
Obfuscating Malware through Cache
Memory Architecture Features

Çağlar SAYIN

Masteroppgave
Master i Teknologi - Medieteknikk

30 ECTS
Avdeling for informatikk og medieteknikk

Høgskolen i Gjøvik, 2014

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Obfuscating Malware through Cache Memory
Architecture Features

Çağlar SAYIN

2014/06/01

Obfuscating Malware through Cache Memory Architecture Features

Abstract

There is no doubt that malicious software (malware) is one of the most important threat
in computer security. With increasing of the information systems and computer network
usage in the industrial and governmental infrastructures, their economy and impact over
our society are increasing. According to Symantec’s report in 2008[1], "The release rate
of malicious code and other unwanted programs may be exceeding that of legitimate
software applications." The worst of all, malware design is not as simple as how it was
before. A few years ago, we saw countries who developed malware as a professorial
weapon for their political benefits, and it would not be surprising if one of these weapons
were seen in the corporate world soon. This malware was utilized with many camoufla-
ging techniques (e.g. polymorphism, metamorphism, etc.) against the malware detection
system.

Basically, the most of the camouflaging techniques obfuscate and hide the signatures
to be stored safely in a non-volatile memory or disk, and before they started to run on
the main memory, they deobfuscate the whole code to execute. Consequently, the detec-
tion systems have simply started to search the signatures in the main memory. In this
thesis, we designed a way to raise the bar from "from disk to memory obfuscation" to
"from disk to cache obfuscation". More specifically, we designed theoretical malware ob-
fuscation methods for tightly coupled multi-processor systems which utilize caches as a
private memory to evade main memory observer systems as well as other conventional
static data analysis. In order to achieve this goal, we anticipated cache behaviours and
exploited them as well as cache efficiency optimizations. With increasing deployment of
multi-processor computing and other parallel processing devices, the implementation of
local memories like NUMA and hierarchical caches are increasing in order to increase
efficiency and performance and decrease power consumption, and this can be even the
only reason which highlight our studies. Additionally, this thesis discusses implement-
ation issues arising from interactions between cache coherence mechanisms as well as
from Harvard architecture implementations

Keywords

Security, Malware Design, Cache Oriented Polymorphism, Cache Coherency, Malware
Evasion, Code Obfuscation

iii

Obfuscating Malware through Cache Memory Architecture Features

Preface

I would like to express my gratitude to my supervisor Prof. Stephen D. Wolthusen for the
useful comments, remarks and engagement through the learning process of this master
thesis. I can simply say that every sentence which he built was enlightening not only
during this this process, but also in his courses. Furthermore, I would like to thank Emre
Tınaztepe for sharing his fabulous practical knowledge with me to the topic as well for
the support on the way. Also, I like to thank the team in Stanford University who develops
BookSim Simulation tool and willingly share experience. I would like to thank my family.
Words cannot express how grateful I am to my mother for all of the sacrifices that you’ve
made on my behalf. I would also like to thank all of my friends who supported me in
writing, and incited me to strive towards my goal.

Finally, I would like to thank to all free software volunteers.

Çağlar Sayın 2014/06/01

v

Obfuscating Malware through Cache Memory Architecture Features

Ethical and legal considerations

The content of this document could be used for malicious purpose, but any matter or
information could be misused in the life. The risky threat is not the information in this
thesis, but to be ignorant about them. For this purpose, this thesis aims to enlighten
security specialist and system developers against the recent methods of the possible at-
tacks.

However, in order to act ethical responsibility, we tried to eliminate practice of tools
and piece of codes which could leads malicious usage. In any case, there is no doubt that
it is critical to discover and publish vulnerabilities which could cause deep impact before
malicious people discover and abuse them.

"Virus don’t harm, but ignorance does."
- VxHeaven

vii

Obfuscating Malware through Cache Memory Architecture Features

Contents

Abstract . iii
Preface . v
Ethical and legal considerations . vii
Contents . ix
List of Figures . xi
List of Tables . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Problem description . 1
1.3 Justification, motivation and benefits . 2

1.3.1 Research questions . 2
1.4 Choice of methods . 2
1.5 Thesis Outline . 3

2 Related Works . 5
2.1 Malware Self-Defense . 5
2.2 Malware analysis methods . 6

3 Background Studies . 9
3.1 Caches . 9

3.1.1 Motivation of Caches and Principle of Locality 9
3.1.2 The basic logic of caches . 10
3.1.3 Allocation, Write and Replacement Policies 12
3.1.4 Miss Type and Advance Cache Optimization Methods 14

3.2 Cache Coherence and Consistency . 15
3.2.1 Snooping Coherence Protocols . 17

3.3 Inter-connector Design . 22
3.3.1 Topology . 24
3.3.2 Topologies . 26
3.3.3 Switching . 27
3.3.4 Routing . 28
3.3.5 Flow Control . 29

4 Cache Oriented Obfuscation . 31
4.1 Exploiting Tightly Coupled Multi-Processing Systems 32

4.1.1 Reconnaissance and Design . 33
4.1.2 Setting System up and Loading Cache Memory 34
4.1.3 Obfuscating, Running and Deobfuscating Gadget 36

4.2 Pitfalls, Limitations and Fallacies . 38
5 Probabilistic Timing Attack against to Snoopy Cache Coherency 41

5.1 The Issue . 41
5.2 Solution . 42

5.2.1 Horizontal Directional Cache Fetching 42

ix

Obfuscating Malware through Cache Memory Architecture Features

5.2.2 Synchronization Latency of Snoopy Caches 44
5.2.3 Overall Explanation of the Timing Attack 49

5.3 Pitfalls, Limitations and Fallacies . 51
6 Implementation on Harvard Computer Architecture 53

6.1 The Issue . 53
6.2 Solution . 55

6.2.1 Flying over Interpreter . 55
6.2.2 Forth Interpreter Language . 56

6.3 Pitfalls, Limitations and Fallacies . 57
7 Conclusion and Further Works . 59
Bibliography . 63
A Cache Memory Simulation . 67
B Real Systems Cache Coherency Latency Simulation Results 71

B.1 Small Topology . 71
B.1.1 Small Topology Simulation with Two Percent Injection Rate Con-

figuration File and Results . 71
B.1.2 Small Topology Simulation with Four Percent Injection Rate Con-

figuration File and Results . 77
B.2 Crowded Topology . 85

B.2.1 Crowded Topology Simulation with Two Percent Injection Rate
Configuration File and Results . 85

B.2.2 Crowded Topology Simulation with Four Percent Injection Rate
Configuration File and Results . 94

x

Obfuscating Malware through Cache Memory Architecture Features

List of Figures

1 Detection models [2] . 7
2 Principle of Locality . 10
3 4 KB 4-way set associative cache with 256 cache lines 11
4 A. A Write-Through cache with No-Write Allocation B. A Write-Back cache

with Write Allocation . 12
5 Write-back Policy Cache Memory Inconsistency 16
6 Write-through Policy Cache Memory Inconsistency 16
7 MSI State Diagram for processor P1 . 19
8 MESI State Diagram for processor P1 . 20
9 MOESI State Diagram for processor P1 . 21
10 Primitive Multi-Drop Memory Bus . 22
11 An example of interconnector message anatomy 23
12 A) Bus topology example B) Ring topology example 25
13 A) Mesh topology example B) Torus topology example C) 3D mesh topo-

logy example[3] . 25
14 An Example of Tightly Coupled Multi-Processing Systems 32
15 Attack vector flow chart . 33
16 Gadget Sections . 34
17 Control Flow Illustration A) Stepped Control Flow B) All at Once Control

Flow . 37
18 Directional Exploitation . 43
19 The Time Line of the Fetching Cache Line which is Used by Another Cache 44
20 Interconnector Latency Versus Offered Traffic [4] 45
21 Our Simulation Topology[4] . 47
22 The illustration of cache and time Interaction is showed with leaked por-

tion of obfuscated data . 49
23 Cortex A15 Block Diagram [5] . 54
24 Illustration of Our Approach . 56

xi

Obfuscating Malware through Cache Memory Architecture Features

List of Tables

1 MSI states’ properties . 18
2 MESI states’ properties . 19
3 MEOSI states’ properties . 21
4 Simulation Results Comparison . 48

xiii

Obfuscating Malware through Cache Memory Architecture Features

1 Introduction

The purpose of this chapter is to give introduction of the subject and challenge in ques-
tion, as well as justification and motivation of its importance. The chapter also propose
research question to guide the thesis.The purpose of this chapter is to give introduction
of the subject and challenge

1.1 Topic covered by the project

This thesis is mainly about a novel approach to specially malware obfuscation methods
although software obfuscation concept is the more broad topic. Malware is the short
malicious software and can cover any program or script that is harmful to a system or
its user. One of the biggest discussion is a definition of harmful on computer security.
It is quite hard to define what harmful is and what malicious is. Because of the reason
why we cannot classify software easily, whether malicious or not, the most efficient and
suitable way to detect them is a black or white listing. Basically, there are predefined
list of software which claims they are good or evil. This black lists are comprised with
signatures of the software which are presumed malicious; then, we are looking for these
signatures in our computers to detect malware.

Even if these lists include every possible signature, malware can evade signature de-
tection with obfuscating itself over and over again. For each attempt, it reproduces itself,
and thus, it conceals the signature. However, there are many countermeasures against
them[6][7]. For example, memory dumping and scanning later is recently one of the
trendy detection methods1. It is quite reasonable because while the malware is running
over memory, it is naked and vulnerable.

In this thesis, we are seeking possibilities to enhance "Disk-memory level" to cache
level. It is a pretty novel contribution to the computer security field because there have
been a few works, so far, about what we are searching for.

1.2 Problem description

The conventional PC architecture is now which security researchers, developers and
malware authors familiar with. However, the density of development spreads around
other architecture instead of common PC arch.. For example, mobile devices recently
have much higher profile at this point comparing with our conventional desktop sys-
tems.Besides, hardware platforms especially for mobile devices are increasing in com-
plexity and sophistication with the use of multi-processor systems becoming common
place as well as the use of many layer memory architectures, such as NUMA, caches for
performance and efficiency(esp. on power consumption).This opens new opportunities
for obfuscation and concealment of malware.

Apart from the basic signature-based methods known to be ineffective against un-
known threats, there are two mainstream techniques to detect malicious code which are
called static and dynamic analysis, but indeed, the main stream method is still signature-

1Especially, after boot level rootkits

1

Obfuscating Malware through Cache Memory Architecture Features

based ones. Static analysis identifies malware mainly with code flow graph and data
flow graph obtained from static information, while dynamic analysis is taking account
dynamic execution features.

There are number of techniques for obfuscating, some relying on the precise prop-
erties of the hardware and its behaviours, that can render static analysis ineffective as
well as signature analysis. Some of the key techniques deployed by malware authors for
obfuscation do include race condition and exploitation of memory uses. The detection
algorithms and techniques have been adequately worked so far because of the simplicity
of our conventional architectures and using generic PC architecture despite these systems
also started to become more heterogeneous(e.g. Intel Haswell). However, with increas-
ing deployment of multi-processor computing and other parallel processing devices, the
implementation of local memories like NUMA and caches are increasing in order to in-
crease efficiently and performance and decrease power consumption. It is obviously clear
that these features will also be exploited by malware authors at some point. The project
seeks to investigate the feasibility of such malware both from a theoretical viewpoint and
through the development of a proof-of-concept.

1.3 Justification, motivation and benefits

If malware designing is superficially considered, you could fall in the usual fallacy that it
is not beneficial, and maybe it is malicious. However, if we can design it, there is always
a more skillful malicious author who might already abuse this vulnerability on the black
side of the moon. The duty we are actually obligated to discover these vulnerabilities
and design countermeasure against them. In this way, our blessed motivation is finding
possible vulnerabilities, and mitigate or eliminate their risk. Otherwise; if we are lucky,
we might detect these zero time vulnerability attacks, yet it could be too late to fix
and analyze them. Besides, for example, some of the most sensational and beneficial
papers([6],[8],[7]) are criticizing malware with designing them as like as we do, and
their values over computer security are undoubted today.

In short, we are building brakes. Sometimes they are that thing slow us down, or
sometimes they even stop us in our tracks. However, they are actually there to enable us
to go faster and secure.

1.3.1 Research questions

1. How can an obfuscation method, which exploits caches to conceal information from
the observers, be designed for tightly coupled and multiprocessor systems?

2. How can the efficiency optimisations of common cache coherency protocols found in
tightly coupled multiprocessor systems be exploited for probabilistically hiding and
obfuscating malware?

3. How can we execute deobfuscated code on the Harvard Architecture without leakage
to upper memories?

1.4 Choice of methods

In order to solve our problems, we followed particular research methodologies for each
question.

In the first question, we limited the question with tightly coupled and multi-processor
systems, and we chose the design science methodology to follow during our work and we

2

Obfuscating Malware through Cache Memory Architecture Features

supported it with literature review methodology. First, we started to seek cache memory
architecture to understand how they work, interact with each other and affect perform-
ance. Then, we classified them in a proper way, and we noted all remarkable points in
background studies chapter section 1. Besides, we try to seek practical implementation
on new ARM based boards. We obtained ARM little big multi-processor based Samsung
Exynos 5410 and 5420 systems on the chip boards to explore their cache memory im-
plementation. Next, we proposed an attack vector under a constant isolated theoretical
system which has the most basic tightly coupled, multiprocessor and Von Neumann ar-
chitecture with write back cache policy and without cache coherency. At the end of the
solution, we clearly stated possible implementation problems which we can encounter
during implementation and gave references to the next questions.

In the second question, we used literature which we have already researched, and
we inspected the architectural detail of modern cache coherency techniques, especially
snoopy cache coherency and multi-processor interconnector design in order to describe
a model to exploit the efficiency optimization of common cache coherency protocols
found in multiprocessor systems. When we used design science method in this chapter,
we used a quantitative approach to measure possible interconnection network latency.
This approach is prepared with a simulation experiment whose simulation tools have
already been acknowledged by many processor producers as accurate on its latency cycle
calculation. We totally designed 4 experiments which are crowded and small topologies
with congested and silent traffics and present our results in Appendix B as well as Chapter
5. At the end of the chapter, we built and designed a method to exploit the efficiency
optimization of lazy cache coherency found in multiprocessor systems.

For the third question, at the end of the literature overview, we found a similar
cases[9][10], which can empower our solution. The problem which we try to solve is
not what they are trying to do, but it simultaneously solved our problem. We built our
model and concluded interpretation approach which has been seen in previous studies
with our own model. When we designed our own model, we used our attack vector which
we proposed in Chapter 4 and merge it with a interpreter to execute the code in DCache,
which we can access, load and store, but we cannot execute. At the end of the studies,
we discussed and criticized practical issues which we can fall during the implementation
of our theoretical model.

1.5 Thesis Outline

This section provide a brief summary listing of the content presented in this thesis. The
listing is based on chapters, where each chapters and its content is described. First the
related works and background studies are presented. Then, our designs is presented as
well as further work and conclusion in a sequence. At the end of the thesis, we attached
the simulation code which we wrote and the experiments results by Booksim v2.0 to
appendix.

• Chapter 2 is related works chapter, which presents the literature related to malware,
code obfuscation and countermeasures against malware. Firstly, we give the malware
self defense methods’ literature, and then, we conclude it with malware analysis and
detection methods’ literature.

3

Obfuscating Malware through Cache Memory Architecture Features

• Chapter 3 is background studies chapter, which presents the background knowledge
to design the cache oriented obfuscation system. Our studies are highly related to
computer architecture and organization knowledges. Firstly of all, we start with cache
related studies. We explain the motivation of cache, how they are working. Then, we
conclude them with details about caches. Secondly, we mention about cache coher-
ency and consistency and this section involve with an explanation of snoopy cache
coherency protocols. At the end of the chapter, we describe computer interconnec-
tion network’s basics. This section highly involves with their design features and their
effects on the interconnector performance.

• Chapter 4 is called "Cache Oriented Obfuscation". In short, this chapter defines the
basics of our thesis. In the chapter, we propose a method to exploit tightly coupled
multi-processor systems and explain details and the attack vector which we propose.
At the end of the studies, we discuss the pitfalls, limitations and fallacies.

• Chapter 5 is the chapter which we try to solve our second research question. We
propose a probabilistic attack method to hide or obfuscate malware. We also define
several formulas in this chapter to measure coherency latencies. It also includes ex-
periment results which we designed with a interconnection simulation tool, Booksim.
At the end of the studies, we discuss the pitfalls, limitations and fallacies.

• Chapter 6 includes the answer of our third research question and proposes a solu-
tion for the Harvard Computer Architecture implementation issue. It includes some
elementary studies about virtual machine designing and interpretation. At the end of
the studies, we discuss the pitfalls, limitations and fallacies.

• Chapter 7 concludes and summarizes the most important findings in this thesis and
add presents a range of topics that should be further work to better understanding of
countermeasures and to implementing the theoretical studies which we proposed.

• Appendix A is attached with the python code of simple cache simulation. We used
this code to enhance our intuition over cache behaviors. It could be useful to proof
our studies further.

• Appendix B includes the experiment results, which are very detailed, and configur-
ation files to replicate it. It could be useful to proof our latency experiments and
proposals further.

4

Obfuscating Malware through Cache Memory Architecture Features

2 Related Works

2.1 Malware Self-Defense

This section will give an overview of researches about Malware‘s self-defense technique,
the methods to analyze them, and their application on concurrent architecture. This sec-
tion will try to give the literature about malware evasion techniques. These techniques
are generally antonym solution which by malware authors, however, there are enough
surveys about known technique. We classified all these methods in six categories which
are code obfuscation, code reuse, anti debugging, anti emulator and visualization and
covert channel over network traffic. This taxonomy is well defined by Jonathan A.P Mar-
paung, et al [11], yet malware authors used them to protect their own properties.

Code obfuscation was originally founded for protecting intellectual property[12], but
it aims to puzzle code‘s binary against merely static analysis and disassembling[13].
The first known obfuscation method used encryption in order to hide its content. It was
called Cascade which is seen first 1986[14]. This simple architecture of the obfuscation
is called packing[15]. It involves with two parts of binary which are slub part, in order
to decipher and encipher.[11]. Cascade was using simple XOR encryption and that was
increasing performance.

In early of the 1990s oligomorphism and polimorphism have started to show up[14].
The main idea behind them is basically transforming their slub part in each attempt of
encryption process[13]. Today, there are two types of polymorphic approach to generate
different variants of slub.[16]

• Rewriting the code each time from pseudo-code so it differs code synthetically, which
is actually transformation based obfuscation.

• Self-cipher itself different, order of these ciphers and using different keys.

One of the other important milestone of polymorphic malware is Mutation Engine(MtE)
is written by a Bulgarian virus Author, called The Dark Avanger. It was automated obfus-
cation tool which actually considered impossible in those times.[17]

There are also several methods to prevent unpacking process. These methods are col-
lected carefully by Peter Ferrie [18]. These methods are especially obstacle for automated
analysis.

Compare with polymorphic methods, metamorphic approach is more complicated. It
is a transformation based method instead of encryption approach.[19] Fundamentally,
it produces different codes which doing same blue printed semantic. That just mitigates
the detection possibility because of lack of static code.

Network traffic, by malware generally Achilles heel to detect them because they are
generally adequately unique traffics to be identified[11]. They usually cover their overt
malicious traffic with covert channel methods.[20]

Code reuse attacks are strong attacks because they do not inject any code in them as
obfuscation methods did. They aim to use legitimate software to evade them. There are
three well known applied version which are return-into-libc, return oriented program-

5

Obfuscating Malware through Cache Memory Architecture Features

ming and Frankenstein.
Return into libc attacks were demonstrated by the solar designer in 1997 as a method

of bypassing non executable stack to executable libc libraries[21]. Its object is to change
the "ret" infrastructure argument to the known address, possibly libc library (stdio, sys-
tem, etc). However, this attack is limited with libc libraries, which we improved with
return oriented programming.

Return oriented programming is a more flexiable version of retur-into-libc attack,
which is introduced by Shacham in 2007[22]. Return oriented programming purpose a
programming language with small gadgets(instruction bound) which involve all ability
of Turing’s machine[23]. Frankenstein is one of the novel application of return oriented
programming by Vishwath Mohan and Kevin W. Hamlen[24].

Anti debugging and anti emulator methods are really usual for today’s malware. The
survey of Chen Xu et al. showed us in 2008, a majority of 6900 on-the-air malware could
evade their self with exhibiting benign behavior in sandboxes, debuggers, and virtual
machines.[25]. VM and debuggers are most important element of dynamic analysis tech-
niques in autonomous sector, because it must run the file just before it touch the working
environment. Yet, it is not that knotty to determine whether working environment is
virtual or not. Fuzzing cpu bechmarks and comparing results entropy is a good way to
determine virtual machines.[26]

Rootkits are the piece of malicious code which aims to crack integrity of the system
state. The idea of the remaining invisible to the system state is traced back to one of the
oldest virus "Brain"[27]. It was changing the boot process and activate the virus during
booting. "Tequila" and "1689" viruses followed "Brain" in 1991 and 1993[28]. There are
NTRootkit and HackerDeffender rootkits today. The proper classification of the rootkit by
Adnan Abdakka[29].

On the contrary with all studies presented above, we found several directly similar
cases[9][10], which can empower our Harvard implementation solution. These studies
include interpreters to obfuscate malware and they use these interpretters as virtual
computer over a computer. We metion about it with details in Chapter 6, section flying
over interpreter.

2.2 Malware analysis methods

Malware analysis methods could be considered two dimensional plane which are "An-
omaly" and "Signature based" detection techniques and "Statistic" and "Dynamic" and
analysis methods. In addition to these two dimensional aspect, we could add also one
more dimension with "Manual" and "Autonomous" methods, yet the figure 1 does not
include this third dimension.

There are also several applied techniques, which combine terminology above. We
tried to enumerate common techniques used by main frame detection algorithms below.

N-gram It is a anomaly based heuristic detection method algorithm. It is a bit costly pro-
cess and not practical for client side analysis. It could be fit for honey pot analysis
[30] [31] [32]. They are capable against to zero time malwares and that could
makes it futures malware detection system.

Sequential approach on system and funtion call This approach is anomaly based dy-
namic analysis and observing and recording the flow graph of systems and function

6

Obfuscating Malware through Cache Memory Architecture Features

Figure 1: Detection models [2]

calls and try to analysis anomaly behaviors.[33]

Taint It is also called data flow analysis or data flow graph. It is basic tracking marked
data values during execution.[34][34][35]

Control Flow Graph They are one of the most important arm of commercial autonom-
ous malware detection tools[36] [37] [38]. After the invention of the polymorphic
and metamorphic, syntactic analysis could not bear with them. Then we moved to
upper layer of information, semantic layer. Semantic can be representation of code
flow, and the routes of the code are adequate to produce signature to identify mal-
ware. This methods are a member of static analysis and disassembling and source
code analysis job.

Network Monitoring Malware intention of the communication over network actually
big clue to detect them. They generally use unique hostname, ip adress or specific
protocol with particular way [11].

7

Obfuscating Malware through Cache Memory Architecture Features

3 Background Studies

3.1 Caches

Solely, a cache is a small, fast, array of memory which is placed between lower level
memory and higher one. It store a special block of information, in order to increase
performance of computer systems. It is like a buffer area which has some logic to exploit
locality features of programming logic. Today, with increasing of processing ability of
computer systems, memory access is bottle neck.

The "cache" is originally french rooted with meaning "concealed place for storage."[5]
We can move this definition basically to the computer science. The cache’s design is
definitely isolated from software layer, however; if you know your caches feature and
how caches working you could program a lot more efficient codes easily.

3.1.1 Motivation of Caches and Principle of Locality

The main motivation of caches is indisputably performance. As we mentioned, Perform-
ance of high-speed computers is usually limited by memory bandwidth and latency. In
order to increase, and turn around that, we use an small array of memory which is located
close to the processors. The location of chip is important and there are many design de-
cision (e.g On chip, out of chip), but more crucial properties of caches are their designs
(e.g. Naive Capacitor , SRAM, DRAM) and their logic complexity[39].Due to physical
constrains, the size of the memory is limited which we can locate close to memory. On
the other hand, these design choices are decisive factor about prices of memories. Be-
cause of all these reasons, Multi-Layer Memory Hierarchy with several caches between
processor core and main memory is well-known option in order to improve performance.
Nevertheless, In multilayer memory hierarchy, it is hard to know where the particular
data reside in, and whether it is coherent or not. It also add many layer between memory
and processor and in some cases it even decrease system performance,especially because
of logical complexity of the line.

The idea all the caches logic depending on is Principle of Locality. Principle of locality
is actually a concern of information theory[40]. It a conjecture of data distribution and
processing order. The phenomenon assume that the the same data and related document
will be accessed more frequently than other data[41]. Today, it is the one of the corner
stone of computer science. It was first developed with Atlas System with purpose to
develop virtual memory systems work well[42]. Then, it spread from search engines
optimization to hardware caches.

There are mainly two type of locality of reference:

Spacial Locality Spacial locality propose if there is a particular of memory which is ac-
cessed on memory, then it is more likely to accessing memory locations around
of it in near feature. Especially arrays and instructions are exploiting this local-
ity. Arrays, formed structure and instructions on memory are laid out lineally over
memory. On figure 2, we can see spacial locality simply. For example, during in-
struction fetches part on the figure, n loop iterations accesses same memory loca-

9

Obfuscating Malware through Cache Memory Architecture Features

Figure 2: Principle of Locality
[43]

tions for many times. There are also subclass of spacial localities like Branch Loc-
ality and Equidistant Locality. They are designed locality types of indeterministic
feature of program structure. Branch prediction and Special compiler designs aims
to exploits this kind of locality more efficiently.

Temporal Locality Temporal locality propose if there is a particular of memory location
which is accessed recently, it will be accessed again more likely than any other loc-
ation. Especially, variables, subroutines of stacks or other calls exploits this feature
of locality. On figure 2, it is obviously seen that the values accessed once is possible
to accessed again.

3.1.2 The basic logic of caches

As we said in previous section, the basic logic behind caches is moving arranging caches
with local data. In order to provide this feature as smooth as possible, we use a logic
circuit called "Cache Controller". It does basic logic comparison and wiring the request
and response into the right path. Thus, it intercept the write and read request from
processor, replace its memory array with right scheduling method, and evict it safely and
coherently. It processes with diving address of th request into three fields which are Index
set field, tag field, and block field. In figure 3, these fields showed.

At the beginning of cache process after it divided address fields, It first request right
cache line which is shown in figure 2. So if we have M byte memory and N byte
cache line, we must have M/N = cacheline, then we can represent it with p when
cacheline = 2p Thus, cache controller just wire corresponding line with given set index.

10

Obfuscating Malware through Cache Memory Architecture Features

Figure 3: 4 KB 4-way set associative cache with 256 cache lines
[5]

In traditional cache convention, first field belongs to tag id. Tag id is determined de-
pending on other field i.e. the remaining part after index field and block field calculated
is tag id length. Tag id is using to verify the stored line is actually belongs to right loc-
ation of memory. The cache controller has comparison circuit(XOR) and compare the
requested address and the address which is in the pointed line by set index field. If they
are matched with each other, then it check valid byte and hit or miss. There is a simple
AND circuit between tag comparison.

Final field is called data index or block index field. It will point in the cache line the
smallest addressable memory location. Therefore, when processor want to read a value,
cache fetch the whole block, and that makes cache to exploit spacial locality linearly.
However, it will limit the access speed remarkable, if we increase block size. The optimum
block size is about 64 byte for many system. As we mention before each cache line
includes cache-tag field, valid bit, dirty bit, and some coherency bits in some special
systems. The length of the data index field is equal to r if wordsize = 2r.

When we increase the set index count it increase basically temporal locality, but not
always. The cache conflict could happened when two memory location which uses same
cache line could be used concurrently or twisted. Highly trashing can reduce cache per-
formance. For this reason, associative caches are developed. Set associative caches are
represented by their way number e.g 3 way associative caches or full associative caches,
and there are group of cache arrays corresponding to the same set index. So that de-
crease the set index count but increase the performance during conflict miss in some
cases. However, because of the complexity of the comparison circuit, it must be carefully
chosen the number of ways. The associative caches are showed in figure 3.

The computer architecture we uses today actually first formulated by John Von Neu-
mann [44]. On the first design of computer it was a single cycle instruction machine
without any pipeline or superscalar idea. Then Hardward Mark I machine is designed

11

Obfuscating Malware through Cache Memory Architecture Features

with proposing two type of caches which are one for instruction, and one for data. Ic-
ache and Dcache are specified for their own purpose, because data and instruction on
memories have different deterministic properties. Instruction are more tent to be linearly
accessed by memory and they has branch locality which can be predict earlier. Icache also
could be located more close to decode and fetch parts of processors when Dcache are in-
stead closer to memory fetch parts. Yet, the most significant benefit of Harward design is
concurrently usage both caches during pipelined architectures.

3.1.3 Allocation, Write and Replacement Policies

There are three policy type determine a cache behaviours. They are write policy, read
policy and reallocate policy. System’s performance, coherency, and designs are determ-
ined depending on these rules.

Figure 4: A. A Write-Through cache with No-Write Allocation B. A Write-Back cache with Write
Allocation

[45]

Write Policies

Write Through When the cache controller designed based on writethrough policy, it
write the values into the memory and caches simultaneously, when the write re-
quest is arrived from processors. It does not depend on writemiss or writehit. It
will reduce write performance, because writing data on memory is a lot slower, but
it stay coherent all the times. It is performance could be increased a bit with write
buffer memories between memory and cache.

12

Obfuscating Malware through Cache Memory Architecture Features

Write Back The systems with that policies does not have same values in memory and
corresponding cache line, so the coherency between memory and caches are provided
by a trashing algorithm. Cache line always store more recent data, but if there is
more than one cache it is hard to decide which one is more valid or whether there
is a valid coherent one. However, it effects performance quite remarkable (e.g. in
ARM 15 cpu writing cycle to memory is around 200 cycle, but caches is about 4.) .
The system with limited register numbers can overflow to the memory to store loop
variables and that could increase write memory usage. WriteBack policy makes
this kind of systems really effective. The dirty bit are stand for WriteBack policy.
If you write some value on any cache line, dirty bit must be set for eviction. During
trashing process, you must first move dirt block back to memory.

Replacement Policies

Random Random policies are designed to evict a random line in the associative caches.
It is not really random on implementation, but enough random to work with it. It
sounds to weak and primitive approach but actually it could be really effective on
highly associative caches.

Least Recently Used Least recently used replacement policies are actually implemen-
ted in two types. Fully most recently used and Not most recently used random.
It is probably the most efficient algorithm to replace cache index sets, but it is
really hard to implement on highly associative caches. You must record history of
schedule and update it each attempt of access. It could be most effective and easy
method on 2 way associative caches and it just need one bit to record who used
last. It actually increase temporal locality, because it offers the most recently used
one is more likely to be used again. The most recently used but random is a hybrid
solution of least recently used and random policies. It just record who accessed last
and replace one random set except most recently one.

First In First Out It is also known Round robin. It is also mostly using with highly as-
sociative caches. In its implementation, it has one one tail pointer of stack and in
each attempt of access it evict tail pointers set, and increment the the tail pointer
to next set.

Allocation Policies

Write Allocate WriteAllocate policy is also known as ReadWriteAllocate policy. It
refers that during write miss process, cache controller allocates the cache line
with related address, as like as normal read miss process. It is mostly using with
WriteBack policies, because it assume it is more likely to access same data which
you write before.

No-Write Allocate No − WriteAllocate policy is also known ReadAllocate. It is an
exotic implementation of caches. It is generally seen with WriteThough policy.
This systems can be special to read privileged and they do not hope to read or
write subsequent write(or even read after write.)

13

Obfuscating Malware through Cache Memory Architecture Features

3.1.4 Miss Type and Advance Cache Optimization Methods

Miss Type

Cold Misses Cold misses are sometimes referred to as compulsory misses . If you never
invoke related memory address and if you calling it first time, You will encounter
with that misses. It is natural misses, and really hard to mitigate them. Spacial
locality is the one of the method to avoid this misses. As we mention before, when
we increase the size of block, it will increase spacial locality.Also before initializing
memory, pre-fetching algorithms and branch prediction algorithms can be useful to
eliminate this kind of misses. In addition to this, usage of large amount of caches
will naturally reduce this misses, but it is side effect of it.

Conflict Misses Those misses are the one we are able to avoid. Conflict happens in sys-
tems set with lower associativity esp. with direct map systems. To reduce this you
should increase associativity. In full associative caches, it all conflict misses are
avoided. The change of conflict miss is tagsize/memorysize.

Capacity Misses They are also natural misses related with size of the caches. We can not
store every information in memory into cache. Those misses are based by definition
of caches. You can’t solve it even with perfect replacement algorithm, but maybe
you could decrease the rate of capacity miss with pre-fetching.

Advance Cache Optimization Methods

Pipelined Caches As we did in processors, we could divide cache organization in two
separate stage which are decode and data. It will increase the writing efficiency
because it will increase the bandwidth during subsequent requests. However the
clock mechanism will decrease to hit time.

Write Buffers Write buffers are small fully associated buffer memories between caches
and memories. They effects cache performance because the time between writing
values to memory from cache, cache memories must lock if we do not use cache
memories. Thus, Cache memories store values to buffer buffer will responsible with
writing it. Buffer size is important, when consecutive write operation requested.
When buffers is full, it will makes cache lock to get empty.

Multilayer Cache Multilayer caches are game changer optimization decisions, because
when we have level 2 caches, then we could have faster level 1 caches, because it
could be smaller and simpler. Namely, we are adding systems higher level caches,
in order to, decrease lower level caches miss time penalty and increase the hit
response time, but it will decrease lower level caches hit rate. Level 2 or higher
caches could be also on-chip (i.e fast as possible) and SRAM, yet lower level caches
must always be faster closer and simpler.

Victim Caches Victim caches are really useful and simple idea for decreasing miss pen-
alty time. It is a buffer memory, fully associative and mostly 4 to 16 cache line. It
stores recently evicted lines in it. It means it increase the associativity of recently
used lines on other small buffer with cheap and flexible design.

Hardware Prefetching There are many theoretical pre-fetching method, but there are
a few example implemented. The most well known is prefetch the most recently

14

Obfuscating Malware through Cache Memory Architecture Features

values incremental block line. That targets to increase most recently used ones
spacial locality. It is really efficient to applying it, because increasing block depth
is expensive job for caches and increase hit time. If you implement one buffer
memory, which prefetch next block of block you need, it automatically increase
spacial locality. Also compiler based branch prediction methods are good example
of instruction prefetching, however, generally, prefethers for instruction caches load
all branches to decrease miss rate.

3.2 Cache Coherence and Consistency

Many modern computer systems with parallel processing ability have support of shared
memory in hardware. Shared memory has lots of advantage over message based memory
systems. Each processor could access same address space, read and write them simul-
taneously with using their own caches. This features has lots of benefit such as; low
power consumption, higher performance and lower prices. However, without consist-
ency between processors, parallel processing can not use many advantage of parallel
programming. It could be also insecure to use a system without consistency between
processors.

To provide better understanding of shared memory correctness, we defined it in
two separate them in two definition, which are consistency and coherency. Consistency
provide a definition of memory access rules and how they will act around computer sys-
tem with store and load operations. When we compare it with coherency model, it must
be more simple and easy to understand it. Therefore, it define a correct behaviours of
the memory accesses of multiple threads by allowing or disallowing executions. On the
other hand Coherency is a way of implementing a control protocol between memories
and processors to support and provide consistency. Correct coherency provide a system
which programmer or operator of the system can never determine behaviours (misbeha-
viours or correct behaviours) of caches[46].

As mentioned, Mention Consistency is try to define to correct shared memory beha-
viour between many processor in term of loads and stores. It does not have to concern
specific hardware issues, such as hardware level pipelines, write buffers, caches, Out-
of-order processing schemes etc. However, in the market, there is no hardware provide
consistency perfectly, because the reordering store and load operations is regular op-
timization techniques in out-of-order processors. In addition to out-of-order processors,
the multi layer memory architecture makes consistency vague and subtle. Yet, most of
the programmers assume memories are completely consistent. There are several level
between inconsistent and sequentially consistent memory.

Memory Coherency (a.k.a. Cache Coherency) is actually to impose a protocol between
caches to provide a specific consistency model on shared memory systems. Unlikely con-
sistency, it also concern hardware uncertainness and subtle part such as write buffer,
pre-fetcher. Typical consistency protocol has features which include instruction caches,
multiple-level caches, virtual-physical address transaction, and coherent direct memory
access. However, it is not enough to ensure consistency(depending on consistency model)
by itself. It tries to makes caches synchronization in shared memory systems invisible
from software developer. However there are timing techniques to analysis cache archi-
tecture and coherency model of system.

In figure 5 and 6, the consistency issues on multi layer memory systems. Assume there

15

Obfuscating Malware through Cache Memory Architecture Features

Figure 5: Write-back Policy Cache Memory Inconsistency

is two cluster which has ability to process values with given instruction codes. LD and ST
instruction refer to memory load and store request. In figure 5, there is a system with two
caches which belongs each cluster and one shared memory block. x and y is represents
a particular memory address. Contrast with figure 6, figure 5 uses write-back policy. In
step 1, cluster A loaded x and y to the processor(it could be also pre-fetcher who load
them to the cache block). In second step, somehow clusters stored 1 in memory location
x and 10 in memory location y. In this step, memory is not consistent with memory but
it is not hazard because they are not shared with cluster B. In step 3, caches evicted the
block which include address x and later address x and y were loaded into the cache B.
After this moment, they will never share the values which other cluster is actually using.
Y was 10 at the end in the memory but it can’t be seen by cluster B, even if it try to read
it a million times.

Figure 6: Write-through Policy Cache Memory Inconsistency

Write-through cache policy is intuitively perceived as solution of this problem, be-
cause it just write every values directly to the memory and it will be always synchronized
with memory, yet it is not. In figure 6, write-through cache policy inconsistency showed.
The problem with write-through policy, clusters use values which in their cache instead
of memory, so even if memory is consistent with clusters, it is not consistent with each
caches. In step 1 of figure 6, cluster A loaded x and y addresses into the its registers.
Then, in step 2, cluster B loaded values of x and y addresses. In step 3, system got in

16

Obfuscating Malware through Cache Memory Architecture Features

inconsistent state, because cluster A write values through memory, but Cluster B uses the
old values, and it will never reach never values, even if it try to load many times. For this
reason, many of the large systems which has more than 64 core use this type of cache
coherence.

In order to solve this problems, there are several coherency mechanisms and their
protocols. Depending on the case and the number of cluster or processor in the system,
system could use Snooping and Directory based mechanism. These each protocol have
their own benefits and drawbacks. Snooping protocol is tent to use a lot of bandwidth,
however, it is faster and more synchronous. Its logic is to broadcast each state to every
node on the system. However, directory based mechanism work with request and re-
sponse. There is interconnector to forward message to the right address and it makes
directory based mechanism slower because of the increased latency, lighter because of
the decreased bandwidth.

3.2.1 Snooping Coherence Protocols

Snooping coherence (a.k.a. Bus Sniffing) is a technique to have caches to watch other
processors caches and provide consistency depending on specified protocol. It basically
implemented with external port to the system bus. Therefore, it implemented over cache
controller which has feature to watch bus. It makes cache controller bigger and waste
more power, so lower layer caches could use less complex coherency protocols and vice
versa. There are many snoopy cache coherency protocol also depending on consistency
model, but we can categorize them in two class which are Write update and write inval-
idate.

In this both protocol, we try to get rid of stall data which are in different caches, but
it is provided with different logics. Write-update protocol is a broadcast write protocol
that in every write attempt, it will write the values into the corresponding cache block
but also it broadcast the write message to the every caches on the connected bus. Thus,
everyone on the bus which has the ability of interpreting the message of write-update
protocol will update stall values with new ones.

Secondly, Write-invalidate is whenever you write, you invalidate other cache cop-
ies and reduce to possibility usage of stall data. Instead of sending whole data block,
it just send the tag number and state of the tag. It could effectively be successful,
if you have limited bandwidth and power source. Most processor with coherency is
today using write-invalidate protocol. However, it is efficient if there a few writer and
many reader clusters or processors. Comparing with write-update protocol, if there is
many writer, it could be less efficient because of invalidation process validate-invalidate-
forward hops.[43]

There are many protocols for both write-invalidate and write-update to maintain co-
herence, such as MSI, MESI (aka Illinois), MOSI, MOESI, MESIF, write-once, and Syn-
apse, Berkeley, Firefly and Dragon protocol. In this thesis, we will just focus on write-
invalidate protocols because of their popularity, but basic principles are same as each
other.

MSI - Basic

Basic write-invalidate snoopy cache control protocol is MSI (a.k.a Modified-Shared-Invalid
protocol). In this model, each cache block has cache tag, and two status bit as same as
standard caches, but instead of dirt and valid status bit, MSI cache line has state bits to

17

Obfuscating Malware through Cache Memory Architecture Features

• Clean/Dirtiy Write? Unique? Silent Transition to
Invalid Clean No No -
Shared Clean No No Invalid State

Modified Dirty Yes Yes -

Table 1: MSI states’ properties

refer in which state it is. MSI has three state in state machine and they are "Modified",
"Shared", "Invalid". two bits can represent four state, so definitely represent three state.
The main idea behind this protocol is that one writer and many reader states provide
always consistent memory sharing. Therefore, every cache in the system has different
responsibilities when they read or write.

Invalid Invalid state is exactly same state with standard caches’ invalid state. When
cache need to access a invalid block, it must act as cache miss, and be fetched this
block again.

Shared When there is no writer processor on this line, and if a processor request this
line with purpose of read it, it will be in shared state. It is read-only cache block,
and processors are not allowed write without transforming state. The processor
also can evict it without writing back to the upper layer memory, because that is
for sure, it is clean block.

Modified It is modified and also modifiable cache block. In a memory coherent system
there can be at most one modified cache and all other cache must be invalidated.
It is responsible with writing back cache to the upper layer memory.

In figure 7, MSI protocol’s state diagram is showed. Cache memory launch with in-
valid cache block, and when a read miss is comprised, cache controller will request
memory block from memory. Then, the snooping control bus will broadcast the request
of read. If there is a modified copy on the bus, it will abort request of memory block
from memory. It will evict its line to memory, and change its state to shared state. Then,
memory responds source of the request. After the fetching cache block to the source
cache it, it sets the state as shared state. If there is a shared stated copies in the system,
It does not matter who responds the request. In any case, It will fetch the memory block,
and sets the state bits to shared.

When write miss is compromised in invalid state or shared, It will fetch the data as
same as read miss cases, but the difference is it will invalidate other case’s corresponding
block which are shared or modified. Modified stated block must evict blocks properly. At
the end, source cache block fetches the block.

Write hit can be compromise in modified state, and read hit can be compromise in
shared state.

MESI - Exclusive

The MESI protocol (a.k.a Illinois protocol due to its development at the University of
Illinois at Urbana-Champaign) is a widely used cache coherency protocol[47]. The idea
behind the MESI is to use forth state we can use with 2 bits. In order to increase effi-
ciency exclusive state is developed by JH. Patel et. al. in 1984[47]. As showed in MSI
protocol, there is modified, shared and invalid states but also we have exclusive state.

18

Obfuscating Malware through Cache Memory Architecture Features

Figure 7: MSI State Diagram for processor P1

• Clean/Dirtiy Write? Unique? Silent Transition to
Invalid Clean No No -
Shared Clean No No Invalid State

Excursive Clean No Yes Shared Modified Exclusive States
Modified Dirty Yes Yes -

Table 2: MESI states’ properties

This exclusive states also known unmodified exclusive state, if we refer modified state
as modified exclusive. This is very similar to the shared state in MSI, and in fact, Shared
state is split in two different states. That is because of reducing the communication on
the bus and increasing efficiency. In this case, there is exclusive cache blocks which are
in read mode and they are unique i.e there is no other cache controller on the system has
this cache block.

Exclusive The cache line is only present in current cache memory, and it has not modi-
fied yet. It is not a state to provide coherency, but it is state for increasing efficiency
of bus bandwidth usage. When a cache line in exclusive state the cache controller
can decide the transaction of the line without communicating with other caches.
When a cache is requested with load operation, it is loaded in exclusive state, if
there is no other cache controller has the cache block.

In figure 8, state transactions are showed. Bus usage is bottle neck, low performance
behavior in cache coherency. Silent state transactions are transactions in cache controller
without communicating with other caches. For example, there is no need to broadcast

19

Obfuscating Malware through Cache Memory Architecture Features

Figure 8: MESI State Diagram for processor P1

and occupy bus for invalidating shared state in MSI protocol. If a cache controller is in
shared state, the other cache controller can be shared or invalidate in MSI, so there is
no dependency in the system transaction from shared to invalidate. Exclusive state is to
exploit the salient transactions. When a load request arrive to cache controller from a
processor, it request the line from upper level memory controller and other child caches
controller. If any child controller send a shared state broadcast message, it load it in
shared state. If there is a exclusive cache controller on the bus, it will degrade its state
to shared and broadcast it. If there is no other shared state on the bus. It load the cache
line in excluded state. Then, in case of store operation from processor, it will transact its
state from exclusive to modified. It does not need to broadcast it, because we know it is
unique in system. Contrast with modified state, due to be cleanness of the line, it does
not need to evict line to upper memory, it can just invalidate it silently. The weakness
of this protocol comparing with MSI, if there is many processor with the corresponding
cache line, when it count the copies to test uniqueness, it occupy shared bus more in
some cases. If there is n cache controller with corresponding cache line, it will send n
broadcast message with this message, however, instead of sending whole line to upper
memory it is mostly efficient to send this message.

MOESI - Owned Exclusive

Such processor producers AMD Opteron and Arm Cortex A are using MOESI protocol for
cache sharing. In addition to the four states in MESI, a fifth state "Owned" appears here
representing data that is both modified and shared. Using MOESI, instead of writing
modified data back to main memory, it directly forward the dirty value from cache to

20

Obfuscating Malware through Cache Memory Architecture Features

Figure 9: MOESI State Diagram for processor P1

• Clean/Dirtiy Write? Unique? Silent Transition to
Invalid Clean No No -
Shared Either No No Invalid State

Excursive Clean No Yes Shared Modified Exclusive States
Owned Dirty No Yes -

Modified Dirty Yes Yes Owned

Table 3: MEOSI states’ properties

cache before being shared, which could save bandwidth and gain much faster access to
users to the cache.

Owned Owned state is a state if and only if a cache line can transact in it, when a
read request message snooped from another processors when the cache line is in
modified state. It allows dirty line sharing between caches, and reduce the latency
which is arisen due to the communication between memories and processors. The
line is read only by all processors, when it is owned state.

In figure 9, state transactions of MOESI protocol are showed. The relationships of
states are almost same with MESI, but there is a state which supplants upper level
memory with its own cache line. Hence, it is responsible with evicting lines and clean-
ing state. The cache line may be changed to the Modified state after invalidating all
shared copies, or changed to the Shared state by writing the modifications back to main
memory. If could increase efficiency sharply, if the line between upper memory and itself
is long and bandwidth is limited. Mostly the L1 and L2 caches are located on-the-chip,

21

Obfuscating Malware through Cache Memory Architecture Features

and memory are located somewhere outside, the buses’ bandwidth between in side and
outside of chips are game changer. It can be efficient to use a chip as a forwarder in
many system. However, in the MOESI protocol, it is not possible to forward the cache
line which is not dirty but present on the chip. If there is a shared cache line in a cache,
and if any other cache controller request to load the same cache line, it fetches it from
memory.

3.3 Inter-connector Design

Figure 10: Primitive Multi-Drop Memory Bus
[43]

Computer Bus which is the primitive version of the inter-connection network was de-
signed to transfers data between components inside a computer, or between computers.
They are defined to include all computer hardware components and software, included
with communication protocols, in order to communicate devices. Devices is generally
called as node or end node in taxonomy. However, this definition is quite broad and it
covers from today’s Internet network to cloud computing network and evolved in many
aspect to different direction.

In figure 10, There is an early multi-drop bus example. Multi-drop bus term is used
for a bus line with many element on a line (not a ring), and there is an arbitration
mechanism, so it is normal computer buses which is used in interconnection taxonomy.
The multi-drop buses includes 5 separated wires which is distinguished by their purpose.
Arbitration line decide actually how has right to speak, request. There is a logic devices
to determine the arbitration and it is one of the most crucial research area in computer
architecture and especially interconnector design[39]. Control wire is actually determine
the purpose of the node. Generally, they are store and load operations. The address wire
determine the requested address from corresponding place, in this case there is no cache
controller so directly memory. Data wire carries the data which is stored or load, so the

22

Obfuscating Malware through Cache Memory Architecture Features

communication is synchronous, with consecutively request and reply. Lastly, clock wire
provides a fixed, constant frequency to carry values.[39]

On recent systems the communication mechanism between nodes are quite more
complicated comparing with given primitive example. The pace in the development on
parallel systems makes correlation and communication between notes chaotic. Systems
comprise with many nodes and requires high bandwidths to overcome and increase their
bottleneck. Intercommunication is still the slowest part of mainframe and personal com-
puters. On the other hand, with multi layer memory aspect, communication between
nodes and parallel computing gets more and more complicated. It makes every cache
controllers a member of interconnector and perhaps more. Today, there are some co-
herent interconnector which are also responsible with traffic management (i.e. QoS),
barriers between devices and memories, and coherency[48].

Figure 11: An example of interconnector message anatomy

There are two main category of computer interconnectors which are host based On-
Chip and System/Storage area network and remote over LAN and WAN networks inter-
connectors. On-Chip networks purpose to mitigate the on-flight latency and chip-crossing
wire delay problems related with increased technology scaling and transistor integration.
Nevertheless, there is not enough space in a single chip to fill many cores. It is a good
design for interconnecting ALU, registers caches, compute tiles, and perhaps several cores
and memory. System/Storage area networks are the most used interconnection systems
between multi-processors, multi-computer, multi-thread systems and memory system in-
terconnection between this cores. Because of physically constrains such as distance and
density, it is usual the interconnector between systems and their I/O extensions (e.g DMA
chips). LAN and WAN based systems are actually designed to connect enormous number
of node together. This kind of networks distributed several locations and interconnecting
PCs cluster of computers. Cloud computing is actually one of the good example to show
the ability of this species. On of the other advantage of remote interconnectors is that
they are generally build on well-known protocols which are tested and acknowledged
protocols e.g. Ethernet, GSM, IP, TCP, UDP. All routing issues are tested for many years
and solved properly.[39].

Modern interconnections with advance switching and routing mechanism are using
message protocols. In figure 11, an example of simple interconnector message anatomy is
shown. Alternatively, the bus anatomy we mention above, the message based protocols
are packetized. However, this packetizing process has some overhead as latency[43].
Message anatomy of interconnectors comprises several layers[4].

Message The message is the unit of information which must be transmitted with a pro-

23

Obfuscating Malware through Cache Memory Architecture Features

pose. If it is about cache coherency, It could be whole line of the cache to provide
coherency.

Packet Packets are the fixed maximum sized smallest unit of information which include
routing information in its header section. It can also include sequence number for
flow control protocol. Its size is depending on the arbitration mechanism on the
router or switches. It comprises with data flits which actually part of information
in message.

Flit The small unit of link layer is called flit. Flits size are depending on the switching
algorithms. In circuit switching flit size are whole packed. They are typically 4 byte
to 16 byte.

Phit It is the unit of the physical layer in the interconnectors design. Its size is depending
on the clock cycle of the interconnector. On the primitive bus example, the clock
mechanism determine the phit size when it tick. They are around 8 bit to 32 bit.

In order to characterize interconnector device we will use several feature of networks
which are switching mechanism, switching mechanism, routing algorithms, topology,
and flow control of networks. These feature are determine depending on application do-
main and defuse all character of network. Across the designs, performance with latency
and bandwidth parameters and queuing theory is the valuable analysis tools to define
network and its classification[39].

3.3.1 Topology

Topology is a mathematical study of shapes and the points and their relationships in the
environment. Network topology is actually determining the path and shape of the net-
work. The shapes which topology concerns depending on the dimension they are build
on. Electronic circuit are generally build on two or tree dimensional space. The wire and
nodes are the basic element of interconnector topologies, but also router is the switch ele-
ment which can decide the path. The node could be grouped to regulate communication
and bandwidth e.g. there could be two group as memories and processors. Also, there are
two main type of network topologies, that are In-directly connected distributed and dir-
ectly connected centralized. The root of "central" word in telecommunication comes from
this switches, but they are too vast topics to discuss in this thesis. The basic idea of the
centralizing topology is to use a central switching fabric between nodes. The switching
fabrics is actually external subsystem or combination of systems, e.g omega and crossbar
network topologies[4].

The general assumption of topologies is wire are faster then logical routers and
transactions.-Today, there is in chip transaction devices which are faster then wires[39].-
In order to design efficient topology, optimum cost and measure its quality, we have sev-
eral parameters, which are diameter of tomography, routing distance, minimum bisection
bandwidth and degree of a node.

Routing Distance It is any given two points distance by mean of number of links or hops

Diameter It is maximum routing distance between any two point of the network. In
figure 12 and example A, it is from the first node of the bus to last node, so it is 5.
It could be sometimes not that obvious, but it is the most far two nodes’ distances.

24

Obfuscating Malware through Cache Memory Architecture Features

Figure 12: A) Bus topology example B) Ring topology example

Average Distance Average Distance is TotalDistance/NumberofNodes. It is one of
the value which using in average latency calculation. Generally performance values
are compared with each other by average latency.

Minimum Bisection Bandwidth If network is segmented in two equal part, and if the
bandwidth of these two segments is as minimum as possible, it is called minimum
bisection bandwidth. Typically, this bisection will be the most occupied lines, and
the bandwidth of bisection will effect total performance sharply. To embody it bet-
ter, it is like a bridge between two island. Most of the traffic caused by the occupa-
tion on the bridge in ordinary traffic networks. The inner island bandwidth is futile
to effect overall traffic.

Degree of a Node It is the properties of each node to imply how many nodes it is directly
connected to. The node with the highest degree is applied as degree of the network.

Figure 13: A) Mesh topology example B) Torus topology example C) 3D mesh topology example[3]

The number of topologies designed in literature can be too many to count, but the
idea behind them has always same logic. Topology directly effect performance, but also
greatly impact the cost of systems. Physical constrains such as chips’ pin-out, light speed,
dimension count on the board and etc. determine topologies properties. Generally chips
are reducing their inner bandwidth, when they are communicating with out side of chip,
due to the restriction of building pins[39].

25

Obfuscating Malware through Cache Memory Architecture Features

3.3.2 Topologies

Buses and Rings Buses and rings are the first dimensional primitive and basic type of
interconnector topologies. They are both directly connected nodes in in sequence
as shown in figure 12, but rings are end around buses. Namely, ring topology aims
to reduce the longest link which is actually diameter of the network. If N is the
total number of node, node i is directly connected to node i + 1, and node i − 1

except element 0 and element N− 1 in buses, and in rings, every node i is directly
connected to every node i+1 and i−1 in mod N. In bus topology, diameter is N−1,
in ring topology, diameter is (N−1)/2. In segmented and pipelined networks, rings
are also increasing bandwidth, because when 2 closer nodes communicate with
each other, other nodes can connect over all around the line. For example, When 4
and 5 is communicating, in buses, there is no way from 1, to 6 but in rings there is
another links goes around the network to connect 6 and 1, so bisection bandwidth
is 2 in rings and 1 in buses Rings looks more efficient and logical to use it, however,
in practice it could be hard to implement because of the physical constraints, but
they are vast topics to discuss in this section.

Two Dimensional Networks: Meshes, Tori Meshes and Tori are the idealized structure
of two dimensional interconnectors, because every best two dimensional forms to
connect m2 nodes. while mesh topology is derivative of bus topology, tori are de-
rivative of rings-as showed in figure 13, so terminologies uses meshes end around
term instead of torus. The bisection bandwidths are 2

√
N for meshes and 4

√
N for

tori. The diameters are 2
√
N− 2 for meshes and

√
N− 1. Degree of the network is

4(5 in some terminologies), and every nodes degree is same in the torus network
which can be seen in figure 13.[43]

Multiple Dimensional Networks They are excessive versions of the mesh and torus net-
works which are influenced by the chips packaging technology. Multi dimensional
system over 2D space is still good to obtain higher bandwidth and balance the
traffic but more complicated example are seen with Storage/System, local and
wide area networks. Because they are instead of chips real 3D systems and surely,
3D networks works better in 3D systems. On an N dimensional system, if you want
to build more dimensional systems such as N + 1 or N + i, it increase the wire
length exponentiation when you increase i. Wire length is related with flight time
of the data, and it effects directly bandwidth. One of the idealized for of the multi
dimensional networks are cubes. Cubes are the three dimensional topologies which
every nodes are 3Th degree and all nodes are equally close to each other. In figure
13, there is an example of three dimension mesh. CM1 and Thinking machine is
the examples of their practice today in market. They actually connects thousands
of computers in hyper cube topologies. They connects the mesh dimensions, which
are two dimensional with each others.

Fully Connected Star Fully connected stars are directly connected star topologies which
actually known in some terminologies as mesh networks. This topology is the best
possible topology which have been designed so far, because every nodes are directly
connected with each other within 1 routing distance. If there is N number of node
that means the bisection bandwidth is exactly 1024, because each node has for

26

Obfuscating Malware through Cache Memory Architecture Features

every other nodes another links with an other bandwidth, it makes it bottleneck-
less topology.

Omega and Fat Tree Omega and fat tree topologies are examples of centralized sys-
tems. They are improvements of crossbar switches. Crossbar switches are expensive
designs because its complexity increase quadratically with the number of ports. In-
stead of the increasing the design complexity, it increase the stages thus, permutation[39].
With N number of node and with kxk switches, logkN stages each of which con-
tains N/k is required in omega network. However, the reduction of the implement-
ation cost has some negative sides, which are lower bandwidth, dropped packet,
more latency.

3.3.3 Switching

Switching name root originally comes from circuits. It is complex combination of many
circuits switch which actually connects conductors together. It determines in intercon-
nection networks how data is allocated for data transmission, i.e. how and when the
input channel will be connected to the output channel. Buffer states, channel flow, and
surely routing algorithms effects the switching designs as we know so far from computer
network design. To sum up, it is actually model how to connect different locations and
nodes together[43].

Circuit Switching Circuit switching is the oldest type of communication model. Most
of the telecommunication networks still using its advantages. Circuit switching re-
serve whole line and its whole its bandwidth during communication. It could be ad-
vantage, if message is infrequent and long, e.g. analogue sound transfer. In addition
to this, message could be whole part instead of fixed sized packets, phits, and flits.
On its implementation, there are two state which are circuit establishment phase
and message transmission phase[4]. The physical path between point A and point
B is reserved before it started to transfer message. The line is reserved through
routingprobe message. It is generally one phit and one fhit long message. It dis-
cover the route which is provided by router algorithms and invoke routers to pre-
serve corresponding line to the packet destination. When routingprobe reached
to the destination note, it means all intermediate router(switches) reserved for
connection, then point B will sent back acknowledgment message and finish the
establishment. This establishment is tricky point in circuit switching, because it re-
quires setup delay which actually comprises with logical calculation time and time
of flight. This time is called as RTD(Round trip delay) or RTT(Round trip time),
and it is one time delay. There is no routing decision and switching delay. That
is good for long message, but disadvantage for short message. At the end of the
communication, it must be ended with resetprobe.

Packet Store and Forward Switching This Switching method is packetizing type of com-
munication model. It divides each message into the fixed length packets and phits
and flits. Each channel(output and input) in every switches has its reserved buffer
memory as large as packet size. It stores fits and plits in this buffers until they are
totally loaded, and switch them to the right output channel. The most important
think of packet switching is every packets are switched(routed) individually from
the source to the destination. In addition to this, every packets could be routed

27

Obfuscating Malware through Cache Memory Architecture Features

through different switches and routers depending on routing algorithms. If there
are parallel routers between source and destination nodes, it could makes calcula-
tion of the chaotic, so they are not preferred by real-time systems’ network. Also,
implementation of buffers and switching each packets again and again continu-
ously makes it slower and expensive. However, on the other side, it has many ad-
vantages. When we need to communicate with short and frequently packets, we can
not reserve whole line for two nodes. It makes the same line provide many nodes
with sending small packets and also dynamic routing is what makes our Internet
works today. Theoretically, It does not have establishment state, but piratically it is
so usual to implement it upon link layer.

Packet Cut Through It is also called as wormhole networks. It is a hybrid combination
of circuit and packet store switching. It allows simple, small, cheap, and relatively
fast switches. In theory, it does not need any buffer and instead of waiting the tail
of the message, it just start routing the packet from the head. In implementation
input channels could use buffer memories, because of busy output channels, and
it whole message could get stalled if there is no buffer to store it, then it need to
demand this message again, or worse, it could perhaps lose whole packets forever.
In implementation, it divides packets flits and phits and intercept header of packets
and then continuously switch or route all phits or flits.

3.3.4 Routing

Routing of the networks is actually provided by predetermined set of rules which draw
the path of the packets they will follow on the network. Namely, routing algorithms de-
termine the path over network topology with using switching mechanisms. If we look
at the smaller picture, each intermediate router on the network determines which input
ports are to connect to which output port. Some of the routing algorithms can com-
plexly adapt their algorithms depending on the network condition i.e. they can monitor
bandwidth and latency differences, compare them with demands and route depending
on latest traffic, and some of the can simply choose random available path. However,
there are two significant criteria of ideal routing: They should be deadlock-free, and they
should give the shortest path.

Deadlock is more difficult to handle, and there are two common strategies are used in
practice: avoidance and recovery[39]. Avoidance strategy determine deadlock stages and
keep packets out of the path which include those stages or vice versa i.e. determining the
clean states and routing over them. Instead of avoidance strategies, recovery strategies
accept existence of the dead lock stages and have mechanism to detect likely existence of
deadlock situation. In many cases avoidance and recovery strategies are using together.

We can simply categorize routing algorithms in two title: obvious and adaptive rout-
ing algorithms. Obvious routing algorithms are responding obvious rules repeated, yet
adaptive one could change their decisions depending on the network condition. Obvi-
ous algorithms generally simple, and consequently, they are generally desirably quick
and safe. On the other side, adaptive algorithms can check up the network overall and
route packets depending on the current situation. Adaptive algorithms are preferable in
huge networks like Internet[4], because adapting the path in response to non-uniform
network traffics spread and normalize network bandwidth, but it is to much processing
latency and power consumption for on-chip networks. Nevertheless, adaptive algorithms

28

Obfuscating Malware through Cache Memory Architecture Features

are what the market focused today esp. for wide area networks.
If an obvious algorithms are always giving the same path for each source-destination

couple, it is called deterministic routing. Deterministic routing algorithms are simple way
to avoid deadlock patters, but they consumes bandwidth without using many possible
routes to aggregate traffic and reduce the contention. There are also non-deterministic
algorithms to propagate network bandwidth all around the network, they just always use
random way to route packets from source to destination. Also, there are algorithms to
flood packets all around the networks to find fastest path to reach destination. It is called
flooding routing.

3.3.5 Flow Control

Flow control internals define protocol for synchronization of sender and receiver nodes’
communication. with other words, it tries to prevent packet loss. It generally works on
packet level, but there are some exotic examples of flit level flow control mechanisms.
There are several situation can lead packet loss which are full buffers, busy output links,
bandwidth issues, and faults, deadlocks, issues on link isolation, etc. The proper pro-
tocol must avoid packet loss and also recover lost packets on line. There are mainly two
methods to synchronize flows in on-chip networks and each of them has advantages and
disadvantages. They are On/Off with stall signal and credit based flow control mechan-
isms. Signalling mechanism could be useless because when receiver send a stall signal to
sender, it could be too late to stop the flow for further transmissions, because when the
receiver send stall message for implying that buffer is full, the further packets would be
already sent. To solve this problem extra nodes and buffer could be used but there is no
guaranty. On the other side, Credit-base systems needs more preconfigured knowledge
between pairs. They should know their buffer space before start communication to use
proper credit. If they use lower credit then proper, It will reduce bandwidth, if they use
higher, it will increase packet loss. If there are more then one sender for receiver, credit
base systems turns chaotic systems to implement. The pairs also compromise on the rate
of packets in a period of time to reduce lost rate. For example, it could be problem-
atic issue in heterogeneous systems which have many different processors with different
processing abilities and frequencies.

29

Obfuscating Malware through Cache Memory Architecture Features

4 Cache Oriented Obfuscation

In this chapter of the thesis, we proposed a method to design a reliable and efficient
obfuscation technique for tightly coupled multi-processing systems by exploiting the fea-
ture of cache oriented programming. Besides, we emphasized a number of points to
characterize proper attack vector. After we had elaborated our obfuscation methods and
its primitives, we discussed what it is and what it is not on pitfalls and fallacies section.
Finally, on the implementation section, we drew a picture of possibilities for practical
applications. However, this chapter and this thesis do not concern specific and deeper
studies on obfuscation and memory protection(TLB, MMU, MPU). They are correlated
with our thesis, but it is in the upper layer which is like TCP and IP layers of the network.
On the whole and in the brief, this chapter gives an isolated workspace for obfuscation
techniques.

As we mentioned previous chapters, malware detection tools needs sensors to ana-
lysis running code. Regular sensors observes real-time systems with monitoring shared
memory, it means a lot for operating systems, because OS, computer architecture and
computer conventions assume everything on the memory and ultimate and consistent.
With this assumption, dumping memory and analyzing snapshots are practically an ef-
ficient and convenient way of malware monitoring and detecting. There are actually a
number of sensor type for real time memory observation: external monitors, internal
monitors, and exotically virtual monitoring. External monitors in contrast with internal
monitors are the systems which is comprised with external hardware devices and its
software component. They could be implemented on external PCI or GPU devices, FPGA
co-processor or on-board chip[49]. They are efficient because they are pre-installed, om-
nipresent systems which does not require OS and other middleware platform which con-
strains their limits. Also, They are efficient because they are the hardwares which can
be designed with the purpose. However, they are expensive to implement comparing to
internal monitors. Internal monitors are using regular devices on the computer architec-
ture such as CPU, and they are working under the operating system’s kernel, which could
be easy to deceive [29], [20]. Our methods is actually not depending on the monitoring
type, since it is related to where they are monitoring. Tightly coupled multi-processing
systems have many processors with their own caches and one shared memory[50]. Cache
memories are not developed with the same purpose with memories, but they are de-
veloped for performance reason which we discussed in background studies. If we exploit
them and design our program properly, cache memories could behave as another layer
of memories, and on the monitoring side, even if it scan perfectly memory(s) and detect
malicious codes, cache memories are still out of the box.

The required systems for our technique in this chapter is tightly coupled multi-processing
systems without cache coherence interconnector. Also, we need simple Harvard computer
architecture instead of Von Neumann. Incoherent systems are surprisingly popular be-
cause of the implementation errors i.e. Samsung’s mainstream CPU Exynos 5410 which
sold millions, and also due to costs. Many hardware designers also believe programming

31

Obfuscating Malware through Cache Memory Architecture Features

Figure 14: An Example of Tightly Coupled Multi-Processing Systems

with shared memory is not appropriate way and platforms such as Android already us-
ing message based communication on multi-threaded application, and they implement
clustered processors which limits programs instead of implementing expensive coherency
interconnector. Yet, they have not considered security approaches.

4.1 Exploiting Tightly Coupled Multi-Processing Systems

In this section, we will formulate our attack vector one by one, and we will show im-
plementation and theoretical obstacles. Essence of the thesis is exploiting caches to hide
values from upper layer memories but also it concern some subtle studies to run a com-
prehensive code from beginning to end. In figure 15, our attack vector flow chart showed.
There is no doubt that most important part of our attack is designing and reconnaissance
part, because after we produce cache oriented malware, it is a kind of system depended
malware and can’t work on the every systems, but can be useful as targeted attacks
(e.g Stuxnet). Targeted attacks could be really efficient because of the facts that, all anti
malware tools aims massive market, and if malware aims sneakily small portion of the
market, they could be successful forever. Setting system up and loading memory second
step of the attack vector and first step of attack loop. In this section, we will show cache
tricks and explain why it is efficient. In the last chapter we will emphases obfuscation

32

Obfuscating Malware through Cache Memory Architecture Features

Figure 15: Attack vector flow chart

and deobfuscation methods briefly, and we will discuss some control flow issues. As you
can see, when code or data is deobfuscated, it is on the cache memory. When we call the
next independent part of the code, it must definitely be obfuscated back, because we do
not want to evict cache blocks to memory plain.

4.1.1 Reconnaissance and Design

Design and reconnaissance is the most crucial part of our attack approach, because the
size of the cache memory is the basic dependence. If you try to fill more data than
its actual size to cache memory, it evicts a number of cache blocks depending on the
replacement policy. It is what really we do not want, if the evicted block are not obfus-
cated. Our first design approach to prevent leakage of plain data upper layer of the cache
memory. As we have seen in background chapter, cache are a kind of memories but it
also comprise with logical circuit to replace its block autonomously, because they are
incomparably small and depending on the main memory to store and load informations.
If we claimed they are invisible layer between memory and processors, it would not be
totally wrong, and also many programmers today do not concern about their perform-
ance feature when they design their program’s loops. On the other side, if you consider
cache properties while designing your programs, It is hard to determine the base system.
For example if we have 32 byte cache block, we could consider when we load an address
it will load 32 byte into the cache and in the most frequently working look could progress
on this values e.g. arrays are continues bytes and they are generally loading all together.
However, cache sizes are extremely various today on the market and if you design a
cache oriented program for 32 byte cache block it will not work properly on the cache
which has 20 cache block size. Beside that fact, cache size is also important constraint
and worst, they have more various then cache block size on the market.

Therefore, we propose to generate a specific piece of code to fit for each cache corres-
ponding to cache size, cache characteristic and also target system arch and security level.
Target system architecture may imply cache architecture, and we could design more com-
plex and more flex gadget with multi layer cache arch. if many processors can reach a
cache and share values, we could easily broke control flow graph[51], and also on the
higher level caches we should use more memory space comparing with lower layer, but if

33

Obfuscating Malware through Cache Memory Architecture Features

and only if there is no malware sensor which is monitoring memory, we should use upper
layer of memory. When we are using a CPU, it is quite certain that it is the only one who
is accessing corresponding cache. In figure 16, illustration of a gadget is showed. It has
two sections which are stub and body. This body section is loaded with actual gadget
code and tail section. Tail section is responsible with stitching gadget properly. So every
gadgets knows before they started to run, which gadget they are followed by. It is a bit
problematic and tricky, see Pitfalls and Fallacies section for details.

When we determine the gadgets size, we should consider the cache properties, such as
replacement policy, block size, set associativity, line size and total size of cache. The size
of gadget must not be more than the total size of cache, and also must be designed with
no eviction before obfuscation principles. Hence, we must know who will be evicted next
always. On random eviction model, we should not consider eviction during processing
of gadget. During running a gadget code, also we must be sure there is memory load or
store operation to memory except gadget memory space. Also all gadget must be adjusted
to settle in memory continuously in order to utilize spacial locality.

Figure 16: Gadget Sections

4.1.2 Setting System up and Loading Cache Memory

The second step of our attack is to settle on target system. It was the first step on tar-
get machine. In order to load all gadgets into the memory, we should use a kind of
middle-ware to carry them. In conventional computer architecture and operating sys-
tem internal, there is not many way to do this. Since volatility of main memory, code
must be keep under a kind of I/O devices. This devices are generally connected to DMA
devices which provide direct access of I/O devices to main memory. It is a short cut to
avoid flooding CPU for each request[52]. Reading this devices from scratch is not simple
task, because CPU instruction and memory maps allow you to read sectors or blocks on
the disk, and this could be meaningless without proper structure e.g. FAT, LDM, Raid.

34

Obfuscating Malware through Cache Memory Architecture Features

Instead, we recommend to use OS or boot-loader features to read files. In listing 4.1,
we showed an example for loading a gadget from disk 0 to memory and set instruction
pointer to first memory block of gadget on U-BOOT1. It is a method as if a rootkit could
use, because it load itself just before OS is loaded. In this case, Keep in mind that you
should initialize OS kernel on the other processor later. On the other hand, On OS im-
plementation, you gadget should be covered with executable structures such as ELF or
PE. The most important point here is when you define your structures you should define
your gadget part as executable, writeable and readable; therefore, you can deobfuscate
executable code.

Listing 4.1: The code example for loading a gadget from disk to memory and run it on U-Boot

mmc dev 0; #Device Number
f a t l o a d mmc 0:1 ${ addr_r } g a d g e t _ f i l e ;
go ${ addr_r } ;

One of the other attentive point is choosing appropriate address for loading first byte
of gadget. It is really crucial, for all gadgets are designed to size of cache as we men-
tion in previous section. If you start to fetch a gadget to the wrong block in memory,
then the gadget overflows cache size, although gadget size is right. As we mention in
background studies chapter, cache memories have some internal organization. There-
fore, before gadgets are fetching from disk to memory, the first address of each gadgets
must be predetermined as fit for the first block of any cache line. In other words, the first
bit of the gadget must be loaded in a memory address which is first block of any cache
line. If it starts in the middle and passes x block, it overflow x block at the end and when
it is requested by CPU, it will evict a set in first cache line depending on replacement
policy. To calculate first block addresses, we can use formula below.

S = {address|0 ≡ address mod cachelinesize} ∀x ∈ S := firstcacheblock (4.1)

Listing 4.2: The code example for loading a section of memory to cache

mov R2 , 0x012345 #address
mov R3 , 0x013456 #end of gadget

f e t c h :
mov R1 , [R2] #Load address from memory
addi R2 , 4 # add s i z e of word to address
cmp R2 , R3 # compare R2 and R3
j l f e t c h

The code which is showed above in listing 4.2 shows the primitive method for fetch-
ing memory section into cache memory. Beside of this, you can enhance this code with
adding steps between memory location it fetched, because you do not need to fetch each
word as showed above. Instead, you can skip cachelinesize−wordsize byte. The cache
controller autonomously fetch the following blocks to exploit spacial locality as we men-
tion in previous chapter. Although every further attempt to fetch word will be loaded
from cache memory and it is faster then memory access, stepping approach is always
better. On this X86 similar assembly code example, on the first two line, it move the first

1U-Boot is the one of the most common ARM boot-loader by Denx Engineering

35

Obfuscating Malware through Cache Memory Architecture Features

and last address of the gadget into R2 register. Then, it starts loop and fetches incre-
mentally location in the memory, and when it reach to the ending address it jumps out
of loop.

4.1.3 Obfuscating, Running and Deobfuscating Gadget

After we load the gadget into the cache, it is time to deobfuscate it to run it. There
are many buzz term for obfuscation methods and techniques such as polymorphism,
metamorphism, omnimorphism and homomorphism[13][16][11][12]. However, in this
paper, we don’t mention the details of these techniques, but instead we will emphases
highlights. The most obvious key is that it is not disk to memory obfuscation, it has quite
little place to use in cache, so we can not use complicated obfuscation algorithms.

Most known methods we have known so far are XOR and NOT operations. NOT op-
eration does not require key to deobfuscate it, though XOR need. Key could be useful
against advance malware detection methods because it is quite common that anti mal-
ware software are checking signatures and also their NOT state. Even though XOR needs
key and can change it after every obfuscation deobfuscation operation, there are tech-
niques to deobfuscate XOR patters simply since key is stored plainly somewhere in stub
part, and it is also reason why we call it obfuscation instead of encryption. Sequential
XOR keys are also well known attack against generic XOR decryption which is influ-
enced by enigma and solved like enigma i.e. entropy analysis of assembly instruction.
Custom obfuscation algorithms are also another method to obfuscate, but the vital point
to design obfuscation algorithms, well known and commonly used algorithms should be
preferred because the deobfuscation algorithm and key are in stub part. It is pretty easy
to detect, identify and signature unique algorithms, so with manual analysis, signature
could be obtain and used to detect our stub part. To solve this, well known encryption
algorithms such as DES or a specific part of them can be used.

Listing 4.3: The code example of obfuscation and deobfuscation routine

1 mov R2 , 0x012344 #s t a r t address of body
2 mov R3 , 0x013456 #end of gadget
3 mov R4,0
4 obfusca te :
5 mov R1 , [R2] #Load address from cache
6 xor R1 , 12345 #key
7 mov [R2] , R1
8 addi R2 , 4 #add s i z e of word to address
9 cmp R2 , R3 #compare R2 and R3

10 jne obfusca te
11 cmp R4,0
12 jne R4 #jump next gadget
13 s tar t_addr_body :
14 . . .
15 . . .
16 . . .
17 . . .
18 t a i l _ a d d r :
19 mov R4 , 0x234568 #next gadget
20 mov R2 , 0x012344
21 jmp obfusca te
22 end_addr :

36

Obfuscating Malware through Cache Memory Architecture Features

On the figure 16, a typical gadget compartments are showed. It has stub and body
parts. Stub part consists deobfuscation algorithm and key(s). It must be usual code which
is using frequently, so it can not be identical. Body part consist two subsection which are
called gadget body and tail. Gadget body is actual code which is a part of malware. Tail
part is a part for maintaining obfuscation process as like as stub part. In tail part, it can
regenerate stub part in order to obtain uniqueness on every attempt, but it is baroque
job to fit in cache size. Instead, we can change key for each attempt. After we regenerate
stub part, then we should obfuscate body part.

On the listing 4.3, a primitive code sample showed for obfuscation and deobfuscation
routine. The compartments of the gadget can be seen roughly on the code example. From
beginning of the chapter to startaddrbody, it is stub part, and rest of it is body. Tail of
the body part start from tailaddr to end of code. As you can see in this example, tail
code is not obfuscated state. The area with ellipsis belongs to gadget body which is actual
malware. The first three line is to initiate loop. As we fetched the gadget to the cache on
previous section, we started to work on cache in this section. from line 5 to 8, it is actual
obfuscation and deobfuscation part. We used here static key but it is easy to use dynamic
key with a register. First jump instruction on line 10 is checking for loop variables, and
second jump on line 12 is checking for whether it is obfuscation or deobfuscation state.
In this example, we used common code to obfuscate and deobfuscate. It is quite efficient
with symmetric obfuscation techniques. After it complete deobfuscation of whole body
part, it naturally goes in body part, then at the end, it jumps to obfuscation section after
it sets R4 register with start address of next gadget’s stub. At the end of the gadget, it
runs instruction on line 12 which jumps new gadget, therefore; it evicts cachelines and
fetches its own gadget and do all these routines. We consider that all these gadgets works
as a loop of gadgets, so it does not need to have exception or interrupt between gadgets
transactions.

Figure 17: Control Flow Illustration A) Stepped Control Flow B) All at Once Control Flow

We will also propose two type of control flow method for obfuscation, running and
deobfuscation routine. In figure 17, these two approach are illustrated which are on the
upside "Stepped Control Flow" and on the downside "All at Once Control Flow". Stepped
control flow is running instruction one by one in contrast to all at once. Thus even if
it leaks some information in the cache memory, it is just an instruction. However, it is
barque to implement this control flow due to many reason. It must be perfectly designed

37

Obfuscating Malware through Cache Memory Architecture Features

before it run, because there must be register convention between stub and gadget and
they should not use same registers in the same time. In addition to this should put a nop

or junk instruction in a loop and should change the memory of the concerned instruction
with new one. In listing 4.4, the code try to express what it means. The instruction on
the memory location 120 is actually junk instruction which is there to be replaced with
deobfuscated code, and the instruction on the memory location 116 is to move plain
instruction to the junk’s place. However, it is not that easy as showed on code, because
of the fact that branches. We should consider branches and fetch them in the loop before
they are called and it could be made with an interpreter similar code. It is not utopia, but
still hard to implement. It is beneficial to emphases one more time that the register in
used by obfuscation algorithm must not be used with gadget or stored in a conventional
places in case of stepped algorithm usage. This kind of routines are also really common in
stack based assembly programming (e.g. calling convention). Instead of stepped control
flow approach, all at once approach is easier, faster but less obfuscated. The code in
listing 4.3 is one of example of all at once method.

Listing 4.4: The code example of stepped control flow approach

100 mov R2 , 0x012344 #s t a r t address of body
104 mov R3 , 0x013456 #end of gadget

loop :
108 mov R1 , [R2] #Load address from cache
112 xor R1 , 12345 #key
116 mov [120] , R1 #move in s to junk l i n e
120 nop #junk l i n e
124 addi R2 , 4 #add s i z e of word to address
128 cmp R2 , R3 #compare R2 and R3
132 jne obfusca te

4.2 Pitfalls, Limitations and Fallacies

The things we mention so far was explained for actually a simple test system which does
not have many features of real systems. That makes it simpler and applicable. However,
It is not that simple, when implementing on real systems. The systems today we use even
in our daily PC are chaotic and baroque. They have many units to make them feasible
for our daily usage. In this chapter, we ignored some issues with memory management
unit and memory protection units, cache coherency interconnectors, Harvard Architec-
ture, write through cache policy, out of order processors, multi-threading and context
switching, and designed our attack for primitive and theoretical computer system, and it
could be quite difficult and knotty to implement it on a real system.

One of the most important issues which we ignore is definitely interconnectors which
provide cache coherency. With increasing of multi processor system usage, it is getting
common to implement an interconnector between processors to provide cache coherency.
It converts caches to devices which can communicate with each other. All cache memories
are assumed coherent, so if a malware work on a CPU and its cache can’t conceal its
content from another CPU. However, in next chapters we will propose an attack to exploit
coherency latency. In any case, it certainly constrains our attack abilities.

Secondly, on Harvard architecture, There are two different caches which are separate
for instruction and data. It breaks our approach throughout. We can work on upper layer
cache, e.g L2, L3, but then they generally share the cache with several CPU. We will also

38

Obfuscating Malware through Cache Memory Architecture Features

propose a novel method to bypass this issue as well.
Write through caches aren’t also perfectly suitable for our attack, but the stepped

approach could solve this issue. As it does not need to deobfuscate all code at once, It
could reduce the possibility of obtaining signature with leaking a word of memory per
time. One word which is about 32 bit size is mostly not adequate to identify a malware.
On stepped method, one of the most important obstacle we can encounter is out-of-
order and pipelined processors. In stepped approach, all the instructions are nested, and
before it write new instruction to the junk instruction place, it might start to decode it or
worse might have been already run. Memory barriers and junk delay instructions could
be used against this.

It is a bit tricky to design gadgets, and it constrains functional programming because
it is really usual for functions to be independent from the rest of the part, it makes them
a suitable candidate to be gadgets. In contrast with functions, gadgets cannot be called
again and again. Therefore, we must write another gadget for each use. However, if
we convert them to functions with inputs and outputs, it could be an efficient way of
designing feasible programs. In addition to functional input and output, they should get
the address of gadget which they will stitch with. In order to protect eviction on cache
memory, we can use some architectures cache lock. Cache locks can prevent a cache line
to evict, in case of fetching its identical pair from memory. If a CPU fetch a memory
location, and its corresponding cache line is locked, then the CPU fetches it directly from
the memory.

39

Obfuscating Malware through Cache Memory Architecture Features

5 Probabilistic Timing Attack against to Snoopy Cache
Coherency

In this chapter of the thesis, we proposed a probabilistic attack to increase evasion prob-
ability of malware against to snoopy cache coherence protocol on tightly coupled systems
with write back cache policy. We briefly explained the issue we can encounter during
implementation of the cache oriented obfuscation method with the snoopy coherent sys-
tems. The snoopy cache coherency protocol’s internals have already been mentioned in
background studies chapter; however, we assumed through whole section that all coher-
ence operations are atomic, and contention between processes are not subject. Yet, They
are not close to be atomic; and moreover, the latency is sometimes enough long to pro-
cess and to complete whole gadget or whole malware. In order to exploit this contention,
we methodized a probabilistic race condition attack.

As a brief and in other words, instead of giving an absolute obfuscation, we proposed
a method which probably obfuscates malware, and this probability depends on the sys-
tems design and gadgets’ processing overhead. On the other hand, this value gives us
a quantitative rate, but if our concern is signature based detection methods, signatures’
value can be measured with qualitative approaches rather than quantitative ones, e.g.
some signature like port number or IP address are treasury. Yet, the quantity of signature
is certainly another value to measure efficiency, especially when we relate binary codes
and signature detection.

5.1 The Issue

Cache coherency is a term and discipline arisen from the incoherent states of caches
due to parallel computing. It does not need multi processor environment. For incidence,
sometimes, DMA devices can be enough to emerge it. In tightly coupled systems, be-
cause of the usage of caches to increase performance, it is highly possible to falling
into an incoherency state. We also mentioned much more details in background stud-
ies chapter. in this chapter, the term of "stale data" is used to describe globally1 the data
which is not reflected for most current or synchronized value in the system(included with
other caches and memories). In order to synchronize stale data and provide coherency
between caches, cache coherency protocols and policies are used between caches. As we
mentioned, most of protocols and policies need networks between each other and logical
operator per cache controller. There are many methods to provide coherency between
caches and one of the most known and capable one is snoop mechanism.

Snoopy cache coherency mechanisms provide synchronization with a bus watch mech-
anism in the system bus. These mechanisms imply that cache must first request the data
from any other caches, before it request from the memory. The implementation of the
snoop mechanism is vice versa, but works as well, as same.Cache generally watches the
bus and record activities, arise exception in case of coherency problem(when it is likely
to fall incoherent states).[50] There is generally an interconnector to organize snoopy

1In local frame, it concerns the relationship between the CPU and cache values rather than between caches.

41

Obfuscating Malware through Cache Memory Architecture Features

cache protocols, and filter useless communication.
Moreover, the nature of the cache organization which we use commonly is lazy. The

mean of lazy is they do not update the modified block and values until they evict and
replace it with other cache block. The reason why they are lazy is obvious, the efficiency
optimisations. If they write every modification directly memory as well as cache2, it will
consume most of the available bandwidth. The main essence how we keep our data in
a cache as like as private memory is arisen from this laziness, because we anticipate
and controls the cache line evictions and replacements. However, we cannot simply say
write-through caches are perfectly coherent because of the reasons explained in Chapter
3. For example, CacheA read address x, and then, CacheB read address x. If CacheA
write address x with Write-Thought policy, the value in CacheB is still stale.

With perfect coherent caches, we can not exploit private caches to use as private
memory (see also. NUMA); hence, we can’t evade anything from one CPU to another as
we did in the previous chapter. Namely, there is no difference between disk to memory
and disk to cache obfuscation. Even though the highest workspace which you deobfuscate
your code is cache, cache are synchronizing each other. This coherence gives ability to
anti-malware scanning other caches and detecting signature.

5.2 Solution

Let’s assume we have a tightly coupled multi processor test bed system, and it has one
CPU reserved to scan memory for malware detection, and another CPU is occupied by
malware itself. Their caches are snoopy coherent with an interconnection network. They
could use any of protocols which we mentioned in background studies e.g. MOESI, MESI,
MSI. Let’s also assume that the malware which present in the second CPU’s cache is de-
signed as we defined in previous chapter. It has prewarmed cache as we described and
started to deobfuscate and run the code. The presumption is the CACHE2‘s cache blocks
is accessible by CPU1 as well as any other CPUs. However, the access and synchron-
ization of any stale data is not that simple. It is presumed as atomic, but it is not, and
worst of all, tightly coupled systems are heterogeneous with cache coherency, because the
distance to memories are not equal and systems are not homogeneous. This heterogen-
eousness comes with different access times to the memories. Especially MOESI protocol
is much more heterogeneous because it works as semi-NUMA(Non uniform Memory Ar-
chitecture) type cache i.e. a modified cache block can be moved around various caches
without updating main memory. Secondly, cache controllers rule are not really elastic.
When an address is touched by a CPU, it fetches whole block in order to exploit spacial
locality and increase performance3. We actually exploited throughout whole chapter two
weaknesses which are horizontal directional cache fetching attribute and synchroniza-
tion latency and heterogeneous access time of snoopy caches.

5.2.1 Horizontal Directional Cache Fetching

In computer architecture conventions, we arrange instructions into memory space, incre-
mentally, and then, we can prefetch them before they run. Also, we are tent to use the
space around we recently accessed. It is called spacial locality and we mentioned about
it more deeply in background studies. For this reason, we cache mechanisms works hori-

2It is salso mentioned in background studies as write through policy
3Sometimes they wait for feeding CPU until fetch it all, sometimes feed CPU as soon as possible depending

on algorithm.

42

Obfuscating Malware through Cache Memory Architecture Features

zontally. It fetches a particular size of memory in the same time, and put it a cache block.
Besides, cache blocks are the smallest addressable memory spaces; therefore, it makes
caches more simpler, faster4and cheaper. Accordingly, Fetching and eviction operations
are handled as line-based namely horizontally. In figure 18, we showed data fetching

Figure 18: Directional Exploitation

direction and its contrast with our instruction iteration direction approach. As we men-
tioned many times, but in order to emphases it one more time, instruction sequence
normally increments one by one. Yet, in our approach it iterate as in equation 5.1. m is
the cache block size, and n is the number of cache block line in the whole cache. nb is
number of line which is allocated to body of our gadget as mentioned in previous chapter,
so this figure is a frame of cache in which obfuscated part of our malware allocated. Let’s
say c is the initialization point of our malware. When i is the number of instruction on
the queue, I(i) gives us the location of instruction in the memory; thereby, in the cache.

I(i) = m ∗ (i mod (nb)) + ((bi/nbc ∗ thread) + c) mod m (5.1)

thread value in the cache is step number between the vertical blocks. In order to gen-
erate a function which onto(bijective) the cache frame, equation 5.2 must be provided,
because after it overflow mod function, it will uses just the one next block which previ-
ously used and go on until end. It is obvious that tread should be smaller than m, yet it
is already in mod and i must be smaller than total size.

∀m mod thread = 1 : I() is bijective function (5.2)

Yet, Why do we iterate institution sequence vertically? Indeed, we assumed that anti-
malware scans horizontally from CPU1 above, because it is faster. For example, our code

4After an amount of memory, it could decrease performance.[43]

43

Obfuscating Malware through Cache Memory Architecture Features

starts from c and our second instruction in c +m, with purpose of scanning from CPU1

in this order, it should fetch first the line of c into Cache2, and then, it should fetches
the line of c + m, and so forth. In the perfect world, with atomic instruction to fetches
whole cache line and without latency, it could be race condition free approach, but in real
systems, it is not. We will combine this attack with latency problem in the next sections.

5.2.2 Synchronization Latency of Snoopy Caches

One of the famous myth on the computer science and design is that tightly coupled
parallel architectures are mostly considered as symmetric systems, but if we look more
closer, the caches usage and moreover cache usage with coherency protocols and net-
work makes them quite asymmetric and preforce them to be heterogeneous. Processors
could have same properties and be arranged in symmetrical, but if they can’t give same
throughput in an time interval, we can’t call them homogeneous5.

Latency Calculation

Figure 19: The Time Line of the Fetching Cache Line which is Used by Another Cache

In figure 19, we showed a representational illustration of cache line requesting pro-
cess which is used in another cache, and labelled latency types with x for inner network
latency, y for cache processing latency, z for overall interconnection latency. As seen
in figure 19, the throughout latency for synchronization process with another cache is
showed in equation 5.3. However, the latency of direct reaching to the cache is showed
in equation 5.4 which is obviously shorter6.

Ls = x1 + y1 + z1 + y3 + z2 + y2 + x2 (5.3)

Ld = x1 + yd + x2 (5.4)

All this latency variables is depending on many different factors which we can calculate
them in theory, but which is difficult to estimate in practice. x variables are the latencies
between CPU and cache. It is tent to be really short, because L1 cache and CPU should
be designed so close. Mostly x1 = x2, yet it is not certain. The reason is write buffer
and pipelined CPU makes it case depended. Generally, most of the latency comes from
the queue of cache which also related to writers block and pipelined architecture as we
mentioned in background studies. y variables are cache’s logical response latencies. As
we mentioned, It depends on cache size, associativity, line size and logical operations
complexity. In this example, we have one layer cache, but most systems use multi layer
caches. For each layer, it adds more overhead. In brief, caches are as fast as how simple

5In order to prevent this, there are systems which avoid to use caches, when they are sharing data. Because
of the symmetry of cache processor relationship, they keeps their symmetric design themselves.

6This formulas are valid for the simple systems showed in figure 14

44

Obfuscating Malware through Cache Memory Architecture Features

they are.7 However, there is no doubt that most important and game changer latency
is z namely, interconnection network latency. Mostly, lack of bandwidth is considered as

Figure 20: Interconnector Latency Versus Offered Traffic [4]

the only reason of network latency, whereas there are many other factor and problems.
Nevertheless, it is one of the most important source of latency. Bandwidth is the rate of
the data can transmitted from point a to point b in a given time, but originally, it was
the number of wire in width of buses. This definition ignores the clock speed contrast
with current definition because the speed of wire is related with speed of light and res-
istance of the wire, but instead, the things which limit it is the performance of source
and receiver. The bandwidth could be formulated as b = n ∗ f where n is width of the
channel and f is clock speed. Surprisingly, if our message is smaller than channel width,
bandwidth can not effect latency because if we have 100 bit bandwidth, then it carries
20 and 100 bit in the same time. Notable the interconnection networks’ costs are rout-
ing, serialization/deserialization, link traversal latencies[4]. We already have mentioned
about their details; still, it is good to shortly recall that serialization and deserialization
are processes to converting messages to given channel bandwidth and could be shown
as sd = L/b where L is length of message and b is bandwidth. Therefore, overall latency
can be measured with formula 5.5.

T0 =

minr∑
k=1

trk +

minc∑
k

Dk/vk + L/b (5.5)

In this equation, minr and minc denote the minimum number of router and channel
7Their design affect performance a lot, but they are mostly SDRAM instead of DRAM or switch based

registers

45

Obfuscating Malware through Cache Memory Architecture Features

between point a and b. tr denotes time consumed during routing process, while D/v

denotes distance divided by velocity. The easy way to calculate T0 for each flit is T0 =

Thead + L/b because
∑minr

k=1 trk +
∑minc

k Dk/vk is calculated one and only one time
in pipelined networks as have been mentioned. If it is not pipelined, the latency could
be measured by formula 5.6 or if it was store and forward flow control instead of cut-
through as shown in equation 5.5, the latency could be measured by formula 5.6 (see
more details [4]).

T0 = (

minr∑
k=1

trk +

minc∑
k

Dk/vk) ∗ L/b (5.6)

T0 = (

minr∑
k=1

trk +

minc∑
k

Dk/vk) + (

minr∑
k=1

∗L/b) (5.7)

However, T0 is not a general latency function, and it is very special status of networks
which is also called zero-load latency. Zero-load latency is the lowest bound of the latency
where there is no contention between packets. In figure 20, a generic latency vs offered
traffic curve is showed. Although they are the most accurate way to measure and de-
termine ultimate performance, and we are using discrete event simulation to draw them.
Theoretic latency bounds, which are topological and routing, and their corresponding
throughputs are showed in figure. In formula 5.4, 5.5 and 5.6, zero latency values are
all shown with minimum routing hops which means topology bounded zero latency, but
actual zero-load latency, T0 in figure, incorporates the constraints of topology along with
actual performance, routing, flow control and line traversal latency[4]. As have seen ob-
viously, if you increase the contention between packets through increasing offered traffic,
the latency grows about exponentially. It is one of the most important factor support
our proposes and encourage us to implement because of the fact that roughly loading
memory and storing back to the hard disk8 produce remarkable traffic which can lead
considerable latency.

Simulation Result

An accurate simulation is definitely one of the most important tools for analyzing in-
terconnection networks and exploring design tradeoffs. The reason why we are using
simulations instead of real systems is a bit similar with theoretic physic. There are many
noises on information we gathered from real systems and they are extremely expensive
and difficult to implement. Even one of the most acknowledged books about intercon-
nection network, which is called "Principles and Practices of Interconnection Networks"
repeatedly emphasizes that designer’s intuition is the most important factor to design bet-
ter performance on interconnection networks[4]. This book has a simulation tool freely
available at http://cva.standford.edu/[53]. Even though, every processor company in-
vests their years and efforts to design better simulator, this tool is quite simple and totally
free licensed. However, it is not designed for coherency purpose, so its model designed
in flit level and includes many topologies and routing algorithms. Indeed, it can give us
some important cues and ideas.

We designed it with an example topology which we use in multiprocessing systems.
It is the inheritor topology of Fat tree. In figure 21, the topology is shown which has

8It is basically dumping memory

46

Obfuscating Malware through Cache Memory Architecture Features

Figure 21: Our Simulation Topology[4]

two processors, 3 routers9 and shared memory. This designed is influenced by one of
the most known ARM chips Samsung EXYNOS 5420. This latency values are rounded
numbers, but they are close values which we obtained the concerned chip10. One way
channel length is about 3 cycles from L1 cache controller to L2 cache controller, 40 cycles
from L2 cache controller to L4 cache controller. This contrast could be because of the
difference between in-chip out-chip communication and also the complexity of caches
internal operation. We assumed the routing delay is about 2 cycles, even though it could
be a bit more. We used 1 cycle credit delay for flow control.

The injection rate of simulation is the number of packets which it injects every cycle
time. The book claims average rate is 0.15, but we consider that it is enormously high
for our experiment. As we have said, injection rates could be really high during memory
dumping; however, it could be decreased, if scanner avoids bad programming practice
and exploit cache performance feature, it could be around one store and one load oper-
ation request for each cache block from upper layer cache. If we take this into considera-
tion, we assumed the injection rate 2 and 4 for each 100 cycles. It is also good to assume
it lower for any cases.

One of the other important value about our experiment is the character of our gener-
ated traffic. We used a uniform traffic generator which means every nodes talk with each
other. However, it is not actually appropriate for our attack. In our example, scanner
CPUA talks a lot, and other CPUs talks nominal, but CPUX attacker CPU does not load
or store, after it initializes. We can implement our own traffic generator for this simulator

9Though we said 3 routers, we used in figure and topology design file 4 router. That is due to lack of
simulation tools. We tried to give a latency between router 3 and shared memory

10we used CPU-Z program to measure cache latencies.

47

Obfuscating Malware through Cache Memory Architecture Features

in the future. This simulator is also highly adaptive and extensible with plugins.
In implementation of our topology, we decided to design two different modes to em-

phasize contention over network, which are small topology and crowed topology. In the
small topology experiment, we assumed there are just two active nodes, three active
routers and one shared memory in the network and they are the ones which connec-
ted to CPUA and CPUX. In this example, latency is mostly based on distance and pure
logical complexity, rather than contention of routing or bandwidth. In the second exper-
iment, we designed the crowded topology which has four nodes connected to router0

four nodes connected to router1, and they are all connected to router2, and also we pre-
sumed there are two "slave nodes" which might be DMA devices and one GPU connected
to router2.

Packet latency
Min/Avg/Max

Network latency
Min/Avg/Max

Flit latency
Min/Avg/Max Hops Avarage

Crowded 2% 164/68045/171627 13/417/1487 13/353/1487 2.04442
Small 2% 8/72/216 8/72/216 8/72/216 2.30611
Crowded 4% 15698/178598/458108 13/410/1736 13/353/1736 2.04591
Small 4% 8/322/1273 8/129/376 8/129/376 2.33081

Table 4: Simulation Results Comparison

The result of the simulation is added in appendix B, and briefly showed in table 4.
We made four experiment with two different topology and two different injection rate
as have been mentioned. For more details, you can check appendix B. We present in this
table three different kind of latencies. Flit latency is a simple latency time required from
the beginning of flit till end. Latency of a packet is measured from the time its head
flit is generated by the source to the time its tail flit is consumed by the destination.
Obviously, flit latency is the delay time for transferring a flit from one node to next node
which routers applied as node in this case. The contrast with network latency and flit
latency is tricky. Network latency is flit latency plus extra serialization and routing costs.
Hops average is the average number of hops every flits traversed (except source hop)
during experiment. It could give an idea about distribution of message. As you can see,
the average hop number is lower on crowed topology because nodes under the same
router can talk with each other i.e. CPUA can send a message to CPUB as well as CPUX

does CPUY. The value which we concern is packet latency, because packets are smallest
meaningful communication object. To provide coherency, cache controllers communicate
with packets between each other.

As you can see, on an typical crowded network, average latency varies around 68000

cycle to 178000 cycles. If we assume clock cycle is around 1GHZ, 100000 cycle is about 0.1
second absolute time. On the other hand, it is around 72 to 322 on small sized topology.
However, if we concern the communication between CPUA and CPUX it is at least 40
cycles + 40 cycles + (3 * routing costs) + 3 cycles + 3 cycles = 92cycles because of the
distance. It means that the latencies we need to concern is above average and close to
upper bound because CPUA and CPUX is one of the farthest couple.

It is hard to point an exact average latency value for any system, even if we are exactly
sure about target system. The contention is the most important factor for latency. In order
to increase the chance of our attack we could use noise production methods from other
nodes, but because of its character and highly detectability, it is not recommended, still

48

Obfuscating Malware through Cache Memory Architecture Features

the scanning and storing processes produces enough latency due to high dependency of
memory load store operation.

5.2.3 Overall Explanation of the Timing Attack

Figure 22: The illustration of cache and time Interaction is showed with leaked portion of obfus-
cated data

Let’s presume again we have a malware which is designed as we have proposed in
chapter 4 and we have the same system which we have designed in figure 21. Then,
the malicious malware is loaded from non-volatile memory e.g. hard-disk to memory
obfuscated and it loaded to the cache which belongs CPUX. It arranged the structure of
cache as have been mentioned in previous proposal. It have been designed as same as
it was so far. The point in this situation is we have a memory scanner and dumper ap-
plication which works in another cache (in this example it is the cache belongs CPUA.),
and we assume CPUA has coherent cache with cachex. This coherency can be provided
with snoopy cache coherency through one of the protocols of MEOSI, MESI, MSI. After
malware loads the obfuscated code from the memory to the cache, it is allocated as
shared state in MSI or exclusive state in MOESI and MESI. It is good to know that it
is not going to transmit to modified or owned state until it deobfuscate it. The things
which we don’t want to share is plain data, and lets call this action as leakage. When
we de obfuscate the code, its block in the cache transmits to modified state. Then, if an
scanner cpu, CPUA, request the block line which we deobfuscate, the long adventure of
synchronization starts.

Our stepped control flow approach has already be proposed as a solution for coher-
ency because instead of whole cache block line leakage, it will lose one step during even
theoretical atomic snapshot, and strongly probably it is not going to be meaningful to be

49

Obfuscating Malware through Cache Memory Architecture Features

signature; however, this stepped approach is not completely good because of its complex-
ity and the effect of that complexity over stub which increase the chance of detectability.
The attack we have proposed in this chapter is starting with arranging the steps(more
flexible steps, more likely to be smaller gadgets) to the cache vertically as shown in figure
18, with given formulas 5.3, 5.4.

The example which we illustrated is shown in figure 22. The time zero on this example
is representing the time of the first moment which actually scanner reach the memory
location of malware, while the malware’s process is flowing. We have another latency
assumption here the latency of x1 + y1 + z1 + y3 in figure 19 is equal to 400 cycle time
and z2+ zy2+ x3 is equals to 600 cycle time. The second one is longer because first one
which request the cache line is a packet with a header flit, and tail flit. On the other hand
response packet comes with whole cache line11. The response time, which we showed in
figure 22 and mentioned in figure 19, is the moment, after it received load request from
CPUA and responded it with the cache line. In this moment, cache line is not in modified
state, since it is transmitted to the owned or shared state. The interesting point is here
that if CPUX manages to write back obfuscated value in place of plain value, then the
cache controller of can synchronize this value before scanner detect or store it12.

If you look at figure 22 again, the time intervals which they are deobfuscated and plain
showed in the boxes. These intervals are the vulnerable moments for leakage. However,
they are ordered vertically, so they can not be fetched in the some time from another
cache. The leaked boxes are showed also in the figure. They are the cache block whose
line is synchronized, when they are deobfuscated. For example; the first red block on the
second line is sent to cacheA at 1400 cycle time, and it was using from 1020 till 1500
cycle time. Therefore it is leaked. However, there are just 8 boxes over 100 boxes overall.

Overall Obfuscation Rate Calculation

In order to calculate overall obfuscation rate, we can use formula below.

totalblock− leakedblock

totalblock
(5.8)

However, it gives you an quantitative rate which does not represent whether it is
evasion or not. Evasion is more depended on qualitative approaches rather than the
percent age of obfuscated block because the signature which we uses for detection is
generally some strings such as IP addresses or domain names. Of course, the instruction
structure is important especially with control flow graph detection, still majority is string
searching. The leakage from these strings could be fatal for evasion, even though their
size are relatively smaller. Nevertheless, it can imply a general perception about how
successful obfuscation we have. It is not going to be same for even particular system and
latency, but the mean of many attempts is reliable. So lets formulate it for better accuracy
like below: ∑n

1
totalblock−leaked

totalblock

n
(5.9)

In order to increase obfuscation complexity, the exotic kind of settlement structure can
be proposed as vertical settlement have been proposed e.g. crosswise, curved so forth.

11the experiments we made with Booksim 2.0 showed this values as nominal network latency for the topology
we designed

12this synchronization could be quite fast with MOESI protocol because cacheX probably allocated it with
owned state

50

Obfuscating Malware through Cache Memory Architecture Features

Complexity is not good security practice, but can be useful and necessary for obfuscation.
This attack, which we proposed throughout chapter, will absolutely work with some
degree of evasion, but the thing which determines its success is latency of interconnetion
network and so, their designs and their logical complexity.

5.3 Pitfalls, Limitations and Fallacies

Even though our methods are novel and theoretically possible, we skip many details in
this chapter. For example, the deadlock and live locks in interconnection networks are
one of the most common problems. In order to break coherency, they could be useful to
exploit, however, it is another attack and vast area. However, it is theoretical likely to
appear, if there are to node which share same resource in the same time.

We also did not mention so much about coherency protocols in this chapter, but they
could be useful or problematic depending on case. For example, while you are running
around malware cache, if there is another CPU who try to scan you cache, it cat not
simply modify cache. Instead, it will demand right of modify for cache line, then other
cache controller invalidate the line and then respond to the cache which want to write. It
require a lot of time13, and it is the thing can be resulted with deadlock. In addition, this
latency could be useful to detect a process of detection. Namely, if there is a difference
between write latency, it could be signature of coherence request, but it can’t be useful
for prevention against scanning.

In the example we showed in figure 22, the malware’s processing flow spread around
the whole cache equivalently, but the most of common processing flow of regular mal-
ware are normally comprised with long period of time delay algorithms or watch dog
instructions. In these cases, the only thing scanner can obtain is useless instruction which
can not be useful to identify malware.

We did not try to calculate process overhead in this chapter, but it is all about con-
tention and race between latency and process overhead. The reason why we did not
is that In modern computer architecture, it is quite difficult to calculate it because of
the pipelined and out-of-ordered processors. They can process many instruction in the
same time concurrently and simultaneously. We should be aware of this, when we design
malware. Arranging different kind of instructions sequentially makes it more faster and
concurrent, even if we have one core. You can see more details of this architecture in
figure 2314.

Memory management and protection units are also the subjects which we never men-
tion in this chapter, yet they are making this attack a bit more possible because they
produce extra traffic and extra logical complexity and worst of all, they increase traffic
exponentially, however, today, there are interconnector chips for multi processing system
which handle memory management itself i.e. Arm CCI 400, 500.

13As we mentioned in background studies chapter it is a lot more flexible
14Computer architecture: The quantitative approach book is the one of the best resource about them[43]

51

Obfuscating Malware through Cache Memory Architecture Features

6 Implementation on Harvard Computer Architecture

In this chapter of the thesis, we proposed a method to solve implementation issues on
Harvard architecture or equivalent designs. We explained the Harvard computer archi-
tecture internals and connect semantic relation between our cache oriented obfuscation
technique in order to emphasize details. After we had elaborated the issue with Harvard
model, we proposed a theoretical novel solution. Then, we showed several implementa-
tion techniques with FORTH programming language. Lastly, we discussed the pitfalls and
fallacies in the final section.

6.1 The Issue

Harvard model is a one of the most famous computer architecture model which contrast
with other models with its memory pathway implementation. Basically, there are two
acknowledged computer architecture model which are Harvard and Von Neumann ar-
chitectures. Von Neumann model is an of the basic definition of computer architecture
which is first designed in 1945 by Von Neumann[54]. He describe one of the earliest elec-
tronic and digital computation machine and divide processing units in several subdivision
consisting of an arithmetic logic unit and processor registers, a control unit containing
an instruction register and program counter, a memory to store both data and instruc-
tions, external mass storage, and input and output mechanisms. Harvard architecture is
an evolved version of Von Neumann Model rather than being complete new approach.
Harvard architecture first appeared with "Harvard Mark I" relay based computer, because
it was a primitive modern computer which stored instructions on punched tape (24 bits
wide) and data in electro-mechanical counters, whereas it’s usage purpose is totally dif-
ferent.

At first glance, having separated memories could sound absurd i.e. Flexibility of one
unified memory increases the programmer’s ability, but if you look at deeper, there are
many reasons to use separated memories. They are increasing performance, especially
on pipelined processors, provide wider bandwidth and natural routing mechanisms to
spread bandwidth equally, and reduce power consumptions. However, there are also
middle ways between these two architectures. If Harvard model implemented on cache
layer, and unified memory is preferred as a main memory, it is called Modified Harvard
architecture. Most modern computers that are documented as Harvard architecture are,
in fact, Modified Harvard architecture.

Figure 23 is one of the best diagram to show Harvard architecture’s ability. It is a block
diagram of ARM Cortex A15 processor. A15 is one of the implementation of pipelined,
out of order, Modified Harvard architecture[5]. As seen in the figure, they are not just two
different cache memories, but also they are implement functionally different. Beside, they
can also have different characteristics: block lines, sizes, policies, etc[50], because they
stores different data characteristic. It is really like to use next instruction in instruction
cache, but temporal locality can be more useful for data caches. Another important thing
is that their physical places are optimised to response faster. It is really common for

53

Obfuscating Malware through Cache Memory Architecture Features

instruction fetching and load/store units to be placed opposite directions, because of the
fact that they are the last and first elements of CPU unit diagram.

In addition to all this logical arguments, there is a game changer reason to implement
it. On the pipelined processors, every unit such as instruction fetch, load/store working
concurrently, in deed in parallel. Rather then processing each instruction sequentially, it
divides them steps for the units[43]. While the instruction fetching unit is processing for
instruction x, the load/store unit can work on instruction x − n concurrently. It means
our new bottle neck is cache memory, because they both uses memory: one for fetching
instruction, another one for fetching or storing data, and they are obviously independent
region on memory can work in parallel. Harvard architecture leaps their performance
remarkably.

Figure 23: Cortex A15 Block Diagram [5]

In our cache oriented obfuscation method, we have assumed the system which we
worked on is Von Neumann so far. In our implementation, we showed deobfuscation
code routine in listing4.3. The reason why we can not simply implement this model is,
it is working on the instruction section which actually stored in instruction cache, but in

54

Obfuscating Malware through Cache Memory Architecture Features

Modified Harvard architecture, there is no direct access to write instruction caches. As
seen in figure 23, after fetching obfuscated instruction code into data cache and deob-
fuscation and storing it back to the cache, it does not move directly to instruction cache.
It has to be evicted back to main memory and be fetched into instruction cache instead.
Therefore, if we implement same code on Modified Harvard architecture, we encounter
with incoherent cache issue which obstructs deobfuscation of instruction or we cause
to leak our plain code to upper layer memory. If there is one more layer cache such as
L2 cache, instruction and data cache communicate over those; however, it reduces our
attack’s stealthiness in any case.

6.2 Solution

In brief and on the whole of mentioned issue in the previous section is the obstacles of
modifying instruction cache’s values. to sum up our issue, we have two caches which are
"dcache" which we can read and write but can’t not execute and "icache" which we can
execute but can’t read1 and write, thereby we can not deobfuscated and run obfuscated
code in the same cache. The question we answered in this section is whether it is possible
to redesign a running program’s control flow in support of data which it is working on
or not. It is only possible, when we design instructions and statements in the program
depending on the branches, namely values that branches depending on. In computer
science convention, some methods of interpretation is equivalent to our definition and
requirement, and it is shoved that the ability of the interpreter can be equal to ability
of the machine it is working on[55][56]. Even though it is possible to building our own
interpreter, it is not recommended, because it will be embedded in "Icache" which is plain
text and possible to identifying and obtaining signatures. Therefore, we propose to use
well known interpreter; then, it could be legalized on signature detection phase.

6.2.1 Flying over Interpreter

Instead of running a machine code on the target system, we proposes interpreting byte
codes or structured abstraction (and therefore it is not bound to any specific machine
code but the interpreter itself) for the Harvard Architecture system. It makes malware
architecture independent (On the other hand, it is still cache dependent malware) except
stub part. Although Interpretation and compilation are two different methods, they are
tightly coupled terms in computer programming. Hence, they are not mutually exclusive
on implementation of high level language. Interpreted or compiled languages mean the
canonical implementation of the language is a compiler or interpreter based[55].

There are typically several variants of interpreters in a spectrum between compil-
ing and interpreting[55]. Byte code interpreting is a method for parsing code directly
from interpreter language to byte code. The byte code is not machine code for a spe-
cific architecture, but machine code for the interpreter’s virtual machine. The byte code
representation of the corresponding code is generally highly compressed and optimized
because they use all compilation techniques and backgrounds, but efficiency depending
on the interpreter and architecture relationship[55]. The second variant of the interpret-
ers is using an intermediate representation of interpreter’s source code. Concrete and
abstract syntax tree interpreters are the two of the most known and acknowledged ex-
amples. It has more overhead than byte code representation, but it is easier to interpret

1we can’t read it directly, but we can observe its results and estimate it.

55

Obfuscating Malware through Cache Memory Architecture Features

and preform better analysis during runtime because of better structure and relation rep-
resentation between statements of the code[55]. The one of another variant has been
just-in-time compilation. They are not pure interpreters or compilers. These techniques
compile byte code or an intermediate representation into the native code at runtime.
Therefore, it is not appropriate for our methods to use because it is still compiling and
running native code directly.

In figure 24, our approach is illustrated. In this example, there is one shared memory,
one "Icache", one "Dcache" and one CPU. It is a part of the whole system, and we assume
there are more nodes connected to the same shared memory, but only one of the nodes
showed in the figure. The stub section of the Icache inherited from the previous chapters.
Basically, it deobfuscates body of the malware which is stored in dcache. As we can load,
process and store values to dcache, stub implementation and internals are same. How-
ever, when we need to run the deobfuscated code on dcache, we use an interpreter to
bypass the obstacle, in contrast to previous proposals. Feeding interpreter from memory
has already been supported by most of the interpreters for embedded devices e.g. Py-
thon, Forth, Basic interpreters. The only thing they need generally starting address. In
addition to previous proposals, after running body of the malware, obfuscation could be
handled by interpreter at the end of the gadget, or a tail section must be added, after the
interpreter code in Icache.

Figure 24: Illustration of Our Approach

6.2.2 Forth Interpreter Language

Forth programmers traditionally pay importance and emphases complete understanding
and control over the machine and its architecture. Therefore, first principle of Forth is
simplicity and openness, and it is completely documented and clearly easy designed.

56

Obfuscating Malware through Cache Memory Architecture Features

Koopman says in 1993 "Type checking, macro preprocessing, common subexpression
elimination, and other traditional compiler services are feasible, but usually not included
in Forth compilers and this simplicity allows Forth development systems to be small
enough to fit in the on-chip ROM of an 8-bit microcontroller. On the other hand, Forth’s
extensibility allows "full-featured" systems to consume over 100K bytes and provide com-
prehensive window-based programming environments."[57], and it is more than fit for
recent systems. This simplicity is one of the most important reason why we choose it for
our implementation, but the most important reason, it gives you full control between
compilation and interpretation. Beside, it is also designed for the embedded systems
which use ROM memory instead of ICache, but similarly with our approach, it is read
only memory, so it is treasury for our approach.

Because there is no explicit Forth parser and no formal grammar, it does not have
many concrete standard. There are a few words with ANS Fort which are compiled in
assembly, so it is quite simple and small. Moreover, Fort interpreter is very elastic to
implement assembly words or remove them, but the standard forth interpreters are better
options in term of stealthiness.

There are two level of interpretation in Forth, which are text and address interpreting[57].
While text interpreting accepts keyboards or file inputs, address interpreting accepts
memory inputs. Text interpreter mode parse white-space separate character string and
determine their role in the process. First, it checks whether extracted string is word or
not. if it is a word; then, do interpret word’s statements, else it checks whether number
or not. if it is number then push it to stack, else return exception. It is main control flow
of the Forth text interpretation[58]. On the other hand, address interpretation is a bit
more complex. It used to execute Forth words which are actually dictionary structures.
They all stitched each other with address pointers, and ultimately they point assembly
word which is mentioned above and embedded in Forth interpreter. Therefore, there are
a few root words which are written in assembly and children words which point parents
and ultimately roots.

6.3 Pitfalls, Limitations and Fallacies

In this chapter, we do not concern the difficulties arise from cache coherency mechanism
and we worked on incoherent caches. It is probable to implement "flying over interpreter"
method with timing attack approach, but there is much more complexity on implement-
ation phases. However, it theoretically has same principles. During implementation of
stepped control flow, there could be more overhead related to interpretation. When we
need to calculate interpretation latency, we should consider algorithmic overheads. The
code which is processed by interpreters frequently uses threaded code. Threaded code
refers to implementation of call routine and their consistence. We should also consider
the latency which is arising out of this threaded code overhead, and prefer proper al-
gorithms to decide interpreter.

Throughout this chapter, we never modified the values in instruction chapter, which
is the head of our gadget and involve with an interpreter and stub parts. In order to
prevent misunderstanding, it is better to underline that we can modify the values in the
instruction cache, but if we move values from the data cache to instruction cache, it will
lose its stealthiness, but not vice verse. Therefore, we can move instruction cache values
in the data cache and modify them freely. It gives us an ability to regenerate stub part

57

Obfuscating Malware through Cache Memory Architecture Features

again and again.
Abstract syntax tree method as an intermediate interpretation language is pretty com-

pact and compressed representation of byte codes[59], but produce more overhead[60],
so it is better to use it systems without cache coherency. Also, code density can vary from
compilation method to method. Because we have limited space, it is better to fit as much
as code in minimum space. Due to the division of data and instruction caches, Harvard
systems have half sized cache for data.

58

Obfuscating Malware through Cache Memory Architecture Features

7 Conclusion and Further Works

This study is set out to explore the concept of code obfuscation through cache memory
architecture features. The reason and motivation of our studies is that the increase in
deployment of private local memories like NUMA and hierarchical caches is accelerated
by the development of modern computer architecture models, which is especially used
by the mobile systems, in order to enhance performance and efficiency, but also decrease
the power consumption. Because of possible opportunities and also vulnerabilities, we
have focused on these architecture. We have considered through whole study that the
usage of the private caches and memories like NUMA can be vulnerable and be exploited
to evade an observer in the interconnection network of tightly coupled multiprocessor
systems. Therefore, we have proposed three different solution for our tree excellent re-
search question.

Firstly, we have designed an obfuscation method, which exploits the private caches
to conceal information from the observer devices or CPUs for tightly coupled and multi-
processor systems with write-back cache policy. The main essence of our method is ex-
ploiting the laziness of cache memories, whose laziness is actually arisen with perform-
ance optimization. At the end of the study, we gave a theoretical product which can
obfuscate deobfuscate code, works within cache boundaries, and take cache eviction and
replacement into account. We have called it "Cache Oriented Obfuscation" for. However,
this attack has been designed only for the concerned theoretical system which has the
tightly coupled, multiprocessor and Von Neumann architecture with write back cache
policy and without cache coherency.

For the second question, we have proposed a probabilistic attack to the systems which
we concerned in the previous question and with snoopy coherent cache. The attack we
have proposed involves exploitation of cache fetching vector direction, the coherency
latency between caches and the laziness of cache with write-back policy. We have support
ourself with latency simulation experiments. We have theoretically showed how possible
it is to exploit these systems to obfuscate and hide malware. In order to calculate the
overall obfuscation rate, we have given a formula; however, it gave a quantitative rate,
which might not represent evasion possibility.

For the last question, we have introduced a method to solve implementation issues
on Harvard architecture or equivalent designs. The solution which we have proposed
to combine our attack with interpretation the information, which is stored in the data
cache, from the code which is located in the executable cache. In other words, we used
a interpreter as a virtual machine over the instruction cache in order to execute our gad-
gets. Instead of writing our own interpreter, the use of legitimate and known interpreters
have been considered more suitable because they cannot be valid signature to be detect-
able. FORTH is one of the most adequate interpreter languages for our implementation
and we have discussed implementation issues with FORTH. Thus, this question has been
solved with novel approach as well as previous question.

Last but not least,The reason why security analysts and researchers must be stay tuned
with these vulnerabilities has been proved in this thesis with elaborated prepared designs

59

Obfuscating Malware through Cache Memory Architecture Features

and experiments. We have made a significant progress in documenting and analyzing the
theoretical foundation of obfuscation methods with support of cache memories as also
possible as other private local memories like non uniform architecture. On the whole,
we have proposed three theoretical attack which actually need to be blend during the
implementation in the same attack, and then, it turned really strong obfuscation tech-
nique against today’s detection mechanisms. It is strongly probable that the concerned
modern architectures will be more and more popular day by day due to their advantages
over performance and efficiency. Without a doubt, these features that are exploited by
us is going to be also exploited by malicious authors, although there have been no sign
whether they are abused or not yet.

The Feature Works

Because it is first and only one contribution of the cache based obfuscation techniques,
the future works could be many and broad. However, to sum up, we will present several
opinion in this section. The whole studies could be easily interpreted and documented
with the non-uniform memory architecture, and we strongly believe it might efficient to
show some NUMA specific features and limitations.

Most importantly, we should research the possibilities to detect this kind of attacks
autonomously. These studies will be complimentary to this thesis because the one of the
main reasons of the thesis is to develop the proper defense mechanisms against them.
Our opinion is the behavioral analysis on a interconnection network could be helpful.
We also strongly believe some particular dynamic analysis methods could be efficient, as
well as machine learning based deobfuscation methods on the static side of defense.

The implementation issues with out of order CPU does not concerned in this thesis,
but we could encounter several issues with Out of ordering. There are commonly four
types of out of them which are I3O, 2I2O, I3O, IOIO. They could affect our control flow
designs and they must be analyzed in standalone research.

The consistency models are a bit mentioned in background studies, but also some
models can give coherency between caches. The effect of all consistency models over the
cache oriented obfuscation must be analyzed and documented. There could be several
exploration opportunities or tune up for implementation with these architectures.

For the cache coherency network, we could implement noise generator to increase
latency, but the important point here is that they could be detectable one. However, we
have already illustrated how the latency is important. If we could produce latency with
another obfuscated malware or gadget from another node, so the noise generator is really
interesting and powerful plug-in for our cache coherency attack in order to increase the
attack probability.

Also, as we have mentioned before, Booksim 2.0 simulation tool can be improved
with particular features to measure more specialized latency for our experiment. The
traffic in our interconnection network is quite characteristic because the observer node
is the one which produce regular scanning noise which is quite high, malicious node is
the one quite silent and other nodes produce nominal noise. Booksim v2.0 gives you
ability to program your own plug-ins to generate your own traffic. This could give better
understanding and more valid results in term of latency.

One of the most important usage of the code obfuscation in term of security is to
provide an enduring platform for software against crackers. Software developers use

60

Obfuscating Malware through Cache Memory Architecture Features

same principles with malicious authors to protect their authentication, validation or crit-
ical scoring values. We strongly believe that our cache oriented obfuscation can be a good
candidate to protect their software frameworks, too.

For next stage of our advance attack, concurrency between gadgets could be imple-
mented. Because of the undeterministic features of parallel computing, the parallel work-
ing gadgets could raise the bar one more level against the behavioural identification.

61

Obfuscating Malware through Cache Memory Architecture Features

Bibliography

[1] Turner, D., Fossi, M., Johnson, E., Mack, T., Blackbird, J., Entwisle, S., Low, M. K.,
McKinney, D., & Wueest, C. 2008. Symantec global internet security threat report–
trends for july-december 07. Symantec Enterprise Security, 13, 1–36.

[2] Shevchenko, A. 2007. The evolution of technologies used to detect malicious code.

[3] HPC. 2013. High performance computing valued opinion.

[4] Dally, W. J. & Towles, B. P. 2004. Principles and Practices of Interconnection Net-
works (The Morgan Kaufmann Series in Computer Architecture and Design). Morgan
Kaufmann.

[5] Sloss, A., Symes, D., & Wright, C. 2004. ARM system developer’s guide: designing
and optimizing system software. Morgan Kaufmann.

[6] Moser, A., Kruegel, C., & Kirda, E. 2007. Limits of static analysis for malware de-
tection. In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-
Third Annual, 421–430. IEEE.

[7] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. 2012. A survey on automated
dynamic malware-analysis techniques and tools. ACM Computing Surveys (CSUR),
44(2), 6.

[8] Cavallaro, L., Saxena, P., & Sekar, R. 2008. On the limits of information flow
techniques for malware analysis and containment. In Detection of Intrusions and
Malware, and Vulnerability Assessment, 143–163. Springer.

[9] Sparks, S. & Butler, J. 2005. Shadow walker”: Raising the bar for rootkit detection.
Black Hat Japan, 504–533.

[10] Yan, W., Zhang, Z., & Ansari, N. 2008. Revealing packed malware. Security &
Privacy, IEEE, 6(5), 65–69.

[11] Marpaung, J. A., Sain, M., & Lee, H.-J. 2012. Survey on malware evasion tech-
niques: state of the art and challenges. In Advanced Communication Technology
(ICACT), 2012 14th International Conference on, 744–749. IEEE.

[12] Balakrishnan, A. & Schulze, C. 2005. Code obfuscation literature survey. CS701
Construction of Compilers, 19.

[13] Nachenberg, C. 1996. Understanding and managing polymorphic viruses. The
Symantec Enterprise Papers, 30, 16.

[14] You, I. & Yim, K. 2010. Malware obfuscation techniques: A brief survey. In Broad-
band, Wireless Computing, Communication and Applications (BWCCA), 2010 Inter-
national Conference on, 297–300. IEEE.

63

Obfuscating Malware through Cache Memory Architecture Features

[15] Team, I. S. Bypassing anti-virus scanners. Packet Storm Security.

[16] Li, X., Loh, P. K., & Tan, F. 2011. Mechanisms of polymorphic and metamorphic
viruses. In Intelligence and Security Informatics Conference (EISIC), 2011 European,
149–154. IEEE.

[17] anonymous. Polymorphic generators. In VxHeaven.

[18] Ferrie, P. 2008. Anti-unpacker tricks. In Amsterdam: CARO Workshop.

[19] Konstantinou, E. & Wolthusen, S. 2008. Metamorphic virus: Analysis and detection.
Retrieved on February, 22, 2011.

[20] Rutkowska, J. 2006. Rootkits vs. stealth by design malware. Black Hat, Europe.

[21] Designer, S. 1997. Getting around non-executable stack (and fix).

[22] Shacham, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security, 552–561. ACM.

[23] Roemer, R., Buchanan, E., Shacham, H., & Savage, S. 2012. Return-oriented pro-
gramming: Systems, languages, and applications. ACM Transactions on Information
and System Security (TISSEC), 15(1), 2.

[24] Mohan, V. & Hamlen, K. W. 2012. Frankenstein: Stitching malware from benign
binaries. In WOOT, 77–84.

[25] Chen, X., Andersen, J., Mao, Z. M., Bailey, M., & Nazario, J. 2008. Towards an
understanding of anti-virtualization and anti-debugging behavior in modern mal-
ware. In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, 177–186. IEEE.

[26] Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., & Van Doorn, L.
2008. Remote detection of virtual machine monitors with fuzzy benchmarking.
ACM SIGOPS Operating Systems Review, 42(3), 83–92.

[27] Chris, M. 2008. What is rootkit and how to detect and protect from rootkits.

[28] Ducklin, P. 1991. Tequila.

[29] Abdalla, A. 2011. Rootkits classification and their countermeasures.

[30] Reddy, D. K. S. & Pujari, A. K. 2006. N-gram analysis for computer virus detection.
Journal in Computer Virology, 2(3), 231–239.

[31] Abou-Assaleh, T., Cercone, N., Keselj, V., & Sweidan, R. 2004. N-gram-based de-
tection of new malicious code. In Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th Annual International, volume 2, 41–
42. IEEE.

[32] Abou-Assaleh, T., Cercone, N., Keselj, V., & Sweidan, R. 2004. Detection of new
malicious code using n-grams signatures. In PST, 193–196.

64

Obfuscating Malware through Cache Memory Architecture Features

[33] Kendall, K. & McMillan, C. 2007. Practical malware analysis. In Black Hat Confer-
ence, USA.

[34] Saxena, P., Sekar, R., & Puranik, V. 2008. Efficient fine-grained binary instrument-
ationwith applications to taint-tracking. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization, 74–83. ACM.

[35] Smith, G. 2007. Principles of secure information flow analysis. In Malware Detec-
tion, 291–307. Springer.

[36] Lee, J., Jeong, K., & Lee, H. 2010. Detecting metamorphic malwares using code
graphs. In Proceedings of the 2010 ACM symposium on applied computing, 1970–
1977. ACM.

[37] Christodorescu, M. & Jha, S. Static analysis of executables to detect malicious
patterns. Technical report, DTIC Document, 2006.

[38] Christodorescu, M., Jha, S., Seshia, S. A., Song, D., & Bryant, R. E. 2005. Semantics-
aware malware detection. In Security and Privacy, 2005 IEEE Symposium on, 32–46.
IEEE.

[39] Hennessy, J. L. & Patterson, D. A. 2012. Computer architecture: a quantitative
approach. Elsevier.

[40] Shannon, C. E. 2001. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1), 3–55.

[41] Denning, P. J. 2005. The locality principle. Communications of the ACM, 48(7),
19–24.

[42] Kilburn, T., Edwards, D. B., Lanigan, M., & Sumner, F. H. 1962. One-level storage
system. Electronic Computers, IRE Transactions on, (2), 223–235.

[43] Wentzlaff, D. 2013. Computer architecture.

[44] Von Neumann, J. 1961. Collected works. Oxford: Pergamon, 1961, edited by Taub,
AH, 1.

[45] wikipedia. 2014. Cache(computing).

[46] Sorin, D. J., Hill, M. D., & Wood, D. A. 2011. A primer on memory consistency and
cache coherence. Synthesis Lectures on Computer Architecture, 6(3), 1–212.

[47] Papamarcos, M. S. & Patel, J. H. 1984. A low-overhead coherence solution for
multiprocessors with private cache memories. 12(3), 348–354.

[48] Development, A. & Department, R. 2013. Corelink cci-400 cache coherent inter-
connect.

[49] Tsopokis, C. V. 2013. Concurrent memory inspection for intrusion detection.

[50] Handy, J. 2007. the Cache Memory Book, second edition. Academic Press.

[51] Ramilli, M., Bishop, M., & Sun, S. 2011. Multiprocess malware. In Malicious and
Unwanted Software (MALWARE), 2011 6th International Conference on, 8–13. IEEE.

65

Obfuscating Malware through Cache Memory Architecture Features

[52] Rubini, A. & Corbet, J. 2001. "Memory Mapping and DMA." Linux Device Drivers.
Sebastopol:. O’Reilly & Associates.

[53] Jiang, N., Becker, D. U., Michelogiannakis, G., Balfour, J., Towles, B., Shaw, D.,
Kim, J., & Dally, W. 2013. A detailed and flexible cycle-accurate network-on-chip
simulator. In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE
International Symposium on, 86–96. IEEE.

[54] Von Neumann, J. 1993. First draft of a report on the edvac. IEEE Annals of the
History of Computing, 15(4), 27–75.

[55] Mak, R. 2011. Writing compilers and interpreters: a software engineering approach.
John Wiley & Sons.

[56] Abelson, H. 1996. Structure and interpretation of computer programs. Paul Muljadi.

[57] Koopman, P. 1993. A brief introduction to forth.

[58] Pelc, S. 2011. Programming forth. Microprocessor Engineering Limited.

[59] Kistler, T. & Franz, M. 1999. A tree-based alternative to java byte-codes. Interna-
tional Journal of Parallel Programming, 27(1), 21–33.

[60] Garen, G. 2008. Announcing squirrelfish. Surfin’Safari.

66

Obfuscating Malware through Cache Memory Architecture Features

A Cache Memory Simulation

__author__ = ’ cag l a r ’
import random

c lass Memory(object) :
def _ _ i n i t _ _ (s e l f) :

s e l f . memory = {}

def __get i tem__ (s e l f , item) :
t ry :

return s e l f . memory[item]
except KeyError :

return 0

def __set i tem__ (s e l f , key , value) :
s e l f . memory[key] = value

c lass Cache (object) :
def _ _ i n i t _ _ (s e l f , s i z e =32768, b l o c k _ s i z e =64, s e t s =2):

s e l f . s i z e = s i z e
s e l f . b l o c k _ s i z e = b lo c k _ s i z e
s e l f . s e t s = s e t s
s e l f . addr_s ize = 32
s e l f . cache = l i s t ()
s e l f . l i n e = s i z e / (s e t s ∗ b l o c k _ s i z e)
s e l f . b lock_addr_len =\

s e l f . __ca l cu la te_addr_ l en (s e l f . b l o c k _ s i z e)
s e l f . l i ne_addr_ len = \
s e l f . __ca l cu la te_addr_ l en (s e l f . l i n e)
s e l f . tag_addr_len = s e l f . addr_s i ze −\

s e l f . b lock_addr_ len − s e l f . l i ne_addr_ len
s e l f . super = None
s e l f . __bui ld ()

def __repr__ (s e l f) :
return s t r (s e l f . cache . __len__ ())

def __get i tem__ (s e l f , address) :
query = s e l f . toquery (address)
return s e l f . read_reques t (query)

def __set i tem__ (s e l f , address , value) :
s e l f . wr i t e_ reques t (address , value)

def se t super (s e l f , super) :
s e l f . super = super

67

Obfuscating Malware through Cache Memory Architecture Features

def __bui ld (s e l f) :
for i in range (s e l f . l i n e) :

s e l f . cache . append (CacheLine (i , s e l f . b lock_s i ze , s e l f . s e t s))

def __ca l cu la te_addr_ l en (s e l f , s i z e) :
i = 0
r e s u l t = 1
while s i z e > r e s u l t :

r e s u l t <<= 1
i += 1

return i

def toquery (s e l f , address) :
mask = (1 << 32) − 1
query = { " address " : address ,

" tag " : address >> (s e l f . addr_s ize − s e l f . tag_addr_len) ,
" index " : (address >> (s e l f . b lock_addr_len)) <<\

((s e l f . addr_s ize − s e l f . l i ne_addr_ len) & mask) >> (
s e l f . addr_s i ze − s e l f . l i ne_addr_ len) ,

" b lock " : ((address << (s e l f . addr_s ize − s e l f . b lock_addr_ len))\
& mask) >> (

s e l f . addr_s ize − s e l f . b lock_addr_ len)}
return query

def i s v a l i d (s e l f , query) :
for i in range (s e l f . cache [query [" index "]] . s e t s) :

i f (s e l f . cache [query [" index "]] . l i n e s [i][" tag "] i s query [" tag "]) and\
(s e l f . cache [query [" index "]] . l i n e s [i][’ v a l i d ’] i s True) :

s e l f . cache [query [" index "]] . used = i
return s e l f . cache [query [" index "]] . l i n e s [i]

return Fa l se

def read_reques t (s e l f , query) :
l i n e = s e l f . i s v a l i d (query)
i f l i n e :

return s e l f . __read_h i t (l ine , query)
else :

return s e l f . __read_miss (query)

def __read_h i t (s e l f , l i ne , query) :
return l i n e [" data "][query [" b lock "]]

def __read_miss (s e l f , query) :
s e l f . r e q u e s t _ l i n e (query) #proo f i t l a t e r .
return s e l f . read_reques t (query)

def wr i t e_ reques t (s e l f , address , value) :
query = s e l f . toquery (address)
l i n e = s e l f . i s v a l i d (query)
i f l i n e i s not −1:

return s e l f . _ _wr i t e_h i t (l ine , query , value)

68

Obfuscating Malware through Cache Memory Architecture Features

else :
return s e l f . __wr i te_miss (query)

def __wr i t e_h i t (s e l f , l i ne , query , value) :
l i n e [" data "][query [" b lock "]] = value
l i n e [" d i r t y "] = True

def __wri te_miss (s e l f , query) :
pass

def r e q u e s t _ l i n e (s e l f , query) :
l i n e = query [" address "] − query [" b lock "]
r l i n e = { " tag " : query [" tag "] , " data " : bytearray (s e l f . b l o c k _ s i z e)}
for i in range (s e l f . b l o c k_ s i z e) :

r l i n e [" data "][i] = s e l f . super [l i n e+i]
s e l f . cache [query [" index "]] . f i l l _ l i n e (r l i n e)

c lass CacheLine (object) :
#CacheLine i s a C l a s s f o r d e f i n i n g each cache b l o c k s in cache h i e r a r c hy
#During i n i t i a l i z a t i o n i t b u i l d a s t a t i c b l o ck o f g i v en
#s e t s s i z e d array with g i v en b l o ck s i z e as by t e
#I t has on ly one method to f i l l remote b l o ck in .
def _ _ i n i t _ _ (s e l f , index , s i ze , s e t s) :

s e l f . s i z e = s i z e
s e l f . s e t s = s e t s
s e l f . index = index
s e l f . l i n e s = l i s t ()
s e l f . __bui ld ()
s e l f . used = 0

def __repr__ (s e l f) :
return repr (s e l f . l i n e s)

def __bui ld (s e l f) :
#I n i t i a l i z e the f i r s t v iew o f the cache .
#I t w i l l invoke b u i l d _ l i n e () f o r each l i n e o f the cache .
for i in range (s e l f . s e t s) :

s e l f . l i n e s . append (s e l f . _ _ b u i l d _ l i n e ())

def _ _ b u i l d _ l i n e (s e l f) :
#Bui ld a l i n e with d e f a u l t v a r i a b l e s .
#data i s a by t e array which i s g i v en l e n g t h with s i z e
data = bytearray (s e l f . s i z e)
return { " tag " : 0 , " v a l i d " : False , " d i r t y " : \

False , " used " : False , " data " : data }

def mark_used (s e l f , l i n e) :
s e l f . used = l i n e

def g i ve_ rep l a ceab l e (s e l f) :
i f s e l f . s e t s == 1:

return 0

69

Obfuscating Malware through Cache Memory Architecture Features

else :
l i n e = random . rand in t (0 , s e l f . s e t s − 1)
i f s e l f . used != l i n e :

return l i n e
else :

return (l i n e + 1) % s e l f . s e t s

def f i l l _ l i n e (s e l f , r l i n e) :
I t f i l l s the co r r e spond ing b l o ck from the upper l a y e r i n t o the l i n e .
Input " r l i n e " i s a b b r e v i a t i o n o f remote l i n e formed as { tag , data }
As d e f a u l t , i t u s e s Not r e c e n t l y used , random rep lacement P o l i c y
i = s e l f . g i v e_ rep l a ceab l e ()
s e l f . l i n e s [i][" tag "] = r l i n e [" tag "]
s e l f . l i n e s [i][" v a l i d "] = True
s e l f . l i n e s [i][" d i r t y "] = Fa l se
s e l f . l i n e s [i][" data "] = r l i n e [" data "]

70

Obfuscating Malware through Cache Memory Architecture Features

B Real Systems Cache Coherency Latency Simulation
Results

B.1 Small Topology

B.1.1 Small Topology Simulation with Two Percent Injection Rate Configura-
tion File and Results

topology = anynet ;

rou t ing_ func t i on = min ;
ne twork_ f i l e = a n y n e t _ f i l e _ s m a l l ;
t r a f f i c = uniform ;

use_read_wri te = 0;

sample_period = 10000;
i n j e c t i o n _ r a t e = 0.02;
c r e d i t _ d e l a y = 1;
rout ing_de lay = 2;

v c _ a l l o c a t o r = s e p a r a b l e _ i n p u t _ f i r s t ;
sw_a l loca to r = s e p a r a b l e _ i n p u t _ f i r s t ;
a l l o c _ i t e r s = 1;

t r a f f i c = uniform ;

num_vcs = 1;
vc_bu f_ s i ze = 3;

END Conf igura t ion F i l e : . / anynet_conf ig
OVERRIDE Parameter : l a t e n c y _ t h r e s =500000.0
========================Network F i l e Parsed=================
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Node 0 Router 0
Node 1 Router 1
Node 2 Router 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Node 0 l a t 1
Router 1

Node 1 l a t 1
Router 2
Router 3

Node 2 l a t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to rou te r l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

71

Obfuscating Malware through Cache Memory Architecture Features

Router 2 l a t 40
Router 1

Router 2 l a t 40
Router 2

Router 0 l a t 40
Router 1 l a t 40
Router 3 l a t 40

Router 3
Router 2 l a t 40

==========================Node to Router =====================
route r 0 rad ix 2

connected to node 0 at outpor t 0 l a t 1
route r 1 rad ix 2

connected to node 1 at outpor t 0 l a t 1
route r 2 rad ix 3
route r 3 rad ix 2

connected to node 2 at outpor t 0 l a t 1
==========================Router to Router =====================
route r 0

connected to route r 2 using l i n k 0 at outpor t 1 l a t 40
route r 1

connected to route r 2 using l i n k 1 at outpor t 1 l a t 40
route r 2

connected to route r 0 using l i n k 2 at outpor t 0 l a t 40
connected to route r 1 using l i n k 3 at outpor t 1 l a t 40
connected to route r 3 using l i n k 4 at outpor t 2 l a t 40

route r 3
connected to route r 2 using l i n k 5 at outpor t 1 l a t 40

========================== Routing t a b l e =====================
Clas s 0:
Packet l a t ency average = 72.9545

minimum = 8
maximum = 210

Network l a t ency average = 72.3687
minimum = 8
maximum = 201

Slowest packet = 12
F l i t l a t ency average = 72.3687

minimum = 8
maximum = 201

Slowest f l i t = 164
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0198667
minimum = 0.0189 (at node 1)
maximum = 0.0204 (at node 2)

Accepted packet r a t e average = 0.0198
minimum = 0.0194 (at node 0)
maximum = 0.02 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0198667
minimum = 0.0189 (at node 1)
maximum = 0.0204 (at node 2)

72

Obfuscating Malware through Cache Memory Architecture Features

Accepted f l i t r a t e average= 0.0198
minimum = 0.0194 (at node 0)
maximum = 0.02 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 2 (0 measured)
l a t ency change = 1
throughput change = 1
Clas s 0:
Packet l a t ency average = 73.9654

minimum = 8
maximum = 214

Network l a t ency average = 73.6232
minimum = 8
maximum = 214

Slowest packet = 998
F l i t l a t ency average = 73.6232

minimum = 8
maximum = 214

Slowest f l i t = 998
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0202833
minimum = 0.01975 (at node 0)
maximum = 0.0212 (at node 2)

Accepted packet r a t e average = 0.0202167
minimum = 0.0197 (at node 0)
maximum = 0.02075 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0202833
minimum = 0.01975 (at node 0)
maximum = 0.0212 (at node 2)

Accepted f l i t r a t e average= 0.0202167
minimum = 0.0197 (at node 0)
maximum = 0.02075 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 4 (0 measured)
l a t ency change = 0.0136663
throughput change = 0.0206101
Clas s 0:
Packet l a t ency average = 74.9832

minimum = 8
maximum = 203

Network l a t ency average = 74.9446
minimum = 8
maximum = 203

Slowest packet = 1378
F l i t l a t ency average = 74.9446

minimum = 8
maximum = 203

Slowest f l i t = 1378
Fragmentation average = 0

73

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0198667
minimum = 0.0189 (at node 0)
maximum = 0.0211 (at node 1)

Accepted packet r a t e average = 0.0198667
minimum = 0.0198 (at node 0)
maximum = 0.0199 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0198667
minimum = 0.0189 (at node 0)
maximum = 0.0211 (at node 1)

Accepted f l i t r a t e average= 0.0198667
minimum = 0.0198 (at node 0)
maximum = 0.0199 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 4 (0 measured)
l a t ency change = 0.0135743
throughput change = 0.0176174
Warmed up . . . Time used i s 30000 c y c l e s
C la s s 0:
Packet l a t ency average = 69.2534

minimum = 8
maximum = 202

Network l a t ency average = 69.1351
minimum = 8
maximum = 174

Slowest packet = 2114
F l i t l a t ency average = 69.3289

minimum = 8
maximum = 174

Slowest f l i t = 2114
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0198
minimum = 0.0182 (at node 1)
maximum = 0.0221 (at node 0)

Accepted packet r a t e average = 0.0198667
minimum = 0.0177 (at node 0)
maximum = 0.0218 (at node 2)

I n j e c t e d f l i t r a t e average = 0.0198
minimum = 0.0182 (at node 1)
maximum = 0.0221 (at node 0)

Accepted f l i t r a t e average= 0.0198667
minimum = 0.0177 (at node 0)
maximum = 0.0218 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 2 (2 measured)
l a t ency change = 0.0827374
throughput change = 0
Clas s 0:

74

Obfuscating Malware through Cache Memory Architecture Features

Packet l a t ency average = 72.145
minimum = 8
maximum = 202

Network l a t ency average = 72.0387
minimum = 8
maximum = 183

Slowest packet = 2114
F l i t l a t ency average = 72.124

minimum = 8
maximum = 183

Slowest f l i t = 2425
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.02025
minimum = 0.01885 (at node 2)
maximum = 0.02165 (at node 0)

Accepted packet r a t e average = 0.0203
minimum = 0.01905 (at node 0)
maximum = 0.02095 (at node 2)

I n j e c t e d f l i t r a t e average = 0.02025
minimum = 0.01885 (at node 2)
maximum = 0.02165 (at node 0)

Accepted f l i t r a t e average= 0.0203
minimum = 0.01905 (at node 0)
maximum = 0.02095 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 1 (1 measured)
l a t ency change = 0.0400804
throughput change = 0.0213465
Clas s 0:
Packet l a t ency average = 71.4124

minimum = 8
maximum = 216

Network l a t ency average = 71.3402
minimum = 8
maximum = 216

Slowest packet = 3080
F l i t l a t ency average = 71.3998

minimum = 8
maximum = 216

Slowest f l i t = 3080
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0198889
minimum = 0.0191667 (at node 2)
maximum = 0.0207667 (at node 0)

Accepted packet r a t e average = 0.0199
minimum = 0.0186 (at node 0)
maximum = 0.0208667 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0198889

75

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0.0191667 (at node 2)
maximum = 0.0207667 (at node 0)

Accepted f l i t r a t e average= 0.0199
minimum = 0.0186 (at node 0)
maximum = 0.0208667 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 3 (3 measured)
l a t ency change = 0.0102581
throughput change = 0.0201005
Clas s 0:
Packet l a t ency average = 71.295

minimum = 8
maximum = 216

Network l a t ency average = 71.2135
minimum = 8
maximum = 216

Slowest packet = 3080
F l i t l a t ency average = 71.2577

minimum = 8
maximum = 216

Slowest f l i t = 3080
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0202
minimum = 0.0193 (at node 2)
maximum = 0.021325 (at node 0)

Accepted packet r a t e average = 0.020175
minimum = 0.019725 (at node 0)
maximum = 0.0208 (at node 2)

I n j e c t e d f l i t r a t e average = 0.0202
minimum = 0.0193 (at node 2)
maximum = 0.021325 (at node 0)

Accepted f l i t r a t e average= 0.020175
minimum = 0.019725 (at node 0)
maximum = 0.0208 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 7 (7 measured)
l a t ency change = 0.00164709
throughput change = 0.0136307
Draining a l l recorded packets . . .
Draining remaining packets . . .
Time taken i s 70306 c y c l e s
====== Overa l l T r a f f i c S t a t i s t i c s ======
====== T r a f f i c c lass 0 ======
Packet l a t ency average = 71.4146 (1 samples)

minimum = 8 (1 samples)
maximum = 216 (1 samples)

Network l a t ency average = 71.3333 (1 samples)
minimum = 8 (1 samples)
maximum = 216 (1 samples)

76

Obfuscating Malware through Cache Memory Architecture Features

F l i t l a t ency average = 71.4756 (1 samples)
minimum = 8 (1 samples)
maximum = 216 (1 samples)

Fragmentation average = 0 (1 samples)
minimum = 0 (1 samples)
maximum = 0 (1 samples)

I n j e c t e d packet r a t e average = 0.0202 (1 samples)
minimum = 0.0193 (1 samples)
maximum = 0.021325 (1 samples)

Accepted packet r a t e average = 0.020175 (1 samples)
minimum = 0.019725 (1 samples)
maximum = 0.0208 (1 samples)

I n j e c t e d f l i t r a t e average = 0.0202 (1 samples)
minimum = 0.0193 (1 samples)
maximum = 0.021325 (1 samples)

Accepted f l i t r a t e average = 0.020175 (1 samples)
minimum = 0.019725 (1 samples)
maximum = 0.0208 (1 samples)

I n j e c t e d packet s i z e average = 1 (1 samples)
Accepted packet s i z e average = 1 (1 samples)
Hops average = 2.30611 (1 samples)
Tota l run time 0.128789

B.1.2 Small Topology Simulation with Four Percent Injection Rate Configura-
tion File and Results

topology = anynet ;

rou t ing_ func t i on = min ;
ne twork_ f i l e = a n y n e t _ f i l e _ s m a l l ;
t r a f f i c = uniform ;

use_read_wri te = 0;

sample_period = 10000;
i n j e c t i o n _ r a t e = 0.04;
c r e d i t _ d e l a y = 1;
rout ing_de lay = 2;

v c _ a l l o c a t o r = s e p a r a b l e _ i n p u t _ f i r s t ;
sw_a l loca to r = s e p a r a b l e _ i n p u t _ f i r s t ;
a l l o c _ i t e r s = 1;

t r a f f i c = uniform ;

num_vcs = 1;
vc_bu f_ s i ze = 3;

END Conf igura t ion F i l e : . / anynet_conf ig
OVERRIDE Parameter : l a t e n c y _ t h r e s =500000.0
========================Network F i l e Parsed=================
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Node 0 Router 0

77

Obfuscating Malware through Cache Memory Architecture Features

Node 1 Router 1
Node 2 Router 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Node 0 l a t 1
Router 1

Node 1 l a t 1
Router 2
Router 3

Node 2 l a t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to rou te r l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Router 2 l a t 40
Router 1

Router 2 l a t 40
Router 2

Router 0 l a t 40
Router 1 l a t 40
Router 3 l a t 40

Router 3
Router 2 l a t 40

==========================Node to Router =====================
route r 0 rad ix 2

connected to node 0 at outpor t 0 l a t 1
route r 1 rad ix 2

connected to node 1 at outpor t 0 l a t 1
route r 2 rad ix 3
route r 3 rad ix 2

connected to node 2 at outpor t 0 l a t 1
==========================Router to Router =====================
route r 0

connected to route r 2 using l i n k 0 at outpor t 1 l a t 40
route r 1

connected to route r 2 using l i n k 1 at outpor t 1 l a t 40
route r 2

connected to route r 0 using l i n k 2 at outpor t 0 l a t 40
connected to route r 1 using l i n k 3 at outpor t 1 l a t 40
connected to route r 3 using l i n k 4 at outpor t 2 l a t 40

route r 3
connected to route r 2 using l i n k 5 at outpor t 1 l a t 40

========================== Routing t a b l e =====================
Clas s 0:
Packet l a t ency average = 308.783

minimum = 8
maximum = 710

Network l a t ency average = 132.524
minimum = 8
maximum = 332

Slowest packet = 20
F l i t l a t ency average = 132.524

minimum = 8

78

Obfuscating Malware through Cache Memory Architecture Features

maximum = 332
Slowest f l i t = 251
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0395667
minimum = 0.037 (at node 1)
maximum = 0.0419 (at node 0)

Accepted packet r a t e average = 0.0389333
minimum = 0.038 (at node 0)
maximum = 0.0394 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0395667
minimum = 0.037 (at node 1)
maximum = 0.0419 (at node 0)

Accepted f l i t r a t e average= 0.0389333
minimum = 0.038 (at node 0)
maximum = 0.0394 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 22 (0 measured)
l a t ency change = 1
throughput change = 1
Clas s 0:
Packet l a t ency average = 306.502

minimum = 8
maximum = 753

Network l a t ency average = 133.564
minimum = 8
maximum = 343

Slowest packet = 20
F l i t l a t ency average = 133.564

minimum = 8
maximum = 343

Slowest f l i t = 1535
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0401333
minimum = 0.03815 (at node 1)
maximum = 0.0415 (at node 0)

Accepted packet r a t e average = 0.0399833
minimum = 0.0384 (at node 0)
maximum = 0.04085 (at node 2)

I n j e c t e d f l i t r a t e average = 0.0401333
minimum = 0.03815 (at node 1)
maximum = 0.0415 (at node 0)

Accepted f l i t r a t e average= 0.0399833
minimum = 0.0384 (at node 0)
maximum = 0.04085 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 10 (0 measured)
l a t ency change = 0.00744372

79

Obfuscating Malware through Cache Memory Architecture Features

throughput change = 0.0262609
Clas s 0:
Packet l a t ency average = 188.926

minimum = 8
maximum = 985

Network l a t ency average = 112.832
minimum = 8
maximum = 352

Slowest packet = 2565
F l i t l a t ency average = 112.832

minimum = 8
maximum = 352

Slowest f l i t = 3086
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0384
minimum = 0.0376 (at node 2)
maximum = 0.039 (at node 0)

Accepted packet r a t e average = 0.0382333
minimum = 0.0365 (at node 0)
maximum = 0.0403 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0384
minimum = 0.0376 (at node 2)
maximum = 0.039 (at node 0)

Accepted f l i t r a t e average= 0.0382333
minimum = 0.0365 (at node 0)
maximum = 0.0403 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 16 (0 measured)
l a t ency change = 0.622339
throughput change = 0.0457716
Warmed up . . . Time used i s 30000 c y c l e s
C la s s 0:
Packet l a t ency average = 551.94

minimum = 8
maximum = 1273

Network l a t ency average = 142.715
minimum = 8
maximum = 327

Slowest packet = 3568
F l i t l a t ency average = 142.685

minimum = 8
maximum = 327

Slowest f l i t = 3918
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0408333
minimum = 0.0387 (at node 1)
maximum = 0.0432 (at node 0)

Accepted packet r a t e average = 0.0406667

80

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0.0379 (at node 1)
maximum = 0.0424 (at node 2)

I n j e c t e d f l i t r a t e average = 0.0408333
minimum = 0.0387 (at node 1)
maximum = 0.0432 (at node 0)

Accepted f l i t r a t e average= 0.0406667
minimum = 0.0379 (at node 1)
maximum = 0.0424 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 22 (22 measured)
l a t ency change = 0.657706
throughput change = 0.0598361
Clas s 0:
Packet l a t ency average = 460.257

minimum = 8
maximum = 1273

Network l a t ency average = 137.793
minimum = 8
maximum = 339

Slowest packet = 3568
F l i t l a t ency average = 137.81

minimum = 8
maximum = 339

Slowest f l i t = 5156
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0409
minimum = 0.03965 (at node 2)
maximum = 0.04255 (at node 0)

Accepted packet r a t e average = 0.0408333
minimum = 0.04035 (at node 1)
maximum = 0.04125 (at node 0)

I n j e c t e d f l i t r a t e average = 0.0409
minimum = 0.03965 (at node 2)
maximum = 0.04255 (at node 0)

Accepted f l i t r a t e average= 0.0408333
minimum = 0.04035 (at node 1)
maximum = 0.04125 (at node 0)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 21 (21 measured)
l a t ency change = 0.199201
throughput change = 0.00408163
Clas s 0:
Packet l a t ency average = 367.683

minimum = 8
maximum = 1273

Network l a t ency average = 131.212
minimum = 8
maximum = 339

Slowest packet = 3568

81

Obfuscating Malware through Cache Memory Architecture Features

F l i t l a t ency average = 131.253
minimum = 8
maximum = 339

Slowest f l i t = 5156
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0401444
minimum = 0.0388 (at node 2)
maximum = 0.0414333 (at node 0)

Accepted packet r a t e average = 0.0401444
minimum = 0.0393 (at node 1)
maximum = 0.0409667 (at node 2)

I n j e c t e d f l i t r a t e average = 0.0401444
minimum = 0.0388 (at node 2)
maximum = 0.0414333 (at node 0)

Accepted f l i t r a t e average= 0.0401444
minimum = 0.0393 (at node 1)
maximum = 0.0409667 (at node 2)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 16 (16 measured)
l a t ency change = 0.251776
throughput change = 0.0171603
Clas s 0:
Packet l a t ency average = 329.038

minimum = 8
maximum = 1273

Network l a t ency average = 127.882
minimum = 8
maximum = 339

Slowest packet = 3568
F l i t l a t ency average = 127.923

minimum = 8
maximum = 339

Slowest f l i t = 5156
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.04045
minimum = 0.03945 (at node 2)
maximum = 0.041525 (at node 0)

Accepted packet r a t e average = 0.0404083
minimum = 0.039525 (at node 1)
maximum = 0.041075 (at node 0)

I n j e c t e d f l i t r a t e average = 0.04045
minimum = 0.03945 (at node 2)
maximum = 0.041525 (at node 0)

Accepted f l i t r a t e average= 0.0404083
minimum = 0.039525 (at node 1)
maximum = 0.041075 (at node 0)

I n j e c t e d packet length average = 1
Accepted packet length average = 1

82

Obfuscating Malware through Cache Memory Architecture Features

Tota l in− f l i g h t f l i t s = 22 (22 measured)
l a t ency change = 0.117447
throughput change = 0.00653056
Clas s 0:
Packet l a t ency average = 333.177

minimum = 8
maximum = 1273

Network l a t ency average = 129.5
minimum = 8
maximum = 376

Slowest packet = 3568
F l i t l a t ency average = 129.529

minimum = 8
maximum = 376

Slowest f l i t = 8574
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.04046
minimum = 0.03966 (at node 2)
maximum = 0.04158 (at node 0)

Accepted packet r a t e average = 0.0404667
minimum = 0.04008 (at node 1)
maximum = 0.04124 (at node 0)

I n j e c t e d f l i t r a t e average = 0.04046
minimum = 0.03966 (at node 2)
maximum = 0.04158 (at node 0)

Accepted f l i t r a t e average= 0.0404667
minimum = 0.04008 (at node 1)
maximum = 0.04124 (at node 0)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 14 (14 measured)
l a t ency change = 0.0124201
throughput change = 0.00144152
Clas s 0:
Packet l a t ency average = 327.389

minimum = 8
maximum = 1273

Network l a t ency average = 129.176
minimum = 8
maximum = 376

Slowest packet = 3568
F l i t l a t ency average = 129.2

minimum = 8
maximum = 376

Slowest f l i t = 8574
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0402778
minimum = 0.0398333 (at node 2)
maximum = 0.0408833 (at node 0)

83

Obfuscating Malware through Cache Memory Architecture Features

Accepted packet r a t e average = 0.04025
minimum = 0.0396667 (at node 2)
maximum = 0.04085 (at node 0)

I n j e c t e d f l i t r a t e average = 0.0402778
minimum = 0.0398333 (at node 2)
maximum = 0.0408833 (at node 0)

Accepted f l i t r a t e average= 0.04025
minimum = 0.0396667 (at node 2)
maximum = 0.04085 (at node 0)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 20 (20 measured)
l a t ency change = 0.0176767
throughput change = 0.00538302
Clas s 0:
Packet l a t ency average = 320.373

minimum = 8
maximum = 1273

Network l a t ency average = 128.734
minimum = 8
maximum = 376

Slowest packet = 3568
F l i t l a t ency average = 128.756

minimum = 8
maximum = 376

Slowest f l i t = 8574
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0401429
minimum = 0.0398571 (at node 2)
maximum = 0.0406143 (at node 0)

Accepted packet r a t e average = 0.0401238
minimum = 0.0396857 (at node 2)
maximum = 0.0408857 (at node 0)

I n j e c t e d f l i t r a t e average = 0.0401429
minimum = 0.0398571 (at node 2)
maximum = 0.0406143 (at node 0)

Accepted f l i t r a t e average= 0.0401238
minimum = 0.0396857 (at node 2)
maximum = 0.0408857 (at node 0)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 21 (21 measured)
l a t ency change = 0.0219011
throughput change = 0.00314503
Draining a l l recorded packets . . .
Draining remaining packets . . .
Time taken i s 100954 c y c l e s
====== Overa l l T r a f f i c S t a t i s t i c s ======
====== T r a f f i c c lass 0 ======
Packet l a t ency average = 321.091 (1 samples)

minimum = 8 (1 samples)

84

Obfuscating Malware through Cache Memory Architecture Features

maximum = 1273 (1 samples)
Network l a t ency average = 128.916 (1 samples)

minimum = 8 (1 samples)
maximum = 376 (1 samples)

F l i t l a t ency average = 129.072 (1 samples)
minimum = 8 (1 samples)
maximum = 376 (1 samples)

Fragmentation average = 0 (1 samples)
minimum = 0 (1 samples)
maximum = 0 (1 samples)

I n j e c t e d packet r a t e average = 0.0401429 (1 samples)
minimum = 0.0398571 (1 samples)
maximum = 0.0406143 (1 samples)

Accepted packet r a t e average = 0.0401238 (1 samples)
minimum = 0.0396857 (1 samples)
maximum = 0.0408857 (1 samples)

I n j e c t e d f l i t r a t e average = 0.0401429 (1 samples)
minimum = 0.0398571 (1 samples)
maximum = 0.0406143 (1 samples)

Accepted f l i t r a t e average = 0.0401238 (1 samples)
minimum = 0.0396857 (1 samples)
maximum = 0.0408857 (1 samples)

I n j e c t e d packet s i z e average = 1 (1 samples)
Accepted packet s i z e average = 1 (1 samples)
Hops average = 2.33081 (1 samples)
Tota l run time 0.298342

B.2 Crowded Topology

B.2.1 Crowded Topology Simulation with Two Percent Injection Rate Config-
uration File and Results

topology = anynet ;

rou t ing_ func t i on = min ;
ne twork_ f i l e = a n y n e t _ f i l e ;
t r a f f i c = uniform ;

use_read_wri te = 0;

sample_period = 10000;
i n j e c t i o n _ r a t e = 0.02;
c r e d i t _ d e l a y = 1;
rout ing_de lay = 2;

v c _ a l l o c a t o r = s e p a r a b l e _ i n p u t _ f i r s t ;
sw_a l loca to r = s e p a r a b l e _ i n p u t _ f i r s t ;
a l l o c _ i t e r s = 1;

t r a f f i c = uniform ;

num_vcs = 1;
vc_bu f_ s i ze = 3;

85

Obfuscating Malware through Cache Memory Architecture Features

END Conf igura t ion F i l e : . / anynet_conf ig
OVERRIDE Parameter : l a t e n c y _ t h r e s =500000.0
========================Network F i l e Parsed=================
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Node 0 Router 0
Node 1 Router 0
Node 2 Router 0
Node 3 Router 0
Node 4 Router 1
Node 5 Router 1
Node 6 Router 1
Node 7 Router 1
Node 8 Router 2
Node 9 Router 2
Node 10 Router 2
Node 11 Router 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Node 0 l a t 1
Node 1 l a t 1
Node 2 l a t 1
Node 3 l a t 1

Router 1
Node 4 l a t 1
Node 5 l a t 1
Node 6 l a t 1
Node 7 l a t 1

Router 2
Node 8 l a t 1
Node 9 l a t 1
Node 10 l a t 1

Router 3
Node 11 l a t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to rou te r l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Router 2 l a t 40
Router 1

Router 2 l a t 40
Router 2

Router 0 l a t 40
Router 1 l a t 40
Router 3 l a t 40

Router 3
Router 2 l a t 40

==========================Node to Router =====================
route r 0 rad ix 5

connected to node 0 at outpor t 0 l a t 1
connected to node 1 at outpor t 1 l a t 1
connected to node 2 at outpor t 2 l a t 1
connected to node 3 at outpor t 3 l a t 1

86

Obfuscating Malware through Cache Memory Architecture Features

rou te r 1 rad ix 5
connected to node 4 at outpor t 0 l a t 1
connected to node 5 at outpor t 1 l a t 1
connected to node 6 at outpor t 2 l a t 1
connected to node 7 at outpor t 3 l a t 1

route r 2 rad ix 6
connected to node 8 at outpor t 0 l a t 1
connected to node 9 at outpor t 1 l a t 1
connected to node 10 at outpor t 2 l a t 1

route r 3 rad ix 2
connected to node 11 at outpor t 0 l a t 1

==========================Router to Router =====================
route r 0

connected to route r 2 using l i n k 0 at outpor t 4 l a t 40
route r 1

connected to route r 2 using l i n k 1 at outpor t 4 l a t 40
route r 2

connected to route r 0 using l i n k 2 at outpor t 3 l a t 40
connected to route r 1 using l i n k 3 at outpor t 4 l a t 40
connected to route r 3 using l i n k 4 at outpor t 5 l a t 40

route r 3
connected to route r 2 using l i n k 5 at outpor t 1 l a t 40

========================== Routing t a b l e =====================
Clas s 0:
Packet l a t ency average = 1657.81

minimum = 8
maximum = 6271

Network l a t ency average = 312.254
minimum = 8
maximum = 1208

Slowest packet = 93
F l i t l a t ency average = 312.254

minimum = 8
maximum = 1208

Slowest f l i t = 806
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.011975
minimum = 0.0073 (at node 2)
maximum = 0.0205 (at node 8)

Accepted packet r a t e average = 0.011625
minimum = 0.01 (at node 5)
maximum = 0.0139 (at node 8)

I n j e c t e d f l i t r a t e average = 0.011975
minimum = 0.0073 (at node 2)
maximum = 0.0205 (at node 8)

Accepted f l i t r a t e average= 0.011625
minimum = 0.01 (at node 5)
maximum = 0.0139 (at node 8)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 53 (0 measured)

87

Obfuscating Malware through Cache Memory Architecture Features

l a t ency change = 1
throughput change = 1
Clas s 0:
Packet l a t ency average = 3193

minimum = 8
maximum = 13321

Network l a t ency average = 334.875
minimum = 8
maximum = 1293

Slowest packet = 93
F l i t l a t ency average = 334.875

minimum = 8
maximum = 1293

Slowest f l i t = 2291
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0112958
minimum = 0.00695 (at node 2)
maximum = 0.019 (at node 8)

Accepted packet r a t e average = 0.0111042
minimum = 0.01005 (at node 6)
maximum = 0.01185 (at node 8)

I n j e c t e d f l i t r a t e average = 0.0112958
minimum = 0.00695 (at node 2)
maximum = 0.019 (at node 8)

Accepted f l i t r a t e average= 0.0111042
minimum = 0.01005 (at node 6)
maximum = 0.01185 (at node 8)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 58 (0 measured)
l a t ency change = 0.480798
throughput change = 0.0469043
Clas s 0:
Packet l a t ency average = 8449.87

minimum = 114
maximum = 19618

Network l a t ency average = 342.531
minimum = 13
maximum = 1135

Slowest packet = 2677
F l i t l a t ency average = 342.531

minimum = 13
maximum = 1135

Slowest f l i t = 3713
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0112417
minimum = 0.0068 (at node 2)
maximum = 0.0206 (at node 8)

Accepted packet r a t e average = 0.0112417

88

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0.0099 (at node 7)
maximum = 0.0137 (at node 10)

I n j e c t e d f l i t r a t e average = 0.0112417
minimum = 0.0068 (at node 2)
maximum = 0.0206 (at node 8)

Accepted f l i t r a t e average= 0.0112417
minimum = 0.0099 (at node 7)
maximum = 0.0137 (at node 10)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (0 measured)
l a t ency change = 0.622125
throughput change = 0.0122313
Warmed up . . . Time used i s 30000 c y c l e s
C la s s 0:
Packet l a t ency average = 12343.5

minimum = 164
maximum = 26760

Network l a t ency average = 349.241
minimum = 13
maximum = 1297

Slowest packet = 4074
F l i t l a t ency average = 354.648

minimum = 13
maximum = 1297

Slowest f l i t = 4733
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0108667
minimum = 0.0063 (at node 3)
maximum = 0.018 (at node 8)

Accepted packet r a t e average = 0.010875
minimum = 0.0096 (at node 0)
maximum = 0.0139 (at node 7)

I n j e c t e d f l i t r a t e average = 0.0108667
minimum = 0.0063 (at node 3)
maximum = 0.018 (at node 8)

Accepted f l i t r a t e average= 0.010875
minimum = 0.0096 (at node 0)
maximum = 0.0139 (at node 7)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.315437
throughput change = 0.0337165
Clas s 0:
Packet l a t ency average = 13883.6

minimum = 164
maximum = 31189

Network l a t ency average = 346.06
minimum = 13
maximum = 1432

89

Obfuscating Malware through Cache Memory Architecture Features

Slowest packet = 4074
F l i t l a t ency average = 348.781

minimum = 13
maximum = 1432

Slowest f l i t = 5791
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0110875
minimum = 0.00695 (at node 0)
maximum = 0.01905 (at node 8)

Accepted packet r a t e average = 0.0110833
minimum = 0.0102 (at node 10)
maximum = 0.0117 (at node 1)

I n j e c t e d f l i t r a t e average = 0.0110875
minimum = 0.00695 (at node 0)
maximum = 0.01905 (at node 8)

Accepted f l i t r a t e average= 0.0110833
minimum = 0.0102 (at node 10)
maximum = 0.0117 (at node 1)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 59 (59 measured)
l a t ency change = 0.11093
throughput change = 0.018797
Clas s 0:
Packet l a t ency average = 15672.2

minimum = 164
maximum = 37429

Network l a t ency average = 344.413
minimum = 13
maximum = 1432

Slowest packet = 4074
F l i t l a t ency average = 346.243

minimum = 13
maximum = 1432

Slowest f l i t = 5791
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.011125
minimum = 0.0072 (at node 7)
maximum = 0.0184333 (at node 8)

Accepted packet r a t e average = 0.011125
minimum = 0.0105667 (at node 2)
maximum = 0.0123 (at node 3)

I n j e c t e d f l i t r a t e average = 0.011125
minimum = 0.0072 (at node 7)
maximum = 0.0184333 (at node 8)

Accepted f l i t r a t e average= 0.011125
minimum = 0.0105667 (at node 2)
maximum = 0.0123 (at node 3)

I n j e c t e d packet length average = 1

90

Obfuscating Malware through Cache Memory Architecture Features

Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 58 (58 measured)
l a t ency change = 0.114131
throughput change = 0.00374532
Clas s 0:
Packet l a t ency average = 17194.6

minimum = 164
maximum = 43793

Network l a t ency average = 348.875
minimum = 13
maximum = 1432

Slowest packet = 4074
F l i t l a t ency average = 350.215

minimum = 13
maximum = 1432

Slowest f l i t = 5791
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0110042
minimum = 0.00715 (at node 0)
maximum = 0.0181 (at node 8)

Accepted packet r a t e average = 0.0110042
minimum = 0.010225 (at node 0)
maximum = 0.011975 (at node 3)

I n j e c t e d f l i t r a t e average = 0.0110042
minimum = 0.00715 (at node 0)
maximum = 0.0181 (at node 8)

Accepted f l i t r a t e average= 0.0110042
minimum = 0.010225 (at node 0)
maximum = 0.011975 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.088534
throughput change = 0.0109807
Clas s 0:
Packet l a t ency average = 18819.7

minimum = 164
maximum = 49891

Network l a t ency average = 350.226
minimum = 13
maximum = 1432

Slowest packet = 4074
F l i t l a t ency average = 351.289

minimum = 13
maximum = 1432

Slowest f l i t = 5791
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0109783
minimum = 0.00706 (at node 0)

91

Obfuscating Malware through Cache Memory Architecture Features

maximum = 0.018 (at node 8)
Accepted packet r a t e average = 0.01098

minimum = 0.01012 (at node 0)
maximum = 0.01198 (at node 3)

I n j e c t e d f l i t r a t e average = 0.0109783
minimum = 0.00706 (at node 0)
maximum = 0.018 (at node 8)

Accepted f l i t r a t e average= 0.01098
minimum = 0.01012 (at node 0)
maximum = 0.01198 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.0863534
throughput change = 0.00220097
Clas s 0:
Packet l a t ency average = 20473.2

minimum = 164
maximum = 56702

Network l a t ency average = 350.566
minimum = 13
maximum = 1484

Slowest packet = 4074
F l i t l a t ency average = 351.451

minimum = 13
maximum = 1484

Slowest f l i t = 11185
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0109583
minimum = 0.00715 (at node 0)
maximum = 0.0181333 (at node 8)

Accepted packet r a t e average = 0.0109569
minimum = 0.0102667 (at node 5)
maximum = 0.0118833 (at node 3)

I n j e c t e d f l i t r a t e average = 0.0109583
minimum = 0.00715 (at node 0)
maximum = 0.0181333 (at node 8)

Accepted f l i t r a t e average= 0.0109569
minimum = 0.0102667 (at node 5)
maximum = 0.0118833 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 59 (59 measured)
l a t ency change = 0.0807633
throughput change = 0.0021042
Clas s 0:
Packet l a t ency average = 22190

minimum = 164
maximum = 63533

Network l a t ency average = 350.325
minimum = 13

92

Obfuscating Malware through Cache Memory Architecture Features

maximum = 1484
Slowest packet = 4074
F l i t l a t ency average = 351.085

minimum = 13
maximum = 1484

Slowest f l i t = 11185
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0109619
minimum = 0.00714286 (at node 4)
maximum = 0.0181571 (at node 9)

Accepted packet r a t e average = 0.0109619
minimum = 0.0102429 (at node 0)
maximum = 0.0115714 (at node 6)

I n j e c t e d f l i t r a t e average = 0.0109619
minimum = 0.00714286 (at node 4)
maximum = 0.0181571 (at node 9)

Accepted f l i t r a t e average= 0.0109619
minimum = 0.0102429 (at node 0)
maximum = 0.0115714 (at node 6)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 58 (58 measured)
l a t ency change = 0.0773679
throughput change = 0.000452505
Draining a l l recorded packets . . .
C la s s 0:
.
.
.
Draining remaining packets . . .
Time taken i s 272185 c y c l e s
====== Overa l l T r a f f i c S t a t i s t i c s ======
====== T r a f f i c c lass 0 ======
Packet l a t ency average = 68044.5 (1 samples)

minimum = 164 (1 samples)
maximum = 171627 (1 samples)

Network l a t ency average = 416.403 (1 samples)
minimum = 13 (1 samples)
maximum = 1487 (1 samples)

F l i t l a t ency average = 352.451 (1 samples)
minimum = 13 (1 samples)
maximum = 1487 (1 samples)

Fragmentation average = 0 (1 samples)
minimum = 0 (1 samples)
maximum = 0 (1 samples)

I n j e c t e d packet r a t e average = 0.0109619 (1 samples)
minimum = 0.00714286 (1 samples)
maximum = 0.0181571 (1 samples)

Accepted packet r a t e average = 0.0109619 (1 samples)
minimum = 0.0102429 (1 samples)
maximum = 0.0115714 (1 samples)

93

Obfuscating Malware through Cache Memory Architecture Features

I n j e c t e d f l i t r a t e average = 0.0109619 (1 samples)
minimum = 0.00714286 (1 samples)
maximum = 0.0181571 (1 samples)

Accepted f l i t r a t e average = 0.0109619 (1 samples)
minimum = 0.0102429 (1 samples)
maximum = 0.0115714 (1 samples)

I n j e c t e d packet s i z e average = 1 (1 samples)
Accepted packet s i z e average = 1 (1 samples)
Hops average = 2.04442 (1 samples)
Tota l run time 2.05016

B.2.2 Crowded Topology Simulation with Four Percent Injection Rate Config-
uration File and Results

topology = anynet ;

rou t ing_ func t i on = min ;
ne twork_ f i l e = a n y n e t _ f i l e ;
t r a f f i c = uniform ;

use_read_wri te = 0;

sample_period = 10000;
i n j e c t i o n _ r a t e = 0.04;
c r e d i t _ d e l a y = 1;
rout ing_de lay = 2;

v c _ a l l o c a t o r = s e p a r a b l e _ i n p u t _ f i r s t ;
sw_a l loca to r = s e p a r a b l e _ i n p u t _ f i r s t ;
a l l o c _ i t e r s = 1;

t r a f f i c = uniform ;

num_vcs = 1;
vc_bu f_ s i ze = 3;

END Conf igura t ion F i l e : . / anynet_conf ig
OVERRIDE Parameter : l a t e n c y _ t h r e s =500000.0
========================Network F i l e Parsed=================
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Node 0 Router 0
Node 1 Router 0
Node 2 Router 0
Node 3 Router 0
Node 4 Router 1
Node 5 Router 1
Node 6 Router 1
Node 7 Router 1
Node 8 Router 2
Node 9 Router 2
Node 10 Router 2
Node 11 Router 3

94

Obfuscating Malware through Cache Memory Architecture Features

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to node l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Node 0 l a t 1
Node 1 l a t 1
Node 2 l a t 1
Node 3 l a t 1

Router 1
Node 4 l a t 1
Node 5 l a t 1
Node 6 l a t 1
Node 7 l a t 1

Router 2
Node 8 l a t 1
Node 9 l a t 1
Node 10 l a t 1

Router 3
Node 11 l a t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rou te r to rou te r l i s t i n g ∗∗∗∗∗∗∗∗∗∗∗∗
Router 0

Router 2 l a t 40
Router 1

Router 2 l a t 40
Router 2

Router 0 l a t 40
Router 1 l a t 40
Router 3 l a t 40

Router 3
Router 2 l a t 40

==========================Node to Router =====================
route r 0 rad ix 5

connected to node 0 at outpor t 0 l a t 1
connected to node 1 at outpor t 1 l a t 1
connected to node 2 at outpor t 2 l a t 1
connected to node 3 at outpor t 3 l a t 1

route r 1 rad ix 5
connected to node 4 at outpor t 0 l a t 1
connected to node 5 at outpor t 1 l a t 1
connected to node 6 at outpor t 2 l a t 1
connected to node 7 at outpor t 3 l a t 1

route r 2 rad ix 6
connected to node 8 at outpor t 0 l a t 1
connected to node 9 at outpor t 1 l a t 1
connected to node 10 at outpor t 2 l a t 1

route r 3 rad ix 2
connected to node 11 at outpor t 0 l a t 1

==========================Router to Router =====================
route r 0

connected to route r 2 using l i n k 0 at outpor t 4 l a t 40
route r 1

connected to route r 2 using l i n k 1 at outpor t 4 l a t 40
route r 2

connected to route r 0 using l i n k 2 at outpor t 3 l a t 40

95

Obfuscating Malware through Cache Memory Architecture Features

connected to route r 1 using l i n k 3 at outpor t 4 l a t 40
connected to route r 3 using l i n k 4 at outpor t 5 l a t 40

route r 3
connected to route r 2 using l i n k 5 at outpor t 1 l a t 40

========================== Routing t a b l e =====================
Clas s 0:
Packet l a t ency average = 3366.49

minimum = 8
maximum = 8206

Network l a t ency average = 334.299
minimum = 8
maximum = 1309

Slowest packet = 61
F l i t l a t ency average = 334.299

minimum = 8
maximum = 1309

Slowest f l i t = 236
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0114333
minimum = 0.0067 (at node 6)
maximum = 0.0208 (at node 10)

Accepted packet r a t e average = 0.0110583
minimum = 0.0095 (at node 5)
maximum = 0.0129 (at node 8)

I n j e c t e d f l i t r a t e average = 0.0114333
minimum = 0.0067 (at node 6)
maximum = 0.0208 (at node 10)

Accepted f l i t r a t e average= 0.0110583
minimum = 0.0095 (at node 5)
maximum = 0.0129 (at node 8)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (0 measured)
l a t ency change = 1
throughput change = 1
Clas s 0:
Packet l a t ency average = 6731.19

minimum = 8
maximum = 16414

Network l a t ency average = 344.165
minimum = 8
maximum = 1474

Slowest packet = 61
F l i t l a t ency average = 344.165

minimum = 8
maximum = 1474

Slowest f l i t = 2330
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0111958

96

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0.00705 (at node 6)
maximum = 0.0185 (at node 8)

Accepted packet r a t e average = 0.011
minimum = 0.0099 (at node 6)
maximum = 0.01175 (at node 8)

I n j e c t e d f l i t r a t e average = 0.0111958
minimum = 0.00705 (at node 6)
maximum = 0.0185 (at node 8)

Accepted f l i t r a t e average= 0.011
minimum = 0.0099 (at node 6)
maximum = 0.01175 (at node 8)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 59 (0 measured)
l a t ency change = 0.499866
throughput change = 0.00530303
Clas s 0:
Packet l a t ency average = 16598.2

minimum = 9990
maximum = 24475

Network l a t ency average = 337.129
minimum = 13
maximum = 1289

Slowest packet = 2665
F l i t l a t ency average = 337.129

minimum = 13
maximum = 1289

Slowest f l i t = 2948
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0114083
minimum = 0.0069 (at node 7)
maximum = 0.0204 (at node 8)

Accepted packet r a t e average = 0.0114
minimum = 0.0099 (at node 7)
maximum = 0.0144 (at node 10)

I n j e c t e d f l i t r a t e average = 0.0114083
minimum = 0.0069 (at node 7)
maximum = 0.0204 (at node 8)

Accepted f l i t r a t e average= 0.0114
minimum = 0.0099 (at node 7)
maximum = 0.0144 (at node 10)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 60 (0 measured)
l a t ency change = 0.594464
throughput change = 0.0350877
Warmed up . . . Time used i s 30000 c y c l e s
C la s s 0:
Packet l a t ency average = 23636.4

minimum = 15698
maximum = 33231

97

Obfuscating Malware through Cache Memory Architecture Features

Network l a t ency average = 359.878
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 369.162

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0105083
minimum = 0.0046 (at node 2)
maximum = 0.017 (at node 8)

Accepted packet r a t e average = 0.0105333
minimum = 0.0092 (at node 10)
maximum = 0.0133 (at node 7)

I n j e c t e d f l i t r a t e average = 0.0105083
minimum = 0.0046 (at node 2)
maximum = 0.017 (at node 8)

Accepted f l i t r a t e average= 0.0105333
minimum = 0.0092 (at node 10)
maximum = 0.0133 (at node 7)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.297769
throughput change = 0.0822785
Clas s 0:
Packet l a t ency average = 27112

minimum = 15698
maximum = 41195

Network l a t ency average = 351.766
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 356.494

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0107583
minimum = 0.0064 (at node 2)
maximum = 0.01875 (at node 8)

Accepted packet r a t e average = 0.0107708
minimum = 0.00985 (at node 0)
maximum = 0.01145 (at node 7)

I n j e c t e d f l i t r a t e average = 0.0107583
minimum = 0.0064 (at node 2)
maximum = 0.01875 (at node 8)

Accepted f l i t r a t e average= 0.0107708

98

Obfuscating Malware through Cache Memory Architecture Features

minimum = 0.00985 (at node 0)
maximum = 0.01145 (at node 7)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.128192
throughput change = 0.0220503
Clas s 0:
Packet l a t ency average = 30548.4

minimum = 15698
maximum = 49549

Network l a t ency average = 351.466
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 354.582

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0109028
minimum = 0.00706667 (at node 6)
maximum = 0.0190667 (at node 8)

Accepted packet r a t e average = 0.0109111
minimum = 0.0103667 (at node 2)
maximum = 0.012 (at node 3)

I n j e c t e d f l i t r a t e average = 0.0109028
minimum = 0.00706667 (at node 6)
maximum = 0.0190667 (at node 8)

Accepted f l i t r a t e average= 0.0109111
minimum = 0.0103667 (at node 2)
maximum = 0.012 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 57 (57 measured)
l a t ency change = 0.11249
throughput change = 0.0128564
Clas s 0:
Packet l a t ency average = 33902.2

minimum = 15698
maximum = 57859

Network l a t ency average = 350.421
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 352.766

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0

99

Obfuscating Malware through Cache Memory Architecture Features

maximum = 0
I n j e c t e d packet r a t e average = 0.0109292

minimum = 0.00705 (at node 2)
maximum = 0.019175 (at node 8)

Accepted packet r a t e average = 0.0109292
minimum = 0.01015 (at node 10)
maximum = 0.0119 (at node 3)

I n j e c t e d f l i t r a t e average = 0.0109292
minimum = 0.00705 (at node 2)
maximum = 0.019175 (at node 8)

Accepted f l i t r a t e average= 0.0109292
minimum = 0.01015 (at node 10)
maximum = 0.0119 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 60 (60 measured)
l a t ency change = 0.0989266
throughput change = 0.00165205
Clas s 0:
Packet l a t ency average = 37085.7

minimum = 15698
maximum = 66072

Network l a t ency average = 352.369
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 354.233

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.010895
minimum = 0.00688 (at node 2)
maximum = 0.01922 (at node 8)

Accepted packet r a t e average = 0.0108983
minimum = 0.01014 (at node 0)
maximum = 0.01184 (at node 3)

I n j e c t e d f l i t r a t e average = 0.010895
minimum = 0.00688 (at node 2)
maximum = 0.01922 (at node 8)

Accepted f l i t r a t e average= 0.0108983
minimum = 0.01014 (at node 0)
maximum = 0.01184 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 58 (58 measured)
l a t ency change = 0.0858419
throughput change = 0.00282918
Clas s 0:
Packet l a t ency average = 40625.6

minimum = 15698

100

Obfuscating Malware through Cache Memory Architecture Features

maximum = 74448
Network l a t ency average = 349.688

minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 351.25

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.010975
minimum = 0.00711667 (at node 2)
maximum = 0.0190167 (at node 8)

Accepted packet r a t e average = 0.0109778
minimum = 0.0103 (at node 5)
maximum = 0.0118833 (at node 3)

I n j e c t e d f l i t r a t e average = 0.010975
minimum = 0.00711667 (at node 2)
maximum = 0.0190167 (at node 8)

Accepted f l i t r a t e average= 0.0109778
minimum = 0.0103 (at node 5)
maximum = 0.0118833 (at node 3)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 58 (58 measured)
l a t ency change = 0.0871346
throughput change = 0.00723684
Clas s 0:
Packet l a t ency average = 43887.5

minimum = 15698
maximum = 82865

Network l a t ency average = 350.253
minimum = 13
maximum = 1736

Slowest packet = 4073
F l i t l a t ency average = 351.591

minimum = 13
maximum = 1736

Slowest f l i t = 4722
Fragmentation average = 0

minimum = 0
maximum = 0

I n j e c t e d packet r a t e average = 0.0109571
minimum = 0.00705714 (at node 2)
maximum = 0.0191857 (at node 8)

Accepted packet r a t e average = 0.0109583
minimum = 0.0102571 (at node 0)
maximum = 0.0115571 (at node 6)

I n j e c t e d f l i t r a t e average = 0.0109571
minimum = 0.00705714 (at node 2)
maximum = 0.0191857 (at node 8)

101

Obfuscating Malware through Cache Memory Architecture Features

Accepted f l i t r a t e average= 0.0109583
minimum = 0.0102571 (at node 0)
maximum = 0.0115571 (at node 6)

I n j e c t e d packet length average = 1
Accepted packet length average = 1
Tota l in− f l i g h t f l i t s = 59 (59 measured)
l a t ency change = 0.0743237
throughput change = 0.0017744
Draining a l l recorded packets . . .
C la s s 0:
.
.
.
Measured f l i t s : 73097 (1 f l i t s)
Draining remaining packets . . .
Time taken i s 558770 c y c l e s
====== Overa l l T r a f f i c S t a t i s t i c s ======
====== T r a f f i c c lass 0 ======
Packet l a t ency average = 178598 (1 samples)

minimum = 15698 (1 samples)
maximum = 458108 (1 samples)

Network l a t ency average = 409.409 (1 samples)
minimum = 13 (1 samples)
maximum = 1736 (1 samples)

F l i t l a t ency average = 352.997 (1 samples)
minimum = 13 (1 samples)
maximum = 1736 (1 samples)

Fragmentation average = 0 (1 samples)
minimum = 0 (1 samples)
maximum = 0 (1 samples)

I n j e c t e d packet r a t e average = 0.0109571 (1 samples)
minimum = 0.00705714 (1 samples)
maximum = 0.0191857 (1 samples)

Accepted packet r a t e average = 0.0109583 (1 samples)
minimum = 0.0102571 (1 samples)
maximum = 0.0115571 (1 samples)

I n j e c t e d f l i t r a t e average = 0.0109571 (1 samples)
minimum = 0.00705714 (1 samples)
maximum = 0.0191857 (1 samples)

Accepted f l i t r a t e average = 0.0109583 (1 samples)
minimum = 0.0102571 (1 samples)
maximum = 0.0115571 (1 samples)

I n j e c t e d packet s i z e average = 1 (1 samples)
Accepted packet s i z e average = 1 (1 samples)
Hops average = 2.04591 (1 samples)
Tota l run time 4.10308

102

	Abstract
	Preface
	Ethical and legal considerations
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by the project
	Problem description
	Justification, motivation and benefits
	Research questions

	Choice of methods
	Thesis Outline

	Related Works
	Malware Self-Defense
	Malware analysis methods

	Background Studies
	Caches
	Motivation of Caches and Principle of Locality
	The basic logic of caches
	Allocation, Write and Replacement Policies
	Miss Type and Advance Cache Optimization Methods

	Cache Coherence and Consistency
	Snooping Coherence Protocols

	Inter-connector Design
	Topology
	Topologies
	Switching
	Routing
	Flow Control

	Cache Oriented Obfuscation
	Exploiting Tightly Coupled Multi-Processing Systems
	Reconnaissance and Design
	Setting System up and Loading Cache Memory
	Obfuscating, Running and Deobfuscating Gadget

	Pitfalls, Limitations and Fallacies

	Probabilistic Timing Attack against to Snoopy Cache Coherency
	The Issue
	Solution
	Horizontal Directional Cache Fetching
	Synchronization Latency of Snoopy Caches
	Overall Explanation of the Timing Attack

	Pitfalls, Limitations and Fallacies

	Implementation on Harvard Computer Architecture
	The Issue
	Solution
	Flying over Interpreter
	Forth Interpreter Language

	Pitfalls, Limitations and Fallacies

	Conclusion and Further Works
	Bibliography
	Cache Memory Simulation
	Real Systems Cache Coherency Latency Simulation Results
	Small Topology
	Small Topology Simulation with Two Percent Injection Rate Configuration File and Results
	Small Topology Simulation with Four Percent Injection Rate Configuration File and Results

	Crowded Topology
	Crowded Topology Simulation with Two Percent Injection Rate Configuration File and Results
	Crowded Topology Simulation with Four Percent Injection Rate Configuration File and Results

