
Forensic Analysis of OOXML Documents

Espen Didriksen

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2014

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Forensic Analysis of OOXML Documents

Abstract

Microsoft Office 2007 and subsequent versions use an XML-based file format called Office Open
XML (OOXML) for storing documents, spreadsheets and presentations. OOXML documents are
often collected in forensic investigations, and is considered one of the main sources of evidence
by the National Authority for Investigation and Prosecution of Economic and Environmental Crime
in Norway (Norwegian: Økokrim).

OOXML documents are zipped file containers which upon extraction reveals a file structure with
files containing forensically interesting information. Metadata specified in the XML of these doc-
uments can often be used for e.g. attributing a document to a person or correlating time informa-
tion to build a timeline of events. Revision identifiers are unique numbers appended to content
in OOXML documents produced in Microsoft Word, and can be used in forensics to e.g. uncover
previously unknown social networks, determine the source of a document and detect plagiarism
of intellectual property.

We have used experimental methods to determine the forensic difference between the word pro-
cessors Microsoft Word 2007, 2010, 2013, 365 and Online, in addition to LibreOffice Writer and
Google Docs, with respect to original path preservation of inserted images, thumbnail creation
and implementation of revision identifiers. Experimental methods have been used to determine
how unique the revision identifiers are, which resulted in detecting that 2 of 100 documents
shared revision identifiers without sharing any content, i.e. a 2% false positive rate. This means
that revision identifiers can likely be successfully used in forensic investigations.

We present a forensic prototype, with the purpose of exploring the possibilties OOXML docu-
ments have in a forensic context. The prototype extracts metadata from documents, in addition
to extracting and comparing revision identifiers from a set of documents, and displaying the
documents with a relationship in a tree graph layout. This functionality has not previously been
published in the existing literature or implemented in forensic tools. Interviews with two digital
forensic experts working in law enforcement have determined that this implementation could
have value in cases where a large amount of documents are collected.

ii

Forensic Analysis of OOXML Documents

Sammendrag

Microsoft Office 2007 og etterfølgende versjoner bruker et XML-basert filformat som kalles Office
Open XML (OOXML) for å lagre dokumenter, regneark og presentasjoner. OOXML-dokumenter
beslaglegges ofte i etterforskningssammenheng, og regnes av Økokrim for å være en av de vik-
tigste kildene til bevis.

OOXML-dokumenter er zippede fil-containere som etter ekstraksjon avslører en filstruktur som
inneholder informasjon som er interessant i etterforskningssammenheng. Metadata som er spesi-
fisert i XML-filene i disse dokumentene kan ofte brukes til å for eksempel knytte dokumentet til en
person eller til å korrelere tidsinformasjon for å bygge en tidslinje bestående av hendelser tilknyt-
tet en sak. Revisjonsidentifikatorer er unike tall som legges til innhold i OOXML-dokumenter som
er produsert i Microsoft Word, og kan brukes i etterforskningssammenheng til å for eksempel avs-
løre sosiale nettverk, fastslå hvor et dokument kommer fra eller detektere plagiat.

Vi har brukt eksperimentelle metoder til å forsøke å fastslå hvorvidt det er en forskjell mellom
de forskjellige kontorprogramvarene Microsoft Word 2007, 2010, 2013, 365, Online, i tillegg til
LibreOffice og Google Docs, med fokus på preservasjon av original filsti tilhørende bilder som er
satt inn i dokumentet, generering av miniatyrbilder samt implementasjon av revisjonsidentifika-
torer. Eksperimentelle metoder har blitt brukt til å fastslå hvor unike revisjonsidentifikatorene er,
hvilket resulterte i at det ble fastslått at 2 av 100 dokumenter delte revisjonsidentifikatorer uten
å dele noe innhold eller andre fellestrekk, med andre ord en 2% falsk-positiv-rate. Dette betyr at
revisjonsidentifikatorer sannsynligvis er egnede i etterforskningssammenheng.

Vi presenterer en prototype med den hensikt å utforske hvilke muligheter som finnes med tanke
på å bruke OOXML-dokumenter i etterforskningssammenheng. Prototypen ekstraherer metadata
fra dokumenter, i tillegg til at den sammenligner revisjonsidentifikatorer fra et sett med doku-
menter og viser dokumenter med relasjoner som en tre-graf. Denne typen funksjonalitet har ikke
tidligere blitt publisert i eksisterende litteratur eller blitt implementert blant etterforskningsverk-
tøy som finnes i dag. Intervju med to spesialetterforskere som jobber i politiet har vist at denne
implementasjonen kan ha verdi i saker hvor et stort antall dokumenter beslaglegges.

iii

Forensic Analysis of OOXML Documents

Acknowledgements

I would like to thank my supervisor, Hanno Langweg, for providing useful feedback throughout
the course of this thesis.

I would like to thank my classmates André Jung Waltoft-Olsen, Kjetil Tangen Gardåsen, Ola
Kjelsrud and Eirik Bae for hours upon hours of interesting discussions and distractions, and all
the heavy squats, deadlifts, bench presses and gains together with Eirik and Ola.

Everybody on the forensics lab deserves a thanks; John Erik Rekdal, André Nordbø, Pieter
Ruthven and Andrii Shalaginov for all the interesting discussions, shared frustration and laughter.

Thanks to Thomas Walmann in Økokrim for giving us the opportunity to visit, and for providing
a lot of quality feedback. Thanks to Kripos for giving me the chance to visit on short notice, and a
big thanks to Tom Sørensen Flølo in Kripos for providing his time and excellent feedback. Thanks
to Rune Nordvik for using his time to perform analysis and giving me useful information.

Thanks to my father for supporting me throughout my years of education.

And last but not least, a big thanks to my girlfriend and best friend, Marthe Bartholsen Hansen,
who has not only supported me during the entire course of this thesis, but also stayed extremely
patient the entire time. You’re the best, and I love you.

iv

Forensic Analysis of OOXML Documents

Contents

Abstract . ii
Sammendrag . iii
Acknowledgements . iv
Contents . v
List of Figures . viii
List of Tables . x
Glossary . xi
1 Introduction . 1

1.1 Topics covered . 1
1.2 Keywords . 1
1.3 Problem description . 1
1.4 Justification, motivation and benefits . 2
1.5 Research questions . 3
1.6 Contributions . 3
1.7 Thesis outline . 3

2 Related work . 4
2.1 Background . 4
2.2 Existing forensics tools for analysing OOXML files 9

3 Methodology . 14
3.1 Scientific methods . 14
3.2 RQ1: What is the forensic value of OOXML documents, and how can they be used

in forensic investigations? . 15
3.3 RQ2: Can the metadata of OOXML document be trusted? 15
3.4 RQ3: Are there differences from version to version of the popular office suites,

with respect to what forensically interesting data they record in the files? Does
performing certain actions in different ways affect the recorded forensically inter-
esting data? . 16

3.5 RQ4: In what ways can the revision identifiers be useful in a forensic investigation,
and in what situations are they preserved? . 16

4 OOXML file characteristics and use in digital forensics 17
4.1 History of the OOXML file format . 17
4.2 The OOXML package and file structure . 17
4.3 The forensic usefulness of a single OOXML document’s metadata 24
4.4 When change tracking is enabled . 31
4.5 Forensic usefulness of OOXML documents with reference documents 32
4.6 Trustworthiness of evidence found in OOXML documents 36

v

Forensic Analysis of OOXML Documents

5 OOXML Forensic Analysis Tool . 41
5.1 Introduction . 41
5.2 OOFAT’s functionality . 41

6 Experimental work . 51
6.1 Prerequisite for experiment #4: Collecting data set of test documents 51
6.2 Experiment #1: Interpretation of AppVersion number 52
6.3 Experiment #2: Revision identifier preservation in file and content copying 53
6.4 Experiment #3: Forensic difference between office suites 61
6.5 Experiment #4: Uniqueness of revision identifiers 68

7 Conclusions . 71
7.1 RQ1: What is the forensic value of OOXML documents, and how can they be used

in forensic investigations? . 71
7.2 RQ2: Can the metadata of OOXML document be trusted? 72
7.3 RQ3: Are there differences from version to version of the popular office suites,

with respect to what forensically interesting data they record in the files? Does
performing certain actions in different ways affect the recorded forensically inter-
esting data? . 73

7.4 RQ4: In what ways can the revision identifiers be useful in a forensic investigation,
and in what situations are they preserved? . 74

8 Future work . 76
8.1 Using visualization techniques to support forensic investigators 76
8.2 Optimizing the comparison process . 76
8.3 OOXML spreadsheets and presentations in digital forensics 76
8.4 OpenDocument files in digital forensics . 76
8.5 Microsoft Office’s revision identifier generator algorithm 77

Bibliography . 78
A Path preservation results table . 82
B Thumbnail creation and readability experiment . 85

B.1 Word 2007 . 85
B.2 Word 2010 . 87
B.3 Word 2013 . 89
B.4 Word 365 . 91

C Facebook user identification based on inserted image 93
D Transcription of workshop with National Authority for Investigation and Prosecu-

tion of Economic and Environmental Crime in Norway (ØKOKRIM), 14/3-2014 . . 94
E Interview with Tom Sørensen Flølo from National Criminal Investigation Service

(Norway) (Kripos) . 100
F EnCase Forensic functionality . 102

F.1 EnCase metadata extraction . 102
F.2 EnCase image information . 103
F.3 EnScript output, extracting Exif metadata . 104
F.4 EnCase displaying XML . 105

vi

Forensic Analysis of OOXML Documents

F.5 EnCase showing manually altered values in docProps/app.xml 106
F.6 ExifTool output of sample image . 107

G Forensic Toolkit (FTK) functionality . 110
G.1 FTK metadata extraction . 110
G.2 FTK viewing individual XML file . 111
G.3 Sample document . 112

H Change tracking example . 125
H.1 Screenshot of document edited with change tracking enabled 125
H.2 XML of document edited with change tracking enabled 125
H.3 Uniqueness of revision identifiers result table . 126
H.4 Application information extracted from data set . 130

I Contents of docProps/custom.xml in sample document 131
J Source code of OOFAT’s most important functionality 134

J.1 Document validator . 134
J.2 Document metadata extractor . 136
J.3 Revision identifier extraction . 140
J.4 Revision identifier comparison . 142
J.5 Tree graph layout output . 144

vii

Forensic Analysis of OOXML Documents

List of Figures

1 Screenshot of Langweg’s prototype. 10
2 Screenshot of the DSO tool . 11
3 Metadata files in an OOXML document, adapted from [1][p. 4985] 21
4 Merging two sample documents. 22
5 Barcode visualization of language settings throughout the document, from the

complete version of [2] . 27
6 Barcode visualization of paragraph creation revisions of document in Appendix G.3 29
7 Diary entry of the suspect in the scenario. 31
8 Flowchart showing a process of checking a collected document against database

of known sensitive documents. 33
9 Hypothetical social network of people sending emails with attachments to each

other. 35
10 Flowchart showing the validation process. 42
11 Flowchart showing the process of metadata extraction. 43
12 Revision identifier extraction process. 45
13 Revision identifier comparison process. 46
14 Table output of revision identifier comparison process. 48
15 Example graph showing the relationship between four documents. 49
16 Example graph showing the relationship between documents from data set. 49
17 Example details page showing the information associated with a clicked edge. . . 50
18 Example details page showing the complete metadata of a document of interest. . 50
19 Chart showing the file size distribution of the collected data set. 52
20 Example document with six revisions, and its revisions recorded in settings.xml. . 59
21 Tree graph layout of OOFAT showing the first iteration of revision identifier com-

parison, used for inspecting document pairs to determine their relationship. 69
22 Thumbnail produced by Office 2007 . 85
23 Screenshot of first page of Office 2007 document . 86
24 Thumbnail produced by Office 2010 . 87
25 Screenshot of first page of Office 2010 document . 88
26 Thumbnail produced by Office 2013 . 89
27 Screenshot of first page of Office 2013 document . 90
28 Thumbnail produced by Office 365 . 91
29 Screenshot of first page of Office 365 document . 92
30 Screenshot of Facebook user’s published image, identified based on inserted im-

age’s original filename . 93
31 Result of EnCase extracting metadata from sample OOXML documents 102

viii

Forensic Analysis of OOXML Documents

32 Result of EnCase extracting information from sample image 103
33 Output of sample EnScript extracting Exif metadata from sample inserted image . 104
34 EnCase displaying XML of sample file in document package 105
35 EnCase showing manually altered values in docProps/app.xml 106
36 Screenshot of FTK extracting metadata from an OOXML document. 110
37 Screenshot of FTK viewing individual XML file. 111
38 Screenshot of sample document, with paragraph revisions marked. 112
39 Screenshot of document edited with change tracking enabled 125

ix

Forensic Analysis of OOXML Documents

List of Tables

1 The six keywords for questions investigators may seek to have answered, adapted
from [3]. 5

2 Comparison of EnCase Forensic and FTK’s metadata extraction 13
4 Metadata recorded in docProps/core.xml, adapted from [1][p. 4985 - 4986], [4][p.

41] . 18
5 Metadata recorded in docProps/app.xml, adapted from [1][p. 4986 - 4987] 19
6 Types of revision identifiers in OOXML documents. 23
3 File structure of extracted sample document. 40
7 AppVersion interpretation experiment results . 53
8 Implementation of revision identifiers in office suites; creating new OOXML docu-

ment . 63
9 Implementation of revision identifiers in office suites; editing OOXML document

made in Office 2007 . 63
10 Original path preservation results of image insertion 64
11 Thumbnail creation and their readability . 66
12 Original path preservation results of image insertion (extended version) 82
13 ExifTool output of sample image . 107
14 Classification table; description of each number in Table 15 126
15 Result of uniqueness of revision identifiers experiment. Column name “Cl” refers

to “Classification” (see Table 14); “FP” refers to “false positive” 126
16 Application information extracted from data set. 130

x

Forensic Analysis of OOXML Documents

Glossary

OOXML Office Open XML, a Microsoft-developed file format for storing files such as docu-
ments, presentations and spreadsheets.

OOXML document A WordprocessingML package following the specifications of OOXML, used
to represent a document. An OOXML document has the file extension .docx.

Revision identifier A 32-bit number represented in hexadecimal, used to determine in what
session the associated content was edited. All content within a document sharing the same revi-
sion identifier value was edited during the same editing session, i.e. the period of time between
two saves.

Intersecting revision identifiers Two documents sharing the same revision identifier value(s)
are said to have intersecting revision identifiers.

xi

Forensic Analysis of OOXML Documents

1 Introduction

1.1 Topics covered

Computers are commonly used for running office suites to create, modify and view files includ-
ing documents, spreadsheets and presentations. Such use of computers is especially common in
professional environments, but is also massively used by individuals for private purposes.

Microsoft Office is a very popular office suite that runs on Microsoft Windows and Mac OS X.
While previous versions of Microsoft Office used proprietary binary formats for storing the files
edited with their software, current versions compose documents by using an XML-based format
called Office Open XML (shortened “OpenXML” or “OOXML”) [5][p. 1]. The alternative office
suite Google Docs has functionality to import and export OOXML documents, and LibreOffice
by default use Open Document Open Document Format for Office Applications (ODF), but also
support OOXML.

In this thesis, we examine the forensically interesting data stored in OOXML documents edited by
the popular word processors Microsoft Word (Office 2007, 2010, 2013 and 3651 and Online2),
LibreOffice Writer and Google Docs, and attempt to identify scenarios where the information can
be used in a forensic investigation. Our focus is primarily on Microsoft Word, but the other word
processors are inspected in several of our experiments. We furthermore attempt to determine if
OOXML documents have unexplored forensic possibilities. A prototype forensic tool is presented,
with the purpose of demonstrating the identified possibilities.

1.2 Keywords

Digital forensics, Metadata, Document structure analysis, Revision identifiers, OOXML forensics,
Microsoft Office forensics, DOCX.

1.3 Problem description

The most popular office suites of today store their files in zipped XML-based containers. Mi-
crosoft Office 2007 and subsequent versions store the document and all its related information
in a file container format called OOXML, as opposed to previously proprietary binary formats.
Other alternatives such as LibreOffice and OpenOffice.org save their files as ODF by default, but
have read and write support for OOXML documents.

Documents that are produced with word processors are often part of a forensic investigation,
e.g. extracted from seized media from computers in a company that is under investigation, and

1Microsoft’s subscription-based access to Office [6].
2Microsoft’s online version of Office [7].

1

Forensic Analysis of OOXML Documents

is by some considered the main source of evidence [8][Appendix D]. The XML of these files con-
tain data that may support investigators in e.g. determining the source of a document, building
a timeline of criminal events, uncovering social networks and detecting plagiarism of intellectual
property [5][p. 1][9][p. 4].

Currently available forensic tools tend to only present the information from documents, with-
out providing any analysis or interpretation functionality. Some commercial forensic tools fail to
extract every type of metadata available in the XML files in the document package. No research
has been published on the whether the forensically interesting information in OOXML documents
should be considered trustworthy, which could be of high importance if the trustworthiness of
the evidence is disputed in a court of law.

In this thesis, we attempt to determine how the information contained in OOXML document
can be used in forensic investigations. Since there is possibility that the various office suites
store different forensically interesting information, experiments will be performed to determine
if some office suites record more or less forensically interesting data. In order to demonstrate the
identified analysis possibilities, a prototype forensic tool is built.

1.4 Justification, motivation and benefits

Forensic investigators work under a time pressure, and might not have the resources to perform
manual analysis of seized files. This is particularily true if the investigators are faced with a
large amount of documents in a case, which could make it unfeasible to inspect each document
manually. Information extracted from documents is considered the main source of evidence for
National Authority for Investigation and Prosecution of Economic and Environmental Crime in
Norway (Norwegian: ØKOKRIM) [8][Appendix D], and this motivates research being performed
on using OOXML documents in a forensic context.

Currently available forensic tools supporting OOXML fail to extract every type of metadata avail-
able in OOXML documents, although they are easily retrievable. OOXML documents contain
unique identifiers that could be used for document tracking to e.g. uncover previously unknown
social networks [9][p. 3-4]. None of the currently available forensic tools have implemented this,
even though it could have value in cases where the goal is to track the source of a document.
This could for example be used in uncovering extremist networks [10][Appendix E].

Existing published research on OOXML documents in the context of digital forensics only provide
a brief overview of some of the interesting characteristics of OOXML documents and the office
suites supporting the file format. Having an indepth understanding of the topic is important in
order to properly utilize the possibilities of documents in a forensic context, and to know if there
are any uncertainties that should be taken into consideration. Currently available forensic tools
seem to not have prioritized OOXML files, and leveraging the currently unexplored possibilities
or extending currently weak functionality could be directly beneficial in forensic investigations,
and could motivate future forensic tool developers to implement the possibilities.

2

Forensic Analysis of OOXML Documents

1.5 Research questions

The following list provides the main research questions we attempt to answer in this thesis.

1. What is the forensic value of OOXML documents, and how can they be used in forensic
investigations?

2. Can the metadata of OOXML document be trusted?

3. Are there differences from version to version of the popular office suites, with respect to
what forensically interesting data they record in the files? Does performing certain actions in
different ways affect the recorded forensically interesting data?

4. In what ways can the revision identifiers be useful in a forensic investigation, and in what
situations are they preserved?

1.6 Contributions

This thesis seeks to provide a detailed understanding of the characteristics of OOXML documents,
and how they can be utilized in a forensic context. As part of the task of identifying and demon-
strating the possibilities OOXML documents have in a forensic setting, a prototype has been built
for future use for forensic investigators and forensic tool developer. The inner workings of this
prototype is presented in Section 5.

We have identified some forensically interesting information in OOXML documents, and relate
them to use case scenarios in Section 4. These hypothetical scenarios are provided to demon-
strate the possibilities information extracted from OOXML documents may have in various types
of forensic investigations, both when faced with just one OOXML document and when reference
documents are available.

1.7 Thesis outline

The following list provides a short outline of the following chapters of this thesis.

● Chapter 2 presents related work; both published literature and available forensic tools.

● Chapter 3 explains the methods utilized in order to answer the research questions.

● Chapter 4 describes the characteristics and structure of OOXML documents, and relates them
to usefulness in digital forensics.

● Chapter 5 presents the forensic prototype that was developed during this thesis work.

● Chapter 6 provides detailed descriptions of the experiments conducted in this thesis; experi-
ment setup, experiment execution, experiment results and experiment discussion.

● Chapter 7 provides conclusions for each research question.

● Chapter 8 presents our recommendations for future work.

3

Forensic Analysis of OOXML Documents

2 Related work

In this chapter, we identify work that has been done in the field, both related literature and
published forensics tools.

2.1 Background

This section first presents related literature giving an overview of digital forensics in general,
then narrows the literature down to what types of information is typically desired in a foren-
sic investigation, and then moves towards literature on using OOXML documents in forensic
settings.

2.1.1 Digital forensics, digital evidence and metadata

The report from the first Digital Forensic Research Workshop (DFRWS) presented the following
definition of digital forensic science:

“The use of scientifically derived and proven methods toward the preservation, collection,
validation, identification, analysis, interpretation, documentation and presentation of digital
evidence derived from digital sources for the purpose of facilitating or furthering the recon-
struction of events found to be criminal, or helping to anticipate unauthorized actions shown
to be disruptive to planned operations” [11][p. 16].

Digital forensics as a field of science is relatively new; its development started growing during
the late 1990s and early 2000s when crimes involving computers increased. While the term com-
puter forensics was originally used to describe the field, this was changed as the use of other types
of digital units became widespread in society, and digital evidence no longer were retrieved ex-
clusively from computers [12][p. 1].

Casey describes forensic as “a characteristic of evidence that satisfies its suitability for admission
as fact and its ability to persuade based upon proof (or high statistical confidence)” [13][p. 14].
Although the term typically refers to the use and admissibility of evidence in a court of law, it is
also used in relation to e.g. corporate investigations where the goal could be to determine if an
employee has broken any corporate policies [13][p. 15].

Casey defines digital evidence as “any data stored or transmitted using a computer that support
or refute a theory of how an offense occurred or that address critical elements of the offense such as
intent or alibi” [13][p. 7]. Even though a piece of evidence might be strong on its own, correlat-
ing several pieces of evidence might be used to build an even stronger case to support or refute
a hypothesis the investigators have formed [13][p. 16].

Metadata is a commonly used term in digital forensics and other communities, and is defined

4

Forensic Analysis of OOXML Documents

as “structured information that describes, explains, locates, or otherwise makes it easier to retrieve,
use, or manage an information resource. Metadata is often called data about data or information
about information” [14][p. 1]. File metadata is often set by the application creating the file, and
could include information such as when the file was created and by whom. There are three main
types of metadata in general [14][p. 1]:

● Descriptive metadata: Used for discovery and identification of the resource, e.g. title, abstract,
author and keywords.

● Structural metadata: Used to explain how different parts of the resource are put together, e.g.
the order of pages.

● Administrative metadata: Technical information used to manage the resource, e.g. creation
timestamps, how the resource was created, file type of the resource.

2.1.2 The role of metadata in investigations

Buchholz and Spafford identified what information in a system is relevant for forensic investiga-
tors, in particular what role metadata have in forensic investigations. In addition to presenting
some examples of what forensically information is available1, they also presented types of infor-
mation they considered beneficial for forensic investigators in future systems. One of the main
goals in a forensic investigation is to as fully as possible reconstruct events that have occurred,
in order to support or refute hypotheses that arise based on the available information [3][p. 5].

Buchholz and Spafford identified six keywords for questions that forensic investigators may seek
to get answered in an investigation: Who, what, when, how, where and why. Table 1 provides a
short summary of the meaning of each of the keywords.

Table 1: The six keywords for questions investigators may seek to
have answered, adapted from [3].

Question Description

Who? The person or the people responsible or associated with the actions.

What? The type of actions that occurred.

When? The period of time the actions were performed.

How? How the actions were performed.

Where? The location of the person or people responsible or associated with the actions,
alternatively the origin of a file.

Why? The motives of the person or the people who performed the actions.

1At the time of writing the paper, in 2004.

5

Forensic Analysis of OOXML Documents

Determining the physical person or people responsible for performing the action is often impor-
tant in forensic investigations, referred to as who by Buchholz et al. [3][p. 6]. Although inspect-
ing the metadata of a particular file may result in determining that a particular user identifier
performed a certain action, it is difficult to conclude that it actually was this user identifier and
this particular person who was responsible for performing the action [3][p. 6]. One example
could be if an employee in a company neglects to lock his computer when leaving the office,
and an adversary with physical access performs certain actions while the employee is absent.
Examining the metadata of the affected files will show that the employee performed the actions
although it was an adversary, and therefore it is not wise to directly conclude who did it without
additional evidence.

The origin of a certain file or several files could be very important in a forensic investigation,
referred to as where by Buchholz et al. [3][p. 7]. Such information could be e.g. attributed
GPS coordinates, IP addresses or a Globally Unique Identifier (GUID), or any other piece of in-
formation that could be used to determine the location of the person responsible (the who).
Determining the origin of a file is often not a simple task, but may sometimes be possible by cor-
relating available information [3][p. 7]. There are many examples for why it might be desirable
to track the person responsible for a file or actions related to a file; examples include distribution
of illegal pornography, terrorist threats and malicious software.

The point of time or interval of time an action was performed, referred to as when, is often
interesting for forensic investigators. Timestamps from various sources are often used to build a
timeline of events in case, in order to pinpoint what happened and at what time, and thereby de-
termine the order of the occurring events. However, different file systems and operating systems
tend to record different timestamps, and the exact meaning of the timestamps might in some
cases be ambiguous [3][p. 8].

How an action was performed could be important in a forensic investigation. It is, for exam-
ple, relevant for an investigator whether it appears that the user performed the action, or if it
was performed by malicious software. Such information is, however, usually not recorded in the
and might therefore not available for investigators [3][p. 9]. Determining exactly what was done
in a system or in a file could naturally also be very forensically interesting [3][p. 10]. This in-
formation may or may not be available, in some cases depending on the level of detail required
to verify or refute a hypothesis. Lastly, determining why the actions were performed could be
particularily important when the evidence reaches a court of law.

2.1.3 Using unique revision identifiers of OOXML documents to detect copied content

Fu et al. [5] wrote one of the most comprehensive papers about the OOXML format in the context
of digital forensics. In this work, the researchers performed experiments consisting of creating
and deconstructing documents in order to see what forensically interesting data is stored in the
container file when a document is edited in Microsoft Word. While their main focus is using the
recorded information for investigating illegal copying of documents, it is still applicable for other

6

Forensic Analysis of OOXML Documents

types of investigations [9].

The particular piece of information they focused on is the concept of unique revision identi-
fiers used by Microsoft Word for document comparison. These unique revision identifiers are
8-digit hexadecimal attributes appended to content for each revision of the document. Once a
revision identifier is created by the word processor, it will not change during the evolvement of
the document as long as at least one printable character remains unaltered [5][p. 4].

The researchers interestingly obverved that when content is copied from one document to an-
other, the unique revision identifiers are preserved as long as one or more characters remain
with the same formatting. This also applies if a document is copied and the content is changed.
Based on this, they propose a method for determining whether documents origin from the same
source by extracting and comparing the revision identifiers of several documents. If any identi-
fiers match, the suspicious document can be assumed to be a copy of the original document or
contain content copy-pasted from the original document [5][p. 5].

The result of this is that it is possible to prove that the suspicious document contains content
that is likely copied from another document, even though the text might e.g. be rewritten and
not appear to be copied. Therefore, the concept of unique revision identifiers may be used to
help determine the source of a document, e.g. in an investigation involving plagiarism.

2.1.4 Forensically interesting information stored in OOXML documents

Garfinkel et al. [9] went into depth in both OOXML and ODF files for forensic purposes by per-
forming similar experiments as Fu et al. [5].

The unique revision identifiers are also in this paper presented as a potentially very important
source of information, similar to what Fu et al. [5] presented. In addition to detecting plagia-
rism, another area of usage presented is to identify social networks that previously may have
been unknown. This would be done by collecting documents from several suspicious sources and
comparing the revision identifers. In case any of them match, it could be assumed that those in
possession of the documents have been communicating [9][p. 3-4].

In addition to using the revision identifiers to determine how a OOXML file is constructed and
edited, they also discuss the possibility of creating a database containing the extracted revision
identifiers of documents collected in an organization that is under investigation. The idea is to
generate an alert when revision identifiers in a collected suspicious document matches any of
those in the database. The suspicious document could e.g. be input to the forensic tool manually,
or collected automatically on a network [9][p. 5].

Timestamps are often important in a forensic investigation, as they could e.g. show when a
document was last modified. OOXML and ODF documents may contain several sources of time
information: Created and modified time of the container file, inside the XML files and as meta-

7

Forensic Analysis of OOXML Documents

data of any embedded files such as images [9][p. 5].

Images and objects that are embedded in a document are stored as separate files in the file
container. Some word processing software saves a thumbnail of the first page of the document,
which could be very useful in a forensic investigation. In the case where the thumbnail and the
actual document do not match, this could indicate that the document or the thumbnail have
been maliciously altered. If the retrieved document is damaged, the content of the thumbnail
could indicate what the document contained, as long as the thumbnail is still intact [9][p. 3].

Since some documents might be more complexly built than other, it is important that forensic
tools used for analysis are built in such a way that they do not fail due to the input documents’
complexity. One example of this is when a document contains another embedded document. In
such case, the forensic tool should be able to recursively analyse each document to ensure that
no data is unintentionally ignored [9][p. 2]. Garfinkel et al. note that the forensic tool must not
take any shortcuts when analyzing XML document containers, in order to avoid false negatives.
The tool must be able to handle e.g. strings that are represented with hexadecimal encoding,
and strings containing comments. If the tool does not take such obfuscations into account, string
searches will likely fail and may lead to important data being ignored.

The researchers note that Microsoft Office 2008 stores a JPG thumbnail of the first page of
the document by default, while NeoOffice stores both a PNG and a PDF of the first page. Further-
more, they discovered that Microsoft Word 2007 does not store a thumbnail by default, as this is
opt-in functionality [9][p. 3]. These details provide a good starting point for further research on
forensic differences between office suites, as it indicates that differences exist.

2.1.5 Forensic analysis of the July 22nd terrorist document

Norway experienced a terrorist attack July 22nd, 2011. Prior to the attacks, the terrorist dis-
tributed a “manifest” containing descriptions of his planned attacks, motivation, diaries, etc. The
document was distributed as a large OOXML document, and quickly appeared on various web-
sites. Langweg performed a forensic analysis of the document, attempting to determine if there
were several contributors to the document as the terrorist at the time claimed [2][p. 1].

In his research, Langweg performed content and structural analysis of the terrorist document
in order to determine i) if there were any evidence of any other authors contributing to the
document, ii) if the document’s structure appeared to be consistent with the events presented in
the diary section of the document. The structural analysis part consisted of looking at how the
document was composed, by analysing the document’s table of contents, revision identifiers and
changes in format and language in paragraphs [2]. The content analysis part consisted of looking
at how the text was “divided into logical parts”, the origin and usage of images, language usage
throughout the document, and inconsistencies in wording or the described events [2][p. 1].

Langweg extracted the metadata contained in docProps/app.xml, docProps/core.xml and settings.xml,

8

Forensic Analysis of OOXML Documents

and based on this information he was able to come to several conclusions. For example, he con-
cluded that the document likely was composed from other sources, based on timestamps and
the recorded editing time. Based on the values of of XML elements specifying “theme font lan-
guage” and decimal symbol format, he furthermore concluded that the document was created
and edited on a system with Norway set as the location in the settings of the operating system
[2][p. 7]2.

Langweg developed a forensic analysis prototype which he utilized in his analysis of the doc-
ument. In this prototype, he implemented visualization techniques in the form of horizontal
“barcodes” graphically representing i) creation revisions, ii) modification revisions, iii) glyph
modification, which is further described in Section 2.2. Visualizing these details extracted from
a document of such size provided an overview of the document’s composition, which is knowl-
edge that would be difficult to gain based on manually investigating the XML document since
the document’s body is 886 664 lines.

2.2 Existing forensics tools for analysing OOXML files

This section presents currently available forensics tools used for performing analysis of OOXML
documents.

read_open_xml.pl

Kristinn Gudjonsson has written a Perl script known as read_open_xml.pl, for the purpose of
extracting the metadata of OOXML documents [15]. It takes an OOXML document as input, ex-
tracts it and reads the data stored in docProps/app.xml and docProps/core.xml, which contains
document metadata such as the title, author, number of revisions, number of pages, last printed
timestamp, created timestamp, modified timestamp, total editing time, name and version of word
processor [15].

While the script could be very useful for quickly extracting metadata of documents without
needing to parse the XML files manually, it only deals with the metadata contained in two of the
XML files. It does not analyse nor present the markup and content of e.g. the XML file containing
the document content itself, word/document.xml, which contains revision identifiers that could
be useful for determining the history and source of the document.

DOCXRevisions

DOCXRevisions is an unpublished tool which was made to perform the analysis work Langweg
performed [2]. It extracts the revision identifiers from document.xml and separates them into
each category they belong to; default run revision identifiers, paragraph revision identifiers and
paragraph glyph formatting identifiers. A screenshot of the tool is provided in Figure 1, with a
sample document loaded.

The tool has functionality to create a colored horizontal barcode that represents the editing com-
position of the document, i.e. how much content was added in that editing session compared to

2This information is from the “full”, unpublished version of Langweg’s paper.

9

Forensic Analysis of OOXML Documents

the total content of the document. This is based on the number of revision identifiers attributed
to each run, paragraph or paragraph glyph. Visualizing the editing history of the document with
the colored barcodes is a convenient way of understanding the document, as this knowledge is
very hard to derive from analysing the XML structure manually.

As DOCXRevisions was made for the purpose of analysing a specific document and has not been
published, it obviously lacks some functionality that could be beneficial if the tool would be used
by investigators. It is not apparant if the revision identifiers presented in each listbox belong to
a run, paragraph or paragraph glyph. It could also be beneficial to present the content belonging
to each revision identifier, e.g. when clicking on each value.

The tool does not extract and present other available metadata that are found in the XML files,
e.g. creator, company, creation time etc., which forensic investigators very likely would consider
beneficial. Due to the intended purpose of the tool, it lacks the possibility of performing analysis
in bulk, which could be a very useful feature [8].

Figure 1: Screenshot of Langweg’s prototype.

DSO Tool: Detector for the Source of OOXML file

The DSO Tool (“Detector for the Source of OOXML file”) is published in relation to the research
presented by Fu et al. [5]. It takes two OOXML files as input, and outputs the creation timestamp,

10

Forensic Analysis of OOXML Documents

last modified timestamp, creator, last modified by and number of revisions for both documents.
As the intended purpose of the tool is to detect copied content, e.g. plagiarism, it compares the
revision identifiers extracted from both documents. In the case where any revision identifiers are
identical, the values and their corresponding printable text is output as a row in a table. Figure
2 provides a screenshot of the tool, showing two sample documents with some identical revision
identifiers.

Figure 2: Screenshot of the DSO tool

EnCase Forensic

EnCase Forensic is a commercial digital forensic tool used acquire and examine information in
forensic investigations, from e.g. computers, smartphones and tablets [16]. EnCase is one of the
most commonly used forensic tools used by law enforcement agencies in forensic investigations
in Norway [8] [10]. We inspected some sample OOXML documents by using EnCase Forensic
6.18 and 7.09, in order to determine what functionality the tool has with respect to handling
OOXML documents.

OOXML documents loaded in EnCase must be extracted manually through their extraction method,
which is accessed by right-clicking on the loaded document. Embedded objects, such as another
OOXML document or a spreadsheet, is likewise not automatically extracted, and must therefore
be manually extracted if it is desirable to inspect the embedded object’s associated XML.

11

Forensic Analysis of OOXML Documents

EnCase by default only extract some parts of the metadata available in OOXML documents,
and does not extract a number of other types of information available in docProps/core.xml and
docProps/app.xml. Table 2 shows the types of information EnCase extracts, compared to FTK.
Appendix F.1 provides a screenshot of EnCase extracting metadata from two sample OOXML
documents.

EnCase by default shows very limited information about inserted images, but is extendable by
scripts written in EnCase’s scripting language, “EnScript”. Appendix F.2 provides a screenshot of
the information output from a sample inserted image, and Appendix F.3 provides a screenshot of
the output of a sample EnScript for extracting some Exif metadata from images. For reference,
Appendix F.6 provides the output of ExifTool3’s Exif metadata extraction performed on the same
image as in Appendix F.2, F.3.

We note that EnCase by default neither displays XML with syntax-highlighting, nor with proper
line breaks suited for human analysis, as shown in Appendix F.4. When OOXML documents are
inspected with EnCase, the tool by default only displays the information without further inter-
pretation. Although the sample document loaded in EnCase contained irregularities, in this case
manually altered XML metadata values creating a large obvious mismatch between the metadata
values and the document itself, no indications were provided. Appendix F.5 shows a screenshot
of EnCase displaying some values that obviously are altered; the metadata claims the document
is 150 pages, while it in reality is only one page.

Lastly, it should be mentioned that although EnCase seems to be lacking certain functionality
that could be desirable with respect to inspecting OOXML documents, their scripting language
provides a possibility of extending the functionality to perform tasks that are not possible by
default. Furthermore, such scripts are often shared on the closed community forum which those
who have purchased EnCase get access to [10][Appendix E].

FTK

Forensic Toolkit (FTK) is a commercial forensic tool for creating forensic images, browsing seized
file systems, viewing individual seized files, visualizing evidence and performing various evidence
analysis [17]. We tested the functionality of FTK 3.4.1.34295, and observed that it seemed to by
default has more functionality than EnCase Forensic for handling OOXML documents. Unlike
EnCase, OOXML documents loaded in FTK are extracted automatically. Table 2 shows the types
of metadata FTK extracts from docProps/app.xml and docProps/core.xml in OOXML documents,
compared to EnCase Forensic.

The table shows that FTK extracts some more information than EnCase Forensic, but not all
types of information. For example, the version of the word processor used to create the docu-
ment, as reflected in the AppVersion element, could be interesting for an investigator, but is not
extracted by neither FTK nor EnCase. Appendix G.1 shows a screenshot of the output of FTK’s

3Free program for Exif metadata extraction and manipulation; available at
http://www.sno.phy.queensu.ca/~phil/exiftool/

12

Forensic Analysis of OOXML Documents

metadata extraction. We note that the output when viewing the content of individual XML files
is easier for humans to interpret in FTK compared to EnCase, since FTK uses proper line breaks
and syntax highlighting. Appendix G.2 shows a screenshot of FTK displaying the XML of a sample
file, in addition to showing some information about of the files in the OOXML package. Similar to
EnCase, FTK only displays the information it extracts from OOXML files, without interpretation.

Table 2: Comparison of EnCase Forensic and FTK’s metadata extraction

Metadata File EnCase Forensic Forensic Toolkit (FTK)

category core.xml

contentStatus core.xml

Created core.xml x x

Creator core.xml x x

description core.xml

identifier core.xml

keywords core.xml x x

language core.xml

lastModifiedBy core.xml x x

lastPrinted core.xml

modified core.xml x x

revision core.xml x x

subject core.xml x x

title core.xml x x

version core.xml x

Application app.xml x

AppVersion app.xml

Characters app.xml x x

CharactersWithSpaces app.xml

Company app.xml x x

DigSig app.xml

DocSecurity app.xml x

HeadingPairs app.xml

HLinks app.xml

HyperlinkBase app.xml

HyperlinksChanged app.xml

Lines app.xml x

LinksUpToDate app.xml x

Manager app.xml

MMClips app.xml

Pages app.xml x x

Paragraphs app.xml x x

Properties app.xml

ScaleCrop app.xml x

SharedDoc app.xml

Template app.xml x

TitlesOfParts app.xml

TotalTime app.xml x

Words app.xml x x

13

Forensic Analysis of OOXML Documents

3 Methodology

This chapter provides descriptions of the methods used to attempt answering the research ques-
tions of this thesis, in addition to reasons why each method is appropriate for each research
question and how each method is applicated in practical terms.

3.1 Scientific methods

3.1.1 Qualitative research: Case studies

Qualitative research methods are often characterised by the utilization of observations of “real
world” situations as the foundation for gathering data and understanding the phenomenon that
is the subject of study [18][p. 139]. Case studies fall into the category of qualitative research, and
are used as a tool to understand and derive knowledge from a particular observed phenomenon.
One submethod of case studies is performing interviews with experts who are involved in and
knowledgeable about the phenomenon of study. Since those working in the field of study very
likely have valuable practical experience related to the phenomenon of study, the resulting of
performing interviews should be additional knowledge about the phenomenon.

3.1.2 Experimental research

Experimental research methods are generally performed by inspecting the resulting dependent
variable after altering an independent variable [18][p. 232]. In general research, there are many
possibilities in designing the experimental setup and performing the experiments. The validity of
research results where experimental research has been conducted depends on the experimental
setup design and experiment execution, since it is not possible to prove “cause-and-effect” re-
lationships between the independent and dependent variable when the study is not controlled
[18][p. 233].

3.1.3 Literature study

Literature reviews are generally performed by searching through available databases for publi-
cations relevant to the phenomenon of study, in most cases in the form of academic papers and
books. There are several benefits of performing a literature review, such as: i) being able to iden-
tify what research has already been performed and therefore avoid replication, ii) being able to
identify what research is lacking or appearing to be inadequate, iii) being able to correlate or
combine research that already has been performed with own research to gain additional knowl-
edge without needing to do work that has already been performed [19][p. 1].

In order to perform a literature review, we follow a slightly modified version of the steps pre-
sented by Onwuegbuzie et al. [19][p. 2]:

1. Define a list of keywords to be used as search terms, based on the research questions.

2. Perform searches in scholarly literature databases provided through the search engines Google

14

Forensic Analysis of OOXML Documents

Scholar [20], ScienceDirect [21], IEEE Xplore [22], ACM [23], SpringerLink [24];

3. Retrieve and skim read the resulting literature, to determine if they are relevant. In case it
has no relevance, it is discarded.

4. Relevant literature is subject to fine-reading and a summary of it is written. In case any
results or statements in the relevant literature appear to be of inadequate quality or otherwise
of questionable validity, this is considered particularily important to note and, if possible,
attempt to replicate.

5. Retrieve the literature cited by each of the identified relevant academic papers, and repeat
step 3, 4 and 5 until the list of relevant literature appears to be exhausted.

3.2 RQ1: What is the forensic value of OOXML documents, and how can
they be used in forensic investigations?

This research question can to some extent be answered by performing a literature study, since
OOXML documents share some similarities with other types of files, with respect to the types
of forensically interesting information they record. Published research has identified what types
of information in general is desirable for forensic investigators, and what the purpose of each
type of information is in the context of digital forensics [3]. Furthermore, some of the research
performed on OOXML documents has already identified certain possible use case scenarios [9, 5].

In order to determine what forensically interesting information is stored in OOXML documents,
a combination of experimental research and study of the OOXML standard is utilized. This is
in practice performed by dissecting sample OOXML documents which are self-generated or col-
lected on the Internet, and relate the findings to the formal descriptions found in the standard.

We have chosen a qualitative approach to gain supporting knowledge used to answer this re-
search question, in particular in the form of case studies including conducting interviews with
experts working in the field. Forensic investigators working in the field are bound to have valu-
able “real-world” experience, and should therefore be able to provide useful knowledge about
typical scenarios where the information in OOXML documents could be utilized. As supporting
knowledge to answer this research question, feedback provided by forensic investigators in two
law enforcement agencies in Norway is utilized, namely NCIS Norway (Norwegian: Kripos) and
National Authority for Investigation and Prosecution of Economic and Environmental Crime in
Norway (Norwegian: ØKOKRIM).

3.3 RQ2: Can the metadata of OOXML document be trusted?

The purpose of this research question is to determine whether or not certain evidence should be
trusted, which is highly important particularily in forensic investigations where the evidence is
presented to a court of law.

In order to attempt answering this research question, experimental research methods are the pri-
mary sources of information. Uncertainties or irregularities should be possible to identify while

15

Forensic Analysis of OOXML Documents

inspecting self-produced documents and documents in the data set of document collected from
web sources. We attempt to determine whether falsifying evidence in OOXML documents is a
trivial task, and if it is, whether it can be detected. This is relevant for both a court of law and
forensic investigators [8][Appendix D].

By inspecting self-produced documents and the data set of documents collected on web sources,
uncertainties or irregularities should be possible to identify. We furthermore attempt to provoke
or recreate situations that could lead to irregularities, in order to determine what situations could
produce the irregularities.

3.4 RQ3: Are there differences from version to version of the popular
office suites, with respect to what forensically interesting data they
record in the files? Does performing certain actions in different ways
affect the recorded forensically interesting data?

Published research has briefly touched upon the fact that different office suites may vary with
respect to what forensically interesting information they store [9][p. 2]. This motivates further
research on the forensic difference between different office suites supporting the OOXML stan-
dard, attempting to determine if some office suites record more or less forensically interesting
information.

In order to answer this research question, experimental research techniques are utilized. The
experiment setup and execution used to attempt answering this research question is in practise
be performed by installing various office suites supporting OOXML, and using each office suite
to perform a pre-defined set of actions that could affect any forensically interesting informa-
tion recorded in the documents. Since there is a possibility that combining several actions might
produce different results, each type of action is isolated to one document to avoid false “cause-
and-effect” results. After performing the actions for each office suite, the resulting document are
subject to inspection and comparison.

3.5 RQ4: In what ways can the revision identifiers be useful in a forensic
investigation, and in what situations are they preserved?

Published research has touched upon the use of revision identifiers in a forensic investigation
[9, 2], and to some degree also in what situations the revision identifiers are preserved when
copying and pasting [5]. A literature study can therefore to some degree help answer this re-
search question, in addition to motivating further research.

Experimental research methods are utilized to determine what sitations preserve the revision
identifiers when copying and pasting, and is in practice performed by altering an independent
variable (i.e. the situation, e.g. changing the style of the text), copying content from one docu-
ment to another and inspecting the XML of the resulting documents. This setup is used in several
experiments, with altering the independent variable as the only difference.

16

Forensic Analysis of OOXML Documents

4 OOXML file characteristics and use in digital forensics

This chapter presents the characteristics of OOXML files, and discusses the possibilities the infor-
mation stored in the files may have in the context of digital forensics. The information contained
in OOXML files can be used for different purposes in various types of investigations, and some
practical scenarios where the information can be utilized are presented in this chapter.

4.1 History of the OOXML file format

While the Office Open XML format was released in 2006, XML as a format was used as early as
in Office 2000 (beta version released in September 1998) for certain functionality, such as meta-
data and vector markup. The beta version of Office XP (released in August 2000) supported XML
as the format for storage of Excel (spreadsheets) files, using their format named spreadsheetML.
The beta version of Office 2003 (released in October 2002) supported XML as a format for Word
files, using their format named wordprocessingML. In May 2005, Microsoft announced that the
new XML format would be default for Word, Excel and PowerPoint [25].

In November 2006, Microsoft Office 2007 was released, with full support for OOXML. In De-
cember the same year, ECMA approved OOXML as ECMA standard 376, and ECMA submitted
OOXML to ISO/IEC1 for approval as an ISO/IEC standard. This was approved in April 2008,
and was published as ISO/IEC DIS 29500 [25][26]. The first version of ECMA-376 and ISO/IEC
DIS 29500 are almost identical [27], and this thesis refers to ECMA-376 instead of ISO/IEC DIS
29500 since ECMA-376 is provided without cost [1].

The standardization was not uncontroversial: Some argued that it was “insufficient and unnec-
essary”, not fulfilling the criterias expected of an international standard [28], that the format
was “designed by Microsoft for Microsoft products” [29], and that the format was bound to con-
tain many errors due because of the size of the standard specification2 and the time limit the
reviewers were put on [30].

4.2 The OOXML package and file structure

Versions of Microsoft Office before Office 2007 used a proprietary, binary format for storing all
the information associated with documents, including all its text, images and metadata. In order
to extract information from these formats, the host program is required to identify the structures
of interest and interpret their associated hexadecimal numbers [31]. Since the data structures
are returned as hexadecimal numbers, the information of interest is not easily understandable
for humans.

1International Standards Organization (ISO) and International Electrotechnical Commission (IEC).
2Over 6000 pages.

17

Forensic Analysis of OOXML Documents

As opposed to the previous binary formats, all information belonging to an OOXML file is stored
as regular ZIP file [32][p. 17], which is extractable as any other ZIP file. This ZIP file is referred
to as a “package” in ECMA-376, and is defined as a container used for storing a collection of
parts [4][p. 14], where a “part” is defined as a stream of bytes with MIME content type, usually
referring to a file in a file system, a compound file stream or a HTTP URI [4][p. 6]. The intention
of utilizing a package to store all the information associated with an OOXML file, is to provide
the convenience associated with only needing to deal with a single file when distributing it [4][p.
14]. Table 3 provides the file structure of an extracted sample OOXML document, along with a
short description of each file.

4.2.1 Metadata stored in OOXML documents

OOXML documents contain two XML files in particular that contains metadata that will often be
of interest to forensic investigators, known as app.xml and core.xml, located in the docProps di-
rectory. It should be noted that since this metadata is stored in XML files in the OOXML container,
this notion of metadata is different from the notion of metadata that is commonly used in digital
forensics, which in normal terms would refer to the metadata of the OOXML container itself. In
this case, the difference is that the metadata stored in the XML files are normally recorded by the
word processor, and the metadata of the container itself are normally recorded by the operating
system.

ECMA-376 [1][p. 4985] describes what types of metadata is stored in OOXML documents, and
Figure 3 shows how the metadata of OOXML documents are categorized. The various types of
metadata recorded in docProps/app.xml are listed in Table 5, and the various types of meta-
data recorded in docProps/core.xml are shown in Table 4. Appendix G.3.3 shows the content of
docProps/app.xml of a sample document; Appendix G.3.4 shows docProps/core.xml of the same
document. As the figure shows, word processor applications may also choose to record custom
metadata in docProps/custom.xml.

The custom metadata could be an important source of information and should not be ignored:
Our inspection of documents in the data set (see Section 6.1) determined recorded content such
as file paths of content included in the documents, additional names not recorded elsewhere
in the metadata, server names hosting content included in the document and additional times-
tamps. Appendix I provides the contents of docProps/custom.xml of a sample document collected
from web sources. We note that all values have been changed for privacy reasons.

Table 4: Metadata recorded in docProps/core.xml, adapted from
[1][p. 4985 - 4986], [4][p. 41]

Element Description

category Category the document belongs to, e.g. “resume”
[4][p. 41]

18

Forensic Analysis of OOXML Documents

contentStatus Current status of the document’s content, e.g. “draft”
[4][p. 41]

Created Document creation date [4][p. 41]

Creator Name of entity (e.g. person) creating the document

description Description of the document’s content [4][p. 41]

identifier Identification reference to the resource, e.g. URI
[4][p. 41][33]

keywords Keywords used to support searching and indexing
[4][p. 42]

language Language of content of document [4][p. 42]

lastModifiedBy The last user who modified the document [4][p. 42]

lastPrinted Timestamp of last printing [4][p. 42]

modified Timestamp of last modification [4][p. 42]

revision Number of revisions performed on document [4][p.
42]

subject Topic of document’s content [4][p. 42]

title Name of document [4][p. 42]

version Version number of document [4][p. 42]

Table 5: Metadata recorded in docProps/app.xml, adapted from
[1][p. 4986 - 4987]

Element Description Data type

Application Name of the application that created the document
[1][p. 3712]

string

AppVersion Version number of the application that created the
document [1][p. 3712]

string

Characters Total number of characters in document [1][p. 3712] integer

CharactersWithSpaces Total number of characters in document, including
spaces [1][p. 3713]

integer

Company Name of the company associated with document
[1][p. 3713]

string

DigSig Digital signature of signed document [1][p. 3713] DigSigBlob

DocSecurity Security level of document, where 1 = password
protected; 2 = recommended read-only; 4 = forced
read-only; 8 = locked for annotation [1][p. 3713]

integer

19

Forensic Analysis of OOXML Documents

HeadingPairs Grouping of document parts and number of parts in
each group [1][p. 3713]

VectorVariant

HLinks List of hyperlinks in document at point of last save
[1][p. 3714]

VectorVariant

HyperlinkBase Base string for evaluating relative hyperlinks in doc-
ument [1][p. 3714]

string

HyperlinksChanged Specifies one or several hyperlinks were exclusively
updated [1][p. 3714]

boolean

Lines Total number of lines in document at point of last
save [1][p. 3715]

integer

LinksUpToDate Whether or not hyperlinks in document are updated
[1][p. 3715]

boolean

Manager Name of supervisor associated with document [1][p.
3715]

string

MMClips Total number of multimedia clips present in docu-
ment [1][p. 3715]

integer

Pages Total number of pages in document [1][p. 3715] integer

Paragraphs Total number of paragraphs in document [1][p.
3715]

integer

Properties Application-specific properties of file [1][p. 3716] Properties

ScaleCrop Whether or not a thumbnail of the document should
be scaled to fit the display [1][p. 3716]

boolean

SharedDoc Whether or not document is shared between multiple
producers [1][p. 3716]

boolean

Template Name of template used to create document [1][p.
3716]

string

TitlesOfParts Titles of parts used to compose document [1][p.
3716]

VectorLpstr

TotalTime Total time the document has been edited, denoted in
minutes [1][p. 3717]

integer

Words Total number of words in document at point of last
save [1][p. 3717]

integer

4.2.2 Logical structuring of content in OOXML documents

The textual content of a OOXML document is logically structured into different parts: paragraph
elements, run elements and text elements, with the following relationship: A paragraph element
contains one or more run elements, and a run element contains a text element. If the content is
not textual, e.g. an inserted image or an embedded object, the text element is replaced by a draw-

20

Forensic Analysis of OOXML Documents

Figure 3: Metadata files in an OOXML document, adapted from [1][p. 4985]

ing or object element. A run is a logical container for representing content that share the same set
of properties, such as boldface, underline and font color [1][p. 17]. Listing 4.1 provides sample
XML showing a paragraph containing a run element and a run element containing a text element.

Listing 4.1: XML showing the logical structure of textual content in an OOXML document

<w:p>
<w:r>

<w:t>Showing some basic text</w:t>
</w:r>

</w:p>

4.2.3 The concept of revision identifiers

While performing manual inspection of word/document.xml and word/settings.xml contained in
OOXML document packages produced by Microsoft Word, a number of “revision identifiers” will
appear as content properties in both files. Revision identifiers are 32-bit numbers represented
in hexadecimal, with the intended purpose of providing a more effective and accurate way of
merging two documents that origin from the same source [34]. Figure 4 displays an example of
merging two documents that origin from the same source, where the revised document contain 4
insertions and 1 deletion. Appendix G.3.5 shows the word/document.xml of a sample document;
Appendix G.3.6 shows word/settings.xml of the same document.

The concept of revision identifiers makes it possible to determine exactly what changes have
been performed in a document, if both a revised version and an older version of the document
is available. This functionality is similar to when change tracking is activated in a document,
with the main differences being that change tracking provides some more information, e.g. who
performed the changes and at what time, and that changes are attributed to content in the XML

21

Forensic Analysis of OOXML Documents

of the document itself, which removes the need of having a reference document for comparison
in order to determine what changes has been performed.

One of the reasons for utilizing revision identifiers instead of change tracking to determine what
changes been made in a document, is to preserve the privacy of those editing the document [34].
From a privacy perspective, it might in many cases not be desirable to have changes attributed to
a certain individual with an accompanied timestamp, e.g. because certain parts of the document
is supposed to be contributed to anonymously and should not be connected to a certain person.
Regardless, it might still be desirable to merge or compare two documents and easily determine
their difference, and revision identifiers provides a compromise; privacy is protected to a higher
degree, while some details are lost compared to what would be recorded if change tracking was
enabled.

The office suites makes use of the revision identifiers by considering content from two docu-
ments sharing identical revision identifiers to be produced before the documents were forked
into two separate documents, and the content with revision identifiers unique for each docu-
ment to be produced after the documents were forked [34]. Since utilizing revision identifiers
provides more details of what edits have performed between the original and a revised docu-
ment, comparing and merging documents therefore provides more accuracy without the need
for “full’ change tracking.

Figure 4: Merging two sample documents.

There are 7 different uniquely named types of revision identifiers in OOXML documents, each
serving specific purposes. Some of the revision identifiers share the same name, but their inter-
pretation is context dependent. Table 6 provides an overview of the different types of revision
identifiers. Common for all types of revision identifiers, is that ECMA-376 defines that their pur-
pose is to provide the possibility of separating specific revisions, and that all content associated
with the same unique revision belongs to the same editing session in a document, where “editing

22

Forensic Analysis of OOXML Documents

session” in this context refers to the time span between each save [1][p. 1049].

Table 6: Types of revision identifiers in OOXML documents.

Name Context Description

rsidRPr Paragraph “Revision identifier for paragraph glyph formatting”, used to
determine in which editing session the glyph character for the
paragraph mark associated with the paragraph was modified
[1][p. 237]

rsidP Paragraph “Revision identifier for paragraph properties”, used to deter-
mine in which editing session the associated paragraph’s prop-
erties were modified [1][p. 236]

rsidDel Paragraph “Revision identifer for paragraph deletion”, used to determine
in which editing session the associated paragraph was deleted
[1][p. 236]

rsidRDefault Paragraph “Default revision identifier for runs”, used by all runs in the as-
sociated paragraph that do not have declared an rsidR attribute
[1][p. 237]

rsidR Paragraph “Revision identifier for run”, used to determine in which edit-
ing session the associated run was added to the document
[1][p. 291]

rsidRPr Run “Revision identifier for run properties”, used to determine in
which editing session the associated run’s properties were
modified [1][p. 292]

rsidDel Run “Revision identifier for run deletion”, used to determine in
which editing session the associated run was deleted [1][p.
291]

rsidR Run “Revision identifier for run”, used to determine in which edit-
ing session the associated run was added [1][p. 291]

rsidDel Table row “Revision identifier for table row deletion”, used to determine
in which editing session the associated row was deleted [1][p.
464]

rsidR Table row “Revision identifier for table row”, used to determine in which
editing session the associated row was added [1][p. 464]

rsidRPr Table row “Revision identifier for table row glyph formatting”, used to
determine in which editing session the glyph character for the
table row mark was modified [1][p. 465]

rsidTr Table row “Revision identifier for table row properties”, used to deter-
mine in which editing session the associated table row’s prop-
erties were modified [1][p. 465]

23

Forensic Analysis of OOXML Documents

rsidDel Section
properties

“Section deletion revision identifier”, used to determine in
which editing session the section mark for the associated sec-
tion was deleted [1][p. 589, 591-592]

rsidR Section
properties

“Section addition revision identifier”, used to determine in
which editing session the section mark was added to the as-
sociated section [1][p. 589, 591-592]

rsidRPr Section
properties

“Physical section mark character revision identifier”, used to
determine in which editing session the character representing
the section mark was formatted [1][p. 589, 591]

rsidSect Section
properties

“Section properties revision identifier”, used to determine in
which editing session the character representing the section
was formatted [1][p. 590, 591]

As Table 6 shows, the 7 uniquely named types of revision identifiers must be interpreted based
on their context (with rsidTr and rsidSect as exceptions since they are only used in one specific
context each and therefore unambiguous); depending on if they are associated with a paragraph,
run, table row, or section properties. Although all types of revision identifiers may be of interest in
the context of digital forensics, we argue that paragraph rsidR and run rsidRPr are particularily
interesting. Paragraph rsidR, i.e. the value of rsidR in the context of paragraphs, are attributed to
paragraphs when they are added, and may be utilized in visualization of paragraph creation as
presented in Section 2.1.5. The run rsidRPr attribute is important since it is required for revision
identifiers to be preserved in content copying, as will be presented in Section 6.3.3.

4.2.4 Metadata of embedded objects

As presented by Garfinkel et al., objects that are embedded in OOXML files are stored in the re-
sulting ZIP file as “their own parts” [9][p. 2]. This means that if e.g. another OOXML document,
spreadsheet or presentation is embedded into an OOXML document, the file itself is stored in the
file package of the receiving document.

This characteristic may have significant value in forensic investigations, since the metadata of
the embedded objects are preserved in their original form. While a suspect may of course eas-
ily edit or remove the metadata of any embedded objects, it is a fair assumption that many
perpetrators are non-technical people and will not attempt to do so. It is also likely that many
perpetrators simply are not aware of the fact that embedded files are stored in their original form
and therefore contain possibly forensically interesting metadata.

4.3 The forensic usefulness of a single OOXML document’s metadata

Reiterating the essence of Section 2.1.2; Buchholz et al. identified six keywords for questions
forensic investigators typically seek to get answered in an investigation: Who, what, when, how,
where and why [3][p. 5]. We define a piece of evidence’s forensically usefulness to be dependant
on the extent of answers it can provide, with respect to the keywords who, what, when, how,
where and why. Therefore, the more answers a piece of evidence can provide, the more forensi-

24

Forensic Analysis of OOXML Documents

cally interesting it is considered. The “why” question deals with people and their motives, and
is therefore considered out of the scope of this thesis. In this section, we deal with the case of a
single seized document, where reference documents are not available as additional supporting
evidence.

Who is associated with the document?

Relating the who keyword to OOXML metadata, it is desirable to connect the actions performed,
e.g. editing the document, to a specific physical person or several people. This can in some cases
be answered with the name of the person who initially created the document, which as shown
in Table 4 can be extracted from the creator element of docProps/core.xml, and is normally au-
tomatically set by the word processor based on the name associated with the operating system
user account used when creating the document. In the case of Office 365, the value of creator
is set to the user’s email address if the user is authenticated with his Microsoft account. Fur-
thermore, the value of lastModifiedBy could reveal the name of another person responsible for
editing the document, if that other person was the last one to edit the document. Likewise, if a
company name is specified in the word processor, it can be extracted from the company element
in docProps/app.xml.

Correlation of evidence is often useful in a forensic investigation, and metadata that does not
directly include names of the people might still in some cases be used to support the attribution
of a document to a person or a group of people if enough evidence is present. As presented in
Section 6.4.3, inserted images with their original paths preserved in the document’s metadata
could have significant value in attributing a document to a person, since preserved paths could
include a person’s name or username, in addition to other information such as the user’s operat-
ing system. Furthermore, if a preserved path extracted from a seized document to some degree
is unique and identical to a path existing on the computer belonging to the suspect, this could
support the suspicion against the suspect. Office 2013 has functionality allowing the user to in-
sert images from his Facebook account after successfully authenticating, and the image’s original
Facebook filename is preserved in the metadata of the document. This could have significant
forensic value, since parts of the filename can be used to identify the user’s Facebook profile, as
shown in Appendix C.

The following scenario provides a practical example of evidence correlation used to attribute
a document to a physical person, even though the document’s metadata does not directly reveal
any names or similar information.

Scenario:

A bomb threat detailing the plans of the perpetrator is emailed to a company, attached to the
email as a PDF file. The PDF file contains textual descriptions of a planned attack, along with an
image displaying a map of the area the perpetrator describes as his target.

Forensic process:

Police investigators are able to extract the originating IP address the email appears to be sent from,
and track it to a student housing near a university campus. The police raid the housing, but all of

25

Forensic Analysis of OOXML Documents

the residents claim their innocence. Computers and other electronic devices are seized and imaged,
and forensic analysis determines that a .docx file is present on one of the resident’s computers,
and has been attempted deleted. The document is subject to analysis, in which package extraction
is performed and the XML is read. Analysis determines that the path of the inserted map image
is quite unique and refers to a location that exists in the suspect’s computer’s filesystem, and can
therefore likely be considered a strong indication that the suspect’s computer was used to send the
email.

What has been done in the document?

Going further on the list of keywords, forensic investigators often seek to gain knowledge about
what has happened, in this context referring to what actions have been performed within the
document’s content, in the document structure or on the document container file. One type of
information that could be used to determine what has been done in document, is the concept of
revision identifiers. As presented in Section 4.2.3, content in an OOXML document gets an as-
sociated unique revision identifier making it possible to determine in what revision content was
added. We can consider revisions as actions performed in a document, and the revision identi-
fiers provide an indication of what has been done in a document.

The content of OOXML documents produced in Microsoft Word will as previously described get
attributed with revision identifiers with a type depending on the context of the content. When
a paragraph is added to a document, the content of the paragraph is associated with a revision
identifier named rsidR. The value of this revision identifier is unique within the document, and all
content sharing the same revision identifier value is by definition added within the same editing
session, i.e. the interval of time between two saves. The revision identifiers can therefore reveal
some information about what has happened in the document.

In his paper, Langweg utilized visualization techniques to determine what had been done in
the document he analysed [2]. The visualizations were based on extracted revision identifiers,
and was used as supporting information to determine that the document was likely compiled
from other documents. A similar type of visualization was used to detect language anomalitites
in the document, which was used to determine that the suspect at one point likely edited the
document on a computer with a different language setup, likely in another country. Visualiza-
tion techniques can therefore be useful to determine what has happened in a document, since
they provide a representation of information that would be difficult to understand just by per-
forming manual analysis. Figure 5 provides an example visualization, representing the language
attributes detected in a sample document.

Thumbnails of documents can be forensically interesting, and can in some cases give an indi-
cation of what has been happening in a document. As presented in Section 6.4.2, thumbnails
of documents are by default not saved by any of the tested word processors. However, once a
document has been saved with the “Save thumbnail” box checked, all subsequent documents
edited with the word processor will by default save a thumbnail until it is disabled. Garfinkel et

2The full version of the paper; unpublished.

26

Forensic Analysis of OOXML Documents

Figure 5: Barcode visualization of language settings throughout the document, from the complete version
of [2]

al. identified two possible uses of a thumbnail [9][p. 3]:

1. If comparing the thumbnail and the actual contents of the document results in a mismatch,
the thumbnail or the content might have been altered after the thumbnail was generated;

2. If the document is damaged but the thumbnail is intact or restorable, it could provide some
indication of what the document contained.

The recorded editing time, as reflected by TotalTime in docProps/core.xml, can in some cases
provide indications of what has been done in a document. If the recorded editing time shows
an unrealistic low number of minutes compared to the amount of content in the document, this
could be an indiciation that the document was composed based on other sources, which could be
interesting in forensic investigations involving theft of intellectual property. Since the document
could be assumed to have been composed based on other sources, it could indicate that the in-
vestigators have not been able to seize all evidence if the sources have not been located.

The following scenario provides an example of a case where determining what has happened
in a document could be useful in a forensic investigation.

Scenario:

A large-scale drug dealer is apprehended and his location is raided, and the investigators seek to
uncover his customers.

Forensic process:

The investigators seize all units found at the location, and create forensic images each unit. Upon
inspection, the investigators discover a deleted document, debt.docx, which is partly overwritten.
They manage to assemble and extract the package, but the document body is unrecoverable and
cannot be read. However, they are able to partly recover a thumbnail of the first page found in the
package. This thumbnail reveals names, purchases and debt of some of the suspect’s customers,
which is the type of information the investigators were looking for.

When did the actions performed in the document occur?

Information about what point in time an action was perfomed is generally considered one of the
most important pieces of information in a forensic investigation, since time information usually is
necessary for correlating evidence [35][p. 1]. After an incident has occurred, the actions relevant
to the incident are bound to have happened at a specific point in time, and one of the tasks of
forensic investigators is to attempt reconstructing the events and place them on a chronological

27

Forensic Analysis of OOXML Documents

timeline.

Assuming the events and their associated time information are correct and correctly placed on
the timeline, investigators are able to use the timeline for correlating evidence from different
sources. Investigators can for example correlate file timestamps with time information related to
events claimed in interrogations, such the suspect claiming to be physically present at another
place while the timestamps associated with a file determine that somebody was present at the
computer at the specified time [10][Appendix E].

As Table 4 shows, OOXML metadata usually contain three timestamps:

● Timestamp representing the point in time the document was created;

● Timestamp representing the point in time the document was last modified;

● Timestamp representing the point in time document was last printed.

These timestamps could be useful in e.g. timeline creation and evidence correlation as discussed
above, but it must be noted that timestamps should not blindly be trusted since it is always possi-
ble that the clock of the suspect’s machine was incorrect when the document was created, edited
or last printed. In addition, as will be discussed in Section 4.6, the created timestamp of OOXML
documents created with Word Online should not be trusted in a forensic investigation.

In addition to the timestamps available in the seized OOXML document metadata itself, times-
tamps can be recursively extracted from embedded OOXML spreadsheets, presentations and
documents if they have been embedded. When an OOXML document is embedded in another
OOXML document, it is stored in its original, unaltered form if it is inserted by using the Insert
-> Object functionality of Microsoft Word. If Insert -> Text from file is used, only text extraction
is performed and the original OOXML document is not embedded. When OOXML spreadsheets
and presentations are embedded into an OOXML document, their main XML bodies (ppt/presen-
tation.xml for presentations; xl/workbook.xml for spreadsheets) are slightly modified: For pre-
sentations, an extLst3 tag including a GUID is added; for spreadsheets, an oleSize4 is added. This
does not affect the possibility of extracting the embedded objects’ metadata; docProps/core.xml
and docProps/app.xml are kept in their original, unaltered form.

Scenario:

A homicide has been committed. During an interrogation, the currently main suspect claims his
innocence and claims that he was at home writing a letter at the time the homicide was committed,
and that he could not possibly have been physically present at the location of the crime scene.

Forensic process:

The suspect’s computer is seized, and a forensic image is created. The forensic image is indexed,
and all documents are extracted from the system. The described document is located, and metadata

3Extension list [36].
4Embedded object size [37].

28

Forensic Analysis of OOXML Documents

extraction is performed. Metadata from docProps/core.xml shows a last modified timestamp which
is consistent with the claims of the suspect; the document appears to have been last modified at a
point in time that would make it practically impossible for the suspect to be present at the crime
scene at the time of the homicide due to the amount of time travelling there takes. Timestamps
could in this case be used to support the case of the suspect if other evidence also adds up, and the
investigators could focus their attention on other possible suspects.

Revision identifiers and their associated content can in some cases reveal some time information
if supported by additional information: If an editing session includes content that mentions or
describes events, the earliest possible date the editing session took place must be the same as
the described event. Likewise, content with revision identifier number higher than the revision
identifiers associated with the content describing the events must have been written or edited at
a point in time after the described event occurred, since revision identifiers in Microsoft Office
are incremental within the document [1][p. 1049].

Figure 6 shows a barcode visualization of the sample document shown in Appendix G.3. Each
colorized box represents the amount of paragraph creation revisions associated with the revision
identifier specified under, in proportion to the total amount of paragraph creation revisions in the
document. The colorized box to the left represents the paragraph creation revisions in the very
beginning of the document, while the colorized box to the right represents the very last of the
document. Content belonging to boxes appearing to the left of a chosen box is therefore written
before the content of the chosen box.

Figure 6: Barcode visualization of paragraph creation revisions of document in Appendix G.3

How were the actions done in the document performed?

Evidence that could provide an indication of how actions were performed in a document could
be important in a forensic investigation, since correlating evidence might reveal other informa-
tion such as who actually performed the editing [3][p. 9]. Performing evidence correlation can,
as previously discussed, provide further knowledge about the events that have taken place in a
case, even though it might at first not be apparant. The following scenario provides an example
to demonstrate how determining how actions were performed in a document could be used to
determine who wrote the document.

Scenario:

A publicly traded company is under investigation for leaking inside information, giving certain
investors an unfair advantage compared to other investors (which is known as insider trading

29

Forensic Analysis of OOXML Documents

[38]). Since it is unknown who leaked the information, the goal is to determine who did it to
thereafter be able to prosecute the person.

Forensic process:

Based on details about information leaked, the investigators suspect that the information was
leaked by somebody in a management position, and the number of suspects is thereby reduced.
The investigators seize and create forensic images of the computers and other units of those in
management positions, and perform analysis of these to look for evidence of the alleged actions.
On a USB flash drive found in a trash bin, they find an OOXML document which has been at-
tempted deleted, containing information very similar to what has been leaked.

Upon inspecting the document’s metadata, it appears that the metadata has been stripped, remov-
ing information such as “Creator” and “lastModifiedBy”. The “created” and “modified” timestamps,
have, however, not been affected by the metadata cleansing process, in addition to “Application”
and “AppVersion” still being intact. The application-specific information shows that Microsoft Of-
fice with the “AppVersion” 00.0001 was used to create the document, which means it was created
with Word Online. This motivates inspection of the web browser cache of each seized system.
The inspection reveals that one of the systems accessed Word Online at a time consistent with the
timestamps recorded in the document found on the USB flash drive, which leads to strong suspicion
against the person owning the computer.

Where were the actions performed in the document performed?

Determining where the actions associated with the document were performed could be impor-
tant to e.g. attribute the document to a specific person or a group of people, particularily if the
document’s metadata does not have specified any author-specific helpful information such as
creator or lastModifiedBy that could be used to identifiy the person. It could also be used to help
prove that the suspect has been at a certain location. In this context, “where” refers to both loca-
tions within computer systems, such as if a file was created locally or originates from an external
source such as a USB flash drive, and the physical location of the people associated with the
document.

Preserved original paths of inserted images could also in some cases be used to answer the
“where” question, since it could reveal that the inserted image originated from e.g. a USB flash
drive or an external hard disk drive. This information could have significant value in a foren-
sic investigation, since it shows that a physical unit at some point likely has been present. This
information could be very useful since it could indicate that the investigators might not have
seized all possible evidence, for example a hidden USB flash drive, which could contain addi-
tional forensically interesting evidence [10][Appendix E].

Microsoft Office automatically detects the input language based on the content that is typed,
in order to provide spell checking for that particular language. By default, the language is set to
the language of the installed version of Office, and the language will automatically change after
some content has been typed in another language. The following scenario is provided to demon-
strate one way this could be used to determine where the person associated with the document
has been.

30

Forensic Analysis of OOXML Documents

Scenario:

An employee of a company in London is investigated for selling highly sensitive customer infor-
mation to a criminal organization in Stockholm after a member of the criminal organization is
apprehended. In an interrogation, the apprehended criminal confesses and claims that he physi-
cally met with the employee in Stockholm to exchange the contraband information and money.
The employee denies everything, and claims he was at home that day, fixing his motorcycle and
writing an entry in his diary.

Forensic process:

Police investigators seize and create a forensic image of the employee’s laptop. Upon inspection,
they find the mentioned diary written in Microsoft Office and stored as an OOXML document. They
further find the diary entry the suspect referred to, which is shown in Figure 7. Upon inspection
of the XML structure of word/document.xml, they discover that the headline, 12/03-2014, is
attributed with <w:lang w:val="sv-SE"/>, as shown in Listing 4.2, while the rest of the document
is attributed with <w:lang w:val="en-GB"/>. This indicates that the document at some point has
been edited on a computer with Swedish set as the default language, which could e.g. have been
the suspect visiting an Internet café or a library while in Stockholm.

Figure 7: Diary entry of the suspect in the scenario.

Listing 4.2: XML showing a Swedish language attribute to the headline of the diary.

<w:r w:rsidRPr="00034F84">
<w:rPr>

<w:lang w:val="sv−SE"/>
</w:rPr>
<w:t>12/03-2014</w:t>

</w:r>

4.4 When change tracking is enabled

Microsoft Office has functionality to track all changes in a document, which is intended to be
used when collaborating on a document, e.g. when a document is written by one person and
reviewed by somebody else who suggests that certain parts of the document should be edited
[39]. A document with change tracking enabled records the names of every author associated
with the performing each change, a timestamp of when each edit occurred, in addition to revi-
sion identifiers associated with the editing.

A seized document with change tracking enabled therefore provides a wealth of information
to a forensic investigator who attempts to determine what has been done in a document, by

31

Forensic Analysis of OOXML Documents

whom and at what time; in other words useful in answering “who”, “when” and “what”. Ap-
pendix H.1 provides a screenshot of a document with change tracking enabled, and Appendix
H.2 shows the underlying XML of performing one of the edits of that document. From a forensic
perspective, change tracking is unfortunately disabled by default, but might still likely be found
enabled in some forensic investigations.

4.5 Forensic usefulness of OOXML documents with reference documents

This section deals with cases where a seized document is of interest to the forensic investigators,
and where one or more reference documents are available. In this context, reference documents
refers to any other OOXML documents containing revision identifiers that can be used in a com-
parison process.

4.5.1 Detecting unauthorized distribution of sensitive documents

Garfinkel et al. [9][p. 5] briefly present the idea of creating a database consisting of revision
identifiers that have been extracted from documents gathered from an organization under inves-
tigation. Once this database has been created, the revision identifiers extracted from documents
appearing in the investigation at a later point can then be compared to the revision identifiers in
the database.

The construction of an initial database consisting of documents and their corresponding ex-
tracted revision identifiers can be performed automatically by using a custom-made extraction
process, such as the one presented in Section 5.2.3. The collection of documents at a later point
of time could be performed automatically, and the revision idententifier extraction could be per-
formed in manner such as the one displayed in Figure 8.

In the case where one or more revision identifiers extracted from a collected document are identi-
cal to any of those recorded in the database, the collected document is likely the same document
as the one matched in the database or contains content copied from the document in the database
under the circumstances identified in Section 6.3.3. As it is likely that the collected document
contains content that is considered sensitive, the tool could produce an alert which notifies the
investigators of a suspicious document found being distributed. The suspicious document could
e.g. be gathered by capturing it while it is being transferred over a network that is under active
surveillance, or extracted from a captured system such as the hard drive of a seized computer
[9][p. 5].

Using the first example of a method for collecting suspicious documents to be checked against
the database, it is possible to implement such solution by using e.g. tcpflow for capturing the TCP
packets sent and received on a network. tcpflow is a tool that captures TCP data packets on a net-
work, and stores each TCP flow as an individual file [40]. As an example, a network monitored
by tcpflow would capture a document being uploaded to an FTP server and save it unaltered
as a separate file, as long as the document and the connection are not encrypted. The process
checking for matches could monitor the cache directory for new documents and automatically

32

Forensic Analysis of OOXML Documents

Figure 8: Flowchart showing a process of checking a collected document against database of known sensi-
tive documents.

perform extraction and comparison.

This implementation has the benefit that the database of known sensitive documents does not
need to store the actual content of the documents, since only the revision identifiers are com-
pared. Since a database containing sensitive documents would be a prime target for attackers,
the risk associated with a security breach is greatly reduced when only the revision identifiers
and other non-sensitive metadata is stored.

4.5.2 Attributing a document to a person

Attributing a document to a person could be relevant in many types of forensic investigations,
as the document’s content could e.g. contain evidence that could be used to make accusations in
the investigation or in a court of law. Documents that are part of a forensic investigation might
not always easily be attributed to a specific person if information such as creator name, company
or preserved original file paths of images are not specified in the document or appear to be am-
biguous. Such cases might be the result of intentional metadata removal after the document has

33

Forensic Analysis of OOXML Documents

been created, or a ambigious creator name specified in the operating system, e.g. User, which
could be hard to attribute to a specific person.

Based on revision identifiers extracted from the seized document and a reference document,
it might in certain cases be possible to attribute the document to a person even though the meta-
data of the seized document cannot be used to identify the document’s creator. In order for this
to be possible, we have identified the following requirements:

● A reference document must be available;

● Some identifiable author information must specified in the reference document;

● The documents must have some intersecting revision identifiers attributed to content which
there is reason to believe the creator of the reference document wrote.

OOXML documents created with Microsoft Office have a rsidRoot element specified in word/set-
tings.xml, and ECMA-376 specifies that “This element specifies the revision save ID which was
associated with the first editing session for this document. [...] This information must be identical
between any number of copies of the same document, as they all originate from the same original
editing session” [1][p. 1051]. Our experiments have determined that if several instances of Word
are open when creating documents (i.e. saving a newly created document), all documents get
the same rsidRoot value.

These two situations could be both beneficial and disadvantageous in a forensic investigation.
The advantage is that since two documents with intersecting rsidRoot values come from the same
source, it could be possible to attribute a document to a specific person if the reference docu-
ment has identifiable author information specified. The disadvantage is that it is not possible to
determine if documents have intersecting rsidRoot values due to their being created on the same
machine simultaneously or being the result of a forked document. Without other supporting in-
formation, it is therefore not possible to prove that two documents with intersecting rsidRoot
values were written simultaneously on the same machine. The following scenario is provided to
show a practical example of how this information can be used.

Scenario:

The employees of a company are under internal investigation for misconduct after business secrets
are leaked to a competitor. A ripped page of a printed sensitive document is found in the trash in
the copy room. Investigators are able to retrieve the original OOXML document from the cache on
the print server, and upon inspection discover that the perpetrator has stripped the metadata with
Microsoft Office’s metadata removal functionality.

Forensic process:

The investigators create forensic images of all units in the office. They extract all OOXML files
from the forensic images, and extract the revision identifiers from all of them as well as from the
document discovered on the print server, which is possible since revision identifiers are not removed
when the metadata is removed with Office. The revision identifiers extracted from the documents
are compared to those extracted from the document from the print server. One document from

34

Forensic Analysis of OOXML Documents

one of the forensic images is found to have a rsidRoot value which is equal to the rsidRoot in the
document from the print server. This indicates that the two documents were created simultaneously
and on the same machine. Metadata extraction of the document found on the forensic image shows
that it was created by the owner of the machine. The investigators therefore have reason to believe
the perpetrator was the owner of the machine where they located the document.

4.5.3 Uncovering previously unknown social networks

Being able to uncover previously unknown social networks could be useful to determine who is
communicating with whom in e.g. a terrorist network. Extremists increasingly use the Internet
for communicating with each other and spreading their radical ideas, according to the Norwe-
gian Police Security Service: “Today we see that Internet and increased use of social media have
created new platforms for radicalisation. [...] Contacts made in the virtual world may eventually
form the basis for extreme cells which meet in the real world” [41]. Terrorists and other criminals
might send OOXML documents to each other, and correlating identifiers from the documents
could be useful in uncovering social networks that previously may have been unknown.

Since revision identifiers are unique, they can be used to uncover previously unknown social
networks if documents are seized from several known sources and some intersecting revision
identifiers are detected. Figure 9 shows a hypothetical social network consisting of people send-
ing emails to each other, and the emails this scenario have OOXML documents attached, contain-
ing extremist content. The figure shows that Person 1 sends document A to Person 2 and 3, and
document B to Person 4 and 5. Person 5 sends document B to Person 6 and 7.

B A

B

B

B A

4 2

1

35

6 7

Figure 9: Hypothetical social network of people sending emails with attachments to each other.

In this scenario, the presented social network consists of extremists where we assume that some
participants might perform or support acts of terrorism. We let the police apprehend Person 1

35

Forensic Analysis of OOXML Documents

and seize his computer, create a forensic image of it and extract all OOXML documents from it.
The police add all documents and their extracted revision identifiers to a database of documents
seized from known “people of interest”, marked with the name of Person 1. Later, Person 6 is
apprehended and the same extraction process is performed. The comparison process then detects
intersecting revision identifiers from Document B found on the computers of both Person 1 and
Person 6. Since the same information was found on both computers, it can be assumed that there
is some connection between Person 1 and Person 6; they have likely communicated directly or
belong to a network of people who have communicated at some point.

4.6 Trustworthiness of evidence found in OOXML documents

Being able to trust the evidence collected in forensic investigations is of the utmost importance,
since uncertain, irregular or errornous information might lead to forensic investigators drawing
wrong conclusions. It is important that the evidence is sound in order for it to be accepted in a
court of law; if its soundness is questionable, the evidence might be dismissed. Therefore, it is
important to determine whether there is reason to believe certain evidence should not be trusted.

4.6.1 Alteration of XML metadata

In the context of uncertainties in the information contained in OOXML documents, one of the
biggest potential challenges lies in the fact that OOXML documents are open, XML-based and
the container is in practical terms just a regular ZIP package. It is therefore trivial to alter any
information in an OOXML document, which makes it possible for an adversary to tamper with
documents he knows or suspects will be collected in a forensic investigation. This possibility
was verified by i) unzipping a sample document; ii) changing the metadata values in docProp-
s/app.xml, docProps/core.xml and word/document.xml; iii) creating a ZIP archive of all files in
package; iv) changing the file extention back to “.docx”. The document passes the validation
process, and is interpreted properly by the word processor.

Depending on the intentions of the adversary, e.g. simply having the desire to cause problems for
certain individuals or to draw the attention away from himself and his actions, there are several
alterations he can perform that might lead to forensic investigators drawing wrong conclusions if
his actions are not detected. The adversary might e.g. alter the document’s metadata and change
the value of Creator or lastModifiedBy in docProps/core.xml to some other individual’s name, in
order words performing evidence falsification.

If the adversary suspects that the forensic investigators will perform revision identifier extrac-
tion and comparison on the document of interest and a set of reference documents, he might
change the values of one or more revision identifiers to match one or several reference docu-
ments, thereby making it seem like there is a relationship between the documents. Such evidence
falsification might lead to innocent people being suspected for e.g. illegal copying, distribution
of sensitive information, being a part of a criminal network and similar cases where revision
identifiers are used.s

36

Forensic Analysis of OOXML Documents

4.6.2 Detecting alteration of XML metadata

Files contained in an extracted OOXML document package produced by Microsoft Office have set
a timestamp to be 01.01.1980 00:00, which marks the start of the FAT32 epoch [9][p. 5]. In the
case of malicious manual alteration of the XML files in an OOXML package, such as changing a
revision identifier value or the name of the author to produce false evidence, this can be detected
by inspecting the modification timestamp of the files within the package. Listing 4.3 provides a
sample extracted OOXML package, where document.xml has been manually altered. As shown,
there is a discrepancy in document.xml’s associated modification timestamp, as it now reflects
a real modification timestamp, 22.05.2014 22:03, and not the default timestamp, 01.01.1980
00:00.

Listing 4.3: Directory listing of ./word in sample document where document.xml has been altered

22.05.2014 22:02 <DIR > charts

22.05.2014 22:03 8 180 document.xml

22.05.2014 22:02 <DIR > embeddings

01.01.1980 00:00 1 675 endnotes.xml

01.01.1980 00:00 1 261 fontTable.xml

01.01.1980 00:00 1 295 footer1.xml

01.01.1980 00:00 1 295 footer2.xml

01.01.1980 00:00 1 295 footer3.xml

01.01.1980 00:00 1 681 footnotes.xml

01.01.1980 00:00 1 295 header1.xml

01.01.1980 00:00 2 873 header2.xml

01.01.1980 00:00 1 295 header3.xml

22.05.2014 22:02 <DIR > media

01.01.1980 00:00 3 023 settings.xml

01.01.1980 00:00 30 895 styles.xml

22.05.2014 22:02 <DIR > theme

01.01.1980 00:00 497 webSettings.xml

22.05.2014 22:02 <DIR > _rels

It must be noted that the modification timestamps of the files are preserved even after the file
structure has been rezipped and renamed to a .docx extension. Furthermore, our experimenta-
tion has determined that the modification timestamps are preserved even after the document
has been modified in a word processor, saved and extracted again. This is highly valuable to
a forensic investigator, as it provides a trivial method for detecting that manual alteration has
occurred.

It must be noted that a determined person with the goal of falsifying evidence without leav-
ing traces, could build his own office suite or a script that follows the requirements of ECMA-376
when creating documents. The output of this could be a document with falsified metadata, ap-
pearing to have been produced in Microsoft Office.

37

Forensic Analysis of OOXML Documents

4.6.3 Discrepancies in recorded timestamps

Timestamps extracted from digital evidence are often essiential parts of forensic investigations,
making it possible for the investigators to e.g. create a timeline of events that have occurred
in the case and correlate evidence. Timestamps are therefore used to support answering the
“when” aspect related to the collected evidence in the particular case, as identified by Buchholz
et al. [3][p. 8]. It is apparant that incorrect timestamps might lead to errornous conclusions, and
it is therefore important to know whether or not the timestamps of the collected evidence are to
be trusted.

lastPrinted timestamp older then creation timestamp

While performing manual inspection of the XML content of a certain document, we observed
a possible discrepancy in the timestamps recorded in docProps/core.xml; a recorded lastPrinted
timestamp appearing to be older than the recorded Created timestamp. Logically, this would of
course be impossible as a document that has not been created yet cannot be printed. This moti-
vated further analysis of the test data set (which is described in Section 6.1), where we attempted
to determine if the lastPrinted timestamp discrepancy could be detected in other documents.

Analysis of the test data set showed that of the 76194 documents in the data set, 39535 (51.9%)
a lastPrinted timestamp specified. Of these, 28688 (72.56%) documents had a lastPrinted times-
tamp older than the created timestamp; 868 (2.20%) had a lastPrinted timestamp equal to the
created timestamp; 9979 (25.24%) had a lastPrinted timestamp later than the created timestamp.

One possible cause of lastPrinted timestamps being older than the created timestamp in a doc-
ument, is when a document of the old Microsoft Word format (with the file extension .DOC) is
edited in a version of Office supporting OOXML and resaved. This was confirmed by retrieving
an old Microsoft Office document with a lastPrinted timestamp specified from the web, editing it
with Microsoft Office 2013 and saving it as an OOXML document. We observed that the original
lastPrinted timestamp is preserved in the new document, but the created timestamp is set to the
time the document was saved as an OOXML document.

Investigators should pay attention lastPrinted timestamps being older than created timestamps,
since this likely means that the document in reality is older than what the created timestamp
reflects.

Erroneous creation timestamp in Word Online

Upon inspection of self-created documents made in Word Online, we observed that the created
timestamp recorded in docProps/core.xml were obviously errorneous:

● Document 1: 2009-11-23T22:41:00.0000000Z

● Document 2: 2012-08-07T03:53:00.0000000Z

The true timestamps for creating the documents were the following:

● Document 1: 2014-05-02T10:44:17.2716589Z

38

Forensic Analysis of OOXML Documents

● Document 2: 2014-05-29T15:58:35.7482626Z

We repeated the process of creating documents and inspecting the created timestamp in the
metadata of each document over 3 days, and found that the errorneous timestamp 2012-08-
07T03:53:00.0000000Z reoccurred in each of the documents. Since these timestamps are ob-
viously incorrect, this means that created timestamps from documents created in Word Online
should not be trusted in a forensic investigation.

39

Forensic Analysis of OOXML Documents

Table 3: File structure of extracted sample document.

File Description

/

_rels

.rels ÐÐÐÐÐÐÐÐÐÐ→

docProps

app.xml ÐÐÐÐÐÐÐÐÐ→

core.xml ÐÐÐÐÐÐÐÐ→

word

_rels

document.xml.rels

charts

_rels

chart1.xml.rels

chart1.xml ÐÐÐÐ→

colors1.xml ÐÐÐ→

style1.xml ÐÐÐÐ→

embeddings

Microsoft_Excel

_Worksheet1.xlsx

media

image1.png ÐÐÐÐ→

theme

theme1.xml ÐÐÐÐ→

document.xml ÐÐÐÐ→

endnotes.xml ÐÐÐÐ→

fontTable.xml ÐÐÐ→

footer1.xml ÐÐÐÐÐ→

footer2.xml ÐÐÐÐÐ→

footer3.xml ÐÐÐÐÐ→

footnotes.xml ÐÐÐ→

header1.xml ÐÐÐÐÐ→

header2.xml ÐÐÐÐÐ→

header3.xml ÐÐÐÐÐ→

settings.xml ÐÐÐÐ→

styles.xml ÐÐÐÐÐÐ→

webSettings.xml ÐÐ→

[Content_Types].xml Ð→

Contains package-level relationships; linking all pack-
age parts together [1][p. 29].

Extended file metadata properties of the document
[1][p. 154].

Core file metadata properties of the document [4][p.
41].

Contains part-level relationships; relationships be-
tween document and its associated parts [1][p. 30].

Contains relationships between parts in chart.

Chart used in the document [1][p. 127].

Color information associated with chart [1][p. 130].

Style information associated with chart.

Embedded object (Excel spreadsheet) [1][p. 4994].

Image inserted into document [1][p. 157].

Theme; color, font and format scheme [1][p. 135].

The main document [1][p. 51].

Contains all Endnotes used in document [1][p. 37].
Contains every font used in document [1][p. 39].

Footer displayed in document [1][p. 40].

Contains all footnotes used in document [1][p. 43].

Header displayed in document [1][p. 48].

All of the document’s properties [1][p. 35].

Diagram style information [1][p. 134].

Web-specific settings used in document [1][p. 56].

Content types for relationship parts [1][p. 103].

40

Forensic Analysis of OOXML Documents

5 OOXML Forensic Analysis Tool

5.1 Introduction

Currently available forensic tools supporting OOXML files have limited functionality in perform-
ing analysis of the documents [8, 10][Appendix D, E]. As described in Section 2.2, EnCase Foren-
sic and FTK by default do not extract every type of metadata available in a OOXML document’s
docProps/app.xml and docProps/core.xml, although it is possible to extend EnCase’s functionality
by using custom scripts. Furthermore, neither EnCase nor Forensic Toolkit (FTK) by default pro-
vide any interpretation of the evidence available, leaving this job entirely up to the investigator.
Neither of the two tools utilize revision identifiers from documents for any purpose.

We have developed a custom forensic tool prototype for analysing OOXML files, with the main
purpose of exploring and demonstrating the possibilities OOXML files have in the context of dig-
ital forensics. In addition to exploring the analysis possibilities, the prototype was used to help
answer the research questions. The prototype, simply named OOXML Forensic Analysis Tool or
hereafter shortened OOFAT, has several functions that will be presented in this chapter.

The functionality of OOFAT was demonstrated to investigators from the National Authority for In-
vestigation and Prosecution of Economic and Environmental Crime in Norway (Norwegian: Økokrim)
and NCIS Norway (Norwegian: Kripos) in order to get feedback. The investigator from Økokrim
responded that they perform OOXML document analysis manually because currently available
forensic tools do not extract every type of information available [8][Appendix D]. The investiga-
tor from Kripos responded that they also perform analysis manually, which for them is feasible
because they do not handle very large amounts of documents [10][Appendix E]. Both parties
expected that at some point in the future there would likely be a case involving so many doc-
uments that performing analysis manually would be unfeasible, and that the functionality of
OOFAT would be beneficial [8, 10][Appendix D, E]

The investigator from Kripos suggested that the revision identifier comparison process could
be useful for e.g. the Norwegian Police Security Service (Norwegian: Politiets Sikkerhetstjeneste) in
uncovering social networks to detect who has been communicating with whom, similar to what
is presented in Section 4.5.3.

5.2 OOFAT’s functionality

5.2.1 Document validator

As will be presented in Section 6.1, a data set of independent OOXML documents was collected
on the Internet through web searches. Since we have no control over these files, there is a pos-
sibility that they are corrupted or otherwise invalid, e.g. a file of another type with a false file

41

Forensic Analysis of OOXML Documents

extension. A document validation process was therefore developed, with the purpose determin-
ing whether a file is a valid OOXML document. This process was also used to check if files were
valid after performing the manual alteration described in Section 4.6. This was implemented by
using the OpenXmlValidator method in the official OpenXML SDK from Microsoft, and each doc-
ument input to the validation process is attempted validated as respectively Office 2007, 2010
and 2013 files.

Figure 10 shows the implemented process of determining whether or not a document is valid.
WordprocessingDocument.Open uses the specified document path to create a new Wordprocess-
ingDocument instance [42]. OpenXMLValidator takes Office version 2007, 2010 or 2013 as a
parameter, and uses the Validate method to attempt validation for the specified version of Office
[43]. In the case where no errors are returned for the specified version of Office, the document
is considered valid. In the contrary cases, where errors are returned for all version of Office, the
document is considered invalid.

Figure 10: Flowchart showing the validation process.

5.2.2 Document metadata extraction

Forensically interesting metadata can be extracted from docProps/app.xml and docProps/core.xml,
as described in Section 4.2.1. Functionality for extracting this information was implemented in
OOFAT, and Figure 11 shows a flowchart of the implemented process of extracting metadata

42

Forensic Analysis of OOXML Documents

from a document. We observe that neither EnCase nor FTK by default currently have functional-
ity supporting metadata extraction in bulk.

Automating tasks is often desirable as it could save time, resources and ensure thoroughness
[44][p. 5]. Performing bulk extraction of document metadata from a set of documents that are
part of a forensic investigation could save a lot of time, in particular if the amount of documents
is high [8, 10][Appendix D, E]. The document metadata extraction process is therefore included
in a loop going through a list of input documents, where each document is unzipped and is input
to the metadata extraction process. The output of this bulk extraction process is in the format
of comma-separated values (CSV), which later can be processed in any way the investigators
desire.

Figure 11: Flowchart showing the process of metadata extraction.

5.2.3 Revision identifier extraction and bulk comparison

Revision identifiers are present in document.xml and settings.xml in OOXML documents, as de-
scribed in Section 4. The revision identifiers are as mentioned interesting from a forensic perspec-

43

Forensic Analysis of OOXML Documents

tive as they may be used for e.g. document tracking, uncovering previously unknown networks
and detecting plagiarism. A process for extracting revision identifiers from documents was im-
plemented in OOFAT, in addition to a process for comparing the revision identifiers extracted
from other documents.

The extraction process takes one or more documents as input, and for each document in the
input collection, the steps shown in Figure 12 are executed. As the figure shows, an intermediate
XML file is used for storing the extracted the document name, a document id, SHA1 hash and
revision identifiers for each document. In this context, document name refers to the file name of
the document and document id refers to a unique numeric value incrementing for each new entry
in the intermediate XML file. The reason for storing the extracted information in an intermediate
XML file is to reduce the time needed if it is desirable to perform revision identifier comparison
more than once. The extraction and comparison could alternatively have been executed directly
in the memory, but this would require additional computational time if the process is run more
than once.

The process extracts the 6 most common types of revision identifiers from word/document.xml,
namely:

● Paragraph rsidR: Paragraph creation; used to determine in which editing session the associ-
ated paragraph was added to the document [1][p. 236].

● Paragraph rsidP: Paragraph properties modification; used to determine in which editing
session the associated paragraph’s properties were modified [1][p. 236].

● Paragraph rsidRPr: Paragraph glyph formatting; used to determine in which editing session
the glyph character for the paragraph mark associated with the paragraph was modified
[1][p. 237].

● Paragraph rsidRDefault: Default value for all runs; used by all runs in the associated para-
graph that do not have declared an rsidR attribute [1][p. 237].

● Run rsidR: run creation; used to determine in which editing session the associated run was
added to the document [1][p. 291].

● Run rsidRPr: run properties modification; used to determine in which editing session the
associated run’s properties were modified [1][p. 292].

The process extracts rsidRoot and rsid values from word/settings.xml. After the extraction has
been performed, the revision identifiers from one document could be compared with revision
identifiers from one or more other documents to determine if they appear to originate from the
same source.

The comparison process takes lists of revision identifiers from one or more documents, and com-
pares them with lists of revision identifiers extracted from another document. This comparison
is performed by using the List.Intersect method in C#, which compares each of the entries in two
lists and outputs the values that are equal [45]. In case two documents have any intersecting

44

Forensic Analysis of OOXML Documents

Figure 12: Revision identifier extraction process.

45

Forensic Analysis of OOXML Documents

revision identifiers, this is as discussed in Section 4.5 an indication that the documents likely
origin from the same source.

While the revision identifiers themselves cannot be used to determine which of the documents
are the original, the creation timestamps from each document can be used to determine which
of the documents appears to be the oldest, although timestamps are not always to be consid-
ered trustworthy. In case two documents share any revision identifiers, the comparison process
of OOFAT therefore also compares the creation timestamps of each document when the output
is presented as in a tree graph layout. The document with a creation timestamp that appears to
be the oldest is considered the most likely original document. Figure 13 shows the implemented
comparison process.

Figure 13: Revision identifier comparison process.

46

Forensic Analysis of OOXML Documents

5.2.4 Revision identifier comparison output

OOFAT has implemented three possibilities of showing the result of the revision identifier com-
parison process described in Section 5.2.3:

● CSV output to text file;

● Table output;

● Tree graph layout output showing the relationship between documents graphically.

CSV output

The CSV output provides a simple, text-based output forensic investigators often desire [10,
8][Appendix E, D], since it can be processed in any way the investigators may desire afterwards.
One line is formatted in the following way: document 1 id, document 1 file name, document 1
SHA1 hash, document 1 created timestamp, document 2 id, document 2 file name, document 2
SHA1 hash, document 2 created timestamp, intersecting revision identifiers. Listing 5.1 provides a
sample line of the CSV output of the revision identifier comparison process.

Listing 5.1: Sample CSV output of revision identifier comparison process, should be read as only one line.

5,businessmodel.docx ,30188681 dced07d0d0490efa874a28232daa0190 ,

2014 -08 -14 T12 :34:08Z,4,letter.docx ,

7f8d7d789eab89c3d9bd5fe408e31d9050944b40 ,2014 -02 -29 T19 :57:08Z,

00A274DD ,00C50FC5 ,001 D1694 ,00 C50FC5 ,00584FEF ,003151 C9

Table output

The table output provides the result of the revision identifier comparison process in a spreadsheet-
like environment, similar to the CSV output. Figure 14 provides an example table produced by
comparing the revision identifiers extracted from a set of sample documents. In addition to pre-
senting the document ids, names, hashes and creation timestamps, intersecting revision identifiers
are categorized based on their type. If the intersecting revision identifier is of the same type in
both documents, it is put into its respective category, e.g. run rsidRPr. If there is a mismatch
between the revision identifier types, e.g. one of the type rsidR and the other of the type rsidP,
the value is placed in the Uncategorized column.

This output format gives the investigator the possibility of relatively quickly determining exactly
what revision identifiers from which documents are intersecting, which could motivate further
inspection of the documents. Since each intersecting revision identifier is provided on its own
line, except for the first intersection, document pairs with a large amount of intersecting revision
identifiers easily stand out compared to those with few. We argue, however, that the table output
format is best suited for a small set of documents, as scrolling through a large table could be
tiresome.

Tree graph layout output

The tree graph layout displays the relationship between documents with intersecting revision
identifiers visually, by implementing Microsoft Automatic Graph Layout (MSAGL). MSAGL is a

47

Forensic Analysis of OOXML Documents

Figure 14: Table output of revision identifier comparison process.

library for building and displaying Sugiyama-style tree graph layouts, which are characterised by
horizontal rows of nodes connected by directed edges [46, 47]. This library was chosen due to
its academic-friendly license, which makes it free to use for research purposes [48].

Figure 15 shows an example of MSAGL displaying the relationship between four documents,
with respect to intersecting revision identifiers. It should be noted that only those nodes (sym-
bolized by ellipses) with a direct edge (symbolized by an arrow shape) between each other
share some revision identifiers. In the example presented in the figure, EnglishEssay2014.docx,
new.docx and essay.docx have some intersecting revision identifers, but deliverable2.docx shares
some identical revision identifiers only with essay.docx. Nodes are set as the source node, i.e.
those with the starting point of the edge, if their creation timestamp is the oldest. This process is
shown in the floatchart in Figure 13.

The example in Figure 15 shows an edge that is highlighted with the mouse pointer. This fea-
ture provides quick access to displaying the revision identifiers that are intersecting in the two
specific documents the edge connects. If the investigator is interested in more details about the
two documents, clicking an edge of interest provides the id, name, creation timestamp, SHA1
hashsum of both documents, in addition to the intersecting revision identifiers placed in their re-
spective categories. In case the investigator desires to view additional document metadata, this
is possible by clicking a button located within the edge-details window. Figure 17 provides an
example showing the interface displayed when a specific edge of interest is selected; Figure 18
shows the interface displayed when attempting to view the complete metadata of a document of

48

Forensic Analysis of OOXML Documents

interest. Figure 16 shows an example of the interface when the document id is shown instead of
the document name, which is beneficial when a large amount of documents are presented.

Figure 15: Example graph showing the relationship between four documents.

Figure 16: Example graph showing the relationship between documents from data set.

49

Forensic Analysis of OOXML Documents

Figure 17: Example details page showing the information associated with a clicked edge.

Figure 18: Example details page showing the complete metadata of a document of interest.

50

Forensic Analysis of OOXML Documents

6 Experimental work

Several experiments were conducted in order to attempt answering the research questions and
thereby trying to create additional knowledge about OOXML documents in the context of digital
forensics.

Every office suite was installed inside Oracle VM VirtualBox virtual machines running Microsoft
Windows 7 Professional, and each office suite was was given its own clean Windows 7 install in
order to avoid any potential conflicts that might arise when having several installations of the
various office suites on the same system. Since we already owned copies of Microsoft Office 2007
and 2010, we used the “Standard” edition of the software bundle. For Office 2013, we chose the
trial version which provides 60 days of “full-featured software” without cost [49]. A time-limited
subscription of Office 365 Home [50] was purchased and downloaded the April 9th, 2014. The
LibreOffice version used in the experiments was 4.1.1.2, which is provided without cost [51].

6.1 Prerequisite for experiment #4: Collecting data set of test documents

In order to attempt answering the research questions, a data set of independent test documents
was needed. For the purpose of gathering a data set of independent test documents, two pro-
grams were developed. The first was a C# program implementing the Bing1 search API. Bing
supports custom search queries, making it possible to search for OOXML files by using a search
query such as the one provided in Listing 6.1.

Listing 6.1: Bing search query for locating OOXML documents

<search term > filetype:docx ext:docx

Bing limits the amount of search results to 1,000 per search query executed, and provides a to-
tal of 5,000 queries per month for free. Therefore, a list of words producing a high amount (>
100) of hits was iterated and each word was used as <search term> in the search query listed
above. Each URL was then output to a text file and cleaned for duplications and unrecognizable
characters. It should be noted that since keywords producing a high amount of hits was used, a
large amount of documents were bound to either directly origin from the same source, or contain
content from the same source.

The second program we developed was a Python script with the purpose of iterating the file
containing the URLs and downloading each of the documents. Once all files were downloaded,
the program iterated the directory of collected files and calculated a unique SHA1 hash of each
file. For each duplicate file, i.e. two or more matching SHA1 hashes, one instance of the file was

1Microsoft’s web search engine [52]

51

Forensic Analysis of OOXML Documents

removed from the data set.

In total, 94621 OOXML documents were collected. After attempting to perform validation ac-
cording to the standard, as described in Section 5.2.1, 18427 (≈ 19.47 %) files were removed
due to invalidity. The resulting data set therefore consists of 76194 files, with sizes ranging from
5 kB to 10213 kB (total size = 15266.1 MB, mean size = 205.167 kB). The size of the data set
is displayed in Figure 19.

Figure 19: Chart showing the file size distribution of the collected data set.

6.2 Experiment #1: Interpretation of AppVersion number

As described in Section 4.2.1, docProps/app.xml in OOXML documents specify the name (XML
tag named Application) and version (XML tag named AppVersion) of the application used for
creating the document. We have not been able to identify research or official documentation from
Microsoft that describes how the different values of AppVersion should be interpreted. Therefore,
we performed a basic experiment to determine how to interpret the different version numbers
we encountered while analysing the metadata of the test data set, as presented in Table 16.

6.2.1 Experiment #1 execution

Since we have access to Microsoft Office 2007, 2010, 2013, 365 and Word Online, these were the
applications we wanted to correlate with the AppVersion numbers extracted from the metadata

52

Forensic Analysis of OOXML Documents

of the test data set. Therefore, five basic experiments were executed, each with the following
steps:

● Create document with the specific application;

● Unzip document package;

● Extract AppVersion number from docProps/app.xml;

● Correlate the version of Office used to create document with AppVersion number.

6.2.2 Experiment #1 results

Table 7 shows the result of executing the experiment for each version of Office.

Table 7: AppVersion interpretation experiment results

Version of Office AppVersion number

2007 12.0000

2010 14.0000

2013 15.0000

365 15.0000

Online 00.0001

6.2.3 Experiment #1 analysis and discussion

Perhaps not entirely unexpected, the AppVersion number follows each new version of Office in-
crementally from Office 2007 to 2013, starting at 12.0000, ending at 15.0000, while skipping
13.0000, as shown in Table 7. This could be used by future researchers with the need to de-
termine how to interpret the AppVersion number. It should be noted, however, that since Word
Online is provided as a web resource, its AppVersion number could be changed at any time Mi-
crosoft desires.

6.3 Experiment #2: Revision identifier preservation in file and content
copying

Fu et al. [5][p. 5] performed one experiment consisting of copying content from one Microsoft
Word document to another, and another experiment consisting of creating a document based on
a copied document. Their observation was that if some content is copied from a document to an-
other, the receiving document records the revision identifiers generated in the original document.

In the case of a copied document used as a basis for a new document, i.e. editing a copy of
a document, they observed that all the original revision identifiers are preserved in the new doc-
ument if one or more characters remain with their original formatting. Furthermore, they found
that the original revision identifiers are preserved in settings.xml if some content of the document
is deleted or even if the document is blanked entirely.

53

Forensic Analysis of OOXML Documents

When a document and some reference documents are available and of interest in a forensic inves-
tigation, these characteristics may have significant value for determining e.g. what has been done
in a document and the document’s origin, as presented in Section 4.5. It is therefore essiential
to verify that the presented results are correct for all situations, and if not, establish what situ-
ations could cause irregularities. Initial attempts to replicate the experiment resulted in failure
to gain the same results. Consequently, we performed experiments with the purpose of verifying
the validity of the results presented by Fu et al. [5][p. 5], and determining whether the research
is applicable for newer versions of Microsoft Office, namely Office 2010 and 2013.

Both Fu et al. [5]’s and our experiments consisted of extensively testing copy-pasting mate-
rial between documents. Our experiments used their research as a starting point, and we first
attempted to duplicate their experimental setup to determine whether or not it yielded the same
results in Office 2007, 2010 and 2013, respectively.

After performing the experiment duplication and analysis of the results, we first formed and
attemped to verify the hypothesis “Changing the text formatting of document A preserves the re-
vision identifiers in document B when the affected content is copied from document A to document
B”. This hypothesis was formed after observing characteristics that will be presented in Section
6.3.2. These experiments were all performed using the setup as described in Section 6.

6.3.1 Experiment #2 execution

Since the starting point of this experiment was the research performed by Fu et al. [5], we first
attempted to duplicate their experiments in order to verify their results. In their experiments,
they first executed the following steps to generate sample documents used in further steps of
their experiments [5][p. 5]:

1. Create a new document and type some new characters;

2. (Close the document/Word);

3. Open the document again and change e.g. text emphasis (boldface, underline, italics), color,
font, font size;

4. (Close the document/Word);

5. Open the document again and type somes new characters.

It should be noted that step 2 and 4 are not explicitly listed in their experiment execution, but
can be extrapolated from step 3 and 5, as they specify that the document (i.e. an instance of
Word with the document loaded) should be opened “again”.

This part of the experiment was executed 5 times (i.e. following the steps listed above to create
5 different documents) in Microsoft Word 2007, in order to determine if the subsequent steps
in the experiment yielded consistent results, and thereby determining whether or not the results
of Fu et al. [5] holds true for their setup. Furthermore, the same procedure was performed 5
times in Word 2010, Word 2013 and Word 365 to determine if the newer versions has the same

54

Forensic Analysis of OOXML Documents

characteristics.

The first experiment we attempted to verify was their “forensics for file copy” experiment, where
the purpose was to detect whether or not revision identifiers are preserved when a document is
copied. The following steps were duplicated from Fu et al. [5][p. 5]:

1. Extract revision identifiers from document.xml and settings.xml from the original document
and the copied document

2. Compare all revision identifiers extracted from both documents

3. If any rsidR attributes extracted from the two documents are identical, then it is possible to
conclude that they are from the same source

The second experiment we attempted to verify was their “forensics for content copy” experiment,
where the purpose was to see whether any revision identifiers were preserved in the new docu-
ment when content was copied from one document to another. They did this by performing the
sample document generation steps as listed in the beginning of this section, then they performed
the same the extraction and comparison as listed in the steps above.

After duplicating these experiments, we used the revision identifier extraction and comparison
functionality implemented in OOFAT, as described in Section 5.2.3. By using OOFAT, we reduced
the amount of time needed for analysis, compared to performing manual inspection of the XML
structure for each time the experiments were executed.

As will be presented in Section 6.3.2, the experiment duplication yielded results that motivated
further experiments, in order to determine whether or not all situations of copy-pasting content
preserves the original revision identifiers. We attemped to verify or refute our first hypothesis,
“Changing the text formatting of document A preserves the revision identifiers in document B when
the affected content is copied from document A to document B”, and this and all other experiments
were executed with the following methodology:

1. Create document;

2. Write some arbitrary content in document;

3. Perform copy-pasting from document A to document B;

4. Extract and compare revision identifiers from both documents, in this case with OOFAT;

5. If revision identifiers in document A and document B match after repeating experiment, then
the situation created in step 2 preserved the revision identifiers.

Fu et al. [5][p. 4] write “Each new resulting RI value will be recorded once by the "setting.xml" file.
The RI contained in the "setting.xml" file records the traces of the revisions of the document”, where
“RI” is an abbrevation of “revision identifier”. In order to clarify exactly what type of revision
identifier is recorded in settings.xml, we performed an experiment, which consisted of creating
and writing a document and revising it 6 times, and inspecting the document’s word/settings.xml

55

Forensic Analysis of OOXML Documents

afterwards. The purpose of this experiment was to determine if those revision identifiers being
preserved when content is copied is also preserved in word/settings.xml, which could be impor-
tant if the content is removed.

6.3.2 Experiment #2 results

Our first experiment, a duplication of Fua et al. [5]’s “forensic for file copy” experiment, con-
firmed that their result holds true in the version of Office they used, Office 2007, and in addition
for the newer versions Office 2010, Office 2013 and Office 365. While the presented research
results holds true for their particular experimental setup, it does not hold true for every situation
of copy-pasting content from one document to another.

Our experiments determined several additional important characteristics when copying content
from one document to another, using Microsoft Word. As these characteristics might not be ap-
parent, they will be presented in the following sections, where “document A” refers to the source
(i.e. original) document, and “document B” refers to the receiving document.

Revision identifier preservation requirements

We found that when copying from document A to document B, the latter must be open in an
instance of Microsoft Word if document A is closed before the content is pasted into document B,
in order for the original revision identifiers to be preserved in document B. In other words, this
means that if content is copied from document A to document B and the Microsoft Word process
with document A is closed before the content has been pasted, the original revision identifiers
will not be preserved if an instance of document B has not yet been started, and therefore new
revision identifiers will be generated in document B and the original revision identifiers from
document A will not be preserved. The original style (e.g. font, font size, color, bold) of docu-
ment A will still be preserved in document B unless this functionality is disabled.

Through further experiments, it was observed that a run must have a rsidRPr attribute speci-
fied the XML of document.xml of document A, in order for the original revision identifiers to be
preserved in document B when content is copied. In the context of runs (not to be confused with
rsidRPr in the context of paragraphs), ECMA-376 specifies that the rsidRPr (Revision identifier for
run properties) attribute “specifies a unique identifier used to track the editing session when the
run properties were last modified in the main document.” [1][p. 292].

Situations producing the rsidRPr attribute

Our experiments determined several situations that makes Microsoft Word append the rsidRPr
attributes to runs, which as mentioned are in most cases required in order for the revision iden-
tifiers to be preserved when content is copied from document A to document B. As the definition
from the standard states, rsidRPr values track run properties modification. In practical terms, this
means that when some text is typed into document A, no rsidRPr attribute is by default appended
to the run since its properties have not yet been changed. Therefore, the original revision iden-
tifiers from document A will not be preserved when copying content to document B, unless the

56

Forensic Analysis of OOXML Documents

properties of the run are changed and an rsidRPr attribute is appended to the run.

Experiments determined that if the style of the text is changed while writing, e.g. typing “This is
my” then changing to bold text and continuing, “first”, changing back to non-bold and continu-
ing “document”, no rsidRPr attribute is appended to the run. An example of the resulting XML of
this is provided in Listing 6.2. If the style of the text is changed after the text has been written,
e.g. typing “This is my first document” then changing “first” to bold after it has been typed, the
modified content will get a rsidRPr attribute appended. An example of the resulting XML of this
is provided in Listing 6.3.

Listing 6.2: Excerpt of XML from typing text and changing to bold while typing.

<w:r>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>
<w:t xml:space="preserve">This is my </w:t>

</w:r>
<w:r>

<w:rPr>
<w:b/>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>first</w:t>

</w:r>
<w:r>

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t xml:space="preserve"> document</w:t>

</w:r>

Listing 6.3: Excerpt of XML from typing text and changing to bold after typing.

<w:r>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>
<w:t xml:space="preserve">This is my </w:t>

</w:r>
<w:r w:rsidRPr="00B201A8">

<w:rPr>
<w:b/>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>first</w:t>

</w:r>
<w:r>

57

Forensic Analysis of OOXML Documents

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t xml:space="preserve"> document</w:t>

</w:r>

If any content (one or more characters from “first”) from the run represented with the rsidRPr
value 00B201A8 is copied from the document shown in second example, Listing 6.3, the revision
identifier 00B201A8 will be preserved in the new document. Therefore, the hypothesis “Changing
the text formatting of document A preserves the revision identifiers in document B when the affected
content is copied from document A to document B”, holds true.

In addition to getting rsidRPr attributes and values appended when style of the text is changed
after it has been typed, experiments determined that runs get rsidRPr attributes if the content
of document A is pasted from other sources, even if the source content has identical style pref-
erences as the target document. In this context, “other sources” is defined as any other sources
than document A itself, for instance other Word documents, web browsers, Notepad etc. This
characteristic has high practical value from a forensic perspective, as the revision identifiers of
the copied content from document A will always be preserved in document B, without the need
for runs to be modified as described above.

Another characteristic discovered through our experiments, is that if the final section [1][p. 588]
of the document, which is the very last paragraph break, is copied from document A and pasted
into document B, the original revision identifier associated with the final section is preserved in
document B. This revision identifier is appended as a rsidRPr attribute to the paragraph in docu-
ment B. An example of the XML representing a paragraph break is provided in Listing 6.4.

When marking an entire paragraph in Word, the paragraph break will be selected by default,
and the revision identifier will therefore be preserved if the last paragraph of the document is
copied and pasted into another document. An example of the XML resulting from copying the
last paragraph (including the paragraph break) is provided in Listing 6.5. The examples show
that the rsidRPr attribute value 00EB6C6A from the paragraph break is preserved and appended
as an attribute to the paragraph revision.

Listing 6.4: Excerpt of example document A, showing the XML representing the last paragraph break.

<w:sectPr w:rsidR="00EB6C6A" w:rsidRPr="00EB6C6A">
...

</w:sectPr>

Listing 6.5: Excerpt of example document B, showing the XML of a paragraph break from document A

<w:p w:rsidR="004C3AF7" w:rsidRPr="00EB6C6A" w:rsidRDefault="004C3AF7"
w:rsidP="004C3AF7">

58

Forensic Analysis of OOXML Documents

...

<w:t>This is my last sentence</w:t>
...

</w:p>

When pasting content from another source into a document, Microsoft Word has functionality
that makes it possible to specify whether or not any style preferences of the original content
should be used in the receiving document. This functionality is provided with a popup menu
that appears when content is pasted, or through having a pre-defined default action for every
time content is pasted. Our experiments determined that if Merge formatting or Keep text only is
selected, any revision identifiers that normally would survive the copying will not be preserved
in the new document.

Revision identifier types stored in settings.xml

As described in Section 6.3.1, an experiment was executed in order to determine what types of
revision identifiers are stored in settings.xml when a document is edited. Figure 20 shows the
experiment document and its relevant parts of document.xml and settings.xml.

Figure 20: Example document with six revisions, and its revisions recorded in settings.xml.

As Figure 20 shows, a total of 6 revisions were recorded in settings.xml and core.xml. This number
might at first seem to be errornous, as only 5 saves appear to have been performed. However,
this document was created by using the New Microsoft Document feature that appears when right

59

Forensic Analysis of OOXML Documents

clicking a directory in Windows, as opposed to opening Microsoft Word and using Save or Save as.
Therefore, the root revision identifier in settings.xml, with the value 000A1959, is not recorded
in document.xml or anywhere else in the package.

As can be extrapolated from the figure, the result of the experiment was that the paragraph
rsidR and paragraph rsidRDefault attributes were recorded in settings.xml. These values were still
intact even if the content of the paragraph or run was deleted, or the document was entirely
blanked and rewritten with different content.

Lastly, the result of performing copying from document A and pasting into document B, as shown
in Figure 20, under requirements that preserves the revision identifiers, as listed in Section 6.3.2,
shows that while the original revision identifiers are preserved in document.xml in document B,
they were not recorded in settings.xml. Therefore, any surviving revision identifiers will not be
preserved in the package if the content is removed, since they are not recorded in settings.xml.

6.3.3 Experiment #2 analysis and discussion

We argue that the research presented by Fu et al. [5][p. 4-5] must be fine read: At a first glance,
it does seem that copy-pasting material between documents will always preserve the revision
identifiers from the original document in the new document. While this does hold true when
following their experimental setup, which consisted of typing some arbitrary text and changing
its style afterwards, our experiments have determined that it does not hold true in all other situ-
ations.

Our experiments have determined that there are certain requirements that must be fulfilled in
order for the original revision identifiers to be preserved in document B when content is copied
from document A, most importantly a rsidRPr associated with the run is required, and this at-
tribute will be added e.g. when the style of the text is changed after it has been written. The
revision identifiers will therefore always be preserved when following the same execution steps
as Fu et al. [5].

These traces could have significant value in a forensic investigation, since they provide a hidden
relationship between a seized document and one or several reference documents if the content is
copied under the situations and with the requirements we have identified. As presented in Sec-
tion 4.5, preserved revision identifiers can in some cases be used to detect plagiarism, uncover
social networks and detect unauthorized distribution of sensitive documents.

Large amounts of run rsidRPr could indicate that the content has been copied from some other
source, even though a reference document might not be available. This could in particular be
apparant if the text style is identical to other text style of other parts of the document, i.e. the
run rsidRPr attribute is not appended because of any change of properties. Determining that
some content appears to be copy-pasted from another source might be of interest in forensic
investigations involving e.g. plagiarism

60

Forensic Analysis of OOXML Documents

6.4 Experiment #3: Forensic difference between office suites

Garfinkel et al. [9][p. 2] briefly demonstrate that Microsoft Office 2008 and NeoOffice for Mac-
intosh store a thumbnail of the first page of the OOXML documents they edit, and that the two
office suites store the thumbnails in different file formats. The fact that these two example office
suites perform the same task slightly differently motivates more research to be performed on the
difference between office suites, with respect to what forensically interesting information they
record. We therefore utilize experimental research techniques to determine if there is a foren-
sic difference between popular office suites Office 2007, 2010, 2013, 365, Word Online, Google
Docs and LibreOffice.

Implementation of revision identifiers
As presented in Section 4.2.3, revision identifiers were introduced as more privacy-friendly al-
ternative to full change tracking, and is used by the word processor to provide a more accurate
result when merging or comparing two documents that origin from the same source. The purpose
of this experiment was to determine how the various office suites supporting OOXML implement
and utilize revision identifiers.

Original path preservation in image insertion
Preserved original file paths of inserted images could be very useful in a forensic investigation,
in particular since they might include names, usernames and other identifiers that may help an-
swer the “who” question, as discussed in Section 4.3. Furthermore, preserved original file paths
may reveal that removable media such as a USB flash drive at some point has been used by the
suspect, which could indicate that the investigators have not been able seize all evidence if a
corresponding device has not yet been seized [10][Appendix E].

Upon previous inspection of OOXML files, we have observed that there might be a difference
between the various available methods of inserting images into OOXML documents in Microsoft
Office, with respect to whether or not the original file paths are preserved in the document.
We therefore performed an experiment in order to attempt formalizing what situations produce
what information when images are inserted into a document.

Thumbnail creation and their readability
Thumbnails of the first page of the document could be important in a forensic investigation.
Garfinkel et al. identified two potential uses of a thumbnail: i) determining if there is a mismatch
between the last rendered first page and the actual first page in the document, which could be
an indication of an attempt of malicious alteration of either the document or the thumbnail, ii)
determining what the document was about, in the case where other parts of the document is cor-
rupted but the thumbnail is intact or partly recoverable [9][p. 3]. This motivates an experiment
to determine whether thumbnails are saved by default, and to what extent the thumbnails are
readable.

61

Forensic Analysis of OOXML Documents

6.4.1 Experiment #3 execution

Implementation of revision identifiers
This experiment was executed by first performing the following steps.

● Create a document with arbitrary content in the current office suite, and revise it 5 times;

● Extract the document package, inspect the content of word/document.xml and word/set-
tings.xml and attempt to locate revision identifiers;

● Note how revision identifiers are implemented, compared to the implementation in Microsoft
Office 2007;

● Repeat process for every office suite.

Furthermore, a second execution was performed as part of this experiment. The steps of this part
of the experiment is provided in the following list.

● Create a document with arbitrary content in Microsoft Word 2007, and revise it 5 times;

● Open the document in the current office suite, make an arbitrary change and save the docu-
ment;

● Extract the document package, inspect the content of word/document.xml and word/set-
tings.xml and attempt to locate revision identifiers;

● Note if any revision identifiers are altered, compared to the original document;

● Repeat process for every office suite.

Original path preservation in image insertion
This experiment was executed by performing the following the steps provided in the following
list.

● Insert image into document with each method available, i.e.:

● Via Insert -> Image

● Via drag-and-drop

● From clipboard

● From URL

● From Facebook (Office 2013)

● From Bing (Office 2013 and 365)

● From Office.com (Office 2013 and 365)

● From OneDrive (Office 2013 and 365)

● Extract the document package and inspect the resulting word/document.xml and locate the
image reference;

● Repeat process for every office suite.

62

Forensic Analysis of OOXML Documents

Thumbnail creation and their readability
This experiment was executed by performing the following the steps provided in the following
list.

● Create dummy document containing text and an image;

● Save document;

● Inspect document package to determine if a thumbnail image is present, and if not, go back
to last step and enable thumbnail saving;

● Inspect thumbnail to determine its readability;

● Repeat process for every office suite.

6.4.2 Experiment #3 results

Implementation of revision identifiers
The results of this experiment are provided in Table 8 and Table 9.

Table 8: Implementation of revision identifiers in office suites; cre-
ating new OOXML document

Office suite Interpretation of implementation

MS Office 2007 Identical to 2007

MS Office 2010 Identical to 2007

MS Office 2013 Identical to 2007

MS Office 365 Identical to 2007 in word/document.xml, but more revi-
sion identifers are added in word/settings.xml; these are
not found in word/document.xml

Office Online Mostly identical to 2007, but adds some additional revi-
sion identifier attributes: w14:paraId and w14:textId

LibreOffice Does not use revision identifiers

Google Docs Appears to use revision identifiers, but all numbers are
nulled (“00000000”)

Table 9: Implementation of revision identifiers in office suites; edit-
ing OOXML document made in Office 2007

Office suite Interpretation of implementation

MS Office 2007 Identical to 2007

MS Office 2010 Mostly identical to 2007; removes a sectPr rsidSect at-
tribute

63

Forensic Analysis of OOXML Documents

MS Office 2013 Mostly identical to 2007; removes a sectPr rsidSect at-
tribute

MS Office 365 Mostly identical to 2007; removes a sectPr rsidSect at-
tribute

Office Online Mostly identical to 2007; removes a sectPr rsidSect at-
tribute, and adds some additional revision identifier at-
tributes: w14:paraId and w14:textId to each paragraph

LibreOffice All original revision identifiers are removed, both at-
tribues and their respective values. All identifiers are re-
moved from word/settings.xml

Google Docs All original revision identifiers are nulled, i.e. replaced
with “00000000”. All identifiers are removed from
word/settings.xml

Original path preservation in image insertion
Table 10 shows the result of the experiment consisting of attempting to determine whether or not
the original path of inserted images is preserved when inserted into the different office suites,
performed by using each of the available methods for insertion. For completeness, an extended
version is provided in Appendix A, which includes performing image insertion via Bing, Facebook,
Office.com and OneDrive.

Table 10: Original path preservation results of image insertion

Application Insertion method Result

Word 2007 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 2010 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 2013 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 365 Insert -> Image Only original filename with file extention, e.g. vaca-
tion.png

Word On-
line

Insert -> Image Neither original path nor filename

LibreOffice
Writer

Insert -> Picture -
> From file

Neither original path nor filename

Google Docs Insert via upload Only original filename with file extention, e.g. vaca-
tion.png

Word 2007 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2010 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2013 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

64

Forensic Analysis of OOXML Documents

Word 365 Drag-and-drop Only original filename without file extention, e.g. vaca-
tion

Word On-
line

Drag-and-drop Not supported

LibreOffice
Writer

Drag-and-drop Neither original path nor filename

Google Docs Drag-and-drop Neither original path nor filename

Word 2007 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2010 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2013 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 365 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word On-
line

From clipboard Not supported

LibreOffice
Writer

From clipboard Neither original path nor filename

Google Docs From clipboard Neither original path nor filename

Word 2007 From URL Only original filename with extention, e.g. vacation.png

Word 2010 From URL Only original filename with extention, e.g. vacation.png

Word 2013 From URL Only original filename with extention, e.g. vacation.png

Word 365 From URL Only original filename file extention, e.g. vacation.png

Word On-
line

From URL Neither original path nor filename

LibreOffice
Writer

From URL Not supported

Google Docs From URL Only original filename file extention, e.g. vacation.png

Word 2013 From Facebook Only original filename with extention, e.g.
10009314_10152851812487578_617485243_n.jpg

65

Forensic Analysis of OOXML Documents

Thumbnail creation and their readability
Table 11 shows the results of this experiment.

Table 11: Thumbnail creation and their readability

Application Thumbnail saved? Location Readability

Word 2007 Must check “Save
thumbnail” when
saving

docProps\
thumbnail.wmf

Very poor quality; not possible to read
but possible to see text and image struc-
ture. Appendix B.1.1 shows thumbnail,
Appendix B.1.2 shows screenshot for ref-
erence

Word 2010 Must check “Save
thumbnail” when
saving

docProps\
thumbnail.emf

Ok quality; possible to read although
slightly poorly resized. Appendix B.2.1
shows thumbnail, Appendix B.2.2 shows
screenshot for reference

Word 2013 Must check “Save
thumbnail” when
saving

docProps\
thumbnail.emf

Ok quality; possible to read although
slightly poorly resized. Appendix B.3.1
shows thumbnail, Appendix B.3.2 shows
screenshot for reference

Word 365 Must check “Save
thumbnail” when
saving

docProps\
thumbnail.emf

Ok quality; possible to read although
slightly poorly resized. Appendix B.4.1
shows thumbnail, Appendix B.4.2 show
screenshot for reference

Word On-
line

Not supported2 Not supported Not supported

LibreOffice
Writer

Not supported Not supported Not supported

Google Docs Not supported Not supported Not supported

6.4.3 Experiment #3 analysis and discussion

Implementation of revision identifiers
This experiment determined that Office 2007, 2010 and 2013 appear to implement revision
identifiers in a practically identical way, with the exception of one attribute removed in 2010
and 2013. The revision identifier implementation in Office 365 is also approximately the same,
with the exception of one attribute removed from word/document.xml and several additional
revision identifier values added to word/settings.xml. These additional values could not be lo-
cated in word/document.xml nor other files in the package, and therefore appear exclusively in
word/settings.xml. The implementation in Office Online appeared to also be almost identical to
Office 2007, with the exception of two additional revision identifiers added to each paragraph in
the document.

2We observed that a 3 kb blank thumbnail (docProps\thumbnail.jpeg) was created when an image was inserted into
the document via URL; does not have any value.

66

Forensic Analysis of OOXML Documents

We found that both LibreOffice and Google Docs do not use revision identifiers; LibreOffice
strips all existing identifiers from word/document.xml and word/settings.xml when it saves an
edited document, and Google Docs replaces all existing identifiers with a null sequence. The
practical implication of these implementations is that OOXML documents made or edited in
LibreOffice or Google Docs cannot be used in a revision identifier comparison process for the
purposes described in Section 4.5 and Section 5, therefore drastically reducing the documents’
forensic usefulness. All versions of Office use revision identifiers, and can therefore be used in
forensic investigations as long as they are not edited in LibreOffice, Google Docs or any other
office suite that removes the identifiers.

Original path preservation in image insertion
The experiment yielded some forensically interesting results. The preservation of original paths
when performing image insertion could potentially be a very rich source of information. As
presented in Section 2.1.2, Buchholz et al. identified six keywords for questions that forensic
investigators may seek to get answered in an investigation: Who, what, when, how, where and
why.

Original path preservation traces could be of particular support when attempting to answer
the “who” keyword, i.e. providing an indication of who performed the actions. In this con-
text, “actions” refers to inserting images into a document, which on a higher level can be re-
garded as a subset of document editing. Table 10 presents an example path of an inserted image,
“C:\Users\Mallory\vacation.png”, and interpreting such path provides forensically interesting
information: Users indicates that the document was edited on a machine using Windows Vista, 7
or 8 [53], Mallory indicates that the document was edited by a user account of that name.

Another interesting result of the experiment was the functionality in Word 2013 enabling the
user to insert an image from a Facebook account. In our experiment, we observed that per-
forming insertion of images from Facebook in Word 2013 requires the user to authenticate to
Facebook and accept giving Word the permissions required to download the user’s images. We
observed that the original filenames of the inserted images are preserved in the document, e.g.
10009314_10152851812487578_617485243_n.jpg.

We observe that these filenames of Facebook images contain an identifier that can be connected
to the Facebook user account used to publish the images, which currently is available by visiting
https://www.facebook.com/photo.php?fbid=<identifier>, where <identifier> refers to the se-
quence of digits after the first underscore in the filename, e.g. 10152851812487578. Appendix C
provides an example of the result of viewing a Facebook image, based on the identifier extracted
from the original filename of an image inserted into a document. It should be noted that in order
to able to view the image online, the image must be set to public or the requester must have
sufficient permissions to view it.

67

Forensic Analysis of OOXML Documents

Thumbnail creation and their readability
Thumbnails created in Word 2007 are unreadable, but it is possible to see how the content
was structured. Word 2010, 2013 and 365 produce readable thumbnails, while Word Online,
LibreOffice Writer and Google Docs do not support thumbnails. Thumbnails produced in Word
2010, 2013 and 365 are therefore more forensically useful than the other office suites.

6.5 Experiment #4: Uniqueness of revision identifiers

Revision identifiers can be used for purposes such as document movement tracking, uncovering
social networks and detecting plagiarism. These possibilities are based on the assumption that
revision identifiers are unique enough, in that the intersecting documents’ revision identifiers are
not identical merely by chance, but that they actually have some kind of relationship. A docu-
ment based on another document is one example of such relationship, in addition to a document
containing content copied from the other. In these situations, detected intersecting revision iden-
tifiers can be considered true positives, since there is a clear relationship between the documents.

Garfinkel et al. claim that “there is, of course, a one in four billion chance that two of these 32-
bit numbers will be the same” [9][p. 4], likewise does Fu et al. provide the same statement [5][p.
4]. Due to the fact that neither of the studies describe any experimental research performed on
the revision identifier number generator nor do they mention ECMA-376’s requirement for gen-
erating revision identifiers, it can be assumed that their statement is based only on the number
of possible combinations of a 32-bit number. ECMA-376 specified that “Revision save IDs should
be randomly generated based on the current time (to minimize the chance that two disparate edit-
ing sessions starting with the same immediate predecessor are assigned the same revision save ID)”
[1][p. 1049]. It is possible that the algorithm follows other routines that are not publicly known.

An experiment was performed with the purpose of attempting to determine if there are any
false positives in the independent data set, i.e. documents with intersecting revision identifiers
without a relationship, which could provide some knowledge about the uniqueness of the revi-
sion identifiers.

6.5.1 Experiment #4 execution

This experiment was executed by performing the steps provided in the following list. This process
was repeated until the number of inspected document pairs equaled the pre-specified sample size
(n = 100).

1. Select 3000 documents from the independent data set collected with the setup described in
Section 6.1;

2. Extract the revision identifiers from every document by using the extraction process of OOFAT,
which is described in Section 5.2.3;

3. Perform comparison and present the output in a tree graph layout with OOFAT, as described
in Section 5.2.4;

4. Perform manual inspection of those document pairs with intersecting revision identifiers;

68

Forensic Analysis of OOXML Documents

5. If the inspection fails to detect any connection between the documents, it is considered a false
positive;

6.5.2 Experiment #4 results

As shown in Appendix H.3, the result of this experiment was that of 100 performed inspections,
2 document pairs with no apparant actual connection were detected. This means that there was
a 2% false positive rate among the chosen set of sample documents. For the first intersecting
document pair, an excerpt of the XML of document A is provided in Listing 6.6, and an excerpt
of the XML of document B is provided in Listing 6.7. The presented XML shows an intersecting
rsidRDefault revision identifier, whose value “00392C21” is found 36 places in document A and
three places in document B. Since it cannot be excluded that the documents are not intended
for the public, the actual content associated with these revisions is not included in this thesis.
Figure 21 shows a screenshot of the tree graph layout of OOFAT displaying the result of the first
iteration of revision identifier comparison.

Figure 21: Tree graph layout of OOFAT showing the first iteration of revision identifier comparison, used
for inspecting document pairs to determine their relationship.

It can, however, be noted that the documents were of completely different subjects, no common
content was detected, the authors and companies extracted from the metadata were different,
different versions of Office were used, and the documents were written in different years. Due
to these reasons, the revision identifier intersection of these two documents were therefore clas-
sified as a false positive.

69

Forensic Analysis of OOXML Documents

Listing 6.6: Excerpt of XML of document A

<w:p w:rsidR="00701F5A" w:rsidRPr="003148F0" w:rsidRDefault="00392C21"
w:rsidP="000D63D1">

...

</w:p>

Listing 6.7: Excerpt of XML of document B

<w:p w:rsidR="00315A0E" w:rsidRPr="00CA4831" w:rsidRDefault="00392C21"
w:rsidP="00315A0E">

...

</w:p>

6.5.3 Experiment #4 analysis and discussion

One important aspect of using the revision identifiers for e.g. determining the history of a docu-
ment or detecting its unauthorized distribution, is to determine the uniqueness of the identifiers.
This is important since a high number of false positives could reduce its forensic usefulness: If
many matches without any real connection between the documents with intersecting identifiers
occur, true positive alarms may be ignored or wrong conclusions may be drawn if the identifiers
are used for e.g. uncovering social networks. In this context, false positives refers to when two
documents with intersecting revision identifiers do not come from the same source, but have
intersecting identifiers merely by chance.

This experiment yielded some interesting results: 2% (2 of 100) documents were likely false
positive detections, which we consider to be quite low, yet higher than we initially expected. We
note that in both of the false positive cases, the documents shared only one revision identifier
number. These experiment results indicate that the revision identifiers are likely unique enough
in that the false positive rate is low, and the identifiers can likely still be considered useful in a
digital forensic context. However, since only a limited number of inspections were performed, we
cannot exclude that a higher false positive rate may be detected if the sample size is increased.

70

Forensic Analysis of OOXML Documents

7 Conclusions

This section presents conclusions for each of the research questions, based on the material pre-
sented in this thesis.

7.1 RQ1: What is the forensic value of OOXML documents, and how can
they be used in forensic investigations?

Buchholz et al. identified the six keywords for questions that forensic investigators may seek to
get answered in an investigation: Who, what, when, how, where and why [3][p. 5]. We have used
these keywords as a basis for defining what could be forensically interesting; the more the piece
of information could be used to answer the questions identified by Buchholz et al., the more
forensially interesting we consider it to be.

In this thesis, we have seen that OOXML documents contain a large amount of forensically inter-
esting metadata which in particular is found in the files docProps/app.xml and docProps/core.xml,
which includes information such as the name of the document’s creator, the name of the person
who last modified the document, the application used to edit the document, timestamps of cre-
ation and modification. This information is considered to be of the main sources of evidence in
many of the cases of National Authority for Investigation and Prosecution of Economic and En-
vironmental Crime in Norway (ØKOKRIM) [8]. Timestamps are commonly extracted from files’
metadata to build timelines of events that have occurred in a case [8, 10][Appendix D E].

Preserved file paths of images inserted into OOXML documents can reveal forensically inter-
esting information, as they could include e.g. the name or username of the document’s author,
the operating system the author used, or a unique path on the system that could prove that the
suspect’s machine was used to create the document. If the inserted image has a preserved path
showing that it originated from an external unit, this could be an indication that the forensic
investigators might not have seized all units from the suspect [10][Appendix E].

OOXML documents produced by Microsoft Office contain unique revision identifiers, which are
appended to the content of the documents in the XML files word/document.xml and word/set-
tings.xml. These hexadecimal numbers are used by the word processor to provide a more ac-
curate result when merging or comparing two versions of a document. Previous research has
determined that the original paragraph creation revision identifiers are preserved in word/set-
tings.xml even if parts of or all of the associated content is removed.

The revision identifiers extracted from a document can be used to track the source of a document
if the forensic investigators have access to a reference document, and if the seized document is a
result of copying the original document or copying content from the original document in certain

71

Forensic Analysis of OOXML Documents

situations. This tracking is based on comparing the unique revision identifiers from the seized
document and the reference document; if there are any intersecting numbers, they are likely
from the same source. These numbers can therefore be valuable in investigations involving ac-
tions such as copyright infringement.

Another potential use of the revision identifiers can be used to uncover previously unknown
social networks, such as a network of extremists [10][Appendix E]. In a similar manner as track-
ing the source of a document, a social network mapping could be performed by comparing the
revision identifiers extracted from a seized document with the revision identifiers extracted from
a set of documents that previously have been seized. In case any intersecting revision identifiers
are detected, there is reason to believe that the person associated with the newly seized docu-
ment in some way has communicated with the person associated with the document found in
the database of previously seized documents.

7.2 RQ2: Can the metadata of OOXML document be trusted?

This research question was introduced because it is crucial to know if evidence should be trusted
or not, since erroneous or otherwise uncertain evidence could lead to wrong conclusions in an
investigation and evidence exclusion in a court of a law.

An OOXML document is a ZIP package containing a set of files in a file structure. The docu-
ment’s body and metadata are stored as XML files, and their contents can be modified by using a
regular text editor. After the files have been modified, the adversary could create a ZIP package of
the file structure. As long as the modifications comply with the OOXML standard, the document
can be opened and edited in a word processor after it has been altered. Opening the document
afterwards is unproblematic, and does not display any warnings unless the alteration damages
the document, e.g. by removing an XML element the word processor expects.

Files extracted from OOXML documents created by Microsoft Word by default have a modifi-
cation timestamp reflecting the start of the FAT epoch, 01.01.1980 00:00, instead of the real
modification time. If a file in the extracted package has been manually altered, e.g. by an adver-
sary attempting to falsify evidence, the altered file gets a modification timestamp reflecting the
actual last modification time. This timestamp remains the same even if the documents has been
edited after the alteration occurred. Since files in an OOXML package normally has the modifi-
cation timestamp of 01.01.1980 00:00, a file with another timestamp found within the package
is an indication that manual alteration has been performed.

Since the OOXML standard is an open standard, a determined adversary who seeks to falsify
evidence can build his own office suite or a script that produces or modifies a document with fal-
sified data. As long as the program follows the standard and mimics Microsoft Office or another
office suite, the output document could be credible and the evidence falsification might not be
possible to detect. The program could take a document as input and change only e.g. a revision
identifier and the name of the document’s creator to put the blame of an action on somebody

72

Forensic Analysis of OOXML Documents

else, while the modification timestamps would show 01.01.1980 00:00. Since this timestamp is
what investigators would expect in a non-altered document, they would not be able to detect
that the evidence was falsified.

Although the simplicity of manually altering the files in a OOXML package was one of the biggest
fears the forensic community had about the format when it was released [8][Appendix D], ex-
perience The Norwegian National Authority for Investigation and Prosecution of Economic and
Environmental Crime have gained show that criminals normally do not attempt to manually al-
ter the files, but instead e.g. change the clock of the computer to falsify recorded timestamps
[8][Appendix D].

We argue that technically speaking, the metadata of OOXML files cannot be trusted since it is so
easy to alter it and falsify evidence. However, most criminals will not go through the trouble such
alteration entails. Practically speaking, the metadata of OOXML files can in most cases therefore
be trusted, unless there is reason to believe that alteration has been performed. Forensic investi-
gators must, however, be aware that performing alteration and evidence falsification is a trivial
task for a technical person.

Through analysis of documents created in Word Online, we have determined that the creation
timestamps of these documents are erroneous and should not be trusted in a forensic investiga-
tion.

7.3 RQ3: Are there differences from version to version of the popular
office suites, with respect to what forensically interesting data they
record in the files? Does performing certain actions in different ways
affect the recorded forensically interesting data?

Garfinkel et al. [9] observed that the two office suites NeoOffice and Microsoft Office 2008 per-
form the task of storing thumbnails differently. This motivated our introduction of this research
question, since there could be other differences between what forensically interesting informa-
tion the various office suites store in the OOXML files they handle. From previous experience,
we also observed when the user performs certain tasks differently in Microsoft Office, this could
affect the forensically interesting information being stored.

We chose to inspect some of the differences between Microsoft Office (2007, 2010, 2013, 365
and Online), LibreOffice and Google Docs with respect to what forensically interesting informa-
tion they store. We focused on the following:

Implementation of revision identifiers: The purpose of this experiment was to determine if
the office suites implement revision identifiers differently. We found that Office 2007, 2010,
2013, 365 and Office Online use revision identifiers in an almost identical manner. LibreOffice
and Google Docs do not use revision identifiers in OOXML documents, and even remove existing
identifiers from documents produced in Microsoft Office. This drastically reduces their forensic

73

Forensic Analysis of OOXML Documents

usefulness, since documents cannot be compared based on the identifiers, to e.g. track the source
of a document.

Original path preservation of inserted images: Preserved original filepaths of inserted images
could reveal forensically interesting information, such as the name of the author, the operating
system used by the author, or a reference to a unit not yet seized. The purpose of this experi-
ment was to determine if there is a difference between how original filenames are preserved, in
addition to determining if different ways of inserting images lead to different information being
stored. We found that for Office 2007, 2010 and 2013, the full original path of the image is
preserved if the image is inserted by dragging and dropping the image into the document, or if
the image is inserted from the clipboard. If an image is inserted via Facebook in Word 2013, the
original filename can be used to track the profile of the user.

Thumbnail creation and their readability: A thumbnail of the first page of a document could
be used to get an indication of what the document was about if the document is damaged, and
the thumbnail is recoverable. We found that Word 2007’s thumbnail is unreadable, but it is pos-
sible to see how the content was structured. The thumbnail made by 2010, 2013 and 365 is of
decent quality, and can easily be read. Word Online, LibreOffice and Google Docs do not support
thumbnails in OOXML documents.

7.4 RQ4: In what ways can the revision identifiers be useful in a forensic
investigation, and in what situations are they preserved?

Since these numbers are 32-bit and unique, there are theoretically 232 = 4, 294, 967, 296 possi-
ble revision identifiers. We note that this is merely theoretical since Microsoft Office’s revision
identifier generator algorithm is not public. However, our initial analysis of the documents in the
collected data set with intersecting revision identifiers detected 2% (2 of 100) false positives;
meaning that 98% of the inspected documents actually shared some common content, and 2%
were had intersecting revision identifiers merely by chance. Despite our analysis, we argue that
the uniqueness of revision identifiers needs further research to be conclusive.

The literature has shown that revision identifiers can be used in visualization, as the identi-
fiers associated with paragraph creation can visually represent the document as e.g. a barcode.
This provides an overview of the how the document is put together, which is knowledge that can
be difficult to gain based on manually reading the XML of the document body.

Documents that share unique revision identifiers are likely from the same source, contain content
from the same source, alternatively one or both document contain content that has been copied
from one document to another in certain situations. Comparing two documents to determine if
they came from the same source, based on revision identifiers, was first implemented by Fu et al.
[5]. They showed that these characteristics could be used to detect plagiarism in some cases. We
have demonstrated that this implementation could be extended, by supporting the comparison
of more than two documents and implementing visualization.

74

Forensic Analysis of OOXML Documents

In the case where the comparison process results in any matching documents, the output is visu-
alized in the form of a tree graph. The tree graph graphically displays the relationship between
two or more documents, with respect to intersecting unique revision identifiers. By comparing
the creation dates extracted from the XML metadata of the documents with intersecting revision
identifiers, the document appearing to be oldest is set as the source node in the graph. This
makes it possible for the investigator to quickly determine which of the documents are likely the
original, and which appear to contain content copied from the source documents.

Our implementation has shown one way of presenting intersecting revision identifiers between
documents, by displaying the identical revision identifiers in a “tooltip” window when hovering
the node-connecting edges (i.e. the lines between the nodes, which represent the documents),
and providing a more detailed view if the edges are clicked. This detailed view displays the
metadata extracted from both documents, and categorized lists of intersecting revision identi-
fiers. Interviews with forensic experts in National Authority for Investigation and Prosecution of
Economic and Environmental Crime in Norway (Norwegian: Økokrim) and NCIS Norway (Norwe-
gian: Kripos) have determined that this implementation could be useful in large cases, or cases
with a large amount of documents [8, 10][Appendix D, E].

Through experiments, we determined that Fu et al. [5]’s research on preservation of revision
identifiers when copying content between documents is slightly imprecise. Based on their re-
search, it is easy to conclude that the original revision identifiers are preserved in all situations
of copying and pasting. We have determined that the following two requirements must be ful-
filled in order for the identifiers to be preserved in the receiving document:

● The receiving document must be open when the content is copied, if the original document
is closed before the content is pasted.

● Content in a run, which is content sharing the same set of properties, must have a rsidRPr
attribute specified.

We determined that a run gets the necessary rsidRPr attributed in the following situations.

● The properties of the the text, which refers to font, color, boldface, italics, underline etc.,
must be changed after the text has been written.

● The content of the original document is pasted from any another source than the document
itself, e.g. another document, a web browser, Notepad and all other sources.

In addition, the original revision identifiers are preserved when the very last paragraph break is
copy-pasted, which will happen if the last paragraph is highlighted and copied. Lastly, we deter-
mined that revision identifiers being preserved when copy-pasting are not recorded in word/set-
tings.xml, and will be deleted from the document if all content associated with the run is re-
moved.

75

Forensic Analysis of OOXML Documents

8 Future work

We have several recommendations for those who seek to perform additional research on using
these types of documents in the context of digital forensics.

8.1 Using visualization techniques to support forensic investigators

During the pre-project phase of this thesis, we originally planned to focus more on using visu-
alization techniques to aid forensic investigators in handling evidence from OOXML documents.
The horizontal barcode visualization of Langweg [2] was originally planned to be extended by
implementing it with zoom and showing details when specific revisions in the barcode were
clicked. Additionally, we wanted to evaluate such implementation by interviewing forensic in-
vestigators to determine if they would benefit from it, compared to the methods they currently
use when performing analysis.

Due to prioritizing other experiments, this was not performed. However, we believe that this
could be beneficial. Further research should therefore consider looking more into visualization
of evidence from OOXML documents.

8.2 Optimizing the comparison process

We have presented a prototype for comparing the revision identifiers extracted from documents.
We have not prioritized optimizing this comparison process, and it likely does not scale very
well when a large amount of identifiers from a large amount of documents are input to the
comparison process. The efficiency of the comparison process can likely be optimized greatly
by storing the revision identifiers and other information extracted from documents in an SQL
database, and perform comparison with SQL queries.

8.3 OOXML spreadsheets and presentations in digital forensics

This thesis has focused on OOXML documents, and has not dealt with OOXML spreadsheets
(named Excel in Microsoft Office) nor OOXML presentations (named Powerpoint in Microsoft
Office). These files do get collected in forensic investigations, in e.g. white collar crime, and
share some similarities with OOXML documents. Further research should inspect these files to
determine how they can be used in forensic investigations.

8.4 OpenDocument files in digital forensics

The Open Document Format for Office Applications (ODF) is an XML-based file format similar
to OOXML. ODF is supported in a number of office suites, including LibreOffice, OpenOffice,
Microsoft Office and NeoOffice. Our initial inspection of ODF files created by LibreOffice has
determined that they use revision identifiers in a similar manner as Microsoft Office in OOXML
files. Since ODF files likely contain forensically interesting information, further research should

76

Forensic Analysis of OOXML Documents

inspect these files to determine their usefulness.

8.5 Microsoft Office’s revision identifier generator algorithm

Previous research has claimed that there is a 232 = 4, 294, 967, 296 chance that two revision identi-
fiers are identical by chance. This number only reflects the total number of possible combinations
of a 32-bit number, and does not take Microsoft Office’s revision identifier generator algorithm
into consideration. Details about this algorithm have not been published, except that ECMA-376
specifies that the revision identifiers should be “randomly generated based on the current time”
[1][p. 1049].

We inspected 100 document pairs with intersecting revision identifiers by using a combination of
our prototype’s comparison process and manual XML inspection. The purpose of this experiment
was to determine if any document pair shared any revision identifier values without sharing any
content, i.e. merely by chance. We found that 2% of the inspected documents had a false positive
match, i.e. no actual shared content could be detected. If the false positive rate is too high, it
drastically reduces their usefulness in a forensic context. Our experiment showed a relatively low
false positive rate, but the revision identifier generator algorithm needs more research in order
to be conclusive.

Future researchers should ideally attempt to reverse engineer the algorithm to determine exactly
how it functions, alternatively perform experiments similar to ours with a larger sample set. Our
experience is that determining if the documents with intersecting revision identifiers actually
share some content needs human interpretation, and the task is therefore hard to automate.

77

Forensic Analysis of OOXML Documents

Bibliography

[1] ECMA. December 2012. Standard ECMA-376 Office Open XML File Formats. http://www.
ecma-international.org/publications/standards/Ecma-376.htm. [Online; accessed
28. January-2014].

[2] Langweg, H. 2012. OOXML File Analysis of the July 22nd Terrorist Manual. Communica-
tions and Multimedia Security. Springer Berlin Heidelberg.

[3] Buchholz, F. & Spafford, E. 2004. On the role of file system metadata in digital forensics.
Digital Investigation 1.4 (2004): 298-309.

[4] ECMA. December 2012. Standard ECMA-376 Office Open XML File Formats - Open Pack-
aging Conventions. http://www.ecma-international.org/publications/standards/

Ecma-376.htm. [Online; accessed 26. May-2014].

[5] Fu, Z., Sun, X., Liu, Y., & Li, B. 2011. Forensic investigation of OOXML format documents.
Digital Investigation 8. 1.

[6] Microsoft. 2013. Office 365 for business FAQ. http://office.microsoft.com/en-us/

business/microsoft-office-365-for-business-faq-FX103030232.aspx. [Online; ac-
cessed 26. May-2014].

[7] Microsoft. 2013. Microsoft Office Online - Word, Excel, and PowerPoint on the web. http:
//office.com. [Online; accessed 26. May-2014].

[8] Walmann, T. 2014. The Norwegian National Authority for Investigation and Prosecution
of Economic and Environmental Crime (Norwegian: Økokrim). Personal communication.

[9] Garfinkel, S. & Migletz, J. 2009. New XML-Based Files Implications for Forensics. IEEE
Security & Privacy 7. 2.

[10] Flølo, T. S. 2014. National Criminal Investigation Service Norway (Norwegian: Kripos).
Personal communication.

[11] Palmer, G. 2001. A road map for digital forensic research. First Digital Forensic Research
Workshop, Utica, New York.

[12] Raghavan, S. 2013. Digital forensic research: current state of the art. CSI Transactions on
ICT 1.1 (2013): 91-114.

[13] Casey, E. 2011. Digital evidence and computer crime: forensic science, computers and the
internet. Academic Press. ISBN 978-0-12-374268-1.

78

http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://office.microsoft.com/en-us/business/microsoft-office-365-for-business-faq-FX103030232.aspx
http://office.microsoft.com/en-us/business/microsoft-office-365-for-business-faq-FX103030232.aspx
http://office.com
http://office.com

Forensic Analysis of OOXML Documents

[14] NISO Press. 2004. Understanding metadata. National Information Standards 20.

[15] Gudjonsson, K. 2009. Office 2007 Metadata. http://computer-forensics.sans.org/

blog/2009/07/10/office-2007-metadata/. [Online; accessed 20. January-2013].

[16] Guidance Software. 2014. Overview. https://www.guidancesoftware.com/products/

Pages/encase-forensic/overview.aspx?cmpid=nav. [Online; accessed 26. May-2014].

[17] AccessData. 2014. FTK - Forensic Toolkit. http://www.accessdata.com/products/

digital-forensics/ftk. [Online; accessed 26. May-2014].

[18] Leedy, P. D. & Ormrod, J. E. 2013. Practical research: Planning and design, 10th edition.
Pearson Education Inc. ISBN 978-0-13-269324-0.

[19] Onwuegbuzie, Anthony J., N. L. L. & Collins, K. M. 2012. Qualitative Analysis Techniques
for the Review of the Literature. Qualitative Report 17.

[20] Google. 2014. Google Scholar. http://scholar.google.com. [Online; accessed 26. May-
2014].

[21] ScienceDirect. 2014. Search through over 11 million science, health, medical journal full
text articles and books. http://sciencedirect.com. [Online; accessed 26. May-2014].

[22] IEEE. 2014. IEEE Xplore Digital Library. http://ieeexplore.ieee.org. [Online; accessed
26. May-2014].

[23] ACM. 2014. ACM Digital Library. http://dl.acm.org. [Online; accessed 26. May-2014].

[24] Springer. 2014. SpringerLink. http://link.springer.com. [Online; accessed 26. May-
2014].

[25] Jones, B. 2007. History of office XML formats (1998-2006). http://blogs.msdn.com/

b/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx. [Online;
accessed 30. March-2014].

[26] International Standards Organization. 2008. ISO/IEC DIS 29500 receives necessary votes
for approval as an International Standard. http://www.iso.org/iso/news.htm?refid=

Ref1123. [Online; accessed 30. March-2014].

[27] Microsoft. 2011. Office Open XML, ECMA-376, and ISO/IEC 29500. http://msdn.

microsoft.com/en-us/library/gg607163(v=office.14).aspx. [Online; accessed 26.
May-2014].

[28] Bhorat, Z. 2008. A renewed wish for open document standards. http://googleblog.

blogspot.com/2008/02/renewed-wish-for-open-document.html. [Online; accessed 30.
March-2014].

[29] Macnaghten, E. 2007. ODF/OOXML technical white paper. http://www.

freesoftwaremagazine.com/articles/odf_ooxml_technical_white_paper. [Online;
accessed 30. March-2014].

79

http://computer-forensics.sans.org/blog/2009/07/10/office-2007-metadata/
http://computer-forensics.sans.org/blog/2009/07/10/office-2007-metadata/
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx?cmpid=nav
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx?cmpid=nav
http://www.accessdata.com/products/digital-forensics/ftk
http://www.accessdata.com/products/digital-forensics/ftk
http://scholar.google.com
http://sciencedirect.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://link.springer.com
http://blogs.msdn.com/b/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx
http://blogs.msdn.com/b/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx
http://www.iso.org/iso/news.htm?refid=Ref1123
http://www.iso.org/iso/news.htm?refid=Ref1123
http://msdn.microsoft.com/en-us/library/gg607163(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/gg607163(v=office.14).aspx
http://googleblog.blogspot.com/2008/02/renewed-wish-for-open-document.html
http://googleblog.blogspot.com/2008/02/renewed-wish-for-open-document.html
http://www.freesoftwaremagazine.com/articles/odf_ooxml_technical_white_paper
http://www.freesoftwaremagazine.com/articles/odf_ooxml_technical_white_paper

Forensic Analysis of OOXML Documents

[30] Sayer, P. 2008. Changes to OOXML draft standard
waved through. http://www.infoworld.com/t/applications/

changes-ooxml-draft-standard-waved-through-414. [Online; accessed 30. March-
2014].

[31] MSDN. 2011. Understanding Office Binary File Formats. http://msdn.microsoft.com/

en-us/library/gg615407(v=office.14).aspx. [Online; accessed 26. May-2014].

[32] ISO/IEC. 2012. Information technology – Document description and processing languages
– Office Open XML File Formats – Part 1: Fundamentals and Markup Language Reference.
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html. [Online;
accessed 28. January-2014].

[33] Hillmann, D. 2005. Using Dublin Core - The Elements. http://dublincore.org/

documents/usageguide/elements.shtml. [Online; accessed 26. May-2014].

[34] Jones, B. 2006. What’s up with all those "rsids"? http://blogs.msdn.com/b/

brian_jones/archive/2006/12/11/what-s-up-with-all-those-rsids.aspx. [Online;
accessed 26. May-2014].

[35] Willassen, S. Y. 2008. Timestamp evidence correlation by model based clock hypothesis
testing. Proceedings of the 1st international conference on Forensic applications and tech-
niques in telecommunications, information, and multimedia and workshop. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[36] MSDN. 2014. extLst. http://msdn.microsoft.com/en-us/library/dd905977(v=

office.12).aspx. [Online; accessed 26. May-2014].

[37] MSDN. 2014. oleSize. http://msdn.microsoft.com/en-us/\library/documentformat.
openxml.spreadsheet.olesize(v=office.14).aspx. [Online; accessed 26. May-2014].

[38] U.S. Securities and Exchange Commission. 2014. Insider trading. http://www.sec.gov/

answers/insider.htm. [Online; accessed 26. May-2014].

[39] Microsoft. 2013. Incorporate revisions with track
changes. http://office.microsoft.com/en-001/word-help/

video-incorporate-revisions-with-track-changes-VA104072631.aspx. [Online;
accessed 26. May-2014].

[40] Garfinkel, S. L. 2014. tcpflow 1.3. https://github.com/simsong/tcpflow. [Online;
accessed 09. February-2014].

[41] Norwegian Police Security Service. 2014. Terrorisme. http://www.pst.no/trusler/

terrorisme/. [Online; accessed 26. May-2014].

[42] MSDN. 2014. WordprocessingDocument.Open Method (String, Boolean). http://msdn.

microsoft.com/en-us/library/cc562234(v=office.14).aspx. [Online; accessed 26.
May-2014].

80

http://www.infoworld.com/t/applications/changes-ooxml-draft-standard-waved-through-414
http://www.infoworld.com/t/applications/changes-ooxml-draft-standard-waved-through-414
http://msdn.microsoft.com/en-us/library/gg615407(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/gg615407(v=office.14).aspx
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://dublincore.org/documents/usageguide/elements.shtml
http://dublincore.org/documents/usageguide/elements.shtml
http://blogs.msdn.com/b/brian_jones/archive/2006/12/11/what-s-up-with-all-those-rsids.aspx
http://blogs.msdn.com/b/brian_jones/archive/2006/12/11/what-s-up-with-all-those-rsids.aspx
http://msdn.microsoft.com/en-us/library/dd905977(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/dd905977(v=office.12).aspx
http://msdn.microsoft.com/en-us/\ library/documentformat.openxml.spreadsheet.olesize(v=office.14).aspx
http://msdn.microsoft.com/en-us/\ library/documentformat.openxml.spreadsheet.olesize(v=office.14).aspx
http://www.sec.gov/answers/insider.htm
http://www.sec.gov/answers/insider.htm
http://office.microsoft.com/en-001/word-help/video-incorporate-revisions-with-track-changes-VA104072631.aspx
http://office.microsoft.com/en-001/word-help/video-incorporate-revisions-with-track-changes-VA104072631.aspx
https://github.com/simsong/tcpflow
http://www.pst.no/trusler/terrorisme/
http://www.pst.no/trusler/terrorisme/
http://msdn.microsoft.com/en-us/library/cc562234(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/cc562234(v=office.14).aspx

Forensic Analysis of OOXML Documents

[43] MSDN. OpenXmlValidator.Validate Method (OpenXmlPackage). http://msdn.microsoft.
com/en-us/library/ee862967(v=office.14).aspx. [Online; accessed 26. May-2014].

[44] Garfinkel, S. 2012. Lessons learned writing digital forensics tools and managing a 30TB
digital evidence corpus. Digital Investigation 9: S80-S89.

[45] MSDN. 2014. List<T>.Intersect Method. http://msdn.microsoft.com/en-us/library/
vstudio/bb910215(v=vs.90).aspx. [Online; accessed 26. May-2014].

[46] MSDN. 2014. Microsoft Automatic Graph Layout. http://research.microsoft.com/

en-us/projects/msagl/. [Online; accessed 26. May-2014].

[47] Sugiyama, Kozo, S. T. & Toda, M. 1981. Methods for visual understanding of hierarchical
system structures. IEEE Transactions on Systems, Man and Cybernetics, 11.2: 109-125.

[48] MSDN. 2011. Automatic Graph Layout. http://research.microsoft.com/en-us/

downloads/f1303e46-965f-401a-87c3-34e1331d32c5/. [Online; accessed 26. May-
2014].

[49] Microsoft. 2013. Microsoft Office Professional Plus 2013. http://technet.microsoft.

com/en-us/evalcenter/jj192782.aspx. [Online; accessed 23. March-2014].

[50] Microsoft. 2013. Office 365 home. http://office.microsoft.com/en-us/

office365home/. [Online; accessed 26. May-2014].

[51] LibreOffice. 2014. What is LibreOffice? http://www.libreoffice.org/discover/

libreoffice/. [Online; accessed 26. May-2014].

[52] Microsoft. 2014. Bing. http://bing.com. [Online; accessed 26. May-2014].

[53] Wikipedia. 2014. Default home directory per operating system. http://en.wikipedia.

org/wiki/Home_directory#Default_home_directory_per_operating_system. [Online;
accessed 26. May-2014].

81

http://msdn.microsoft.com/en-us/library/ee862967(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/ee862967(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb910215(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb910215(v=vs.90).aspx
http://research.microsoft.com/en-us/projects/msagl/
http://research.microsoft.com/en-us/projects/msagl/
http://research.microsoft.com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/
http://research.microsoft.com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/
http://technet.microsoft.com/en-us/evalcenter/jj192782.aspx
http://technet.microsoft.com/en-us/evalcenter/jj192782.aspx
http://office.microsoft.com/en-us/office365home/
http://office.microsoft.com/en-us/office365home/
http://www.libreoffice.org/discover/libreoffice/
http://www.libreoffice.org/discover/libreoffice/
http://bing.com
http://en.wikipedia.org/wiki/Home_directory#Default_home_directory_per_operating_system
http://en.wikipedia.org/wiki/Home_directory#Default_home_directory_per_operating_system

Forensic Analysis of OOXML Documents

A Path preservation results table

Table 12: Original path preservation results of image insertion (ex-
tended version)

Application Insertion method Result

Word 2007 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 2010 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 2013 Insert -> Image Only original filename with extention, e.g. vacation.png

Word 365 Insert -> Image Only original filename file extention, e.g. vacation.png

Word On-
line

Insert -> Image Neither original path nor filename

LibreOffice
Writer

Insert -> Picture -
> From file

Neither original path nor filename

Google Docs Insert via upload Only original filename with file extention, e.g. vaca-
tion.png

Word 2007 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2010 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2013 Drag-and-drop Full original path, e.g. C:\Users\Mallory\vacation.png

Word 365 Drag-and-drop Only original filename without file extention, e.g. vaca-
tion

Word On-
line

Drag-and-drop Not supported

LibreOffice
Writer

Drag-and-drop Neither original path nor filename

Google Docs Drag-and-drop Neither original path nor filename

Google Docs From clipboard Neither original path nor filename

Word 2007 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2010 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 2013 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word 365 From clipboard Full original path, e.g. C:\Users\Mallory\vacation.png

Word On-
line

From clipboard Not supported

82

Forensic Analysis of OOXML Documents

LibreOffice
Writer

From clipboard Neither original path nor filename

Google Docs From clipboard Neither original path nor filename

7 Google
Docs

From URL Only original filename file extention, e.g. vacation.png

Word 2007 From URL Only original filename with extention, e.g. vacation.png

Word 2010 From URL Only original filename with extention, e.g. vacation.png

Word 2013 From URL Only original filename with extention, e.g. vacation.png

Word 365 From URL Only original filename file extention, e.g. vacation.png

Word On-
line

From URL Neither original path nor filename

LibreOffice
Writer

From URL Not supported

Google Docs From URL Only original filename file extention, e.g. vacation.png

Word 2007 From Bing Not supported

Word 2010 From Bing Not supported

Word 2013 From Bing Only original filename with extention, e.g. vacation.png

Word 365 From Bing Only original filename file extention, e.g. vacation.png

Word On-
line

From Bing Not supported

LibreOffice
Writer

From Bing Not supported

Google Docs From Bing Not supported

Word 2007 From Facebook Not supported

Word 2010 From Facebook Not supported

Word 2013 From Facebook Only original filename with extention, e.g.
10009314_10152851812487578_617485243_n.jpg

Word 365 From Facebook Not supported

Word On-
line

From Facebook Not supported

LibreOffice
Writer

From Facebook Not supported

Google Docs From Facebook Not supported

Word 2007 From Office.com Not supported

83

Forensic Analysis of OOXML Documents

Word 2010 From Office.com Not supported

Word 2013 From Office.com Only original filename with extention, e.g. vacation.jpg

Word 365 From Office.com Only original filename with extention, e.g. vacation.jpg

Word On-
line

From Office.com Not supported

LibreOffice
Writer

From Office.com Not supported

Google Docs From Office.com Not supported

Word 2007 From OneDrive1 Not supported

Word 2010 From OneDrive Not supported

Word 2013 From OneDrive Only original filename with extention, e.g. vacation.jpg

Word 365 From OneDrive Only original filename with extention, e.g. vacation.jpg

Word On-
line

From OneDrive Not supported

LibreOffice
Writer

From OneDrive Not supported

Google Docs From OneDrive Not supported

1http://onedrive.live.com; Microsoft’s cloud storage service.

84

Forensic Analysis of OOXML Documents

B Thumbnail creation and readability experiment

B.1 Word 2007

B.1.1 Thumbnail of document

Figure 22: Thumbnail produced by Office 2007

85

Forensic Analysis of OOXML Documents

B.1.2 Screenshot for comparison

Figure 23: Screenshot of first page of Office 2007 document

86

Forensic Analysis of OOXML Documents

B.2 Word 2010

B.2.1 Thumbnail of document

Figure 24: Thumbnail produced by Office 2010

87

Forensic Analysis of OOXML Documents

B.2.2 Screenshot for comparison

Figure 25: Screenshot of first page of Office 2010 document

88

Forensic Analysis of OOXML Documents

B.3 Word 2013

B.3.1 Thumbnail of document

Figure 26: Thumbnail produced by Office 2013

89

Forensic Analysis of OOXML Documents

B.3.2 Screenshot for comparison

Figure 27: Screenshot of first page of Office 2013 document

90

Forensic Analysis of OOXML Documents

B.4 Word 365

B.4.1 Thumbnail of document

Figure 28: Thumbnail produced by Office 365

91

Forensic Analysis of OOXML Documents

B.4.2 Screenshot for comparison

Figure 29: Screenshot of first page of Office 365 document

92

Forensic Analysis of OOXML Documents

C Facebook user identification based on inserted image

Figure 30: Screenshot of Facebook user’s published image, identified based on inserted image’s original
filename

93

Forensic Analysis of OOXML Documents

D Transcription of workshop with National Authority for
Investigation and Prosecution of Economic and Environmental

Crime in Norway (ØKOKRIM), 14/3-2014

Context: A group of Master’s students and one PhD student from Gjøvik University College special-
izing in digital forensics were invited to present our projects to forensic investigators working for
National Authority for Investigation and Prosecution of Economic and Environmental Crime in Nor-
way (ØKOKRIM), in order to get feedback from experts.

John-Erik (GUC): Have you detected any collisions in your data set?

Me: No, not yet. That’s part of my further work. ... To see if there any collisions. They shouldn’t
be there.

John-Erik (GUC): So the linked documents you’ve already got there [refers to slide graphically
displaying documents with intersecting revision identifiers], have you actually looked at them, do
they seem similar?

Me: Obviously I have not looked at all of them, but those I’ve looked at share some values.
[Changes to graph slide] I should probably have mentioned that these are some collected docu-
ment found through [search engine] searches. So I performed some keyword searches, like “CV”,
“Møtereferat” etc., so obviously some of them will be made of templates, so some of them will
probably share some of the values. [Points to a group of nodes pointing to each other] I think these
are some company specific documents. I think it’s common to just use templates or, for instance
“Ukeplan”, will obviously not be completely changed from week to week.

John-Erik (GUC): Also, you said you were going to check the id created from one session, is
that id unique for each time you start Word on the same machine, or for every login session or is
it unique for every machine...

Me: I’m sorry, which one?

John-Erik (GUC): You said that Word created a unique id when starting editing.

Me: Right.

John-Erik (GUC): But is that unique id the same every time for the same machine or...

Me: No, it’s not. It’s probably made in the same way as the other identifiers, so, what’s inter-

94

Forensic Analysis of OOXML Documents

esting here is that if you open one instance of Word, you type something, save it and close Word.
When you open a new document, it will generate some other new value. But if you have several
instances of Word open and you save documents, you could have for example 100 instances of
Word open, saving, saving, saving... they all get the same value. I think that’s interesting, because
it probably means that the documents are from the same source, and that they are made at the
same time.

Thomas (Økokrim): Everything in the format is well documented?

Me: Yeah, it’s 6000 pages...

Thomas (Økokrim): You haven’t found anything that’s not documented?

Me: Not yet, no. Obviously, some details are not extremely well documented. Like how do they
generate the revision identifiers? It’s mostly up to the producer. If I make some similar tool as
Word, I could do it in my way. The important thing for Microsoft when they made this standard,
was that it should be this number of hexadecimal characters, and it should be unique, and it
should be incremented. You could do it in any way you want if you make some office suite. So
some [forensically interesting] details have been spared.

Thomas (Økokrim): One of the fears that the forensics community had when they went for
this XML format, was that it’s plaintext. So if you open a file and you don’t use Word, and just
sort of unzip it, and you try to use Notepad and try to change stuff, then it should sort of be easier
to change the content of a file in an XML format, than in the old proprietary binary format. But
according to you, it isn’t?

Me: No, even if you change just one character, remove something, add something, and try to
open it as a document again, it will not run in Word. I think it’s absolutely possible, but it’s not
that easy. [Note: This statement is errornous; see Section 4.6.1.]

André (GUC): Unless you can create that one once again... the hashsum or whatever it is, there
is some integrity going on, probably. So if you could generate that one, if you know how to gen-
erate it, you could manipulate it.

Me: It’s probably easy, yeah.

Katrin (GUC): Would it be possible to just change an identifier?

Me: Probably, yeah, it could be...

Katrin (GUC): A normal XML parser can understand... but they are randomly generated, so I
could hide activities ...

95

Forensic Analysis of OOXML Documents

Me: Yes, and you could for example get a document from Thomas and you could want him
to get in trouble, and you could change some identifiers you have specified. It’s probably easy if
you want to do some bad things.

Katrin (GUC): So we have input for Microsoft for the next workshop.

Thomas (Økokrim): What’s really interesting is that it’s possible to dig more into the new for-
mats, so it’s possible to investigate further to see if there might be infringement or contracts or
...

Me: But I guess in most cases people using these kind of programs will not be aware of what’s
going in the documents.

Thomas (Økokrim): No. They would probably for instance try to change the time on the com-
puter, but if you’re then are able to figure out how the timing comes into these... hashed values
[referring to revision identifiers] ... there are new possibilities, at least.

Me: So there are some tiny details that could be useful, yeah.

Me: So I had some questions... but we could probably take them later.

Thomas (Økokrim): If you put them up, we could try to provide some input.

Me: [Changing to slide with research questions] So the first one, could you think of any other
scenarios where these things could be useful?

Thomas (Økokrim): A lot of, for instance, if you copy and paste from different documents and
you can trace identifiers that actually one person was in writing something into a document then
at least you have reason to think that he had seen the document. We use metadata from Office
documents a lot, it’s one of the main evidence sources, where we find proof. Even lastOpened,
lastPrinted and stuff like that. In the old Word format, you [use] “Save as” and you keep the old
printed date and ... so we spend quite a lot of time investigating metadata in Word files.

Me: Have you ever used for example the revision identifiers for something, or do you mainly
focus on timestamps, names etc?

Thomas (Økokrim): It’s partly [important] being aware that it’s possible to dig out things like
that. As you say, it’s a 6000 pages manual, and we haven’t read it. I’m pretty sure that soon
there will be someone claiming that someone had changed an identifier or something like that to
blame it on someone else. Just having tools to check if someone obviously have done something,
extract the identifiers etc etc [is useful], I’m not aware of any tools like that or at least none of

96

Forensic Analysis of OOXML Documents

the tools we have at the moment have those possibilities.

Katrin (GUC): One could create a set of new security features like hashsums of identifiers and
save them somewhere else to see if one character or identifier is changed.

Thomas (Økokrim): It’s typically trying to reverse engineer ... for instance if you find differ-
ent versions of the same document in different sources, then we have to sit down and try to
reverse engineer to see how and who changed it, which we can then probably use the tags [revi-
sion identifiers] to help us.

Me: So, tools like EnCase, what kind of functionality do they have? I looked at FTK, but it
was from 2006, so it was not so helpful.

Thomas (Økokrim): I once proposed that if you have some 10-15 files then you can send them
and we can export the metadata with the tools we use. Typically, they only show what they
showed from the old versions [of Word], prior to 2007, because that’s what they’ve built into
their databases. There has not been much focus on the metadata on Office documents in the
forensic community. There has been more focused on what people are used to look at, for in-
stance what’s still kept in the registry. There are some most recent used stuff that’s for some
reason not in the XML documents, but in the registry. Forensic examiners are used to look into
the registry and spend a lot of time digging around there, and they find something related to
Office documents, and that becomes the focus. But very few have spent a lot of time digging into
the XML structure of the Office files. We know that there are some things there that could help
us in investigations, but we have not had a high-priority case yet where it was really important
to dig in.

Me: You did mention that in most cases you actually look into the XML source manually, why?

Thomas (Økokrim): Because the tools... if it’s important, then we have to look at it manually,
because the tools do not extract sufficient information, none of the tools we have can extract [for
example] the identifiers. So we basically have to go in and use your tool or do it manually. So as
soon as we have a case where we need to dig into it, be sure that we will call you.

Me: That’s good.

Thomas (Økokrim): But I’m not very aware of what’s going in the open source community,
because we haven’t yet had the need to dig in.

Me: At least there aren’t many good tools published. There are some tools that extract the meta-
data from app.xml and core.xml.

Thomas (Økokrim): So it’s a business case to make a tool and prove that it’s relevant, and

97

Forensic Analysis of OOXML Documents

then AccessData or Guidance will buy your company.

Me: So it’s not a good idea to open source it then.

Thomas (Økokrim): It’s always a question of what you like. If you want to contribute to the
open source community...

Me: And if you want money, then...

Katrin (GUC): Or you crowd fund it.

Me: Yeah, but it’s mostly done [completed].

Thomas (Økokrim): But if you make a commercial thing, then you should be certain that you
don’t use open source code, you should make sure that you code things yourself or make sure
that you use libraries that are okay to sell copies of.

NN (Økokrim): So you have a program that makes these metadata, or...?

Me: No, what you see here [pointing to slide showing metadata extraction] is extraction of meta-
data. So we have a input document, and it extract the metadata from it.

Katrin (GUC): Can you show the document?

Me: Do you want to see the XML?

Katrin (GUC): Just to get a feeling for it.

Me: Alright, so I don’t have the original document from the screenshot, but this is an equiva-
lent. [Shows core.xml] So this is core.xml, which contains creator information, modified, title,
subject, number of revisions etc., and timestamps. [Shows app.xml] App.xml contains some in-
formation about the document, like how many characters, lines, what application was used etc.
[Shows document.xml] So this is the document itself, and these are the identifiers. We can see
that the paragraphs that have the same identifiers, are made within the same editing session.

NN (Økokrim): Does it take a long time to process the metadata from these documents?

Me: No, I’m [currently] processing an average of 4 documents per second. That’s documents
from about 20 kilobytes to up to 1 megabyte in the dataset, presented in the graph form. It’s
quite fast, I think. That includes unzipping and extracting. And the comparison, I think takes
around 10 seconds if you have 300 documents. It depends also what you compare. If you want
to compare all the attributes, there are 6 [particularily interesting] revision attributes [types], if

98

Forensic Analysis of OOXML Documents

you want to compare all of them it takes a lot more time. [Pointing to a run rsidRPr attribute on
slide] But it’s mostly interesting to compare this attribute, because it’s the one being preserved
when you copy and paste content.

(From session afterwards (not recorded)

Me: What features would be important or interesting for Økokrim?

Thomas (Økokrim): i) Flagging something that appears to be strange in a document. ii) Hav-
ing a master document, and comparing the identifiers to other reference documents to see their
relationship. The tools we use today are sometimes a bit disappointing, they don’t extract all
metadata. None of the tools use the revision identifiers for anything. Would also like you to look
some more into how easy it is to tamper with metadata.

Me: What kind of export format would Økokrim want?

Thomas (Økokrim): Simply CSV.

99

Forensic Analysis of OOXML Documents

E Interview with Tom Sørensen Flølo from National Criminal
Investigation Service (Norway) (Kripos)

Context: The thesis author was invited to visit Kripos’ headquarters after requesting the possibility
of interviewing a special investigator and perform document analysis with commercial forensic tools.
During the interview, key points were written down and sentences were fully formed later on; the
quotes are not exact wording.

1. How do investigators from Kripos usually analyse OOXML documents today?

Since we usually do not collect or analyse many documents in our typical investigations,
we usually inspect them manually. It is, though, not unthinkable that we at some point in
the future will have a case where we need to analyse such a large number of documents that
doing it manually will be unfeasible.

2. What types of information do you usually look for and use from these documents?

Of course, it really depends on the case. First and foremost, we are of course most inter-
ested in the actual contents of the document, and then of course who wrote it, where it came
from etc. Furthermore, we could use details such as the preserved original paths of inserted
images in order to determine if there might be units we have not yet seized from the suspect,
for example units that may be hidden somewhere in the suspect’s house. In one particular
case, for example, we determined that 3 different installations likely were associated with
editing the document, and some files appeared to origin from USB flash drives. The pre-
served original image paths could then indicate that there was some evidence we had not yet
been able to seize.

We also use the document’s metadata as an additional source of timestamps. For example,
we could use these to build a timeline. If we for example determine that the suspect in fact
appears to have been editing the document at the same time as a homicide was committed at
some other place, it might be used as supporting alibi. Or the other way around; if the suspect
claims he was at some other place and we determine that he in fact was at home editing the
document.

3. What tools do you currently use for handling these documents?

We often use EnCase and FTK, in addition to a lot of self-written scripts written to do a specific
task. We usually use EnCase to extract the files from the forensic images, then inspect them
manually or use read_open_xml.pl or similar scripts. We are also often interested in carving
documents from images where the suspect has attempted to delete them. bulk_extractor is
often useful.

100

Forensic Analysis of OOXML Documents

4. Is there any functionality that lacks in the commercial tools?

The commercial tools almost don’t have any functionality by default, but it is usually suf-
ficient for us to analyse them manually. EnCase, for example, does not display XML properly.
It is, however, possible to write scripts that extend the default functionality. EnCase, for ex-
ample, uses a language called “EnScript”, and developers distribute these scripts on (private)
community forums. Analysis is currently lacking in most tools, but they are starting to imple-
ment various analysis possibilities, such as generating timelines, displaying connections etc.
We see the problem in ever-increasing amounts of data seized, and doing things manually
is hopeless when faced with a lot of information. There are too many results, and we need
to sort based on e.g. time or do other analysis to shrink the amount of data needed to be
analysed manually.

5. Have the revision identifier in OOXML documents ever been used in any cases in Kripos?

No, not that I am aware of. At least not the last 5 years.

6. Could the analysis functionality I have presented be useful for Kripos?

As of today, we currently haven’t had any big cases where manually analysis didn’t suffice.
ØKOKRIM likely handle a lot more documents than we do. But it is as previously mentioned
not unthinkable that a larger case or a case with a large amount of documents comes up
at some point, then the functionality presented could be useful. The graph showing doc-
uments with relationships could typically be something for example the Norwegian Police
Security Service (Politiets Sikkerhetstjeneste) could be interested in, to e.g. map out criminal
networks, determining who has been communicating.

7. Is there any functionality in particular Kripos would find beneficial?

Preserved original filepaths of inserted objects is very interesting to have extracted, in or-
der to e.g. know what computers the document has been edited in. Automating this process
to perform bulk extraction would be beneficial, since unzipping a large amount of documents
and manually extracting or “grep’ing” them out takes time. It is also interesting to determine
any changes performed over time within a document. When what content was added, what
was changed, has the document looked different earlier?

8. What output format of an analysis tool would Kripos want?

In most cases, simply textual output so we can handle it in any way we want. When it comes
to showing relationships between entities, a graphical visualization would be beneficial, es-
pecially when faced with a large amount of information.

101

Forensic Analysis of OOXML Documents

F EnCase Forensic functionality

F.1 EnCase metadata extraction

Figure 31: Result of EnCase extracting metadata from sample OOXML documents

102

Forensic Analysis of OOXML Documents

F.2 EnCase image information

Figure 32: Result of EnCase extracting information from sample image

103

Forensic Analysis of OOXML Documents

F.3 EnScript output, extracting Exif metadata

Figure 33: Output of sample EnScript extracting Exif metadata from sample inserted image

104

Forensic Analysis of OOXML Documents

F.4 EnCase displaying XML

Figure 34: EnCase displaying XML of sample file in document package

105

Forensic Analysis of OOXML Documents

F.5 EnCase showing manually altered values in docProps/app.xml

Figure 35: EnCase showing manually altered values in docProps/app.xml

106

Forensic Analysis of OOXML Documents

F.6 ExifTool output of sample image

Table 13: ExifTool output of sample image

Description Value

File Name image1.JPG

Directory .

File Size 240 kB

File Modification Date/Time 1980:01:01

File Access Date/Time 2014:05:07 17:32:12+02:00

File Creation Date/Time 2014:05:07 17:32:12+02:00

File Permissions rw-rw-rw-

File Type JPEG

MIME Type image/jpeg

JFIF Version 1.01

Exif Byte Order Big-endian (Motorola, MM)

Make Sony

Camera Model Name C6903

Orientation Horizontal (normal)

X Resolution 72

Y Resolution 72

Resolution Unit inches

Software 14.2.A.1.136_9_f500

Modify Date 2014:02:12 15:59:43

Y Cb Cr Positioning Centered

Exposure Time 1/200

F Number 2.0

ISO 50

Exif Version 0220

Date/Time Original 2014:02:12 15:59:43

Create Date 2014:02:12 15:59:43

Components Configuration Y, Cb, Cr, -

Shutter Speed Value 1/199

Exposure Compensation 0

107

Forensic Analysis of OOXML Documents

Metering Mode Center-weighted average

Light Source Unknown

Flash Off, Did not fire

Focal Length 4.9 mm

Flashpix Version 0100

Color Space sRGB

Exif Image Width 5248

Exif Image Height 3936

Interoperability Index R98 - DCF basic file (sRGB)

Interoperability Version 0100

Custom Rendered Normal

Exposure Mode Auto

White Balance Auto

Digital Zoom Ratio 1

Scene Capture Type Standard

Subject Distance Range Unknown

Offset Schema 12

GPS Version ID 2.2.0.0

GPS Latitude Ref North

GPS Longitude Ref East

GPS Altitude Ref Above Sea Level

GPS Time Stamp 14:59:10

GPS Status Measurement Active

GPS Map Datum WGS-84

GPS Date Stamp 2014:02:12

Compression JPEG (old-style)

Thumbnail Offset 3850

Thumbnail Length 2987

Image Width 1288

Image Height 430

Encoding Process Baseline DCT, Huffman coding

Bits Per Sample 8

Color Components 3

108

Forensic Analysis of OOXML Documents

Y Cb Cr Sub Sampling YCbCr4:2:0 (2 2)

Aperture 2.0

GPS Altitude 251 m Above Sea Level

GPS Date/Time 2014:02:12

GPS Latitude 60 deg 47’ 20.22" N

GPS Longitude 10 deg 40’ 15.24" E

GPS Position 60 deg 47’ 20.22" N, 10 deg 40’ 15.24" E

Image Size 1288x430

Shutter Speed 1/200

Thumbnail Image (Binary data 2987 bytes)

Focal Length 4.9 mm

Light Value 10.6

109

Forensic Analysis of OOXML Documents

G Forensic Toolkit (FTK) functionality

G.1 FTK metadata extraction

Figure 36: Screenshot of FTK extracting metadata from an OOXML document.

110

Forensic Analysis of OOXML Documents

G.2 FTK viewing individual XML file

Figure 37: Screenshot of FTK viewing individual XML file.

111

Forensic Analysis of OOXML Documents

G.3 Sample document

G.3.1 Screenshot of document

Figure 38: Screenshot of sample document, with paragraph revisions marked.

112

Forensic Analysis of OOXML Documents

G.3.2 Paragraph creation revision identifiers

Listing G.1: XML showing the logical structure of textual content in an OOXML document

[+] <w:p w:rsidR="00D653F5" w:rsidRPr="00931AFE" w:rsidRDefault="00931AFE"
w:rsidP="00931AFE">

[+] <w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">
[+] <w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">
[+] <w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">
[+] <w:p w:rsidR="00E5398C" w:rsidRDefault="00E5398C" w:rsidP="00931AFE">
[+] <w:p w:rsidR="00E5398C" w:rsidRDefault="00E5398C" w:rsidP="00931AFE">
[+] <w:p w:rsidR="00A91664" w:rsidRDefault="00A91664" w:rsidP="00931AFE">
[+] <w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="00931AFE">
[+] <w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="00931AFE">
[+] <w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="008A384C">
[+] <w:p w:rsidR="008A384C" w:rsidRPr="008A384C" w:rsidRDefault="003A2162"

w:rsidP="00931AFE">

113

Forensic Analysis of OOXML Documents

G.3.3 docProps/app.xml

Listing G.2: XML showing the logical structure of textual content in an OOXML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Properties
xmlns="http://schemas.openxmlformats.org/officeDocument/2006/extended−properties"
xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">

<Template>Normal</Template>
<TotalTime>86</TotalTime>
<Pages>1</Pages>
<Words>247</Words>
<Characters>1314</Characters>
<Application>Microsoft Office Word</Application>
<DocSecurity>0</DocSecurity>
<Lines>10</Lines>
<Paragraphs>3</Paragraphs>
<ScaleCrop>false</ScaleCrop>
<HeadingPairs>

<vt:vector size="2" baseType="variant">
<vt:variant>

<vt:lpstr>Title</vt:lpstr>
</vt:variant>
<vt:variant>

<vt:i4>1</vt:i4>
</vt:variant>

</vt:vector>
</HeadingPairs>
<TitlesOfParts>

<vt:vector size="1" baseType="lpstr">
<vt:lpstr/>

</vt:vector>
</TitlesOfParts>
<Company/>
<LinksUpToDate>false</LinksUpToDate>
<CharactersWithSpaces>1558</CharactersWithSpaces>
<SharedDoc>false</SharedDoc>
<HyperlinksChanged>false</HyperlinksChanged>
<AppVersion>15.0000</AppVersion>

</Properties>

114

Forensic Analysis of OOXML Documents

G.3.4 docProps/core.xml

Listing G.3: XML showing the logical structure of textual content in an OOXML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cp:coreProperties
xmlns:cp="http://schemas.openxmlformats.org/package/2006/metadata/core−properties"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dcmitype="http://purl.org/dc/dcmitype/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance">

<dc:title/>
<dc:subject/>
<dc:creator>win7decoy</dc:creator>
<cp:keywords/>
<dc:description/>
<cp:lastModifiedBy>win7decoy</cp:lastModifiedBy>
<cp:revision>6</cp:revision>
<cp:lastPrinted>2014-02-12T12:39:00Z</cp:lastPrinted>
<dcterms:created

xsi:type="dcterms:W3CDTF">2014-02-12T11:13:00Z</dcterms:created>
<dcterms:modified

xsi:type="dcterms:W3CDTF">2014-02-12T13:40:00Z</dcterms:modified>
</cp:coreProperties>

115

Forensic Analysis of OOXML Documents

G.3.5 word/document.xml

Listing G.4: XML showing the logical structure of textual content in an OOXML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<w:document
xmlns:wpc="http://schemas.microsoft.com/office/word/2010/wordprocessingCanvas"
xmlns:mc="http://schemas.openxmlformats.org/markup−compatibility/2006"
xmlns:o="urn:schemas−microsoft−com:office:office"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"
xmlns:v="urn:schemas−microsoft−com:vml"
xmlns:wp14="http://schemas.microsoft.com/office/word/2010/wordprocessingDrawing"
xmlns:wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing"
xmlns:w10="urn:schemas−microsoft−com:office:word"
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"
xmlns:w14="http://schemas.microsoft.com/office/word/2010/wordml"
xmlns:w15="http://schemas.microsoft.com/office/word/2012/wordml"
xmlns:wpg="http://schemas.microsoft.com/office/word/2010/wordprocessingGroup"
xmlns:wpi="http://schemas.microsoft.com/office/word/2010/wordprocessingInk"
xmlns:wne="http://schemas.microsoft.com/office/word/2006/wordml"
xmlns:wps="http://schemas.microsoft.com/office/word/2010/wordprocessingShape"
mc:Ignorable="w14 w15 wp14">

<w:body>
<w:p w:rsidR="00D653F5" w:rsidRPr="00931AFE" w:rsidRDefault="00931AFE"

w:rsidP="00931AFE">
<w:pPr>

<w:pStyle w:val="Heading1"/>
<w:rPr>

<w:sz w:val="40"/>
<w:szCs w:val="40"/>
<w:lang w:val="en−US"/>

</w:rPr>
</w:pPr>
<w:r w:rsidRPr="00931AFE">

<w:rPr>
<w:sz w:val="40"/>
<w:szCs w:val="40"/>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>Summary of R&D activities</w:t>

</w:r>
</w:p>
<w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:r>

116

Forensic Analysis of OOXML Documents

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>February, 2014</w:t>

</w:r>
</w:p>
<w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">

<w:pPr>
<w:pBdr>

<w:bottom w:val="single" w:sz="4" w:space="1" w:color="auto"/>
</w:pBdr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
</w:p>
<w:p w:rsidR="00931AFE" w:rsidRDefault="00931AFE" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:r>

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>As presented on the seminar in early January, the R&D

department has the last six months been working on a revolutionary

system for increasing the effective frequency of advertisement

exposure, based on multi-platform user behavior advertisement

spreading via Internet-connected devices. As we all know, smart

phone popularity has rapidly increased since 2007, and is believed

to already have taken over the marked when it comes to accessing

social media.</w:t>
</w:r>

</w:p>
<w:p w:rsidR="00E5398C" w:rsidRDefault="00E5398C" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:r>

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>In short, our proposed system in its current form receives input

from our smart phone application developing partners, who actively

collect user information, application usage statistics and browsing

117

Forensic Analysis of OOXML Documents

habits from approximately 5.2 million users (as of late January,

2014). Our system processes this raw input and performs data mining

in order to discover trends that might not be apparent at the first

glance. By correlating our rapidly growing database of product

information keywords with the user`s web search keywords, we are

able to expose the user with customized advertisements in the

partnering applications, along with customized e-mail marketing for

users that are significantly likely to purchase specific

products.</w:t>
</w:r>

</w:p>
<w:p w:rsidR="00E5398C" w:rsidRDefault="00E5398C" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:r>

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>The following graph provides a comparison of the current and the

new approach, in terms of revenue</w:t>
</w:r>
<w:r w:rsidR="008A384C">

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t xml:space="preserve"> (Y axis represents millions of Euro)</w:t>

</w:r>
<w:r>

<w:rPr>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>:</w:t>

</w:r>
</w:p>
<w:p w:rsidR="00A91664" w:rsidRDefault="00A91664" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:r>

<w:rPr>
<w:noProof/>
<w:lang w:eastAsia="nb−NO"/>

</w:rPr>
<w:drawing>

118

Forensic Analysis of OOXML Documents

<wp:inline distT="0" distB="0" distL="0" distR="0">
<wp:extent cx="5486400" cy="3200400"/>
<wp:effectExtent l="0" t="0" r="0" b="0"/>
<wp:docPr id="1" name="Chart 1"/>
<wp:cNvGraphicFramePr/>
<a:graphic

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main">
<a:graphicData

uri="http://schemas.openxmlformats.org/drawingml/2006/chart">
<c:chart

xmlns:c="http://schemas.openxmlformats.org/drawingml/2006/chart"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
r:id="rId6"/>

</a:graphicData>
</a:graphic>

</wp:inline>
</w:drawing>

</w:r>
</w:p>
<w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
</w:p>
<w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="00931AFE">

<w:pPr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
<w:bookmarkStart w:id="0" w:name="_GoBack"/>
<w:bookmarkEnd w:id="0"/>

</w:p>
<w:p w:rsidR="008A384C" w:rsidRDefault="008A384C" w:rsidP="008A384C">

<w:pPr>
<w:pBdr>

<w:bottom w:val="single" w:sz="4" w:space="1" w:color="auto"/>
</w:pBdr>
<w:rPr>

<w:lang w:val="en−US"/>
</w:rPr>

</w:pPr>
</w:p>
<w:p w:rsidR="008A384C" w:rsidRPr="008A384C" w:rsidRDefault="003A2162"

w:rsidP="00931AFE">
<w:pPr>

<w:rPr>

119

Forensic Analysis of OOXML Documents

<w:i/>
<w:lang w:val="en−US"/>

</w:rPr>
</w:pPr>
<w:r>

<w:rPr>
<w:i/>
<w:noProof/>
<w:lang w:eastAsia="nb−NO"/>

</w:rPr>
<w:drawing>

<wp:anchor distT="0" distB="0" distL="114300" distR="114300"
simplePos="0" relativeHeight="251658240" behindDoc="1" locked="0"
layoutInCell="1" allowOverlap="1" wp14:anchorId="0B52682B"
wp14:editId="7372E287">

<wp:simplePos x="0" y="0"/>
<wp:positionH relativeFrom="margin">

<wp:align>right</wp:align>
</wp:positionH>
<wp:positionV relativeFrom="paragraph">

<wp:posOffset>538518</wp:posOffset>
</wp:positionV>
<wp:extent cx="1738800" cy="367200"/>
<wp:effectExtent l="0" t="0" r="0" b="0"/>
<wp:wrapNone/>
<wp:docPr id="2" name="Picture 2"/>
<wp:cNvGraphicFramePr>

<a:graphicFrameLocks
xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main"
noChangeAspect="1"/>

</wp:cNvGraphicFramePr>
<a:graphic

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main">
<a:graphicData

uri="http://schemas.openxmlformats.org/drawingml/2006/picture">
<pic:pic

xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture">
<pic:nvPicPr>

<pic:cNvPr id="2" name="searchlinkgridlogo.png"/>
<pic:cNvPicPr/>

</pic:nvPicPr>
<pic:blipFill>

<a:blip r:embed="rId7">
<a:extLst>

<a:ext uri="{28A0092B−C50C−407E−A947−70E740481C1C}">
<a14:useLocalDpi

xmlns:a14="http://schemas.microsoft.com/office/drawing/2010/main"
val="0"/>

</a:ext>

120

Forensic Analysis of OOXML Documents

</a:extLst>
</a:blip>
<a:stretch>

<a:fillRect/>
</a:stretch>

</pic:blipFill>
<pic:spPr>

<a:xfrm>
<a:off x="0" y="0"/>
<a:ext cx="1738800" cy="367200"/>

</a:xfrm>
<a:prstGeom prst="rect">

<a:avLst/>
</a:prstGeom>

</pic:spPr>
</pic:pic>

</a:graphicData>
</a:graphic>
<wp14:sizeRelH relativeFrom="margin">

<wp14:pctWidth>0</wp14:pctWidth>
</wp14:sizeRelH>
<wp14:sizeRelV relativeFrom="margin">

<wp14:pctHeight>0</wp14:pctHeight>
</wp14:sizeRelV>

</wp:anchor>
</w:drawing>

</w:r>
<w:r w:rsidR="008A384C">

<w:rPr>
<w:i/>
<w:lang w:val="en−US"/>

</w:rPr>
<w:t>Note: This is an internal document containing confidential

information intended only for authorized employees. Any

unauthorized distribution or access will lead to dismissal and

legal actions.</w:t>
</w:r>
<w:r w:rsidRPr="003A2162">

<w:rPr>
<w:i/>
<w:noProof/>
<w:lang w:val="en−US" w:eastAsia="nb−NO"/>

</w:rPr>
<w:t xml:space="preserve"/>

</w:r>
</w:p>
<w:sectPr w:rsidR="008A384C" w:rsidRPr="008A384C">

<w:headerReference w:type="even" r:id="rId8"/>
<w:headerReference w:type="default" r:id="rId9"/>

121

Forensic Analysis of OOXML Documents

<w:footerReference w:type="even" r:id="rId10"/>
<w:footerReference w:type="default" r:id="rId11"/>
<w:headerReference w:type="first" r:id="rId12"/>
<w:footerReference w:type="first" r:id="rId13"/>
<w:pgSz w:w="11906" w:h="16838"/>
<w:pgMar w:top="1417" w:right="1417" w:bottom="1417" w:left="1417"

w:header="708" w:footer="708" w:gutter="0"/>
<w:cols w:space="708"/>
<w:docGrid w:linePitch="360"/>

</w:sectPr>
</w:body>

</w:document>

122

Forensic Analysis of OOXML Documents

G.3.6 word/settings.xml

Listing G.5: XML showing the logical structure of textual content in an OOXML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<w:settings xmlns:mc="http://schemas.openxmlformats.org/markup−compatibility/2006"
xmlns:o="urn:schemas−microsoft−com:office:office"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"
xmlns:v="urn:schemas−microsoft−com:vml"
xmlns:w10="urn:schemas−microsoft−com:office:word"
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"
xmlns:w14="http://schemas.microsoft.com/office/word/2010/wordml"
xmlns:w15="http://schemas.microsoft.com/office/word/2012/wordml"
xmlns:sl="http://schemas.openxmlformats.org/schemaLibrary/2006/main"
mc:Ignorable="w14 w15">

<w:zoom w:percent="70"/>
<w:proofState w:spelling="clean" w:grammar="clean"/>
<w:defaultTabStop w:val="708"/>
<w:hyphenationZone w:val="425"/>
<w:characterSpacingControl w:val="doNotCompress"/>
<w:hdrShapeDefaults>

<o:shapedefaults v:ext="edit" spidmax="2050"/>
<o:shapelayout v:ext="edit">

<o:idmap v:ext="edit" data="2"/>
</o:shapelayout>

</w:hdrShapeDefaults>
<w:footnotePr>

<w:footnote w:id="−1"/>
<w:footnote w:id="0"/>

</w:footnotePr>
<w:endnotePr>

<w:endnote w:id="−1"/>
<w:endnote w:id="0"/>

</w:endnotePr>
<w:compat>

<w:compatSetting w:name="compatibilityMode"
w:uri="http://schemas.microsoft.com/office/word" w:val="15"/>

<w:compatSetting w:name="overrideTableStyleFontSizeAndJustification"
w:uri="http://schemas.microsoft.com/office/word" w:val="1"/>

<w:compatSetting w:name="enableOpenTypeFeatures"
w:uri="http://schemas.microsoft.com/office/word" w:val="1"/>

<w:compatSetting w:name="doNotFlipMirrorIndents"
w:uri="http://schemas.microsoft.com/office/word" w:val="1"/>

<w:compatSetting w:name="differentiateMultirowTableHeaders"
w:uri="http://schemas.microsoft.com/office/word" w:val="1"/>

</w:compat>
<w:rsids>

<w:rsidRoot w:val="00BB122F"/>
<w:rsid w:val="003A2162"/>

123

Forensic Analysis of OOXML Documents

<w:rsid w:val="008A384C"/>
<w:rsid w:val="00931AFE"/>
<w:rsid w:val="00A91664"/>
<w:rsid w:val="00BB122F"/>
<w:rsid w:val="00CD3453"/>
<w:rsid w:val="00D653F5"/>
<w:rsid w:val="00DB04C1"/>
<w:rsid w:val="00DB47D6"/>
<w:rsid w:val="00E5398C"/>

</w:rsids>
<m:mathPr>

<m:mathFont m:val="Cambria Math"/>
<m:brkBin m:val="before"/>
<m:brkBinSub m:val="−−"/>
<m:smallFrac m:val="0"/>
<m:dispDef/>
<m:lMargin m:val="0"/>
<m:rMargin m:val="0"/>
<m:defJc m:val="centerGroup"/>
<m:wrapIndent m:val="1440"/>
<m:intLim m:val="subSup"/>
<m:naryLim m:val="undOvr"/>

</m:mathPr>
<w:themeFontLang w:val="nb−NO"/>
<w:clrSchemeMapping w:bg1="light1" w:t1="dark1" w:bg2="light2"

w:t2="dark2" w:accent1="accent1" w:accent2="accent2" w:accent3="accent3"
w:accent4="accent4" w:accent5="accent5" w:accent6="accent6"
w:hyperlink="hyperlink" w:followedHyperlink="followedHyperlink"/>

<w:shapeDefaults>
<o:shapedefaults v:ext="edit" spidmax="2050"/>
<o:shapelayout v:ext="edit">

<o:idmap v:ext="edit" data="1"/>
</o:shapelayout>

</w:shapeDefaults>
<w:decimalSymbol w:val=","/>
<w:listSeparator w:val=";"/>
<w15:chartTrackingRefBased/>
<w15:docId w15:val="{49B638EA−E327−461B−96AA−3676BCB565F0}"/>

</w:settings>

124

Forensic Analysis of OOXML Documents

H Change tracking example

H.1 Screenshot of document edited with change tracking enabled

Figure 39: Screenshot of document edited with change tracking enabled

H.2 XML of document edited with change tracking enabled

Listing H.1: 123

<w:ins w:id="4" w:author="Alice" w:date="2014−05−29T15:14:00Z">
<w:r w:rsidRPr="00E71DAE">

<w:rPr>
<w:lang w:val="en−GB"/>
<w:rPrChange w:id="5" w:author="Alice"

w:date="2014−05−29T15:15:00Z">
<w:rPr>

<w:lang w:val="nb−NO"/>
</w:rPr>

</w:rPrChange>
</w:rPr>
<w:t>Our suggestion</w:t>

</w:r>
</w:ins>

125

Forensic Analysis of OOXML Documents

H.3 Uniqueness of revision identifiers result table

Table 14: Classification table; description of each number in Table
15

Number Description

1 One common rsidRDefault value; no common content at all; different authors; different
companies; different Office versions; different year = no connection

2 Common root rsid; many shared rsids; common content = clear connection; one docu-
ment is based on the other

3 Shared run rsidRPr values; common content = clear connection; content is likely
copied from one document to the other

4 One common rsidR/rsidP/rsidRDefault value; no common content at all; different au-
thors; different companies; different Office versions; different year = no connection

5 Common root rsid; several shared rsids; common content = clear connection; one doc-
ument is based on the other

6 Last paragraph is the same = clear connection

7 Common template; common company = clear connection

8 Shared root rsid; same author = clear connection; documents likely written simultane-
ously

9 Common footer; common company = clear connection

10 Many shared rsids; common content = clear connection; one document is based on the
other

Table 15: Result of uniqueness of revision identifiers experiment. Column name “Cl”
refers to “Classification” (see Table 14); “FP” refers to “false positive”

Document A SHA1 hash Document B SHA1 hash Cl FP?

1 7232d6caaebd461569f67f6179e0887d946c73f9 21cea4c0d35bbc419b6cb4d06c79951d1522dd5d 1 Yes

2 651d10bffa2b98a8dadb6ccf59c21b2852c80d6f 928ec22f53affa441a24fbcb724dcafec25737b6 2 No

3 0f1861cdb86784afb5964118d3918a7c92dfe2bd e81610efeb6757799233d3b802e409decfaba0c0 2 No

4 c30b27d3945447b1c9c705e0bac279187b3cb925 ff871934aa3968aeced9a442f8f84a9a61d79ef9 2 No

5 450c6fe13355742c2f9712d74ecb8767c895320a b563f1922d9f12cf1e0befe314677c0438aba909 2 No

6 4331958aef46855b17d1620b6dde9b2018e8333f 90708418358abb7c4f6dc836a3eece28236d8b24 2 No

7 6ee167ad8e800263d44d38b245a70b934482a356 8e5d483cd39a5593957726381929fbd186d2687b 2 No

8 71658ffc646c037b4e3491b5ef0715a2451d219f d0fa60f87b091048414376228b0cc8141ab94459 3 No

9 d4cb36bbfafbb8f4df9f7922326e6ef39e94a4d2 76c54762a0565ef85884be87072c855109a1c915 3 No

10 97f228fa5737402fb1ff01f297f7abaabc662f0d c85cf79bc003107014b84747b6169a4105aa2091 2 No

126

Forensic Analysis of OOXML Documents

11 993bdb2c1ff462b2757a12885b1d279db0436023 bc92ad1c887315d0c3f0529fd3f560eb6534626e 2 No

12 df635579f3c4282d67dc7cf095991c7b12327ab5 423c99e10c49522f9b81ddd679cf76bed56d7f8d 2 No

13 9a397545d00696120c4a3a3452fbfae048ec1390 7508a7a612d30cd1765aea16e76a253f90b0fe9e 2 No

14 232eb11072bf76ca3a009d19d897b1d37f0bc321 7508a7a612d30cd1765aea16e76a253f90b0fe9e 4 Yes

15 71a9b7b8b5f9853ed24b87200738614af1f19013 3cca95d8a911bf90b9fc3505b279afc0a94fdf30 2 No

16 630963790a60fee0d3585d356365867c551bd871 cc61abb6e1b5851e8763fabea0839f77bf457bbc 2 No

17 5de9922c987f43be5d93454bf8082fd3b87c5700 b374ef5ebec46bd8106e1841b0feec38512085b2 2 No

18 1d826b52e0e19f3d7dc5182f84d89c0b6decded4 33020b4ce45352776f1af20f0d11ba23b96c9f37 2 No

19 66e5e0228bab3a08498413a6485f9db2f2bbfa07 7d2c935db84bd7c3fd1480f753485f57e6ce76ba 2 No

20 1c846675ada1c2ff98f78e65958a9c48d95dcf5f 558d007e5f58246a4aac320b889007e542b49123 5 No

21 f4b1dce1032fe0c8a66060a53a4d7f9a395a1018 3eda41dfba2774469fb5349c11810b1cfba1ed23 5 No

22 8e24462f145c27f4a9b5118c52a1018f698a41bc 7287fbff4fe0c735f2bae3dcc1aef623d988f108 5 No

23 4651c8090d06eecd80c6881093e111613c68d136 f188407f61213e2f1f0b336ec6d119af8b5c477e 5 No

24 7819bfb87d3d4b9af0d77dbbcaaea756bd434536 c1c5d7f027a7ee8a60dec8e0e4d105c456a9ae14 5 No

25 00f664c6b1aeda86586e0db91988a2ea36395adf 71ca8561090587bd479475aa9a5b62152ee874c3 5 No

26 ea1087dbf96f888b06db93f32d29361f3833ab3f 9e3f2037ebb1ff0a2b911a2e39bdd560f4ad8aee 2 No

27 0ce4f0db52b8c44623214fff5f7533f9fe13b668 07fb4d6a1b6369918d23e27e34702f751467c62e 2 No

28 8820ef608f094f7921e28e98adf0c755b0965a33 2b9646abfb0b0b2559ade24700501ddc8a00261b 5 No

29 c4bb4265073441d371bb1f9a220bb3b14d39b3bc 495b49b507c6ee5ea9eaa6538c537e7bb3884f16 5 No

30 64b112dfd3a3470c335a1ada5fc4a87c52c93d67 bb50c2eeaf1080690530d057d680a4ac22345d96 5 No

31 949160588f0ece580932ef6e5507664ff957b314 1eb2d514033004ac515f499c0bc4d18eca75e29e 2 No

32 89df92f2349fdbbe139e9555b606c6bbed20b9b0 5d17193359b6e8b3be6309a858343f185edf5625 5 No

33 d3a795e177db6a0c275c37ccc6ea25ca4b4a8d93 1bb9c630308106398fe26cb319542b53374f1637 2 No

34 f3e54a23dc5bb210c4df27ae43d608a4466424ed de07068a18b1026c1e52d016e5a3a10d39fe8747 5 No

35 afbeee0eab394812f36e47c819d96d07cfeaa9c2 369a634ce7a56b489bf57bdc49b2f51516f83673 5 No

36 6154d1c0f008ab5678455f4f4b26b0108e613d65 bfc2e36a4692787a6ae4c2c9a40a08f5e459332e 5 No

37 5880b7f4711818e431fcbebfb67b6c32d3d8a086 20e002776ba417bde55514417f888e35edbf8b8e 2 No

38 e17055c449bad7f4bd2a7e7192103be754768df2 fa2aaa9c81d33d2938cc4c7e7af3a671317c6152 6 No

39 23020b8d0f013bde752b8bde753f4088bdbf2fd9 64d15e0c8b70b0365f31ca9bb4d17f48ab5be8ec 2 No

40 7597ef4b3955a0117b81374b598cb9abf5f314e1 d9105bc40aa42ade54bd45fc4369075aef52bbde 2 No

41 70f40d44fd0c54c37ae5d656ba540c04c6e4e00c 2070928e609f33dfaafca81d97a985456a895312 7 No

42 1b4d4fc5001de69068c434c05ed88c71ab36c0dc fdcb57da1357029c4d238ca1b0773caeb22ba3d4 3 No

43 a7aa32e6895b15753658a4c0fb23f1ed8affedfc 7459c08960c287201a5b42868aaccbf28ef81673 3 No

44 5c1555fd176b602aecc0a8acbcacb14586a994cf 5b1c07e54e49b16a31c4f21a13bddde94f66ce5c 10 No

45 7b041ad60e155f1e471d84176d63d16d61174631 d6b05bb8a15974a4aecd275aefec9e0035582445 3 No

46 af1fa5ad4d2cd1c1ce014b63c0abab24c6e64936 cad3f185bda21a715410a7791007d8ff57d1c580 3 No

47 ce1c5a596cc1b524e744f0507eff3234400732ef 444935747b51a79e191235cc6a52320e054f69e8 10 No

48 289787ed6de66efcf682803507db860bc9d78cc9 677c8c1737906bda53bea858e08861ccad6a3f14 3 No

49 dde87b0b13576b9834a03885dd7970985bdd00db 4640af9ab746a18790f51688b71340c372454d52 3 No

127

Forensic Analysis of OOXML Documents

50 049f36d22071ad3b7266ae21b4f39e8c07d746dc 3b3953f1e4b3653e75e39f0be9907963b8e189dd 10 No

51 2b5c967ea392540dd3d256e56865509691c7444a c59a55fbb424b159fce78c34471646e22ed9d412 3 No

52 1aa0117a9d95ad3c1083ae21003edd6f96ec0902 9b8a75886a81bbe215d48bdb28b8b86a6b317b7c 10 No

53 a602b9195b92f6102ee0aef29be055dd9075ba22 5355f6f17b0be9383e873c4f4b7d7f8f4ac9e777 3 No

54 d9a6f3596193b9460ea535143855dc50ce476b01 311759785e8652a04e50bac58eb1e7e6bf39d3f8 10 No

55 18cf92ea0994071ed33fd2179523bb588d1a42d0 7b2445b2dd6e31f25e0cedb13e61de1979092f3d 10 No

56 1f42fc6037e42fa9295d31187578464b714179f0 0fe698c619ee722957f8ee452cf257926653d0a9 10 No

57 860d08e81d0cfd89f32d425f2f95c4af627fbdb0 795aed67aee6bd9ff97f54a01a2c641d5b413f98 10 No

58 540f51b7025106c68f91f0c9ac99ff7851a34caa b70f5be88457ec86ac3fe3528ca7269847225b5a 7 No

59 d87360b7ac5113366df19898a047b25ab929f209 0d170d7fdcb1e65af192b56bd38a6abf7d4383c4 10 No

60 01807080bd5c5e87cb6bf758ff3ab15f399cb232 8d0e28d158f7d05aaf96f4a7dabce1593efca267 10 No

61 364a8d01484307f671c575d6be583f361a5c3abc 8d0e28d158f7d05aaf96f4a7dabce1593efca267 3 No

62 0fc86edb1dfbc7e454ca3b5b1e5135c3e7e8b126 5610f65c32c0aed705562e5f82d968b04c2e0d9a 3 No

63 d3b47242cb3f0ac1472beaa9ffc5d75aa9496ebf dd18aacc79dc313eb314caabc35d695ec8f2aa4b 10 No

64 7d05720a40552c42e85c46ec554d4ad3e626c545 38d5051d24a2a6e1b07741a0e842a48be4a00f2b 3 No

65 824c9a122478625b49b39fb129c5a09c46fbe141 0e3c1af516d918584b07ad00ed599a6b69522662 10 No

66 a3e771d2deb658abf604bd91503415ef905cdb0f e9df8f25bbaa217f41af0aae611f34b392de8b21 3 No

67 49d90f4b3f045378f22ae444b2a9d40704bb1af5 8314b6f57761cd9ce153c78889500c7085a6ed9c 3 No

68 36900e7e814b4ba64cf9cc486b87767930d6a178 468ce96341ea32f290846644d8b7bf4f4450d69d 10 No

69 04585770b49201ba01ffca7de94dc78a7f879117 4ce039de95c289b583fd16d583ccd73919aa6468 10 No

70 a9e6fcc44118c90cdd94ed937b92c67697a85de6 ff995b39f1ba9b841d092392a5f9678ee9288f7b 10 No

71 874ca1bfe328860a54948f7249a2c191836a0fec 4a0783d5d61d40b98fa0da136f867906b5334723 10 No

72 5002ce804d87e1f613f1897ed810b66b11c9df85 21a9af88867118af8dc79af8117d220df1dc033d 10 No

73 712491fc7536a941ecc4d489b50e16eda94085c2 6d0865e715494dd97829c9f96129a71488bcee5f 3 No

74 190b4285c7d06442479a862d52732fefa817cd23 5dd2ecc24c49dd655d53d9f54e4b1a678b66528d 8 No

75 500a23ad7846586bc230d85a0b08ef5c314db668 892d6b758db89c92dea6390dc00ceae6f05a74b2 10 No

76 e789a442dfa9f8f4052f5eba0938fb8283cea4b8 50d6f22d6c42c8c2df250e51d6ff5dbcc982d75f 10 No

77 3e99e368a58c27256bbd5e5088f70533e1103513 94ce78b58a7db2ef5ec0f41dc0c91be722ac1d96 10 No

78 9d2d915eb94b2b8ccab81a6d4c4afd2b82196297 3a5c24506c8b2d06456e65f60d4a47ba4980a948 10 No

79 a67d6683ae7fe56700013a28741a864bda53ca8d aaa3900a8275ecd654d4918279ce80055612f33b 10 No

80 71b4e695bba8f01cd7c83ad46f6e88c3d05dbd7f 57f2fbd347f5475492884b175fb0c5180794dfdb 3 No

81 303dafb79466316943154126d8575db78e24b853 80768f3db0a41cc7628ec6d7a2e1e7aad48271ef 10 No

82 4e03cbfe3d85a024afcb7cfabfa45b70261f4934 754de813a446dff59147bddb6dadff44744d86b9 10 No

83 ebd1d391cdcf0e87d0d107a6214542bc19b627de 2eff9b2e1d574bc8af13f7194d1cec9f6ad25f79 3 No

84 ce507e5060b3e1827acba894cf2b8ab3ca3338d5 30c68bd121773691b26d888286cc4ea16d9536d1 10 No

85 ef434e57ac3c9fe96e63d7957a7d1e113179a5df 1b043c3bf3763253a52e7d304652c020614c96ae 10 No

86 a5755ca3abdc3f1c27456a400c834d5876946628 7ad7ac27099c344df1cb9370919a44b3a852d76d 10 No

87 1b68c752cea1f4ad189b7e60beb886103802df58 5790d726d75d85a8942ad66d3d37c4eec7aacafd 10 No

88 eba7f8c9d506cb63381deb02ab1a9505056c4c0a 2b4705d105c91adac90d0db82ea7d793037e2532 10 No

128

Forensic Analysis of OOXML Documents

89 5c240206577b62d921f7a47625b8a8e961d2407d ea3493e8b2f0376b8ebac056bb97b1214a2172f5 10 No

90 e65e82ccb78aeeb42596caf08722386385f9c929 901360b01ba93b8ea51342dbd8747ff8a27bd3c9 10 No

91 057c1f4b2a41e5f2dde19be8608ca5048edff845 ae36c469e758ef647e4d4bc1e46d9eabc54307e2 9 No

92 869b28768bcdce9b7d5a96e94887b562ba7caa67 5d46edaa9ce554b8b5abc67dcd5396dd941fd312 8 No

93 1b7ae4ed96fc852fb5077681d9b0a4aea0c40684 7c4c8e60cbc6d4be6c54837eaa76b2ad43eda798 10 No

94 fd6787db7139f9097317e9be4b6decbc6e6af18c 893517bf69b3272bea32bde5e22ab233d507f0ce 10 No

95 cc06bfe7332a2c6b0d2cbee04ae1aabd567d76c4 1289892ceb75b39ab7c9e7fde9074a3226f53775 8 No

96 a89bfce9611e4d90d310314ce0b006e6e22905e8 8467d43430d2a36e3903ad94ed76366a1fc6fd6a 10 No

97 12caceb15966542b9e64ade922ed1cc6a2948c61 325a5906d2839146e39284d4aa1daa82efe67001 10 No

98 1710e44beacfe13bab92e357fffd008b1b5ca841 65f8d295dd579caf7f72d4972f2ee4f413b825fd 10 No

99 cb5d75b5fc61994acba4c39c62e93190c10f432b 67b46dadbeae74477b7cf38b593d96a129261c28 10 No

100 52b13e8c7bad274ff2771490906dba8a74fbae4d 9cd06c2df25ee624245b1fe149c1df0addd93464 10 No

129

Forensic Analysis of OOXML Documents

H.4 Application information extracted from data set

Table 16: Application information extracted from data set.

Application AppVersion Number of files Percent

Microsoft Office Word 14.0000 34122 ≈ 44.85 %

Microsoft Office Word 12.0000 32308 ≈ 42.465 %

Microsoft Office Word 15.0000 1723 ≈ 2.265 %

Microsoft Office Word 00.0001 4 ≈ 0.005 %

Microsoft Office Word 16.0000 1 ≈ 0.001 %

Microsoft Office Word 14.000 1 ≈ 0.001 %

Microsoft Word 12.0.0 12.0000 84 ≈ 0.110 %

Microsoft Word 12.1.0 12.0256 58 ≈ 0.076 %

Microsoft Word 12.0.1 12.0001 1 ≈ 0.001 %

Microsoft Word 12.1.1 12.0257 5 ≈ 0.006 %

Microsoft Word 12.1.2 12.0258 3 ≈ 0.003 %

Microsoft Office Outlook 12.0000 2113 ≈ 2.777 %

Microsoft Macintosh Word 14.0000 4159 ≈ 5.467 %

Microsoft Macintosh Word 12.0000 1436 ≈ 1.887 %

Google Docs Not specified 59 ≈ 0.078 %

LibreOffice 3.5 $Linux_X86_64 1 ≈ 0.001 %

LibreOffice 3.5 $Windows_x86 1 ≈ 0.001 %

LibreOffice 4.1.1.2 $Windows_x86 1 ≈ 0.001 %

WPS Office ???_9.1.0.4468 1 ≈ 0.001 %

130

Forensic Analysis of OOXML Documents

I Contents of docProps/custom.xml in sample document

Listing I.1: 123

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Properties
xmlns="http://schemas.openxmlformats.org/officeDocument/2006/custom−properties"
xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">

<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="2"
name="docId">

<vt:lpwstr>292698</vt:lpwstr>
</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="3"

name="templateId">
<vt:lpwstr>
</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="4"

name="templateFilePath">
<vt:lpwstr>\\FH-SRV-86\docprod\templates\ABC_Notat.dotm</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="5"

name="filePathOneNote">
<vt:lpwstr>\\FH-SRV-86\360users\onenote\ABC\it1\</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="6"

name="comment">
<vt:lpwstr>Invitation to leader seminar</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="7"

name="sourceId">
<vt:lpwstr>
</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="8"

name="module">
<vt:lpwstr>Document</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="9"

name="customParams">
<vt:lpwstr>
</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="10"

name="createdBy">

131

Forensic Analysis of OOXML Documents

<vt:lpwstr>Rob Johnson</vt:lpwstr>
</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="11"

name="modifiedBy">
<vt:lpwstr>Rob Johnson</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="12"

name="serverName">
<vt:lpwstr>fh-srv-84</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="13"

name="externalUser">
<vt:lpwstr>
</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="14"

name="BackOfficeType">
<vt:lpwstr>Searchlink Solutions</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="15"

name="Server">
<vt:lpwstr>fh-srv-84</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="16"

name="Protocol">
<vt:lpwstr>off</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="17"

name="Site">
<vt:lpwstr>/locator.aspx</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="18"

name="FileID">
<vt:lpwstr>325024</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="19"

name="VerID">
<vt:lpwstr>0</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="20"

name="FilePath">
<vt:lpwstr>\\FH-SRV-84\360users\work\ABC\it1</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="21"

name="FileName">
<vt:lpwstr>Invitation to leader seminar</vt:lpwstr>

</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="22"

name="FullFileName">

132

Forensic Analysis of OOXML Documents

<vt:lpwstr>\\FH-SRV-84\360users\work\ABC\it1\Invitation.DOCX</vt:lpwstr>
</property>
<property fmtid="{D5CDD505−2E9C−101B−9397−08002A2CF9AE}" pid="23"

name="ContentTypeId">
<vt:lpwstr>0x010100986B41D86696124FAC199B01E71E8933</vt:lpwstr>

</property>
</Properties>

133

Forensic Analysis of OOXML Documents

J Source code of OOFAT’s most important functionality

J.1 Document validator

Listing J.1: Document validator process.

1 /// <summary >

2 /// Attempt to validate document as a Office 2007, 2010 and 2013 document.

3 /// </summary >

4 /// <param name=" documentPath">Path to the document.</param >

5 /// <returns >Returns true if document is a valid Office 2007, 2010 or 2013 ⤦

Ç document.

6 /// Returns false if invalid.</returns >

7
8 public Boolean ValidateDocument(string documentPath)

9 {

10 Boolean valid = false;

11 Boolean [] errors = new Boolean [3];

12 errors [0] = errors [1] = errors [2] = false;

13
14 try

15 {

16 // Attempt to open document as a wordprocessingML document.

17 using (WordprocessingDocument wpDocument = ⤦

Ç WordprocessingDocument.Open(documentPath , false))

18 {

19 try

20 {

21 OpenXmlValidator validator2007 = new ⤦

Ç OpenXmlValidator(DocumentFormat.OpenXml.FileFormatVersions.Office2007);

22 OpenXmlValidator validator2010 = new ⤦

Ç OpenXmlValidator(DocumentFormat.OpenXml.FileFormatVersions.Office2010);

23 OpenXmlValidator validator2013 = new ⤦

Ç OpenXmlValidator(DocumentFormat.OpenXml.FileFormatVersions.Office2013);

24
25 // Attempt to validate document as Office 2007 document.

26 foreach (ValidationErrorInfo validationError in ⤦

Ç validator2007.Validate(wpDocument))

27 {

28 errors [0] = true; // Document is not a valid Office 2007 document.

29 }

30
31 // Attempt to validate document as Office 2010 document.

32 foreach (ValidationErrorInfo validationError in ⤦

Ç validator2010.Validate(wpDocument))

33 {

34 errors [1] = true; // Document is not a valid Office 2010 document.

35 }

36
37 // Attempt to validate document as Office 2013 document.

38 foreach (ValidationErrorInfo validationError in ⤦

Ç validator2013.Validate(wpDocument))

39 {

40 errors [2] = true; // Document is not a valid Office 2013 document.

41 }

134

Forensic Analysis of OOXML Documents

42 }

43
44 catch (Exception)

45 {

46 MessageBox.Show(" Unable to load document , check path .");

47 }

48 }

49 }

50
51 catch (Exception)

52 {

53 errors [0] = errors [1] = errors [2] = true; // Input path is not an OOXML ⤦

Ç document or is corrupted.

54 }

55
56 // Validation failed in Office 2007, 2010 and 2013.

57 if (errors [0] && errors [1] && errors [2])

58 {

59 valid = false; // Document is invalid.

60 }

61
62 // Validation succeeded in at least one of the validation attempts.

63 else

64 {

65 valid = true; // Document is valid.

66 }

67
68 return valid;

69 }

135

Forensic Analysis of OOXML Documents

J.2 Document metadata extractor

Listing J.2: Document metadata extraction process.

1 /// <summary >

2 /// Extract the metadata contained in docProps\app.xml and docProps/core.xml ⤦

Ç of an OOXML document.

3 /// </summary >

4 /// <param name=" inputFile">The document from which the metadata should be ⤦

Ç extracted .</param >

5 /// <returns >Delimitered string of metadata.</returns >

6 public string ExtractMetadata(InputOutputFile inputFile)

7 {

8 string appXMLpath = inputFile.GetOutputPath () + "\\ docProps \\app.xml"; // ⤦

Ç Path to docProps/app.xml in extracted document cache.

9 string coreXMLpath = inputFile.GetOutputPath () + "\\ docProps \\core.xml"; // ⤦

Ç Path to docProps/core.xml in extracted document cache.

10 // string customXMLpath = inputFile.GetOutputPath () + "\\ docProps \\ custom.xml";

11 string documentName = inputFile.GetFileName (); // The filename of the ⤦

Ç document.

12 string documentHash = inputFile.GetHashsum (); // The document 's ⤦

Ç pre -calculated SHA1 hashsum.

13
14 Document document = new Document (); // Create new Document instance. ⤦

Ç Consists of filename , SHA1 hashsum , created timestamp and revision ⤦

Ç identifiers.

15 XDocument appXMLDocument = XDocument.Load(appXMLpath); // Read app.xml as ⤦

Ç XML document.

16 XDocument coreXMLDocument = XDocument.Load(coreXMLpath); // Read core.xml ⤦

Ç as XML document.

17
18 // Begin namespaces.

19 XNamespace cp = ⤦

Ç "http :// schemas.openxmlformats.org/package /2006/ metadata/core -properties ";

20 XNamespace dc = "http :// purl.org/dc/elements /1.1/";

21 XNamespace dcterms = "http :// purl.org/dc/terms /";

22 XNamespace dcmitype = "http :// purl.org/dc/dcmitype /";

23 XNamespace xsi = "http ://www.w3.org /2001/ XMLSchema -instance ";

24 XNamespace xmlns = ⤦

Ç "http :// schemas.openxmlformats.org/officeDocument /2006/ extended -properties ";

25 XNamespace vt = ⤦

Ç "http :// schemas.openxmlformats.org/officeDocument /2006/ docPropsVTypes ";

26 // End namespaces.

27
28 // Begin app.xml metadata type names.

29 string template;

30 string totalTime;

31 string pages;

32 string words;

33 string characters;

34 string application;

35 string docSecurity;

36 string lines;

37 string paragraphs;

38 string scaleCrop;

39 string company;

40 string linksUpToDate;

41 string charactersWithSpaces;

42 string sharedDoc;

43 string hyperlinksChanged;

44 string appVersion;

45 // End app.xml metadata type names.

136

Forensic Analysis of OOXML Documents

46
47 // Begin LINQ queries for fetching data from app.xml.

48 try { template = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" Template ")).Select(o => new { Template = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().Template.ToString (); }

49 catch (System.NullReferenceException) { template = string.Empty; }

50
51 try { totalTime = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" TotalTime ")).Select(o => new { TotalTime = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().TotalTime.ToString (); }

52 catch (System.NullReferenceException) { totalTime = string.Empty; }

53
54 try { pages = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals ("Pages")).Select(o => new { Pages = ⤦

Ç (string)o.Value ?? string.Empty }).FirstOrDefault ().Pages.ToString (); }

55 catch (System.NullReferenceException) { pages = string.Empty; }

56
57 try { words = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals ("Words")).Select(o => new { Words = ⤦

Ç (string)o.Value ?? string.Empty }).FirstOrDefault ().Words.ToString (); }

58 catch (System.NullReferenceException) { words = string.Empty; }

59
60 try { characters = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" Characters ")).Select(o => new { Characters = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().Characters.ToString (); }

61 catch (System.NullReferenceException) { characters = string.Empty; }

62
63 try { application = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" Application ")).Select(o => new { Application ⤦

Ç = (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().Application.ToString (); }

64 catch (System.NullReferenceException) { application = string.Empty; }

65
66 try { docSecurity = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" DocSecurity ")).Select(o => new { DocSecurity ⤦

Ç = (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().DocSecurity.ToString (); }

67 catch (System.NullReferenceException) { docSecurity = string.Empty; }

68
69 try { lines = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals ("Lines")).Select(o => new { Lines = ⤦

Ç (string)o.Value ?? string.Empty }).FirstOrDefault ().Lines.ToString (); }

70 catch (System.NullReferenceException) { lines = string.Empty; }

71
72 try { paragraphs = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" Paragraphs ")).Select(o => new { Paragraphs = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().Paragraphs.ToString (); }

73 catch (System.NullReferenceException) { paragraphs = string.Empty; }

74
75 try { scaleCrop = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" ScaleCrop ")).Select(o => new { ScaleCrop = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().ScaleCrop.ToString (); }

76 catch (System.NullReferenceException) { scaleCrop = string.Empty; }

77
78 try { company = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" Company ")).Select(o => new { Company = ⤦

Ç (string)o.Value ?? string.Empty ⤦

137

Forensic Analysis of OOXML Documents

Ç }).FirstOrDefault ().Company.ToString (); }

79 catch (System.NullReferenceException) { company = string.Empty; }

80
81 try { linksUpToDate = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" LinksUpToDate ")).Select(o => new { ⤦

Ç LinksUpToDate = (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().LinksUpToDate.ToString (); }

82 catch (System.NullReferenceException) { linksUpToDate = string.Empty; }

83
84 try { charactersWithSpaces = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" CharactersWithSpaces ")).Select(o => new { ⤦

Ç CharactersWithSpaces = (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().CharactersWithSpaces.ToString (); }

85 catch (System.NullReferenceException) { charactersWithSpaces = ⤦

Ç string.Empty; }

86
87 try { sharedDoc = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" SharedDoc ")).Select(o => new { SharedDoc = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().SharedDoc.ToString (); }

88 catch (System.NullReferenceException) { sharedDoc = string.Empty; }

89
90 try { hyperlinksChanged = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" HyperlinksChanged ")).Select(o => new { ⤦

Ç HyperlinksChanged = (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().HyperlinksChanged.ToString (); }

91 catch (System.NullReferenceException) { hyperlinksChanged = string.Empty; }

92
93 try { appVersion = appXMLDocument.Descendants ().Where(o => ⤦

Ç o.Name.LocalName.Equals (" AppVersion ")).Select(o => new { AppVersion = ⤦

Ç (string)o.Value ?? string.Empty ⤦

Ç }).FirstOrDefault ().AppVersion.ToString (); }

94 catch (System.NullReferenceException) { appVersion = string.Empty; }

95 // End LINQ queries for fetching data from app.xml.

96
97 // Perform LINQ query for fetching data from core.xml.

98 var query = (from ele in coreXMLDocument.Descendants ()

99 select new

100 {

101 title = (string)ele.Element(dc + "title") ?? string.Empty ,

102 subject = (string)ele.Element(dc + "subject ") ?? string.Empty ,

103 creator = (string)ele.Element(dc + "creator ") ?? string.Empty ,

104 keywords = (string)ele.Element(cp + "keywords ") ?? string.Empty ,

105 description = (string)ele.Element(dc + "description ") ?? string.Empty ,

106 lastModifiedBy = (string)ele.Element(cp + "lastModifiedBy ") ?? ⤦

Ç string.Empty ,

107 lastPrinted = (string)ele.Element(cp + "lastPrinted ") ?? string.Empty ,

108 revision = (string)ele.Element(cp + "revision ") ?? string.Empty ,

109 created = (string)ele.Element(dcterms + "created ") ?? string.Empty ,

110 modified = (string)ele.Element(dcterms + "modified ") ?? string.Empty

111 }).FirstOrDefault ();

112
113 // Begin LINQ separation queries for fetching data from core.xml.

114 string title = query.title.ToString ();

115 string subject = query.subject.ToString ();

116 string creator = query.creator.ToString ();

117 string keywords = query.keywords.ToString ();

118 string description = query.description.ToString ();

119 string lastModifiedBy = query.lastModifiedBy.ToString ();

120 string lastPrinted = query.lastPrinted.ToString ();

121 string revision = query.revision.ToString ();

122 string created = query.created.ToString ();

138

Forensic Analysis of OOXML Documents

123 string modified = query.modified.ToString ();

124 // End LINQ separation queries for fetching data from core.xml.

125
126 string delimiter = ":@@@ :"; // Delimiter string for separating metadata ⤦

Ç values. Should not be comma since metadata values could contain commas.

127
128 // String of metadata compiled , delimitered.

129 string returnString = documentHash + delimiter + documentName + delimiter + ⤦

Ç template + delimiter + totalTime + delimiter + pages + delimiter + ⤦

Ç words + delimiter + characters + delimiter + application + delimiter ⤦

Ç + docSecurity + delimiter + lines + delimiter + paragraphs + ⤦

Ç delimiter + scaleCrop + delimiter + company + delimiter + ⤦

Ç linksUpToDate + delimiter + charactersWithSpaces + delimiter + ⤦

Ç sharedDoc + delimiter + hyperlinksChanged + delimiter + appVersion + ⤦

Ç delimiter + title + delimiter + subject + delimiter + creator + ⤦

Ç delimiter + keywords + delimiter + description + delimiter + ⤦

Ç lastModifiedBy + delimiter + lastPrinted + delimiter + revision + ⤦

Ç delimiter + created + delimiter + modified;

130
131 return returnString;

132 }

139

Forensic Analysis of OOXML Documents

J.3 Revision identifier extraction

Listing J.3: Document revision identifier extraction process.

1 /// <summary >

2 /// Extracts the revision identifiers from a document.

3 /// </summary >

4 /// <param name=" filePath">Path to the document.</param >

5 /// <param name=" currentDocumentId">Id of current document.</param >

6 /// <param name=" makeUnique">Specifies if revision identifier lists should or ⤦

Ç should not contain duplicates. True if duplicates are not wanted; false ⤦

Ç if they are wanted.</param >

7 /// <returns >Document object containing revision identifier lists.</returns >

8 public Document ExtractRevisionIdentifiers(string filePath , RichTextBox ⤦

Ç extractBox , int currentDocumentId , Boolean makeUnique)

9 {

10 Document document = new Document (); // Create new Document instance. ⤦

Ç Consists of filename , SHA1 hashsum , created timestamp and revision ⤦

Ç identifiers.

11 XDocument xmlDocument = XDocument.Load(@filePath); // Load the main ⤦

Ç document body as XML.

12 XNamespace w = ⤦

Ç "http :// schemas.openxmlformats.org/wordprocessingml /2006/ main"; // ⤦

Ç Namespace.

13
14 // Query to fetch & separate the paragraph revision identifiers from document.

15 var paragraphRevisions = (from feed in xmlDocument.Descendants(w + "p")

16 select new

17 {

18 rsidR = (string)feed.Attribute(w + "rsidR ") ?? String.Empty ,

19 rsidRPr = (string)feed.Attribute(w + "rsidRPr ") ?? String.Empty ,

20 rsidRDefault = (string)feed.Attribute(w + "rsidRDefault ") ?? String.Empty ,

21 rsidP = (string)feed.Attribute(w + "rsidP ") ?? String.Empty

22 }).ToList ();

23
24 // Query to fetch & separate the run revision identifiers from document.

25 var runRevisions = (from feed in xmlDocument.Descendants(w + "r")

26 select new

27 {

28 rsidR = (string)feed.Attribute(w + "rsidR") ?? String.Empty ,

29 rsidRPr = (string)feed.Attribute(w + "rsidRPr ") ?? String.Empty

30 }).ToList ();

31
32 var runQuery = runRevisions.Select(rsidR => rsidR); // Perform LINQ selection.

33 var paragraphQuery = paragraphRevisions.Select(rsidR => rsidR); // Perform ⤦

Ç LINQ selection.

34
35 // Begin lists of revision identifiers.

36 List <string > runRsidRPrList = new List <string >();

37 List <string > runRsidRList = new List <string >();

38 List <string > rsidRList = new List <string >();

39 List <string > rsidRPrList = new List <string >();

40 List <string > rsidRDefaultList = new List <string >();

41 List <string > rsidPList = new List <string >();

42 // End lists of revision identifiers.

43
44 // Go through each run in the document and add each revision identifier ⤦

Ç type to its respective list.

45 foreach (var run in runQuery)

46 {

47 runRsidRPrList.Add(run.rsidRPr);

48 runRsidRList.Add(run.rsidR);

140

Forensic Analysis of OOXML Documents

49 }

50
51 // Go through each paragraph in the document and add each revision ⤦

Ç identifier type to its respective list.

52 foreach (var paragraph in paragraphQuery)

53 {

54 rsidRList.Add(paragraph.rsidR);

55 rsidRPrList.Add(paragraph.rsidRPr);

56 rsidRDefaultList.Add(paragraph.rsidRDefault);

57 rsidPList.Add(paragraph.rsidP);

58 }

59
60 // Begin remove empty entries in the lists of rsids.

61 rsidRList.RemoveAll(string.IsNullOrWhiteSpace);

62 rsidRPrList.RemoveAll(string.IsNullOrWhiteSpace);

63 rsidRDefaultList.RemoveAll(string.IsNullOrWhiteSpace);

64 rsidPList.RemoveAll(string.IsNullOrWhiteSpace);

65 runRsidRPrList.RemoveAll(string.IsNullOrWhiteSpace);

66 runRsidRList.RemoveAll(string.IsNullOrWhiteSpace);

67 // End remove empty entries in the lists of rsids.

68
69 if (makeUnique) // We don 't want duplicate rsids.

70 {

71 // Begin specifying the revision identifier type lists in the document ⤦

Ç instance , removing duplicates from the lists.

72 document.ParagraphRsidRList = MakeListUnique(rsidRList);

73 document.ParagraphRsidRPrList = MakeListUnique(rsidRPrList);

74 document.ParagraphRsidRDefaultList = MakeListUnique(rsidRDefaultList);

75 document.ParagraphRsidPList = MakeListUnique(rsidPList);

76 document.RunRsidRList = MakeListUnique(rsidRList);

77 document.RunRsidRPrList = MakeListUnique(rsidRPrList);

78 // End specifying the revision identifier type lists in the document ⤦

Ç instance , removing duplicates from the lists.

79 }

80
81 else // We want duplicate rsids.

82 {

83 // Begin specifying the revision identifier type lists in the document ⤦

Ç instance , removing duplicates from the lists.

84 document.ParagraphRsidRList = rsidRList;

85 document.ParagraphRsidRPrList = rsidRPrList;

86 document.ParagraphRsidRDefaultList = rsidRDefaultList;

87 document.ParagraphRsidPList = rsidPList;

88 document.RunRsidRList = rsidRList;

89 document.RunRsidRPrList = rsidRPrList;

90 // End specifying the revision identifier type lists in the document ⤦

Ç instance , removing duplicates from the lists.

91 }

92
93 document.DocumentId = currentDocumentId + 1; // Set id of current document.

94
95 return document;

96 }

141

Forensic Analysis of OOXML Documents

J.4 Revision identifier comparison

Listing J.4: Document revision identifier comparison process.

1 /// <summary >

2 /// Compare documents.

3 /// </summary >

4 /// <param name=" documentList">List of documents to be compared.</param >

5 /// <param name=" number">The type of revision identifier to be compared.</param >

6 /// <returns >List of documents with intersecting revision identifiers .</returns >

7 private List <DocumentIntersection > PerformComparison(List <Document > ⤦

Ç documentList , int number)

8 {

9 List <DocumentIntersection > intersectingDocuments = new ⤦

Ç List <DocumentIntersection >(); // List of documents with intersecting ⤦

Ç revision identifiers.

10 string rsidType = string.Empty; // Type of rsid , based on input number.

11
12 // Go through each document.

13 foreach (Document doc in documentList)

14 {

15 if (number == 0) // We are looking for (run) rsidRPr

16 rsidType = doc.RunRsidRPrList.ElementAt (0);

17
18 if (number == 1) // We are looking for (paragraph) rsidR

19 rsidType = doc.ParagraphRsidRList.ElementAt (0);

20
21 if (number == 2) // We are looking for (run) rsidR

22 rsidType = doc.RunRsidRList.ElementAt (0);

23
24 if (number == 3) // We are looking for (paragraph) rsidRPr

25 rsidType = doc.ParagraphRsidRPrList.ElementAt (0);

26
27 if (number == 4) // We are looking for (paragraph) rsidP

28 rsidType = doc.ParagraphRsidPList.ElementAt (0);

29
30 if (number == 5) // We are looking for (paragraph) rsidRDefault

31 rsidType = doc.ParagraphRsidRDefaultList.ElementAt (0);

32
33 if (rsidType != string.Empty) // If the rsid list is empty , there is no ⤦

Ç point comparing them.

34 {

35 // Inner loop going through the list again in order to compare documents.

36 foreach (Document currentDocument in documentList)

37 {

38 // Find any duplicates in the list of intersecting documents.

39 var docIntersectDuplicate = intersectingDocuments.Find(x => ⤦

Ç x.FirstDocumentId == currentDocument.DocumentId && ⤦

Ç x.SecondDocumentId == doc.DocumentId);

40
41 // Remove duplicate.

42 if (docIntersectDuplicate != null)

43 {

44 intersectingDocuments.RemoveAt(intersectingDocuments. ⤦

Ç IndexOf(docIntersectDuplicate));

45 }

46
47 List <string > result = null;

48
49 if (number == 0) // We are looking for (run) rsidRPr

50 result = ⤦

Ç doc.RunRsidRPrList.Intersect(currentDocument.RunRsidRPrList).ToList ();

142

Forensic Analysis of OOXML Documents

51
52 if (number == 1) // We are looking for (paragraph) rsidR

53 result = ⤦

Ç doc.ParagraphRsidRList.Intersect(currentDocument.ParagraphRsidRList) ⤦

Ç .ToList ();

54
55 if (number == 2) // We are looking for (run) rsidR

56 result = doc.RunRsidRList.Intersect(currentDocument.RunRsidRList).ToList ();

57
58 if (number == 3) // We are looking for (paragraph) rsidRPr

59 result = doc.ParagraphRsidRPrList.Intersect(currentDocument ⤦

Ç .ParagraphRsidRPrList).ToList ();

60
61 if (number == 4) // We are looking for (paragraph) rsidP

62 result = doc.ParagraphRsidPList.Intersect(currentDocument ⤦

Ç .ParagraphRsidPList).ToList ();

63
64 if (number == 5) // We are looking for (paragraph) rsidRDefault

65 result = doc.ParagraphRsidRDefaultList.Intersect(currentDocument ⤦

Ç .ParagraphRsidRDefaultList).ToList ();

66
67 // Identical rsids are found.

68 if (result.Any())

69 {

70 if (doc.DocumentId != currentDocument.DocumentId) // We obviously don 't ⤦

Ç want to compare a document with itself.

71 {

72 DocumentIntersection currentIntersectingDocuments = new ⤦

Ç DocumentIntersection(doc.DocumentId , currentDocument.DocumentId);

73
74 if (number == 0) // We are looking for (run) rsidRPr

75 currentIntersectingDocuments.RunRsidRPrList = result;

76
77 if (number == 1) // We are looking for (paragraph) rsidR

78 currentIntersectingDocuments.ParagraphRsidRList = result;

79
80 if (number == 2) // We are looking for (run) rsidR

81 currentIntersectingDocuments.RunRsidRList = result;

82
83 if (number == 3) // We are looking for (paragraph) rsidRPr

84 currentIntersectingDocuments.ParagraphRsidRPrList = result;

85
86 if (number == 4) // We are looking for (paragraph) rsidP

87 currentIntersectingDocuments.ParagraphRsidPList = result;

88
89 if (number == 5) // We are looking for (paragraph) rsidRDefault

90 currentIntersectingDocuments.ParagraphRsidRDefaultList = result;

91
92 intersectingDocuments.Add(currentIntersectingDocuments); // Add to list ⤦

Ç of intersecting documents.

93 }

94 }

95 }

96 }

97 }

98
99 return intersectingDocuments;

100 }

143

Forensic Analysis of OOXML Documents

J.5 Tree graph layout output

Listing J.5: Tree graph layout output.

1 /// <summary >

2 /// Creates a graph of documents , graphically showing the relationship between ⤦

Ç documents.

3 /// </summary >

4 /// <param name=" gViewer">Graph surface handler , i.e. where the graph is ⤦

Ç drawn.</param >

5 /// <param name=" intersectingDocuments">List of intersecting documents .</param >

6 public void CreateGraph(Microsoft.Glee.GraphViewerGdi.GViewer gViewer , ⤦

Ç List <List <DocumentIntersection >> intersectingDocumentList , Boolean _showId)

7 {

8 Graph g = new Graph("graph "); // Graph new MSAGL graph surface.

9 showId = _showId;

10 List <Document > docList = LoadExtractedDocuments (); // Load list of documents.

11 graphIntersectingDocuments = intersectingDocumentList [0];

12 // gViewer.GraphHeight = 100;

13 g.GraphAttr.NodeAttr.Padding = 3;

14
15 // Go through each intersecting documents.

16 foreach (DocumentIntersection docIntersect in graphIntersectingDocuments)

17 {

18 string firstDocumentCreated = docList.Find(x => x.DocumentId == ⤦

Ç docIntersect.FirstDocumentId).Created; // Creation timestamp of ⤦

Ç document 1.

19 string secondDocumentCreated = docList.Find(x => x.DocumentId == ⤦

Ç docIntersect.SecondDocumentId).Created; // Creation timestamp of ⤦

Ç document 2.

20
21 DateTime t1 = DateTime.Parse(firstDocumentCreated); // Parse the timestamp.

22 DateTime t2 = DateTime.Parse(secondDocumentCreated); // Parse the timestamp.

23
24 int result = DateTime.Compare(t1 , t2); // Compare timestamps to find the ⤦

Ç oldest.

25
26 var firstDocumentName = docList.Find(x => x.DocumentId == ⤦

Ç docIntersect.FirstDocumentId).DocumentName; // Name of document 1.

27 var secondDocumentName = docList.Find(x => x.DocumentId == ⤦

Ç docIntersect.SecondDocumentId).DocumentName; // Name of document 2.

28
29 if (result < 0) // First document is older than second document.

30 {

31 if (showId)

32 {

33 g.AddEdge(docIntersect.FirstDocumentId.ToString (), ⤦

Ç docIntersect.SecondDocumentId.ToString ()); // Add edge between ⤦

Ç document nodes , showing id instead of filename.

34 }

35
36 else

37 {

38 g.AddEdge(firstDocumentName.ToString (), ⤦

Ç secondDocumentName.ToString ()); // Add edge between document ⤦

Ç nodes , showing filename instead of id.

39 }

40 }

41
42 else if (result == 0) // Documents are the same age.

43 {

44 if (showId)

144

Forensic Analysis of OOXML Documents

45 {

46 g.AddEdge(docIntersect.FirstDocumentId.ToString (), ⤦

Ç docIntersect.SecondDocumentId.ToString ()); // Add edge between ⤦

Ç document nodes , showing id instead of filename.

47 }

48
49 else

50 {

51 g.AddEdge(firstDocumentName.ToString (), ⤦

Ç secondDocumentName.ToString ()); // Add edge between document ⤦

Ç nodes , showing filename instead of id.

52 }

53 }

54
55 else // Second document is older than the first document.

56 {

57 if (showId)

58 {

59 g.AddEdge(docIntersect.FirstDocumentId.ToString (), ⤦

Ç docIntersect.SecondDocumentId.ToString ()); // Add edge between ⤦

Ç document nodes , showing id instead of filename.

60 }

61
62 else

63 {

64 g.AddEdge(firstDocumentName.ToString (), ⤦

Ç secondDocumentName.ToString ()); // Add edge between document ⤦

Ç nodes , showing filename instead of id.

65 }

66 }

67 }

68
69 gViewer.Graph = g; // Add nodes and edges to graph surface.

70 }

145

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Topics covered
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Contributions
	Thesis outline

	Related work
	Background
	Existing forensics tools for analysing OOXML files

	Methodology
	Scientific methods
	RQ1: What is the forensic value of OOXML documents, and how can they be used in forensic investigations?
	RQ2: Can the metadata of OOXML document be trusted?
	RQ3: Are there differences from version to version of the popular office suites, with respect to what forensically interesting data they record in the files? Does performing certain actions in different ways affect the recorded forensically interesting data?
	RQ4: In what ways can the revision identifiers be useful in a forensic investigation, and in what situations are they preserved?

	OOXML file characteristics and use in digital forensics
	History of the OOXML file format
	The OOXML package and file structure
	The forensic usefulness of a single OOXML document's metadata
	When change tracking is enabled
	Forensic usefulness of OOXML documents with reference documents
	Trustworthiness of evidence found in OOXML documents

	OOXML Forensic Analysis Tool
	Introduction
	OOFAT's functionality

	Experimental work
	Prerequisite for experiment #4: Collecting data set of test documents
	Experiment #1: Interpretation of AppVersion number
	Experiment #2: Revision identifier preservation in file and content copying
	Experiment #3: Forensic difference between office suites
	Experiment #4: Uniqueness of revision identifiers

	Conclusions
	RQ1: What is the forensic value of OOXML documents, and how can they be used in forensic investigations?
	RQ2: Can the metadata of OOXML document be trusted?
	RQ3: Are there differences from version to version of the popular office suites, with respect to what forensically interesting data they record in the files? Does performing certain actions in different ways affect the recorded forensically interesting data?
	RQ4: In what ways can the revision identifiers be useful in a forensic investigation, and in what situations are they preserved?

	Future work
	Using visualization techniques to support forensic investigators
	Optimizing the comparison process
	OOXML spreadsheets and presentations in digital forensics
	OpenDocument files in digital forensics
	Microsoft Office's revision identifier generator algorithm

	Bibliography
	Path preservation results table
	Thumbnail creation and readability experiment
	Word 2007
	Word 2010
	Word 2013
	Word 365

	Facebook user identification based on inserted image
	Transcription of workshop with National Authority for Investigation and Prosecution of Economic and Environmental Crime in Norway (ØKOKRIM), 14/3-2014
	Interview with Tom Sørensen Flølo from National Criminal Investigation Service (Norway) (Kripos)
	EnCase Forensic functionality
	EnCase metadata extraction
	EnCase image information
	EnScript output, extracting Exif metadata
	EnCase displaying XML
	EnCase showing manually altered values in docProps/app.xml
	ExifTool output of sample image

	Forensic Toolkit (FTK) functionality
	FTK metadata extraction
	FTK viewing individual XML file
	Sample document

	Change tracking example
	Screenshot of document edited with change tracking enabled
	XML of document edited with change tracking enabled
	Uniqueness of revision identifiers result table
	Application information extracted from data set

	Contents of docProps/custom.xml in sample document
	Source code of OOFAT's most important functionality
	Document validator
	Document metadata extractor
	Revision identifier extraction
	Revision identifier comparison
	Tree graph layout output

