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Abstract

For random waves the free surface elevation can be described by a number of individual wave pa-
rameters. The main object of this work has been to study the statistical properties of individual
parameters in successive waves; the wave crest height, the wave height and the wave period.

In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected
in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity
is transformed to a two-dimensional distribution by use of the two-dimensional Rayleigh distri-
bution. This model only includes sum frequency effects. A two-dimensional distribution is also
established by transforming a second order model including both sum and difference frequency
effects. Both models are based on the narrow-band assumption, and the effect of finite water
depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has
been extended to two dimensions by transformation of the two-dimensional Weibull distribution.

Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf
model. Results with two initial distributions for the transformation are presented, the Naess
(1985) model and a two-parameter Weibull distribution, where the latter is in best agreement
with data. The results are compared with existing models. The Nataf model has also been used
for modeling three successive wave heights. Results show that the Nataf transformation of three
successive wave heights can be approximated by a first order autoregressive model. This means
that the distribution of the wave height given the previous wave height is independent of the
wave heights prior to the previous wave height. The simulation of successive wave heights can
be done directly without simulating the time series of the complete surface elevation.

Successive wave periods are modeled with the Nataf transformation by using a two-parameter
Weibull distribution and a generalized Gamma distribution as the initial distributions, where the
latter is in best agreement with data. Results for the marginal and two-dimensional distributions
are compared with existing models. In practical applications, it is often of interest to consider
successive wave periods with corresponding wave heights exceeding a certain threshold. Results
show that the distribution for successive wave periods when the corresponding wave heights
exceed the root-mean-square value of the wave heights, can be approximated by a multivariate



ii

Gaussian distribution. When comparing the results with data, a long time series is needed in
order to obtain enough data cases. Results for three successive wave periods are also presented.

The models are compared with field data from the Draupner field and the Japan Sea, and
with laboratory data from experiments at HR Wallingford. In addition, data from numerical
simulations based on second order wave theory, including both sum and frequency effects, are
included.
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General rules

e Some letters are used to represent several things. However, the present meaning should be
clear from the context.
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CHAPTER 1

Introduction

1.1 Background and motivation

In design and analysis of ships and offshore structures a good description of the surface elevation
is important. The surface elevation can be described by a number of parameters for individual
waves, e.g., the wave height, the wave period, the wave length and the wave steepness. The
surface elevation is far from deterministic, and it is important to find good statistical models
that give accurate parameter predictions and corresponding uncertainty estimates. It is therefore
of interest to find both marginal probability distributions as well as joint probability distributions
for combined parameters or a single parameter in successive waves.

In most mild to moderate sea states, the surface elevation can be described by a linear model,
and the statistics is determined from well-known distributions, e.g., the wave height is well
described by the Rayleigh distribution. However, in severe sea states, which are of interest for
design purposes, the nonlinear effects become significant, and more accurate models are required.
A description of some cases, where the nonlinearity in the surface elevation is important, like
wet-deck slamming and green water load, is given below.

Estimation of the probability of a wave height exceeding a critical level has long been recognized
as important statistics in design and safety evaluation of coastal and offshore structures and
vessels, e.g., when selecting the deck elevation for a fixed offshore platform. In this case it is the
wave crest heights that are of interest, not the total wave height. Risk of water impact on decks
of platforms has led to a large study of hydrodynamic loads and the structural response due to
wave impact, see e.g., Kaplan (1992, 1995).
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Figure 1.1: Model test of a semi-submersible in extreme waves. (From experiments at Marintek,
Trondheim, Norway).

Weight and stability considerations will limit the deck height of floaters, such as semi-submersibles.
A large air gap is therefore expensive, and in new design, extreme waves are allowed to hit the
deck structure. Thus, it is important to estimate the frequency of wave impacts. Figure 1.1
shows a model test of a semi-submersible in extreme waves. One should note that the picture
shows a rare event in a 100-year storm. Several methods of estimating the air gap are discussed
in Sweetman and Winterstein (2003), where in particular the nonlinear behavior of the surface
elevation is taken into account. The results are also compared with data from model tests.

In rough sea conditions the relative motion between the ship and wave can exceed the free-board
of a ship, causing a compact mass of water on deck. This is referred to as green water. The
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Figure 1.2: Model test of a turret moored FPSO in irregular waves. (a) From the side - bow (b)
Forward from the deck house (¢) From above - bow. (From Stansberg and Karlsen, 2001).
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water impact can result in high pressure on the deck and on structures located at the deck,
like the deck house. Green water loading can also contribute to the global loads of the ship.
Probability distributions have been established in order to predict green water loads. Ogawa
(2003) discussed a prediction method for green water load that is based on the distribution of
relative water height. Green water incidents can be a risk factor for the stability of the ship,
and water-on-deck casualties are a concern. Figure 1.2 shows a turret moored FPSO in irregular
waves. The picture shows one of the most extreme and steep random wave events in both (a)
side, (b) forward and (c) downward views.

Closely related to the joint distributions is the interest of knowing the conditional distribution,
e.g., to know the probability of a wave crest exceeding a specified height given that the previous
wave crest exceeded the same height. Several two-dimensional distributions exist for modeling
two successive wave heights. These are based on transformations of well known joint distribu-
tions, e.g., the two-dimensional Weibull distribution. It is also of interest to look at a joint
distribution for more than two successive wave heights, but no such distributions have been pre-
sented. The correlation between three successive wave heights, however, has been explored by
several authors, see e.g. Arhan and Ezraty (1978). Extending the existing two-dimensional dis-
tributions to three-dimensional distributions or higher, is not possible, since a three-dimensional
Weibull distribution is not known. Another approach must therefore be used.

The study of wave periods is relevant in analysis of ships and structures that can be excited
to move near resonance. It is of interest to estimate the probability of two or more successive
waves having periods close to the resonant period of the ship or structure.

For critical wave periods it is also of interest to know the corresponding wave height. Several
joint distributions of wave height and wave period have been presented. These distributions can
also be used to analyze the wave steepness. Closely related to this is the study of conditional
distribution, e.g., to know the probability density function of two or more successive wave periods
given that the corresponding wave heights exceeded a given value. This is of interest e.g. when
studying parametric roll motion of ships. Ships in head sea can under given conditions experience
parametric roll motion when the wave encounter period is approximately half the natural period
of roll motion and the wave heights is exceeding a critical level, see France et al. (2003).

1.2 Previous work

Statistics of wave parameters has been a large field of interest for the past 50 years motivated
by the stochastic nature of the surface elevation. Longuet-Higgins (1952) first introduced the
Rayleigh distribution for prediction of the wave amplitude in a narrow-banded random sea.
Cartwright and Longuet-Higgins (1956) modified the Rayleigh distribution to account for a
more broad-banded random sea by including the spectral bandwidth parameter.

The analysis of wave groups have been made using two different approaches. Longuet-Higgins
(1957), Nolte and Hsu (1972) and Ewing (1973) used the envelope function of the surface el-
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evation to derive the group properties. A second approach, Kimura (1980), treated the time
series of wave height as a Markov chain, where the transition probabilities for the wave height
train were given by the two-dimensional Rayleigh distribution. Similarly, the sequence of wave
periods was modeled with a Markov chain, where the transition probabilities were given by the
two-dimensional Weibull distribution. The second approach was also discussed by Sobey (1996)
for wave heights only. An overview of wave group statistics where both models are included is
given in Longuet-Higgins (1984).

Ochi (1998) has a thorough description of joint distribution functions for linear waves, and there
is also a description of developing distributions for non-Gaussian waves. Massel (1996) has a
discussion of the statistical properties of ocean waves.

A realistic surface elevation is both irregular and skewed. Longuet-Higgins (1963) showed that
the skewness is always positive at infinite water depth. It appears that laboratory waves generally
have higher skewness and kurtosis than ocean waves, see e.g., Jha and Winterstein (2000).

A common assumption for the statistical distributions is that the sea state is narrow-banded.
However, this will not be the case in a realistic sea state. Bitner (1980) considered waves in
shallow water. The results showed that the assumption of Gaussian waves, and thus the narrow-
band assumption, is not valid, and that nonlinear effects are significant. Different approaches of
modeling nonlinear random waves are also summarized in Machado (2003).

In many engineering applications, it is the statistical properties of the wave crest height that
are of most interest. A number of marginal distributions for the wave crest height are available,
both theoretical models and empirical models. In severe sea states nonlinear effects must be
taken into account. Tayfun (1980), Arhan and Plaisted (1981) and Tung and Huang (1985) have
modified the Rayleigh distribution for wave crests and included second order Stokes nonlinear
effects for deep water waves. Kriebel and Dawson (1991) clearly identified the nonlinearity in
wave crest statistics from a laboratory wave record. Their model included second order Stokes
nonlinearities, where a series expansion correct to second order was used. The method was
extended to finite water depth in Kriebel and Dawson (1993). While these second order Stokes
models only include the sum frequency effect, Prevosto et al. (2000) presented a probability
distribution that also included the difference frequency effect. Forristall (1998) also identified
the nonlinearity in wave crest statistics, and Forristall (2000) suggested a parametric crest height
distribution based on second order simulations. Nerzic and Prevosto (1997, 1998) used a Gumbel
distribution, where the parameters are found using a third order Stokes expansion of the surface
elevation, to model the maximum wave height or the maximum wave crest height. A summary
of some of the wave crest models can be found in Prevosto and Forristall (2002).

Another type of distribution is the Gram-Charlier series distribution. Longuet-Higgins (1963)
used the cumulant generating function to obtain the probability density function for the surface
elevation for non-Gaussian waves. This is the same concept as the Edgeworth expansion (see e.g.
Barndorff-Nielsen and Cox, 1989). The expansion requires calculation of the cumulants up to
sixth order. Al-Humoud et al. (2002) and Tayfun (1994) showed theoretical results based on a
truncated form of the Gram-Charlier distribution. The theoretical distributions were compared
with nonlinear wave data from a hurricane. A different approach is given by Srokosz (1998),
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where the Pearson system of distributions (Pearson (1895), Johnson and Kotz (1970)) were used
to derive the distributions for the surface elevation of weakly nonlinear waves. None of these
types of distributions are considered in this work.

In order to verify the theoretical distributions, comparisons with field data, laboratory data and
simulations are important. A vast selection of field data measurements are available. Among
these are storm data measured at various locations in the Gulf of Mexico and in the North Sea
in connection with installations of oil platforms. Analysis of 116 hours of hurricane generated
waves (about 55000 individual waves) from the Gulf of Mexico were done by Forristall (1978),
and a two-parameter Weibull distribution was fitted to the wave height data. The same data
were analyzed by Haring et al. (1976). Vinje (1989) used wave data from the Statfjord field in
the Northern part of the North Sea, including about 2.5 million individual waves, to compare
with theoretical wave height distributions. Myrhaug and Slaattelid (1999) analyzed wave data
from the Frigg field in the Central North Sea, including more than 3.3 million individual waves,
and fitted a parametric model of the joint distribution of the successive wave periods. The same
data were also analyzed by Nerzic and Prevosto (1998), where the data were compared to models
of the maximum wave height or the maximum wave crest height.

Sharma and Dean (1981) presented a simulation method for second order directional seas that
was based on the second order theory by Longuet-Higgins (1963) valid for infinite water depths.
The second order theory was extended to arbitrary water depths. The model includes both
sum frequency and difference frequency effects. Results from the simulation method are also
described in Dean and Sharma (1981). Similar methods have been presented by Marthinsen and
Winterstein (1992) and Stansberg (1993, 1998). These methods include both irregularity and
skewness.

In addition to the distributions for the wave crest heights, several distributions have been pro-
posed for the total wave height in order to improve the model of Longuet-Higgins (1952).
Longuet-Higgins (1980) and Naess (1985), among others, have modified the model to give a
better fit to measured wave data. A summary of some of the wave height models can be found
in Vinje (1989).

The study of marginal probability distributions for wave periods have been addressed by Bret-
schneider (1959). He assumed that the wave length was proportional to the square of the wave
period, and combined this with a transformation of the Rayleigh distribution. Longuet-Higgins
(1975, 1983) presented two models for the marginal probability distributions for wave periods,
where both models were obtained theoretically from the joint probability density function of the
envelope amplitude and the time derivative of the envelope phase. The Longuet-Higgins (1975)
model was symmetric about the mean wave period, while the Longuet-Higgins (1983) model
was asymmetric. Cavanié et al. (1976) presented a joint probability density function for wave
heights and wave periods that accounted for the asymmetry in the wave periods. Tayfun (1993)
presented a joint distribution of wave heights and wave periods that was conditioned on the
wave height being above a threshold, given by the mean wave height. The resulting distribution
was Gaussian with modified mean value and standard deviation.

Most theoretical models are based on the narrow-band approximation, but Lindgren and Rychlik
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(1982) presented a joint distribution of wave heights and wave periods that also are valid for
broad-banded sea states. However, the expressions involved are not in a closed form, thus
numerical integration is required. Rychlik et al. (1997) also presented distributions for ocean
wave parameters using a transformed Gaussian model.

The study of distributions for wave heights and wave periods in sea states with two-peaked spec-
tra have been addressed by Rodriguez and Guedes Soares using a four-parameter wave spectrum
model, which is a combination of two JONSWAP spectra (Guedes Soares, 1984). A series of
papers have been presented on wave heights (Rodriguez et al., 2002), wave periods (Rodriguez
and Guedes Soares, 2000) and wave heights and wave periods (Rodriguez and Guedes Soares,
1999).

Fewer models have been presented for joint distribution of two successive wave periods. Kimura
(1980) presented a two-dimensional Weibull distribution and compared the theoretical model
with data from numerical simulations. Myrhaug and Rue (1993) presented a two-dimensional
distribution based on the Bretschneider (1959) model. A revised model was given in Myrhaug
and Rue (1998). Mpyrhaug and Slaattelid (1999) presented a parametric model of the joint
distribution of two successive wave periods. The model was obtained as a best fit to measured
wave data from the Frigg field in the Central North Sea. The data included more than 3 million
individual waves. One application of these models is the study of near-resonant rolling of ships
in beam seas, which was shown in Myrhaug et al. (2000).

1.3 Outline of the thesis

This thesis is divided into seven chapters, which can be grouped into three main parts.

Chapter 2 describes briefly the important concepts regarding stochastic processes and time series
analysis. Definitions of some of the main wave parameters and a description of concepts that
are extensively used throughout the thesis, e.g., the kernel density estimate, are given here. All
examples that are given in the theoretical chapters use the data from the Draupner field in the
Central North Sea, which is thoroughly described in Chapter 2.4.

The theoretical models for successive wave crests, wave troughs, wave heights and wave periods
are described in Chapters 3 to 5. Both the existing models, the use of other models for problems
in this field and extension of the existing models are discussed. The models are also compared
with field data from the Draupner field.

Chapter 6 presents the results from different data sets, including successive wave crests, wave
troughs, wave heights and wave periods. Both field data, laboratory data and data from numer-
ical simulations are discussed. The results are compared with the theoretical models.

Finally, the main conclusions and some suggestions for further work are given in Chapter 7.
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1.4 Major findings

When modeling the wave crest heights and wave trough depths, nonlinear effects should be
included in the models to obtain reasonable accuracy. It is important to include the difference
frequency effect in addition to the sum frequency effect, especially in finite water depths. A
wave crest height and wave trough depth model based on the second order theory in Marthinsen
and Winterstein (1992) for a narrow-banded random sea state includes both sum frequency and
difference frequency effects. The effect of finite water depth is also included. The model agrees
well with data.

The Nataf model, which transforms the distribution of the parameters of interest to a Gaussian
distribution, is a powerful tool for modeling more than two successive waves. The main challenge
is to select the initial distribution. Results show that the Weibull distribution gives the best
agreement with data for the wave heights, while the generalized Gamma distribution gives the
best agreement with data for the wave periods. The Nataf model can in theory be used when
modeling more than three successive waves, but then the dependency structure should be further
examined in order to validate that the correlation between the waves is correctly taken care of
during the transformation.

Results show that the Nataf transformation, both of successive wave heights and successive
wave periods, can be approximated by a first order autoregressive (AR(1)) model, which has the
following properties. First, the time series has the Markov property, i.e., the distribution of the
wave height or period is independent of the wave heights or periods prior to the previous wave
height or period. Thus, only a two-dimensional distribution is needed to calculate the statistics.
Second, the simulation of successive wave heights can be done directly by simulating a series of
transformed wave heights and then find the wave heights by inverting the transformation. This
is a simple and fast method for simulating wave heights if the time series of the complete surface
elevation is not requested. The simulation of successive wave periods is more difficult, due to
the difficulty of inverting the transformation when using the generalized Gamma distribution,
which must be done numerically.

When considering successive wave periods conditioned on the corresponding wave heights ex-
ceeding a given level, e.g., the significant wave height or the rms-value of the wave height, the
wave periods can be modeled by a multivariate Gaussian distribution. Thus, no transformation
is necessary, and the model can in theory be used for modeling more than three successive wave
periods for large waves.

The main contributions of this thesis are the transformation of existing wave crest height and
wave trough depth models to two dimensions and the use of Nataf transformation to model
individual wave heights and wave periods. It is shown that the process of successive wave
heights and wave periods by use of Nataf transformation can be approximated by an AR(1)
model. An extensive analysis of field data, laboratory data and data from numerical simulations
has been made. Comparison between the data and the models is presented.



CHAPTER 1. INTRODUCTION




CHAPTER 2

Theory of stochastic processes and time
series analysis, including analysis of the
Draupner field data

This chapter gives a short introduction to important concepts regarding stochastic processes
and time series analysis. Important aspects regarding density estimates, which are used in
order to explore the properties of a given data set, are discussed. Definitions of important wave
parameters are also given. Finally, the Draupner field data that will be used for comparison
with theoretical models in Chapters 3 to 5 are described.

2.1 Wave parameters

The surface elevation in a random sea state can be described by several sea state parameters,
e.g., the significant wave height, the mean wave period, the mean wave length and the mean
wave steepness. These parameters can be calculated from a measured time series either directly
from zero-crossing analysis or by spectral analysis. The latter is most frequently used.

The one-sided wave spectrum of a stochastic process is given by S(w), where w is the angular
wave frequency. The nth spectral moment, m,,, is given by

mn:/ w"S(w) dw; n=0,1,2,---. (2.1)
0

9



CHAPTER 2. THEORY OF STOCHASTIC PROCESSES AND TIME SERIES ANALYSIS,
10 INCLUDING ANALYSIS OF THE DRAUPNER FIELD DATA

In spectral analysis the wave parameters are related to the wave spectrum through the spectral
moments, when assuming that the spectral moments are finite.

The mean zero-crossing wave period can be defined from the wave spectrum by either

TmOl == 27T—, (22)
my
which is called the mean wave period, or
Ty = 27, | 20 (2.3)
msy

which is called the mean zero-crossing wave period. It can also be calculated from a zero-crossing
analysis of the time series, and is then denoted as 7.

The mean period between maxima, T},24, is defined by

Toos = 2, |22 (2.4)
my

The significant wave height, Hg, is defined from the wave spectrum by

Hyo = 44/, (2.5)

When it is calculated from a zero-crossing analysis, it is given by the mean value of the 1/3
highest waves, H 3.

The average wave steepness, s, is defined as

5 = Hmohs (2.6)
2

where k, is the wave number that corresponds to the peak period 7).
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2.2 Time series analysis and definition of stochastic pro-
cesses

Newland (1993) and Wei (1990) give a good background for time series analysis. Fourier analysis
and estimation of the spectrum are well described there. Newland also gives a short introduction
in probability theory. A common assumption made in time series analysis, is that the time series
is ergodic, and thereby stationary. Often the time series is also assumed to be narrow-banded.
These concepts are defined in the following.

2.2.1 Estimated parameters from the time series

The free surface elevation at a fixed point can be considered as a stochastic process, X (¢), with
expected value p and variance o2. Although the time variable, ¢, is continuous, the measurements
are often discrete. Let x = (z1,...,x,) be a time series of discrete measurements of the free
surface elevation at a fixed point. This is a realization of the stochastic process X (¢).

The two most important parameters measured from the time series is the mean value,
1
M:X:—Z.ﬁvi, (27)

and the variance

o2 = D (wi—x)% (2.8)

=1

The variance of the free surface elevation is also equal to the zeroth spectral moment m.

Two additional quantities of interest are the skewness

b= o (2.9)
and the kurtosis o 210
S |
where 1, is the rth central moment of the variable X, i.e.,
wr = E[(X — E[X])"]; r=1,2,.... (2.11)

The skewness measures the lack of symmetry in the probability density function, while the
kurtosis measures the peakedness or flatness. For a Gaussian distribution p3 = 0 and py = 3.
Figure 2.1 illustrates the difference between a symmetric distribution and skewed distributions.
Figure 2.1 (a) shows a standard Gaussian distribution that is symmetrical about zero. The
distribution in (b) has a longer tail on the right and is said to be skewed to the right, while
the distribution in (¢) has a longer tail on the left and is said to be skewed to the left. The
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Figure 2.1: (a) Symmetric distributions (p3 = 0), — standard Gaussian probability density function
(p4 = 3), — — more peaked about its mean (ps > 3), — - — less peaked about its mean (ps < 3). (b)
Distribution skewed to the right (ps > 0). (c) Distribution skewed to the left (p3 < 0). The dotted
lines indicate the mean value.

skewness coefficient will be zero, positive or negative, depending on whether the distribution is
symmetrical, skewed to the right or skewed to the left, respectively. Figure 2.1 (a) also illustrates
the difference in the kurtosis of three distributions. One is more peaked about its mean than
the Gaussian distribution (py > 3), and one is less peaked about its mean than the Gaussian
distribution (ps < 3).

2.2.2 Stationary stochastic process

A stochastic process is nth order stationary if the joint cumulative distribution function has the
property

FXl,...,Xn (xl, e ,.ZUn) = FX1+j,...,Xn+j (£U1+j, e ,xn+j), (212)
for any integer j. If Eq. (2.12) is true for any n, the process is strictly stationary. A stochastic
process is weakly stationary if it is second order stationary, and if its first two moments exists
and are finite.

A Gaussian stochastic process is uniquely described by its first two moments. This means that
strictly and weakly stationarity are equivalent for a Gaussian process.

2.2.3 Ergodic stochastic process

A stochastic process is ergodic if the ensemble average, i.e., the mean value at a given time
instant of several realizations of the process, is equal to the time average, i.e., the mean value
in the entire time interval of one realization of the process. This also means that an ergodic
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stochastic process must be stationary. If a stochastic process is ergodic, then only one infinitely
long realization of the process is necessary to describe the process.

2.2.4 Narrow-banded stochastic process

A stochastic process is narrow-banded if most of the energy in the spectrum is concentrated
around one frequency.

Two quantities that indicate if a stochastic process is narrow-banded are the spectral bandwidth
parameters €5 and €4 given by (assuming that the spectral moments exist and are finite)

)
= —1 2.13
€2 m% ( )
2
e = (112 (2.14)
Moty

The bandwidth parameters are 0 < €5, ¢4 < 1, and the closer €5 and ¢, are to 0, the more narrow-
banded the process is, and the closer €, and ¢, are to 1, the more broad-banded the process is.
A realistic sea state will never be completely narrow-banded.

The spectral parameters m, and m4 depend on the behavior of the spectrum at high frequencies.
Thus, the spectral bandwidth parameters will vary according to the cut-off frequency choice
when calculating the spectral parameters (see Rye (1977) and Rye and Svee (1976)). Due to
this instability, the use of especially the bandwidth parameter ¢4 in the distributions should
be avoided. The effect on different wave statistics for varying bandwidth parameter ¢, is also
discussed in Goda (1970).

2.3 Kernel density estimator

Density estimates are used in order to investigate the properties of a given data set. Several
methods are available to obtain the density estimates. The oldest and most widely used density
estimator is the histogram. This simple method gives valuable information about the data set.
However, the choice of the number of bins and the origin of the bins have strong influence of the
resulting histograms and can be crucial in some cases. Also the discontinuity of the histograms
can cause difficulty, e.g., if derivatives of the estimates are required. A more thorough discussion
of density estimators is found in Silverman (1986).

A more robust density estimator is the kernel density estimator, which is defined by

frlo) = S Ko (90 - yj> | (2.15)
S s
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where n is the number of data points, y; ...y, is the data set, and h; is the smoothing parameter
or window width. The kernel function K, satisfies the condition

/00 Ky(x) de = 1. (2.16)

Usually K; will be a symmetric probability density function, e.g., the Gaussian density. To
illustrate the method, consider the kernel estimator as a sum of 'bumps’ placed at the obser-
vations. The shape of the bumps are given by the kernel function while the width is given by

~

fx(a)
0.4+
0.3¢
0.2+
0.1}
0 A A i
4 -2 0 2 4
x
4
xr
4
X

Figure 2.2: Kernel density estimate showing individual kernels and varying smoothing parameter. Top:
hs = 0.4; Middle: hs = 0.2; Bottom: hs = 0.8. (From Silverman, 1986).
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the smoothing parameter. Figure 2.2 illustrates the principle of a kernel density estimate. The
crosses mark the observations, and both the individual kernels and the resulting kernel density
estimate are indicated. One should note that the small sample space are only used for the sake
of clarity. The different figures show the effect of varying smoothing parameters. If A, is too
small, then each observation will be marked with a spike, and if hy is too large, then all the
details are obscured. The smoothing parameter can be selected by trying out several values
and then selecting it 'by eye’. However, various methods are available, and are well discussed
in Silverman (1986). The purpose of the density estimate will also influence the choice of the
smoothing parameter.

Several kernel functions are available. The kernel function used in this thesis is the Epanechnikov
kernel (Epanechnikov, 1969) given by

o (1—32%) —V6<a <6

4 2.17
0 otherwise. ( )

There are several measures of the discrepancy of the kernel density estimator from the true
density. One possible measure that is often used is to minimize the approximate mean integrated
square error, i.e., to minimize the approximate expression of

B [/ {i@) - f(x)}de] | (2.18)

This is obtained by using the Epanechnikov kernel.

2.3.1 The kernel method in p dimensions

The multivariate kernel density estimator is defined by

fx(x) = n}zﬁ’ ZKd <X ;syz) , (2.19)

=1

where n is the number of data points, and y, ...y, is a multivariate data set in p dimensions.
The kernel function K, defined for a p-dimensional x satisfies

R Ky(x) dx =1. (2.20)

The multivariate Epanechnikov kernel is given by

L p+2)(1 —xTx) xTx<1
2c (p )(

Ka(x) = { Zr (2.21)

otherwise,

where ¢, is the volume of the unit p-dimensional sphere, i.e., ¢; = 2, c; = T, etc.
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2.4 Description of Draupner field data

In order to validate theoretical models, comparison with field data is important. The theoretical
models that are discussed in Chapters 3 to 5 will be compared with data from the Draupner
field. Results from other data sets, both field data, laboratory data and data from numerical
simulations will be presented in Chapter 6. A description of the Draupner field data is given
below.

Time series were measured at the Draupner platform in the Central North Sea in the period
from 31st of December 1994 to 20th of January 1995. Figure 2.3 shows the location of the
platform. In the same time period wind measurements were taken at the Sleipner field, which
is located approximately 70 km Northwest of the Draupner platform. It is assumed that the
wind conditions at the two locations are similar. The measured wind directions show that half
of the data represent wind from the North, and the other half represent wind from the South.
No information regarding the directional spreading of the waves is available for the data. Sunde
(1995) gives a description of the meteorological conditions for January 1, 1995. A discussion of
the data can also be found in Brodtkorb et al. (2000).

The data are measured by a down-looking laser sensor mounted on the Draupner jacket platform,
and the waves are not expected to be seriously influenced by the structure of the platform.
However, the finite water depth of 70 m does affect some waves, but overall the effect is considered
to be insignificant. Thus the data can be considered to be taken as representing deep water waves.
Measurements are done during 20 minutes in 3 hours intervals, with a sampling frequency of
2.1333 Hz.

Analysis of each of the 48 individual time series are made, and the descriptive statistics are

62
61}
60|
59¢
58
57
56|
55§,
5114

Draupner

Scotland

i

-2 0 2 4 6 8 10

Figure 2.3: Map of the Central North Sea with the Draupner platform at 57.7°N, 2.6°E, and the
Sleipner platform at 58.4°N, 1.9°E.
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Figure 2.4: (a) Spectral densities of the 48 individual time series. (b) The spectral density of field
data (solid); JONSWAP spectrum with v; = 1.9 (broken); Peak frequency of field data w, = 0.56 rad/s
(dotted).

Table 2.1: Descriptive statistics of the Draupner field data, from the individual records of 20
minutes.

Mean Min/Max St.dev
H,no [m] 6.73 6.01/7.99 0.61
T2 [s] 8.29 7.82/9.05 0.32
Trno1 s] 9.05 8.46,/10.02 0.38
Trnoa [s] 4.35 3.11/4.88 0.34
T, [s] 11.27 9.80/13.24 0.75
k [rad/m] 0.0589 0.0492/0.0659 0.0044
ky [rad/m] 0.0495 0.0404/0.0563 0.0041
Crms [m] 2.38 2.13/2.82 0.22
o [m] 1.68 1.50/2.00 0.15
p3 -] 0.147 0.021/0.302 0.062
P4 -] 2.96 2.55/3.69 0.22
€ [-] 0.436 0.373/0.504 0.029
€4 -] 0.850 0.816/0.931 0.023
5 -] 0.035 0.024/0.048 0.005
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Figure 2.5: The parameters Hy,g, T}, and T2 for the individual time series. o Hp,o; © Tp; X Tino2
The dotted lines indicate the mean values.

given in Table 2.1. The parameters k, ki and ams are the mean wave number corresponding to
Trno2, the mean wave number corresponding to T,,01, and the rms (root-mean-square) value of
the linear amplitude, respectively. These terms will be properly defined in Chapter 3.

The spectral densities are plotted in Fig. 2.4 (a) and show that all spectra have single peaks.
Together with the descriptive statistics, it suggests that the data can be grouped into one single
time series. With an increased record length, the fitted distribution will be more reliable, given
that the sea state is more or less stationary during the entire time series. Figure 2.5 shows the
parameters H,,y, T, and T,,2 for the individual time series. The parameter locations around
the mean values show no significant increasing or decreasing trend. Together with the spectral
densities in Fig. 2.4 (a) this indicates that the sea state is approximately stationary when
considering all 48 time series as one time series.

The total record length is 15 hours and 53 minutes, including about 6300 individual zero-crossing
waves. In the zero-crossing analysis, waves of amplitude less than 1/10 of the standard deviation
above or below the zero line were neglected. Figure 2.4 (b) shows the spectral density for this
time series, where the dotted line indicates the peak frequency. The spectrum for the field data
corresponds to a JONSWAP spectrum with peakedness parameter v; =~ 1.9, and the JONSWAP
spectrum is shown in the same figure, with a broken line. The descriptive statistics of the total
time series are given in Table 2.2, and the values are very close to the mean values given in
Table 2.1. Note that the skewness is positive and that the kurtosis is close to 3. Since the
surface elevation is not completely Gaussian, nonlinear effects are expected. Figure 2.6 shows
the histogram of the surface elevation compared to a Gaussian distribution with zero mean and
variance equal to (1.69 m)?.
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Figure 2.6: Histogram of the surface elevation. The line indicates a Gaussian distribution with zero
mean and variance equal to (1.69 m)2.

Table 2.2: Descriptive statistics of the Draupner field data, from the total time series.

Hyno m] 6.76
Trno2 [s] 8.37
T B 9.09
Tos 5] 4.44
T, B 11.23
k [rad /m] 0.0576
ky [rad/m] 0.0488
(s (m] 2.39
o [m] 1.69
p3 ] 0.151
pa ] 3.05
€ ] 0.425
€4 ] 0.847
s ] 0.035
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CHAPTER 3

Joint distributions of successive wave
crest heights and successive wave
trough depths

3.1 Linear theory

A random sea with small wave amplitudes and a narrow-banded wave spectrum follows the
Gaussian distribution. The surface elevation can be represented either by an infinite sum of
sine-waves with variable amplitude and random phase or with a single sinusoidal wave with
slowly varying amplitude and phase and with frequency equal to the mean wave frequency of
the sea, see Rice (1945) and Longuet-Higgins (1952). The latter formulation gives the following
expression for the surface elevation

n = 14(t) cos(wt — kx + £(t)), (3.1)

where 1,(t) is the slowly varying linear amplitude and £(#) is the slowly varying phase. Further-
more, @ is the mean wave frequency, and k is the mean wave number given by the dispersion
relationship for linear waves

©? = gk tanh kd, (3.2)

where ¢ is the acceleration of gravity, and d is the water depth. With these assumptions,
the amplitude is distributed according to the Rayleigh distribution (Rayleigh (1880), Longuet-
Higgins (1952)), i.e., the probability density function of the dimensionless linear amplitude A is
given by

fa(a) =2aexp {—a’}; a= > 0, (3.3)

21
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where ayms = (2mg)(1/?) is the rms (root-mean-square) value of 7,. A realistic sea state will not be
completely narrow-banded. In this case k will be taken as the mean wave number corresponding
to ngg.

There are numbers of possible forms of a two-dimensional distribution for the successive dimen-
sionless linear wave amplitudes A; and A, whose marginal distribution is Rayleigh. The most
commonly used is (Longuet-Higgins, 1986)

dmay {_a% + a%} J [Q%alaz] ; a1 Ta,2

1 — K2 1— kK2 1— kK2 “ 2 - (34)

fA A\, 02) =
b 2( ’ ) a Qymg Gyrmg

where I denotes the modified Bessel function of zeroth order given by

I(z) = / ¢7€030 9. (3.5)
0

™

Equation 3.4 has been referred to as the two-dimensional Rayleigh distribution, see Kimura
(1980). Furthermore, the parameter r, is related to the correlation coefficient, p,, between A,
and A by

E(ra) = 5(1 = kg) K (ka) —

1 —

DN =
ISE

Pa = PA,A, = - ; (3.6)
4

where K (k,) and E(k,) are complete elliptic integrals of the first and second kinds, respectively.
Properties of the two-dimensional Rayleigh distribution and calculation of the correlation coef-

ficient are given in Appendix A.

3.2 Second order Stokes theory

Linear theory is applicable in many situations. However, in severe sea states, which are of interest
for design purposes, the Rayleigh distribution underestimates the crest heights, and higher order
effects must be taken into account.

A description of the extension of linear theory to second order Stokes (1847) theory by using
a perturbation approach based on the small quantity k7, is given in e.g. Dean and Dalrymple
(1984). A short summary of this technique is given here, and a more thorough description is
given in Appendix B.

The governing equation for the velocity potential ¢ is the Laplace equation
Vg =0. (3.7)

One should note that here the notation of Dean and Dalrymple is used, i.e., the velocity is given
by v = —V¢. The expansion parameter is k7, < 1. All quantities in the governing differential
equation and boundary conditions are then decomposed into a power series in k7,. The resulting
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first order solution is the linear theory

Nag coshk(d+2z) .
= = t—k :
# w cosh kd sin(@ 7) (3.8)
m = 1acos(@t — kx) (3.9)
©* = gktanhkd. (3.10)

The second order perturbation solution is

3ngwcosh2k(d+z) . ., -
= 3% - 2(wt =k 3.11
. 8 h stk @t kD) (3.11)
Na 1o cosh kd(2 + cosh 2kd) L
= Upa — — + — = 2wt — k 3.12
" P2 osinh2kd 2 2 sinh® kd cos 2(wt — ka), (3.12)

where Cps is the Bernoulli constant. The dispersion relationship remains the same as for first
order, i.e., given by Eq. (3.10).

There are two options to specify the Bernoulli constant. First, Cgs can be put equal to zero,
and the surface elevation can be separated in two parts

N2 =1 + 72, (3.13)

where 77 is the mean value of the surface elevation, and 7 is the fluctuating part, which is zero
when taking the time average. The mean value 7 corresponds to the set-down effect and is zero
in deep water. The resulting expressions for 77 and 7, are

- Ta

T T S anh ok 3.14
! 2 sinh 2kd (3.14)
. 1 cosh kd(2 + cosh 2kd) o
-5 T 2(wt — k). 1
M2 5l 5 sin® id cos 2(wt — kx) (3.15)

Second, d can be specified as the mean water level depth, giving the Bernoulli constant

Na
Cpy = —————. 3.16

P27 9sinh 2kd (3.16)
Then the mean surface elevation is zero, while 7, is the same as before.

The difference between the two options for Cp, is illustrated in Figs. 3.1 and 3.2.

In the following the second approach is used. Then the velocity potential to second order is

¢ =1+ k%%
_ . 3.17)
Negcoshk(d+z) . = - 3 5_cosh2k(d+z) . . - (
= — —_— t—kx)— - — 2(0t — k
5 coshkg St —he) —gme— oy St — ko),
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(a) (b)

Figure 3.1: The Bernoulli constant Cps is equal to zero, which means that 7o = 7. (a) The different
components of the second order component of the surface elevation. (b) The relationship between the
second order component of the surface elevation, mean water level and the sea bottom.

and the surface elevation is

n=m + kn.ne

h Ed(2 + cosh 2kd _ (3.18)
ECOS ( +3C?S ) cos 2(wt — kx).
2 sinh” kd

One should note that the second order Stokes theory only includes sum frequency effects, as
opposed to full second order wave theory that will be discussed in Chapter 3.5. The difference

_ 1.
= 1, cos(0t — kx) + §k77

Figure 3.2: The Bernoulli constant Cpsy is defined as in Eq. (3.16), which means that 772 = 0. Note
that d = d'.
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—— 2nd order Stokes — — 1st order part
— - linear theory 2nd order part
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(a) (b)
Figure 3.3: (a) Wave surface profile; — second order Stokes wave, —— linear wave. (b) First order

(——) and second order (---) component of the second order Stokes wave.

between a second order Stokes wave profile and linear theory wave profile is shown in Fig. 3.3.
The second order Stokes wave has higher crests and shallower troughs than the linear wave
profile. However, the total wave height is the same, and it is equal to 2n,. The crest period,
i.e., the period between a zero-upcrossing and a zero-downcrossing, is shorter for the second
order Stokes wave than for the linear wave, while the trough period, i.e., the period between a
zero-downcrossing and a zero-upcrossing, is longer.

3.2.1 Limitations of the second order Stokes theory

The second order Stokes theory is valid if two criteria are fulfilled. First, the convergence criterion
on the power series ¢, which means that the ratio of the second order term to the first order
term must be much smaller than one, leads to

l_maqﬁg 3 l_cna cosh 2kd
R, = =20 Ml <
S 8 cosh kd sinh® kd

(3.19)

Second, the physical properties of the wave profile require that there is no bump in the trough.
This is indicated by a negative second derivative of the wave trough, which leads to the criterion

sinh® kd

_ . (3.20)
cosh kd(2 + cosh 2kd)

kn, <

In addition to the second order Stokes criteria, the breaking criterion for the wave steepness
must be fulfilled.



CHAPTER 3. JOINT DISTRIBUTIONS OF SUCCESSIVE WAVE CREST HEIGHTS AND

26 SUCCESSIVE WAVE TROUGH DEPTHS
0.6
0.4+ //7///4~’
e , //
02} S
// y / !
00/ — :
m _ m
10 kd
Figure 3.4: Different criteria for k7, as a function of kd; — convergence criterion, — — criterion for no
bump in the trough, — - — wave steepness criterion.

In deep water, defined as kd > 7, the convergence criterion reduces to
Ry = 3¢ "k, (3.21)
while the criterion for no bump in the trough reduces to
k. < % (3.22)
However, the breaking criterion for the wave steepness in deep water is

Fne < = (3.23)
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which will be the most restrictive criterion. In this case I, ~ 0.0025, and the convergence
criterion is satisfied. So the criteria for Stokes waves in deep water are always satisfied.

In shallow water, defined as kd < /10, the convergence criterion reduces to

_ 3 kna

= - 3.24
while the criterion for no bump in the trough reduces to
. kd)?
kn, < ( 3) (3.25)

The latter is the most restrictive. In terms of the Ursell number, U, this criterion can be written

as - ,
_ 8mkn, 87w

U, =— < —. 3.26

(kd)? 3 (3:26)
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The breaking criterion in arbitrary water depth is given by the Miche criterion (see e.g. Soulsby
(1997))

_ kd
kn, < m-0.142 tanh (5.52—> , (3.27)
m

and is satisfied when the criterion for no bump in the trough is satisfied. Figure 3.4 illustrates
the different criteria of kn, as a function of kd. One should note that k7, must be much smaller
than the values indicated for the convergence criterion. However, this is only a problem when
kd — 0. Also, one should note that these restrictions on kn, apply for all wave amplitudes, i.e.,
the criteria must be fulfilled for the maximum wave amplitude. If it is of interest to know the
restrictions on a,ns, the values must be divided by v/In N, where NN is the number of zero-crossing
waves in the current sea state.

3.3 Probability distributions using second order Stokes-
type nonlinearity

3.3.1 Marginal distribution of wave crest heights and wave trough
depths

Tayfun (1980), Tung and Huang (1985) and Kriebel and Dawson (1991) examined the effect of
second order Stokes-type nonlinearity on the wave crest statistics in deep water. Kriebel and
Dawson (1993) extended their (1991) model to finite water depth. The idea of using second
order Stokes-type nonlinearity is adopted here, and is combined with a transformation of the
two-dimensional Rayleigh distribution to obtain the joint distribution for successive wave crest
heights. One should note that this approach includes the sum frequency effects only. A second
order model that includes both sum frequency and difference frequency effects is described in
Chapter 3.6. Although the wave crest height is the quantity of primary interest for engineering
purposes, the results for the wave trough depth are included to illustrate the nonlinearity of
the waves. This model is also described in Wist et al. (2002a), where the theoretical model is
compared with data from the Draupner field, and in Wist et al. (2002b), where the theoretical
model is compared with laboratory data.

The free surface elevation is considered at a fixed point in a stationary narrow-banded random
sea state consistent with second order Stokes waves in finite water depth, i.e.,

n(t) = na(t) coslwt + &(t)] + %l%ni(t)ﬁ(/%d) cos 2[wt + &(t)], (3.28)
where h kd(2 h 2kd)
— coSs + cos
k) = = T (3.29)

contains the effect of finite water depth. The dispersion relationship is given by

w? = gk tanh kd. (3.30)
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For deep water waves f*(kd) = 1, and the dispersion relationship reduces to @2 = gk.

At the wave crest (wt + £(t) = 0) the nonlinear crest height, 7., is determined from Eq. (3.28)
in terms of the linear amplitude as

1. ~
Ne = Mo + §kn2f+(kd). (3.31)
By introducing the characteristic steepness of the random waves, r,, defined by
7y = kaems [T (kd), (3.32)
the nonlinear non-dimensional crest height, w. = 1./ams, can be expressed in terms of the
dimensionless linear amplitude as
1
we =a + §r+a2. (3.33)
This is an ordinary quadratic equation, and the solution of a can be found as

LI+ 2rw,

Ty

a (3.34)

The physical meaning of a, that is, the amplitude is always positive, means that only the
positive square-root is a solution. While Tayfun (1980) and Tung and Huang (1985) used the
exact solution in Eq. (3.34), Kriebel and Dawson (1993) used a series expansion of the positive

square-root to second order, i.e.,
1

a R~ we — —r w?

SR (3.35)

The probability density function of W, is found from transformation of variables. The transfor-
mation of variables in one dimension, when the transformation is one-to-one, is given by

da
c) — c y 3.36
o) = Falatu) |2 (330
which gives
2(vIF2rw, — 1 VIF2rw, — 1)
fw.(we) = V142w )eXp R ) ; we > 0 (3.37)
/14 2r w, r?

The probability of exceedance is then given by

P(W, > w,) = 1 — Fyy. (w,) = exp {—(V L+ 27 we = 1)2} . (3.38)

2
T

Equation (3.37) reduces to the Rayleigh distribution in Eq. (3.3) for small wave steepness, i.e.,
r, ~ 0. In deep water 7, = kayms = (0?/g)ams. A series expansion of Eq. (3.37) to second
order gives the approximate probability density function

3 1 1 ?
fw. (w.) = 2w, <1 — 5TsWe 57“311}3) exp {—wg (1 - §r+wc> } , (3.39)
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Figure 3.5: The difference between using the exact solution of ¢ and the approximate solution in the
transformation of the wave crest height. (a) Probability density function. (b) Probability of exceedance.
(r, = 0.138, from Draupner data)

which is the same probability density function as in Kriebel and Dawson (1993). One should note
that the approximative probability density function becomes negative for w, > % . However,
this will not cause any problems in practice, because the properties of the second order Stokes

waves lead to the criterion a < %, see Appendix C.1 for further details. This means that

2
we < % < 7% A discussion of the approximative model is also given in Wist et al. (2001),

+
where comparison with field measurements from the Draupner field is made.

Figure 3.5 shows the difference between using the exact solution of a, Eq. (3.34), and the
approximate solution, Eq. (3.35), in the transformation, with the parameter r, calculated
from the Draupner field data (see Table 3.1, page 33). The Rayleigh distribution is included
for comparison. Even though the difference between the exact and approximative solution is
seemingly small in the probability density function (a), it is clearly shown for high values of w,
in the probability of exceedance (b).

Similarly, at the wave trough (wt + &(¢) = m) the nonlinear trough depth, 7, is determined from
Eq. (3.28) in terms of the linear amplitude as

M= T — %l_fnif*(/?d)- (3.40)
The nonlinear non-dimensional trough depth, w; = 1;/ams, is given as
wy =a — %maQ, (3.41)
and the solution for a is
0 1+4/1-— 2r+wt‘ (3.42)

Ty
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Considering the properties of the second order Stokes waves discussed in Chapter 3.2.1, the
following restrictions are obtained for a. In deep water the wave steepness criteria in Eq. (3.23)

is the most restrictive. This means that kn, < T and a < &~ < i, see Appendix C.1 for

7 Try
further details. In shallow water the criterion for no bump in the trough in Eq. (3.25) is the
most restrictive, i.e., k1, < @, which leads to a < ﬁ The result is that a < i, and thus

only the negative square-root is a solution in Eq. (3.42), and the transformation is one-to-one.
It is also easy to see that if the positive square-root is used, then a decreases when w; increases,
which is physically not correct. By transformation of variables the probability density function
of Wy is given as

fuvs (1) = 20— VI —2rw) {_(1 - m)Z} ;

T/ 1 —2r wy

Due to the properties of the second order Stokes waves, w; <
with negative values in the square-root.

w; > 0. (3.43)

3

& there will not be any problem

Using the approximative solution of a, i.e.,

1
a~ wp + §r+wt2, (3.44)

the approximative probability density function for W is

3 1 1 ?
fw, (wy) =~ 2wy (1 + ST+ + 57“3111?) exp {—wf <1 + §r+wt> } : (3.45)

Figure 3.6 shows the difference between using the exact solution of a, Eq. (3.42), and the
approximate solution, Eq. (3.44), in the transformation.

The differences between the second order Stokes crest height and trough depth distribution given
in Egs. (3.37) and (3.43) and the Rayleigh distribution in Eq. (3.3) are shown in Fig. 3.7 (a) in
terms of the probability density function, and (b) in terms of the probability of exceedance. It
is clear that the second order Stokes model deviates from the Rayleigh distribution both at the
peak and tail of the distribution. The nonlinearity leads to a higher peak for the troughs and
a smaller peak for the crests than the Rayleigh distribution, and vice versa for the tail of the
distribution. Data from the Draupner field are included for comparison. The data fall between
the second order Stokes model and the Rayleigh distribution. Thus, the data show a nonlinear
behavior, but not as strong as the second order Stokes model. Note that the second order Stokes
model only includes the sum frequency effects, and not the difference frequency effects.

Dawson (2001) proposed a modification of the Rayleigh distribution using fifth order Stokes
theory in deep water. A description of fifth order Stokes theory can be found in Skjelbreia
and Hendrickson (1960), which applies for arbitrary water depth. The approach for obtaining
the probability distribution for the dimensionless crest height (and trough depth) was the same
as in Kriebel and Dawson (1991). Since the relationship between the nonlinear crest height
and the linear amplitude is a fifth order equation, no exact solution can be found, and an
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approximative solution using series expansion must be used. For fifth order Stokes waves the
dispersion relationship is also dependent on the linear amplitude, and a series expansion to find
the wave number as a function of the linear amplitude is made. The resulting distribution showed
that both the crest height and the trough depth tend slightly towards the Rayleigh distribution
compared with the second order Stokes model. However, the extension to higher order Stokes
theory is not discussed further in this work, since this model only includes the sum frequency
effects. The difference between including only sum frequency effects and including both sum
frequency and difference frequency effects is significant, which will be discussed in Chapter 3.6.
A full second order model is therefore of more interest than including higher order terms in the
Stokes model.

3.3.2 Joint distributions of successive wave crest heights and succes-
sive wave trough depths

There are several possible forms of two-dimensional distributions whose marginal distributions
are given by Eqs. (3.37) and (3.43). A transformation of variables of the two-dimensional
Rayleigh distribution in Eq. (3.4) gives one possible form. Let a; = 141 /Grms and ay = 14,2/ Grms
denote the non-dimensional successive linear amplitudes a; = a; and ay = a;41, respectively.
Similarly, let we; = 7e1/Gms and we = Nea/arms denote the non-dimensional successive crest
heights we; = w,; and wee = w41, respectively. Then, from Eq. (3.34) (using the positive
square-root) it follows that

-1+ /14+2r,wa e — =1+ /14 2r we (3.46)
9 = . .

)
T Ty

a|p =

The bivariate transformation formula is given by

Oar Oai_
Jwar War (Wer, Wep) = fa, 4,(a1(wer), as(we2)) |, J = ‘ Qpoet - Opoea | (3.47)
awcl 3'“)62

which results in the following two-dimensional probability density function of W, and W,

4(\/1 + 2T+w01 — ].)(\/]. + 27"+’U}02 — ].)

r2(1 = K2 )VT +2r jwer/T+ 2r we

< exp {_ﬁ [(VTF 20 — 12 + (VT 3w - 1)2]} (3.48)

chl,WCQ (wcl, wc2) =

2K,
o [ (T B — (VT B - )]

The parameter k., is related to the correlation coefficient, p., between W, and W,y by

(16+*/_7“++ )/i + ke, + ke, + O(k2,)
(3.49)

pC = chth2 =
1T 4 Vop 4 Ly2
1 T L L
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See Appendix D.1 for further details.

Similarly, for the wave trough depth, let wy = m1/ams and w = 12 /amms denote the non-
dimensional successive trough depths wy; = w;; and wy = wy 41, respectively. From Eq. (3.42)
(using the negative square-root) it follows that

1—\/1—27"+wt1 1—\/1—27"+’U]t2

a1 = ) oy =
T, n

(3.50)

By transformation of variables of the two-dimensional Rayleigh distribution, the two-dimensional
probability density function of W;; and W, is obtained as

A(yT= 2w — 1)(/T—2rum — 1)

r2 (1 — k7 )T = 2r wi /T = 2r jwyg

thl,WtQ (wt17 th) -

1

X exp {—ﬁ [(VT=2r w0 = 1) + (VT = 2row - 1)2]}
Iy [yt (= 2 = (/T 2w~ 1)

T-2|-(1 — Ky

(3.51)
where the parameter k,, is related to the correlation coefficient, p;, between W;; and W, by
(ﬂ — VT lr2) K7, + 5k, + Tosikes T O(KY,)
16 1 T+ g ) Py T o5 ey T 1024 s b+

Pt = PWy ,Wip = u JT 1 (352)
L=3=Fre+qri

The relationships between p. and k2, , as well as between p, and «7,, are illustrated in Fig. 3.8.

Note that the relationships are almost linear. Thus, the method of estimating x?, and 7, values
for general application, will be to find the correlation coefficients p. and p; for the actual data
set and use Egs. (3.49) and (3.52) to find the corresponding x?, and xj, values, respectively.
Table 3.1 shows the calculated parameters for the Draupner field data.

Another quantity of interest is the conditional distribution, e.g., to know the probability density
function of a wave crest given the value of the previous wave crest. The conditional probability
density function of W,y given W, is found by Bayes rule

fW1W2(wc17w02)
Wea|We1 ) = —— . 3.53
Sweaiwer (Wea|wer) o (w1 (3.53)

Table 3.1: Calculated values of the Draupner field data.

r, B 0.138 Pe B 0.291 K2 ] 0.320

c+

[T (kd) -] 1.003 e -] 0.303 K7, -] 0.319
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Figure 3.8: Correlation coefficients p, and p; as a function of the parameters 2, and 7, (r, = 0.138,
from Draupner data).

This results in

chl Wea (w017 wCZ)

fwr (wer)
o 2(VTF2riwe — 1)
_T+(1 — K )V +2r we

. p{_ﬁ k2 (VT F 2 — 1) + wmf]}

+

fWC2|Wcl (w62|wcl) -

(3.54)

I | P (T~ DV 2 - 1)

7"3(1 - "@
The conditional probability density function of Wy, given Wy is

2(1 — /1T —2r,wp)
ro (1= K7 )VI = 21w

<exp { sy [W (V= 2 = 1+ (V= 2wa)’] ) 659)

th2|Wt1 (th |wt1) -

Iy |t (VT 2~ (/T =2 1)

— Ry
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3.4 Forristall distribution

Forristall (2000) suggested a parametric crest height distribution based on simulations using
second order theory. The simulations are based on the theory of Sharma and Dean (1981),
which are further described in Chapter 3.5. Thus the model includes both sum frequency and
difference frequency effects. The simulations were done both for long-crested (2D) and short-
crested (3D) random waves. A two-parameter Weibull distribution of the form

oo () W)} e

was fitted to the simulated wave data. The Weibull parameters o and (3 are estimated from the
fit to data, and are based on the wave steepness, S;, and the Ursell number, U,., defined by

2w ng
S =— , 3.57
' g ngm ( )
and "
U, = 22 3.58
k2d3 ( )

where k; is the mean wave number corresponding to T},0;. Note that S; is based on T}, rather
than 7}, that was used in the definition of the wave steepness in Eq. (2.6), and that U, is based
on H,,, and k; rather than 7, and k that was used in the definition of the Ursell number in Eq.
(3.26).

The wave steepness and Ursell number characterize the degree of nonlinearity of the waves in
finite water depth. At zero steepness and Ursell number the fits were forced to match the
Rayleigh distribution, i.e., « = = a 0.3536 and 8 = 2. The resulting parameters for the

V8
2D-model are

ap = 0.3536 + 0.28925; + 0.1060U,
(3.59)
Bop =2 — 2.1597S; + 0.0968U2,

and for the 3D-model

asp = 0.3536 4 0.25685; + 0.0800U,
(3.60)
Bsp = 2 —1.79125; — 0.5302U, + 0.284U7.

Table 3.2 shows the calculated values based on the Draupner field data. One should note that
the Ursell number will give a minor effect compared to the wave steepness in the Forristall model
for these data. The wave steepness is also small, so the values for the parameters in the 2D model
are almost equal to the values for the parameters in the 3D model. The Draupner data, which
are described in Chapter 2.4, were sampled at water depth of 70 m, which was considered as
deep water. At shallower water depths the Ursell parameter is expected to be higher.



CHAPTER 3. JOINT DISTRIBUTIONS OF SUCCESSIVE WAVE CREST HEIGHTS AND

36 SUCCESSIVE WAVE TROUGH DEPTHS
1 ‘ ‘ — 10 : : : :
— Rayleigh — Rayleigh
0.9+ — — 2nd order Stokes - crest |q \ — — 2nd order Stokes - crest
- - Forristall 2D-model N -+ Forristall 2D-model
0.8 . Forristall 3D-model & Forristall 3D-model
c 7 \
S
B 0.7 / \\\ 810 b\\
5 / z Y
So6r (¢ B 2
© 0.5F 2 N
S 2 X
Zo4l £ \
% 0‘4 \XQ -E 10 \\\
Qo \
o3} \ 2 kS
o '\\ A\
0.2} Q \<>\\
A N
¢ \
0.1 é\\ R 107:'1 F \O\\
0 L L L Q L \ \
0 0.5 1 15 2 25 3 3.5 0 05 1 15 2 25 3 35 4 45 5
a, W a, W
(a) (b)

Figure 3.9: (a) Probability density function, and (b) probability of exceedance of the Forristall crest
height models (2D and 3D), the second order Stokes crest height model and the Rayleigh distribution.
o crest height data from Draupner field (r, = 0.138, a0p = 0.37,82p = 1.887,a3p = 0.368,3p =
1.902).

Figure 3.9 (a) shows the probability density functions, both 2D- and 3D-model, compared with
the Rayleigh distribution and the second order Stokes model for crest heights. The probability
density functions fall between the Rayleigh distribution and the second order Stokes model.
The difference between the 2D- and 3D-model is small, but the 2D-model gives a slightly more
nonlinear effect. The crest height data from the Draupner field are included for comparison.
Figure 3.9 (b) shows the probability of exceedance, where the difference between the models is
more visible. The crest height data are quite well described by the Forristall models.

The two-dimensional probability density function of W, and W, is determined by transforma-
tion of the two-dimensional Weibull distribution (see Appendix E), which gives the following

Table 3.2: Calculated values of the Draupner field data.

S -] 0.0524 as3p [ 0.368
U, ] 0.0083 Bsp ] 1.902
asp ] 0.370 K2 ] 0.313
Bop ] 1.887 K30 ] 0.313
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Figure 3.10: Correlation coefficients p. of the second order Stokes crest height model and p.p of the
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result

52wﬁ—1wﬁ—1 W’ 4w
fWCl:Wc2 (wch ch) — cl c2 exp { — ( cl c2

(V8a)?(1 — KZp) V8a)?(1 — K7p)
/2. B/2 ]

[ 2KerW,{ "W,
K

V8a)A (1 — k)

(3.61)

The relationship between the parameter k.r and the correlation coefficient, p.r, between W,y
and W, is given by

o () O] 7 oo

1 (1 271 G .
+3652 (5+1> (5+2> Kop + O(Kop)

Y

where I' is the gamma function. See Appendix D.2 for further details. Figure 3.10 shows
the relationships between the correlation coefficients for the Forristall crest height models (2D
and 3D) and the parameter k?, compared to the second order Stokes crest height model. The
difference between the 2D- and 3D-model would not be distinguishable, so both models are given
by the same line. The difference between the Forristall model and the Stokes model is small.
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The conditional probability density function of W, given W, is obtained as

Bwﬁ271 E2Fwﬁ1 + wﬁQ
Twes Wy (Wea|wer) = - exp g ——F ¢ c
e (VB) (1 — k2p) (vB0)P (1 — k2,

et *wpy”
[(fa) (1= R >] |

(3.63)

3.5 Second order wave theory

The theory of second order random waves can be found in Longuet-Higgins (1963) in the case
of infinite water depth. Later it has been extended to finite water depth by Sharma and Dean
(1981).

Longuet-Higgins (1963) showed that the skewness of the distribution of the surface elevation
is always positive. Marthinsen and Winterstein (1992) showed that the slowly varying part
of the second order waves gives a negative contribution to the wave skewness in the case of
a narrow-banded wave process in finite water depth, and in the general case in infinite water
depth.

A short description of the second order wave theory in Marthinsen and Winterstein (1992) is
given here. In Chapter 3.6 the theory for a narrow-banded wave process will be used in deriving
the distribution functions for successive wave crest heights and wave trough depths.

The velocity potential and the surface elevation are found from a perturbation approach similar
to the one described for second order Stokes waves in Appendix B. The surface elevation to
second order is given by

n =1 +12. (3.64)

The first order component is given in complex form by

N
= Y Moo, (3.65)
2
n=—N
where the phase functions are

Py = wpt — kpx — &,. (3.66)

The second order component is given by

N N

T = Z na,mna,nEr;,n COS(’¢m + ¢n) + Z na,mna,nE;l,n COS(I/)m - @Z)n)a (367)

m,n=1 m,n=1
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where
Epn = Epp=Eny (3.68)
Enw = Epp=FEn-n (3.69)
B, - S i(wzn: WA + winwn) + § et entin, _ Ghwka
’ 1— gﬁ tanh(k,, + k,)d 4w, wr,
+%(wfn + Wy + Wintn). (3.70)

The quantity E,,, is the quadratic transfer function of the wave elevation. The £, _,, terms
are given as the limits

gkzn w?n gkm
. 1952 — 29 + Wme km
E, .= 1 E,,=-—= R , 3.71
’ wns D T 2 1— - 2 sinh 2k,,,d ( )
Cg,m

where ( ) )

dw gtanh k,,d gk, d(1 — tanh® k,,d
m= — = 3.72
“ dk 2Wm, + 2Wm, ( )

W=Wm, k=km

is the wave group velocity.

Figure 3.11 shows the quadratic transfer function for a fixed sum frequency w; + wy = 1.12
rad/s, which corresponds to wave periods around 11 s. Along wy —w; = 0, then w; = wy = 0.56
rad /s, which corresponds to the peak frequency of the Draupner field data. Note that the second
order Stokes model only includes the sum frequency terms E$m From the figure it is clear that
the second order effects increase with decreasing water depths. The difference frequency term
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has almost no effect in deep water, but as the water depth decreases, this term becomes more
significant, and is almost of the same magnitude as the sum frequency term. Since the difference
frequency term is negative, it will give a reduction in the second order component given in
Eq. (3.67). The variation of the quadratic transfer function for different values of wy — wy is
small, which indicates that the narrow-band assumption is justified. In deep water, however, the
difference frequency term is significant for large difference in w; and wy. This is also discussed
in Myrhaug et al. (2002).

One should note that the expected value of the surface elevation is different from zero. Using a
continuous representation the expected value is given by

=2 /000 E (w,w)S(w) dw, (3.73)

and the variance is given by
o’ = / S(w) dw. (3.74)
0

The skewness is given by

p3 = % /000 /000 [ET (wi,w2) + B~ (w1, w2)] S(w1)S(w2) dwidws. (3.75)

3.6 Extended second order model including sum and dif-
ference frequency effects

For a stationary narrow-banded random sea state Eqs. (3.68) - (3.70) give

1 cosh kd(2 h 2kd
Bt (@,0) = Lpooshihd@+ cosh2kd) (3.76)
2 2sinh” kd
1- 2[tanh kd + 2kd(1 — tanh® kd
B(@,5) = —Lp ltanhkd+2kd(l —tanh7kd)] (3.77)
2" 4kd tanh kd — [tanh kd + kd(1 — tanh® kd)]2
The expected value and skewness given in Eqs. (3.73) and (3.75) become
n = 20°E (@,) (3.78)
ps = 60[E (0,0)+ E*(@,0)]. (3.79)

One should note that since E~(w,w) < 0, the difference frequency term will give a negative
contribution to the skewness. In order to compare the distribution functions resulting from
this model with the distribution functions given in Chapters 3.3 and 3.4, the mean value of the
surface elevation must be zero.
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Then the surface elevation at a fixed point is given by

(1) = macoslot +(0)]+ SRl (5, d) cos 2ot +£(1)] = R f(k,d) + < RH (k. d), (3.80)

where
. h kd(2 + cosh 2kd)
thd) = & 0 3.81
/ ( ’ ) 2sinh® kd ( )
_ 2[tanh kd + 2kd(1 — tanh? k
F(hd) = [tanh kd + 2kd(1 — tanh” kd)] (3.82)

4kdtanh kd — [tanh kd + kd(1 — tanh® kd)]?’
The last term of Eq. (3.80) must be included in order to obtain zero expectation of the surface
elevation. However, the skewness remains the same regardless of the choice of mean value. This
is the same representation as used in Prevosto et al. (2000), among others. In deep water

f=(k,d) — 0, and Eq. (3.80) reduces to Eq. (3.28). See further details regarding the limitations
of the wave amplitude in Appendix C.2.

The procedure of finding the distribution of the non-dimensional wave crest height is similar to
the one described in Chapter 3.3. At the wave crest the nonlinear crest height, 7., is given by

1- - _ 1. -
e = a5k [ (hd) = £~ (B, D)) 0 + SRS (ko d)HDy, (3.83)
The characteristic steepness of the random waves, r, is now defined as
r = ktrms [f+(E, d) — f‘(E,d)] . (3.84)
By using ayms = v/2my and H,,g = 4,/mg, and defining
1. e
R = §karmsf (k,d), (3.85)
the nonlinear non-dimensional crest height can be written as
L o,
we =a+ 57a + R. (3.86)

The solution of a is

. —14++/1+2r(w. — R) (3.87)

r

where only the positive square-root is a solution, because the amplitude is always positive.
Since a > 0, then w, > R. Transformation of variables using the Rayleigh distribution gives the
probability density function of W,

2(y/1+2r(w, — R) — 1) o4 (v/1+2r(w, — R) — 1)
ry/1+2r(w. — R) P r

fw.(we) =

}; w.>R. (3.88)
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Similarly, the nonlinear trough depth, 7, is given by
1- . e 1. .-
=1 — 5k (£, d) = £~ (k)] 2 = ok~ (kA HD, (3.80)
which gives the non-dimensional nonlinear trough depth
Lo,
Wy =a = gra’ = R. (3.90)

The solution of a is

. 14 /1 —2r(w, + R)‘ (3.91)

A similar argument as for the second order Stokes wave trough leads to the restriction a < %,
thus only the negative square-root is a solution. See Appendix C.2 for further details. The
resulting probability density function of W, is

2(1 — /1= 2r(w, + R)) (1 — V1 =2r(w + R))Z

fwi(we) = =2t ) exp q — o owy > —R.(3.92)

r2

Figure 3.12 shows the difference between the second order Stokes model, including sum frequency
effects only, and the extended model, including both sum frequency and difference frequency
effects. The Rayleigh distribution is included for comparison. Data from the Draupner field are
also included. Table 3.3 shows the calculated parameters from the Draupner field.

The extended model gives a slightly lower probability of exceedance for the crest heights and a
higher probability of exceedance for the trough depths. This is due to the contribution of the
difference frequency term. The difference frequency term will give a negative contribution to the
wave crest, and a positive contribution to the wave trough. The difference frequency term is zero
in infinite water depth, and the difference between the extended model and the second order
Stokes model will increase with decreasing water depth. For the Draupner data f*(kd) ~ 1
and f~(kd) is small, which means that even at relatively deep water, the difference frequency
term will give a small contribution to the surface elevation. The extended model gives a better
description of the Draupner field data than the second order Stokes model.

Table 3.3: Calculated values of the Draupner field data.

r -] 0.119 R -] 0.0092
fT(kd) B 1.003 f~(kd) B 0.134
K> ] 0.319 K2 ] 0.320
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Figure 3.12: Probability of exceedance of the extended model, the second order Stokes model and the
Rayleigh distribution. The lines to the right of the Rayleigh distribution are for the crest heights, and

to the left are for the trough depths. ¢ crest height data and o trough depth data from Draupner field
(r, =0.138, r = 0.119, R = 0.0092).

Considering two successive crest heights, the joint probability density function of W, and W,
is found from transformation of variables of the two-dimensional Rayleigh distribution, giving

4(v/1+2r(wa — R) — 1)(y/1 +2r(we — R) — 1)
r2(1 — K2)\/1 +2r(wa — R)\/1 + 2r(we — R)

chl,WCQ (wcla wc?) —

X exp {—ﬁ [(\/l +2r(we — R) — 1)?

c

+ (VIt+2r(we - B) - 1]} (3.93)
x I, [ﬁ(\/l +2r(wa — R) — 1)(v/1 + 2r(we — R) — 1) | ;

We1, We2 Z R7

where the parameter k. remains the same as for the second order Stokes model defined in Eq.
(3.49), but with r, = r (see Appendix D.3). The value of k? calculated from the Draupner field

data is given in Table 3.3. Compared with the parameter /<;§+ for the second order Stokes model

given in Table 3.1, it is seen that the small difference between r and r, gives almost no effect

2
on K.
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Figure 3.13: Contour plot of the two-dimensional probability density function of the extended model,
the Rayleigh distribution and data from the Draupner field. (a) wave crest height, (b) wave trough
depth. Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. (r = 0.119,
R =0.0092, k2 = 0.312, k? = 0.319, x? = 0.320).

Similarly, the joint probability density function of two successive trough depths is found as

4(/1 = 2r(wy + R) — 1)(y/1 = 2r(we + R) — 1)
r2(1 — K2)y/1 = 2r(wy + R)\/1 — 2r(wie + R)

thl,WtQ (wtla wt2) =

X exp {—742(171_&%) [(\/1 — 27“(11),51 + R) — 1)2
+ (V1—2r(wp + R) — 1)2] } (3:94)
% I, {ﬁ(\/l —2r(wy + R) — 1)(v/1 - 2r(wg + R) — 1)| ;

Wy, Wy > — R,

where the parameter x; is the same as in Eq. (3.52), but with , = r. The value of 7 calculated
from the Draupner field data is also given in Table 3.3.

Figure 3.13 shows the two-dimensional probability density functions of (a) two successive crest
heights and (b) two successive trough depths compared with the two-dimensional Rayleigh dis-
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tribution. The peaks of the distributions are almost at the same location, and the difference
between the distributions is small for small wave amplitudes. However, the difference increases
with increasing wave amplitudes. The Rayleigh distribution is located between the crest height
and trough depth distribution, and the wave trough distribution decreases most rapidly. This is
also reflected in the marginal distributions in Fig. 3.12. Data from the Draupner field are also
included for comparison. The extended model gives a better agreement with the data than the
Rayleigh distribution, especially for large crest heights and trough depths.

In addition to the conditional density function, it is of interest to calculate the probability of
exceedance of the wave crest given that the previous wave crest exceeded a given level like a,s.
This is found by Bayes rule and integration of the two-dimensional probability density function.
If 9y > apms, then w,; > 1, and the conditional probability of exceedance is given by

P(Wcl >1NWe > ’UJCQ)
P(Wcl > 1)

P(WCZ > ’U]62|W01 > 1) =

N (3.95)
waQ fl ch1,Wc2 (wcla u~)02)dwcldwc2

]' - FWcl (]')

Figure 3.14 shows the conditional probability of exceedance given that the previous non-dimensional
wave crest, or wave trough, exceeded 1, compared with data from the Draupner field. The ex-
tended model agrees quite well with the data compared with the Rayleigh distribution.

The expected value of a crest height given the previous crest height is given by

o0

E[Woa| Wt = we] = / W o (tes|ter) s, (3.96)
R

where the conditional probability density function fyy ,w., (wez2|we) is found from Bayes rule,
given in Eq. (3.53).

Similarly, the expected value of a trough depth given the previous trough depth is given by
E[Wp|Wy = wn] = / W2 fwra|wiy (We2|we ) dwys. (3.97)
-R

Figure 3.15 shows the conditional expectation E[W.o|W,. = w.]| versus w., as well as the
conditional expectation E[Wj|W;; = wy| versus wy. Generally, it is observed that the wave
crests have a higher expected value than the wave troughs, at least for low to moderate values of
wer and wy (we, wy < 1.8). For larger values the data are questionable due to few data cases

in these classes of w.; and wy;. Overall, the deviations between the nonlinear models and linear
theory are small.
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Figure 3.14: Conditional probability of exceedance of the wave amplitude given that the previous

wave amplitude exceeded Gyms, i-€., a1, wer, wyr > 1. © crest height data and o trough depth data from
Draupner field (r = 0.119, R = 0.0092, k2 = 0.312, k2 = 0.319, x? = 0.320).
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Figure 3.15: Conditional expectation of the wave amplitude given the previous wave amplitude.

—E = E[A2|A1 = al]; -—-E= E[W02|Wcl = wcl]; --—E= E[Wt2|Wt1 = wﬂ]; o crest height data;
o trough depth data from Draupner field (r = 0.119, R = 0.0092, x2 = 0.312, x? = 0.319, &7 = 0.320).
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3.7 Example of using the extended second order model
in prediction of green water load and volume

A good model for the wave crest height can be used in many applications. In this chapter an
example of predicting green water load and volume will be shown. Ogawa (2003) presented a
model where the Rayleigh distribution was used as the distribution for the wave crest height.
A short summary of his model is given below and the results are compared with the extended
second order model. The final objective of Ogawa (2003) to give a long-term prediction method
of the green water load and volume is not considered here.

Model tests were conducted in irregular waves with a domestic Japanese tanker and two cargo
ships; a standard ship (Type-1) and a ship with a wider bow flare (Type-3). Measurements of
the green water load and the relative water height at the stem were made. The green water
volume was estimated by integrating the mean water height, measured at five cross sections on
the bow deck. The results for the green water volume were only shown for the cargo ships, so
the tanker will not be considered here. Table 3.4 shows the principal particulars for the cargo
ships in the model tests. L,, is the ship length, B is the breadth of the ship, b is the bow height
at the stem, and A, is the area of the separated fore deck.

The relationship between the maximum value of the green water load, Ly.,, and the maximum
value of the relative water height, 1., was approximated by

Lmax - aopr(T]max - b)27 (398)

where q, is a coefficient estimated from the model test data, and p is the water density. Figure
3.16 illustrates the relationship between 7. and b.

By assuming that nm,. is distributed according to the Rayleigh distribution, a transformation
of variables yields the cumulative distribution function of L.

(bv/@opgB + v/Lar)” } |

(3.99)

Fruw(Lmax) =1 = exp {_ 20,pg Bo?

Table 3.4: Principal particulars for domestic cargo ships (left) and calculated values from model
tests (right).

Ship Model Type 1 Type 3
Ly [m] 78.5 4.1 v, B 0.45 0.34
B [m] 12.8 0.669 Bo ] 0.31 0.18
b [m] 5.3 0.278 o [m] 2.8 2.9
Ag [m?] 42.9 0.117
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MWL

Figure 3.16: Tllustration of the relationship between 7. and b. The dotted line indicates the mean
water level (MWL).

The measured values from the model tests were converted to full scale. Figure 3.17 shows the
mean green water pressure, which is the green water load divided by the area of the separated
fore deck, in terms of probability of exceedance. The Ogawa (2003) model (the solid line)
underpredicts the data for both Type-1 and Type-3 cargo ship.

A new distribution function for L., can be found by using the extended second order model for
the crest height. By introducing nyax = s, the relationship between L., and w,. is found
as

. = 2V 0opgB + V Linax
7 GmsVaopgB

The cumulative distribution function of L,y is found by transformation of variables using Eq.
(3.88)

(3.100)

2
(\/1 _|_ 27,, b\/ aopr+VLmax R) _ 1)

Qrms aopr

Fi....(Lmax) =1 — exp (3.101)

72

The experiments were carried out in deep water, thus f*(kd) = 1 and f~(kd) = 0, giving
R = 0. In full scale the values of H,,0 and T},y; were 3.7 m and 6.7 s, respectively, giving
7 = k1Gms = 0.116. One should note that in Ogawa (2003) only T},,0; Was given, so that r must
be based on k; rather than k. However, since a narrow-banded sea state is assumed, these values
are equal.

The extended second order model is shown in Fig. 3.17 (broken line). The model overpredicts
the data for both Type-1 and Type-3 cargo ship. In these cases the extended second order model
and the Ogawa (2003) model give an upper and lower bound for the mean green water pressure,
respectively.

The relationship between the maximum value of the green water volume, Vi, and nma, was
approximated by

ma.x 50 (nmax - b)Za (3102)
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Figure 3.17: Mean green water pressure. (a) Cargo Type-1, (b) Cargo Type-3. — Ogawa (2003)
method, — — extended second order model; B data Type-1; A data Type-3.

where (3, is a coefficient estimated from the model test data.

By transformation of variables, the cumulative distribution function of V;,,x is given by

(bv/BoB + Vi) }

(3.103)

v (Vinax) = 1 — exp { 253,Bo?

Figure 3.18 shows the results from the model test as the mean green water height, which is the
green water volume divided by the area of the separated fore deck, in terms of probability of
exceedance. The Ogawa (2003) model (the solid line) underpredicts the data for both Type-1
and Type-3 cargo ship.

Similarly to the green water load, the extended second order model can be used to obtain a new
distribution for V.. The relationship between V. and w, is given by

_ 0VBoB + /Vinax
we = =, (3.104)

By transformation of variables the cumulative distribution function of V., is found as

2
(\/1 (e - B - 1)

r2

FVmax(Vma.x) =1- exp (3105)

The extended second order model is shown in Fig. 3.18 (broken line). The model agrees quite
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Figure 3.18: Mean green water height. (a) Cargo Type-1, (b) Cargo Type-3. — Ogawa (2003) method,

- — extended second order model; B data Type-1; A data Type-3.

well with the data for small values of the green water height for both Type-1 and Type-3 cargo
ship, while it overpredicts the data for larger values of the green water height.



CHAPTER 4

Joint probability distributions for
successive wave heights

4.1 Longuet-Higgins model and Nass model

According to Longuet-Higgins (1952) the wave height, 7, is Rayleigh distributed if the wave
spectrum is narrow-banded, i.e.,

fu(h) =2hexp {~K};  h=">0, (4.1)

where h is the dimensionless wave height. The normalizing factor, h, was given as the root-mean-
square value of 7;,, which for linear waves is given by h = hyms = 2(2mg)'/2. Later Goda (1974),
Haring et al. (1976) and Forristall (1978) among others, showed by comparison with data from
the Japanese coasts and the Gulf of Mexico, respectively, that this choice of normalizing factor
overpredicts the wave heights.

Forristall (1978) analyzed 116 hours of hurricane generated waves from the Gulf of Mexico,
and fitted a two-parameter Weibull distribution to the data. Later Longuet-Higgins (1980)
showed that the same data were well predicted by the Rayleigh distribution in Eq. (4.1), if the
normalizing factor was selected as h = 1.85(2my)'/2. The reduction of h was explained by the
finite bandwidth in the field data, which also was discussed in general by Boccotti (1982).

Neess (1985) used a different approach to derive an expression for the wave height in a stationary,
narrow-banded Gaussian wave train. A short description of this approach is given below. By
assuming a narrow-banded process, the time interval between a maximum and a minimum is

51
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approximately constant and equal to half the wave period 7. The expected number of simulta-
neous occurrences of a positive level crossing of the level £ and a negative level crossing of the
level —¢ after time 7/2 is given by

Ne, ¢ (g) = —/_Ooo /OOO B0 fx (&, &1, =&, T2) di ddy, (4.2)

where 7 and &5 are the velocities at the level up-crossing and the level down-crossing, respec-
tively. Since X (t) is a Gaussian process, the joint density function is given by

1 1 . .
fx(x) = EERE exp {—§XTEIX} ; X = [z, 1, T2, 2], (4.3)
where ) )
RBy(0) —R,(0)  Ry(5)  Ry(5)
o | BO RO -RE) -RE | -
Ry(3) —Ry(3)  Ry(0) —R,(0)
R -RID) R0 —RI0)
The autocorrelation function, R, (7), of the Gaussian wave elevation is given by

R,(r) =E[X(#t)X(t+7)] = /000 S(w)e™ dw, (4.5)

and ’ denotes the time derivative. One should note that R,(0) = my. Equation (4.2) can then

be evaluated to e
T T

2

By using R,(0) = mg and defining py = —gzggg , the probability of a wave amplitude exceeding
the level £ is given by
Ne, ¢ { £2 }
Pn,>¢) =——=expy — . 4.7
(77 5) N0,0 mo(]_ — pN) ( )

Since the wave height is twice the amplitude, the probability of a wave height exceeding the
level £ is given by

P(nn > ) :exp{—WiPN)}_ (4.8)

Thus, the Nzess (1985) approach resulted in a Rayleigh distribution as given in Eq. (4.1), with

h=(2(1 - p))"*(2m) "2 (4.9)

The Longuet-Higgins (1980) model corresponds to py = —0.711, while calculation of the Draup-
ner data gives py = —0.689.
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Figure 4.1: Probability of exceedance (py = —0.689, from Draupner data).

In the following, the wave heights will be normalized with respect to h,s. With this notation
the probability density function for the Naess model is given by

fu(h) &l eXP{ 2 } (4.10)

1—py 1—px

Figure 4.1 shows the difference between the Rayleigh distribution and the models proposed
by Longuet-Higgins (1980) and Naess (1985). It is clear that the Rayleigh distribution predicts
larger wave heights than the Longuet-Higgins (1980) and the Naess (1985) model. The two latter
models give a quite similar result. Results from the Draupner field data are also included. The
data fall between the Rayleigh distribution and the Naess (1985) model, but for larger values of
h, the Naess (1985) model gives the best prediction of the data.

Vinje (1989) discussed these models, and compared the theoretical models with data from the
Statfjord field in the North Sea. An asymptotic expansion of the Naess (1985) model was also
presented.

The joint distribution function of two successive wave heights H; and H, is given by the two-
dimensional Rayleigh distribution given in Eq. (3.4)

4hyhy h% + h% 26501y Ch1 Ch2
hi, ho) = — Iy | ————|; hi ===, hy = 4.11
S (i he) = 725 Xp{ 2T | M T e D
where kj, is related to the correlation coefficient, pp,, between H; and H, by
E(kp) — (1 — k2K (k) — =
Ph = Py = ) = 50— 1 . (4.12)

=

Note that this relationship is identical to the relationship between p, and «, given by Eq. (3.6).
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In the present notation the Nzess (1985) model for two successive wave heights is given by

W f 2R+ Akinhihs
I nohe) = (e e | T ) (19

4.2 Gaussian distribution for successive wave heights us-
ing Nataf transformation

When using a marginal Rayleigh distribution or a Weibull distribution, extension to three di-
mensions and higher is not possible. Thus, a different approach must be used in order to derive
a joint distribution function for more than two successive wave heights. The Gaussian distribu-
tion is often desirable due to its simple form in the multivariate case. This chapter discusses a
method to transform the data to fit a Gaussian distribution.

4.2.1 Copulas

If the marginal distribution functions are known, then a joint distribution function can be
constructed by using copulas. An introduction and overview of the subject is given in Nelsen
(1999). It was Sklar who first introduced the term copula in 1959. However, earlier Fréchet (1957)
among others had made important contributions to the subject. A historical development can
be found in Schweizer (1991).

The basic theory of copulas is given below.

Theorem 1 (Sklar’s Theorem)
Let X andY be random variables with distribution functions Fx and Fy, respectively, and joint
distribution function Fxy. Then there exists a copula C' such that

Fxy(z,y) = C(Fx(z), Fy(y))- (4.14)
If Fix and Fy are continuous, then C is unique. Otherwise, C is uniquely determined on
range(Fx) x range(Fy).

Conversely, if C' is a copula and Fx and Fy are distribution functions, then the function Fx y
defined by Eq. (4.14) is a joint distribution function with margins Fx and Fy .

The results can be extended to the multivariate case.
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Theorem 2 (Sklar’s Theorem in p dimensions)

Let X1, Xs,..., X, be random variables with distribution functions Fx,, Fx,,...,Fx,, respec-
twely, and joint distribution function Fx, x,,..x,. Then there exists a p-dimensional copula C
such that

FXl,Xz,...,Xp (:Ul, . ,xp) = O (FX1 (.ﬁUl), FXz (372), ceey FXp (.ib'p)) . (415)

If Fx,, Fx,,...,Fx, are all continuous, C' is unique. Otherwise, C is uniquely determined on
range(Fx,) x range(Fx,) x -+ x range(FY,).

Conversely, if C' is a p-dimensional copula and Fx,, Fx,,...,Fx, are distribution functions,
then the function Fx, x,,. x, defined by Eq. (4.15) is a p-dimensional distribution function with

margins Fx,, Fx,, ..., Fx,.

There are several methods to construct copulas. A straight forward method is the inversion
method. Due to the fact that a marginal distribution function does not need to be strictly
increasing, a definition of a quasi-inverse is needed.

Definition 1
Let Fx be a distribution function. Then a quasi-inverse of Fx is any function F)({l) with domain
[0,1] such that

1. if t is in range(FY), then F)({l)(t) is any number z in R such that
Fx(F{ V() =t (4.16)
2. if t is not in range(Fy), then

FUV(t) = inf {z|Fx () > t} = sup {z|Fx(z) < t} (4.17)

If Fx is strictly increasing, then the quasi-inverse is unique, and is denoted F )}1.

The copula can be determined from
Clun, s, ) = Fxy x, (B (), GV (), FG D (1)) (4.18)

for any u; in [0,1],i=1,...,p.
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4.2.2 Nataf model for successive wave heights

The Gaussian distribution is often preferable in the multivariate case. The analytical expression
for the multivariate distribution allows to calculate exact statistical quantities of interest. The
use of standard Gaussian distributions for the marginal distributions is often referred to as the
Nataf model (see e.g. Liu and Der Kiureghian, 1986), although Nataf (1962) only described the
general use of copulas.

The method of constructing a joint distribution function for the wave heights will first be shown
in the bivariate case, and the extension to the multivariate case is trivial. A two-dimensional
Gaussian copula is given by

Clur, uz) = @ (D (), @ (ug)), (4.19)

where the standard Gaussian distribution is given by

1 z 2
(I)(Z) = \/—2_7_‘_/ 6_%t dt

1 {1+ f( . )} (4.20)
= erf | — | |,
) NG
and erf[ | is the error function (see Appendix F). The inverse of ®(z) is given by
d Yuy) = V2 erf 2uy — 1], (4.21)

where the random variable Uz = ®(Z) is uniformly distributed on [0,1].

The two-dimensional distribution function of two successive wave heights H; and H, is then
given by (from Eq. (4.14))

FHl,HQ(h17 hZ) =C (FH1 (h1)7 FH2 (hQ))
(4.22)
=o ((I)_I[FHl (hl)]7 (I)_I[Ffﬁ (hQ)]) )

where the initial distributions Fp, and Fp, are optional.

Two different models will be presented here as initial distributions. First, the Naess (1985) model

Fu(h) = 1 —exp {— 1 2_h;N} (4.23)

is selected to estimate the marginal probability distribution of the wave heights. Second, to
improve the transformation of the data to fit the Gaussian distribution, a two-parameter Weibull

distribution of the form ;
Fy(h) =1 — exp {— <ﬁ> } (4.24)
o

will be used. One should note that the Weibull distribution is more flexible to fit the data than
the Neess (1985) model with only one parameter. The Weibull parameters o and  are found
from maximum likelihood estimation.
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Figure 4.2: Weibull probability plot of wave height data from the Draupner field. x data; — — Naess
(1985) model with py = —0.689; — fitted Weibull distribution with o = 0.978, 8 = 2.039.

Figure 4.2 (a) shows a Weibull probability plot of the normalized wave heights from the Draupner
field. The same data are shown in Fig. 4.2 (b), but here only every 25th data point is shown
in order to illustrate where the largest amount of data is. Both the Neess (1985) model and the
two-parameter Weibull distribution with o = 0.978 and 3 = 2.039 are included.

Figure 4.3 (a) shows the probability density functions for the Naess (1985) model, the Weibull
distribution and the Rayleigh distribution compared with data from the Draupner field. The
probability of exceedance is shown in Fig. 4.3 (b). The Neess (1985) model overpredicts the peak
of the density function, while the Rayleigh distribution overpredicts the data for larger values
of h. The figure shows that the Weibull distribution agrees better with the data in the range
h =~ 0.5 — 2, where the largest concentration of data points is located.

The random variable Uy = Fy(h) is uniformly distributed on [0,1]. By using the Naess (1985)
model as the initial distribution and defining W% (h) = ®~'(uy), the resulting transformation is
found from Eq. (4.21)

TN (h) = V2erf! [2 (1 — exp {—1 20 }) - 1] : (4.25)

— PN

The two-dimensional distribution function of H; and Hs is found from Eq. (4.22)

Fry gy (hay ho) = @ (U (he), Oy (hs)) (4.26)
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Figure 4.3: (a) Probability density function and (b) probability of exceedance for wave heights.
x data from Draupner field (« = 0.978, 5 = 2.039, py = —0.689).

and the probability density function of H; and H, is then given by
_ U ()W (ho)

fry,m,(hi, ho) =
2my /1 — P?v,n (4.27)

X exp {—ﬁ (T (h)? + U (ha)? = 2pn,120 3 () Uy (h2)) ¢,

— PN,12

where py 15 is the correlation coefficient between W4 (hy) and ¥ (hy). The derivative of ¥ is
found by using the properties of the error function (see Appendix F)

TN (h) = W2rh exp { (erf—1 [1 — 2exp {— - 20" H)Q 20" } : (4.28)

_I—PN — PN _1—PN

Next, the Weibull distribution will be used as the initial distribution. Defining ¥}/ (h) = &~ (up)
with Uy = Fy(h) from Eq. (4.24), it follows from Eq. (4.21) that the transformation is

oW (h) = V2 erf™ [2 (1 — exp {— (g)?) - 1] : (4.29)

with the derivative (see Appendix F)

oW () = mﬁ’;ﬂﬂ_l exp (erfl [1 ~ 2exp {— (%)ﬂ}DQ - (g)ﬁ . (4.30)
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0.5

Probability density function

Figure 4.4: Probability density function of transformed wave height data; — — kernel density estimate of
\If%, —-— kernel density estimate of \IIII}V, — standard Gaussian density function. (o = 0.978, § = 2.039,
pn = —0.689).

The two-dimensional probability density function of H; and Hs will be the same as given in Eq.
(4.27), with U} replacing W} and U} replacing U} . The correlation coefficient py ;5 must
also be replaced with py 19, the correlation coefficient between W} (hy) and W} (hs).

The correlation coefficients of the transformed wave heights calculated from the Draupner field
data are shown in Table 4.1. Note that the calculated values are almost identical, and they show
that the dependency between the transformed wave heights decreases rapidly. The correlation
coefficients of the normalized wave heights are also included for comparison. They are quite
similar to the correlation coefficients of the transformed wave heights.

Figure 4.4 shows kernel density estimates of the transformed wave heights with both ¥¥ and
UY compared with the standard Gaussian probability density function. The figure shows that
both transformations yield an approximate standard Gaussian distribution. The transformation
using the Weibull distribution as the initial distribution agrees best with the standard Gaussian
distribution, while the transformation using the Naess (1985) model as the initial distribution is

Table 4.1: Correlation coefficients between WY (h;) and U (h;) and between WY (hy) and UY (h;),
and correlation coefficients of the normalized wave heights py, 15, ¢ = 2, 3, 4, from Draupner data.

PN,12 [—] 0.3889 PwW,12 [—] 0.3884 Ph,12 [—] 0.411
PN,13 [—] 0.1164 Pw,13 [—] 0.1162 Ph,13 [—] 0.126
PN,14 [—] 0.0577 Pw,14 [—] 0.0577 Ph,14 [—] 0.058
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Figure 4.5: Contour plot of the two-dimensional probability density functions. The Nataf models and
the Naess (1985) model are compared with (a) the Rayleigh distribution (b) kernel density estimate of
the Draupner field data. Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and
99.9. (o =0.978, B = 2.039, pw,12 = 0.388, py = —0.689, py,12 = 0.389, K} = 0.436).

slightly skewed to the left (p3 < 0).

Figure 4.5 (a) shows a contour plot of the two-dimensional Nataf model, both with using a
Weibull distribution, denoted Nataf-Weibull, and the Ness (1985) model, denoted Nataf-Nzess,
as initial distributions. The distributions are compared with the Rayleigh distribution, given
in Eq. (4.11) with k7 = 0.436, and the Nass (1985) model. The shape of the Nataf models
are somewhat different from the Rayleigh distribution and the Naess (1985) model. For larger
values of h the Nataf models have an almost circular shape, while the Neess (1985) model and
the Rayleigh distribution have a more elliptic shape. Around the peaks, the distributions are
quite similar. Along the diagonal (h; = hy), the Nataf-Weibull model is close to the Rayleigh
distribution for small values of h, but follows the Nass (1985) model for larger values of h.
Outside the diagonal, the Nataf-Weibull model is closest to the Rayleigh distribution for all
values of h. Along the diagonal the Nataf-Naess is close to the Naess (1985) model for small
values for h, but it decreases more rapidly than the other models for larger values of h.

The Nataf models are compared with the kernel density estimate of the Draupner data in Fig.
4.5 (b). The Naess (1985) model is also included for comparison. For larger values of h, all
models agree quite well with the data, but outside the diagonal, the Nataf models give a better
prediction of the data. None of the distributions predict the peak of the data correctly, but the
Nataf-Weibull model gives a slightly better prediction of the peak than the Nataf-Naess model.
Overall, the Nataf-Weibull model gives the best agreement with the data.
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Figure 4.6: Paired plot of the transformed wave height ¥ between (a) hy and he, (b) hy and hs,
compared with a contour plot of a standard Gaussian distribution (py = —0.689, py12 = 0.389,
pn,13 = 0.116). Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.

When using copulas, the resulting joint distribution function always has correct marginals. How-
ever, the dependency structure should be examined by e.g. a paired plot. Figure 4.6 shows a
paired plot of the transformed wave heights ¥% between (a) h; and hy and (b) hy and hs. The
solid line is a contour plot of a standard Gaussian distribution. The figure shows that the de-
pendency structure is quite similar to the one for a standard Gaussian distribution, and thus
indicates that the transformation correctly takes care of the dependency structure. A paired
plot of the transformed wave heights W}V is shown in Fig. 4.7 (a) between h; and hy and (b)
between h; and h3. Here also the dependency structure is quite similar to the one for a standard
Gaussian distribution.
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Figure 4.7: Paired plot of the transformed wave height Y between (a) hy and ho, (b) hy and hs,
compared with a contour plot of a standard Gaussian distribution (o = 0.978, 8 = 2.039, pw,12 = 0.388,
pw,13 = 0.116). Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.

In the following only the Nataf-Weibull model will be considered.

The extension to the multivariate case is now trivial, and the probability density function of
H = [H,,...,H,)" is given by

i1 vy (h) Lo w Tt W
fu(h) = WGXP _i\IIH (h)' X" Wy (h) ¢, (4.31)
where the covariance matrix, X, is given by
1 Pwyia2 ot Pwiip

(4.32)
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Figure 4.8: Probability of exceedance for normalized wave heights. P(H;, > h): — Nataf-Weibull
model; x data; P(H; > h,Hy > h): —— Nataf-Weibull model; ¢ data; P(Hy; > h,Hy > h,H3 > h):
—-— Nataf-Weibull model; A data. The dotted line indicates the normalized significant wave height of
1.41. (a=0.978, 8 =2.039, pw,12 = 0.388, pw 13 = 0.116 from Draupner field data).

Figure 4.8 shows the Nataf-Weibull model in Eq. (4.31) in terms of probability of exceedance
for p =1,2,3. The results are compared with data from the Draupner field. From the figure it
is clear that the probability of p successive wave heights exceeding a value h decreases when p
increases. The Nataf-Weibull model agrees quite well with the data for all values of p shown in
the figure.

Thus, by using the Nataf transformation, the probability distribution for two and three successive
wave heights can be modeled by a transformed multivariate Gaussian distribution. The trans-
formed Gaussian distribution can also be applied for more than three successive wave heights,
but then the dependency structure should be further examined by e.g. paired plots.

Another quantity of interest is the expected value of a wave height given the previous wave
height. This is given by

E[H,|H, = h] = / ho fis1m, (holhy) dhs, (4.33)
0

where the conditional probability density function fy,|x, (ho|h1) is found from Bayes rule in Eq.
(3.53).
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Figure 4.9: Conditional expectation of the wave height given the previous wave height. —- - Nataf-

Weibull model; — — Naess (1985) model; --- Rayleigh distribution; x data (a = 0.978, 5 = 2.039,
pw,2 = 0.388, py = —0.689 from Draupner field data).

Figure 4.9 shows the conditional expectation E[Hy|Hy = hy| versus hy. The Nataf-Weibull model
is compared with the Neess (1985) model and the Rayleigh distribution. Data from the Draupner
field are also included. The variation in the data points is large, but overall the Nataf-Weibull
model gives the best agreement with the data for large values of h, while the Naess (1985) model
gives the best agreement with the data for small values of h;.

In addition it can be of interest to calculate the probability of exceedance of the wave height
given that the previous wave heights exceeded a given level, e.g. hyys or Hg. The conditional
probability of exceedance given that the two previous wave heights exceeded h is given by

P(H1>FLP|H2>FLQH3>}L3)
P(H1>iLmH2>iL)

P(H3 > h3|H2 >BmH1 > il) =

) ) (4.34)
_th: fﬁoo fﬁoo lesz,Hs(hla h27 h3) dhl dh2 dh?,

fﬁoo fﬁoo fH1,H2 (hla h2) dhl dh2

This is calculated by integration of the transformed Gaussian distribution in Eq. (4.31).
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4.3 Successive wave heights modeled as a first order auto-
regressive (AR(1)) model

In this chapter another approach for modeling wave heights is shown by considering the successive

wave heights as a time series. The theory is first presented by considering a general time series
X ().

There are two useful representations of a time series X (¢). One is to use an autoregressive (AR)
representation. The other is a moving average (MA) representation, which will not be discussed
further in this thesis. It is also possible to have a combination of the two representations. The
analysis of AR and MA processes are thoroughly described in Wei (1990).

In an AR representation, the value of X at time ¢ is dependent on the values of its own past,
plus a random variable. An AR process of order r of a time series with zero mean can be written

X(t)=mX({t—-1)+---+mX(t—1)+e), (4.35)

where 7y, ..., 7, are weights and €(t) is a zero mean Gaussian white noise process. If a process
with mean value different from zero is desired, this can be added afterwards. The weights can
be related to the autocorrelations, p;, and partial autocorrelations, ¢;;.

In addition to the mean and variance, a stationary time series is also characterized by p; and
¢;;. The autocorrelation function (ACF) measures the correlation between X (¢) and X (¢ + j)

as Cov[X (t), X(t + 7)]

P NatlX (0)]/Var[ X (¢ 1 )]

and can be estimated from data by

(4.36)

Y (@i %) (Tiyj — %) (4.37)

The partial autocorrelation function (PACF) measures the correlation between X (¢) and X (t+)
after their mutual linear dependency on the intervening variables X (¢ +1),..., X (¢+j — 1) has
been removed, i.e., the conditional correlation

Corr[X (t), X (t+ j)| X (t+1),..., X(t+j —1)], (4.38)

and is calculated by

NV goal
biprgn = 2 szl d)iﬂpr : (4.39)
L= >0 0jibi

¢j+1,i = ¢ji - ¢j+1,j+1¢)j,j+1—ia 1= 1, cee ,j- (4-40)
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Figure 4.10: (a) Sample autocorrelation function, and (b) sample partial autocorrelation function of
Y from Draupner data. The dotted line indicates +2(Var[¢;;])'/2.

Under the hypothesis that the underlying process is a white noise series, the variance of ngSjj can
be approximated by

Varld;,] ~ % (4.41)
Thus, 7y, ..., T, can be estimated from p; and $j+1,j+1.
The first order autoregressive (AR(1)) process has the properties
pi = pl, j>1. (4.42)

o pr=m, J=1,
¢J] - {0, ]22 (4'43)

An AR(1) process has the Markov property

P(X(t+1) = 201 |X(0) = 2g,..., X(t) = 3;) = P(X(t+1) = 2y |[X(t) = 2,).  (4.44)

Thus, the value of X (¢) is completely determined by the knowledge of X (¢ — 1). If the process
can be written as an AR(1) process, then both simulations of the process and calculation of
statistics are simplified.

The sample ACF and PACF of the transformed normalized wave heights ¥} from the Draupner
data have been calculated, and the results are shown in Fig. 4.10 (a) and (b), respectively. The
ACF decreases approximately exponentially. The PACF has one spike at j = 1, while the values
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Figure 4.11: (a) Kernel density estimates of U'Y. (b) Probability of exceedance of normalized wave
heights. (p; =0.388, a = 0.978, 8 = 2.039, py = —0.689).

for j > 2 are so small that they can be regarded as noise. This indicates that the process is an
AR(1) process. A test to find if the process is an AR(1) process is discussed in Chapter 4.3.1.

Thus, the stochastic process of transformed successive wave heights can be written

U (1) = pr U (t — 1) + e(t); t=1,2,..., (4.45)
where {€(t)} are independent Gaussian distributed variables with zero mean and variance equal
to (1 — p?)Var[U¥] = 1 — p?. The initial value can be selected as e.g. the mean value, i.e.,
WY (0) =0.

Simulations of 6400 transformed wave heights were made using the correlation coefficient p; =
pw,2- Figure 4.11 (a) shows the kernel density estimate of the simulated data compared with the
kernel density estimate from the transformed Draupner data. The results from the simulation
of an AR(1) process compare well with the transformed Draupner data.

The normalized wave height can be found from the simulated process W} by inverting the
transformation given in Eq. (4.29), which gives

H=a (— In B <1 — erf {%w?(h)} )] ) v : (4.46)

Figure 4.11 (b) shows the probability of exceedance of the normalized wave heights from the
Draupner data and the wave heights from the simulated AR (1) model, found by Eq. (4.46). The
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Figure 4.12: (a) Contour plot of the two-dimensional kernel density estimates. Percent levels the given
contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. (b) Probability of exceedance given hy > 1
(P(H2 > h2|H1 > hl)) (Ot = 0.978, ,3 = 2.039, PW,12 = 0.388, PN = —0.689, ’%}21 = 0.436).

two-parameter Weibull distribution and the Neess (1985) distribution are included for compari-
son. The figure shows good agreement between the Draupner data and the simulated data.

Figure 4.12 (a) shows a contour plot of the two-dimensional kernel density estimate of the
Draupner data and the simulated data from the AR(1) model. The simulated data compare
well with the Draupner data, which indicates that the AR(1) model retains the dependency
structure. This is also shown in Fig. 4.12 (b), where the conditional probability of exceedance
of hy is calculated, given that h; exceeded the rms-value, i.e., hy > 1.
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4.3.1 Likelihood ratio test

In order to test if the process is an AR(1) process, a likelihood ratio test can be performed. The
hypothesis that must be tested is whether the correlation coefficients are given by Eq. (4.42),
i.e., if the covariance matrix has the structure

1 p e Pl
p 1 cee pP2
Hy:¥=3%)= : : ) (4.47)
Pt

for a selected order p. Actually, p should be infinitely large in order to test if the process is a
true AR(1) process. But, if it is of interest just to consider a given number of successive waves,
then it is enough to select p as this number. The likelihood ratio statistic is given by

max L(3)

~ maxs L(X%)’ (4.48)

where L is the likelihood function. When the sample size n is large, then —2In A is approximately
chi-squared distributed with p — 1 degrees of freedom. The hypothesis is rejected at significance
level «v if the observed value —21n A > ng,p—l' If the hypothesis is rejected, the AR(1) process
is a good approximation for the observed process at the given significance level.

When considering three successive waves, p = 3 is selected. The transformed variable U} is
Gaussian distributed, and the likelihood function is given by

L(z) = ] fuy (Wi (b)) = m exp {—% > \Ifﬁ(hi)Tzlw(h»} - (449)

The maximum of the likelihood function when X is varied over its possible value is

1
max L(X) = ———————e7%/2, (4.50)
> (27-‘-)3n/2|2|n/2
where
PR _ _
S = S () — W () (U () — O ()" (4.51)
=1

Let 3y be the covariance matrix that maximizes L(X,). This is found numerically. Then the
likelihood ratio statistic is given by

max L(X) |ﬁ3| R 3 1= o el
T haxs L(E) s — — 50 Vp(h) 3, ¥p(h),. 4.52
maxy L(3) <|Eo| “P1 2 2; i (hi)" Bo W (hy) (4.52)

See Johnson and Wichern (1992) for further details.
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There was no overlapping of the data when constructing the triplets of wave height observations
from the Draupner field. The resulting sample size was n = 2189 and the test result was
—2In Agps = 6.62. From tables x§ ¢35, = 6.65, which means that the hypothesis would not be
rejected at 3.6% significance level.

4.3.2 Summary of AR(1) model

The results from the likelihood ratio test together with the sample ACF and PACF show that
the wave heights from the Draupner field can be modeled as an AR(1) model. This gives two
favorable results. First, the simulation of successive wave heights can be done from Eqs. (4.45)
and (4.46). This is a simple and fast simulation technique. Second, the distribution of the
wave height given the previous wave height is independent of the wave heights prior to the
previous wave height (as in Eq. (4.44)). Thus, only a two-dimensional distribution is needed
when calculating the conditional statistical properties. In practice the previous wave must be
given as a small interval rather than a specific value, since this is a continuous distribution,

Figure 4.13 shows the conditional probability of h3 in terms of probability of exceedance. The
figure shows results both from conditioning on the two previous wave heights, h; and hq, being
in an interval [le, FLQ] calculated from the three-dimensional distribution, and from conditioning
on only the previous wave height, hy, being in an interval [ﬁl,i@] calculated from the two-
dimensional distribution. The results are compared with data from the Draupner field. Here
N denotes the number of field data cases in each class of hy. The figure shows that the results
from the two-dimensional distribution are quite similar to the results from the three-dimensional
distribution. This validates the hypothesis that the distribution of the wave height given the
previous wave height is independent of the wave heights prior to the previous wave height. The
models agree quite well with the data.
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Figure 4.13: Conditional probability of exceedance of normalized wave height.
P(Hsz > h|hy < Hy < hy):  —— Nataf-Weibull model; o data;

P(Hs > hlhy < Hoy < hy,hy < Hy < hy): —-— Nataf-Weibull model; A data.
(e =0.978, 8 =2.039, pw,12 = 0.388, pw,13 = 0.116 from Draupner field data).
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CHAPTER 5

Joint probability distributions for
successive wave periods

5.1 Marginal distributions for wave periods

Several distribution functions for the wave period, 7, have been suggested. Some of the most
commonly used distributions are presented here, and they are used for comparison in the forth-
coming.

The dimensionless wave period is given by ¢ = 7/7, where the choice of normalizing factor, 7,
varies. In the following, the wave periods will be normalized with respect to 7 = T},01-

Bretschneider (1959) derived a distribution for the wave period based on the distribution for
the wave length. The wave length, \,, was assumed to be Rayleigh distributed, which was
supported by comparison with data. Then by assuming that the wave length was proportional
by the square of the wave period, as suggested by the dispersion relationship for linear waves
in deep water (72 = (27/g))\y), it followed that the square of the wave period was Rayleigh
distributed. The normalizing factor was given as the square-root of the rms-value of 72, i.e.,
72 = (%2 = (7?)ims. In terms of the non-dimensional wave period ¢t = 7/T},01, the probability
density function is given by

fr(t) =4 (%)4#’ exp {— (%)4#} ; t>0. (5.1)

Longuet-Higgins (1975) applied a narrow-band approximation to linear theory of Gaussian noise
to obtain the joint probability density function of the envelope amplitude, 7,, and the time

73
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derivative of the envelope phase, 1), fna,¢(na, w) The probability density function of ¢ was found

from transformation of the marginal probability density function of w In the present notation
the probability density function of T is given by

rlt) = 5o [1 " (t_lﬂ " (5.2)

where € is the spectral bandwidth parameter given by Eq. (2.13). One should note that the
integral of this density function is only equal to one if negative values of ¢ are included. The
physical meaning of ¢, i.e., the period is always positive, indicates that a truncated version of Eq.
(5.2) should be used, meaning that a normalizing factor should be included. This normalizing
factor is the same as the one introduced in Longuet-Higgins (1983), given by

c(1vre)™). (53)

Longuet-Higgins (1983) used the joint density function f, ;(1a,%) directly to obtain the joint
density function of the dimensionless wave amplitude, A, and wave period, T, by transformation
of variables. A normalizing factor was introduced to take into account that the period is always
positive. The marginal density function of T" was found by integrating over the total domain of
A, and is given by

1+<1621>2]W2. (5.4)

Cavanié et al. (1976) derived a joint density function of the wave height H and wave period T
based on a narrow-band Gaussian model that accounted for the asymmetry in 7. In the present
notation this is given by

2
a3h2T? h2T! 1, 0175>2
h,t) = 2 ¢ exp { — s - —ayp Fajag| o, (55
fH,T( ) 4\/%64(1 _E?L)T;lz[)ltf) b SGETﬁLOItﬁl {( T. 2 ) (5.5)

1
e[l + (1 +€d)1/2)¢2

fr(t)

where ¢, is the spectral bandwidth parameter given by Eq. (2.14) and

2
_ 2 [me 2 _€

Tc ) al = 1 2

P+(1—ﬁf”} (5.6)

Do =

g =

By integration over the domain of H, the marginal density function of 7" is found as

) ~3/2
30272 ¢ Tt
fr(t) = a2a1T72m01 {( TOI > _ag} +ala; : (5.7)
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Figure 5.1: Probability density function of normalized wave periods. — kernel density estimate from

Draupner data, — — Bretschneider (1959) model, —— Longuet-Higgins (1975) model, - - - Longuet-Higgins
(1983) model, -e-- Cavanié (1976) model. ()01 = 9.09s, ¢ =9.79s, T, =5.80 s, €5 = 0.425, €4 = 0.847,
from Draupner data)

Figure 5.1 shows a histogram of the normalized wave periods from the Draupner data with the
kernel density estimate. The different theoretical models are included. One should note that the
shape of the data is not captured by any of the models. The value of £ where the peak of the
data occurs is also underestimated by all models. The Bretschneider (1959) model gives the best
estimate for the largest wave periods, while the Longuet-Higgins (1975, 1983) models overpredict
the large wave periods. It is clear that the Cavanié (1976) model gives a very poor estimate
of the data. However, one should note that this model was only presented for combined wave
height and wave period, and not for wave period alone. It is only included here for comparison.

Several comparisons between the given wave period distributions and field data have been made.
Myrhaug and Rue (1993, 1998) presented field data measured at three different deep water
locations on the Norwegian continental shelf; Utsira in the Central North Sea, Halten in the
Norwegian Sea and Tromsgflaket in the Northern Norwegian Sea. The data included 6353
individual waves, and the data can be considered as belonging to the same statistical population.
For a more thorough description of the data, see Myrhaug and Kjeldsen (1984). Data from
Kjeldsen (1981) were also presented. The data included 3015 individual waves recorded in a
single storm at Tromsgflaket.

Figure 5.2 shows a histogram of (a) the Myrhaug and Kjeldsen (1984) data and (b) the Kjeldsen
(1981) data compared with the kernel density estimate of the Draupner field data. Note that
the data are normalized with respect to ( rather than 7},9;, so the kernel density estimate of the
Draupner data is different from Fig. 5.1. One should also note that the scale in (b) is different
from (a) due to a few large observations. The Bretschneider (1959) model is also included for
comparison. The Myrhaug and Kjeldsen (1984) data agree very well with the kernel density
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Figure 5.2: (a) Histogram of wave periods from Myrhaug and Kjeldsen (1984) and (b) histogram of
wave periods from Kjeldsen (1981). — Kernel density estimate of Draupner data, — — Bretschneider
(1959) model (¢ = 9.79 s from Draupner data).

estimate of the Draupner field data, while the Kjeldsen (1981) data have a smaller peak and a
wider spread in the data with a few large wave periods (7/¢ > 3).

Figure 5.3 shows a Weibull plot of the Draupner field data, the Myrhaug and Kjeldsen (1984)
data and the Kjeldsen (1981) data. The Bretschneider (1959) model and a Weibull distribution
based on a best fit to the Draupner field data are included for comparison. Note that the Weibull
parameters a = 0.982 and [ = 3.422 are based on the Draupner data normalized with respect to
(. The figure clearly depicts the difference between the Kjeldsen (1981) data and the other two
data sets, that is, the different behavior for smaller and higher periods in the Kjeldsen (1981)
data. The same behavior is also shown in data from the Frigg field in the Central North Sea,
which are discussed in Myrhaug and Slaattelid (1999). This phenomenon was suggested to be
caused by a broad-banded wave spectrum, representing both wind waves and swell.

Rodriguez and Guedes Soares (2000) compared numerically simulated data in mixed sea states
with the Longuet-Higgins (1983) model and the Cavanié et al. (1976) model. The results showed
large variations in the observed probability density functions in wind-dominated sea states and
swell-dominated sea states, and that the theoretical models were best suitable for predicting wave
periods in the wind-dominated sea states. These results were confirmed by field measurements in
mixed sea states from the Portuguese Coast (Guedes Soares and Carvalho, 2003). The Cavanié
et al. (1976) model agreed apparently better with the Longuet-Higgins (1983) model and the
data than observed in Fig. 5.1. This is due to the parameter T, which is not included in the
Cavanié et al. (1976) model presented in Rodriguez and Guedes Soares (2000) and Guedes Soares
and Carvalho (2003).
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Figure 5.3: Weibull probability plot of wave periods. x data from Draupner field; ¢ data from Myrhaug
and Kjeldsen (1984); e data from Kjeldsen (1981); — Weibull distribution fitted from Draupner data

with @ = 0.982 and 8 = 3.422; — — Bretschneider (1959) model (¢ = 9.79 s from Draupner data).

5.2 Joint distribution of successive wave periods

There has been less attention on joint distribution functions for successive wave periods. Kimura
(1980) presented a two-dimensional Weibull distribution for two successive wave periods and
compared the theoretical model with data from numerical simulations. Myrhaug and Rue (1993)
presented a joint distribution function based on the Bretschneider (1959) model. This model was
compared with the Kjeldsen (1981) data. Myrhaug and Rue (1998) also used a two-dimensional
Weibull distribution. The model was compared with the Myrhaug and Rue (1993) model and
with the same data from Tromseflaket. It appeared that the two-dimensional Weibull distribu-
tion was in better agreement with the data.

Let t; = 71 /T and to = 75/T),01 denote the non-dimensional successive wave periods ¢, = t;
and ty = t;41, respectively. The two-dimensional Weibull distribution of 7} and 75 is given by

B2 (tits)? ! p{ 8 448 }Iolzm(tltg)w

ti.1 = — - B2 (1 _ .2\
le,TQ( 1 2) O{Zﬁ (1—/{]72_) ex aﬁ (1—/‘1/172_) aﬁ/? (1_,4/‘2[_)

, (5.8)

where £, is related to the correlation coefficient, p,, between T; and T5 by (see Appendix E)

() [r (-4 -p2) - 1]
T =PIy = : (5.9)
o 2o (2) - (3)]

One should note that the wave period is normalized w.r.t ¢ in Myrhaug and Rue (1998), and
the parameter « estimated there must be multiplied with (/7,01 in order to fit into the present
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notation. By using the Weibull parameters o = (/T},,01 and 8 = 4, the Myrhaug and Rue (1993)
model is obtained.

Myrhaug and Slaattelid (1999) presented a parametric model based on data from the Frigg field.
The data included more than 3 million individual waves. The model was a combination of two
two-parameter Weibull distributions, which were fitted to the data in two separate intervals.
This model will not be considered in this thesis.

5.2.1 Gaussian distribution for successive wave periods using Nataf
transformation

The Nataf approach presented in Chapter 4.2 can also be applied here to obtain a multivariate
Gaussian distribution for the successive wave periods. The main challenge will be to select a
marginal probability distribution that gives a good estimate of the wave periods.

Two distributions will be presented here as the initial distribution for the transformation. First,
the Weibull distribution, given in Eq. (4.24), is used. One should note that o = (/7,01 and
[ = 4 give the Bretschneider (1959) model. However, as the results will show, this distribution
will not give a good transformation. Second, the generalized Gamma distribution will be used,
which results in a better transformation.

If the two-parameter Weibull distribution is used, then the transformation to Gaussian distri-
bution is the same as in Eq. (4.29), i.e., given by

W (1) = V2 erf™ [2 (1 — exp {— <§>ﬂ}> — 1] : (5.10)

This will be referred to as the Nataf-Weibull transformation.

Figure 5.4 shows a Weibull probability plot of the wave periods from the Draupner field, where
the best fitted line is given by the parameters o and [ in Table 5.1. The figure shows that the
Weibull distribution deviates from the data, particularly around ¢ ~ 1, and that it is not a very
good fit to the data.

The generalized Gamma distribution was first used by Ochi (1992) when modeling significant
wave heights in long-term statistics. The generalized Gamma probability density function is

given by C
fr(t) = %exp {— <t;7> } , (5.11)

where A and c are the shape coefficients, v is the scale coefficient and + is the location coefficient.
The physical meaning of ¢, i.e., the wave period is always positive, implies that v = 0. The other
parameters are found from maximum likelihood estimation and given in Table 5.1 (see Appendix
G for further details).
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Figure 5.4: Weibull probability plot of the wave period data from the Draupner field.; x data, — fitted
Weibull distribution with a = 1.058 and g = 3.422.

Figure 5.5 (a) shows the histogram and the kernel density estimate of the wave periods from the
Draupner field compared with the Weibull distribution and the generalized Gamma distribution.
The Bretschneider (1959) model is also included. The figure shows that the generalized Gamma
distribution gives a better prediction of the data than both the Weibull distribution and the
Bretschneider (1959) model, especially at the peak. The generalized Gamma distribution also
gives a better estimate of the larger wave periods than the Weibull distribution, which slightly
overpredicts the wave periods.

The probability of exceedance is shown in Fig. 5.5 (b). It shows the same results as the marginal
distribution, i.e., that for almost all values of ¢ the generalized Gamma distribution gives the
best prediction of the data. However, it appears to underpredict the probability of exceedance
for the largest values of ¢.

Table 5.1: Parameters in Weibull distribution and generalized Gamma distribution based on
maximum likelihood estimation of the Draupner data.

a [ 1.058 A [] 0.415
p [ 3.422 c [] 6.231
v [ 1.311
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Figure 5.5: (a) A histogram of the Draupner data compared with probability density functions, and
(b) probability of exceedance of the wave period with parameters from the Draupner data; — kernel
density estimate of data, —- — Weibull distribution (o = 1.058, 8 = 3.422), — — generalized Gamma

distribution (A = 0.415, ¢ = 6.231, v = 1.311), --- Bretschneider (1959) model.

The cumulative generalized Gamma distribution function can be written

Fr(t) = Iy [A, (%H , (5.12)

where I+ denotes the incomplete Gamma function given by

Ir(A\u) = ﬁ /Ou R s (5.13)

Defining W%(t) = ® (uy) with Up = Fr(t) from Eq. (5.12), it follows from Eq. (4.21) that the
transformation to Gaussian density function is given by

UG () = V2erf™! {2lp {)\, (5)] — 1} : (5.14)

This will be referred to as the Nataf-Gamma transformation. The derivative of U is given by

oo~ () el b ) ) () o
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Figure 5.6: Probability density function of transformed wave height data; —-— KDE of U}V, —— KDE
of \Ifg , — standard Gaussian density function.

Figure 5.6 shows kernel density estimates of the transformed wave periods with both WV and
TS compared with the standard Gaussian probability density function. The figure shows that
both transformations give a poor approximation to a Gaussian distribution. The peak values
are located too far to the right, and the shape of the density functions do not resemble the
Gaussian density function. Both distributions deviate from the Gaussian distribution, but the
Nataf-Gamma transformation is slightly closer to a Gaussian distribution. However, there are
some differences around the peak of the density function, and this corresponds to the shape of
the marginal density function for the wave period, which was shown in Fig. 5.1 (a). Unless an
initial distribution that captures this feature is used, this will probably always be reflected in
the transformation. Another possibility is to remove the smallest values from the data set and
only consider parts of the data set, e.g., consider the wave periods where the corresponding wave
heights exceed a given value. This will be discussed further in Chapter 5.3.

In the following only the Nataf-Gamma transformation will be considered.

The two-dimensional distribution of two successive wave periods 7T} and 75 is given by
From(t, ) = @ (U5 (t), U5(ta)) (5.16)
and the probability density function is

U ()WY (to)

21, /1 — p?
2 (5.17)

1
X exp _W (\Pg(h)Q + \Iqu(tQ)Z - 296‘,12\1}?@1)\1}%@2)) )
( PG,12)

frim(ti,te) =
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Figure 5.7: Contour plot of the two-dimensional probability density functions. Percent levels the given
contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. (a) The Nataf-Gamma model compared
with the Myrhaug and Rue (1993) (o = 1.077, 8 = 4, k2 = 0.404) model and the Myrhaug and Rue
(1998) (o = 1.058, B = 3.422, k2 = 0.391) model. (b) The Nataf-Gamma model compared with kernel
density estimate of the data. (A = 0.415, ¢ = 6.231, v = 1.311, pg,12 = 0.325).

where pg 12 is the correlation coefficient between WS (¢,) and WE(¢,). Table 5.2 shows the corre-
lation coefficients of the transformed wave periods calculated from the Draupner field data. The
correlation coefficients for the normalized wave periods are included for comparison, showing
that they are close to the pg 1; values. It appears that the correlation coefficients between the
wave periods decrease rapidly.

Figure 5.7 (a) shows a contour plot of the two-dimensional Nataf-Gamma model. The Myrhaug
and Rue (1993) (o = 1.077, 8 = 4, k2 = 0.404) and Myrhaug and Rue (1998) (o = 1.058,
B = 3.422, k2 = 0.391) models are included for comparison. The peaks of the two latter
distributions are located at lower values of ¢; and t, than the Nataf-Gamma model. They also

Table 5.2: Correlation coefficients between WS (¢;) and ¥ (;), and correlation coefficient of the
normalized wave periods p; 14, ¢ = 2, 3,4, from the Draupner data.

PG .12 [—] 0.325 Pr,12 [—] 0.322
PG 13 [—] 0.122 Pr,13 [—] 0.118
PG 14 [—] 0.073 Pr,14 [—] 0.071
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Figure 5.8: Paired plot of the transformed wave periods U% between (a) t; and t2, (b) #; and t3,
compared with a contour plot of a standard Gaussian distribution (pg12 = 0.325, pgi3 = 0.122,
A = 0.415, ¢ = 6.231 v = 1.311). Percent levels the given contour lines enclose are 10, 30, 50, 70, 90,
95, 99 and 99.9.

decrease more slowly than the Nataf-Gamma model for large values of ¢; and ¢,. The Nataf-
Gamma model is compared with the kernel density estimate of the Draupner data in Fig. 5.7
(b). The peak of the data is not correctly predicted, but generally the Nataf-Gamma model
gives a good estimate of the data.

Figure 5.8 (a) and (b) show a paired plot of the transformed wave periods between t; and
to, and t; and t3, respectively. The results are compared with a contour plot of the standard
Gaussian distribution. Both figures show that the dependency structure resembles the one for
the Gaussian distribution.

Thus, by using the Nataf-Gamma transformation, the probability distribution for two and three
successive wave periods can be modeled by a transformed Gaussian distribution. The resulting
transformation is not completely Gaussian, but the results are satisfactory compared to the
existing two-dimensional models. In theory, the Nataf-Gamma transformation can also be used
for modeling more than three wave periods. However, the resulting dependency structure should
be examined to see if the transformation correctly takes care of the correlation between the wave
periods.

The probability density function for T = [T7,...,T,]" is given by

) = L e { Lo mrusio ). (5.15)
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Figure 5.9: Conditional expectation of the wave period given the previous wave period. — Nataf-
Gamma model (A = 0.415, ¢ = 6.231, v = 1.311, pg12 = 0.325); --- Myrhaug and Rue (1993) model
(a = 1.077, 8 = 4, k2 = 0.404); —— Myrhaug and Rue (1998) model (o = 1.058, 8 = 3.422, k2 = 0.391);
o field data.

where the covariance matrix, X, is given by

1 pgiz  pap
1 ...
n_ | o pee (5.19)
PGt o1

Another quantity of interest is the expected value of a wave period given the previous wave
period. This is given by

EL|T =t] = / tofrym (ta|t1) dis, (5.20)
0

where the conditional probability density function fp, 1, (t2]t1) is found from Bayes rule in Eq.
(3.53). Figure 5.9 shows the conditional expectation E[T,|T} = ;] versus t; for the Nataf-Gamma
model and the Myrhaug and Rue (1993, 1998) models. The results are compared with data from
the Draupner field. The Nataf-Gamma model agrees quite well with the data except for small
values of ¢; where the Myrhaug and Rue (1993, 1998) models give a better agreement with the
data.
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Figure 5.10: (a) Sample autocorrelation function, and (b) sample partial autocorrelation function of
& from Draupner data. The dotted line indicates +2(Var[¢;;])!/2.

Successive wave periods modeled as an AR(1) model

The Nataf-Gamma transformation of the wave periods from the Draupner field can be modeled
as an AR(1) model as discussed in Chapter 4.3. Figure 5.10 shows the sample ACF and PACF
of UZ. The ACF decreases approximately exponentially, and the PACF has one spike at j = 1.
A likelihood ratio test as described in Chapter 4.3.1 gives a test result of —21n Ay = 3.17 with
n = 2208. From tables X%_QOE)’Q = 3.17, which means that the hypothesis that the correlation
coefficients agree with an AR(1) model (i.e., are given by Eq. (4.42)) would not be rejected at
20.5% significance level.

The simulation of successive wave periods is more difficult than for the wave heights when
using the generalized Gamma distribution in the transformation. This is due to the difficulty of
inverting the transformation of ¥$ given in Eq. (5.14), which must be done numerically.

However, the distribution for the wave period given the previous wave period will be independent
of the wave periods prior to the previous wave period. Figure 5.11 shows the probability of a
wave period to be in an interval [t;,%,] given that the previous wave period was in the same
interval as a function of x = (f; +t;)/2. Here ; = 2 — 0.1 and &, = 2 + 0.1. The Nataf-Gamma
model and the Myrhaug and Rue (1993, 1998) models are included for comparison. The shape
of the data is not reflected in any of the models. The Nataf-Gamma model agrees quite well
with the data for large values of x, while the Myrhaug and Rue (1998) model agrees better with
the data for small values of x.
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Figure 5.11: The probability of a wave period to be in an interval [t1, %] given that the previous wave
period was in the same interval, where £; = z — 0.1 and ¢, = z + 0.1.
(P=Pz-01<Tp<z+0llz-01<T; <z+0.1))

- — Nataf-Gamma model; - -- Myrhaug and Rue (1993) model; —- — Myrhaug and Rue (1998) model; ¢
field data.
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5.3 Distribution of successive wave periods for large wave
heights

Usually, the most critical situations will occur when the wave height is large. That means
that it is of interest to study the probability distributions for the wave period given that the
corresponding wave height exceeds a given value, e.g., h.ns or Hg, where the latter is of most
practical interest. There exist several joint distributions of wave height and corresponding wave
period.

In Longuet-Higgins (1975) the joint density function of dimensionless wave height and wave
2h?
fH,T(h/a t) = exp {—h2

period is given by
o 2 (5.21)
\/7_1'62 €9 ' '

The conditional probability density function of ¢ given that h exceeds h is found by integration
and is given by

2

exp( W) yes |20 T 4P

_l’_
73 73/2 ’
437 4 £/

t]:1+<t_1>2. (5.23)

Similarly to the marginal density function in Eq. (5.2), the integral of the density functions in
Eqgs. (5.21) and (5.22) is only equal to one if negative values of ¢ are included.

(5.22)

where

The joint density function of h and ¢ proposed by Longuet-Higgins (1983) is given by

4 h? 2 1- % ’
fH,T(h/a t) = "1 t_2 exp —h” |1+ , (524)
N2, [1 +(1+¢€) ] €2
and the conditional probability density function is given by
frim(tlh > h) = N -
7 (t] ) A "1 i Jio1 VT erf (h\/E)] (5.25)
—— + Z , .
Cove [L+ L+ e |20 a4 5P|
where
_ 1—1\?
t2:1+< t) : (5.26)
€2

and C'p is the normalizing factor from the marginal distribution of H given by

e 4h 1 h
C :/ exp(—h?)= <1 + erf {—]) dh. 5.27
hoirare) =13 € (5.27)
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Tayfun (1993) presented a joint probability density function of wave height and wave period
that was valid for large wave heights. This was based on

fur(h,t) = fu(h) frim(th), (5.28)

and was valid for h > p; = the mean wave height. The marginal probability density function of
H for large wave heights is given in Tayfun (1990) as

Fuh) = Ok (14 L= Fe CLA UO A (5.29)
H — YT 32l€ah2 exp 1+ Kq ) Mo, .

where Cr; is a normalizing factor and &, is the same as in the two-dimensional Rayleigh distri-
bution. The conditional distribution of the wave period given the wave height was approximated
by the Gaussian distribution, when assuming that the wave height was larger than the mean
wave height

2 O-t‘h

o 2
Frin(Hh) = Cry exp {—1 (M> } b, (5.30)

where C'r4 is a normalizing factor and

A (5.31)

262
o = — 5.32
th VBh(1 + €) (5:32)

Thus, the joint probability function is found from Eq. (5.28) as

4h? t— 2
+ ( a ”‘) , (5.33)
1+ Kq Otlh

where C'r 3 is a normalizing factor. The conditional probability density function given that h > h
must be calculated numerically.

frr(h,t) = Crsh il !
gr\h,t) =0Lrg3 32k, h? exp 9

Figure 5.12 shows a histogram of the wave periods from the Draupner field where the correspond-
ing wave height is larger than h,n, i.e., h > 1, and the kernel density estimate of the data. The
data are compared with the Longuet-Higgins (1975, 1983) models and the Tayfun (1993) model.
The first two models do not give a good prediction of the wave periods. The density functions
are shifted towards lower values of ¢, and the peak value is also underestimated. The latter
model gives a better estimate of the wave periods. However, this model also underestimates the
peak value of the kernel density function.

The shape of the data in Fig. 5.12 indicates that a Gaussian density function would give a good
description of the data. Figure 5.13 shows the data compared with a Gaussian density function
with mean value and standard deviation calculated from the data, which are given in Table 5.3
for p = 1. The Gaussian density function agrees well with the data.

Thus, a transformation of the data is not necessary. The joint distribution of p successive wave
periods T = [T}, ...,T,]", given the corresponding wave heights exceeding the level h, is then
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Figure 5.12: Probability density function of wave periods where the corresponding wave height is
larger than Ay, i.e., h > 1; — kernel density estimate of data, — - — Longuet-Higgins (1975), ---
Longuet-Higgins (1983), — — Tayfun (1993).

given by the multivariate Gaussian distribution

fra(thh > B) = e e {—%(t )T utm} L (534)
where pyj, = [y - ,utm,p]T is the mean value of the wave periods given the threshold value
h, and

0t2|E,1 Cov[Ty,Ty|h] --- Cov[Ti,T,|h]
Y= ~ o : (5.35)
Cov|[Ty,T,|h] e Uflﬁ,p

where Cov|[T;, T;|h] = PiiO i il j-

Table 5.3: Calculated parameters for the p-dimensional Gaussian distribution with h = 1, from
the Draupner field data.

Hyh T i p n
p=1 1.14 0.18 2424
p=2 [1.18, 1.19]" [0.17, 0.17]7 0.245 1360
p=3 [1.18, 1.23, 1.19]F [0.17, 0.16, 0.16]7 [0.287, 0.150]" 768
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Figure 5.13: Probability density function of wave periods where the corresponding wave height is larger
than hypys, i.e., h > 1; — kernel density estimate of data, --- Gaussian density function (r“t|f1 = 1.14,

o, = 0.18).

In order to compare the multivariate theory with the Draupner data, pairs and triplets of suc-
cessive wave periods were formed conditioned on that the corresponding wave height was larger
than hyms. The mean value and standard deviation are shown in Table 5.3 for p =2 and p = 3,
respectively, and n is the number of pairs and triplets that were found. In addition, the cor-
relation coefficients, p = [p12, ..., p1p)", between the successive wave periods are given. If the
normalized significant wave height of 1.41 was selected as k, the number n would be smaller,
and the number of data cases available when considering three successive wave periods would
be too small. This case will instead be discussed in Chapter 6.4.1, with an increased number of
data from numerical simulations.

Figure 5.14 shows a contour plot of the bivariate Gaussian distribution in Eq. (5.34) with p =2
and h = 1, compared with the kernel density estimate of the Draupner data. The figure shows
good correspondence between the model and the data.

In order to verify that the multivariate Gaussian distribution can be used for modeling successive
wave periods, the dependency structure should be examined, e.g., by a paired plot. Figure 5.15
(a) and (b) show a paired plot of the wave periods t; and t5, and ¢; and t3, respectively. The figure
shows that the correlation structure is correctly modeled by the bivariate Gaussian distribution.

Thus, the probability distribution for two and three successive wave periods given that the
corresponding wave heights exceeded a critical level, e.g., h;ms, can be modeled by a multivariate
Gaussian distribution. The multivariate Gaussian distribution can also be applied for more than
three wave periods with corresponding large wave heights, but then the dependency structure
should be further examined.
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Figure 5.14: Contour plot of two successive wave periods, given that the corresponding wave heights
are larger than h.yg, modeled by the bivariate Gaussian probability density function and compared
with kernel density estimate of Draupner data. Percent levels the given contour lines enclose are 10,
30, 50, 70, 90, 95, 99 and 99.9. (“t|ﬁ = [1.18,1.19]T, Oy = [0.17,0.17], p12 = 0.245).
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Figure 5.15: Paired plot between (a) t; and 2, and (b) #; and #3. Percent levels the given contour
lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. (“t\ﬁ = [1.18,1.23,1.19]7, o = [0.17,0.16,0.16]",

p = [0.287,0.150]T).
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Figure 5.16: The probability of a wave period to be in an interval [£;, ;] given that (a) the previous
wave period and (b) the two previous wave periods were in the same interval, where £, = 2z — 0.1 and
to =2 +0.1. The corresponding wave heights are larger than hpp.

— — Gaussian distribution; ¢ data from Draupner field.

(a) P = P(lzl <T3< 7§2|1§1 <T < €2,ff3 > hems, Hy > )

(b) P = P(tl <T3 < t2|t1 <ThH < to,ty < Ty < to, Hy > hems, Ho > hymg, H1 > hrms)

It was shown in Chapter 5.2.1 that the Nataf-Gamma transformation of the wave periods from
the Draupner field could be modeled as an AR(1) model. This means that the Markov property
in Eq. (4.44) applies for all wave periods, and thus for the wave periods where the corresponding
wave heights are larger than h,,s. Consequently, the distribution for the wave period given the
previous wave period will be independent of the wave periods prior to the previous wave period,
also when considering wave periods with corresponding large wave heights.

Figure 5.16 shows the probability of a wave period being in an interval [f;,#,] given that (a) the
previous wave period was in the same interval and (b) the two previous wave periods were in
the same interval, as a function of 2 = (#, + t3)/2. All corresponding wave heights exceeded
hems. Here t; = x — 0.1 and £, = z + 0.1. The Gaussian distribution agrees quite well with the
data. The results are also quite similar for both cases, which support the hypothesis that the
wave periods can be modeled as an AR(1) model.



CHAPTER 6

Results and discussion

This chapter presents results both from field data and laboratory data. Numerical simulations
are made for the different cases for comparison. For each case 10 simulations were made with
identical input parameters in order to examine the variation in the results.

6.1 Data description

6.1.1 Draupner field

The description of the Draupner field data was given in Chapter 2.4.

Numerical simulation results

Numerical simulations of 10 time series with length equal to the total time series of the field data,
i.e., 15 hours and 53 minutes, have been made. Here the time step was 0.5 s. The descriptive
statistics of the wave parameters for the simulated data are given in Table 6.1. The mean values
are in good agreement with the corresponding values of the field data given in Table 2.2.

Figure 6.1 (a) shows the spectral densities of each simulated time series. Compared to the
spectral density of the field data in Fig. 6.1 (b), it is seen that the shape of the spectrum is
quite similar, and the range of the peak periods (11.07 s <7, < 11.31 s) corresponds well with
the peak period of the field data, T, = 11.23 s.

93
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Figure 6.1: (a) Spectral densities of simulated time series. (b) The spectral density of field data.

Table 6.1: Descriptive statistics of the simulated data. Results from 10 simulations.

Mean Min/Max St.dev
Hyno m] 6.77 6.69/6.90 0.07
T2 [s] 8.32 8.28/8.37 0.03
Timot s] 8.98 8.93/9.03 0.03
Tos 5 5.28 5.25/5.30 0.02
T, ] 11.14 11.07/11.31 0.06
K [rad /m] 0.0582 0.0575,/0.0588 0.0004
k) [rad /m] 0.0500 0.0495,0.0506 0.0003
Grms ™ 2.39 2.37/2.44 0.02
o (] 1.69 1.67/1.72 0.02
P3 -] 0.163 0.153/0.177 0.007
P4 ] 3.03 2.98/3.09 0.04
€ ] 0.407 0.404/0.411 0.002
€4 8 0.773 0.771/0.776 0.001
5 -] 0.036 0.034/0.036 0.001




6.1. DATA DESCRIPTION 95

6.1.2 Japan Sea
Field data results

At the Poseidon platform in the Japan Sea measurements of the surface elevation were made
in the period 1987-1990. Figure 6.2 is a map of the Japan Sea, and the Poseidon platform
is situated 3 km off Yura. In order to investigate statistical properties of a relatively heavy
sea state, a 4 hour time series measured 17th of December 1987 is considered. Three intervals
containing some spurious data are removed from the data set leaving a time series of 3 hours and
51 minutes, which contains 1496 zero-upcrossing waves. The data is measured with an ultrasonic
wave gauge situated at the sea floor, and the sampling frequency is 1 Hz. A cubic spline is used
to interpolate the data set before further analysis. The water depth is 42 m, so a finite water
depth effect is expected.

Figure 6.3 shows the spectral density for the time series. The dotted line indicates the peak
frequency, w, = 0.54 rad/s. A JONSWAP spectrum with peakedness parameter v, = 1 is
shown in the same figure as the broken line. The JONSWAP spectrum tends to zero for small
frequencies as opposed to the spectral density for the field data. The energy in the lowest part
of the spectrum corresponds to the difference frequency effect, and this effect increases as the
water depth decreases.

Table 6.2 shows the descriptive statistics for the time series. The measured values indicate
that this sea state is quite similar to the sea state for the Draupner field data (see Table 2.2).
However, the water depth of 42 m is only 3/5 of the water depth at the Draupner field, thus the
nonlinear effects are expected to be more important. This is also indicated by a significantly
higher value of the skewness and kurtosis. A histogram of the surface elevation compared to a
Gaussian distribution with zero mean and variance equal to (1.72 m)? is shown in Fig. 6.4. Tt
is clear from the figure that the skewness is positive.
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Figure 6.2: Map of the Japan Sea. The Poseidon platform is situated 3 km off Yura.
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Figure 6.3: The spectral density of field data from Japan Sea (solid); JONSWAP spectrum with y; =1
(broken); Peak frequency of field data w, = 0.54 rad/s (dotted).

Table 6.2: Descriptive statistics of Japan Sea field data.

H,pp [m] 6.88
Tmo2 [s] 8.59
Tmo1 [s] 9.45
Tin2a [s] 5.09
T, [s] 11.70
k [rad/m] 0.0561
K [rad /m] 0.0469
Grms (m] 2.43
o [m] 1.72
p3 -] 0.254
P4 -] 3.11
€ [ 0.470
€4 -] 0.804
5 -] 0.036
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Figure 6.4: Histogram of the surface elevation from Japan Sea. The line indicates a Gaussian distri-

bution with zero mean and variance equal to (1.72 m)2.

Table 6.3: Descriptive statistics of 20 minutes intervals of Japan Sea field data.

Mean Min/Max St.dev
Hyuo m] 6.90 6.28/7.35 0.34
o ] 8.46 8.28/8.70 0.14
Toon 5 9.44 0.17/9.72 0.19
Toa ] 2.43 1.41/4.93 1.09
T, ] 11.74 11.38/12.05 0.32
K [rad /m] 0.0572 0.0542/0.0595 0.0017
k) [rad /m] 0.0470 0.0447/0.0494 0.0016
toms (] 2.44 2.22/2.60 0.12
o m] 1.73 1.57/1.84 0.09
p3 ] 0.250 0.141/0.419 0.088
1 ] 3.06 2.66/3.82 0.29
& 8 0.495 0.462/0.521 0.020
€4 8 0.948 0.806/0.986 0.054
5 -] 0.036 0.032/0.041 0.003
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In order to investigate the variability in the data set, the time series was divided into intervals of
20 minutes (i.e., totally 11 records) and descriptive statistics were found for each interval. The
mean value, the minimum and maximum value and the standard deviation were calculated and
are given in Table 6.3. The variety in the values are due to that the sea state is not completely
stationary during the entire time interval. Both the significant wave height and the peak period
is slightly decreasing, indicating that the storm decreases. In the following the whole time series
is considered as one interval.

Numerical simulation results

Numerical simulations of 10 time series with length of 3 hours and 51 minutes corresponding to
the length of the field data, have been made. The time step was 0.5 s. Since the JONSWAP
spectrum did not describe the spectrum of the field data very well (see Fig. 6.3), the spectrum
from the field data was used as the input spectrum for the simulations. However, since the
linear component is based on the spectrum, the energy of the input spectrum should approach
zero for small frequencies. Otherwise, the spectral density of the resulting simulations would
correspond to both the linear component and the difference frequency component, and the value
of the spectral density would be too high at low frequencies. Thus, the time series of the field
data was filtered at 0.2 rad/s before the resulting spectrum was used as the input spectrum for
the simulations.

The descriptive statistics of the simulated data are given in Table 6.4. The significant wave
height and the peak period agrees well with the field data values in Table 6.2. The values of
Tino2 and Tl,01 are smaller than the values of the field data, thus also k£ and k; deviate from the
field data values. The skewness is also smaller than for the field data.

Figure 6.5 (a) shows the spectral densities of each simulated time series. Both the shape of the
spectra and the range of the peak frequencies (0.52 rad/s < w, < 0.57 rad/s) agree well with
the spectral density of the field data shown in Fig. 6.5 (b).
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Figure 6.5: (a) Spectral densities of simulated time series. (b) The spectral density of field data.

Table 6.4: Descriptive statistics of the simulated data. Results from 10 simulations.

Mean Min/Max St.dev
Homo ™ 6.97 6.76/7.14 0.11
o 8 7.83 7.75/7.89 0.04
Toon 5 8.91 8.81/9.00 0.06
Tt 5 4.06 4.02/4.09 0.02
T, 8 11.65 10.95/12.05 0.03
K [rad /m] 0.0662 0.0651,/0.0674 0.0007
k) [rad /m] 0.0520 0.0511/0.0531 0.0006
Grms ™ 2.45 2.39/2.53 0.04
o m] 1.74 1.69/1.79 0.03
p3 ] 0.151 0.128/0.190 0.022
1 ] 3.09 3.00/3.14 0.05
& 8 0.544 0.538/0.558 0.007
€4 8 0.855 0.852/0.858 0.002
5 -] 0.037 0.036/0.040 0.002
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6.1.3 Laboratory data from HR Wallingford

In 1997 a series of experiments in the UK Coastal Research Facility (UKCRF) at HR Wallingford
were made. Measurements of the surface elevation at different water depths along a beach provide
useful information for validation of the finite water depth models. It should be noted that the
present, models cover the wave conditions at a water depth with a given constant value, and not
conditions over a changing water depth. Thus, no shoaling effects are included. One should also
note that the results from laboratory experiments can be influenced by effects in a closed basin,
such as reflection from the edges, water flowing back from the shore or standing waves in the
basin.

Experimental setup and data description

A thorough description of the UKCRF is given in Simons et al. (1995). The basin is 36 meters
wide and has a maximum water depth of 80 cm. Long-crested (2D) as well as short-crested
(3D) waves are generated according to a given peak period, a significant wave height and a wave
spectrum. The water depth is constant for a length of 8.36 meters after the wave generator, and
then the beach rises at a slope ratio of 1:20. Seven wave probes measuring the surface elevation
were located at different water depths along the tank. Figure 6.6 shows the experimental setup.

Measurements made at four different water depths are analyzed; at d = 80 ¢m and d = 78
cm, which represent relatively deep water; and at d = 41 ¢cm and d = 31 cm, representing
intermediate water depths. The main focus will be on the deep water data (80 m, 78 m).
However, the other data (41 m, 31 m) will be included for comparison. Only long-crested (2D)
waves are considered. Other aspects of data collected during the same experiments are given in
Memos (2002).

A time series of irregular waves was generated from a JONSWAP spectrum with spectral pa-
rameter v; = 3. The peak period was 7, = 1.2 s, and the significant wave height was Hg = 9
cm. In full scale, typically 1:100, this corresponds to a sea state with 7, = 12 s, and Hg = 9 m.
The following results will be presented in full scale 1:100. The sampling frequency was 25 Hz
with a sampling interval of 1020 s, corresponding to 2 hours 50 minutes in full scale.

T, Hg d=80cm  d=T78cm d=41lcm d=3lcm

2.20m 3.06m  1.92m 1.96m 2.00m 2.00m 2.00m

8.36m

Figure 6.6: Experimental setup at HR Wallingford.
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Figure 6.7: The spectral density. (a) d =80 m, (b) d =78 m, (¢) d =41 m, (d) d = 31 m.

Figure 6.7 shows the spectral density at the different water depths. The peak frequencies are the
same at the different water depths, i.e., w, = 0.53 rad/s. The spectra are quite similar except for
more energy in deep water. This is to be expected since the significant wave height will decrease
with decreasing water depth, which is confirmed by the data in Table 6.5.

A closer look at the spectral density in the lower tail is shown in Fig. 6.8. The energy in this
part of the spectrum corresponds to the difference-frequency effects, and should increase with
decreasing water depth. However, the figure shows that the spectral density for d = 80 m has
a large peak around w ~ 0.044 rad/s, which is not physically correct. The amount of energy in
this low frequency part of the spectrum is larger at d = 80 m than the energy at both d = 78 m
and d = 41 m. The spectral density for d = 78 is expected to be quite similar to the spectral
density for d = 80 m. Thus, the data at d = 80 m and d = 78 m are filtered at 0.2 rad/s
before proceeding with the analysis. This gave only minor changes in the descriptive statistics
(at second decimal).
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Figure 6.8: Low frequency part of spectral density. (a) d = 80 m, (b) d = 78 m, (¢) d = 41 m, (d)
d =31 m.
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The descriptive statistics of the data at the different water depths are shown in Table 6.5. The
data for d = 80 m and d = 78 m are calculated from the filtered time series. One should note
that the significant wave height decreases with decreasing water depth, while the peak period
is constant. The mean period between maxima is significantly reduced at intermediate water
depths, which indicates that the surface elevation is more broad-banded, and that nonlinear
effects become more important. This is also indicated by the increase in both skewness and
kurtosis. There appear to be more secondary peaks in the time series at d =41 m and d = 31 m
than at d = 80 m and d = 78 m. In the zero-crossing analysis, wave of amplitude less than 1/10
of the standard deviation above or below the zero line are neglected. Some of the secondary
peaks at d = 41 m and d = 31 m occur around the zero line with amplitude larger than 1/10 of
the standard deviation, and thus the number of waves with small wave period and corresponding
small wave height is larger than expected. This is observed in Fig. 6.9. It is uncertain if this
is caused by physical effects or by the instrumentation. One should also note that in the water
depth d = 31 m, the wave steepness for a few individual waves is quite large (k7gmax = 0.51).
The second order Stokes criterion, which at this water depth is given by the criterion for no bump
in the trough in Eq. (3.20), leads to kn, < 0.38. So, obviously there will be a few individual
waves at this water depth not satisfying the second order Stokes criterion. Despite of all the

Table 6.5: Descriptive statistics of laboratory data.

d=80m d="T7T8 m d=41m d=31m
H,o [m] 9.10 8.87 8.25 8.12
Trno2 [s] 10.34 10.35 8.72 8.88
Tnot s] 10.75 10.76 10.38 10.38
Trnoa s] 7.65 7.60 1.86 2.05
T, [s] 11.87 11.87 11.87 11.87
k [rad /m] 0.0378 0.0377 0.0542 0.0546
ky [rad/m)] 0.0351 0.0351 0.0402 0.0430
Crms [m] 3.22 3.14 2.92 2.87
o [m] 2.28 2.22 2.06 2.03
p3 [-] 0.250 0.236 0.270 0.405
P4 [-] 3.04 3.15 3.24 3.50
€ B 0.284 0.283 0.646 0.603
€4 -] 0.673 0.679 0.977 0.973
5 [-] 0.042 0.041 0.043 0.046
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Figure 6.9: Paired plot of the normalized wave period and the corresponding normalized wave height
from the laboratory data. (a) d =80 m, (b) d =78 m, (c) d =41 m, (d) d = 31 m.

concerns associated with the data at d = 41 m and d = 31 m, they are included for comparison.
However, the comments given above should be kept in mind when considering the results for all
the data (crests, troughs, heights and periods).

Numerical simulation results

Numerical simulations of 10 time series with length of 3 hours have been made. The time step
was 0.4 s. Similarly to the simulations of the Japan field data, the spectra from the filtered
laboratory data were used as input spectra for the simulations.

The descriptive statistics of the simulated data are shown in Table 6.6. The significant wave
height and the peak period correspond well with the laboratory data given in Table 6.5, while the
wave periods Tino1, Tmo2 and T},04 deviate slightly. There is a large difference in the parameters
p3 and py, for which the values are almost equal at the different water depths as opposed to
the laboratory data where the values increase with decreasing water depths. One should recall
that the simulations are based on wave conditions at a water depth with a given constant value.
The simulations also only include second order nonlinear effects. Thus, the laboratory data can
include other nonlinear effects in the intermediate water depths d = 41 m and d = 31 m, which
are not captured by the second order model.
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Table 6.6: Descriptive statistics of simulated data for comparison with laboratory data.

d=80m d="78m d=41m d=31m

Mean 9.17 8.97 8.32 8.26

H,., [m] Min/Max 8.86/9.31 8.67/9.12 8.04/8.46 7.98/8.39
St.dev 0.16 0.15 0.15 0.15
Mean 10.14 10.14 9.17 9.04

Trno2 [s] Min/Max | 10.02/10.20  10.02/10.19 9.05/9.24 8.94/9.10
St.dev 0.06 0.06 0.06 0.06
Mean 10.63 10.63 10.30 10.14

Trnot [s] Min/Max | 10.51/10.69 10.51/10.69  10.18/10.36  10.02/10.19
St.dev 0.06 0.06 0.06 0.06
Mean 7.30 7.23 2.97 3.25

Trnoa [s] Min/Max 7.00/7.44 6.94/7.38 2.91/3.02 3.19/3.31
St.dev 0.14 0.14 0.04 0.04
Mean 11.83 11.83 11.85 11.96

T, [s] Min/Max | 11.64/12.05 11.64/12.05 11.64/12.05 11.77/12.19
St.dev 0.12 0.12 0.12 0.12
Mean 0.0393 0.0393 0.0495 0.0530

k [rad/m] | Min/Max | 0.039/0.040 0.039/0.040  0.049/0.051  0.053/0.054
St.dev 0.0005 0.0005 0.0006 0.0005
Mean 3.24 3.17 2.94 2.92

Crms [m] Min/Max 3.13/3.29 3.07/3.22 2.84/2.99 2.82/2.97
St.dev 0.06 0.05 0.05 0.05
Mean 2.29 2.24 2.08 2.07

o [m] Min/Max 2.22/2.33 2.17/2.28 2.01/2.11 1.99/2.10
St.dev 0.04 0.04 0.04 0.04
Mean 0.174 0.172 0.163 0.157

03 ] Min/Max | 0.143/0.201  0.142/0.198  0.126/0.194  0.112/0.193
St.dev 0.018 0.017 0.022 0.027
Mean 3.07 3.07 3.07 3.09

P4 -] Min/Max 2.90/3.31 2.91/3.31 2.90/3.31 2.91/3.32
St.dev 0.13 0.13 0.13 0.13
Mean 0.315 0.316 0.512 0.506

€ -] Min/Max | 0.310/0.320 0.310/0.321  0.505/0.518  0.499/0.511
St.dev 0.003 0.004 0.004 0.004
Mean 0.694 0.700 0.946 0.933

€4 ] Min/Max | 0.680/0.720  0.687/0.726  0.945/0.947  0.932/0.935
St.dev 0.013 0.013 0.001 0.001
Mean 0.043 0.042 0.043 0.046

S ] Min/Max | 0.042/0.044  0.041/0.043  0.042/0.045  0.045/0.047
St.dev 0.001 0.001 0.001 0.001
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6.2 Results for wave crest heights and wave trough depths

6.2.1 Results for Draupner field data

The sum frequency and difference frequency components were discussed in Chapter 3.5, and the
magnitude of these effects was illustrated in Fig. 3.11. This discussion will be continued here
by looking at the composition of the wave from a simulated time series.

In order to see the influence of the different second order terms, the surface elevation is de-
composed into the linear part, the sum frequency part and the difference frequency part. The
results shown in Figs. 6.10 and 6.11 are from one of the simulated time series corresponding to
the Draupner field data, which can be considered as deep water waves since the effect of water
depth is insignificant (see Chapter 2.4). The simulations corresponding to the other data sets
give similar results.

Figure 6.10 shows a part of a simulated time series with a detailed composition of the wave. The
total second order wave is also shown together with the result from combining only the linear
part and the sum frequency part. From the figure it is clear that the sum frequency component
is locally quite significant, especially when the linear amplitude is high, and it will give a large
contribution to the total wave crest height. At the same time, the difference frequency component
will reduce this effect. The largest contribution from the sum frequency and difference frequency
terms is for the highest wave amplitudes. Thus, the nonlinearity of the waves will increase with
increasing crest height and trough depth.

Figure 6.11 shows the different components of the spectral density from a simulated time series.
One should note the different scale of the spectral density compared to Fig. 6.1 (a), where the
spectral density for the sum frequency and difference frequency component would not have been
visible at all. The sum frequency component has no contribution for low frequencies, and due to
the large linear component, it will not give any significant influence around the peak frequency
of the second order spectral density spectrum. However, for higher frequencies, w 2 2, it is of the
same magnitude as the linear component and will give a significant contribution. For very high
frequencies, w 2 3, the linear component is almost zero, and the second order spectral density
is only dependent on the sum frequency component. The difference frequency component gives
only a contribution for the lowest frequencies.

The variation with water depth of the sum and difference frequency effects will be discussed in
Chapter 6.2.3.
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Figure 6.10: Different components of the surface elevation in a simulated time series.
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Figure 6.11: Different components of the spectral density in a simulated time series (w, = 0.56 rad/s).
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Figure 6.12: Marginal distributions; — Rayleigh distribution, — — extended second order model, - - -
second order Stokes model, — - — Forristall 2D-model, - o -- Forristall 3D-model. The lines to the right
and left of the Rayleigh distribution corresponds to the crest height and trough depth, respectively.

Figure 6.12 shows the marginal distributions of the crest heights and trough depths in terms of
probability of exceedance. In (a) the field data are compared with the simulated data, which
are based on the second order wave theory. In (b) the simulated data using the full second order
surface are compared with the simulated data where only the linear and the sum frequency
components are included, which will be referred to as the simulated sum frequency data. Each
simulated data point is the mean value of 10 data points based on the kernel density estimate
of the 10 simulations.

The results of the field data compared with the theoretical distributions were discussed in Figs.
3.9 (b) and 3.12. From Fig. 6.12 (a) it is clear that the simulated wave crest data agrees well with
the field data. For the highest wave amplitudes the simulated wave crests slightly underpredict
the field data. They fall between the Rayleigh distribution and the extended second order
model, while the Forristall models agree well with the data. The simulated wave trough data
underpredicts the field data, and the extended second order model agrees quite well with the
simulated data.

The results in Fig. 6.12 (b) clearly show the difference between using only the linear and sum
frequency components and using the full second order surface including difference frequency
components. The results support the observations of the surface elevation in Fig. 6.10, i.e.,
by including difference frequency terms the nonlinearity of the waves is decreased. Thus the
simulated sum frequency data deviate more from the Rayleigh distribution, and these simulated
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Figure 6.13: Marginal distributions; — Rayleigh distribution, — — extended second order model, - - -
second order Stokes model, — - — Forristall 2D-model, - o -- Forristall 3D-model. The lines to the right
and left of the Rayleigh distribution corresponds to the crest height and trough depth, respectively. (a)
Mean values from simulations with confidence intervals. (b) Results from the individual simulations.

data are also well described by the second order Stokes model. One should remember that the
extended second order model only includes the difference frequency component in a simplified
manner, i.e., the narrow-band approximation, as mentioned earlier (see Fig. 3.11).

The variation in the simulated data is shown in Fig. 6.13. The mean values of the 10 simulations
are shown in Fig. 6.13 (a). Confidence intervals given by +2Var[z]'/2, where x is a vector of the
10 simulation points, are indicated for each mean value. Figure 6.13 (b) show the results from
the individual simulations.

Figure 6.14 shows the conditional distribution of w., and wyy given w.; and wy, respectively,
in terms of the probability of exceedance. Here N, and N; denote the number of field data
cases in each class of w.; and wy;, respectively. The results show similar behavior as observed
in Fig. 6.12 (a), although the data show larger variation. Overall, the crest data are fairly well
described by the second order Stokes model and the extended second order model. In the lower
two figures the data fall between the extended second order model and the Forristall models for
larger values of w. and wyy. In the interval 1.75 < w.;,w;; < 2.0, the data are questionable
for large values of w. and w;s due to few data cases. The trough data, on the other hand, fall
between the Rayleigh distribution and the extended second order model. The simulated data
agrees fairly well with the field data, but gives a small underprediction of both crest data and
trough data for large values of wg and wys.
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Figure 6.14: Conditional distributions; — Rayleigh distribution, — — extended second order model, - - -
second order Stokes model, — - — Forristall 2D-model, - e -- Forristall 3D-model. The lines to the right
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6.2.2 Results for Japan Sea field data

The calculated values of the wave parameters for the field data from Japan sea are shown in
Table 6.7. Compared to the calculated values of the Draupner field data in Tables 3.1, 3.2
and 3.3 the term f~(kd) is much higher, which leads to a larger difference in the characteristic
steepness parameters r and r, . This indicates a larger difference between including the difference
frequency terms and only using the sum frequency terms. This is to be expected since the water
depth is shallower, and the nonlinear effects are expected to be larger. Also the correlation
coefficients, and thereby the parameters 2 and x?, are smaller. The parameters S; and U, are
of same magnitude, as opposed to the parameters for the Draupner field data, where U, ~ 1/6 S;.
This is due to the change in water depth. However, the Forristall parameters still remain quite
similar.

Figure 6.15 shows a histogram of the field data and the corresponding kernel density estimate
for (a) the wave crest heights and (b) the wave trough depths, compared with the probability
density function of the Rayleigh distribution, the second order Stokes model and the extended
second order model. The Forristall models are not included in (a) because it would be difficult
to see the difference between them and the second order models. However, they are included in
the probability of exceedance in Fig. 6.16, where the difference is more visible. The second order
Stokes model and the extended second order model agree well with the wave crest data. They
also agree well with the trough data for w, 2 1, but there are some discrepancies for smaller
values of w;.

Figure 6.16 shows the probability of exceedance of the wave crest heights and the wave trough
depths. In (a) the field data are compared with the simulated data, and in (b) the simulated data
(full second order) are compared with the simulated sum frequency data. Both the crest height
and the trough depth field data are well described by the extended second order model except
for the largest wave crest heights, where the data follows the second order Stokes model. This
is different from the Draupner field data, where the second order models appeared to be more
nonlinear than the data. As already discussed, it is clear that the difference between the second
order Stokes model and the extended model is larger than it was in Fig. 6.12. This is consistent

Table 6.7: Calculated values of the Japan Sea field data.

r B 0.108 Pe -] 0.227 K2 -] 0.249
Ty -] 0.147 e -] 0.174 K2 -] 0.186
R ] 0.019 fr(kd) ] 1.074 f(kd) ] 0.283
Sy B 0.0493 U, -] 0.0422 KD -] 0.244
a2p -] 0.372 Bap -] 1.893 KD -] 0.244
asp B 0.370 Bsp [ 1.890
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Figure 6.15: Marginal probability density functions and histogram of the field data (a) wave crest
height (b) wave trough depth; - e -- kernel density estimate, — Rayleigh distribution, — — extended
second order model, - - - second order Stokes model.

with that the effect of only including sum frequency effects will be amplified when the nonlinear
effects are expected to increase as the water depth decreases, as compared with the results
by the extended model. There is almost no difference between the Forristall models, which fall
between the Rayleigh distribution and the extended second order model. The difference between
the Forristall models and the extended second order model is slightly less than it was in Fig.
6.12. The simulations agree well with the field data for low and moderate values of w,. and w;
(we, w; < 2). Similar to the Draupner data, the simulations underpredict the wave crest height
for large values of w,.. On the other hand, the simulations overpredicts the wave trough depths
for large values of w;, as opposed to the Draupner data. The simulated wave crest heights are
well predicted by the Forristall models. Since the parameters in the Forristall models are based
upon second order simulations, this is to be expected.

Figure 6.17 shows the conditional probability of exceedance. Only two intervals are considered
since the number of crest heights and trough depths in the intervals with higher values of w.
and wy were below 100. The data show similar behavior as observed in Fig. 6.16 (a), although
not so clearly. The second order Stokes model and the extended second order model agree fairly
well with the data, but seem to underpredict the data for large values of w.,. The simulated data
do not show the same strong nonlinear behavior as the laboratory data. Overall the simulated
wave crest data are well described by the extended second order model and the Forristall models,
while the simulated wave trough data fall between the Rayleigh distribution and the extended
second order model.

The conditional expectation of the wave amplitude given the previous wave amplitude is shown
in Appendix H.1, and the results are similar to the results for the Draupner field data.
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6.2.3 Results for laboratory data

The calculated values of the wave parameters for the laboratory data from HR Wallingford are
shown in Table 6.8. One should note that the characteristic steepness parameter r is higher at the
intermediate water depths than in deep water. This is also the case for r,, and the difference
between r and r, increases with decreasing water depth. This indicates that including the
difference-frequency effect in the theoretical models is more important when the water depth
decreases. One should also note the significant increase in U, with decreasing water depth.

Figure 6.18 shows the different components of the spectral density from a simulated time series
for the different water depths. Overall, the spectral density components show the same behavior
as in Fig. 6.11, i.e., the sum frequency component has no contribution for low frequencies,
while the difference frequency component only gives a contribution for the lowest frequencies.
It is clear from the figure that the contributions for the different components increase with
decreasing water depth. Especially the contribution from the difference frequency component
increases significantly from d = 80 m to d = 31 m. This supports the importance of including
the nonlinear effects, which become more important as the water depth decreases.

Table 6.8: Calculated values of the laboratory data.

d=80m d="7T8 m d=41m d=31lm

r -] 0.101 0.097 0.124 0.119
ry -] 0.124 0.121 0.174 0.204
fH(kd) -] 1.019 1.023 1.098 1.303
[ (kd) ] 0.192 0.200 0.314 0.545

-] 0.012 0.012 0.025 0.043
Pe -] 0.446 0.436 0.453 0.490
D -] 0.396 0.391 0.484 0.450
K2 -] 0.478 0.479 0.487 0.525
K2 -] 0.416 0.399 0.505 0.470
S, -] 0.0504 0.0491 0.0490 0.0483
U, -] 0.0144 0.0152 0.0741 0.1474
Q2p -] 0.370 0.369 0.376 0.383
Bop -] 1.891 1.895 1.895 1.898
Ko -] 0.477 0.478 0.485 0.524
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Figure 6.18: Different components of the spectral density in a simulated time series. (a) d = 80 m;
(b) d =78 m; (c) d =41 m; (d) d = 31 m.
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Figure 6.19 shows the marginal distributions of the crest heigths and trough depths in terms
of probability of exceedance. The laboratory data are compared with the simulated data for
different water depths. The data are also compared with the second order models, the Rayleigh
distribution and the Forristall 2D-model. The generated laboratory waves are two-dimensional,
thus only the Forristall crest height model for 2D waves is considered. It is clear from the figure
that the second order models, and in particular the second order Stokes model, exhibit a more
nonlinear behavior with decreasing water depth. The laboratory data show a strong nonlinear
behavior, and the wave crest data are slightly underpredicted by the second order Stokes model
for d = 80 m and d = 78 m. However, the crest data are fairly well predicted by the second
order Stokes model for d = 41 m and d = 31 m. The wave trough data generally fall between
the second order Stokes model and the extended second order model.

The simulated wave data show a slightly less nonlinear behavior than the laboratory data. They
underpredict the wave crest data, while they slightly overpredict the wave trough data. The
simulated data are well described by the extended second order model and the Forristall 2D-
model.

One should also note that the theory for the second order models is valid for horizontal sea bed,
while the measurements are taken where the sea bed is rising.

Figure 6.20 shows the difference between the simulated data and the simulated sum frequency
data for the different water depths. It is clear that by using only the linear and the sum frequency
component, the wave crests are higher and the trough depths are shallower than by using the
full model. This is in good agreement with the discussion of the influence of the different second
order terms in Chapter 6.2.1. The difference increases with decreasing water depth. Overall, the
simulated sum frequency data are well described by the second order Stokes model.

Figures 6.21 and 6.22 show the conditional distribution of w., and wyy given w. and wy, re-
spectively, in terms of the probability of exceedance. Only two intervals are considered since the
number of crest heights or trough depths in the intervals with higher values of w.; and w;; were
below 100. Both the laboratory data and the simulated data show a large variation. Overall
the wave crest heights are fairly well predicted or slightly underpredicted by the second order
models and the Forristall 2D-model. For the wave trough depths it is difficult to make a firm
conclusion.

The conditional expectation of the wave amplitude given the previous wave amplitude is shown
in Appendix H.1, and the results are similar to the results for the Draupner field data and the
Japan Sea field data.
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Figure 6.19: Marginal distributions of laboratory data compared with simulated data. — Rayleigh

distribution, — — extended second order model, - - -

second order Stokes model, —-— Forristall 2D-model.

The lines to the right and left of the Rayleigh distribution corresponds to the crest height and trough
depth, respectively. (a) d =80 m; (b) d =78 m; (¢) d =41 m; (d) d = 31 m.
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Figure 6.20: Marginal distributions of the simulated data compared with the simulated sum frequency

data. — Rayleigh distribution, — — extended second order model, - - -

second order Stokes model, — - —

Forristall 2D-model. The lines to the right and left of the Rayleigh distribution corresponds to the
crest height and trough depth, respectively. (a) d =80 m; (b) d =78 m; (¢) d =41 m; (d) d = 31 m.
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Figure 6.21: Conditional distributions; — Rayleigh distribution, — — second order model, --- second
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6.3 Results for wave heights

6.3.1 Wave height results for Draupner field data

The results for the wave heights from the Draupner field data were described in the discussion
of the Nataf transformation in Chapter 4.2. In this chapter these results will be compared with
data from the numerical simulations. The calculated values of the wave parameters from the
Draupner field data are summarized in Table 6.9. The correlation coefficients were given in
Table 4.1.

Figure 6.23 (a) shows the marginal distribution of the normalized wave heights in terms of the
probability of exceedance. The simulated data agree well with the field data, but for larger
values of h (h 2 2) they slightly underpredict the field data. The data are well described by the
Nataf model for low values of h, and they fall between the Nataf model and the Naess (1985)
model for larger values of h.

In order to see the difference between the probability of occurrence of an individual wave height
and two successive wave heights, the probability of two successive wave heights exceeding the
value h is shown in Fig. 6.23 (b). The simulated data agree very well with the field data, and
they are both well described by the Nataf model. For larger values of h the Naess (1985) model
also agrees well with the data. From the figures it is clear that the probability of exceedance
of a given value is reduced when considering two successive waves, as would be expected. The
probability of an individual wave height exceeding e.g. the normalized significant wave height
(indicated by the vertical dotted line) is in the range [0.095, 0.137], depending on the model
considered, while when considering two successive wave heights exceeding the same value it is
reduced to [0.027, 0.052].

Table 6.9: Calculated values of the Draupner field data.

oemms ] 4.78 o 8 0.978
on ] -0.689 3 ] 2.039
Ph -] 0.411 K7 -] 0.436
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Figure 6.23: (a) Probability of exceedance for an individual wave (P(H > h)); (b) Probability of
exceedance for two successive waves (P(H; > h, Hy > h)). The normalized significant wave height of
1.41 is indicated by the vertical dotted line.

Figure 6.24 shows the conditional distribution of hy given h; in terms of probability of exceedance.
Here N denotes the number of field data cases in each class of h;. Overall the simulated data
agree well with the field data, but in (d) they overpredict the field data. The Nataf model gives
a good prediction of the data except for larger values of hy in (d). The other models have a
different behavior than the Nataf model. In (a) and (b) the Rayleigh distribution gives the best
predicition of the data compared with the Neess (1985) model, while in (c) and (d) it is the
opposite.
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6.3.2 Wave height results for Japan Sea field data

The calculated values of the field data from the Japan Sea are given in Table 6.10. Compared
to the values from the Draupner field data, the correlation coefficients are smaller, but the
other parameter values are quite similar. The correlation coefficients for the transformed wave
heights, pw.i2, pw,13 and pyw,14, show the same behavior as for the Draupner field data, i.e., that
the dependency between the wave heights decreases rapidly.

Figure 6.25 (a) shows a histogram of the wave heights with the kernel density estimate compared
with the probability density functions of the Rayleigh distribution, the Naess (1985) model and
the Nataf model, which for the marginal distribution is the two-parameter Weibull distribution.
The Nataf model lies between the Rayleigh distribution and the Naess (1985) model. For larger
values of h (h 2 1.5) both the Nataf model and the Naess (1985) model agree well with the data,
while the Rayleigh distribution overpredicts the wave heights.

Figure 6.25 (b) shows the marginal distributions in terms of probability of exceedance. The field
data are compared with the simulated data, the Rayleigh distribution, the Naess (1985) model
and the Nataf model. The simulated data agree well with the field data, and both fall between
the Nataf model and the Naess (1985) model.

A histogram of the transformed wave heights is shown in Fig. 6.26 (a). The data are compared
with a standard Gaussian probability density function. The figure shows that the resulting
transformation is slightly skewed to the left, but overall the resulting distribution is approxi-
matively Gaussian. The dependency structure is examined by a paired plot of the transformed
wave heights h; and hgy, which is shown in Fig. 6.26 (b). The solid line is a contour plot of the
standard Gaussian distribution. The dependency structure of the transformed wave heights of
hy and hs is quite similar to the one for a standard Gaussian distribution. Thus, from Fig. 6.26
(a) and (b) it is seen that the Nataf model is suitable, and that it correctly takes care of the
dependency structure.

Table 6.10: Calculated values of the Japan Sea field data.

oo ] 4.87 o ] 0.969
on ] -0.630 3 ] 2.071
on [ 0.321 pwas [ 0.294
K3 ] 0.343 PW,13 [ 0.078

oW ] 0.026
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Figure 6.25: (a) Marginal probability density functions of the normalized wave heights. (b) Marginal
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Figure 6.27: (a) Sample autocorrelation function, and (b) sample partial autocorrelation function of
the transformed wave heights. The dotted line indicates +2(Var[¢;;])!/2.

Figure 6.27 shows the sample ACF (a) and PACF (b) of the transformed wave heights. Since the
ACF decreases approximately exponentially, and the PACF has one spike at j = 1, the process
appears to be an AR(1) process. A likelihood ratio test with p = 3 as described in Chapter 4.3.1
resulted in n = 518, and the observed value of the likelihood ratio statistic was —21n A, = 6.22.
From tables x§ 44, = 6.25, which means that the hypothesis that the correlation coefficients
agree with an AR(1) model (i.e., are given by Eq. (4.42)) would not be rejected at 4.4%
significance level.

Figure 6.28 shows the conditional distribution of hy given h; in terms of probability of exceedance.
Only two intervals are considered since the number of wave heights in the intervals with higher
values of hy were below 100. The simulated data agree well with the field data. The Nataf model
gives a good prediction of the data. While the Neess (1985) model slightly underpredicts the
data in (a), it agrees well with the data in (b). The Rayleigh distribution slightly overpredicts
the data in both (a) and (b).

The conditional expectation of the wave height given the previous wave height is shown in
Appendix H.2, and the results are similar to the results for the Draupner field data.
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6.3.3 Wave height results for laboratory data

The calculated values of the wave parameters for the laboratory data are given in Table 6.11.
The correlation coefficients are larger compared with both the Draupner field data and the Japan
Sea field data. The parameters py are also larger in magnitude. The variation with water depth
is quite small. One should note that the comments given earlier regarding the shoaling effects,
which is not included, are still valid.

Figure 6.29 shows a histogram of the wave heights with the kernel density estimate compared
with the Nataf model, the Ness (1985) model and the Rayleigh distribution for the different
water depths. The Nataf model agrees well with the data for d = 80 m and d = 78 m, and the
difference between the models is small. For d = 41 m and d = 31 m the figures show that there
is a large number of waves with small wave heights. This is probably due to that secondary
peaks in the time series give a larger number of waves with small wave period and corresponding
small wave height than expected, which was discussed in Chapter 6.1.3 and illustrated in Fig.
6.9. The fitted Weibull distribution, and thus the Nataf model, is then slightly skewed to the
right compared with the other models. This will also influence the two-dimensional results that
will be discussed in the following.

The marginal distributions in terms of the probability of exceedance are shown in Fig. 6.30. The
laboratory data are compared with the simulated data, the Nataf model, the Neess (1985) model
and the Rayleigh distribution for the different water depths. The simulated data agree quite
well with the laboratory data except for larger values of h at d = 31 m, where they underpredict
the laboratory data. The variation in the data points is large, and it is difficult to draw a firm
conclusion regarding the agreement with the models.

Table 6.11: Calculated values of the laboratory data.

d =80 m d="78 m d=41m d=31m

hems [m] 6.43 6.272 5.84 5.74

PN -] -0.806 -0.808 -0.772 -0.742
P -] 0.533 0.516 0.572 0.593
K3 -] 0.560 0.543 0.600 0.621
« -] 1.000 0.985 0.964 0.971
o] -] 2.067 1.985 1.856 1.826
PW.12 -] 0.514 0.484 0.533 0.558
PW,13 -] 0.204 0.152 0.226 0.215
Pw,14 -] 0.063 0.074 0.068 0.061
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Figure 6.30: Marginal distributions of the wave heights in terms of probability of exceedance.
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Figure 6.31 shows a histogram of the transformed wave heights for the different water depths.
The data are compared with a standard Gaussian probability density function. For d = 80
m and d = 78 m the transformations resemble a Gaussian distribution. The data show a
larger variation for d = 41 m and d = 31 m, but overall the resulting transformations are
approximatively Gaussian.

A paired plot of the transformed wave heights h; and hs is shown in Fig. 6.32 for the different
water depths compared with a contour plot of the standard Gaussian distribution. The concen-
tration of data points is slightly higher in the lower left part for d = 41 m and d = 31 m, but
overall the figure shows that the Nataf model correctly takes care of the dependency structure.
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Figure 6.32: Paired plots of the transformed wave heights between h; and he compared with a contour
plot of the standard Gaussian distribution (a) d =80 m, (b) d =78 m, (¢) d =41 m, (d) d = 31 m.
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Figure 6.33: Sample autocorrelation function p; and sample partial autocorrelation function gﬁjj at (a)
d=80m, (b) d="78m, (c) d=41 m and (d) d = 31 m, of the transformed wave heights. The dotted
line indicates £2(Var[gp;;])'/2.

Figure 6.33 shows the sample ACF and PACF of the transformed wave heights for the different
water depths. The ACF decreases approximatively exponentially. For d = 80 m and d = 78 m
the PACF has one spike at j = 1, while for d = 41 m and d = 31 m the PACF also has a distinct
spike at j = 2. This indicates that the process is an AR(1) process for d = 80 m and d = 78 m,
while it is less probable for d = 41 m and d = 31 m.
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The results from the likelihood ratio tests are shown in Table 6.12. The hypothesis that the
successive wave heights can be modeled as an AR(1) model (the correlation coefficients are
given by Eq. (4.42)) would not be rejected at the given significance levels. It is clear from the
likelihood ratio test and Fig. 6.33 (d) that the wave heights is not an AR(1) process at d = 31
m.

Figures 6.34 and 6.35 show the conditional distribution of hy given h; in terms of probability of
exceedance. The number of wave heights in the interval 1.25 < h; < 1.50 is quite small, but the
figures are included for comparison. The simulated data agree fairly well with the laboratory
data. The large variation in the data points makes it difficult to draw any firm conclusions.
However, the Nataf model overpredicts the wave heights for d = 41 m and d = 31 m. This
is due to the fitted Weibull distribution being skewed to the right, causing a larger tail in the
distribution. Thus the Nataf model is more influenced by the given data set.

The conditional expectation of the wave height given the previous wave height is shown in
Appendix H.2, and the results are similar to the results for the Draupner field data and the
Japan Sea field data.

Table 6.12: Likelihood ratio test with p = 3 of the transformed wave heights from the laboratory
data.

d=80m d="T8 m d=41 m d=31m
n 318 319 343 336
—21In Ay 2.47 3.34 7.55 29.34
significance level 29.1% 18.8% 2.2% 0%
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6.4 Results for wave periods

6.4.1 Wave period results for Draupner field data

The wave period results from the Draupner field data were shown in Chapter 5. In this chapter
the results will be compared with results from the numerical simulations. Table 6.13 summarizes
the calculated parameters for the wave periods from the Draupner field data.

Figure 6.36 shows the kernel density estimates of the field data and the 10 numerical simulations.
The results are compared with the Bretschneider (1959) model and the generalized Gamma
distribution. From the figure it is clear that the simulated data show the same behavior as the
field data.

The probability that a wave period is in an interval [f;,%,] given that the previous wave period
was in the same interval is shown in Fig. 6.37 (a) as a function of x = (f; + £,)/2. Here
ti =2 —0.1 and {, = 4+ 0.1. The results are compared with the Nataf model and the Myrhaug
and Rue (1993, 1998) models. The simulated data are also included, and they agree fairly well
with the field data. The models do not reflect the shape of the data, which have an indication
of a second peak around x = 0.7. While the Nataf model is in better agreement with the data
for large values of x, the Myrhaug and Rue (1998) model agrees better with the data for small
values of x.

Figure 6.37 (b) shows the variation in the simulated data. The mean values of the 10 simulations
are shown with a confidence interval given by j:QVar[y]l/ 2 where 7 is a vector of the 10 simulation
points. The confidence intervals cover some of the field data points, but not all of them.

Table 6.13: Calculated values of the Draupner field data.

¢ 5] 9.79 A ] 0.415
T, 5] 5.80 c ] 6.231
a ] 1.60 " ] 1.311
s ] 0.766 e ] 0.325
Tomot 5] 9.09 PG.1s ] 0.122
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Figure 6.36: Marginal probability density function of the normalized wave periods. — — KDE data; —

KDE simulations; - - - Bretschneider (1959) model; — - — generalized Gamma distribution.
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Figure 6.37: The probability that a wave period is in an interval [f1, 3] given that the previous wave
period was in the same interval, where ¢; =  — 0.1 and ¢, =  + 0.1. — — Nataf model; --- Myrhaug
and Rue (1993) model; - - — Myrhaug and Rue (1998) model; ¢ field data; x simulated data. (a) Data
and mean values of simulations. (b) Simulations including confidence intervals.
(P=Pz—-01<Th<z+0.1llxz —0.1 <Ty <z+0.1)).
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Successive wave periods for large wave heights

Wave heights exceeding hyms

Figure 6.38 (a) shows the probability that a wave period is in an interval [f;, ;] of size 0.2 given
that the previous wave period was in the same interval, and given that the two corresponding
wave heights exceeded h.ms. This is shown as a function of x = (f; + £)/2. The simulated
data show fairly good agreement with the field data. The results show good agreement between
the data and the model. Figure 6.38 (b) shows the variation in the simulated data, where the
confidence intervals are given by j:QVar[y]l/ 2 where y is a vector of the 10 simulation points.
The confidence intervals are larger than when all wave periods were considered in Fig. 6.37 (b).
This is due to the reduction in the number of data cases available when conditioning on the
corresponding wave height, as discussed in Chapter 5.3.

The probability of a wave period to be in an interval [t;, ;] of size 0.2 given that the two previous
wave periods were in the same interval, and given that the three corresponding wave heights
exceeded hyms is shown in Fig. 6.39 (a). The results are quite similar to the results in Fig.
6.38, which support the hypothesis that the wave periods can be modeled as an AR(1) model
as discussed in Chapter 5.3. The confidence intervals of the simulations are included in (b).
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Figure 6.38: The probability that a wave period is in an interval [t1,5] given that the previous wave
period was in the same interval, where £; = £—0.1 and , = 2+0.1, and given that the two corresponding
wave heights exceeded hyms. —— Nataf model; ¢ field data; x simulated data.

(a) Data and mean values of simulations. (b) Simulations including confidence intervals.
P=Pz—-01<To<z+0l1ljz-01<T; <z+0.1,H >1,Hy > 1)).
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Figure 6.39: The probability that a wave period is in an interval [t1,%5] given that the two previous
wave periods were in the same interval, where #; = z — 0.1 and £, = 2 + 0.1, and given that the three
corresponding wave heights exceeded hms. —— Nataf model; ¢ field data; x simulated data.

(a) Data and mean values of simulations. (b) Simulations including confidence intervals.

Wave heights exceeding H,,

For practical purposes, it is of more interest to study the wave periods for wave heights ex-
ceeding the significant wave height. The calculated parameters from the Draupner field data
when constructing pairs and triplets of wave periods conditioned on the corresponding wave
heights exceeding H,,, are shown in Table 6.14. Compared to the values in Table 5.3, where
the corresponding wave heights exceeded h,,s, the difference in the parameters for the Gaussian
distribution is small, but the number n has decreased significantly. Thus, in order to compare
with data, especially if two or three successive wave periods are considered, a long time series is
needed, as mentioned in Chapter 5.3. When considering three successive waves with correspond-
ing wave heights exceeding H,,o, the time series of the Draupner field data, which was nearly 16
hours, only resulted in 80 data cases.

Figure 6.40 (a) shows the probability that a wave period is in an interval [f,, 5] of size 0.2 given
that the previous wave period were in the same interval, and given that the two corresponding
wave heights exceeded H,,,. The results show fairly good agreement between the data and the
model. The confidence intervals of the simulations are included in (b). The confidence intervals
cover the field data for smaller values of x, but there is larger difference between the field data
and the simulations for large values of x.



6.4. RESULTS FOR WAVE PERIODS

139

0.6 X 0.6 :
/2>\ // \
0.5¢ X \\ 05} . \\
é O ( \
0.4} / X \\ 0.4} | %\\
I I
[am | \\ [l | \\
0.31 Q’ O 0.31 / O
\ \
/
\ \
0.2¢ / N 0.2} ! ©
O, ! / !
x O VO
0.1} v \ 0.1} \
/ \ / \
x / \ / >L \
PO X L X 0\)0\ o £ A% L N 0\)0\ o
0 4 0 <5
0 0.5 1 1.5 2 0 0.5 1 1.5
T T

Figure 6.40: The probability that a wave period is in an interval [f1, 3] given that the previous wave
period was in the same interval, where {; = £—0.1 and ¢, = 2+0.1, and given that the two corresponding
wave heights exceeded the normalized value of H,,p, 1.41.
P=Pz-01<Th<z+0.llxz—-01<Ty <z+0.1,H > 141, Hy > 1.41)).
— — Nataf model; ¢ field data; x simulated data.
(a) Data and mean values of simulations. (b) Simulations including confidence intervals.

Table 6.14: Calculated parameters for the p-dimensional Gaussian distribution with » = 1.41
(normalized value of H,,), from the Draupner field data.

Ko T p n
p=1 1.15 0.15 798
p=2 [1.210, 1.213]" [0.147, 0.129]" 0.217 251
p=3 [1.204, 1.256, 1.212]7 [0.154, 0.139, 0.110]7 [0.361, 0.196] 80
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6.4.2 Wave period results for Japan Sea field data

The calculated wave parameters from the Japan Sea field data are shown in Table 6.15. Com-
pared with the values from the Draupner field data the correlation coefficients are smaller. The
parameter ¢ in the generalized Gamma distribution is higher, which means that the distribution
will be skewed further to the left.

Figure 6.41 shows a histogram of the normalized wave periods from the field data with the kernel
density estimate. The Bretschneider (1959) model, the Longuet-Higgins (1975, 1983) models and
the Cavanié (1976) model are included for comparison. The models show a similar behavior as
discussed for the Draupner field data in Fig. 5.1. The field data have a similar shape as the
Draupner field data, but for the Japan Sea data there is a more distinct second peak around
t =~ 0.6. Figure 6.41 also includes the generalized Gamma distribution that will be used in the
Nataf transformation. The distribution agrees quite well with the data, and around the peak of
the data it gives a much better prediction than any of the other models. However, it does not
capture the behavior of the data with a second peak.

Figure 6.42 (a) shows a histogram of the transformed wave periods and the corresponding ker-
nel density estimate compared with the standard Gaussian probability density function. The
transformation of the Japan Sea field data yields the same problems as for the Draupner field
data due to the shape of the marginal distribution.

A paired plot of the transformed wave periods between t; and t; is shown in Fig. 6.42 (b)
compared with a contour plot of the standard Gaussian distribution. The figure shows that the
correlation of the transformed wave periods resembles the one for the Gaussian distribution.

Figures 6.41 and 6.42 thus indicate that the Nataf transformation does not give a perfect result,
but the results are at least as good as the existing models. The dependency structure is preserved,
so the results for the two-dimensional model should be satisfactory.

Table 6.15: Calculated values of the Japan Sea field data.

¢ 5] 10.16 A ] 0.247
T, 5] 6.38 c ] 8.972
a ] 1.35 " ] 1.392
s ] 0.798 a1 ] 0.259
Trnor 5] 9.45 PG.1s ] 0.094
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Figure 6.42: (a) Histogram of transformed wave period field data. — standard Gaussian probability
density function; — — KDE of the transformed wave period data. (b) Paired plot of the transformed
wave periods between ¢; and t9 compared with a contour plot of the standard Gaussian distribution.
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Figure 6.43: (a) Sample autocorrelation function, and (b) sample partial autocorrelation function of
¢ from Japan Sea data. The dotted line indicates +(Var[¢;,])!/2.

Figure 6.43 shows the sample ACF (a) and PACF (b) of the transformed wave periods from
the Japan Sea field data. The ACF decreases approximately exponentially and the PACF has
one spike at j = 1, which indicates that the process is an AR(1) process. A likelihood ratio
test with p = 3 resulted in n = 521, and the observed value of the likelihood ratio statistic
was —2In Ay, = 1.65. From tables X%,437,2 = 1.66, which means that the hypothesis that the
correlation coefficients agree with an AR(1) process would not be rejected at 43.7% significance
level.

The probability that a wave period is in an interval [t1,%,] of size 0.2 given that the previous
wave period was in the same interval is shown in Fig. 6.44 (a) as a function of z = (f; +15)/2.
The field data have two very distinct peaks, while the simulated data have much smaller peaks.
None of the models capture the behavior of the data, but overall the Nataf model is in better
agreement with the data than the Myrhaug and Rue (1993, 1998) models. Figure 6.44 (b) shows
the variation in the simulated data, where the confidence intervals are given by £2Var[y]'/?,
where y is a vector of the 10 simulation points.

The conditional expectation of the wave period given the previous wave period is shown in
Appendix H.3.1, and the results are similar to the results for the Draupner field data.
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Figure 6.44: The probability that a wave period is in an interval [f1, 3] given that the previous wave
period was in the same interval, where ¢; =  — 0.1 and ¢, =  + 0.1. — — Nataf model; --- Myrhaug
and Rue (1993) model; - - — Myrhaug and Rue (1998) model; ¢ field data; x simulated data. (a) Data
and mean values of simulations. (b) Simulations including confidence intervals.
(P=Pz—-01<Th<z+0.1llz —0.1 <Ty <z+0.1)).
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Successive wave periods for large wave heights

Table 6.16 shows the calculated parameters for the Gaussian distribution conditioned on the
corresponding p successive wave heights exceeding h,,s. The number of waves that are found in
the time series that fulfills this requirement decreases rapidly when considering several successive
waves. Thus, a long time series is requested when considering three or more successive waves
where the corresponding wave heights exceeds h,ms. In the following the emphasis will be on two
successive wave periods. However, finally an example of three successive wave periods will be
given. The expected values and standard deviation remain quite constant with different values
of p.

Figure 6.45 shows a histogram and the corresponding kernel density estimate of the wave periods
where the corresponding wave heights are larger than h.,s. Figure 6.45 (a) shows the first wave
period ¢, while (b) shows the successive wave period ¢,. The data are compared with the
Longuet-Higgins (1975, 1983) models, the Tayfun (1993) model and the Gaussian probability
density function. The results show that the data agree very well with the Gaussian distribution.
The Tayfun (1993) model also agree well with the data, but underpredicts the peak value, while
the Longuet-Higgins (1975, 1983) models are shifted towards lower values of ¢. The lack of values
in the histogram for ¢ 2 1.6 is due to that the largest wave periods with corresponding wave
heights exceeding h,,s are almost equal (see Appendix H.3.1). Since n is small, this has a large
influence on the resulting histogram.

A paired plot of the wave periods ¢; and t; for the field data is shown in Fig. 6.46 (a) compared
with a contour plot of the bivariate Gaussian distribution. The number of data points is small,
but the correlation coefficients seems to be correctly modeled by the Gaussian distribution. In
order to increase the number of data points, the results for the simulations are added in Fig.
6.46 (b). Here it is clear that the dependency structure is correctly modeled by the bivariate
Gaussian distribution.

Table 6.16: Calculated parameters for the p-dimensional Gaussian distribution with » = 1, from
the Japan Sea field data.

Hyp, Tyh, P n
p=1 1.15 0.18 555
p=2 [1.21, 1.19]" 0.6, 0.17]" 0.09 279

p=3 [1.19, 1.24, 1.18]7 0.16, 0.14, 0.17)7 [0.14, 0.05]7 149
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Figure 6.45: Probability density function of wave periods where the corresponding wave height is
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Figure 6.47: The probability that a wave period is in an interval [f1,#5] given that the previous wave
period was in the same interval, where £; = £—0.1 and , = 2+0.1, and given that the two corresponding
wave heights exceeded hyms. —— Nataf model; ¢ field data; x simulated data. (a) Data and mean values
of simulations. (b) Simulations including confidence intervals.
P=Pz-01<To<z+0.llz—01<Ty <z+0.1,H > hems, H2 > hyms)).

Figure 6.47 (a) shows the probability that a wave period is in an interval [f;, ;] of size 0.2 given
that the previous wave period was in the same interval, and given that the two corresponding
wave heights exceeded h,ns. This is shown as a function of x = (fl +fz) /2. The field data have a
larger peak than the simulated data. However, due to the large variation in the simulated data
the field data agree well with the simulated data. The results show a good agreement between
the data and the model. The confidence intervals of the simulations are included in (b). The
intervals are quite large, and they cover the field data for almost all values of x.

Figure 6.48 (a) shows the probability of a wave period to be in an interval [t;,%,] of size 0.2
given that the two previous wave periodw were in the same interval, and given that the three
corresponding wave heights exceeded h,,s. The results are quite similar to the results in Fig.
6.47. Thus, the results barely change by conditioning on the two previous wave periods compared
to only conditioning on the previous wave period. The confidence intervals of the simulations
are included in (b). There are some very large intervals due to the small number of data cases.
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Figure 6.48: The probability that a wave period is in an interval [f1, %3] given that the two previous

wave periods were in the same interval, where ; = 2 — 0.1 and ¢, = = + 0.1, and given that the three

— Nataf model; ¢ field data; x simulated data.



148 CHAPTER 6. RESULTS AND DISCUSSION

6.4.3 Wave period results for laboratory data

The calculated wave parameters from the laboratory data are shown in Table 6.17. The changes
in T,, a; and ay are due to the change in the spectral bandwidth parameters €5 and ¢4, see
Table 6.5, which increase significantly with decreasing water depth. The parameters for the
generalized Gamma distribution are sensitive to the variations in the data sets, and thus they
vary significantly at the different water depths.

Figures 6.49 (a), (b), (c¢) and (d) show a histogram of the normalized wave periods from the
laboratory data with the kernel density estimate for the water depths 80 m, 78 m, 41 m and 31
m, respectively. The Bretschneider (1959) model, the Longuet-Higgins (1975, 1983) models and
the Cavanié (1976) model are included for comparison. The laboratory data at d = 80 m and
d = 78 m show the same qualitative behaviour as the Draupner field data and the Japan Sea
field data. The indication of a second peak is most visible at d = 78 m. It is observed that the
wave period distribution changes significantly from d = 80,78 m to d = 41,31 m. However, this
is contrary to what is expected; the wave period distribution is expected to be invariant with
respect to the water depth. At d = 41 m and d = 31 m there appear to be a large number of
small wave periods. This is consistent with the observations in Chapter 6.1.3, that secondary
peaks in the time series give a larger number of waves with small wave period and corresponding
small wave height than expected. This was also illustrated in Fig. 6.9. The Cavanié (1976)
model differs significantly from the results in deep water, since this model is dependent on ¢4.
The difference in the Longuet-Higgins (1975, 1983) models are due to the change in €. The
Bretschneider (1959) model is similar at all water depths, since this model is only dependent
on the parmeters ¢ and 7,,0; that do not vary much for the different water depths. The figures

Table 6.17: Calculated values of the laboratory data.

d=80m d="T78m d=41m d=3lm
¢ [s] 11.32 11.28 10.89 11.13
T. [s] 8.79 8.77 3.06 3.33
o -] 0.910 0.925 4.59 4.22
o) -] 0.870 0.867 0.607 0.615
A -] 0.582 0.779 0.264 0.313
c -] 7.737 6.235 8.962 9.178
v -] 1.185 1.127 1.329 1.317
PG,12 -] 0.286 0.231 0.313 0.342
PG.13 -] 0.088 0.077 0.108 0.091
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Figure 6.49: Probability density function of the normalized wave periods. — — Generalized Gamma
distribution; — KDE laboratory data; --- Bretschneider (1959) model; — - — Longuet-Higgins (1975)

model; - + - Longuet-Higgins (1983) model; - o -- Cavanié (1976) model. (a) d = 80 m. (b) d = 78 m.

(c)d=41m. (d) d =31 m.
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include the generalized Gamma distribution that will be used in the Nataf transformation. The
distribution agrees better with the data than the other models, since the parameters are based
on the given data sets. However, since the generalized Gamma distribution, and thus the Nataf
transformation, will be influenced by the large number of small waves at d = 41 m and d = 31 m,
these results are only shown in Appendix H.3.2 for comparison. The comments given in Chapter
6.1.3 regarding the concerns associated with the data at d = 41 m and d = 31 m should be kept
in mind when considering the results.

The results for d = 78 m are quite similar to the results for d = 80 m. Thus, these results are
shown in Appendix H.3.2. The comments regarding the results for d = 80 m will also be valid
for the results for d = 78 m.

Figure 6.50 (a) shows a histogram of the transformed wave periods and the corresponding kernel
density estimate for d = 80 m compared with the standard Gaussian probability density function.
The transformations yield the same qualitative behaviour as the Draupner field data and Japan
Sea field data, and they are significantly different from a Gaussian distribution. The paired plots
of the transformed wave periods between ¢; and ¢, in Fig. 6.50 (b) for d = 80 m, show that the
dependency structure between the two successive wave periods is fairly well described by the
bivariate Gaussian distribution.

Thus, from Fig. 6.50 it is clear that the results from the Nataf transformation are not expected
to agree very well with the data. However, the results will be as satisfactory as for any of the
existing models.

0.6
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Figure 6.50: (a) Histogram of transformed wave period data. — standard Gaussian probability density
function; — — KDE of the transformed wave period data. (b) Paired plot of the transformed wave periods
between ¢, and t9 compared with a contour plot of the standard Gaussian distribution. d = 80 m.
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Figure 6.51: (a) Sample autocorrelation function, and (b) sample partial autocorrelation function at
d = 80 m of UE from laboratory data. The dotted line indicates +(Var[h;;])'/2.

Fig. 6.51 shows the sample ACF and PACF of the transformed wave periods for d = 80 m. A
likelihood ratio test with p = 3 resulted in n = 318, and the observed value of the likelihood ratio
statistic was —21n Ays = 6.38. From tables Xg.[m’? = 6.39, which means that the hypothesis that
the correlation coefficients agree with an AR(1) process would not be rejected at 4.1% significance
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Figure 6.52: The probability that a wave period is in an interval [f1, 3] given that the previous wave
period was in the same interval, where ¢; =  — 0.1 and #, =  + 0.1. — — Nataf model; --- Myrhaug
and Rue (1993) model; —- - Myrhaug and Rue (1998) model; ¢ laboratory data; x simulated data.

(P=Pz-01<Ty <z+0.1lz —0.1 <Ty <z+0.1)).
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level. Thus, the stochastic process for the transformed wave periods can be approximated by an
AR(1) process at the given significance level.

Figure 6.52 shows the probability that a wave period is in an interval [t;,,] of size 0.2 given
that the previous wave period was in the same interval, and given that the two corresponding
wave heights exceeded hyps. This is shown as a function of x = (f; + £,)/2. The confidence
intervals of the simulations are also included. The laboratory data have a larger peak than the
simulated data. However, due to the large variation in the simulated data the laboratory data
agree fairly well with the simulated data for almost all values of x. The results show that the
Nataf model agrees well with the data, but it is not able to capture the behaviour with a second
peak at z =~ 0.6.

The conditional expectation of the wave period given the previous wave period is shown in
Appendix H.3.2, and the results are quite similar to the results for the Draupner field data and
the Japan Sea field data.

Successive wave periods for large wave heights

In most practical applications, it is of interest to consider wave periods with corresponding large
wave heights. When considering wave periods where the corresponding wave height is larger
than a given threshold, there are no longer any problems regarding the large number of small
wave periods at d = 41 m and d = 31 m. Then it appears that the distributions for the wave
period are quite similar for all water depths, as would be expected (see Fig. 6.9).

The calculated parameters for the Gaussian distribution conditioned on the corresponding p
successive wave periods exceeding h.ns are shown in Table 6.18. The number n decreases when

Table 6.18: Calculated parameters for the p-dimensional Gaussian distribution with h = 1, from
the laboratory data.

Hey Ty n
d=80m | d=3Im | d=80m | d =31m | d = 80m d=3lm |d=80m | d=31lm
p=1 1.06 1.12 0.107 0.118 360 363
1.09 1.16 0.10 0.10
p=2 -0.02 0.02 215 233
1.10 1.14 0.09 0.11
[ 1.09 ] [ 1.16 ] [ 0.10 | [ 0.11 |
—0.04 —0.10
p=3 1.11 1.17 0.07 0.10 133 152
0.05 —-0.17
i 1.11 | i 1.14 | i 0.09 | i 0.11 |
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Figure 6.53: Probability density function of wave periods where the corresponding wave height is
larger than hpys, i.e., h > 1; — KDE laboratory data; — — Tayfun (1993) model; - -- Longuet-Higgins
(1983) model; — - — Longuet-Higgins (1975) model; - o - Gaussian density function. (a) d = 80 m. (b)
d =31 m.

p increases, and the number for p = 3 is small. Thus, only two successive wave periods will be
considered in the following. However, the number of data cases is also small for p = 2, and a
longer time series should be considered in order to draw any firm conclusions. Results will only
be presented for d = 80m and d = 31 m.

Figures 6.53 (a) and (b) show a histogram and the corresponding kernel density estimate of the
two successive wave periods with corresponding wave heights larger than h,, for d = 80 m and
d = 31 m, respectively. The data are compared with the Longuet-Higgins (1975, 1983) models,
the Tayfun (1993) model and the Gaussian probability density function. The peaks of the data
are much larger than any of the models, especially at d = 31 m, and the distributions of the data
appear to be similar at the two water depths, which was expected. There is a large variation
in the data, but the results show that the data agree well with the Gaussian distribution. The
difference in the models at d = 80 m and d = 31 m is due to the change in the parameter e.

Figures 6.54 (a) and (b) show a paired plot of the wave periods ¢; and ¢, compared with a
contour plot of the bivariate Gaussian distribution for d = 80 m and d = 31 m, respectively.
The dependency structure resembles the one for the bivariate Gaussian distribution, but the
number of data points is too small to make any firm conclusion.

The probability that a wave period is in an interval [f,, £,] of size 0.2 given that the previous wave
period was in the same interval, and given that the two corresponding wave heights exceeded
hrms is shown in Fig. 6.55 (a) and (b) for d = 80 m and d = 31 m, respectively. This is shown as
a function of x = (#, +1,)/2. The confidence intervals for the simulations are also included. Due
to the large variation in the simulated data, the laboratory data agree well with the simulated
data for almost all values of x. The results show a good agreement between the data and the
model.
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Figure 6.55: The probability that a wave period is in an interval [f1,%5] given that the two previous
wave periods were in the same interval, where #; = 2 — 0.1 and £, = 2 + 0.1, and given that the three

corresponding wave heights exceeded hypms. —— Nataf model; ¢ laboratory data; x simulated data. (a)
d=280m. (b) d=31 m.



CHAPTER 7

Conclusions and future perspectives

7.1 Summary and conclusions

The main objective of this work has been to study the statistical properties of parameters for
individual successive waves; the wave crest height, the wave height and the wave period. Marginal
probability distributions and joint probability distributions of the parameter in successive waves
have been presented.

Wave crest heights

In most mild to moderate sea states, the wave crest height can be approximated by half the
wave height, and statistics can be determined from the Rayleigh distribution. However, in more
severe sea states, which are of interest for design purposes, the wave crest heights are usually
larger than half the wave height. Thus, the statistical models must reflect the nonlinearity in
the waves. The use of second order Stokes-type nonlinearity have been discussed by several
authors. This approach has been adopted here. By transformation of the two-dimensional
Rayleigh distribution, a joint probability distribution for two successive wave crest heights is
obtained. One should note that the model is based on a narrow-band assumption, and that
only sum frequency effects are included. The model is valid in finite water depth. Another wave
crest height model is based on the second order wave theory in Marthinsen and Winterstein
(1992) for a narrow-banded random sea state. The effect of finite water depth is included.
This model includes both sum frequency and difference frequency effects. A parametric wave
crest height distribution proposed by Forristall (2000) is also discussed. The model is based on
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simulations using second order theory, both for long-crested and short-crested random waves. A
two-parameter Weibull distribution is fitted to the simulations. The model has been extended
to two dimensions by transformation of the two-dimensional Weibull distribution. Although the
wave crest height is the quantity of primary interest in engineering applications, the results for
the wave trough depth are included to illustrate the nonlinearity of the waves.

Results for the different wave crest height models are compared with field data from the Draupner
field and the Japan Sea, and with laboratory data from experiments at HR Wallingford measured
at different water depths. Data from numerical simulations based on second order wave theory,
including both sum frequency and difference frequency effects, are also included. It should be
noted that the present models are valid for a given constant water depth and do not include
shoaling effects. This also applies for the numerical simulations, so any shoaling effects in the
laboratory data are not reflected in the simulations that are used for comparison.

The observed data from field measurements and laboratory tests clearly show nonlinear wave
effects that should be included in the statistical models. The sum frequency effect has an
amplifying effect, which means that the wave crest heights are higher, and the wave trough
depths are shallower than in linear theory. The difference frequency term is negative and thus
has a reducing effect. The magnitude of the second order effects is illustrated in terms of the
quadratic transfer function. It demonstrates the importance of including both sum and difference
frequency effects, since both terms are almost of the same magnitude, especially in finite water.
The narrow-band assumption, however, may not be that critical since the off-diagonal variation
is small, except for difference frequencies in deep water. The second order Stokes model, which
only includes the sum frequency effect, overpredicts the data, and should be used in deep water
or almost deep water only, where the difference frequency effects are small. The parametric
Forristall (2000) model appears to predict the crest heights quite well. This is possibly due to
that the simulations, which the model is based upon, include both sum frequency and difference
frequency effects.

Wave heights

The existing wave height models are applicable when modeling only two successive wave heights.
The models considered here are the Rayleigh distribution and the Naess (1985) model, where
the latter distribution was in best agreement with the data.

In this thesis a Gaussian copula, which is often referred to as the Nataf model, is used for
modeling three successive wave heights. The difficulty is to find the initial distribution for which
the transformation is approximately Gaussian. Both the Neess (1985) model and a two-parameter
Weibull distribution have been used in the transformation. The Weibull distribution was in best
agreement with the data. However, the parameters in the Weibull distribution must be estimated
for each data set. The transformed multivariate Gaussian distribution can in theory be applied
for modeling more than three successive wave heights, but then the dependency structure should
be examined in order to validate that the correlation between the wave heights is correctly taken
care of during the transformation. The results show that the Nataf model is more sensitive to
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variation in the data set than the existing models. Thus, the parameter estimation is crucial for
the behavior of the distribution.

Results have shown that the Nataf transformation of successive wave heights can be approxi-
mated by a first order autoregressive (AR(1)) model. This gives two major advantages. Firstly,
the time series has the Markov property, i.e., the distribution of the wave height given the previ-
ous wave height is independent of the wave heights prior to the previous wave height. Secondly,
the simulation of successive wave heights can be done directly by simulating a series of trans-
formed wave heights and then find the wave heights by inverting the transformation. This is
a simple and fast simulation technique, which is useful when the time series of the complete
surface elevation is not needed.

Wave periods

Several models exist for modeling a single wave period. The Bretschneider (1959) model, the
Longuet-Higgins (1975, 1983) models and the Cavanié (1976) model are presented here. None
of them capture the shape of the probability density function of the data, but the Bretschneider
(1959) model agrees quite well with the data for large wave periods. Fewer models exist for
modeling two successive wave periods. The models considered here are the two-dimensional
Weibull distribution (Myrhaug and Rue, 1998) and the special case where the Weibull parameters
correspond to the Bretschneider (1959) model (Myrhaug and Rue, 1993).

The Nataf transformation can also be used when modeling more than two successive wave
periods. The shape of the probability density function of the data, however, makes it difficult to
select an initial distribution so that the transformation is approximately Gaussian. Results from
using a two-dimensional Weibull distribution and a generalized Gamma distribution show that
the latter distribution yields the best results. The model gives satisfactory results compared
with the existing models. The Nataf transformation of successive wave periods can also be
approximated by an AR(1) model, which means that the time series has the Markov property.
However, the simulation of successive wave periods is not possible in the same way as for the
wave heights when using the generalized Gamma distribution in the transformation, since the
transformation can not be inverted analytically. Thus, this must be done numerically.

When considering successive wave periods for large waves, the probability density function for
the wave periods can be approximated by a Gaussian density function. This means that a
transformation is not necessary, and three successive wave periods with corresponding large
wave heights can be modeled by the three-dimensional Gaussian distribution. The multivariate
Gaussian distribution can also be applied for more than three wave periods with corresponding
large wave heights, but then the dependency structure should be further examined. When
comparing with data, the number of data cases decreases rapidly both if the selected level of the
corresponding wave height increases and if the number of successive periods of interest increases.
Thus, a long time series is needed in order to obtain enough data cases.
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7.2 Recommendation for further work

The wave crest height and wave trough depth models discussed in this thesis are valid for a
given constant water depth and do not include shoaling effects. Thus, it would be of interest to
establish a wave crest height model that is valid for varying water depth.

The Nataf model gives the possibility to explore probability distributions for more than two
successive waves. The initial distributions explored in this thesis that gave the best results are
the Weibull distribution and the generalized Gamma distribution for the wave heights and wave
periods, respectively. However, the parameters in the distributions must be estimated from data
sets, and the parameters are not related to any of the sea state parameters. Thus, for obtaining
a more general method, it would be of interest to establish parameters based on different sea
state parameters, similar to the parameters in the Forristall (2000) model. This can be obtained
by numerical simulations and validated by comparison with field data.

When considering successive wave periods with corresponding large wave heights, it is of most
practical interest to select the corresponding wave height to exceed Hg. This requires a long
time series in order to obtain enough data cases for comparison. In this thesis this was only
considered for the Draupner field data and the corresponding numerical simulations. The results
showed that the multivariate Gaussian distribution was in good agreement with the data. This
should be examined further with other large data sets in addition to numerically simulated data.
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APPENDIX A

Properties of the Rayleigh distribution

A.1 The marginal Rayleigh distribution

The Rayleigh probability density function of a dimensionless variable A is given by (Rayleigh,
1880)

fa(a) =2aexp{-a’};  a>0. (A.1)

The expected value and variance are given by

A.2 A two-dimensional Rayleigh distribution

There are several number of possible forms of two-dimensional distributions whose marginal
probability density function is given by Eq. (A.1). A possible two-dimensional Rayleigh distri-
bution is given by (see Kimura (1980) or Longuet-Higgins (1986))

daya a’ +a? 2K,01a
fAl,z‘h(al:a?) = - 22 exXp {_ - 2}[0 |: : 2:| ) (A4)

1 — k2 1 — K2 1 — K2
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where a; and a» are nondimensional variables and I, is the modified Bessel function of zeroth
order. The parameter x, is related to the correlation coefficient p, between A; and A, by

E(ka) — 5(1 — k3) K (k) —

3

N

Pa = ) (}\.5)

where K (k,) and E(k,) are complete elliptic integrals of the first and second kind, respectively,
defined by (Abramowitz and Stegun,1965)

w/2 L
K(k,) = /0 (1 —rKZ2sin®6) > do (A.6)

N

E(re) = /OW/2 (1— #2sin?6)* do. (A7)

The elliptic functions can also be expressed by the hypergeometric function F(a, b; ¢; a),

K (k) %WF (% % 1 /ﬁi) (A.8)
E(k,) = %WF (-%,%,1,@), (A.9)
where
['(c 2 T(a+n)L(b+n)z"
F(a,b;c;x) = F(a)(F)(b) nX% ( F(c)+(n) )m (A.10)

The correlation coefficient p, can then be expressed by

”F(——,—— 1; /i)—

21+ lvg

=7

Pa = 1 (A.11)

Calculation of the expected values is performed by expanding the Bessel function (Middleton,
1960)

E[A]AL] = / / ajal fa, a,(a1,a2) da; das

2m
00 2Kqa1a2
4@1&2 UJ% + Cl% < 1—k2 )
la - da; d
/ / e 2 P < 1 — k2 mz::(] 22mm!IT (m + 1) i

a

(A.12)

_ 2m v/2+p/2+1p (Y M
= (m!)zma (1 — k2)v/2w F(§+m+1>F(§+m+1)

m=0

1—x "/M/?“r( 1)r(ﬁ 1)1?(z LR 2).
( ) 2+ 2+ 2+72+’7K/a
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This gives the following expected values

Bl4\] = Bld)] = S v (A.13)
E[A2] =E[A] =1 (A.14)
Bl4}] = Bl4}] = SV (A.15)
E[A]] = E[A4)] = 2 (A.16)
BlAids] = T(1 - w2)7F @ g; 1 /ﬁi) (A.17)
BlA142] = BLAA,] = TV(2+2) (A18)
E[A2A2] =1+ &2 (A.19)

These properties of the Rayleigh distribution are needed for calculation the correlation coeffi-
cients in Appendix D.
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APPENDIX B

Perturbation technique in second order
Stokes theory

A description of the perturbation approach of Stokes (1847) is given in e.g. Dean and Dalrymple
(1984). However, some steps in the deduction of the second order solution is not straight forward,
thus a more thorough description is given below.

The governing differential equation (GE) is given by

V2 =0, (B.1)
with bottom boundary condition (BBC)
9¢

P 0; z (B.2)

The dynamic free surface condition (DFSC) is given by

() (%)

where Cp is the Bernoulli constant. The kinematic free surface condition (KFSC) is given by

0 1
%+8_f+§ + g2 = Cp; z=1(z,1), (B.3)

on , 000n _9¢ _ _
T 0; z =n(x,t). (B.4)
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By introducing dimensionless variables

ko
NaV'kg
w
Z =kz Q=—
VEg
Ta P9
T = /gt Q= Cn
the boundary value problem is given by
(GE) V20 =0
0P
BB — =0 7 =—
(BBC) 57 0; kd
oo 1, L [roe\* [oo\’ (B.5)
(DFSC) P+77alfa—T + 5(77(1/?) [(8—X> + <8—Z> +7Z=Q; Z =nkA
0A od 0A 00
(KFSC) 8—T + naka—Xa—X — 8—2 = 0, Z = nakA-

The exact free surface is not known, and by a Taylor expansion about 7,kA, the free surface
conditions are transfered from the free surface position Z = n,kA to the mean free surface at
Z = 0. Also @ is selected so that P = 0 on the free surface.

00 1 9o \> [0\’ 2 )

(DFSC) 8—T + 577,1 (a—X> + (a—Z> + UakAazaT + A +0 ((nak) ) = Q, Z =0
DA 0D 9A 0D 92 A 02 ,

(KFSC) - 7 +mbasax ~— oz i 4gzar — Midgz + O ((nk)’) =0;

Z=0
(B.6)

By using 7,k as an expansion parameter, i.e. assuming 7,k is small, the different quantities can
be decomposed into power series

D = D1 + 1k®s + (nok)* s + - -

A=Ay +nokAs + (1ok)* Az + - -

Q = Q1 + 1k Q2 + (1k)* Qs + - --

Q = Q1 +0.kQy + (Nak)*Qs 4 -+ - .
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The boundary value problem is then given by

(GE) V2®, + 5,k V?®y + O ((n.k)?) =0
0P, 0Py N B
(BBC) 8—Z + naka—Z + 0O ((nak) ) = 0, Z = —kd
o, 0P, 1 00, \* (09’
(DFSC) 6—T + Uaka—T + 5770,]{? [<%> + (6—Z>
25 (B.8)
1
+ nakAlazaT + Ay + ek As + O ((nak)?) = Q1 +1nukQ2;  Z =0
0A; 0As 0P, 04, 09 0P,
ot Z2 N _ — Nk ——
(KESC) 7 T mkGr Tk ax ~ a7z ez
0% A, 0?®, 9
+ T]akAlm — ﬂakAlﬁ + O ((nak) ) = 0, 7 =0.
The first order equations are given by keeping the terms of order (n,k)°.
(GE) Vi0, =0
0P,
71 . 7 - _
(BBC) 57 0; kd
P (B.9)
(DFSC) 8—T1 + A =Q; Z=0
0A; 00, B
The solution is found by the method of separating variables
®,(X, Z,T) = cosh(Z + kd) | By cos(QT — X) + By sin(QT — X)|, (B.10)

where B; and B, are constants that are found from the DFSC. Since A; has a zero spatial and
temporal mean, then ¢); = 0, and the solution is

cosh(Z + kd) .
= — B.11
Q(X,Z,T) Q cosh kd sin(Q7T — X) ( )
Ay = cos(QT — X) (B.12)
O} = tanh kd. (B.13)

In dimensional form the first order solution is

_ 1aegcoshk(z +d)
i@ 2 1) = w  coshkd

m = N, cos(wt — kx) (B.15)
w} = kg tanh kd. (B.16)

sin(wt — kx) (B.14)
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The second order equations are given by the terms of order (1,k)"

(GE) Vi, =0
(BBC) % = 0; 7 = —kd
0, 1[[0®,\* [0®\ 9°®, - B (B.17)
(DFSC) a—T+§ [(8—)() + (8—Z> —|—A1azaT+A2—Q2, 7 =0
3A2 3@1 3A1 3@2 82141 824)1 . _
(KFSC) S toxax oz " Mazar Map % 250

The DFSC and KFSC can be combined by eliminating A; and inserting the expressions for @
and A1

0Qs  0*Dy 0Dy

or  or: 0z

Lo [(amNt L fomy?
0X 07

20T

+% 02, L FRERD +aq>1 00,04,
oT 0ZoT ' ‘oz |or? " 07 0X 0X

) (B.18)
—1 — 2cosh 2022 sinh h
[ cosh” kd + : sinh kd cos kd] §in2(QT — X)
2€) cosh” kd
-3 tanh” kd
= — + Qtanh kd| sin 2(QT — X).
[2Qcosh2 kd Q o ] sin2( )
By using
Qzﬁl—i‘?’]ak‘QQ‘i‘"'
0? = tanh kd
P (B.19)
Q, ! Q,
1+ ngk— 4 - - - =1—nk—+--,
< + 1, Q, + > n Q, +
the combined free surface condition is simplified to
Q> 0’ P, 09
oT o1? 0z
B { 3, B Ot
20 (4 + 0k + - )cosh®kd (1 4+ 17akQ2 + ) (B.20)

+(Q + 1k Qs + - - )Q7] sin 2(QT — X)

&

Sohorg on 2(QT — X) + O(n.k).
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One solution that satisfies Laplace equation and the bottom boundary condition is

¢y = By cosh2(Z + kd) sin2(QT — X). (B.21)

The constant B, is found from the combined free surface condition.

0
0@, + [4B>9% cosh 2(Z + kd) — 2B, sinh 2(Z + kd)] sin2(QT — X)) =
oT 20 (B.22)
T _ B
—Sinthdst(QT—X), Z =0.
Since () is only dependent on T, % can not be a function of sin2(Q7T — X)), thus % =0,
meaning (s = constant. Then the combined free surface condition is
2 . . SQI .
[4B592 cosh 2kd — 2By sinh 2kd] sin 2(QT — X) = —————sin2(QT — X))
sinh 2kd
02 02 1 30, (B.23)
+ - =
? [tanh?’ kd ' tanhkd  tanh? kd] 8sinh" kd
By using the relationships in Eq. (B.19) this is reduced to
1 1 30,
By | —=4+1—=+0(nk)| =—"77F. B.24
2 [Q‘f or TOW )] 8sinh’ kd (B.24)
Since Qy = Q — k€ — -+ -, the constant By is to order O (n,k) given by
3Q
By=———1—. B.25
> 8sinh'kd (B.25)
The second order potential is then given by
o 32 osh2(Z + kd) sin2(QT — X) (B.26)
= ——————cos sin - X). :
*" 8sinh'kd
Then the (DFSC) is used to find As.
0%, 1| [00,\* (0%, 0P,
A=, 222 191 0P\ | _ 4 9%, _
R (ax) "\ 9z 97T !
_0,- 1 sinh” kd sinh kd (B.27)

12 402 coshZhd | 2cosh kd

302 cosh 2kd 1 N sinh? kd N sinh kd
4 sinh* kd 402 402 cosh? kd  2cosh kd

} cos 2(QT — X)
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cosh 2kd
402 sinh? kd
[392cosh2kd tanh? kd 1

— — tanh kd 20T — X).
4 sinh* kd 49251nh2kd+2 o }COS( )

1
Ay =Qy — tanh? kd + 3 tanh kd

(B.28)

By inserting Q? = tanh kd + O (n,k), A, can be written as

Q? cosh 2kd 192 N

Ay =Q, — — 7
2 =( tsinhZhd 2

Q2 cosh 2kd Q2 1
{3 ‘COS4 _ — 4 _QQ} CcOS Q(QT - X)a (B'29)
4sinh® kd 4sinh“ kd 2

which can reduced to

1 N cosh kd(2 + cosh 2kd)
2sinh 2kd 4 sinh® kd

Ay =Q9 — cos 2(QT — X). (B.30)

The combined free surface condition to order O ((n,k)?) is given by

0Q, 0?dy, 0D, 30, .
— — =— 2007 — X
or ~ o2 9z~ swhzkd A )
3 (B.31)
2\ o v _
+ 1ok (Sinh S + 291) sin2(Q7 — X); Z =0.
Since % = 0, the contribution from the last term to the solution of ®, is given from
P?d, 0D, 3
—— = ok | ——— + 207 | sin2(QT — X); Z=0. B.32
or? "oz ke (sinh2kd+ 1) sin 2( ) 0 (B:32)
The solution is B
_ ByT cosh2(Z + kd)
oy = 0 cosh 25 d cos2(QT — X), (B.33)
where . 3
By = 1,k Qs | ——— +207 ). B.34
2= g 2(sinh2kd+ 1) (B-34)

Since Eq. (B.33) is unbounded with T, ®, will increase to infinity. Therefore B, = 0, which
means that 29 = 0. Thus,
Q=01+ 0 ((n.k)?), (B.35)

so the dispersion relationship does not change at second order.

The second order solution is then

3Q )
@y = — o cosh (7 + kd) sin 2(0T — X) (B.36)
1 cosh kd(2 + cosh 2kd)
Ao = — 20T — X B.
2= (s 2 sinh 2kd + 4 sinh® kd cos 2( ) (B.37)

Q? = tanh kd. (B.38)



177

In dimensional form the second order solution is

3 new cosh 2k(z +d) .
=—— 2(wt — k B.39
T KT B (B.39)
~ 1 1 1 coshkd(2 + cosh 2kd)
e L L 2wt — k B.40
W= O g G akd T3 psmitRd S AWk (BAD)

w? = kg tanh kd. (B.41)
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APPENDIX C

Limitations of wave amplitude in
second order Stokes model and
extended second order model

C.1 Second order Stokes model

In deep water the wave steepness criterion, kn, < Z, is the most restrictive. The nonlinear crest
height and trough depth is then given by

+
N — DN —

1
knc = kna + i(kna)Q =

3~

o) e
;

( )2, (C.2)

1
ke = kna — 5(/%)2 =

which gives
Ne kne ld+m

mo km  l4—7

(C.3)

The ratio of the nonlinear crest height to trough depth expressed by the linear dimensionless
amplitude a is given by

. e . a+ira® 1+1iria
Ne _ amms _ We _ 2!+ 2 +% (C.4)

M wy  a— %r+a2 1— %ma
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Comparing these two equations gives the criterion for the maximum value of a, ayax,

1+ %mamax 4+

= C.5
1-— %uamax 14—m (C.5)
s
max — 5 C.6
a T (C.6)
In shallow water the criterion for no bump in the trough, kn, < @, is the most restrictive.
The nonlinear crest height and trough depth in shallow water is given by
3 kK
c = a C.7
1 et G (C.7)
- p, -2 : C.8
Nt n 4 (kd)?’ N ( )
which gives
3(kn.)?*  (kd)®* 3 (kd)® 5 3
kn. = kn,+ - = — = —(kd C.9
'l et Ra)y 3 432(kd)? 12 (k) (C9)
3 (kna)* _ (kd)® 3 (kd)° 3 4
kny = kn,— - = - = = —(kd C.10
i T T L (ka3 3 432(kd)? 7o (kd) (C.10)
The criterion for the maximum value of a is then given by
1+ 374 Gmax
# = ? (C.11)
I — 571 Gmax 3
1
max — 5 - C.12
a o (C.12)

C.2 Extended second order model

The difference between the expression of the surface elevation for the second order Stokes model
and the extended second order model is two constant terms. This means that the criterion for
no bump in the trough will be the same for both models.

In deep water the wave steepness criterion, kn, < Z, is the most restrictive. The parameters
ft(k,d) — 1 and f~(k,d) — 0, and the result will be the same as for the second order Stokes
model, i.e., amax is given by Eq. (C.6).

In shallow water the criterion for no bump in the trough, kn, < %, is the most restrictive.

The parameters f*(k,d) — 3(kd)™ and f~(k,d) — 2(kd)™®, thus the nonlinear crest height
and trough depth are given by
1
B =t chf (kA (€13

1 .
Ny = 77a—1—6kf (kad)ng' (C-14)
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By using H,,,0 = 4/my = V/8ams and Na,max = GrmsV 1IN N, where N is the number of waves in
the duration of the given sea state, Eqs. (C.13) and (C.14) can be transformed to

(kd)®  (kd)’

kne. 3 + D N (C.15)
_ (ka)®  (kd)®
M= ST T omN (C.16)

Typically N = 1000 in a sea state of duration 3 hours, giving In N & 6.9. If In N = 7 is selected,
the ratio of crest height to trough depth is given by

29
e =2, (C.17)
m 27
In terms of the linear dimensionless amplitude the ratio is given by
1,2
N w. a-+zra®+ R
fe _ We _ 2 (C.18)
U Wt a — 57"@ — R
which inserted in Eq. (C.17) gives
28ra® — 2a + 56 R = 0. (C.19)
The criterion for the maximum value of a, ap.y, is then given by
14+ +v1—-1568rR
max — . C.20
fima 281 (.20
Since r and R are small, a series expansion can be used, giving
1
max = 7~ — 28R —-+ - < —. C.21
(fma 14r 14r ( )



APPENDIX C. LIMITATIONS OF WAVE AMPLITUDE IN SECOND ORDER STOKES MODEL
182 AND EXTENDED SECOND ORDER MODEL




APPENDIX D

Correlation coeflicients

D.1 Correlation coefficients in the second order Stokes
model

The nonlinear non-dimensional crest height is expressed in terms of the linear non-dimensional

amplitude as
Loy
we = a + §r+a .
The linear amplitude is Rayleigh distributed, and the properties are discussed in appendix A.

Then the expected values of W, and W2 are given by

(D.1)

EW] = B[]+ Bl = YT 4 L (D.2)
BIW2) = BLA%)+r B[4 + (r2BlAY) =1+ Jvar, + o7, (D.3)
and the variance is given by
Var(W,] —E[W?] — E[W,
= (EL4%) — ELAP) + ., (BLA") — BLAELA?) + 102 (BIAY] ~ ELA%)
=1— % + gm + iri.

183



184 APPENDIX D. CORRELATION COEFFICIENTS

Considering two successive crest heights W.; and Wy, the covariance is given by

COV[Wcla Wc?] :E[WCIWCQ] - E[WCI]E[WC2]

1 1
(e drot) (2 )]

1 1
—E |:A1 + §T+A%:| E |:A2 + §T+A;:|

1 (D.5)
+ 57, (BIAZAY] — BLAZB[AL]) + 102 (B[A243) — B[4%]BLA3))

33 1
= (1= K2)F <§, 5 L /@i) -3t ?”“‘i e

An expansion of the hypergeometric function F' gives

33 9 9, 225 1225 4 :
F<§’§;]‘;HC+>:1+ZKC++HKC++%KC++O(KC+)‘ (D6)
Then the covariance can be written as
T /T 1o\ o Ty T 6 8
COV[Wcl, Wc?] = <E + TT+ + Z?"+> I€C+ + %K)H— + @KJC_’_ + ) (KC-F) . (D?)

The correlation coefficient between W, and W,y is given by

. COV[WCl, WCQ]
pe  Var[W,]V/2Var[W,] /2

T VT 1,2) .2 4 T .6 8
(16+ 4r++4r+> KC++256HC++1024I€C++O(I€C+)

s ﬁ 1
L=+ 7re+ard

The correlation coefficient between the successive trough depths is found following the same
procedure. The nonlinear non-dimensional trough depth is expressed in terms of the linear
non-dimensional amplitude as

wy =a— =r.a, (D.9)

Ty (D.10)

VT 1,
Var[Wt] =1— Z — T?"+ + ZTJr. (D].].)
The covariance between two successive trough depths W;; and Wy, can be written as

s T 1 s s
COV[th, Wt?] = <E — %T+ —+ Z'I"i) K/i_ —+ %K/i_ -+ @K/Z_ —+ O (/ﬁ}?_,’_) s (D12)
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which gives the following correlation coefficient between W;; and Wy,

_ _ Cov[Wiy, W)
Pt = PWi1,Wes Var[Wy |'/2Var[Wye]'/2

: (D.13)
(% - %ﬁ + iﬁ) ’f%Jr + 2_75:6’f§+ + 1024’ft+ +0 (“t+)

7

o S

1 —

s
4

D.2 Correlation coefficient in the Forristall model

The Forristall distribution is a two-parameter Weibull distribution. The properties of the Weibull
distribution are given in Appendix E. The correlation coefficient is found by Eq. (E.5) with
f1 = P = [ and Kk = k.r. By expanding the hypergeometric function the resulting correlation
coefficient is

D.3 Correlation coefficients in the extended second order
model

The nonlinear non-dimensional crest heights is expressed in terms of the linear non-dimensional
amplitude as

1
we. =a+ §m2 + R. (D.15)

Considering two successive wave crest heights W,.; and W, the covariance is given by

Cov[W,1, W] =E [(Al + %mf + R) <A2 + %mg + R)]

~E {Al + %rA% + R] E {AQ + erg + R} (D16
=E[A14s] — E[A1]E[As] + 51 (B[4, 43] — E[A]E[A]])
1
4

1
5
L Bz, - BLAZEIA) +

; 17 (E[4243] — BLAE[43))
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which is the same as for the second order Stokes model in Eq. (D.5). Thus, the correlation
coefficient between W, and W,., becomes

T VT 1,..2 2 T 4 T 6 8
(1_6+TT+ZT )/ic+2—56/ic+—1024mc+(’)(nc) (D7)
Pec = . ’
s ﬁ 1
1_Z+TT+Z7"2

Similarly, the correlation coefficient between two successive trough depths is found. The nonlin-
ear non-dimensional crest heights is expressed in terms of the linear non-dimensional amplitude
as

1
wy=a— §m2 - R. (D.18)

The covariance between two successive trough depths W;; and W, is the same as for the second
order Stokes model in Eq. (D.12), which gives the following correlation coefficient

6=

(” ?r—i—irz) /i%—F%/i;l—Fm%Ii?—FO(K?)
Pt = - ﬁ 1 2 . (D].g)
|—r_ YL,



APPENDIX E

Properties of the two-parameter
Weibull distribution

E.1 The marginal Weibull distribution

The two-parameter Weibull probability density function of a dimensionless variable X is given
by

put

=" en{- (5} a0 (©.1)

where o and [ are the Weibull parameters. The expected value and variance are given by

E[X] = ol (% + 1) (B.2)
Var[X] = o? {F (% + 1) —T? (% + 1)] : (E.3)
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E.2 A two-dimensional Weibull distribution

One possible form of the two-dimensional Weibull distribution whose marginal distribution is
given by Eq. (E.1) is given in Myrhaug et al. (1995)

515233?71335271 1 Ty o T &
X1,Xo (1, = - — + | —
Fxixa (o o) o ol (1 — k?) PITT o e aq Qg
2K x bu/2 X P2/2
X I() — — .
1—k%2\oy Q
The parameter x is related to the correlation coefficient between X; and X, by
1 1 1 1.1.,.2) _
L) T () [F (3 i) -1 (E5)

() () o () (T

(E.4)

PX1,Xy =



APPENDIX F

Properties of the (Gaussian distribution

F.1 The multivariate Gaussian distribution

The p-dimensional Gaussian distribution for the vector X of p random variables is given by

fx(X)—WeXP{—i(w—u) Y (33—/1/)}, (F.1)
where x = (z1,...,7,)T. The p x 1 vector p is the expected value of X, and the p x p matrix
3 is the covariance matrix.

F.2 Error-function
The error function is given by
() = —2 / gy (F.2)
y = er =— [ e ,
VT Jo
with the derivative q q 5
Y 2
7 — —erf(r) = —e® F.3
de _ dzo (z) \/7_re (3)
The inverse error function, denoted
z = erf™ (y), (F.4)
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satisfies y = erf(x) for —1 < y < 1 and —oco < x < oo. The derivative of the inverse error
function is given by

dierfl(y) = g exp { [erfl(y)f} . (F.5)

Y



APPENDIX G

Properties of the generalized (Gamma
distribution

The generalized Gamma probability density function of a dimensionless variable X is given by

fX(:U)ZC(IF(_)\—)VV);\:Iexp{— (:1:—7)0}; T >, (G.1)

14

where A and ¢ are two shape coefficients, v is the scale parameter and -y is the location coefficient.

The cumulative probability function is given by

Fy(x) =1 {)\, (x”ﬂ, (G.2)

v

where I[A, u] denotes the incomplete Gamma function

I\ u] = ﬁ/g PAlet dr. (G.3)

Since all variables of interest (wave amplitude, wave height and wave period) are always non-
negative, then v = 0.
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G.1 Maximum likelihood estimators for the generalized
Gamma distribution

The parameters in the generalized Gamma distribution can be found from the maximum likeli-
hood estimators. The maximum likelihood equation is given by

N

LA\ e,v) = fo(xz-) V/\c [H 2 1] exp {__ Zx } (G.4)

The parameters that maximize the function L(A, ¢, v) are called the maximum likelihood param-
eters. These are found by first taking the logarithm of L and then putting the partial derivatives
wrt. each parameter equal to zero. The resulting equations are

¢S; — In (SQT(C)) 6\ =0 (G.5)
A {cSl —In (SQA(C))] +1—eS3(e,\) =0 (G.6)
- (50)" G

where

1 N
= — N Iny,
szl:nx

L
Sy(c) = N fo
i=1

c (G.8)
NG (SQA(c))l/c <52A(c)>1/0
b)) = 3111;)’\()\)

The parameters A and ¢ must be found through an iterative solution of Egs. (G.5) and (G.6).
Then v is found from Eq. (G.7).



APPENDIX H

Additional results from data

This chapter presents some additional results from the data.

Appendix H.1 presents the conditional expectation E[W.|W,. = w.] for the Japan Sea field
data and the laboratory data. Results for the numerical simulations are also included.

Appendix H.2 presents the conditional expectation for the wave heights for the different data
sets.

Appendix H.3 presents the conditional expectation for the wave periods for the different data
sets. It also presents wave period results for the laboratory data at d = 78m, d = 41 m and
d =31 m.

H.1 Conditional expectation for wave crest heights and
wave trough depths

The expected value of a crest height given the previous crest height is given by Eq. (3.96), and
the expected value of a trough depth given the previous trough depth is given by Eq. (3.97).
The results of the conditional expectation for the Draupner field data were shown in Fig. 3.15.
The results from the corresponding numerical simulations are shown in Fig. H.1. Figure H.2
shows the results from the Japan Sea data, while Figs. H.3 - H.6 show the results from the
laboratory data.
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Figure H.1: Conditional expectation of the wave amplitude given the previous wave amplitude.
x crest height data; + trough depth data from numerical simulations corresponding to the Draupner
field data.
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Figure H.2: Conditional expectation of the wave amplitude given the previous wave amplitude.
(a) o crest height data; o trough depth data from Japan Sea field, (b) x crest height data; + trough
depth data from numerical simulations.
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25 T 25 T
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Figure H.3: Conditional expectation of the wave amplitude given the previous wave amplitude.
(a) o crest height data; o trough depth data from laboratory data, (b) X crest height data; + trough
depth data from numerical simulations. d = 80 m.
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Figure H.4: Conditional expectation of the wave amplitude given the previous wave amplitude.
(a) o crest height data; o trough depth data from laboratory data, (b) x crest height data; -+ trough
depth data from numerical simulations. d =78 m.
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25 T 25 T
— Rayleigh — Rayleigh
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(a) (b)

Figure H.5: Conditional expectation of the wave amplitude given the previous wave amplitude.
(a) o crest height data; o trough depth data from laboratory data, (b) X crest height data; + trough
depth data from numerical simulations. d =41 m.
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Figure H.6: Conditional expectation of the wave amplitude given the previous wave amplitude.
(a) o crest height data; o trough depth data from laboratory data, (b) x crest height data; -+ trough
depth data from numerical simulations. d = 31 m.
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H.2 Conditional expectation for wave heights

This section shows the conditional expectation E[Hy|H; = hy] versus h; for the Japan Sea field
data and the laboratory data. The results are similar to the results for the Draupner field data
presented in Chapter 4.2.2, in Fig. 4.9.

Figure H.7 shows the results for the Japan Sea field data. The results for the laboratory data
are shown in Figs. H.8 (a), (b) and H.9 (a), (b) for d =80 m, d =78 m, d = 41 m and d = 31
m, respectively.
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Figure H.7: Conditional expectation of the wave height given the previous wave height. —- - Nataf-

Weibull model; — — Naess (1985) model; - - - Rayleigh distribution; ¢ Japan Sea field data; x simulations.



198 APPENDIX H. ADDITIONAL RESULTS FROM DATA

25} ‘ ‘ ‘ ‘ ] 2.5 ‘
SRV
2 o 2 5
< e & -

Il - - I g
—— - — 15l £ -
15 S 15 A x

S e = @;/Q/ )
Q- x o x
Q//// g
& .
0.5;§/ 4 0.5&7/ -
/ /
0 : : : : : 0 : : : : :
0 05 1 15 2 25 0 05 1 15 2 25
hy hy
(a) (b)
Figure H.8: Conditional expectation of the wave height given the previous wave height. —- - Nataf-

Weibull model; — — Neess (1985) model; --- Rayleigh distribution; ¢ laboratory data; x simulations.
(a) d =80 m. (b) d =78 m.
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Figure H.9: Conditional expectation of the wave height given the previous wave height. —- - Nataf-
Weibull model; — — Neess (1985) model; --- Rayleigh distribution; ¢ laboratory data; x simulations.

(a) d =41 m. (b) d =31 m.
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H.3 Results for wave periods

H.3.1 Results for Japan Sea field data

Figure H.10 shows a paired plot of the wave period and the corresponding wave height. The
conditional expectation E[T,|T) = t;] versus ¢; is shown in Fig. H.11. The results are similar to
the results for the Draupner field data presented in Chapter 5.2.1, in Fig. 5.9.

3

251

051

Figure H.10: Paired plot of the normalized wave period and the corresponding normalized wave height
from Japan Sea field data.

E[Ty|Ty = t4]

0 0.5 1 15 2

t
Figure H.11: Conditional expectation of the wave period given the previous wave period. — Nataf-

Gamma model; - - - Myrhaug and Rue (1993) model; —-— Myrhaug and Rue (1998) model; ¢ Japan Sea
field data; x simulated data.
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H.3.2 Results for laboratory data

This section presents mainly results for wave periods for the laboratory data at d = 78 m, d = 41
m and d = 31 m. The comments given in Chapter 6.1.3 regarding the concerns associated with
the data at d = 41 m and d = 31 m should be kept in mind when considering the results. The
comments given earlier in Chapter 6.4.3 for d = 80 m are valid for the results presented here.

The conditional expectation E[T,|T = t;] versus ¢; is also shown for all water depths.
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Figure H.12: (a) Histogram of transformed wave period data. — standard Gaussian probability density
function; — — KDE of the transformed wave period data. (b) Paired plot of the transformed wave periods
between ¢, and t9 compared with a contour plot of the standard Gaussian distribution. d = 78 m.
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Figure H.13: (a), (c¢) Histogram of transformed wave period data. — standard Gaussian probability
density function; — — KDE of the transformed wave period data. (b), (d) Paired plot of the transformed
wave periods between ¢; and t9 compared with a contour plot of the standard Gaussian distribution.
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Figure H.14: The probability that a wave period is in an interval [t1, 5] given that the previous wave
period was in the same interval, where ¢; =  — 0.1 and ¢, =  + 0.1. — — Nataf model; --- Myrhaug
and Rue (1993) model; —- - Myrhaug and Rue (1998) model; ¢ laboratory data; x simulated data.

(P=Pz-01<Ty <z+0.1lz —0.1 <Ty <z+0.1)).
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Figure H.15: Conditional expectation of the wave period given the previous wave period. — Nataf-

Gamma model; - -+ Myrhaug and Rue (1993) model; —-— Myrhaug and Rue (1998) model; ¢ laboratory

data; x simulated data.



