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Synopsis 

The essential function of an oil and gas producing well is to transport hydrocarbons 

from the reservoir to the processing equipment in a cost effective and safe manner.  

The importance of well safety has been recognized and accepted for a long time, 

and significant improvements concerning both design and operating procedures have 

been made. In spite of these improvements, failures still occur and will probably 

continue to occur in the future. The industrial and technological development, the 

extended lifetime of wells, and recent regulations and standards imply that there is a 

need for a systematic approach towards well safety during the entire life cycle of a well. 

For a well the main risk contributor is a blowout. The acceptable mean time 

between blowouts is very long compared with the lifetime of a well. In such situations 

Rasmussen (1994) states that the risk involved in operation has to be predicted 

analytically from the first beginning and the proper defenses have to be designed from 

this prediction. Use of predictive methods in the well risk assessment is not new. 

However, descriptions and guidelines on how to apply the analysis techniques in the 

well life cycle are fragmented.  

The main objective of this thesis has been the development of procedures and 

methods for risk assessment of oil and gas wells. The work is limited to the well 

operational phase. The procedures and methods provide status of the well risk level 

during the life cycle from installation to abandonment of the well. The main focus is on 

the two main safety functions of the well: 

a. To prevent uncontrolled leakage of well fluids from the well to the environment. 

This function is usually referred to as well integrity and is a continuous safety 

function that may fail at any instant of time. 
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b. To shut in the well flow in case of a dangerous incident on the downstream side of 

the x-mas tree. The shut-in function is an on demand function activated in a random 

critical situation. 

 

In this context a systematic approach means to describe a procedure for risk 

assessment, with focus on quantitative/predictive analysis as a means to provide input to 

the assessment. The risk assessment is based on existing and new methods and 

knowledge gained during the PhD work. To arrive at such procedures and methods, it 

was necessary to: 

1. Describe the state of the art related to analysis and control of the functions 

mentioned above. 

2. Describe regulations, standards, and industry practice, giving requirements to well 

safety in the operational phase. 

3. Identify commonly accepted analysis methods applied in risk assessment of wells, 

with focus on quantitative analysis techniques. 

4. Identify input reliability data available for quantitative well safety analyses and 

discuss the quality of the data. 

5. Assess the applicability of existing well safety analysis methods and, if necessary, 

suggest improvements. 

6. Suggest improvement in application of reliability input data. 

7. Develop a systematic approach for risk assessment of oil and gas wells in the 

operational phase. In this context a systematic approach means to assess well risk 

when a well component failure occurs in the operational phase. The basis for the 

risk assessment is the quantitative analysis techniques identified.  
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The use of risk assessment methods to assess well risk in the operational phase is 

not new. However, some of the steps in the risk assessment procedure are new. Also a 

set of well risk factors (WRF) for assessing well risk in the operational phase is new. 

More explicit the following contributions from the thesis are identified: 

• A systematic approach for well risk assessment in the operational phase. A set of 

WRFs are identified that influence the total well risk. The procedure is aimed at risk 

assessment in the operational phase after a well component failure has occurred.  

• A method for constructing barrier diagrams. A barrier diagram is a structured way 

of describing a well as a barrier system. In the thesis it is shown how to calculate 

failure probability directly from the barrier diagram. Alternatively, the barrier 

diagram construction rules allows for converting the barrier diagram to a fault tree. 

• A framework for assessing well component failure causes, acceptable deviations in 

well component performance, and dependent failures.  

• A method for calculating the safety unavailability of safety functions, and a method 

for calculating the safety unavailability for different configurations of surface 

controlled subsurface safety valves. 

 

 

 





 

Preface 

This thesis reports the work carried out during my PhD study at the Norwegian 

University of Science and Technology (NTNU), Department of Production and Quality 

Engineering. The research was initiated in 2000, and financed by a research scholarship 

from NTNU. The research was halted for a one year period in 2003 because of project 

work at my current employer ExproSoft AS.  

The study builds on two parts. The first part constitutes of a series of courses with 

exams. The second part is the work reported in this thesis.  

The main objective of this thesis has been the development of procedures and 

methods for risk assessment of oil and gas wells. The work is restricted to the well 

operational phase. The procedures and methods provide status of the well risk level 

during the life cycle from installation to abandonment of the well. The main focus is on 

the two main safety functions of the well: 

a. To prevent uncontrolled leakage of well fluids from the well to the environment. 

This function is usually referred to as well integrity and is a continuous safety 

function that may fail at any instant of time. 

b. To shut in the well flow in case of a dangerous incident on the downstream side of 

the x-mas tree. The well shut-in function is an on demand function activated in a 

random critical situation. 

 

This PhD work belongs to the field of applied science, meaning research aiming 

directly at practical application. The thesis is build up by a main report and a series of 

papers. The main report addresses primarily personnel involved with risk control of 

offshore wells in the operational phase. The papers describe methods primarily for 

personnel performing quantitative reliability analysis.  
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1. Introduction 

This chapter describes the background and motivation for the PhD project, along with 

the objectives and the limitations. The scientific approach adapted is discussed and the 

structure of the thesis is outlined. 

1.1 Background and motivation 

The essential function of an oil and gas producing well is to transport hydrocarbons 

from the reservoir to the processing equipment in a cost effective and safe manner. 

The importance of well safety has been recognized and accepted for a long time, 

and significant improvements concerning both design and operating procedures have 

been made. In spite of these improvements, failures still occur and will most likely 

continue to occur in the future. The need for continued focus on well safety is 

exemplified by the gas blowout in 2005 on the Snorre tension leg platform operating on 

the Norwegian Continental Shelf (NCS). According to the Petroleum Safety Authority 

(PSA) in Norway the accident1 could have resulted in a major accident with the loss of 

many lives (PSA, 2005). Two of the conclusions drawn from the investigation were: 

• Deficient assessments of overall risk.  

• Breach of the requirements to well barriers. 

 

A well barrier is an envelope of one or several dependent barrier elements 

preventing fluids or gases from flowing unintentionally from the formation into another 

formation or to surface (NORSOK D-010). The well barriers are means to reduce 

                                                 
1 Accident - An unintended event or sequence of events that causes death, injury, environmental 
or material damage (DEF-STD 00-56). 
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overall risk. How well barriers influence on well risk in the operational phase is focused 

on in this thesis.  

 

Technology trends  

The industry continues to develop new well designs for challenging reservoir 

conditions. In Norway, most of the profitable fields are in production. The industry now 

focuses on finding and developing the smaller/marginal fields in the southern part of the 

NCS. In search for new large and profitable fields, the industry moves north and into 

deeper water. This development results in production in more environmentally sensitive 

areas and in operations under more hostile weather conditions. A similar development is 

seen, e.g., in Russia where offshore fields in the Barents region are being planned.  

To develop the marginal fields it is expected that the operators of offshore fields 

will be more directed towards subsea systems and investments in new development 

concepts and technologies. An example is subsea high integrity pressure protection 

systems (HIPPS), where the pipeline is not rated for the full pressure and a safety 

instrumented system (SIS) is installed on the seafloor to close the flow if high pressure 

above acceptable level occurs. The first subsea HIPPS on the NCS is the Kristin field. 

The field started production October 2005 (Statoil, 2005).  

The trends mentioned above indicate that new technology applied in more 

challenging fields will require continued focus on well risk management2 in the future.  

 

Supply and demand 

According to Hirsch, et al (2005) the oil production will soon peak and there may be a 

mismatch between the demand for and the supply of petroleum, and this situation will 

not be temporary. Peaking will create a severe liquid fuel problem for the transportation 

sector. Peaking will result in dramatically higher oil prices, which will cause economic 

hardship in the industrial countries, and even worse problems in the developing 

countries. The study concludes that the problem of peaking of world conventional oil 

production is unlike any yet faced by modern industrial society. With the expected 
                                                 

2 Risk Management - Systematic application of management policies, procedures, and practices 

to the tasks of analyzing, evaluating and controlling risk (IEC 60300-3-9). 
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mismatch between demand and supply it is likely that there will be an increased 

pressure on safety.  

 

Increased focus on well age and life extension 

In Norway, the NORSOK D-010 standard describes well integrity requirements, where 

well integrity is “the application of technical, operational, and organizational solutions 

to reduce risk of uncontrolled release of formation fluids throughout the life cycle of the 

well.” Well integrity has always been focused on in the design of new wells, but well 

integrity in the operational phase is now of increasing concern. Because of high oil 

prices, new technology for increased recovery, and government incentives, it is now 

possible and profitable to extend production beyond the assumed design life3. However, 

life extension may result in more frequent critical failures involving leakages to the 

environment. The outcome of such leaks can be catastrophic. According to Burton 

(2005) 10% of the wells on the United Kingdom Continental Shelf (UKCS) were shut-

in due to well integrity problems during the last five years. The article refers to a study 

based on interviews with 17 UKCS operators. Approximately 83% of these operators 

experienced well integrity problems. Other topics highlighted in Burton (2005) are: 

• Little is known about the implications of operating wells beyond their design lives, 

and UK operators found growing concern about the safety, environmental, and 

economic standards associated with well structural integrity.  

• More subsea wells will have implications on the identification and remediation of 

integrity problems.  

• 32% of UKCS completed or suspended wells are more than 20 years old, with some 

over 38 years old.  

• Well lives are being extended, older assets are being sold to smaller operators, and 

the number of subsea wells is increasing. 

• Erosion, corrosion, and fatigue problems associated with prolonged field life are 

thought to have led to more frequent well integrity problems.  

                                                 
3 Design life - Planned usage time for the total system (NORSOK O-CR-001). 
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• Some operators believe that well functionality can be maintained, regardless of age, 

through inspection, monitoring, and maintenance. Nevertheless, 87% of the 

operators questioned believe that the incidence of structural integrity problems is 

increasing and will continue to do so.  

 

It is likely that the NCS situation is comparable to the UKCS situation because there 

are many similarities in field age, type of installations, operating practice, etc. Well 

integrity is also a major concern in the United States Gulf of Mexico (US GoM). A 

study carried out on behalf of the Mineral Management Services (MMS) concludes that 

more than 8000 wells on the US GoM Outer Continental Shelf experience well 

completion leaks (Bourgoyne et al 2000).  

The increased emphasis on well integrity in the operational phase is reflected in 

recent regulations and standards. In Norway, NORSOK D-010 describes requirements 

for “Well Integrity in drilling and well operations”, while the American Petroleum 

Institute (API) currently develops a recommended practice for handling of annular 

casing pressure in the US GoM. The working title is API RP904 – Annular Casing 

Pressure Management for Offshore Wells. 

Independent of industry sector, there is a global trend towards functional 

requirements (what is to be achieved) rather than deterministic/rule based requirements 

(what to do) in high-risk industries. A main reason for this change is to enable the 

industry to cope with new technology rather than restricting the development. As a 

consequence of more functional requirements there is an increased focus on risk 

assessment methods to demonstrate acceptable risk.  

 

The well as part of a safety instrumented system (SIS) 

On offshore installations leaks or other hazardous events5 may occur that make it 

necessary to isolate the wells. In this situation the well safety function is to “shut-in the 

                                                 
4 No official version of this recommended practice (RP) is available yet 
5 Hazardous event - Event which can cause harm (IEC 60300-3-9). 
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well”. This safety function6 will reduce the consequences7 of the initiating event. The 

well shut-in function is the “protection layer” closest to the reservoir, and the 

availability8 of this function contributes significantly to reducing the total risk on the 

installation.  

The well shut-in function is part of a SIS. On offshore installations a SIS has 

traditionally been designed in accordance with ISO 10418 (or API RP14C), which gives 

rules for how to design such systems. In Norway and in the UK there has been a change 

towards the IEC 61508 and IEC 61511 standards, which describe a risk-based approach 

to determine the design, and quantitative9 reliability10 requirements for safety functions. 

Overall, it is expected that these standards will contribute to a more systematic safety 

work and increased safety in the industry. In Norway, the new IEC standards have 

resulted in a guideline for the application of the standards in the Norwegian petroleum 

industry (OLF, 2004). The guideline states a quantitative reliability requirement to 

safety functions. One of the safety functions described in OLF (2004) is the “isolation 

of well” function. The “isolation of well” function comprises the well safety valves and 

the control logic that actuates the valves. 

 

                                                 
6 Safety function - Function to be implemented by a SIS (Safety Instrumented System), other 
technological safety-related system or external risk reduction facilities which is intended to 
achieve or maintain a safe state for the process in respect to a specific hazardous event (IEC 
61511) 
7 Consequence - A possible result of an undesired event. Consequences may be expressed 
verbally or numerically to define the extent of injury to humans, or environmental or material 
damage (NS 5814). 
8 Availability - The ability of an item under combined aspects of its reliability, maintainability, 
and maintenance support) to perform its required function at a stated instant of time or over 
stated period of time (BS 4778). 
9 Quantitative - The property of anything that can be determined by measurement. The property 
of being measurable in dimensions, amounts, etc., or in extensions of these that can be 
expressed by numbers or symbols. A quantitative statement describes “how much”, while a 
qualitative statement answers the question, “what kind is it?” or “how good is it?” (Tarrants 
1980). 
10 Reliability - The ability of an item to perform a required function, under given environmental 
and operational conditions, and for a stated period of time (ISO 8402). 
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Motivation 

The industrial and technological development, the extended lifetime of wells and, the 

recent regulations and standards imply that there is a need for a systematic approach 

towards well safety during the entire life cycle of a well. 

Both well integrity and the well system11 as part of a SIS are essential to the total 

risk on an installation. Further, design and operation of the well and the SIS are 

traditionally the responsibility of organizational units with different focuses. In well 

system design the ability to contain and transport well fluids from the reservoir to the 

rest of the process system is emphasized. In SIS design the ability to close in the well 

when demanded is focused on. Traditionally well integrity and the well system as part 

of a SIS are handled separately. However, well system failures may have an effect on 

both well integrity and the ability to shut-in the well when required. 

The application of risk assessment in design of wells and of SIS is not new. 

However, descriptions and guidelines on how to control risk from a well design 

perspective are fragmented. In particular, this limitation applies to risk assessment in the 

operational phase. 

IEC 61508 and IEC 61511 focus on the use of field specific reliability data. How to 

collect and include field specific reliability input data in risk assessment need to be 

focused on.  

1.2 Objectives 

The overall objective of the PhD project is to develop a systematic approach for risk 

assessment and control of offshore wells in the operational phase. The main focus is on 

the two main safety functions of the well: 

a. To prevent uncontrolled leakage of well fluids from the well to the environment. 

This function is usually referred to as well integrity and is a continuous safety 

function that may fail at any instant of time. 

                                                 
11 System - A bounded physical entity that achieves in its domain a defined objective through 
interaction of its parts (DEF-STD 00-56). 
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b. To shut in the well flow in case of a dangerous incident on the downstream side of 

the x-mas tree. The shut in function is an on demand function activated in a random 

critical situation. 

 

The overall objective is split into the following sub-objectives: 

1. Describe the state of the art related to analysis and control of the functions 

mentioned above. 

2. Describe regulations, standards, and industry practice, giving requirements to well 

safety in the operational phase. 

3. Identify commonly accepted analysis12 methods applied in risk assessment of wells, 

with focus on quantitative analysis techniques. 

4. Identify input reliability data13 available for quantitative well safety analyses and 

discuss the quality of the data. 

5. Assess the applicability of existing well safety analysis methods and, if necessary, 

suggest improvements. 

6. Suggest improvement in application of reliability input data. 

7. Develop a systematic approach for risk assessment of oil and gas wells in the 

operational phase. In this context a systematic approach means to assess well risk 

when a well component failure occurs in the operational phase. The basis for the 

risk assessment is the quantitative analysis techniques identified.  

1.3 Delimitation 

The PhD work focuses on well safety. Safety is defined by IEC 61508 as “freedom from 

unacceptable risk”, while IEC 60300-3-9 defines risk as a “combination of the 

frequency, or probability, of occurrence and the consequence of a specified hazardous 

event.” The same standard defines a hazardous event as an “event which can cause 

                                                 
12 Analysis - An examination of a complex, its elements, and their relations; the use of methods 
and techniques of arranging facts to assist in deciding what additional facts are needed, establish 
consistency, validity and logic, establish necessary and sufficient events for causes, and guide 
and support inferences and judgments (Johnson 1980) 
13 Reliability data - Reliability data is meant to include data for reliability, maintainability and 
maintenance supportability. 
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harm.” A well has the potential to create hazardous events, and hence well risk must be 

acceptable. The risk should be acceptable throughout the lifetime of the well.  

For a well the main hazardous event is a blowout. The acceptable mean time 

between blowouts is very long compared with the lifetime of a well. In such situations 

Rasmussen (1994) states that the risk involved in operation has to be predicted 

analytically from the first beginning and the proper defenses have to be designed from 

this prediction. The thesis focuses on predictive analysis methods. 

The work is limited to offshore wells and the two functions described in section 1.2. 

Another limitation is that the work focuses on the operational phase of the well 

lifecycle. The operational phase typically starts after the well is handed over to 

production operations. The operational phase involves a long-term operation where 

failures may develop over time and result in unacceptable changes in risk. The well 

operations before the well is in production (i.e., drilling and completion) or operations 

to repair14 or maintain the well (i.e., workover and wireline operations) are not covered.  

Holand (1997) describes two main types of barrier situations; static and dynamic. A 

static barrier situation is a situation where the same well barrier will be available over a 

“long” period of time. In a dynamic situation the well barrier varies over time. This 

situation is typical for well drilling, workover, and completion operations. With focus 

on the operational phase, the thesis treats static barrier situations. Appropriate analysis 

techniques for dynamic well situations are discussed in Holand (1997). 

It is not within the scope to assess the effect of major modifications, e.g., to convert 

the well from a production to an injection well. Such changes are known in advance and 

may be handled as a new design.  

Risk can be related to losses comprising: 

• Loss of human life. 

• Environmental damage. 

• Material and production loss. 

 

                                                 
14 Repair - The part of corrective maintenance in which manual actions are performed on the 
entity (IEC 50(191)). 
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Severe accidents may impair the reputation of the operating company, and risk 

management is therefore important in the entire life cycle of the offshore installation. 

Through design, operation, and maintenance the aim is to minimize risk. However, risk 

is not only about losses. Effective risk management may provide a significant business 

advantage by contributing to increased business performance and reputation. This thesis 

focuses on risk related to losses with focus on loss of human life risk. The possible side-

effect that the proposed method(s) contribute to a business advantage is not treated in 

the thesis. 

The total risk will be a combination of risk from several potential hazardous events, 

where the hazardous events result from different hazards. According to EN 12100-1, 

there may be mechanical, radiation, chemical, biological or electrical hazardous energy 

sources. Even if a well may include aspects of the hazardous energy sources above, the 

release of inflammable/explosive fluids (hydrocarbons) to the surroundings is by far the 

most significant risk factor. This risk factor is focused on in the thesis.  

A blowout may be caused by a well component failure or an external event directly 

affecting the well, both situations resulting in loss of control. Well component failures 

are focused on in this thesis.  The frequencies of external events that result in well 

failure are not covered. 

The thesis is limited to the technical factors. Organisational and human factors are 

not covered. Neither is the risk associated with occupational accidents.  

The thesis focuses on the use of quantitative risk analysis methods. If existing 

methods suited for the purpose are identified, these methods are used as basis. In this 

case improvement of, e.g., input data is focused on rather than suggesting new methods.  

The well shut-in function comprises three basic parts, namely detection (sensors), 

logic actuator and actuation (the well safety valves). The thesis focuses on the well 

components that are part of the well shut-in function, but the results may serve as input 

to the design and follow-up of the entire function. 
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The need for risk acceptance criteria15 are described and discussed. However, 

explicit risk acceptance criteria are not within the scope. To establish acceptance criteria 

is seen as the responsibility of the operator. 

1.4 Scope of work and principal results 

A clear understanding of the system and the system boundaries is a key factor in any 

analysis, and consequently also in any risk analysis16. By the system understanding, 

suitable risk analysis methods and input data can be identified. The results from the risk 

analyses should provide an appropriate basis for risk evaluation17 to make decisions 

concerning risk.  

An offshore installation is a complex system. Figure 1 illustrates the system 

breakdown structure used as basis for further discussion. Three system levels are 

defined, namely installation, well, and well component level. Figure 1 illustrates the 

conceptual model18 for the design phase. This phase is a typical top-down process where 

the tasks on installation level determine the boundary conditions for the lower system 

levels. On each level typical design tasks are illustrated with boxes in greyscale. Within 

each design task a set of safety tasks are performed. The safety tasks are illustrated with 

white boxes. The focus in the thesis is on the well system level, and the safety tasks with 

letters in bold face indicate the main safety tasks performed on well system level. 

Arrows illustrate the information flow (or boundary conditions) transferred from one 

task to another. The dotted lines indicate risk results on well system level that may serve 

as input to the installation level. This feedback loop is, however, not treated specifically 

in the thesis. 

                                                 
15 Acceptance criteria - Criteria based on regulations, standards, experience and/or theoretical 
knowledge used as a basis for decisions about acceptable risk. Acceptance criteria may be 
expressed verbally or numerically (NS 5814) 
Risk criteria - A qualitative or quantitative statement of the acceptable standard of risk with 
which the assessed risk needs to be compared (The Royal Society 1992). 
16 Risk Analysis - Systematic use of available information to identify hazards and to estimate the 
risk to individual or populations, property or the environment (IEC 60300-3-9). 
17 Risk Evaluation - Process in which judgments are made on the tolerability of the risk on the 
basis of risk analysis and taking into account factors such as socio-economic and environmental 
aspects (IEC 60300-3-9). 
18 Model - Simplified representation of a phenomenon or object where some aspects are 
highlighted whereas other are left out (e.g., causal models) (Hellevik 1999). 
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Figure 1 Well risk assessment in the design phase 

 

IEC 61508, Part 4 defines equipment under control (EUC) as “equipment, 

machinery, apparatus, or plant used for manufacturing, process, transportation, medical, 

or other activities”. On offshore installations the EUC will vary from the entire 

installation to components. It is impossible to develop one risk method that covers all 

risk aspects of the installation. Risk analyses are therefore performed on various system 

levels (EUCs). 

Risk analyses (QRA) are commonly performed on the installation level. The QRA 

methods applied differ from country to country. The discussion is based on the practice 

on the NCS. However, the approach and the limitations highlighted have similarities 

with the approach used in other countries.  
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In Norway, the QRA is used to quantify the installation risk. The QRA identify a set 

of hazardous events, and model the frequency and consequence of the hazardous events. 

The QRA is a tool used to assess the layout of the installation, placement of main safety 

functions, and dimensioning accident loads. The QRA as of today tend to model the 

consequences of the hazardous events in a very detailed manner, whereas the frequency 

of the hazardous events is modeled in a very rough manner. One of the hazardous events 

included in the QRA is blowouts. Even if blowout events contribute to a high share of 

the risk on the NCS, the blowout frequencies used as input to the QRA are based on 

coarse analysis. In most cases the estimates are based on the historic occurrence of 

blowouts, where the basis is the work of Holand (1997). For the consequence of a 

blowout however, a range of models exist. The QRA is therefore a useful tool to 

identify and compare solutions aimed at reducing the consequence of a blowout. The 

QRA is not suited (and not used) for reduction of the blowout frequency for a single 

well. The thesis therefore focuses on risk analysis of single wells rather than using the 

QRA as basis for modeling well risk. 

Ideally, the QRA may be used to establish quantitative requirements to the lower 

systems levels on the installation.  It could, e.g., be possible to set a target value for the 

blowout frequency for a single well or to the well shut-in function. However, according 

to OLF (2004) “the level of detail of the QRA as it is performed today makes it more 

appropriate for evaluating conceptual options and for verification purposes, than for 

stating absolute criteria.”  The thesis therefore includes a description of other 

regulations and requirements that include criteria for wells in the operational phase. 

On installation level the first design task is to determine the field and installation 

layout, including type and number of wells. On well system level this means that the 

consequences of a hydrocarbon leak is determined too a large degree by decisions made 

on installation level and by the field properties in general (reservoir conditions). On well 

system level the role of the risk assessment is restricted to leak frequency analysis of 

alternative well designs (configurations) to select the well design with the lowest risk. 

The role of the risk evaluation is to assess if the estimated leak frequency can be 

accepted. 
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The same principle is applicable to the well shut-in function. On installation level 

the risk analysis (QRA) includes a range of hazardous events and safety functions are 

included to reduce the hazardous event risk. One of the safety functions is the well shut-

in function. In the QRA it assumed that the well is able to shut-in with a certain on-

demand probability. This probability then becomes the boundary condition for the 

designers of the well shut-in function. The safety task on well system level is to verify 

that the well shut-in function is able to function with the required on-demand 

probability. This requirement should be followed up in the operational phase. 

On well system level the component level boundary conditions are determined. 

Based on the input from the well level, the well components are selected and qualified 

for use in the specific well. Reliability input data on well component level may then be 

fed back to well system level.  

Different types of risk evaluation are made in the design phase and in the 

operational phase. In the design phase, several configurations and well component 

alternatives are evaluated. In this phase the role of the risk analysis is to present a basis 

for comparison and ranking of the alternatives. In the operational phase the well design 

is fixed, and risk control19 should be performed throughout the life of the well. The role 

of the risk analysis in this process is to illustrate changes in risk and to present 

alternatives for reducing risk. The risk evaluation should conclude whether the change 

in risk is acceptable or not.  

Figure 2 illustrates the conceptual model for the operational phase. In contrast to the 

design phase, the operational phase is a typical bottom-up process where well 

component failures influence the higher levels in the hierarchy. The PhD project 

includes a risk assessment20 method to be applied on the well system level. The method 

includes both well integrity and the well shut-in function. The basis for the risk 

assessment method is the quantitative analysis and well level requirements identified as 

suited for use in the design phase. The quantitative analysis are used to measure the 

                                                 
19 Risk Control - Process of decision-making for managing and/or reducing risk; its 
implementation, enforcement and re-evaluation from time to time, using results of risk 
assessment as one input (IEC 60300-3-9). 
20 Risk Assessment - Overall process of risk analysis and risk evaluation (IEC 60300-3-9). 
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increase in well integrity risk and the well shut-in function on-demand probability as a 

result of well component failures that occur in the operational phase. 

The risk assessment method is used to control well risk in the operational phase. It 

is assumed that if the well risk is acceptable on single well level, the risk change will 

not be reflected in the QRA on installation level. A possible extension not covered in 

this thesis is to implement the method as part of a tool to update the QRA in the 

operational phase (indicated with dotted lines in Figure 2).  

 

 

Figure 2 Well risk assessment in the operational phase 

 

1.5 Scientific approach and verification 

This PhD project belongs to the field of applied science, meaning research aiming 

directly at practical application. Applied research can be exploratory but are often 

descriptive. Applied science is an activity of original character to gain new knowledge 

and insight, primarily to solve specific, practical problems. This means that the quality 

of the research must be considered not only from a scientific point of view, but also 

from a user point of view. Applied research “asks questions” and in this context the 

thesis objective may be stated as “how can well risk be controlled by risk assessment?”.  
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The general basis for the thesis is established through extensive literature surveys. 

These surveys represent the starting point for the research, and support all subsequent 

activities. In addition the professional experience from SINTEF and ExproSoft, input 

from my advisor Marvin Rausand, co-operation with industry representatives from 

Norsk Hydro, and co-operation with colleagues from ExproSoft and SINTEF have 

contributed to valuable input to the identification of problem areas, comments and 

subjects to be focused on. 

To prove its validity, the empirical verification of the research is one of the 

cornerstones in many scientific disciplines. However, direct verification of the full 

extent of the methodology in the thesis may be unrealistic. Due to many influencing 

factors both in the design phase and in the operational phase, a new method may 

improve safety but cannot guarantee it. Consequently, it is difficult to separate the 

effects of a certain method from other factors, or to prove afterwards that other methods 

would have led to a better result (Roozenburg and Eekels, 1995). As an alternative, 

Vatn (1996) describes some basic principles to ensure a scientific approach to the 

development of procedures and methods. The principles followed to the extent possible 

are:  

1. Defining and limiting the problem. As part of a procedure or a method, the principal 

problem it is developed for and the limitations shall be clearly defined. 

2. Stringency. Rules must be obeyed. Because most methods within applied science are 

cross-disciplinary, the rules or the scientific standards vary among the disciplines. 

For example, the predictive part of a method will often require an understanding of 

the world in terms of cause-effect models. 

3. Accuracy. The method shall be careful and exact. 

4. Correctness. Deductive reasoning shall be correct according to formal logic. If an 

argument cannot be defined from a formal logic point of view, this should be stated. 

5. Thoroughness. The method shall explore how all important aspects of a problem can 

be treated. If some aspects are left out from the analysis, this shall be stated and 

justified. A key question is “Can the method handle this and that?”. 

6. Traceability. In this context traceability means that arguments leading to the 

proposed procedure or method should be stated as part of the procedure/method, or 
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as a supplement to the method. This involves demonstrating how the method relates 

to a theoretical basis, and literature references should be made to relevant work. 

7. Order and system. The procedures and methods shall have a high degree of order 

and system to ensure that 1) critique can be raised against the method, and 2) it is 

easy to understand and use the method to solve real problems. 

8. Critique. Arguments against the procedure and methods shall also be identified and 

discussed. 

 

The thesis consists of a main report that describes a framework for use of well risk 

assessment in the operational phase. A set of papers is included as appendixes to the 

main report. The papers describe detailed methods or procedures that are part of the 

framework. The criteria listed above have been followed as far as possible both in the 

main report and in the papers.  

The risk assessment procedure presented in the main report is developed in co-

operation with Norsk Hydro. The risk assessment procedure is now being implemented 

by Norsk Hydro. The plan is to conduct a series of courses to get user feed-back before 

the method is implemented as an internal procedure. Paper 2 is published in a journal. 

Paper 1 and Paper 3 are presented in conferences. 

1.6 Structure of the thesis 

The thesis consists of a main report and enclosed papers. The main report provides a 

framework to the work presented in the thesis together with summary and discussion. 

The main report provides references to specific topics presented in the papers. The 

content of the main report are described in more detail below.  

Chapter 1 describes the background and motivation for the PhD project, along with 

the objectives and the limitations. The scientific approach adapted is discussed and the 

structure of the thesis is outlined. 

Chapter 2 describes the main characteristics of an offshore well. The chapter forms 

a basis for the discussions and evaluations later in the report. A base case well is 

described, as well as different well types and well operations. Finally, well integrity and 

the well shut-in function are discussed. 
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In Chapter 3 the boundary conditions for risk assessment of single wells are 

discussed. The boundary conditions are conditions or limitations determined by the 

higher levels in the offshore installation system hierarchy or by specific well integrity 

and well shut-in function requirements. With basis in the boundary conditions, suited 

types of risk analysis and risk measures are discussed. 

In chapter 3 it is identified that the IEC 61508/61511 standards require risk analysis 

to be performed to determine the required protection from safety functions, while a risk 

analysis normally not is required is Norway. In Paper 1 the difference between the two 

approaches is discussed in more detail. 

Chapter 4 describes well configuration and well component characteristics. The 

discussion includes functionality requirements, failure modes, failure causes, and 

reliability data. Different types of safety critical well barrier failures require different 

types of detection strategies and follow-up, and in Paper 3 strategies for revealing safety 

critical failures are discussed. Chapter 4 presents a failure classification scheme that is 

useful when performing quantitative reliability analysis. The basis for the classification 

scheme is described in Paper 5. 

Chapter 4 also presents barrier diagrams as a method to illustrate the possible leak 

paths between the reservoir and the environment. Barrier diagrams are useful for 

keeping an overview of the well barriers when analyzing various well barrier 

arrangements. Barrier diagram construction rules are described in Paper 4. 

In Chapter 5 the quantitative reliability analysis applied on well system level are 

discussed. On well system level the designers/user can primarily influence 1) the 

blowout and/or well release frequency and 2) the probability of failure on demand 

(PFD) for the well shut-in function. In chapter 5 the two reliability measures are 

presented, together with suitable analytic method. 

Paper 5 describes models to calculate the unavailability for different Surface 

Controlled Subsurface Safety Valve (SCSSV) configurations. In Paper 2 a common 

cause failure model is described. The models described in paper 2 and 5 are 

supplements to the methods described in Chapter 5. 

Chapter 6 describes a method for risk assessment of a single well. The method is to 

be applied in the operational phase when a failure of a well component has occurred.  
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Chapter 7 provides a brief evaluation of the research process, a discussion of the 

results of this thesis, and recommendations for further work.  

 

 



 

2. Well system description 

To establish a basis for the discussions and evaluations later in the report this chapter 

describes the main characteristics of an offshore well A base case well is described, 

together with different well types and well operations. Finally, well integrity and the 

well shut-in function are discussed. 

2.1 Well system, well types and well operations 

A well consists of a x-mas tree, a wellhead, a well completion, and a casing program, 

where: 

• The well completion is the assembly of tubing hanger, downhole tubular, safety 

valve, production packer, and other equipment placed inside the production casing 

to enable safe and efficient surface access to a (pressurized) formation.  

• The x-mas tree is an assembly of valves, pressure gauges and chokes fitted to the 

wellhead to control the well flow. 

• The wellhead is the surface/seabed termination of a wellbore that incorporates 

facilities for installing casing hangers during the well construction phase and for 

hanging the production tubing and installing the x-mas tree. 

• The casing program encompasses all casing and liner strings, including hangers and 

cement, in a wellbore. 

 

The well as defined above is the system boundary in this report. An example well is 

included as a basis for discussion and exemplification later in the report. Figure 3 shows 

a sketch of the well, which is a typical surface oil production well. On a surface well the 

wellhead, the x-mas tree, and the production control system are positioned on the 

platform. On subsea wells these systems are located on the seabed and the reservoir 
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fluids are transported from the well through a flowline and a riser to the platform. On 

subsea wells there are two main x-mas tree types. Vertical subsea x-mas trees are in 

principle similar to the surface x-mas tree, while a horizontal x-mas tree is configured 

with the master valves and flow-control equipment on a horizontal axis (the PMV is 

located horizontally). 

The well completion gives access to the reservoir. The well completion part below 

the tubing hanger is commonly called the tubing. The tubing is an assembly of tubing 

joints and other completion components. The reservoir fluids (oil, gas and water) flow 

from the reservoir through the tubing to the x-mas tree and to surface. The components 

selected for any well completion should be compatible with the wellbore geometry, well 

pressure, reservoir fluids, etc.  

The casing program consists of different types of casing strings. The casing 

program has several functions. The production casing is set across or at the start of the 

reservoir and allows installation of the well completion. The intermediate casing string 

provides protection against caving of weak or abnormally pressured formations and 

enables the use of drilling fluids of different density necessary for the control of lower 

formations. The surface casing string provides structural strength so that the inner 

casing strings and the well completion can be installed. 

The space between the tubing and the production casing is called A-annulus in the 

report. The annuli outside the A-annulus are called B- and C-annulus, respectively.  

Several components with different functions are integrated into a well. Some 

commonly installed component types and associated functions are21: 

• Tubing hanger and tubing head. The tubing hanger is located in the tubing head. 

The tubing head provides a means of attaching the x-mas tree to the wellhead. Both 

components ensure that the tubing and annulus are hydraulically isolated. 

• Production packer. The production packer isolates the annulus and anchors the 

bottom of the production tubing string.  

• Seal assembly. The seal assembly is a component with seals that engages in a 

sealbore to isolate the production tubing conduit from the annulus. 

                                                 
21 See the Definitions chapter for detailed function description 
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• Surface controlled subsurface safety valve (SCSSV)22. The SCSSV is a downhole 

safety valve, which is operated from the surface through a control line. The valve is 

able to shut-in the well when demanded. The valve is fail-safe23, i.e., the valve 

closes with loss of hydraulic control pressure. Two basic types of SCSSV are 

common: wireline retrievable (WR), whereby the principal safety-valve components 

can be run and retrieved on wireline, and tubing retrievable (TR), in which the entire 

safety-valve assembly is installed with the tubing string. TR-SCSSV valves are most 

common in use. The WR-SCSSV are in some cases installed to replace a failed TR-

SCSSV. 

• Production master valve (PMV). The PMV is located on the x-mas tree and controls 

the flow from the wellbore. The PMV also has a safety function and is fail-safe 

close if control pressure is lost. On surface wells also a manual master valve is 

usually installed.  

• Production wing valve (PWV). The PWV is located on the side of the x-mas tree. 

The PWV is used to control and isolate production. In addition a service (kill) wing 

valve is available for treatment or well-control purposes. 

• Swab valve. The swab valve is located on the top of the x-mas tree and provides 

access to the wellbore if repair or inspection is required. 

                                                 
22 Other types of Downhole Safety Valves (DHSV) are available but the dominating type is 
SCSSV and only this type is included in the thesis. 
23 Fail safe - A design feature that ensures the system remains safe or, in the event of a failure, 
causes the system to revert to a state that will not cause a mishap (MIL-STD 882D). 
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Figure 3 Typical surface oil production well 
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2.1.1 Well types 

A well may be a production or an injection well. Production wells produce well fluids, 

while injection wells are used to inject gas or water to the reservoir to maintain reservoir 

pressure.  

 

Production wells 

A production well transports well fluids from the reservoir to the rest of the process 

facilities on the installation. In addition to oil, an oil well almost always produces some 

gas and frequently water. A gas well produces natural gas, and frequently some 

condensate (natural gas liquids such as propane and butane) and occasionally some 

water.  

In a naturally flowing production well the formation pressure is sufficient to 

produce oil at a commercial rate. In the North Sea most reservoirs are initially at 

pressures high enough to allow a well to flow naturally. After a period of time the 

pressure may decrease and it is required with artificial lift to continue production. 

Artificial lift means any system that adds energy to the fluid column in a wellbore with 

the objective to improve production from the well. Artificial-lift systems use a range of 

operating principles, such as rod pumping, gas lift, and electrical submersible pumps 

(Podio et al, 2001). Gas lift is the most common type of artificial lift in the North Sea. 

 

Injection wells 

In a gas injection well, separated gas from production wells or imported gas is injected 

into the upper gas section of the reservoir. The injected gas is used to maintain the 

pressure in the oil reservoir. In most cases, a field will incorporate a planned distribution 

of gas-injection wells to maintain reservoir pressure.  

Water injection wells are common offshore, where filtered and treated seawater or 

produced water is injected into a lower water bearing section of the reservoir. Water 

production can be significantly higher than oil production from a field. Consequently, 

treatment and disposal of produced water, especially in remote locations, have a 

significant impact on the feasibility of a project. 
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2.1.2 Well operations in the operational phase 

In the operational phase major maintenance or remedial treatments may be necessary. 

Eventually, the well will be terminated. Through-tubing workover is a common term for 

coiled tubing, snubbing or wireline operations conducted for treatment or service of the 

well. Wireline operations are most common. In this operation a piece of equipment is 

run inside the tubing string on a wireline either to make a replacement in the well, to 

install new equipment or to perform well surveys. Tubing access through vertical subsea 

trees and surface threes is achieved by simply opening the valves in the tree, while on 

horizontal subsea trees a set of plugs need to be retrieved to gain access to the well bore. 

Wireline operations are relatively routinely performed on platform wells, while a vessel 

or a rig must be contracted to do the same wireline operation on subsea wells. A 

through-tubing workover may avoid a full workover, which is more time and cost 

consuming. 

A full workover means that parts of or the complete tubing string is removed and 

replaced with a new. A full workover may be required due to necessary corrective 

maintenance24 or productivity problems. On surface wells and vertical subsea x-mas 

trees a failure of the tubing string will require pulling of the x-mas tree. On horizontal 

subsea x-mas trees the tubing string can be pulled without pulling the x-mas tree. 

Workovers on subsea wells are normally more time consuming than on platform wells 

because a workover rig must be contracted.  

To kill a well means to stop a well from flowing reservoir fluids. In the case of a 

producing well, a kill fluid with sufficient density to overcome production of formation 

fluid is pumped into the well.  

The well may be closed-in because of operational reasons. To close-in the well 

means to close one or several valves in the well.  

If the well is non-productive, the well will be abandoned. Before abandonment the 

well is plugged with cement plugs and recoverable equipment is removed. 

Workover operations are dynamic situations and are not covered directly in the 

report. Indirectly, such operations are included in the quantitative reliability analyses 

                                                 
24 Corrective maintenance - The maintenance carried out after a failure has occurred and 
intended to restore an item to a state in which it can perform its required function (BS 4778). 
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described later in the report because expected time to repair safety critical failures is 

included in the analysis. The risk of performing such operations are however not 

included. 

2.2 Well integrity 

NORSOK D-010 defines well integrity as “the application of technical, operational and 

organizational solutions to reduce risk of uncontrolled release of formation fluids”. The 

SINTEF offshore blowout database (SINTEF, 2005) defines a blowout as “an incident 

where formation fluid flows out of the well or between formation layers after all the 

predefined technical well barriers or the activation of the same have failed”. In addition 

to blowout the SINTEF offshore blowout database (SINTEF, 2005) has defined a 

second event called well release. A well release is a “an incident25 where oil or gas flow 

from the well from some point were flow was not intended and the flow was stopped by 

use of the barrier system that was available in the well at the time the incident started”. 

A typical well release will be a leak through a component in the x-mas tree and the 

SCSSV is activated. As seen, NORSOK D-010 defines well integrity as the solutions 

available to prevent a blowout (uncontrolled release). However, it is chosen to also 

include well releases in the thesis. Therefore the following well integrity definition is 

used: 

• The application of technical, operational and organizational solutions to reduce risk 

of blowout and well release. 

 

A well should be designed and operated to minimize the blowout and well release 

risk. Safety is defined by IEC 61508 as “freedom from unacceptable risk”. Safety 

related to well integrity may therefore be defined as “freedom of unacceptable blowout 

or well release risk”. 

A blowout or a well release may consist of salt water, oil, gas or a mixture of these. 

A blowout that flows into another formation and not to the surface is called an 

underground blowout. A blowout or well release may be caused by a well component 

                                                 
25 Incident - Any unplanned event resulting in, or having potential for, adverse consequences 
(ISO/TMB WG 1998). 
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failure or an external event directly affecting the well, both situations resulting in loss of 

control.  

2.2.1 Well integrity and well barriers 

The technical means of avoiding a blowout are well barriers. A well barrier is defined 

by NORSOK D-010 as “an envelope of one or several dependent barrier elements 

preventing fluids or gases from flowing unintentionally from the formation into another 

formation or to surface”. The same standard defines a well barrier element (WBE) as an 

“object that alone cannot prevent flow from one side to the other side of it self”. A well 

barrier can be viewed as a pressurized vessel (envelope) capable of containing the 

reservoir fluids. The two barrier principle is followed in Norway and in most oil 

producing countries. This principle means that there should be at least two well barriers 

in a well. A well can therefore be considered as a system of two or more pressurized 

vessels (envelopes) that prevent the fluid from entering the surroundings. Figure 4 

illustrates the well barrier system as pressure vessels. In Figure 4, the well tubulars and 

the x-mas tree body constitute the vessel walls while the SCSSV and x-mas tree valves 

are illustrated as the outlet valves from the vessel. The innermost vessel illustrates the 

well barrier closest to the reservoir while the outer vessels illustrate the consecutive well 

barriers.  

A well release will typically be an incident where the outer vessel leaks, and the 

inner well barrier stops the leak. In a blowout situation all the predefined technical well 

barriers or the activation of the same in one possible leak path have failed. 
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Figure 4 Illustration of well barriers to achieve well integrity 

 

2.2.2 Well integrity risk 

Blowouts (and well releases) can be catastrophic and lead to loss of life, material loss, 

and severe environmental impacts. Depending on installation type, location of wells, 

well type, etc., blowouts represent an important contribution to the total fatality risk in 

offshore oil and gas exploration activities. A measure for the fatality risk is the fatal 

accident rate (FAR), which is a frequency rate26 defined as the expected number of 

                                                 
26 Frequency rate - The number of occurrences of a given type of event expressed in relation to 
a base unit of measure (for example, accidents per 1 million miles traveled (Tarrants 1980) 
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fatalities per 108 hours of exposure. The FAR contribution from blowouts in all well 

phases is discussed in Holand (1997), where it is estimated that blowouts represent 

between 3.5% and 7.2 % of the total fatality risk in offshore oil and gas exploration 

activities in the US GoM outer continental shelf and the North Sea regions. 

 

Blowout and well release frequencies  

Blowout frequencies and failure causes are presented in Holand (1997). Holand (1997) 

include blowouts from the period 1 January 1980 until 1 January 1994 in US GoM outer 

continental shelf and the North Sea (Norwegian, UK waters). Holand (1997) is based on 

data from the SINTEF offshore blowout database, and this database is continuously 

updated (SINTEF, 2005). The database is available to the sponsors of the project. 

Two main potential blowout situations are reported in the operational phase: 

• Blowout during normal operation caused by well equipment failures. 

• Blowout caused by an external hazardous event. In such situations the external 

hazardous event damages the well components above the ground or on the seabed 

(wellheads and x-mas trees). 

 

Holand (1997) discusses 12 production blowouts, where six blowouts are caused by 

well equipment failures, and six blowouts are caused by external loads damaging well 

equipment with subsequent failure to close in the well, e.g., storm, earthquake, naval 

vessel collision, dropped objects, fire and explosion loads. All the production blowouts 

originate from platform completed wells. Holand (1997) did not distinguish between 

blowout and well release. This differentiation is now made in the SINTEF Offshore 

Blowout Database (SINTEF, 2005). It is reason to believe that many of the external load 

events now would have been classified as well releases.  

Further from Holand (1997), most of the production blowouts are caused by failure 

to take action after well equipment failures. Typically, production has continued with 

tubing or casing failure, or the SCSSV has been left in failed condition (or failed when 

activated).  

As input to risk analyses Holand (1997) recommends a well blowout frequency of 

5.0 10-5 blowouts per well year for wells in the operational phase (production and 
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injection wells). This blowout frequency is likely to be conservative due to outdated 

well design, operating practices, and the broad definition of blowout (include well 

releases). For example, modern SCSSVs are in general regarded to be far more reliable 

than SCSSVs used in the 80-ties and early 90-ties (Molnes and Strand, 1999).  

In Norway hydrocarbon leaks above 0.1 kg/s must be reported. According to PSA 

(2003) a total of 228 significant hydrocarbon leaks (i.e., leak rate above 0.1 kg/s) 

occurred from permanent and mobile installations on the NCS during the period 1996-

2002. None of the significant hydrocarbon leaks ignited. Valve faults and incorrect 

operational actions account for most of the leaks. No blowouts where reported in the 

same period. 

The blowout and well release frequencies presented above illustrate that the mean 

times between blowouts and major releases are long, and that the mean time between 

worst case consequences because of a major hydrocarbon release is even longer. 

Therefore, the risk (frequency and consequence) must be predicted. 

 

Blowout and well release consequences 

A well blowout or well release (or a hydrocarbon release in general) may have severe 

consequences for personnel and material assets caused by release of toxic substances 

(e.g., H2S), instability of platforms, or ignition resulting in fire and explosion loads.  

In the UK, the RIDDOR (Reporting of Injuries, Diseases and Dangerous 

Occurrences Regulations) classification (HSE, 2002) is used to categorize the criticality 

of hydrocarbon leaks. The categorization is presented in Table 1. A blowout from a 

typical production well in the North Sea belongs to the RIDDOR “major releases” 

category.  
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Table 1 The RIDDOR classification of hydrocarbon releases (adapted from 

HSE, 2002) 

Category2 
Fluid1 Major Minor 

Gas and 2-
Phase 

EITHER 
Quantity released > 300 kg 
OR 
Mass release rate >1kg/s and duration 
>5 min 

EITHER 
Quantity released < 1 kg 
OR 
Mass release rate < 0.1 kg/s and 
duration < 2 min 

Liquids3 

EITHER 
Quantity released > 9000 kg 
OR 
Mass release rate >10kg/s and 
duration >15 min 

EITHER  
Quantity released < 60 kg 
OR 
Mass release rate <0.2 kg/s and 
duration < 5 min 

Remark / 
Scenario 

Gas: Capable of jet fire over 10 meters 
length (>1kg/s) capable of causing 
significant escalation after 5 minutes 
duration, or a flash fire/explosion on 
reaching LFL. Where 300 kg equates 
to approx. 3000 m3 explosive cloud at 
NTP, enough to fill an entire module or 
deck area, and to cause serious 
escalation if ignited. 
 
Liquids: This could result in a pool fire 
over 10 meters in diameter (>10kg/s) 
filling a module or cutting off a deck, 
hindering escape and affecting more 
than one person directly if lasting for 
over 15 minutes duration. 

Gas: This could result in a jet fire of 
less than 5 meters length (< 0.1 kg/s), 
which is unstable (< 2 min duration) 
and therefore unlikely to cause 
significant escalation, or a flash 
fire/explosion on reaching LFL. Where 
<1 kg equates to <10 m3 explosive 
cloud at NTP, probably insufficient to 
cause a significant hazard if ignited. 
 
Liquids: This could result in a pool fire 
smaller than 2 meters in diameter (< 
0.2 kg/s) unlikely to last long enough 
to hinder escape (< 5 min), but could 
cause serious injury to persons 
nearby 

1) For 2-phase Releases combinations of the gas and liquids scenarios described are 
possible, depending on the gas to oil ratio (GOR) involved. 

2) A third category called Significant is described as a scenario between major and minor 
3) Oil / Condensate / Non-process 

 

From the RIDDOR classification, it is seen that compared with gas a higher volume 

or leak rate of liquids is defined within each category. Empirically based ignition 

models (Cox, 1991) also indicate the ignition probability for a gas leak to be at least five 

times higher than for an oil leak. 

In Norway, a quantitative risk analysis (QRA) is used to quantify the installation 

risk. The QRA includes a range of hazardous event frequencies and models how safety 

functions contribute to reducing the consequences of the hazardous events. The results 

from the QRA are typically presented as estimated FAR values. The QRA is used as 

input to decisions concerning system layout, and type of safety functions to be 

implemented (placement of living quarter, dimensioning of structures, etc.). NORSOK 
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Z-013 describes requirements to the QRA performed on the NCS. The starting point for 

consequence calculations is a distribution of hole sizes. Based upon the pressure in the 

system, initial leak rates should be calculated and classified according to a leak rate 

distribution. In NORSOK Z-013 the following narrow leak rate categories are used (all 

values in kg/s): 0.1-0.5; 0.5-1; 1-2; 2-4; 4-8; 8-16; 16-32; 32-64: > 64. NORSOK Z-013 

use the leak rates as a starting point for modeling the consequences of a blowout. For a 

blowout event NORSOK Z-013 describes the following factors that should be taken into 

account in the consequence model: 

• Blowout location. 

• Flow rate as a function of time and bridging possibilities. 

• Medium (e.g., gas or oil). 

• Operation (e.g., drilling, completion, maintenance, production, injection). 

• Reservoir conditions (e.g., shallow gas). 

• Probability of ignition, time of ignition. 

• Probability of explosion, impact of explosion. 

• Effect of fire fighting system, heat load. 

• Wind conditions. 

• Escalation of accident. 

• Escape and evacuation. 

• Simultaneous operations (e.g., drilling, production). 

 

In contrast to the RIDDOR classification, NORSOK Z-013 does not describe 

typical consequences of ignited leaks. As seen, NORSOK Z-013 requires modeling of 

hydrocarbon leak consequences. A detailed description of fire and explosion models is 

given in, e.g., SINTEF/Scandpower (1992) and in Hekkelstrand and Skulstad (2004).  A 

blowout may also result in environmental damage, and in Norway the MIRA27 method 

(OLF, 2001) is a widely accepted method for environmental risk analysis. This method 

describes a quantitative approach to the assessment of environmental risk from offshore 

petroleum activities. The consequences of hydrocarbon releases are often difficult to 

                                                 
27 MIRA - Method for Environmental Risk Analysis (translated from Norwegian) 
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measure directly, and Lygner and Solli (2001) describe how risk indicators28 can be 

used to measure environmental risk. 

2.3 Well shut-in function 

PSA (2001b) state that “Facilities shall be equipped with necessary safety functions 

which at all times are able to: 

a. detect abnormal conditions, 

b. prevent abnormal conditions from developing into situations of hazard and accident,  

c. limit harm in the event of accidents.” 

 

In general, two main safety functions are required in a hazardous process. 

• Process control, which means to maintain equipment under control with minimum 

deviation29 from specifications (category a and b in PSA (2001b) requirements 

above). 

• Process safety, which mean to prevent and minimize damage upon loss of control 

(category c in PSA (2001b) requirements above).  

 

A general event sequence with process safety functions implemented to minimize 

damage upon loss of control is illustrated in Figure 5. The process safety functions are 

illustrated as barriers to mitigate the consequences of hazardous events. 

 

                                                 
28 Indicator - A measurable/operational variable that can be used to describe the condition of a 
broader phenomenon or aspect of reality (Øien 2001) 
29 Deviation - Departure from a norm (criterion) (Johnson 1980). 
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Figure 5 A general event sequence with process safety functions implemented 

to minimize damage upon loss of control 

 

The well shut-in function is a process safety function. The well shut-in function is 

required if a given hazardous event occurs elsewhere on the installation (e.g., fire on the 

installation or blowout from another well). The valves in the well must close and shut-in 

the well and thereby reduce the consequences of the hazardous event. For a standard 

production well, the well shut-in function consists of the following components (OLF, 

2004): 

• Emergency ShutDown (ESD) logic 

• Production wing valve (PWV) 

• Production master Valve (PMV) 

• Surface controlled subsurface safety valve (SCSSV) 

• Solenoid valves 

 

A typical configuration of the well shut-in function is illustrated in Figure 6. The 

well safety valves are fail-safe, i.e., they will close when hydraulic pressure is lost. In 

addition to automatic bleed down via the ESD logic, there may be additional means for 

removing the hydraulic power to the valves. Depending on the scenario that triggers the 

demand for shut-in, one of the three valves will be sufficient to isolate the well.  
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Figure 6 Well shut-in function for a typical surface production well 

 

Hazardous events may also affect the well directly. For surface wells the main 

source of external hazards will, e.g., be dropped objects on the platform with a potential 

for hitting and causing damage to the x-mas tree. Other events may be fire or explosion 

loads acting on the x-mas tree. For subsea wells the main source of external hazards will 

likely be dropped objects from vessels with a potential for hitting and causing damage 

to the subsea x-mas tree. In this case the well must close in on the SCSSV (placed 

below surface and assumed not affected by the external events). This well shut-in 

function is illustrated in Figure 7. For this function it is assumed that the control line is 

ruptured and that the SCSSV close due to loss of hydraulic pressure.  

According to the PSA (2003) statistics, more than half of the hydrocarbon leaks on 

the installations are discovered by automatic detection equipment, while personnel in 

the relevant area discover the remaining leaks. Information on how many of these 

events that required activation of the well shut-in function is not readily available in the 

PSA statistics. Some typical average demand rates are given in OLF (2004), where 3 
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isolations per well-year due to ESD segregation are assumed. However, the number of 

demands will vary depending on the type of installation. 

The two well shut-in functions described above are one of the most important safety 

functions on an installation. The potential volume released from a production well 

related to a major accident scenario is “infinite” and the ability to shut-in the well is 

therefore important to the overall installation risk. 

 

 

Figure 7 Well shut-in function given an event that result in x-mas tree failure 

(ESD logic not included, assume control line rupture) 

 

2.4 Main well risk factors 

Well integrity and well shut-in function risk factors are illustrated in Table 2. The risk 

factors are categorized in frequency and consequence factors.  

In the design phase the consequence factors are mainly controlled by decisions 

made on installation level or by reservoir properties (see discussion in section 1.4). The 

frequency factors, however, are strongly influenced by the decisions made on well 

system level in the design phase. 

In the operational phase a well component failure may result in changes in blowout 

and well release risk (well integrity). How to assess increased risk after a well 
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component failure is focused on in this thesis. The risk increase will be a combination of 

frequency and consequence factors. Figure 8 illustrate an example where a well 

component has failed (leak indicated in figure). The failure is located above the SCSSV. 

In this situation the well barrier system is degraded (frequency factor) and the well 

release risk has increased due to storage of hydrocarbons in the A-annulus. Both well 

shut-in functions is unaffected by the failure since the valves are functioning. However, 

the volume stored in the A-annuli will be released if the x-mas tree is damaged.  

 

Table 2 Main well blowout and well release risk factors in the well 

operational phase 

Frequency factors 
Well barrier system design  

Number of well barriers and WBEs in each leak path. 
Well barrier element (WBE) availability factors  

Functionality, reliability, detection of failures, repair of failures. 
External hazards 

Mudslide, fault slippage, extreme weather conditions, dropped/swinging objects 
(BOP, riser, container, pipe), collisions (icebergs, trawls, naval- and air traffic), fire or 
explosion loads and resulting fire/explosion resistance, operator/human errors. 

Consequence factors 
Installation type 

Platform/surface/subsea. 
Installation design /layout 

Protected subsea wellheads, templates, safety functions, placement of living quarter, 
evacuation routes 

Installation activity type and level 
Manned/unmanned. 

Well leakage fluid(s) 
Condensate/gas//oil/water/other. 

Well leakage characteristics 
Rate/quantity/duration. 

Well leakage exit point 
Casing/formation/wellhead/x-mas tree. 

External factors (not controlled by installation/well design)  
Weather conditions/location/nearby installations/external support 

 



Well Safety 

-37- 

 

Figure 8 Well component failures influence on blowout and well release risk  

  





 

3. Well risk assessment boundary conditions 

In this chapter the boundary conditions for risk assessment of single wells are 

discussed. The boundary conditions are conditions or limitations determined by specific 

well integrity and well shut-in function requirements. With basis in the boundary 

conditions, suited types of risk analysis and risk measures are discussed. 

3.1 Boundary conditions 

Well integrity and the well shut-in function are handled by different regulations, 

standards, guidelines, and recommended practices. The well integrity and well shut-in 

function boundary conditions from regulations and standards are discussed in sections 

3.2 and 3.3, respectively. In section 3.4 required risk analysis measures and risk 

assessment results based on the review of the requirements are summarized.  

3.2 Well integrity requirements 

This section gives a review of well system requirements in Norway and in the US GoM. 

In Norway PSA issues health, environment, and safety regulations. The basis for the 

regulations is functional requirements. It is left to the operator to find solutions 

(organizational and technical) that are in accordance with the regulations.  

The Framework regulation (PSA, 2001c) describes the overall framework and 

principles for the other regulations issued. In section 9, “Risk reduction principles” it is 

stated that “Harm or danger of harm to people, the environment or to financial assets 

shall be prevented or limited in accordance with the legislation relating to health, the 

environment and safety, including internal requirements and acceptance criteria. Over 

and above this level the risk shall be further reduced to the extent possible. Assessments 

on the basis of this provision shall be made in all phases of the petroleum activities.” 
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On well system level this means that blowout and well release risk should be minimized 

to the extent possible. The use of risk assessment is a means to achieve this objective.  

The Management regulations (PSA, 2001a) describe the operator management 

principles. In section 2 the principles for management of barriers is described, and it is 

stated that “It shall be known what barriers have been established and which function 

they are intended to fulfill, and what performance requirements have been defined in 

respect of the technical, operational or organizational elements which are necessary for 

the individual barrier to be effective.” Related to well system design this means that the 

well barriers shall be known, and it should be clearly defined what is required for the 

well barrier to be effective. 

Further in the Management regulations (PSA, 2001a), section 2, it is stated that “It 

shall be known which barriers are not functioning or have been impaired. The party 

responsible shall take necessary actions to correct or compensate for missing or 

impaired barriers.” Hence, it is left to the operator to take “necessary actions”. A 

possible approach to provide arguments for “necessary actions” is the use of risk 

assessment in the operational phase. 

In the US GoM the regulations are issued by the MMS. An overall safety 

requirement policy from MMS is found in the 30 CFR 250 on “Production Facilities”. 

The regulations are built up of “parts”, where each part addresses rather specific topics. 

Many of the same operating principles used in Norway are found in the MMS 

regulations. This relationship is natural because US oil and service companies 

dominated the industry, at least in the early years of the “oil age”.  

An important difference is that the use of rules (what to do) is dominating in the 

MMS regulations while a practice with use of risk analysis to demonstrate acceptable 

risk is accepted in Norway. This difference is exemplified by the handling of sustained 

casing pressure (SCP) in the MMS regulations. SCP often results from tubing leaks 

(leak in well barrier). A failure of, e.g., the production casing may then result in an 

underground blowout.  According to Bourgoyne et al (2000) the SCP requirements were 

consolidated in 1988 and included in 30 CFR 250.517. In 1991 MMS issued a letter that 

dictated changes in the SCP policy.  
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The requirements for continued operation with SCP were as follows: 

1. The SCP is less than 20% of the minimum internal yield pressure, AND 

2. The casing pressure bleeds to zero during the diagnostic tests. 

 

A “departure” (deviation from rule) is automatically granted to wells, which meet 

the criteria above. If not, a request for departure must be submitted to MMS. In the US, 

API RP 90 – Annular Casing Pressure Management for Offshore Wells is being 

developed to provide guidance on how to deal with SCP. The API standard is scheduled 

for completion in 2006 (no official version is available to the public). The standard will 

likely result in changes in the MMS regulations. An early draft included use of risk 

analysis to demonstrate acceptable risk. But the risk analysis approach seems to have 

been abandoned in later draft versions. 

As a conclusion, the regulations in Norway require that the operator develop 

internal procedures based on the principles in the regulations. The role of the authorities 

is to control that the operators follow their own procedures. The operator must 1) 

minimize the blowout risk by use of well barriers, 2) control the well barrier status when 

in operation, and 3) take necessary actions given unacceptable risk. Risk assessment in 

the design and the operational phase is accepted.  

Both the MMS and the PSA regulations frequently refer to international standards, 

like IEC, ISO and API standards. In Norway a range of NORSOK standards are 

developed and accepted by the PSA.  

The NORSOK standard D-010 defines the minimum functional and performance 

oriented requirements and guidelines for well design, planning and execution of safe 

well operations in Norway. NORSOK D-010 states that “Upon confirmation of loss of 

the defined well barrier, the production or injection shall be suspended and shall not re-

commence before the well barrier or an alternative well barrier is re-established”. 

However, in the next paragraph it is stated that “If for any reason the well is 

contemplated for continued operation, the following shall apply: 
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a. any well with a potential to flow to surface or seabed shall have two independent 

well barriers. If the well barrier status, availability or monitoring30 ability is 

altered, any continued use shall be supported by the subsequent points; 

b. a risk assessment shall be performed based on current reservoir/well condition and 

time factors in any continued use; 

c. any deterioration of the leak, or additional failure of a WBE, shall not significantly 

reduce the possibility of containing the hydrocarbon/pressure and normalising the 

well; 

d. a formal deviation process shall be implemented; 

e. any deviation from the original two defined well barriers shall be presented to the 

authorities for information and/or approval for further use.” 

In conclusion, the NORSOK D-010 standard opens for a risk-based approach to 

show that risk is within acceptable limits if deviations occur in the operational phase. 

The standard does not explicitly state that risk analysis have to be performed in the 

design phase. In practice quantitative risk analysis are often performed in the design 

phase to compare the blowout frequency of alternative well system alternatives. 

3.3 Well shut-in function requirements 

The PSA regulation requirements referred in section 3.2 also apply to process safety 

functions. In addition, in the guideline to section 7 in the Facilities regulations (PSA, 

2001b), it is stated that “… the IEC 61508 standard and OLF guideline No. 70 should 

be used where electrical, electronic and programmable electronic systems are used in 

constructing the functions.” So, IEC 61508/61511 and OLF (2004) are preferred for 

design and operation of safety functions implemented by a Safety Instrumented System 

(SIS).  

The IEC 61508/61511 requirements are given as a Safety Integrity Level (SIL). 

Safety Integrity is the “probability of a safety-related system satisfactorily performing 

the required safety functions under all the stated conditions within a stated period of 

time”. SIL is introduced for specifying the target level of safety integrity, and numerical 

                                                 
30 Monitoring - Activity, performed either to manually or automatically, intended to observe the 
state of an item (IEC 50(191). 
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target failure measures are linked to the safety integrity levels. Here, it is distinguished 

between two types of SIS, depending on if the system is “operated in low demand mode 

of operation” or “operating in high demand or continuous mode of operation”. The well 

shut-in function will be of the first category. For “low demand” functions safety 

integrity is given as “average probability of failure to perform its design function when 

demanded”. The defined SIL levels of the “low demand mode of operation” type 

systems are given in Table 3. 

 

Table 3 Safety integrity levels: target failure measures for a safety function, 

allocated to an SIS operating in low demand mode of operation (IEC 

61508) 

Safety integrity 
level 

Low demand mode of operation 
(Average probability of failure to perform its design function 

on demand) 
4 ≥ 10-5 to < 10-4 
3 ≥ 10-4 to < 10-3 
2 ≥ 10-3 to < 10-2 
1 ≥ 10-2 to < 10-1 

 

In contrast to the IEC 61508/61511 approach, where the SIL level is determined by 

the use of risk analysis, OLF (2004) does not require a risk analysis to be performed. 

OLF (2004) defines typical safety functions on an offshore installation and recommends 

a minimum SIL for each function. In Paper 1 the difference between the approaches in 

OLF (2004) and IEC 61508/61511 is discussed in more detail.  

Independent of approach chosen, both the OLF (2004) and IEC 61508/61511 result 

in a SIL requirement to the well shut-in function. In Norway, the well shut-in function is 

assigned a SIL 3 requirement, which means that the probability of failure on demand 

(PFD) should be 10-3 or lower (OLF, 2004). On well system level a risk analysis must 

be performed to demonstrate that this quantitative requirement can be achieved.  

IEC 61508/61511 describes a “safety life cycle” and describes requirements to the 

entire life of the safety function. This life cycle perspective also means that the PFD 

requirement must be followed up in the operational phase.  
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MMS requirements to safety-systems are found in 30 CFR 250. Identified parts 

related to safety functions are: 

• 250.801 Subsurface safety devices. 

• 250.802 Design, installation, and operation of surface production-safety systems. 

• 250.804 Production safety-system testing and records. 

 

In these parts it is often referred to API RP 14C for requirements to safety-systems. 

API RP 14C is widely accepted in the offshore industry, and the design principles in 

API RP 14C are established as “standard” safety function designs also in the UK and in 

Norway. So, even if the risk based approach in IEC 61508/615011 now is preferred both 

in the UK and in Norway the “tradition” from API RP 14C is still followed when 

designing the safety systems. The typical API 14C safety function designs are actually 

the basis for the minimum SIL requirements in OLF (2004).  

3.4 Well risk assessment requirements 

Based on the review in the previous sections in this chapter it can be concluded that risk 

assessment is accepted both in the design phase and in the operational phase. For the 

well shut-in function it is required to perform quantitative analysis to calculate the PFD 

and verify compliance with the SIL requirements. Related to the well integrity function 

no explicit blowout frequency requirements on single well level are identified. 

The well level risk assessment boundary conditions are summarized in Table 4. 

Table 4 shows that different risk measures are used for the well integrity and well shut-

in function. Also the risk assessment will have different objectives.  
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Table 4 Summary of well level risk assessment boundary conditions 

Risk objectives Well integrity Well Shut-in function 

Risk assessment 

objective in the design 

phase  

Risk assessment not explicitly required 

by regulations, but risk assessment 

frequently used to, e.g., evaluate 

alternative well designs. 

Verify that SIL requirement 

(e.g., SIL 3)  can be 

achieved (i.e., PFD < 10-3)  

Risk assessment 

objective in the 

operational phase 

It shall be known which barriers are not 

functioning or have been impaired.  

Two well barriers must be intact.  

Risk assessment must be performed 

before continued use if a well barrier 

have failed. 

Verify that SIL requirement 

is fulfilled. 

 





 

4. Well barriers, well barrier elements, and barrier 

diagrams 

In this chapter well barriers and well barrier elements (WBE) are discussed. The 

discussion includes functionality requirements, failure modes, failure causes, and WBE 

reliability data. Barrier diagram is presented as a method to illustrate the possible leak 

paths between the reservoir and the environment. Barrier diagrams are useful when 

assessing well integrity for alternative well designs.  

4.1 Well barriers 

A well barrier system should prevent uncontrolled outflow from the borehole/well to the 

external environment (NORSOK D-010). The well barrier and WBE definitions in 

NORSOK D-010 are used in the thesis (see section 2.2.1, page 26). A well barrier is 

dependent on one or several WBEs to fulfill its function. A failure of one WBE results 

in a failure of the well barrier. A system that is functioning if and only if all of its 

components are functioning is called a series structure. The well barrier series structure 

is illustrated as a reliability block diagram (RBD) in Figure 9. A RBD is a success-

oriented network describing the function of the system. It shows the logical connections 

of (functioning) components needed to fulfill a specific system function. If we consider 

a well barrier we have connection between the end points a and b (the well barrier is 

functioning) if and only if we have connection through all the n blocks representing the 

WBEs (components), i.e., all WBEs are functioning. 
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Figure 9 Reliability block diagram of a well barrier  

 

4.1.1 Two well barriers principle 

According to NORSOK D-010 there must be “at least two well barriers available during 

all well activities and operations, including suspended or abandoned wells, where a 

pressure differential exists that may cause uncontrolled outflow from the borehole/well 

to the external environment.” This two barrier principle is established throughout the oil 

industry. The well barrier closest to the reservoir is often called the primary well barrier, 

while the secondary well barrier is the second object that prevents flow from the source. 

A system that is functioning if at least one of its components is functioning is called a 

parallel structure. Therefore, a system with a primary and secondary well barrier is a 

parallel structure (i.e., a redundant31 system). Redundancy is used to obtain high system 

availability. A system with a primary and secondary well barrier is illustrated in Figure 

10. The well barrier system is functioning if we have connection either through the 

secondary or the primary well barrier, or both. 

The principle of two independent barriers is also important from a robustness32 

point of view. For example, if the wellhead on a production well is severely damaged 

the only remaining well barrier against a severe blowout is the primary well barrier, 

namely the SCSSV and the tubing components below the SCSSV (see Figure 3, page 

22). 

                                                 
31 Redundancy - In an entity, the existence of more than one means of performing a required 
function (IEC 50(191)). 

32 Robustness – The ability to function under given accident conditions (PSA, 2002). 
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Figure 10 Reliability block diagram of primary and secondary well barrier 

 

4.1.2 Passive vs. active well barrier elements  

CCPS distinguishes between passive and active independent protection layers (IPL) 

(CCPS, 2001). A passive protection layer is a protection layer that is not required to 

take an action to achieve its function in reducing risk. An active protection layer is 

required to move from one state to another in response to a change in a measurable 

process property (e.g., temperature or pressure), or a signal from another source (such as 

a push-button or a switch). A well barrier can be viewed as a protection layer with the 

objective to prevent flow from the reservoir. A well barrier will however be a 

combination of passive and active protection layer “elements”. The protection layer 

categorization  in CCPS (2001) is used in this thesis to distinguish between passive and 

active WBEs. Typical passive WBEs are the production packer, the seal assemblies and 

the tubing string. Active WBEs are the PMV, the PWV, and the SCSSV. For these 

valves a signal has to be sent (input) to close the valve (change state). A combination of 

passive and active WBEs constitutes a well barrier and may be illustrated as the series 

structure in Figure 11. 
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Figure 11 Reliability block diagram of well barrier with one active WBE and 

“n” passive WBEs 

 

4.1.3 Well barrier system and interfaces 

The availability of a well barrier system (or any system) depends on its interfaces with 

the rest of the world. It is necessary to study how the interfaces influence the system. A 

clear understanding of system interfaces is essential both in the design phase and the 

operational phase. In the operational phase the interfaces may change, or a well barrier 

failure results in changes to the remaining well barrier system. In Rausand and Høyland 

(2004) a generic technical system and interfaces are illustrated as shown in Figure 12. 

This generic presentation is used to describe the well barrier system and interfaces. 

The elements illustrated in Figure 12 are discussed in detail in Rausand and 

Høyland (2004) and an extract is given here: 

1. System; the technological system that is subject to analysis (and design). The system 

usually comprises several functional blocks. 

2. System boundary; the system boundary defines elements that are considered part of 

the system and elements that are outside. 

3. Outputs; the outputs (wanted or unwanted) are the results of the required functions 

(like materials, information, etc.). 

4. Inputs; the inputs to the system (unwanted or wanted) are the materials and the 

energy the system is using to perform its required function. Unwanted input may be 

particles, scale build-up, excessive pressure, etc. 
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5. Boundary conditions; the operation of the system may be subject to many boundary 

conditions, like risk acceptance and environmental criteria set by authorities or by 

the company. 

6. Support; the system usually needs support functions, like cleaning, lubrication, 

maintenance and repair. 

7. External threats; the system may be exposed to a wide range of external threats. 

Some of these threats may have direct affect on the system, others threats may affect 

the system inputs. Examples of external threats are earthquake, falling loads, loss of 

energy supply, sabotage, impact from other systems. The distinction between 

unwanted inputs and external threats may not always be clear. However, the 

classification in itself is not important. What is important is that all inputs and 

threats are identified. 

 

 

Figure 12 Systems and interfaces (Rausand and Høyland, 2004) 
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As a supplement to the categorization above, PSA (2002) identifies three elements 

that describe the performance of safety barriers in general: 

1. Functionality/efficiency; the ability to function as specified in the design 

requirements. 

2. Reliability/availability; the ability to function on demand or continuously. 

3. Robustness; ability to function as specified under given accident conditions. 

 

With basis in the general system and interface model presented by Rausand and 

Høyland (2004) a well barrier system and its interfaces are illustrated in Figure 13. The 

figure is modified to include the PSA (2002) elements also. Robustness is included as 

the ability to function given external threats, while availability is illustrated as a RBD, 

and underlines the importance of the well barrier system to “function over time”. 

Functionality is seen as part of the design process where all interfaces are considered 

and are not included explicitly in the figure.  A list of generic well barrier requirements 

is given in NORSOK D-010. The requirements are grouped into the different system 

interface categories and included in Figure 13. 

A well barrier failure situation may result in a revision/re-assessment of the 

boundary conditions (acceptance criteria) and the interfaces. For example, a risk 

assessment after a WBE failure has occurred may conclude that production can continue 

given that pressure limits (input) and/or test frequency33 (support) are changed. 

 

                                                 
33 Test frequency - The number of tests of the same type per unit time interval; the inverse of the 
test interval (IEEE Std. 352). 
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Figure 13  Well barrier system and interfaces (NORSOK D-010 requirements 

included) 

 

Figure 13 illustrates how the identified interfaces may be used to categorize the 

generic well barrier requirements. Below the interface categories are used to group 

requirements to well barriers found in regulations and standards34: 

1) Wanted and unwanted input 

a) A well barrier should withstand the environment and maximum anticipated 

differential pressure it may be exposed to over time (NORSOK D-010). Changes 

in input during the well life must be frequently assessed (change in well fluid 

composition, excessive pressure, scale, particles in the flow, etc.). It is also 

                                                 
34 Text in italic are quotations from standards and regulations. Text not in italic are derived from 
standards and regulations. 
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important to consider unwanted input. For example, failure of the primary well 

barrier might result in high pressure on a secondary well barrier. 

2) Wanted and unwanted output 

a) The acceptable leak rate shall be zero, unless specified. In situations where the 

function of the well barrier is weakened, but are still acceptable should be 

defined (NORSOK D-010). A specific leak rate criterion35 for the SCSSV and 

the SCASSV36 (Surface controlled annular safety valve) is specified in 

NORSOK D-010, which originates from API RP 14B. API RP 14B defines an 

acceptable leak rate, which is 15 SCF/min (~0.42 SCM/min) for gas, and 

400cm3/min for liquids37. 

3) Boundary conditions 

a) Two well barriers shall be available during all well activities and operations 

(NORSOK D-010 and industry practice). In addition NORSOK D-010 states 

that “No single failure shall lead to uncontrolled outflow from the borehole/well 

to the external environment”. 

b) SCSSV and SCASSV valves should be placed minimum 50 m below seabed 

(NORSOK D-010). The setting depth requirement makes the SCSSV less 

vulnerable to external events. The setting depths of the SCSSV and the SCASSV 

are primarily dictated by the pressure and temperature conditions in the well. 

However, deep-set valves make the primary well barrier less vulnerable to 

tubing leaks (assuming that the failure rate38 increases with increasing length).  

4) External threats (robustness) 

a) The well barriers shall be designed, selected and/or constructed such that it can 

operate competently and withstand the environment for which it may be exposed 

to over time (NORSOK D-010). In addition to long term environmental 

exposure, robustness include the ability to function under all accident conditions, 

                                                 
35 Criterion - A norm, i.e., rule or test against which (the quality of) performance can be 
measured (Johnson 1980). 
36 SCASSV - Same functionality as SCSSV but installed in annulus between production string 
and production casing. The valve is normally installed in a packer (Schlumberger, 2005). 
37 Assuming a density of methane gas of 0.7 kg/m3, this gives a leak rate ~0.3 kg/min or 0.005 
kg/s. Assuming a density of oil of 840 kg/m3, this gives a leak rate ~0.34 kg/min or 0.006 kg/s 
38 Failure rate - The rate at which failures occur as a function of time. 
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and events like earthquake, fire, loss of energy supply, sabotage, falling loads, 

etc. should also be assessed.  

5) System (availability) 

a) The primary and secondary well barriers shall, to the extent possible, be 

independent of each other (NORSOK D-010). Independence makes the system 

more robust, and also increases the availability.  

b) A SIL requirement to the well shut-in function should be established. It should 

also be controlled that the well shut-in function is able to fulfill this requirement 

in the well life (see section 2.3, page 32). 

6) Support 

a) In the Facilities regulations (PSA, 2001b), section 47 it is stated that “Well 

barriers shall be designed so that their performance can be verified.” According 

to NORSOK D-010 “The physical location and the integrity status of the well 

barrier shall be known at all times”. Verification of the performance of well 

barriers may be based on functional testing and condition monitoring (e.g., 

monitoring of changes in pressure). More specific, NORSOK D-010 states the 

following requirements to well barriers: 

i) A well barrier shall be leak tested, function tested or verified by other 

methods (NORSOK D-010). NORSOK D-010 also requires that “The SCSSV, 

the production tree valves and the annulus valves shall be leak tested 

regularly”. Common practice on the NCS is to test valves every 6 months. 

ii) The pressure in all accessible annuli (A, B and/or C annuli) shall be 

monitored and maintained within minimum and maximum pressure range 

limits (NORSOK D-010).  

 

The requirements listed reflect the requirements in Norway. The list is not complete 

when looking at a specific well. However, the categorization above gives an overview 

of the most important requirements and how the requirements influence the system. The 

categorization may also be used to include additional requirements from other countries 

or from internal operator guidelines.  
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For a specific well situation the system and interfaces must be assessed before a 

well risk assessment is performed. 

4.2 Well barrier failures 

BS 4778 defines availability as “The ability of an item39 under combined aspects of its 

reliability40, maintainability41, and maintenance support to perform its required 

function42 at a stated instant of time or over a stated period of time.” Availability is a 

measure of the ability of a well barrier system to function over time. In this section well 

barrier failures and well barrier maintenance are discussed in more detail. 

Different types of well barrier failures are reviewed and fitted into a common 

terminology. The IEC 61508 terminology is used as a basis. In IEC 61508 safety critical 

failures are called dangerous failures, while non-safety critical failures are called safe 

failures. Only dangerous failures influence safety and are included in the discussion. 

Typical dangerous failures are failure to close the SCSSV, leak through production 

packer, etc. An example of a safe failure is a failure to open a SCSSV. This failure will 

not affect the ability to prevent a blowout or to shut-in the well when demanded. 

4.2.1 Failure definition 

A failure is usually described by a failure mode. IEC 50(191) defines a failure mode as 

one of the possible states of a faulty item, for a given required function. For example, 

one SCSSV function may be expressed as close SCSSV. A loss of this function may 

therefore be defined as the failure mode Failure to close SCSSV.  

According to IEC50(191) failure is the event when a required function is terminated 

(exceeding the acceptable limits), while fault is “the state of an item characterized by 

inability to perform a required function, excluding the inability during preventive 

                                                 
39 Item - Any part, component, device, subsystem, functional unit, equipment or system that can 
be individually considered (IEC 50(191)). 
40 Reliability - The ability of an item to perform a required function, under given environmental 
and operational conditions, and for a stated period of time (ISO 8402). 
41 Maintainability - The ability of an item, under stated conditions of use, to be retained in, or 
restored to, a state in which it can perform its required functions, when maintenance is 
performed under stated conditions and using prescribed procedures and resources (BS 4778). 
42 Required function - A function or combination of functions, of an entity, which is considered 
necessary to provide a given service (IEC 50 (191). 



Well Safety 

-57- 

maintenance43 or other planned actions, or due to lack of external resources.” A fault is 

hence a state resulting from a failure. 

According to IEC 50(191) an error is a “discrepancy between a computed, observed 

or measures value or condition and the true, specified or theoretically correct value or 

condition.” An error is (yet) not a failure because it is within the acceptable limits of 

deviation from the desired performance (target value). The relationship between these 

terms is illustrated in Figure 14. 

A clear distinction between error and failure is important for the planning of 

corrective measures. For example, an error may call for increased monitoring, while a 

failure results in a corrective measure, e.g., a workover.  

Each WBE has different functions, and therefore different acceptable deviations (or 

performance criteria44). Examples of the relation between WBE functions, failure 

modes, and acceptable deviations are given in Table 5. The table illustrates that active 

WBEs change state and therefore the acceptable deviation for the state transition must 

be defined in addition to the acceptable deviation in the passive state (leak rate in closed 

position). 

For example, the target value for an SCSSV in closed position is no leak. However, 

a certain leak rate is accepted (API RP 14B), and this leak rate is the acceptable 

deviation from the target value. If the leak rate exceeds this limit, the valve is regarded 

to be in a fault (state). The standard was initiated after an incident where a jet fire took 

off on a x-mas tree. The incident was used to model jet fire heat exposure to 

neighboring x-mas trees. The maximum allowable leakage rate was then estimated from 

how much heat load the neighboring trees could carry. The acceptance criteria stated in 

the API RP 14B does not reflect that risk levels vary among installations and well types 

(e.g., platform vs. subsea wells, injectors vs. producers, etc.).  

                                                 
43 Preventive maintenance - The maintenance carried out at predetermined intervals or 
corresponding to prescribed criteria and intended to reduce the probability of failure or 
performance degradation of an item (BS 4778) 
44 Performance criteria - Operational standards for use in determining effectiveness or 
efficiency (Tarrants 1980) 
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The experience from reliability data collection work in the UK is that the leak rate 

criterion in API RP 14B is sometimes used as a leak rate criterion across other well 

barrier elements. 

 

 

Figure 14 Illustration of the difference between failure, fault and error 

(adapted from Rausand and Høyland, 2004) 

 

Table 5 WBE functions and corresponding failures 

WBE type Function Failure mode Acceptable deviation 

Passive Contain fluid, i.e. prevent  leak 

across WBE 

Leak across WBE Leak rate (kg/s) 

Close WBE Fail to close WBE Closure time (s)  Active 

Prevent leak (in closed 

position) 

WBE leak in closed 

position 

Leak rate (kg/s) 
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4.2.2 Well barrier element failure classification 

A failure may result from different failure causes45 (reasons why a component fails). A 

clear understanding of the failure cause is important to select countermeasures to avoid 

failures. 

 

Random hardware and systematic failures 

According to IEC 61508 a failure of a safety-related system can be classified as either a 

random hardware or a systematic failure. A random hardware failure is a “failure, 

occurring at a random time.” A systematic failure is a “failure related in a deterministic 

way to a certain cause, which can only be eliminated by a modification46 of the design 

or the manufacturing process, operational procedures, documentation or other relevant 

factors”. A systematic failure may be interpreted as a failure of the component to fulfill 

the intended function without any physical degradation. Systematic failures may be 

introduced in the entire life cycle of the component (design, operation, maintenance). In 

the thesis it is assumed that systematic failures remain undetected, and results in a 

“baseline” unavailability. This baseline unavailability is not quantified explicitly in the 

thesis. This approach is in line with IEC 61508, which states that random hardware 

failures should be quantified, while systematic failures should not.  

Random hardware failures occur because a physical property influences on the 

WBE function. Random hardware failures may result from various reasons. Typical 

reasons are physical loads (e.g., pressure, temperature), human errors (e.g., scratches 

during installation), and design factors (e.g., choice of materials). Random hardware 

failures may also occur as a result of stress failures, which are failures that lay outside 

the component design limit.  

 

Dependent failures 

So far single independent WBE failures have been discussed. Failures in a system may 

also be dependent and result in common cause failures (CCF) or cascading failures. A 

                                                 
45 Failure cause  - The circumstances during design, manufacture, or use which have led to a 
failure (IEC 50(191)). 
46 Modification - The combination of all technical and administrative actions intended to change 
an item (IEC 50(191)). 
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common cause event is, according to NUREG/CR-6268, a “dependent failure in which 

two or more component fault states exist simultaneously, or within a short time interval, 

and are a direct result of a shared cause”. NASA (2002) state that a common design or 

material deficiency, a common installation error, a common maintenance error, or a 

common harsh environment may cause common cause failures.  

According to Rausand and Høyland (2004) cascading failures are multiple failures 

initiated by the failure of one component in the system that result in a chain reaction or 

domino effect. Malfunction of a component may, for example, lead to a more hostile 

working environment for the other components through increased pressure, higher 

temperature, and so on. For a well barrier system, failure of one of the WBEs in the 

primary well barrier may result in failure of one of the WBEs in the secondary well 

barrier if, for example, the pressure contained by the primary well barrier is higher than 

the secondary well barrier design limit. 

The relationship between independent and dependent failures is illustrated in Figure 

15. The figure shows that the dependent failures may have a significant effect on the 

well barrier system.  
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Figure 15 Relationship between independent and dependent well barrier 

failures  

 

Detected and undetected failures 

Common to all types of WBEs is that they “shall be designed so that their performance 

can be verified (PSA, 2001b). IEC 61508 differs between detected and undetected 

failures. Detected failures are normally detected immediately without any specific 

testing, while undetected failures (also called hidden failures47) can only be revealed 

through functional testing. For active WBEs (SCSSV, PMV, and PWV) the dangerous 

hardware failures are undetected failures, while the safe failures are detected failures (a 

spurious closure of the SCSSV will be detected immediately). For active WBEs the 

                                                 
47 Hidden failure - A failure not evident to crew or operator during the performance of normal 
duties (MIL-STD-2173(AS)). 
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dangerous hardware failures may occur at any time in the interval between consecutive 

tests. The failure is, however, not manifested and discovered until a test is carried out or 

the valve is to be closed because of some operational reasons. Tests of active WBEs are 

carried out at regular intervals. The length of the test interval varies from installation to 

installation, but is usually one, three or six months. The test interval is partly decided by 

the authorities.  

For passive WBEs, the dangerous hardware failures may be detected by continuous 

monitoring (e.g., pressure and temperature) or by monitoring/readings at regular 

intervals.  

 

Restoration 

When a WBE failure is detected the critical time with respect to safety is the time from 

the failure is detected until the well is brought to a safe state. For some of the restoration 

time it is known that the failure is present but the state is still dangerous, while after 

some time the WBE is still not repaired but the well is brought to an equally safe or 

safer state than before the WBE failed. Hence, the dangerous repair time is usually 

much lower than the actual time used to restore the well barrier.  

If assuming that once the well is brought to a safe state, the remaining repair time is 

equally safe or safer than before the WBE failure was detected, this means that the 

critical time to include in the availability calculations is the time from a failure is 

detected until the well is brought to a safe state. The mean value of this time is called 

the Mean Dangerous Waiting Time (MDWT) in this thesis 

Well barriers can be repaired by various means and operations (see section 2.1.2, 

page 24). For a failed WBE the most common repair action is to perform a workover 

and replace the failed component. This type of repair is both costly and time consuming. 

Sometimes a through-tubing workover may be sufficient to restore the well barrier. If 

the failure is caused by, e.g., scale build-up it is often possible to inject fresh water, acid 

or chemicals or alternatively perform milling to clean the well. Wireline tools utilizing 

ultrasound are also available to remove scale. 

The MDWT may vary considerably depending on the type of well and installation. 

On surface wells repair of the x-mas three may be performed on the same shift. Repair 
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of a well completion on a surface well takes longer time but the well may be brought to 

a safe state by setting, e.g., a wireline plug. If a workover rig is installed on the 

installation, a surface well wireline operation may be performed within days. On subsea 

wells the repair involves contracting of a vessel. The repair of subsea wells will 

therefore take significantly longer time (from weeks to months). However, a subsea well 

may also be brought to a safe(r) state when a failure is detected. It may, e.g., be possible 

to close the well on the x-mas tree. Whether this state is safe or not depends on the 

distance to the neighboring platform, the additional valves available on the subsea 

template, etc. The risk of external damage of the x-mas tree must also be conidered. A 

compensating measure may be to reduce the vessel activity above the wellhead. 

 

Failure causes 

The classification into hardware and systematic failures, dependent and independent, 

and restoration types are used to discuss different hardware failure causes and failure 

mechanisms. The failure classification is discussed in more detail in Paper 5. The paper 

also describes a method that uses the failure classification to calculate the availability of 

SCSSVs. The following broad failure cause categories are suggested: 

• Hardware failures dependent on standby period. Moving parts relative to each other 

may reduce the effect of some failure mechanisms48, and therefore increased testing 

may improve the reliability of the component.  

• Hardware failures dependent on demands/tests. The effect of some failure 

mechanisms may be increased by testing (e.g., wear-out and hydrate formation). 

• Hardware failures independent of WBE operation. The failure mechanisms acting 

on the WBE are unaffected by the operation of the valve. 

• Stress failures (outside design limit) induced on the valve. Stress outside the design 

envelope of the valve result in an immediate failure (shock failure). 

 

                                                 
48 Failure mechanism - The physical, chemical or other process, which has led to a failure (IEC 

50(191)). 
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All four categories apply to active WBEs, while only stress and hardware failures 

independent of WBE operation applies to passive WBEs, which not is function tested at 

regular intervals (passive WBEs do not change state).  

Hardware failures that can be prevented by exercising the WBE are typically 

mechanisms influenced by loads like scale, debris, sand build up or sticking seals. 

Hardware failures dependent on testing or actual demands are typically wear out effects 

on the dynamic surfaces (e.g. because of “slamming” of the valve or friction between 

moving parts). Failure mechanisms not influenced by testing are ageing mechanisms 

(propagation of scratches, corrosion, etc). Stress failures typically occur because of a 

wireline operation where the wireline tool damages the WBE or a well pressure 

exceeding the WBE design limit. The total failure rate of a WBE will be a function of 

all these mechanisms. 

Figure 16 summarizes the discussion above and illustrates that different strategies 

must be used to address different types of failure causes. The figure also includes a 

division into systematic failures that occur in the design or operational phase. Even if 

systematic failures are not quantified they may be equally important, in particular for 

redundant systems. Hence, both hardware and systematic failures must be focused on 

when designing and operating the well.  

Within the industry the effect of testing is discussed. Some operators argue not to 

test the active WBEs (in particular the SCSSV). The argument is that testing has a wear 

out effect or may lead to hydrate formation during testing. However, the most operators 

have the opinion that the valve should be actuated in order for the valve to function 

appropriately and to reveal dangerous undetected failures. Even if the hardware failures 

for active WBEs may be dependent on the operation (length of test interval/number or 

tests) all dangerous hardware failures will be detected during test. Hence, the 

assumption that no testing will increase the overall availability requires a large 

proportion of the failures to be caused by the testing itself. For most active WBEs 

increased testing will result in increased availability. 

In relation to the suggested failure classification it is assumed that the hardware 

failures influenced by demands/tests or standby period and stress failures are more 
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prone to dependent failures than the hardware failures not influenced by the functional 

tests and demands, or stress outside the design envelope. 

The findings reported in Molnes and Strand (1999) underline the importance of 

controlling different types of failures. In this report a failure is categorized as an “item 

failure” when it has been confirmed that the cause of the failure lies within the item 

itself. If the failure is confirmed as being caused by another item, the failure is classified 

as “non-item failure.” For example, the observed TR-SCSSV49 distribution between 

“item failures” and “non-item failures” found in Molnes and Strand (1999) is 23% and 

47%, respectively (remaining failures categorized as “unknown”). This distribution 

shows that many failures are reported as failures not directly caused by the valve itself. 

Non-item failure causes are therefore important to consider when designing and 

operating a well. The data shows that hydrates, asphaltenes, erosion and scale in 

addition to through-tubing well operations are contributors to the non-item failures. 

Such non-item failures also contribute to dependent failures. 

In the design phase possible failure causes and loads that may lead to dependent or 

independent failures should be thoroughly assessed with the objective to: 

1. Reduce the overall number of hardware and systematic failures. 

2. Maximize the independence of the components to avoid dependent failures (CCF).  

3. Minimize the likelihood of cascading failures. 

 

The design phase should result in an understanding of the optimal design and 

operation of the well to avoid failures. In the design phase it is also important to study 

foreseen changes in well conditions in the entire well life cycle. Molnes and Strand 

(1999) describe the experience from Statoil’s Gullfaks field, and states; “This field is 

experiencing an increasing number of failures, primarily caused by scale build-up with 

frequent remedial action taken in terms of chemical (acid washing) and mechanical 

(brushing) scale removal.” 

In the operational phase, it should be controlled that the assumptions made in the 

design phase still are valid, that unforeseen failure causes do not occur, and that risk 

                                                 
49 TR-SCSSV - Tubing Retrievable Surface controlled subsurface safety valve 
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related to cascading failures is controlled (e.g., caused by changes in pressure regimes 

or degradation of components). 

 

 

Figure 16 Failure classification scheme 
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4.3 Well barrier element reliability data 

Well component reliability data are used as input to the quantitative risk analysis 

performed on well system level. The importance of well component reliability data has 

been recognized in the oil industry. Extensive data collection projects are therefore 

established and have been running for many years.  

The well barrier system availability is a function of the configuration of the well 

barriers, and the reliability and restoration of the WBEs that constitute the well barriers. 

It is therefore necessary to use reliability data on WBE level as input to the reliability 

analyses.  

Input reliability data50 of high quality is essential to any reliability analysis. For 

example, Holand (1997) describes a case with two tension leg platforms (TLPs) in the 

Norwegian sector. The installations are in principle similar. Risk assessments were 

carried out for both installations to decide whether or not fire insulation of the risers was 

required to keep the risk within the acceptable levels. The objective in both analyses 

was to assess the blowout risk. Two different consultants performed the analyses. For 

one of the TLPs it was selected to include fire insulation and for the other not. The total 

investment cost was reduced with at least 120 million US dollars for the TLP without 

fire insulation (Molnes, 1995). This TLP was installed two years later than the first one. 

The availability of updated SCSSV reliability data was the main reason for arriving at 

the different conclusions, i.e., the updated reliability data showed that the SCSSV 

reliability had improved compared with previous experience. 

The basis for the discussion of input reliability data is illustrated in Figure 17. The 

figure illustrates the interfaces to be considered when establishing input reliability data 

for a specific well barrier system analysis. This section includes a discussion of generic 

failure rate estimates provided from publicly available databases or handbooks (i.e., 

support). Such reliability data must always be assessed related to the interfaces 

indicated in Figure 17 before use in specific application. The assessment should include 

aspects like well fluids, pressure limits, acceptable leak rates, common cause failures, 

and cascading failures (see section 4.2, page 56).  

                                                 
50 Reliability data - Reliability data is meant to include data for reliability, maintainability and 
maintenance supportability (NORSOK O-CR-001). 
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Figure 17 WBE failure data framework 

 

For well systems there are three main databases available: 

• The WellMaster (2006) project has run a more or less continuous data collection 

since the Bravo blowout on the Ekofisk field in the North Sea in 1977. The database 

is accessible only for the oil companies sponsoring the project, but some reports 

with aggregated data have been published. The most recent publicly available data 

are Molnes and Strand (1999). The database covers the well completion and the 

casing program.  

• The SubseaMaster (2006) project collects failure data on subsea production systems, 

including the subsea x-mas tree. The project was started in 1999. The database is 

accessible only for the oil companies sponsoring the project No publicly available 

data yet. 

• The OREDA (2002) project collects failure data on offshore subsea and topside 

equipment. The project is sponsored by several oil companies. Publicly available 

information is presented in the OREDA handbook (OREDA, 2002).  
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In addition to well system components, the well shut-in function consists of the 

process control system (control logic and solenoids), which actuate the safety valves in 

the well (see section 2.3, page 32). The following reliability data collection projects are 

identified that may contribute with input data: 

• Reliability Data for Control and Safety Systems (Albrechtsen and Hokstad, 2002). The 

report presents reliability data/for computer-based process safety systems (i.e, SIS). 

The report includes both random hardware and systematic failure data. The report is 

based on review of oil company data files, workshops with technical experts, and 

questionnaires.  

• OLF (2004). The guideline presents recommended reliability data for SIS on 

offshore installations. Values for well system components are also presented.  

 

The reliability data collection projects above present reliability data for random 

hardware as a failure rate, where the failure rate is presented as an average frequency of 

failure (i.e., the number of failures per unit of time). The data are assumed to represent 

independent random hardware failures. In addition, Albrechtsen and Hokstad (2002) and 

OLF (2004) present values for systematic failures, and for dependent failures (the 

common cause contribution). The dependent and systematic failures values are based on 

expert judgment and not on reported failures in databases. The difficulty with 

establishing dependent and systematic failure values are discussed in more detail in 

paper 3. 

Table 6 presents a comparison of components covered in the databases. The 

components are divided into input devices (senors, transmitters), control logic units and 

output devices/WBEs (valves and passive WBEs). As seen only WellMaster (2006) 

includes the well completion and casing program. 
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Table 6 Well integrity and well shut-in function components covered in 

different reliability databases 

Components Project and industry 
sector Input devices Control logic 

Units 
WBEs (Output 

devices) 
OREDA (2002) Fire/gas detectors, 

pressure senors 
Control logic units 
(subsea and 
topside) and pilot 
valves 

x-mas tree valves and 
passive x-mas tree 
components 

Reliability Data for 
Control and Safety 
Systems (Albrechtsen 
and Hokstad, 2002) 
and OLF (2004) 

Same as above Same as above PMV, and PWV and 
SCSSV 

WellMaster (2006) Downhole cauges 
(pressure and/or 
temperature) 

Not included Well completion 
components (including 
SCSSV and SCASSV 
and casing program 

SubseaMaster (2006)  Pressure and 
temperature 
sensors 

Subsea control 
logic 

x-mas tree valves and 
passive x-mas tree 
components 

 

Table 7 presents data for important WBEs in a well. The table includes the 

recommended reliability data in OLF (2004) and in Molnes and Strand (1999). The 

reliability data is only included for illustrative purposes and should not be regarded as 

recommended values. To perform a quantitative analysis a more detailed assessment of 

well component reliability data must be performed (see discussion in section 5.2, page 

77). Table 7 includes components from the reservoir through the tubing string and the x-

mas tree production bore. In blowout risk assessments the leak paths via the annuli must 

be included also (e.g., casing and annuli access valve failures).  

Functional tests of active WBEs reveal random hardware failures but will not 

differentiate between independent and common cause failures. Consequently, the 

reliability databases will not make this distinction. There are several methods available 

for modeling CCF failures. The most common in use is the β-factor method. The β-

factor is a measure of the fraction of common cause failures. For analysis purposes this 

fraction must be analyzed through use of, e.g., expert judgment. Many sources suggest 

ranges for the value of β. IEC 61508-6 describes a separate methodology to arrive at a 

specific β, where the β range from 1 to 10% for final elements (valves). Table 7 also 
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includes values for the common cause factor, β. The β−factor model is discussed in 

section 5.3. 

 

Table 7 Typical input data for WBE and well shut-in function components 

Components and dangerous 
hardware failure modes1 

Well safety 
function4 

Generic failure rate 
(failures per 106 hours) 

5 

Common 
cause, β6 

Topside PMV/PWV – FTC1 or 
LCP2 

WI/WS 0.8 2% 

Subsea PMV/PWV - FTC or LCP1 WI/WS 0.1 2% 
SCSSV – FTC or LCP WI/WS 2.5 (2.2 -2.5) - 
Production packer – LTA1 WI 0.2 - 
Seal Assembly (conventional) – 
LTA 

WI 0.5 - 

Tubing – LTA WI 0.4 (per km)3 - 
Programmable safety system/logic 
(ESD) – FTO1 

WS 1 1% 

Solenoid/pilot valve – FTO WS 0.9 2% - 10%2 
1)  FTC – Fail to close, LCP – Leakage in closed position, FTO- Fail to operate, LTA – 

Leak to annulus 
2)  10% for pilot valves on same valve. 2% otherwise 
3)  The failure rate must be multiplied with length of tubing 
4) WI – Well integrity, WS – well shut-in function 
5)  Numbers in italic from Molnes and Strand (1999). Numbers not in italic from OLF (2004) 
6)  β-factor model used to model common cause failures 

 

Table 7 illustrates that the difference between passive and active WBEs quite 

commonly is two to three orders of magnitude. This difference is natural because active 

WBEs involve many parts, where different failure mechanisms (erosion, chemical and 

temperature effects, etc.) act on each part.  

The failure rate may even for “simple” components be sensitive to the well 

conditions. Molnes and Strand (1999) report a failure rate ranging from 0.1 to 0.7 

failures per 106 hours per km for water injectors and gas/condensate tubing, 

respectively. 

There are several challenges and general concerns regarding reliability databases. 

Such limitations are thoroughly discussed by Rausand and Høyland (2004), by Cooke 

(1996), and by Cooke and Bedford(2002). A main concern is that to apply the data in 

the databases subjective judgments have to be made. In most cases acceptable 

limits/deviations (see section 4.2.1, page 56) are not defined and/or it is not possible to 

measure the degree of failure. Normally, the databases include reliability data from 
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different sources (operators and installations) and the criteria for failure reporting may 

vary significantly. This is a problem difficult to overcome since the databases covers 

equipment used in different applications (safety, control, auxiliary) or operators with 

different acceptable limits for the same application. Therefore, the databases should 

include a description of the boundary conditions and a definition of the acceptable limits 

to the greatest possible extent.  

The variation in acceptable limits may be less for some types of equipment. The 

acceptable leak rate for SCSSVs stated in API RP 14B is widely accepted as an 

acceptable limit in the industry, and this is also a benefit to the uniformity of the SCSSV 

reliability data found in the WellMaster database (WellMaster,2006).  

The reliability databases provide estimates of a failure rate51 or a mean time to 

failure (MTTF52) for specific component types. For analysis purposes it is assumed that 

the reliability data fit the exponential distribution53, i.e., a constant failure rate. 

However, it is possible to perform life data analysis to obtain information about the life 

distribution for a component. Life data analysis is, e.g., used to determine if a Weibull 

distribution fit to the failure data, i.e., an increasing failure rate with time. Life data 

testing is described in Rausand and Høyland (2004).  

For new components (or an existing component in a new application or 

environment), where the existing failure data are inadequate it is possible to perform life 

testing to determine the life distribution. Life testing is expensive and normally 

performed for products produced in large quantities, like consumer electronics. Life 

testing is therefore seldom performed on well equipment. Life testing is discussed in 

Rausand and Høyland (2004).  

In lack of reliability data or as a supplement it is also possible to perform expert 

judgment to arrive at a recommended failure rate. Expert judgment methods are 

presented in Øien (1998). 

                                                 
51 Failure rate - The rate at which failures occur as a function of time. 
52 MTTF - Let T denote the time to failure of an item. The mean time to failure is the mean 
(expected) value of T  
53 Consider a random variable X. the distribution function of X is  

)()( xXPxF rX ≤=  (Rausand and Høyland 2004) 
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4.4 Barrier diagrams 

Barrier diagrams are used in static barrier situations to illustrate well barrier systems. 

Barrier diagrams have been used in various forms for some 10-15 years to assist in well 

risk analysis.  

Barrier diagrams have been constructed in a variety of forms but no formal 

construction rules have been presented. Therefore, a method for constructing barrier 

diagrams is established. The method is described in Paper 4. The construction rules 

facilitate the possibility to make simple quantitative calculations directly from the 

barrier diagram. Alternatively, the barrier diagram construction rules assist in 

“automatic” transition to a Fault Tree Analysis (FTA) structure.  

An example barrier diagram is shown in Figure 18. The basis for the barrier 

diagram is the well illustrated in Figure 3, on page 22. The construction of the barrier 

diagram and further transfer of the diagram into quantitative models or construction of 

fault trees are described in Paper 4, and only a brief description of the barrier diagram 

symbols are given here: 

• A rounded rectangle illustrates a cavity (or the reservoir) enveloped by well 

components. Top and bottom rounded rectangle illustrate the reservoir and 

surroundings, respectively. The lines between the cavities illustrate possible flow 

paths from one cavity to another. The arrows describe the flow direction. 

• In each line a rectangle is included. The rectangle includes the well component 

failures (components not qualified as a WBE may also be included) that can result in 

flow from one cavity to another. 

o The text part describes the well components failure modes. 

o The upper number describes the number of well components in each flow 

path. For example, the SCSSV, the seal assembly, the production packer, 

and the tubing string below the SCSSV are the well components closest to 

the reservoir (indicated with 1 in the rectangle). 

o The lower number describes the start and en point “cavity” if the well 

component (s) fails. 
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Benefits of the established barrier diagram construction rules are: 

• Possible flow paths from the reservoir to the surroundings are easily identified. 

• Number of well components in each flow path is easily identified. 

• The well barrier system is easily communicated to both well design and reliability 

personnel. 

• Easy to perform “what-if” analysis, e.g., what is the consequence if the tubing below 

the SCSSV fails. 

• The cavities can be used to identify the boundary conditions on both sides of the 

well components (pressure, fluids, temperature, etc.). 

• Simple quantitative reliability analysis may be performed directly from the barrier 

diagram. 

• Easy and consistent transfer of the barrier diagram to a FTA. Rules for transfer to 

FTA are presented in paper 4. 
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Figure 18 Example barrier diagram 





 

5. Well system reliability analysis 

Earlier in the thesis it is concluded that the engineers on the well system level primarily 

can influence 1) the blowout and/or well release frequency and 2) the probability of 

failure on demand (PFD) for the well shut-in function. In this chapter the two reliability 

measures are presented in more detail, together with suitable analytic method. 

5.1 Reliability analysis and risk analysis 

A quantitative risk analysis is based on various models and risk input data. Both the 

models and the data may be incomplete. It is essential that the analysis reflects the real 

risk picture, and that it is possible to identify and rank major risk contributors.  

In chapter 2 it was concluded that in the design phase, the risk analyses on the well 

system level primarily are used to: 

1. Demonstrate that the blowout frequency from a specific well is acceptable. 

2. Verify through quantitative analysis that the required probability of failure on 

demand (PFD), stated through the SIL requirement, can be achieved for the well 

shut-in function. 

 

The analytical methods discussed in this chapter are methods used to provide 

quantitative measures for frequency or probability, and the common term used is 

reliability analysis.  

5.2 Basic component types used in reliability analysis 

As discussed in section 4.2.2, only dangerous hardware failures are included in the 

thesis. Four basic well component types are discussed: 

• Test interval components 
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• Repairable components 

• Non-repairable components 

• On demand components 

 

Test interval 

Test interval components are tested periodically with test interval τ. A failure may occur 

anywhere in the test interval. For such components dangerous hardware failures may be 

further split into (Hokstad and Corneliussen, 2003): 

• Dangerous Undetected (DU). Dangerous hardware failures not detected by 

automatic self-tests (i.e. revealed by a functional test or by demands). The reliability 

parameter is the dangerous undetected failure rate λDU (expected number of 

dangerous undetected hardware failures per hour). 

• Dangerous Detected (DD). Dangerous hardware failures detected by automatic self-

test. The reliability parameter used is the failure rate λDD (expected number of 

dangerous detected failures per hour). 

 

The dangerous hardware failure rate, λD (expected number of dangerous hardware 

failures per hour) will then be λD = λDU + λDD. This situation is typical for many types 

of detectors, process sensors, and safety valves. The active WBE’s (i.e., the SCSSV, the 

PMV and the PWV) in a well barrier system are such test interval components. The 

active WBEs do not have any automatic self-test functionality. Some sensors and the 

logic that actuate the valve have this functionality. Typically, it is assumed that the ESD 

logic self-test functionality will reveal more than 90% of the dangerous failures. The 

remaining 10% will be dangerous undetected failures. The ability to detect dangerous 

hardware failures is called diagnostic coverage.  

For active WBEs, a dangerous hardware failure will not be detected until a 

functional test is carried out or the component is needed. All dangerous hardware WBE 

failures are therefore undetected, and resulting in λD = λDU.  
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Following the PDS definition (Hokstad and Corneliussen, 2003), the safety 

unavailability measure for random hardware failures are PFD. The PFD measure is 

split in two parts: 

• PFDUK is the "unknown unavailability" and includes the unavailability due to 

dangerous undetected failures during the period when it is not known that the 

function is unavailable.  

• PFDK is the “known unavailability”. This includes the unavailability due to 

dangerous hardware failures during the period when it is known that the function is 

unavailable. 

 

Assuming an exponential failure distribution (i.e., constant failure rate), the 

reliability parameters entered are the failure rate λDU (expected number of dangerous 

undetected failures per hour), λD (expected number of dangerous hardware failures per 

hour), the test interval τ (in hours) and the mean dangerous waiting time MDWT (in 

hours). The (average) probability of a test interval component not functioning may then 

be calculated by54: 

MDWT
2

 PFDPFD PFD D
DU

KUK λτλ
+≈+=  

 

Assuming no automatic self-test λD=λDU, the PFD is then calculated by: 

MDWT
2

  PFD D
D λτλ

+≈  

 

Repairable components 

Repairable components are repaired when a failure occurs. If the dangerous hardware 

failure rate is denoted λD and the mean time to repair MDWT, the probability of the 

component not functioning at time t, p(t), may be approximated by the formula: 

MTTF+MDWT
MDWT = p(t)   

                                                 
54 This is a simplified formula and main limitation is that the term λDU ⋅ τ should be small 
enough to allow exp(-λDU ⋅ τ)  ≈ 1 -λDU ⋅ τ.  
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where  
D

1 = MTTF
λ

 

 

Non-repairable 

Non-repairable component failures are not detected. If the dangerous hardware failure 

rate of the component is denoted by λD, then the probability that the component is not 

functioning at time t, p(t), may be calculated by (exponential distribution): 

e-1 = p(t) t- Dλ  

 

Note that non-repairable components cannot be defined as part of a well barrier, 

since the failure of the component cannot be detected. According to NORSOK D-010 

“A well barrier shall be leak tested, function tested or verified by other methods”. 

  

On demand 

On demand is used for components that have a certain probability to fail when they are 

required and are represented by:  

p = Constant, where the constant is a value between 0 and 1. 

 

Summary of basic component types and input parameters 

To summarize, the necessary input parameters for the basic component types included 

in quantitative reliability analyses are: 

• Failure rate (λ) presented as an average frequency of failure (i.e., number of failures 

per unit of time). In the thesis λ presents the dangerous random hardware failure 

rate.  

• Detection is the way the failure is detected (undetected (until test), detected, or not 

detected).  

• Repair time is the time used to restore/repair a failed component. The safety critical 

time is the time until the well is brought to a safe state. The term used in the thesis is 

the MDWT. 
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Table 8 shows a summary of the component types, the necessary input parameters 

and corresponding reliability measure used in quantitative reliability analyses. 

 

Table 8 Component types, necessary input parameters and reliability 

measures 

Input parameter Component types 
Dangerous 

hardware failure 
rate 

Detection 
time 

Repair time 
Reliability 
measure 

Test interval 
components 

λ τ/2 MDWT PFD 

Repairable 
components 

λ Immediate MDWT p(t) 

Non-repairable 
components 

λ Not 
detected 

- p(t) 

On demand 
components 

- - - p 

 

The repair time and detection (e.g., the test interval) are determined by the specific 

well subject to analysis. The generic failure rate may be extracted from failure 

databases. For a specific well, field a recommended failure rate must be determined by 

well specific conditions. The classification in section 4.2.2 is useful in this process. 

5.3 The β-factor model 

As discussed in section 4.2.2, the most commonly used model for common cause 

failures is the β-factor model. To illustrate the general model, consider a system with 

N=2 components with the same constant failure rate, see Figure 19. Letting λDU be the 

relevant failure rate for each component, we have 

 

λ1⋅2 = 2 ⋅ (1- β) ⋅ λDU = rate of single (independent) failures for duplex system 

λ2⋅2 = β ⋅ λDU = rate of double failures (CCFs) for duplex system 

 

β can therefore be given the following interpretation; given A has just failed, β is 

the conditional probability that B fails at the same time.  
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1- ββ1- β

 

Figure 19  Beta factor model for a duplicated system (N=2) 

 

The limitation of the β-factor is that the method does not distinguish between 

different parallel structures (see section 4.1.1, page 48), and the same result is obtained 

e.g. for a parallel structure with 2 and 3 components. So, e.g., the contribution to PFDUK 

from CCFs simply equals PFDUK  = β⋅λDU⋅τ /2 for parallel structures. The reason why it 

still can make sense to apply this model is that the reliability engineer can come around 

(or at least reduce) this problem by using different βs, e.g., with β=1% for a parallel 

structure with 3 components, and β=5% for a parallel structure with 2 components.  

IEC 61508-6 introduces an "application specific" β, which to some extent depends 

on the redundancy. However, the rate of system CCFs does only to a very slight degree 

depend on the system configuration. In Paper 2 a more general CCF model is suggested. 

The model is a simple, direct generalisation of the β-factor model that distinguishes 

between the performance of different parallel structures. 

5.4 Well integrity and well shut-in function reliability measures  

In this section well integrity and well shut-in function reliability measures are presented. 

 

Well integrity reliability measures 

The well integrity reliability analysis on well system focuses on the blowout frequency 

The reliability measure typically comprises the estimated average number of well 

blowouts per time unit (normal operation blowout frequency) and may be described as: 

 
Blowout frequency caused by inherent failure cause (per time unit) =FAll well 

barriers 
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Other useful reliability measures for blowout analysis are: 

• R(t)55 = P("Blowout will not occur in the time interval [0,t]"). R(t) is the survival 

function of the system with respect to the non-occurrence of blowout. 

• MTTF56 = mean time to first occurrence of blowout 

 

Well shut-in function reliability measure 

The required level of protection from the well shut-in function is given as a SIL 

requirement (see section 3.3, page 42), and an associated PFD requirement. The 

reliability measure for the well shut-in function is therefore: 

PFDWell shut-in = Average proportion of time the well is unable to shut-in  

 

If the hazardous event affects the integrity of the well itself, e.g., caused by fire in 

the wellhead area, the well must be shut-in by closing the SCSSV (the function is 

illustrated in Figure 7, on page 35). The reliability measure for this function is: 

 
Blowout frequency caused by external event(s) (per time unit) = Frequency of 

external event(s) damaging x-mas tree * Average proportion of time the SCSSV 

is unable to shut-in = FExternal event * PFDSCSSV 

 

For this well shut-in function, the personnel responsible for the wellhead area layout 

should focus on measures to avoid dropped objects and to protect the wellhead area 

against fire explosion loads. The personnel responsible for the well system should focus 

on selecting the best available SCSSV, where to place the SCSSV in the tubing string 

(e.g., to avoid scale), and recommend SCSSV operational procedures (testing, repair).  

                                                 
55 Survivor function - Let T denote the time to failure of an item. The survivor function R(t) of 
the item is 0)Pr()( ≥>= tfortTtR . R(t) is sometimes called the reliability function or the 
survival probability at time t of the item (Rausand and Høyland 2004). 
56 MTTF - Let T denote the time to failure of an item, with probability density f(t) and survivor 
function R(t). the mean time to failure is the mean (expected) value of T which is given by  

∫∫
∞∞

=⋅=
00

)()( dttRdttftMTTF  (Rausand and Høyland 2004). 
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5.5 Reliability analysis procedure 

In this section a procedure for performing reliability analysis is presented.  The 

procedure is generic, but the reliability analysis techniques used are different. Therefore 

the procedure for well integrity is presented first, then specific well shut-in function 

conditions that differ from the well integrity procedure is presented in section 0.  

5.5.1 Well integrity reliability analysis 

The procedure includes the use of barrier diagrams and FTA. Barrier diagrams were 

presented in section 4.3. FTA is a well-known analysis technique and several software 

versions are available, like CARA Fault tree (2004). See, e.g., Rausand and Høyland 

(2004) for a more detailed description of FTA. The FTA technique is well suited for 

quantitative analysis and for assessing alternative well designs. The suggested 

procedure include the following activities: 

1. System understanding/design basis. To perform quantitative analysis recommended 

reliability data must be established for each of the WBE failure modes. For each 

component it should be identified if the component is of the test interval, repairable, 

non-repairable or on demand type (see section 5.2, page 77). The activity should 

also include an assessment of potential failure causes, the possibility of cascading 

failures, and common cause failures. Systematic failures should also be discussed. 

2. Barrier diagrams. The relationship between the well barriers is visualised in a 

barrier diagram. The barrier diagram for the example well (Figure 3, on page 22) 

was illustrated in Figure 18, on page 75.  The barrier diagram is used to discuss the 

well barrier system between well design and reliability personnel. 

3. Quantitative analysis. Based on the barrier diagram and input reliability data a fault 

tree can be constructed, and the blowout frequency calculations can be carried out. 

The first page of the fault tree for the example well is shown in Figure 20. The 

figure illustrates the leak paths from the reservoir via the tubing side to the 

surroundings. The leak paths from the reservoir via the annulus side are modelled in 

the same way.  

4. Present and evaluate results. Results from the analysis must be presented. The 

alternative reliability measures was presented in section 5.4. In addition, the effects 
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of various risk reduction measures and the sensitivity of various input data must be 

evaluated. Such an evaluation typically includes: 

a. Improved ability to detect dangerous WBE failures. E.g., through more 

frequent testing, condition monitoring, remotely operated vessel (ROV) 

surveys / other type inspections.  

b. Reduced WBE downtimes57, e.g., shorten repair times or time to kill the 

well. 

c. Sensitivity analysis by, e.g., altering input failure data for critical 

components and components with high uncertainty. 

5. Conclusions/present results. The analysis ends up with a conclusion, and typically 

includes recommended well design (e.g., casing program), and operation (e.g., 

monitoring, test interval, etc.). The conclusion should include the uncertainties in 

the calculations to allow for peer review. Recommendations for further work may be 

included. 

 

There should be a strategy for how to present the analysis results. Two possible 

presentation strategies are: 

• Present the blowout frequency as a relative difference between well alternatives, 

where one alternative may be a standard accepted solution. 

• Present the blowout frequency for one alternative and evaluate the result against a 

fixed frequency requirement, e.g. not more then 10-4 blowouts per well year 

 

The first option is the preferred because this allows for relative comparison between 

alternatives rather than a quantitative reliability result measured against an absolute 

requirement. Relative comparison between alternatives gives more robust results than 

giving “absolute” frequency numbers. 

As an illustrative example, it may, e.g., be an alternative to design the surface well 

presented in Figure 3, on page 22 either 1) as a well with the intermediate casing not 

qualified as a well barrier or 2) as a well with the intermediate casing qualified as a well 

                                                 
57 The period of time during which an item is not in a condition to perform its required function 
(BS 4778). 
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barrier. The results will show that the blowout frequency will be higher for the 

alternative with intermediate casing not qualified as a well barrier. The result can be 

further evaluated and include sensitivity analysis with respect to repair time, detection 

and altering of input failure data for safety critical components and components with 

high uncertainty.  

 
CARA Fault Tree version 4.1 (c) Sydvest Sotfware 1999
Licensee: ExproSoft AS, Norway
Supplied by Sydvest, Norway
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Figure 20 Example well - Fault tree layout  
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5.5.2 Well shut-in function reliability analysis 

As described in section 2.3, the well shut-in function is comprised of the SCSSV, the 

PMV, and the PWV. In addition the control system that actuates the valves must be 

included. This function only includes active WBEs, i.e., test interval components.  

Several reliability quantification methods are suited for modeling of active 

components. Rouvroye and Brombacher (1999) present a comparison of quantitative 

analysis techniques, and in Rouvroye and Bliek (2002) the discussion is further 

extended to a comparison of quantitative and qualitative safety analysis techniques. 

Both papers conclude that one of the methods best suited for the purpose is the PDS58-

method (Hokstad and Corneliussen, 2003). In this thesis the PDS-method is used as a 

basis. 

The procedure for quantification and evaluation of the well shut-in function follows 

the same steps as described for the well integrity function in the previous section. The 

main exception is that only active WBEs are included in the model, and that the PDS-

method is used to quantify the reliability. Hence, barrier diagrams and FTA are not 

used. Additional differences are: 

• In addition to active WBEs, the ESD logic and solenoid valves are included in the 

safety function.  

• The common cause contribution is an essential contributor to the ability to shut-in 

on demand. Common cause failures should therefore be paid particular attention.  

 

The PDS-method use reliability block diagrams (RBD) to illustrate the safety 

function (RBD was described in section 4.1, page 47). Figure 21 illustrates a typical 

well shut-in function, while the RBD for the function is shown in Figure 22. The 

function has a high degree of redundancy. However, if including common cause failures 

between the solenoid valves and the PMV and the PWV, the PFD contribution from the 

solenoids and the x-mas tree valves will be dominated by the common cause 

                                                 
58 PDS - Reliability of computer-based safety systems (Norwegian) 
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contribution, and the RBD will change into the RBD shown in Figure 23. The total PFD 

for the function then becomes: 

PFDTotal = PFDESDlogic + PFDβ Solenoid + PFDβPMV/PWV AND SCSSV 

 

With the same data as presented in Table 7, and a 6 months test interval for all 

components, the PFDTotal will be dominated by the ESD logic contribution and result in 

a total PFD = 4.4 * 10-3. Note that this result is above the SIL 3 requirement stated in 

OLF (2004), and OLF therefore recommend a redundant ESD logic to comply with the 

SIL 3 requirement. 

For a detailed description of the PDS-method and calculation formulas it is referred 

to Hokstad and Corneliussen (2003) and Paper 2. In addition, Paper 5 presents a model 

for SCSSV PFD calculations.  

 

 

Figure 21 Illustration of typical well shut-in function for a surface well 
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Figure 22 RBD for the example well shut-in function 

 

 

Figure 23 RBD including common cause failures for well shut-in function  

 

5.6 Reliability analysis discussion 

A model tries to represent the real world. However, any model has its limitations. This 

section discusses main limitations of the methods presented above. General to both the 

well shut-in function PFD calculations and the blowout frequency calculations are that:  

• Many systems are highly inter-linked, and a deviation at one of them may have a 

cause elsewhere. Many accidents have occurred because small local modifications 

had unforeseen knock-on effects elsewhere.  
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• The success of the analysis depends on the experience and interaction among team 

members. 

• The risk analysis only considers parts that appear on the design representation. 

5.6.1 WBE input parameters 

The reliability input data will highly influence the result. The uncertainty in failure rates 

is an important contributor to the results. However, relevant date may not always be 

available, e.g., because of new components, little operational experience or application 

of existing components in new well conditions. In this case sensitivity analysis is 

important.  

The awareness of different types of failure causes and mechanisms is important 

when establishing the field specific reliability data. Different failure causes require 

different strategies for detection and repair.  

Common cause failures may significantly reduce the reliability of a system, 

especially of systems with a high degree of redundancy.  

The models do not include cascading effects. It is assumed that the probability of 

such failures is negligible. However, such failures may have severe consequences. The 

likelihood of such failures must therefore be emphasized in the design process. The risk 

analysis should include a discussion of the likelihood of cascading failures. 

Most quantitative reliability methods only include random hardware failures. 

Actually IEC 61508 argues not to include systematic failures because it is not possible 

to collect data on systematic failures. However, the PDS-method (Hokstad and 

Corneliussen, 2003) does attempt to quantify systematic failures. The values for 

systematic failures in the PDS-method are based on, e.g., expert judgment. 

5.6.2 SIL budget 

The SIL requirements apply to entire safety functions, and the role of the reliability 

analysis is to validate that the SIL for the function can be achieved. Alternatively a “SIL 

budget” for the input, logic and output of the safety function may be established. For 

example, the PFD requirement to a SCSSV may be set to 5.5 10-3 (PFD = λDU*τ/2 = 2.5 
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10-6 failures/hours* 4380 hours/2 = 5.5 10-3)59. This result implies that the SCSSV 

should not fail more than once every 181 demands/tests. A similar approach may be 

used for the PMV and PWV. With the OLF assumptions, the PFD for a single 

PMV/PWV60 is 3.5 10-3, and this gives a “success criterion” of 285 demands/tests. This 

“SIL budget” approach is based on the historic occurrence of failures. Follow-up of 

such a “SIL budget” in the operational phase requires a large number of similar valves 

operated under comparable conditions. In the design of a new well this type of SIL 

budget may be used as a target value. The role of the engineers will then be to validate 

that the PFD for the valves can be fulfilled.  

5.6.3 Blowout versus leakage 

In the blowout frequency calculations it is assumed that all dangerous hardware failures 

may lead to a blowout. However, most WBE failure combinations may be controlled 

rather fast and will not be regarded a blowout. If, for instance, a leak to the annulus 

occurs and is followed by a leak in the flange of the annulus access valve, this will not 

be regarded a blowout as long as the annulus pressure can be bled down and the leak is 

stopped.  

For a leak to result in a blowout, a fairly rapid development of the failure has to 

occur, or the presence of a failure in the well barrier is undetected. A leak in a casing or 

tubing string caused by corrosion will likely develop more rapidly than a leak in a 

threaded connection. For a valve a fail to close failure is more serious than a failure 

where the valve leaks in closed position. 

In general, leaks to annulus below the SCSSV are important contributor to blowout 

risk because valves in the tubing cannot stop such leaks. If high pressure occurs in the 

annulus, a large leak may result if the casing or the formation behind the casing cannot 

withstand the pressure build up.  

Most leaks/blowouts will likely be leakages that can be controlled. This 

presupposes that when failures are detected proper steps need to be taken to bring the 

                                                 
59 Same assumptions as in OLF (2004) are used. The repair time is not included, 6 months test 
interval, and the SCSSV failure rate used in OLF (2004) 
60 OLF(2004) assumptions for PMV/PWV PFD calculations are λ=0.8*10-6 failures/hour and  
test interval = 12 months. 
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well to a safe state. However, for shorter periods (while preparing for an intervention) 

risk analyses often indicate that continued production can be accepted. This situation is 

further discussed in the next chapter. 

 



 

6. Well risk assessment in the operational phase 

This chapter describes a method for risk assessment of a single well. The method is to 

be applied in the operational phase when a failure of a well component has occurred.  

6.1 Introduction 

This chapter describes a method for risk assessment of wells in the operational phase. 

When a well is installed, the well risk is regarded to be acceptable. In the operational 

phase failures may occur, and these failures will usually result in an increased risk. The 

risk increase is influenced by which component has failed, the failure mode, and the 

extent of the failure (see the error versus failure discussion in section 4.2.1, page 56).  

The upstream industry tends to treat well integrity differently among countries, 

operators and even on fields/installations operated by the same company. This diversity 

in practice was, e.g., discussed at a SPE workshop held in Scheveningen, Netherlands in 

November 200561. To address this issue, Norsk Hydro wanted to develop a risk based 

procedure for handling of well leaks. The objective was to establish a uniform approach 

able to handle well annular leaks for different well types.  

The method described in this thesis is based on the procedure developed on behalf 

of Norsk Hydro. The primary user of the method is the operator. The method basis is the 

definition of a set of standard well types and possible well component failures for each 

well type. When a real failure occurs, Norsk Hydro operating personnel should then be 

able to perform an internal risk assessment. The benefit is that the defined failures for 

the standard well types are treated consistently and within a short time. After the risk 

assessment is performed, the operator may continue production given certain risk 

                                                 
61 No papers were released from the workshop 
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reducing measures that not involve repair of the failed well component, or decide to 

shut-in the well and perform more detailed risk assessment, or decide to shut-in and 

repair the well.  

The method described in this thesis covers the following well component failures: 

• Well component failures that influence the well shut-in function. In practice, this 

means that dangerous SCSSV and PMV hardware failures are included. Failures of 

x-mas tree components other than the PMV are not included. 

• Failure of passive well components in well completion and casing program. 

 

For other well component failures detailed and specific risk analyses must be 

performed. Also, the method only covers failures of one well barrier. Failure of more 

than one well barrier is an indication of a significant increase in risk, and should be 

treated accordingly.  

The Norsk Hydro procedure also includes guidelines for detection, diagnosis, and 

implementation of corrective measures. Only the risk assessment part is described in 

detail.  

6.2 Acceptance criteria 

Risk assessment is defined by IEC 60300-3-9 as an “Overall process of risk analysis and 

risk evaluation”, where NS 5814 defines risk evaluation as “A comparison of the results 

of a risk analysis with the acceptance criteria for risk and other decision criteria.”  NS 

5814 defines acceptance criteria as “Criteria based on regulations, standards, experience 

and/or theoretical knowledge used as a basis for decisions about acceptable risk. 

Acceptance criteria may be expressed verbally or numerically.” This definition of 

acceptance criteria is in line with The Royal Society (1992) that defines risk acceptance 

criteria as “A qualitative or quantitative statement of the acceptable standard of risk 

with which the assessed risk needs to be compared.” Hence, a risk assessment must 

include a risk analysis and acceptance criteria to compare the result from the risk 

analysis. A set of acceptance criteria must therefore be developed.  
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According to Hokstad et al (2003) the rationale behind the use of risk acceptance 

criteria could be: 

• To control the risk to a level that is accepted. 

• Improved efficiency of decision process. 

 

Further from Hokstad et al (2003), a successful implementation of such risk 

acceptance criteria requires that the criteria represent a direction for improvement and 

hence should be difficult to meet. However, setting ambitious risk acceptance criteria 

could also be difficult because this may substantially increase the ownership cost. The 

acceptance criteria must balance these considerations, and will be a trade-off between 

production and safety.  

 

Functional requirements versus rules 

Traditionally, well designs and well component failures have been treated by rules like 

the leak rate criterion for SCSSVs in API RP14B and the sustained casing pressure rule 

stated by the MMS (see section 3.2, page 39). The two barrier principle is also well 

established in the industry. Such rules are often based on sound engineering judgment, 

and should not be abandoned unless there is a documented reason for it. The use of rules 

can be a benefit, but the rules tend not to reflect variations in risk level and may 

therefore also limit the development.  

The method described in this chapter attempts to balance the rules established in the 

industry against a risk based approach for assessment of well component failures. A set 

of risk factors is identified, while it is left to the operator to define explicit acceptance 

criteria for each risk factor. 

6.3 Well risk factors 

In section 2.2, well integrity was defined as “The application of technical, operational 

and organizational solutions to reduce risk of blowout and well release”. A well 

component failure may increase both the blowout and well release risk. In the event of a 

dangerous SCSSV or PMV failure the reliability of the well shut-in function is also 

reduced. 
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A set of risk factors is identified that has a potential influence on well integrity risk 

and/or the reliability of the well shut-in function. It is assumed that the wells that 

experience a well component failure are designed, completed and operated according to 

an accepted risk level. Therefore, the method only threats risk factors that may change 

significantly after a well component failure has occurred. The risk factors are called 

well risk factors (WRF), where a WRF is defined as “an aspect of a well component 

failure that affects the well risk level during the operational phase”. It is assumed that by 

performing an assessment of each WRF separately all well risk aspects are covered, 

which may change significantly during the operational. The following WRFs are 

identified: 

1. Blowout consequence (acceptable deviation). The leak rate across a failed well 

component will influence the consequences of a blowout in the leak path(s) the 

failed component is part of.  

2. Well shut-in function and well integrity fault tolerance. The two barrier principle is a 

established rule in the industry and an alternative acceptance criterion resulting in a 

deviation from the two barrier principle is not considered realistic. This WRF assess 

if a well component failure result in failure to comply with the two barrier principle. 

The assessment includes both the well shut-in function and well integrity.   

3. Blowout frequency. The location of the leak/failure may influence the probability of 

a blowout because of reduced number of WBEs in the leak path(s) the failed 

component is part of. 

4. Well release consequences. A leak to annulus results in well fluids stored in the 

annuli. The increase in well fluids stored in the annuli will increase the potential 

consequences of a well release. The amount of fluid, fluid type, fluid toxicity, etc., 

influences the well release consequences. 

 

So far the influence on well integrity and the well shut-in function is treated. In 

addition, the following WRFs are identified to account for changes in the well design 

assumptions or well operation as a result of the well component failure: 
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5. Failure cause. This WRF examines if further development of the failure is likely or 

if other well components may be influenced by the same failure cause. If the 

situation is likely to escalate or if the failure cause is uncertain, the risk of continued 

operation may be unacceptable. 

6. Well barrier system and interfaces. The well barrier system and interfaces (see 

section 4.1.3, page 50) may be changed as a result of a well component failure. The 

well component failure may, e.g., result in increased risk of cascading failures 

unless the operation of the well is changed (e.g., by reducing injection pressure in a 

injection well). 

7. Operations in the well. A well component failure may result in increased risk when 

performing operations in the well (see section 2.1.2, page 24, for description of well 

operations). The well component failure may, e.g., result in reduced ability to kill 

the well in the event of an additional well component failure or in a blowout 

situation. 

The basis for the method is a comparison with a base case well without failure. The 

relative increase compared with the base case well is a measure for the increased risk. 

For each WRF separate acceptance criteria for the relative increase in risk should be 

defined. The acceptance criteria may be established separately and may be revised when 

experience is gained. The description in this thesis discusses the framework for the 

acceptance criteria for each WRF. The operator should establish explicit acceptance 

criteria. 

6.3.1 WRF 1 – Blowout consequence (acceptable deviation) 

Compared to a well without failures, failure of a well component may increase the 

consequences of a blowout. This WRF relates to the failure versus error discussion in 

section 4.2.1, and criteria for when a WBE is regarded to be in a failed state. The basis 

for the WRF is a scenario where a blowout is controlled by the well barrier the “failed” 

WBE is part of. Given this scenario, the following question(s) must be answered:  

1. What is the acceptable leak rate across the WBE?  

2. If the WBE is active, what is the acceptable closure time? 
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Specific acceptance criteria are not given here, but the SCSSV leak rate criterion in 

API RP 14B (see section 4.1.3, page 50) is far less than the leak rate included in the 

QRAs performed in Norway (see section 2.2.2, page 27). The SCSSV leak rate criterion 

is also below the hydrocarbon leak rates reported in the UK and Norwegian sectors (see 

section 2.2.2, page 27). The SCSSV leak rate criterion may therefore be relevant to use 

also for other well components. 

The API RP 14 B criterion does not distinguish between well types (as discussed in 

section 3.2). Different well types include different aspects of risk (human, 

environmental) and a differentiation in leak rate criterion should be possible for, e.g.: 

• Subsea vs. surface wells, since the consequences of a blowout will be different. 

• Non-natural flowing or non-hydrocarbon flowing wells vs. hydrocarbon flowing 

wells. Non-natural flowing wells will not be able to “produce” in the event of a 

blowout, while non-hydrocarbon wells will not have the same fire and explosion 

consequences as a hydrocarbon well. 

 

It should also be possible to establish different criteria for closure time of active 

WBEs. For example, to close in a subsea well will probably not be as time critical as for 

a surface well because of the distance from personnel.  

A well component that leaks externally or leaks to a volume not enveloped by a 

qualified well barrier will likely not be accepted independent of leak rate. This situation 

is comparable to a situation with an external leak from the process system on an 

offshore installation.. 

6.3.2 WRF 2 - Well shut-in function and well integrity fault tolerance 

IEC 61508, Part 4 defines fault tolerance as “Ability of a functional unit to continue to 

perform a required function in the presence of faults or errors”. The two barrier 

principle is a fault tolerance requirement. An alternative acceptance criterion resulting 

in a deviation from the two barrier principle is not considered realistic. It is therefore 

assumed that the acceptance criterion for the well shut-in function and the well barrier 

system will be that there should be at least two well barriers in all foreseen situations.  

For the well shut-in function, the PMV are regarded as the outlet from the 

secondary well barrier, while the SCSSV is the outlet from the primary barrier 



Well Safety 

-99- 

(production/injection well). If the failed WBE not is part of these two envelopes, the 

failure does not influence the ability to shut-in the well on demand, and the well shut-in 

function complies with the two barrier principle. 

The two barrier principle also applies to well integrity, i.e., there should be two well 

barriers to prevent a blowout in normal operation. Two or more WBEs should therefore 

be intact in all leak paths. 

In addition to the two well barrier requirements is it is assumed that the primary 

barrier always must be intact. This primary barrier must be intact to allow for isolation 

of the well in the event of an external event damaging the wellhead.  

6.3.3 WRF 3 - Blowout frequency 

If the two barrier principle is fulfilled, this WRF assess the relative increase in blowout 

frequency. The location of a well component failure may result in increased blowout 

frequency because of reduced number of WBEs to prevent a blowout, and a quantitative 

reliability analysis (FTA) is used to measure the relative increase in blowout frequency.  

The following reliability analyses (see section 5.5.1, page 84) are performed: 

1. Base case well blowout frequency. The base case well is a well with no failures 

operated according to normal industry (Norsk Hydro) practices. This well is 

considered to represent the “acceptable blowout frequency” level. 

2. Base case well with well component failure. This well is similar to the base case 

well but with the failed well component included in the model. 

3. Base case well with well component failure and with risk reduction measures. This 

well is similar to the failed well, but risk reducing measures not involving repair of 

the failed well component are included in the model. Examples of such measures are 

monitoring of outer annuli, increased test frequency, shorter well kill time, and 

shorter repair times (MDWT) for the remaining WBEs. 

 

In this situation acceptable risk (blowout frequency) is achieved if the quantitative 

reliability analysis (i.e., the FTA) can demonstrate that the “acceptable blowout 

frequency” represented by the base case well can be achieved for the well with the well 

component failure without repair of the failed well component, but with increased 
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testing, increased maintenance support (reduce repair time), and/or increased 

monitoring.  

For example, “Leak 2” in Figure 24 illustrates a situation with a leak in the tubing 

above the SCSSV. In this situation it will often be possible to include risk reducing 

measures that reduce the blowout frequency to the same level as the base case well (i.e., 

the “acceptable blowout frequency”). The reason why this can be achieved is that the 

primary well barrier and secondary well barrier are intact. In contrast, “Leak 1” in 

Figure 24 shows a situation where the primary well barrier has failed. In this situation 

the two well barrier principle will not be fulfilled, and at the same time it will be 

difficult or impossible to verify by use of FTA that the blowout frequency can be 

reduced to the base case frequency without repair of the failed component.  

In the Norsk Hydro project a “library” of standard well types was established. The 

library included a set of given “standard” Norsk Hydro wells. For each well FTA for the 

three base case well scenarios were performed for different leak locations (tubing leak 

above SCSSV, casing leaks, etc.). This library is used by Norsk Hydro to assist in the 

well risk assessment and recommend risk reducing measures. 
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Figure 24 Well component failures/leaks with different influence on the 

blowout frequency 

 

6.3.4 WRF 4 - Well release consequences 

A well component failure resulting in a leak to annulus results in well fluids stored in 

the annuli. The increase in well fluids will increase the potential consequences of a well 

release compared with a base case well without failure. For example, “Leak 2” in Figure 

24 may be acceptable from a blowout frequency perspective, but the increased volume 

stored in the A-annulus must also be assessed. 
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The extra volume of well fluids stored in the annuli represents an additional risk 

mainly related to increased well release consequences. The increase in well release 

consequences (hazardous fluids stored in well annuli) primarily depends on: 

• Release fluid type. 

• The amount of fluids stored. 

• Toxicity of fluids. 

 

The factors above are the immediate factors that influence the well release 

consequences. After a period of time the annuli will be drained, and the leak will be 

controlled by the leak rate. The leak rate risk (blowout consequences) was discussed in 

section 6.3.1 (WRF 1).  

A leak to annulus will cause gas to segregate and be “stored” below the tubing 

hanger, while the oil and water fractions stabilize lower in the well. This situation 

applies even for wells with liquid type reservoir fluids. Hence, there will always be an 

increased risk of a gas leak from the well. Gas is more volatile and has a higher ignition 

probability than oil (see section 2.2.2, page 27). 

The operator should establish explicit acceptance criteria related to allowable 

storage of well fluids. Possible “minimum storage criteria” may be a comparison 

between conventional wells and the typical volume of gas stored above a functioning 

SCASSV in a gas lift wells. In Norway, the SCASSV should be placed at least 50 m 

below mudline (minimum packer type SCASSV setting depth), and the typical gas lift 

injection pressure is 180 Bar pressure. 

In addition, the Guideline for protection of pressurized systems exposed to fire 

(Hekkelstrand, B. and P. Skulstad, 2002) may contribute with additional input. 

According to this guideline exceedance of either of the following criteria is considered 

to make a vessel rupture unacceptable: 

• Released quantity of hydrocarbons (the sum of gas and liquid) > 4 tons. 

• Released quantity of the sum of gas/initially flashed fraction of condensate/LPG > 1 

ton. 
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Other criteria that may be used are the sustained casing pressure criteria for 

departure in the US GoM (see section 3.2, page 39) or the RIDDOR classification given 

in Table 1, on page 36. 

For subsea wells the release quantity criterion may be linked to environmental 

consequences rather than personnel risk. 

For platform wells, factors such as toxicity (H2S in gas) may override fire/explosion 

criteria, and lead to a more stringent requirement related to the consequence of a well 

release.  

6.3.5 WRF 5 - Failure cause  

This WRF assess the failure cause (see section 4.2, page 56), and the likelihood that 

similar WBEs in the well will fail or the likelihood of further degradation of the WBE 

(if WBE not in fault state yet (see WRF 1)). The main criterion for this WRF is that 

further escalation, which cannot be controlled, should not be accepted. If the failure 

cause can be determined, and if further escalation/degradation of the well can be 

controlled, the risk can be accepted. 

6.3.6 WRF 6 - Well barrier system and interfaces 

The well barrier system and interfaces (see section 4.1.3, page 50) may change because 

of a well component failure. NORSOK D-010 states that if the well barrier status, 

availability or monitoring ability is altered, any continued use shall be supported by a 

risk assessment based on current reservoir/well condition and time factors. Hence, the 

change in boundary conditions for the remaining well barrier system must be assessed.  

For example, the well component failure may expose other well components to well 

conditions that result in new failures or escalation of failure mechanisms. The well 

componet failure may also result in increased risk of dependent failures. For example, 

the failure may result in changes in pressure regimes and thereby increase the risk of 

cascading failures.  

The main criterion for this WRF is that the well barrier boundary conditions must 

be within acceptable limits. For example, establishing new annulus pressure limits, 

decrease of injection pressure, etc., may reduce increased risk of cascading failures.  



Well risk assessment in the operational phase 

-104- 

6.3.7 WRF 7 - Operations in the well 

During the operational phase, several types of (dynamic) operations are performed in 

the well (see section 2.1.2, page 24). A well component failure may result in increased 

risk when performing such operations. The risk associated with such dynamic 

operations should not be increased as a result of a well component failure.  

In addition the ability to perform operations to mitigate a blowout or well releases 

should not be reduced. In particular, the ability to kill the well is of vital importance if 

well control is lost. Also, the ability to kill the well if an additional WBE fails should be 

assessed before deciding to continue production without repair of the failed well 

component.  

6.4 Risk assessment framework 

The risk assessment is part of an overall framework for detection of abnormal well 

behavior, diagnosis, risk assessment and implementation of risk reducing measures. The 

framework is illustrated in Figure 25. After abnormal well behavior is detected, the 

framework includes three tasks, which are diagnosis, risk assessment, and 

implementation of risk reduction measures.  
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Figure 25 Risk assessment framework 

 

Boundary conditions for normal well operation 

A clear understanding and follow-up of the boundary conditions for normal well 

operation is a prerequisite for determining abnormal well behavior. The boundary 

conditions must be established early in the operational phase and continuously updated 

throughout the well lifetime. This work involves identification of general well data and 

well design limitations. In addition, allowable annulus pressure domains and allowable 

pressure alarm limits must be identified. The pressure alarm limits are used as criteria 

for normal well pressure behavior. Failure/leak symptoms can thus be identified by 

pressure readings outside these alarm limits. Similarly, the acceptable leak and closure 

times for the active WBEs must be determined (see Table 5, page 58). Key well data 

that should be available are: 

• Basic well data for leak detection and input to quantitative risk assessment (e.g., 

well fluids, pressure behavior). 
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• WBE design data, barrier diagrams, well schematics, etc. 

• Short-term/long-term allowable annuli pressures. 

• B-annulus well barrier design limitations. 

• Normal A-annulus pressure behavior and pressure alarm setting. 

 

Step 1; Diagnosis of well behavior outside boundary conditions 

This task includes three consecutive activities for diagnosis of abnormal annulus 

pressure behavior. Firstly, data collection for diagnosis must be initiated. Recommended 

maximum and minimum allowable annulus pressures must be identified to perform the 

diagnosis operation safely. Then the diagnosis work starts with an ‘external’ factors 

diagnosis with the objective to determine if the abnormal pressure reading is caused by 

factors other than a change in the downhole well components. If the external factor 

investigation is inconclusive, a well investigation must be performed to determine the 

‘internal’ factor that contributes to abnormal well behavior. The internal diagnosis work 

should establish the following properties of the downhole failure: 

• Location (depth) 

• Direction 

• Leak rate 

• Volume/mass influx to annulus 

• Probable cause 

 

It must be possible to verify the leak location and leak rate, either by testing or by 

direct measurement. The ability to identify the location and to monitor the leak rate(s) is 

of key importance in order to verify leaks against a predetermined acceptance criterion. 

Without knowing the leak rate or location the risk level cannot be adequately controlled. 

If the leak diagnosis activities fails to establish location and leak rate of a detected leak 

this will in itself call for an intervention to provide more information about the leak or 

to restore the well to a state that can be verified as acceptable.  
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Step 2 Well risk assessment 

With basis in the diagnosis results, the objective of this task is to evaluate the well state 

in respect of well risk. The assessment results in a risk status and required risk reducing 

measures. If risk is unacceptable, a workover must be performed. The method is 

described in section 6.5. 

 

Step 3 Implementation and follow-up 

After the risk assessment is performed, the required risk reducing measures must be 

implemented. The implementation is the responsibility of the operator and will vary 

depending on the overall risk management procedures of the company.  

6.5 Risk assessment method 

The risk assessment method is illustrated in Figure 26. Each WRF described in section 

6.3 is assessed separately. For each WRF the well is assigned a risk status code (RSC). 

The RSC indicates the risk level and the necessary extent of risk reduction measures. 

Most severe RSC deduced from each WRF assessment step determines the overall RSC 

for the well. 

 

 

Figure 26 Risk assessment method principle 
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The risk status code indicates the relative change in risk compared with the original 

well conditions (well with no failure). The definition of each RSC is given in Table 9. 

The RSC refers to whether the WRF is above or below the acceptance criteria 

determined for each WRF. The operator must establish explicit acceptance criteria. The 

required type of acceptance criteria was discussed in section 6.3. 

 

Table 9 RSC status code and influence on well risk and well functionality 

RSC Risk status Well Status 
0 Unchanged No change in well functionality. No downhole 

leak. 
I Acceptable 

• Small/marginal increase in risk.  
• Risk can be controlled by minor 

changes in operational practice 

Minor/marginal change in well functionality.  
• The well can be operated with minor 

operational changes 

II Tolerable 
• Acceptable only if risk factors 

can be controlled in remaining 
well life. 

• Risk reduction measures must 
be implemented 

Degraded well functionality. 
• Major change in operation of well 
• Workover not necessary. 

III Not acceptable  
• Two well barrier principle not 

fulfilled 
• Primary well barrier has failed 
• Risk reduction measures not 

sufficient OR one or more WRFs 
cannot be controlled in 
remaining well life. 

Well functionality not acceptable. 
• Increased blowout risk and/or ability to well 

shut-in. 
• Not possible to control risk without repair of 

failed component. 
• Workover must be performed. 

 

A summary of the WRFs, the required acceptance criteria categories/format, and 

RSCs is given in Table 10. The summary illustrates that the assessment of the separate 

WRFs generate a set of remedial actions/risk reducing measures to be implemented. If 

risk cannot be controlled by the measures, a workover must be performed. Note that the 

acceptable deviation for the well component failure mode (see section 4.2, page 56) 

defined in WRF 1 will influence the assessment performed for WRF 2 and WRF 3. 

Other WRFs are not affected by the acceptable deviation defined in WRF 1.  



Well Safety 

-109- 

 

Table 10 WRF and RSC summary 

RSC WRF 
III – Not accepted II - Tolerable I – Accepted 

1 - Blowout 
consequence 
(acceptable 
deviation) 

Leak (any size) to a volume 
not enveloped by a qualified 
well barrier. 

Well component failure. 
May be acceptable 
(given WRF2 or WRF3).

Leak rate or closure 
time acceptable. Well 
component error NOT a 
well component failure. 

WRF 2 and 3 assessed if categorized as unacceptable deviation in WRF 1 
2 - Well shut-
in function 
and well 
integrity fault 
tolerance 

Two well barrier 
requirement not fulfilled. 
OR 
Failure of primary well 
barrier. 

 Two well barrier 
requirement fulfilled. 
AND 
Primary well barrier 
intact. 

3 - Blowout 
frequency 

Risk reduction measures 
cannot reduce relative 
(calculated) increase in 
blowout frequency to “base 
case frequency”. 
OR 
Risk reduction measures 
cannot be implemented due 
to operational reasons. 

Risk reduction 
measures can reduce 
relative (calculated) 
increase in blowout 
frequency to “base case 
frequency” and risk 
reduction measures can 
be implemented. 

 

WRD 4 to 7 assessed independent of assessment in WRF 1 
4 - Well 
release 
consequences 

Well fluids stored in well 
annuli > acceptance 
criterion  (due to fire or 
toxicity) AND volume cannot 
be controlled. 

Well fluids stored in well 
annuli > acceptance 
criterion  (fire or toxicity 
criterion) AND volume 
can be controlled (no or 
few bleed offs). 

Well fluids stored in well 
annuli < acceptance 
criterion. 

5 - Failure 
cause 

The failure cause cannot be 
controlled or not 
determined. 

Failure cause can be 
controlled by 
countermeasures. 

Otherwise (e.g., failure 
due to wireline 
operation). 

6 - Well 
barrier system 
and interfaces 

The well barrier system 
boundary conditions are 
changed and unacceptable 
(both wanted and unwanted 
input), AND measures 
cannot be implemented to 
reduce risk. 

The well barrier system 
boundary conditions 
changed. Risk reducing 
measures must and can 
be implemented. 

The well barrier system 
boundary conditions are 
not or marginally 
changed compared with 
original design 
assumptions. 

7 - Operations 
in the well 

Current well component 
failure OR an additional 
single component failure 
affect the ability to efficiently 
kill the well with mud. 
Corrective action cannot be 
implemented. 

Current well component 
failure OR an additional 
single well component 
failure affect the ability 
to efficiently kill the well 
with mud. Corrective 
action can be 
implemented to kill the 
well equally effective as 
for the base case well. 

Current well component 
failure OR an additional 
single well component 
failure do not affect the 
ability to efficiently kill 
the well with mud. 
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6.6 Risk assessment method benefits and limitations 

In this section main benefits and limitations of the proposed risk assessment method are 

discussed.  

The benefit of the proposed method is that it in a systematic order attempts to cover 

all well risk aspects of a well component failure. The method may also be used to 

establish specific acceptance criteria for different well types.  

The method facilitates the use of a “library” with blowout frequency analysis of 

standard well types (WRF 2). This makes the method effective and reduces downtime 

when a failure occurs. Otherwise, the well must be shut-in and an extensive risk 

assessment study must be performed. At the same time, care should be taken in a real 

situation, because the standard well in the “library” may not reflect the actual well 

conditions. The assumptions and prerequisites for the analysis must therefore be clear to 

all involved parties. Otherwise, the use of standard well blowout frequency analysis 

may be misleading. The method should not be used for well component failures that are 

not defined or for “non-standard” well types. WRF 5 and WRF 6 are included to ensure 

that the assumptions for the quantitative analysis are assessed. 

The risk assessment method depends on the ability to establish accurate diagnostic 

results. In particular leak rate estimation and location in the well are of critical 

importance. The ability to diagnose subsea wells in particular is limited. However, there 

are models/simulators available that may be utilized. In addition there are wireline tools 

available that are able to perform diagnostics of wells with a leak. 

 



 

7. Summary and further work 

This chapter provides a brief evaluation of the research process, a discussion of the 

presented results, and recommendations for further work.  

7.1 Main contributions  

The overall objective of the PhD project was to develop a systematic approach for risk 

assessment of oil and gas wells in the operational phase. In this context a systematic 

approach means to describe procedures for risk assessment, with focus on quantitative 

analysis as a means to provide input to the assessment. The risk assessment is based on 

existing and new methods and knowledge gained during the PhD project. The risk 

assessment includes the development of a set of procedures and methods to be applied 

in the design and operational phase. To arrive at such procedures and methods, it was 

necessary to: 

1. Describe the state of the art related to analysis and control of the functions 

mentioned above. 

2. Describe regulations, standards, and industry practice, giving requirements to well 

safety in the operational phase. 

3. Identify commonly accepted analysis methods applied in risk assessment of wells, 

with focus on quantitative analysis techniques. 

4. Identify input reliability data available for quantitative well safety analyses and 

discuss the quality of the data. 

5. Assess the applicability of existing well safety analysis methods and, if necessary, 

suggest improvements. 

6. Suggest improvement in application of reliability input data. 
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7. Develop a systematic approach for risk assessment of oil and gas wells in the 

operational phase. In this context a systematic approach means to assess well risk 

when a well component failure occurs in the operational phase. The basis for the 

risk assessment is the quantitative analysis techniques identified.  

 

The use of risk analysis to assess well risk in the operational phase is not new. 

However, the risk assessment method for assessing well risk in the operational phase is 

new. More explicit the following contributions from the thesis are identified: 

• A systematic approach for well risk assessment in the operational phase. A set of 

WRFs are identified that influence the total well risk. The procedure is aimed at risk 

assessment in the operational phase after a well component failure has occurred.  

• A method for constructing barrier diagrams (paper 4). A barrier diagram is a 

structured way of describing a well as a barrier system. Barrier diagrams are used to 

1) calculate failure probability directly or 2) converted to quantitative reliability 

analysis techniques. 

• A framework for assessing well component failure causes, acceptable deviations in 

well component performance, and dependent failures.  

• A method for calculating the safety unavailability of safety functions (paper 2), and 

a method for calculating the safety unavailability for different configurations of 

surface controlled subsurface safety valves (paper 5). 

7.2 Evaluation of the research process 

The theme for the PhD work has been risk control in the operational phase since the 

start of the scholarship period, and has been driven by the desire to extend the 

applicability of risk analysis to the operational phase. Traditionally, risk control in the 

operational phase has been less focused on than the risk assessment performed in the 

design phase. It was early realized that risk analysis in the operational phase has been 

suffering from lack of methodology. In particular well integrity is handled in different 

ways throughout the industry. In the industry SIS is treated in a more uniform way 

independent of country and operator.  
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The application area of the PhD work has, however, shifted during the PhD work. 

Initially the focus was on SIS in general, while after some period the focus shifted to 

wells as the system boundary. Therefore, the development of adequate procedures and 

methods has been more complex than what might be immediately apparent in the final 

work presented in the thesis. At the same time the focus on SIS initially in the process 

has contributed to valuable knowledge about how risk is modeled within other system 

disciplines, and has also contributed to a broader perspective when establishing the well 

risk factors. 

To ensure the applicability of the procedures and methods, pragmatism has been 

important, but the procedures and methods presented are anchored in quantitative risk 

and reliability theory. To lend scientific credibility to the work, the criteria listed in 

section 1.5 have been followed as far as possible. Also the risk assessment method 

presented has been developed with strong involvement from the industry and colleagues 

mentioned in the preface. 

7.3 Discussion of results 

The petroleum activity gives extensive incomes to the operators and to the nations that 

possess the petroleum resources. At the same time the petroleum production may result 

in severe losses. It is therefore a pressure on the risk analysis to demonstrate acceptable 

risk. Freudenburg (2001) claims that there is a need to recognize that virtually all 

technological controversies inherently involves at least three sets of questions 

(Freudenburg, 2001): 

• How safe is it? This includes factual or technical questions. On such factual 

questions the views of technical experts tend to be far more persuasive than do the 

views of most of their fellow citizens (lay people). 

• Is that safe enough? This question involves not facts, but values – and when it 

comes to questions of values, another word for “scientist” is “voter”. For the value 

questions, in other words, ordinary citizens do indeed have just as much legitimacy 

as do scientist and engineers.  

• What have we overlooked? Risk decisions – and indeed, a growing number of the 

challenging decisions in the 21st century – inherently involve complex mix of facts, 
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values and blind spots. For this question both experts and the non-experts have a 

great deal to contribute.  

 

With these questions in mind the results are discussed.  

7.3.1 Pressure on safety margins 

Offshore systems in general have traditionally had an apparent degree of over 

dimensioning in the design. An example is the extensive use of redundancy in process 

control systems. The tradition has been to use a layer of protection philosophy to reduce 

the consequences of a hazardous event. Related to well systems there has also been a 

tradition for deterministic requirements stated in, e.g., API RP 14C and API RP 14B. 

However, there is trend towards functional requirements (what to achieve). Functional 

requirements give the engineers the possibility to develop a range of solutions to 

achieve the same function. It is the role of the engineers to decide if a solution achieves 

the required functional requirement and/or to compare alternative solutions. The risk 

assessment method proposed in the thesis is dominated by functional requirements. The 

exception is the two barrier requirement and the requirement that the primary well 

barrier should be intact (WRF 2 - Well shut-in function and well integrity fault 

tolerance). 

Functional requirements may result in a move towards changes in well-proven 

safety philosophies for offshore design and operations. Arguments for this development 

are provided in the introduction to the thesis (see chapter 1). The question in the 

operational phase then is whether risk in operation is acceptable or not? This question is 

especially important if changes in design and operation philosophy mainly are 

motivated by cost reduction. Rasmussen (1997) comments on this, when he points out 

that commercial success in a competitive market, will lead to an exploration of the 

advantages of operating at the boundary of accepted praxis. By exploring and moving 

closer to the limit, one also run the risk of crossing the boarder of what can be said to be 

safe operation. Rasmussen also argues that commercial pressure force managers and 

key-decision makers to focus on short-term gains rather than longer-term criteria 

concerning e.g. safety. In his terms “managers runs the risk rather than taking risk”. 
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The presented risk assessment method attempts to control the risk by focusing on 

WRFs assumed to cover all important risk aspects resulting from a well component 

failure. The method focuses on functions, and functional requirements are dominating. 

However, it is proposed to keep established principles like the two barrier principle. 

Despite the combination of both rules and function requirements there is always a risk 

that the proposed risk assessment procedure does not cover all significant risk aspects.  

The acceptance criteria applied will influence the well risk. The influence from 

different acceptance criteria is illustrated in Figure 27. In the figure it is assumed that 

the identified WRFs represent the total well risk. However, if the acceptance criteria are 

set to high, i.e., allow continued operation with to high risk, the operator will “run the 

risk”. On the other hand, too conservative acceptance criteria and risk reducing 

measures will result in “overprotective” operational philosophy. The reason for the 

elliptical form is that the deviation from the “optimal” philosophy is expected to be less 

for critical well component failures (e.g., failure of the primary well barrier) and for 

minor well component failures (minor leakage below leak rate criterion). For example, 

failure to close the SCSSV will in almost all cases result in a workover (or installation 

of a WR-SCSSV). The deviation from the “optimal” philosophy will be highest for well 

component failures where the influence on well risk are uncertain or may be reduced by 

different operational means, e.g., for leaks to the annulus above the SCSSV. By 

including several several WRFs in the risk assessment it is attempted to cover all risk 

aspects. There is therefore a risk of being overprotective. However, there is also a risk 

of running the risk if the acceptance criteria are set too high. 
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Figure 27 Risk assessment challenges 

 

By applying the method suggested in the thesis there is also a risk that the well 

system moves closer to the edge, meaning that in the event of some sort of well system 

failure, there is less of safety margin for recovery to take place. This is similar to 

Perrow’s (1984) notion of “tight coupling” between systems. By the application of a 

wide range of WRFs this tendency is attempted reduced to a minimum. In particular 

WRF 7 – Operations in the well attempts to cover the recovery risk. 

Another pitfall is the potential mismatch between the designer/method developer 

and user assumption. Designers are increasingly remote from the practitioner/operator 

of the system in many large-scale systems. A mismatch between designer and user 

expectations of how things should work may often occur. This mismatch may not be 

trivial, and sometimes may result in disaster (examples are given in Billings, 1996). 

Even if the procedure has been developed in close cooperation with the user (Norsk 
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Hydro), a mismatch between the method developers and the method users cannot be out 

ruled. A series of internal courses is planned in 2006 to reduce this risk. 

When moving from rules to functional requirements, one could (simplified) say that 

one has moved from a regime with little degree of uncertainty to a regime with 

quantitative analysis to show acceptable safety margins. Included in such calculations 

are assumptions, (generic) reliability data, models, etc., which in sum gives an increased 

degree of uncertainty (especially when introducing new technology). This uncertainty 

can in most cases not be measured. In the worst case there is a risk of reducing the 

safety margin even if the probabilistic calculations do not show this decrease.  

Because of this uncertainty a recommendation in NOU 2002:24 is to include some 

basic safety requirements with respect to barriers and redundancy from a precautionary 

principle. This strategy is also followed in the risk assessment method by including the 

two barrier principle and by recommending the leak rate criterion in API RP 14B. The 

recommended use of relative comparison with an accepted base case well also 

contributes to reducing the uncertainty. 

7.3.2 Documentation of risk assessment process 

There are problems related to verification of technology and assuring their safety. 

Kirwan (2001) highlights two main problems: 

1. Potential mismatch between the lifecycle of scientific investigation of new 

technology and the life cycle of the technological development itself. Technology 

development used to take place over longer timescales, but this is no longer always 

the case. Underpinning research, checking the integrity of the new technology and 

looking for unwanted by-products may, take too long. It may cause a fatal delay of 

the technology’s entry into the market. Given intense commercial pressure, a 

conflict of interest may then develop, with pressure to release the product into the 

market or industry. 

2. External regulations trying to control the fast developing products or systems. 

External regulations should be able to question the emergence of the new 

technologies and limit their implementation until satisfactory research and testing 

has been completed. But many new products will not fit into existing and mature 

technology categories. The regulatory framework is at best a slow and bureaucratic 
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system, and may not be able to catch up with the new technology until it is already 

released. 

 

Kirwan mainly focus on changes in technology, but the same points are relevant for 

changes in design and operating philosophy. Also, in the Norwegian oil sector there is 

increased focus on cost-effectiveness, resulting in introduction of new ways of both 

solving the technical issues and new ways of organizing the work. Kirwan (2001) gives 

an example from the introduction of new technology in aircraft cockpits. Experience has 

shown that there is a time lag between the introduction of new technology being 

implemented, and the occurrence and experience of system problems. Before these 

problems are known and the impact on the user of the system are realized, the design 

teams may be reduced and disbanded. This lag means that difficulties appear too late to 

be designed out, and therefore accidents may happen whereupon the industry is forced 

into costly refit. The same argument can be used for well systems, where new well 

designs constantly are being developed, and the life of existing wells is being extended. 

In this situation the risk assessment performed in the design phase and the changes in 

risk throughout the well life must be of high quality, have a broad scope and be well 

documented. In particular the “library” of standard well types may not capture all these 

aspects. The limitations in the analyses must therefore be known and criteria for when 

not to use the library should be clear. WRF 5 – Failure cause and WRF 6 – Well barrier 

system and interfaces are included to reduce this risk. 

7.3.3 Well risk versus installation risk 

Analysis and studies are performed on different system levels. Even if the proposed 

analyses and risk assessment method show that a given solution is acceptable on the 

well system level, the total risk on installation level is not modeled in this thesis. One 

problem is that a range of actors will be involved, and have different influence on the 

selected solution. As one of several possible approaches to this problem, Rasmussen 

(1997) recommends that the acceptable limits/level for safe operation of a system must 

be visible to the actors involved. The main challenge then becomes to identify the limits 

or barriers that actually exists in relation to different hazardous events and scenarios, 

and to make them known to the actors. In this perspective the methods and procedures 
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suggested in this thesis may contribute to a better understanding of well risk for actors 

not only involved with well risk. For example, the barrier diagram method may 

contribute to better visualization and communication between well design and well 

operation personnel. Similarly the safety unavailability calculations may contribute with 

useful input to the actors involved with SIS design. The division into WRFs may 

contribute to visualize different risk aspects to different actors. 

Often the methodology to show equality between technical solutions has a too 

narrow objective. This can also be claimed about analysis performed on well system 

level. The analysis might not be able to capture the spectrum of impacts a WBE failure 

has on safety. This argument can also be stated towards the risk analysis methods and 

risk assessment procedure described in this thesis. The thesis mainly covers technical 

aspects, and has in less degree assessed factors like operational complexity, more 

maintenance and the need for follow-up during operation. The influence from such 

factors must not be underestimated. 

The well operator is supposed to intervene if there are deviations that exceed 

acceptable limits or due to abnormal incidents. In this situation the operator should be 

aware of the reason for the established limits, and have knowledge about how to handle 

deviations. The proposed risk assessment method may, e.g., result in increased 

dependence on pressure monitoring and/or changes in allowable pressure limits. 

Changes in established procedures may, e.g., influence on the operators ability to act 

when deviations occur. Another factor is that human under stress have a tendency not to 

act rational, but perform reflexive actions based on previous experiences from similar 

events (Reason, 1990). The risk assessment method proposed in the thesis does not 

cover the possible extra burden on the well operators. The risk assessment may result in 

risk reducing measures that might weaken the ability of the human to intervene if 

something unexpected happens. This factor may sometimes be important.  

7.4 Further work 

Well integrity is of increasing concern, and the field has gained more emphasis just over 

the past years. This is partly because of the growing number of mature fields and the 

application of technology, e.g. subsea and unmanned platform developments. Also, the 

regulations and standards governing the management of well integrity in various parts 
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of the world are based on different approaches. In comparison the handling of SIS in 

high risk industries seems more uniform and has also been focused on over several 

years. A common best practice for well integrity is not established yet, and further work 

is necessary throughout the industry 

This thesis do not attempt to cover all aspects of what is necessary to manage well 

risk, but may have contributed to bring the industry a step forward. Below suggestions 

to further improvements and work based on the PhD work are suggested. 

 

Further testing of procedures and methods 

The risk assessment method should be tested before implementation in the entire 

organization. Within Norsk Hydro, s series of courses is planned. The objective is to 

receive feedback from operational personnel before the method is implemented fully. In 

parallel with the courses case studies are performed within Norsk Hydro. 

The methods applied in the risk analysis may also be further developed. For 

example the barrier diagram method may be further developed. In future, it should be 

possible to perform reliability analysis directly from the barrier diagram by, e.g., the 

development of a software tool. 

 

Acceptance criteria 

The acceptance criteria used by the operator are often generic and not flexible with 

respect to, e.g., well type. As an example today’s API RP 14B leak rate requirements do 

not reflect that risk levels vary between installations and well types (platform vs. subsea 

wells, injectors vs. producers, etc.). Many operators have chosen to go beyond the 

acceptance criteria, more based on a perception of risk and/or convenience rather than 

actual verification of the required acceptance criteria. More research can be made on 

this area, and the split into WRFs may contribute to more focus on specific and 

diversified acceptance criteria. 

 

Reliability data 

One of the objectives in the thesis was to suggest improvement in the application of 

reliability input data. This is partly done by suggesting improved failure classification of 
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WBE failures (paper 5) and by improved analysis techniques (paper 5 and paper 2). 

However, the ambition was to perform detailed analysis of component failures, and, 

e.g., establish recommended reliability data and investigate failure causes in more 

detail. Due to limited access to field data this was not possible. However, this work will 

be increasingly important due to the increased average well age in the industry. The 

failure classification suggested in paper 5 and in section 4.2 may be a starting point for 

further research. 

 

QRA and well risk assessment 

In the start of the thesis it was stated that the QRA included coarse hazardous event 

frequency estimates. In the future it should be focused on how to improve these 

estimates both in the design and operational phase. One possible solution is to use 

quantitative analysis on well level as a supplement to the generic frequencies used 

today. One possible strategy is to develop a set (library) of well categories where the 

estimated blowout and well release frequency is compared relative to each other. The 

relative difference in blowout and well release frequency may be used as a 

supplement/correction factor to the historic blowout frequencies. 
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Definitions 

 

A-annulus A term used for the annulus between the production tubing and the 
production casing. 

Acceptance criteria Criteria based on regulations, standards, experience and/or theoretical 
knowledge used as a basis for decisions about acceptable risk. 
Acceptance criteria may be expressed verbally or numerically (NS 
5814) 

Accident An unintended event or sequence of events that causes death, injury, 
environmental or material damage (DEF-STD 00-56). 

Analysis An examination of a complex, its elements, and their relations; the use 
of methods and techniques of arranging facts to assist in deciding 
what additional facts are needed, establish consistency, validity and 
logic, establish necessary and sufficient events for causes, and guide 
and support inferences and judgments (Johnson 1980) 

Availability The ability of an item under combined aspects of its reliability, 
maintainability, and maintenance support) to perform its required 
function at a stated instant of time or over stated period of time (BS 
4778). 

B-annulus A term used for the annulus between the production casing and the 
intermediate casing (next outer casing string) 

Barriers The physical and procedural measures to direct energy in wanted 
channels and control unwanted release (Johnson 1980). 

Blowout A blowout is an incident where formation fluid flows out of the well 
or between formation layers after all the predefined technical well 
barriers or the activation of the same have failed (SINTEF, 2005) 

C-annulus A term used for the annulus between the intermediate casing and the 
surface casing (next outer casing string). 

Casing Large-diameter pipe cemented in place during the initial well 
construction process to stabilize the wellbore. The casing forms a 
major structural component of the wellbore and serves several 
important functions: preventing the formation wall from caving into 
the wellbore, isolating the different formations to prevent the flow or 
crossflow of formation fluids, and providing a means of maintaining 
control of formation fluids and pressure while the well is drilled. The 
casing string also provides a means of securing surface pressure 
control equipment and downhole production equipment, such as the 
drilling blowout preventer (BOP), x-mas tree or production packer. 
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Casing joint A length of steel pipe, generally around 40 ft [13 m] long with a 
threaded connection at each end. Casing joints are assembled to form 
a casing string of the correct length and specification for the wellbore 
in which it is installed (Schlumberger, 2005). 

Casing program A collective term that encompasses all casing and liner strings, 
including hangers and cement, located in a wellbore. 

Causal analysis A systematic procedure for describing and/or calculating the 
probability of causes for undesired events (NS 5814). 

Causal model Specification of the influence relations assumed to exist between a set 
of variables, often illustrated graphically using boxes and arrows 
(Hellevik 1999). 

Common cause 
failure 

Multiple component faults that occur at the same time or that occur in 
relatively small time window and that are due to a common cause 
(NASA 2002). 

Failure, which is the result of one or more events, causing 
coincident failures of two or more separate channels in a multiple 
channel system, leading to system failure (IEC 61508, Part 4). 

Failures of different items resulting from the same direct cause 
where these failures are not consequences of other failures (NORSOK 
O-CR-001). 

Note: Failures that are consequences of other failures are called 
cascading failures. 

Conductor  
(-casing/-pipe) 

The outermost casing string in a casing program set to support the 
surface formations. The conductor is typically a short string set soon 
after drilling has commenced since the unconsolidated shallow 
formations can quickly wash out or cave in. Where loose wellbore 
surface soil exists, the conductor pipe may be driven into place before 
the drilling commences. 

Consequence An outcome of an event (ISO/TMB WG 1998). 
A possible result of an undesired event. Consequences may be 

expressed verbally or numerically to define the extent of injury to 
humans, or environmental or material damage (NS 5814). 

Consequence 
analysis 

A systematic procedure to describe and/or calculate the possible 
extent of human injury, and environmental or material damage as a 
result of undesired events (NS 5814). 

Corrective 
maintenance 

The actions performed, as a result of failure, to restore an item to a 
specified condition (MIL-STD-2173 (AS)). 

The maintenance carried out after a failure has occurred and 
intended to restore an item to a state in which it can perform its 
required function (BS 4778). 

Criterion A norm, i.e., rule or test against which (the quality of) performance 
can be measured (Johnson 1980). 

Design life Planned usage time for the total system (NORSOK O-CR-001). 
Deviation Departure from a norm (criterion) (Johnson 1980). 
Distribution 
function 

Consider a random variable X. the distribution function of X is  
)()( xXPxF rX ≤=  (Rausand and Høyland 2004) 

Downtime The period of time during which an item is not in a condition to 
perform its required function (BS 4778). 
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Equipment under 
control (EUC) 

Equipment, machinery, apparatus, or plant used for manufacturing, 
process, transportation, medical, or other activities (IEC 61508, Part 
4). 

Error Any significant deviation from a previously established, required or 
expected standard of human performance that results in unwanted or 
undesired time delay, difficulty, problem, trouble, incident, 
malfunction or failure (Johnson 1980). 

Fail safe A design property of an item that prevents its failures being critical 
failures (BS 4778). 

A design feature that ensures the system remains safe or, in the 
event of a failure, causes the system to revert to a state that will not 
cause a mishap (MIL-STD 882D). 

Failure The termination of its ability to perform a required function (BS 
4778). 

An unacceptable deviation from the design tolerance or in the 
anticipated delivered service, an incorrect output, the incapacity to 
perform the desired function (NASA 2002). 

A cessation of proper function or performance; inability to meet a 
standard; non-performance of what is requested or expected (NASA 
2000) 

Failure cause The physical or chemical processes, design defects, quality defects, 
part misapplication, or other processes which are the basic reason for 
failure or which initiate the physical process by which deterioration 
proceeds to failure (MIL-STD-1629A). 

The circumstances during design, manufacture, or use which 
have led to a failure (IEC 50(191)) 

Failure effect The consequence(s) a failure mode has on the operation, function, or 
status of an item (MIL-STD 1629) 

Failure mechanism The physical, chemical or other process which has led to a failure 
(IEC 50(191)). 

Failure rate The rate of which failure occur as a function of time. If T denotes the 
time to failure of an item, the failure rate z(t) is defined as 

t
tTttTt

tz
t ∆
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=
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lim)(  

The failure rate is sometimes called “force of mortality (FOM)” 
(Rausand and Høyland, 2004). 

Fault A defect, imperfection, mistake, or flaw, of varying severity that 
occurs within some hardware or software component or system. 
“Fault” is a general term and can range from a minor defect to a 
failure (NASA 2002). 

Abnormal condition that may cause a reduction in, or loss of, the 
capability of a functional unit to perform a required function (IEC 
61508, Part 4) 

Fault mode (failure 
mode) 

One of the possible states of a faulty item, for a given required 
function (IEC 50(191)). 

Fault tolerance Ability of a functional unit to continue to perform a required function 
in the presence of faults or errors (IEC 61508, Part 4) 

Frequency rate The number of occurrences of a given type of event expressed in 
relation to a base unit of measure (for example, accidents per 1 
million miles traveled (Tarrants 1980) 
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Full workover Preventive or corrective maintenance carried out on a well by pulling 
the X-mas tree and well completion string. 

Functional unit Entity of hardware or software, or both, capable of accomplishing a 
specified purpose (IEC 61508, Part 4) 

Hazard Source of potential harm or situation with a potential for harm (IEC 
60300-3-9) 

Hazard 
identification 

Process of recognizing that a hazard exists and defining its 
characteristics (IEC 60300-3-9). 

Hazardous event Event which can cause harm (IEC 60300-3-9). 
Hidden failure A failure not evident to crew or operator during the performance of 

normal duties (MIL-STD-2173(AS)). 
Hydraulic control 
line 

A small-diameter hydraulic line used to operate downhole completion 
equipment such as the surface controlled subsurface safety valve 
(SCSSV). Most systems operated by control line operate on a fail-safe 
basis. In this mode, the control line remains pressurized at all times. 
Any leak or failure results in loss of control line pressure, acting to 
close the safety valve and render the well safe (Schlumberger, 2005). 

Incident Any unplanned event resulting in, or having potential for, adverse 
consequences (ISO/TMB WG 1998). 

Indicator A measurable/operational variable that can be used to describe the 
condition of a broader phenomenon or aspect of reality (Øien 2001) 

Intermediate casing A casing string that is generally set in place after the surface casing 
and before the production casing. The intermediate casing string 
provides protection against caving of weak or abnormally pressured 
formations and enables the use of drilling fluids of different density 
necessary for the control of lower formations. 

Item Any part, component, device, subsystem, functional unit, equipment 
or system that can be individually considered (IEC 50(191)). 

Light intervention Preventive or corrective maintenance carried out on a well without 
pulling the X-mas tree or any part of the completion string. It also 
covers other interventions, e.g., wireline logging operations and 
production operations such as testing, stimulations, chemical injection 
and perforation. 
 
Note: Often also called a thru-tubing intervention 

Liner A casing string in which the top does not extend to the wellbore 
surface but instead is suspended from inside of the previous casing 
string. 

Maintainability The ability of an item, under stated conditions of use, to be retained 
in, or restored to, a state in which it can perform its required 
functions, when maintenance is performed under stated conditions 
and using prescribed procedures and resources (BS 4778). 

Maintenance The combinations of all technical and corresponding administrative 
actions, including supervision actions, intended to retain an entity in, 
or restore it to, a state in which it can perform its required function 
(IEC 50(191)). 
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Master valve A valve located on the x-mas tree that controls all flow from the 
wellbore. A correctly functioning master valve is important and most 
surface trees have two master valves fitted. The upper master valve is 
used on a routine basis, with the lower master valve providing backup 
or contingency function in the event that the normal service valve is 
leaking and needs replacement (Schlumberger, 2005). 

Mean time to failure 
(MTTF) 

Let T denote the time to failure of an item, with probability density 
f(t) and survivor function R(t). the mean time to failure is the mean 
(expected) value of T which is given by 

∫∫
∞∞
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(Rausand and Høyland 2004). 
Model Simplified representation of a phenomenon or object where some 

aspects are highlighted whereas other are left out (e.g., causal models) 
(Hellevik 1999). 

Modification The combination of all technical and administrative actions intended 
to change an item (IEC 50(191)). 

Monitoring Activity performed either manually or automatically, intended to 
observe the state of an item (IEC 50(191). 

Partial workover Preventive or corrective maintenance carried out on a well by pulling 
the X-mas tree and/or a part of the well completion string. 

Performance criteria Operational standards for use in determining effectiveness or 
efficiency (Tarrants 1980) 

Preventive 
maintenance 

The maintenance carried out at predetermined intervals or 
corresponding to prescribed criteria and intended to reduce the 
probability of failure or performance degradation of an item (BS 
4778) 

Primary well barrier First object that prevents flow from a source (NORSOK D-010) 
Probability density Consider a random variable X. The probability density function fX(x) 

of X is 
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where FX(x) denotes the distribution function of X (Rausand and 
Høyland 2004). 

Production casing A casing string that is set across or at the start of the reservoir 
interval, and within which the main well completion components are 
installed. 

Production packer A well completion device used to isolate the annulus between the 
production tubing and the production casing (A-annulus), and to 
anchor or secure the bottom of the well completion string. 

Protected x-mas tree A x-mas tree with probability less than 1x10-4 per installation-year 
for critical barrier function impairment due to external hazardous 
loads (explosions, fires, dropped objects, trawls, iceberg/vessel 
collisions, etc.). This criterion is based on requirements to main safety 
functions stipulated in the PSA (2001b) “Facilities Regulations”. 
 
The opposite of a protected wellhead is called an ‘unprotected X-mas 
tree’ 
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Qualitative  The characteristic elements, attribute, kind, or degree of quality 
possessed by something. Refers to characteristics (physical or non-
physical, individual or typical) that constitutes the basic nature of 
something or is one of its distinguishing features (Tarrants 1980). 

Quantitative The property of anything that can be determined by measurement. 
The property of being measurable in dimensions, amounts, etc., or in 
extensions of these that can be expressed by numbers or symbols. A 
quantitative statement describes “how much”, while a qualitative 
statement answers the question, “what kind is it?” or “how good is 
it?” (Tarrants 1980). 

Redundancy In an entity, the existence of more than one means of performing a 
required function (IEC 50(191)). 

Existence of means, in addition to the means which would be 
sufficient for a functional unit to perform a required function or for 
data to represent information (IEC 61508, part 4). 

Reliability The ability of an item to perform a required function, under given 
environmental and operational conditions, and for a stated period of 
time (ISO 8402). 

Reliability data Reliability data is meant to include data for reliability, maintainability 
and maintenance supportability  
(NORSOK O-CR-001). 

Repair The part of corrective maintenance in which manual actions are 
performed on the entity (IEC 50(191)). 

Required function A function or combination of functions, of an entity, which is 
considered necessary to provide a given service (IEC 50 (191). 

Risk Combination of the frequency, or probability, of occurrence and the 
consequence of a specified hazardous event (IEC 60300-3-9). 

Risk designates the danger that undesired events represent for 
humans, the environment or material values. Risk is expressed in the 
probability and consequences of undesired events (NS 5814). 

Risk analysis Systematic use of available information to identify hazards and to 
estimate the risk to individual or populations, property or the 
environment (IEC 60300-3-9). 

Systematic use of available information to estimate the likelihood 
and consequences of risks and their components (ISO/TMB WG 
1998). 

A systematic approach for describing and/or calculating risk. 
Risk analysis involves the identification of undesired events, and the 
causes and consequences of these events (NS 5814). 

Risk assessment Overall process of risk analysis and risk evaluation (IEC 60300-3-9). 
Risk control Process of decision-making for managing and/or reducing risk; its 

implementation, enforcement and re-evaluation from time to time, 
using results of risk assessment as one input (IEC 60300-3-9). 

Risk criteria A qualitative or quantitative statement of the acceptable standard of 
risk with which the assessed risk needs to be compared (The Royal 
Society 1992). 

Risk evaluation Process in which judgments are made on the tolerability of the risk on 
the basis of risk analysis and taking into account factors such as socio-
economic and environmental aspects (IEC 60300-3-9). 

A comparison of the results of a risk analysis with the acceptance 
criteria for risk and other decision criteria (NS 5814). 
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Risk management Systematic application of management policies, procedures, and 
practices to the tasks of analyzing, evaluating and controlling risk 
(IEC 60300-3-9). 

Safety Freedom from unacceptable risk (IEC 61508) 
Freedom from those conditions that can cause death, injury, 

occupational illness, or damage to or loss of equipment or property 
(MIL-STD-882D). 

The expectation that a system does not, under defined conditions, 
lead to a state in which human life is endangered (DEF-STD 00-56) 

Safety function Function to be implemented by a SIS (Safety Instrumented System), 
other technological safety-related system or external risk reduction 
facilities which is intended to achieve or maintain a safe state for the 
process in respect to a specific hazardous event (IEC 61511) 

Safety integrity Probability of a safety-related system satisfactorily performing the 
required safety functions under all the stated conditions within a 
specified period of time (IEC 61508, Part 4). 

Safety integrity 
level (SIL) 

Discrete level (one out of a possible four) for specifying the safety 
integrity requirement of a the safety functions to be allocated to the 
E/E/PE safety-related systems, where safety integrity level 4 has the 
highest level of safety integrity and safety integrity level has the 
lowest (IEC 61508, Part 4). 

Seal assembly A system of seals arranged on the component that engages in a 
sealbore to isolate the production-tubing conduit from the annulus. 
The seal assembly is typically longer than the sealbore to enable some 
movement of the components while maintaining an efficient seal 
(Schlumberger, 2005). 

Secondary well 
barrier 

Second object that prevents flow from a source  

Surface casing A casing string set inside the conductor in shallow but competent 
formations. The surface casing protects onshore fresh-water aquifers, 
and it provides minimal pressure integrity and thus enables a diverter 
or a blowout preventer (BOP) to be attached to the top of the surface 
casing string after it is successfully cemented in place. The surface 
casing provides structural strength so that the remaining casing strings 
may be suspended at the top and inside of the surface casing. 

Surface controlled 
annular safety valve 
(SCASSV) 

Same functionality as SCSSV but installed in annulus between 
production string and production casing. The valve is normally 
installed in a packer (Schlumberger, 2005). 

Surface controlled 
subsurface safety 
valve (SCSSV) 

A downhole safety valve that is operated from surface facilities 
through a control line strapped to the external surface of the 
production tubing. Two basic types of SCSSV are common: wireline 
retrievable, whereby the principal safety-valve components can be run 
and retrieved on slickline, and tubing retrievable, in which the entire 
safety-valve assembly is installed with the tubing string. The control 
system operates in a fail-safe mode, with hydraulic control pressure 
used to hold open a ball or flapper assembly that will close if the 
control pressure is lost (Schlumberger, 2005). 
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Survivor function Let T denote the time to failure of an item. The survivor function R(t) 
of the item is  

0)Pr()( ≥>= tfortTtR  
R(t) is sometimes called the reliability function or the survival 

probability at time t of the item (Rausand and Høyland 2004). 
System A bounded physical entity that achieves in its domain a defined 

objective through interaction of its parts (DEF-STD 00-56). 
Set of elements which interact according to a design, where an 

element of a system can be another system, called subsystem, which 
may be controlling system or a controlled system and may include 
hardware, software and human interaction (IEC 61508, Part 4). 

Systematic failure Failure related in a deterministic way to a cause, which can only be 
eliminated by a modification of the design or of the manufacturing 
process, operational procedures, documentation, or other factors (IEC 
61508, Part 4). 

Test frequency The number of tests of the same type per unit time interval; the 
inverse of the test interval (IEEE Std. 352). 

Test interval The elapsed time between the initiation of identical tests on the same 
senor, channel, etc. (IEEE Std. 352). 

Tubing hanger A device attached to the topmost tubing joint in the wellhead to 
support the tubing string. The tubing hanger typically is located in the 
tubing head, with both components incorporating a sealing system to 
ensure that the tubing conduit and annulus are hydraulically isolated. 
(Schlumberger, 2005). 

Tubing head A wellhead component that supports the tubing hanger and provides a 
means of attaching the x-mas tree to the wellhead (Schlumberger, 
2005). 

Tubing joint A single length of the pipe that is assembled to provide a conduit 
through which the oil or gas will be produced from a wellbore. 
Tubing joints are generally around 30 ft [9 m] long with a thread 
connection on each end (Schlumberger, 2005). 

Undesired event An event or conditions that can cause human injury or environmental 
or material damage (NS 5814). 

Wear-out failure A failure whose probability of occurrence increases with the passage 
of time, as a result of processes inherent in the entity (IEC 50(191)). 

Well A collective term that encompass the main entities used to enable a 
contained and controlled access to a (pressurized) formation. For 
example, in the operational phase, well will typically encompass the 
x-mas tree, wellhead, well completion and casing program. 

Well barrier A well barrier is an envelope of one or several dependent barrier 
elements, which are designed to prevent unintentional flow of 
formation fluids between formations or to the surroundings 
(NORSOK D-010). 

Well Barrier 
Element (WBE) 

An object that alone cannot prevent flow from one side to the other 
side of it self (NORSOK D-010). 

Well completion A collective term that encompass the assembly of tubing hanger, 
downhole tubular, safety valve, production packer and other 
equipment placed inside the production casing to enable safe and 
efficient surface access to a (pressurized) formation. 
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Well Integrity The application of technical, operational and organizational solutions 
to reduce risk of uncontrolled release of formation fluids throughout 
the life cycle of the well (NORSOK D-010). 

Well release The reported incident is a well release if oil or gas flowed from the 
well from some point were flow was not intended and the flow was 
stopped by use of the barrier system that was available in the well at 
the time the incident started (SINTEF, 2005). 

Wellhead The surface/seabed termination of a wellbore that incorporates 
facilities for installing casing hangers during the well construction 
phase. The wellhead also incorporates a means of hanging the 
production tubing and installing the x-mas tree or other flow-control 
devices in preparation for the production of the well. 

Wing valve A valve located on the side of the x-mas tree. Two wing valves are 
generally fitted to the x-mas tree. A flowing wing valve is used to 
control and isolate production, and the service (kill) wing valve fitted 
on the opposite side of the Christmas tree is available for treatment or 
well-control purposes. The term wing valve typically is used when 
referring to the flowing wing (Schlumberger, 2005). 

x-mas tree  An assembly of valves, spools, pressure gauges and chokes fitted to 
the wellhead to control the well flow. 
 
Note: In the PSA regulations (2001b), Christmas trees also encompass 
wellheads, casing hangers and annular preventers. 
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API American Petroleum Institute 

CCF Common cause failures 

DD Dangerous detected 

DHSV Downhole safety valve 

DU Dangerous undetected 

EIReDA European industry reliability data 

EN European Norm 

ESD Emergency shutdown 

EUC Equipment under control 

FAR Fatal accident rate 

FTA Fault tree analysis 

FTC  Fail to close 

FTO Fail to operate 

HIPPS High integrity pressure protection system 

HSE Health and Safety Executive 

IEC International Electrotechnical Commission 

IEC International Electrotechnical Commission 

IPL Independent protection layer 

ISO International Organization for Standardization 

LCP Leakage in closed position 

LTA Leak to annulus 

MDWT Mean dangerous waiting time 

MIRA Method for environmental risk analysis (Norwegian) 

MMS Mineral Management Services 

MTTF Mean time to failure 
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NCS Norwegian continental shelf 

NORSOK The competitive standing of the Norwegian offshore sector (Norwegian) 

NTNU Norwegian University of Science and Technology 

OLF Norwegian Oil Industry Association (Norwegian) 

OREDA Offshore reliability data 

PDS Reliability of computer-based safety systems (Norwegian) 

PFD Probability of failure on demand 

PMV Production master valve 

PSA Petroleum Safety Authority 

PWV Production wing valve 

QRA Quantitative risk assessment 

RBD Reliability block diagram 

RIDDOR Reporting of injuries, diseases and dangerous occurrences regulations 

ROV Remotely operated vessel 

RSC Risk status code 

SCASSV Surface controlled annular safety valve 

SCP Sustained casing pressure 

SCSSV Surface controlled subsurface safety valve 

SIL Safety integrity level 

SINTEF Foundation of Science and Technology at the Norwegian Institute of 

Technology 

SIS Safety instrumented system 

TLP Tension leg platform 

TR-SCSSV Tubing retrievable surface controlled subsurface safety valve 

UK United Kingdom 

UKCS UK continental shelf 

US United States 

US GoM US Gulf of Mexico 

WBE Well barrier element 

WRF Well risk factor 

WR-SCSSV Wireline retrievable surface controlled subsurface safety valve 
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Approaches to the determination of safety integrity 
levels (SIL) for Safety Instrumented Systems (SIS); 

comparison and discussion 
 

Kjell Corneliussen 
Department of Production and Quality Engineering 

Norwegian University of Science and Technology (NTNU) 
NO 7491 Trondheim, Norway  

E-mail: kjell.corneliussen@ipk.ntnu.no 
 

Abstract 
The generic standard IEC 61508 uses a risk-based approach to determine the safety integrity 

levels (SIL) for Safety Instrumented Systems (SIS). The same approach is used in the process industry 
specific standard IEC 61511. In Norway, the Norwegian Petroleum Directorate (NPD), refers to these 
standards in the new regulations. The application of IEC 61508/61511 is generally considered to be 
beneficial, but experience has revealed two main drawbacks; (1) extensive work is necessary to come 
up with the required SIL specification, and (2) the methodology does not necessarily preserve good 
working solutions. Therefore, a separate guideline for the application of IEC 61058/61511 has been 
developed by the Norwegian Oil Industry Association (OLF). In particular the determination of SIL for 
the safety functions in offshore oil/gas production is treated. This paper examines the risk-based 
approaches for determination of SIL levels outlined in IEC 61508/61511 and compares them with the 
approach in the OLF guideline. 
 

1 Introduction 
A safety system is installed to mitigate the risk associated with the operation 

of a hazardous process. The role of the safety systems is twofold: (1) to prevent and 
detect deviations in critical process parameters, and (2) to control accident sequences. 
A safety instrumented system (SIS) is a safety system comprising electrical and/or 
electronic components. A SIS is composed of a logic solver and related field devices.  

The most important benefit of using a SIS is the increased flexibility to change 
the system and to introduce new functions. In some cases SIS may be the only 
alternative, e.g., for subsea HIPPS solutions [ 5]. SIS is a helpful commodity, but may 
also be a challenging consideration for the system developers and the regulatory 
authorities [ 6-7]. 

Requirements to such systems have traditionally been addressed through 
prescriptive requirements, for example, related to how a function shall be 
implemented. An example of a formulation may be: “all pressure vessels shall be 
protected against overpressure by installation of pressure safety valves (PSVs), and a 
protection system based on pressure transmitters and closure of inlet”. A typical 
example of such an approach from the Norwegian oil industry is ISO 10418 [ 8]. This 
type of standards offers little flexibility in realising safety functions. One of the 
arguments for developing risk-based standards is to meet the need for coping with 
rapidly developing technology and future developments. IEC 61508 [ 1] is an 
example of such a standard, and this standard is currently given the most attention 
within the SIS industry. This standard sets out a generic approach for all safety 
lifecycle activities for SIS. IEC 61508 is a generic standard common to several 
industries, and the process industry is currently developing their own sector specific 
standard for application of SIS, called the IEC 61511 [ 2]. The standards present a 
unified approach to achieve a rational and consistent technical policy for all SIS 
systems.  
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The application of IEC 61508/61511 is generally considered to be beneficial, 
but experience has clearly revealed two main drawbacks; (1) extensive work is 
necessary to come up with the requirements to the SIS for a specific application, and 
(2) the methodology does not necessarily preserve good working solutions [ 4]. The 
Norwegian Oil Industry Association (OLF) has therefore developed a guideline to 
support the use of IEC 61508/61511 [ 4]. In the new regulations from the Norwegian 
Petroleum Directorate (NPD) [ 3] specific references are given to the IEC standards 
and the guideline. 

The OLF guideline do not describe a fully risk based approach according to 
IEC 61508, and the objective of this paper is to describe the two approaches, to 
illustrate the differences and to discuss the challenges and pitfalls involved with both 
approaches.  

 

2 The IEC 61508 approach for determining SIL 
IEC 61508/61511 consider all relevant hardware and software safety lifecycle 

phases (for example, from initial concept, through design, implementation, operation 
and maintenance, to decommissioning). The standards describe an overall safety 
strategy were all the safety-related systems are taken into consideration in order to 
ensure that the risk is reduced to an acceptable level. The standards distinguish 
between three different types of safety-related systems: 

• SIS systems 
• Safety-related systems based on other technology 
• External risk reduction facilities, e.g., fire walls, physical distance/layout, 

manual intervention/procedures, etc.) 
 
IEC 61508/61511 requirements are only given for instrumented safety systems. The 
necessary risk reduction will, however, also require that safety functions depending 
on “other technology”/”external risk reduction” are capable of providing a given 
protection level. Figure 1 illustrates some typical safety systems for pressure 
protection of a separator. 

Separator

Control
valve

XV

XV

PSV

PT

SIS
Logic IO

 
Figure 1  Example of safety-related systems 

 
IEC 61508 focuses on safety functions, and the term “functional safety” is a 

characteristic of the safety-related system, whereas “safety” is a characteristic of the 
equipment that produces the risk. The focus on functional safety requires a 
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performance measure to be introduced. Thus, “safety integrity” and safety integrity 
levels ("SIL") is introduced. SIL is introduced for specifying the target level of safety 
integrity. There are three main types of requirements that have to be fulfilled in order 
to achieve a given SIL: 

• A quantitative requirement, expressed as a probability of failure on demand 
(PFD), or alternatively as the probability of a dangerous failure per hour. 

• A qualitative requirement, expressed as architectural constraints on the 
subsystems constituting the safety function. 

• Requirements concerning which techniques and measures should be used to 
avoid and control systematic faults. 
 
The general risk assessment procedure is illustrated in Figure 2. The relations 

to the risk reduction framework in IEC 61508/61511 are also illustrated. The first step 
is to define the Equipment under control (EUC). This is the equipment to be 
protected. Initially, it is assumed that no safety-related systems are installed. The next 
step is to perform a hazard and risk analysis to identify hazardous events [ 1]. The 
standards do not prescribe any particular method to be applied, and may range from 
simple screening analysis to Hazard and Operability Study (HAZOP)[ 9]. When, e.g., 
the HAZOP is completed, the initial risk (“EUC risk) [ 1] should be understood. A 
risk acceptance criterion must be defined in order to determine the required risk 
reduction (ref. Figure 2). Acceptable risk would normally be defined by the user, and 
is outside the scope of IEC 61508/61511. 
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Figure 2  Generalized method for determination of SIL for SIS 

 
If the risk is found unacceptable, safety-related systems must be introduced to 

reduce the risk. If it is identified that a SIS is required, the safety integrity level (SIL) 
should be assigned. In the informative annexes to IEC 61511-3 [ 2] a number of 
alternative methods are presented. The methods are:  

• The Semi-Quantitative Method is based on input from a hazard and risk 
analysis for identification of hazardous events, and different causes of these 
events. The resulting probability of an hazardous event is summarised in a 
fault tree, and the resulting consequences of the undesired event are 
summarised in an event tree. Safety-related systems are included in the event 
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tree to reduce the probability of the hazardous event to occur. The method is 
of particular value when the acceptable risk is specified numerically (for 
example that a hazardous event should not occur with a greater frequency than 
1 in 100 years). 

• The Safety Layer Matrix Method [ 10] is applied after “safety-related systems 
based on other technology” have been included, and the need for an additional 
SIS has been identified. The method uses a matrix with frequency, severity 
and number of other safety related systems. The categories are described in 
general terms and must be calibrated to get consistent results. 

• Calibrated Risk Graph is a semi-qualitative method that uses four parameters, 
which together describe the nature of the hazardous situation when safety 
instrumented systems fail, or are not available. The parameters are combined 
to decide the safety integrity level. The parameters are described in general 
terms and must be calibrated. As for the safety layer matrix, the need for SIS 
must be identified after other safety related systems have been included. 

• Layer of Protection Analysis (LOPA) [ 11] is based on the hazardous events 
identified in the Hazard and Operability analysis (HAZOP). The total risk 
reduction from all safety related systems are included in a standard tabular 
form. 

 
The approach above is iterative, and after the risk is found acceptable the 

required SIL is identified for the SIS. The next step is to establish the safety 
requirement specification for the SIS, and hand the specification over to the system 
developers for design. 
 

3 IEC 61508 challenges and pitfalls 
There is an obvious question how we, from a risk-based approach, can 

ascertain that SIS functions will perform satisfactorily, and whether the safety added 
by such systems is adequate and consistent. The process for SIL determination 
described above attempts to deal with the risk of each hazardous event and the 
capability of SIS and other safety-related systems to reduce the risk to an acceptable 
level. This process must be rational and consistent among risk analysis teams, 
development projects, companies, and industry sectors. It is important to have a clear 
understanding of (1) the risk assessment procedure (ref. Figure 2), (2) what is 
acceptable risk, and (3) how SIL determination should be performed. In order to 
achieve this, it is important to be aware of the challenges and pitfalls by using this 
approach. Some of the main challenges are: 

• Compared to a deterministic approach, using the SIL allocation methods in 
IEC 61508/61511, the methods will introduce considerable amounts of 
additional analysis work. There is a risk of companies not realising the 
consequence of implementing the IEC approach. Experience has shown that 
the IEC approach for many industries require extensive additional analyses, 
and the risk assessment process should be designed to prioritise events with 
high severity and high likelihood. There is also a possibility of selecting sub-
optimal safety integrity levels, when taking into consideration the numerous 
safety functions present, on e.g. an oil installation. 

• When moving from a deterministic approach, with SIS solutions based on 
experience, with a design practice that has resulted in a safety level considered 
adequate, there is a risk of moving to a design practice that is not “proven in 
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use”. The capability of each safety related system and the PFD estimate may 
be also be uncertain, and assumptions and uncertainties in the estimates must 
be documented. This uncertainty may also lead to a solution were the actual 
safety level is not acceptable. 

• It is important that the companies define acceptable risk. If not there is a risk 
of selecting sub-optimal safety integrity levels.  

• The risk assessment process is an iterative process that is performed until an 
acceptable risk level is reached, taking all risk reducing measures into 
consideration, and it is important that the results and assumptions are clearly 
documented. The risk assessment process should also facilitate for 
examination by other teams or later in the safety life cycle by people 
responsible for operation. In operation, it will be useful in order to handle 
safety functions that are taken out of service and also to verify that the initial 
risk assessment is in accordance with the operating conditions. Some of the 
methods for SIL determination do not deal with these factors explicitly. 

 
The challenges above indicate that the risk assessment process, including the 

SIL allocation process must consider the risk of the hazardous events event, measure 
it against tolerable risk, and allocate SIL levels in a consistent way. The uncertainty in 
estimates should be documented in a way such that other teams or operating personnel 
can verify the results. Each company must consider these criteria when they develop 
individual risk assessment procedures. All the SIL allocation methods in IEC 61511 
can be used in this process; the LOPA and the semi-quantitative method do, however, 
fit the criteria above more easily. The risk graph and the safety layer method require 
more calibration, and are applied only to decide the SIL for the SIS. These two 
methods are also not so explicit when considering acceptable risk, and the risk 
reduction from other safety-related systems. 

4 The method for determining the required safety integrity level in 
the Norwegian oil sector 

The offshore industry in Norway has been concerned with challenges 
discussed in the previous section, and the move from SIS solutions based on 
experience, with a design practice that has resulted in a safety level considered 
adequate, to a risk based approach adopted from IEC 61508/61511.  

These concerns resulted in a compromise between the IEC approach and the 
previous deterministic approach for protection of process equipment, based on API 
14C/ISO 10418 [ 8]. The approach is described in the OLF guideline [ 4], which 
describes an approach where minimum SIL requirements have been set to most 
common safety functions on an oil installation. The Norwegian Petroleum Directorate 
(NPD) has recently issued new regulations [ 3], were it is referred to the OLF 
guideline and the IEC standards. The background for establishing minimum SIL 
requirements is that application of IEC 61508/61511, although beneficial, is 
experienced to have two main drawbacks: (1) extensive work is necessary to come up 
with necessary SIL specification, and (2) the methodology does not necessarily 
preserve good working solutions[ 4].  

Figure 3 illustrates the process for developing and allocating SIL 
requirements. This is not a fully risk based approach, and for most functions the OLF 
guideline gives minimum SIL requirements (i.e., fixed SILs are given independent of 
any risk analyses). These levels should be adhered to whenever possible and are based 
on, e.g.: 
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• Current practice,  
• Available generic reliability data,  
• What is technically possible with today's technology  

 
Needs for deviating from these requirements will, however, arise, e.g., due to 

technological advances as well as special conceptual or operational aspects. 
Whenever identified, these “deviations” need to be treated according to IEC 
61508/61511 methodology, i.e., the safety integrity level should be based upon a 
qualitative or quantitative risk based method.  
 

YesHave safety functions
for which SIL table is
not applicable been
identified?

EUC definition

Hazard and risk analysis

Definition of safety functions

Apply table with
recommended SIL

requirements

For each identified deviation:
Apply risk based methodology

for SIL determination

Perform SIL allocation

Develop safety functions
requirements specification

Provide input to SIS
design and engineering

No

 
Figure 3  Flowchart for SIL development and allocation (OLF, 2000) 

 

5 Challenges and pitfalls when using minimum SIL values 
The OLF approach saves time in the hazard and risk analysis process, reduces 

documentation in justifying the SIL choice, and ensures consistency across process 
units. The process for SIL determination for SIS is, however, not fully in line with the 
risk based approach in IEC 61508/61511. The main challenges associated with the 
OLF approach are: 

• For several safety functions it is difficult to establish generic definitions, due 
to process specific conditions, size of fire area, design and operational 
philosophies, etc., the number of final elements to be activated upon a 
specified cause will, for example, differ from case to case. There is therefore a 
risk of selecting a minimum SIL level that is not applicable for the actual 
application. The guideline have to some extent compensated for this by giving 
several of the requirements on a sub-function level rather than for an entire 
safety function. 

• It is not necessary to define initial risk or acceptable risk, and hence the 
minimum SIL values are not related to the frequency or acceptance criteria of 
the hazardous event. It is therefore not possible to measure SIL level against 
acceptable risk. It is however stated in the guideline, that the minimum SIL 
requirements should be used as input to QRA (quantitative risk analysis, on 
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platform level), which will then represent a verification of the stated 
requirements. If the QRA reveals that the overall risk level is too high, then 
this could trigger a stricter requirement to one or more of the safety functions. 
Other types of analyses performed in the design phase may also introduce 
more stringent requirements than specified in the minimum SIL table. 

• It is important to identify deviations from the assumptions the minimum SIL 
table is based on. The OLF guideline describes two types of deviations: (1) a 
functional deviations is a safety function not covered by the minimum SIL 
table, (2) an integrity deviation where an instrumented safety function as 
described in the minimum SIL table has been identified, but particular 
conditions imply a different integrity level requirement (e.g., related to the 
frequency of the associated hazard). To neglect such deviations, may result in 
applying the minimum SIL table based on wrong assumptions.  

• The minimum SIL table is based on generic data, and this could give 
unrealistic SIL values. It is important that the input data for the minimum SIL 
table are realistic both with respect to the failure rates being representative for 
new equipment as well as the test intervals. When using “conservative” failure 
rates and/or long test intervals for calculating the failure probability of a given 
function, the resulting PFD ≈ λ⋅ .τ / 2, becomes “high” [ 12]. Accordingly, a 
“low” SIL value will be claimed for the function, resulting in a “non-
conservative” requirement in the minimum SIL table. The applied failure rates 
are to a large degree based upon the PDS report “Reliability Data for Control 
and Safety Systems, 1998 Edition” [ 14] which is considered the most “up to 
date” database for the referred equipment. There are however “gaps” in the 
data, and there has been an increased the focus on collection of reliability data 
for SIS in the Norwegian sector, after the introduction of new NPD regulations 
and the OLF guideline.  
 

6 Conclusions 
In this paper the risk based approach outlined in IEC 61508/61511, and an 

alternative approach based on the Norwegian guideline for the application of the same 
standards, have been described. Both approaches must be rational and consistent 
among risk analysis teams, development projects, companies, and industry sectors, 
and important challenges in this respect have been discussed in the paper. A general 
conclusion is that the approaches must be thoroughly documented, so that the 
assumptions and uncertainties in the assessments are easily available for other parties. 
For future work it will be important to assess how the industry implements the 
approaches, both individually and also by comparing the approaches against each 
other. 

Acknowledgements to fellow colleagues at SINTEF, who was involved in the 
development of the OLF guideline, and to Marvin Rausand for asking the right 
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Abstract

The standard IEC 61508 contains a lot of useful information and guidance for safety improvement regarding the use of safety systems.

However, some of the basic concepts and methods for loss of safety quantification are somewhat confusing. This paper discusses the failure

classification, the various contributions to the safety unavailability, and in particular the common cause failure (CCF) model presented in this

standard. Suggestions for clarifications and improvements are provided. In particular, a new CCF model is suggested, denoted the Multiple

Beta Factor model.
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1. Introduction

Today it seems evident that, at least in Europe, IEC

61508 [1] will become the central standard for specification,

design and operation of Safety Instrumented Systems (SIS).

Thus, the standard will have a major impact on the safety

work, e.g. within the process industry. Whereas IEC 61508

is a generic standard common to several industries, the

process industry is currently developing its own sector

specific standard for application of SIS, i.e. IEC 61511 [2].

One recent indication is that the Norwegian offshore

industry has now finalised guidelines for the use of the

standards IEC 61508 and IEC 61511, see Refs. [3,4], (and

will be revised in 2003). The Norwegian Petroleum

Directorate refers to this guideline in their new regulations

[5]. Overall, it is expected that these standards will

contribute to a more systematic safety work in the industry

and also to increased safety.

However, it has been realised that it may be difficult to

apply the standard in a practical and useful way. Also, there

seems to be a couple of ambiguities that impairs the

usefulness of the standards, and may contribute to some

confusion. These observations relate to the failure classifi-

cation and to the quantification of Probability of Failure on

Demand (PFD), which is the measure for loss of safety used

in the standard.

The objective of the present paper is to present

some suggestions for modification and clarification of

the approach suggested in IEC 61508. The advantage of

arriving at consensus on the main concepts and methods is

obvious. So we maintain the IEC notation, but extend the

notation by introducing some additional concepts not

defined in the standard.

The paper has a focus not only on the quantification of

loss of safety, but also considers related and more basic

questions concerning failure classification. In the standard,

there is an apparent inconsistency or at least ambiguity

regarding the definition and use of the terms random

hardware failures and systematic failures, and how these

relate to Common Cause Failures (CCFs). This classifi-

cation is discussed and some suggestions are given. Further,

we discuss the different contributions to loss of safety from

various failure categories, and suggest various measures for

loss of safety.

Our major objective regarding the IEC approach for

quantification of loss of safety relates to its suggestion to

apply the b-factor (i.e. beta factor) model for quantification

of CCFs. This b-factor method, as introduced in IEC 61508,

will not distinguish between the performance of various

voting logics like 1oo2 (1-out-of-2) and 2oo3. This is

usually not satisfactory for the safety engineer of today, and

an extended version of the b-factor model is presented,

denoted the multiple beta factor (MBF) model.

Several suggestions presented in the paper can be traced

back to the research project PDS (Reliability and avail-

ability of computerised safety systems) carried out for the

Norwegian offshore industry some 10–15 years ago, see

Refs. [6–9]. A forum succeeded the project, and this is

still active [10–13]. This forum has recently modified
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the approach for loss of safety quantification, e.g. by

adapting the notation to the IEC standard, and by

incorporating the MBF model, see Refs. [13,14].

It is the intention that the results of the present paper

will contribute to a better understanding of these

fundamental issues, and that a more mature way to

perform loss of safety quantifications will emerge. It is

our hope that the paper can contribute to further

discussions and eventually some consensus on the basic

approach for safety calculations.

2. Failure classification

First we look at the failure classification as it appears in

the standard [1] and then make some suggestions. Accord-

ing to the standard (see Note 4 in Section 3.6.6 of part 4),

failures of a safety-related system can be categorised either

as a random hardware failure or as a systematic failure.

However, in a few places of the standard also, the term

hardware failure is used (without attaching the term

‘random’), e.g. see Annex B of Part 6. This introduces

some inconsistency and makes the classification

somewhat confusing, but probably the term random

hardware failure is used synonymously with hardware

failure. Finally, the standard also treats software failures,

but we consider this as a subclass of the systematic failures,

e.g. see Note 3 on p16 of IEC 61508-4 (i.e. part 4 of IEC

61508).

A random hardware failure is according to IEC 61508-4

(Section 3.6.5) a “failure, occurring at a random time, which

results from one or more of the possible degradation

mechanisms in the hardware”. From this definition, we

could interpret the term random hardware failure as a

failure that occurs without the failed component being

exposed to any kind of ‘excessive’ stress, e.g. see the

beginning of Section D.2 of IEC 61508-6. In the literature,

this has also been referred to as ‘natural ageing’ failures.

However, the standard may actually intend to include all

hardware failures into this category.

IEC 61508-4 (Section 3.6.6) defines a systematic failure

as a “failure related in a deterministic way to a certain

cause, which can only be eliminated by a modification of

the design or the manufacturing process, operational

procedures, documentation or other relevant factors”. So it

includes all types of failures caused by design errors (e.g.

inability of smoke detector to distinguish between smoke

and steam, ‘erroneous’ location of gas detector and software

errors). Further, these failures may be caused by operational

errors (e.g. operator forgets to remove by-pass of the safety

system after an inspection). Thus, modification rather than

corrective maintenance of the hardware is required to

eliminate these failures.

Note that the standard makes a clear distinction between

these two failure categories, and it states that random

hardware failures should be quantified, but systematic

failures should not (IEC 61508-2).

The above classification and definitions should be

compared with the description of hardware-related CCFs

given in IEC 61508-6, Section D.2: “However, some

failures, i.e. common cause failures, which result from a

single cause, may affect more than one channel. These may

result from a systematic fault (for example, a design or

specification mistake) or an external stress leading to an

early random hardware failure”. As an example, the

standard refer to excessive temperature of a common

cooling fan, which accelerates the life of the component

or takes them outside their specified operating environment.

So, the CCFs may either result from a systematic fault or

it is a random hardware failure due to common excessive

stress on the components. Apparently, only those CCFs

arising from excessive stresses on the hardware are

quantified. However, it could be somewhat confusing that

these falls into the category ‘random hardware failures’. We

assume that several reliability engineers would delete the

word random here. However, we will use random hardware

failure to be in line with the standard. Below, we suggest a

notation that makes a distinction between those random

hardware failures that are caused by natural ageing and

those which are caused by excessive stresses (and therefore,

may lead to CCFs).

Nomenclature

CCF common cause failure

CSU critical safety unavailability

D dangerous failure (failure category in IEC

standard)

DD dangerous detected (failure category in IEC

standard)

DU dangerous undetected (failure category in IEC

standard)

E/E/PES electrical/electronic/programmable electronic

system

IEC International Electrotechnical Commission

MBF multiple beta factor

MTTR mean time to restoration

NSU non-critical safety unavailability

PDS Norwegian acronym for ‘availability of com-

puterised safety systems’

PFD probability of failure on demand

PSF probability of systematic failure

SIS safety instrumented system

t Time elapsing between functional tests ( ¼ T1

in the IEC notation)
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To be specific, the following concepts and failure

categorisation are suggested, see Fig. 1:

1. Random hardware failures are physical failures, and are

split into
* Ageing failures, which are failures occurring under

conditions within the design envelope of the

component.
* Stress failures, which occur when excessive stresses

are placed on the component. The stresses may be

caused either by external/environmental causes or by

human errors during operation. An example is damage

to gas detectors due to inadequate protection during

sand blasting.

2. Systematic failures are non-physical failures, and are

split into
* Design failures, which are initiated during engineer-

ing and construction, and may be latent from the first

day of operation. Examples are software failures,

sensors that do not discriminate between true and false

demands, and erroneous location of fire/gas detectors.
* Interaction failures, which are initiated by human

errors during operation or maintenance/testing.

Examples are loops left in the override position after

completion of maintenance, and erroneous calibration

of sensors during testing. Another example is

scaffolding that cover up sensors.

When there is a random hardware failure, the delivered

service deviates from the specified service due to physical

degradation. All random hardware failures are quantified,

and a CCF model is introduced to account for the stress

failures.

When there is a systematic failure, the delivered service

deviates from the specified service, without a random

hardware failure being present (i.e. no physical degra-

dation). Then the failure can only be eliminated by

a modification of the design or the manufacturing process,

operating procedures, documentation or other relevant

factors. The standard suggests that the systematic failures

should not be quantified.

Note that random hardware failure could also be denoted

physical failure, and systematic failure could be referred to

as non-physical failure. Finally, the failures can be classified

into the two categories:

† Independent failures, including the single category aging

† Dependent failures (or CCFs) including the three

categories
* Stress
* Design
* Interaction

Following the standard, only the first category (stress)

should be quantified, whereas interaction and design are

systematic failures and thus are not quantified.

The above suggestion is a recent update (see Ref. [14]) of

the failure classification previously introduced in the PDS

project (see Refs. [6–10]), but now adapted to the IEC

61508 notation. We do not believe this categorisation to be

in conflict with that of IEC 61508.

When it comes to quantification of loss of safety, the

Standard introduces lDU; representing the rate of Dangerous

Undetected (DU)1 random hardware failures, i.e. including

both ageing failures and stress failures. Now using the b-

factor model, it follows that ð1 2 bÞlDU is the rate of

independent failures, i.e. ageing failures. Similarly, blDU is

the rate those CCFs that are quantified, i.e. the random

hardware failures due to excessive stress.

Fig. 1. Failure classification by cause of failure.

1 DU failures are Dangerous failures (i.e. preventing shutdown on

demand), which are Undetected by built in self-tests of the system. The DU

failures are also denoted ‘dormant’. Similarly, DD failures ¼ Dangerous

failures Detected by built in self-tests.
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3. Contributions to loss of safety quantification

Before starting to discuss the quantification of loss of

safety for a safety system, it is sensible to discuss the

contributions to loss of safety from the various failure

categories (causes) in Fig. 1. Actually it may be advan-

tageous to introduce various measures for loss of safety,

arising from the different contributions.

In addition to splitting the contributions according to

failure cause, we suggest splitting the loss of safety

contributions according to whether or not the unavailability

is ‘known’. The period of ‘unknown’ unavailability is here

given as the period elapsing from a DU failure occurs, until

it is detected by functional testing or possibly by a true

demand. The period of known unavailability is the time

elapsing from a dangerous (D) failure is detected, until it is

restored. The known unavailability may also include the

time needed to perform functional testing. During periods of

known unavailability, alternative safety precautions may

then be taken (e.g. shutting down), and hence is much less

critical than the periods of unknown unavailability.

Following this argument, we suggest to make explicit the

known and unknown contributions to loss of safety. This

split is, however, introduced for random hardware failures

only. For systematic failures, where there is no repair and no

functional testing, we will (for simplicity) assume all

unavailability to be unknown.

Thus, the total safety unavailability of a safety system is

split into the following contributions:

1. Unavailability due to random hardware failures, split into

(a) The unknown unavailability due to DU random

hardware failures (of rate lDU). The average period

of unavailability due to such a failure is t=2; where t

is the period of functional testing. In this period, the

failure has not been detected, and it is not known that

the component is unavailable

(b) The known unavailability due to dangerous (D)

random hardware failures. The average period of

unavailability due to these events is equal to the

mean restoration time, MTTR, i.e. time elapsing

from the failure is detected until the situation is

restored.

(c) The known (or ‘planned’) unavailability due to the

inhibition time during inspection/functional testing.

2. Unavailability due to systematic failures. Also this

unavailability is caused by ‘dormant’ (dangerous and

undetected) failures. Note that all the unavailability due to

systematic failures is considered to be unknown.

Observe that the contributions to loss of safety of

categories 1(b) and 1(c) will depend on the operating

philosophy, e.g. whether any action is taken when a failure

is detected. This provides a good reason to treat these

contributions separately and not together with contribution

1(a). Often both the contributions 1(b) and 1(c) are very

small compared to that of 1(a). That is, usually MTTR p t;

but this is not always the case; e.g. for subsea equipment in

offshore oil/gas production, the MTTR could be rather long.

Category 1(c) is the least critical, as this represents a truly

planned unavailability of the safety system.

Below, we first introduce the loss of safety measures for

random hardware failures, then for systematic failures, and

finally the overall measure is given.

In IEC 61508, the parameter PFD is used to quantify loss

of safety due to random hardware failures. According to the

formulas given for PFD, see IEC 61508-6, it is obvious that

this parameter includes the contribution from the categories

1(a) and 1(b). As explained above, we would like to separate

out the various contributions, and now introduce

† PFDUK is the unknown (UK) part of the safety

unavailability (i.e. category 1(a)). It quantifies the loss

of safety due to DU failures (with rate lDU), during the

period when it is not known that the function is

unavailable. The average duration of each unavailability

period is t=2; giving the contribution lDUt=2 (for a single

component without redundancy). PFDUK is the most

critical part of the PFD.

† PFDK is the known (K) part of the safety unavailability (i.e.

category 1(b)). It quantifies the loss of safety due to

dangerous failures (with rate lD ¼ lDU þ lDD), during the

period when it is known that the function is unavailable (i.e.

failure has been detected). The average duration of the

unavailability period is denoted MTTR, giving the contri-

bution lDMTTR to PFD for a single system.

Observe that PFD now is given as; also see Fig. 2:

PFD ¼ PFDUK þ PFDK

Next, systematic failures (category 2) is quantified by PSF,

the Probability that a Systematic Failure causes the safety

function to be unavailable.2

Fig. 2. Relations between loss of safety measures.

2 This has also been denoted the probability of a Test Independent Failure

(TIF), as it essentially is the probability that a component which has just

been functionally tested will fail on demand.
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Thus, the functional testing will not detect and prevent

such a failure to occur if there should be an actual demand.

As explained above, a design error or an interaction error

may cause the systematic failure. The probability, PSF may

be an important contributor to the overall safety unavail-

ability, and the effect of this term is further elaborated, e.g.

in Ref. [13,14].

As to the quantification of systematic failures, it is agreed

that this is difficult. However, it is often experienced that

systematic failures are a dominant contributor to the overall

safety unavailability. Thus, attempts should also be made to

quantify PSF and introduce safety unavailability measures

that are more complete than PFD. Thus, we introduce

CSU ¼ PFD þ PSF

where CSU, Critical Safety Unavailability is the probability

that the component/safety system (either due to a random

hardware failure or a systematic failure) will fail to

automatically carry out a successful safety action on the

occurrence of a hazardous/accidental event.

The last ‘building block’ for loss of safety quantification,

see Fig. 2 is denoted as NSU, Non-critical Safety

Unavailability which is the safety unavailability that occurs

when the system is functionally tested, and equals the

probability that it is known (actually planned) that the safety

system is unavailable due to functional testing. This

contribution to safety unavailability will depend on the

frequency and duration of functional tests.

Our conclusion is that quantification of PFD alone is not

sufficient for a proper evaluation of the loss of safety; rather

one should assess various elements of the safety unavail-

ability. The most critical part of PFD is PFDUK, and could

be stated separately. Further, one should attempt to perform

an assessment of PSF. Thus, also CSU is considered an

important measure for loss of safety, giving the total safety

unavailability, except for the truly planned one which is

denoted NSU.

4. The common cause failure modelling

In this section, we discuss the use of the b-factor model

and suggest an extension of this. We restrict the discussion

to the expression for PFDUK, which for a 1oo1 voting is

approximately equal to lDUt=2:

4.1. The curse of the b-factor model

Some years ago there was in the reliability community a

discussion regarding the ‘curse of the exponential distri-

bution’. Today we should perhaps look at the ‘curse of the

b-factor model’. The problem with the beta factor approach

is of course that for any M-out-of-N ðMooNÞ voting ðM ,

NÞ the rate of dependent failures (CCFs) is the same. If l is

the components failure rate, a system with MooN voting

ðM , NÞ has CCF rate equal to bl: So the approach does

not distinguish between different voting logics, and the

same result is obtained, e.g. for 1oo2, 1oo3 and 2oo3 voting.

So, e.g. the contribution to PFDUK from CCFs simply equals

PFDUKðMooNÞ ¼ blDUt=2 for any MooN voting ðM , NÞ:

The reason why it still can make sense to apply this model is

that the sensible reliability engineer can come around (or at

least reduce) this problem by using different b-s; e.g. using

b ¼ 1% for 1oo3, b ¼ 5% for 1oo2 and b ¼ 10% for 2oo3.

The approach suggested in the IEC standards the (IEC

61508-6 Annex D) introduces an ‘application specific’ b

which to some extent depends on the voting logic MooN

ðM , NÞ: However, the rate of system CCFs does only to a

very slight degree depend on the system configuration. For

instance, this approach does not distinguish at all between

voting logics like 1oo2 and 2oo3. In most cases, this is

hardly satisfactory.

Our goal is now to formulate a more general CCF model,

requiring that this model shall both

† be a simple, direct generalisation of the b-factor model.

† clearly distinguish between the performance of voting

logics like 1oo2, 1oo3 and 2oo3.

Of course there already exists a large number of

generalisations of the b-factor model, e.g. see various

references in Ref. [15]. In particular, the Multiple Greek

Letter model [16] has certain similarities with the model

suggested in the present paper. However, none of the previous

generalisations seem to have gained widespread use.

4.2. A generalisation of the b-factor model

The reason for the success of the b-factor model is of

course its extreme simplicity. So, it is very important that

the generalised model also is simple to use in practice. We

believe that this is best achieved by letting the CCF

contribution to PFDUK for a MooN voting be calculate as

PFDUKðMooNÞ ¼ bðMooNÞlDUt=2 ðM , NÞ

where bðMooNÞ is the beta factor for a MooN voting.

Further, this b-factor should be of the form

bðMooNÞ ¼ bCMooN ðM , NÞ

where b is the beta factor as obtained from the IEC approach

(see Appendix D of IEC 61508-6), and CMooN is a

modification factor taking into account the voting logic

(MooN) of the system. The important thing to observe here

is that the effect of the voting is singled out as a separate

factor, valid for any value of b: So, just one assessment is

carried out to assess the degree of dependence ðbÞ; to be

used for all configurations. The result is modified by a

separate factor CMooN ; independent of the chosen b: If now

an argument can be provided to support the choice of CMooN ;

a very simple and easy-to-use approach is provided.

Actually Refs. [3,4] present the above alternative

formula for PFDUK of a MooN voting, and suggest values
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for CMooN ðN ¼ 2; 3; 4Þ; see Table 1 below. Observe here

that C1oo2 ¼ 1: Thus, for the 1oo2 voting we use the

specified b-value without any modification. So the b

obtained from the IEC approach is the one that is ‘correct’

for a 1oo2 voting. Thus, b is maintained as an essential

parameter. However, its interpretation in the new model is

entirely related to a double set of components.

Below we formulate a model, which allows us to

motivate these values of CMooN ; and to derive CMooN values

for any N: This generalisation of the b-factor model is

denoted the MBF model.

Of course there are some arbitrariness in the CMooN values

presented in Table 1. However, the CMooN will be expressed

in terms of parameters with a clear interpretation, allowing

any user to calculate alternative values for CMooN : However,

the suggested values in Table 1 may be used as kind of

generic starting values, which undoubtedly is much better

than using CMooN ; 1; as suggested by the IEC standard.

Thus, it is our claim that this approach combines simplicity

with a reasonable degree of realism. We can now see no good

reason for using the b-factor model in the way suggested by

the standard. Only in cases where just a rough analysis is

required, without evaluation/comparison of various voting

logics, the more simplistic b-factor model should apply.

4.3. The b-factor model for duplicated system

In order to motivate the generalised model, we first

present well-known results for the b-factor model for N ¼ 2

channels (components), see Fig. 3. So there are two

components, A and B in parallel. Letting lDU be the relevant

failure rate for each component, we have

l1·2 ¼ 2ð12bÞlDU ¼ rate of single ðindependentÞ

failures for duplex system

l2·2 ¼ blDU ¼ rate of double failures ðCCFsÞ for duplex

system

So b can be given the following interpretation: Given A has

just failed, b is the probability that B fails at the same time.

We will relate this to the loss of safety probability, PFDUK

for duplicated systems. But for the present purpose, we

ignore second order terms like ðlDUtÞ
2; and thus the

contribution to PFDUK from two independent failures, i.e.

ðlDUtÞ
2=3; is not considered here. Further, PFDK is ignored,

(say we here assume MTTR ¼ 0).

Let A also represent the event that component A has

failed (at an arbitrary point of time), and let B be defined

similarly. Further, the probability Q ¼ PðAÞ ¼ PðBÞ;

where in our case Q ¼ PFDUKð1oo1Þ < lDUt=2; (as we

know this can be considered the average probability over

the interval ½0; t�). Now by ignoring second order terms,

we get

Q1·2 ¼ Probability of duplex system having single failure

¼ 2ð1 2 bÞQ

Q2·2 ¼ Probability of duplex system having double failure

¼ bQ

It directly follows that PFDUK for the voting logics 1oo2

and 2oo2 equals, (still ignoring second order terms):

PFDUKð1oo2Þ ¼ Q2·2 ¼ bQ < blDUt=2

PFDUKð2oo2Þ ¼ Q1·2 þ Q2·2 ¼ ð2 2 bÞQ

< ð2 2 bÞlDUt=2 < 2lDUt=2

The last expression is easily generalised to

PFDUKðNooNÞ < NlDUt=2; N ¼ 1; 2; 3;…

Better approximations for NooN votings can obviously be

given, but this is not the topic here. Our main objective is

to generalise the approach to get simple expressions for

PFDUKðMooNÞ; when M , N:

4.4. The multiple beta factor model for N ¼ 3 channels

Now consider a triplicated system with three com-

ponents A; B and C: The situation is symmetric in these

three components, and the probability of these to be in the

failed state is denoted PðAÞ ¼ PðBÞ ¼ PðCÞ ¼ Q: The

parameter b has the same interpretation as given above

when we consider just two of the three events. Further

introduce b2 ¼ the probability that C fails, given that there

has just been a dependent failure (CCF) affecting both A

and B:

Then we have the following failure rates for the

triplicated system:

l1·3 ¼ 3ð1 2 ð2 2 b2ÞbÞlDU

¼ rate of single ðindependentÞ failures

l2·3 ¼ 3ð1 2 b2ÞblDU ¼ rate of double failures ðCCFsÞ

Table 1

1Modification factors, CMooN ; based on system voting logic

Voting 1oo2 1oo3 2oo3 1oo4 2oo4 3oo4

CMooN 1.0 0.3 2.4 0.15 0.8 4.0

Fig. 3. Beta factor model for a duplicated system ðN ¼ 2Þ:
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l3·3 ¼ b2blDU ¼ rate of triple failures ðCCFsÞ

Now b2 can take any value in the interval [0,1]. Illustrations

are given in Fig. 4 for the cases, b2 ¼ 0; 0.3 and 1.0,

respectively. Choosing the value b2 ¼ 1; we get the

ordinary beta factor model; then any failure affecting two

of the three components will also affect the third one. The

other extreme is b2 ¼ 0: We also think this model should

have a name and refer to it as the gamma factor (g-factor)

model. For this model all multiple failures are double ones,

and thus none are triple.

We take it for granted that these two extremes, b2 ¼ 0

and 1.0, usually give quite unrealistic models. However, the

knowledge about the ‘true’ b2 would in many cases be very

limited. So it would be useful to define some generic value

as a ‘Base Case’, applicable when little information is

available. We believe that this value usually is closer to 0

than 1, and rather arbitrarily choose the value b2 ¼ 0:3:

The general results for N ¼ 3 channels are easily

obtained for this parameterisation (ignoring second order

terms):

Q2·3 ¼ Probability of triplicated system having double failure

¼ 3ð12b2ÞbQ

Q3·3 ¼ Probability of triplicated system having triple failure

¼b2bQ

For a 1oo3 voting, a system failure occurs if all three

components fail, and thus PFDUKð1oo3Þ ¼ Q3·3 ¼ b2bQ;

which directly gives C1oo3 ¼ b2; (see definition of CMooN in

Section 4.2).

For a 2oo3 voting, there is a system failure if at least two

components fail, and thus PFDUKð2oo3Þ ¼ Q2·3 þ Q3·3 ¼

ð3 2 2b2ÞbQ; directly giving C2oo3 ¼ 3 2 2b2:

These results are now utilised to give the numerical

values for C1oo3 and C2oo3; see Table 2. It is seen that the

value of b2 has a very significant impact on the results; for

varying b2 actually C1oo3 [ ½0; 1� and C2oo3 [ ½1; 3�:

However, except for the b-factor model ðb2 ¼ 1Þ;

the values of C1oo3 and C2oo3 are indeed different. Thus,

the b-factor model is very extreme by giving the same result

for the 1oo3 and 2oo3 votings. So even if the ‘Base Case’

ðb2 ¼ 0:3Þ is chosen rather arbitrarily, this should in most

cases give much more realistic results than the b-factor

model (and the g-factor model). Assuming that we most

often will have b2 ¼ 0:3 ^ 0:2; the values b2 ¼ 0:1 and 0.5

represent cases of sensitivity. These give values of

C2oo3=C1oo3 ranging from 4 to 28, while the Base Case

gives C2oo3=C1oo3 ¼ 8:

Observe that the results obtained for C1oo3 and C2oo3 for

b2 ¼ 0:3 are in agreement with the suggestions presented in

Table 1.

4.5. Summary of the MBF model

This approach for N ¼ 3 can obviously be extended to

cover any degree of redundancy ðNÞ: By increasing the

number of channels (redundant components) from N to N þ

1; we have to introduce each time a new parameter bN : In

order to cover N þ 1 ¼ 4; we need b3 ¼ probability of

component D failing, given that there has occurred a CCF

affecting both A; B and C: Proceeding as above, and

inserting b2 ¼ 0:3 (‘Base Case’) we get

C1oo4 ¼ 0:3b3

C2oo4 ¼ 0:3ð4 2 3b3Þ

C3oo4 ¼ 3:6 þ 0:9b3

Now a ‘typical’ value of b3 should be chosen. In our

judgement, it is natural to assume that the bN-s may increase

as N increases. Here we suggest the value b3 ¼ 0:5 as a

‘Base Case’. The range of ‘allowed’ values (corresponding

Fig. 4. Illustration of the multiple beta factor (MBF) model for a triplicated system ðN ¼ 3Þ: Three different choices of the parameter b2:

Table 2

Values of C1oo3 and C2oo3

b2 Description C1oo3 C2oo3

0.0 Gamma ðg-Þ factor 0.0 3.0

0.1 Lower sensitivity 0.1 2.8

0.3 Base Case 0.3 2.4

0.5 Upper sensitivity 0.5 2.0

1.0 Beta ðb-Þ factor 1.0 1.0
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to b3 ¼ 0 and 1, but b2 being fixed at 0.3) are given in

parenthesis:

C1oo4 ¼ 0:15 [ ½0; 0:3�

C2oo4 ¼ 0:75 [ ½0:3; 1:2�

C3oo4 ¼ 4:05 [ ½3:6; 4:5�

The above ‘Base Case’ values are (essentially) in agreement

with the suggestions of Table 1, and are located in the

middle of the interval of allowed values (for b2 fixed at 0.3).

Observe that the above ranges are narrower than those for

CMoo3; see Table 1. When we step by step extend the model

to higher N; it is actually a general tendency of getting less

and less variation in the CMooN (when previous b-s have

been fixed).

To summarise, the CMooN values presented in Table 1 are

based on choosing b2 ¼ 0:3 and b3 ¼ 0:5. The basic assum-

ption for the parameterisation of the MBF model is as follows:

Suppose we choose k components (from a total of N . k

redundant ones). Given that a failure has occurred, and that

all k of these components are known to have failed, then bk

is the probability that also a specified one of the other N 2 k

components has failed at the same time. These probabilities

ðbkÞ are not affected by the total number of components ðNÞ:

In particular, consider the definition of b1: For a MooN

voting system, we may specify one component amongst the

total of N: If it is known that this one has failed, then b1 is

the probability that another specified component has also

failed simultaneously. Thus, b1 is identical to the parameter

b; as used in the MBF model above. Further, note that this

interpretation of b ¼ b1 in the MBF model is also valid for

the b of the ordinary beta factor model (e.g. see Fig. 4).

Now the MBF model has proved successful with respect

to satisfying the requirements stated at the beginning of

Section 4.2. The clue to this success is that the parameter-

isation of the MBF model gives a result where all

probabilities Qk·N ðk . 1Þ include the factor b; which can

then be separated out. Thus, it is our claim that this model

resolves the main objection against the standard b-factor

model adopted in IEC. It is the intention to later provide a

more comprehensive description of this model.

4.6. Extended PFD calculation formulas

The above formulas for PFDUK account for the

contribution of the CCFs only, and will for instance not

take into account the possibility that there are two

independent failures present simultaneously in a duplex

system. The more complete quantification formulas for PFD

become rather complex, in particular see formulas of

Appendix B of IEC 61508-6. Now actually all

such formulas are approximations, and below a couple

of simplified but rather more transparent expressions

for PFDUK are presented, see Table 3. If the full PFD ¼

PFDUK þ PFDK is required, the possible contribution from

PFDK could easily be obtained, given the operational

philosophy for the chosen action when it is known that some

(all) channels are unavailable (see Ref. [14]).

It is important to stress that the complete expression

for PFDUK requires assumptions regarding maintenance

strategy and operational philosophy. The suggested

formulas assume that a duplicated system is degraded

to a 1oo1 system when there is a known failure of one

channel. Similarly, a 2oo3 voting system is degraded to

1oo2 system when there is one known failure, and a

shut down is initiated with known failures of two or

more channels.

Note that ldet in the table is the total rate of detected

failures leading to degradation, i.e. both dangerous detected

(DD) and safe detected failures.3 MTTR is the duration of

the degradation. Further comments to the formulas:

† The second term of 1oo2 and 2oo3 corresponds to the

occurrence of two independent DU failures in the same

test interval.

† The last term of 1oo2, 2oo2 and 2oo3 corresponds to one

component having a detected single failure resulting in

degraded operation, and then the (degraded) system

getting a DU failure.

† The factor C2oo3 ¼ 2:4 is introduced for the CCF term

of 2oo3. Observe that for the ‘second order terms’ of

the 2oo3 voting we use the factor 1 2 1:7b to get the

rate of a single component failure, (cf. Fig. 4).

Any possible difference between b and bD
4 is ignored in

the formulas of Table 1. The effect of demands also serving

as functional tests is not incorporated in the formulas.

Similar formulas for other votings, including formulas for

PFDK, are suggested in Ref. [14].

4.7. Determination of application specific parameters

The IEC standard presents an approach to determine

‘application specific’ b; see tables in Appendix D of

Table 3

Suggested (approximate) formulas for PFDUK. Main terms in bold

Voting Formula for PFDUK

1oo1 lDUt=2

1oo2 blDUt=2 þ ½ð1 2 bÞlDUt�
2=3 þ 2ð1 2 bÞldetMTTRlDUðt=2Þ

2oo2 ð2 2 bÞlDUt=2 þ 2ð1 2 bÞldetMTTRlDUðt=2Þ

2oo3 2:4blDUt=2 þ ½ð1 2 1:7bÞlDUt�
2 þ 3ð1 2 1:7bÞ

£ldetMTTRblDUðt=2Þ

3 In the notation of IEC, we could say that ldet is the sum of Dangerous

Detected and Safe Detected, i.e. ldet ¼ lDD þ lSD; (provided we interpret

lSD to be the rate of ‘safe’ (trip) failures being detected and then causing

degradation). The report [14] is a little more specific with respect to the

concept of ‘safe’ failures.
4 In the IEC standard bD is the b-factor applicable for Detected failures

(but unfortunately this notation could be mixed up with b for Dangerous

failures).
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IEC 61508-6. This approach follows the work of

Humphrey [17], and is a sensible way of finding the

degree of dependence for random hardware failures in

a given application (the determination of the so-called

Z-value in Ref. [1] is, however, questioned, see Ref.

[13]).

Similarly, work should be initiated to give methods for

assessment of an ‘application specific’ b2; so that the values

of CMooN to some extent could be adapted to the actual

system and application. Of course several factors contribut-

ing to a small b ¼ b1; would also contribute to a small b2;

so that in a more sophisticated modelling, these parameters

are actually correlated.

Further, it is the recommendation of the present

authors that systematic failures should also be quantified

when the loss of safety is evaluated. It is believed that

the importance of systematic failures is increasing; at

least relatively speaking, as the reliability of hardware is

improving. Thus, it is a serious drawback, e.g. when the

SIL5 requirements of IEC 61508 regarding systematic

failures are rather vague. Requiring a qualitative

evaluation of systematic failures only, necessarily implies

that there will be less focus on these essential

contributions.

Some work has been initiated to assess these application

specific PSFs [11,12]. The first of these reports presents a

method to assess the loss of safety due to systematic failures

for gas detectors, and the second considers the PSF due to

software errors. However, much work remains to be done in

this area.

5. Conclusions and recommendations

The paper presents some recommendations regarding

loss of safety quantification and further standardisation in

safety/reliability modelling of safety systems:

1. A failure classification as given in Fig. 1 is suggested.

2. It is suggested that all the elements of the safety

unavailability should be calculated as part of an overall

evaluation of the safety system. Further, it is rec-

ommended to provide separate values for PFDUK,

PFDK and PSF. As a minimum, PFDUK should always

be quantified. However, the importance of systematic

failures is well documented, and also an assessment of

PSF should be provided.

3. The standard b-factor model, as suggested in IEC 61508,

will not allow a proper comparison of say the 1oo2, 1oo3

and 2oo3 voting logics. So this model should usually not

be applied, unless a very rough analysis is required, (or

the value of b is otherwise chosen to depend on the

voting). We suggest the use of the MBF model

introduced in Chapter 4. In this model, the b-factor of

the MooN system is of the form bMooN ¼ bCMooN : The b

could be determined as suggested in the Standard

(assuming a 1oo2 voting). For CMooN ; we suggest as a

start to use the generic values given in Table 1.

4. The IEC approach to find application specific b-factors

is a good principle. A similar approach should be

developed to assess other application specific par-

ameters, including the loss of safety of systematic

failures.

5. The formulas for quantification of PFD given in IEC

are rather complex, and it is suggested that these

formulas are not the most sensible approximations. The

formulas for PFDUK presented above (Table 1) are

considered simpler and more transparent, and these are

suggested as a basis for the quantification of PFDUK

(and other measures for loss of safety).
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1 INTRODUCTION 

One of the main principles for the safety work in 
high-risk industries such as the nuclear and process 
industry, is the principle of defence-in-depth or use 
of multiple layers of protection (IAEA 1999, Reason 
1997, CCPS 2001). 

The Norwegian Petroleum Directorate (NPD) 
emphasizes this principle in their new regulations 
concerning health, safety and environment in the 
Norwegian offshore industry (NPD, 2001a). An im-
portant issue in these new regulations is the focus on 
safety barriers, and in the first section of the man-
agement regulation, it is stated that “barriers shall be 
established which a) reduce the probability that any 
such failures and situations of hazard and accident 
will develop further, and b) limit possible harm and 
nuisance”.  

The IEC 61508 (IEC 1998) and IEC 61511 (IEC 
2002) standards have a major impact on the safety 
work within the process industry, and describe a 
risk-based approach to ensure that the total risk is 
reduced to an acceptable level. The main principle is 
to identify necessary safety functions and allocate 
these safety functions to different safety-related sys-

tems or external risk reduction facilities. In IEC 
61511 a safety function is defined as a “function to 
be implemented by a SIS (Safety Instrumented Sys-
tem), other technological safety-related system or 
external risk reduction facilities which is intended to 
achieve or maintain a safe state for the process in re-
spect to a specific hazardous event”. An important 
part of the standards is a risk-based approach for de-
termination of the safety integrity level requirements 
for the different safety functions. IEC 61508 is a ge-
neric standard common to several industries, while 
the process industry currently develops a sector spe-
cific standard for application of SIS, i.e., IEC 61511 
(IEC 2002). In Norway, the offshore industry has 
developed a guideline for the use of the standards 
IEC 61508 and IEC 61511 (OLF 2001), and the 
Norwegian Petroleum Directorate (NPD) refers to 
this guideline in their new regulations (NPD 2001a). 
Overall, it is expected that these standards will con-
tribute to a more systematic safety work and in-
creased safety in the industry. 

Further, the NPD in section 7 in the management 
regulation (NPD, 2001a) requires that “the party re-
sponsible shall establish monitoring parameters 
within his areas of activity in order to monitor mat-
ters of significance to health, environment and 
safety”, and that “the operator or the one responsible 
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for the operation of a facility, shall establish indica-
tors to monitor changes and trends in major accident 
risk”. These requirements imply a need for surveil-
lance of safety functions during operation. In accor-
dance with these requirements, NORSOK (2001) 
suggests that “verification of that performance stan-
dards for safety and emergency preparedness sys-
tems are met in the operational phase may be 
achieved through monitoring trends for risk indica-
tors. […] Examples of such indicators may be avail-
ability of essential safety systems”. Also IEC re-
quires proof testing and inspection during operations 
and maintenance in order to ensure that the required 
functional safety of safety-related systems is ful-
filled (IEC 2002).  

In order to monitor the development in the risk 
level on national level, the NPD initiated a project 
called “Risk Level on the Norwegian Continental 
Shelf”. The first phase of the project focused on col-
lection of information about defined situations of 
hazard and accident (DSHA), while the second 
phase also focus on collection of information about 
the performance of safety barriers (NPD/RNNS 
2002). According to this project, the performance of 
safety barriers has three main elements: 1) function-
ality/efficiency (the ability to function as specified 
in the design requirements), 2) reliability/availability 
(the ability to function on demand), and 3) robust-
ness (ability to function as specified under given ac-
cident conditions).  

The NPD uses the term safety barrier in their 
regulations. However, they have not defined the 
term, and in a letter to the oil companies as part of 
the project “Risk Level on the Norwegian Continen-
tal Shelf” (NPD/RNNS, 2002), they have referred to 
the definition proposed by ISO (2000): “Measure 
which reduces the probability of realizing a hazard’s 
potential for harm and which reduces its conse-
quence” with the note “barriers may be physical 
(materials, protective devices, shields, segregation, 
etc.) or non-physical (procedures, inspection, train-
ing, drills, etc.)”. Accordingly, the NPD uses the 
term barrier in an extended meaning and is therefore 
similar to other terms used in the literature, such as 
defence (Reason 1997), protection layer (CCPS 
2001), and safety function (as used by IEC). The 
term safety function is used in this paper.  

Surveillance of safety functions during operations 
in order to meet the requirements stated by the NPD 
(NPD 2001a) and IEC (IEC 1998 and IEC 2002) is 
not a straightforward task, but is a challenge for the 
oil companies. Therefore, several oil companies 
have initiated internal projects to fulfill the require-
ments (see e.g. Sørum & Thomassen 2002). This pa-
per focuses on the surveillance of safety functions 
during operations and maintenance. The paper pre-
sents main characteristics of safety functions, factors 
influencing the performance, a failure category clas-
sification scheme, and finally a discussion of chal-

lenges related to the surveillance of safety functions 
during operations and maintenance. The discussion 
is based on experiences from the Norwegian petro-
leum industry and results from a research project 
concerning the reliability and availability of com-
puterized safety systems. 

2 CHARACTERISTICS OF SAFETY 
FUNCTIONS 

Safety functions may be characterized in different 
ways, and some of the characteristics influence how 
the surveillance of the safety function is performed. 
The following characteristics are further discussed in 
this section: type of safety function, local vs. global 
safety functions and active vs passive systems. 

IEC 61511 (IEC 2002) defines a safety function 
as a “function to be implemented by a SIS, other 
technology safety-related system or external risk re-
duction facilities, which is intended to achieve or 
maintain a safe state for the process, in respect of a 
specific hazardous events”. By SIS IEC means an 
instrumented system used to implement one or more 
safety instrumented functions. A SIS is composed of 
any combination of sensor(s), logic solver(s), and fi-
nal element(s). Other technology safety-related sys-
tems are safety-related systems based on a technol-
ogy other than electrical/electronic/programmable 
electronic, for example a relief valve. External risk 
reduction facilities are measures to reduce or miti-
gate the risk that are separate and distinct from the 
SIS. Examples are drain systems, firewalls and 
bunds. 

A distinction between global and local safety 
functions is made by The Norwegian Oil Industry 
Association (OLF) (OLF, 2001). Global safety func-
tions, or fire and explosion hazard safety functions, 
are functions that typically provide protection for 
one or several fire cells. Examples are emergency 
shutdown, isolation of ignition sources and emer-
gency blowdown. Local safety functions, or process 
equipment safety functions, are functions confined 
to protection of a specific process equipment unit. A 
typical example is the protection against high level 
in a separator through the PSD (Process Shutdown) 
system. 

CCPS distinguishes between passive and active 
independent protection layers (IPL) (CCPS 2001). A 
passive IPL is not required to take an action in order  
to achieve its function in reducing risk. Active IPLs 
are required to move from one state to another in re-
sponse to a change in a measurable process property 
(e.g. temperature or pressure), or a signal from an-
other source (such as a push-button or a switch). An 
active IPL generally comprises a sensor of some 
type (detection) that gives signal to a decision-
making process that actuates an action (see Figure 
1). 



 

 
Figure 1. Basic elements of active protection layers (CCPS, 
2001)  

3 SAFETY FUNCTIONS FOR PROCESS 
ACCIDENTS 

The need for safety functions is dependent on spe-
cific hazardous events. Figure 2 gives a simplified 
illustration of the event sequence and necessary 
safety functions for “process accidents”. The event 
sequence begin with the initiating event “leakage of 
hydrocarbons (HC)”, and are followed by spreading 
of hydrocarbons, ignition, strong explosions or esca-
lation of fire, escape, evacuation, and finally rescue 
of people. The main safety functions in order to pre-
vent, control or mitigate the consequences of this 
accident are to prevent the hydrocarbon leakage, 
prevent spreading of hydrocarbons, prevent ignition, 
prevent strong explosion or escalation of fire, and to 
prevent fatalities. These safety functions may be re-
alized by different kinds of safety-related systems. 
In this paper, we focus on the safety function “pre-
vent spreading of hydrocarbons”.  
 

Figure 2. Event sequence for process accidents. 
 
In principle, the safety function “prevent spread-

ing of hydrocarbons” may be fulfilled in two differ-
ent approaches, 1) stop the supply of HC, and 2) re-
move HC. In this paper, we focus on the former 
approach in order to illustrate some of the challenges 
related to the surveillance of safety functions.  

The main elements of the active safety function 
“prevent spreading of hydrocarbons by stopping the 
supply” are shown in Figure 3. Firstly, the leakage 
of HC must be detected, either automatically by gas 
detectors, or manually by human operators in the 
area. Secondly, a decision must be taken, either by a 
logic solver or a human decision. The decision 
should be followed by an action, in this case, closure 
of an ESDV (Emergency Shutdown Valve). The ac-

tion may either be initiated automatically by the 
logic solver, or by a human operator pushing the 
ESD-button, or manually by a human operator clos-
ing the ESD-valve manually.  

There should be an integrated approach for sur-
veillance of safety functions that incorporates hard-
ware, software and human/organizational factors. 

 

 
Figure 3. Safety function – prevent spreading of hydrocarbons.  
 

4 FAILURE CLASSIFICATION 

For safety functions implemented through SIS tech-
nology (as in Figure 3), IEC 61508 and IEC 61511 
define four safety integrity levels (SIL). The SIL for 
each safety function is established through a risk-
based approach. To achieve a given SIL, there are 
three main types of requirements (OLF, 2001): 
− A quantitative requirement, expressed as a prob-

ability of failure on demand (PFD) or alterna-
tively as the probability of a dangerous failure per 
hour. This requirement relates to random hard-
ware failures. 

− A qualitative requirement, expressed in terms of 
architectural constraints on the subsystems con-
stituting the safety function. 

− Requirements concerning which techniques and 
measures should be used to avoid and control sys-
tematic faults. 
The requirements above influence the perform-

ance of the SIS, and in this section we present a fail-
ure classification scheme that can be used to distin-
guish between different types of failure causes 
(hardware and systematic failures). The scheme is a 
modification of the failure classification suggested 
in IEC 61508.  

The basis for the discussion can be traced back to 
the research project PDS (Reliability and availability 
for computerized safety systems) carried out for the 
Norwegian offshore industry (Bodsberg & Hokstad 
1995, Bodsberg & Hokstad 1996, Aarø et al 1989), 
and the still active PDS-forum that succeeded the 
project (Hansen & Aarø 1997, Hansen & Vatn 1998, 
Vatn 2000, Hokstad & Corneliussen 2000). The 
classification presented in this section is one of the 
results in the new edition of the PDS method (Hok-
stad & Corneliussen 2003).  
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According to IEC 61508 (Section 3.6.6 of part 4), 
failures of a safety-related system can be categorized 
either as random hardware failures or systematic 
failures. The standard also treats software failures, 
but we consider this as a subclass of the systematic 
failures (see Note 3 on p16 of IEC 61508-4). The 
standard makes a clear distinction between the two 
failure categories, and states that random hardware 
failures should be quantified, while systematic fail-
ures should not (IEC 61508-2, 7.4.2.2, note 1).  

In IEC 61508-4 (Section 3.6.5), a random hard-
ware failure is defined as a "failure, occurring at a 
random time, which results from one or more of the 
possible degradation mechanisms in the hardware". 
IEC 61508-4 (Section 3.6.6) defines a systematic 
failure as a "failure related in a deterministic way to 
a certain cause, which can only be eliminated by a 
modification of the design or the manufacturing 
process, operational procedures, documentation or 
other relevant factors".  

The standard defines "hardware-related Common 
Cause Failures (CCFs)” (IEC 61508-6, Section D.2): 
"However, some failures, i.e., common cause fail-
ures, which result from a single cause, may affect 
more than one channel. These may result from a sys-
tematic failure (for example, a design or specifica-
tion mistake) or an external stress leading to an early 
random hardware failure". As an example, the stan-
dard refers to excessive temperature of a common 
cooling fan, which accelerates the life of the compo-
nent or takes it outside it’s specified operating envi-
ronment.  

Hokstad & Corneliussen (2003) suggest a nota-
tion that makes a distinction between random hard-
ware failures caused by natural ageing and those 
caused by excessive stresses (and therefore may lead 
to CCFs). The classification also defines systematic 
failures in more detail. The suggestion is an update 
of the failure classification introduced in the PDS 
project, (Aarø et al 1989), but adapted to the IEC 
61508 notation, and hence should not be in conflict 
with that of IEC 61508. The concepts and failure 
categorization suggested by Hokstad and Cornelius-
sen (2003) is shown in Figure 4. 
 

Figure 4. Failure categorization (Hokstad & Corneliussen 
2003). 

 
Hokstad & Corneliussen (2003) define the failure 
categories as: 
− Random hardware failures are physical failures, 

where the delivered service deviates from the 
specified service due to physical degradation of 
the module. Random hardware failures are split 
into ageing failures and stress failures, where age-
ing failures occur under conditions within the de-
sign envelope of a module, while stress failures 
occur when excessive stresses are placed on the 
module. The excessive stresses may be caused ei-
ther by external causes or by human errors during 
operation.  

− Systematic failures are non-physical failures, 
where the delivered service deviates from the 
specified service without any physical degrada-
tion of the module. The failure can only be elimi-
nated by a modification either of the design or the 
manufacturing process, the operating procedures, 
the documentation or other relevant factors. Thus, 
modifications rather than repairs are required in 
order to remove these failures. The systematic 
failures are further split into interaction failures 
and design failures, were interaction failures are 
initiated by human errors during operation or test-
ing. Design failures are initiated during engineer-
ing and construction and may be latent from the 
first day of operation.  
As a general rule, stress, interaction and design 

failures are dependent failures (giving rise to com-
mon cause failures), while the ageing failures are 
denoted independent failures. 

To avoid a too complex classification, every fail-
ure may not fit perfectly into the above scheme. For 
instance, some interaction failures might be physical 
rather than non-physical. 

The PDS method focuses on the entire safety 
function (Hokstad & Corneliussen 2003), and in-
tends to account for all failures that could compro-
mise the function (i.e. result in "loss of function"). 
Some of these failures are related to the interface 
(e.g. "scaffolding cover up sensor"), rather than the 
safety function itself. However, it is part of the "PDS 
philosophy" to include such events. 

5 SURVEILLANCE OF SAFETY FUNCTIONS 

This section discusses the surveillance of safety 
functions during operation related to the failure clas-
sification in the previous section. 

The requirements for surveillance are related to 
the functional safety, and not only to the quantitative 
SIL requirements (see section 4). In IEC 61508-2, 
section 7.6.1 it is stated that one should “develop 
procedures to ensure that the required functional 
safety of the SIS is maintained during operation and 
maintenance”, and more explicitly stated in IEC 
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61511-1, section 16.2.5, “the discrepancies between 
expected behavior and actual behavior of the SIS 
shall be analyzed and where necessary, modification 
made such that the required safety is maintained”. In 
addition to the quantitative (PFD) requirement, sys-
tematic failures and changes in safety sys-
tem/functions should be considered. Also changes 
not explicitly related to the safety function may in-
fluence the safety level (number of demands, opera-
tion of the process, procedures, manning, etc.), how-
ever such conditions will not be treated in this paper. 
The discussion is limited to the boundary outlined in 
Figure 3. 

In operation or during maintenance the perform-
ance of the safety functions or part of the functions 
may typically be observed by means of a range of 
activities/observations, Table 1 illustrates the rela-
tion between the failure cause categories (as dis-
cussed in section 4) and the main types of activi-
ties/observations.  

 
Table 1.  Different types of surveillance of safety functions. 

Surveillance 
activity 

Random hardware 
failures 

Systematic failures 

 Ageing Stress Interaction Design 
Actual de-
mand 

x x x x 

Automatic 
self-test 

x x   

Functional 
test 

x x   

Inspection x x (x)  
Random de-
tection 

x x (x)  

 
Not every failure encountered during the different 

surveillance activities may fit perfectly into the 
scheme, but it illustrates which failure categories 
that typically can be identified by use of different 
surveillance activities.  

The actual demands of a function can potentially 
reveal both systematic and random hardware fail-
ures, provided that there is a systematic approach for 
registration of failures. The frequency of actual de-
mands is, however, in most cases low, and it is 
therefore important that the organization focuses on 
the actions taken after an actual demand. As an ex-
ample statistics from HSE (HSE 2002a) shows that 
gas detectors detected 59 % of 1150 gas leakages 
reported in the period 1-10-92 to 31-3-01, while the 
remaining releases were mainly detected by other 
means, i.e., equipment not designed for the purpose 
(visual means, by sound, by smell, etc.).  

In addition to the actual demands, the SIS func-
tions must be tested, and there are two types of test-
ing: 1) functional tests and 2) automatic self-tests. 
These tests are essentially designed to detect random 
hardware failures. However, no test is perfect due to 

different factors as the test do not reflect real operat-
ing conditions, the process variables cannot be 
safely or reasonably practicably be manipulated, or 
the tests do not address the necessary functional 
safety requirements (e.g. response time and internal 
valve leak) (HSE 2002b).  

Components often have built-in automatic self-
tests to detect random hardware failures. Further, 
upon discrepancy between redundant components in 
the safety system, the system may determine which 
of the modules have failed. This is considered part 
of the self-test. But it is never the case that all ran-
dom hardware failures are detected automatically 
(“Diagnostic Coverage”). The actual effect on sys-
tem performance from a failure that is detected by 
the automatic self-test may also depend on system 
configuration and operating philosophy. 

Functional testing is performed manually at de-
fined time intervals, typically 3, 6 or 12 months in-
tervals for component tests. The functional test may 
not be able to detect all functional failures. Accord-
ing to Hokstad & Corneliussen (2003) this is the 
case for: 
− Design errors (present from day 1 of operation), 

examples are: software errors, lack of discrimina-
tion (sensors), wrong location (of sensor), and 
other shortcomings in the functional testing (the 
test demand is not identical to a true demand and 
some part of the function is not tested).  

− Interaction errors that occur during functional 
testing, e.g., maintenance crew forgetting to test 
specific sensor, tests performed erroneously 
(wrong calibration or component is damaged), 
maintenance personnel forgetting to reset by-pass 
of component. 
Thus, most systematic failures are not detected 

even by functional testing. In almost all cases it is 
correct to say that functional testing will detect all 
random hardware failures but no systematic failures. 

The functional tests may be tests of:  
− The entire system/function typically performed 

when the process is down, e.g., due to revision 
stops. 

− Components or sub-functions. Component tests 
are normally performed when the process is in 
operation.  
Component tests are more frequent than the sys-

tem tests due to less consequences on production. 
Experience do, however, show that full tests (from 
input via logic to output device) “always” encounter 
failures not captured during component tests.  

In IEC 61511-1, inspection is described as “peri-
odical visual inspection”, and this restricts the in-
spections to an activity that reveals for example un-
authorized modifications and observable 
deteriorations of the components. An operator may 
also detect failures in between tests (Random detec-
tion). For instance the panel operator may detect a 



transmitter that is “stuck” or a sensor left in by-pass 
(systematic failure).  

6 DISCUSSION 

The data from the various activities described above 
should be systematically analyzed to 1) monitor the 
actual performance of the safety functions and 2) 
systematically analyze the failure causes in order to 
improve the performance of the function. The or-
ganization should handle findings from all above 
surveillance activities, and should focus on both 
random hardware and systematic failures. The fail-
ure classification in PDS may assist in this work. 

6.1 Performance of safety functions 
As stated above, the performance of safety func-

tions has three elements: 1) the functional-
ity/efficiency, 2) the reliability, and 3) the robust-
ness. The functionality is influenced by systematic 
failures. Since these failures seldom are revealed 
during testing, it is necessary to register systematic 
failures after actual demands or events that are ob-
served by the personnel (inhibition of alarms, scaf-
folding, etc.).  

Traditionally, the reliability is quantified as the 
probability of failure on demand (PFD) and is 
mainly influenced by the dangerous undetected ran-
dom hardware failure rate (λDU), the test interval (τ) 
and the fraction of common cause failures (β).  

The PDS-method (Hokstad & Corneliussen 
2003), however, accounts for major factors affecting 
reliability during system operation, such as common 
cause failures, automatic self-tests, functional (man-
ual) testing, systematic failures (not revealed by 
functional testing) and complete systems including 
redundancies and voting. The method gives an inte-
grated approach to hardware, software and hu-
man/organizational factors. Thus, the model ac-
counts for all failure causes as shown in Figure 4. 

The main benefit of the PDS taxonomy compared 
to other taxonomies is the direct relationship be-
tween failure causes and the means used to improve 
the performance of safety functions. 

The robustness of the function is defined in the 
design phase, and should be carefully considered 
when modifications on the process or the safety 
function are performed.  

6.2 Analysis of random hardware failures from 
functional tests 
Data from functional tests on offshore installations 
is summarized in a CMMS (computerized mainte-
nance management system). The level of detail in 
reporting may vary between oil companies and be-
tween installations operated by the same company. 

Typically, the data is presented as failure rates per 
component class/type independent of the different 
safety functions which the components are part of. 
This means that the data from component tests must 
be combined with the configuration of a given safety 
function in a reliability model (e.g. a reliability 
block diagram or PDS) to give meaning with respect 
to SIL for that safety function. Alternatively a “SIL 
budget” for detection (input), decision (logic) and 
action (output) might be developed. This can be ad-
vantageous since tests of the components are more 
frequent, and data from tests can be used to follow 
up component performance independent of safety 
functions.  

It is important to have a historical overview of the 
number of failures and the total number of tests for 
all the functional tests in order to adjust the test in-
terval, but it is equally important to analyze the fail-
ure causes to prevent future failures. This is particu-
larly the case for dependent failures (i.e. stress 
failures). An example is sensors placed in an envi-
ronment that results in movements and temperature 
conditions that further may lead to stress failures on 
several sensors. The functional tests will reveal ran-
dom hardware failures but will not differentiate be-
tween independent (ageing) and dependent failures, 
and the fraction between independent and dependent 
failures must be analyzed.  

Common cause failures may greatly reduce the 
reliability of a system, especially of systems with a 
high degree of redundancy. A significant research 
activity has therefore been devoted to this problem, 
and Høyland and Rausand (1994) describe various 
aspects of dependent failures.  

For the β-factor model we need an estimate of the 
total failure rate λ, or the independent failure rate 
(λI), and an estimate of β. Failure rates may be 
found in a variety of data sources. Some of the data 
sources present the total failure rata, while other pre-
sent the independent failure rate. However, field 
data collected from maintenance files normally do 
not distinguish between independent failures and 
common cause failures, and hence presents the total 
failure rate. In this case, the β, and λI will normally 
be based on sound engineering judgment. An ap-
proach is outlined in IEC 61508 for determining the 
plant specific β(s). 

The maintenance system (procedures and files) 
should be designed for assisting in such assessments, 
and it is especially important to focus on the failure 
causes discussed in this paper 

The tests and calculated PFD numbers may be 
used as arguments for reducing the test interval or 
more critical, to increase the test interval. Such deci-
sions should not be based on pure statistical evi-
dence, but should involve an assessment of all as-
sumptions the original SIL requirement was based 
on. OLF suggests an approach for assessment of the 



failure rate (OLF, 2001), but the oil companies have 
not implemented this approach fully yet. 

6.3 Analysis of systematic failures 
As described earlier, the systematic failures are al-
most never detected in the tests or by inspection, but 
it is important to analyze the systematic failures that 
occur in detail and have a system to control system-
atic failures.  

Systematic failures are usually logged in other 
systems than the CMMS, but the information is 
normally not analyzed in the same detail as the data 
from functional tests. In particular, it is important to 
investigate the actions taken by the safety functions 
when an actual demand occurs. Systematic analysis 
of gas leaks is important for gas detection systems. 
Such analyses may indicate if the sensors have 
wrong location and do not detect gas leakages. In 
addition, other systems like incidents investigation, 
systems or procedures for inhibition of alarms, scaf-
folding work, and reset of sensors must be in place 
and investigated periodically. Another possibility 
that could be utilized more in the future, is to build 
in more detailed logging features in the SIS logic, to 
present the signal path when actual demands occur. 
This type of logging might give details about failed 
components and information about how the leak was 
detected. 

6.4 Procedure/system for collection of failure data 
Experiences from the failure cause analysis should 
be used to improve the procedures and systems for 
collection and analysis of failure data. A structured 
analysis of failures and events may reveal a potential 
for improvements in the actual maintenance or test 
procedures, or need for modifications of the safety-
related systems to improve the functionality.  

An important aspect regarding collection of fail-
ure data is the definitions of safety-critical failures. 
Ambiguous definitions of safety-critical failures may 
lead to incorrect registration of critical failures (e.g. 
failures that are repaired/rectified “on the spot” are 
not logged) or registration of non-critical failures as 
critical ones. The oil companies in Norway have ini-
tiated a joint project with the objective to establish 
common definitions of critical failures of safety 
functions. 

6.5 SIS vs. other types of safety functions 
Our case, “prevent spreading of HC by stopping the 
supply” is an active safety function, and we have not 
discussed challenges related to surveillance of pas-
sive safety functions. However, the functionality of 
passive safety functions is integrated in the design 
phase of the installation, and in practice, passive 
safety functions will be tested only during real acci-

dents. Surveillance of passive safety functions may 
be carried out by continuous condition monitoring or 
periodic inspection.  

The focus of this paper has been surveillance of 
SIS. However, surveillance of other safety functions 
as other technology safety-related systems and ex-
ternal risk reduction facilities is important to control 
the risk during operation. The failure classification 
and the surveillance activities presented above may 
also be used for other active, safety-related systems. 
Surveillance of some kinds of external risk reduction 
facilities in the form of operational risk reducing 
measures as operational procedures may require use 
of other kinds of surveillance activities.  

7 CONCLUSIONS 

Recent standards and regulations focus on the entire 
life cycle of safety functions, and in this paper we 
have focused on the surveillance of safety functions 
during operations and maintenance.  

The main message is that there should be an inte-
grated approach for surveillance of safety functions 
that incorporates hardware, software and hu-
man/organizational factors, and all failure categories 
should be systematically analyzed to 1) monitor the 
actual performance of the safety functions and 2) 
systematically analyze the failure causes in order to 
improve the functionality, reliability and robustness 
of safety functions.  

Not all surveillance activities reveal all kind of 
failures, and a comprehensive set of activities should 
be used. Failures of safety functions should be regis-
tered during actual demands (e.g. gas leaks), testing 
(functional tests and self-tests), and inspection. The 
presented failure classification scheme can contrib-
ute to an understanding of which surveillance activi-
ties that reveal different types of failures. 
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1 INTRODUCTION 

The essential function of an oil and gas producing 
well is to transport hydrocarbons from the reservoir 
to the processing equipment in a cost effective and 
safe manner.  

Safety is defined by IEC 61508 as “freedom from 
unacceptable risk”, while IEC 60300-3-9 defines 
risk as a “combination of the frequency, or probabil-
ity, of occurrence and the consequence of a specified 
hazardous event.”  

The importance of well safety has been recog-
nized and accepted for a long time, and significant 
improvements concerning both design and operating 
procedures have been made. In spite of these im-
provements, failures still occur and will probably 
continue to occur in the future. Also the industrial 
and technological development, the extended life-
time of wells and, recent regulations and standards 
with focus on functional requirements imply that 
there is a need for a systematic approach towards 
well safety during the entire life cycle of a well. 

For a well the main risk contributor is blowout. 
The acceptable mean time between blowouts is very 
long compared to the lifetime of a well. In such 
situations Rasmussen (1994) states that the risk in-
volved in operation has to be predicted analytically 
from the first beginning and the proper defenses de-
signed from this prediction. Use of predictive meth-

ods in the well risk assessment is not new. However, 
descriptions and guidelines on how to apply the 
analysis techniques in the well lifecycle are frag-
mented.  

The standard NORSOK D-010 – Well integrity in 
drilling and well operations, defines the minimum 
functional and performance oriented requirements 
and guidelines for well design, planning, and execu-
tion of safe well operations in Norway. The focus of 
the standard is well integrity, where well integrity is 
defined as application of technical, operational, and 
organizational solutions to reduce risk of uncon-
trolled release of formation fluids throughout the 
lifecycle of a well.  

In NORSOK D-010 a well barrier is defined as an 
envelope of one or several dependent barrier ele-
ments preventing fluids or gases from flowing unin-
tentionally from the formation, into another forma-
tion or to surface, while a well barrier element is 
defined as an object that alone can not prevent flow 
from one side to the other side of it self. Hence, a 
well barrier element will typically be of a physical 
nature (safety valves, tubing, seals, packers, etc.), 
while operational and organizational measures are 
used to ensure the integrity of the physical compo-
nents. The terms well barrier and well barrier ele-
ment (WBE) are used in this paper. 

In the Norwegian oil industry a two barrier prin-
ciple is followed. In NORSOK D-010 it is stated that 
there shall be two well barriers available during all 
well activities and operations, including suspended 
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or abandoned wells, where a pressure differential ex-
ists that may cause uncontrolled outflow from the 
borehole/well to the external environment. In 
NORSOK D-010 the primary well barrier is defined 
as the first object that prevents flow from a source, 
while the secondary well barrier is the second object 
that prevents flow from the source. 

Quantitative reliability analyses are often per-
formed to assess alternative well designs. Quantita-
tive analyses are performed to: 
− Compare different well completion alternatives 

with respect to leak probabilities 
− Identify potential barrier problems in specific 

well completions 
− Assess the effect of various risk reduction meas-

ures 
− Assess the effect of failed barrier elements with 

respect to leak probabilities and recommend risk 
reducing measures. 

− Identify potential barrier problems during well in-
terventions 
 
To assist in this process a barrier diagram may be 

used to illustrate the structural relationship between 
well barrier elements. The major uses of barrier dia-
grams are: 
− Prioritize the contributors leading to the blowout 
− Contribute in communication between reliability 

and well design/operation personnel 
− Assist in design of the well 
− Easier to model the well with well-known and 

commercially available quantitative analysis 
techniques, e.g. FTA 
 
Barrier diagrams have been used for some 20-25 

years to assist in well risk analysis. However, the 
diagrams are constructed in a variety of forms and 
no formal construction rules have been presented. 
The main objective of this article is to present a bar-
rier diagram method description. The article also de-
scribes how to transfer the barrier diagrams directly 
to a fault tree or to perform reliability calculations 
directly from the barrier diagram. 

Holand (1997) describes two main types of bar-
rier situations. That is static and dynamic barrier 
situations. A static barrier situation is a situation 
where the same well barrier will be available over a 
“long” period of time. Examples of static barrier 
situations are the production/injection phase or when 
the well is temporarily closed. In a dynamic situa-
tion the well barrier varies over time. This situation 
is typical for well drilling, well workover, and well 
completion operations. Barrier diagrams are best 
suited for static barrier situations.  

The discussion is based on experiences from the 
Norwegian petroleum industry and results from sev-
eral projects concerning blowout risk from well 
completions. 

A typical oil production well is shown in Figure 
1-1 as a basis for further discussion and exemplifica-
tion. The well is a typical oil producing well with 
the x-mas tree located on the surface. 

 

Figure 1-1 Example well 

 
A well barrier can be regarded as a pressurized 

vessel (envelope) capable of containing the reservoir 
fluids. The two-barrier principle implies that it must 
be at least two well barriers in a well. A well can 
therefore be considered as several pressurized ves-
sels (envelopes) that prevent the fluid from entering 
the surroundings, as illustrated in Figure 1-2. The 
well tubulars and the x-mas tree body constitute the 
vessel walls while the SCSSV and x-mas tree valves 
illustrate the outlet valves. The innermost vessel 
with the SCSSV illustrated as the outlet valve illus-



trates the primary well barrier closest to the reservoir 
while the outer vessels illustrate the consecutive 
well barriers.  

A well release will typically be an incident where 
the outer vessel leaks, and the inner well barrier 
stops the leak. 

The principle of viewing the well as several pres-
surized vessels is used when constructing a well bar-
rier diagram. 
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Figure 1-2 Well illustrated as several vessels 

CCPS distinguishes between passive and active 
independent protection layers (IPL) (CCPS, 2001). 
A passive protection layer is a protection layer not 
required to take an action to achieve its function in 
reducing risk. An active protection layer is required 
to move from one state to another in response to a 
change in a measurable process property (e.g. tem-
perature or pressure), or a signal from another 
source (such as a push-button or a switch). This 
categorization is used in this article to distinguish 
between passive and active WBEs. Typical passive 
WBEs are the production packer, the seal assemblies 
and the tubing string. Active WBEs are the hydrau-
lic master valve (HMV), the wing valve (WV) and 
the surface controlled subsurface safety valve 
(SCSSV). For these valves a signal has to be sent 
(input) in order to close the valve (change state). A 
combination of passive and active WBEs constitutes 
a well barrier. 

2 BARRIER DIAGRAM CONSTRUCTION 
RULES 

This section describes the barrier diagram construc-
tion rules. The well in Figure 1-1is used as example. 

Main construction steps are: 
1 Define the hazardous event 
2 Define cavities where the pressure can be trapped 

between the reservoir and the surroundings 
3 Identify the WBE failure modes and correspond-

ing leak paths 
4 Identify the fault tolerance of the well system 
5 Identify barrier vectors 
6 Identify minimal cut sets 
7 Calculate leak probabilities 

 
Each step is described in the following subsec-

tions. Step 2 and step 3 will be an iterative process. 
The steps are described separately to describe the 
construction principle. 

2.1 Step 1 - Define the hazardous event 
Before the diagram is constructed it is important to 
clearly define the hazardous event and the WBEs 
that is available to prevent the hazardous event.  

The SINTEF blowout database (SINTEF, 2005) 
defines a blowout as “an incident where formation 
fluid flows out of the well or between formation lay-
ers after all the predefined technical well barriers or 
the activation of the same have failed”. In addition 
to blowout SINTEF (2005) has defined a second 
event called well release. A well release is defined 
as a “an incident where oil or gas flow from the well 
from some point were flow was not intended and the 
flow was stopped by use of the barrier system that 
was available in the well at the time the incident 
started”. A blowout will therefore be an uncontrolled 
flow from the reservoir. A well release may be a 
leak of gas lift gas that stops after the gas lift gas has 
escaped. The barrier diagram will not be the same 
for these two events.  

Guidelines for defining the hazardous event are: 
1. Define the criteria for the occurrence of the 

event by first defining the system success crite-
ria. 

2. Assure that the event is consistent with the prob-
lem to be solved and the objective of the analysis 
to be performed. 

3. If unsure of the accidental event, provide alterna-
tive definitions that cover the event and assess 
the applicability of each one. 

 
The hazardous event defined for the example well 

is: 
− Formation fluid flows out of the well or between 

formation layers after all the predefined technical 



well barriers or the activation of the same have 
failed.  
 
Together with the defined hazardous event a set 

of assumptions must be made, for example: 
− Leaks from the reservoir via the wing valve into 

the flowline is regarded a hazardous event 
− Leaks from the reservoir via the production cas-

ing is regarded a hazardous event 
− Uncontrolled flow out of the well is defined as 

flow to the surroundings 

2.2 Step 2 – Define cavities where the pressure can 
be trapped between the reservoir and the 
surroundings  
As discussed a well barrier can be viewed as a pres-
surized vessel (envelope) capable of containing the 
reservoir fluids. In this step all “pressurized vessels” 
surrounded by WBEs able to contain the reservoir 
fluids are identified. The pressurized vessels are 
called cavities in this article. The cavities are placed 
between the reservoir and the surroundings. The 
cavities are enclosed by active WBEs in the final 
state (i.e., in closed position) in combination with 
passive WBEs, or cavities enclosed by passive 
WBEs only. The final stage of step 2 is illustrated in 
Figure 2-1. 
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Figure 2-1 Cavities preventing reservoir fluid from 
reaching surroundings 

2.3 Step 3 – Identify WBE failure modes and 
corresponding leak paths 
In this step all WBE failure modes and correspond-
ing leak path are identified. 

A failure is usually described by a failure mode 
and IEC 50(191) defines a failure mode as one of the 
possible states of a faulty item, for a given required 
function. As an example, one SCSSV function may 
be expressed as close SCSSV. A loss of this function 
may therefore be defined as the failure mode “Fail-
ure to close SCSSV”.  

A failure of a WBE may result in a leak path from 
one cavity to another or from one cavity to the sur-
roundings.  

All relevant failure modes and the corresponding 
leak paths should be entered into the barrier dia-
gram. The result is illustrated in Figure 2-2. The leak 
paths are illustrated with lines with arrows. The ar-
rows illustrate the leak direction. All leak paths in-
clude rectangles, where the WBEs and the related 
failure mode(s) that will result in the specific leak 
path are described. 

 

 
Figure 2-2 Leak paths and WBE failure modes 



2.4 Step 4 – Identify the fault tolerance of the well 
system  
The number of WBEs failures that must occur before 
there is an uncontrolled leak from the reservoir to 
the surroundings indicates the fault tolerance of the 
well, where fault tolerance is defined by IEC 61508, 
Part 4 as “the ability of a functional unit to continue 
to perform a required function in the presence of 
faults or errors.” The leak path with the fewest WBE 
failures has the lowest fault tolerance.  

The number of WBE failures in each leak path is 
found by starting from the reservoir and by follow-
ing the leak paths through the cavities to the sur-
roundings. The primary WBE will be the WBE pre-
venting leak from the reservoir to the first cavity 
after the reservoir. The secondary WBE will the 
WBE preventing flow from the first cavity after the 
reservoir, etc. Primary WBEs are marked with 1 in 
the upper part of the WBE failure mode rectangle, 
the secondary WBE is marked with 2, etc. The final 
stage of step 4 is illustrated in Figure 2-3. As an ex-
ample, it is seen from Figure 2-3 that a leak to the 
surroundings will occur if the SCSSV fails to close 
(FTC) or leaks in closed position (LCP) and if the 
manual master valve (MMV) leaks externally 
(EXL). The primary WBE failure will be that the 
SCSSV -FTC or LCP and is indicated with 1 in the 
diagram. The MMV-EXL failure is indicated with 2 
in the barrier diagram. 

From Figure 2-3 it is seen that the well have one 
leak path where only two WBEs must fail before a 
leak to surroundings occur, while for one leak path 
five WBEs must fail before a leak to surroundings 
occurs. 

There may be several leak paths to one cavity. 
The WBE failure mode from the cavity may be part 
of a leak path with different fault tolerance. In the 
failure mode rectangle, all leak paths should be en-
tered. The leak path with the highest fault tolerance 
should be entered in parenthesis. From Figure 2-3 it 
is seen that the X-mas tree connector seal will be 
part of a leak path with fault tolerance three if one of 
the WBEs between the reservoir and the A-annulus 
fails. If the leak path is from the reservoir via the 
SCSSV and the tubing above the SCSSV, the x-mas 
tree connector seal will be part of a leak path with 
fault tolerance four. 

It is also seen from Figure 2-3 that the WBEs that 
form the primary well barrier are the SCSSV, the 
polished bore receptacle (PBR), the production 
packer and the tubing below the SCSSV. 

 
Figure 2-3 Well system fault tolerance 

2.5 Step 5 – Identify barrier vectors  
This step is an intermediate step that includes identi-
fication of barrier vectors. A barrier vector uniquely 
describes the start and end point (cavity) for each 
each leak path. The barrier vectors are used for 
quantitative and qualitative analysis in later stages.  

The final stage of this step is illustrated in Figure 
2-4. The step starts with labeling each cavity with a 
number, and by labeling the reservoir and surround-
ings with the letters R and S, respectively.  

For each leak path, the barrier vector is entered in 
the lower part of the failure mode rectangle. The 
barrier vector identifier starts with the upstream cav-
ity label and ends with the downstream cavity label. 
As an example, barrier vector for the leak path be-
tween the reservoir and the tubing below SCSSV 
cavity is identified as R-1.  

 



 
Figure 2-4 Barrier vectors 

2.6 Step 6 – Identify minimal cut sets  
In this step the barrier vectors are used to identify 
the minimal cut sets of the well system. A minimal 
cut set fails if and only if all the basic events in the 
set fail at the same time (Rausand and Høyland, 
2001). Minimal cut sets are used as a basis for quan-
titative reliability analysis. 

From the example, it is seen that the minimal cut 
set with the lowest fault tolerance is the leak from 
the reservoir to the surroundings via cavity number 
1. The minimal cut sets will be 1) the SCSSV- FTC 
and MMV-EXL and 2) the SCSSV-LCP and MMV-
EXL. These two minimal cut sets may be combined 
to a minimal cut set including the barrier vectors R-1 
and 1-S.  

The remaining minimal cut sets of barrier vectors 
are easily identified from the barrier diagram by fol-
lowing the different leak paths. The cut sets for the 
example well are given in Table 2-1. As seen, the 
minimal cut sets should always start with the letter 
S, be linked together with the same number and end 
with the letter R. 

Table 2-1  Cut sets of barrier vectors 

K1   = {R-1, 1-S} 
K2   = {R-1, 1-2, 2-S} 
K3   = {R-1, 1-5, 5-S} 
K4   = {R-8, 8-5, 5-S} 
K5   = {R-8, 8-6, 6-S} 
K6   = {R-8, 8-7, 7-S} 
K7   = {R-1, 1-2, 2-3, 3-S} 
K8   = {R-1, 1-8, 8-5, 5-S} 
K9   = {R-1, 1-8, 8-6, 6-S} 
K10 = {R-1, 1-8, 8-7, 7-S} 
 K11 = {R-1, 1-2, 2-3, 3-4, 4-S} 

 
It is possible to perform qualitative reliability 

analysis directly from minimal cut sets. However, 
barrier diagrams are frequently transformed to a 
fault tree for further qualitative analysis. The identi-
fied minimal cut sets make this transfer easy. An il-
lustrative example of a fault tree is presented in 
Figure 2-5. Fault trees are constructed by definining 
a top event (TOP). In this article the top event will 
be the hazardous event defined in step 1. And-gates 
(K1, K2, KK) and or-gates (CI, C2, Cn) present the 
structural relationship of the system, while basic 
events (B1, B2, Bm) are the failure modes of the 
system. Fault tree construction rules are presented in 
many standards and books and will not be described 
further (see, e.g., Rausand and Høyland, 2001). The 
transition from barrier diagrams to fault trees is fo-
cused in this article. 

Each minimal cut set identified from the barrier 
diagram can be represented as and-gates (K1, K2, 
etc) in the fault tree, while each barrier vector (cut) 
in the minimal cut set represents an or-gate (C1, C2, 
etc). The corresponding basic events (B1, B2, etc.) 
are the WBE failure modes in each barrier vector 
(cut). The transfer from minimal cut sets to a fault 
tree is illustrated in Figure 2-5. 

It is also possible to calculate the leakage prob-
ability directly from the minimal cut sets. How to do 
this is described in the next step. 

 
TOP

K1 KKK2

C2 CnC1

B1 B2 Bm
 

Figure 2-5 Fault tree constructed with the use of 
minimal cut sets 



2.7 Step 7 - Calculate leak probabilities  
From the cut sets, approximate formulas can be used 
to calculate the leak probability. A system that is 
functioning if and only if all of its components are 
functioning is called a series structure. Each barrier 
vector (cut) will be a series. A system that is func-
tioning if at least one of its components is function-
ing is called a parallel structure, and a cut set will 
represent a parallel structure. 

Rausand and Høyland (2001) describe how to 
calculate probability of failure (Q) based on minimal 
cut sets, and an extract is given here. Consider a sys-
tem with k minimal cut sets K1, K2, …Kk. Let )(tQj

(
 

denote the probability that minimal cut j fails at time 
t. If the basic events are assumed to be independent, 
then 

∏
∈
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’s are so small that 

we can disregard their products. Qo(t), the probabil-
ity that the top event occurs at time t, may be ap-
proximated by: 
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The CARA fault tree software tool (CARA 

FaultTree) uses four basic event types (assume ex-
ponential distribution, i.e., constant failure rate): 
− Test interval 
− Repairable 
− Non-repairable 
− On demand 

 
Test interval is used to describe components that 

are tested periodically with test interval t*. A failure 
may occur anywhere in the test interval. The failure 
will, however, not be detected until the test is carried 
out or the component is needed. This is a typical 
situation for many types of detectors, process sen-
sors, and safety valves. The probability qi (t) is in 
this situation often referred to as the probability of 
failure on demand (PFD) or unavailability. The reli-
ability parameters entered are the failure rate λ (ex-
pected number of failures per hour), the test interval 
t* (in hours) and the repair time τ (in hours). An ap-
proximate formula for the MFDT is: 

λτλ
+≈

2
t  (t)q
*

i  

Note that this formula is only valid if we have in-
dependent testing of each component. If components 
are tested simultaneously, or if we have staggered 
testing, this formula will not be exactly correct, and 
the results will be too optimistic. 

Repairable is used for components that are re-
paired when a failure occurs. If the failure rate is de-
noted λ, and the mean time to repair (MTTR) is de-
noted τ, qi(t) may be approximated by the formula: 

λτ
λτ
+

=≈
1MTTF+MTTR

MTTR (t)qi   

where 

λ
1 = MTTF   

 
The required reliability parameters are the failure 

rate λ (expected number of failures per hour) and the 
mean time to repair, MTTR (in hours). 

Non-repairable is used to describe components 
where failures of single components will not be de-
tected unless there is a leak to the surroundings. In 
this period the components may be considered as so-
called non-repairable components. If the failure rate 
of the component is denoted by λ, then: 

e-1 = (t)q t-
i

λ  

Where qi (t) denotes the probability that item no. i 
is not functioning at time t. The required reliability 
parameter is the failure rate λ (expected number of 
failures per hour). The time is represented by t. 

On demand is used for components that have a 
certain probability to fail when they are required. In 
this study it has only been used in association with 
sensitivity analyses. 

The four basic event types may be used to calcu-
late the probability Q for each minimal cut set. 
Minimal cut set K1 is used to illustrate the principle. 
The SCSSV is a test interval component, which is 
tested every 4380 hours (6 months). The repair time 
is assumed to be 360 hours (15 days). The total fail-
ure rate for LCP and FTC failures is assessed to be 
2.5 failures per 106 hours. The corresponding PFD 
(qSCSSV) is then 4,92*10-6. An external leak from the 
MMV is assumed to be detected immediately, and 
repaired within 72 hours (3 days). The failure rate is 
assessed to be 0.02 failures per 106 hours. The corre-
sponding qMMV-EXL is 7,19*10-6. When using these 
assumptions the leak probability, Q1, to the sur-
roundings via minimal cut set K1 is equal to qSCSSV 
* qMMV-EXL = 5,65*10-6.  

The remaining minimal cut sets may be calcu-
lated in the same way. The total probability will be 
the sum of all the cut sets. 

3 SUMMARY AND CONCLUSIONS 

In this article a method to construct barrier diagrams 
is described. The barrier diagram is used to illustrate 
the structural relationships between well barriers. 
Barrier diagram construction rules are presented to-
gether with a description of how to transfer the bar-
rier diagrams directly to a fault tree or alternatively 
how to calculate leak probabilities directly from the 
barrier diagram. 

The barrier diagram is a simplified representation 
of the real world. It is therefore important to validate 



the barrier diagram. This may not be an easy task 
and depends, e.g., on the experience of the personnel 
involved in the work, the input data used (if quanti-
tative analysis is performed), etc. Some guidelines 
for validation are: 
1. Obtain the minimal cut sets, and check if barrier 

vectors (cuts) are valid leak paths from the res-
ervoir to the surroundings. 

2. Identify WBE failure modes that have occurred 
from, e.g., failure databases. Check if the failure 
modes are included in the barrier diagram. 

3. Check the ability of each WBE to function under 
given well conditions. This can, e.g., be per-
formed by introducing failures downstream the 
cavity and by verifying that the WBE upstream 
the cavity can withstand the load. 

4. Check the probabilities of the cut sets and their 
relative contributions to determine if the results 
are sensible. 

5. Also, check the overall leak probability to see if 
it is realistic. 

 
The method description in this article has only 

included single independent WBE failures. Failures 
in a system may also be dependent and result in 
common cause failures (CCF). The inclusion of 
common cause failures may be included in the fu-
ture. 

It should also be possible to develop a software 
tool to perform quantitative analysis directly from 
the barrier diagram. Such a program may ease the 
communication between the reliability engineer and 
the well design/operation personnel. 

The author would like to thank Professor Marvin 
Rausand at NTNU, and my colleagues Per Holand, 
Einar Molnes and Geir-Ove Strand at ExproSoft. 
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Abstract

The surface controlled subsurface safety valve (SCSSV) is one of the

most important barriers against blowouts on offshore oil and gas installa-

tions. This article suggests an SCSSV failure classification in line with the

IEC 611508 terminology, discusses the various contributions to the safety un-

availability, and describes a method for calculating the safety unavailability

of different SCSSV configurations. The paper is based on data and experi-

ence from the WellMasterTM project.

1 Introduction

The subsurface controlled safety valve (SCSSV) is one of themost important barri-

ers against blowouts on offshore oil and gas installations. In spite of improvements,

SCSSV failures still occur, and will most likely continue tooccur. New and com-

plex well completion designs and more hostile reservoir conditions raise further

challenges to the reliability of the SCSSV.

New regulations and standards have increased the focus on the reliability of

barriers and safety functions. The IEC 61508 [5] and IEC 61511 [6] standards de-

scribe a risk-based approach to ensure that the total risk isreduced to an acceptable

level. These standards require that a safety integrity level (SIL) is established for

safety functions. The SIL requirements are partly quantitative and the standards
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focus on application of reliability data and modeling of common cause failures.

The Norwegian Oil Industry Association (OLF) has developeda guideline [10] for

using IEC 61508 and IEC 61511, and the Norwegian Petroleum Safety Authority

refers to this guideline in their Management Regulations [11]. The OLF guideline

sets minimum SIL requirements to safety functions where theSCSSV is part of the

function. Requirements to the SCSSV are also given in the NORSOK D-010 stan-

dard [9], which covers all aspects of well integrity, i.e., technical, operational, and

organizational means to reduce the risk of uncontrolled release of formation fluids

throughout the life cycle of a well. The standard does not state any quantitative

reliability requirements concerning the SCSSV, but gives physical requirements,

e.g., related to acceptable leak rates.

It is expected that the new standards will contribute to moresystematic work

on safety and thereby increased safety in the industry. The requirements also imply

that there is a need for continued focus on the SCSSV as a barrier element.

The objective in this paper is to discuss potential SCSSV failures and failure

causes and to present a new model for SCSSV safety unavailability that is in com-

pliance with the IEC approach. To be realistic, the model hasto be based on a clear

understanding of all potential failure modes and failure causes of the SCSSV. This

is important both for the reliability modeling and also in the well design process.

The reliability of the SCSSV as a safety barrier is often measured by theavail-

ability of the valve, i.e., the probability that the SCSSV is able to function as re-

quired when if a demand occurs. Theunavailabilityof the SCSSV is the probability

that the SCSSV is unable to function upon a demand. The unavailability is often

denotedprobability of failure on demand(PFD).

The paper is based on data and experience from the WellMasterTM project and

several other projects concerning blowout risk. The WellMaster project has run

a more or less continuous data collection since the Bravo blowout on the Ekofisk

field in the North Sea in 1977. The database is accessible onlyfor the oil companies

sponsoring the project, but some reports with aggregated data have been published.

The data presented in the current paper is from one of these reports [8]. In this

paper the data is used only to illustrate analytical problems, and the results should

not be considered as representing the current status of SCSSV reliability.
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2 SCSSV characteristics

This section describes the most important characteristicsof the SCSSV.

2.1 SCSSV types and configurations

The SCSSV is located in the production tubing, 100 meters or more below the

seabed. There are two main types of SCSSVs: wireline retrievable (WR) valves

and tubing retrievable (TR) valves. The WR-valve is installed and retrieved by

a wireline operation through the tubing and is locked to a landing nipple inside

the tubing. The WR-valve reduces the tubing diameter and hasto be pulled prior

to wireline operations in the well. A TR-valve is an integralpart of the tubing

string and is installed together with the tubing. To replacea TR-valve, the tubing

has to be pulled. The TR-valve does not reduce the tubing diameter, and wireline

operations can therefore be carried out through the valve. The TR-valves have be-

come increasingly popular in the last decades, and the rest of the paper is therefore

restricted to TR-valves.

The SCSSV has a failsafe-close design, and is opened and heldopen by hy-

draulic pressure through a control line from the platform (or from the seabed con-

trol system for subsea wells). When the hydraulic pressure is bled off, the valve is

designed to close by the force of an integrated spring. Two different closing prin-

ciples are used: ball and flapper. Of these, the flapper valvesare most common.

The SCSSV system may be configured in different ways. In Norway, the most

common SCSSV configurations are:

• A single TR-valve with a single control line. When a TR-valvemalfunction

is detected, the crew will attempt to operate the valve by pressure manipula-

tion or wireline operation to brush/clean the valve. If such manipulations are

not successful, two options may be available. Either to install a WR-valve

inside the failed TR-valve, or to pull the tubing and replacethe TR-valve.

• Two TR-valves in series, making it a redundant system. When afailure of

one valve is detected, this valve is locked open and the well is protected by

the remaining valve. The tubing is pulled only when both valves have failed.
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2.2 SCSSV safety functions

The main focus of IEC 61508 [5] and IEC 61511 [6] is on so-called safety instru-

mented systems (SIS). A SIS consists of sensor(s), logic solver(s), and final ele-

ment(s). In this context the SCSSV is a final element that has to react on some

specified hazardous events. The main functions of the SCSSV are:

1. To prevent well fluids to be released to the environment if there is a leakage

on the downstream side of the SCSSV.

2. To shut-in the production from the well if there is an emergency on the in-

stallation, e.g., if a fire occurs on the installation.

In the first case the SCSSV is a barrier elements that has been installed to ensure

well integrity. It is necessary to close the SCSSV when components on the down-

stream side of the SCSSV are leaking and when the X-mas tree orthe wellhead

area is damaged (e.g., because of a dropped object). In the second case the pro-

duction has to be shut in because an emergency shutdown (ESD)action has been

initiated on the installation. In this case the SCSSV together with the X-mas tree

should stop the production in order not to escalate the critical situation.

A ‘dual barrier philosophy’ with the requirements of havingtwo independent,

testable well barriers in a well is laid down in §76 of the PSA Activities Regula-

tions [12]. This is further elaborated in NORSOK D-010 [9] where it is explicitly

stated that there should be two independent and tested barriers available. This

means that the SCSSV will be a primary barrier while the X-mastree valves will

be a secondary barrier in order to shut-in the well. This is a deterministic require-

ment and hence deviates from the main principle of the PSA regulations where it

is stated that ‘the operator shall stipulate the strategiesand principles on which the

design, use, and maintenance of barriers shall be based’ ([11], §2).

The SCSSV is a very important shut-in barrier in a platform well in case of fire

in the wellhead area (ref. the Piper Alpha accident). The situation is different for

a subsea well since there are several barriers in the production flow before hydro-

carbons enter the riser termination area on the platform. However, the SCSSV in

a subsea well is an important barrier against leakages to theenvironment, and will

be the only barrier if the X-mas tree should fail. If the subsea well is located close
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to the installation, the loss of the secondary barrier (X-mas tree) may also result in

severe personnel risk due to leakage below or close to the installation. Therefore,

the SCSSV has an important role both for topside and subsea wells. However, the

risk of fire or explosion will be lower for subsea wells than for platform wells.

Stringent requirements to prevent production leaks and blowouts lead to a

rather high intervention frequency and correspondingly, arather high intervention

risk. Even if the dual barrier requirement is considered to be a minimum require-

ment, it may, in particular for subsea wells with low fire and explosion risk, be

justifiable to assess the possibility of implementing risk reducing measures with-

out shut-in of production until a workover can be performed.The risk reducing

measures should then not be permanent and a time schedule forworkover should

be established. Some operators discuss whether or not it is necessary to install an

SCSSV at all for some subsea wells [3]. This depends on a number of factors, like

field layout, reservoir fluid, etc.

The reliability of the SCSSV system will depend on the configuration of the

system. However, the reliability of the SCSSV as a final element will be indepen-

dent of the safety function the SCSSV is part of. The SCSSV as asingle barrier

element is focused in the rest of the paper.

3 Failure classification

In this section the SCSSV failure modes are reviewed and fitted into the terminol-

ogy of IEC 61508 [5]. The failure classification is also extended to reflect specific

SCSSV characteristics and well conditions.

In IEC 61508 [5] safety critical failures are referred to asdangerousfailures,

while non-safety critical failures are referred to assafefailures. The standard also

differs between detected and undetected failures. Detected failures are normally

detected immediately without any specific testing, while undetected failures can

only be revealed through functional testing.

For an SCSSV the dangerous failures are undetected failures, while the safe

failures are detected failures. This means that dangerous failures may occur at

any time in the interval between consecutive tests. The failure is, however, not

manifested and discovered until a test is carried out or the valve is to be closed
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because of some operational reasons.

Tests of SCSSVs are usually carried out at regular intervals. The length of the

test interval varies from installation to installation, but is usually either one, three

or six months. The test interval is partly decided by the authorities.

The dangerous failure modes of the SCSSV are:1

1. Fail to close on command(FTC) is the most serious failure of an SCSSV.

FTC failures are mainly caused by damage to certain steel parts of the valve,

such as pistons, flapper hinge and pin or seat. The failure mayalso be caused

by scale or hydrates preventing movement of the flapper. FTC failures may

also be caused by a plugged control line.

2. Leakage in closed position(LCP) occurs when there is a leakage across the

valve that is greater than a threshold value defined in API RP 14B [1]. LCP

failures are detected during regular tests or by an unacceptable tubing pres-

sure above the SCSSV for a well being shut in. LCP failures arenormally

caused by a damaged flapper, or scratches in the seat sealing area. Such dam-

ages may be caused by wireline or coiled tubing work through the valve.

Contaminants in the tubing may also result in a leak above thethreshold

value (e.g., scale, hydrates).

A clear understanding of the failure cause is important to select countermeasures

to avoid failures, and to understand how different failure causes influence on the

reliability of the SCSSV as a safety barrier.

Failures of safety-related systems can, according to IEC 61508 [5], be classi-

fied as eitherrandom hardwareor systematicfailures. A random hardware failure

is defined as a ‘failure, occurring at a random time.’ A systematic failure is defined

as a ‘failure related in a deterministic way to a certain cause, which can only be

eliminated by a modification of the design or the manufacturing process, opera-

tional procedures, documentation or other relevant factors.’ A systematic failure

may therefore be seen as a failure of the component to fulfill the intended function

without any physical degradation, and such failure may be introduced in the en-

tire life cycle of the component (design, operation, maintenance). In this paper we

1The same failure modes are also used in WellMaster and in ISO 14224 [7]
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assume that systematic failures will remain undetected until a real demand for the

valve occurs, and will hence result in a ‘baseline’ unavailability.

Random hardware failures occur as a result of physical mechanisms influenc-

ing the valve function. Important mechanisms are physical loads (e.g., erosion due

to sand particles in the fluid, corrosion due to high H2S content, pressure, tem-

perature), human errors (e.g., scratches during installation), design factors (e.g.,

choice of materials). A detailed FMECA should be performed to identify the fail-

ure causes and understand the failure mechanisms (e.g., see[13]).

The effect of testing is fiercely discussed within the industry. Some operators

claim that the valve should not be tested since testing will cause wear-out of the

valve, or may lead to hydrate formation during testing. Mostoperators, however,

agree that the valve should be actuated to reveal dangerous undetected failures.

Some operators also claim that the availability of the valvewill be improved by the

testing, since the testing can prevent sticking seals, etc.To elucidate this discussion

we suggest to divide random hardware failures into the following broad failure

categories:

• Hardware failures related to a long standby period. The effect of some failure

mechanisms may be reduced by moving parts relative to each other, and the

testing may therefore improve the reliability of the component.

• Hardware failures related to demands/tests. The effect of some failure mech-

anisms may be increased by testing (e.g., wear-out and hydrate formation).

• Hardware failures that are independent of valve operation.The failure mech-

anisms acting on the valve are unaffected by the operation of the valve.

• Stress failures (outside design limit) induced on the valve. Stress outside the

design envelope of the valve that results in an immediate valve failure (shock

failure).

Stress failures will typically be due to (i) a wireline operation where the wire-

line tool damages the valve, or due to (ii) a well pressure exceeding the design

limit. Hardware failures that can be prevented by exercising the valve are typically

caused by scale, debris or sand build-up. Hardware failurescaused by degrada-

tion due to testing (or real demands) are typically wear-outeffects on the dynamic
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surfaces (e.g., due to ‘slamming’ of the valve or friction between moving parts).

Failure mechanisms not influenced by testing are ageing mechanisms (propagation

of cracks, corrosion, etc). The total failure rate of a valvewill be a function of all

these mechanisms (e.g., see [2]).

So far, we have discussed the SCSSV as a single element where SCSSV failures

occur independent of each other. The SCSSV is also part of a system, and failures

in the system may be dependent, and result in common cause failures (CCF). Fig. 2

illustrates some typical dependencies between componentswhere the SCSSV is

part of the safety function. IEC 61508 [5] requires that CCF failures are modeled

by aβ-factor model, where the parameterβ denotes the fraction of common cause

failures among all failures. The parameterβ is also the conditional probability

that a component failure is a common cause failure (e.g., see[13]). In relation to

the failure classification above it is assumed that the hardware failures influenced

by demands/tests or standby period and also stress failures are more prone to de-

pendent failures than the hardware failures not influenced by the operation of the

valve.

Fig. 1 summarizes the discussion above and also illustratesthat different strate-

gies should be used in order to address the various failure causes. Even if system-

atic failures are not quantified, they may be equally important, in particular for

redundant systems. Hence, both hardware and systematic failures should be fo-

cused when planning the well. The different types of hardware failures should also

be considered. Even if the hardware failures may be dependent on the operation

of the valve (length of test interval or number or tests) all dangerous failures will

be detected during testing. Hence, the assumption that no testing will increase the

overall availability requires that a large proportion of the failures are caused by

the testing itself. If the failures occur due to long standbytimes (no movement

of the valve) or are independent of the test philosophy, no testing will result in an

increased average unavailability.

4 Strategies for avoiding failures

To understand the factors that influence the likelihood of failures is important both

during design and for reliability modeling purposes. The following approach is
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Failure cause
Dependent/

independent
Detection Restoration

Random

hardware

failures

Hardware failure independent 

of valve operation

Hardware failure dependent 

on demands/tests

Hardware failure dependent 

on standby period

Stress failure 

- outside design envelope

Design failure - latent from 

first day of operation

Operational failure

- erroneous procedures or

failures introduced during

testing/maintenance

Systematic

failures

Independent

- random failure

Dependent

- operation or stress

outside design

envelope will 

possibly affect more 

than one valve 

(component)

Dependent

- failure cause

will possibly affect

more than one item

Hidden/undetected

until test

- assume no diagnostic

on valves. 

All dangerous failures

remain undetected until

test. Safe failures

assumed to be

detected immediately

Not detected

- only detected by

real demands or from 

revision of procedures, 

reviews, etc

Repair

- well brought to safe

state and repair

performed

Modification of

component required

Modification of

work process

required

Figure 1: Failure classification

suggested:

1. Perform a detailed FMECA to identify and understand failure mechanisms

and failure causes and loads that may lead to dangerous failures. The FMECA

should cover all parts of the safety function the SCSSV is part of. Generic

failure rate estimates based on field experience may be used (e.g., from [8]).

2. Use the information from step 1 to prevent random hardwareand systematic

failures by focusing on the random hardware failure classifiaction discussed

in section 3. Evaluate the generic failure rate with the actual valve and well

conditions in order to reduce (or increase) the failure ratefor a single com-

ponent.

3. Maximize the independence of the components to prevent common cause

failures. Establishβ-factors for relevant dependent components.

This iterative process will improve the understanding of failure causes, and

create a better basis for design of the valve, well operationprocedures, and also to

providespecificreliability data as input to unavailability calculations (as required

in IEC 61508 [5]).
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HPU

ESD

βSCSSV/x-mas tree

βSCSSV

βpilot-v and cl

Figure 2: Examples of dependent failures in a well

There are several methods available for modeling common cause failures [13].

The most widely used model is theβ-factor model. Many sources suggest ranges

within which the value ofβ is likely to occur. The OLF guideline [10] has a data

dossier whereβ is set to 2% for X-mas tree valves. Part 6 of IEC 61508 [5] suggests

an approach to estimate a specificβ (see also [15]). The approach will giveβ-values

from 1 to 10% for final elements. Independent of which method that is used for

arriving at β, the approach above should give a good basis for determiningthe

β-factors.

The experience from WellMaster [8] may contribute in this process. The Well-

Master database categorizes failures asitem failurewhen the failure is caused by

the item itself. If the failure is caused by another item or some external causes,

the failure is classified asnon-item failure. This would typically be the case if an

SCSSV fails to open because of a control line rupture, or fails to close due to scale

build-up. Non-item failures that include failures of otheritems should be modeled

separately in a quantitative analysis, i.e., the control line and the valve should be

modeled as separate items. However, the most significant part of the non-item fail-
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ures are physical properties that do not directly degrade the valve parts, but prevent

the valve from functioning (scale, hydrates, sand, debris)or due to stress failures.

The observed distribution between item failures and non-item failures found in

WellMaster are 45% and 55%, respectively, and shows that many failures are re-

ported as failures not directly caused by the valve itself. This shows that the well

conditions and operations in the well highly influence the reported failure rate and

should be considered when designing a new well.

5 SCSSV restoration

The time after a failure is detected is important when considering safety unavail-

ability, since the situation may be dangerous even if it is known that the valve has

failed. NORSOK D010 [9] states that ‘upon confirmation of loss of a defined well

barrier, the production or injection shall be suspended andshall not re-commence

before the well barrier or an alternative well barrier is re-established.’

An SCSSV can be repaired in different ways. For dangerous failures the most

common repair action will be a workover, where the production string is pulled

and the SCSSV is replaced with a new, or redressed, valve of the same type. This

repair is both costly and time consuming. In some cases a through tubing repair

may be sufficient to restore the valve function. If the failure is caused, e.g., by scale

build-up, it may sometimes be possible to inject fresh water, acid or chemicals or

alternatively perform wireline operations to clean the well. The repair times for the

different intervention alternatives are highly influenced by the type of well. For a

platform well the workover and also the wireline operation will be far less time-

consuming than for a subsea well where all interventions must be performed from

a workover vessel.

When a dangerous failure is detected, the important time with respect to safety

is the time from the failure is detected until the well is brought to a safe state.

During a part of the restoration time it will be known that thefailure is present,

but the state will still be dangerous, while after some time the valve is still not

repaired but the well is brought to an equally safe or safer state than when the

SCSSV was functioning as normal. Hence, the dangerous repair time is usually

much lower than the actual time used to replace a failed valve. As an example,
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when an SCSSV failure is detected in a platform well, the wellwill normally be

plugged below the SCSSV and also closed on the X-mas tree. This is considered

safe until the actual repair of the valve is performed. It is also possible to plug a

subsea well, but this requires a workover rig. Therefore, the well is normally closed

on the X-mas tree until a workover to replace the SCSSV is performed. Whether or

not this is safe depends on the distance to the neighboring platform (personnel risk

in case of leak), the additional valves available on the template, etc. The risk of

external damage to the X-mas tree must also be considered. Compensating actions

may be to reduce the vessel activity above the wellhead.

Further in this paper it is assumed that when the well is brought to a safe state,

the remaining repair time will be equally safe or safer than before the SCSSV

failure was detected. This means that the critical time thatshould be included in

the safety unavailability calculations is the mean time from a failure is detected

until the well is brought to a safe state. This time is called the ‘mean dangerous

waiting time’ (MDWT).

6 Safety unavailability models

In IEC 61508 [5] the probability of failure on demand (PFD) isused to measure the

unavailability of a safety function. If a demand for the SCSSV as a safety barrier

occurs, the PFD denotes the average probability that the SCSSV will not be able to

fulfill its safety function. Since PFD is an average failure probability, it may also

be interpreted as the mean proportion of the time where the SCSSV is not able to

function as a safety barrier. This proportion of time is sometimes called the mean

fractional down-time (MFDT).

In the following, three alternative PFD models are presented. The models are

based on the classification discussed earlier in this paper.We assume that all time

to failure distributions are exponential, which implies that failure rates are assumed

to be constant.

Despite the huge amount of data in WellMaster [8], it has not been possible to

decide with confidence whether or not the SCSSVs have constant failure rates. The

main reason for this is that the data sets are inhomogeneous and represent valves

operated under a variety of environmental conditions. The internal environment in
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each particular oil/gas well also changes during its lifespan. The usual assump-

tion of independent and identically distributed lifetimestherefore does not hold.

However, the exponential distribution is chosen because analysis of WellMaster

data on SCSSV shows a fairly good fit to the exponential distribution. The SCSSV

is usually replaced when a well workover is carried out. The time between well

workovers varies significantly, with an average interval between 8 and 10 years.

The average time in operation for an SCSSV is therefore 8–10 years.

A PFD model for deteriorating valves modeled by a Weibull distribution is sug-

gested and discussed in [14].

Single SCSSV Let τ be the time interval between consequtive tests, and letλD

be the rate of dangerous undetected failures of an SCSSV, i.e., failures that are not

detected by diagnostic testing, and that may - or may not - be detected during peri-

odic testing. For the SCSSV, no failures are supposed to be detected by diagnostic

testing, which means that all dangerous failures are classified as undetected. Note

that λD is the rate of all dangerous failures, be it item or non-item failures, and

independent or common cause.

If we assume thatall dangeous failures are revealed in each test, and we assume

the the valve is ‘as good as new’ after each test, then the PFD within the test interval

(of lengthτ) is (see [13])

PFD=
1
τ

∫ τ

0
e−λDt dt ≈

λDτ

2
(1)

In the WellMaster report [8] the SCSSV reliability is presented as a total mean

time to failure, MTTF, for each of the valve makes presented in the study. The

average MTTF for all SCSSVs was found to be 36.7 well-years, and 55.6% of all

failures were dangerous failures. With this data, the dangerous failure rateλD is

approximatelyλD ≈ 1.7 · 10−6 (hours)−1. With a test interval of, say,τ = 6 months

= 4380 hours, the PFD is equal to 3.8 · 10−3. This means that we are unprotected

by the valve in approximately 33 hours per year.
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Non-perfect testing Often, the test is not fully realistic. In most cases the SC-

SSV is closed (smoothly) after the flow has been closed by the production wing

valve. In a worst case real demand situation, the SCSSV has tobe slam-shut,

meaning that it will be closed against a flowing well. A slam-shut operation will

give high stresses to the valve, and it may fail to close the well even if it passed a

normal test just prior to the slam-shut.

To leak-test the valve the SCSSV has to be closed and pressurebuilt-up on

the downstream side has to be monitored. This test is sometimes imperfect, either

because the crew does not wait long enough for the pressure tobuild up, or because

of miscalibrated or defect pressure gauges.

The probability that a dangerous failure is present after a test is difficult to

estimate. Let us assume that we, based on engineering judgement and observations,

can estimate the probabilityθ that a failure persists after a test. The PDF within the

test interval is therefore approximately

PFD≈
λDτ

2
+ θ (2)

For simplicity, we assume that the probabilityθ is constant and independent of

time. In the PDS project[4] the probabilityθ is called the probability of ‘test inde-

pendent failures’ (TIF), or probability of systematic failures (PSF).

Down-time due to testing and repair The testing will, on the average, take the

time MTTI (mean time to inspect). During the testing time theSCSSV is able to

perform its function as a safety barrier if the valve is functioning when the test is

initiated. Otherwise the SCSSV is not able to perform its safety function.

During the repair action the well will be unprotected duringa part of the repair

time as discussed in section 5. The unprotected time is denoted MDWT. If we as-

sume that the tests are carried out after intervals of lengthτ irrespective of whether

or not a failure has occurred, we get the overall PFD (i.e., the average proportion

of time where the well is not protected by the SCSSV or an adequate substitute):

PFD ≈

λDτ

2
+ θ +

1− e−λDτ

τ
(MDWT +MTTI)
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≈

λDτ

2
+ θ + λD · (MDWT +MTTI) (3)

where 1− e−λD
≈ λDτ is the probability that a dangerous undetected failure is

present when the test is initiated. We also note thatλDτ is the frequency of danger-

ous valve failures, i.e., the frequency of valve renewals due to dangerous failures.

If we use the same data as above, and assume that MDWT+ MTTI is five

weeks, i.e., 840 hours for a subsea well, thenλD · (MDWT +MTTI) ≈ 1.5 · 10−3.

Note that the PFD found by using eq. (1) or (2) is the unavailability of the valve

in normal operation when we thrust that the valve is functioning. The contribution

from λD · (MDWT) in eq. (3) comes from the restoration action, when weknowthat

we are unprotected by the valve. In some applications it is important to distinguish

between these two contributions. Also note that the contribution from the MDWT

is in the same order of magnitude as theunknownPFD. In the numerical example

above we assumed MDWT to be five weeks for a subsea well. For many fields this

is a rather low estimate and we may often see waiting times 2–3times as high.

Standby redundancy So far, we have only considered a single SCSSV. Now,

assume that two valves are installed in series. We assume that only one valve is in

operation when the system is started up at timet = 0. The other valve is in standby

position and may be activated by a dedicated mechanism. If the active valve fails,

the standby valve will be activated. The well will not be re-completed until the

second valve has failed. Only dangerous failures are considered. The active valve

is tested at regular intervals of lengthτ. The standby valve is not possible to test

while in standby position. The mean testing time is MTTI, thesame as for a single

valve. The mean dangerous waiting time, MDWT, is also the same as for a single

valve.

The (initially) active valve has constant failure rateλD1. When the active valve

fails, it is locked open and the standby valve is activated. The probability that this

operation is successful is denoted 1− p. The standby valve has constant failure rate

λs
D2 in passive state, and failure rateλD2 when activated. Common cause failures

may be disregarded in this case since such failures are incorporated into the total

dangerous failure rates of the two valves.

The survivor functionRS(t) for the standby system with respect to dangerous

15



failures is given by (see [13], p. 177)

RS(t) = e−λD1t +
(1− p)λD1

λs
D2 + λD1 − λD2

(

e−λD2t
− e−(λD1+λ

s
D2)t
)

The mean time to the first dangerous system failure is

MTTFS =
1
λD1

+ (1− p) ·
λD1

λD2(λD1 + λ
s
D2)

The frequency of dangerous system failures, i.e., renewalsdue to dangerous system

failures, is therefore

νS ≈
1

MTTFS

The standby system has only one active valve that is tested periodically. The PDF

of the system during the test interval is therefore the same as for a single valve. The

only difference is that the failure rate may change. From the start-upthe failure rate

is λD1. If the active valve fails, and the standby valve is activated, the failure rate

will change toλD2. Assume that the time between workovers ist0. The probability

that the active valve survives a workover period is then equal to RD1(t0) = e−λD1t0.

The ‘average´failure rate is therefore approximately

λS ≈ e−λD1t0
· λD1 +

(

1− e−λD1t0
)

· λD2

The PFDS of the standby system is

PFDS ≈
λSτ

2
+ θ + νS(MDWT +MTTI)

Active redundancy Assume now that two SCSSVs of the same type are installed

in series, and that both valves are active and tested at the same time after intervals

of lengthτ. The total dangerous failure rate of a valve isλD and the two valves are

exposed to common cause failures that can be modeled by aβ-factor model. If one

of the valves fails, this valve is left idle and the well is protected by the other valve.

When both valves have a dangerous failure, the valves are renewed.

The survivor function of the valve system with respect to dangerous failures is

16



(see [13], p. 220)

RA(t) =
(

2e−(1−β)λD t
− e−2(1−β)λD t

)

· e−βλDt

= 2e−λDt
− e−(2−β)λD t

The mean time between dangerous system failures is hence

MTTFA =
2
λD

−

1
(2− β)λD

The frequency of dangerous system failures is therefore

νA ≈
1

MTTFA

When both valves are functioning, the PFD1 within the test interval can be

approximated by (see [13], p. 444)

PFD1 ≈

[

(1− β)λDτ
]2

3
+
βλDτ

2

When only one valve is functioning, the PFD2 within the test interval is approxi-

mately

PFD2 ≈
λDτ

2

If we assume that the time between workovers ist0, the probability that both valves

will survive the whole interval without any dangerous failure is

R(t0) = e−2λDt0

The average PFD3 in the test interval is then

PFD3 ≈ e−2λDt0
· PFD1 +

(

1− e−2λDt0
)

· PFD2

The probabilityθA of test independent failures for the active redundancy system

will be slightly lower that the corresponding probabilityθ for a single valve. The
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mean time to test the system, MTTIA will be somewhat higher than MTTI for a

single valve, and the mean dangerous waiting time, MDWT, will be unchanged.

The total PFDA of the active redundancy system is hence

PFDA ≈ PFD3 + θA + νA(MDWT +MTTIA)

7 Concluding remarks

This article suggests a failure classification in line with IEC 611508 terminology,

discusses the various contributions to the safety unavailability, and describes a

model for calculating the safety unavailability for different SCSSV configurations.

The model is based on the exponential distribution, even if we know that it might

be unrealistic. In this paper we have presented a failure classification that divide

hardware failures into failures influenced by the frequencyof testing, failures not

influenced by testing and stress failures. This classification may assist in more

realistic input reliability data.

Several problems were not discussed, including interdependency between the

various failure modes, and time-dependent variations in environmental and oper-

ational stresses. As an example, the presented failure classification suggests that

some failures are influenced by the number of tests performed. This influence is

not reflected in the unavailability model.

The model and approach for determining well specific reliability data requires

access to detailed reliability data bases. Access to databases like the WellMaster

project are, however, often restricted. Only publicly available information was used

in this article.

Many of the ideas presented in the paper should also be applicable for other

type of equipment like x-mas tree valves and subsurface controlled annulus safety

valves (SCASV).
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