static investment analysis the conclusion might be that 
there is no need for an investment incentive to keep the average prices close 
to LRMC. However, with decision rules based on dynamic optimisation, the 
investments are delayed considerably, both under deterministic (2c) and 
stochastic (2d) optimisation. When comparing decision rule 2c and 2d, we 
see that when uncertainties are taken into account, all investments are 
delayed one year if the load growth is constant at 140 MW/year. However, 
also in these simulations it turns out that the difference between static and 
dynamic investment optimisation is more significant than the difference in 
results between deterministic and stochastic optimisation. This is of course 
due to the relatively small differences in investment criteria that we have 
already seen between deterministic and stochastic dynamic optimisation. 

 
Table 4.10 Simulated capacity additions for different investment decision rules (a, b, c, d) 
in scenario 2 and for stochastic dynamic optimisation (rule d) in scenario 4. Investment 
decisions are made 3 years prior to the capacity addition, due to construction delay.  

Scenario 2 Scenario 4 Plant 
no. a b c d d 
1 2003 2004 2006 2007 2004 
2 2009 2009 2012 2013 2009 
3 2015 2015 2017 2018 2015 
4 2020 2020 2023 2024 2020 
5 2026 2026 2028 2029 2025 

 
In the end, we also look at the simulated energy balance for scenario 2 and 

4 (Figure 4.27). Not surprisingly, the energy balance is less negative in 
scenario 4, with investment subsidies. However, in both scenarios the 
Norwegian system needs to rely on imports in order to meet the total 
demand in years with average inflow. This result is due to the parameters in 
the spot price model, which are based on historic price and load data from a 
period with an energy surplus in the neighbouring countries (1993-2002). 
Consequently, since the parameters in the price model are constant 
throughout the simulation period, it will not be profitable to invest until 
parts of the import capacity is utilised. However, if the energy surplus in 
neighbouring countries is reduced, the prices would increase quicker in 
Norway and therefore also trigger earlier investments. This is a likely 
development in the future, but is not included in the results presented here. 
Still, the effect of changing import availability could easily be added into 
the investment analysis, for instance by letting the parameters in the price 
model be dependent on the time. 



Optimal Investments in Power Generation under Uncertainty 

- 101 - 

2000 2005 2010 2015 2020 2025 2030
-16

-14

-12

-10

-8

-6

-4

-2

0

Time [year]

E
ne

rg
y 

ba
la

nc
e 

[T
W

h/
ye

ar
]

Scenario 4
Scenario 2

 
Figure 4.27 Simulated energy balance for the Norwegian system in scenario 2 and 4.  

The analysis of system consequences that is provided here is of course 
very simplified, as we confine the study to the Norwegian power system and 
only look at investments in one large-scale technology. Furthermore, we 
have only simulated the assumed average realisation of the underlying load 
growth in the system. In reality, there are several decision makers, both 
inside and outside Norway, investing in various technologies, and thereby 
influencing the system’s development. At the same time the real load 
growth is stochastic. Investment patterns will therefore be less regular than 
the graphs show. Still, it is likely that several investors, particularly in 
smaller scale technologies, decide to invest at more or less the same time, 
when the conditions are advantageous. Cyclical patterns, although less 
regular, are therefore still likely to occur. This is also supported by the 
results from the multi-technology deterministic system dynamics model 
presented in Chapter 3. The effect of uncertainty on the simulated 
investment decisions is further discussed in section 4.4.4. 

4.4.4 The Investor’s Value of Using a Stochastic Dynamic Model 
So far we have used the model to look at how the inclusion of uncertainty in 
the optimisation problem contributes to change the optimal investment 
criterion, and thereby the development of the system in a long-term 
perspective for a given load growth. As we have seen, the model also 
calculates the investor’s expected profit at the beginning of the planning 
horizon, which is the objective function in the optimisation problem. In a 
real situation a prudent investor would reconsider investment alternatives 
regularly, and always use all available updated information in these 
assessments. However, the model only takes the value of the feedback from 
updated information into account when a stochastic dynamic decision rule 
(d) is applied. For the static and deterministic dynamic decision rules (a, b, 
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c) the model only calculates the expected profit from an investment strategy 
which is fixed for the entire planning horizon. The value of the feedback 
from new information to future decisions is therefore not taken into account 
in the model’s profit estimates with these decision rules.  

 
The value of using a stochastic solution method for dynamic optimisation 

problems is discussed by Mo in [62]. It is stated that the difference between 
the optimal value of the objective function for a deterministic (DP) and a 
stochastic (SDP) model applied to the same problem, is an upper limit for 
the true value of using stochastic dynamic optimisation, when information 
feedback is included. It is straightforward to use this result to calculate an 
upper bound to the value of using the SDP instead of the DP methodology 
(i.e. decision rule d instead of c). For instance, in the gas power base 
scenario the difference in the calculated value of the objective function for 
an initial load of 14100 MW is: Jtot,opt,d(linit=14100) - Jtot,opt,c(linit=14100) = 
267 - 130 = 137 MNOK. This would then be an upper bound for the value 
of using SDP instead of DP optimisation when the average initial load is 
14100MW. However, this comparison does not take into account that future 
investment decision can be based on updated information, also when the 
deterministic decision rule is applied. 

 
A more accurate comparison of the value of using the different decision 

rules, when the information feedback is included, can be carried out by 
running Monte Carlo simulations with the simulator in Figure 4.24. In order 
to do that we draw the stochastic load growth (ωl,k) from a normal 
distribution, and run the simulator repeatedly with different realisations of 
ωl,k.  The simulator can then be used to run Monte Carlo simulations in 
order to test how well the different decision rules perform, when the 
realisation of the stochastic variable is taken into account in the investment 
optimisations for each consecutive time step. 

 
The time horizon (T) in the investment optimisation problem is now set 

equal to the remaining length of the simulation period (N-k+1) in each time 
step. This is in contrast to the constant T that was used in the simulations in 
section 4.4.3. Consequently, only uncertainties within the simulation period 
are now taken into account in the optimisation. Simulated investment 
decisions are therefore not affected by uncertainty in possible profit after the 
end of the simulation period. At the same time the simulated investment cost 
is also adjusted according to the remaining length of the simulation period, 
in the same way as explained in section 4.3.5. By adjusting the investment 
cost and time horizon we can perform consistent testing of the various 
decision strategies, without having to take into account the value of the 
investment option and the power plant itself at the end of the simulation 
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period. However, this also means that the difference between the stochastic 
and deterministic investment criterion diminishes throughout the simulation 
period, as less uncertainty is considered in the investment decisions as the 
end of the simulation period comes closer. The simulated decisions do 
therefore not fully replicate real-world decisions, as investors will usually 
consider uncertainties throughout the lifetime of the investment. However, 
the simulations still give an indication of the value of using the stochastic 
dynamic investment strategy compared to the deterministic and static ones.  

 
Here we use the simulator to analyse investment decisions and profits in 

the gas power base scenario (scenario 1) only, where the effect of other 
investors are disregarded. We simulate a period of 10 years, and the investor 
is only allowed to invest once in this period. Hence, the simulator uses the 
investment model to find the optimal timing of the investment under the 
different decision rules, when the information feedback is also taken into 
account. The long-term uncertainty, ωl,k, is drawn from a normal distribution 
with mean and standard deviation of 140 MW and 300MW respectively. 
These values are also used as input to the stochastic dynamic investment 
optimisation. In the results presented below the number of Monte Carlo 
simulations is 5000, and the same set of random realisations of load growth 
are used for the different investment decision rules. 

 
First, we assume that the average load at the beginning of the simulation is 

14100 MW. This is the same as we used in the analysis of system 
consequences in section 4.4.3, and also equal to the Norwegian load in 
2000. At this initial load level both static first period decisions (a and b) turn 
out to be immediate investment, while the dynamic assessments (c and d) 
would suggest to postpone the investment (this can be seen from the 
investment criteria in Table 4.7). The distribution of simulated capacity 
additions for the different decision rules are shown in Figure 4.28. With the 
static assessments (a and b) we see that the investor would always invest in 
the first time period (k=1), so that the capacity is added to the system three 
years later (k=4), after the construction delay. For the dynamic decision 
rules (c and d) the decisions are made at different time steps, depending on 
the realisation of load growth. We see that with the stochastic decision rule 
(d) the investments tend to be postponed more than for deterministic 
decisions (c). This is due to the higher option value of waiting. The 
difference is most significant for decisions taken in the second time period. 
For the remaining periods the number of simulated investments is at the 
same level or higher for decision rule d, so that there is only a small 
difference in the number of scenarios where investments are not made at all.  
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Figure 4.28 Frequency distribution for capacity additions in the Monte Carlo simulations 
for different investment decision rules (a and b, c, d). Investment decisions are taken three 
years prior to capacity additions, because of investment delay.  linit = 14100 MW. 

The corresponding distributions of simulated total profit over the 
simulation period are shown in Figure 4.29. With the static decision rules 
we see that negative and positive profits are rather evenly distributed. This 
is because there is no flexibility in the investment strategy, so that the 
investor is equally exposed to positive and negative shifts in the underlying 
load growth. With decision rule c and d the investor postpones the 
investment decision and is therefore able to avoid investing in many of the 
scenarios where load and price grow less than expected. This is why the 
profit distributions are much more biased towards positive profits in c and d. 
The more flexible investment strategy also explains the high frequency of 
zero profit in c and d, which is due to the high number of simulations where 
no investment at all is undertaken.  

 
From Figure 4.29 we also see that the difference in profit distributions 

between c and d appears to be very small. This is due to the limited 
difference in investment criteria between SDP and DP optimisation. The 
resulting variations in simulated investments are further reduced since the 
investment opportunity is reassessed for each simulated time step based on 
the simulated realisation of load growth. The summary of results in Table 
4.11 shows that the average simulated result for decision rule c is actually 
slightly higher than for d. However, the difference between c and d seem to 
be insignificant in this scenario. When looking at the static decision rules, 
Table 4.11 confirms that the average profit is much lower, while the 
standard deviation is higher for rule a and b. Another interesting observation 
is that the expected total profit from the first period investment optimisation 
is close to the simulated result for the SDP used in rule d, while the DP 
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optimisation in rule c gives a far too low estimate of the expected profit. 
This is because the calculated total profit with DP does not take into account 
the flexibility in adjusting the investment plan according to the realisation of 
future uncertainties. 
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Figure 4.29 Frequency distribution for total profit in Monte Carlo simulations for different 
investment decision rules (a and b, c, d). linit = 14100 MW. 

Table 4.11  Summary statistics for total profits in Monte Carlo simulations with investment 
decision rules a, b, c and d. Expected total profit from first period investment optimisation 
is also shown for c and d. All numbers in MNOK. linit = 14100MW.  

 a and b c d 
Average total profit (MC simulations)  100.3 270.3 269.6 
St.dev. in total profit (MC simulations) 663.1 447.6 429.4 
First period expected profit, J0,opt - 129.6 266.7 

 
We now repeat the analysis above for a different average load level in the 

first time period, using linit = 14500 MW. With this initial load rule c and d 
give different first period decisions. The first period DP strategy in c is now 
to invest immediately, while the SDP assessment in d still finds it optimal to 
postpone the investment decision. From Figure 4.30 we see that the 
investment strategies for decision rules a, b and c are now the same, with 
immediate investment in all simulations. For decision rule d the investments 
are distributed throughout the simulation period, and there are still some 
realisations of the load growth for which no investment is undertaken. 
However, with an initial load level of 14500MW the majority of the 
investment decisions are made in the second time step for rule d, with 
corresponding capacity additions in time step 5.  
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Figure 4.30 Frequency distribution for capacity additions in the Monte Carlo simulations 
for different investment decision rules (a and b, c, d). Investment decisions are taken three 
years prior to capacity addition, due to investment delay.  linit = 14500 MW. 

The distributions of simulated total profits are now the same for decision 
rules a, b and c, since they result in identical investment schemes. From 
Figure 4.31 we see that the more flexible investment strategy for rule d is 
still able to avoid some of the outcomes with negative profit that result from 
the inflexible strategies (a, b and c), although the difference is now less 
significant than for the lower initial load level in Figure 4.29.  
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Figure 4.31 Frequency distribution for total profit in Monte Carlo simulations for different 
investment decision rules (a and b, c, d). linit = 14500  MW. 
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Table 4.12 shows that the average simulated profit for rule d is now higher 
than for the other decision rules. Hence, in this situation, where the initial 
investment optimisations give different decisions for rule c and d in the first 
time step, SDP seems to also outperform DP as a tool for investment 
decision support. However, the difference in the average simulated total 
profit is still rather small. Table 4.12 also shows that the SDP rule in d gives 
the smallest standard deviation. Most investors would look at this as an 
advantage, since it implies a lower risk. However, the reduced standard 
deviation should not be used as an indicator for the SDP model’s 
performance, since the objective function in the model formulation does not 
take the standard deviation explicitly into account. In the end, we see again 
that the expected first period total profit for the DP optimisation is lower 
than the simulated average for decision rule c. At the same time, the first 
period expected profit for SDP is still close to the average from the Monte 
Carlo simulations. 

 
Table 4.12  Summary statistics for total profits in Monte Carlo simulations with investment 
decision rules a, b, c and d. Expected total profit from first period investment optimisation 
is also shown for c and d. All numbers in MNOK. linit = 14500MW.  

 a and b c d 
Average total profit (MC simulations)  526.7 526.7 538.3 
St.dev. in total profit (MC simulations) 743.4 743.4 612.5 
First period expected profit, J0,opt - 441.0 542.4 

 
The results of the Monte Carlo simulations presented here build up under 

the conclusions from the analyses of the initial investment criteria. There is 
a substantial change in simulated investments, which causes a large increase 
in the investor’s average profit, when going from a static to a dynamic 
project appraisal. However, the increase in average profit when going from 
a deterministic dynamic to a stochastic dynamic evaluation is less 
significant. It is somewhat surprising that the SDP investment rule only 
seems to outperform the DP rule for one of the two initial load levels in the 
stochastic simulations. One possible explanation to this observation is the 
simulation procedure itself, which does not fully represent the influence of 
uncertainty on investment decisions throughout the entire simulation period. 
Another reason could be the approximations in the investment optimisation 
model, particularly the discrete binomial representation of load growth in 
the model. A more comprehensive analysis of the value of using stochastic 
optimisation could be carried out by running Monte Carlo simulations also 
for other scenarios. A different simulator, which uses an extended planning 
horizon and at the same time takes into account the value of the investor’s 
position at the end of the simulation period, could also give more insight. 
However, further investigation of this topic is left for future work. 
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4.4.5 Investments in Other Technologies 
In this chapter we have used the model to analyse new investments in only 
one technology, a combined cycle gas power plant. However, the model can 
of course also be applied to assess investments in other technologies. The 
main adjustment required is simply to change the model parameters that are 
describing the technology in question (see Table 4.6 for the list of 
parameters for the CCGT project). The specific version of the investment 
model that is presented here is probably best suited for investment analysis 
of base load technologies. However, by adding more details to the price 
model it would be possible to apply the same methodology also for medium 
and peak load technologies. The framework can also be adjusted to 
technologies which rely on energy resources with more variation in 
availability, which is typically the case for many renewable resources. For 
such technologies it is more important to take into account the correlation 
between the short-term uncertainties in the existing system and the 
availability of the technology itself. Again, this can be done by adjusting the 
price model and the way it is used in the calculation of profits.  

 
We do not go further into these issues here. The theoretical representation 

of long-term uncertainties and its influence on the optimal investment 
strategy applies to all investment problems in new generation assets. Most 
of the qualitative results that we have seen in the gas power example are 
therefore likely to be valid also for investments in other technologies, 
although technology specific variations will occur.  

4.4.6 Computational Issues 
The stochastic dynamic investment optimisation model presented in this 
chapter is implemented in Matlab. The dimension of the state space in the 
optimisation problem depends on the length of the planning period and the 
number of capacity states. The computation time is in turn dependent on the 
size of the state space. Besides, the inclusion of other investors into the 
model also increases the computation time. In the illustrative examples the 
computation time for calculating the expected income of waiting and 
investing for one load level is below 1 second in all the scenarios in section 
4.4.2 on a 1.2 GHz/256 MB RAM computer. However, running the Monte 
Carlo simulations in section 4.4.4 took several hours. 

4.5 Chapter Summary and Concluding Remarks 
In this chapter we have introduced a new stochastic dynamic model for 
optimisation of investments in power generation assets under uncertainty. 
The model builds upon real options theory, which is specifically developed 
to better take into account how uncertainty and dynamics affect optimal 
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investment decisions. Our model framework gives a better opportunity for 
analysing system consequences than the traditional real option models, since 
physical factors are directly represented as state variables in the model. The 
inclusion of physical state variables also makes it possible to capture more 
of the specific price dynamics in the power market, which is different from 
what is observed in most other commodity markets. The model optimises 
the investment strategy for an individual profit maximising investor, and can 
also take into account how the strategy is influenced by the actions of other 
participants in the market. In total, the model framework and the underlying 
theory offers a new tool, which is capable of analysing optimal strategies for 
investment in power generation assets under uncertainty. The work can 
contribute to increase the understanding of the long-term performance of 
competitive power markets under different regulations and market designs.  

 
We argue in this chapter that different growth trends and long-term 

uncertainties in the power system add to the value of an investment 
opportunity, and thereby influence the optimal timing of an investment 
decision. The stochastic dynamic optimisation model takes into account the 
expected growth and uncertainty in system load. Results from the model 
show that both factors contribute to postpone the optimal investment 
decision compared to project appraisals based on static and deterministic 
analyses. However, the change in optimal investment criterion is more 
significant when going from a static to a dynamic analysis, than the 
difference in criteria between deterministic and stochastic analysis. For the 
investor it is therefore very important to take the dynamic aspect of load 
growth into account when assessing investments in new power generation. 
Adding the uncertainty in load growth into the investment optimisation also 
contributes to increase the investor’s expected profit, but to a less extent. 
These results are confirmed by Monte Carlo simulations, where an 
investor’s total profit is simulated under different investment strategies. The 
representation of other investors in the model gives a lower expected profit 
on new investments. However, the results from the case study show that the 
optimal investment criteria are only to a very limited extent changed as 
competition from others are taken into account. 

 
The model results also illustrate that the optimal investment criteria which 

follow from stochastic dynamic optimisation do not necessarily result in a 
long-term price level equal to LRMC, which would be the conclusion from 
a static assessment. In the case study of gas power in Norway the price in 
the long run fluctuates above the LRMC in years with average precipitation 
to the hydro stations. Various investment incentives can contribute to trigger 
earlier investments if the prices in the power market do not give adequate 
investment signals. Our analysis indicates that a fixed investment subsidy 
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would achieve the desired result at a lower cost than a capacity payment. 
This is because the direct subsidy does not give rise to any additional option 
value of postponing the investment decision. However, a more detailed 
analysis of how the incentives influence the demand side in the power 
system would be needed in a comprehensive study of investment incentives. 

 
In the end it is important to emphasise that the stochastic dynamic 

investment optimisation model presented in this chapter contains a general 
framework that could be extended in several directions. The model can 
therefore serve as a starting point for more comprehensive analyses of 
investments in the power system. A more detailed description of power 
system operations could for instance be implemented. Several long-term 
uncertainties could also be taken into account, by increasing the number of 
stochastic state variables. In the next chapter we extend the model 
framework to include investments in two technologies. At the same time we 
also introduce an alternative description of the electricity market, which is 
more similar to the market representation in Chapter 3. 
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Chapter 5 OPTIMAL INVESTMENTS 
UNDER CENTRALISED 
AND DECENTRALISED 
DECISION MAKING 

In this chapter we look at optimal investment policies under centralised and 
decentralised planning. We use the same model framework for optimal 
investments under uncertainty as developed in the previous chapter. 
However, we now describe the power market in terms of a supply and 
demand curve, in order to quantify socio-economic figures such as social 
welfare, total system costs, consumer and producer surpluses under different 
planning regimes and market structures. We also introduce two technologies 
with different cost characteristics into the optimisation model. A market 
simulator is also here developed and can now be used for simulations of not 
only investments and price, but also total social welfare in different 
scenarios. The simulator bears resemblance to the system dynamics model 
in Chapter 3, and a similar market description is used in the investment 
optimisation. However, investment decisions are now based on the 
stochastic dynamic optimisation model instead of the static net present value 
assessment, so that long-term uncertainties and the flexibility of investment 
timing can be taken into account. An outline of theories for pricing of 
electricity and investments in new generation capacity, for the regulated and 
liberalised power industry, is given before the model is presented. 

5.1 Optimal Investments and the Price of Electricity 
Optimal investments in new power generation are closely related to the 
price paid by the end users for electricity. An extensive literature exists on 
pricing policies and optimal investments in new power generation for 
regulated utilities. Parts of this theory are also relevant for the restructured 
industry, although some of the underlying assumptions are obviously 
changed. A brief outline of the main theoretical directions for pricing under 
regulation is first presented. In the light of this theory we look into some of 
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the challenges facing a restructured power system, where market prices are 
supposed to give the correct investment incentives. The discussion is limited 
to the price of electricity generation, as transmission and distribution are 
still regulated monopolies in most systems. The theory presented in this 
section serves as a background for the modelling and analyses of investment 
under uncertainty that follow later in this chapter.  

5.1.1 Pricing and Investments under Regulation 
In a regulated system the price for electricity is controlled by a regulating 
authority, either directly through a specified price or indirectly through a 
limit on the profits for the utility (e.g. rate of return regulation). In both 
cases a tariff will have to be determined in order to charge the customers for 
their use of electricity. The objective under regulation is usually to obtain a 
system where the sum of benefits to all participants in the system is 
optimised. For modelling purposes this can be done by maximising the 
social welfare function in the system.  
 

A possible approach is to base the regulated tariffs on the marginal costs 
in the system. According to standard economic theory the tariffs should be 
set equal to the system’s short-run marginal costs (SRMC) to ensure short-
term economic equilibrium. In a system which is optimally dimensioned the 
long-run marginal cost (LRMC) of expanding the system would equal the 
SRMC of operating the existing system. Investments should be made in 
time to avoid that SRMC exceeds LRMC so that long-term economic 
equilibrium is maintained [2]. Prior to restructuring of the Norwegian power 
system in 1990, the parliament determined the price that Statkraft, the large 
state owned power generation company, charged for its power generation. 
This price penetrated the wholesale market for electricity and was kept close 
to LRMC for the Norwegian system (Figure 5.1). By keeping the price close 
to the LRMC the regulator ensured sufficient investments in new capacity. 

 

 
Figure 5.1 Wholesale prices in Norway before restructuring. The spot market could only be 
used after contract obligations were met, and had a relatively low turnover. Source: [2]. 
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The advantage of an annual uniform tariff based on marginal costs is that 
it is easy to implement in terms of metering and billing. However, it does 
not take into account that demand varies over the day, week and season. 
With a uniform price over the year these demand fluctuations are not in any 
way dampened by the price. The theory of peak-load pricing35 was 
developed to specifically deal with the non-storability and periodic and 
stochastic demand fluctuations for electric power. By using time-of-use 
tariffs the price elasticity of demand contributes to dampen demand 
fluctuations and thereby lower the need for investments in peaking capacity. 
The use of dynamic pricing therefore has advantageous effects for both 
consumers and the supplier of electricity. Boiteux was the first to propose 
peak-load pricing of electricity [65]. He uses a simple deterministic two-
period model with one generation technology to derive optimal pricing 
formulas during the off-peak and peak load period. The results show that the 
operating cost should be charged in the off-peak period, while the price in 
the peak load period should include the sum of operating and capital costs. 
In this way the utility recovers its capital cost expenditure during peak load 
hours, while capacity is at its limit.  

 
The theory of peak-load pricing has been extended in several directions. 

Crew and Kleindorfer expand the basic deterministic model of Boiteux to 
include several technologies [66]. The objective is to maximise the social 
welfare in the system, given that demand is met in each time period and 
generation is below capacity limits. The effect of introducing a variety of 
technologies with different operating and investment costs is in general to 
lower peak period prices and increase off-peak period prices. In turn, this 
means that the demand fluctuations are less dampened with a diverse mix of 
technologies. The prices within each period are still set equal to the long-run 
incremental cost of meeting an additional unit of demand, so that capital 
costs are recovered. Criteria for optimal mix of technologies are also 
derived. The basic rule states that capacity should be installed and operated 
in order of increasing operating costs (i.e. merit order), but both capital and 
operating costs determines whether or not a technology is part of the 
optimal mix of technologies. In traditional power system expansion 
planning the same rule is used to plot so called screening curves for 
available generation technologies. The system’s load duration curve can 
then be utilised to determine optimal installed capacities of the different 
technologies36.  

                                                
35 Crew and Kleindorfer give a comprehensive survey of the general theory of peak load 
pricing in [63], while a more verbal discussion with emphasis on the electrical power system 
is presented by Doorman in [64]. 
36 The use of technology screening curves to determine the optimal mix of generation 
technologies in the power system is explained by Wangensteen [2] and Stoft [67]. 
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A stochastic model for the peak-load pricing problem is also developed in 
[66]. When demand, and possibly also supply, is uncertain, one might end 
up in situations with demand unexpectedly exceeding available supply. In 
this situation parts of the system load has to be rationed. Therefore, the cost 
of rationing has to be taken into account in the objective function.  Ideally, 
rationing should take place according to increasing willingness to pay for 
electricity, so that the loss in consumer surplus is minimised. However, this 
requires that the system operator can actually curtail load according to 
customer’s willingness to pay, which is a very strong assumption in most 
power systems. Firstly, there is usually substantial uncertainty concerning 
what customers are actually willing to pay for electricity.  This is illustrated 
by the inherent difficulties in estimating the value of lost load. Secondly, 
even if information about different customer’s value of lost load were 
available, the system operator would still have a technological problem in 
shedding load according to a pre-specified schedule based on increasing 
willingness to pay. Random rationing would therefore be less costly for the 
system operator, although the loss in consumer surplus is obviously 
higher37. The results from the stochastic peak-load pricing model shows that 
social welfare optimisation under uncertainty entails marginal cost pricing 
rules similar to those obtaining for deterministic peak-load pricing. 
However, determining and quantifying the appropriate marginal costs under 
uncertainty requires that rationing and excess demand conditions must be 
considered explicitly. Note that the uncertainties represented in these models 
are what we referred to as short-term uncertainties in the previous chapter. It 
means that they do not affect the investment plan other than in terms of 
changing the expected values within each time step.  

 
The implementation of peak-load pricing requires that the customers are 

billed according to their actual temporal load profile. Despite more complex 
metering and billing procedures dynamic time of use rates have been 
implemented in parts of Europe, e.g. in Germany, France and England. In 
general, the price periods could be based on seasonal, weekly, daily, or even 
more frequent load variations. Real-time pricing, or spot pricing of 
electricity, was first introduced by Schweppe et al. [68]. With spot pricing 
the price is set as close to real time as possible. A major advantage with 
real-time pricing is that uncertainties concerning load and supply 
interruptions are minimised, so that the flexibility in supply and demand is 
exploited to its limits. With sufficient price elasticity of demand the need for 
rationing schemes disappears under real-time pricing. The spot price is 
determined by a centralised entity, and the price can also take into account 
other factors than the costs of electricity generation. These other factors 
                                                
37 Doorman [64] gives a comprehensive discussion of customers’ willingness to pay for 
electricity and the quality of supply. 
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could be maintenance, quality of supply and possibly also revenue 
reconciliation for the utility. The proposed spot prices are also capable of 
reflecting the cost associated with transmission losses and network 
constraints, and can therefore help facilitate the unbundling of generation 
and transmission in a restructured setting. At the same time, Caramanis [69] 
argues that correct investment incentives from a social welfare point of view 
are given to both suppliers and consumers under spot pricing of electricity, 
also when the parties act as independent profit maximising firms. The 
requirement is that social and private interest rates are the same. The spot 
pricing theory therefore has had a substantial impact on the trend towards 
liberalisation and restructuring of power markets, although the main aim of 
the theory originally was to improve the pricing efficiency within the 
regulated electric power industry. 

5.1.2 Prices and Investments in a Restructured Market 
In a restructured power market with decentralised decision making the price 
of electricity is determined by the bids from the suppliers and consumers in 
the system. If we disregard inter-temporal constraints and assume perfect 
competition, a rational supplier would bid the marginal cost of generation 
into the market while consumers would bid their marginal willingness to 
pay. The spot price is settled at the intersection of the aggregate supply and 
demand curves. In most situations the price would equal the marginal cost 
of the last generation unit needed to meet demand. However, in situations 
with high demand and scarcity of supply the price would be given by the 
consumer’s marginal willingness to pay. The two situations are illustrated in 
Figure 5.2, and this is just the traditional picture of market based trade of a 
commodity. The electricity market will be in short-term equilibrium as long 
as the time resolution of the market is high, and the market clearing is 
carried out close to real time38. According to traditional economic theory the 
long-term equilibrium is ensured by investors who are willing to invest as 
soon as they anticipate prices that are high enough to cover the total costs of 
their investments. The total discounted unit costs of the most competitive 
new generation technologies available should therefore represent an upper 
limit for the average prices in different load segments. The desired effect of 
restructuring is therefore to obtain both short- and long-term equilibrium in 
the system based on market mechanisms, which again ensures that social 
welfare optimum is established through efficient market incentives. The 
spot price is obviously more fluctuating than the tariffs in a traditional 
regulated setting, but this has positive welfare effects. Besides, a complete 

                                                
38 In Scandinavia the spot market has an hourly time resolution, and the market is cleared 
on a daily basis. Some uncertainties therefore arise between market clearing and physical 
delivery. These uncertainties are taken care of by market based and automated feedback 
mechanisms closer to real time. 
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market design would also have long-term markets where risk-averse 
participants can lock in the price for future deliveries and thereby reduce 
their exposure to price variability. 

 

 
Figure 5.2 Illustration of market clearing during base (1) and peak (2) demand periods, 
based on aggregate bid curves for supply and demand in the spot market. 

Some of the special characteristics of the power system can, however, 
distort the long-term equilibrium of the power market. Vazquez et al. [70] 
discuss three difficulties in real power markets that can contribute to prevent 
optimal investments in new generation. The first is related to the limited 
price elasticity of demand in current systems. If there is limited or no short-
term price flexibility on the demand side one can end up in situations where 
the market fails to define a price (i.e. the supply and demand curves in 
Figure 5.2 do not intersect).  In such situations the regulator would have to 
define a price that caps the market. However, unless the price cap is set 
equal to the real value of energy not served, this will give wrong investment 
signals. There is a tendency that regulators define price caps that are too 
low, and this will clearly reduce profit expectations and discourage new 
investments. Even in markets with no defined price cap there is always the 
risk of regulatory intervention if the prices rise to very high levels39. The 
second problem arises due to risk aversion among investors. The risk 
involved in investing in new power generation is particularly high for peak 
load plants. Unless there are liquid long-term markets where the investor 
can efficiently hedge these risks, it is likely that potential capacity 
expansions are postponed or cancelled. The third difficulty that is mentioned 
                                                
39 The Scandinavian spot market for electricity does not have a clearly defined price cap, 
although there is an upper technical limit on the bid prices that are allowed to be submitted 
to the market. This limit has been adjusted according to the market situation and does not 
represent a regulatory price cap. Still, the political debate in Norway following the high prices 
during the winter of 2002/2003 illustrates the risk of regulatory intervention and price control 
if electricity prices remain high over an extended period of time. This risk of regulatory 
intervention can be conceived by some participants as a price cap in the long run. 
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is caused by potential exercise of market power by large producers in the 
system. Under-investment in order to increase prices may result, unless the 
barriers to entry are low for new investors in the market. 

 
Also from the consumer’s point of view there are problems that can distort 

the long-term functioning of the power market. Stoft [67] refers to two 
demand-side flaws in deregulated power markets. The first flaw is the lack 
of metering and real-time billing. This results in the limited short-term price 
elasticity of demand that has already been mentioned. The large majority of 
customers in restructured power systems today are still being billed based 
on some sort of average price measure. Hence, there is an absence of real-
time feedback from price to demand, so that customers can not adjust their 
load according to short-term price fluctuations. The second flaw is the lack 
of real-time control of power flow to specific customers. This prevents the 
physical enforcement of bilateral contracts, and therefore in practice the 
system operator becomes the default supplier in real time. Under these 
conditions the incentive for customers to sign long-term contracts to protect 
themselves against higher prices and service interruptions are therefore low. 
As a consequence, efficient long-term markets for sharing of investment 
risks, particularly in peaking capacity, are absent in most restructured power 
markets40. 

 
Three types of regulatory approaches have been employed or proposed to 

deal with the problem of adequate investments in the power system41: 1) In 
the “energy only” model it is left to the market forces to secure optimal 
investments. This solution is based on the assumption that consumers after a 
learning period will increase their price flexibility and also efficiently 
participate in long-term markets. The restructuring of the power markets in 
Scandinavia, California and Australia are based on this model. 2) In a 
“capacity obligation” model an obligation is imposed on the buyers, forcing 
them to buy their peak capacity in a long-term capacity market, so that a 
prescribed level of generation capacity is ensured. This solution has been 
implemented in the north east of the US (PJM, NYPP, NEPOOL). A similar 
system was also implemented in the Norwegian power system prior to 
restructuring42. 3) In a “capacity payment” model, a regulatory mechanism 
for a payment to generators, in addition to income from the energy market, 
is established. This capacity payment encourages investments by increasing 

                                                
40 See Doorman [64] for a comprehensive discussion on peaking capacity in restructured 
power systems. 
41 The pros and cons of the three market models are elaborated by Vázquez et al. in [70] 
and by the organisation for Nordic system operators, NORDEL, in [71]. 
42 Participants taking part in the coordinating inter-regional exchange scheme, called 
“Samkjøringen”, were obliged to maintain a neutral capacity and energy balance through 
long-term contracts. 
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and stabilising the volatile income of generators. Spain, Argentina, 
Colombia and Chile have included a capacity payment in their market 
designs.  

 
With the investment model that is presented later in this chapter we can 

analyse market designs based on the “energy only” and “capacity payment” 
market designs. The capacity obligation model is of less interest from a 
capacity and reliability point of view, since the minimum level of installed 
capacity is predetermined by the regulator. 

5.1.3 Long-Term Uncertainties, Flexibility and Investment Dynamics 
The theoretical considerations behind most of the results presented above, 
both for the regulated and competitive industry, are usually of a static 
nature. This is reflected in the mathematical models that are used to support 
the results. The investment problems are typically solved as static 
optimisation problems, where optimal investments are determined for the 
system in a “snapshot” of time. In this way Lagrangian techniques can 
typically be applied to find optimal prices and investments from the shadow 
prices of the system’s energy and capacity constraints. Short-term 
uncertainties due to unexpected load variations and generator outages are 
sometimes added to the static models. This is for instance the case in the 
peak-load pricing problem formulated by Crew and Kleindorfer [63], and 
also in the model for spot-pricing of electricity proposed by Scwheppe et al. 
[68]. However, the gradual development of long-term trends and 
uncertainties are not represented, so that the dynamic option values inherited 
in flexible investment strategies are not taken into account.  

 
In the theory for time of use rates and peak load pricing there are rare 

occasions of dynamic formulations of the investment problem under social 
welfare maximisation. A dynamic one-technology model is solved by Crew 
and Kleindorfer [66] (chapter 7). The results show that whatever the level of 
installed capacity, the price should be set to maximise instantaneous welfare 
returns subject to the given capital restriction, i.e. price should equal SRMC. 
At optimum, capital stock is adjusted so that SRMC equals LRMC. The 
static and dynamic cases are the same in optimum, except that in the static 
case the time path of adjustment of installed capacity is not considered. 
Kaya and Asano [72] extend this model to a situation with multiple 
generation technologies. The same pricing rule is still valid in this situation, 
and the pricing policy in steady-state is equal to the static case. The static 
technology screening rule, with capacity installed and operated in order of 
increasing operating costs, also applies in the dynamic setting, according to 
[72]. The dynamic models referred to here are both deterministic, so that the 
impact of long-term uncertainties on optimal investment decisions is not 
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included. Another factor that can play an important role in real world 
investment decision, namely the effect of different technology lead times, is 
also omitted. 

 
The main principles behind real options theory was outlined in the 

previous chapter. Although most of the literature on real options is devoted 
to investment decisions of individual firms, the theory is also extended to 
look at competitive industry equilibrium and optimal investments from a 
social welfare point of view. Dixit and Pindyck [38] formulate a dynamic 
model for a competitive industry. Optimal exit and entry thresholds are 
determined using a version of the standard continuous time real options 
framework. Not surprisingly, it turns out that the optimal thresholds under 
uncertainty differ substantially from the static NPV criteria. Depending on 
the level of uncertainty, the optimal price threshold for entry of new 
investors can be much higher than in a static analysis. An aggregate industry 
model is also formulated, where the objective is to maximise total social 
welfare. It is shown that social optimum coincides with the competitive 
equilibrium, also in the dynamic framework. Hence, also under centralised 
planning with a social welfare criterion there is an option value in having a 
flexible investment strategy. Dixit and Pindyck therefore claim that policy 
intervention is only justifiable if there is some kind of market failure in the 
system. A common problem in this respect is the failure of markets to 
efficiently share risks.  From the discussion above we see that this can be a 
severe problem in restructured power markets. However, it is also shown in 
[38] that policy interventions to reduce risk, for instance in terms of a price 
cap, can in fact increase prices in the long run. 

 
Dixit and Pindyck’s models of industry equilibrium and socially optimal 

investments are based on the standard real options framework with one 
stochastic state variable, which could represent either price directly or a shift 
in demand. Although there are many advantages in applying a continuous 
time model which can be solve analytically, there are also limitations, as 
discussed in section 4.1.5. The models do for instance not take into account 
the time variability of demand that is studied in the literature on peak load 
pricing. The impact of different technology lead times and the lumpiness of 
investments are also disregarded. These factors are usually important in 
electrical power systems, where demand is time-variant by nature and 
investments often are large scale with long lead times.  

 
The dynamic investment model presented in this chapter combines 

elements from the traditional peak load pricing models with real options 
theory for investments under uncertainty. Our objective is to analyse 
optimal investments in new power generation assets under different 
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assumptions about market design and power system structure. With a 
simplistic representation of the power market we can look at optimal 
investments for a decentralised profit maximising investor as well as from a 
centralised social welfare point of view. 

5.2 A Simple Economic Model of the Power Market 
In this version of the investment optimisation model we use a simplistic 
representation of the power market, based on marginal production cost and 
consumer’s willingness to pay. A simple power market description gives us 
the possibility to study macro economic effects of investments in a long-
term perspective. The model is based on a set of simplifying assumptions 
that are important to keep in mind from the beginning. The most important 
assumptions in the model are therefore listed below:  
 

- The time step in the investment optimisation model is one year, but each 
year is split into base, medium and peak demand sub periods. Demands 
within sub periods are interdependent and grow proportionally. 

 
- Demand is split into a fixed and a price responsive part, and is 

represented with linear demand curves within each demand sub period. The 
demand curves are bid into the spot market and represent customers’ 
willingness to pay for electricity. 

 
- Growth in demand is the only long-term uncertainty represented in the 

model. Deviations in load due to temperature etc. can be represented as 
short-term uncertainties. 

 
- End-users are billed according to dynamic prices. They therefore face 

different prices in the different demand sub period. 
 
- Two technology groups are represented in the supply side of model, i.e. 

base and peak load plants. Decommissioning of existing plants is not taken 
into account.  

 
- The inter-temporal dynamics of storage (for instance storage in hydro 

dams) are not represented in the model. Other inter-temporal constraints, 
such as start-up/shut-down costs and ramp rates, are also omitted.  

 
- The capacity variables in the model represent available capacity. 

Availability factors are therefore not represented explicitly for the supply 
technologies in the model. 
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- There is no revenue reconciliation for old units, so that existing plants 
compete in the spot market on equal basis with new investments. 

 
- There is no exercise of market power in the spot market for electricity. 

Suppliers bid their marginal costs in the market, and aggregate bids are 
represented with piecewise linear curves. 

 
- Operating reserves (OR) during peak demand are provided by existing 

plants with low efficiencies and high operating costs. The OR requirement 
is kept as a constant capacity, and the plants that provide OR during peak 
demand are not represented in the spot market supply curves.  

 
- A real discount rate is used in the model, and we can therefore assume no 

inflation in the planning period. 
 
- The electrical power system is modelled as an isolated one-area system, 

i.e. exchange with neighbouring areas is not considered. In addition, 
transmission constraints and losses within the area are not explicitly 
represented in the model. 

 
More details about the assumptions and the mathematical formulation of 

the model are presented in the sections below. 

5.2.1 Representation of Electricity Demand  
The representation of electricity demand in the model is illustrated in Figure 
5.3. By using three demand sub-periods (i.e. base demand (1), medium 
demand (2) and peak demand (3)) we can capture parts of the temporal 
variations in electricity demand. The demand within each sub period is 
modelled with a fixed and a price flexible part. The fraction of price flexible 
demand is not only dependent on the characteristics of the load itself and the 
service that it provides, but also on how much of the load that is exposed to 
real-time prices and how actively the end-users take part in the electricity 
markets. With a one year time resolution it is likely that there is some 
feedback from sub-period prices to sub-period demands, although the effect 
might be delayed if there is no real-time billing in the system. Still, in a 
recently restructured electricity market it will take time before end-users 
adapt to the new situation and act rationally in the markets according to their 
willingness to pay for electricity. The proportion of price flexible load in 
current power markets can therefore be very limited. 

 
In the model we assume that if the electricity price reaches a sufficiently 

high level (Pflex,max), the regulator will intervene in the market with load 
shedding. The use of load shedding could be needed because of limited 
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price elasticity of demand, which can result in a failure of the market to 
clear in peak demand situations. It could also reflect a regulatory policy 
where there is a limit on the bid prices allowed from the demand side of the 
market. During load shedding the electricity price is set equal to a load 
shedding price, Pcap, which caps the price in the spot market. Pcap is 
assumed to penetrate the entire spot market. The price levels for Pflex,max and 
Pcap could be part of the market design and therefore predetermined values 
transparent for the market participants. However, they could also reflect 
investors’ expectations about the regulator’s behaviour in situations with 
very tight capacity margins. The effect on optimal investment criteria would 
be similar. The importance of these parameters is dependent on the amount 
of price responsive demand in the power system. With a sufficiently high 
price elasticity of demand the regulator will never need to use load shedding 
in order to balance supply and demand in the system.  

 

 
Figure 5.3 Representation of fixed and flexible parts of base, medium and peak demand in 
the investment optimisation model.  

In Figure 5.3 we have assumed that Pcap is equal to the value of lost load 
(VOLL)43 for the customers affected by the load shedding. As pointed out in 
section 5.1.1 it can be very difficult for the system operator to shed load 
according to customer’s willingness to pay. Consequently, we assume that 
there is a high degree of randomness in the selection of customers for load 
shedding. VOLL therefore represents the average value of lost load for the 
fixed part of the demand, and this is considerably higher than the maximum 
marginal willingness to pay for the price flexible part of the demand 
(Pflex,max). A load shedding price equal to VOLL would give correct price 
signals into the market when load shedding is required under this rationing 
scheme. However, Pcap is not necessarily set equal to VOLL, either because 
                                                
43 Note that we assume that VOLL is the same in all sub periods in the model. This is clearly 
a simplification, as the implications for end-users of interruptions in the power supply can be 
highly dependent on the time of the day and also the time of the year that it occurs. We also 
assume that Pcap and Pflex,max are constant and the same in all the sub periods. 
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VOLL is not known or because the regulator wants to protect the end-users 
from very high prices with a lower price cap. Later in this chapter we will 
present results for different assumptions about Pcap, and look at the 
consequences for optimal investment criteria, prices and system reliability.  

 
The sub-period demands are assumed to be inter-dependent, with a 

constant proportional relation between the maximum loads (Lmax) in the 
three segments. This is expressed in (5-1). At the same time, the price 
flexible parts (Lflex) are constant fractions of the maximum loads, as shown 
in (5-2). Consequently, the price elastic demand curves for all three load 
segments can be described by one state variable only (i.e. lk) in addition to a 
set of parameters for prices (Pcap, Pflex,max) and loads (cL,max, cL,flex). Growth 
in lk is the only long-term uncertainty that is included into the model. lk is 
represented as a stochastic state variable with a mathematical description 
similar to the representation of average load in Chapter 4. 
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where 
Lmax,k  vector of maximum sub period loads, time step k [MW] 

,cL max  vector of maximum load constants  

kl  state variable for demand, time step k [MW] 

L flex,k  vector of flexible sub period loads, time step k [MW] 

,L flexc  flexible load constant  

 
It is also possible to represent short-term uncertainties in demand in the 

model. The short-term uncertainties (ωs) could for instance be caused by 
temperature variations, and are taken into account using a discrete 
probability distribution. Short-term uncertainties in demand are treated on 
an expected value basis in the investment optimisation, similar to the 
representation in Chapter 4. The exact representation which is used for ωs in 
the illustrative examples is further described in section 5.3.1. 

5.2.2 Representation of Electricity Supply  
The representation of electricity supply in the model is illustrated in Figure 
5.4. We assume that the initial load is served by existing base and peak load 
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plants44. Both groups are assumed to have linearly increasing marginal cost 
curves. The increasing marginal cost curves reflect that the groups consist of 
plants based on various technologies and vintages, and therefore have 
different efficiencies and operating costs. It is possible to invest in two new 
technologies in the model: new base load and new peak load plants. The 
new plants are assumed to have lower operating costs than the existing 
technology groups, due to technology improvements. The installed capacity 
of the new technologies, x1,new and x2,new, are represented as discrete state 
variables in the model. The new technologies are described by parameters 
for installed capacity, investment cost, marginal operating cost, life time and 
also construction time. Figure 5.4 shows a supply curve with all four 
technology groups represented. No uncertainties are included in the supply 
side of the model, and we assume constant availability for all the technology 
groups. In addition, the deterministic supply curve is also constant for all 
demand sub-periods. Changes in the supply curve only occur when new 
investments are made. 

 

 
Figure 5.4 Representation of old (X1,old and X2,old) and new (x1,new and x2,new) generation 
technologies in an aggregate supply curve for one combination of state variables. OR is the 
operating reserve requirement. 

We assume that operating reserves during peak hours (OR in Figure 5.4) 
are provided by the technologies with highest marginal cost in the system, 
i.e. from the group of old peaking plants. The OR requirement is assumed to 
be determined by the regulator, and this part of the supply curve is always 
withheld from the spot market for electricity. However, it still affects the 
spot prices in peak demand situations, since it determines how much of the 
old capacity that is available in the spot market. Stoft [73] discusses how the 
relationship between the OR requirement and a price cap in the OR market 
                                                
44 In this chapter we use the notation peak load technologies to describe all plants that are 
not pure base load plants. Hence, the group of plants referred to as peak load plants include 
both medium and peak load technologies. 
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determine the equilibrium level of installed capacity in the power system. It 
is assumed that the price cap is paid when the OR requirement is violated. 
At the same time, there must be a relationship between prices in spot and 
reserve markets, so that arbitrage opportunities do not occur between the 
two markets. Hence, if the regulator determines a price cap for operating 
reserves it will also indirectly affect prices in the spot market. In fact, the 
price cap in the OR market will effectively cap the price in the spot market 
too, due to the arbitrage argument. It is argued in [73] that optimal installed 
capacity can be achieved with any of a continuum of different policy options 
ranging from extremely high price caps and low OR requirements, to very 
low price caps and high OR requirements. The first alternative would give 
high price spikes with low frequency while the second alternative would 
result in low price spikes with higher frequency. In both situations a new 
peaking unit would exactly recover its fixed costs during peak load hours, 
and a static equilibrium for installed capacity is achieved. However, the 
outline in [73] does not take into account how uncertainty and price 
dynamics can affect installed capacity over time. 

 
Finding an optimal OR requirement is a complex problem which is beyond 

the scope of the analysis presented in this chapter. In the model we simply 
assume that the regulator determines the OR requirement according to short-
term system operation and reliability considerations. Furthermore, the 
regulator pays a price for OR which reflects the expected profits foregone 
for marginal generators by providing OR instead of selling the 
corresponding energy into the spot market45. Hence, the OR price is not 
directly determined by the regulator, but is a function of the prices in the 
spot market. We still assume that the regulator determines a price cap 
directly in the spot market (Pcap), as illustrated in Figure 5.3. The interaction 
between the spot and reserve markets rules out arbitrage opportunities. 

 
One of the problems we want to analyse with the model is how the level of 

the price cap in the spot market affects the expected profitability of new 
investments, and thereby the optimal investment criteria. The level of Pcap is 
determined by the regulator and will also affect the OR payment. Marginal 
generators should be indifferent between participating in the spot or reserve 
markets, but new generators have low marginal costs and are therefore 
better off if they sell their generation in the spot market. Under these 
assumptions it is therefore sufficient to represent the spot price in the model 
to find optimal investment criteria for new technologies. The resulting 

                                                
45 In Norway the system operator buys OR in long-term contracts through an auction 
mechanism. Generators and end-users can bid production capacity and load reduction into 
the reserve market and thereby gain a premium for providing OR. The resulting OR capacity 
must be withheld from the spot market. 
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investment behaviour determines how often the OR requirement is violated. 
In order to obtain a consistent representation of supply and demand in the 
model, we assume that the VOLL in the demand description reflects the true 
cost for end-users when the specified OR requirement can not be met. This 
is of course a simplistic description, as the system operator in many 
situations would be willing to reduce OR before load shedding is 
introduced, and the cost of lower reliability due to reduced OR might be 
lower than VOLL. However, the simple description of supply and demand is 
still sufficient to gain useful insight into the dynamics of investments, prices 
and reliability under uncertainty in a long-term perspective. 

5.2.3 Representation of the Spot Market for Electricity 
The representation of the spot market for electricity is illustrated in Figure 
5.5. The prices in the spot market are found at the intersection between 
supply and demand curves in each of the sub-periods for all combinations of 
states (i.e. load level, lk, and installed capacity of new technologies, x1,new,k 
and x2,new,k). Note that the operating reserves are now omitted from the 
supply curve. Prices, loads, operating costs and macroeconomic figures such 
as social welfare, consumer and producers surplus are calculated for base, 
medium and peak demand based on the supply and demand curves. With 
this market description it is possible to maximise social welfare over the 
planning horizon, instead of maximising the profits for an investor in the 
market. The optimisation is carried out in the same way as in the investment 
optimisation model from the previous chapter. However, with the current 
market description we now have the possibility of using two different 
objectives in the optimisation. At the same time we have extended the state 
space to include two new technologies, as opposed to the model in Chapter 
4 which only includes one new technology. 

 

 
Figure 5.5 Illustration of short-term market equilibrium during base (1), medium (2) and 
peak (3) demand. 
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5.2.4 The Optimal Investment Problem 
The same mathematical framework as developed in Chapter 4 is applied to 
find optimal investment strategies for new power generation plants with the 
new market description. The general investment optimisation problem for 
two technologies can be described as a stochastic dynamic optimisation 
problem, using the same structure as in (4-9)-(4-13). The problem now has 
three state variables and two control variables, as shown in (5-3)-(5-7).  
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The discrete state space is expanded by the three state variables and time. 

The state variable for demand, lk, is represented as a stochastic variable with 
a binomial distribution, as shown in Figure 5.6. This is the only long-term 
uncertainty in the model, and the mathematical representation is exactly the 
same as for average load in Chapter 4 (Figure 4.5). For the generation states 
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we have to take into account the construction time, as indicated in (5-4). To 
limit the size of the state space we assume that only one construction plan 
can be undertaken at the same time. This means that if an investment 
decision is made, the investor will have to wait until the construction is 
finalised, before the next investment decision can be made. The 
representation of capacity states is shown in Figure 5.7, and is again similar 
to the model in Chapter 4 (Figure 4.7), except that we now have a two-
dimensional state space for new capacity. 

 

 
Figure 5.6 Illustration of the state space for demand (lk) as function of time. l0 is initial 
demand (k=0). pup and pdn are transition probabilities. 

 

Technology 1
x1,new [MW]

0 400 800

0

400

200

Technology 2
x2,new [MW]

 
Figure 5.7 Illustration of decision states (black dots) and construction states (circles) for 
new generation capacity. Transfer between two states has a delay of one year. In this 
example technology 1 and 2 consist of 400MW and 200 MW plants, with construction times 
of 3 years and 1 year respectively. 

The optimisation problem is solved using backwards stochastic dynamic 
programming. The corresponding Bellman equation is given in (5-8). We 
use the same representation of termination payoff and investment cost as in 
Chapter 4. The termination payoff is set equal to the payoff in the last 
period, assuming no new investment (equation (5-6)), while the investment 
cost is adjusted according to the length of the planning period and the 
technology’s construction time. This is explained in section 4.3.5. 
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We can now look at optimal investments from a centralised planner’s 

point of view, and compare it to the optimal investment strategy for a 
decentralised profit maximising investor. The only difference in the 
mathematical formulation is in the definition of the payoff function, gk. We 
assume that the centralised planner wants to maximise the expected social 
welfare in the system, while the investor wants to maximise expected profits 
from investing in new plants. The payoff function for the two planning 
regimes, referred to as sw-social welfare and π-profits, are shown in (5-9) 
and (5-10). Note that we take the expectation over ωs in the calculation of 
short-run social welfare and profit in the first parts of (5-9) and (5-10). 
Under profit maximisation we also add the income from a possible capacity 
payment in the payoff function. The capacity payment in the model must be 
a function of the state variables for installed capacity and demand, and can 
for instance be represented as in section 4.3.4. The investment cost is 
deterministic and treated identically for the two planning regimes in (5-9) 
and (5-10).  
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A simple algorithm based on merit order loading is implemented to find 
price and load for each combination of states, where the market is described 
as illustrated in Figure 5.5. The payoff functions for social welfare and 
profit maximisation are also calculated in the same algorithm. The values 
are stored in a set of arrays, before running the SDP loop. 

5.2.5 Optimal Investments under Social Welfare and Profit 
Maximisation 

From the theoretical discussion in the beginning of this chapter we know 
that investment decisions under centralised social welfare maximisation and 
decentralised profit maximisation in a perfectly competitive market should 
be the same. Figure 5.8 shows how the objective functions are changed 
under profit and social welfare maximisation when an investment is made, 
assuming no capacity payment. While the investor’s profit objective only 
takes into account the increase in producer surplus (area 1), the increase in 
consumer surplus (area 2) is also included under social welfare 
maximisation. With a marginal investment in new capacity the effect on 
price would be negligible and only the producer surplus would increase. In 
this situation we would expect that the profit and social welfare objectives 
give exactly the same result. However, when investments are lumpy, so that 
there is feedback from a new investment to price, we see from Figure 5.8 
that the increase in social welfare can be considerably larger than the 
investor profits. At the same time, the investment cost is the same under 
both objectives. Therefore, the lumpiness of investments can contribute to 
give a lower investment threshold under the social welfare criterion. One of 
the factors that affect the importance of this relation is the price elasticity of 
demand. The magnitude of the price feedback, and thereby the difference in 
the changes of the two objectives, decreases as price elasticity increases. 

 

 
Figure 5.8 Illustration of investor profit (area 1) and social welfare gain (area 1 + 2) in 
sub period i, from investment in new peak capacity (u2,new). Qi, Qi*, Pi and Pi* are 
quantities and prices with and without u2,new. 
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Market externalities, such as the failure of the price in the spot market to 
reflect the value of reliability, can also cause deviations between investment 
criteria under social welfare and profit maximisation. The consequence of 
using a price cap in the spot market (Pcap) which is lower than VOLL can be 
analysed with the model. Another important issue in the emerging electricity 
markets today concerns market power, and how it is likely to affect the 
participants’ dispositions in the market. This model is not designed to 
analyse the impact of market power on the bidding strategies and thereby 
short-term changes in electricity spot prices. However, we can look at how 
the optimal investment strategy changes when an investor owns a part of the 
initial capacity in the system. If the investor has an exclusive right to invest 
in the system, the ownership of existing power generation assets can have a 
strong effect on the optimal investment criterion.  

 
In the end, it is worth noting that while externalities and market power can 

be attributed to market imperfections, the effect of lumpy investments 
would also be present in a market without price distortions. Hence, a 
deviation between investment strategies under social welfare and profit 
maximisation is not necessarily an indication of price manipulation and 
market failure. We return to all these effects in the illustrative examples 
later in this chapter. 

5.2.6 Risk, Uncertainty and Discount Rate 
The risk preference and appropriate discount rate for an investor that is 
considering investments in new power generation assets is discussed in 
section 4.3.6. We argue that risk neutral valuation, which is frequently 
applied in real options models, is inappropriate in our stochastic dynamic 
investment model. The reason is that movements in the underlying 
stochastic variable, demand growth, can not be completely replicated by 
assets traded in financial markets. At the same time, the liquidity in long-
term markets for electricity is usually low, making it difficult to hedge the 
price for future power generation in long-term markets, without paying a 
considerable risk premium. We therefore argue that the use of a risk-
adjusted discount rate is more appropriate in the model. The same 
arguments about the appropriate discount rate can be used when the profit 
maximisation objective is used in this version of the investment model.  

 
A centralised planner, whose dispositions are based on a social welfare 

criterion, is also likely to consider risk as an important factor when 
investment projects are assessed. In most circumstances centralised planners 
have limited resources and can only invest in a small selection of the wide 
range of investment projects available. Therefore, low risk projects would 
probably be preferred to projects involving more risk, if the expected gain in 
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social welfare is the same. We do not aim at assessing the level of risk-
averseness among centralised and decentralised planners in the power 
system in this thesis. However, it is likely that the level of risk can play a 
role for investment decisions under both planning regimes. Consequently, 
we argue that the use of a risk adjusted discount rate is most appropriate in 
our stochastic dynamic investment model, also when maximisation of social 
welfare is the objective in the optimisation. 

 
The discount rate can of course be specified to any number in the 

investment optimisation model, regardless of which one of the two objective 
functions that is actually being used. However, in the illustrative examples 
that follow later in this section we find it convenient to use the same 
discount rate under profit and social welfare maximisation. The discussion 
above can serve as an argument for using the same factor for discounting. At 
the same time, the use of identical discount rates makes it easier to focus on 
the other factors that can give rise to differences between optimal 
investment criteria under profit and social welfare maximisation.  

5.2.7 Market Simulator 
A simulator is also developed for this version of the investment optimisation 
model. The simulator is similar to the one in Figure 4.24. It starts from an 
initial state of demand and generation capacity. The investment optimisation 
model is run, and the resulting investment strategy is used by the simulator 
to update the investment model’s input parameters before a new 
optimisation for the next time step is carried out. Investor profit, social 
welfare gain and other results are calculated for each simulated time step. 
The market simulator can be used to study the investment dynamics in the 
electricity market over a longer term perspective. In this respect it also bears 
resemblance to the system dynamics model presented in Chapter 3. The 
main difference is that the investment decisions are now based on stochastic 
dynamic optimisation as opposed to the traditional static net present value 
evaluation underlying investment decisions in the system dynamics model. 
Moreover, we can now run the simulator under both social welfare and 
profit maximisation, and thereby compare the results for scenarios with 
centralised and decentralised decision making. 

5.2.8 A Comparison of the Model to the Theory of Peak-Load Pricing  
The simple linear market description that we now use in the investment 
model is in several respects similar to the market descriptions in the 
traditional peak-load pricing theory, as described by Crew and Kleindorfer 
in [63]. However, for demand we have assumed that the sub-period loads 
are proportional and interdependent, and that only parts of the demand is 
price responsive. This is opposed to the continuous demand functions that 



Optimal Investments under Centralised and Decentralised Decision Making 

- 133 - 

are usually applied in the traditional models for peak-load pricing. For 
generation we take into account the technologies that are already installed in 
the system, and also that the old technologies can have other cost parameters 
than the new ones. This is different from the peak-load pricing models in 
[63], where the objective is to optimise a complete system from the 
beginning, without taking into consideration existing technologies. Explicit 
representation of operating reserves is also omitted in the theory for peak 
load pricing.  

 
An important similarity between the models is the simple representation of 

supply. Merit order loading of the power plants is assumed and inter-
temporal aspects, such as start-up/shut-down costs, ramp rates, and 
minimum up- and down times, are not taken into account. This corresponds 
to a market description where the suppliers bid their marginal costs into the 
power market. Hence, we assume optimal short-term operation of the 
system, both under centralised and decentralised decision making. 
Consequently, the model is not suitable for studying effects of strategic 
behaviour, collusion or gaming in a short-term perspective. Our aim with 
the model is to study the long-term effects of different planning regimes for 
the various participants in the power market in a dynamic perspective. The 
simple market description combined with the stochastic dynamic investment 
optimisation model facilitates such an analysis. As we have seen above, the 
dynamic perspective is left out of most peak-load pricing models. 
Furthermore, the inclusion of long-term uncertainties in our model is also an 
element which is rarely seen in the theory of peak load pricing. It is 
therefore of interest to see how our results compare to the results presented 
in section 5.1.1 from the theory of peak load pricing. 

5.3 Illustrative Examples 
Having outlined the mathematical description of the model, we now look 
into a set of illustrative examples where the model is used to compare 
centralised and decentralised planning under a set of different assumptions. 
First, we present the main assumptions for the test power system which was 
used throughout the analysis in this chapter.  A static assessment of prices as 
function of demand for the initially installed generation capacity is also 
shown, together with an economic evaluation of the new generation 
technologies. We then use the stochastic dynamic optimisation model to 
identify optimal investment criteria under social welfare and profit 
maximisation. We run the model for different fractions of price flexible 
demand, and we also compare optimal investment criteria for marginal and 
large-scale investments. In additions, we study the effect of the price cap in 
the spot market and the impact of ownership in existing generation capacity 
on private investors’ optimal investment decisions. In the end, we use the 
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simulator to investigate the long-term dynamics of investments, prices and 
reliability in the test power system for a set of different scenarios. 

 
In Chapter 4 we focused on how long-term dynamics and uncertainty 

affects the optimal investment decision for a decentralised investor in the 
power market. The results showed that taking the dynamic aspect of 
investment timing into account is very important for the investor, in order to 
maximise the expected profit from new investments. The inclusion of long-
term uncertainties in load growth into the analysis also contributes to 
improve decision making, although Monte Carlo simulations show that this 
effect is less significant. In the examples presented in this chapter we 
assume that both centralised and decentralised planners use the stochastic 
dynamic optimisation framework to optimise their investment decisions. 
The emphasis is now on how the optimal investment criteria and the long-
term investment dynamics depends on planning regime, market design and 
system characteristics such as the fraction of price responsive demand. 

5.3.1 Main Assumptions for the Illustrative Examples 
The main assumptions for the test power system are summarised in Table 
5.1. The test power system is assumed to be a thermal system, and the base 
load technology group could typically consist of coal and nuclear plants, 
while the peak technology group could be gas combustion turbines. We 
assume that only the old generation technologies are present in the system at 
the initial state. If we compare the initial installed capacity to the demand in 
the different sub periods, we see that the proportion of total to base 
generation capacity is slightly lower than the proportion of peak to base 
demand in the system (1.6 vs. 1.65). Hence, at first sight it may look as if 
there is a surplus of base load capacity in the system 

 
Table 5.1 Basic assumptions for demand and supply parameters in the test power system. 

Demand Value Unit Supply Value Unit 
VOLL 10000 NOK/MWh Xold [10000 6000] MW 
Pcap 1000/10000 NOK/MWh xnew,init [0 0] MW 

Pflex,max 1000 NOK/MWh MCnew [100 180] NOK/MWh 
cL,max [1.00 1.40 

1.65] 
 MCmax 

 
[120 400] 

 
NOK/kW 

cL,flex 0.01-0.20  icnew [12000 6000] years 
ld [5760 2900 

100] 
hours Ωu 

 

[400 200] / 
[1 1] 

years 

lgrowth 100 MW/year nt [30 20] NOK/MWh 
lsdv 200 MW/year lt [3 1]   MW 

pu , pdn 0.5  r 6 % pa. 
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There are two new technologies to choose from. The first new technology 
represents a base load plant with high investment cost and low operating 
costs, while the second option is a peak load plant with lower investment 
cost and higher operating costs. Another difference between the 
technologies is that the base load plant has a longer life time and 
construction time than the peak load plant. The fraction of price flexible 
demand varies between 1 and 20 % in the examples to follow. An expected 
load growth of 100 MW/year with a standard deviation of 200 MW/year is 
input to the optimisation model in all scenarios. Note that we use fixed 
probabilities (pup, pdn) for the entire planning horizon in the binomial tree for 
load growth (Figure 5.6). 

 
In order to represent short-term uncertainties in demand (ωs), we introduce 

a variable for relative demand, rdm. rdm reflects deviations from expected 
demand (e.g. caused by unexpected temperatures). The state variable for 
demand, lk, is adjusted according to rdm, as shown in (5-11). Thus, we end 
up with a discrete demand distribution in each demand state. The variables 
for maximum and flexible load, (Lmax) and (Lflex), in (5-1) and (5-2) are 
updated accordingly, so that the relative demand has a proportional effect on 
demand in all sub periods. The payoff functions under social welfare and 
profit maximisation in (5-9) and (5-10) are calculated by taking the expected 
value over ωs, i.e. over all Nm realisations of the relative load, rdm. rdm could 
take on any distribution, but we assume a simple normal distribution as 
shown in Figure 5.9. Note that short-term and long-term uncertainties are 
still assumed to be uncorrelated, just as in Chapter 4. 
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Figure 5.9 Probability distribution for relative demand (rdm). rdm has a discrete normal 
distribution, N ~ (1,0.02), with 11 discrete realisations (Nm = 11). 

 
 1, , ..k m k m ml l rd m N= ⋅ =  (5-11) 

where 

,k ml  adjusted demand state, realisation m, m=1.. Nm [MW] 

mrd  relative demand, realisation m, m=1.. Nm  
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When using the stochastic dynamic investment model to calculate optimal 
first period investment criteria we use a planning horizon of 10 years only 
(T = 10 years). Furthermore, the state space for capacity extensions in the 
SDP algorithm is limited to one new plant for each technology (see Figure 
5.7 for an illustration of the model’s representation capacity states). The 
model calculates the demand level for which it becomes optimal to invest, 
and also finds the optimal technology choice, for a given level of installed 
generation capacity in the system. From Table 5.1 we see that the expected 
growth in base demand is 100 MW/year while the capacities of the new 
technologies are 200 MW and 400 MW respectively. The restrictions 
imposed by the limited number of capacity states might therefore seem very 
strong and unrealistic. However, sensitivity analyses show that extending 
the state space in either time or the number of capacity states has a limited 
effect on the optimal investment criteria calculated by the model46. Hence, a 
formulation with a limited state space appears to capture the main effects 
influencing the optimal first period investment decisions.  

 
A limited number of capacity states are chosen in the examples, partly 

because of the reduction in computation time. However, under the profit 
maximising objective an increase in the number of capacity states would 
also give the investor an incentive to postpone investment number 2 and 3, 
in order to earn more on his first investment. By only allowing one 
investment in each plant we avoid that the first period decision is affected 
by possible strategic behaviour regarding subsequent investment decisions. 
Note that the limitation in capacity states only is in effect when the 
investment criteria are calculated. When we simulate investments in 
5.3.4and 5.3.5we assume that there are always participants in the market 
that are willing to invest when the model indicates that it is favourable. 

5.3.2 Static Analysis of Investments and Prices in the Initial System 
The static analysis presented in this section serves as a background for the 
dynamic investment optimisation in later sections of this chapter. First, we 
do a simple static analysis based on load duration and technology screening 
curves. This is illustrated in Figure 5.10 and Figure 5.11. 
                                                
46 Sensitivity analyses of the results in section 5.3.3 show that the changes in optimal 
investment criteria following from an extension in the model’s planning horizon to 20 years 
are negligible in all the scenarios.  Extending the number of capacity states to three plants of 
each technology instead of only one resulted in a limited reduction in the optimal investment 
criteria under social welfare optimisation, while the changes in investment criteria under the 
profit objective were still very small. An obvious explanation to the limited impact of state 
space expansion on investment criteria is the interest rate, which effectively discounts and 
reduces the impact of cash flows from projects initiated far ahead into the future. In addition, 
the representation of construction delays in the model limits the number of plants that can be 
constructed within the planning horizon. This can also reduce the impact on investment 
criteria from expanding the state space. 
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Figure 5.10 Load duration curve in the test power system, with no price flexible demand. 
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Figure 5.11 Screening curves for the two new power generation technologies and load 
shedding. 

If we disregard the existing power plants in the system, we can use 
screening curves for the new technologies combined with the system’s load 
duration curve, to determine the optimal mix of new technologies in the 
system. In order to express the demand in terms of a load duration curve we 
have to assume that there is no price elasticity of demand. Hence, if we 
disregard the price flexible part of demand in the model, the demand can be 
described in terms of a simple load duration curve with linear steps, as 
shown in Figure 5.10. The length of the base, medium, and peak demand 
sub periods are 5760, 2900 and 100 hours respectively, and the load levels 
within each of the sub periods are given by the maximum sub period loads 
(Lmax) in the demand description. Figure 5.11 illustrates a screening test of 
the two available new technologies. The results show that for loads with 
duration higher than 4870 hours, it is optimal to invest in the base load 
technology. For loads with lower duration the peaking technology is more 
cost efficient.  From the screening curves we can also see that for loads with 
duration less than 52 hours it is actually cheaper to use load shedding than 
to invest in additional peaking capacity. This number is of course highly 
dependent on VOLL, which is assumed to be 10000 NOK/MWh. The simple 
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static analysis based on load duration and screening curves shows that base 
load plants should be constructed to meet base demand, while peaking units 
are more economic for the medium demand. The capacity of peaking units 
should also cover the peak load in the system, since the duration of the peak 
load period in this example is longer than 52 hours. The optimal levels of 
installed capacity are shown as x1,new and x2,new in Figure 5.10. 

 
In order to analyse how the existing plants in the system and the price 

flexible demand affect investment decisions in new technologies, we need to 
take a closer look at how prices in the three sub periods change as function 
of increasing demand. As explained in the previous section, the demands in 
different sub periods are interdependent variables, so that all the sub period 
prices can be expressed as function of the state variable for demand, lk, for a 
given combination of capacity states. lk is here equal to the maximum base 
load, since cL1,max = 1. Figure 5.12 shows the expected spot price during 
base, medium, and peak demand hours as function of the demand state 
variable for the initial supply system (l0), with 5 % price flexible demand.  
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Figure 5.12 Expected spot prices in the three sub periods as function of demand in initial 
system (l0). The expectation is taken over short-term uncertainties (ωs). cL,flex = 0.05. 

We see from Figure 5.12 that the expected spot price in sub period 1 
increases very slowly as long as the initial capacity of base plants (X1,old = 
10000MW) is sufficient to meet the base demand.  The rise in base price 
after approximately 9800 MW is due to the increasing probability that base 
demand exceeds X1,old, and the use of peaking capacity becomes necessary 
to meet base period demand. On the other hand, the demand in sub period 2 
is always met by the initial peaking capacity, so that the medium price 
increases very smoothly for all values of l0 in Figure 5.12. For sub period 3, 
we see that the peak price starts to increase very quickly in the region above 
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9700MW. This is when the peak demand approaches total installed 
capacity, and load shedding becomes necessary to clear the market.  The 
stepwise increase in the peak price in this region is due to the discrete 
representation of short-term uncertainties in demand (ωs), which in turn 
causes discrete jumps in the probability for load shedding during peak 
demand. The peak period price actually continues to increase until it reaches 
10000 NOK/MWh (i.e. VOLL) at l0 = 10750MW. At this demand level load 
shedding is required in the peak demand period for all realisations of ωs, 
unless new capacity is added to the system.  

 
In order to find an optimal static investment strategy that also takes into 

account the effect of existing technologies in the system we can compare the 
prices in the initial system to the unit cost of the new technologies. Since the 
old plants in the system have higher marginal costs than the new 
technologies, it will be optimal for a new base load plant to run throughout 
the entire year, while a new peaking plant should run during medium and 
peak load periods47. With the assumptions in Table 5.1 the total unit costs48 
for new base and peak load plants are 202 and 349 NOK/MWh, given that 
they operate 8760 and 3000 hours per year respectively. These total cost 
numbers can be interpreted as the long-run marginal costs (LRMC) of 
increasing the base and peak capacity in the system. According to marginal 
cost theory it is therefore optimal to invest in new base capacity as soon as 
the average price for the entire year approaches 202 NOK/MWh. Similarly, 
new peaking capacity should be added when the average price over sub 
period 2 and 3 reaches 349 NOK/MWh. This is when the short-run marginal 
cost (SRMC) in the system equals the LRMC of system expansion. SRMC 
is the same as the price in our system, since we assume that suppliers bid 
their marginal cost and end-user bid their marginal willingness to pay into 
the spot market49. Under these assumptions the investment levels found in 
the analysis of marginal costs should represent a centralised social optimum 
as well as a decentralised investor optimum, as long as Pcap equals VOLL.  

 
A static assessment of the optimal threshold for investment in new base 

load capacity in the initial system can now be accomplished by plotting the 
average price over all sub periods and compare it to the total unit cost for 

                                                
47 Outages due to maintenance are taken into account by using investment cost figures per 
unit of average available capacity over the year for the new technologies. Therefore, we can 
assume up to 8760 hours of operation for the new technologies in the calculations. 
48 Total unit cost = annualised unit capital cost adjusted for the number of operating hours 
and construction lead time + unit operating and fuel costs. 
49 Here we define SRMC as the least expensive of either a marginal increase in generation 
or a marginal decrease in load in the current system. SRMC therefore represents the 
immediate marginal utility of system expansion, which is also how price is represented in the 
model through the supply and demand curves. 
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technology 1. Similarly, technology 2 can be assessed by looking at the 
average price over the medium and peak demand periods. This is illustrated 
in Figure 5.13, where the total unit costs for the two new technologies are 
compared to the relevant average prices for two different levels of the price 
cap in the spot market.  We still assume that there is only 5 % price flexible 
demand in the system, so that the average prices are direct functions of the 
sub period prices depicted in Figure 5.12. Optimal investment levels based 
on this static assessment are indicated in Figure 5.13. We see that when Pcap 
equals VOLL (i.e. 10000 NOK/MWh), the break even points for both 
technologies are close to each others at an initial load level of about 9900 
MW. However, when Pcap is lowered to 1000 NOK/MWh the average prices 
are also reduced, so that higher demand is required before the average prices 
exceed the unit costs for the new technologies. A profit maximising investor 
would therefore require higher demand before investing in new capacity, 
and a discrepancy arises between the centralised and decentralised 
investment criteria. The change in investment criterion is most significant 
for the peaking technology, whose break even point increases more than 300 
MW due to the lower price cap. In total the analysis shows, not surprisingly, 
that the lower Pcap discourages private investments in new peaking capacity. 
The profitability of investments in new base capacity is also affected by 
Pcap, but to a much lower extent.  
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Figure 5.13 Average prices over all three sub periods (1+2+3) and over medium and peak 
sub periods (2+3) as function of demand in initial system (l0). TC1 and TC2 are total unit 
costs for technology 1 and 2. The expectation is taken over short-term uncertainties (ωs). 
cL,flex = 0.05. 
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The same static analysis of the initial system is also performed with a 
higher fraction of price flexible demand (15 %). Figure 5.14 shows that the 
increase in price flexible demand gives higher investment levels for both 
technologies.  At the same time, the relative difference in investment criteria 
between the two technologies increase, making technology 1 more attractive 
to invest in. This is because the rise in price flexible demand reduces the 
need for load shedding in the system, and therefore also the likelihood for 
the spot price to reach the price cap during peak demand. This also explains 
why the reduced Pcap now does not give any change in investment levels in 
Figure 5.14. A reduction in Pcap causes a deviation in average prices only 
when load shedding is required in the system, and with 15 % price flexible 
demand load shedding does not occur until after the unit costs for both 
technologies are reached. The higher price elasticity of demand therefore 
removes Pcap’s impact on the investment decisions, and the corresponding 
difference in centralised and decentralised investment criteria. The optimal 
investment levels from the static analyses presented here are summarised in 
Table 5.2. 
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Figure 5.14 Average prices over all three sub periods (1+2+3) and over medium and peak 
sub periods (2+3) as function of demand in initial system (l0). TC1 and TC2 are total unit 
costs for technology 1 and 2. The expectation is taken over short-term uncertainties (ωs). 
cL,flex = 0.15. 

Table 5.2 Summary of optimal demand levels (l0) for investment in technology 1 and 2, 
based on static analysis of prices for the initial conditions in the test power system. 

cL,flex = 0.05 cL,flex = 0.15 Technology 
Pcap = 10000 Pcap = 1000 Pcap = 10000 Pcap = 1000 

1 (base) 9900 MW 9970 MW 10160 MW 10160 MW 
2 (peak) 9920 MW 10240 MW 10770 MW 10770 MW 
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It is important to bear in mind that the static analysis presented here only 
looks at the power system in a “snapshot” of time. Hence, the optimal 
investment thresholds found here do not take into account neither growth 
nor long-term uncertainties in underlying variables. It is also a marginal 
analysis, in the sense that incremental investments are optimal at the 
indicated demand levels. However, in the case of large-scale investments, 
new plants will influence the marginal costs and prices in the system, and 
therefore also the optimal investment levels. The stochastic dynamic 
investment model takes all these factors into account, and we now use the 
same input data in a dynamic analysis of optimal investments in the test 
power system. 

5.3.3 Stochastic Dynamic Analysis of Optimal Investment Criteria  
Five different scenarios are analysed in the stochastic dynamic analysis of 
investments (Table 5.3). All the scenarios are analysed with 5 % and 15 % 
price responsive demand in the system. In the SW scenario we find the 
optimal investment strategy according to the social welfare objective in 
(5-9). The PI1 scenario represents a competitive market where Pcap equals 
VOLL, and there are always investors acting as new entrants to the market 
(i.e. MSinit = 0). Scenarios SW and PI1 should give the same investment 
strategy, according to the static analysis in section 5.3.2. In scenario PI2 we 
analyse the effect of a reduction in the price cap in the spot market, still 
assuming profit maximisation. The results from section 5.3.2 showed that 
the effect of reducing Pcap is highly dependent on the fraction of price 
flexible demand in the system. In scenario PI3 we use the model to examine 
how a capacity payment can be used to compensate for lower profits 
because of the price cap in the spot market. The magnitude of the capacity 
payment is set so that the initial investment threshold is the same as in the 
SW scenario50. In the end, in scenario PI4, we look at how the optimal 
investment strategy changes for an investor with a market share in the initial 
generation capacity in the power system, combined with an exclusive right 
to invest in new capacity. As we will see, it turns out that the impact on the 
optimal investment threshold is very significant even for low market shares. 
Note that we in this chapter only consider optimal investment thresholds 
                                                
50 We use the same representation of capacity price as we did in section 4.3.4(Figure 4.10). 
The capacity factor, CF, is now equal to the fraction of total installed capacity to expected 

peak load, i.e. 

2

1

3

, , , ,

,

( )
( x , , )

( ( x , , ))
s

i new k i old k
i

k k k s
k k k s

x X
CF l

E Q l
ω

ω
ω

=
+

=
∑

. CFlimit, is set to 1.15. CP(CF=1), 

is set to 200000 NOK/MW with 5 % price flexible demand and 115000 NOK/MW with 15 % 
price flexible demand. The initial investment thresholds in scenario PI3 are thereby brought 
down to the same levels as under social welfare maximisation (scenario SW). Unless 
otherwise stated we assume that the capacity payment is only paid to new capacity. 
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under stochastic dynamic optimisation. Consequently, all the investment 
criteria presented below represent optimal investment decisions according to 
decision rule d, as defined in section 4.4 (Figure 4.11). 

 
Table 5.3 Description of scenarios in the stochastic dynamic investment analysis. Pcap is the 
price cap in the spot market in NOK/MWh. MSinit is the market share of initial generation 
capacity. CP is capacity payment. 

Scenario Objective Pcap MSinit CP 
SW Centralised social welfare maximisation 10000 - no 
PI1 Decentralised profit maximisation 10000 0 no 
PI2 Decentralised profit maximisation 1000 0 no 
PI3 Decentralised profit maximisation 1000 0 yes 
PI4 Decentralised profit maximisation 10000 0.03 no 

 
We start the stochastic dynamic analysis by finding optimal thresholds for 

investments in new capacity with 5 % price flexible demand.  The initial 
conditions in the power system are the same as in the static analysis, and 
still described by Table 5.1. The growth and uncertainty (lgrowth = 100 
MW/year, lsdv = 200 MW/year) in the state variable for demand (lk) are now 
taken into account in the optimisation. Furthermore, new capacity additions 
are lumpy (Ωu = [400 200] MW]), and construction delays are explicitly 
represented as construction states in the mathematical description of the 
investment model, as illustrated in Figure 5.7. 

 
First, we use the stochastic dynamic optimisation model to find the 

optimal investment strategy for scenario SW. Optimal investment thresholds 
under social welfare maximisation can be visualised by plotting the 
expected gain in social welfare from investing along with the expected gain 
from postponing the investment (Figure 5.15). The gain in social welfare is 
here defined as the difference in social welfare between the respective 
investment alternatives and the situation where no investments are made 
throughout the entire planning horizon. Thus, there is also an expected 
social welfare gain from postponing an investment decision, as long as the 
investment can be undertaken at a later stage in the planning period. The 
optimal investment threshold occurs when the expected social welfare gain 
from investing exceeds the expected gain from postponing the investment 
decision. The initial demand at which investment becomes optimal is 
indicated as l0*,SW in Figure 5.15. The general theory for investments under 
uncertainty from Chapter 4 is also valid when social welfare is used in the 
objective function of the investment model. Hence, the growth and 
uncertainty in demand should have similar effects on the optimal investment 
threshold under social welfare and profit maximisation. The only difference 
is that the social welfare objective also takes into account the uncertain 
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changes in consumer surplus in addition to the investor’s profit, as discussed 
in section 5.2.5. From Figure 5.15 we see that it is not optimal to invest until 
the initial demand level approaches 9700MW, although the expected gain in 
social welfare from investing is positive also at much lower demand levels. 
This is due to the option value of the investment opportunity, which arises 
from the growth and uncertainty in future demand. We can also see that the 
optimal technology choice at l0*,SW is the base load plant (tech 1). When 
comparing to the results from the static analysis (Figure 5.13 and Table 5.2) 
we see that the optimal technology choice is the same, while the investment 
level appears to be lower in the stochastic dynamic analysis. However, the 
two investment thresholds are not directly comparable, as the construction 
delay is not included in the static analysis. The construction time for the 
base load plant is three years, so that with an expected growth in demand of 
100MW/year, the demand level actually reaches a higher level than in the 
static analysis before new capacity is added to the system. 
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Figure 5.15 Expected gain in social welfare as function of initial demand level, l0, for the 
four possible investment strategies (wait, tech 1, tech 2, tech 1+2), scenario SW. cL,flex = 
0.05. 

The investment model is now used to find optimal investment criteria 
under decentralised profit maximisation for scenario PI1-PI4. The results are 
shown in Figure 5.16 and also summarised in Table 5.4. We see that the 
investment threshold in scenario PI1, which represents a free market with no 
disturbances in the price formation, is actually higher than in the SW 
scenario. This difference in the optimal investment levels between the social 
welfare and profit maximisations can not be seen from the marginal analysis 
in section 5.3.2. It is due to the lumpiness in capacity additions, which 
causes a feedback from investment to price and thereby different changes in 
profit and social welfare, as discussed in section 5.2.5.  
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Figure 5.16 Expected profit as function of initial demand level, l0, for the four possible 
investment strategies (wait, tech 1, tech 2, tech 1+2), scenarios PI1-4. cL,flex = 0.05. 

Table 5.4 Summary of characteristics for optimal investment thresholds. Pav,1+2+3 and Pav, 

2+3 are average prices over the entire year and for sub periods 2 and 3. J0* is the value of 
the objective function at optimal investment threshold (i.e. expected social welfare gain for 
scenario SW and expected profit for scenario PI1-4). cL,flex = 0.05. 

Optimal investment threshold Scenario 
l0* 

[MW] 
Tech-
nology 

Pav,1+2+3 

[NOK/MWh] 
Pav, 2+3 

[NOK/MWh] 
J0* 

[MNOK] 
SW 9680 1 184.1 306.4 1352 
PI1 9770 1 188.5 315.6 1060 
PI2 10000 1 208.4 329.3 451 
PI3 9680 2 184.1 306.4 484 
PI4 10090 1 242.7 404.9 6869 

 
For scenario PI2 we see that a reduction in Pcap to 1000 NOK/MWh 

lowers the expected profit from investing in new capacity. The optimal 
investment threshold is therefore increased with more than 200 MW 
compared to scenario PI1. This also results in significantly higher prices at 
the optimal investment level in scenario PI2, as seen from Table 5.4. 
However, the expected profit at the optimal investment threshold is lower 
than in scenario PI1, because of the price cap which lowers the expected 
price and profit in the peak demand sub periods. Technology 1 is the 
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preferred technology in both scenarios. When comparing to the results in 
Table 5.2 we see that the base load plant also has the lowest investment 
threshold in the static analysis. However, the increase in investment 
threshold due to the lower price cap is more significant in the dynamic 
analysis. This is because the dynamic model also takes into account how the 
lower price cap affects future prices and not only the price in the initial 
system. 

 
In scenario PI3, the capacity payment increases the profitability of 

investing compared to scenario PI2. Still, the expected profit is kept down 
by the price cap, and is still much lower than in scenario PI1. The capacity 
payment brings down the demand and prices at the optimal investment 
criterion to the same level as in the SW scenario, but it also causes a change 
in the optimal choice of technology. This is because the capacity payment 
reduces the level of income which is required from sales in the electricity 
spot market, for investments in new power generation capacity to become 
profitable. However, a new peaking plant operates fewer hours than a new 
base load plant, and can therefore allow a larger reduction in the price 
earned in the electricity market. The corresponding reduction in the optimal 
investment threshold depends on the relationship between demand and spot 
price in the three demand sub periods. In our case the effect is more 
significant for the peaking plant.  Hence, the introduction of the capacity 
payment in scenario PI3 causes the optimal choice of technology to change 
to the peaking plant (technology 2). 

 
In scenario PI4 the investor optimises the sum of profits from new 

investments and from his 3% share of initial capacity in the system. The 
expected profit is therefore much higher than in the other profit maximising 
scenarios, PI1-3. Investments in new capacity reduce the spot price and the 
profitability of existing generation assets. Consequently, an investor with a 
market share in existing capacity and an exclusive right to invest, has an 
incentive to postpone new investments in order to avoid lower profits from 
current assets. It is not optimal to invest until the profits from new 
investments compensates for the loss in income from the existing capacity. 
This effect is very significant, and the optimal investment threshold 
increases more than 300 MW compared to scenario PI1, where the only 
difference is that the investor acts a new entrant, i.e. with no initial capacity. 
The large increase in optimal demand level in scenario PI4 occurs despite 
the investor’s low market share, only 3% of total installed capacity. From 
Table 5.4 we see that effect on prices is even more significant, with average 
prices over the year rising more than 50 NOK/MWh and the average price 
over the medium and high demand periods rising almost 90 NOK/MWh 
compared to scenario PI1 at the optimal investment threshold. 
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To further explore the relation between market share and optimal 
investment thresholds, we plot the optimal demand level for investment, l0*, 
as function of the investor’s market share (Figure 5.17). It turns out that the 
increase in investment threshold due to the investor’s ownership of initial 
capacity is almost the same in scenarios PI1-351 for small market shares (up 
to 3 %). However, in scenario PI1 the investment criterion makes a distinct 
jump up already at a market share of 4 %. This extreme rise in investment 
threshold occurs when the investor no longer finds it optimal to invest in 
order to meet the demand in the peak sub period. Instead, the investment is 
postponed until the medium demand approaches installed capacity. For 
scenarios PI2 and PI3 this transition in investment criterion takes place at 
higher levels of initial market share. This is because of the lower price cap 
in the spot market, which reduces the profitability also of existing power 
generation assets. In scenario PI3 the capacity payment also contributes to 
push back the extreme rise in l0*, since the capacity payment is assumed to 
be paid only to new capacity in the system.  
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Figure 5.17 Optimal investment threshold as function of market share. cL,flex = 0.05. 

The effect of market power and monopolistic investment conditions in this 
example represent a situation where a profit maximising investor has an 
exclusive right to invest throughout the 10 years planning horizon. This is of 
course an extreme assumption as there in real world power markets usually 
would be several competing participants considering investments at the 
same time. A situation with exclusive investment rights can still arise, for 
instance if the number of construction permits in the market is kept very 
low. The results presented above illustrates the importance of having low 
barriers for new entry to the power market, to avoid that participants with 
                                                
51 Note that scenario PI4 is the same as scenario PI1, with an investor market share in initial 
generation capacity of 3%. 
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high market shares hold back on investments in order to increase prices. 
Furthermore, the long-term effect of strategic investment decisions caused 
by market power combined with high barriers for entry can be detrimental to 
the system, even if the participants do not exercise market power in the 
short-term bidding into the spot market.  

 
We now repeat the analysis with a higher fraction of price flexible demand 

in the system. Optimal investment thresholds with 15 % price flexible 
demand are illustrated in Figure 5.18 and Figure 5.19, and also summarised 
in Table 5.5. If we compare to the results for 5 % price flexible demand, we 
see that the optimal initial demand levels for investment have increased in 
all scenarios. This is simply because the higher price elasticity of demand 
results in lower prices and loads for the same realisation of the demand state 
variable, lk. The same effect is seen in the static analysis in section 5.3.2. If 
we now compare the investment thresholds in scenario SW and PI, we see 
that there is still a discrepancy between the investment criteria under the 
social welfare and profit objectives, and the difference in initial demand is 
actually larger than it was with 5 % price flexible demand. However, the 
effect of a lower Pcap in scenario PI2 is much less significant after the 
increase in price elasticity. From Table 5.5 we see that scenarios PI1 and 
PI2 now have exactly the same investment threshold and technology 1 is the 
optimal technology in both scenarios. The only difference is that the lower 
price cap results in a reduction in the expected profit at the optimal 
investment level. In turn, this means that the importance of regulatory 
intervention, in terms of defining a price cap in the spot market, has been 
considerably reduced due to the increased price elasticity of demand. 
However, a capacity payment is still required in scenario PI3 to bring the 
investment threshold down to the level in scenario SW, although the 
magnitude of the payment is reduced52.  

 
For scenario PI4 we see that the effect of an initial market share combined 

with an exclusive investment right still makes a huge impact on the optimal 
investment criterion. The initial demand at the optimal investment threshold, 
l0*, increases with more than 400 MW due to the investor’s market share in 
existing capacity. However, the corresponding price increase is less 
significant than it was with 5 % price flexible demand, particularly for the 
medium and peak demand sub periods. This is because of the higher price 
elasticity of demand, which effectively reduces the price effect of increased 
demand in the system. From Figure 5.20 we still see a distinct increase in 
the optimal investment threshold, l0*, as function of increasing market 
share. However, the extreme shifts in l0* now occur at higher levels of 
                                                
52 CP(CF=1) in scenario PI3 is now 115000 NOK/MW, as compared to 200000 NOK/MW in 
scenario PI3 for 5 % price flexible demand. 
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market share than in Figure 5.17 with 5 % price flexible demand. In 
addition, Figure 5.20 shows that the lower price cap in scenario PI2 and PI3 
still reduces an investor’s incentive to exploit his market share in existing 
capacity, also in the scenarios with higher price elasticity of demand. 
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Figure 5.18 Expected gain in social welfare as function of initial demand level, l0, for the 
four possible investment strategies (wait, tech 1, tech 2, tech 1+2), scenario SW. cL,flex = 
0.15. 
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Figure 5.19 Expected profit as function of initial demand level, l0, for the four possible 
investment strategies (wait, tech 1, tech 2, tech 1+2), scenarios PI1-4. cL,flex = 0.15. 



Chapter 5 

- 150 - 

Table 5.5 Summary of characteristics for optimal investment thresholds. Pav,1+2+3 and Pav, 

2+3 are average prices over the entire year and for sub periods 2 and 3. J0* is the value of 
the objective function at optimal investment threshold (i.e. expected social welfare gain for 
scenario SW and expected profit for scenario PI1-4). cL,flex = 0.15. 

Optimal investment threshold Scenario 
l0* 

[MW] 
Tech-
nology 

Pav,1+2+3 

[NOK/MWh] 
Pav,2+3 

[NOK/MWh] 
J0* 

[MNOK] 
SW 10070 1 193.6 309.4 566 
PI1 10260 1 211.9 318.9 551 
PI2 10260 1 211.9 318.9 407 
PI3 10070 1 193.6 309.4 423 
PI4 10670 1 243.6 342.8 4902 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10000

10500

11000 

11500

12000

12500

13000

13500

14000

Market share

O
pt

im
al

 in
ve

st
m

en
t 

th
re

sh
ol

d,
  l

0
* 

 [
M

W
]

PI1
PI2
PI3

 
Figure 5.20 Optimal investment threshold as function of market share. cL,flex = 0.15. 

In the end we use the stochastic dynamic investment model to find optimal 
investment thresholds for marginal investments in new capacity. The 
fraction of price flexible demand is now varied between 1% and 20%. Table 
5.6 shows that marginal investments give lower initial demand levels for 
optimal investments, l0*. This is not surprising, since the feedback from 
investment to price disappears when investments are marginal. Furthermore, 
we see from Table 5.6 that the optimal investment thresholds and 
technology choices are now identical in scenarios SW and PI1, independent 
of the amount of price flexible demand in the system. Hence, when 
investments are marginal the social welfare and profit maximising 
objectives yield the same result, also in the dynamic analysis. In the 
marginal case, there should therefore be no need for regulatory intervention. 
Indeed, we see that the price cap in scenario PI2 still gives too high 
investment thresholds when price elasticity of demand is low. Moreover, the 
capacity payments in scenario PI3 results in too low investment thresholds 
when the fraction of price flexible demand is high. Note that the investment 
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thresholds now deviate from the social welfare optimum, since we are using 
the same levels of capacity payments as we did with lumpy investments. For 
scenario PI4, Table 5.6 shows that the effect of monopolistic investment 
conditions is still a rise in investment threshold, also when investments are 
marginal.  

 

Table 5.6 Investment thresholds, l0*, for marginal investments, Ωu=[1 1] MW. 
1CP(CF=1) = 200000 NOK/MW. 2CP(CF=1) = 115000 NOK/MW. 

1% 5% 10% 15% 20% Scen 
lo,thres tech lo,thres tech lo,thres tech lo,thres tech lo,thres tech 

SW 9310 1+2 9470 1 9670 1 9860 1 9980 1 
PI1 9310 1+2 9470 1 9670 1 9860 1 9980 1 
PI2 9520 1 9610 1 9750 1 9870 1 9980 1 
PI3 93101 1+2 94201 1+2 95601 1+2 96802 1 98002 1 
PI4 9400 1 9520 1 9790 1 10080 1 10290 1 
 
The analysis of marginal investments confirms that the discrepancy 

between the investment thresholds in scenarios SW and PI1 in Table 5.4 and 
Table 5.5 are caused by the lumpiness in investment. In those analyses we 
assumed that new plants of technology 1 and 2 have an available capacity of 
400 MW and 200 MW respectively. This amounts to 2.5 % and 1.25 % of 
the total installed capacity of old technologies in the power system. The 
relative magnitude of these capacity additions might be higher than what 
would be the case for new power generation projects in most power systems 
today. On the other hand, we have not taken into account how transmission 
constraints can influence the spot price at the site of the new plant. 
Bottlenecks in the transmission system would increase the feedback from 
new investments to the local spot price of electricity, since a new capacity 
addition would change the local capacity balance. Therefore, we argue that 
discrepancies between the optimal investment criteria under social welfare 
and profit objectives for large-scale investments in new power generation 
capacity can also occur in real world power systems. In such situations, the 
model results show that a capacity payment can contribute to bring a 
decentralised and profit maximising investor’s investment criterion closer to 
the optimal level from a social welfare point of view. However, it would 
probably be very difficult for regulators to decide on appropriate investment 
incentives. We have already seen that the level of capacity payments, which 
brings the decentralised investment threshold down to the same level as 
under the social welfare objective, depends on the fraction of price flexible 
demand in the system. In addition, Table 5.6 shows that the correct level 
also depends on the size of the new investment alternatives. Uncertainties 
are attached to both of these factors in the real world. An optimal scheme 
for capacity payments would therefore be hard to design. 
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5.3.4 Analysis of Investment Dynamics, 5 % Price Flexible Demand 
In order to analyse the long-term dynamics of investments, prices and 
reliability in the test power system, we simulate the system’s behaviour 
under the 5 different scenarios in Table 5.3. Investment decisions are 
simulated based on the stochastic dynamic optimisation model, as explained 
in the description of the market simulator in section 5.2.7. We limit the 
analysis to simulate only one realisation of growth in demand, by assuming 
that lk grows at the expected rate of 100 MW/year throughout the simulation 
period. However, the long-term uncertainty in demand is still taken into 
account when the stochastic dynamic investment model calculates the 
optimal investment criteria (i.e lsdv = 200 MW/year). Investments in new 
capacity are simulated over a period of 30 years, with both 5 % and 15 % 
price flexible demand in the system. The new capacity additions for 
technology 1 and 2 are still assumed to consist of plants with 400 MW and 
200 MW of available capacity. Hence, the initial investment thresholds are 
given by Table 5.4 and Table 5.5. We assume that there is surplus capacity 
in the system at the beginning of the simulation period, as the initial 
demand, l0, is set to 9300MW.  

 
In this section we present the results from the analysis of long-term 

investment dynamics with 5 % price flexible demand in the system. Figure 
5.21 shows the timing of capacity additions in the five different scenarios. 
Note that the simulator takes into account that there is a construction delay 
from an investment decision is made until new capacity is added in the 
system. Therefore, investment decisions for technology 1 are taken 3 years 
prior to capacity additions, while the construction delay for technology 2 is 
1 year. From Figure 5.21 we see that investments in technology 1 are 
triggered later for all the profit maximising scenarios (i.e. scenario PI1-4) 
than under the social welfare objective (i.e. scenario SW). Scenario PI4 has 
the slowest rate of capacity additions for base load plants. This is due to the 
investor’s incorporation of his market share in existing assets into the 
investment optimisations. For the peaking technology we see that the 
capacity payment in scenario PI3 results in earlier investments than in 
scenario SW, despite the low price cap in the spot market. The rate of 
investment in technology 2 remains higher in scenario PI3 compared to the 
other scenarios. This is because the capacity payment improves the relative 
profitability of investing in the new peaking technology compared to new 
base load plants. The investments in technology 2 in scenario PI1 follows 
the SW scenario closely, while the capacity additions of technology 2 in 
scenario PI2 and PI4 are lower than in the SW scenario. In scenario PI2, 
where Pcap is reduced without any additional capacity payment, we see that 
the investments in technology 2 disappear almost completely. 
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Figure 5.21 Simulated capacity additions for technology 1 and 2 in the five scenarios. cL,flex 
= 0.05. 

The different timing of investments is directly reflected in the simulated 
spot prices in the system. Figure 5.22 shows the simulated expected spot 
prices for the three different demand sub periods in the model. All scenarios 
follow the same price projection for the first few years in the simulation 
period, due to the excess capacity in the initial system and therefore no need 
for investments in new capacity. However, after the first five years we see 
that the prices in the profit maximising scenarios deviate from the SW 
scenario, particularly in the peak demand period. In scenario PI1 the prices 
in all sub periods are fluctuating at higher levels than in scenario SW, after 
the first period of excess capacity. This is due to the higher investment 
thresholds in scenario PI1, which are again caused by the lumpiness in 
investments. Still, we see that when new investments are made in scenario 
PI1, the sub prices tend to fall back down to the same level as in scenario 
SW. In scenario PI2 new investments are held back due to the low price cap 
in the spot market, and we see that the expected spot prices in base and 
medium demand are much higher than in scenarios SW and PI1. However, 
in the peak demand period the price is held down by the price cap of 1000 
NOK/MWh. For scenario PI3, where a capacity payment is added to 
compensate for the lower price cap, the base demand price is still 
considerably higher than in scenario SW. However, the prices in sub period 
2 and 3 are below the SW scenario most of the time. This is explained by 
the capacity payment, which favours investments in the peaking technology. 
The prices during high demand are therefore kept down, while the base 
demand price increases due to less base load capacity in the system. In 
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scenario PI4 the capacity of both technologies are held back, due to the 
investor’s strategic investment tactic. As a result, the prices in all sub 
periods increase substantially. The highest rise in prices naturally occurs in 
the peak demand period, where the prices reach an equilibrium level in 
scenario PI4 which is actually close to VOLL (10000 NOK/MWh). The 
simulated prices in Figure 5.22 clearly illustarte that the exercise of market 
power in investment decisions can have a drastic effect on the long-term 
development of prices in the system. 
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Figure 5.22 Expected spot prices during base (lower), medium (middle) and peak demand 
(upper) in the different scenarios. The expectation is taken over ωs. cL,flex = 0.05. 

It is also interesting to analyse the average prices for the entire year and 
over sub period 2 and 3. These average prices are of course given by the sub 
period prices, but can be compared more directly to the total unit costs of 
the new power generation technologies. The total unit costs for the new 
technologies can be considered as the LRMC of system expansion, as 
discussed in the static analysis in section 5.3.2. Figure 5.23 shows that in 
scenario SW the average price over all sub periods fluctuates around the 
total unit cost for the base load technology (202 NOK/MWh), while the 
average price for sub period 2 and 3 is kept on or below the total unit cost 
for the peak load plant (349 NOK/MWh)53. For scenarios PI1 and PI4 we 

                                                
53 The comparison of average price in sub period 2 and 3 to the total unit cost of technology 
2 is not completely fair, as the total unit cost is calculated based on the assumption that a 
new plant only operates during medium and peak demand (i.e. 3000 hours/year). However, 
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see that the average prices fluctuate high above the LRMC of system 
expansion. In scenario PI2 the price cap keeps the average prices over sub 
period 2 and 3 down to a level around the total unit cost of technology 2, 
whereas the average price over the year is considerably above LRMC and 
close to scenario PI1. In scenario PI3, the capacity payment and subsequent 
investments in the peaking technology keeps the average price in sub period 
2 and 3 below LRMC. The average price over the entire year is at the same 
level as in the SW scenario, i.e. close to total unit cost for technology 1.  
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Figure 5.23 Expected spot prices for all sub periods (lower) and for sub period 2 and 3 
(upper). The expectation is taken over ωs. cL,flex = 0.05. 

The analysis of average prices shows that social welfare optimisation 
apparently keeps the prices in the system close to the LRMC of system 
expansion. The average prices in the profit maximising scenarios deviate 
more or less from the total unit costs for the new technologies, depending on 
the assumptions about regulations and market structure. As pointed out in 
section 5.3.2, the traditional static analyses of system expansion conclude 
that LRMC is the optimal long-term equilibrium price in the system. This 
result seems to be valid also for stochastic dynamic investment optimisation 
in this example. This is somewhat surprising, since we in Chapter 4 argued 
that the inclusion of growth and uncertainty in the optimisation would result 
in optimal investment thresholds which deviate from the static NPV 
                                                                                                                        
in high demand situations, e.g. due to short-term uncertainties, a new peaking plant can also 
expect to operate in base load hours and profit from that. This explains why investments in 
technology 2 occur, even if the average expected price in sub period 2 and 3 is below the 
total unit cost of technology 2.  
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criterion. However, the direct comparison of the simulated average prices 
and the LRMC of system expansion presented here does not give the full 
picture, as we only simulate the expected realisation in demand growth. At 
the same time, it is assumed in the simulated investment optimisations that 
the load growth is stochastic and can deviate from the expected growth. The 
uncertainty in demand growth is symmetric in the model, but positive 
deviations will in general cause larger upward changes in price than the 
downward price changes caused by negative deviations. Consequently, a 
simulation of expected growth is likely to give lower prices than the true 
expected price when the long-term uncertainty is properly taken into 
account. The analysis of prices and LRMC could be extended by running 
Monte Carlo simulations, using the same procedure as in section 4.4.4. 
However, we do not pursue a more detailed analysis of these topics here, 
and focus instead on the differences between optimal investments under 
centralised and decentralised decision making. These differences can not be 
comprehensively analysed, without using a dynamic model. 

 
The investments in new power generation also determine the reliability in 

the power system. The level of reliability can now be examined by plotting 
the simulated expected load shedding in the different scenarios (Figure 
5.24). We assume that load shedding is implemented by the system operator 
as soon as the fixed part of the demand can not be met by the total available 
capacity of old and new technologies. This means that the required level of 
operating reserves is never compromised. Moreover, we assume that the 
system operator during load shedding is able to disconnect exactly the 
amount of load which is required, so that the remaining part of the price 
inelastic demand can be met by the total generation capacity in the system. 
Figure 5.24 shows that load shedding is expected to occur in all the 
scenarios. Hence, we can conclude that with 5 % price flexible demand in 
the system it is too expensive to invest in new capacity so that demand is 
always met, also from a social welfare point of view. During the first five 
years of the simulation period we see that there is no load shedding in the 
system, due to the initial surplus of installed capacity. The initial reliability 
of the system therefore appears to have been too high, based on an economic 
assessment. For scenarios SW, PI1 and PI3 the expected load shedding is 
kept at relatively low levels throughout the simulation period. However, the 
shedding of load reaches much higher levels in scenarios PI2 and PI4, due 
to the lower price cap in PI2 and the strategic investment behaviour in PI4. 
Table 5.7 shows that total expected load shedding in the 30 years simulation 
period increases as much as 25-35 times in these two scenarios compared to 
the social welfare scenario. This is another result that underlines the 
importance of organising markets that provide correct long-term incentives 
for investments.  
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Figure 5.24 Simulated expected load shedding in the five scenarios. Total annual load in 
initial system (for k=0) is 91979 GWh. The expectation is taken over ωs. cL,flex = 0.05. 

Total investments in new capacity and total expected load shedding are 
summarised in Table 5.7. The table also shows the total simulated profit for 
investors in new capacity and the total gain in social welfare caused by the 
new investments. It turns out that in the SW scenario investors do not 
recover their investment costs completely, through sales of electricity in the 
spot market. In contrast, the net present values of profits from new invest-
ments are positive in all the profit maximising scenarios. When comparing 
scenarios PI2 and PI3 we see that the capacity payment in scenario PI3 
increases the investor’s total profit, despite the lower prices caused by the 
much higher rate of investments in technology 2. Table 5.7 also shows that 
the decentralised decision making in scenario PI1 results in lower social 
welfare than in the SW scenario. However, the reduction in social welfare is 
small compared to scenarios PI2 and PI4, where the delayed investment 
schedules cause large losses in social welfare compared to scenario SW. In 
scenario PI3 we have seen that the capacity payment leads to earlier 
investments and thereby lower prices than in the other profit maximising 
scenarios. However, from Table 5.7 we see that the change in investment 
schedule in scenario PI3 does not result in increased social welfare in the 
system, as the simulated social welfare in scenario PI3 is at a slightly lower 
level than in scenario PI1. Hence, although the average prices and level of 
load shedding in the system in scenario PI3 is brought closer to the social 
welfare scenario, it does not necessarily mean that the capacity payment 
gives a better solution from a social welfare point of view. This is probably 
because the capacity payment in scenario PI3 gives a too high rate of 
investments in new peaking capacity compared to the actual need in the 
system.  
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When interpreting the results we must remember that we have only 
simulated one realisation of demand growth, while the investment decisions 
are optimised based on an assumption of a stochastic future. A better 
assessment of the different scenarios would therefore require a stochastic 
simulation of investment decisions, similar to the Monte Carlo simulations 
in section 4.4.4. However, a further investigation of the power system’s 
performance under centralised and decentralised decision making under 
stochastic simulations of demand growth is left for future work. 

 
Table 5.7 Summary of aggregate results for simulations of capacity additions in the test 
power system. Total profits and social welfare gain are net present values. *Includes 
operating profits from 3% market share in existing generation assets. cL,flex = 0.05. 

Scen. Tot. capacity  
technology 1 

[MW] 

Tot. capacity 
technology 2 

[MW] 

Total profit 
for investors 

[MNOK] 

Total social 
welfare gain 

[MNOK] 

Total load 
shedding 
[GWh] 

SW 2800 1000 -1033 18202 25.6 
PI1 2400 1200 2229 18087 133 
PI2 2400 200 800 16216 894 
PI3 2400 1400 1285 18077 14.1 
PI4 2000 800 13086* 16489 664 
 
The socio economic consequences of the different planning scenarios are 

further examined in Table 5.8. The table shows relative changes in socio 
economic results for the four scenarios with decentralised decision making, 
using the centralised SW scenario as a reference. Here we also consider the 
distribution of social welfare between consumers and producers in the 
system. Table 5.8 clearly shows that the distributive effect can be very large, 
although the change in total social welfare is limited. This is because the 
distribution of welfare from existing capacity in the system is also highly 
dependent on the prices in the electricity market, which in the long run are 
decided by the new investments in power generation capacity.  

 
Table 5.8 Relative changes in social welfare, consumer surplus, producer surplus, total 
load and average price for scenarios PI1-4, using scenario SW as reference. Changes in 
social welfare, consumer and producer surplus are net present values. PI3a – capacity 
payment to new capacity only. PI3b - capacity payment to all capacity.  cL,flex = 0.05. 

Scenario Social 
welfare 

[MNOK] 

Consumer 
surplus 

[MNOK] 

Producer 
surplus 

[MNOK] 

Total 
load 

[GWh] 

Average 
price 

[NOK/MWh] 
PI1 -115 -37534 37419 -2162 25.4 
PI2 -1986 -22259 20275 -5086 16.8 
PI3a -125 2113 -2238 -763 0.0 
PI3b -125 -38155 38030 -763 0.0 
PI4 -1713 -111060 109347 -5560 75.6 
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For scenario PI1 we see that the NPV of the total reduction in social 
welfare is 115 MNOK, compared to the SW scenario. This change in social 
welfare by going from maximisation of social welfare to investor profits 
might appear as rather small in a 30 years horizon. However, we see that the 
changes in consumer and producer surpluses are very high in comparison. 
The consumers loose in total more than 37000 MNOK during the simulated 
period, mainly because of the higher average price in the PI1 scenario. In 
addition, the aggregate reduction in total system load because of fewer 
investments and higher prices also contributes to the loss in consumer 
surplus. In scenario PI2 there is a much higher loss in total social welfare. 
At the same time, we see that the negative effect for consumers is reduced, 
due to the price cap which keeps the prices in peaking periods down. This is 
reflected in the average price, which increases less in scenario PI2 than in 
scenario PI1. However, the total reduction in load is now more than 5 TWh. 
The loss in social welfare and reduced system reliability in scenario PI2 is 
probably not acceptable for any of the participants in the power system. 

 
In scenario PI3 we have seen that the increased investment incentives 

along with the price cap in the spot market keep the average price over the 
simulation period at the same level as in scenario SW. Still, the relative 
change in social welfare is at the same level as in scenario PI1. The 
distributional effect of the capacity payment is highly dependent on how it 
is implemented, as the payment in reality is a transfer of welfare from 
consumers to producers in the system. In scenario 3a in Table 5.8 we have 
assumed that the capacity payment is only paid to new power generation 
capacity in the system. In this case we see that the relative changes are small 
in consumer and producer surplus. The other extreme is represented in 
scenario 3b, where the capacity payment goes to all the capacity in the 
system. It is likely that such a huge transfer of wealth to producers in the 
system would trigger large protests from consumers. In this situation the 
producer surplus rises above the level in scenario PI1. In the end, for 
scenario PI4 we see that the exercise of strategic investment behaviour 
causes extreme losses for the consumers in the system. From this we can 
conclude that the end-users would be exposed to detrimental effects of 
market power, if monopolistic investment conditions are present in the 
system over a longer period of time. Hence, it is very important that the 
power market is designed to discourage participants from exploiting their 
market share in existing generation capacity.  

5.3.5 Analysis of Investment Dynamics, 15 % Price Flexible Demand 
The analysis of price and investment dynamics in the test power system is 
now repeated, with the only difference that the fraction of price flexible 
demand is increased to 15 %. Many of the results have the same 
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characteristics as in the scenarios with 5 % price flexible demand. However, 
there are also some significant differences, and these are pointed out as the 
results are presented below.  

 
The simulated trajectories for installed capacity of the new technologies 

are shown in Figure 5.25. The most striking change from the scenarios with 
5 % price flexible demand in Figure 5.21 is that the rate of investment in the 
peaking technology is now much lower. Actually, capacity additions of 
technology 2 only occur in scenario PI3, where a capacity payment 
contributes to enhance the attractiveness of new peaking plants. For 
investments in technology 1 we see that scenarios SW and PI3 have the 
highest frequency of investment. In the profit maximising scenarios PI1 and 
PI2 the capacity additions seem to follow with a time delay of 2 years. 
Another interesting observation is that scenario PI1 and PI2 give almost 
exactly the same investment pattern. This indicates that the lower price cap 
in scenario PI2 now has a much lower impact on investment decisions. In 
turn, this is due to the increased price elasticity of demand, which makes it 
less likely that load shedding will be needed in the system. For scenario PI4 
we see that strategic investment behaviour due to monopolistic investment 
conditions would still cause extensive delays in capacity additions. A 
general observation which is valid for all scenarios is that investments are 
now triggered later than in Figure 5.21. The higher fraction of price flexible 
demand reduces the effect on price from the gradually increasing demand in 
the system. Consequently, it is optimal for both centralised and 
decentralised investors to further postpone investment decisions, to wait for 
optimal investment conditions to occur in the system. 
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Figure 5.25 Simulated capacity additions, tech 1 and 2 in the five scenarios. cL,flex = 0.15. 
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The observed changes in simulated investment patterns are also reflected 
in the spot prices. From Figure 5.26 we see that the prices in scenarios SW 
and PI3 follow each others closely. The match between scenarios PI1 and 
PI2 is even closer, due to the similar investment strategies. The prices in 
scenario PI4 are still much higher than in the other scenarios. However, the 
deviation in prices is still lower than in Figure 5.22, because the rise in price 
flexible demand subdues the price effect of lower investments. This is also 
reflected in Figure 5.27, where we see that the prices in all scenarios are 
closer to each others than in Figure 5.23. The average price over the year in 
scenario SW fluctuates around the total unit cost for technology 1, while the 
average price over sub period 2 and 3 levels out slightly below the total unit 
cost for technology 2. This is the same picture as we see in Figure 5.23, 
although the difference between the average price over the year and the 
average price over medium and peak demand is now reduced due to the 
higher price response on the demand side.  
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Figure 5.26 Expected spot prices during base (lower), medium (middle) and peak demand 
(upper) in the different scenarios. The expectation is taken over ωs. cL,flex = 0.15. 

The need for load shedding has been vastly reduced, following the higher 
price flexibility on the demand side. Figure 5.28 shows that scenario PI4 is 
now the only scenario that has a significant amount of load shedding, which 
only occurs towards the end of the simulation period. This result illustrates 
that an increase in the amount of price flexible demand from 5 % to 15 % 
drastically improves the market’s ability to settle correct prices on its own. 
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Consequently, the need for the regulator to interfere in the market with load 
shedding and a corresponding price cap has been significantly reduced. 
Active demand side participation in the market is therefore crucial to obtain 
a robust and viable market for electrical power. 
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Figure 5.27 Expected spot prices for all sub periods (lower) and for sub period 2 and 3 
(upper). The expectation is taken over ωs. cL,flex = 0.15. 
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Figure 5.28 Simulated expected load shedding in the five scenarios. Total annual load in 
initial system (for k=0) is 90293 GWh. The expectation is taken over ωs. cL,flex = 0.15. 
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The main results for the analysis are summarised in Table 5.9. We see that 
investors’ aggregate profit is still negative in the social welfare scenario, 
while the investor profits in scenarios PI1-PI3 are positive. There are now 
only small differences between the simulated profits in these three profit 
maximising scenarios. In contrast, the total profit in scenario PI4 is of 
course still much higher than in the other scenarios. However, the simulated 
profit in scenario PI4 is reduced with more than 50 % compared to the same 
result in Table 5.7. This is mainly because of the increased amount of price 
flexible demand, which effectively lowers the possibility for pressing up 
prices by holding back on investments. The effect is particularly significant 
during peak demand periods, where the price is now much less likely to 
reach up to VOLL. From the simulated gain in social welfare we see that the 
differences between the scenarios are smaller than in Table 5.7. This is 
another indication that the higher amount of price flexible demand enhances 
the power market’s robustness, by reducing the spot prices’ sensitivity to 
installed capacity in the system.  

 
Table 5.9 Summary of aggregate results for simulations of capacity additions in the test 
power system. Total profits and social welfare gain are net present values. *Includes 
operating profits from 3% market share in existing generation assets. cL,flex = 0.15. 

Scen. Tot. capacity  
technology 1 

[MW] 

Tot. capacity 
technology 2 

[MW] 

Total profit 
for investors 

[MNOK] 

Total social 
welfare gain 

[MNOK] 

Total load 
shedding 
[GWh] 

SW 2400 0 -218.3 3834 0 
PI1 2000 0 556.1 3752 0.14 
PI2 2000 0 648.1 3744 0.23 
PI3 2400 400 518.6 3808 0 
PI4 1600 0 5816* 3015 16 
 
In the end we also here examine the socio-economic consequences further, 

by calculating the relative distributional effects in the profit maximising 
scenarios, using scenario SW as a reference. Table 5.10 shows that relative 
changes in consumer and producer surplus are reduced compared to the 
results in Table 5.8 with only 5 % price flexible demand. This is due to the 
lower impact on price from the differences in investment schedules. The 
increased changes in total load, which follow naturally from higher price 
elasticity of demand, are of less importance for the distributional effects. 
Table 5.10 also confirms that the difference between scenario PI1 and PI2 
disappears almost completely. However, there is still an extensive loss in 
consumer surplus in going from the social welfare maximisation in scenario 
SW to the profit maximisation in scenarios PI1 and PI2. The capacity 
payment in scenario PI3 can contribute to remove this loss in consumer 
surplus, but only if the payment is limited to the new investments in power 
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generation capacity. A capacity payment to all installed capacity in the 
system (scenario PI3b) makes the consumers worse off than in scenarios PI1 
and PI2. However, the worst case scenario for end-users is still scenario PI4, 
where a producer exploits a monopolistic investment opportunity by holding 
back on investments in order to increase prices and profits.  

 
Table 5.10 Relative changes in social welfare, consumer surplus, producer surplus, total 
load and average price for scenarios PI1-4, using scenario SW as reference. Changes in 
social welfare, consumer and producer surplus are net present values. PI3a – capacity 
payment to new capacity only. PI3b - capacity payment to all capacity.  cL,flex = 0.15. 

Scenario Social 
welfare 

[MNOK] 

Consumer 
surplus 

[MNOK] 

Producer 
surplus 

[MNOK] 

Total 
load 

[GWh] 

Average 
price 

[NOK/MWh] 
PI1 -82 -11985 11903 -5509 11 
PI2 -90 -12686 12596 -6059 12 
PI3a -26 -182 156 465.6 -0.54 
PI3b -26 -21215 21189 465.6 -0.54 
PI4 -819 -33486 32667 -15790 34 

 
The most important finding in this section, which has been commented 

several places throughout the analysis, is that an increase in price flexible 
demand from 5 % to 15 % makes the power market in this case study much 
more robust. The higher fraction of price flexible demand does not remove 
the differences in investment strategies between the social welfare and profit 
maximising scenarios. However, the system consequences of these 
differences are significantly reduced, due to the demand side’s increased 
ability of adjusting load according to the prices in the system. Consequently, 
the necessity of regulatory intervention into the market is also significantly 
reduced. Nevertheless, it is worth noting that a capacity payment now 
apparently brings the investments and prices in the system closer to 
optimum from a social welfare point of view.  It does so by reducing the gap 
in investment criterion between social welfare and profit maximisation, 
which arises from the lumpiness of the investment projects. 

5.3.6 Computational Issues 
The optimisation model presented in this chapter is an extension of the 
model in Chapter 4, and is therefore also implemented in MATLAB. The 
size of the state space increases quickly as a function of the length of the 
planning period and the number of capacity states for the two power 
generation technologies. However, with the limited state space 
representation used in the examples presented here, the computing time for 
an investment optimisation for a given level of initial demand is in the range 
of 3-4 seconds on a computer with a 1.2 GHz processor and 256 MB RAM.   
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5.4 Chapter Summary and Concluding Remarks 
In this chapter we have extended the stochastic dynamic framework for 
investment optimisation to include two power generation technologies. At 
the same time we now describe the electricity market explicitly in terms of 
supply and demand curves. With this market description we can find 
optimal investment strategies with regards to maximisation of either profits 
from new investments or total social welfare in the system. The temporal 
variation in demand is now represented in the model by using three demand 
sub periods. At the same time we assume that parts of the demand are 
responsive to price. A similar representation of demand is used in the static 
optimisation models for peak load pricing. With our stochastic dynamic 
framework we are able to include the effect of growth and uncertainty in 
demand on the optimal investment strategies. These factors are rarely 
represented in the traditional literature on dynamic pricing of electricity. 

 
With this version of the investment optimisation model we can analyse the 

long-term effects of different planning regimes in the power system. Results 
from the case study show that the optimal investment strategies under social 
welfare and profit maximisation react similarly to growth and uncertainty in 
demand. However, the profit maximising investment criterion tends to 
deviate from the social welfare result when the new investment is lumpy 
and thereby causing a significant reduction in the electricity price. A price 
cap in the spot market below VOLL can contribute to increase this 
difference, and thereby lead to under investment in new power generation 
capacity. The introduction of an appropriate capacity payment will bring the 
investment criterion to the same level as under the social welfare measure. 
However, the capacity payment tends to give too much investment in 
peaking capacity in the case study, and the effect on the total social welfare 
in the system is not necessarily positive. The distributional effect of the 
capacity payment is also highly dependent on how it is implemented. The 
design of an optimal scheme of investment incentives is also very difficult 
given all the uncertainties in the system.  

 
The model can also be used to analyse how a decentralised investor with 

ownership in existing generation assets can exploit an exclusive right to 
invest in the system. In the case study it turns out that the profit maximising 
investment strategy changes drastically when this effect is included in the 
optimisation model, even if the investor’s initial market share is very low. A 
price cap contributes to reduce the incentive to strategically postpone 
investment decisions, but only to a limited extent. These results underline 
the importance of having low barriers for entry into the market, so that 
monopolistic investment conditions do not occur.  
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In general, the results from the model show that the necessity and 
importance of regulatory intervention in the power market is significantly 
reduced as the amount of price elastic demand in the system rises. It is 
therefore highly desirable to increase the price responsiveness of the 
demand side, in order to obtain a market for electric power which is robust 
and viable in the long run. Increased price elasticity also contributes to 
reduce the negative effects of delayed capacity additions which can follow 
from strategic investment planning. 

 
The examples in this chapter illustrate a range of possible applications of 

the stochastic dynamic investment model. Some of the issues that are 
addressed in the analyses, such as the effect of a price cap and monopolistic 
investment conditions, are hard to include properly into a static analysis. At 
the same time, we see that some of the results in the case study deviate from 
what we would expect from a static and marginal analysis. For instance, 
differences can arise between the centralised social welfare and the 
decentralised profit criteria for new investments, even without exercise of 
market power. In addition, the long-run equilibrium price in the system is 
not necessarily equal to the LRMC of system expansion. In reality, the 
equilibrium levels of investments and prices in the power system are 
dependent on trends and uncertainties in underlying variables. In order to 
assess and improve the long-run performance of liberalised electricity 
markets it is therefore important to use planning models that take these 
effects into account. 
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Chapter 6 CONCLUSIONS AND 
DIRECTIONS FOR 
FURTHER RESEARCH  

This thesis describes the development of three decision support models for 
long-term investment planning in restructured power systems. The model 
concepts address the changing conditions for the electric power industry, 
with introduction of more competitive markets, higher uncertainty and less 
centralised planning. Under these circumstances there is an emerging need 
for new planning models, also for analyses of the power system in a long-
term perspective. This thesis focuses particularly on how dynamic and 
stochastic modelling can contribute to the improvement of decision making 
in a restructured power industry. We argue that the use of such modelling 
approaches has become more important after the introduction of competitive 
power markets, due to the participants’ increased exposure to price 
fluctuations and economic risk. Our models can be applied by individual 
participants in the power system to evaluate investment projects for new 
power generation capacity. The models can also serve as a decision support 
tool on a regulatory level, providing analyses of the long-term performance 
of the power system under different regulations and market designs. 

 
The system dynamics model in Chapter 3 is a descriptive model, which 

simulates investments in a number of different power generation 
technologies. The investment decisions in the model are static and based on 
a deterministic projection of prices, which in turn indicates expected future 
profitability of investing in the different technologies. Technology choice 
and timing of new capacity expansions also depend on a number of 
underlying factors, such as regulatory incentives (permit approval policy, 
taxes, and subsidies), construction delays and technology learning. The 
simulated investments are not necessarily optimal, but rather meant to 
describe real world decision making, which in most cases is based on 
limited foresight and bounded rationality. Results from the model show that 
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construction cycles are likely to occur in a power system where the most 
competitive power generation technologies are large-scale with long lead 
times. However, the introduction of investment incentives for renewable 
power generation technologies can substantially change the pattern of 
investments and prices. In general, the model can contribute to better 
understanding of the long-term dynamics of investments and prices in the 
power market. 

 
The investment model in Chapter 4 is a prescriptive optimisation model. It 

builds upon real options theory and calculates the optimal timing of 
investments in new power generation for a decentralised and profit-
maximising investor. The stochastic dynamic algorithm takes uncertainty in 
load growth, and its effect on future electricity prices, explicitly into account 
in the optimisation. Prices and profits are calculated in a separate model, 
whose parameters can be estimated based on historical data for load, prices 
and installed capacity in the power system. Investment decisions by other 
participants can also be represented in the model, although the case study 
shows that this has a limited effect on the investor’s optimal strategy for 
new investments. In the case study we use the model to analyse how the 
representation of dynamic decision making and stochastic load growth 
changes the optimal investment strategy. The results show a substantial 
increase in the investment threshold when going from a static to a dynamic 
project evaluation. A stochastic representation of load growth contributes to 
further postpone the investment decisions, although this effect is less 
significant. Monte Carlo simulations show that an investor increases his 
profits by using stochastic dynamic optimisation, as opposed to static and 
deterministic approaches, to decide the timing of new investments. In 
addition to calculate optimal investment strategies, the model can also be 
used for analysis of long-term system consequences. Results from the case 
study show that the investment strategy which follow from the stochastic 
dynamic model result in a long-term price level which is above the long-run 
marginal cost of system expansion. Hence, an average electricity price 
above the static long-run equilibrium price is likely to occur before new 
investments are triggered. This is not necessarily an indication of market 
failure. However, if the energy prices in the power market do not provide 
adequate investment signals, regulatory incentives can trigger earlier 
investments and thereby reduce the long-term prices. Our analysis indicates 
that direct investment subsidies would give lower additional costs to the end 
user than dynamic capacity payments, which depend on the future capacity 
balance in the power system. This is because constant investment subsidies 
do not give rise to an option value of postponing investments in new power 
generation capacity.  
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In Chapter 5 we extend the stochastic dynamic framework to include 
investments in two different technologies. In addition, the power market is 
now represented with explicit supply and demand curves. With the 
alternative market description the model can calculate optimal investment 
strategies under both a centralised social welfare and a decentralised profit 
objective. Results from the case study show that the dynamic and stochastic 
aspects have the same effect on the optimal investment thresholds under 
both objectives. However, a difference arises between the centralised and 
decentralised strategy when investments are large-scale and thereby causing 
a significant reduction in the electricity price. A price cap below the value of 
lost load will increase this discrepancy, particularly for investments in peak 
load technologies. The introduction of a capacity payment can eliminate the 
difference between the centralised and decentralised investment thresholds. 
However, the design of an appropriate investment incentive will be very 
difficult, given all the uncertainties in the system, and does not necessarily 
lead to an increase in total social welfare. The case study also illustrates the 
crucial role of a price responsive demand side in the power system. The 
necessity and impact of regulatory intervention in the market will be 
significantly reduced if the fraction of price flexible demand rises. Increased 
price elasticity of demand also reduces the negative consequences of 
delayed capacity additions, which could follow from inappropriate 
regulations, and possibly also from strategic investment planning. In the 
case study it is shown that new investments are delayed dramatically if an 
investor owns existing generation capacity and at the same time exploits an 
exclusive right to invest in the system. Hence, it is very important that the 
regulators maintain competition in the power system, by reducing the 
barriers to entry into the market for new investors.  

 
The main scientific contributions in the thesis lie in the combined use of 

economic theory for restructured power systems and theory for optimal 
investments under uncertainty. With an explicit representation of the power 
market, the dynamic investment models can identify profit maximising 
investment strategies under different regulations and market designs. The 
use of physical state variables in the models also facilitates analyses of the 
long-term consequences for the power system, which result from the 
optimal decentralised investment decisions. Decision support models for 
expansion planning in the regulated power industry do not address the 
aspect of competition and decentralised decision making. At the same time, 
long-term uncertainties and their impact on optimal investment decisions are 
rarely represented in planning models for the competitive industry. The 
stochastic dynamic models in this thesis therefore provide a new framework 
for long-term analysis of investments and prices in restructured power 
systems. 
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Throughout this thesis we have focused on developing models that can 
describe the long-term dynamics of investments and prices in restructured 
power systems. Less attention has been given to the representation of the 
short-term operation of the power system. A natural direction for future 
work is therefore to take more of the short-term factors into account in the 
dynamic investment models. A number of extensions could be implemented 
within the flexible modelling approaches proposed in this thesis. For 
instance, an explicit representation of the transmission network would make 
it possible to also address the locational dimension of the expansion 
planning problem within the framework of our dynamic investment models. 
Another very relevant extension is to add more details to the modelling of 
demand, for instance by increasing the time resolution in the models and by 
better representing the long-term relationship between electricity price and 
demand. Improved modelling of demand would facilitate a more balanced 
analysis of the long-term consequences of power system restructuring for 
both the supply- and demand-side of the market.  

 
A second direction for future research lies in the representation of 

uncertainty and risk preferences in the investment models. In the stochastic 
models in Chapter 4 and Chapter 5 we have only included growth in 
demand as a long-term uncertainty. An interesting extension would 
therefore be to include other long-term uncertainties, such as fuel prices and 
market regulations, as stochastic variables in the models, and see how this 
affects the optimal investment decisions. Alternatives to the use of binomial 
trees with constant probabilities for representation of long-term uncertainties 
could also be explored. When it comes to risk preferences we have applied 
the expected value paradigm for decision making, and only taken risk into 
account in terms of a risk-adjusted discount rate. Decision makers’ risk 
preferences could be directly represented in the models by using expected 
utility instead of expected profit in the investor’s objective functions. Future 
research efforts could also look further into how the investment problem can 
be formulated, so that the principles in contingent claims analysis and risk-
neutral valuation from the real options theory are more directly applicable to 
the problem.  
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Abstract--In this paper we first give a presentation of the 

history and organisation of the electricity market in 
Scandinavia, which has been gradually restructured over the 
last decade. A futures market has been in operation there since 
September 1995. We analyse the historical prices in the spot and 
futures markets, using general theory for pricing of commodities 
futures contracts. We find that the futures prices on average 
exceeded the actual spot price at delivery. Hence, we conclude 
that there is a negative risk premium in the electricity futures 
market. This result contradicts the findings in most other 
commodities markets, where the risk premium from holding a 
futures contract tend to be zero or positive. Physical factors like 
unexpected precipitation can contribute to explain parts of the 
observations. However, we also identify the difference in 
flexibility between the supply and demand sides of the 
electricity market, leaving the demand side with higher 
incentive to hedge their positions in the futures market, as a 
possible explanation for the negative risk premium. The limited 
data available might not be sufficient to draw fully conclusive 
results. However, the analysis described in the paper can be 
repeated with higher significance in a few years from now. 
 

Index Terms--Futures prices, price dynamics, restructured 
electricity markets, risk premium, spot prices. 

I.  INTRODUCTION 

ne of the consequences of the ongoing deregulation of 
the power sector around the world, is that futures and 

forward markets for electricity have gained increased interest 
for suppliers and consumers of electricity. Long-term 
contracts provide participants in the power market with an 
important tool for reducing their risk exposure, and economic 
risk management has become more important in the new 
market setting. The futures and forward markets can also 
serve as a profitability indicator for investments in the power 
system, and thereby contribute to a balanced development of 
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demand and supply. In order to use these markets in an 
optimal way, it is important for the power industry to gain 
knowledge about the information hidden in the long-term 
prices, and in particular the relationship between the long- 
and short-term prices of electricity. Scandinavia1 is one of the 
regions of the world that has the longest experience with a 
restructured power market, and futures contracts have been 
traded on the Nordic Power Exchange, Nord Pool, since 
1995. In this paper we take a closer look at the experiences 
from the Scandinavian market. In order to do this we first 
describe the conditions in, and organization of, the Nord Pool 
market. Then we look into finance theory for pricing of 
commodities futures contracts. The historical data from 
Scandinavia is analysed in order to assess the applicability of 
the traditional theory to the conditions in the electricity 
market. We are particularly interested in the relation between 
the long- and short-term prices in the market. 

II.  THE SCANDINAVIAN ELECTRICITY MARKET 

A.  The history of deregulation in Scandinavia 

Norway was the first country in Scandinavia to introduce 
competition in the power sector when a new energy act went 
into effect January 1st, 1991. The act mandated separation of 
transmission from generation activities, at least in 
accounting. Point-of-connection tariffs, which help to 
increase the competition in the market considerably, were 
established in 1992. At the same time all networks were 
opened for third party access. A similar tariff structure was 
established in Sweden in January 1995, and a legislation 
providing for competition became effective January 1st, 1996. 
Finland’s new energy market legislation instituted market 
competition beginning June 1st, 1995, and a point-of-
connection tariff was introduced in November of the same 
year. Denmark instituted a stepwise opening of the market, 
beginning in 1996, but with a shorter transition period than 
required by the EU directives. By January 2003 the market 
will be fully open to competition, as in the other three 
countries [1].  

 
The power exchange, Nord Pool, has evolved in parallel 

with the deregulation process in the Scandinavian countries. 

                                                        
1 By Scandinavia we here mean the four countries Norway, Sweden, 

Denmark and Finland, although strictly speaking it does not include Finland. 
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When established in 1993, it only served the Norwegian 
market. The Swedish and Norwegian markets merged into a 
common market, served by Nord Pool, in January ‘96. 
Finland joined in September ‘98, followed by western 
Denmark in January ‘99, and eastern Denmark in October 
2000. Nordpool is owned by the Norwegian and Swedish 
transmission system operators (Statnett and Svenska 
Kraftnett), but all Scandinavian TSOs cooperate closely on 
operational and market aspects in the common power market. 
The core responsibilities of the power exchange can be 
summarized as [1]: 

 

1. Provide a price reference to the power market 
2. Operate a physical spot market and a financial 

market for derivative products (e.g. futures contracts) 
3. Act as a neutral and reliable power-contract 

counterpart to market participants 
4. Use the spot market’s price mechanism to alleviate 

grid congestion. Report all traded power delivery and 
take-off schedules to the respective TSOs 

B.  Supply and demand of electricity 

The power generation in the three countries are based on 
various energy sources, as shown in Fig. 1. In Norway, nearly 
all electricity is generated from hydropower. Sweden uses a 
combination of hydropower, nuclear power, and conventional 
thermal power. Hydropower stations are located mainly in 
northern areas, whereas thermal power prevails in the south. 
Denmark relies mainly on conventional thermal power, but 
wind power’s share of the generation is rapidly increasing. 
The high share of controllable hydropower in the system 
makes it easy to regulate the generation on short notice. 
Hence, the spot price of electricity varies less over the day 
than what we see in pure thermal systems. However, the 
seasonal price fluctuations tend to be higher, due to the 
variations in inflow to the reservoirs. The price volatility is 
therefore high in the Scandinavian power market. 

 

 
Fig. 1.  Power generation by source in Scandinavia, 2000. Note that the hydro 
generation was record high in 2000. The generation in years with average inflow 
are 118, 64 and 13 TWh in Norway, Sweden and Finland respectively. The 
black lines in the figure represent undersea transmission lines. Source: [1].  

In addition to the inflow to hydro reservoirs, the demand 
for electric power also plays an important role in the 
electricity price formation. When looking at the demand of 
electricity we see that the seasonal variations in electricity 
consumption in Norway and Sweden follow the same pattern 
(Fig. 2). This is because both countries use a substantial 
amount of electricity for heating purposes. In Denmark, 
where most of the heating demand is met by gas and district 
heating networks, the variation in electricity consumption 
over the year is much lower. Finland lies somewhere in 
between when it comes to seasonal variations. The seasonality 
in consumption also contributes to seasonal prices in the 
electricity market. Another fact that is worth noting is that 
there still seems to be a considerable load growth in the 
system. The gross consumption increased on average with 
1.55 % pa. in the 90’s. Finland and Norway have experienced 
the highest growth rates, while the increase in Sweden and 
Denmark has been more modest [4].  
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Fig. 2.  Daily electricity consumption in Scandinavia, 2001. The annual figures 
are 147.3, 123.3, 79.1 and 35.5 TWh/year for Sweden, Norway, Finland and 
Denmark respectively. Source: [5]. 

C.  The spot market 

The spot market serves several purposes in the Nord Pool 
market area. First of all it distributes relevant neutral market 
information in terms of a transparent reference price for both 
the wholesale and retail markets. It also provides easy access 
to a physical market, and it creates the possibility of 
balancing portfolios close to time of operation. At the same 
time, the spot market in Scandinavia serves as a grid 
congestion management tool. Market splitting is used to 
relieve bottlenecks within Norway, and at the 
interconnections between the four countries. So called 
bidding areas may become separate price areas if the 
contractual flow of power between these bid areas exceeds the 
capacity allocated for spot contracts by the TSOs2.  
 

The spot market is in reality a day-ahead market, and it is 
based on bids for purchase and sale of hourly contracts and 
block contracts3 that cover the 24 hours of the next day. The 

                                                        
2 Within Sweden, Finland and Denmark, grid congestion is managed by 

counter-trade purchases based on bids from generators. 
3 A block contract bid has the same fixed price and volume for a number of 

hours of the day.  
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participants use specific bidding forms to submit their bids, 
and the spot prices are determined through auction trade with 
uniform price for each delivery hour. Table 1 shows when the 
different activities in the spot market take place. The system 
price is calculated by aggregating the supply and demand 
functions from all participants in the market for each 
individual hour, without taking transmission congestion into 
account (Fig. 3). Therefore, this price is also referred to as the 
unconstrained market price. It serves as reference for the 
contracts traded in the financial derivatives market. The 
system price prevails throughout the whole market area when 
there is no grid congestion between the bidding areas. 
However, several different area prices might occur in periods 
with bottlenecks in the system. 97 TWh was traded on Nord 
Pool’s spot market in 2000, and that amounts to about 26% of 
total annual generation in the market area. Fig. 4 shows the 
system price in the spot market since 1993. 

 
TABLE 1 

TIME LINE OF ACTIVITIES IN NORD POOL’S SPOT MARKET 

Time Activity 
11:00 Deadline for TSOs to submit their capacity allocations 

for the spot market 
12:00 Deadline for submitting bids to the spot market for the 

following day 
14:00 Calculation of system price and area prices finished 

and published 
24:00 The contract period starts 

 

 
Fig. 3.  The principle for calculation of the system price. Source: [2]. 

Fig. 4.  System price in Nord Pool’s spot market, 1993-2001. $1 ≈ NOK 9. 
Source: [5]. 
 

 Due to the long time span (up to 36 hours) between spot 
market price fixing and delivery, participants may need 
access to markets closer to real-time. In addition to the spot 
market Nord Pool therefore also operates a balancing market, 
called Elbas. In this market participants can trade one-hour 
contracts until two hours before delivery. The Elbas market is 
currently only available for the Swedish and Finish market 
areas, but there are plans to extend it to also include Norway 
and Denmark. Deviations from the scheduled power 
generation and consumption in the spot and Elbas market are 
traded in real-time markets operated by the TSOs. These 
markets are used to balance power generation to load in real-
time, and is open to participants who can regulate their 
generation or load on short notice. The TSOs in the four 
countries apply slightly different rules for how the real-time 
prices are calculated and how power imbalances are cleared. 

D.  The financial derivatives market 

Four types of contracts are traded in Nord Pool’s financial 
derivatives market: base load futures, base load forwards, 
options and contracts for difference. All four contract types 
are pure financial contracts, i.e. there is no physical delivery. 
The contracts are settled using the system price in the spot 
market as a reference. Hence, the physical trade takes place in 
the spot market. The derivatives market has been designed to 
serve as risk management tools for generators and retailers 
that want to hedge their future profit. At the same time, the 
market also tries to attract speculators who seek to profit from 
the highly volatile electricity prices in order to increase the 
liquidity in the market. The current organization of the 
futures and forward markets are further described below4. 

 
The futures market contains day, week and block 

(consisting of 4 weeks) contracts. The selection of available 
contracts is updated dynamically for every week. Trading of 
the daily contracts starts every Friday for contracts with 
delivery the following week. The block contracts are split into 
week contracts four weeks before the delivery period starts, 
while new block contracts are issued one year before delivery. 
Consequently, the futures market has a time horizon of 8-12 
months. The settlement of the futures contracts involves a 
daily mark-to-market settlement during the trading period, 
and a final settlement in the delivery period. The mark-to-
market settlement covers gains and losses from the daily 
changes in the market price of the futures contracts. The final 
price-securing settlement covers the difference between the 
last closing price of the futures contract and the system price 
during the delivery period [3]. Fig. 5 gives an illustrative 
example of how the settlement procedure in the futures 
market works. By taking a position in the futures market, and 
making a corresponding trade in the spot market during the 
delivery week, a participant is completely hedged for the 

                                                        
4 Minor modifications to the organization of the market have taken place 

several times since the start in Sept.-1995.  
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contractual volume. The settlement procedure therefore 
removes the basis risk from the electricity futures market5. 
Still, the participants cannot use the futures market to hedge 
against uncertainties concerning future load (volume risk). 
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Fig. 5.  Illustration of the settlement procedure for a futures contract traded at 
Nord Pool. The purchaser of the contract receives 10 NOK/MWh in the mark-to-
market settlement. Deviations from the futures price on the last day of trading 
(the fixing price) is taken care of in the price-securing settlement, so that contract 
holder ends up with a final price equal to the initial price of the futures contract, 
when buying the contractual amount in the spot market. Source: [6]. 
 

The forward market facilitates hedging of positions further 
ahead into the future, and consists of season and year 
contracts. The year contracts are split into three season 
contracts6 following specific rules, while the season contracts 
are not subject to further splitting. As opposed to the futures 
market, there is no mark-to-market settlement in the forward 
market. Therefore, the accumulated profit and loss during the 
trading period is not realized until the delivery period starts. 
This contributes to increase the liquidity for the long-term 
forward contracts, since no cash payment is required during 
the trading period. The additional settlement throughout the 
delivery period is, however, organized in the same way as for 
the futures contracts. The total volume traded in Nord Pool’s 
derivatives market, including options and contracts for 
difference (CfDs), was 359 TWh in 2000. Estimates for the 
total volume of financial power contracts traded in 
Scandinavia in 2000 are between 1500 and 2000 TWh. This 
amounts to almost 5 times the annual physical power 
delivery, a figure that is similar to what is found in other 
commodities’ markets ([1] and [3]). 

III.  FUTURES PRICING THEORY  

A.  The relationship between spot and futures prices 

There are two main views of the relationship between 
commodity spot and futures prices [8]. The first theory is 
closely linked to the cost and convenience of holding 
inventories, while the second theory applies a risk premium to 
derive a model for the relationship between short-term and 
long-term prices. Both theories are briefly presented below, 

                                                        
5 Basis risk is usually present in other commodities markets and occurs when 

the futures contract does not match completely the exposure in the spot market. 
See [6] for a discussion about basis risk and the electricity market.  

6 Winter 1, Summer and Winter 2 cover week 1-16, 17-40 and 41-52. 

followed by a discussion about their relevance in the 
electricity market.  

 
Inventories play a crucial role in the price formation in 

markets for storable commodities [7] (also sometimes referred 
to as “cash and carry markets”). The theory of storage 
explains the difference between current spot prices and 
futures prices in terms of interest foregone in storing a 
commodity, warehousing costs and a convenience yield on 
inventory. The convenience yield can be regarded as a 
liquidity premium and represents the privilege of holding a 
unit of inventory, for instance to be able to meet unexpected 
demand. By assuming no possibilities for arbitrage between 
the spot and futures market one can easily derive the 
following formula [7] for the futures price (Ft,T) at time t for 
delivery at time t+T:  

 

,
Tr

t T t T TF S e kψ= − +             (1) 

where St is the spot price of the commodity at time t, rT is the 
risk-free interest rate for the period T, ψT is the convenience 
yield and kT is the cost of physical storage over the holding 
period.  

 
The second pricing theory explains the price of a futures 

contract in terms of the expected future spot price (Et(St+T)) 
and a corresponding risk premium, pT = - (rT - iT), for the 
commodity. iT represent investor’s appropriate discount rate 
for investing in the futures contract, while rT still is the risk-
free interest rate. The futures price can now be expressed as7:  
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One way of explaining the risk premium in (2) would be to 
look at the conditions within the specific commodity market. 
An overweight of risk-averse producers wanting to hedge 
their products in the futures market would probably result in 
futures prices lower than the expected future spot price (pT > 
0). The opposite relation (pT < 0) would occur when the 
demand side is the most risk averse. The risk premium could 
also be traced back to the concepts of storage cost and 
convenience yield for the commodity. A second way of 
explaining the risk premium is to consider the futures 
contract as a financial asset and compare it to other assets in 
the stock market. Hence, if the return on the futures contract 
is positively correlated to the level of the stock market, 
holding the contract involves positive systematic risk and an 
expected return above the risk-free rate is required (iT > rT or 
pT > 0)8. It is worth noting that this price theory also can be 

                                                        
7 This formula is derived by looking at the net present value of purchasing a 

futures contract at time t, holding it until expiry, and selling the commodity in 
the spot market at time T. The net present value at time t of this investment 
equals -Ft,Te-rT + Et(St+T)e-iT, assuming that all transactions take place at time T, 
and that the investor earns the risk-free interest rate on the payment of the futures 
contract. See [12] for more details. 

8 See [6] and [9] for a further explanation of systematic risk and the futures 
market, and how the Capital Asset Pricing Model (CAPM) can be used for 
pricing futures contracts. 
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applied in markets where the commodity is perishable (also 
sometimes referred to as “price discovery markets”). The no 
arbitrage argument underlying (1) cannot be applied when it 
the commodity is non-storable, as there is no possibility of 
obtaining a risk-free position by buying the commodity in the 
spot market and selling in the futures market.  

 
The futures market is said to exhibit backwardation when 

the expected spot price exceeds the futures price (pT > 0). The 
term contango is used to describe the opposite condition when 
the futures price exceeds the expected future spot price (pT < 
0), as shown in Fig. 6.  
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Fig. 6.  Illustration of contango and normal backwardation in the futures market 
[9]. 
 

Before we analyse the electricity market in further detail it 
is worth taking a look at studies of futures markets for other 
commodities. Pindyck (2001) [7] studies the futures markets 
for petroleum products (crude oil, heating oil and gasoline) 
and finds support for the backwardation theory in these 
markets, particularly when the variance in the spot price is 
high. Fama and French (1987) [8] find marginal evidence of 
normal backwardation when 21 commodities (agriculture, 
wood, animal and metal products) are combined into 
portfolios but conclude that the evidence is not strong enough 
to resolve the existence of a nonzero risk premium. Bodie and 
Rosansky (1980) [10] studied risk and return in commodities 
futures for all major commodities traded in the United States 
between 1950 and 1976. They found that the mean rate of 
return on a portfolio consisting of their selected commodity 
futures contracts in the 27 years period was well in excess of 
the average risk free rate. Their findings lend support to the 
normal backwardation hypothesis. Chang (1985) [11] also 
finds evidence of normal backwardation for wheat, corn, and 
soybeans over the time interval from 1951 to 1980. In sum, 
the empirical research carried out on commodities futures 
prices finds evidence to support normal backwardation for 
some products. The risk premium may be time varying, but is 
not related to the general level of the stock market.  

B.  The electricity market 

The lack of direct storage possibilities for electricity, and 
the physical requirement of constant match of supply and 
demand, makes the electricity market somewhat different 
from most other commodities markets. It can be argued that 
power generators can “store” the commodity, for instance as 

water reservoirs for hydropower plants or as coal for thermal 
power plants. However, it is not possible to buy the electricity 
today and store it for future sales, at least not in substantial 
amounts9. The argument about no arbitrage that (1) is based 
on is therefore not applicable to the conditions in the 
electricity market, which must be characterised as a price 
discovery market.  

 
It is more interesting to look at the possible existence and 

motivation for a risk premium in the electricity futures 
market, and to what degree (2) can be used to characterise the 
market. A risk premium could arise if either the number of 
participants on the supply side differs substantially from the 
number on the demand side, or if the degree of risk 
averseness varies considerably between the two sides. Most of 
the companies participating in the market are both generators 
and load serving entities. Hence, there is no reason to believe 
that the futures market is biased towards any of the two sides 
in terms of the number of participants. However, if we look at 
the flexibility of adjusting the quantity on the supply and 
demand side there is a significant difference. The generators 
can control parts of their generation on a very short notice10. 
This allows them to take advantage of the price fluctuations 
that occur in the market, by adjusting their generation. 
Therefore, it does not necessarily make sense to fix the price 
in the futures market for all of the planned future generation. 
The flexibility in generation creates a possibility of profiting 
from the price peaks in the day-ahead spot market, and 
possibly also in the markets even closer to real time. The 
situation is different on the demand side, where the load 
serving entities have very limited ability to adjust the demand 
according to the price. Hence, it makes sense to lock in as 
much as possible of expected future demand in the futures 
market, given that the participants on the demand side are 
risk averse. In this sense the electricity market deviates from 
most other markets, where the demand side can stock up the 
commodity for some period ahead in time, and in that sense 
use the stock to adjust to fluctuating prices instead of the 
futures market. If the difference in flexibility on the demand 
and supply leads to an excess demand for futures contracts, 
this would translate into a negative risk premium in (2), i.e. 
pT < 0. The futures price would, in turn, exceed the expected 
future spot price, and on average one would experience 
negative returns from holding futures contracts. 

 
A study of Nord Pool’s futures market was carried out in 

1997 [6]. Hypothesis testing was used to analyse the returns 

                                                        
9 One could of course argue that consumers have the possibility to store 

electricity in batteries, but this option is not available in large scale. Energy 
systems in the future could possibly include large-scale storage capacity, e.g. in 
hydrogen reservoirs. On the supply side there is a limited amount of pumped 
hydro storage in the system today. However, all these storage options involve 
substantial losses and costs, and we do not see them as possible tools for making 
arbitrage from the difference between spot and futures prices. 

10 The fast controllable part of the power generation in the Scandinavian 
system is particularly big, due to the large share of hydropower in the system. 
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on futures contracts over various holding periods, and also on 
portfolios of futures contracts. The null hypothesis was that 
the futures price equals the expected future spot price (pT = 
0). The analysis did not find sufficient evidence to reject the 
hypothesis, although the results showed that the returns on 
the futures contracts on average were below the risk free rate 
(i.e. contango; pT < 0). The study also looked at the relations 
between the returns in the futures market and in the stock 
market, and found no significant evidence for using the 
systematic risk in the futures market as an explanatory factor 
for the observed futures prices. The reliability of the analysis 
in 1997 was low, due to the short time period the market had 
been in operation (2 years). It is therefore of interest to revisit 
the problem and carry out a new analysis of the market with 
data that now covers more than 6 years. 

IV.  EMPIRICAL ANALYSIS 

In the analysis of the historical data we first present some 
general graphs and figures to look for obvious trends and 
relations in the observed spot and futures prices. We then turn 
to analyse the relationship between the long- and short-term 
prices in more detail using the framework presented above. 

A.  The data 

The analysis is based on historical spot and futures prices 
from Nord Pool covering the period from the opening of the 
futures market in September 1995 until the end of 2001.  The 
futures data contained the closing price for each day of 
trading for all futures contracts traded.  Although we had 
futures data for each day of trading, only the closing price on 
the last day of trading for each week was used in our analysis.  
The spot data used in the analysis contained spot prices for 
each hour of each day of the year.  To consolidate the data, 
the spot price for a particular day was calculated by averaging 
the spot price for each hour of the day.  To further consolidate 
the data, the daily spot prices are averaged over the week to 
get an average weekly spot price.  Although we do not use the 
hourly spot price data explicitly, the average daily and weekly 
values are functions of the hourly spot price. 

B.  Spot prices 

Fig. 7 shows the daily spot prices for all six years from 
1996 to 2001.  There is a lot of similarity in the spot prices 
for the years from 1997 to 2000. Although the prices vary, the 
shape of the graphs is similar in many respects. We clearly 
see the seasonal pattern with low prices during the summer 
when the demand is low, and high prices in the winter when 
demand is high (compare to demand in Fig. 2). The level of 
the spot prices in 1996 is much higher. The prices remain 
high throughout the summer, and increase even further in the 
fall. This is due to very low precipitation and inflow to the 
water reservoirs that year. The prices come back down again 
in the winter of 1997. Also in 2001 the prices are higher than 
what we see from 1997 to 2000. This can again be explained 
from lower inflow to the reservoirs. These observations 
illustrate how dependent the prices are upon the hydropower 

generation in the region. Another observations is that the 
price peaks in the beginning of 2001 occurs at the same time 
as the peak values for demand in the system. Hence, the 
current system runs into capacity problems on cold winter 
days with high demand. Actually, hourly prices above 1500 
NOK/MWh occurred four times in the two first weeks of 
February 2001.  
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Fig. 7.  Average daily prices in Nord Pool’s spot market for years 1996-2001. 
Source: [5].  

C.  Futures prices 

Fig. 8 shows prices for weekly futures contracts at the last 
day of trading, for delivery the following week. As can be 
seen from the graph, the futures prices follow the same trend 
as the spot prices, as we would expect for futures contracts 
with short time to delivery. It is reasonable to believe that the 
market expects the prices for the next week, as reflected in 
the futures prices, to resemble the spot price for the current 
week. The daily price fluctuations do not appear for the 
futures contracts though, since the prices shown are for 
weekly contracts. 
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Fig. 8.  Prices of a futures contract at the end of week t, for delivery week t+1, 
1996 to 2001. Source: [5]. 
 

To further analyze the data, we compared the futures 
prices one week and one year ahead to the actual spot price in 
the delivery period (Fig. 9). For instance, for 1996 we 
recorded the futures prices with delivery one year ahead, in 
1997, and plotted it together with the weekly spot prices for 
1997. The futures price one week ahead is presented in the 
same way. We repeated this process for 1997 through 2000. 
As can be seen in the figure, the futures price one year ahead 
do not correspond very well with the actual spot prices in the 
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delivery period. Looking closely at the graph, we see that both 
the futures and spot prices show a seasonal pattern. The long-
term contracts with delivery one year ahead are season 
contracts11, and the distinct jumps in this futures price curve 
occurs at changes between contracts (e.g. from Winter 1 to 
Summer). On average the futures price seems to overestimate 
the actual spot price in this period. However, in 2001, the 
futures price underestimates the actual spot price. There are 
several points of intersection between the two graphs. At 
these points, the futures price actually equaled the actual spot 
price for that week.  In general however, the one-year ahead 
futures prices’ ability to predict the spot prices is rather low, 
and there are large differences between the futures and spot 
prices in most of the period. For the contracts with delivery 
one week ahead, the fit is naturally much better, due to the 
much shorter time to delivery. 
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Fig. 9.  Futures prices for last trading day before delivery and 52 weeks before 
delivery, compared to spot price in delivery week. Weekly values. Source: [5]. 

D.  The risk premium in the futures market 

We now try to estimate the observed risk premium in the 
Scandinavian electricity market based on the data presented 
above. From (2) we derive the following estimate for the risk 
premium, pt, of a futures contract with holding period T: 
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Ttt
T F
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,

lnˆ
)(

ln −++ =→=     (3) 

 

where Ft+T-1,1 is the price at the last day of trading for the 
futures contract with delivery in week t+T, which in turn is a 
good approximation for the spot price in the delivery week. In 
other words, we assume that the market participants in the 
long run have an unbiased prediction of the future spot 
price12. We calculated the estimate for the risk premium for 
futures contracts with 1 week, 4 weeks, ½ year and 1 year 
holding periods, assuming that the contracts are held until 

                                                        
11 Nord Pool stopped the trading of seasonal futures contracts (with one year 

or more to delivery) after 1999, and replaced them with seasonal forward 
contracts. The one-year ahead futures prices with delivery in 2001 (traded in 
2000) are therefore actually forward contract prices. 

12 Note that the estimate of pT equals the return (in excess of the risk-free 
rate) on a futures contract purchased at time t and sold at the last day of trading 
(in week t+T-1). It also equals the return on a contract that is held throughout 
delivery, if the contractual amount is purchased in the spot market during the 
week of delivery. This is due to the price securing settlement in the futures 
market, as described in section II. 

expiry. In our calculations we used all historical data that was 
accessible from the futures market. The results are show in 
Table  2. We see that the average risk premium is negative for 
all holding periods. The magnitude and standard deviation of 
the premium increases naturally with the length of the 
holding period. The p-values for the z-test show that we can 
reject the hypothesis that the futures price equals the expected 
future spot price with high significance for all holding 
periods. This is confirmed by the negative values for both the 
upper and lower limits of the 99 % confidence intervals for 
the risk premium. Our findings therefore lend support to the 
contango hypothesis for the electricity futures market in 
Scandinavia, i.e. there is a negative risk premium for holding 
a futures contract.  

TABLE  2 
STATISTICAL ANALYSIS OF  THE  RISK PREMIUM ESTIMATE,

Tp̂ , FOR 1, 4, 26 

AND 52 WEEKS’ HOLDING PERIOD OF THE FUTURES CONTRACT 

 1 week 4 weeks 26 weeks 52 weeks 

Sample size 326 323 300 275 
Mean -0.015 -0.035 -0.085 -0.183 
St. deviation 0.101 0.187 0.432 0.399 
p-value, z-test1 0.9968 0.9996 0.9997 1.0000 

CFI2, up-limit -0.001 -0.008 -0.020 -0.122 
CFI2, lo-limit -0.030 -0.062 -0.149 -0.245 

1The z-test tests for
Tp < 0, given 

Tp = 0 as null hypothesis. 
2CFI is the 99% confidence interval. 

E.  Discussion 

The negative risk premium that we find in the futures 
price data is in line with our observation of the difference in 
flexibility on the supply and demand side of the electricity 
market, leaving the demand side with a higher incentive for 
hedging in futures contracts. However, there are most likely 
also other factors that can contribute to explain our findings. 
To further examine possible explanations we therefore look at 
the main source of power in the Scandinavian system – 
namely hydropower. As stated in section II the precipitation, 
and thereby the water level of the reservoirs, has a high 
degree of influence on the short-term prices of electricity in 
Scandinavia. However, the expectations about the spot prices 
far ahead into the future are probably based on assumptions of 
average reservoir levels. To investigate this further we plotted 
the average reservoir level in Norway along with the actual 
reservoir level in Fig. 1013. We also add the spot price and the 
one year ahead futures price. Looking closely at the graph, we 
see that the actual reservoir level is higher than the average 
for most of the period from 1998 through early 2001. High 
reservoir levels results in low spot prices, and during this 
period the spot price was below the futures price. In 2001, 
when the actual reservoir level falls below the average, we 
notice a sharp increase in the spot price. During most of 
2001, the actual reservoir level is below the average and the 

                                                        
13 More than 60% of the hydropower capacity in the current Nord Pool area 

is installed in Norway. 
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spot price is higher then the futures. Thus, the analysis of the 
inflow is helpful in explaining the deviation between the spot 
and futures prices. However, the deviations in reservoir levels 
can only be used as an explanatory factor for the behavior of 
futures contracts with long maturity. The change in reservoir 
level is very limited in the near future. Therefore, it cannot 
contribute to explain the negative risk premiums for the 
contracts with only 1 and 4 weeks to delivery.  
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Fig. 10.  Spot price, futures price one year ahead, average reservoir level (1990-
2000) and actual reservoir level for Norway. Source: [5] and [13]. 
 

It is important to treat the results in this analysis with 
caution, as the data period is still limited to 6 years. A longer 
time period is usually used in similar analyses of futures 
prices for other commodities. The results for the z-test and 
confidence intervals in Table  2 also rely on a strong 
assumption of normality in the observed risk premiums. 
However, the existence of a negative risk premium can be 
stated with considerably higher significance than what was 
the case after the study in 1997. 

V.  CONCLUSION AND FUTURE WORK 

Spot and futures markets for electricity have existed in the 
restructured Scandinavian electricity system for more than 6 
years. The considerable history of prices makes it interesting 
to study the relationship between long- and short-term 
electricity prices in this market. Our analysis shows that the 
futures prices on average have been above the spot prices in 
the actual week of delivery, and we find significant evidence 
for a negative risk premium in the electricity futures market. 
Our results contradict to the findings in most other 
commodities futures markets, where the risk premium tends 
to be zero or positive. Physical factors like unexpected 
precipitation can contribute to explain parts of the 
observations. However, we also identify the difference in 
flexibility between the supply and demand sides as a possible 
explanation for the negative risk premium. In the future we 
will try to develop models that are better at capturing the 
dynamics between short and long-term prices in the 
electricity market. Our aim in the long run is to model how 
these prices influence the investments in new technology on 
the supply and demand side in the system, using methods for 
model aggregation from large-scale dynamic systems theory.  
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Abstract – This paper presents an ongoing research 

project where the objective is to inform decision-makers 
about the trade-offs between costs and environmental 
performance when deciding how to meet the future de-
mand for energy in Scandinavia. The paper starts with an 
overview of the current stationary energy supply within 
Norway, Sweden and Denmark. A short overview of fu-
ture technological energy supply options for the respec-
tive countries is also presented. The main part of the 
paper is devoted to describing the framework we use in 
our analysis. The trend of liberalisation in energy mar-
kets, and thereby less centralised planning, gives rise to 
new planning challenges that require a new set of analyti-
cal tools. The conditions in the Scandinavian energy sys-
tem, with a variety of energy resources, close links be-
tween the countries’ electric power networks and a high 
degree of deregulation in the energy markets, makes the 
region particularly interesting for testing and applying 
such tools.  

Keywords:  Energy planning, decision support, 
multi-attribute trade-off analysis, power and energy 
system analysis, simulations, scenarios, Scandinavia 

1 INTRODUCTION  

The increasing use of energy in the world is one of 
the major threats against a sustainable development for 
the earth’s environment. As more attention is paid to 
the negative environmental consequences of our in-
creased energy use, the objectives in energy system 
planning changes. The aim is no longer simply to meet 
the projected future energy demand for the lowest pos-
sible cost. The environmental consequences of different 
supply alternatives have to be given more careful atten-
tion. Predicting the environmental impacts from new 
energy-related investments is in its own a very demand-
ing task, considering the wide range of pollutants oc-
curring from different forms of energy conversion. The 
long lifetime of many energy system constructions 
contribute to increase the uncertainty of such environ-
mental assessments. At the same time, there is a global 
trend of deregulation and liberalisation of energy mar-
kets. As a result, planning decisions are taken at more 
distributed levels in the system, and the authorities are 
left with less direct influence on what energy supply 
solutions are chosen for the future. Considering all the 
technological, social, economic, environmental and 
political factors that influence the development of the 

energy system, we realise that long-term energy system 
planning becomes an extremely complex task. Conse-
quently, results from advanced simulation models are 
frequently used as decision support in the planning of 
local and regional energy systems. 

 
The Scandinavian region faces some of the same 

challenges as many other countries when it comes to 
energy and environmental planning. New investments 
are required to meet the energy demand, and there are a 
number of technological alternatives to choose from. At 
the same time the countries are aiming at reducing 
emissions of greenhouse gases in order to meet their 
limits in the Kyoto treaty. Hydropower has traditionally 
played an important role in the energy supply in Nor-
way and Sweden, but there are only limited resources 
remaining for new hydro projects. Other options must 
therefore be considered. Sweden also has a large frac-
tion of nuclear power generation, but is planning to 
shut down these plants. Denmark has traditionally 
based its power generation on coal, but is now switch-
ing towards gas, biomass and wind. The power market 
in Scandinavia was one of the first to be deregulated, 
and there are close links between the power networks in 
each of the countries. The various energy resources 
within Scandinavia, the well functioning deregulated 
power market, and also the limited size of the region 
makes it well suited for testing of analytical tools for 
decision support in energy and environmental plan-
ning. Analytical tools applicable to this region should 
also be applicable to most other regions of the world. 

 
The current and future energy supply in Norway, 

Sweden and Denmark is subject for a new research 
project where NTNU (Norway), MIT (USA) and 
Chalmers (Sweden) are the involved university partici-
pants. In this project we are going to apply scenario 
analysis to assess and illustrate the trade-offs between 
cost and environmental performance for a number of 
technological alternatives. Our aim is to take both sup-
ply and demand side options equally into account, to 
avoid the bias towards supply side solutions that usually 
occurs in similar studies. Since the project was recently 
started we do not yet have any firm conclusions to pre-
sent. The aim of this paper is therefore to give a presen-
tation of the historical energy supply within the three 
countries and also describe a set of future supply alter-
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natives. Furthermore, the methodological framework 
within which we are planning to carry out our analysis 
is outlined. The preparation of the scenario results for 
discussion with stakeholders from authorities, energy 
companies, NGO’s and others is also discussed. 

2 CURRENT ENERGY SUPPLY 

Some of the main characteristics of the current and 
historical energy supply and demand within Norway, 
Sweden and Denmark are presented in this section. The 
purpose is to highlight the differences in the energy 
systems between the three countries. 

2.1 Norway 
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Figure 1: Total primary energy supply by source in Norway 
(2000), in total 26.27 mtoe or 230 GJ/capita. Source: IEA [1]. 
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Figure 2: Total final energy consumption by energy carrier 
in Norway (1999), in total 20.33 mtoe or 191 GJ/capita. 
Source: IEA [1].  

Figure 1 shows that hydropower is the primary 
source of energy in Norway, followed by oil and gas. It 
is worth noting that even if Norway is a major exporter 
of oil and natural gas to continental Europe, the infra-
structure and end-use of gas on mainland Norway is 
very limited so far. The use of gas is mainly for own 
purposes within the oil and gas sector. Renewable en-
ergy resources like wind and waves do not contribute 
considerably so far, while biomass and waste delivers a 
substantial amount of energy. When looking at the 
distribution between the energy carriers (Figure 2) we 
see that electricity plays a major role in the Norwegian 
energy system, delivering 45 % of the final end-use of 

energy. This is related to the long history of abundant 
hydro power supply in Norway, which has been accom-
panied by huge investments in electricity based tech-
nology, as e.g. ovens for direct electric heating in most 
Norwegian households. When looking at the distribu-
tion of energy supply between the different sectors 
(Figure 3), we can see that the amount that goes to 
industrial purposes has been relatively stable the last 20 
years, while the consumption in service, residential and 
transport sectors increased considerably.  
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Figure 3: Total final energy consumption by sector in Nor-
way (1980-1999). Source: IEA [1]. 

2.2 Sweden 
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Figure 4: Total primary energy supply by source in Sweden 
(2000), in total 46.79 mtoe or 223 GJ/capita. Source: IEA [1]. 
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Figure 5: Total final energy consumption by energy carrier 
in Sweden (1999), in total 35.42 mtoe or 167 GJ/capita. 
Source: IEA [1]. 
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Figure 4 shows that nuclear and oil are the most im-
portant sources of energy in Sweden, while hydro-
power, biomass and waste also makes a substantial 
contribution. Sweden has no resources of natural gas, 
and is not connected to any gas pipeline, so the use of 
gas is therefore low. The use of new renewable sources 
like wind and sun is also very limited so far in Sweden. 
When looking at the distribution between energy carri-
ers (Figure 5) we see that energy as heat has a much 
higher share of the end-use delivery than in Norway. 
This is mainly due to the more widespread use of dis-
trict heating in Sweden. Figure 6 shows that the total 
final energy consumption decreased during the 80’s 
and then increased again to the 1980 level in the 90’s. 
The energy use in the industry sector has also been 
stable in Sweden, while the use in service and transport 
sectors increased. The consumption in the residential 
sector is actually lower in 1999 than in 1980. 
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Figure 6: Total final energy consumption by sector in Swe-
den (1980-1999). Source: IEA [1]. 

2.3 Denmark 
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Figure 7: Total primary energy supply by source in Den-
mark (2000), in total 19.25 mtoe or 152 GJ/capita. Source: 
IEA [1]. 

The energy supply in Denmark is to a higher degree 
based on fossil fuels (oil, gas and coal), since Denmark 
has no hydropower resources and has chosen not to 
invest in nuclear power (Figure 7). However, there is an 
increasing focus on new renewable sources in Den-
mark, and it is worth noting that particularly wind 

power is starting to contribute to the total energy sup-
ply. Electricity as an energy carrier plays a much less 
important role than in Norway and Sweden. This is 
mainly because of the extensive district heating and gas 
networks that are present in Denmark (Figure 8). 
Figure 9 shows that the total final energy consumption 
fell in the mid 80’s, but is now back to the same level 
as in 1980. The transport sector is the only one that has 
increased its energy use consistently for each 5-years 
period since 1980. 
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Figure 8: Total final energy consumption by energy carrier 
in Denmark (1999), in total 15.63 mtoe or 123 GJ/capita. 
Source: IEA [1]. 
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Figure 9: Total final energy consumption by sector in Den-
mark (1980-1999). Source: IEA [1]. 

2.4 The common electric power market 
There are close connections between the electric 

power systems in Norway, Sweden and Denmark, both 
in terms of physical tie lines and a common organisa-
tion of the power markets. Several power lines are 
crossing the border between Norway and Sweden. 
There are also sea cables connecting the Norwegian 
and Swedish power systems to Denmark. All the three 
countries participate in the Nordic power exchange, 
Nordpool.  The power exchange organises the physical 
day-ahead market for electricity, and also offers a num-
ber of longer term financial contracts for hedging and 
speculation in the power market. The process of de-
regulation started in Norway in 1991, and was then 
followed by Sweden in 1996 and later Denmark in 
1999. Scandinavia is therefore one of the regions in the 
world with the longest experience with deregulated 
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power markets. In fact, Nordpool became the first in-
ternational commodity exchange for trading of electric 
power when Sweden became a member in 19961. 

 
The power generation in the three countries have 

different characteristics (Table 1). In Norway, nearly all 
electricity is generated from hydropower. Sweden uses 
a combination of hydropower, nuclear power, and con-
ventional thermal power. Hydropower stations are lo-
cated mainly in northern areas, whereas thermal power 
prevails in the south. Denmark relies mainly on con-
ventional thermal power, but wind power is providing 
an increasing part of the demand for electricity. From 
the table we can also see that the demand has increased 
considerably in Norway during the 90’s, while the 
increase is much more modest in Sweden and Den-
mark. 

 

Table 1: Electricity generation by source and gross con-
sumption for Norway, Sweden and Denmark (1990 and 2000) 
in TWh. Source: IEA [1] and Nordel [2]. 

Norway Sweden Denmark Source 
‘90 ‘00 ‘90 ‘00 ‘90 ‘00 

Coal 0.2 0.2 1.8 3.3 23.3 16.9 
Oil 0.0 0.0 1.2 2.0 1.1 4.4 
Gas 0 0.3 0.4 0.3 0.6 8.8 
Biom./Waste 0.2 0.3 1.9 3.7 0.2 1.8 
Nuclear 0 0 68.2 57.0 0 0 
Wind, sun 0 0.0 0.0 0.4 0.6 4.2 
Hydro 121.2 141.6 72.5 78.6 0.0 0.0 
Total 121.6 142.4 146.0 145.3 25.7 36.2 
Consumption 105.7 123.8 144.2 146.6 32.8 34.9 
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Figure 10: Daily electricity consumption in Norway, Swe-
den and Denmark 2001. Source: Nordpool [3]. 

The seasonal variation in electricity demand shows 
that the consumption in Norway and Sweden follows a 
similar pattern (Figure 10). This is because both coun-
tries use a substantial amount of electricity for heating 
purposes. In Denmark, where most of the heating de-
mand is met by gas and district heating networks, the 
                                                        

1 Finland also deregulated its power market and be-
came a member of Nordpool in 1998. However, Finland 
is left out of this analysis. 

variation in electricity consumption over the year is 
much lower. The demand also varies over the day, 
according to the activity level in the countries. When 
looking at the variation over the day, it follows more or 
less the same pattern in the three countries. 

 
The electricity supply system must be able to take 

care of the seasonal and daily variation in demand. The 
output from hydropower station is easy and fast to regu-
late, while thermal plants are slower with higher costs 
involved in changing the power output. There are 
therefore mutual benefits from exchanging power be-
tween the countries, and a substantial trade also takes 
place. In general power is exported from the hydro 
areas in Norway and Sweden to Denmark and conti-
nental Europe during daytime peak hours. In the 
nights, when the load is lower, the power flow goes the 
other way. As a result, the thermal power plants can 
operate with less fluctuation in their output. Another 
advantage of the exchange opportunity given by the 
transmission lines is that the hydropower dependent 
regions are less exposed to power shortages during 
longer periods of low inflow.  

3 FUTURE ALTERNATIVES 

A systematic and detailed study of the future energy 
resources is not yet carried out, as this project is still in 
its initial phase. Resource and technology assessments 
have been accomplished in a number of previous stud-
ies, so there are several sources of information avail-
able. However, the focus has usually been on the large-
scale supply side solutions, so that we will need to put 
more work into estimating the possible contributions 
from distributed generation and demand-side technolo-
gies. The alternatives that we currently see as most 
likely to contribute considerably to change the future 
energy supply within the three countries are briefly 
listed below. 

 
Large-scale supply options: 

• Increased use of gas, as fuel for new power 
plants, but also for direct end-use purposes. In 
Norway and Sweden this would require large 
investments in pipelines and gas distribution 
networks. Environmental benefits arise if the 
new gas consumption replaces more polluting 
sources like coal and oil. Gas power plants 
with CO2-sequestration are also on the energy 
agenda, particularly in Norway. 

• Biomass from wood, waste or energy crops can 
also be used as fuel in power and heat plants. 

• Large-scale wind parks are being planned in 
all the three countries. There are still huge 
wind resources available onshore in Norway 
and Sweden, while Denmark is focusing more 
on offshore windmills due to the high penetra-
tion of windmills on the land. However, the 
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economic attractiveness is limited for parts of 
the wind resources, due to the long distance to 
transmission lines and areas of demand. 

• Hydrogen technology could possibly also start 
to contribute towards the end of the 30 years 
period we consider. However, considerable 
technological development has to take place 
before hydrogen technology can become a 
commercial alternative. A future “hydrogen 
society” also requires fundamental changes in 
the energy infrastructure system. 

 
Small-scale options: 

• Distributed generation of electricity is likely to 
play a more important role in the future energy 
system. Several sources of energy could be ap-
plied, from small windmills to hydrogen. If 
fuel cells are applied one could possibly gener-
ate both heat and electricity. 

• Geothermal energy is an interesting option for 
heat supply in buildings of all sizes. Heat 
pump technology is improving quickly, mak-
ing this into a more attractive alternative for 
end-users.  

• Energy conservation is maybe the most impor-
tant option to take into consideration. Conser-
vation technologies ranges from increased in-
sulation to better building design. 

• The solar collector is another technology that 
could contribute considerably to the heat sup-
ply in new buildings. 

4 FRAMEWORK OF ANALYSIS 

4.1 System boundary 
The electric power system is considered as the core 

of the analysis in our scenario study. However, we also 
want to take other types of stationary energy use into 
account, like for instance district heating and direct 
end-use of gas. In order to compare the results from 
different simulation scenarios in a consistent way, we 
need to clearly specify our system boundary. One ap-
proach would be to look at the energy supply that is 
currently served by electricity, and constrain the scenar-
ios to only include future projections of this part of the 
stationary energy supply. Alternative energy carriers 
could still come into account in the scenarios by replac-
ing parts of the electricity demand. A more fundamen-
tal approach would be to look at the total stationary 
demand for energy, divided into end-use groups like 
light, mechanical work, heat etc. This would require 
the use of either a comprehensive energy system model 
like the MARKAL2 model, or a number of models in 

                                                        
2 MARket ALlocation model – a demand driven en-

ergy system model for optimization of stationary energy 
supply within a country or region. This model is used 
for planning purposes within several countries. 

addition to the electric power market model, in order to 
take all costs and emissions into account. All available 
energy carriers would have to be assessed with this 
approach. It is also possible to choose something in 
between, e.g. looking at the part of stationary energy 
use that is currently served by certain energy carriers, 
like e.g. electricity, gas and heat, as illustrated in 
Figure 11. We choose this approach in our scenario 
analysis, with the possibility of extending the system 
boundary in later stages of the project. 
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Figure 11: General framework of analysis, with centralised 
and distributed energy supply options. The part of the total 
initial energy demand met by the electricity, heat and gas 
carriers (market demand) defines the system boundary. 

Figure 11 illustrates that the energy resources could 
go either through the supply side or directly to the de-
mand side of the market, depending on whether or not 
the technologies are connected to energy transport 
systems before reaching the end-user. The proportion of 
energy demand met by the centralised large-scale tech-
nologies, through local or regional energy markets, 
depend on the current and future technology mix, the 
end-user’s preferences, and the resulting energy prices. 
The mix of technologies changes as new investments 
are carried out at different places in the system. One 
possible scenario is for instance that parts of the de-
mand that is met by the centralised large-scale tech-
nologies today will be met by distributed local tech-
nologies in the future. The participants on the supply 
and demand sides might have different motivation for 
investing in new technologies. Large-scale investments 
in new generation and transportation infrastructure are 
likely to be based on pure economic arguments in the 
liberalised market. The expected profit of the invest-
ments is usually less important for decisions on the 
demand side, particularly for small-scale consumers. 
Authorities will therefore need to use a set of different 
incentives to trigger the desired investments in the 
energy system. Investments on both sides contribute to 
alter the characteristics and prices in the electricity, 
heat and gas markets. In the first phase of the project 
we focus our analytical analysis on the economic and 
technological constraints in the electricity market. The 
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conditions in the heat and gas markets are also in-
cluded in the analysis, but with less detail. 

4.2 Multi-attribute trade-off analysis and stakeholder 
intervention 

Multi-attribute trade-off analysis will be applied to 
assess different technological energy system solutions. 
Figure 12 describes the major steps in the approach. 
First we need to define the set of attributes that we want 
to use in the comparison of the alternatives. The attrib-
utes include both cost and environmental figures. In the 
initial phase of the project we only consider direct 
emissions from the energy conversion. However, in the 
long run we want to take into account the whole life-
cycle impact of various alternatives. Multiple stake-
holders in the society are affected by the choice of en-
ergy system. It is therefore crucial for the credibility of 
the project to establish a dialogue with representatives 
from authorities, energy companies, NGO’s and others. 
Consequently, a stakeholder group is chosen in order to 
continuously give feedback on the work within the 
project. We are planning to have regular meetings with 
the stakeholder group, and input from the group is of 
importance already in the first step of identifying issues 
and attributes.  

 
In the second step we define a set of alternatives that 

includes the technological options that we with today’s 
knowledge mean could occur within a time horizon of 
30 years into the future. We are aiming at putting equal 
emphasis on the demand and supply side technologies 
in our approach, to avoid the typical supply side bias 
that is usually present in similar studies. We also need 
to make assumptions about a number of uncertain non-
technological factors that influence the operation of the 
energy system. These factors could include assumptions 
about general demand growth, fuel prices and the cost 
and performance of new technologies.  By organising 
the uncertainties into a set of futures, we can carry out 
sensitivity analysis for the technological alternatives, in 
order to assess the risk and sensitivities involved in the 
various investment strategies. Each combination of a 
technological strategy and a future form one scenario. 
Computational models are then applied to analyse all 
the scenarios from a cost and environmental point of 
view, using the selected attributes from step 1. The 
results from the simulations can be expressed in so-
called trade-off graphs, as shown in Figure 12. This 
visualisation of the results is useful in the process of 
communicating the results to the stakeholder group and 
also to public at large. 

 
The results from the scenarios are then analysed, in 

order to find better technological strategies compared to 
the ones initially selected. This is step 3 in the figure. 
The choice of attributes could also be revised at the 
same time, following discussions with the stakeholder 
group. We expect a number of iterations with scenario 

runs and stakeholder meetings before reaching final 
consensus on what to include in the analysis. Changes 
in the selection of strategies, uncertainties and attrib-
utes are accompanied with further development of 
modelling tools and refinement of the input data base. 
In the end, by analysing the trade-offs between all the 
final attributes, our ultimate goal is to reach consensus 
on a set of preferable strategies within the stakeholder 
group (step 4). 

 

  

Figure 12: The four basic steps of performing multi-
attribute trade-off analysis in a multi-stakeholder policy 
debate. Source: Connors, S.R. [4]. 

One of the important characteristics of the multi-
attribute trade-off analysis approach is that we do not 
end up with only one optimal solution. That is usually 
the case when applying traditional optimisation proce-
dures and models for energy and power system plan-
ning.  The result from our analysis will instead be a 
number of solutions that meet the requirements for the 
given system attributes. At the same time we also ana-
lyse adverse strategies that are far from the optimal 
trade-off frontier. Awareness of such strategies is also 
useful information for decision makers, to avoid in-
vestments with negative implications.  

 
The multi-attribute trade-off analysis has previously 

been applied in New England [4], Switzerland [5] and 
the Shangdong region in China. A more comprehensive 
description of the general trade-off approach can be 
found in [4] and [5]. The conditions in the current 
region of analysis, with three different countries and 
three very different energy systems involved, give rise 
to new research challenges from a modelling point of 
view. We also need to adjust the general framework of 
analysis, in order to take into account the new market 
conditions in the power sector. This is further discussed 
in chapter 5. 
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4.3 Computational models and input data  
A set of models is required to simulate the different 

scenarios for the development of the energy system. We 
prefer to use so-called bottom-up models, with empha-
sis on the technical description of the system, for this 
purpose. Technology investment strategies and assump-
tions about future uncertainties are therefore decided 
exogenously and used as input to the models. The 
choice of computational models is dependent on the 
system boundary, and on the characteristics of the re-
spective energy systems. Figure 13 shows a representa-
tion of models and input data. We want to use this 
framework to simulate the scenarios for a time period 
of 30 years into the future.  
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Figure 13: Schematic representation of models and input 
data. The differentiation between stakeholder interaction and 
analytical work is indicated. 1EMPS – EFI’s Multiarea Power 
Market Simulator is a hydropower optimization model devel-
oped by SINTEF Energy Research, Trondheim Norway. 
2Multisym is a power market simulator developed by Hen-
wood Technologies, Sacramento CA USA. 

As already stated the electric services are the core 
point of the analysis. A detailed representation of the 
power system is therefore a main priority. In the initial 
phase of the project we have therefore spent consider-
able time surveying different commercial models that 
are capable to meet our needs. In order to represent the 
hydropower generation in the system we need to apply 
a hydro scheduling model specifically developed for the 
conditions in Scandinavia (the EMPS model). This 
model has a weekly time resolution and is usually used 
to optimise the generation and storage of hydropower 
resources within a time horizon of 3-5 years. The repre-
sentation of thermal power generation is not very de-
tailed in the EMPS model. To model the operation of 
thermal plants, their costs and emissions, we therefore 
want to apply a more detailed power system model. We 
have chosen a chronological model (Multisym) with 
hourly time resolution. The model is able to represent 
start-up and shutdown costs, minimum up/down times 
and quadratic fuel consumption functions in thermal 
plants. On the other hand, the model has a simplified 
long-term description of hydropower. Consequently, it 

makes sense to first model the hydropower in the 
EMPS model, and then use the hydro results as input to 
the Multisym model. A somewhat realistic representa-
tion of the power transmission requires a multi-area 
description of the system. This is possible in both mod-
els. So far, we have not identified any particular models 
for the heat and gas markets. These two energy carriers 
will be treated with less analytical rigour in the first 
phase of the project. This approach is justified by the 
less complex technical constraints in these systems, 
combined with gas and heat’s lower share of the total 
energy supply compared to electricity within the region.  

 
A range of different data is necessary to develop con-

sistent scenarios and to run reliable simulations with 
the computer models. Regional resource data is needed 
to assess the availability and cost of different energy 
resources. Renewable sources like hydro- and wind 
power must be converted, usually to electricity, at the 
location of the resource. Data about the stochastic 
nature of these sources, i.e. parameters describing their 
variability over day, season and year, are important to 
take them properly into account in the analysis. Com-
bustible resources like oil, gas and biomass are also 
energy carriers, and can therefore be transported before 
conversion. These sources can also be stored before 
usage, and the access to them is more dependent on 
human activities than natural phenomenon. The impor-
tant data are therefore resource constraints and price. 
Technology data are techno-economic parameters de-
scribing current and expected future fuel efficiencies, 
emissions and costs (operation and investment) for the 
various energy conversion and transportation technolo-
gies. The physical properties of a given technology are 
independent of location, but costs may vary due to dif-
ferent availability of resources.  Structural data con-
tains information about the current installed capacities 
of the different technologies and demand for the vari-
ous energy carriers within the three countries. Existing 
plans for decommissioning of old equipment and con-
struction of new are also important information when 
creating the set of strategies and scenarios. The organi-
sation of the energy markets is also a part of the energy 
system structure. In order to establish demand forecasts 
we also need macroeconomic data, since the energy 
demand traditionally is closely related to the economic 
development. In the end we make assumptions about 
the future costs of the various fuel types. Such price 
forecasts go into the group of global data. Various 
sources of information will be used to obtain the re-
quired data. In the process of gathering data we can 
partly build upon previous work. There are for instance 
substantial amounts of relevant data available from the 
recent Balmorel model project [6]. In this project an 
investment optimisation model for analyses of the elec-
tricity and CHP markets in the whole Baltic Sea region 
was developed. The grouping of data presented above is 
based on the classification used in the Balmorel model.  
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5 MULTI-ATTRIBUTE TRADE-OFF 
ANALYSIS AND DEREGULATED MARKETS  

Energy utilities have traditionally been frequent us-
ers of multi-attribute decision making for integrated 
resource planning within their own area of supply. The 
two major purposes of using the technique are to de-
scribe the trade-offs among different attributes, and to 
help participants apply the results rationally and consis-
tently [7]. Usually, the alternative plans are ranked in 
the end, in order to make the decision making easier for 
the utility.  A number of multi-objective optimisation 
methodologies have been developed for this purpose 
(see [7] and [8]). This approach makes sense when 
there is one decision maker, e.g. an energy utility, mak-
ing one investment decision. In our project we are 
studying a region of 3 countries with a large number of 
decision makers, particularly when including invest-
ments in technologies on the demand side. The liberali-
sation of the power market has also resulted in more 
decentralised decision making. The importance of 
ranking the alternatives and identifying the optimal one 
is therefore less important, as there is no single deci-
sion maker that can make the optimal alternative be-
come a reality. However, by identifying a set of several 
acceptable alternatives we still meet the two purposes of 
the trade-off technique, and also in a way that we mean 
are better suited for the conditions in the Scandinavian 
region.  

 
 The framework presented in this paper identifies a 

set of desired energy supply solutions, based upon the 
views within the stakeholder group. However, the re-
sults from the simulations do not address how to make 
sure that the right investments are made, so that the 
system develops in the desired direction. Even though 
the authorities have given up parts of their direct influ-
ence on the large-scale investment decisions, they still 
have an interest in controlling that the infrastructure 
changes in the system are to the better. They can do 
this through their direct ownership in the energy sector, 
although the trend is a movement towards more private 
ownership. Political decisions concerning project ap-
provals, taxes, subsidies and research spending also 
affect the investment decisions. Other types of compu-
tational models, including investments as internal (en-
dogenous) variables, are required to analyse the effect 
of such political measures upon the technology mix. 
Modelling of investment dynamics in the energy and 
power markets has gained increased attention in the 
deregulated market setting [9]. It is worth noting that 
we could possibly also address investment dynamics 
within our trade-off analysis project, by adding an extra 
step to the 4 basic steps presented in Figure 12. 

 
The trade-offs between pollution attributes like SO2, 

NOx and CO2-emissions on the one hand, and total 
system costs on the other hand, are usually the trade-
offs that are given most attention in traditional inte-

grated resource planning. In our setting, where the 
costs are spread between a large number of participants, 
the aggregate system costs might, however, be of less 
interest. The utilities’ investments in new generation 
facilities are profit driven today, as opposed to the con-
ditions in the regulated industry where investments 
were more based on expectations about future demand. 
Large-scale supply side investments have become more 
risky, as end-users now can switch between utilities. 
This makes it more difficult for the utilities to recover 
poorly judged investments simply by increasing the 
price to their customers. The risk profiles for different 
participants in the energy markets should therefore be 
taken into account when assessing aggregate cost fig-
ures, e.g. by adjusting the discount factor. The utilities’ 
objective for operating the system has also changed, 
from cost minimisation in the old regime to profit 
maximisation today. As a result, the presence of market 
power and strategic bidding are topics that are fre-
quently discussed, particularly in power markets. We 
include this into our analysis by using a power market 
model that can use bid-based instead of cost-based 
dispatch of the power system. 

6 CONCLUSION AND FUTURE WORK 

The current status for the energy supply within Nor-
way, Sweden and Denmark are presented in the first 
part of the paper. The conditions in this region, with 
very different characteristics of the energy system in the 
three countries and a common deregulated power mar-
ket, makes it very well suited for testing and applying 
new energy planning methodologies. The multi-
attribute trade-off analysis framework, where frequent 
interaction with multiple stakeholders is one of the 
main features, could possibly become a very useful tool 
for energy and environmental assessments. However, 
the framework must be further developed, in order to 
adjust completely to a deregulated market setting. The 
methodological development will continue within the 
current project. At the same time we will carry out the 
specific analysis of the Scandinavian region under close 
cooperation with the stakeholder group.   
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