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Inflammasjon og prediksjon av alvorlige komplikasjoner etter 
hjertekirurgi 

Hjertekirurgi utløser en betennelsesreaksjon i kroppen, som står sentralt i utviklingen av 
flere alvorlige komplikasjoner etter operasjonen. Nyresvikt og hjertesvikt er to av de 
vanligste alvorlige organkomplikasjonene, mens den mest alvorlige komplikasjonen er 
død. Formålet med avhandlingen var å utvikle matematiske modeller som kunne forutsi 
risikoen for død og for nyresvikt etter hjertekirurgi, og å undersøke om økt betennelse i 
kroppen før hjerteoperasjon var assosiert med akutt hjertesvikt etter operasjon.  

Med utgangspunkt i variable som er enkle å registrere i klinisk arbeid og tilgjengelige i 
forkant av operasjonen utviklet vi risikomodeller som kunne forutsi risikoen for død og 
for nyresvikt etter hjerteoperasjon. Modellene var nøyaktige og enkle å bruke. Testing 
viste at modellene med stor sannsynlighet vil fungere godt også for fremtidige pasienter. 
Både for pasienter, pårørende og helsepersonell er det interessant å kunne forutsi 
risikoen for å utvikle bestemte komplikasjoner etter en hjerteoperasjon. Nøyaktig 
informasjon om risikoen før et inngrep kan også brukes til å avgjøre om noen pasienter 
skal få en annen behandling og til fordeling av ressurser, i tillegg til å være viktig i 
kvalitetssikringsarbeid. For å undersøke sammenhengen mellom betennelse i kroppen 
før hjerteoperasjon og hjertesvikt etter operasjonen, målte vi fire betennelsesmarkører i 
blodprøver som ble tatt før hjertekirurgi. De fire markørene var C-reaktivt protein 
(generell betennelsesmarkør), laktoferrin (markør for aktivering av nøytrofile 
granulocytter, forsvarsceller i det medfødte immunforsvaret), neopterin (markør for 
aktivering av monocytter, forsvarsceller i det medfødte immunforsvaret) og det 
terminale komplement kompleks (markør for aktivering av komplement). Vi fant en 
sammenheng mellom forhøyet konsentrasjon av neopterin før operasjon og hjertesvikt 
etter operasjon. Dette gir ny kunnskap om hvilke deler av betennelsesresponsen som er 
medvirker utviklingen av hjertesvikt etter hjerteoperasjon. 

Metoder: Risikomodellene er basert på data fra omtrent 5000 pasienter som 
gjennomgikk åpen hjertekirurgi ved St. Olavs Hospital, Trondheim, i årene 2000-2007. 
Det ble brukt logistisk regresjon til å utvikle risikomodellene. Sammenhengene mellom 
betennelse i kroppen før operasjon og hjertesvikt etter operasjon ble undersøkt ved hjelp 
av data og blodprøver fra omtrent 1000 pasienter som gjennomgikk hjertekirurgi i årene 
2008-2010 ved St. Olavs Hospital, Trondheim. Logistisk regresjon ble brukt til å 
analysere sammenhengen mellom fire betennelsesmarkører og hjertesvikt etter 
hjertekirurgi. 
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Summary 
Background 

In cardiac surgery improvements in quality of care have been a major focus for several 
decades. Statistical models for predicting the risk of operative mortality and other 
adverse outcomes have been an important part of this work. Risk prediction models may 
be used to inform patients of the risk of the planned operation, to adjust complication 
rates to enable a valid comparison between institutions or surgeons, and to identify 
potential fields of improvement. Risk prediction models were often less accurate when 
applied to other patient populations than the one they were derived from. No risk 
prediction models for mortality or acute kidney injury following cardiac surgery had 
been developed using data from Norwegian patients.  

The surgical trauma and the artificial surfaces in the cardiopulmonary bypass circuit 
evoke a systemic inflammatory response. The inflammatory response includes 
activation of leukocytes, endothelium, and plasma cascade systems including the 
complement system, coagulation and fibrinolysis. Inflammation is thought to play a 
pivotal role in the development of major complications following cardiac surgery.  

Cardiac dysfunction following open-heart surgery is a clinical syndrome where reduced 
cardiac output results in insufficient oxygen delivery to the tissues. It is thought to be 
induced by ischaemia and reperfusion, as well as inflammation, increasing the 
myocardial oxidative stress. Several inflammatory biomarkers, including C-reactive 
protein (general marker of inflammation), lactoferrin (neutrophil activation marker), 
neopterin (monocyte/macrophage activation marker) and the terminal complement 
complex (complement activation marker), had previously been associated with adverse 
cardiac outcomes in ischaemic heart disease.  

Aims 

One aim was to develop local risk prediction models for operative mortality and acute 
kidney injury following cardiac surgery. Another aim was to investigate whether 
increased preoperative inflammation was associated with the development of cardiac 
dysfunction following open-heart surgery. 

Methods 

For developing the risk prediction models for mortality and acute kidney injury we 
included all 5029 adult patients who underwent open-heart surgery at St. Olavs 
University Hospital, Trondheim from 2000 through 2007. We applied multivariable 
logistic regression for model development, and the models were internally validated 
using bootstrapping methods. For investigating whether increased preoperative 
inflammation was associated with cardiac dysfunction following open-heart surgery we 
included 1018 consecutive patients who underwent open-heart surgery at St. Olavs 
University Hospital, Trondheim, Norway from 1 April 2008 to 19 April 2010. We 
applied enzyme immunoassay to measure the preoperative concentration of C-reactive 
protein, lactoferrin, neopterin and the terminal complement complex in plasma. Logistic 
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regression was used for the statistical analysis, and we adjusted for clinical variables 
previously associated with postoperative cardiac dysfunction.  

Results and discussion 

The mortality risk prediction model consisted of eight preoperative variables easily 
obtainable in clinical practice: Age, degree of urgency for surgery, female gender, 
serum creatinine concentration, chronic pulmonary disease, chronic cardiac 
insufficiency, previous cardiac surgery, and type of operation. The acute kidney injury 
risk model included eleven easily available preoperative variables: age, body mass 
index, lipid lowering treatment (protective effect), hypertension, peripheral vascular 
disease, chronic pulmonary disease, haemoglobin concentration, serum creatinine 
concentration, previous cardiac surgery, emergency operation, and operation type. Both 
the mortality and the acute kidney injury risk models displayed good discrimination and 
calibration in our population.  

We found that neopterin was associated with cardiac dysfunction after cardiac surgery, 
and this association remained significant also after adjustment for clinical variables 
associated with postoperative cardiac dysfunction.  

Conclusions 

Our local preoperative risk models predicted mortality and acute kidney injury 
accurately, and were generally robust. Our findings regarding neopterin and cardiac 
dysfunction support the hypothesis of the role of inflammation and oxidative stress in 
the development of postoperative cardiac dysfunction. 

 

Trondheim April 2015, 

Kristin Sandal Berg  
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Introduction 

Historical aspects 

Cardiac surgery 

Cardiac surgery had long been prevented by the lack of proper anaesthetics, and its 

history began late in the 19th century. The first reports on cardiac surgery were on repair 

of heart wounds resulting from stabbing. The German surgeon Ludwig Rehn 

successfully performed the first heart operation, the suture of a heart wound, 9 

September 1896 in Frankfurt, Germany [1]. The patient was a 22-year old man who had 

been stabbed in the heart two days earlier, and his condition had worsened when Dr. 

Rehn decided to operate on him. He discovered a 1.5 cm hole in the right ventricle, and 

decided to suture the wound. The patient recovered, and Dr. Rehn reported this case the 

year after. Ten years later he published the results of 124 operations on heart wounds, 

with a mortality of 60% [1].  

Early in the 20th century surgery on heart valves was introduced, and later also surgery 

on congenital defects. However, up to the 1940s cardiac surgery remained experimental; 

the number of patients was low and the mortality rates were high [1, 2]. In the 1940’s 

the volume of cardiac surgery slowly increased in the USA, but without the 

cardiopulmonary bypass it was confined to a small number of procedures like closure of 

a patent ductus arteriosus, coarctation repair, mitral commisurotomy and the Blalock-

Taussig shunt [1, 2]. The Blalock-Taussig shunt was used to alleviate cyanotic heart 

defects: a branch of either the carotid or subclavian artery was connected to the 

pulmonary artery so that the lungs would receive more of the deoxygenated blood. 

Cardiopulmonary bypass 

Cardiopulmonary bypass devices can perform gas exchange and pump the blood after 

cannulation of the right atrium or the venae cavae and the aorta. Thus, the blood 

bypasses the heart and lungs, and is delivered to the rest of the body. This permits the 

surgeon to operate inside the heart and to keep the heart and lungs still. The invention of 

cardiopulmonary bypass therefore revolutionised cardiac surgery [1, 2]. The first 

successful attempt of using complete cardiopulmonary bypass took place 6 May 1953 
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by John Gibbon, an American surgeon who has been given much of the credit for the 

development of cardiopulmonary bypass [1-3]. The patient was a female student with an 

atrial septal defect, and she was still alive and well fifty years after the operation. In the 

1950’s open-heart surgery was still offered to very few patients. Around 1970 the 

coronary artery bypass grafting procedure (CABG) gained acceptance, and since then 

improvements were made to the cardiopulmonary bypass devices and protection of the 

myocardium during the procedure [3]. By the 1980’s cardiac surgery was considered 

standard care [3].  

Risk of major complications following cardiac surgery 

Since the 1980’s the mortality rates have decreased. The reported 30-day mortality for 

CABG procedures in the Society of Thoracic Surgeons (STS) database (USA) was 3.2% 

between 1980 and 1990 [4],  3.1% for CABG procedures performed between 1997 and 

1999 [5], and 2.3% between 2002 and 2006 [6]. For comparison, a study of survival 

after CABG in a Norwegian population operated between 2003 and 2006 found a 30-

day mortality rate of 0.8% [7].  

As the mortality rates decreased, the patients’ preoperative status worsened in several 

aspects. Between 1980 and 1990 22.7% of the CABG patients in the STS database were 

older than 70 years [4], whereas 22.0% were aged 75 years or older between 2002 and 

2006 [6]. A comparison of proportions having certain preoperative morbidities in the 

STS database in 1980 to 1990 and 2002 to 2006 is given in Table 1. 

Table 1. Comparison of preoperative morbidity in coronary artery bypass grafting 

patients in the Society of Thoracic Surgeons’ database in the years 1980-1990 and 

2002-2006, USA. 

Preoperative morbidity 1980-1990 [4] 2002-2006 [6] 

Diabetes mellitus 17.9% 36.3% 

Chronic pulmonary disease 3.2% 20.0% 

New York Heart Association class IV 23.6% 21.3% 

Cerebrovascular disease 1.38% 13.6% 
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The decrease in operative mortality occurring concomitantly with the increase in 

preoperative morbidity is often referred to as the risk paradox in cardiac surgery. This 

phenomenon has often been attributed to the great efforts made to improve quality of 

care.  

Cardiac surgery is still associated with a risk of postoperative complications and 

mortality. Systemic inflammation following open-heart surgery is thought to play a 

pivotal role in the development of complications [8]. Inflammation is the body’s 

reaction to tissue injury, and the cardiac operation represents a major trauma to the 

body. Moreover, blood comes into contact with foreign surfaces in the cardiopulmonary 

bypass circuit. A comparison of on-pump versus off-pump cardiac surgery indicated 

that cardiopulmonary bypass is responsible for the activation of the complement 

cascade [9]. Furthermore, off-pump cardiac surgery was associated with lower plasma 

levels of some pro-inflammatory markers, such as interleukin-8 and tumour necrosis 

factor-α [9]. However, C-reactive protein and interleukin-6 appeared to be similarly 

elevated in both patient groups [9]. Ischaemia and reperfusion is another powerful 

inflammatory stimulus, occurring with the aortic cross-clamping and declamping [10]. 

During reperfusion the free radical activity also increases [11]. This thesis focuses on 

three major postoperative complications after cardiac surgery in adults, namely 

mortality, acute kidney injury (AKI), and cardiac dysfunction. 

Mortality 

Death is the most serious complication following cardiac surgery.  Mortality is often 

measured as 30-day-mortality or in-hospital mortality or a combination of both, 

referring to death occurring within 30 days postoperatively or during the primary 

hospital stay, respectively. Postoperative mortality following open-heart surgery ranges 

from less than 1% to almost 5% [12, 13], depending on case mix, surgical procedures 

included in the analyses, and quality of care. 

Among the most common causes of death following CABG are cardiac failure, 

respiratory failure, haemorrhage, neurologic injury and dysrhythmia [14]. In patients 

requiring prolonged ventilation following cardiac surgery, the most important 

determinant for mortality is multi-organ dysfunction [15]. It is generally acknowledged 
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that the mortality risk increases with increasing age and preoperative morbidity in major 

organ systems such as the kidneys, lungs, heart, peripheral arteries and nervous system 

[16]. Naturally, critically ill patients who are likely to die without surgery have a high 

postoperative mortality risk [16]. Moreover, complex surgical procedures carry a greater 

risk than standard CABG [16].  

Acute kidney injury 

Most patients develop a slight reduction in renal function after heart surgery, but this is 

rarely detected by serum creatinine measurements [17]. However, AKI, a more severe 

degree of renal function deterioration, is one of the most common serious organ 

complications after open-heart surgery, and occurs in 3-24%, depending on the 

definition [18-21]. AKI severe enough to require dialysis occurs in 1.1-3.9% [21-24]. 

Postoperative AKI is associated with increased mortality and morbidity [20, 21, 23, 25], 

and the mortality rates among patients who experience AKI ranges from 26 to 43%, and 

for patients who require renal replacement therapy the mortality is 38-64%. AKI 

following open-heart surgery increases the risk of later developing chronic kidney 

disease in patients with normal kidney function preoperatively [26]. Moreover, it 

increases the long-term mortality, and may lead to progression of previously acquired 

chronic kidney disease [26]. 

The Acute Kidney Injury Network have proposed that AKI should be defined as an 

absolute increase in serum creatinine of 26.4 μmol/L (0.3 mg/dL) or more, a relative 

increase in serum creatinine of 50% or more, or urine output less than 0.5 mL/kg per 

hour for more than six hours [27]. Even so, it takes some time to develop a detectable 

increase in serum creatinine, and the diagnosis of AKI is often delayed [20, 28].  

The reasons for AKI following cardiac surgery remain to be further elucidated [8]. 

Proposed mechanisms include ischaemia and reperfusion, inflammation, neuro-

hormonal activation and endogenous and exogenous toxins [29]. Both cardiopulmonary 

bypass time and haemodynamic instability during the cardiac operation have been 

associated with postoperative renal dysfunction, suggesting that systemic inflammation 

as well as ischaemia and reperfusion may be involved [21]. Inflammation is crucial in 

mediating the deleterious effects of ischaemia and reperfusion causing kidney injury 
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[30]. Neuro-hormonal activation includes the release of adrenal medullary hormones 

and activation of the renin-angiotensin-aldosterone system, affecting renal perfusion 

[29]. Contrast media used in angiography are potent exogenous renal toxins [29]. Free 

haemoglobin from haemolysis due to mechanical stress in the cardiopulmonary bypass 

circuit is one of the hypothesized endogenous renal toxins [29].  

Cardiac dysfunction 

In the setting of cardiac surgery, a postoperative reduction in ventricular function is 

commonly seen, and ventricular function is often deteriorating for several hours after 

surgery before recovery [31]. The clinical syndrome of cardiac dysfunction is 

characterised by reduced cardiac output leading to insufficient blood delivery to the 

tissues, and is sometimes also referred to as the low cardiac output syndrome [32]. In 5-

12% of patients it is severe enough to require intravenous administration of several 

inotropic agents or an intra-aortic balloon pump to maintain sufficient blood pressure 

[33-35], and strongly influences mortality, ranging from 7 to 38% depending on case 

mix, type of surgery and end-point definition [32, 36]. Postoperative heart failure was 

by far the most common mode of death in a study from 1998, concerning coronary 

artery bypass grafting patients in northern New England, USA, applying to 64.8% of in-

hospital deaths [14]. In a Swedish study of 5-year survival after cardiac surgery from 

2007, cardiac death was the most common cause of death, applying to 50.4% of overall 

mortality, and 69.5% of deaths in patients who had suffered postoperative heart failure 

[36]. 

Cardiac dysfunction following open-heart surgery is often considered as myocardial 

stunning, evoked by ischaemia and reperfusion injury [37, 38], and also local and 

systemic inflammation [39]. Myocardial stunning is the mechanical cardiac dysfunction 

occurring after ischaemia and reperfusion, notwithstanding re-established normal or 

near-normal blood flow and without any sign of irreversible damage [40]. As cardiac 

surgery involves controlled ischaemia and reperfusion of the heart, followed by restored 

myocardial perfusion, postoperative cardiac dysfunction has often been regarded as 

myocardial stunning when there is no evidence of irreversible damage [37]. The 

proposed mechanisms of myocardial stunning involve oxidative stress and calcium 

overload, leading to modification or damage of the contractile apparatus and decreased 
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calcium responsiveness [38]. The recovery from myocardial stunning occurs slowly as 

new contractile proteins are synthesized or modified proteins are repaired [38].  

The greatest reduction in left ventricular function in stunning most often occurs 

immediately after reperfusion [37]. However, after open-heart surgery, the left 

ventricular function often decreases for several hours postoperatively, suggesting that 

the underlying mechanisms may be partially different from those of myocardial 

stunning [39]. Elevated levels of the pro-inflammatory cytokine interleukin-6 measured 

immediately after cardiopulmonary bypass has been correlated with poor ventricular 

function, measured as changes in wall motion score postoperatively compared to the 

preoperative wall motion score [41]. Similarly, lower levels of interleukin-6 were 

associated with improvement in ventricular function measured as improvement in wall 

motion score in the same study [41]. As cardiac surgery evokes an inflammatory 

reaction, it is likely that inflammation also may be part of the underlying mechanisms 

responsible for cardiac dysfunction following open-heart surgery [39]. 

Risk prediction in cardiac surgery 

Risk prediction models in cardiac surgery aim at identifying patients at increased risk 

for a certain outcome, and provide an objective measure of individual risk. This 

information may be used to adjust complication rates for factors related to the patient in 

assessment of quality of care, instead of comparing doctors or institutions by crude 

complication rates [4, 42, 43].  

Preoperative risk prediction may be used to provide objective information to health care 

providers, as well as patients and their next of kin. In some cases, it can also be used to 

identify subjects at increased risk of complications before surgery, in order to enable 

alternative treatment or enhance perioperative monitoring to reduce the risk of serious 

complications or death [8, 28, 44].  

Mortality risk prediction 

1980’s 

One of the first works on preoperative mortality risk stratification was published in 

1983 by Paiement and co-workers [45]. It was a simple system of risk classification 
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based on the presence of eight risk factors, assigning patients to three different risk 

groups. 

In 1986, the Health Care Financing Administration, USA, released a report on mortality 

data from institutions performing open-heart surgery in the USA to enable comparison 

of quality of care between institutions [43]. The report failed to adjust for important 

factors that could explain variation in mortality rates, and its release was heavily 

criticized [4, 42, 43]. More sophisticated risk prediction in cardiac surgery emerged as a 

response to this, as most thoracic surgeons and other health care providers considered 

comparison based on unadjusted mortality rates as unfair and misleading.  

Data collection and analysis for development of risk prediction models takes time, and 

in 1989 Parsonnet and colleagues were the first to publish a risk stratification system as 

a response to the Health Care Financing Administration’s release of mortality data [42]. 

Using data from 3500 cardiac operations at one single centre they applied multivariable 

logistic regression to develop a risk prediction model. The model included 15 

preoperative predictors with assigned weights in whole numbers for simple calculation 

of expected 30-day operative mortality. Models in which the predicted mortality is 

calculated by adding the assigned weights of the risk factors are often referred to as 

additive models. Parsonnet’s model was validated in a British population in 1992, and 

was evaluated to perform well by the authors despite over-prediction of risk particularly 

in high-risk patients [46]. In 1997 the Parsonnet model was also validated in a French 

population, where its discrimination was evaluated as poor [47]. Moreover, two of the 

variables, “catastrophic states” and “other rare circumstances”, were criticized for not 

being objective enough [47]. 

1990’s 

In the first half of the 1990’s, risk prediction in heart surgery was dominated by North 

American studies (Figure 1), and the main aim was to enable evaluation of the quality 

of care given, applying risk-adjusted mortality data to compare different institutions [4, 

48-52]. As a direct response to the Health Care Financing Administration’s release of 

mortality rates from cardiac surgery units, the STS in the USA established a large 

national database, commonly referred to as the STS database [4]. The main objective  
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Figure 1. Publication of mortality risk prediction models in cardiac surgery. 
Abbreviations: PACCN - Provincial Adult Cardiac Care Network, Ontario. 
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was to enable a fair and valid comparison of institutions performing heart surgery based 

on patient risk factors in order to improve cardiac surgery outcomes. In 1994, the first 

STS risk model was published. Whereas the most common method for model 

development was multivariable logistic regression [42, 48, 50, 53], the STS model was 

developed using Bayesian theory [4]. Data on 78,927 patients operated between 1984 

and 1990 was used for model development and validation, and the model included 21 

risk variables.  

During the 1990’s development of risk prediction models in cardiac surgery reached 

Europe, and in the second half of the decennium several European studies were 

published [13, 54-56] along with North American studies [57-59].  

The STS in the USA continued its work with the database, and the number of 

participating centres increased substantially [60]. In 1997, the second publication of 

STS mortality risk models for coronary artery bypass surgery were published, using 

logistic regression for model development [61], and new models were published also in 

1998 [62] and 1999 [63]. In 1999 they also published a mortality risk prediction model 

for valve surgery [64]. 

The European System for Cardiac Operative Risk Evaluation (EuroSCORE) [13] 

became the most widely used among the European models [12, 65-68]. The 

EuroSCORE database was randomly split into a developmental dataset (n = 13 302) and 

a validation dataset (n = 1497). Potential risk factors for mortality following cardiac 

surgery were identified and evaluated by an expert panel, aiming to find risk factors 

useful in the risk model. Univariable testing was applied to the resulting variables, and 

significant variables were entered in the multivariable logistic regression model. The 

number of risk factors was then reduced by deleting non-significant factors one at a 

time, beginning with the one with the highest p-value. The final model consisted of 17 

preoperative risk factors considered to be objective and easily obtainable in clinical 

practice.  

2000-2008 

After the turn of the millennium risk prediction in open-heart surgery continued to raise 

interest (Figure 1). Previously most models were developed for all types of cardiac 
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surgery, or for coronary artery bypass surgery only, but now several separate models for 

valve surgery were developed [32, 69-72]. Validation of previous models was also 

commonly seen: In a study from 2006, Nilsson and colleagues found that the Parsonnet 

model still performed well in a Swedish population [73]. Nevertheless, several other 

studies published between 2000 and 2008 found that it over-predicted the risk of 

mortality [12, 65, 74, 75]. The over-prediction of risk was often attributed to changes in 

medical and surgical treatment and patient mix during the time since it was developed 

[12, 65, 74, 75]. During the 2000’s, the EuroSCORE performed well in some places 

[73, 75, 76] while others found that its performance had worsened [12, 65, 74]. The 

EuroSCORE had been used in cardiac surgery in Norway for several years, and it was 

indicated that it overestimated the risk of mortality [7]. 

Also after 2000, logistic regression was by far the most common method for model 

development [5, 12, 32, 65, 68-72, 76-81]. Simplified, one could say that logistic 

regression assumes a linear relationship between the explanatory variables and the 

logarithmically transformed risk of the outcome. A few studies using artificial neural 

networks were also published, seeking to improve the accuracy of risk prediction as 

artificial neural networks are based on a concept mimicking the networks of neurones in 

the brain, and not relying on an assumption of linearity [82, 83]. Nilsson and colleagues 

used the large EuroSCORE database to develop a system for mortality risk prediction 

applying artificial neural networks, and its discrimination was better than the logistic 

EuroSCORE both in the developmental dataset and in an independent population [83]. 

Except for a small Iranian study, none had included intraoperative variables [81], as 

most studies had focused on developing tools to adjust mortality rates for the purpose of 

quality assurance work.  

As the EuroSCORE was widely used and its performance was varying, it seemed 

appropriate to us to validate it in a Norwegian population, as well as developing a 

locally adjusted mortality risk prediction model. It would also be interesting to perform 

an assessment of the possible gain by including intraoperative risk factors. 
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Acute kidney injury risk prediction 

In 1992 Tuman et al. and Higgins et al. published models for prediction of morbidity, 

and these were some of the first models predicting morbidity rather than mortality, 

recognizing that morbidity may be just as important when assessing quality of care in 

cardiac surgery [50, 84].  

One of the first 

models to predict 

renal failure, 

defined as the need 

for postoperative 

dialysis, was 

published in 1997 

by Chertow et al. 

(Figure 2) [22]. 

Risk prediction of 

postoperative renal 

injury was 

dominated by North 

American studies 

(Figure 2) [5, 6, 18, 

22, 85-89], and 

even the multi-

national study by 

Aronson et al. from 

2007 was 

dominated by 

contributors in the 

USA, although it 

included centres in 

17 countries in America, Asia and Europe [90]. However, in 2007 a small Brazilian 

study was used to develop an AKI risk score [25]. Furthermore, in 2009 a Portuguese 

Figure 2. Publication of models for prediction of acute kidney 
injury. Abbreviations: CABG – coronary artery bypass 
grafting, AKICS – acute kidney injury following cardiac 
surgery. 
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group published several models for prediction of major morbidity end-points following 

heart surgery, including AKI, and in 2011 a group in Germany published a model for 

prediction of postoperative dialysis [24]. 

The most commonly used end-point definition was renal failure requiring postoperative 

dialysis [22, 24, 85, 88, 89]. Otherwise various end-point definitions were applied, and 

some of them represented quite serious forms of AKI, such as estimated glomerular 

filtration rate below 30 [18], or a two-fold increase in serum creatinine [6, 86, 87]. 

Definitions including milder forms of AKI were also used by a few, applying either 

relative or absolute increases in postoperative serum creatinine compared with the 

preoperative value, or using a threshold value of postoperative serum creatinine [5, 12, 

25, 90]. None of the mentioned publications had used the definition of AKI proposed by 

the Acute Kidney Injury Network [27, 28], or any other standardized definition [6, 18, 

22, 24, 85-89]. 

Two studies had included intraoperative risk factors, such as time on cardiopulmonary 

bypass, in their risk models [25, 90]. Most studies included a measure of preoperative 

kidney function. Serum creatinine concentration was the most widely used [6, 12, 25, 

85-88], whereas two research groups had used creatinine clearance estimated by the 

Cockcroft-Gault formula [22, 89, 91]. We found that a comparison of models using 

different end-point definitions and different measures of preoperative kidney function 

would be of interest, as well as assessment of the added value of intraoperative 

variables. 

Inflammatory biomarkers and cardiac dysfunction 

Cardiac surgery evokes an inflammatory response, which is considered important in the 

development of postoperative complications [10]. The inflammatory reaction has often 

been attributed to the surgical trauma itself, contact with foreign surfaces in the 

cardiopulmonary-bypass circuit and ischaemia and reperfusion injury due to aortic 

cross-clamping (Figure 3) [8, 92, 93]. The inflammatory response includes activation of 

plasma cascade systems including the complement system [10, 94, 95] coagulation and 

fibrinolysis [96], endothelium [97] and leukocytes [10, 95, 98], with release of multiple 

cytokines [10, 97, 98] and altered expression of adhesion molecules [97].  
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Figure 3. Simplified overview of inflammation with focus on the pathways relevant 
to this thesis. The surgical trauma and the surfaces in the cardiopulmonary bypass 
circuit activate several inflammatory pathways, including leukocytes, endothelium, 
platelets and plasma cascade systems including complement, coagulation and 
fibrinolysis. The adaptive immune system, including lymphocytes and 
immunoglobulins, interacts with the innate immune system through cytokines and 
more directly via complement activation. The inflammatory biomarkers investigated 
in this thesis are highlighted in green. 

C-reactive protein is secreted by the liver in response to pro-inflammatory cytokines.
Lactoferrin is released by activated neutrophils. Neopterin is released by activated
monocytes and macrophages after stimulation with interferon-γ from T-lymphocytes.
The terminal complement complex is the end-product of the complement cascade.
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In some patients, a greatly enhanced inflammatory response is seen, which may 

contribute to the development of several complications. It may present as coagulopathy, 

as coagulation is tightly interlinked with inflammation [8]. Cardiopulmonary bypass 

may cause platelet activation and dysfunction, and disturbs the delicate balance between 

coagulation and fibrinolysis [99]. Coagulation is activated by several mechanisms, 

leading to consumption of coagulation factors and triggering of fibrinolysis, and may 

present as severe bleeding, commonly without a surgical focus [99].  

Increased inflammation may also be associated with organ dysfunction [8]. Need for 

prolonged ventilation, often due to pulmonary failure, is fairly common after cardiac 

surgery [100]. There is evidence of neutrophil sequestering in the pulmonary capillaries 

and endothelial damage after cardiac surgery [101]. The kidneys may also be affected 

by inflammation, and postoperative AKI is not uncommon [18]. The pro-inflammatory 

cytokine tumour necrosis factor has been indicated to induce renal infiltration of 

inflammatory cells, renal cell apoptosis and renal vasoconstriction, resulting in reduced 

glomerular filtration rate [102]. Endothelial dysfunction may lead to reduced cerebral 

vasodilation and neurologic dysfunction [103]. In some cases a permanent stroke may 

result [5], although emboli are probably the most common cause of stroke after cardiac 

surgery. If production of anti-inflammatory cytokines dominate the inflammatory 

response following cardiac surgery, immunosuppression and postoperative infections 

may result [104].  

Several important molecules in inflammatory pathways have been shown to have 

cardio-depressant effects [105]. These include interleukins-1 and -8, complement 

component 3a and tumour necrosis factor-α [105]. Furthermore, the myocardium itself 

has been shown to produce large amounts of pro-inflammatory cytokines following 

cardiac surgery with cardiopulmonary bypass [41]. 

The degree of inflammatory response after cardiac surgery is difficult to evaluate 

directly. In order to investigate the inflammatory response inside the body we need 

markers of the ongoing processes. The term biomarker refers to biological markers, or 

medical signs, that can be observed from outside the patient, indicating something about 

the state inside the patient [106]. In this thesis, the term biomarker refers to a molecular 
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biomarker. In order to explore some potential underlying pathways of postoperative 

inflammation, we have focused on four molecular biomarkers measured in plasma, 

reflecting different aspects of inflammation. A blood sample requires puncturing of a 

blood vessel, but is easily obtainable and less invasive than inserting catheters or 

removing tissue. 

C-reactive protein 

C-reactive protein is widely used as a general marker of inflammation, and is an acute 

phase protein secreted by the liver and adipose tissue in response to inflammatory 

stimuli (Figure 3) [107]. Its plasma concentration may increase more than 1000-fold 

following a moderate inflammatory stimulus, and its production is stimulated by the 

pro-inflammatory cytokine interleukin-6 [108]. Interleukin-6 increases during cardiac 

surgery [41]. In clinical practice, C-reactive protein is usually quantified above 5 mg/L. 

For analysis of low-grade inflammation one must apply a more sensitive assay, 

quantifying C-reactive protein also below 5 mg/L. This is often referred to as high-

sensitivity C-reactive protein or hsCRP. 

C-reactive protein and its association with cardiac disease have been thoroughly studied 

both in population-based studies and high-risk individuals, showing associations with 

both reduced ventricular function and ischaemic heart disease [109-117]. 

C-reactive protein has been associated with heart failure in several population-based 

studies, excluding participants with established coronary heart disease at baseline to 

minimize the possibility that elevated C-reactive protein was due to a recent myocardial 

infarction [114-116, 118]. Cesari et al. assessed 2225 persons aged 70 to 79 years, and 

found an association between C-reactive protein and congestive heart failure [114]. 

However, the association was not significant after adjusting for established risk factors 

[114]. C-reactive protein was not associated with coronary heart disease or stroke in the 

same population, whereas interleukin-6 was a significant predictor of congestive heart 

failure, coronary heart disease and stroke [114]. On the other hand, Gottdiener et al. 

found that C-reactive protein was a strong predictor of congestive heart failure in a 

population-based study of 5888 subjects older than 65 years, also after adjustment for 

atherosclerotic disease and other conventional risk factors [115].  
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In a population-based study of 5691 participants, Kardys et al. found that C-reactive 

protein was associated with heart failure in men after exclusion of participants with 

coronary heart disease at baseline, and after adjustment for established risk factors 

[116]. The association was not significant in women after adjustment for established 

risk factors for heart failure, and it was suggested that the reason could be that heart 

failure in men tend to result from ischaemic heart disease, whereas women more often 

have heart failure due to hypertension [116].  

Arroyo-Espliguero and co-workers found that higher levels C-reactive protein was 

associated with poor functional status and that it correlated with left ventricular ejection 

fraction in patients with chronic stable angina pectoris [109]. The same research group 

also found an association between C-reactive protein levels and the risk of adverse 

cardiac events in patients with chronic stable angina pectoris [110]. However, they 

found no association between C-reactive protein and adverse cardiac events in patients 

with chronic stable angina pectoris when testing C-reactive protein and neopterin in the 

same analysis [113]. Furthermore, Videm and colleagues found no association between 

C-reactive protein and coronary artery stenosis in a study of 234 patients, where a wide 

selection of inflammatory markers representing numerous aspects of inflammation was 

evaluated [112]. Thus, association studies of C-reactive protein and cardiovascular 

disease have demonstrated somewhat conflicting results, particularly studies assessing 

C-reactive protein and other inflammatory markers concomitantly [111-114, 116]. It is 

uncertain whether C-reactive protein is solely a marker of inflammation, or whether it 

exerts an effect on the cardiovascular system leading to disease progression and 

complications. Nevertheless, we found that it was of interest to investigate its relation to 

cardiac dysfunction following open-heart surgery. 

Lactoferrin 

Lactoferrin is an iron-binding protein in the transferrin family found in external 

secretions and in the secondary granules of neutrophil granulocytes (Figure 3) [119]. 

The amount of lactoferrin in blood is usually low [120]. It correlates with neutrophil 

counts and probably arises from neutrophil degranulation [120]. The plasma lactoferrin 

concentration increases during inflammation. Lactoferrin possesses anti-microbial 

properties, and is proposed to have anti-inflammatory and immunomodulatory effects 



25 
 

[119]. The mechanisms are suggested to be through limiting the iron concentration at 

inflammatory sites [121], binding bacterial endotoxin [122] and inhibiting production of 

oxygen-free radicals by neutrophils [123]. 

Neutrophils are activated during cardiac surgery with cardiopulmonary bypass, and the 

concentration of lactoferrin in plasma increases [95, 124, 125]. A French research group 

compared polymorphonuclear leukocyte counts and lactoferrin concentrations in 

myocardial venous blood with that of peripheral venous and arterial blood during and 

after cardiopulmonary bypass [126, 127]. Their findings suggested that activated 

neutrophils may be sequestered in the myocardium or the myocardial vascular bed 

during cardiopulmonary bypass and to a greater extent following reperfusion upon the 

release of the aortic cross clamp [126, 127]. It was also suggested that reperfusion 

induced additional neutrophil degranulation [126, 127]. 

Few studies have assessed the association of lactoferrin and cardiovascular disease. 

However, higher levels of lactoferrin have previously been associated with coronary 

artery stenosis [112], and fatal ischaemic heart disease in patients with newly diagnosed 

diabetes mellitus type 2 [128]. These findings suggest that neutrophil granulocytes and 

lactoferrin may be involved in the development of cardiac dysfunction following open-

heart surgery. This biomarker is less well studied than for instance C-reactive protein 

[129]. It remains to be investigated whether there is an association between preoperative 

lactoferrin concentration as a measure of preoperative activation of neutrophils and the 

development of postoperative cardiac dysfunction. 

Neopterin 

Neopterin is released from activated macrophages and monocytes after stimulation with 

interferon-γ from activated T-lymphocytes (Figure 3) [130, 131], and is often 

considered a marker of monocyte activation and activation of the cellular immune 

system. The release of neopterin by macrophages is correlated with the release of 

hydrogen peroxide, and is thus related to the amount of oxidative stress generated [132]. 

One of the first associations between neopterin and cardiac function was published by 

Barani et al. in 2006, who found an association between neopterin and left ventricular 

ejection fraction and diastolic left ventricular diameter in patients with critical limb 
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ischaemia [133]. Later, Estevez-Louriero and co-workers found that neopterin was 

associated with left ventricular ejection fraction and cardiac dysfunction in patients with 

chronic stable angina pectoris [129].  

Neopterin has also been associated with coronary artery disease [111-113]. Vengen et 

al. found that neopterin predicted the risk of death from ischaemic heart disease in 

patients with type 2 diabetes mellitus [111], and Videm et al. found that neopterin was 

associated with significant coronary artery stenosis [112]. Avanzas and colleagues 

found that neopterin was associated with adverse cardiac events in patients with chronic 

stable angina pectoris during a one-year follow-up [113]. 

Neopterin has been shown to induce contractile dysfunction in isolated perfused rat 

hearts [134]. Although the effective concentration in that study was higher than 

neopterin levels occurring in vivo, it was suggested that long-term influence of lower 

levels of neopterin could lead to cardiac dysfunction in humans [134]. This effect could 

possibly be mediated through oxidative stress. An in vitro study has shown that 

neopterin enhanced the oxidative effect of hydrogen peroxide, measured by 

chemoluminescence and the bactericidal effect of hydrogen peroxide, suggesting that 

the neopterin molecule possesses oxidative properties [135]. 

Thus, neopterin has been shown to be a promising marker in cardiovascular research, 

and we found that it would be interesting to evaluate the association between neopterin 

and cardiac dysfunction after cardiac surgery. 

The terminal complement complex 

The complement system belongs to the innate immune system and consists of more than 

30 proteins in plasma and on cell surfaces [136]. It can be activated mainly via three 

pathways, the classical, alternative and the lectin pathways (Figure 4) [136]. These 

activation cascades involve cleavage of several proteins, resembling the cascades of 

coagulation and fibrinolysis [136]. Terminal complement activation leads to the 

formation of the terminal complement complex, or membrane attack complex (Figure 4) 

[136]. The complement proteins included in the terminal complement complex is 

designated C5b, C6, C7, C8 and C9 (C5b-9) [136].  The main functions of the 

complement system include defence against microorganisms, clearance of apoptotic 
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cells and immune complexes, and bridging the innate and adaptive immune system 

[136]. If complement is activated in tissue injury it can cause further damage by the 

generation of the membrane attack complex, and chemotaxis and activation of 

leukocytes [137]. 

 

Numerous studies have shown that the complement system is activated during cardiac 

surgery with cardiopulmonary bypass [124, 125, 138]. Terminal complement activation 

also occurred after cardiac surgery with cardiopulmonary bypass, with levels decreasing 

Figure 4. Simplified overview of the complement system. The complement system can 
be activated via three pathways, the classical, the alternative and the lectin 
pathways. Activation results in cleavage of a series of proenzymes into active 
enzymes, a cascade reaction of enzyme activation. Some of the smaller cleavage 
products, such as C3a and C5a, are called anaphylatoxins. Anaphylatoxins may 
attract and activate neutrophils and other inflammatory cells. Terminal complement 
activation results in formation of the terminal complement complex (C5b-9), which 
is capable of inducing cell lysis.  
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during the first eight hours after admission to the intensive care unit [138]. The initial 

pathways of complement were activated again eight hours after admission to the 

intensive care unit, but without formation of the terminal complement complex [138]. 

Terminal complement activation has been hypothesized to play an important role in 

myocardial damage following ischaemia and reperfusion. Ito et al. used rabbits with and 

without the ability to generate C6, a part of the terminal complement complex, to study 

infarction size after 30 minutes and two hours of coronary artery occlusion and area of 

reflow, and its relation to complement activation. They found that congenitally C6-

deficient animals had smaller infarction size after 30 minutes of coronary occlusion, and 

larger area of reflow after two hours of coronary occlusion compared to animals who 

were C6-competent. Histological examination with immunocytochemical staining 

showed that the terminal complement complex accumulated at the border of the 

infarction after 30 minutes of ischaemia, while after two hours of ischaemia the terminal 

complement complex was deposited throughout the infarcted myocardium. Their results 

suggested that terminal complement activation may lead to reperfusion injury in rabbits 

[139]. 

It was, however, less certain if this was the case in humans. No increased myocardial 

terminal complement activation was found during cardiac surgery and in the reperfusion 

period in a study of ten patients without heart failure, ten patients with ischaemic heart 

failure and ten patients with idiopathic non-ischaemic heart failure [140]. The results 

indicated that complement was deposited in the myocardium preoperatively [140]. On 

the contrary, a randomised controlled trial of the soluble complement receptor type I, an 

inhibitor of the classical complement pathway, showed that the soluble complement 

receptor inhibited complement activity effectively and reduced mortality and the 

frequency of myocardial infarction in male patients, but not in female patients [141]. 

Moreover, a sub-analysis of patients undergoing coronary artery bypass grafting 

combined with valve surgery demonstrated an elimination of a need for an intra-aortic 

balloon pump postoperatively [141]. 

Furthermore, circulating levels of the terminal complement complex have also been 

associated with coronary heart disease and cardiac dysfunction following myocardial 
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infarction. Videm et al. found that lower plasma levels of the terminal complement 

complex were associated with coronary artery stenosis [112]. Furthermore, in a study of 

74 patients with acute occlusion of the left anterior descending coronary artery treated 

with primary percutaneous coronary intervention, Haahr-Pedersen and colleagues 

demonstrated that lower plasma concentration of the terminal complement complex also 

was associated with cardiac dysfunction following acute myocardial infarction [142]. 

Clark et al. found higher levels of circulating terminal complement complex in 36 

patients with congestive heart failure compared with 12 age-matched controls [143]. 

Patients with poor functional status and patients who had an adverse outcome within six 

months had higher levels of complement activity in plasma compared with patients who 

remained event-free during follow up or patients with better functional class [143].  

The role of the terminal complement complex in human cardiac disease is still debated. 

It remains to be investigated whether preoperative complement activity is associated 

with cardiac dysfunction after open-heart surgery.   
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Hypotheses 
The overall hypothesis of this thesis was that mortality and AKI could be accurately 

predicted using preoperative variables collected routinely in clinical practice, and that 

increased preoperative inflammation could affect the development of postoperative 

cardiac dysfunction. 

The specific hypotheses to be tested in this thesis were: 

1. Operative mortality and AKI following adult cardiac surgery may be accurately 

predicted from a set of variables collected in clinical routine work.  

2. Inclusion of intraoperative variables will improve the accuracy of outcome 

prediction. 

3. The definition of the AKI end-point is important for which risk factors are found 

to be significant and for their effect size. 

4. More accurate estimates of kidney function will yield more precise predictions 

of AKI risk after adult cardiac surgery. 

5. Local risk prediction models for mortality and AKI after open-heart surgery will 

be more accurate in our population than some previously published risk 

prediction models.  

6. One or several of the inflammatory biomarkers C-reactive protein, lactoferrin, 

neopterin and the terminal complement complex are associated with cardiac 

dysfunction following cardiac surgery in adults.  
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Aims 
The first main aim of this thesis was to investigate whether it was possible to predict 

mortality and AKI after open-heart surgery accurately to provide precise information on 

operative risk to patients and health care providers.  

Despite fairly accurate statistical models it remains difficult to foresee which patients 

will develop a certain complication or not, and an explanation could be that unmeasured 

factors play an important part in the development of complications after cardiac surgery. 

Inflammation is hypothesized to play a pivotal role in the development of several 

complications following open-heart surgery the second main aim was to investigate 

whether increased preoperative inflammation could affect the development of 

postoperative cardiac dysfunction. 

Death is the most serious complication following cardiac surgery, and the aims of Paper 

I were therefore: 

1) To develop a local preoperative mortality risk prediction model for cardiac surgery 

and assess its performance in our population.  

2) To investigate if the inclusion of intraoperative variables could enhance predictive 

ability of the model.  

3) To assess the performance of the additive and the logistic EuroSCORE in our 

population, and compare them to a local preoperative risk model. 

AKI is one of the most common and most serious morbidities that may arise after 

cardiac surgery. The aims of Paper II were therefore: 

4) To develop a local preoperative risk prediction model for postoperative AKI 

following cardiac surgery and assess its performance in our population. 

5) To investigate how the model would change with changes in the end-point 

definition. 

6) To assess whether intraoperative variables and more accurate estimates of kidney 

function could improve the model. 

7) To validate the previously published risk models for AKI by Antunes et al. [144] 

and Brown et al. [18] in our population. 
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Cardiac dysfunction is also a common and serious complication following heart 

surgery. The inflammatory response following cardiac surgery may cause severe 

dysfunction in several organs, such as the heart, and inflammation has also been 

demonstrated to be of importance in the development of heart disease outside the setting 

of cardiac surgery. The aim of Paper III was therefore: 

8) To investigate whether the four inflammatory biomarkers C-reactive protein, 

lactoferrin, neopterin and the terminal complement complex were associated with 

cardiac dysfunction after heart surgery.  
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Patients and methods 

Data 

This thesis is founded on two different cohorts of cardiac surgical patients at St. Olavs 

University Hospital in Trondheim, Norway. In the first cohort we included all adult 

patients who underwent open-heart surgery from 1 January 2000 to 31 December 2007 

(n = 5029). The second cohort included all adult patients undergoing cardiac surgery 

from 1 April 2008 to 19 April 2010 and who gave their informed consent (n = 1055). 

The data were collected prospectively as part of the department’s quality assurance 

routines, and a selection of the variables are listed in Table 2. The data were quality 

assured and stored in a local database.  

Table 2. Selection of the variables that were registered in the database 

Variable type Example of variables 
Patient characteristics and 
history 

Age, gender, degree of urgency for surgery, recent 
myocardial infarction or angina, endocarditis or aortic 
disease 

Other diseases and risk factors Chronic pulmonary disease, hypertension, peripheral 
vascular disease, diabetes mellitus, previous cardiac 
surgery and smoking status 

Preoperative blood tests and 
examinations 

Creatinine, haemoglobin, potassium, liver 
transaminases and myocardial infarction markers, 
electrocardiographic findings, angiographic findings 
and measurements and echocardiographic findings and 
measurements 

Medication Diuretics, angiotensin converting enzyme inhibitors and 
receptor blockers, calcium antagonists, beta-blockers, 
statins, antiarrhythmic agents and antiplatelet and 
anticoagulant treatment 

Surgical data Type of operation and description of procedures 
Intraoperative measurements Temperature, blood pressure, time on cardiopulmonary 

bypass, pump flow, type of cardioplegia, need for 
inotropic support, defibrillation, red blood cell 
transfusion and pacemaker, and electrocardiographic 
changes 

Postoperative complications Re-operation, bleeding, myocardial infarction, acute 
cardiac dysfunction, arrhythmias, acute kidney injury, 
infections, intubation time, re-intubation, 
cerebrovascular incident, death 

Postoperative blood tests  Similar to those performed before surgery 
Postoperative treatment Blood transfusions and inotropic medication 
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We collected preoperative peripheral blood samples from all patients included in the 

second cohort, using the arterial line. The blood samples were centrifuged within six 

hours, and were kept on ice before centrifugation. Plasma, serum and buffycoat were 

stored at -80°C until analysis. For the second cohort, informed consent was obtained for 

all participants. The need for informed consent for the first cohort was waived by the 

Norwegian Data Inspectorate. 

Of 1149 patients eligible for the second cohort, 21 did not consent, 32 were unable to 

consent due to emergency surgery, seven were unable to consent due to language 

problems, and 57 had missing blood samples. We also excluded 14 patient samples due 

to the following reasons: One had infectious blood, three had active endocarditis, two 

underwent off-pump surgery, one did not have data on the end-point, and seven samples 

due to an identification error preventing coupling with clinical data. Thus, 1018 patients 

were included in the further analyses.  

Data from the first cohort was used in Paper I and Paper II, and data from the second 

cohort was used in Paper III. Variable definitions for all three papers are listed in Table 

3. Both projects were approved by the Norwegian Data Inspectorate and the Regional 

Research Ethics Committee in Medicine, Trondheim, Norway. The surgical team was 

experienced and very stable over the study period, and there were no relevant changes 

in the use of cardiopulmonary bypass. 

Risk model development 

The model development started with formulation of hypotheses for selection of 

variables that could predict the outcome. The hypotheses were based on clinical 

knowledge and previous research publications, and the hypothesized predictors also had 

to be relevant for a sufficient proportion of the patients. We did not perform any 

univariable screening of the predictors, as this increases the risk of over-fitting the 

model to the developmental dataset, and potentially reduces the predictive ability in 

future datasets [145]. The risk prediction models were developed using logistic 

regression, and the entire dataset was used for model development, as splitting the 

dataset into smaller subsets reduces the power and increases the risk of over-fitting 

[145]. 
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An underlying assumption of binary logistic regression is that a continuous explanatory 

variable is linearly related to the log odds of the outcome [145]. Odds are defined as the 

probability for the outcome divided by one minus the probability for the outcome. The 

assumption of linearity was tested by including spline functions of the continuous 

variables in the model. Spline functions include several terms, and can fit almost any 

shape of the relationship because the approach allows several breaking points in the 

curve displaying the relationship between the variable and the log odds of the outcome. 

The deviation from linearity of the spline function was assessed, and if it was 

significant, the continuous variable was transformed. For practical purposes in clinical 

work we transformed non-linearly related continuous variables to categorical variables 

for development of risk prediction models, whereas logarithmic transformation was 

used for non-linear inflammatory biomarkers in Paper III. 

Another underlying assumption of logistic regression is that the effects of the 

explanatory variables can be added together, i.e. that there is no statistical interaction 

[145]. This means that the effect of age is not different for different categories of 

another variable. For example, if a patient is 80 years old and his serum creatinine is 

150 μmol/L, his risk of the outcome is not greater or smaller than what would be 

expected if one added the effect of these two variables. Interactions were tested by 

adding cross-products of the potential interactions to the model.  

Overly-influential observations are extreme observations that strongly influence the 

model, and potentially will reduce the predictive ability of the model in future datasets 

[145, 146]. To identify influential observations one can use plots of various residuals 

and look for extreme outliers. To determine whether an observation is overly-

influential, one can re-fit the model, but leave out this observation, and notice how 

much the coefficients in the model changes [146, p. 245]. 

When these requirements were taken care of, the number of predictors in the model was 

reduced using backward step-down, retaining variables according to Akaike’s 

Information Criterion. To achieve robust estimates of the coefficients, and to reduce the 

risk of over-fitting, the reduced models were bootstrapped (n = 400) [145]. 

Bootstrapping refers to a method for creating new datasets based on the original one by  
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Table 3. Variable definitions for Paper I, II and III 

Variable Definition Paper 
Demographics   
Age Years (continuous) II 
 Above 68 years (no/yes) I 
Female gender (no/yes) I, II 
Body mass index kg/m2 (continuous) I 
 Above or equal to 30 kg/m2 (no/yes) II 
Smoking Current smoker or quit less than 6 months ago (no/yes) I 
Medication   
ACE-inhibitor use Treated with angiotensin-converting enzyme inhibitor 

or angiotensin II receptor blocker (no/yes) 
II 

Lipid-lowering 
treatment 

Treated with statins (no/yes) II 

Intercurrent or previous disease  
Diabetes mellitus Receiving medication (no/yes) I, II 
Hypertension Receiving medication or diastolic blood pressure above 

90 mmHg (no/yes) 
I, II 

Left ventricular 
hypertrophy 

Diagnosed by electrocardiography or echocardiography 
(no/yes) 

I 

Endocarditis Receiving antibiotic treatment for endocarditis (no/yes) II 
Previous myocardial 
infarction 

Previously undergone myocardial infarction (no/yes) III 

Previous cardiac 
surgery 

Previously undergone cardiac surgery (no/yes) I, II, 
III 

Chronic cardiac 
insufficiency/heart 
failure 

Medical treatment for chronic cardiac insufficiency 
/chronic heart failure (no/yes) 

I, II, 
III 

Pulmonary 
hypertension 

Systolic pulmonary arterial pressure (PAP) > 40 
mmHg or mean PAP > 25 mmHg, echocardiography or 
catheterisation (no/yes) 

I, III 

Chronic pulmonary 
disease 

Use of bronchodilating agents or forced expiratory 
volume in 1 s (FEV1) < 75% (no/yes) 

I, II 

Peripheral vascular 
disease 

Intermittent claudication, carotid stenosis or abdominal 
aortic aneurysm (no/yes) 

I, II 

Preoperative renal 
dysfunction 

Creatinine concentration > 140 μmol/L or dialysis 
(no/yes) 

III 

Blood samples   
Creatinine  Above 140 μmol/L (no/yes) I 
 Three categories (< 100 μmol/L; 100 – 140 μmol/L; > 

140 μmol/L) 
II 

Creatinine clearance Estimated creatinine clearance by the Cockcroft-Gault 
formula [91], three categories (> 90 mL/min; 60 – 90 
mL/min; < 60 mL/min) 

II 

eGFR Estimated glomerular filtration rate by the four-
variable Modification of Diet in Renal Disease formula 
for standardised creatinine values [147], three 

II 
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categories (> 90 mL/min/1.73m2; 60 – 90 
mL/min/1.73m2; < 60 mL/min/1.73m2) 

Haemoglobin Haemoglobin concentration (g/dL), (continuous) I, II, 
III 

Operation related   
Degree of urgency 
for surgery 

Three categories: standard waiting list, operation 
within two weeks, operation within 24 h 

I 

 Emergency operation, within 24 h (no/yes) II 
 Urgent operation, within two weeks (no/yes) III 
Operation type Four categories: 1: Coronary artery bypass grafting 

(CABG) or atrial septum defect. 2: Aortic valve 
replacement (AVR) only, AVR and CABG combined, 
non-ischaemic mitral valve surgery or aneurysm in the 
ascending aorta 3: Dissection of the ascending aorta 
and ventricular septum rupture. 4 Miscellaneous 
surgery1. 

I, II 

 Three categories: 1: Coronary artery bypass grafting 
(CABG) or atrial septum defect. 2: Aortic valve 
replacement (AVR) only, AVR and CABG combined, 
non-ischaemic mitral valve surgery or aneurysm in the 
ascending aorta 3: Dissection of the ascending aorta, 
ventricular septum rupture and miscellaneous surgery1 

III 

Intraoperative variables  
Cardiopulmonary 
bypass 

Cardiopulmonary bypass during surgery (no/yes) I 

Cardiopulmonary 
time 

Time on cardiopulmonary bypass per 10 minutes 
(continuous) 

I, II 

Fluid balance Fluid balance during surgery (tertiles) I 
 Above 3500 mL (no/yes) II 
Inotropic support On clinical indication during surgery (no/yes) I, II 
Plasma transfusion On clinical indication during surgery (no/yes) I, II 
Red blood cell 
transfusion 

On clinical indication during surgery (no/yes) I, II 

Vasoconstrictor use On clinical indication during surgery (no/yes) I, II 
Main end-points   
Death Death within 30 days after surgery or during the same 

hospital stay (no/yes) 
I 

Acute kidney injury A 50% or greater increase in creatinine concentration, 
an absolute increase in creatinine of 26.4 μmol/L or 
more, or a new requirement for dialysis (no/yes) 

II 

Cardiac dysfunction Need for more than one inotropic agent or an intra-
aortic balloon pump (no/yes) 

III 

1Miscellaneous surgery consisted of various operations like mitral valve surgery in 
combination with CABG or AVR, AVR in combination with procedures other than 
CABG or aneurysm of the ascending aorta, and other cardiac surgery like 
pericardiectomy and removal of cardiac tumours. 
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sampling with replacement [146, pp. 87-88]. Each sample contains the same number of 

patients, but the patient composition will differ between each sample in order to better 

represent the entire population of possible cardiac surgery patients.  

Model validation and comparison 

The models were internally validated, in part by using bootstrapping methods (n = 400). 

Calibration of a model describes how the predicted risk for the outcome compares with 

the actual risk for the outcome throughout the range of predicted risks [145, 148]. If the 

model generally predicts a risk that is too high or too low the calibration is poor. The 

calibration of the model can be studied by examining the calibration curves (including 

the intercept and slope), which display the model calibration. 

Shrinkage refers to how the calibration curves deviates from the ideal 45° line because 

of over-fitting to the developmental dataset [145, 146]. An estimated shrinkage factor 

should be above 0.85, corresponding to an error in future predictions less than 15%.  

Discrimination is the model’s ability to differentiate between patients who have the 

outcome or not. The receiver operating characteristic (ROC) curve is a plot of the 

sensitivity versus one minus specificity throughout the range of possible cut-off points 

[146, 149]. The c statistic is a widely used measure of predictive model discrimination, 

and for binary outcomes it is identical to the area under the ROC curve [145]. A c 

statistic above 0.80 is considered good [146]. We also compared the c statistic of the 

different models with the same end-point, applying the method proposed by DeLong et 

al., for correlated non-parametric areas under ROC curves [150]. 

Comparison of model c statistics is, however, considered an insensitive measure of 

improvement in discrimination [145, 151, 152], and we therefore also used the 

integrated discrimination improvement [152] for assessing differences in discrimination 

between models in Paper II and Paper III. The integrated discrimination improvement is 

a measure of the estimated difference in average sensitivity minus the estimated 

difference in average specificity across all possible cut-offs, and was developed 

primarily to detect the added value of a new predictive marker [152]. 
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The Hosmer Lemeshow test assesses the goodness-of-fit of the model, which is a 

comparison of the predicted risk and the number of actual outcomes in equally sized 

groups, where subjects are grouped according to predicted risk [153]. The number of 

groups is usually ten, and should not be less than six. The lowest number of groups in 

our tests was nine. The test is similar to a Chi-square test, and the null hypothesis is that 

the model fits the data. A p-value below 0.05 means that the model predicts a risk for 

the outcome that is different from what is observed, and usually p-values greater than 

0.10 are considered adequate. 

Previously published risk prediction models 

We calculated the risk according to previously published risk prediction models in our 

patients, assessed the performance of these models, and compared them to our local risk 

prediction models. We validated the models with the Hosmer-Lemeshow test, ROC 

curves and calculation of the c statistic, and compared the c statistics of the previously 

published models to that of our own model for the relevant end-point. 

Paper I 

Preoperative model 

In Paper I, we first developed a preoperative model for prediction of early mortality 

after open-heart surgery. The end-point was in-hospital mortality, defined as death 

occurring during the same hospital admission or within 30 days after surgery. The in-

hospital mortality was 2.7%, corresponding to 135 of 5029 patients. 

Sixteen preoperative variables were hypothesized to be important predictors of in-

hospital mortality: Age, found best to be modelled as above the median age of 68 years, 

female gender, body mass index, diabetes mellitus, smoking, hypertension, chronic 

cardiac insufficiency, peripheral vascular disease, chronic pulmonary disease, left 

ventricular hypertrophy, pulmonary hypertension, preoperative haemoglobin 

concentration, serum creatinine above 140 μmol/L, previous cardiac surgery, degree of 

urgency, and type of operation. The operation types were grouped according to average 

risk, so that surgical procedures in the same group would have approximately the same 

risk of mortality. 
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Left ventricular ejection fraction was also considered an important predictor of in-

hospital mortality, but it was measured either by catheterisation or echocardiography, 

and the exact value was only registered in 4043 of 5029 patients (80.4%). Thus, the 

quality of the left ventricular ejection fraction variable was considered too poor to be 

used for logistic regression model development as a continuous variable, and was 

therefore excluded. Instead we used the presence or absence of chronic cardiac 

insufficiency as a potential predictor. Chronic cardiac insufficiency was defined as 

receiving medical treatment for this condition. In Paper III, chronic cardiac 

insufficiency is referred to as chronic heart failure, which was a more commonly used 

term. The preoperative risk model was developed and validated according to the 

description above in the “Risk model development” section. 

Intraoperative models 

To investigate whether the inclusion of intraoperative variables could yield a more 

accurate model we added five intraoperative variables to the final preoperative model: 

whether the patient was on cardiopulmonary bypass, need for inotropic support, 

vasoconstrictor use, intraoperative fluid balance, red blood cell transfusion, and plasma 

transfusion.  

As 2.7 % of our patients were operated without cardiopulmonary bypass, we developed 

a second intraoperative model excluding patients operated without cardiopulmonary 

bypass. Since the time on cardiopulmonary bypass was considered important for 

outcome prediction, we exchanged information on whether the patient was on 

cardiopulmonary bypass with cardiopulmonary bypass time. The two intraoperative 

models were developed and validated, and the performance of the preoperative and the 

two intraoperative models was compared by comparing the c statistics of the models, 

and with ROC curves and other plots. 

Previously published models 

The additive EuroSCORE was calculated prospectively for every patient during data 

collection and stored in the database, whereas the logistic EuroSCORE was calculated 

retrospectively from the registered variables. We found matching definitions for all 

variables except neurological dysfunction. This variable was excluded from the 
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calculation of the predicted probability, which means it was set to be absent for all 

patients. If data on other variables were missing for individual patients, it was set to the 

alternative giving the lowest risk. The exact left ventricular ejection fraction was, as 

previously stated, not registered in 986 patients, but was always registered if the patient 

had reduced ventricular function according to the referring cardiologist. Hence, when 

left ventricular ejection fraction data were missing, it was also set to the category giving 

the lowest risk. The EuroSCOREs were validated and compared to our local 

preoperative model.  

Paper II 

In Paper II we developed a local model for risk prediction of AKI following cardiac 

surgery, and evaluated how alternative end-point definitions, alternative measures of 

preoperative kidney function and the inclusion of intraoperative variables would change 

the model. We also assessed the performance of two previously published models in our 

dataset.  

The main end-point of Paper II was AKI after open-heart surgery, defined as either a 

relative increase in creatinine of at least 50% after surgery compared with the 

concentration before surgery, an absolute increase in serum creatinine of 26.4 μmol/L 

(0.3 mg/dL) or more, or a new requirement for dialysis. This definition may be regarded 

as a slight modification of the criteria proposed by the Acute Kidney Injury Network 

[27, 28], as the urine output criterion was not included, and we allowed a longer time 

span than 48 hours postoperatively for an increase in creatinine to occur. Preoperative 

creatinine was measured 1-2 days before surgery except in emergency patients, where it 

was measured on admission. Postoperative creatinine was measured several times 

postoperatively, and we registered creatinine values from the first postoperative day, the 

maximum creatinine value during the hospital stay, and creatinine at discharge. To 

calculate the end-point the maximum postoperative creatinine value was used.  

According to this definition 633 patients (12.7%) suffered AKI. Exclusion criteria for 

the analyses included in Paper II were preoperative dialysis (n = 9) and missing 

information on preoperative or maximum postoperative creatinine concentration (n = 

42). No specific alterations in preoperative or operative procedures were done based on 
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preoperative kidney function. Aprotinin was used in most patients with rupture of the 

ventricular septum or dissection of the ascending aorta, and some patients with 

endocarditis (less than 182 patients or 3.6%). 

Primary model 

Sixteen variables were hypothesized as important predictors of AKI after open-heart 

surgery: Age, female sex, body mass index, lipid lowering treatment, ACE inhibitor use, 

diabetes mellitus, hypertension, chronic cardiac insufficiency, endocarditis, peripheral 

vascular disease, chronic pulmonary disease, haemoglobin concentration, serum 

creatinine, previous cardiac surgery, emergency operation, and type of operation.  The 

operation types were grouped according to average risk, so that surgical procedures in 

the same group would have approximately the same risk of AKI. Body mass index did 

not fulfil the assumption of linearity in the logit, and was therefore modelled as two 

categories: below/equal to 30 kg/m2 or above 30 kg/m2. The preoperative risk model for 

prediction of AKI was developed and validated according to the description above. 

Alternative models 

We developed several alternative models to investigate how the model and its 

performance would change with alternative end-point definitions, more accurate kidney 

function estimates or inclusion of intraoperative variables. The models were developed 

and validated as described above. 

Alternative end-point definitions 

Three models were developed using alternative end-point definitions: 1) A 50% or 

greater increase in serum creatinine or a new requirement for dialysis after surgery; 2) 

an absolute increase in creatinine of 26.4μmol/L (0.3 mg/dL) or more, and 3) a 25% or 

greater increase in creatinine. The two first definitions are variations of the AKI 

Network definition; the third is regarded as mild AKI. Only 65 patients had a new 

requirement of dialysis postoperatively, and therefore we did not develop a separate 

model for this end-point, as it would greatly increase the risk of over-fitting the model 

to the dataset if more than a few potential explanatory variables were included. 
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More accurate kidney function estimates 

We calculated the estimated glomerular filtration rate (eGFR) applying the four-variable 

Modification of Diet in Renal Disease formula for standardised creatinine [147], and the 

estimated creatinine clearance applying the Cockcroft-Gault formula [91]. We 

developed two alternative models to Model I, exchanging serum creatinine with either 

eGFR or creatinine clearance. Because of strong correlation, we excluded the variables 

used to calculate eGFR (age and sex) and creatinine clearance (age, sex and body mass 

index) from the development of these models. Because of non-linearity in the logit 

eGFR and creatinine clearance were divided into three categories (above 90; 90 to 60; 

below 60 mL/min/1.73 m2) and (above 90; 90 to 60; below 60 mL/min), respectively.  

There were quite a few females with normal creatinine and reduced eGFR: Among the 

females who had creatinine < 100 μmol/L (n = 1164), 9.5% had eGFR > 90, 49.1% had 

eGFR 60 – 90, and 41.3% had eGFR < 60. Thus, eGFR or creatinine clearance would 

perhaps be a more accurate measure of preoperative kidney function particularly in 

women. We therefore compared the discrimination of Model I with the discrimination 

of the eGFR and creatinine clearance models when used for females only. 

Intraoperative variables 

Six intraoperative variables were added to Model I: Time on cardiopulmonary bypass, 

inotropic support, vasoconstrictor use, fluid balance above 3500 mL, red blood cell 

transfusion and plasma transfusion. We excluded patients operated without 

cardiopulmonary bypass (n = 136, 2.7%) from the development of the intraoperative 

model. Because only 1% of the patients received platelets without concomitant plasma 

transfusion we did not include platelet transfusion as a separate risk factor in the 

intraoperative model. 

Previously published models 

We evaluated the performance of two previously published models, Antunes and 

colleagues’ model for renal failure [144] and Brown and colleagues’ model for renal 

insufficiency [18], in our dataset. The models’ predicted probabilities were calculated 

retrospectively. The two models were chosen because they had been developed using 

end-point definitions comparable to the main end-point definition we had used, and the 
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relevant variables matched with variables in our database, except that data were missing 

on preoperative white blood cell count to be used for Brown’s model [18].  

Paper III 

In Paper III we evaluated the association between the four inflammatory biomarkers C-

reactive protein, lactoferrin, neopterin and the terminal complement complex, and 

cardiac dysfunction after open-heart surgery in order to explore some of the underlying 

mechanisms of cardiac dysfunction following cardiac surgery. Cardiac dysfunction was 

defined as the need for more than one inotropic agent or an intra-aortic balloon pump 

occurring after the operation and until the patient was discharged from the department, 

and occurred in 95 (9.3%) patients according to this definition. Patients with signs of 

intercurrent infection other than endocarditis and high levels of C-reactive protein were 

normally not considered for elective heart surgery. 

Biomarkers  

The four inflammatory biomarkers were analysed in plasma using enzyme 

immunoassay (EIA). C-reactive protein is considered a general marker of inflammation, 

and is measured in all patients submitted for heart surgery. We used a high-sensitivity 

method for C-reactive protein measurement (sometimes denoted hs-CRP) using a 

commercial kit (Quantikine Human C-Reactive Protein Immunoassay, R&D Systems, 

Inc, Minneapolis, USA). Lactoferrin was analysed as previously described [154], 

whereas neopterin and the terminal complement complex were analysed using 

commercial kits (Neopterin ELISA, GenWay Biotech Inc, San Diego, USA) and 

(MicroVue SC5b-9 Plus EIA, Quidel Corporation, San Diego, USA), respectively. 

Statistical analysis 

We used logistic regression to evaluate the association of the four biomarkers with 

cardiac dysfunction after cardiac surgery. We first performed an unadjusted analysis, 

analysing each fluid-phase marker separately. Then we performed an adjusted analysis 

including the eight preoperative clinical variables found to be significant predictors of 

cardiac dysfunction in a previous study from our group [33]: Previous myocardial 

infarction, previous cardiac surgery, chronic heart failure, pulmonary hypertension, 

preoperative renal dysfunction, preoperative haemoglobin concentration, urgent 
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operation and operation type. All four biomarkers were fitted in the same model with 

the clinical variables. The model was then tested for linearity in the logit, overly-

influential observations, interactions and collinearity.  

Preoperative renal dysfunction was strongly correlated with neopterin, and was 

therefore removed from the model. We evaluated alternative models with and without 

renal dysfunction and serum creatinine as a sensitivity analysis, to make sure we did not 

fail to account for a possible confounding effect of preoperative renal dysfunction on 

neopterin levels and cardiac dysfunction. Several other researchers have identified age 

and sex as important predictors of postoperative cardiac dysfunction [155, 156], and we 

therefore performed an alternative analysis including age and sex, even though these 

variables previously were not significant in our population [33]. In order to fulfil the 

assumption of linearity in the logit neopterin and the terminal complement complex 

were transformed by natural logarithm. Only inflammatory markers that were 

significant after adjustment for clinical variables were included in the further analyses.  

To ensure that the results were consistent also after adjustment with a more general risk 

prediction model we performed a sensitivity analysis. We used the EuroSCORE II to 

calculate the predicted risk, and performed a logistic regression analysis including 

neopterin and the predicted risk according to the EuroSCORE II as adjustment variable 

[157].  

We performed a likelihood ratio test to evaluate if the significant biomarker could 

improve the prediction of cardiac dysfunction after heart surgery compared with clinical 

variables alone. Since the risk model in this study was based on a previously published 

model from our research group, we did not use backward elimination to reduce the 

number of risk factors. We also compared model discrimination between clinical 

variables alone and clinical variables and neopterin by calculating the c statistic [150] 

and the integrated discrimination improvement [152]. 

General statistics 

Continuous variables are given as mean with 95% confidence intervals for normally 

distributed data and median with 95% confidence intervals for non-normally distributed 

data, and categorical variables are given as frequency with percentage, unless otherwise 
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stated. For inter-group comparisons we have used the Mann-Whitney U-test and 

Pearson’s Chi Square test. Linear correlation was assessed with Pearson’s correlation 

coefficient. For statistical analyses and modelling we have applied the statistic software 

R (versions 2.10.1 and 2.12.0, R Development Core Team, R Foundation for Statistical 

Computing, Vienna, Austria), SPSS (versions 16.0 and 18.2, SPSS Inc., Chicago, IL 

and IBM Corporation, Armonk, NY, USA), SigmaPlot (versions 11.0 and 13.0, Systat 

Software Inc., San Jose, CA, USA), and MiniTab (versions 15.1.30.0 and 17, MiniTab 

Inc., State College, PA, USA). R was used for the logistic regression model 

development and validation, SPSS was used for data and variable handling and simple 

statistical analyses, SigmaPlot was used for comparing the areas under the receiver 

operating characteristic curves and for creating horizontal scatterplots with error bars, 

and MiniTab was used for calculating 95% confidence intervals for medians. 
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Summary of results 

Paper I 

The preoperative mortality risk prediction model is summarised in Table 3, and 

consisted of eight risk factors for early mortality after cardiac surgery: age above 68 

years, degree of urgency, female gender, serum creatinine above 140 μmol/L, chronic 

pulmonary disease, chronic cardiac insufficiency, previous cardiac surgery, and type of 

operation.  

Table 4. Mortality risk prediction model 

Variable Coefficient Odds 
ratio 

95% 
conficence 

interval 

p-value 

Age above 68 years 1.141 3.128 (2.026-4.831) < 0.0001 
Degree of urgency 

Standard waiting list 
  

1.000 
 

Reference 
 

Operation within 2 weeks 0.397 1.487 (0.969-2.306) 0.11 
Operation within 24 hours 1.927 6.870 (3.525-13.389) < 0.0001 

Female gender 0.541 1.718 (1.130-2.612) 0.03 
Serum creatinine > 140 μmol/L 1.234 3.434 (2.007-5.874) < 0.0001 
Chronic pulmonary disease 0.783 2.189 (1.440-3.327) 0.0001 
Chronic cardiac insufficiency 0.690 1.994 (1.293-3.076) 0.002 
Previous cardiac surgery 0.782 2.185 (1.147-4.165) 0.006 
Operation type 

CABG or atrial septum defect 
  

1.000 
 

Reference 
 

Pure AVR, AVR and CABG, 
non-ischaemic mitral valve 
surgery, or aneurysm of 
ascending aorta 

0.621 1.861 (1.176-2.946) 0.01 

Dissection of ascending aorta, 
or ventricular septum rupture 

1.906 
 

6.723 
 

(2.918-15.489) < 0.0001 
 

Miscellaneous 1.483 4.407 (2.614-7.430) < 0.0001 
Intercept -6.045    

The strongest associations were between the outcome and type of operation, degree of 

urgency, age above 68 years and serum creatinine above 140 μmol/L. The c statistic 

was 0.857 (0.823-0.891), denoting good discriminatory ability, and the Hosmer-

Lemeshow test indicated satisfactory goodness-of-fit (p = 0.62). The calibration curves 

showed that it predicted mortality accurately throughout the dataset, except for the 1% 

of patients at extremely high risk, where it was somewhat less accurate. The estimated 
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shrinkage factor was 0.93, indicating that the model also would predict mortality 

accurately in future datasets. 

The intraoperative mortality risk prediction models showed that time on 

cardiopulmonary bypass, the need for inotropic support and red blood cell transfusion 

during surgery were the most important intraoperative predictors of early mortality. The 

c statistic was 0.877 (0.823-0.891) for the model without cardiopulmonary bypass time, 

and 0.866 (0.833-0.898) for the model including cardiopulmonary bypass time. These 

two models also showed good performance, but did not substantially improve the 

accuracy compared to the preoperative model (p > 0.10 for all comparisons). The 

Hosmer-Lemeshow test showed adequate goodness-of-fit (p = 0.34 and 0.75, 

respectively). 

The logistic and the additive EuroSCORE displayed good discrimination, with c 

statistic of 0.821 (0.785-0.857) and 0.846 (0.810-0.881), respectively. The difference in 

c statistics was significant between the logistic EuroSCORE and our local preoperative 

model (p = 0.02), 

but not between the 

additive 

EuroSCORE and 

our local 

preoperative model 

(p = 0.40). The 

Hosmer-Lemeshow 

test was significant 

for both the logistic 

and the additive 

EuroSCORE, (p = 

0.0008 and p < 

0.0001, 

respectively), 

denoting that the EuroSCOREs predicted a mortality that was significantly different 

from the observed mortality (Figure 5), indicating poor calibration. 

Figure 5. Observed and predicted mortality across the deciles 

of estimated risk for the local preoperative mortality risk model 

and the additive and the logistic EuroSCORE. 
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Paper II 

Primary model 

The primary model for prediction of AKI is summarised in Table 5 and consisted of 

eleven preoperative risk factors for AKI following cardiac surgery.  

Table 5. Acute kidney injury risk prediction model 

Variable Coefficient Odds 
ratio 

95% confidence 
interval 

p-value 

Age (per 10 years increase) 0.479 1.614 (1.430-1.821) < 0.0001 
Body mass index above  
30 kg/m2 

0.276 1.318 (1.023-1.697) 0.03 

Lipid lowering treatment -0.322 0.725 (0.589-0.891) 0.005 
Hypertension 0.440 1.553 (1.273-1.894) < 0.0001 
Peripheral vascular disease 0.291 1.338 (1.003-1.786) 0.04 
Chronic pulmonary disease 0.569 1.767 (1.391-2.244) < 0.0001 
Haemoglobin concentration 
(g/dL) 

-0.176 0.839 (0.787-0.894) < 0.0001 

Serum creatinine 
Below 100 μmol/L 

  
1.000 

 
Reference 

 

100 – 140 μmol/L 1.031 2.805 (2.229-3.529) < 0.0001 
Above 140 μmol/L 2.308 10.058 (7.047-14.356) < 0.0001 

Previous cardiac surgery 0.775 2.171 (1.512-3.118) < 0.0001 
Emergency operation 0.731 2.077 (1.383-3.119) 0.0007 
Operation type 

CABG and atrial 
septum defect 

  
1.000 

 
Reference 

 
 

AVR, AVR and 
CABG, non-
ischemic mitral 
valve surgery, 
aneurysm of the 
ascending aorta 

0.688 1.989 (1.555-2.543) < 0.0001 

Dissection of 
ascending aorta or 
rupture of the 
ventricular septum 

1.632 5.116 (2.377-11.012) < 0.0001 

Miscellaneous 0.971 2.640 (1.885-3.696) < 0.0001 
Intercept -3.867    

Important predictors of postoperative AKI were age, body mass index above 30 kg/m2, 

lipid lowering treatment (protective effect), hypertension, peripheral vascular disease, 

chronic pulmonary disease, haemoglobin concentration, serum creatinine (below 100 

μmol/L, 100-140 μmol/L and above 140 μmol/L), previous cardiac surgery, emergency 
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operation and operation type. The strongest predictors of AKI were elevated serum 

creatinine, operation type, emergency operation and age. 

The c statistic for the model was 0.819 (0.801-0.837), denoting good discrimination. 

The Hosmer-Lemeshow test p-value was 0.17, indicating adequate goodness-of-fit, and 

the estimated shrinkage factor was 0.976, indicating an estimated error in future 

predictions of 2.4%. The calibration curves showed that the model was well calibrated 

for patients with a predicted risk of AKI of less than 0.50, while the 4.4% of patients 

with predicted probability above 0.50 the model somewhat overestimated the risk of 

AKI. 

Alternative models 

The alternative models are summarised in Figure 6, showing variables and 

corresponding odds ratios with 95% confidence intervals.  

Alternative end-point definitions 

The models developed using alternative end-point definitions of AKI included the same 

variables, and the coefficient estimates changed very little (Figure 6). Creatinine and 

body mass index were best modelled as continuous variables in the model where AKI 

was defined as ≥ 50% increase in creatinine or a new requirement for dialysis, and 

peripheral vascular disease was no longer significant. The model where AKI was 

defined as an increase ≥ 26.4 μmol/L (0.3 mg/dL) or more in creatinine was very similar 

to the primary model.  

The model for prediction of an increase in creatinine ≥ 25% included the same 

variables. However, certain coefficients changed somewhat, particularly for body mass 

index (0.435 versus 0.276 in the primary model) and creatinine (0.584 and 0.881 versus 

1.031 and 2.308 in the primary model). Validation showed satisfactory discrimination 

and goodness-of-fit. 
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Figure 6. Model comparison. Plot showing odds ratios with 95% confidence intervals 
for all variables in all models. Odds ratios are grouped according to variable to enable 
comparison among models, and the models are indicated with numbers from 1 to 7. The 
models differ regarding which end-point was used, how kidney function was estimated, 
and whether intraoperative variables were included.  

End-points: 1) ≥ 50% increase in creatinine, an absolute increase in creatinine ≥ 26.4 
μmol/L or a new requirement for dialysis, 2) ≥ 50% increase in creatinine or a new 
requirement for dialysis after surgery; 3) an absolute increase in creatinine ≥ 26.4 
μmol/L, and 4) ≥ 25% increase in creatinine.  

Models: M1: Model I, endpoint 1), M2: End-point 2), M3: end-point 3), M4: end-point 
4), M5: end-point 1) and creatinine exchanged with estimated glomerular filtration 
rate[147], M6: end-point 1) and creatinine exchanged with creatinine clearance [91], 
M7: end-point 1) and intraoperative variables included.  

Abbreviations: CLR: creatinine clearance (mL/min), Crea: Creatinine (μmol/L), Crea 
C: Creatinine, continuous (μmol/L), eGFR: estimated glomerular filtration rate 
(mL/min/1.73m2), Operation type 2: Aortic valve replacement (AVR), AVR and 
coronary artery bypass grafting, non-ischemic mitral valve surgery, aneurysm of the 
ascending aorta, Operation type 3: Dissection of ascending aorta or rupture of the 
ventricular septum, Operation type 4: Miscellaneous surgery. 

More accurate kidney function estimates 

Figure 6 illustrates that the models where creatinine was exchanged with eGFR or 

creatinine clearance were quite similar to the primary model. There were only minor 

differences with regard to significant predictors and coefficients. In the eGFR model 

body mass index was not a significant predictor, whereas it was excluded from the 

creatinine clearance model. Lipid lowering treatment was not significant in the eGFR 

model, and chronic cardiac insufficiency was a significant predictor in both the eGFR 

and the creatinine clearance model. Age was excluded from both models, and gender 

was not a significant predictor in the primary model. 

The c statistic was 0.793 (0.774-0.812) for the eGFR model, and 0.801 (0.782-0.819) 

for the creatinine clearance model. These models with a more accurate estimate of 

kidney function than creatinine showed slightly poorer discrimination than the primary 

model (p = 0.05 and 0.02 respectively). When comparing discrimination by the 

integrated discrimination improvement this difference was even greater (-0.0379 for the 

eGFR model, -0.0317 for the creatinine clearance model, p < 0.0001 for both 

comparisons). In females, discrimination by the primary model (c statistic = 0.798 

(0.764-0.832)), the eGFR model (c statistic = 0.779 (0.742-0.832)) and the creatinine 
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clearance model (c statistic = 0.773 (0.735-0.812) were not significantly different (p = 

0.11 and 0.06 respectively). 

Intraoperative variables 

Cardiopulmonary bypass time, inotropic support and red blood cell transfusion were 

important intraoperative predictors of AKI. The intraoperative model was not more 

accurate than the primary model (p = 0.22) when comparing c statistics, whereas the 

integrated discrimination improvement showed that the intraoperative model had better 

discrimination than the primary model (0.0290, p < 0.0001).  

Model comparison 

Figure 6 shows that the primary model was robust, and that generally the models 

consisted of the same risk factors and the odds ratios for each variable were similar, but 

some of the odds ratios for the various estimates of kidney function changed somewhat. 

Previously published models for acute kidney injury 

The Hosmer-Lemeshow test p-values for Brown’s and Antunes’ models were < 0.0001, 

denoting poor goodness-of-fit in our population. The c statistic of Brown’s model was 

0.653 (0.630-0.676), suggesting that it had poor discrimination in our population. 

Antunes’ model displayed acceptable discrimination with a c statistic of 0.740 (0.718-

0.762). The previously published models had significantly poorer discrimination than 

our primary model for prediction of AKI (p < 0.0001 for both comparisons). The 

integrated discrimination improvement was -0.1960 when comparing Antunes’ model 

with our primary model, and -0.192 for the comparison with Brown’s model (p < 

0.0001 for both comparisons). 

Comparison of preoperative models for prediction of mortality and acute kidney 

injury 

Figure 7 illustrates that the preoperative model for mortality risk prediction and the 

primary (preoperative) model for prediction of AKI showed both similarities and 

differences, both with regard to significant predictors and coefficient estimates. The two 

models included 13 predictors altogether, of which six were significant in both models 

(age, creatinine, chronic pulmonary disease, previous cardiac surgery, degree of urgency 

for surgery and operation type). Two were only significant in the mortality model 
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(female gender and chronic cardiac insufficiency), and five were only significant in the 

AKI model (body mass index, lipid lowering treatment, haemoglobin concentration, 

hypertension and peripheral vascular disease). 

It is difficult to compare age directly between the two models because age was 

transformed to a categorical variable in the mortality model, but age was highly 

significant in both models (p < 0.0001) (Table 4 and Table 5). Creatinine was more 

Figure 7. Comparison of risk models for mortality and AKI. Plot showing odds ratios 
with 95% confidence interval listed according to variable to enable comparison 
between the models. The letter M or A following each variable name indicate the 
mortality model and the AKI model, respectively. Operation types are defined in Table 
4 and Table 5. 
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strongly associated with AKI than with mortality, whereas the odds ratios for chronic 

pulmonary disease and previous cardiac surgery were quite similar. Emergency 

operation and the operation types had an even greater impact on the mortality risk than 

on the risk of AKI. 

Paper III 

In the unadjusted analysis, both C-reactive protein and neopterin were significantly 

associated with cardiac dysfunction after open-heart surgery (Table 6). However, after 

adjustment for urgent operation, operation type, previous cardiac surgery, chronic heart 

failure, pulmonary hypertension, previous myocardial infarction and preoperative 

haemoglobin concentration, neopterin was the only biomarker that remained significant 

(p = 0.0005) (Table 6). Neopterin was correlated with C-reactive protein (R = 0.27, p < 

0.0005). 

Preoperative renal dysfunction was strongly correlated with neopterin (R = 0.37, p < 

0.0005), and was therefore removed from the model. The sensitivity analysis 

demonstrated that there was no difference in odds ratios after renal dysfunction or 

creatinine was removed from the model. Neither renal dysfunction nor serum creatinine 

were significant risk factors for cardiac dysfunction in our dataset. We also developed 

an alternative model including age and sex, but the odds ratios for the biomarkers were 

essentially unchanged (data not shown).  

There was a significant association of neopterin with cardiac dysfunction also when the 

EuroSCORE II was used for adjustment (p = 0.03). The neopterin model adjusted using 

the variables from the local risk model for postoperative cardiac dysfunction had a 

higher c statistic than the neopterin model adjusted using the EuroSCORE II (0.883 

(0.779-0.874) vs. 0.776 (0.726-0.825), p = 0.02) in our patients.  

According to the likelihood ratio test, neopterin improved the model fit (p < 0.0001). 

Neopterin increased the model c statistic from 0.817 (0.770 – 0.863) to 0.833 (0.779 – 

0.874) (p = 0.07) (Figure 8), and the integrated discrimination improvement was 0.014 

(p = 0.02), when comparing the model containing only clinical variables with the model 

including neopterin as well, suggesting that neopterin increased discrimination 

somewhat. 
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 Table 6. Analysis of biomarkers 
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Figure 8 illustrates that inclusion of neopterin particularly increased discrimination for a 

group of patients. 

These were 380 

(37.3%) patients with 

predicted risks 

between 2.5% and 

6.4%. This 

corresponded 

approximately to the 

25th percentile, and 

the 60th percentile, 

i.e. the patients with 

intermediate 

predicted risks, 

having a few risk 

factors for cardiac 

dysfunction. 

 

  

Figure 8. Receiver operating characteristic curve for 
neopterin and clinical variables compared with clinical 
variables alone. 
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Discussion 

Main findings 

In Paper I, we developed a preoperative risk prediction model for operative mortality 

following cardiac surgery. The model included eight risk factors routinely registered in 

clinical practice and displayed good discrimination and calibration in our population. 

The mortality risk prediction model was more accurate than the logistic and the additive 

EuroSCORE. 

In Paper II, we found that AKI after cardiac surgery could be accurately predicted using 

eleven preoperative risk factors easily obtainable in clinical routine work. Serum 

creatinine concentration yielded more accurate predicted risks than eGFR or creatinine 

clearance, and inclusion of intraoperative variables improved the model slightly.  

In Paper III we found that elevated neopterin levels before cardiac surgery was an 

independent predictor of postoperative cardiac dysfunction. 

Methodological considerations 

Logistic regression 

We used multivariable binary logistic regression analysis for development of the risk 

prediction models, and for investigating the association between the inflammatory 

biomarkers and cardiac dysfunction. It is a widely used method, but it has certain 

limitations. Firstly, the linearity assumption in logistic regression may be a limitation, 

since it assumes a linear relationship between the explanatory variables and the 

logarithmically transformed risk of the outcome. If the assumption of linearity generally 

does not fit the data, the predictions from the logistic regression model will not be 

accurate. It is therefore important to test the model’s calibration and discrimination. As 

mentioned, artificial neural networks is an alternative method not relying on an 

assumption of linearity [82, 83]. However, logistic regression is available in most 

statistics software packages, while artificial neural networks require programming of the 

network in order to make predictions.  
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Study period 

For development of the risk prediction models for mortality and AKI we used data 

collected from 2000 through 2007. Time has passed since then, and we cannot exclude 

that recent changes in treatment strategies and patient characteristics may influence the 

performance of the models. Thus, the risk models ought to be calibrated in a more 

recently collected dataset before application in contemporary cardiac surgery.  

The data used for the analyses of association between the inflammatory biomarkers and 

cardiac dysfunction after open-heart surgery were collected more recently, from 2008 to 

2010.  

Sample size and single centre 

We have used data from only one surgical centre, serving the population of Middle 

Norway, and that influences the generalizability of our findings. Thus, the risk models 

for operative mortality and AKI following cardiac surgery must be calibrated if they are 

to be applied elsewhere [158]. The findings regarding the association between neopterin 

and cardiac dysfunction ought to be evaluated in other cardiac surgical populations as 

well.  

The number of observations in the dataset, as well as the number of patients with the 

outcome, is of consequence to the number of risk factors that can be included in the 

model development process [145]. This includes interaction terms that ought to be 

tested and the number of categories for categorical variables [145]. Most mortality risk 

prediction models from multi-centre data published since 2008 were developed from a 

larger patient sample than ours [6, 86, 87, 157, 159-169]. Compared with other single-

centre models published since 2008, the size of our sample was 5029 patients, some 

studies being larger [170], and some being smaller [171-175]. Therefore, we had to be 

more careful when selecting potential predictors than if we had a larger sample size. 

The sample size limited the number of categories in continuous variables that was 

transformed due to not fulfilling the linearity assumption. Another option could have 

been to transform variables in the risk prediction models using natural logarithm or 

another method of transformation, but that would make the clinical application and 

interpretation more difficult, especially to clinicians with little statistical experience. 



63 
 

The sample size also affected the number of categories in categorical variables. It is 

possible that our models would have been even more accurate if we could have used 

more categories. Even so, both the mortality and AKI risk prediction models displayed 

good discrimination and calibration.  

Data collection 

Collection of clinical data used in this thesis was done prospectively by the treating 

doctors. The data were controlled several times during registration, and then quality 

assured by a senior anaesthesiologist before storage in a local database. Despite the 

thorough quality assurance, we cannot exclude that errors have occurred at some point 

during registration. 

Due to the great efforts made in quality assurance of data collection, the problem with 

missing information on some variables was generally small. Therefore, we did not use 

any strategy to deal with missing values, such as multiple imputation.  

The blood samples were marked with identification tags at the arterial sampling time 

before transportation to the laboratory, but we cannot exclude that identification errors 

occurred. 

End-points 

Mortality 

We measured operative mortality as a combination of in-hospital mortality and 30-day 

mortality, using linkage to the Norwegian Cause of Death Registry to obtain 

information on 30-day mortality. In-hospital mortality is often the easiest to register as 

it does not require investigation of patient status after discharge. However, as there is a 

trend towards shorter hospital stays more patients are likely to die after the index 

hospitalization. A German study of mortality among CABG patients in the 1990’s found 

that mortality rates according to 30-day mortality and in-hospital were similar [176]. 

However, a recent study from Great Britain and Ireland found that 28% of patients that 

died within 30 days of surgery died after hospital discharge [168]. This number will 

probably vary between institutions, but one may miss a considerable proportion of 

patients by including only in-hospital mortality.   
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It has also been demonstrated that the instantaneous mortality hazard is still increased 

beyond 30 days after cardiac surgery, and it was suggested that longer follow-up times 

should be used [176]. A postoperative risk score for 90-day mortality after cardiac 

surgery was published in 2013 [174].  Measuring mortality during a certain time frame 

following cardiac surgery requires appropriate gathering of mortality data, such as 

linkage to national cause of death registries, to be valid [176]. Furthermore, the longer 

the time-frame after surgery, the more likely it becomes that deaths that are not related 

to the cardiac operation are also included. It would have been interesting to evaluate if 

our model for operative mortality would predict 90-day mortality accurately. 

Acute kidney injury 

We applied a definition of AKI after cardiac surgery that could be regarded as a slight 

modification of the AKI Network definition because we allowed a longer time span than 

48 hours for the maximum creatinine value to occur.  

Another common definition of AKI is the Risk/Injury/Failure/Loss/End-stage definition, 

often referred to as the RIFLE criteria [177]. The AKI Network definition represents a 

modification of the Risk/Injury/Failure/Loss/End-stage definition [27, 177]. The 

greatest differences are that the AKI Network definition does not include any eGFR 

decrease, it does include an absolute increase in serum creatinine as well as the relative 

increase of 50% or more, and the time frame is limited to 48 hours [27, 177].  

We applied a standardized and validated definition of AKI, except that we allowed a 

longer time span than 48 hours for the maximum creatinine to occur, since the 

postoperative increase in creatinine is often delayed [20]. A more recently proposed 

definition of AKI is the Kidney Disease: Improving Global Outcomes definition [178]. 

This definition is similar to the AKI Network definition, but it allows a time frame of 

seven days for the relative increase in serum creatinine, instead of 48 hours [27, 178]. 

The Kidney Disease: Improving Global Outcomes definition is more in line with the 

definition of AKI that we used in Paper II, and it would probably have been more 

appropriate to refer to that definition. However, it was published after we had started the 

work with the AKI risk model, and we were not aware of the new proposal for an AKI 

definition at that time. 
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Another study compared the Risk/Injury/Failure/Loss/End-stage definition and the AKI 

Network definition in 1881 cardiac surgical patients, and showed that more than 40% of 

AKI events occurred after 48 hours [179]. Moreover, when the AKI Network definition 

was applied within seven days of surgery it demonstrated superior discrimination with 

regard to in-hospital mortality compared to the Risk/Injury/Failure/Loss/End-stage 

definition [179]. The same study also compared the proportion of patients developing 

AKI according to the Risk/Injury/Failure/Loss/End-stage definition and the AKI 

Network and Kidney Disease: Improving Global Outcomes definitions [179]. The study 

showed that the AKI Network definition and the Kidney Disease: Improving Global 

Outcomes definition resulted in the same frequency and staging of AKI [179]. 

Moreover, the Risk/Injury/Failure/Loss/End-stage definition and the AKI Network 

included many of the same patients, but the two definitions did not overlap completely 

[179].  

Sampaio et al. compared the three AKI classifications in 321 patients undergoing 

cardiac surgery [180]. They found that the incidence and risk factors for AKI after 

cardiac surgery varied according to the definition used [180]. AKI was associated with 

increased mortality regardless of which classification was used [180]. They also found 

that the Kidney Disease: Improving Global Outcomes definition demonstrated improved 

prognostic power with regard to a composite end-point of mortality, need for dialysis 

and prolonged hospital stay [180]. 

It would have been interesting to evaluate how the different AKI classifications would 

change the AKI risk model in our data. However, our results regarding minor changes 

in end-point definition indicated that it had little impact on the model.  

Cardiac dysfunction 

We defined cardiac dysfunction as the need for more than one inotropic agent or an 

intra-aortic balloon pump occurring after the operation and until the patient was 

discharged from the department. This definition was dependent upon the clinical 

judgement of the necessity to start therapy with inotropic agents or an intra-aortic 

balloon pump in order to maintain sufficient perfusion. Thus, it was not based on 

objective criteria that could be measured reliably in every patient or in other institutions. 
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Similar definitions of postoperative cardiac dysfunction have been used by others [32, 

34]. A more objective definition could possibly be based on measures of inadequate 

tissue perfusion, such as mixed venous oxygen saturation [35]. However, that would 

require the insertion of a pulmonary artery catheter in all patients, which was done in 

less than 30% of our patients. Cardiac dysfunction is a clinical syndrome, and the 

definition we applied was considered to include the relevant patients. If we had 

measured the mixed oxygen saturation in all patients, it would have been interesting to 

evaluate the relation between the mixed oxygen saturation and the need for more than 

one inotropic agent or an intra-aortic balloon pump.  

Risk prediction models may teach us useful things in clinical research. For instance it is 

important that the definition of the end-point and the predictors are clinically relevant 

and easy to use to enable clinical application of the results [181]. Moreover, the variable 

definitions are important for comparison of results between institutions and for 

interpretation of results [181]. 

Variable definitions 

Some of the continuous variables had to be transformed because the assumption of 

linearity during logistic regression modelling was not fulfilled. For the risk prediction 

models we chose to transform them to categorical variables to preserve the intuitive 

clinical interpretation of the odds ratios. When categorizing a variable, some 

information is lost, and we cannot exclude that the models would have been even more 

accurate if we had been able to keep the continuous variables as such.  

In the analysis of the biomarkers, neopterin and the terminal complement complex had 

to be logarithmically transformed in order to fulfil the linearity assumption. This 

affected the interpretation of the odds ratios, but was not expected to affect model 

accuracy.  

The variable operation type included four categories covering all cardiac surgery 

performed in our institution in the study period. Thus, several operation categories were 

merged to reduce the number of categories because we had to take into account the 

sample size and the number of patients with the outcome. Operation types with 

approximately the same risk of the outcome were grouped together, and were consistent 
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in all three studies, except that in Paper III we used only three categories instead of four 

due to smaller sample size. The merged operation type variable was highly significant, 

and our models performed well, but our way of dealing with the operation types may be 

unusual. We could have used a similar approach as in the EuroSCORE II, using isolated 

CABG as the reference category, and adding weight for other or additional procedures 

[157]. Such an approach could possibly have been more intuitive to many surgeons. 

Several models have been developed for separate operation types, most frequently for 

CABG and valve surgery [6, 86, 87, 162-165, 167, 182]. This strategy could perhaps be 

better for modelling the pathophysiology, because the pathophysiological mechanisms 

underlying coronary heart disease, heart valve disease and other cardiac pathologies are 

somewhat different. Thus, the handling of operation types is likely to affect the 

modelling of all other risk factors included in the model as well. Even so, using four 

categories of operation types rendered a more general model than if we had developed 

separate models for each type of operation. It enabled us to predict mortality and AKI in 

all cardiac surgery patients, which was our aim. However, it is likely that the models 

were less accurate in subgroups of operation types than if we had included only this 

type of surgery. It is also possible that this will affect the accuracy of predictions if the 

model is applied in data from other surgical centres with different procedure-specific 

mortality.  

Moreover, given our sample size, it was not feasible to split the data into even smaller 

datasets to make separate models for several operation types. Another approach could 

have been to extend the study period to include more patients, but the longer time that 

passes from beginning to end of the study, the more likely it is that the study population 

and treatment strategies changes during the study period.  

We have used several categorical variables that in part rely on clinical judgement, such 

as the ones included in previous or intercurrent diseases, the degree of urgency for 

surgery and some of the intraoperative variables concerning treatment. For instance, not 

all patients underwent spirometry, and the diagnosis of chronic pulmonary disease was 

partly based on whether the patient was receiving bronchodilating medication. Another 

example is the intraoperative use of blood product transfusions and inotropic agents.  
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We endeavoured to use as reliable and objective variable definitions as possible, but 

treatment strategies will likely differ somewhat between institutions and may influence 

the risk prediction models and their performance elsewhere. Thus, validation and 

calibration of the risk prediction models before use is warranted. Furthermore, we 

cannot exclude that local factors not accounted for could impact the results regarding 

the inflammatory biomarkers, and re-evaluation of the hypothesis in another patient 

population is desirable.  

In our data, the exact value of left ventricular ejection fraction and pulmonary arterial 

pressure was not registered in all patients, and two different methods of measurement 

were used (catheterization and echocardiography). As stated in the Patients and methods 

section, the quality of the left ventricular ejection fraction variable was considered too 

poor to be used as a continuous variable. The diagnosis of pulmonary hypertension was 

based on measurement of pulmonary arterial pressure. Although the exact value was not 

registered in all patients, we believe that the large majority of patients with pulmonary 

hypertension according to the criteria were identified. 

Comparing model discrimination 

In Paper I we compared the discrimination of our preoperative risk prediction model 

with that of the intraoperative models and the logistic and additive EuroSCORE by 

comparing the models’ c statistics. As mentioned, this method is considered to be a 

conservative test [152]. In Paper II and III we used the integrated discrimination 

improvement as well as the c statistic, and in Paper III we also used the likelihood ratio 

test.  

If we had used the integrated discrimination improvement in Paper I as well, it is not 

unlikely that the intraoperative model would have displayed significantly better 

discrimination than the preoperative model. Recently it has been argued that comparison 

of c statistics is an invalid measure of improvement in discrimination when applied to 

two regression models fitted in exactly the same patients [183]. It has also been 

recommended that the likelihood ratio test is used instead of, and not along with 

comparison of c statistics, to avoid double testing of the same hypothesis [184]. When 

several tests are used to test the same hypothesis, problems may arise if the different 
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tests yield contradicting conclusions [184]. If we had been aware of the 

recommendation of using the likelihood ratio test instead of comparison of c statistics 

from the beginning, we might have considered not using the c statistic at all. Even so, 

ROC curves are useful for descriptive evaluation of model performance, and are 

suitable for visualizing where the differences in discrimination are greatest [184]. 

Moreover, comparing model discrimination by comparing c statistics has become a 

widely used method that many researchers are familiar with. Therefore journal 

reviewers will often ask for it if it is not already included in a submitted manuscript. 

External and temporal validation and recalibration 

We validated our models internally using bootstrapping methods. As a considerable 

sample size is required to include a sufficiently large number of patients with the end-

point [185], we have not yet been able to evaluate our models applying temporal 

validation. Temporal validation refers to validating the risk prediction model in a patient 

sample derived from the same population, but from a different time period. However, 

temporal validation and model updating should be feasible within the foreseeable 

future. 

External validation is the only method that assesses the generalizability of the risk 

prediction model as it evaluates the model performance in a different patient population 

[186]. It is therefore considered the gold standard of validation[186]. Unfortunately we 

did not have access to an independently collected dataset from another institution, but it 

would certainly be of great interest to assess our risk prediction models in a different 

dataset.  

Significant predictors in risk models for mortality and acute kidney injury 

Significant predictors in the primary risk prediction models 

Six variables were significant in both the mortality and AKI models: Age, creatinine, 

chronic pulmonary disease, previous cardiac surgery, degree of urgency for surgery and 

operation type. Two variables, female gender and chronic cardiac insufficiency, were 

only significant in the mortality model. Five risk factors were only significant in the 

AKI model: Body mass index, lipid lowering treatment, haemoglobin concentration, 

hypertension and peripheral vascular disease. 
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Various studies have identified different risk factors and different weighting, and this 

may seem somewhat confusing. Moreover, it may be more difficult to convince 

clinicians of the reliability of the risk prediction model when known risk factors are left 

out. However, it is important to underline that risk prediction is not the same as 

assessing causal relationships. The model-building strategy in risk prediction modelling 

focuses on developing a model that make the most accurate predictions, without taking 

potential confounders, colliders and mediators into account. Therefore, odds ratios of 

risk prediction models should not be used for making causal inferences. On the other 

hand, it is possible to predict an outcome accurately using very few risk factors, even if 

some known causal risk factors are left out. The modelling process will identify the 

variables that contain the most statistical information in order to make a precise 

prediction of the outcome risk in the dataset used. That being said, variables that carry a 

large amount of statistical information are also likely to be important for development 

of a certain complication. 

Thus, in both the mortality and AKI risk prediction models only a few variables were 

not significant predictors of the other end-point. This indicates that the mechanisms 

underlying AKI and death probably are partly overlapping. Serum creatinine was an 

important predictor of both end-points, and patients who suffered from postoperative 

AKI had increased mortality. Other researchers have also found an association between 

postoperative AKI and mortality [20, 21, 26], and this may account for some of the 

similarity in predictors between the two end-points. However, postoperative AKI or 

chronic kidney disease has not been shown to be among the most common causes of 

death in cardiac surgical patients [14, 36]. As mentioned in the Introduction, some of 

the most common causes of death following CABG are cardiac failure, respiratory 

failure, haemorrhage, neurologic injury and dysrhythmia [14]. The kidneys are crucial 

in maintaining homeostasis, and therefore impaired renal function will affect the entire 

organism.  

Age and creatinine were strongly associated with both mortality and AKI. A direct 

comparison of respective odds ratios is difficult because they were not modelled in the 

same way in both models. Age was dichotomized in the mortality model and continuous 

in the AKI model, and creatinine was modelled with two categories in the mortality 
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model and three categories in the AKI model. However, the p-values for age and 

creatinine were all below 0.0001 in both models. 

The need for emergency surgery (operation within 24 hours) was more strongly 

associated with mortality than with AKI. Emergency surgery was probably associated 

with higher mortality partly because a considerable proportion of these patients would 

have died without immediate surgery, and some of them instead died during surgery. 

The association between emergency surgery and AKI also indicates that the emergency 

patients who survive the operation have an increased risk of AKI. Potential mechanisms 

increasing the AKI risk particularly in emergency patients include haemodynamic 

instability, which may enhance inflammation and oxidative stress to the kidneys. 

The presence of chronic pulmonary disease was associated with both AKI and death. 

Chronic obstructive pulmonary disease has been associated with systemic inflammation 

and dysfunction of other organ systems [187], and may in turn lead to death. However, 

the association between chronic pulmonary disease and kidney disease has not been 

thoroughly examined. Van Gestel et al. found that chronic pulmonary disease was 

associated with chronic kidney disease [188]. Although the underlying mechanisms of 

chronic kidney disease may differ from those of AKI, our findings indicate that there 

could be an association between chronic pulmonary disease and AKI as well. 

The surgery-related risk factors operation type, previous cardiac surgery and degree of 

urgency, and their association with both end-points are partly associated with 

cardiopulmonary bypass time. Cardiopulmonary bypass time is in turn connected with 

systemic inflammation [8, 9, 92, 93]. The systemic inflammation includes activation of 

leukocytes [10, 95, 98], endothelium [97] and plasma cascade systems including 

complement [10, 94, 95] and coagulation [96]. 

The mortality risk prediction model showed better discrimination than the AKI risk 

prediction model, with c statistics 0.857 (0.823-0.891) and 0.819 (0.801-0.837), 

respectively. A possible reason could be that mortality is a more clear-cut end-point 

than is AKI. Although objective criteria were used, kidney function spans over a 

continuum while mortality is dichotomous by nature. This could influence the 

possibility to predict the outcome accurately, because for AKI the model must predict 
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how large the increase in creatinine will be. In binary logistic regression the end-point 

must be dichotomous, and perhaps the model fits better with a naturally dichotomous 

end-point. 

Intraoperative variables 

Significant intraoperative predictors of both mortality and AKI were time on 

cardiopulmonary bypass, the need for inotropic support and red blood cell transfusion. 

We neither found a significant improvement in discrimination according to comparison 

of model c statistics for the mortality nor the AKI risk prediction models. However, the 

c statistics indicated that discrimination was somewhat improved by adding information 

about intraoperative variables. In Paper II we used the integrated discrimination 

improvement in addition to the comparison of model c statistics, which showed a 

significant improvement in discrimination. It is possible that the mortality risk 

prediction model including intraoperative variables would have shown significantly 

better discrimination according to the integrated discrimination improvement. However, 

how large a clinically relevant integrated discrimination improvement should be 

remains to be agreed on.  

Our findings suggest that both mortality and AKI can be accurately predicted before 

surgery, although intraoperative factors, and particularly time on cardiopulmonary 

bypass, play an important part [189, 190]. It is possible that many of the preoperative 

risk factors are related to the intraoperative risk factors. For instance operation type and 

the need for emergency surgery could be good surrogate markers for long duration of 

cardiopulmonary bypass and need for inotropic support during surgery. 

Alternative kidney function estimates and end-point definitions 

In the EuroSCORE II, preoperative kidney function was included as creatinine 

clearance estimated by the Cockcroft-Gault formula [91, 157]. In Paper II, we 

investigated whether more accurate measures of kidney function could improve the AKI 

risk prediction model. Although there was a discrepancy in kidney function estimated 

from creatinine and eGFR, the models including creatinine clearance or eGFR were not 

as accurate as the model including creatinine. This difference disappeared when we 

evaluated the model in women only.  
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A possible explanation could be that each logistic regression model is adapted to the 

explanatory variables it includes. Thus, the model uses the available information and the 

coefficients of the other predictors are adapted to the information included in the 

creatinine variable. It is possible, despite correlation, that the variables used for 

calculating eGFR and creatinine clearance could not be entirely replaced by eGFR and 

creatinine clearance alone. Therefore, the primary model would appear as the most 

accurate since it included those predictors separately instead. Thus, contrary to our 

hypothesis, these models with more accurate estimates of kidney function than 

creatinine showed slightly poorer discrimination than the primary model. 

Minor changes in end-point definition did not alter the AKI risk prediction model much. 

The model for prediction of a 25% or greater increase in creatinine included the same 

risk factors as the primary model, and some of the coefficients changed somewhat. Our 

results suggested that preoperative kidney function was more important for 

development of moderate AKI than for mild AKI. Furthermore, body mass index 

appeared to be more important for mild AKI than for moderate AKI. As changes in the 

end-point definition had little impact on the model, one may speculate that the 

mechanisms for milder and more severe forms of AKI are similar. 

The usefulness and pitfalls of risk prediction models 

Preoperative risk evaluation can be used for individual patient counselling and risk 

stratification. When predicting risk for individual patients, it is important to emphasize 

that the predicted risk corresponds to the risk in a group of similar patients, and that 

each individual will or will not have the complication in question. It is recommended 

that the risk prediction model c statistic ought to be greater than approximately 0.8 in 

order to be applicable to individual patients [146, page 247]. 

It is also possible to use predicted risk for assignment of patients at unacceptable risk to 

alternative treatment. However, risk prediction models tend to be less accurate in high-

risk individuals, including our own models, and therefore it may not be appropriate to 

base the choice of treatment solely on predicted risk [85, 191]. This may be so because 

high-risk patients are a diverse group, and many of them have rare risk factors that 
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cannot be included in a risk model, but may have great impact on the individual 

patient’s risk [192]. Thus, sound clinical judgement is of great importance. 

Preoperative risk prediction can be used to identify patients at high risk for a certain 

complication, and enable initiation of early treatment or even prevent the complication 

[28]. The list of possible interventions to reduce the risk of AKI includes avoidance of 

nephrotoxic substances such as intravenous contrast media, non-steroid anti-

inflammatory drugs and aminoglycoside antibiotics, or delaying surgery until recovery 

following a renal insult [28]. Moreover, meticulous monitoring and optimum control of 

haemodynamics and correction of anaemia preoperatively may decrease the risk of AKI 

[28]. Avoidance of prolonged aortic cross-clamping and cardiopulmonary bypass times, 

and minimizing intravascular haemolysis are also thought to be beneficial [28]. 

However, none of the suggested interventions have shown any considerable effect [28], 

and no pharmacological treatment has yet been proved effective [193, 194]. 

In research, risk prediction can be used to identify patients at a greater risk of the 

outcome one is interested in, in order to increase power if the sample size is limited by 

external factors like available resources. Often the outcome is rare, and if one applies a 

risk prediction model to include only high-risk patients, the incidence of the outcome is 

likely to increase. Thus, the total number of patients investigated can be lower than if 

one is to include all patients. 

Since health care resources are limited, risk prediction models may facilitate a more 

sensible use of resources by allocating them to those patients who are more likely to 

benefit from the use of additional resources for monitoring and supportive treatment [8]. 

Risk models can also be used for adjusting complication rates when comparing 

surgeons or institutions in quality assurance work [148]. Thus, the impact of a model 

making systematically erroneous predictions can be considerable, and may affect choice 

of treatment for individual patients, resource allocation and ranking of surgeons or 

hospitals. 

Local versus multi-centre models 

The results of Paper I showed that the EuroSCORE displayed poor fit despite good 

discrimination in our population, whereas our own preoperative mortality risk model 
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displayed both good calibration and discrimination, and was better than the 

EuroSCORE. A similar observation was made by Antunes and colleagues [12]. 

The data from which the EuroSCORE was developed was collected in 1995 [16], hence 

the poor fit in our population might arise from changes in patient characteristics and 

treatment. If discrimination of a model is poor, the model is not suitable for risk 

prediction and cannot easily be improved. On the other hand, if calibration is poor while 

discrimination is good, one can recalibrate the model to improve prediction, without 

forsaking discrimination [145, 158]. Our results indicated that the EuroSCORE might 

not be suitable for individual preoperative risk evaluation in our population without 

recalibration, but it can still be used to classify patients in broad risk groups. However, 

after we validated the old EuroSCORE, the updated EuroSCORE II has been published 

[157]. It has not been validated in our patient population yet, but we expect that it will 

be better calibrated than the old EuroSCORE, and it would certainly be of interest to 

validate the EuroSCORE II in our population. 

Developing risk models from data collected from many hospitals and several countries 

will enable risk prediction and adjustment of complication or mortality rates when 

benchmarking hospitals across a wide geographical range. However, the coefficients in 

such models will represent an average of the influence and composition of risk factors 

for all contributing centres, and risk prediction may be less accurate when applied to 

single centre data than locally developed models. Previous studies have also shown that 

locally developed risk models were often more accurate than models developed 

elsewhere [12, 65, 68, 171], and may therefore be preferred for preoperative risk 

evaluation and for assigning patients to alternative treatment based on risk evaluation.  

A locally developed model may not be suitable for use outside the institution where it 

was developed. Preoperative risk evaluation as well as internal assessment and inter-

institutional comparison are important to improve the quality of treatment, and to 

provide patients with optimum care and counselling. All risk prediction models, 

regardless of origin, should be validated before implementation in clinical or 

administrative work. Risk prediction models also need to be updated regularly to ensure 
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the eligibility of the predictions as changes may occur in patient characteristics and 

treatment strategies.  

Do we need a model for each end-point?  

Our results indicate that the pathophysiological mechanisms for different complications 

are likely to be partly different, partly overlapping. This suggests that any risk model 

developed to predict a diverse range of outcomes would be prone to inaccuracy, because 

the coefficients would represent the average impact of the risk factors, and all the 

predictors might not be significant predictors of all the end-points if they were analysed 

separately. This is supported by Antunes et al. and the STS cardiac surgery risk models. 

Antunes et al. found that models for different postoperative morbidity end-points 

differed with regard to the composition of predictors and their respective coefficients 

[144]. In the risk models of the STS the coefficients of the predictors varied between the 

models for different end-points [6, 86, 87]. Thus, a universal model that can accurately 

predict several end-points is probably unattainable.  

In clinical work, time is limited and most clinicians do not have the time to calculate the 

predicted risks for many end-points preoperatively. A good solution could be that the 

risk predictions could be integrated in a computerised data collection form, using the 

registered information to automatically calculate the predicted probability for each of 

the complications. Another alternative could be to use the model predicting the most 

interesting end-point only. In administrative work or research one is not dependent upon 

predicting the risk preoperatively. Given that the data are stored in a computerised 

database, the predicted risks for a large number of patients can easily be calculated 

simultaneously. 

However, it is still uncertain whether clinicians trust their own clinical judgement more 

than they would trust a risk prediction model. Experienced clinicians have accumulated 

a large amount of knowledge that is used for making decisions and judgements every 

day. A risk prediction model cannot take all possible risk factors into account. Its 

predictors are normally confined to some of the most common and powerful risk factors 

and rare risk factors that may have a great impact on individual patient risk will never 

achieve significance in a risk prediction model developed from several thousand 
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patients. A comparison of a risk prediction model and surgeons’ risk predictions showed 

that both surgeons and a risk prediction model displayed similar discriminatory ability 

for mortality following AVR [192]. However, surgeons tended to over-estimate the 

mortality risk in high-risk patients [192]. 

Parsimonious models versus large number of risk factors  

In 2009, Ranucci et al. published a mortality risk score for cardiac surgery using only 

three variables: the Age, creatinine and ejection fraction score [172]. Thus, this model 

represents the parsimonious extreme in mortality risk prediction, as opposed to the STS 

risk models, which include a large number of risk factors [6, 86, 87]. Interestingly, the 

parsimonious risk model by Ranucci et al. was just as accurate when validated in a 

separate cohort from the same area as were the complex STS models when validated in 

the separate validation cohort [6, 86, 87, 172]. Our research group has also evaluated the 

discrimination of the Age, creatinine and ejection fraction score for operative mortality 

in our population, and the c statistic was 0.762 (0.707-0.816) [33]. For comparison, the 

c statistic of the logistic and the additive EuroSCORE was 0.821 (0.785-0.857) and 

0.846 (0.810-0.881) in our data, respectively. Thus, the parsimonious risk model 

showed somewhat poorer discrimination than the EuroSCORE in our population. The 

Age, creatinine and ejection fraction score was also compared to the additive and 

logistic EuroSCORE in a large Italian study [191]. There it demonstrated somewhat 

better discrimination than the EuroSCOREs, although not significantly better, and none 

showed particularly impressive discrimination [191]. The slightly better discrimination 

of the Age, creatinine and ejection fraction score compared with the EuroSCORE in an 

Italian population also illustrates the importance of taking geographical differences into 

account when using risk prediction models. 

Inflammation and cardiac dysfunction 

Preoperative neopterin and postoperative cardiac dysfunction 

As inflammation caused by cardiac surgery is thought to play a pivotal role in the 

development of several postoperative complications [8], we hypothesized that increased 

preoperative inflammation would affect the development of postoperative cardiac 

dysfunction. We found an association between increased preoperative neopterin and 
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cardiac dysfunction following open-heart surgery. The finding ought to be tested in 

other populations of cardiac surgical patients in order to test its validity. Even so, it is 

possible that increased preoperative inflammation and elevated plasma neopterin in 

particular, render the heart more vulnerable to further inflammation and oxidative stress 

induced by cardiac surgery. It remains to be investigated whether the plasma 

concentration of neopterin is correlated with the amount of myocardial neopterin.  

The sensitivity analysis with adjustment using the EuroSCORE II confirmed that our 

findings regarding neopterin were robust and did not depend on the way of adjustment. 

It also showed that the local model was more accurate for predicting postoperative 

cardiac dysfunction than the EuroSCORE II, which was developed to predict 

postoperative mortality. 

Reasons for elevated neopterin 

Acute infection, autoimmune diseases and malignancy can also cause an elevation in 

plasma neopterin levels [130]. As mentioned in the Introduction, atherosclerosis and left 

ventricular dysfunction have been associated with elevated neopterin [111-113, 129, 

133]. In patients with intercurrent infections, elective cardiac surgery is normally 

postponed until recovery, and patients with active endocarditis were excluded from the 

study in Paper III. Information on autoimmune diseases and cancer was not included in 

our data. Therefore, we were not able to identify patients with autoimmune diseases or 

malignancy. However, the total number of affected patients is expected to be low. We 

statistically adjusted for atherosclerosis and left ventricular dysfunction, which are 

frequently observed in patients undergoing heart surgery.  

Neopterin is subject to renal elimination, and the molecule is biologically stable in the 

circulation [130]. Thus, an increase in neopterin concentration can also be caused by 

impaired renal function. Therefore we performed sensitivity analyses of neopterin 

where we adjusted for serum creatinine as well as the other clinical variables, but the 

results were not altered in this alternative analysis. The robustness of our results 

suggests that neopterin is not merely a marker of poor kidney function, and that the 

elevations in neopterin concentration were more than what would be expected from 

increases caused by reduced renal clearance. Neopterin may have an effect on the 
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development cardiac dysfunction itself, or be a marker of a process increasing its 

production, such as the activation of the cellular immune system. 

C-reactive protein 

After adjustment for the clinical variables C-reactive protein was no longer significantly 

associated with postoperative cardiac dysfunction. C-reactive protein was somewhat 

correlated with neopterin in our study. We analysed C-reactive protein and neopterin in 

the same model, and it could be that C-reactive protein contributed with little additional 

information that was not already provided by neopterin. Furthermore, neopterin is 

considered a more specific marker of activation of monocytes and the cellular immune 

system in inflammation, while C-reactive protein is a more general marker of 

inflammation. C-reactive protein has been associated with ischaemic heart disease and 

chronic cardiac dysfunction in previous studies. Therefore, another possible explanation 

is that C-reactive protein represents some of the information included in some of the 

clinical covariates, such as urgent operation, chronic heart failure and previous 

myocardial infarction.  

C-reactive protein circulates as a pentamer, but the monomeric form is more active 

[195]. A recent study showed that the monomeric form of C-reactive protein, as 

opposed to the circulating pentameric form, was found in inflamed atherosclerotic 

plaques and in myocardial infarction lesions in humans, [195]. We are measuring the 

circulating pentamer, and it does not necessarily correspond with the concentration of 

monomeric, pro-inflammatory C-reactive protein at sites of inflammation. This could 

perhaps partly explain the varying results in the literature regarding associations of C-

reactive protein and cardiac end-points.  

The preoperative level of C-reactive protein should reflect low-grade inflammation, as 

patients with signs of intercurrent infection and elevated C-reactive protein were not 

eligible for elective cardiac surgery. For most patients the C-reactive protein 

concentration was therefore not expected to be measurable by routine methods used in 

clinical practice. 
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Inflammation and risk prediction 

Cardio-renal syndromes 

The risk factors of the outcomes in this thesis, namely mortality, AKI and cardiac 

dysfunction, were partly overlapping. AKI following cardiac surgery has been strongly 

associated with increased mortality [20, 21, 26], however cardiac problems have been 

found to be the most common cause of death [14, 36].  It is possible that the increased 

mortality in part is mediated through a failing heart. It is also possible that AKI reduces 

the clearance of substances such as neopterin, which may increase the cardiac stress.  

The heart and the kidneys are closely interrelated, and disturbances in the functioning of 

one organ affect the other. The main routes of influence are changes in cardiac output 

and renal perfusion, haemodynamic changes, disturbances in fluid and electrolyte 

balance, neuroendocrine activation and inflammation [196, 197]. 

In recent years, there has been a focus on concomitant dysfunction in several organs, 

and among these are the cardio-renal syndromes [198]. There are five categories of 

cardio-renal syndromes [198]: (1) Acute decrease in heart function leading to acute 

kidney dysfunction. (2) Chronic reduction in heart function leading to kidney 

dysfunction. (3) AKI leading to cardiac dysfunction. (4) Chronic kidney disease leading 

to worsening of heart function. (5) Systemic disease, such as sepsis, leading to 

dysfunction in both the heart and the kidneys.  

Cardiac surgical patients already have a disease of the heart, and therefore AKI 

following open-heart surgery may be considered as cardio-renal syndrome type 1 [197]. 

The systemic inflammatory response following cardiac surgery show similarities with 

that in sepsis, and it is possible that some of the mechanisms underlying type 5 cardio-

renal syndrome are also present in cardiac dysfunction and AKI following cardiac 

surgery [199]. The two entities may also be parts of multiple organ failure.  

Improvement of risk prediction 

In Paper I and Paper II we found that three intraoperative variables, namely time on 

cardiopulmonary bypass, need for inotropic support and red blood cell transfusion, 

slightly improved discrimination of the risk prediction models. In Paper III we found 
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that inclusion of neopterin yielded somewhat more accurate predictions of cardiac 

dysfunction following open-heart surgery.  

Inclusion of intraoperative variables could make the model more complex, and it 

precludes risk prediction before surgery. Thus, the slight improvements in model 

performances do not justify the use of the intraoperative models instead of the 

preoperative ones in our population.  

Potentially useful new biomarkers ought to be thoroughly evaluated before 

implementation in the clinic, and one must compare the benefit with the increased 

expenses of the analysis of this biomarker. Therefore, we do not suggest the 

measurement of neopterin in all patients before cardiac surgery at present.  

However, our findings regarding the association between preoperative neopterin levels 

and postoperative cardiac dysfunction support the hypothesis that inflammation and 

oxidative stress are involved in the development of cardiac dysfunction after open-heart 

surgery, and suggest that further investigation of this potential relationship is warranted. 

It is possible that risk prediction can be further improved by including markers of 

several hypothesized pathways, or by including information on genetic information on 

molecules involved in underlying pathways. Such studies can be used to further 

investigate findings from animal models as part of translational research. 

Future studies 

Our risk prediction models ought to be validated and updated in a more recent cohort 

from our institution. To assess the generalizability of the risk models, external 

validation is also necessary. It would also be interesting to assess how preoperative risk 

prediction could impact on treatment choice.  

In order to further investigate the potential underlying mechanisms of dysfunction in the 

heart and kidneys, it would be interesting to compare levels of inflammatory markers in 

venous blood from the heart and kidneys with that of peripheral circulation during and 

after cardiac surgery. This could be done by placing catheters in the renal vein and 

coronary sinus, and then compare the concentration of inflammatory markers in the 

renal vein or coronary sinus with the concentration in systemic circulation (i.e. radial 
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artery). This investigation could increase the knowledge about organ-specific activation 

of inflammatory cells or humoral immunologic factors like complement during and after 

cardiac surgery. 

If one exposed mice to small amounts of neopterin over a longer time, one could 

measure if there was any effect on the cardiac function. Despite that murine 

macrophages do not produce neopterin; neopterin has been shown to affect contractility 

in rat hearts [134]. Probably also more suitably investigated in an animal model, the 

relationship between circulating neopterin and its presence in the myocardium or other 

organs could be tested.  
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Conclusions 
Paper I: 

1) We developed a local preoperative mortality risk prediction model for cardiac 

surgery that displayed good discrimination (c statistic 0.857 (0.823-0.891)) and 

calibration in our population. It consisted of eight risk factors for operative mortality 

after cardiac surgery: age above 68 years, degree of urgency, female gender, serum 

creatinine above 140 μmol/L, chronic pulmonary disease, chronic cardiac 

insufficiency, previous cardiac surgery, and type of operation. 

2) The inclusion of intraoperative variables did not significantly improve the predictive 

ability of the model.  

3) The additive and the logistic EuroSCORE were poorly calibrated in our population, 

yet the discrimination was good with c statistic of 0.846 (0.810-0.881) and 0.821 

(0.785-0.857), respectively. Our local mortality risk prediction model displayed 

significantly better discrimination than the logistic EuroSCORE (p = 0.02). 

Paper II: 

4) We developed a well-calibrated and accurate local preoperative risk prediction 

model for AKI following cardiac surgery (c statistic 0.819 (0.801-0.837)). The 

model included eleven important risk factors for AKI after open-heart surgery: age, 

body mass index above 30 kg/m2, lipid lowering treatment (protective effect), 

hypertension, peripheral vascular disease, chronic pulmonary disease, haemoglobin 

concentration, serum creatinine (below 100 μmol/L, 100-140 μmol/L and above 140 

μmol/L) , previous cardiac surgery, emergency operation, and operation type. 

5) The model changed little with changes in the end-point definition. 

6) Intraoperative variables slightly improved model discrimination and more accurate 

estimates of kidney function slightly decreased the model accuracy. 

7) The previously published risk model for AKI by Antunes et al. [144] displayed poor 

fit but adequate discrimination in our population (c statistic 0.740 (0.718-0.762)), 

and the AKI model by Brown et al. [18] displayed poor fit and discrimination in our 

population (c statistic 0.653 (0.630-0.676)). 
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Paper III: 

8) Preoperative neopterin was associated with cardiac dysfunction after open-heart 

surgery. 
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Background: Several models for prediction of early mor-
tality after open-heart surgery have been developed. Our
objectives were to develop a local mortality risk prediction
model, compare it with the European System for Cardiac
Operative Risk Evaluation (EuroSCORE), and investigate
whether the addition of intra-operative variables could
enhance the accuracy of risk prediction.
Methods: All 5029 patients undergoing open-heart sur-
gery in 2000–2007 were included in the study. Logistic
regression with bootstrap methods was used to develop a
pre-operative risk prediction model for in-hospital mor-
tality. Next, several intra-operative variables were added
to the pre-operative model. Calibration and discrimination
were assessed, and the model was internally validated for
prediction in future datasets. We thereafter compared the
pre-operative model with the additive and logistic Euro-
SCOREs.
Results: Our pre-operative model included eight risk
factors that are routinely registered in our department:
age, gender, degree of urgency, operation type, previous

cardiac surgery, and renal, cardiac, and pulmonary dys-
function. The model estimated mortality accurately
throughout the dataset except in the 1% of patients at
extremely high risk, in which mortality was somewhat
overestimated. The estimated shrinkage factor was 0.930.
The areas under the receiver operating characteristic curve
for our pre-operative model and the logistic EuroSCORE
were 0.857(0.823–0.891) and 0.821(0.785–0.857) (P5 0.02).
There was no significant difference in performance be-
tween the pre-operative and the intra-operative model
(P40.10).
Conclusion: Our pre-operative model was simple and easy
to use, and showed good predictive ability in our popula-
tion. Internal validation indicated that it would accurately
predict mortality in a future dataset.
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DURING the last decades, the interest for predict-
ing early mortality after cardiac surgery has

been increasing, and a number of models have
been developed.1–10 Risk prediction models are
used to adjust the mortality rate according to the
patients’ risk profile when comparing surgeons or
institutions, and to assign patients to risk groups.

Risk prediction models can be developed from
data from one surgical centre or data from several
surgical centres and even different countries. When
comparing different risk prediction models, it is
important to assess the models’ discrimination and
calibration. Discrimination is the model’s sensiti-
vity and specificity and refers to the model’s ability
to discriminate between subjects with high and low
risk for the outcome.11 Calibration is a measure of
how well the predicted outcomes compare with the
observed outcomes.11

One of the most widely used pre-operative risk
prediction models in European cardiac surgery is
the European System for Cardiac Operative Risk
Evaluation (EuroSCORE), which exists both as an
additive and a logistic model.6,12 An additive
model is ideal for bedside application, as each
factor is weighted and one can easily sum up the
predicted risk in percentage, whereas the logistic
model normally requires the use of a calculator or a
computer to solve the logistic regression equation
to calculate the predicted probability for the out-
come. The EuroSCORE’s performance has been
evaluated and compared with other risk prediction
models.1,3,4,8,13–19 Several groups have found that it
was the most accurate risk prediction model, com-
pared with many other models.14,16 In recent years,
however, several studies have indicated that the
EuroSCORE over-estimates the risk of mortality for
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the majority of patients,1,3,15,17 particularly when
compared with new, locally developed models.
This was also suspected to be true in our institu-
tion. To our knowledge, the performance of the
EuroSCORE has never been formally assessed in
Norway.

As local models were often more accurate than
the EuroSCORE,1,8,17 our aims were to develop a
local risk prediction model and assess its perfor-
mance, compare it with the EuroSCORE, and assess
the performance of the EuroSCORE in our popula-
tion.

Pre-operative risk assessment gives valuable in-
formation about the likely outcome, but intra-op-
erative events may also influence outcome.
Therefore, our objective also was to develop a
risk prediction model including some intra-opera-
tive variables. This approach would allow us to
investigate which intra-operative factors contri-
buted significantly to the risk of mortality, and
compare the pre-operative model with the intra-
operative models to quantify the difference in
predictive ability before and immediately after
surgery.

Methods

Data
Between 2000 and 2007, all 5029 adult patients
undergoing open-heart surgery at the St. Olav
University Hospital in Trondheim, Norway, were
included in the study. Data on patient charac-
teristics, like other diseases and risk factors,
pre-operative blood tests and examinations, medi-
cation, surgical data and intra-operative measure-
ments, and post-operative complications, blood
tests and treatment were collected prospectively,
quality assured, and stored in a local database,
as part of the department’s quality assurance rou-
tine. The project was approved by the Regional
Ethics Committee and The Norwegian Data In-
spectorate.

The end point of the present study was in-
hospital mortality, defined as mortality during the
same hospital stay or within 30 days after surgery.
One hundred and thirty-five of the 5029 (2.7%)
patients died according to this definition.

Analysis
Model development. We first developed a pre-opera-
tive model for mortality risk prediction. We then
investigated whether addition of selected intra-

operative variables could improve outcome predic-
tion after surgery.

The entire dataset was used for model develop-
ment, as internal validation with bootstrapping
methods are preferred over data-splitting meth-
ods.20 The selection of explanatory variables was
performed on the basis of clinical knowledge and
an hypothesis of their potential influence on the
outcome, as univariable screening of variables
enhances the risk of over-fitting the model and
reduces the predictive ability in future datasets.20

We also took into account whether the variables
were relevant for a sufficient proportion of the
patients. The full models (including all the hy-
pothesised variables) were tested for interactions,
linearity in the logit for continuous variables, and
overly influential observations. The variable defini-
tions are given in Table 1.

Model I. Sixteen variables considered to be clini-
cally relevant were entered into a logistic regres-
sion model. The variables were age, found to be
best modelled as above the median age of 68 years
(yes/no), female gender (yes/no), body mass index
(continuous), diabetes mellitus (yes/no), smoking
(yes/no), hypertension (yes/no), chronic cardiac
insufficiency (yes/no), peripheral vascular disease
(yes/no), chronic pulmonary disease (yes/no), left
ventricular hypertrophy (yes/no), pulmonary hy-
pertension (yes/no), pre-operative haemoglobin
concentration (continuous), serum creatinine above
140mmol/l (yes/no), previous cardiac surgery
(yes/no), degree of urgency (within 24 h/within 2
weeks/standard waiting list), and type of opera-
tion [1. coronary artery bypass grafting (CABG) or
atrial septum defect (ASD); 2. aortic valve replace-
ment (AVR) only, AVR and CABG combined, non-
ischaemic mitral valve surgery, or aneurysm in the
ascending aorta; 3. dissection of the ascending
aorta or ventricular septum rupture; and 4. mis-
cellaneous surgery].

The operation types were grouped according to
average risk for the different surgical procedures,
so that the surgical procedures in each group
would have approximately the same risk. The
risk estimation was based on the frequency of
patients who died after each surgical procedure.

The left ventricular ejection fraction (LVEF) was
measured either by catheterisation or by echocar-
diography, and the exact value was registered in
4043 of 5029 patients (80.4%). Because exact LVEF
was missing for 986 patients and different methods
were used, it was excluded. Instead, the presence
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or absence of chronic cardiac insufficiency, defined
as medically treated, was entered as a potential
explanatory variable.

A limited backwards step-down procedure, re-
taining variables according to Akaike’s Information
Criterion, reduced our model to eight significant
variables. The model was bootstrapped (n5 400) to
achieve more robust estimates of the coefficients
and reduce the risk of over-fitting.20

Next, internal validation with bootstrapping
(n5 400) methods was performed. The discrimina-
tory ability was assessed by calculating the area
under the receiver operating characteristic (ROC)
curve. Calibration was assessed by comparing
actual and predicted probabilities by bootstrapping
(n5 400). We also estimated the optimism of the
model if it was applied on a future dataset, also
known as the shrinkage factor. A shrinkage factor
over 0.85 is considered satisfactory.20 The Hosmer–
Lemeshow test was used to assess the goodness-of-
fit. A P-value above 0.05 is generally considered as
indicating a satisfactory goodness-of-fit.

Model II. To investigate whether outcome predic-
tion could be improved, we added the following
six intra-operative variables to the final pre-opera-
tive model: whether the patient was on cardio-
pulmonary bypass (CPB) (yes/no), need for ino-
tropic support (yes/no), vasoconstrictor use (yes/
no), intra-operative fluid balance (tertiles), red
cell transfusion (yes/no), and plasma transfusion
(yes/no).

This second model was then reduced by limited
step-down, and the coefficients were bootstrapped.
The final intra-operative model contained seven
variables, and was validated and calibrated as
described above.

Model III. As 2.7% of our patients were operated
on without CPB, the time on CPB could not be
included as a variable in model II. We therefore fit
an alternative intra-operative model, including
only the patients operated on with CPB, and
replacing CPB (yes/no) with the time on CPB.
The previously described statistical procedures
were used to develop and validate this model.

The three models were compared statistically by
the likelihood test. The models were also compared
both with ROC curves and other plots displaying
predicted and actual probability across the deciles
of risk. Furthermore, we compared the area under
the ROC curves (AUC) for the three models apply-

Table 1

Variable definitions.

Variable Definition

Age above 68
years*

No/yes

Female gender No/yes
Body mass index
(kg/m2)

Continuous variable

Diabetes mellitus Receiving medication (no/yes)
Smoking Current smoker or quit less than 6 months

ago (no/yes)
Hypertension Receiving medication or diastolic blood

pressure above 90mmHg (no/yes)
Chronic cardiac
insufficiency

Medical treatment (no/yes)

Peripheral
vascular disease

Intermittent claudication, carotid stenosis
or abdominal aortic aneurysm (no/yes)

Chronic pulmonary
disease

Use of bronchodilating agents or FEV1.0

o75% (no/yes)
Left ventricular
hypertrophy

Electrocardiography or echocardiography
(no/yes)

Pulmonary
hypertension

Systolic pulmonary arterial pressure
(PAP) 440mmHg or mean
PAP425mmHg, echocardiography or
catheterisation (no/yes)

Haemoglobin Haemoglobin concentration (mmol/l),
continuous variable

Creatinine above
140mmol/l

Serum creatinine above 140mmol/l (no/
yes)

Previous cardiac
surgery

Previously undergone cardiac surgery
(no/yes)

Degree of urgency 3 categories: standard waiting list,
operation within 2 weeks, operation within
24h

Type of operation 4 categories: 1. Coronary artery bypass
grafting (CABG) or Atrial septum defect
(ASD). 2. Aortic valve replacement (AVR)
only, AVR and CABG combined, non-
ischaemic mitral valve surgery or
aneurysm in the ascending aorta 3.
Dissection of the ascending aorta or
Ventricular septum rupture. 4.
Miscellaneousw

CPB Cardio-pulmonary bypass during surgery
(no/yes)

CPB time (per
10min)

Time on cardio-pulmonary bypass

Inotropic support On clinical indication during surgery (no/
yes)

Vasoconstrictor On clinical indication during surgery (no/
yes)

Fluid balance Tertiles of fluid balance during surgery
Red cell
transfusion

On clinical indication during surgery (no/
yes)

Plasma
transfusion

On clinical indication during surgery (no/
yes)

Death Death within 30 days after surgery or
during the same hospital stay

*68 years was the median age.
wMiscellaneous surgery consisted of various operations like
mitral valve surgery in combination with CABG or AVR, AVR
in combination with procedures other than CABG or operation
for aneurysm of the ascending aorta, and other cardiac surgery
like pericardiectomy and removal of cardiac tumours.
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ing the method for non-parametric correlated
AUCs, proposed by DeLong et al.21

Comparison with external risk prediction models. We
compared our model with the additive and logistic
EuroSCOREs.6,12 The additive EuroSCORE was
scored for each patient during data collection and
stored in the database, and the logistic EuroSCORE
was calculated retrospectively from the variables
registered in the database. We found matching
definitions for all variables except neurological
dysfunction, and this variable was not included
in the calculations. If data were missing for indivi-
dual patients, it was set to the alternative giving the
lowest risk, including the 986 patients where LVEF
was not precisely registered. LVEF was always
precisely measured when the patient had reduced
ventricular function according to the referring
cardiologist. Thus, when LVEF was not precisely
measured, the patient usually had a normal or
near-normal left ventricular function.

The EuroSCOREs were validated with the Hos-
mer–Lemeshow test, ROC curves, and AUCs. To
compare the different scores, we calculated the
predicted probability (expected mortality) for all,
and compared them with the observed mortality in
each decile of risk. We also compared the AUCs for
the different models by the DeLong’s method.21

Data are given as mean with 95% confidence
interval for continuous variables, and as frequency
(percentage) for categorical variables, unless other-
wise stated. The w2-test and the Mann–Whitney
U-test were used for inter-group comparisons. The
statistic software R (version 2.10.1, R Foundation*),
SPSS (version 16.0, SPSS Inc., Chicago, IL), Sigma-
Plot (version 11.0, Systat Software Inc., San Jose,
CA), and MiniTab (version 15.1.30.0, Minitab Inc.,
State College, PA) were applied for statistical ana-
lyses and modelling.

Results

Patient characteristics
Three thousand seven hundred and forty (74.4%) of
the 5029 patients were men, 1289 (25.6%) were
women, and the median age was 67.6 (67.1–68.1)
years. Six hundred and fifty-one patients (12.7%)
had diabetes, 1260 patients (25.1%) were smokers,
and the mean BMI was 26.6 (26.5–26.7) kg/m2. Four
thousand eight hundred and ninety-three patients
(97.3%) were operated on with CPB, the median

CPB time was 69 (67–70) minutes, and the median
per-operative fluid balance was 2873ml, ranging
from � 875 to 19690ml. Three thousand five hun-
dred and thirty-eight patients (70.4%) underwent
coronary surgery only or closure of an ASD (0.7%),
1068 patients (21.2%) underwent an AVR, AVR and
CABG combined, non-ischaemic mitral valve sur-
gery, or operation for an aneurysm of the ascending
aorta, 94 patients (1.9%) were operated for dissec-
tion of the ascending aorta or rupture of the
ventricular septum, and 329 patients (6.5%) under-
went miscellaneous surgery. Miscellaneous surgery
consisted of various operations like mitral valve
surgery in combination with CABG or AVR, AVR
in combination with procedures other than CABG
or operation for aneurysm of the ascending aorta,
and other cardiac surgery like pericardiectomy and
removal of cardiac tumours. Characteristics of the
patients who survived or died are given in Table 2.
The mortality did not change significantly during
the 8 years of data collection (P5 0.33).

Among the group of patients with chronic car-
diac insufficiency, the mean LVEF was 48.1 (46.5–
49.7)% in patients evaluated by catheterisation, and
41.3 (40.2–42.4)% in patients evaluated by echocar-
diography. In the group without chronic cardiac
insufficiency, the mean LVEF was 65.3 (64.8–65.8)%
in patients evaluated by catheterisation, and 51.3
(50.7–52.0)% in patients evaluated by echocardio-
graphy. The inter-group difference was 17.2 (15.6–
18.9)% for catheterisation and 10.1 (8.8–11.3)% for
echocardiography (Po0.0005).

Novel risk prediction models
Table 3 summarises the risk prediction models. The
Hosmer–Lemeshow test showed an adequate
goodness-of-fit for all of the models (Model I:
P5 0.62, Model II: P5 0.34, Model III: P5 0.75).
The models showed good discrimination with
AUC of 0.857 (0.823–0.891) for Model I, 0.877
(0.843–0.910) for Model II, and 0.866 (0.833–0.898)
for Model III. The differences in AUCs were not
statistically significant (P40.10 for all compari-
sons).

The shrinkage factor was 0.930 for Model I, 0.936
for Model II, and 0.942 for Model III. This indicates
that all three models would predict mortality
accurately in a future dataset, with an estimated
error of 7.0% for Model I, 6.4% for Model II, and
5.8% for Model III. As shown in the calibration
curves (Fig. 1), all three models were well cali-
brated for the group of patients with a predicted*http://www.r-project.org
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probability o0.25, but above this level the calibra-
tion decreased. However, only 1.0% of the patients
had a predicted probability of in-hospital mortality
above 0.25. The corrected calibration curves
showed that if the models were calibrated with
their respective shrinkage factors, all three models
would be well calibrated for the small group of
high-risk patients, but less well calibrated for the
majority of patients, compared with the current
models.

Performance of the EuroSCORE in our
population
The Hosmer–Lemeshow test was highly significant
for both the logistic and the additive EuroSCORE
(P-values5 0.0008 and o0.0001, respectively), in-
dicating that the predicted mortality was signifi-
cantly different from the observed mortality in our
population (Fig. 2). The EuroSCOREs showed good
discrimination; the logistic EuroSCORE had an
AUC of 0.821 (0.785–0.857), and the additive Euro-
SCORE had an AUC of 0.846 (0.810–0.881). The
difference in AUC was significant for Model I and
the logistic EuroSCORE (P5 0.02), but not for
Model I and the additive EuroSCORE (P5 0.40).

Discussion

We have shown that mortality after open-heart
surgery may be accurately predicted from eight
risk factors that are easily collected as part of
ordinary clinical routines. In the present population,
our model was more accurate than the EuroSCORE.

Local models
The performance of our models was good through-
out the dataset, except for calibration for the 1.0%
of patients at extremely high risk. The low number
of patients may explain the poor calibration in this
group. If we calibrated our models with their
respective shrinkage factors, the calibration became
better for this small group. However, patients with
a mortality risk above 0.25 are always subject to a
thorough individual consideration pre-operatively,
and the necessity of a score with excellent calibra-
tion in this range is limited.

Our findings suggest that the intra-operative
variables added to Model I contained valuable
information for mortality risk prediction. The
time on CPB seemed to be an especially important
predictor, as well as the use of inotropic support

Table 2

Patient characteristics.

Characteristic* Survived Died

Age (years, median) 66.0 (65.7–66.2) 70.5 (68.4–72.5)
Female gender 1236 (25.3%) 53 (39.3%)
Body mass index
(kg/m2)

26.6 (26.5–26.7) 26.6 (25.7–27.5)

Diabetes mellitus 635 (13.0%) 16 (11.9%)
Smoking status 1230 (25.1%) 30 (22.2%)
Hypertension 2379 (48.6%) 76 (56.3%)
Chronic cardiac
insufficiency

734 (15.0%) 54 (40.0%)

Peripheral vascular
disease

511 (10.4%) 25 (18.5%)

Chronic pulmonary
disease

656 (13.4%) 44 (32.6%)

Left ventricular
hypertrophy

969 (19.9%) 46 (34.6%)

Pulmonary
hypertension

417 (8.5%) 38 (29.0%)

Haemoglobin
concentration
(mmol/l)

8.50 (8.47–8.52) 7.98 (7.81–8.15)

Serum creatinine
(mmol/l)

96.2 (94.8–97.5) 126.3 (112.2–140.4)

Previous cardiac
surgery

273 (5.6%) 18 (13.3%)

Degree of urgency
Standard waiting
list

2686 (54.9%) 44 (32.6%)

Operation within
2 weeks

1965 (40.2%) 49 (36.3%)

Operation within
24 h

242 (4.9%) 42 (31.1%)

Operation type
Coronary surgery
only or closure
of an ASD

3493 (71.4%) 45 (33.3%)

Aortic valve
replacement (AVR),
non-ischaemic
mitral valve surgery,
AVR and CABG
combined
or operation for an
aneurysm of the
ascending aorta

1032 (21.1%) 36 (26.7%)

Operation for
dissection of the
ascending aorta or
rupture of the
ventricular septum

71 (1.5%) 23 (17.0%)

Miscellaneous 298 (6.1%) 31 (23.0%)
CPB 4772 (95.5%) 132 (97.8%)
CPB time (min,
median)

68 (67–69) 139 (119–160)

Inotropic support 1100 (22.5%) 85 (63.4%)
Vasocontrictor use 3714 (75.9%) 116 (85.9%)
Fluid balance (ml,
median)

2865 (2844–2890) 3285 (3018–3530)

Red cell transfusion 681 (13.9%) 82 (60.7%)
Plasma transfusion 392 (8.0%) 56 (41.5%)

*All variables have the same definition as in Table 1, unless
otherwise stated.
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and the need for red cell transfusion. Even so, the
pre-operative model without these variables dis-
played good predictive ability. One reason may be
that the operation type provides a good estimate of
the expected time on CPB and to some degree also
the need for inotropic support and red cell transfu-
sions. There was no significant difference in the

AUC of the three models, suggesting that predic-
tion immediately after surgery is not significantly
better than that before surgery. The operation types
were grouped according to average risk for the
different surgical procedures, and this may also
have contributed to the good accuracy displayed
by our pre-operative model.

Table 3

Risk prediction models for in-hospital mortality following open-heart surgery.

Variable* Coefficient OR 95% CI P-value Died (n)

Model 1 (n5 4969)
Age above 68 years 1.141 3.128 (2.026–4.831) o0.0001 101
Degree of urgency
Standard waiting list 1.000 Reference
Operation within 2 weeks 0.397 1.487 (0.969–2.306) 0.11 49
Operation within 24 h 1.927 6.870 (3.525–13.389) o0.0001 42

Female gender 0.541 1.718 (1.130–2.612) 0.03 53
Serum creatinine (4140mmol/l) 1.234 3.434 (2.007–5.874) o0.0001 39
Chronic pulmonary disease 0.783 2.189 (1.440–3.327) 0.0001 44
Chronic cardiac insufficiency 0.690 1.994 (1.293–3.076) 0.002 54
Previous cardiac surgery 0.782 2.185 (1.147–4.165) 0.006 18
Operation type
CABG or ASD 1.000 Reference
Pure AVR, AVR and CABG,
non-ischaemic mitral valve surgery,
or aneurysm of ascending aorta

0.621 1.861 (1.176–2.946) 0.01 36

Dissection of ascending aorta,
or ventricular septum rupture

1.906 6.723 (2.918–15.489) o0.0001 23

Miscellaneous 1.483 4.407 (2.614–7.430) o0.0001 31
Intercept �6.045

Model 2 (n5 4954)
Age above 68 years 1.013 2.754 (1.722–4.404) o0.0001 101
Degree of urgency
Standard waiting list 1.000 Reference
Operation within 2 weeks 0.299 1.348 (0.879–2.068) 0.20 49
Operation within 24 h 1.461 4.310 (2.113–8.792) o0.0001 42

Serum creatinine (4140mmol/l) 1.153 3.169 (1.837–5.468) o0.0001 39
Chronic pulmonary disease 0.865 2.375 (1.533–3.680) 0.0007 44
Operation type
CABG or ASD 1.000 Reference
Pure AVR, AVR and CABG,
non-ischaemic mitral valve surgery,
or aneurysm of ascending aorta

0.520 1.682 (1.014–2.788) 0.05 36

Dissection of ascending aorta,
or ventricular septum rupture

1.235 3.437 (1.339–8.825) 0.02 23

Miscellaneous 1.396 4.039 (2.373–6.875) o0.0001 31
Inotropic support 0.996 2.706 (1.759–4.164) o0.0001 85
Red cell transfusion 1.125 3.080 (1.962–4.837) o0.0001 82
Intercept �6.186

Model 3 (n5 4830)
Age above 68 years 1.187 3.279 (2.026–5.306) o0.0001 98
Degree of urgency
Standard waiting list 1.000 Reference
Operation within 2 weeks 0.252 1.287 (0.789–2.099) 0.30 47
Operation within 24 h 1.662 5.270 (2.738–10.146) o0.0001 41

Serum creatinine (4140mmol/l) 1.060 2.887 (1.620–5.146) 0.0003 30
Chronic pulmonary disease 0.782 2.187 (1.412–3.386) 0.002 53
Chronic cardiac insufficiency 0.709 2.032 (1.326–3.114) 0.002 84
Red cell transfusion 0.810 2.247 (1.369–3.690) 0.004 80
CPB timew 0.140 1.150 (1.116–1.185) o0.0001
Intercept �7.026

*Variable definitions are listed in Table 1.
wCPB time per 10min.
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Comparison with the EuroSCORE
The EuroSCOREs showed satisfactory discrimina-
tory ability, but predicted a higher mortality than
that observed for the low-risk patients and a lower
mortality than observed for the high-risk patients.

This is in accordance with the findings of
others,1,15,17 and indicates that the EuroSCORE
may not be useful for risk prediction in our patient
population.

The logistic EuroSCORE had significantly lower
discriminatory ability than our Model I. The cur-
rent EuroSCORE was developed from data col-
lected in 1995,22 and changes in treatment and
patient characteristics may explain the poor fit in
our population. However, the EuroSCORE may
still be used to assign patients to treatment cate-
gories or classify them in broad risk groups. Cur-
rently, the EuroSCORE2010 project aims at
collecting new sets of data from a large number
of European hospitals to improve the existing
EuroSCORE.w

Collecting data from many hospitals and several
countries is ideal for deriving a model suitable for
risk prediction and benchmarking across a wide
geographical range. However, a model based on a
diverse population also estimates the average in-
fluence from various risk factors, and might
thereby be more prone to inaccuracy in specific
risk groups. On the other hand, a locally developed
model may be more accurate for risk prediction
and classification of local patients, but may not be
useful for benchmarking outside the institution

Fig. 1. Calibration curves for Model I (panel A), Model II (panel
B), and Model III (panel C). The curves display the apparent fit
(continuous line), the bias corrected fit (dotted line), the ideal fit
(dashed line), and the fit if the models were corrected with their
respective shrinkage factors (spaced dots).

Fig. 2. Observed and predicted probabilities across the deciles of
estimated risk for Model I and the additive and logistic Euro-
SCOREs.

whttps://euroscore2010.org/FurtherEuroscoreInfo.aspx
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where it was developed. Both internal assessment
and inter-institutional comparison are important to
provide patients with optimal counselling and
treatment, and we would recommend the use of
both local and more general models concomitantly.
All risk prediction models, whether local or more
general, should be validated before implementa-
tion in clinical or administrative work.

All the significant risk factors in our pre-opera-
tive model were among the 17 risk factors included
in the EuroSCORE,6 except for chronic cardiac
insufficiency, which was entered instead of LVEF.
Our model was more accurate than the Euro-
SCORE, with fewer risk factors, which suggests
that one can predict mortality accurately with
simpler measures. Results from other institutions
support this conclusion.1

Study limitations
It might be argued that LVEF should have been
included in the modelling, but because it was not
precisely registered in 986 cases and different
measurement methods were used, LVEF was ex-
cluded. The patients with chronic cardiac insuffi-
ciency had significantly lower ejection fractions
than the patients without, and to some extent this
variable carries similar information as LVEF. More-
over, registration is simple and non-invasive, but
perhaps less objective than the measurement of
LVEF.

Our models were derived from a patient popula-
tion in Middle Norway, operated at only one
surgical centre. Risk prediction models often
show poorer performance in other populations
than the one they were derived from. Our models
were not externally validated, and therefore the use
of our models may not be appropriate for other
institutions. However, the performance of the mod-
els suggests that they will be suitable for use in our
institution. The data collection started in 2000, and
we cannot exclude that calibration may be poorer
when applied to future patients, even if the esti-
mated shrinkage factors were low. Validation in a
more recently collected dataset is therefore war-
ranted.

Conclusion

Our models were simple and easy to use, and
showed good predictive ability in our population.
Based on the estimated shrinkage factors, our
models should also accurately predict mortality

in a future population. The EuroSCOREs displayed
satisfactory discriminatory ability, but overesti-
mated the risk for the low-risk patients, and under-
estimated the risk for the high-risk patients. The
intra-operative models included useful informa-
tion for mortality risk prediction, but did not per-
form significantly better than the pre-operative
model. After validating the local pre-operative
model in a more recently collected dataset, we
will probably be using both our local model and
the EuroSCORE in our institution.
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Abstract 1 

Objectives: Oxidative stress following ischaemia and reperfusion, as well as inflammation, are 2 

thought to be important for the development of cardiac dysfunction after cardiac surgery. Our main 3 

objective was to investigate whether the inflammatory biomarkers C-reactive protein (CRP), 4 

lactoferrin, neopterin and the terminal complement complex (TCC) were associated with cardiac 5 

dysfunction after cardiac surgery. Another objective was to assess whether the biomarkers could 6 

improve prediction of postoperative cardiac dysfunction compared with clinical variables only. 7 

Methods: Blood samples and clinical data from 1018 consecutive patients undergoing cardiac surgery 8 

from 1 April 2008 to 19 April 2010 at St. Olavs University Hospital, Trondheim, Norway, were 9 

collected prospectively. The end-point was postoperative cardiac dysfunction, defined as the need for 10 

more than one inotropic agent or an intra-aortic balloon pump (IABP) occurring after the operation 11 

and until the patient was discharged from the department. CRP, lactoferrin, neopterin and TCC were 12 

analysed in plasma, and we used logistic regression to evaluate the association of the biomarkers with 13 

postoperative cardiac dysfunction. We adjusted for the following clinical variables previously 14 

associated with postoperative cardiac dysfunction: urgent operation, operation type, previous cardiac 15 

surgery, chronic heart failure, pulmonary hypertension, previous myocardial infarction and 16 

haemoglobin. The likelihood ratio test, the integrated discrimination improvement and receiver 17 

operating characteristic (ROC) curves were used to assess whether the biomarkers could improve 18 

prediction of postoperative cardiac dysfunction compared with clinical variables alone. 19 

Results: Neopterin was the only biomarker significantly associated with postoperative cardiac 20 

dysfunction (odds ratio 2.73, 95% confidence interval 1.65 - 4.51) after adjustment for clinical 21 

variables. Neopterin improved risk prediction of cardiac dysfunction following heart surgery 22 

compared with clinical variables alone according to the likelihood ratio test (p < 0.0001) and the 23 

integrated discrimination improvement (p = 0.02), particularly for patients with intermediate risks. 24 

Conclusions: Neopterin was associated with cardiac dysfunction following cardiac surgery, and 25 

improved the accuracy of risk prediction of postoperative cardiac dysfunction. At present we do not 26 



suggest that neopterin should be measured routinely before heart surgery, but our findings support the 1 

hypothesis of the role of oxidative stress and inflammation in development of cardiac dysfunction 2 

following heart surgery. 3 

Keywords: Cardiac surgery, cardiac dysfunction, biomarker, inflammation. 4 



Introduction 1 

Cardiac dysfunction after heart surgery is a clinical syndrome characterized by insufficient delivery of 2 

blood to the tissues because of reduced cardiac output. A reduction in ventricular function is 3 

commonly seen following cardiac surgery, often worsening for several hours postoperatively before 4 

recovery [1]. In 5-11% of patients the cardiac dysfunction is severe enough to require treatment with 5 

several inotropic drugs or an intra-aortic balloon pump [2-4], and cardiac dysfunction was the most 6 

common cause of death after coronary artery bypass grafting in a study from New England, USA [5]. 7 

Many factors contribute to the development of cardiac dysfunction following heart surgery, and 8 

oxidative stress following ischaemia and reperfusion, as well as inflammation, seem to be crucial [6, 9 

7]. The inflammatory markers C-reactive protein (CRP), lactoferrin, neopterin and the terminal 10 

complement complex (TCC) have all been associated with coronary artery disease or the development 11 

of reduced ventricular function following ischaemia [8-10]. An overview of further relevant 12 

publications regarding these markers is given in the Supplementary Table 1. Several models for 13 

prediction of cardiac dysfunction following cardiac surgery have been published, but most of them 14 

were based on clinical variables alone [2, 4, 5]. 15 

In order to explore some of the inflammatory pathways that might underlie the development of cardiac 16 

dysfunction, our main aim was to investigate whether the inflammatory biomarkers CRP, lactoferrin, 17 

neopterin and TCC were associated with cardiac dysfunction after cardiac surgery. The secondary aim 18 

was to assess whether one or several of the biomarkers could improve the accuracy of risk prediction 19 

of cardiac dysfunction after heart surgery compared with a model based on previously published 20 

clinical variables [2]. 21 

Our hypothesis was that CRP, lactoferrin, neopterin or TCC would be associated with cardiac 22 

dysfunction after cardiac surgery, and that one or several of the biomarkers would improve the 23 

accuracy of risk prediction compared with clinical variables alone. 24 



Materials and methods 1 

The project was approved by The Regional Research Ethics Committee in Medicine (Project number 2 

4.2007.1528), Trondheim, Norway, on 27 June 2007, (Chairperson Arne Sandvik), and by the 3 

Norwegian Data Inspectorate. The present work is part of the Cardiac Surgery Outcome Study 4 

(CaSOS). 5 

Data 6 

In this prospective study, all adult patients undergoing cardiac surgery from 1 April 2008 to 19 April 7 

2010 at St. Olavs University Hospital, Trondheim, Norway, were considered eligible for inclusion in 8 

the study. Patient characteristics, other diseases and risk factors, blood tests, perioperative data and 9 

data on postoperative factors and complications were collected prospectively, quality assured by a 10 

senior anaesthesiologist, and stored in a local database as part of the department’s quality assurance 11 

work.  12 

We collected preoperative peripheral arterial blood samples from consecutive patients. The samples 13 

were kept on ice for maximum six hours before they were centrifuged, and stored at -80°C until 14 

analysis. Of 1149 eligible patients, 21 did not consent, 32 and seven were unable to consent due to 15 

emergency surgery and language problems, respectively, and 57 had missing blood samples. We also 16 

excluded 14 patient samples: One had infectious blood, three had active endocarditis, two underwent 17 

off-pump surgery, one did not have data on the end-point, and seven samples due to an identification 18 

error preventing coupling with clinical data. Thus, 1018 patients were included in the further analyses. 19 

Patients with signs of intercurrent infection (other than endocarditis) and elevated levels of CRP were 20 

normally not considered for elective heart surgery. Data from the same cohort have been used in 21 

another publication on clinical and genetic risk factors for fluid overload following heart surgery [11] 22 

as part of CaSOS. 23 

The end-point of the study was cardiac dysfunction after cardiac surgery, defined as the need for more 24 

than one inotropic agent or an intra-aortic balloon pump (IABP) occurring after the operation and until 25 

the patient was discharged from the department. The same end-point definition was used in a 26 



previously published paper from our group [2]. Ninety-five patients (9.3%) acquired cardiac 1 

dysfunction after heart surgery according to this definition. 2 

Biomarkers  3 

In order to explore some of the underlying mechanisms of cardiac dysfunction following cardiac 4 

surgery, four biomarkers related to inflammatory pathways were analysed in plasma using enzyme 5 

immunoassay (EIA). 6 

CRP is considered a general marker of inflammation, and is measured in all patients admitted for heart 7 

surgery. The routine method of CRP measurement used in clinical practice quantifies CRP above 5 8 

mg/L, but quantification of CRP concentrations under 5 mg/L is also important when assessing low-9 

grade preoperative inflammation. We therefore used a high-sensitivity method for CRP measurement 10 

(sometimes denoted hsCRP) using a commercial kit (Quantikine Human C-Reactive Protein 11 

Immunoassay, R&D Systems, Inc, Minneapolis, USA). 12 

Lactoferrin is considered a marker of activation of neutrophil granulocytes, and was analysed as 13 

previously described [12]. Neopterin may be seen as a marker of activated monocytes and the cellular 14 

immune system, and was analysed using a commercial kit (Neopterin ELISA, GenWay Biotech Inc, 15 

San Diego, USA). TCC, also referred to as C5b-9, is a marker of complement activation, and was 16 

analysed using a commercial kit (MicroVue SC5b-9 Plus EIA, Quidel Corporation, San Diego, USA).  17 

Statistical analysis 18 

We used logistic regression to evaluate the association of the four biomarkers with cardiac dysfunction 19 

after cardiac surgery. We first analysed each fluid-phase marker separately (unadjusted analysis), and 20 

thereafter included the eight preoperative clinical variables found to be significant predictors of 21 

cardiac dysfunction in a previous study from our group (Table 1) (adjusted analysis) [2]. All four 22 

biomarkers were fitted in the same model with the clinical variables. The model was then tested for 23 

linearity in the logit, overly-influential observations, interactions and collinearity. 24 



Preoperative renal dysfunction was removed from the model because of strong correlation with 1 

neopterin. As sensitivity analyses we evaluated alternative models with and without renal dysfunction 2 

and serum creatinine. Although previously not significant in our population [2], several others have 3 

identified age and sex as important predictors of postoperative cardiac dysfunction [4, 13], and we 4 

therefore performed a sensitivity analysis including age and sex. Neopterin and TCC were transformed 5 

by natural logarithm to fulfil the assumption of linearity in the logit. Only fluid-phase markers that 6 

were significant after adjustment for clinical variables were included in the further analyses. 7 

We then tested if the significant fluid-phase marker could improve the prediction of cardiac 8 

dysfunction after heart surgery compared with clinical variables alone by performing a likelihood ratio 9 

test. Since these clinical variables were previously found to be significant in a risk prediction model 10 

for postoperative cardiac dysfunction from the same institution, we did not use backward step-down to 11 

reduce the number of predictors in the present study. Further testing of model stability and 12 

generalizability is described in the Supplementary data. We compared model discrimination by 13 

calculating the area under the receiver operating characteristic (ROC) curve (AUC) [14], and the 14 

integrated discrimination improvement (IDI) [15]. The IDI was developed to evaluate average 15 

differences in sensitivity and specificity between models with and without new markers using average 16 

predicted probabilities, as differences in AUC are insensitive measures of improvement in 17 

discrimination [15].  18 

General statistics 19 

Descriptive statistics are given as median with 95% confidence intervals for continuous data, and 20 

frequencies with percentages for categorical data. For between-group comparisons we used the Mann 21 

Whitney U-test for continuous data, and Pearson’s chi square test for categorical data. Linear 22 

correlation was assessed with Pearson’s correlation coefficient. Statistical analyses were performed 23 

using the statistical software R (version 12.2.0; R Development Core Team, R Foundation for 24 

Statistical Computing, Vienna, Austria), IBM SPSS (version 18.0; IBM Corporation, Armonk, New 25 

York, USA), Minitab 17 (Minitab Ltd., Coventry, United Kingdom) and Sigma Plot 13.0 (Systat 26 

Software Inc., San Jose, California, USA). 27 



Results 1 

Patient characteristics are given in Table 2. In the unadjusted analysis, both CRP and neopterin 2 

showed significant associations with cardiac dysfunction following cardiac surgery (Table 3). 3 

However, neopterin was the only significant biomarker after adjustment for urgent operation, 4 

operation type, previous cardiac surgery, chronic heart failure, pulmonary hypertension, previous 5 

myocardial infarction and preoperative haemoglobin concentration (p = 0.0005) (Table 3, 6 

Supplementary Table 2). Neopterin was correlated with CRP (R = 0.27, p < 0.0005). 7 

Preoperative renal dysfunction was removed from the model because of strong correlation with 8 

neopterin (R = 0.37, p < 0.0005). Neither renal dysfunction nor serum creatinine were significant 9 

predictors of cardiac dysfunction in these patients, and the sensitivity analysis showed no difference in 10 

odds ratios after removal of renal dysfunction or creatinine from the model. As another sensitivity 11 

analysis we also developed an alternative model including age and sex, but the odds ratios for the 12 

biomarkers were essentially unchanged (data not shown).  13 

The likelihood ratio test showed that neopterin improved the model fit (p < 0.0001). When comparing 14 

the model containing only clinical variables with the model including neopterin as well, neopterin 15 

increased the model AUC from 0.817 (0.770 – 0.863) to 0.833 (0.779 – 0.874) (p = 0.07) (Figure 1), 16 

and the IDI was 0.014 (p = 0.02), indicating that neopterin increased discrimination. 17 

Figure 1 illustrates that neopterin increased discrimination for a group of patients in particular. These 18 

were 380 (37.3%) patients with predicted risks between 2.5% and 6.4%. This corresponded 19 

approximately to the 25th percentile, and the 60th percentile, i.e. the patients with intermediate 20 

predicted risks, having a few risk factors for cardiac dysfunction. 21 



Discussion 1 

Preoperative neopterin levels were associated with cardiac dysfunction after cardiac surgery, also after 2 

adjustment for clinical variables. Moreover, neopterin improved the accuracy of prediction of cardiac 3 

dysfunction compared with clinical variables alone. 4 

Cardiac dysfunction after cardiac surgery 5 

Cardiac dysfunction following cardiopulmonary bypass is thought to result from myocardial stunning 6 

due to ischaemia and reperfusion [16], and in part also from local and systemic inflammation [7]. It 7 

has been proposed that the mechanism involves generation of reactive oxygen species and impaired 8 

calcium homeostasis, with damage of the sarcolemma, modification of contractile proteins and 9 

reduced calcium sensitivity [6]. 10 

Neopterin 11 

Neopterin is released from activated macrophages and monocytes after stimulation with interferon-γ 12 

from activated T-lymphocytes [17, 18], and may be seen as a marker of activation of monocytes and 13 

the cellular immune system. Neopterin has been associated with left ventricular ejection fraction and 14 

cardiac dysfunction in patients with chronic stable angina pectoris [9], and with left ventricular 15 

ejection fraction and diastolic left ventricular diameter in patients with critical limb ischaemia [19]. 16 

Neopterin has been shown to induce contractile dysfunction in isolated perfused rat hearts [20]. 17 

Although the effective concentration in that study was higher than neopterin levels occurring in vivo, 18 

it was suggested that long-term influence of lower levels of neopterin could lead to cardiac 19 

dysfunction in humans [20]. This effect could possibly be mediated through oxidative stress. A 20 

previous study has shown that neopterin enhanced the oxidative effect of hydrogen peroxide in vitro 21 

[21]. 22 

Our findings suggest that neopterin could play a role in the development of cardiac dysfunction. We 23 

measured neopterin before the cardiac operation, and registered if the patient had cardiac dysfunction 24 

postoperatively. It is uncertain whether it was the specific effects of neopterin that enhanced the risk of  25 



postoperative cardiac dysfunction, if neopterin acted as a marker of inflammation in general or 1 

activation of macrophages and the cellular immune system, or whether the association was caused by 2 

something else. However, it is possible that elevated levels of neopterin before surgery enhanced the 3 

effects of oxidative stress resulting from ischaemia and inflammation after aortic cross-clamping and 4 

cardiopulmonary bypass during heart surgery. 5 

Other causes of elevated neopterin 6 

Elevated levels of neopterin have been associated with acute infection, autoimmune diseases and 7 

malignancy [18], as well as atherosclerosis [22] and left ventricular dysfunction [9]. We excluded 8 

patients with active endocarditis, and normally patients with intercurrent infections were not eligible 9 

for elective cardiac surgery until recovery. We did not have data to identify autoimmune diseases or 10 

malignancy, but the total number of affected patients is expected to be low. Atherosclerosis and left 11 

ventricular dysfunction are frequently observed in patients undergoing heart surgery, and were 12 

adjusted for. 13 

Neopterin is biologically stable in the circulation and is eliminated by the kidneys [18]. Thus, impaired 14 

kidney function could also cause an increase in neopterin concentration. Therefore we also analysed 15 

neopterin with adjustment for serum creatinine as well as the other clinical variables, but this did not 16 

change the results. 17 

Improvement of risk prediction 18 

Neopterin improved the accuracy of prediction of cardiac dysfunction after cardiac surgery. This was 19 

statistically significant according to the likelihood ratio test and the IDI, and almost significant 20 

according to the comparison of AUC for the model with and without neopterin (p = 0.07). Differences 21 

in AUC are conservative measures of improvement in discrimination when comparing risk prediction 22 

models, yet ROC curves may be useful for describing the discrimination [15, 23]. Figure 1 indicated 23 

that neopterin improved risk prediction especially for patients with intermediate risk of postoperative 24 

cardiac dysfunction. The added value for high-risk and low-risk patients was less important. For the 25 

high-risk patients it could be that the added effect of several risk factors overshadowed the effect of 26 



neopterin. Implementation of new biomarkers in clinical practice should rely on thorough research and 1 

evidence of its usefulness, and an evaluation of the benefit compared with the increased expenses. 2 

Presently we therefore do not suggest that neopterin should be measured routinely before heart 3 

surgery. However, our findings support the hypothesis of the role of oxidative stress and inflammation 4 

in development of cardiac dysfunction following heart surgery. 5 

C-reactive protein6 

CRP was not significant after adjustment for the clinical variables. Previous studies of the association 7 

between CRP and several cardiac end-points have shown conflicting results [8-10, 22, 24]. In our 8 

study CRP was somewhat correlated with neopterin, and this could weaken the association between 9 

CRP and cardiac dysfunction when CRP and neopterin were analysed in the same model. Moreover, 10 

CRP is considered a more general marker of inflammation than is neopterin. It is also possible that 11 

CRP represents some of the information included in the clinical variables, such as urgent operation, 12 

chronic heart failure and previous myocardial infarction, as CRP has been associated with ischaemic 13 

heart disease and chronic heart failure in previous studies [10, 24]. 14 

CRP circulates as a pentamer, but a recent study showed that the more active monomeric form of 15 

CRP, and not the pentameric form, was found in inflamed atherosclerotic plaques and in myocardial 16 

infarction lesions in humans [25]. The different results regarding associations of CRP and cardiac end-17 

points could be partly explained by the fact that we are measuring the circulating pentamer, which not 18 

necessarily corresponds with the concentration of monomeric, pro-inflammatory CRP at sites of 19 

inflammation.  20 

As patients with signs of intercurrent infection and elevated CRP were not eligible for elective cardiac 21 

surgery, the preoperative level of CRP should reflect low-grade inflammation, and for most patients it 22 

was not expected to be measurable by routine methods used in clinical practice. 23 

Strengths and limitations 24 

Strengths of the present study include the large number of patients and the completeness of data, with 25 

few missing observations. However, we cannot exclude that there exist some unknown confounders 26 



that we have not adjusted for. Unfortunately we did not have complete data on left ventricular ejection 1 

fraction, and we could therefore not control for the severity of chronic heart failure. Another limitation 2 

is that the end-point definition was partly based on clinical judgment, and was therefore less specific 3 

than end-points such as mortality or myocardial infarction. The use of data from one institution only 4 

may also have introduced a bias.  5 

Conclusion 6 

Neopterin was associated with cardiac dysfunction following cardiac surgery, and improved the 7 

accuracy of risk prediction of cardiac dysfunction after heart surgery, especially in patients with 8 

intermediate risk. At present we do not suggest that neopterin should be measured routinely before 9 

heart surgery, but our findings support the hypothesis of the role of oxidative stress and inflammation 10 

in development of cardiac dysfunction following heart surgery. 11 
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Table 1. Variable definitions1 1 

Variable Definition 

Urgent operation2 1: Standard waiting list 2: Need for operation within one week 

Operation type3 1: CABG4 only or repair of atrial septum defect 2: AVR5 only, AVR 

and CABG combined, repair of aneurysm in the ascending aorta or 

non-ischaemic mitral valve surgery 3: Miscellaneous procedures 

such as mitral valve surgery combined with CABG or AVR, AVR 

combined with other procedures than CABG, operation for 

dissection of the ascending aorta or rupture of the ventricular 

septum, and other cardiac surgery such as removal of cardiac 

tumours and pericardectomy  

Previous cardiac surgery No/yes 

Chronic heart failure Receiving medication (no/yes) 

Pulmonary hypertension Systolic pulmonary arterial pressure (PAP) > 40 mmHg or mean 

PAP > 25 mmHg, echocardiography or catheterisation (no/yes) 

Previous myocardial infarction No/yes 

Preoperative renal dysfunction Creatinine concentration > 140 μmol/L or dialysis (no/yes) 

Preoperative haemoglobin 

concentration 

g/dL (continuous) 

1Previously published risk factors for cardiac dysfunction after open-heart surgery in our population 2 

[2]. 3 



2Compared with the previously published definition we used only two categories instead of three 1 

because no patients underwent emergency surgery in our cohort. 2 

3Compared with the previously published definition we used only three categories instead of four due 3 

to only one patient needing elective surgery for dissection of the ascending aorta and none undergoing 4 

surgery for rupture of the ventricular septum. 5 

4Coronary artery bypass grafting 6 

5Aortic valve replacement 7 



Table 2. Patient characteristics 1 

Characteristics Adequate cardiac 

function (n = 923) 

Cardiac dysfunction 

(n = 95) 

p-value

Age 67 (67 – 68) 72 (69 – 75) 0.002 

Female sex 261 (28.3%) 21 (22.1%) 0.20 

Urgent operation 413 (44.7%) 44 (46.3%) 0.77 

Operation type < 0.0001 

CABG1 and ASD2 624 (67.6%) 31 (32.6%) 

AVR3, AVR and CABG, 

non-ischaemic mitral valve 

surgery and aneurysm of the 

ascending aorta 

235 (25.5%) 38 (40%) 

Miscellaneous procedures 64 (6.9%) 26 (27.4%) 

Previous cardiac surgery 33 (3.6%) 13 (13.7%) < 0.0001 

Chronic heart failure 79 (8.6%) 40 (42.1%) < 0.0001 

Pulmonary hypertension 59 (6.4%) 30 (31.6%) < 0.0001 

Previous myocardial infarction 417 (45.2%) 54 (56.8%) 0.03 

Preoperative renal dysfunction 34 (3.7%) 7 (7.4%) 0.08 

Preoperative haemoglobin 

concentration (g/dL) 

14.2 (14.0 – 14.3) 13.9 (13.3 – 14.3) 0.12 



C-reactive protein (mg/L) 1.8 (1.6 – 2.0) 3.4 (2.2 – 6.0) < 0.0001 

Lactoferrin (μg/L) 130.1 (123.4 – 138.3) 124.2 (117.7 – 143.3) 0.88 

Neopterin (nmol/L) 7.0 (6.8 – 7.3) 9.4 (8.5 – 10.1) < 0.0001 

Terminal complement complex 

(ng/mL) 

165.2 (157.3 – 173.5) 179.5 (147.0 – 209.5) 0.13 

Data are given as median (95% confidence interval) or frequencies (percentage). P-values were 1 

obtained using the Mann-Whitney U test or the Pearson’s chi square test, as appropriate. 2 

1Coronary artery bypass grafting 3 

2Atrial septum defect 4 

3Aortic valve replacement 5 
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Figure legends 1 

Figure 1. Receiver operating characteristic curves for the model with only clinical variables (urgent 2 

operation, operation type, previous cardiac surgery, chronic heart failure, pulmonary hypertension, 3 

previous myocardial infarction and preoperative haemoglobin concentration) and the model with 4 

neopterin and clinical variables. AUC: Area under the receiver operating characteristic curve. 5 
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