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Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Abstract

In this master’s thesis we show how we can use the Application Programming Interface (API)
calls a program makes to detect if it is a Remote Administration Trojan (RAT) or not. We have
looked at which API calls that are performed when the webcam, microphone and keylogger are
used by a program, and we use this information to determine if a program can be considered to
be spying on its user by covertly capturing information from any of these sources. In addition,
we have looked at the network traffic as seen through the API calls of the examined RAT, and we
use this to better pinpoint which RAT that is present on the system.

To distinguish a RAT from a program with similar behavior (e.g. video chat vs. webcam spy-
ing) we have used user interaction with the program as a discriminator for whether or not it is
malicious, with our theory being that a program such as a video chat program would interact
with the user and have a user interface, while a RAT would not and would instead attempt to
stay hidden. By observation we show that this is what is happening in real-life scenarios, and
that the RATs do not interact with the user or provide a user interface.

We have subsequently modeled the API calls that denote the various forms of behavior and user
interaction as finite-state machines that can be used to detect whether or not a RAT is present on
the system and what it is doing.
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Sammendrag

I denne masteroppgaven viser vi hvordan vi kan bruke Application Programming Interface (API)
kallene et program utfører for å oppdage om det er en Remote Administration Trojan (RAT)
eller ikke. Vi har undersøkt hvilke API-kall som blir gjort når webkamera, mikrofon og tastaturet
brukes av et program, og vi bruker denne informasjonen til å finne ut av om et program spionerer
på brukeren via noen av disse grensesnittene eller ikke. I tillegg har vi sett på nettverkstrafikken
via API-kallene som den undersøkte RATen utførerer, og vi bruker denne informasjon til å mer
nøyaktig finne ut hvilken RAT som befinner seg på systemet.

For å skille en RAT fra et program med lignende oppførsel (f.eks. video chat og wekamera-
spionering) har vi brukt interaksjon med brukeren som et skille på hvorvidt programmet er
skadelig eller ikke, hvor teorien vår har vært at et program som video chaten vil samhandle med
brukeren og dermed ha et brukergrensesnitt, mens en RAT ikke vil det og heller forsøker å holde
seg skjult. Ved observasjon har vi vist at det er dette som skjer, og at RATene ikke samhandler
med brukeren eller har noe brukergrensesnitt.

Vi har til slutt modellert API-kallene som brukes for de forskjellige typene oppførsel og bruker-
samhandling som tilstandsmakiner som kan brukes til å oppdage om en RAT finnes på systemet
og hva den driver med.
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Glossary

• RAT - Remote Administration Trojan/Tool

• FSM - Finite-State Machine

• IDS - Intrusion Detection System

• SSDT - System Service Descriptor Table

• IAT - Import Address Table

• FUD - Fully Undetectable

• DDoS - Distributed Denial of Service
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1 Introduction

Malware has plagued computer users almost since the first computers were introduced. First in-
vented as harmless pranks, malware has later evolved into an industry more profitable than the
black market for marijuana, cocaine and heroin combined[6]. This means that there has become
strong incentives for creating malware, and new attacks are as inventive as the techniques trying
to stop them. This has led to a cat and mouse game between attackers and defenders, where new
attacks appear as soon as new systems are developed.

Being infected by malware can range from being a small nuisance to a literally life-altering
experience, depending on what sort of information that was compromised, deleted or altered,
and to whom it was spread to. There are numerous stories about harmful malware attacks, with
tragic stories of individuals having their privacy breached for fun and profit, corporations losing
valuable business assets, and governments being subjected to complex intelligence operations
from powerful foreign actors.

Advances in computer technology has also given access to new sensors that can capture the
world around them, such as microphones, cameras, GPS, accelerometers, and fingerprint read-
ers. As wonderful as these devices are, they have also raised the stakes for what kind of privacy
related incidents that are now possible. Where as a computer from 20 years ago might have had
a microphone, a camera was still unheard of for most consumers, and biometric readers were
still the stuff of science fiction. But as computers became more powerful and got high-resolution
screens and faster processors and cameras became sharper, smaller and cheaper, they soon found
their way onto computers and handheld devices. First as external units, and later as integrated
devices like the now ubiquitous built-in webcamera and microphone on all modern laptops. This
"dawn of the webcams" that started around the beginning of the millennia did also give rise to a
new kind of privacy threat, namely the possibility of someone spying on you through the camera
now embedded in your computer. What was once only an Orwellian concept had suddenly be-
come part of everyday life, without anyone seeming to oppose it or even take much notice.

The fact that cameras suddenly are everywhere have also created strong incentives for both
governments and private citizens to get access to them and the information they yield access to.
With a little hacking or social engineering anyone can suddenly get access to a bugging device in
someone else’s home, without ever entering it or even leaving a trace. This is something which
has made the process of surveilling someone extremely cheap and easy, and it has not gone un-
noticed by the worlds criminals, governments and teenage boys, all of whom have acquired the
tools and capabilities to tap into these vast treasure troves of personal information.

The reasons for someone wanting to use and abuse such capabilities are manyfold. Governments
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are very interested in spying for reasons of counter-terrorism, intelligence gathering and crime
investigation, while criminals on the other hand are usually in it for the money and wants to
make a profit from the information they can gather. For them, this can be things like credit card
numbers, email account passwords, and other easily tradeable commodity goods[1]. Individuals
might have motives such as spying on a spouse, blackmailing an adversary, stalking a romantic
interest or simply pure voyeurism.

This voyeurism aspect has also given rise to more "organized" Internet communities that share
information and software for spying on other people through their computer and webcam. The
tools of this trade are usually referred to as Remote Administration Trojans, or just RATs for short,
and Nate Anderson, a journalist at the technology website Ars Technica, wrote an investigative
piece about the online communities appearing around these RATs, what these communities do,
and how they spy on other people[7]. These Internet cliques discusses techniques and exchanges
software for taking control over a victims computers, and the RAT controllers, or "ratters" as they
are called in the article, has nearly unlimited control of the computers they have infected, and
can control every aspect of it, including the perhaps most sensitive - namely seeing their tar-
gets through their webcam. The reason for doing so is mainly twofold - monetary gain and pure
"pleasure". The victims, or slaves as they are called in ratter-lingo, also gains the capabilities of
the traditional botnet herder in that they can use their slaves to DDoS targets, send spam, and
more recently, mine BitCoins or lock the victims computer and force them to do surveys for cash.
The second motivation is voyeurism, namely watching their victims through their webcam. As
one can imagine, young women are the most popular target for this kind of activity.

Victims are usually acquired by spreading the RATs through file sharing networks or social en-
gineering, disguising them as games or movies, or sending the RAT to potential victims through
Facebook. For monetary gain, spreading the RAT as wide as possible is clearly the most beneficial,
but for spying, "high quality" targets are more important. The RAT communities are filled with
discussions about how to spread their RATs to new victims, and even contains forum posts about
trading and selling access to their slaves for money.

These sorts of past-times can however have severe consequences, as was experienced by the
man who tricked Miss Teen USA 2013 into installing a RAT of his control and who was subse-
quently jailed for 18 months for doing so[8]. In May 2014 the U.S. Justice Department had a
crackdown on purchasers of the RAT Blackshades followed by several indictments[9].

The leaked Snowden documents have shown that the NSA also have taken to these capabili-
ties and are using them in their work. The NSA has been distributing malware on an unprece-
dented scale by infecting millions of targets worldwide automatically[10], and one such piece of
malware is called UNITEDRAKE and allows the NSA to control the infected computer. Through
plugins such as CAPTIVATEAUDIENCE, UNITEDRAKE’s functionality can be expanded, and al-
low it to do such things as recording audio through the computers microphone or take snapshots
through the webcam with the GUMFISH plugin. Other such plugins are GROK which is a keylog-
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ger, and FOGGYBOTTOM which collects passwords and web browser history.

As a quick summary, security journalist Brian Krebs has illustrated the types of valuable informa-
tion that a hacked computer contains[1]. This can be seen in Figure 1. As we can see, a hacked
computer is a treasure trove of personal and valuable information, and there is something for
everyone in there, from criminals to governments to private citizens.

Figure 1: The different types of information a hacker can get from a hacked PC. Image from
Brian Krebs[1].

1.1 Topics Covered by the Project

This master’s thesis will look at how we can detect programs that spies on its users. We look for
programs that surreptitiously monitors the webcam, microphone and keystrokes, and we use this
behavior as an indicator for the presence of a RAT, because we theorize that a RAT has a unique
behavior that is easily detected and can be distinguished from other programs, even those who
also use the webcam, microphone and captures keyboard input.

We have examined six existing RATs to determine what they actually do when they spy, fol-
lowed by a look at two video chat applications that have a behavior that is similar to a RAT
in that they use the computer’s webcam, microphone and keyboard, but who are not actually
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malicious because they are "spying" with the user’s consent.

1.2 Keywords

Reverse engineering, application programming interfaces, malware, remote administration tro-
jans, finite-state machines

1.3 Problem description

There are several problems related to detecting RATs. For one thing, it can be hard to distinguish
harmful behavior from legitimate. Is it considered spying when a program uses the webcam? Or
does the program have to ask the user for permission first for it to be OK? What if the program
is a home monitoring system that starts recording video at given intervals without user interven-
tion?

Questions like these blurs the line between malware and useful software and makes it harder
to distinguish when behavior can be considered legitimate and when it is not.

Also, many RATs does actually serve a (purported) dual-purpose as tools for remotely admin-
istrating computers for system administrators, and for this simple reason they might not be
detected by anti-virus programs. But a user would probably classify such a program as malicious
if they had it installed on their computer without their consent, even if a anti-virus solution views
it as legitimate.

Another point is that the RATs can be quite targeted and only be spread to certain individu-
als or sub-groups, without having the wide coverage of a replicating worm or a spam campaign.
And malware authors can even create completely new RATs for their own personal use, which
makes it highly unlikely that any malware researcher ever will get their hands on it.

Obfuscation technologies is another neat trick for preventing analysis and detection of the RATs,
and when a new and fully undetectable RAT can be created from an old one in mere seconds,
it has become trivial to fool virtually all existing commercial anti-virus solutions. Analyzing mal-
ware by statically looking at its source code can easily be fooled by obfuscation techniques such
as encryption and insertion of extra operations. And current tools for dynamic analysis can often
be stopped by some of the same techniques, namely inserting bogus operations and weaving
through instructions and code in the program when running[11].

Of course, Intrusion Detection Systems (IDS) tries to remedy some of these problems by at-
tempting to detect malicious behavior by looking at network traffic and system usage, either by
making a baseline of normal system behavior and detecting everything that deviates from this,
or else by having specific signatures of known attacks that it looks for[11]. IDSes are however
often plagued by high false-positive rates and problems with keeping up with the pace of change
in deployed software and new usage patterns. Trend Micro has also described two challenges
relating to network traffic analysis, namely encryption and cloud services[12]. The cloud makes
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it impossible to block access to certain IP ranges, and encryption thwarts attempts at looking at
URL parameters and other traffic content.

1.4 Justification, Motivation and Benefits

Based on the aforementioned problems, finding new ways to detect RATs is essential for unveil-
ing them in the future. Bishop states that new detection profiles for detecting unknown attacks
would also improve the state of intrusion detection[13].

As described above, current techniques for detecting RATs are easy to circumvent for even the
most ham-fisted attacker, yet RATs have a very unique way of behaving and should thus be possi-
ble to detect with new techniques that leverage the fact that they have a unique behavior, rather
than using the static signatures that we already know from existing anti-virus solutions.

Creating new solutions that leverage behavior detection rather than signature-based detection is
beneficial because it makes it possible to detect new pieces of malware that is both obfuscated or
completely new, provided that it has the same behavior as we expect a RAT to have. This would
be beneficial for all computer users, seen as malware is still a huge problem that plagues every-
one from corporations to private citizens. Being spied on through your webcam might also be
one of the most privacy invading things that can happen, seen as people expect to have privacy
in their own home and not be watched by total strangers over the Internet.

1.5 Research Questions

The process of detecting a RAT can be divided into several research questions. First, we need to
find a suitable way to examine an application and collect information about its behavior so that
we can infer enough knowledge about it to realistically decide if it is a RAT or not. This will be
done using the information that can be gathered from looking at the Application Programming
Interface (API) calls that the examined application makes.

Secondly, we need a set of rules for determining what kind of programs might be malicious
and which might be not. These rules need to be unique for the RATs behavior, and not catch
other programs that also uses the webcam, microphone and keyboard, such as video conferenc-
ing or home-monitoring systems. A detection system is obviously useless if it gives too many false
alarms.

A distinctive trait of a RAT is that it usually performs actions automatically that a user nor-
mally would start manually. E.g. starting the webcam. For most users this would be a manual
process, something done when starting a video chat or taking a picture, and not something a
background task should do by its own will without notifying the user.

This can be summarized into these four research questions:

1. What kind of behavior is unique for a RAT?
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2. Which API calls can be used to discover this behavior?

3. How can we use this information to discriminate a RAT from a benign program?

4. Is it possible to model the RATs behavior with a finite-state machine and detect them based
on that?

1.6 Contributions

Based on the research questions above, this master’s thesis will make the following contributions:

1. An analysis of different RATs and the API calls they make and how they can be used to
determine which actions the RAT performs.

2. A model for determining wheter a program is a RAT or not based on the captured API calls of
the examined program.

Contribution 1 will be a novel contribution that looks at which API calls that are performed when
different types of RAT behavior is occurring. Our goal has been to capture the behavior of the
RAT, e.g. detecting when the webcamera has started recording, and then using the calls that ap-
pear when this happens to create a model for the RAT behavior. This has been done by studying
a selection of carefully curated RATs which we feel represent a cross section of the RATs available
today.

Contribution 2 is about using this captured behavior to create models that generalize RAT behav-
ior and which can be used to detect the presence of new RATs that fit into this observed behavior
pattern. By using the previously gathered information we should then be able to reasonably infer
if a program is a RAT or not.
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2 Background

This chapter explains some background information related to the RATs and our experiments. It
contains the following sections:

• A definition of what a RAT is.

• A brief history of some notable RATs.

• A technical description of the RATs properties and how to detect them.

• How finite-state machines can be used to model the RATs behavior.

2.1 What is a RAT?

Before we look at the technical details of how a RAT works we should begin by looking at what
a RAT actually is. The answer is sort of given by its name, Remote Administration Trojan, which
reveals that it is a trojan that remotely controls a computer[14]. But let us try to be more precise.

Modern computer security literature contains an abundant taxonomy for classifying malware
and computer programs into categories. And since these are the established notion in our "com-
munity" we should apply them to RATs as well. As with most things in life, categories are seldom
clear cut, and the modern RAT fits into several malware groups, based both on how it enters the
system and what it does when it arrives there.

2.1.1 Backdoors and Zombies

Since a RAT allows someone to remotely control the system and send it commands it fits well
within the definition of a backdoor. A backdoored computer is often referred to as a zombie
because it allows its master to perform operations through it, and thus becomes zombie-like in
its state of behavior[15].

2.1.2 Trojan Horses

This backdoor might be distributed to its victim in a way that makes it a trojan horse, mean-
ing that it will be disguised as being new song, a popular game, or a video showing war time
atrocities in your home country. By disguising its real identity as some other tantalizing piece of
software, it will probably make it more likely to be executed and distributed by new potential
victims[15].

Thus, an informal definition of a trojan horse would be that it is a program that disguises itself
as being something other than what it really is. A more stringent definition is given by Bishop
who simply states that "A Trojan horse is a program with an overt (documented or known) effect
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and a covert (undocumented or unexpected) effect."[13].

Trouble usually start when this file is executed by the receiver who thinks that she has down-
loaded a new song or movie, but in reality has received a program disguised as that. When
executed, the trojan will usually attempt to execute its payload and start deleting files, stealing
information, connecting back to its master, and everything else that it has been programmed
to[15]. And depending on the cleverness of the trojan creator, a song might also play or a game
might run, making it less obvious for the victim that she received a trojan instead of what she
actually wanted[15].

The trojan would usually also be attempting to maintain a foothold on the computer it was
executed on, so as to able survive reboots and process termination, and thus achieving persis-
tence. This is usually done by setting itself to launch when the operating system starts or when a
special process, such as a web browser, is run[15].

The clever part here is, as Tanenbaum points out, that the trojan horse does not require the
attacker to break into the victims computer. It simply makes the victim do all the work for him by
executing the trojan, and thus bypassing any barriers to entering the victims machine[15]. So it
makes the cliché that humans are the weakest link in the security chain seem all the more true.

Trojan Variations

A subset of the trojan horse is the propagating (or replicating) trojan horse, which creates copies
of itself[13]. The example given by Bishop was a game called "ANIMAL" which cloned itself
every time the game was played. A later version was modified to delete the older version of
itself, and instead create two more copies of its new self, effectively killing of and replacing the
older version.

2.1.3 Spyware

So far we have described what the RAT is and how it enters the system. But it usually has more
tricks up its sleeves. For instance, it spies on you.

Tanenbaum describes spyware as software that is installed on the user’s computer without them
knowing about it, and doing things that they are not informed about happening. He does how-
ever point out that this does not provide a sufficient definition, because something like Windows
Update, which downloads updates without user interaction, fits this description but the users
would probably not classify it as spyware. Tanenbaum does however paraphrase U.S. Supreme
Court justice Potter Stewart, who was famed for saying that he was unable to define pornography
but "I know it when I see it", into the expression "I can’t define spyware, but I know it when I see
it."[15].

On a more serious note, Tanenbaum further refers to Barwinski et al. who claims spyware has
four characteristics:

1. It hides so that it is difficult to detect
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2. It gathers information about the user

3. It sends this information back to its creator or controller

4. It tries to avoid being removed

Further referring to Barwinski, the spyware was divided into three main categories based on the
reason for its existence[15]:

• Marketing - Spyware that collects information about the user so as to better serve targeted
ads that fits the interests of the target machine.

• Surveillance - Employers might install spyware to keep track of what the employees uses the
computer for, which websites they visit, etc.

• Botnet - Spyware that makes the computer part of a botnet, ready to take orders from a
remote master.

Thus, we can say that a RAT also fits into the definition of spyware, based on the fact that it does
harvest information about its users. Especially the surveillance and botnet definitions appear to
be the main motivations for creating RATs.

2.1.4 Summary

If we apply all the definitions above we could reasonably infer that a RAT is a backdoored spying
horse zombie. This is probably an accurate definition, but it is still very broad and not of much
use for detection. To pinpoint the RATs more accurately we need to look at them specifically and
see how they perform the actions that puts them into the just mentioned categories. The sections
below will look closer at their details and technicalities so that we can better understand how to
capture their behavior.

2.2 A Brief History

But first it is time for a history lesson. The sections below will give a brief tour of some famous
RATs so that we can see how this "field" has started and evolved.

2.2.1 Back Orifice and Back Orifice 2000

One of the first RATs to appear was Back Orifice, created by Sir Dystic of Cult of the Dead Cow.
First released at DEF CON 6 in 1998, Back Orifice can probably be said to be one of the first
and most prolific RATs out there. Its release even lead to Microsoft publishing a security bulletin
trying to downplay the potential harm of BackOrifice[16, 17, 18]. Originally it was created as
a demonstration of Microsoft’s "Swiss cheese approach to security" as the press release described
it[17], but BackOrifice soon became one of the best known hacking tools of the late 90’s and
early 2000’s, gaining lots of public attention and notoriety[19].

Functionality in BackOrifice included spawning and killing processes, playing .WAV files and
capturing video from connected video input devices. Back Orifice worked over a TCP/IP connec-
tion, and included a GUI control panel. It was later succeeded by Back Orifice 2000 which was
last updated in 2013[20].
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2.2.2 Poison Ivy

Poison Ivy[21] has been the pièce de résistance of numerous well-published attacks after it was
first released in 2005[22]. One of the most well-published attacks were the so-called Nitro At-
tacks that happened in 2011. These were targeted attacks against various chemical, motor com-
panies and human rights organizations[12].

Another well-published event was the SecurID attacks against RSA, which also happened in
2011. Here, a zero-day vulnerability in Adobe Flash Player was used to deliver Poison Ivy to its
targets[22]. The exploit was served through a Microsoft Excel spreadsheet which used a Flash
Player zero-day exploit to install Poison Ivy.

Poison Ivy was last updated in 2008, so it is interesting to note that the RAT was already three
years old when it was used in these attacks. This should serve as a reminder that current tools
have not been effective in detecting current threats, even those that were released three years
ago.

2.2.3 Today

Today there is an abundance of different RATs, ranging from completely free ones to full commer-
cial solutions with professional support[9]. Security journalist Brian Krebs says that commercial
RATs have become so simple to use that they are designed for people who "who wouldn’t know
how to hack their way out of a paper bag". This marks a shift from RATs being used by novice
hackers and people with at least a sliver of computer knowledge, to becoming a service used by
people who would rather pay for someone else to do the work for them than learn how to do it
themselves.

2.3 Detection Mechanisms

Now that we have seen what a RAT is and how they have evolved, it is time to look at the current
solutions used for detecting them. This section will describe the current anti-malware solutions
so that we can compare them with our proposed system.

2.3.1 Static Anti-Virus Detection

First, we will look at static anti-virus detection systems. Dang et al. [23] defines static analysis
as "the discipline of automatically inferring information about computer programs without running
them".

Signature-Based Anti-Virus Programs

Traditional signature-based anti-virus scanners work by looking at the files on the computer as
sequences of bytes. Malware is detected by searching for specific byte patterns that are known
to occur in a given piece of malware, and if this sequence is detected, the file can be flagged
as being malicious and infected with the specific piece of malware that owns that byte signa-
ture[24][25][p. 55]. Wildcard characters can also be insert to ignore certain byte sequences to
prevent some obfuscation attempts.
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Heuristic Anti-Virus Detection

Heuristic scanning looks for code that might be suspicious instead of specific virus byte signa-
tures. Such code might be code that does not do anything, code that modifies itself, uses undoc-
umented APIs, and specific strings such as profanity[25][p. 69]. It is also important to look for
things that malware usually does not do, such as creating pop-up dialogs[25].

Integrity Checkers

Integrity checkers compute checksums of files and detects changes by re-computing the checksum
and comparing the new and the old sum. If the checksum has changed, a change must also have
occurred in the file itself[25][p. 70-71]. Anti-virus programs will usually use this technique to
check themselves to verify that they still have their integrity intact.

Advantages and Disadvantages of Static Detection

Grégoire et al.[26] lists the advantages and disadvantages of static detection systems:

Advantages:

• Fast algorithms for matching

• Low false positive rate

Disadvantages:

• Signature creation is slow, requires much manual work, and signature creators can quickly
be overwhelmed by the sheer amount of malware

• New signatures have to be distributed to the users

• Easily fooled by small modifications and/or obfuscation techniques

• The signature database can become overwhelmingly large, and older strains have to be re-
moved, thus leaving the users unprotected against older malware

2.3.2 Dynamic Anti-Virus Detection

The counterpart to static analysis is dynamic analysis. Dynamic analysis works by actually run-
ning the code and monitoring its behavior. Aycock divides behavior monitoring into two cat-
egories: behavior monitors and behavior blockers[25][p. 72]. Behavior monitors detect that
something bad is happening, while a behavior blocker will take an additional step and try to stop
it from occurring. A behavior blocker will have three ways of describing normal behavior[25][p.
72]:

• Positive detection, which is permitted actions

• Negative detection, which is disallowed actions

• A combination of the two
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Aycock says that a behavior blocker does not need to examine everything that is happening on
the system, but only that which is interesting from a security perspective. He also mentions a
very important point, namely that the code can be as statically obfuscated as possible, but the
API calls performed by the application will still appear when the program is run. This is an im-
portant foundation for our work.

Grégoire et al. have summarized the existing work on behavioral detection for detecting mal-
ware[26]. According to them, the field started out in 1986 from the work of Cohen. Cohen stated
that because malware also has to use the same resources as legitimate programs, the problem of
behavior detection is to find out what is legitimate use of these resources and what is not. This
problem can again be reduced down to the undecidability problem when looking at the system
usage as input in a Turing-machine.

Grégoire et al. states that there are two types of behavior detection[26]:

• Modeling normal behavior - This approach seeks to model normal system usage and defines
everything that deviates from this as unusual. This is the same approach that we see in
intrusion detection systems where it is called anomaly detection. They state that this approach
is seldom used in virology because of high false positive rates and difficulties in modeling
system behavior because of large differences in program behavior.

• Modeling suspicious behavior - The second approach is the complete opposite. Finding sus-
picious behavior is about detecting behavior that can be defined as dangerous for the system.
Grégoire et al. points out that this approach is usually taken by the virology community, while
the other one is used by the intrusion detection community.

2.3.3 Properties

Grégoire et al.[26] give some properties that a behavioral detection system must have:

Completeness and Accuracy

Completeness describes the system’s ability to detect malware, i.e. that a system which is "com-
plete" has a high detection rate, and one which has a high false negative rate is "incomplete".
Accuracy is the false positive rate. Such a system should however be adaptable, meaning that its
signatures can be updated to change the false positive and false negative rates.

Resilience

The system should be resistant against techniques such as obfuscation and attempts at hiding.

Efficiency

The monitoring system should not put an unreasonable strain on the computer it runs on, nor
should it take 100 years to decide if a program is malicious or not. The paper states that it is the
last point that usually is the problem today, since computers now have become so fast and cheap
that it is hard to bog them down with detection systems.
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Timeliness

This means that the malware is detected before it can do damage to the system.

Fault-tolerance and Unobtrusiveness

Fault-tolerance means that the system can withstand directed attacks from the malware. Unob-
trusiveness means that the system must not disturb the malware’s execution.

Advantages and Disadvantages of Dynamic Detection

Below is a summary of the advantages and disadvantages of dynamic detection systems[26].

Advantages:

• Small database because it only needs general behavior signatures.

• Should be able to detect all malware from the same family.

Disadvantages:

• Can only capture the current execution path, and can thus not take into account randomness
or conditional branches.

• The systems can have a high false-positive rate because deciding what is malicious behavior
and what is not is difficult to create rules for.

2.3.4 Intrusion Detection Systems

To supplement and replace the mentioned anti-virus systems there exists intrusion detection
systems that aim to detect intrusions based on either signatures or deviations from a baseline of
normal behavior. Bishop [13] describes three types of intrusion detection systems:

Anomaly Detection

Anomaly detection systems works by creating a baseline of normal system behavior. This baseline
includes the usage of users, processes or groups of users, and flags deviations from this baseline
as being suspicious. As the behavior of the process and users changes over time, the baseline has
to be updated to avoid an increase in false positives from these new but legitimate behavioral
changes[13].

Misuse Detection Systems

A misuse detection system will look for attacks that matches the sets of rules that the systems has
stored. This can be done by looking at both transition and state-changes to discover the attack
sequence[13].

Specification-Based Detection

Specification-based Detection monitors programs deviations from a given set of rules. If the
program deviates from these then it might have been subjected to a possible intrusion[13].

2.4 Technical Details

This section describes the technical background material related to monitoring running processes
and capturing their API calls. We explain what API calls are, the techniques for capturing them,
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and round of with an explanation of some techniques that can be used to obfuscate programs to
fool current static-analysis anti-virus tools.

2.4.1 User and Kernel Mode

Modern operating systems allows a program to run in either user or kernel mode. In user mode,
only a subset of the CPUs instructions are available, while in kernel mode the whole instruction
set is. The instructions that are disallowed in user mode are usually related to I/O and memory
protection[15]. The operating system itself runs in kernel mode.

2.4.2 System Calls

A program running in user mode has to make a system call to perform operating system services,
such as writing to a file or network socket. Performing a system call invokes the trap instruction
which again invokes the operating system who takes control and perform the desired operations
on behalf of the calling program. After executing the given instructions, control is returned back
to the calling program [15].

Tanenbaum describes the process as being essentially like this:

1. The user mode program wants to perform an operating system task and executes a trap
instruction.

2. The operating system looks at the call and parameters to determine what the the calling
program wants to do.

3. The operating system performs the correct actions and returns control to the instruction after
the system call.

2.4.3 API calls

System calls are usually invoked through an Application Programming Interface (API), and not
directly by performing the system call itself. This is a very important distinction, as this leads to
the implementation of libraries that "hides" the real system calls behind a set of APIs that the
programmer has to call instead of the more low-level API calls themselves.

On UNIX systems there is almost a one-to-one mapping between the names of the system calls
and the names of the library calls, while on Windows, this is a bit more convoluted, with API
calls containing several system calls[15]. The distinction between an API call and a system call
is that API calls are part of the Windows API, and consist of functions such as CreateProcess
and CreateFile. System calls on Windows systems are undocumented to the public but consist of
such calls as NtCreateUserProcess, which is the system call called by the API call CreateProcess
to make a new process[23]. The Windows API is implemented as a set of DLLs that are linked
dynamically when the program runs[27].

Using an API allows Microsoft to change the underlying system calls without breaking compati-
bility with earlier programs and at the same time exposing a consistent API to the programmers.
This does however have the caveat that it is impossible to know whether a call is actually a true
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system call in that it traps to the kernel, or if it all is done in user mode, since the underlying
code is hidden inside the API, and the API names tell little about whether or not actual system
calls are performed.

The Windows API is divided into the following major categories, as copied from Russinovich
et al.[28]:

• Base Services

• Component Services

• User Interface Services

• Graphics and Multimedia Services

• Messaging and Collaboration

• Networking

• Web Services

2.4.4 Hooks

Our RAT monitoring has been performed by hooking the API calls made by the RATs. Hooking is
a technique for intercepting events on a Windows system[29]. Hoglund and Butler[30] explains
that there are two types of hooks - userland and kernel. Userland hooks operate on a single
process running in userland, and can can be used to do things like hiding a file from a file
explorer. Kernel hooks exist globally and modifies the system with the same privileges as the
kernel, meaning that it can subvert the whole operating system. The sections below explains
these concepts more in depth. Some of these techniques are of course quite dated, and not used
anymore because they are easy to detect (and sometimes complicated to implement), but are
still included for completeness.

Userland Hooks

Since most processes need to perform privileged tasks such as writing files and doing networking,
they rely on built-in Windows APIs for performing these tasks. The example given by Hoglund
and Butler is quite instructive for explaining how userland hooks work, so we will repeat it here.

The example is a Win32 application that reads all the files in a directory. To do this it needs
to import the Kernel32.dll to access the FindFirstFile function which returns a handle to the
first file in the directory. To iterate through the rest of the files, FindNextFile is called. Both
of these exist in the Kernel32.dll, and this DLL is loaded when the application runs, and the
memory addresses for these two functions are copied into the Import Address Table (IAT), which
means that when the functions FindFirstFile or FindNextFile is encountered in the program, it
jumps to the IAT, which again points into Kernel32.dll and executes the correct function from
there. If the function that was called was FindNextFile, Kernel32.dll goes into Ntdll.dll and
calls NtQueryDirectoryFile, loads up the appropriate registers with parameters, and traps into
the kernel.
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The clue here is that if you can access the memory of the process, you can also modify the
IAT or the Kernel32.dll itself, and thus do things like hiding a file from view, redirect to another
file, hide network connections, and so forth, by either overwriting the IAT and pointing the API
calls to code of your own choosing, or else rewriting the code in the DLL. This can be done be-
cause the Kernel32.dll is put inside the memory of the process itself and its memory location
can thus be reached.

Import Address Table Hooking

By patching the IAT in memory you can replace the address of a function in the IAT with your
own, and thus take control of the program flow. The disadvantage of this technique is that it is
easy to detect. And if the application uses LoadLibrary and GetProcAddress it will not work
either.

Inline Function Hooking

Another method is Inline Function Hooking where you overwrite the target function instead of
the address to it. This means that you avoid some of the problems with IAT hooking, such as
problems with address resolving, ensuring that the call always gets hooked.

This technique is done by replacing the first bytes of the target function that will be hooked,
and replacing them with the address of the rootkit’s detour function instead. The address of the
original function is stored, so when the rootkit code is executed it can again execute the original
function, get the data returned from it, and continue on in the rootkit code. The original code in
the target function is saved in what is called a trampoline[31]. The detour function is placed in
the source function. Then you jump to the target function from the trampoline, and from here
you return to the detour function where you receive the results from the target function and can
alter them. All of this happens in memory, and thus enables the hooking to preserve the original
program without rewriting any of its code[31].

Injecting a DLL using Windows Hooks

By using the function for hooking window messages, a DLL can be injected into another process.
By using the SetWindowsHookEx call, the calling application can install a hook for a specific
event, e.g. a key being pressed on the keyboard. When this event happens, the process will
execute the function specified by the hook, instead of the original code.

Kernel Hooks

The next step up from the userland hook is the kernel hook. The reason for having a hook in the
kernel is that it gains full control of the system, and is not as easily detectable as userland hooks
because it can manipulate what the operating system sees and thus evade detection software
that runs in kernel mode.

A popular kernel hooking method is to hook the system service descriptor table (SSDT). Ke-
ServiceDescriptorTable is a table which points to the System Service Dispatch Table and the
System Service Parameter Table. The first one is a list of addresses to the system calls for Win32,
POSIX and OS/2, and the second is the number of bytes for the parameters for these system
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calls[30]. This table can be changed so that the tables point to your functions instead of the
operating system’s[30].

Hook Chains

When the processes are hooked they enter what is called a "hook chain". This chain is made
up of all the hooks that wants to be executed when a specific event happen, and they form a
queue where control is given to the next hook in the chain when the first one has done its work.
Transferring control is done with the CallNextHookEx[32] API call. Not calling this function
however will prevent the hook control from moving on, and will hide the fact that you have
hooked the process, but may cause undesirable behavior as the other processes probably expected
you to play nice and receive the hook after you have finished using it[32].

2.4.5 Summary

As a quick summary, we can see that there are numerous ways of hooking into a process and
manipulating it. The relation to our work is that we have to observe what a running process is
doing, and therefore we have to modify it so that we can capture the API calls that it makes. This
is where the hooking techniques are used. The goal of this section has been to give the reader a
feel for the different ways of doing so, and thereby understand how a monitoring system inter-
acts with the system and the monitored process.

The exact hooking technique used will be revealed when we discuss the tool used for capturing
API calls in Section 4.2. We have not implemented any of these hooking techniques ourselves,
we simply rely on existing tools that use them, but we still feel that it is important to mention
these techniques so that we understand how we can intrude into a running process and capture
its behavior.

2.4.6 Obfuscation

In our experiments we have given a short demonstration of how fast we can create new RATs
that are undetectable by current anti-virus solutions, yet still remaining fully functional, and thus
illustrating the danger and need for new malware detection mechanisms. We will in this section
describe some common obfuscation techniques that are commonly used to make programs hard
to analyze.

Dang et al. describes the goal of software obfuscation to be to produce a new program that does
the same as the input program it is created from, but which is harder to analyze[23]. They divide
obfuscation into two camps - data-based obfuscation and control-based obfuscation. Data-based
obfuscation affects data structures, while control-based affects program flow.

Data-based Obfuscation

Data-based obfuscation affects data and attempts to obfuscate what it is. Below are different
techniques for it explained.

Constant Unfolding

Dang et al. describes a compiler optimization technique called "constant folding" which seeks to
replace computations that can be calculated when the program is being compiled with the result
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of this computation. An example is the C-statement x = 4 * 5;, which instead can be replaced
with x = 20 by the compiler when compiling the program, because 4 and 5 are already known
constants, and therefore won’t change during run-time. Constant unfolding would be the inverse
operation, where a constant is replaced with a computation that creates the same value as the
constant it replaced.

Dead Code Insertion

Another technique is to add meaningless variables that are normally removed by the compiler.
The example given by Dang et al. is as follows:

i n t f ( )
{
i n t x , y ;

x = 1; // t h i s assignment to x i s dead
y = 2; // y i s not used again , so i t i s dead
x = 3; // x above here i s not l i v e
re turn x ; // x i s l i v e
}

Here, the compiler would remove the unused instances of the variables x and y because they
are dead - meaning that they will not be used in the actual running program. The obfuscation
technique is to add such variables to the code, and this makes a reverse engineers job harder by
requiring him to keep track of all variables and check if they are actually used in a computation
or not.

Control-Based Obfuscation

By abusing the expectations of how a program will behave, obfuscated code can be created.
Examples of such expectations are that call instructions will return, and that all code branches
have a possibility of being taken.

Functions In/Out-Lining

A highly illogical call graph can be created by using inline and outline functions to add and
remove code to the call graph. Inline functions adds the code of a subfunction to the caller
and can quickly increase the size of the code if the subfunction is called multiple times. Outline
functions does the opposite and takes a piece of code and makes it into a new function call
instead.

Processor-Based Control Indirection

Different assembly calls can be abused by using them for other purposes than what they are nor-
mally used for. An example from the Dang et al. is the call instruction which calls a subfunction.
It is assumed that this function will also return, and that the calling address actually is the entry
point of a function. By not returning, the call instruction has instead become a jmp, and this
should help to confuse a disassembler or human analyst.

Opaque Predicates

Opaque predicates are boolean expressions that either evaluate to true or false. What is special
about them is that they use a problem that is hard to compute to decide if branches should
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be taken or not. This can be a mathematically hard problem, or environment variables that
are constant but only known when compiling or obfuscating. And to make things even more
complicated, the new branch should be bogus, but look like real code.

Inserting Junk Code

Control-flow and data-based obfuscation can also be combined. One technique is inserting junk
code, where the junk code can reference invalid instructions, or branch right into the middle of
valid code. A simple assembly example is given by Dang et al.:

01: jmp l a b e l
02: <junk>
03: l a b e l :
04: <r e a l code>

2.4.7 Summary

There are several types of obfuscation techniques that can be used to confuse and mislead a
disassembler or human analyst. A very practical effect of this is that signature-based anti-virus
solutions can be easily evaded by changing the byte sequences of a program by using these
obfuscation techniques while still maintaining the same functionality in their code. This fact is
an important proponent for behavior based detection, since a programs behavior will stay the
same even if the code is as obfuscated as possible[25][p. 72].

2.5 Finite State Machines

We have used finite-state machines (FSM) in our work to create the behavior models for the RATs
we have analyzed. Kosoresow and Hofmeyr have argued for using finite-state machines with API
calls because API calls are repeating and conform to a specific structure, and are therefore well-
suited to be modeled with them[33]. This sentiment has also been echoed by Gao et al.[34].

This section describes the theory behind finite-state machines. A finite state machine is a way to
model a computer or other system, and is used for things like spell checking, text search, speech
recognition, and specifying network protocols[35]. A finite-state machine consists of[35]:

• a finite set of states

• a dedicated starting state

• an input alphabet

• a transition function that puts the machine in a new state for every input

There are two types of finite-state machine, finite-state machines with output and finite-state
machines without output. Finite-state machines with output outputs something when changing
state, such as the number 42, 5 dollars, or the letter "k". Finite-state machines with no output is
the opposite and provides no output when changing states. Finite-state machines with no output
are often used for recognizing a language, where the a string from the language is recognized
only if it reaches one of the final end states[35].
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2.5.1 Finite-State Machine with Output

Rosen gives a formal definition of a finite-state machine with output[35]:
"A finite-state machine M = (S, I, O, f, g, s0) consists of a finite set S of states, a finite input alpha-
bet I, a finite output alphabet O, a transition function f that assigns to each state I, a finite output
alphabet O, a transition function f that assigns to each state and input pair a new state, an output
function g that assigns to each state and input pair an output, and an initial state s0".

Rosen provides a second definition of when a FSM recognizes, meaning accepts, an input:
"Let M = (S, I, O, f, g, s0) be a finite-state machine, and L ⊆ I*. We say that M recognizes (or
accepts) L if an input string x belongs to L if and only if the last output bit produced by M when
given x as input is a 1."

2.5.2 Finite-State Machine without Output

Rosen also gives a formal definition of finite-state machines with no output[35]:
"A finite-state automaton M = (S, I, f, s0, F) consists of a finite set S of states, a finite input alphabet
I, a transition function f that assigns a next state to every pair of state and input (so that f : S x I →
S), an initial or start state s0, and a subset F of S consisting of final (or accepting states)."

2.5.3 Using Finite-State Machines to Detect Malicious Behavior

Grégoire et al. says that finite-state machines can be used for detecting malicious behavior by
modeling sequences of system calls and looking for state changes that corresponds to malicious
behavior[26]. They give the following principles for such a system, as copied from them:

• "The states S of an automaton corresponds to the internal states of the malware along their
lifecycle."

• "The set of input symbols defined upon the collected data which are mainly system calls."

• "The transition function T describes the symbol sequences known as suspicious."

• "The initial state s0 corresponds to the beginning of the analysis."

• "The set of accepting states A conveying the detection of a suspicious behavior."

20



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

3 Related Work

This chapter describes the related work. We have tried to get a broad overview of four main
categories of related work, namely why other people have used API call monitoring, how they
did it, what they looked for and how they used this to look for malware.

Most of the identified papers have malware detection as an overarching goal, by e.g. using se-
quences of API calls as signatures for specific pieces or families of malware. Some also look at
behavior, but uses other identifiers for detecting it than we have.

The sections below detail the different previous works.

3.1 API Call Monitoring

API call monitoring as a method has been argued in favor for by Forrest et al. [36] who states
that API call monitoring is a powerful technique that lets you monitor programs without recom-
pilation or instrumentation. This makes it a very portable solution for monitoring the behavior
of programs. The same is stated by Garfinkel [37] who says that API call monitoring allows al-
most all of the program’s activity to be captured, including network traffic and file system activity.

The process of creating and implementing API call monitoring has been described by Garfinkel
who detailed problems and pitfalls when building Janus, a system for monitoring and controlling
API calls on a Unix operating system[37]. Janus is analogous to a firewall between the applica-
tion and the operating system, but it uses API calls instead of network traffic.

Because of the complexity of the Unix API, Garfinkel encountered several problems. The five
categories of problems were: "incorrectly replicating OS semantics, overlooking indirect paths to
resources, race conditions, incorrectly subsetting a complex interface, and side effects of denying API
calls"[37].

An example of this was trying to determine if a bind call for connecting two IP sockets should
be allowed based on the protocol type used. The first approach was to read the socket’s protocol
during creation, but this did not account for the protocol type being modified during program
execution, and thus allowed a malicious program to fool Janus by changing the protocol type of
the socket after it was created.

What this means for API call monitoring as a technique is that it can be difficult to "get right"
due to the large amount of context related information pertaining to API calls. Fortunately for
us however, we have avoided most of the context-related problems that Garfinkel mentioned by
instead looking at the API calls as static units which are not subject to any context-changes of

21



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

the kind that Garfinkel experienced.

There are however disadvantages with API call monitoring. It can be subjected to something
called a mimicry attack where sequences of malicious API calls are inserted into sequences of le-
gitimate ones, so as to "hide" among the legitimate ones instead of performing all of its malicious
calls at once and thus show itself as malicious[34]. This is especially a problem among systems
based on N-grams[38].

API call monitoring as a technique has been frequently used for intrusion detection systems
where they are used to discriminate between normal and malicious behavior. Forrest et al. [36]
states that this technique is effective for detecting attacks on programs because attacks usually
cause the programs to run seldom used code which creates new patterns of API calls. The types
of attacks that can be detected include "buffer overflow attacks, SYN floods, configuration errors,
race conditions, and Trojan horses" since all of these would lead to new code paths being executed.

The problem with such systems is that monitoring for seldom used code is no guarantee that
something malicious is happening. Certain maintenance functions could be seldom run, but
would create completely diverging code paths, and thus one would suspect that this system
could lead to lots of false positives.

Canali et al.[39] have tested several malware detectors based on API call monitoring against a
common set of tests. The authors observed that most proposed API call based malware scanners
reported unusually high detection rates and similarly low false positive rates, but that the data
sets used for testing differed greatly. They therefore wanted to create a larger dataset that could
be used for comparing several different solutions against each other with the same data. Their
conclusion was that the most accurate API call monitoring systems were the ones who relied on
few types of calls, but also took into account the calls’ arguments. Forrest et al. [36] reports on
the work of Tandon and Chan who added API call parameters to their detection system[40]. This
increased the accuracy, but made the system run 4-10 times slower.

3.2 Signatures

Numerous research papers have written about using API call sequences and frequencies as sig-
natures for detecting malicious software. Their reasoning is that malware will make specific
sequences of API calls when running, and that these can be used to create a unique fingerprint
for that piece of malware.

Sequences of API calls are used by Faruki et al.[41] who creates fingerprints of API calls un-
der Windows, Pu et al. [42] who uses the time intervals between API calls to create a baseline
for normal system behavior, and Pungila[43] who describe an intrusion detection system that
monitors API calls and their timing and measures their similarity based on frequency. Ahmed
et al.[44] examines various statistical features by using machine learning algorithms. They split
their dataset into viruses, worms and trojans, and noted that trojans was the most difficult to
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detect because they want to appear as similar to benign programs as possible, while worms were
the easiest to detect. Qiao et al. [45] proposes to use the frequency of parameters and API call
names with parameters to distinguish malware. Liu et al. [46] examines malware that splits itself
into several DLLs.

The problem with these approaches is that they create static signatures based on frequencies
and/or sequences, and does require having seen the malware sample before, or at least one that
comes from the same family. New malware with the same behavior will not necessarily be de-
tected, unless it makes the same API calls. Systems based on N-grams will also have a high false
positive rate because deviations from what was seen in training can be flagged as suspicious
[38]. Sekar et al. says that using finite-state machines is a good alternative to signatures based
on N-grams because they can represent arbitrary length sequences with small memory require-
ments, while also being able to capture behavior that is not exactly similar to what was seen in
training[38].

3.3 Policy

Li et al.[47] proposes a system called AGIS which creates signatures based on the API calls of the
malware while it runs on the system it has infected. They claim their approach is novel in that
suspicious behavior is detected by looking at breaches of user-defined policies. Such a policy can
be searching the computer for email addresses, exporting log files or hooking DLLs used for key-
board input. AGIS monitors the programs API calls to find out what it is doing, and gives notice
if behavior that breaches the security policy is detected. This behavior is then further examined
through static analysis which looks at the code paths.

The paper describes the security policies as defining general behavior that is malicious, such
as keyloggers capturing keystrokes and worms collecting email addresses.

3.4 Graphs

Kolbitsch et al. suggest using data flow from API calls to detect malicious behavior. They examine
a program and creates a behavior graph based on the API calls and and their arguments[48]. A
malicious program is found if its behavior graph matches the one of a known malicious behavior
graph. Elhadi et al. [49] has used API call graphs and applied the Longest Common Subsequence
algorithm for detection in their work.

3.5 Similarity Classification

Another common approach is to use API calls to find malware that comes from the same family.
The idea is that malware from the same family will make the same API calls, which then can be
used as a signature for that given malware family and thus detect new strains from it based on
it making the same API calls as its other family members. Salehi et al. [50] claims that malware
with the same behavior has to make the same API calls, including the same arguments. Yan et
al.[51] has taken a more extensive approach by also using disassembly, PE header examination
and dynamic tracing, to gather API call frequency. By using this frequency they were successful in
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classifying malware into different families. Sami et al.[52] extracts API calls used from executa-
bles without running them, and classifies them based on similar API calls. Zhao et al. [53] uses
API calls to classify malware into families by using a Radial Basic Function in a support vector
machine.

Tian et al.[54] uses the API calls of programs to both separate malware from benign files, and to
classify the discovered malware into different families. The classification into different malware
families was based on how often a given call occurs in a given family and then comparing it to
how often the call occurs in a given program sample.

Moffie et al.[55] captures API calls to look for trojan horses. Their system is called Harrier,
and looks for such things as resource abuse with the execve call and resources accessed with
write and read calls.

Part et al.[56] proposes to detect malware by looking at which kernel objects are accessed by
monitoring the API calls, and then constructing a graph based on this. This graph is compared
with the graphs of known families of malware to see if the new sample belongs to any of them.

Wagener et al. [57] attempts to classify malware based on how similar two pieces are by us-
ing a phylogonetic tree which is used for showing how species branches into a family. Their
approach is to monitor the behavior of a program through API calls and decide if a piece of mal-
ware is similar to an already known one.

Jang et al.[58] proposes to use API calls to measure how similar two pieces of software are
to e.g. detect pirated copies. Dongjin et al.[59] does also propose using API calls to discriminate
between applications by fingerprinting their frequency. They also claim that because of interleav-
ing threads in the targeted application, API call sequences are unreliable for fingerprinting, and
that call frequencies should be used instead.

3.6 Identification of Dangerous API Calls

Dunham at the SANS Institute has written a paper about analyzing malware by looking for API
calls by using static and dynamic analysis tools[60]. He examined the API calls in more than 600
malware samples and ended up with this list of the most common ones:

• 571 LoadLibraryA

• 133 GetUserNameA

• 119 GetComputerNameA

• 116 GetVersionExA

• 104 GetModuleFileNameA

• 101 GetStartupInfoA
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• 96 IsCharAlphaA

• 92 IsBadStringPtrA

• 84 IsCharUpperA

• 78 GetWindowTextA

• 68 IsCharAlphaNumericA

• 67 IsCharLowerA

• 67 GetWindowTextLengthA

• 38 GetModuleHandleA

• 37 MessageBoxA

• 36 GetCommandLineA

• 19 LCMapStringA

• 19 GetStringTypeA

• 19 FreeEnvironmentStringsA

• 19 ChooseFontA

Some calls are also claimed to almost always be malicious, such as URLDownloadToFile.

What is important to note here is that many of these API calls are common in the sense that
they tell little of what the program is actually doing, except usual "behind the scenes" activities
such as loading DLLs and checking the case of a character.

3.7 Behavior Classification

Bailey et al. [61] describes a method for classifying malware based on its behavior, such as files
written and process created, instead of sequences and frequencies of the API calls. The observed
behavior is used as a fingerprint for the malware, and the authors argue that this approach is
more useful because it enables easier risk analysis and damage assessment by knowing what
actions the malware could perform.

Their definition of behavior is "non-transient state changes that the malware causes on the sys-
tem". This is captured at a level "higher" than individual API calls, since they claim that API call
information is to low-level to be useful. Instead, they gather information from the event logs gen-
erated when executing the malware, and use this information to determine what the malware
does. The malware’s behavior profile is constructed from information such as "spawned process
names, modified registry keys, modified file names, and network connection attempts". The malware
is being run inside a virtual machine, and the system events are captured using Backtracker. To
classify how close two malware behaviors were, they used normalized compression distance,
which sees similar behavior as being closer together. Similar behavior can be writing files with
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random file names to the same location. This system can also find emerging threats by looking
at how unknown malware fits in with the behavior of already known samples of malware.

Other types of behavior is captured by Kirda et al. [62] who used a combination of static and
dynamic analysis to find browser helper objects (BHO) that is spyware. They classified a BHO as
spyware if it, in response to browser events, captured the users behavior and used a Windows
API call that could transfer away information. Gao et al. [34] have used finite-state machines for
modeling program behavior. They discovered malicious behavior by looking for specific API call
sequences, such as the rule for detecting a backdoor which was the sequence "(chroot, chdir,
chroot, open, write, close). Our work differs from theirs in that we have looked at different
types of behavior.

Rieck et al. [63] have used machine learning algorithms to successfully categorize malware
into different families based on their exhibited behavior. The captured malware behavior using
CWSandbox which catches API calls performed by the examined application by hooking them
using the Detours library. Their explanation of how to use the system is as follows: "To apply
our method in practice, it suffices to collect a large number of malware samples, analyze its behav-
ior using a sand box environment, identify typical malware families to be classified by running a
standard anti-virus software and construct a malware behavior classifier by learning single-family
models using a machine learning toolbox."

Saxe et al. [64] has mined posts from StackOverflow.com for text strings and have compared
these with occurrences in StackOverflow.com code listings to identify likely capabilities of mal-
ware. They examined 1982 pieces of malware and found that 46 of them had the ability for
"webcam grabbing".

Christodorescu et al. [65] shows that malware can be detected by looking at where malware
and benign programs differ, i.e. which behavior is present in the malware and not in the benign
programs.

Mehdi et al.[66] monitors the API calls of running processes, and creates what the authors call
an "impression" of the running process, which is a measure of its maliciousness, and if it reaches
a given threshold it will be terminated. They used N-grams to represent the sequence of API calls.
They checked if the N-grams were present in either the benign, malicious or both processes and
named them thus after which category they were exclusively present in. Each unique N-gram
is given a "goodness value". The "goodness value" spans from +1 for the benign to -1 for the
malicious.

3.8 Finite-State Machines

Kosoresow and Hofmeyr [33] showed how API calls can be represented by finite-state machines
in a 1997 paper. They used finite-state machines because they noted that API calls were often
repeated and conformed to a specific structure. Dividing the programs behavior into smaller

26



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

chunks allowed them to model the behavior and deviations from them as finite-state machines
states. Modeling with finite-state machines has also been done by Sekar et al. [38].

Charlier et al. [2] wrote a paper in 1995 about using finite-state machines to create generic
rules for detecting infections. A detection rule created by them was used for detecting infections
of COM files. An example of such a rule was to assume that a virus would run before the original
program was, meaning that it would write itself to the beginning of the infected file. An example
of such a finite-state machine can be seen in Figure 2.

Figure 2: An example rule using a finite-state machine. Figure from Charlier et al. [2].

The difference from our work is that Charlier et al. still had as goal to detect a virus’ presence
based on the behavior used for infecting the system, while we look at the behavior occurring
when the malicious program is running.
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4 Methodology

This chapter describes our methodology for testing the RATs and discovering their behavior. The
chapter is divided into two parts:

• An introduction to our testing methodology and the rationale behind it.

• A description of our test environment and the tools we have used.

4.1 Rationale for Testing

As we have seen in the previous section, there are vast amounts of existing research related to
malware detection with API calls. However, little of this concentrates on modeling the behavior
and actions of malware, but does rather seek to identify it based on signature extraction from
the API calls and their arguments, which has been demonstrated by Gao et al. as being easily
fooled by reordering the performed API calls[34].

So our approach is therefore a bit "opposite". The API calls might be easily reordered, but it
is difficult is to avoid using these API calls at all [25]. If you call the API once, you can just as
well call it a million times, and essentially keep the same functionality in your code. So if you
forget about frequencies and sequences, and instead ask yourself "what does this API call actually
do?", then you can create models of the examined applications that identify them based on their
behavior, rather than what they are.

The next sections will explain our test setup and how we analyzed the RATs to extract their
API calls and subsequently their behavior. What we have done is a qualitative study where we
dissected and analyzed the RATs with the goal of learning how different types of behavior is
signaled by certain API calls. So in short, the study has been an exploratory journey where we
have been a bit unsure about what we would find, and therefore felt that observation would be
the methodology that would give the most useful results to base future work on.

4.2 Test Setup

• VirtualBox version: 4.3.10

• Windows Version: Windows 7 x64

• API Call Capture Tool: Rohitab API Monitor v2 Alpha-r13

Our API calls were captured using two Windows 7 x64 virtual machines which were connected
through a virtual network, with one being the RAT controller and the other the victim. The
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API calls were captured using Rohitab API Monitor on the victim machine. The sections below
describe the various parts of the test setup and the rationale for choosing the specific tools.

Windows 7

Windows 7 was used as a test platform because of Windows’ dominant market share on desktop
computers and the long-standing tradition of creating malware for it. Windows 7 has also posed
itself as the inheritor to Windows XP as the stable and long-term supported Windows platform
for businesses and institutions, which means that Windows 7 with all likelihood will be common-
place on important systems for years to come.

The Windows version used in our test lab was kept up-to-date with the latest security patches
and had User Account Control (UAC) activated to simulate the default setup of a Windows 7 in-
stallation. None of the examined programs asked for administrative privileges using UAC (except
Dark Comet during install), so they were effectively able to perform their actions without using
elevated privileges.

VirtualBox

VirtualBox was chosen because it is free and open source and allows us to create virtual net-
works between two computers. We chose to use virtual machines in our experiments to simplify
our hardware needs and system setup times, seen as we could easily revert machine states to an
uninfected one.

A problem with using virtual machines however is that running programs can easily detect if
they are being executed in a visualized environment, and can thus change their behavior ac-
cordingly. We have no reason to believe that this happened during our experiments, since all
functionality behaved as advertised, but it is a cheap and simple trick that is often employed by
malware authors to make an analyst’s job slightly more difficult.

Rohitab API Monitor

Rohitab API Monitor is a Windows tool for monitoring processes and capturing their API calls[67].
It is to the best of our knowledge the API monitoring tool with the most comprehensive list of
API calls that can be hooked (13 000), and was thus chosen for use in our experiments. This tool
allows us to filter on individual API calls, and the APIs are categorized into logical categories that
makes it very easy to find API calls for different types of behavior.

Another candidate was WinAPIOverride[68], which also monitors API calls, but our impression
is that Rohitab API Monitor has a much larger collection of API calls, a better interface, and vastly
better performance, in addition to being more stable. WinAPIOverride can however be scripted,
a feature that is not yet available in Rohitab API Monitor.

Rohitab API Monitor does not give any documentation about what kind of hooking method it
employs, and the program’s authors have not responded to our request for this information. It
would not be unreasonable to suspect however that the program is based upon the Microsoft
Detours[31] library and the techniques described in Section 2.4.4, seen as this library is the
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Microsoft-supported way of hooking processes and that the low performance impact of Rohitab
API Monitor could be in-line with the performance numbers that the Detours paper reports.

ManyCam

We used ManyCam to virtualize our webcamera and microphone[69]. This allowed us to sim-
ulate having these two devices without actually having any connected physically, so instead of
showing video from a capture device, a video and/or audio file was played back instead.

Obfuscation Tools

We used two different tools to obfuscate .NET-based binaries and Java RATs respectively.

Confuser

Confuser is an obfuscator for .NET programs that encrypts constants and resources, renames vari-
ables and prevents debugging and memory dumping[70]. In other words, it makes the binaries
harder to detect for anti-virus programs in the same way as Confuser did.

ProGuard

ProGuard is a Java obfuscator[71]. We used it on the Java-based RATs to make them harder to
detect for the anti-virus programs.

Test Network

We tested our RATs on a virtual network set up between two VirtualBox virtual machines. The
setup was configured as shown in Figure 3, with one machine being the victim and the other
the controller. The victim had Rohitab API Monitor installed, along with software for emulating
a webcam and microphone. No firewall was present between the machines.

Our testing approach was basically to start a feature from the controller, observe the API calls on
the victim, start a new feature, observe the new API calls, and so forth. Due to the large amounts
of API calls being made in a short amount of time, we spent a lot of time finding out what to
filter out and reading documentation from Microsoft so as to actually being able to pick out the
relevant API calls that describes the features that we wanted to look for in the RATs.
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Figure 3: Our test network.

4.2.1 Experiments

We started our experiments by defining what kind of behavior we wanted to look for in the RATs.
As we saw in Section 2.1, a RAT has several properties that makes them unique. Thus, we picked
four different features that we felt were the most privacy invading ones, in addition to taking a
more traditional IDS approach by looking at the network traffic, but instead choosing to look at
it from the perspective of the API calls being made when sending and receiving the data traffic
instead of looking at the data traffic itself when it is being sent over the network. Taking this
approach allowed us to more accurately identify some RATs, and thus grant us a more precise
detection of which RAT is present. Looking at it from the "inside" does also make us able to mon-
itor the traffic that is sent before it is subjected to encryption of the network socket, except in
cases where the encryption is applied inside the application.

The examined features were:

• Use of the webcam - We tested the webcam feature by activating the webcam viewer on the
RAT controller and observing which API calls that then appear on the victim.

• Use of the microphone - We tested the microphone by activating it from the RAT and looking
at the API calls that appeared on the victim.

• Logging of keystrokes - The keylogger was tested by writing text into Notepad.exe and looking
at which API calls that happen in the RATs process when this is done.

• Identifiers in network traffic - The network traffic was examined when the webcam, micro-
phone and keylogger was used.

• User interaction with the program - User interaction was tested by seeing if any API calls
related to it happened when the RAT was active.
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User Interaction

We also looked at which API calls that showed that the user was interacting with the analyzed
program. Our theory was that the RATs would perform all the aforementioned actions, except
things that involves user interactivity, since they want to stay hidden from view and will not
create windows or other visible objects that the user can observe on their screen. This is not an
unreasonable assumption, according to Aycock[25], who says that "visible" behavior is uncom-
mon in malware.
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5 Analysis

This section describes how we analyzed the different RATs by using the methodology described
in the previous chapter. We chose to examine six different RATs that we felt offered a varied mix
of both well-known RATs from published attacks, and new "under-the-radar" homebrews that
have yet to show their potential. Our plan has been to pick something from the whole specter so
that we can get a feeling about what kind of behavior and design that is present in the different
types of RATs.

5.1 DarkComet

DarkComet is a RAT created by Jean-Pierre Lesueur under the nickname of DarkCoderSC[72].
Jean-Pierre Lesueur shut down the development of DarkComet in 2012 after several other no-
table RAT-creators had been arrested, stating that he did not want to be held responsible for the
actions of others with regards to the use of his software[73].

DarkComet was previously available in a free and a paid version, where you could receive support
and suggest features for a fee of $25 in the paid version. Currently, the only officially available
version of DarkComet is the 5.4.1 Legacy version which is a free, stripped-down release, notably
lacking some of the more malicious features such as the ability to compile a GUI-less server exe-
cutable that can be provided to the victim[74]. Previous full-featured releases are however still
being distributed on underground forums and file-sharing sites.

Among the most privacy-invading features of DarkComet is the ability for the controller to lis-
ten in on the microphone and capture video from the webcamera of its victim. It also contains
standard RAT features like a keylogger and remote shell. The previous versions of DarkComet
did also provide several "Fun Functions" which included such "features" as opening the CD-tray,
hiding the icons on the desktop, hiding the start-button, and other useful functionality. The RAT
controller could also open a chat window and chat with the victim[74].

DarkComet has been used in several reported attacks, perhaps most notably in a social-engineering
attack against Syrian users in 2012. DarkComet was disguised as an encryption tool for Skype,
but did in reality install DarkComet and attempted to connect back to a controller in the Syrian
IP range[75].

The sections below details the functionality of DarkComet and how we can detect it by look-
ing at the API calls that is made when this functionality is performed. In addition, we look at
how the network traffic can be observed by looking at the API calls used for sending and receiv-
ing data over the network. We tested the 5.4.1 Legacy version which is provided on the official
Dark Comet website[72].
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5.1.1 Webcam

Figure 4 shows the API calls that appear when the controller is watching the webcam of the
victim. Let us take a closer look at them. There are quite a number of API calls here, but most of
them can be discarded because they do not tell if the webcamera is recording or not. By trimming
down the amount of calls we can get to the meat, and we end up with simply having to monitor
the IMediaSample::GetPointer[76] API call to know if the webcamera is recording or not. This
can be seen in Figure 5.

Thus, by looking at only one API call, we can determine whether the monitored process is cur-
rently watching the webcam.

Figure 4: The API calls that appear on the victim when the webcam is recording.

Figure 5: The essential API calls for knowing when the webcam is recording.

5.1.2 Audio Capture

Discovering when the microphone is recording is a similar process. By removing the unneces-
sary API calls we are left with two that tells us when the microphone has started and stopped
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recording. When the microphone starts recording we see the waveInStart[77] API call which,
as its name suggests, is called when a program starts to record audio from a given audio input
device. The waveInClose[78] call is performed when the recording is finished. These two calls
are displayed in Figure 6.

Figure 6: Audio recording API calls.

5.1.3 Keylogging

Detecting a keylogger can be a bit more tricky. Figure 7 shows the performed API calls when the
user presses the key "a" in Notepad.exe. As shown in the figure, the argument value in the call
MapVirtualKey[79] is 65, which corresponds to the key "a" on the keyboard according to the
ASCII-table. We can also see the call ToAscii[80] appear, which also contains decimal 65.

Figure 7: The API calls for the key "a".

5.1.4 Network Traffic

In addition to the indicators above, we have also looked at the network traffic as it is being
sent and received through the RAT’s API calls. This has allowed us to get a different angle with
regards to what is going on with the RAT.

Webcam Traffic

Figure 8 shows the network traffic when the webcam is recording. As we can see, the data being
sent is prepended by the word JFIF, which in all likelihood stands for "Jpeg File Interchange For-
mat", and is therefore appended by binary data corresponding to frames for the video captured
in the webcam. Thus, by looking at the sent network traffic, we can see when the webcam is
sending away images.

Microphone Traffic

When doing a microphone capture we can see a Remote Procedure Call (RPC) being made, which
contains the string "Audiosrv", as shown in Figure 9.

In Figure 10 we can see that the send call alternates between receiving the words "A.C",
sending several "." and sometimes sending the string "EndReceive". The last send from the client
contains an "EndReceive" before the socket is closed. Again, these are keywords that can be used
to detect when the microphone is being used by the RAT.
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Figure 8: Webcam traffic.

Figure 9: Microphone traffic contains the word "Audiosrv".

Figure 10: The content of the send calls and receive calls. The first and last calls are sent, the
middle received.

Keylogger Traffic

We only get scrambled data when downloading using the keylogger feature, with no traffic dis-
cerning what has been typed. We also receive the "A.C" string as we saw in the microphone
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traffic. This is shown in Figure 11. Figure 12 shows the data.

Figure 11: Keylogger sends the word "A.C".

Figure 12: Keylogger data sent over the network.
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Figure 13: Spread map of njRAT from March 31st 2014. Figure by Symantec[3].

5.2 njRAT

njRAT is a RAT written in Visual Basic .NET by a Kuwaiti individual going by the nickname njq8
[81, 5]. Symantec believes that njRAT has been live since at least November 20th 2012, based
on an infected screen saver containing the RAT that has been distributed since that date[3]. The
public release was not before June 2013 however. Symantec have traced the command and con-
trol (C&C) servers back to IP addresses of ADSL lines, suggesting to them that most of the RAT
controllers actually are home users.

The blog post from Symantec was published on the 31st of March, and said that the RAT had
recently seen an upsurge in infections in the Middle East region[3]. They speculated that be-
cause the coder is an Arabic speaker, njRAT is popular in the Arabic speaking world because of
the availability of tutorials and support in Arabic.

Symantec’s analysis uncovered 542 command and control server domain names and 24 000
infected computers around the world, with 80% of them being in the Middle East. Figure 13
shows a map of the spread around the world. Symantec suspects that the RAT will continue to
be used in the future, and obfuscated to avoid detection by anti-virus companies.
njRAT has also been used in malware campaigns in Syria, according to a joint report by EFF
and Citizen Lab[4], and some of the C&C servers have been identified as belonging to the Assad
regime. Figure 14 shows a Facebook post on the Facebook page of the "Revolution Youth Coalition
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Figure 14: Facebook message attempting to spread njRAT. Figure by EFF and Citizen Lab[4].

on the Syrian Cost", which is a pro-opposition group. The posted link contained a download with
njRAT. The translation of the post is according to the report as follows[4]:
"Important
The truth about killing Abu Basir al-Adkani has been revealed.
Using photos and videos, an explanation as how Abu Basir, the battalion leader was killed."
The Facebook page appeared to be hijacked, as messages warning of the link’s content were
deleted.
We used njRAT 0.7, obtained from Hackforums.net in our tests[82]. Running API Monitor at
njRAT’s startup made the program less than cooperative and it refused to launch, but monitoring
it right after it had started caused no problems.

5.2.1 Webcam

If we look at the API calls that appear when the webcam is recording, we can see that they are the
same that we observed when DarkComet was using the webcam, i.e. IMediaSample::GetPointer.
Figure 15 shows the observed API calls.

5.2.2 Microphone

By looking at the API calls that appear when we use the microphone we can see that waveInStart
and waveInReset appears. These two API calls are shown in Figure 16. In contrast to Dark Comet
and the other RATs that we look at later, no waveInStop call is performed.
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Figure 15: API calls when the webcam records.

Figure 16: API calls when the microphone starts and stops recording.

5.2.3 Keylogger

Figure 17 shows the API calls that are made when we type the word master into Notepad.exe.
As we can see, the ToUnicode call appears, and it contains the respective characters in each call,
as shown in the bottom part of the figure. In the calls we can also see the word "otepad" appear,
which probably is a reference to "Notepad" with the first character missing.

5.2.4 Network Traffic

The sections below details our findings when we examined the network traffic.

Figure 17: njRAT keylogger API calls.

40



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Figure 18: Network traffic with the word CAM in njRAT.

Webcam Traffic

After activating the camera, we can observe the network traffic in Figure 18. We also see some
delimiter It is interesting to note that all the calls relating to the webcam appears to start with the
keyword CAM, and this can thus be used for identifying when webcam related activities start. We
can also see the synbos |’|’| appear as a delimiter sequence for the different bits of information
that is being sent. This sequence can also be used to fingerprint njRAT. These symbols are also
shown as appearing in Fidelis Cybersecurity Solutions report on njRAT[81].

Microphone Traffic

Using the microphone, we get network traffic as shown in Figure 19. It starts with the word
"MIC" and the same delimiters as with the webcam.

Keylogger Traffic

The keylogger traffic starts with the word "kl" as shown in Figure 20 and the same delimiter
symbols as before.
What we also can see in the network traffic is the string below.

Y21kW0VOVEVSXQ0KDQoBMTQuM
DQuMDYgY21kIEM6XFdpbmRvd3Ncc3lzdGVtM
zJcY21kLmV4ZQENCmlwY29uZmlnDQoBMTQuM
DQuMDYgY21kIEM6XFdpbmRvd3Ncc3lzdGVtM
zJcY21kLmV4ZSAtIGlwY29uZmlnAQ0KW0VOV
EVSXQ0KYWN0aXZhW0VOVEVSXQ0KDQoBMTQuM
DQuMDcgY21kIEM6XFdpbmRvd3Ncc3lzdGVtM
zJcY21kLmV4ZQENCmlwY29uZmlnDQoBMTQuM
DQuMDcgY21kIEM6XFdpbmRvd3Ncc3lzdGVtM
zJcY21kLmV4ZSAtIGlwY29uZmlnAQ0KW0VOV
EVSXQ0K
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Figure 19: Network traffic with mic in njRAT.

Figure 20: The keylogger traffic contains the word "kl".
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This text is base64 encoded, and decodes into the text shown below.

cmd[ENTER]

14.04.06 cmd C:\ Windows\ system32 \cmd . exe
i p c o n f i g
14.04.06 cmd C:\ Windows\ system32 \cmd . exe − i p c o n f i g
[ENTER]
a c t i v a [ENTER]

14.04.07 cmd C:\ Windows\ system32 \cmd . exe
i p c o n f i g
14.04.07 cmd C:\ Windows\ system32 \cmd . exe − i p c o n f i g
[ENTER]

This information corresponds to what we typed and which program we did it in. In this case we
wrote ipconfig in cmd.exe several times.

5.2.5 The Future

In August 2013, FireEye Labs wrote about Njw0rm, a worm forked from njRAT, which added the
capability to spread through USB memory sticks and similar removable devices[5]. FireEye Labs
claims that njq8 is the author of this RAT as well, based on the observation that all communi-
cations with the RAT starts with "lv" and that "0njxq80" is used as a delimiter symbol. Based on
FireEye Lab’s dissection, njw0rm appears to have had its webcam and microphone logging abil-
ity removed, as shown in Figure 21, which displays the functionality available from the control
panel in Njw0rm.

Figure 21: The functionality in Njw0rm. Picture from FireEye Labs[5].
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5.3 jRAT

jRAT is a RAT written in Java, which means that it uses the Java Runtime Environment (JRE),
and can thus execute on any computer that has Java installed[83]. It even has experimental
support for FreeBSD.

Since jRAT is relatively new it has not been used in many well-published attacks. It has how-
ever recently been used in a spam campaign against United Kingdom and United Arab Emirates
users, according to Symantec[84].

jRAT does not support webcam capture or keylogging in the free version available on their
website, but a commercial version is available for $50, and the changelog mentions webcam
functionality[85].

Like DarkComet, jRAT does also have a user interface, although it is limited to a small tray
icon and not a full-featured GUI with windows.

5.3.1 Microphone

Despite being written in Java, the JRE still performs API calls using the Windows libraries, and
we can thus capture them with our monitoring tool.

When we start the audio capturing functionality, the API calls in Figure 22 can be observed
on the victim’s computer. As we have seen previously, the call waveInStart[77] is called when
the microphone starts recording, and it appears again here as well. The call waveInClose[78] is
called when the microphone stops recording, so by monitoring just these two calls we can easily
detect if the microphone is recording or not.

Figure 22: API calls done when starting and stopping the microphone recording.

5.3.2 Network Traffic

If we look at the network traffic API calls that appear when we use the microphone, we can see
the call RpcStringBindingCompose appear and that it contains the parameter "AudioClientRpc".
This is shown in Figure 23. The send and receive API calls contain no information of value.
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Figure 23: The microphone traffic API calls.
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5.4 jSpy

jSPY is a Java-based RAT created by a 17 year old programmer from London[86]. To the best of
our knowledge jSpy has not been used in any reported attacks, so it is probably most commonly
used by "home users". We examined version 008 in our experiments.

5.4.1 Webcam

When starting the webcam functionality in jSpy we can again observe the same API calls as in
the previous RATs. In Figure 24 we see that IMediaSample::GetPointer appears and indicates
that the webcam is recording.

Figure 24: API calls when monitoring the webcam.

5.4.2 Microphone

jSpy does not support microphone recording.

5.4.3 Keylogger

jSpy does include keylogging functionality, and in Figure 25 we can see the word "banana" being
written in Notepad.exe. In Figure 26 we see the calls that happens on the victim machine as the
RAT records the keystrokes when the user types "banana" in Notepad.exe. However, none of them
tells exactly which key has been pressed, as we saw with the other RATs. Thus, we are unable to
see exactly which keys are being pressed and can not discern that jSpy logs key presses.

Figure 25: The word "banana" written in Notepad.

46



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Figure 26: API calls appearing when keystrokes are entered on the victim.

5.4.4 Network Traffic

As we can see in Figure 27, no interesting information can be observed when we look at the
network traffic. The content of the calls appears to be random characters, such as shown in the
figure when using the webcam. The character "I" is sent a lot.

Figure 27: Network traffic from jSpy.
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5.5 Cloud Net

Cloud Net is a freely available RAT written in C#. It is still in beta and is under constant devel-
opment[87]. The last available update has been published on January 24. 2014. We tested Beta
v1,5.

Cloud Net appears to implement protections against hooking by not allowing us to hook the
process while it starts. But hooking it after it has started poses no problems and lets us monitor
it.

5.5.1 Webcam

As shown in Figure 28, we can see the IMediaSample::GetPointer API calls being made when
the video is recorded from the webcam.

Figure 28: API calls when the webcam starts.

5.5.2 Microphone

Cloud Net can also record audio through the microphone. It records in bursts of 5 seconds and
saves the corresponding audio clip. Figure 29 shows the relevant API calls. Here we can see that
waveInStart and waveInClose appears when the audio recording starts and stops. The reason
for the multiple start and close calls is that Cloud Net records audio in bursts.

5.5.3 Keylogger

If we type the word "banana" we can see that the calls ToUnicodeEx appear. These calls contain
our typed keystrokes, as shown in Figure 30 for the key "b". The rest of the word contains the
same calls and is thus omitted.

5.5.4 Network Traffic

Cloud Net operates through Remote Procedure Calls (RPC), which means that we do not see any
send or receive API calls.
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Figure 29: The microphone capture API calls.

Figure 30: API call for the key "b".

Webcam Network Traffic

Figure 31 shows the networking related API calls when viewing the webcam. Unfortunately, none
of them appear to give any indication about webcam network traffic actually occurring.

49



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Figure 31: Network traffic when viewing the webcam.

Audio Network Traffic

Figure 32 shows the API calls when recording the audio from the microphone. As we can see,
there are references to "AudioClientRpc" in the calls RpcStringBindingCompose and RpcBind-
ingFromStringBinding.

Figure 32: Network traffic when recording through the microphone.

Keylogger Network Traffic

The RAT makes no observable network traffic API calls when using the keylogger.
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5.6 LuxNET

LuxNET is a Visual Basic RAT created by someone going by the handle Xillux[88]. We have not
found this RAT used in any published attacks, but it is still a feature rich piece of software that
equals most other RATs in terms of functionality. The fact that it is little known does make it all
the more stealthy, and less likely to be detected by anti-virus software. We tested version Alpha
1 obtained from Hackforums.net in our experiments[88].

5.6.1 Webcam

LuxNET does not support webcam capturing, but it does provide a menu option for it, so it is
probably a planned feature.

5.6.2 Microphone

Figure 33 shows the API calls that occur when we record from the microphone on the victim. Here
we actually see some difference from the other RATs when recording. The waveInStart call ap-
pears, but in addition we see mciSendString which contains the strings "open new type waveaudio
alias capture", "record capture", "save capture C:\Users\malware\AppData\Local\Temp\rec.wav",
and "close capture".

Figure 33: API calls when recording from the microphone.

5.6.3 Keylogger

In Figure 34 we can see the API calls that happen when we type the word "master" on the victim
machine. As we have seen on the other RATs, ToUnicodeEx appears and contains the letter "m"
as shown. The other keys are omitted to save space.

5.6.4 Network Traffic

LuxNET communicates through RPC calls and they can be used to derive information about what
is happening in the RAT.

Microphone

In Figure 35 we see the API calls appearing from the network traffic when we use the micro-
phone. RpcStringBindingCompose and RpicBindingFromStringBinding contains an argument
called "AudioClientRpc".

Keylogger

LuxNET gave us no discernible network traffic when using the keylogger.
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Figure 34: API calls when typing on the keyboard.

Figure 35: API calls for network traffic when using the microphone.
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5.7 Skype

This section describes the video chat program Skype[89]. We chose to examine Skype because
it shares a lot of common features with a RAT, such as recording video and audio, and captur-
ing keystrokes. The difference however is that this behavior is both expected and desired in a
program such as Skype, and we should therefore see a different way of using such a program
compared to how a RAT would "interact" with its victim. The reason for studying Skype is thus to
find out what kind of behavior (i.e. API calls) that separates a benign program like Skype from a
RAT.

To perform our testing we started a video chat between two Skype clients over the Internet
and recorded the API calls on one of the machines when the different types of behavior was
performed.

5.7.1 Webcam

When we start a webcam chat we can see the calls in Figure 36 appearing. Once again, we can
notice that the call IMediaSample::GetPointer appears when the webcam is used, and this does
provide an indicator for this behavior. The webcam session lasted for 14 seconds, and the API
calls were consistently being made throughout that time period.

Figure 36: The API calls that appear when we use the webcam.

5.7.2 Microphone

By making a voice-only call through Skype we get the calls shown in Figure 37. The call lasted
for 2 minutes, and we can see the IAudioClient::Start and IAudioClient::Stop calls when the
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recording starts and stops. Note that this is different from the waveInStart and waveInStop calls
that we have seen previously in the RATs. This is probably caused by different libraries being
used, seen as the waveIn functions belong to the Winmm.dll[77] library, while IAudioClient
resides in the Windows Audio Session API (WASAPI)[90].

Figure 37: The microphone API calls.

5.7.3 Keyboard Input

Skype (obviously) does not contain a keylogger function, but it does provide the ability to send
chat messages to contacts, and can thus capture keyboard input. Therefore we should expect
that Skype will make API calls that tells it which keys have been pressed, and that it therefore
will make the same ones as a keylogger does.

By observation we can see that the functionality of Skype is a bit different than the RATs, for
where they would capture one key at a time, Skype enumerates all the keys using the MapVir-
tualKeyW and GetKeyNameTextW API calls at the moment you select a contact to chat with in
Skype. It does not make any individual API calls when individual keys are pressed however, so it
is impossible to distinguish individual keystrokes. Figure 38 and 39 shows the MapVirtualKeyW
and GetKeyNameTextW API calls that enumerates all the keys on the keyboard from alphabet
start to alphabet end.
A consequence of this is that by hooking the API calls performed by Skype we can not see which
keys that have been pressed, because Skype does not make any API calls related to individual
key presses, and we are thus prevented from observing what is written to Skype. This might be
an intentional counter-measure to prevent snooping of Skype data by other programs.
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Figure 38: The start of the keyboard API calls.

Figure 39: The end of the keyboard API calls.
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5.8 Google Hangouts

Google Hangouts is Google’s interpretation of a video chat service[91]. Just like Skype, Google
Hangouts produces behavior that can be said to be similar to what a RAT would do, and therefore
we wanted to look at its API calls to see how they compare to those of the RATs.

This experiment was performed with Google Chrome where we used Google Hangouts with
the Google Talk plugin. Using this plugin allows users to video chat through Google Hangouts.
As with Skype, we set up a connection between two Google Hangouts clients over the Internet
and recorded the API calls on one of the machines.

5.8.1 Webcam

In Figure 40 we can again observe the IMediaSample::GetPointer call appear when the webcam
is recording.

Figure 40: The API calls when the webcam records.

5.8.2 Microphone Capture

Figure 41 shows the API calls when a voice call is made. The voice call lasted for about 25
seconds. Just like in Skype, IAudioClient::Start and IAudioClient::Stop appears here as well.

5.8.3 Keyboard Input

Google Hangouts makes no API calls that allows us to discern which keys that have been pressed
when we use the chat functionality.
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Figure 41: The voice API calls.

57



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Application Has a GUI User Interactivity API Calls Appear-
ing

Dark Comet Yes Yes
njRAT No No
jRAT Yes, tray icon (free ver-

sion)
No

jSpy No No
CloudNet No No
LuxNET No No
Skype Yes GetFocus & SetFocus
Google Hangouts Yes GetFocus & SetFocus

Table 1: The API calls related to user interactivity for each program.

5.9 User Interaction

Now that we have seen which API calls that appear when the various kinds of behavior occur,
it is time to shift our focus to those API calls that we have used to distinguish benign programs
from the RATs. As we mentioned earlier, our theory has been that we can separate a malicious
program from a benign one based on the API calls related to the programs interactivity with
the user, meaning that a legitimate program would interact with and show itself to the user by
displaying windows, buttons, dialog boxes and so on, while a RAT wants to stay as hidden as
possible and not do anything that alerts or notifies the "user" to its presence. This has been ex-
plained as Sami et al. as a common way of behaving for malware[52].

To separate benign and malicious programs we have focused on two user interactivity API calls,
namely SetFocus and GetFocus. These two API calls sets the keyboard’s attention to the current
window, or checks if it already has it, respectively, and would only occur if a window is present
for the given program. We have not observed that any of these calls appear in any GUI-less
programs, and do therefore appear to be a sufficient indicator of whether or not the user is in-
teracting with the given program. Table 1 shows a summary of the API calls that appeared when
we checked for user interactivity in the RATs and benign programs.

5.9.1 Example

Let us look at an example to illustrate this. If we type the word "master" into Notepad.exe we
can see that the API calls GetFocus and SetFocus appear as in Figure 42. This means that the
Notepad.exe window has captured the keyboard input, and that it checks to see if it still has it.
If we look at the RAT CloudNet however, we can see that when we type on the keyboard, the
API calls shown in Figure 43 appear, but that they do not contain the GetFocus or SetFocus calls
that we saw appear in Notepad.exe when we did the same thing.
Another example can be seen in Figure 44. This is the calls that appear when we put the
Notepad.exe window in the foreground, and as we can see, the API call GetForegroundWin-
dow[92] is performed, and a handle is returned to the window in the foreground, which means
that the monitored program, Notepad.exe, is in the foreground of the screen, and thus has the
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Figure 42: The Notepad.exe API calls for user interactivity.

Figure 43: No GetFocus or SetFocus calls appear in CloudNet.

user’s attention. We have not used these API calls in our testing, but we mention them here as
an illustration of other API calls that also can be used.

Figure 44: API calls for checking what is the foreground window.

5.10 Obfuscation

As a quick experiment we have also tested out some various obfuscation tools to see if we could
make the RATs undetectable for signature-based anti-virus software. A RAT that is undetectable
by anti-virus software is usually referred to as "Fully Undetectable" or just FUD for short, and
can be considered "the holy grail" of RATs[93]. In addition, the detection rate of the RATs could
potentially be considered a good indicator of their popularity and spread since a more widely

59



Detecting Remote Administration Trojans through Dynamic Analysis using Finite-State Machines

Application Before Obfuscation After Obfuscation
Dark Comet 38/51 Unable to Obfuscate
njRAT 38/51 6/51
jRAT 12/50 3/50
jSpy 0/46 Unable to Obfuscate
CloudNet 12/50 3/50
LuxNet 19/52 2/52

Table 2: VirusTotal detection rate.

spread RAT is more likely to be detected by anti-virus software.

We used the website VirusTotal.com[94] which scans a submitted file with 52 different anti-
virus programs and reports back which ones who detect the submitted file. Table 2 lists our
findings before and after using the obfuscation tools. For .NET based programs we used Con-
fuser[70], and for Java-based ones we used ProGuard[71]. We attempted to run the RAT again
after performing the obfuscation, and we found no differences in the functionality between the
obfuscated and unobfuscated version. This is a good argument for why we need new detection
mechanisms for malware in general and RATs in particular.
In short, what these results show is that we are able to make the RATs fully undetectable for
signature-based anti-virus with a minimal amount of work, but it will still make the same API
calls as before it was obfuscated.

5.11 API Call Descriptions

The reader has probably noticed that we have not yet described what the API calls we have stud-
ied actually do, so we should remedy this by taking a look at how the API calls are described in
the official documentation. The curious reader should of course visit Microsoft’s documentation
themselves for a more in-depth look, but we feel that it is in its place to repeat some of that
information here. Table 3 shows the API calls we examined, where they are used, and a short
description of what they do.
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API Call Behavior Description
IMediaSample::GetPointer[95] Webcam Retrieves a pointer to the buffer

of a media sample. In other
words, it is called when video is
being recorded.

waveInStart[77] Microphone Starts receiving input from the
given audio input device.

waveInStop[96] Microphone Stops receiving audio input.
waveInReset[97] Microphone Stops receiving audio input and

sends the data back to the appli-
cation.

IAudioClient::Start[98] Microphone Starts the audio stream. I.e.
starts to record audio from the
microphone.

IAudioClient::Stop[99] Microphone Stops the audio stream. I.e. stops
recording audio from the micro-
phone.

ToUnicodeEx[100] Keylogger Translates a keypress to a uni-
code character.

ToAscii[80] Keylogger Translates a keypress to a char-
acter in the local alphabet.

SetFocus[101] User Interaction Keyboard focus is set to a specific
window.

GetFocus[102] User Interaction Gets the handle of the window
with keyboard focus.

send[103] Network Sends data to a socket.
RpcStringBindingCompose[104] Network Creates a handle to a string bind-

ing.
RpcBindingFromStringBinding[105] Network Creates a binding handle from a

string.

Table 3: Descriptions of the API calls.
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6 Results

Now it is time to look at how we can use all this data to model the behavior of the RATs. As
explained before, we have theorized that the different modes of behavior in the RATs can be
represented by using finite-state machines that represents the behavior as states and API calls as
the input alphabet that changes these states. Very simply, this means that we look at which API
calls that initiates a certain behavior.

Much of the observed RAT behavior does however, as we showed in the previous chapter, cor-
respond to the same behavior in several legitimate programs too, such as video chat or word
processing. So to allow us to get a more precise recognition we also have to model other charac-
teristic traits of the RATs, such as the lack of API calls relating to user interaction and individual
characteristics in network traffic. The clue, however, is that several of the finite-state machines
can be used to describe both legitimate and malicious behavior, but combinations together with
other kinds of behavior, such as hiding its presence, gives a more accurate picture that can be
used to detect if the program is a RAT or not.

6.1 API Call Summary

Before we start to create the finite-state machines we should again take a look at the API calls
that the different RATs used for their behavior. This is summarized in Table 4, and this is the
data we will use in our finite-state machines. Table 5 shows the API calls and arguments that
represent the network traffic, which will be used to model the network traffic.
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Application Webcam Microphone Keylogger
Dark Comet IMediaSample::GetPointer waveInStart & waveInClose ToAscii
njRAT IMediaSample::GetPointer waveInStart & waveInReset ToUnicodeEx
jRAT Not Supported waveInStart & waveInClose Not Supported
jSpy IMediaSample::GetPointer Not Supported No calls identify individual key strokes
CloudNet IMediaSample::GetPointer waveInStart & waveInClose ToUnicodeEx
Lux Net Not Supported waveInStart & mciSend-

String("save capture
C:\Users\Username\AppData\

Local\Temp\rec.wav")

ToUnicodeEx

Skype IMediaSample::GetPointer IAudioClient::Start & IAudio-
Client::Stop

None (Enumerates all keys when enter-
ing chat, but no discernible individual
keystrokes)

Google Hang-
outs

IMediaSample::GetPointer IAudioClient::Start & IAudio-
Client::Stop

None

Table 4: The API calls denoting the different behavior.

Application Webcam Microphone Keylogger
Dark Comet send contains data

prepended by the word
JFIF

RpcStringBindingCompose &
RpcBindingFromStringBinding
containing "Audiosrc". "EndReceive"
sent before socket closes.

Nothing/Scrambled
Data

njRAT send starts with the word
"CAM"

send starts with the word "MIC" send starts with the
word "kl"

jRAT Not Supported RpcStringBindingCompose contains
the parameter "AudioClientRpc"

Not Supported

jSpy None Not Supported None
CloudNet None RpcStringBindingCompose &

RpcBindingFromStringBinding
contains "AudioClientRpc".

None

Lux Net Not Supported RpcStringBindingCompose &
RpcBindingFromStringBinding
contains "AudioClientRpc".

None

Table 5: The API calls and arguments for the network traffic.
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6.2 Finite-State Machine for Webcam Activity

The finite-state machine in Figure 45 models the states for deciding if the webcam is recording
or not. As we can see, IMediaSample::GetPointer calls are done when the webcam is record-
ing, and a timeout period followed by no new IMediaSample::GetPointer calls means that the
webcam has stopped recording, in accordance with what we observed in Section 5.

Figure 45: The finite-state machine for detecting if the webcam is recording.
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6.3 Microphone Activity

Figure 46 shows the finite-state machine for deciding if the microphone is recording. waveIn-
Start and waveInStop are performed as the microphone starts and stops recording, respectively,
and can therefore be used to model this behavior.

Figure 46: The finite-state machine for detecting if the microphone is recording.
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6.4 Keylogger Activity

Figure 47 shows the finite-state machine for detecting if the keylogger is active or not. By looking
at the API calls ToAscii or ToUnicodeEx, we can observe which keypresses that are observed by
the given program.

Figure 47: The FSM for detecting keylogging.
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6.5 User Interactivity

The behavior models by themselves are sadly insufficient for detecting the presence of a RAT
because, as we have seen in the previous chapters, other applications also perform the same API
calls for the same behavior. The missing piece here is the combination of behavior API calls and
the absence of user interactivity, and we can therefore use this information to create a model for
distinguishing them.

Our hypothesis has been, as stated previously, that a RAT will try to stay hidden and there-
fore not show itself or communicate with the user. Although some of the RATs do provide the
ability to send messages to the user, this is something that would be a big clue for the user that
they are infected. This lack of visible interaction would be a indicator that something is wrong
when combined with behavior that usually requires human interaction.

We therefore choose to regard this behavior as strange, seen as webcam, microphone and key-
board usage inherently are interactive tasks that prompts user interaction. It is thus these sus-
picious states where information is being recorded but no interactivity with the user is detected
that we are interested in observing and modeling. If we then add the user interactivity API calls
we get a finite-state machine as shown in Figure 48. This the complete model containing all the
behavior seen previously, and should therefore be a suitable model for detecting RAT behavior.
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Figure 48: The complete behavior model.
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6.6 Network Activity

As we also have seen previously, the RATs have different unique identifiers in the network traffic
that can also be used to pinpoint exactly which RAT is present. Figure 49 shows how we can use
some of the network traffic to detect what is going on in which RAT.

Figure 49: Network traffic finite-state machine.

6.7 Summary and Research Questions

We should round of this section by doing a summary of our contributions and how they relate to
the research questions we identified at the start of this thesis. Each question is listed below with
a discussion of how we have fulfilled them.

6.7.1 What kind of behavior is unique for a RAT?

This research question was answered in Section 4.1 where we theorized which behavior that we
could expect to see in the RATs. We have shown that this behavior did indeed occur in our analysis
in Section 5, and that based on our analysis, this information could be used to discriminate a RAT
from a program with similar behavior. What we also have seen is that most of the RATs made the
same API calls for the same behavior, meaning that it was a straight-forward process to create
general models for it.
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6.7.2 Which API calls can be used to discover this behavior?

This question was attempted answered in Section 5. As we saw there, we defined three behavior
features that we wanted to look at, namely webcam, microphone and keylogging. By studying
the six RATs we were able to identify a set of API calls that can be used to indicate when they
perform the three types of behavior, and we feel that we have answered this question in our
analysis. The unique part of our work is which behavior we looked at, and we have not seen
any other work that looks at the same indicators or the same behavior as we have, or who has
concentrated on detecting RATs. Some similar work has been done by Gao et al. [34], Charlier et
al. [2] and Kirda et al. [62] who also looked at how to detect different behavior with API calls,
but they have differed in the kinds of behavior that they looked at.

6.7.3 How can we use this information to discriminate a RAT from a benign program?

This question has been answered in Section 5.9 where we looked at which API calls that appeared
when user interaction with a program could be registered. We used this information to separate a
RAT from a benign program that looks like a RAT by theorizing that the user would interact with
the benign program, but not the RAT. This was shown to be mostly true in Section 5.9 where
we saw that programs without a GUI made no API calls for user interaction, and thus could be
considered as having behavior that indicated that it wanted to hide.

6.7.4 Is it possible to model the RATs behavior with a finite-state machine and detect
them based on that?

We have shown how we can translate the observed behavior from Section 5 into finite-state
machines that describes how the API calls puts the system into different states, i.e. performs
specific behavior. By modeling this we have shown that the API calls can be simplified into
models that detect the different types of behavior, based on very little information.

6.8 Discussion

The answers to these research questions also illustrates our contributions. Our main contribu-
tion has been our proposed model for detecting RATs based on behavior and user interaction.
The next logical addition to this work would be to get a larger sample size of RATs and benign
programs and test our proposed models better to see how it holds up against other RATs and
programs, as the limited sample size is a weakness in our current work. We have not looked
exhaustively at all the API calls available for detecting various types of behavior either, nor have
we tried to create scenarios that may fool our proposed model. But based on the results we have
obtained so far, we believe that API call monitoring is a viable technique for detecting RATs and
that it might be a suitable solution for the future.

Below is a summary of the strengths and weaknesses of our proposed solution and a discus-
sion of each of these points.

6.8.1 Advantages of Our System

• Can detect new samples based on behavior - By using the observed behavior and the created
models, we believe that we can detect new RATs based on their API calls. As we have seen,
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the RATs make the same API calls for the same behavior and if we have observed it once we
can see who matches it.

• Fast - The hooking mechanism employed by Rohitab API Monitor has in our experience been
fast and provided little performance impact. We have not performed any performance analysis
on the tool or other hooking techniques, but Microsoft did in their Detours paper[31] state
that they had a 3% overhead when using the proposed hooking technique.

• Scalable - As we have shown, our behavior models can easily be expanded by adding new
behavior. The webcam, microphone and keylogger behavior is just a start, we could also add
functionality for detecting remote controlling of the screen or transferring personal files.

• Accurate - By observation we have shown that our model can be used for accurately predicting
which RAT is running by modeling the specific API calls of that RAT. With our combination
of API calls and parameters we are able to gather unique identifiers for each RAT, and can
thus create a model that accurately pin-points the exact RAT that is present and what it is
doing. By using more unique parameters and API calls we should be able to become even
more accurate.

• Robust - Our model should have a greater reliability when considering offshoots with mi-
nor variations from the same malware family by considering features that usually remains
constant, such as network traffic and libraries used for implementing functionality. Thereby
we can remain unaffected by obfuscation techniques since we care about the performed API
calls, and not about signatures based on byte sequences.

6.8.2 Disadvantages of Our System

• Requires manual updating - Currently, the model has to be updated with new RAT identifiers
manually. Our system will be able to predict that a RAT might be present based on general
identifiers such as the presence of webcam recording and no user interaction, but will not be
able to pinpoint the exact RAT that is present since it has not been updated to know about
the newest families based on network traffic. Updating with new families does thus have to
be done manually, and does require some effort by manually examining the API calls and
looking for relevant identifiers.

• May be easy to spoof - We have not tested how our system can be fooled. It is possible that
a malicious program can perform API calls that are related user interaction, but not visible
for the user, by e.g. creating a 1x1 pixel window or else calling the appropriate APIs without
doing anything. We have not examined the possibility of doing this, but it could be considered
further work.
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7 Conclusion

In this master’s thesis we have shown how Application Programming Interface (API) calls can be
used to detect and model the behavior of Remote Administration Trojans (RAT). We have looked
at the following features of six different RATs and used the API calls related to performing this
behavior to detect when it is occurring:

• Use of the webcam

• Use of the microphone

• Logging of keystrokes

• User interactivity with the program

• Identifiers in network traffic

Our main findings are that the majority of the examined RATs appear to use the same API calls
when exhibiting the same behavior, and by looking for specific API calls we can determine when
a specific action, such as activating the webcam, is happening.

This information is not too useful on its own however, since we also have shown that legiti-
mate programs such as Skype and Google Hangouts make many of the same API calls as the
RATs when performing the same behavior, so we have also looked at API calls related to the user
interacting with the program exhibiting the examined behavior.

The theory behind this has been that the RATs want to stay hidden, and will therefore not make
any API calls that are related to user interaction, such as showing windows or dialog boxes.
We have shown that this is true by comparing user interactivity API calls from the RATs with
those from benign programs, and we show that the RATs do not make API calls related to user
interaction, with one exception. An example of this is that both the RAT and Notepad.exe will
register the user’s keystrokes, but only Notepad.exe will make such API calls as GetFocus and
SetFocus which relates to capturing the user’s keyboard’s attention into a given window. This
means that the RAT will make API calls for capturing keystrokes, just like Notepad.exe, but it
will do it silently, and not have a window and reveal itself to the user.

In addition, we have looked at the API calls that are used for network traffic when the RATs
communicate with their master, and we show that several of the RATs give away indicators about
what kind of actions it is about to perform and that this therefore can be used to predict what
the RAT is up to.

We use all of this information to create finite-state machines that can be used to detect new
RATs based on their exhibited behavior and their interaction with the users. The goal of this is to
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detect the RATs based on their behavior, rather than on classical byte-pattern signatures.

Our main conclusion, based on the data we have collected, is that it is possible to identify what
kind of actions a program is performing, e.g. webcam or microphone recording, and if this is
performed by a RAT or a benign program based on if the user interacts with the program or not.
By modeling the API calls used for this behavior, we believe that we can detect new RATs based
on the actions they perform.
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8 Future Work

An obvious addition to our work would be to include a larger sample size of both malicious and
benign programs to identify new API calls that might be used by other programs and to see if
our proposed models still hold true as the sample size increases.

Our models have been created using manual analysis of the RATs, which has been time-consuming,
and automating parts of this process could be a huge time-saver.

Another improvement would be the ability to automatically run and extract relevant informa-
tion from RATs to build more accurate detection rules. The nature of the RATs does make them
quite dependent on manual control for input, and it might therefore be difficult to automate.
Sekar et al. has however proposed a system for automatically creating finite-state machines from
program behavior [38].

Another obvious enhancement would be to look at more RATs and benign programs to better
determine if there are cases where it is more difficult to separate a RAT from a benign program,
i.e. situations where RATs make API calls related to user activity, or where benign programs
that uses webcam, microphone, etc. does not. Such cases would require more fine-tuning of the
rules and could potentially invalidate our proposed model by showing that the false-positive rate
would make it infeasible of the data set becomes large enough.

Performance could also become an issue, but we have not tested it yet, but our subjective ex-
perience from our testing so far has been that as long as we do not hook several thousand
different API calls at once, performance is negligible and not an issue. Microsoft quoted figures
of 3% performance decrease when proposing the Detours hooking system[31]. Quantifying the
performance impact and comparing it with similar systems would be an interesting indicator of
its viability however.

Another interesting observation is that some RATs refuse to run if they detect that they are be-
ing hooked while launching. Creating a system for hooking all process at startup could actually
prevent some malicious programs from running by using their anti-analysis tricks against them.
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