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Abstract

In this master thesis various GARCH models for volatility and Value at Risk for ECX CO2

futures contracts have been examined. This is of great importance for market participants
such as CO2 emitting companies, traders and risk managers. The first chapters of the
thesis introduce the carbon market and the different futures contracts, which are later on
tested. From the descriptive analysis, we found the futures contracts to be suitable for
GARCH modeling, and we also found which specifications we had to include to model the
returns and Value at Risk. The applied methods are different univariate and multivariate
GARCH models, which have been tested based on evaluation criteria such as Akaike, Log
likelihood and numbers of significant parameters.

Problem for discussion: Analysis of time-varying volatility in the carbon market and time-
varying binary correlation between the carbon market and other energy markets (electricity-,
oil-, gas-, and coal market).

There are several different CO2 futures contacts being traded, but for this analysis we
found the 2009 and 2010 EUA futures contracts to be most interesting and suitable. To
find good models for volatility and Value at Risk, we compared the GARCH results with
the results from the descriptive statistics of raw data. The estimation of Value at Risk is
tested for each contract, with the Kupiec test. Monte Carlo simulations have also been
implemented to support our findings. The datasets have been tested within the whole
trading period, also after the structural break in 2006. Finally we have presented analy-
sis of CO2 futures contracts in bivariate portfolios with other different energy commodities.

The main focus of this thesis has been to find suitable GARCH models for volatility of
returns and Value at Risk.
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Sammendrag

I denne masteroppgaven har vi undersøkt ulike GARCH modeller for volatilitet og Value
at Risk av ECX CO2 futurekontrakter. Dette er av stor betydning for aktører som for
eksempel: CO2 utslippende selskaper, tradere og risikoanalytikere. De første kapitlene av
oppgaven introduserer karbonmarkedet og de ulike futurekontraktene som er testet. Fra
den beskrivende analysen, fant vi futurekontraktene til å være godt egnet for GARCH
modellering, og hvilke spesifikasjoner vi måtte inkludere for å best modellere avkastning
og Value at Risk. Vi har brukt ulike univariate og multivariate GARCH modeller, som har
vært testet basert p̊a evalueringskriterier som Akaike, Log likelihood og antall signifikante
parametere.

Problemstilling: Analyse av tidsvarierende volatilitet i karbonmarkedet og tidsvarierende bi-
variat korrelasjon mellom karbonmarkedet og andre energimarkeder (elektrisitet, olje, gass
og kull).

Det eksisterer en rekke forskjellige CO2 futurekontakter som blir omsatt i markedet, men
for denne analysen fant vi 2009 og 2010 EUA futurekontrakter til å være mest passende.
For å finne gode modeller for volatilitet og value at risk, sammenlignet vi GARCH resul-
tatene med resultatene fra den beskrivende analysen av r̊adata. Beregningene av Value at
Risk er testet for hver kontrakt ved bruk av Kupiec testen. Monte Carlo simuleringer har
ogs̊a blitt brukt for å støtte opp om v̊are funn. Datasettene har blitt testet for hele han-
delsperioden, samt etter priskrasjet i 2006. Til slutt har vi analysert CO2 futurekontrakter
i bivariate porteføljer med andre ulike energikontrakter.

Hovedfokus i denne avhandlingen har vært å finne passende GARCHmodeller for volatiliteten
av avkastningen, samt Value at Risk.
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Chapter 1

Background

Liberalization of energy markets in Europe and the rest of the world have led to devel-
opment of liquid future markets for oil, gas and coal. With the introduction of emission
trading, completely new markets with highly specific characteristics have been created,
such as CO2 emission contracts. Oil, gas, and coal are inputs to electricity production
and their prices are therefore related to electricity prices. In this project we are going
to analyze the emergence of carbon emissions as a new commodity and asset class, and
its interrelationships across the spectrum of energy commodities such as electricity, oil,
gas and coal. Liquid markets for physical and financial products for electricity, fuels and
CO2 provide opportunities to control and manage risk. In energy markets, many risks are
fundamentally related to each other. For example, electricity prices are not independent
of fuel and CO2 prices.1

This report uses daily data of CO2 emissions allowances, valid for compliance under the
EU Emissions Trading Scheme (EU ETS), exchanged on the European Climate Exchange
(ECX) based in Amsterdam. We use futures contracts of maturity December 2009 and 2010
to examine the volatility and risk for these ECX CO2 futures contracts. Some disadvan-
tages with the datasets may be few observations and extreme price movements. Compared
to other assets and commodities CO2 futures have been traded for a short period of time,
something that can effect the results of the modeling. To solve this problem Monte Carlo
simulations will be applied. Extreme price movements can affect the descriptive statistics
of the contracts’ returns. Why is it important to model volatility and risk in this market?
The understanding of the volatility properties of CO2 returns can contribute to a better
characterization of the relevant stochastic process to price derivatives, Chevallier and Sevi
[2009]. It also appears of importance to hedge against different kinds of institutional, eco-
nomic and financial risks.

The statistically properties of daily realized volatilities in futures markets have been in-
vestigated by, among others, Thomakos and Wang [2003]. They analyzed the D-Mark,

1Modelling and forecasting risk in electricity, carbon and related energy markets (Oil, Gas, Coal), Sjur
Westgaard
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1. Background

E-Dollar, S&P500 and T-bonds and found that standard deviations exhibit long memory,
while standardized returns are serially uncorrelated. Their analysis also showed that the
unconditional distributions of daily returns’ are leptokurtic and highly skewed to the right.

Chevallier and Sevi [2009] investigated realized volatility of the 2008 ECX CO2 futures
contract. They used one year tick-by-tick data from ECX CO2 emissions futures. They
found the unconditional distributions of daily returns to be near normal. Any attempt to
standardize these returns using realized measures and to a lesser extent GARCH estimates
did not lead the distribution to Gaussianity. Benz and Trueck [2009] examined the spot
price dynamics of CO2 emission allowances in the EU ETS. Their analysis showed that
the log-returns exhibit skewness, excess kurtosis and different phases of volatility behavior
coming from fluctuations in demand for CO2 allowances. Their results strongly support the
use of AR-GARCH or regime-switching models for modeling the returns of CO2 emission
allowances.

Our work differs from the analysis of the mentioned papers by also concentrating on mul-
tivariate interactions with other commodities. In particular, we evaluate price, returns
and volatility for the different approaches that can be considered as a substantial issue
in risk management. Risk managers and traders constantly hedge their positions against
irregular and unexpected carbon price fluctuation. Hence, they are not only interested
in the long-term perspective of emission allowance prices but also in short-term price dy-
namics of the assets. Having a wider understanding of pricing and volatility will allow
companies, investors and traders to realize efficient trading strategies, risk management
and investment decisions in the carbon market. The research methods we shall employ
are fundamentally quantitative. Qualitative discussions are also necessary to complement
and complete the analyses. We will use time series econometric approaches on daily data.
Univariate and multivariate GARCH models will be used, as well as stochastic volatility
models. The G@RCH module (see Laurent [2009]) in OxMetricsTM , the leading software
for GARCH models, will be applied.

There exists a great variety of GARCH models for volatility and risk estimation in many
markets (stocks, bonds, FX, commodities). An excellent overview of modeling and fore-
casting GARCH models in these markets, is given in Poon and Granger [2003]. Although
models of this type are now well established in financial markets, applications to electric-
ity markets and particular carbon markets are still very sparse. Examples of some of the
references on univariate GARCH models for various electricity, gas and oil markets are
Aloui [2008], Giot and Laurent [2002] and Solibakke [2009]. Textbooks by Bunn [2004],
Weron [2006], and Serletis [2007] list relevant work with respect to modeling the volatility
of energy markets using GARCH models.

There are several reasons to model the volatility of CO2 prices and returns, but for who
is this of interest? The research questions developed in this report may be of precious use
for risk management and market participants who have an interest in this field and require
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a careful understanding of the volatility of CO2 returns and prices. We are now going to
give a short list of reasons why these participants have an interest in this.

1.1 CO2 emitters

Buyers and sellers of emission allowances are typically industrial companies that emit large
amounts of CO2. They will have to buy allowances if they emit more CO2 than they have
allowances for. On the other hand they may sell allowances if they have a surplus of
allowances. Some of the reasons why they might be interested in this are, Løland and Aas
[2009]:

1. Want an assumption about next years income and expenditures

2. Do not want to take greater risk than necessary (VaR)

3. Want to optimize trading

4. Have to enter in the accounts the market value of their contracts

By getting a better understanding of the volatility, returns and prices of the CO2 market,
industrial companies will be able to make a more correct assumption of the cost of emitting
more or less than they have allowances for. With a better control of the emissions, compa-
nies get a clear overview over their income and expenditures regarding buying and selling
new allowances. By entering into the futures markets, these companies will minimize price
risk if they buy futures contracts for allowances.

1.2 Traders

Traders in the CO2 market try to make profits by speculations in prices of allowances.
Examples of traders in the market can be power companies, investment banks, hedge funds,
pension funds, and private investors. Some of the reasons why they might be interested in
this are:

1. Want an assumption about next years income and expenditures

2. Want to know the risk, but not necessarily minimize it (VaR)

3. Want to know if the market is pricing it correctly and take advantage of it if they
are not

4. Want to optimize trading

5. Have to enter in the accounts the market value of their contracts

3



1. Background

Power companies usually hold a portfolio of different commodities to hedge themselves
against risk. CO2 prices have an effect on the volatility of power prices. The reason for
this is that both power and CO2 prices react to some of the same fundamentals. For ex-
ample, warm winters lead to lower power demand and hence fewer emissions, thus lower
CO2 prices. As a result, power prices will experience a double downturn effect directly and
indirectly through the CO2 pricing component. This means that an effective risk man-
agement strategy needs to consider the price risks in both CO2 and power (and related
fuels) markets. Many of the players in the carbon market have positions in power and
fuels markets as well, and will therefore be able to use hedging tools in these markets to
position themselves within a suitable risk perspective, PointCarbon [2007]. These groups
are not only interested in the long-term perspective of the CO2 emission allowance prices
but also in the short-term price dynamics.

The reminder of this thesis is organized as follows: Chapter 2 and 3 provide an overview
of the the CO2 market and the futures contracts being traded. Chapter 4 studies the
descriptive statistics, value at risk, and the monthly variations of the ECX futures contacts.
In Chapter 5 we present the methods we will apply. Chapter 6 gives an overview of different
factors that influence the volatility. Chapter 7, 8 and 9 investigate the results and Value
at Risk form the GARCH modeling. Chapter 10 provides the multivariate modeling with
portfolios of different energy commodities. Finally, Chapter 11 concludes our work.
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Chapter 2

The Carbon Market

The rising concerns regarding climate change led to the establishment of the Kyoto Pro-
tocol. The Kyoto Protocol was negotiated in December 1997 and came into force the 16th
of February 2005. The industrialized countries signed up to reduce their collective emis-
sions of greenhouse gasses (GHGs) by 5.2% compared to the 1990 levels during the period
2008-2012, The Kyoto Protocol [2007]. Because of this, the European Union, whose target
for reduction is 8%, has implemented the EU ETS. The scheme was officially opened on
1st of January 2005. The EU ETS gives the governments of the member countries permits
to emit tons of CO2-equivalent. These permits are then distributed to large CO2 emitting
installations in the respective countries. The permits can be traded in several spot, futures,
and option markets, if they fulfill their targets at the scheduled time. Under the EU ETS,
allowances can be traded internationally, and the purchase and holding of allowances is
not restricted to companies signed up for the program. This means that market players,
such as brokers and small investors, are free to trade allowances with any other party.
One allowance traded on the EU ETS corresponds to one ton of CO2 released into the
atmosphere, and is called European Union Allowance (EUA), Paolella and Taschini [2006].
Each member country in the EU has to submit a National Allocation Plan (NAP). Here
the member countries determine the quantity of CO2 allowances granted each year to its
companies for a specified period. According to the EU ETS, the first period lasted from
2005 to 2007. We are now in the second commitment period, which lasts from 2008 to
2012. The third commitment period will be 2013-2020, Bataller et al. [2006].

Under the first phase of the EU ETS only within-phase banking was allowed. This meant
that allowances could be banked from one year to the next, but unused Phase I allowances
were not valid during Phase II. The restriction of inter-phase banking became a subject
of discussion because it could be a potential source of market distortion. When Phase II
of the program started the inter-phase restriction was removed. It is now allowed to bank
CO2 emission allowances until the end of Phase III, Chevallier and Sevi [2009].
The EU ETS is today the largest emission-trading scheme in terms of both allowances
distributed and in number of installations covered. Not all sectors producing CO2 emis-
sions are regulated by the 2003/87/EC Directive and thus do not participate in emission
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trading. The directive applies for the following sectors: Combustion plants, oil refineries,
coke ovens, iron and steel plants, and factories making cement, glass, lime, brick, ceramics,
pulp and paper. These sectors are categorized as trading sectors, Bataller and Tornero
[2008b].

The GHGs, listed in the Annex A of the Kyoto Protocol include, Carbon dioxide (CO2),
Methane (CH4), Nitrous oxide (N2O), Hydro fluorocarbons (HFCs), Per fluorocarbons
(PFCs) and Sulphur hexafluoride (SF6). The CO2-equivalent tons are a measure unit con-
structed in order to indicate the global warming potential of the different GHGs, Bataller
and Tornero [2008a]. An emission allowance is the right to emit one ton of the reference
gas, CO2, into the atmosphere. To legally emit CO2 during a year, utilities must have
enough allowances for the given year to cover all of its emissions. The affected utilities are
legally obligated to have an emissions monitoring system that measures the true emissions.
The emissions data have to be reported to the authorities. If a company does not have
enough allowances to cover its emissions at the given time, a fine will be given. The level
of the fines during Phase I of the EU ETS was e40 per ton CO2. During Phase II the fines
have increased to e100 per ton CO2, Paolella and Taschini [2006].

The largest GHG emitter, the USA, did not sign the Kyoto Protocol, but in July 2004 the
New York Attorney, General Eliot Spitzer, demanded the nations largest utilities to reduce
their GHG emissions. Large states such as California and Massachusetts made plans to
cut their emissions with 20% and 10% within 2020, Paolella and Taschini [2006]. This year
will be decisive to the USA if they will get a new climate law. The three senators John
Kerry, Lindsey Graham and Joseph Lieberman will soon present a draft for a new law. The
target is to reduce the American GHG emissions by 17% from 2005 to 2020. The American
president Barack Obama wanted to use emissions trading to reduce the GHG emissions
before he was elected, but the emissions trading scheme was discredited the last year in
the USA. The scheme has been labeled ‘big government‘. Most likely the new climate law
will contain an emissions trading scheme. One of the reasons for this is the big success
the USA has had with the emissions trading scheme to reduce SO2 emissions which was
introduced in 1990, Alstadheim [2010].

Recently, several large cases of fraud related to CO2 emissions have been discovered. Trad-
ing fraud has been detected in several European countries, and is believed to be extensive.
The characteristics of the fraud has been that some companies sell CO2 allowances to le-
gitimate businesses. The allowance seller collects sales tax, like supposed to, but the sales
tax is not paid to the government. Europol estimated in a press release last winter that
tax evasion relating to the EU CO2 emissions system may have resulted in losses of e5
billion in domestic tax revenues. In some countries it is estimated that fraudulent motive
is behind 90% of trade in emission allowances, Kristensen [2010].
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2.1 Types of countries

As of 15th January 2008, 177 countries, plus the European Union (EU), have ratified the
Kyoto Protocol.
The world has been divided into five groups, PointCarbon [2009]:

1. EU-15 countries Annex I (Industrialized countries)

2. European countries with economies in transition

3. Other countries with emission targets

4. Annex I countries that have not ratified the Kyoto Protocol

5. Non-Annex I countries (primarily developing countries)

2.1.1 The European Union

Members of the EU are Annex I countries, and there are 15 EU-members which have
agreed upon a common commitment to reduce their average GHG emissions by 8% in the
first period (2005-2008) compared to 1990 level. These 15 EU-countries emitted 23% of
the global GHGs in 1990. Annex I countries are usually net buyers of emission permits.
The EU ETS covers around 45% of the EU GHG emissions, PointCarbon [2009].

2.1.2 Countries in process of transition to market economy

There are several countries that are in a process of transition to a market economy. These
countries are members of the EU, except Russia, Ukraine, and Croatia, and there are also
a part of the EU ETS. In 1990 transition countries emitted 31% of the global GHGs, Point-
Carbon [2009].

2.1.3 Annex II non-EU countries

In 1990 these countries emitted 15% of the global GHGs. Countries in the Annex II group
have compliance targets, but they are not members of the EU or not in a transition process.
The last country to ratify the Kyoto Protocol was Australia in 2007, PointCarbon [2009].

2.1.4 Annex I countries not ratified

The USA was the only Annex I country that did not sign the Kyoto Protocol in 1997, and
emitted 36,4% of the global GHGs in 1990, PointCarbon [2009].
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2. The Carbon Market

2.1.5 Non-Annex I countries

These countries have ratified the Kyoto Protocol but they do not have emission caps
(limitations). Such countries are potential host countries of Clean Development Mechanism
(CDM) projects, PointCarbon [2009].
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Chapter 3

Futures markets

Futures contracts represent a commitment to buy or sell an underlying asset at a given
future date. Futures contracts are exchange-traded which means that they are standard-
ized and have specified delivery dates, locations, and procedures. Each futures contract
trade has an associated clearinghouse. The role of the clearinghouse is to match the buys
and sells taking place during each day. It also keeps track of the obligations and payments
required of the members, McDonald [2006].

Futures markets are derivative markets, they exist in relation to cash markets, and are
the underlying markets in which actual physical commodities are bought and sold. Fu-
tures contracts do usually not lead to physical delivery, but are instead settled financially.
This is in favor of speculators who neither have the capability nor the interest to handle
a physical delivery of the commodity. Market participants using financially settled fu-
tures contracts to hedge a planned physical buy or sell, bear the risk that the actual price
for the physical transaction differs from the final settlement price for the contract. Most
futures contracts are not held until maturity but closed out in advance, Burger et al. [2007].

The reason for the success of energy futures and options contracts is that they present
opportunities to reduce risk and increase profitability. An understanding of how energy
futures and options markets work, and may be used in the energy business, will pay large
dividends to those firms willing to invest time and money to master these techniques. Risk
transfer and price discovery are two of the main roles in derivative markets. The purpose
of risk transfer is to reduce the risk from risk adverse investors to those who are willing to
accept the risks. In both futures and options markets there are large quantities of bid and
asks that make the markets primary source of price discovery for the related commodi-
ties, EuropeanClimateExchange [a].

The Kyoto protocol created a new market for commodity trading in Europe, the market
for EUAs. The EU ETS is the largest scheme worldwide, and the futures contracts and
the underlying cash market are traded on different exchanges.
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3.1 Types of futures contracts

The two main groups of carbon futures contracts are:

1. European Union Allowances

2. Certified Emissions Reductions

3.1.1 European Union Allowances

European Union Allowances are carbon credits issued under the EU ETS to CO2-emitting
installations. EUAs are held in electronic accounts and reached a total of 3.1 billion metric
tons valued at e67bn.1

EUA futures contracts are based on underlying EU Allowances and provide the market
with standardized contract terms and a benchmark for price discovery. One EUA futures
contract represents 1,000 tons of CO2 EU Allowances. This is standard for all the EUA
futures contracts traded on the different platforms we will present. It is also standard for
all of the futures contracts with different expiry dates. 2

3.1.2 Certified Emissions Reductions

The Clean Development Mechanism projects generate Certified Emission Reduction (CER)
credits to qualifying greenhouse gas reduction projects. The CERs are transferable to in-
dustrial countries, where they can be applied toward emissions reduction targets.

CER futures contracts are based on underlying CER units. One CER futures contract
represents 1,000 CER units. The contracts ensure their liquidity by being highly standard-
ized.

3.1.3 EUA & CER Futures

EUA and CER daily futures are exchange-traded cash contracts. Both EUA and CER
daily futures contracts are physically delivered by transfer of either EU Allowances or Cer-
tified Emissions Reduction units from the seller to the buyer. The daily futures contracts
provide flexibility for active companies in carbon markets to manage risks and monetise
their allowances. EUA and CER Daily Futures offer next-day payment and delivery of
the underlying units of trade3. In this thesis we are going to focus on the EUA futures
contracts in our analysis, since these are the most liquid contracts.

1http://www.ecx.eu/EUA-Products
2http://www.ecx.eu/ECX-EUA-Futures-What-are-Futures
3http://www.ecx.eu/EUA-CER-Daily-Futures-Spot
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We will now present some of the exchanges where EUA futures contracts are traded.

3.2 European Climate Exchange

The European Climate Exchange is located in Amsterdam, Netherlands, and began trad-
ing futures contracts in April 2005 with a starting daily volume of 300,000 CO2 tons. The
ECX CO2 emission futures contract is a deliverable contract where each member with a
position open at the date of contract expiration is obliged to take delivery of emission
allowances from national registries. EUAs are the underlying commodities traded at ECX.
The exchange added Certified Emission Reduction units in 2008 as another underlying
commodity. In 2009, two spot-like contracts were added, the EUA and CER Daily Fu-
tures contracts, EuropeanClimateExchange [b]. ECX has developed a partnership with
the Intercontinental Exchange (ICE) Futures Europe. ECX is responsible of managing the
product development and marketing of its emissions contracts and the ICE is responsible
of lists those contracts on its electronic trading platform, EuropeanClimateExchange [c].

3.3 Nord Pool

Nord Pool is located in Norway and started trading in CO2 futures contracts in February
2005 with a daily volume of 150,000 CO2 tons. Nord Pool was the first exchange in Europe
to offer standardized contracts for emission allowances and carbon credits. The exchange
is Europe‘s largest and most liquid marketplace for physical and financial power contracts.
Nord Pool is also one of the largest exchanges in trading of European Union emission
allowances and global certified emission reduction, NordPool.

3.4 European Energy Exchange (EEX)

The European Energy Exchange is located in Leipzig (Germany). They began trading in
CO2 futures contracts in April 2005 with a starting volume of 50,000 CO2 tons. EEX
trades emission rights derivatives. Regarding power trading EEX cooperates with the
French Powernext, and EEX holds 50% of the shares in the joint venture EPEX Spot based
in Paris. The power derivatives trading are concentrated within EEX Power Derivatives
GmbH. That is an EEX subsidiary with headquarters located in Leipzig. The European
Commodity Clearing (ECC) provides clearing and settlements of EEX’s carbon futures
contracts, EuropeanEnergyExchange.
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3.5 Powernext

The French exchange started trading spot carbon contracts on 24th June 2005 with an
initial 20,000 CO2 tons per day. Today (2010) Powernext’s carbon, spots and futures, con-
tracts are published on EEC’s website. Powernext hold stakes in EEX and the cooperation
has several benefits such as price formation mechanism, centralized and increased liquidity,
highly effective clearing and risk management services, and a more effective governance of
market coupling. EEX Power Derivatives GmbH is responsible of the power trading, where
Powernext holds a 20% stake.

3.6 SendeCO2

SendeCO2 in Spain started the carbon futures trading in 2005. This exchange has one
main goal, to contribute significantly in the improvement of the environment through the
reduction of the real CO2 emissions. SendeCO2 has a web based electronic platform de-
signed for small and medium companies that wish to access the market for EUA and CER
trading, SendeCO2.

Since the underlying asset is equal on all exchanges, there are several similarities between
the futures contracts that are traded on the different European exchanges. They are
identical in terms of contract size, minimum tick (e0.01), and the trading days are from
Monday to Friday. The ECX, however, offers a broader variety for expiry contracts dates.
Nord Pool offers December and March contracts, while ECX offers contracts with monthly
expiry dates, Bataller and Tornero [2008a]. EUA contracts differ from CER contracts in
that the underlying commodity delivered is different.4 For this reason we have chosen to
continue our analysis by focusing on EUA futures traded on ECX.

4http://www.ecx.eu/ECX-EUA-Futures-What-are-Futures
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Chapter 4

Descriptive Statistics

In this chapter we will focus on descriptive statistics of ECX futures contracts. We have
chosen six of the most liquid futures contracts from the ECX. Throughout this analysis
GARCH descriptive statistics will be applied as a tool to describe the contracts’ differ-
ences. The descriptive statistics will consist of contracts prices and log-returns%. Chapter
7 presents a more thorough analysis of two main ECX futures contracts. In our dataset
we have prices and returns from the contracts issued, to 31.12.09.

Dealing with financial data and time series we focus on log-returns in order to capture
the feature of the data. The arithmetic rate of return is defined as the capital gain plus
any interim payment such as dividend (D) divided by the initial price. Alternatively we
can use the geometric rate of return, which is defined in terms of the logarithm of the price
ratio. In our case the income payments D are zero, Jorion [2007].

r = ln
St

St−1

There are several advantages with log-returns. Firstly, log-returns can be interpreted as
continuously compounded returns, meaning that the frequency of compounding of the
return does not matter. Secondly, continuously compounded returns are time-additive.
Normally distributed geometric returns can never generate negative stock prices, in con-
trast to arithmetic returns, Brooks [2008].

There are also disadvantages with using continuously compounded returns. These returns
are not additive across a portfolio, because the log sum is not the same as the sum of a
log. A log operation constitutes of a non-linear transformation, Brooks [2008]. Since our
models take care of the problem with non-linearity we will avoid problems using log-returns
in our modeling.

Some financial time series exhibit certain cyclical behavior. Seasonal time series models
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are useful in pricing weather related derivatives and energy futures, because most environ-
mental time series exhibit strong seasonal behavior.

4.1 Stationarity

Because econometric results may be unreliable if the dependent variable is non-stationary,
we first need to test the stationarity for both returns series. Stationarity implies that the
parameters are stable over time and can be inferred from historical data. For most series,
the random variable is usually the rate of return on the financial instrument. In finance
literature, it is common to assume that an asset return series is weakly stationary. In some
studies series tend to be non-stationary, Brooks [2008].

To find out if the datasets have constant means, variances and covariances for each lag,
we tested the stationarity. Table 4.1 presents a Augmented Dickey-Fuller test (ADF) with
two lags.

ADF
Logreturns09 -18.9016
Logreturns10 -18.9749

Table 4.1: ADF-test

The null hypothesis of a unit root is rejected in favor of the stationary alternative in
each case if the test statistic is more negative than the critical value. With a 5% level
of significance, the critical value is -3.406. According to the results in Table 4.1 the null
hypothesis is rejected and the datasets are stationary.

4.2 Value at Risk

”Value at Risk summarizes the worst loss over a target horizon that will not be exceeded
with a given level of confidence”, Jorion [2007].

Value at Risk (VaR) is a well known method in risk management and it is getting more pop-
ular. There are four different types of financial market risks: Interest rate risk, exchange-
rate risk, equity risk, and commodity risk. Risk can be measured by the standard deviation
of unexpected outcomes, called volatility. Value at Risk captures the combined effect of
underlying volatility and exposure to financial risks, Jorion [2007].
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4.2.1 Conditional Value at Risk

Conditional Value at Risk (CVaR), also called Mean Excess Loss, Mean Shortfall, or Tail
value at risk, tells us how much we could lose if we are ”hit” beyond VaR, Jorion [2007].
To give an estimate on where the average returns will be when it hits the VaR level, we
use the CVaR.

4.3 Overview of the main ECX’s Futures Contracts

The European Climate Exchange has six main futures contracts with different expiration
dates. Table 4.2 shows the descriptive statistics for the prices from the ECX futures con-
tracts 2009-2014.

ECX Futures Contracts Prices
Ex.Date Min Mean Max Std.dev Obs
2009 8.20 19.728 32.90 4.6350 1212
2010 8.43 20.143 33.55 4.7218 1225
2011 8.90 20.695 34.20 4.7539 1225
2012 9.43 21.359 34.85 4.7824 1225
2013 11.30 21.318 36.43 6.3832 452
2014 12.30 22.433 37.78 6.3893 452

Table 4.2: ECX Futures Contracts Prices

There are some differences in the data observations. The 2009 contract has only 1212
observations because the contract expired 14.12.09. The 2013 and 2014 contracts were
issued 09.04.08. What is worth noticing when it comes to the futures contracts in the
table is the high standard deviation in the 2013 and 2014 contracts. This was an expected
outcome of the use of a small set of data.
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Figure 4.1: Price 2009

Figure 4.1 explains the price movements of the ECX futures contract 2009. The period
covers both Phase I and Phase II. During this period of time the contract price has been
very unpredictable with large variations. Celebi and Graves [2009] point out some factors
that causes the unpredictability. First of all, it is the conditions of major drivers of CO2

prices such as the price of natural gas or plant construction costs. Many of these drivers
are themselves highly uncertain, something that will affect the CO2 prices. Secondly, it is
the uncertainty in construction costs for low CO2 technologies.

Figure 4.2: Price 2010-2012
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The price developments of the 2010-2012 contacts are described in Figure 4.2. In the be-
ginning of the period prices and movements are similar. From year 2009, it is evident that
the contracts’ price differences are getting larger.

Referring to the introduction of this chapter, our main focus is on the contracts’ returns.
Since the 2010-2012 futures contracts in price and returns are very similar to each other
(see Figure 4.2), we will focus on the 2009 and 2010 contracts. 2013 and 2014 have not
been traded for a long time and the datasets have few observations, for that reason analysis
with those contracts may contain errors.

ECX Futures Contracts Returns %
Ex.Date Min Mean Max Std.dev Obs
2009 -28.108 -0.014121 19.319 2.8392 1211
2010 -27.427 -0.025405 19.117 2.8175 1224
2011 -26.778 -0.021697 18.664 2.7867 1224
2012 -26.159 -0.017052 18.232 2.7723 1224
2013 -8.5632 -0.13854 9.8631 2.4234 451
2014 -8.1591 -0.13186 9.1076 2.2848 451

Table 4.3: ECX Futures Contracts Returns %

Descriptive statistics in returns are summarized in Table 4.3. The min-values are the
highest negative price movement (%) during the period, and the max-values are the highest
positive price movements. All contracts’ means are negative or close to zero. Standard
deviation for the 2009 contract is 2.8392 and 2.8175 for the 2010 contract.

(a) Returns 2009 (b) Squared returns 2009

Figure 4.3: Returns and squared returns of the 2009 ECX EUA contract
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(a) Returns 2010 (b) Squared returns 2010

Figure 4.4: Returns and squared returns of the 2010 ECX EUA contract

There are obvious similarity between the contracts’ volatility, showed in Figure 4.3 and 4.4,
as expected from the price analysis above. Both Figure 4.3 and Figure 4.4 have volatility
clusters. The results indicate higher volatility when the prices are falling. Because of the
higher volatility in negative price movements, we can assume that the distribution is not
normal distributed.
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4.4 Autocorrelation

Before we start with the univariate GARCH modeling we have to check for autocorrelation
in the raw series. Financial series typically exhibit little correlation, but the squared re-
turns often indicate significant correlation. To check for autocorrelations of raw data we use
autocorrelation function (ACF) and partial-autocorrelation (PACF) function in OxMetrics.

The autocorrelation function computes and displays the sample ACF of the returns, along
with the upper and lower standard deviation confidence bounds, based on the assumption
that all autocorrelations are zero beyond lag zero. The ACF can also be used to determine
how many AR-lags we need to include in our model.1

(a) Autocorrelations of ECX Futures Contract 2009 (b) Autocorrelations of ECX Futures Contract 2010

Figure 4.5: ACF and PACF of returns

Figure 4.5 demonstrates the ACF and PACF of returns for the 2009 and 2010 contracts
respectively. The returns are uncorrelated, except in lag 1 and 6. Since the autocorrelation
function is significant in lag one, this might imply that one AR-lag should be included in
the models. Following Benz and Trueck [2009], we specify the AR(1)-GARCH(1,1) model:

Rt = β0 + β0Rt−1 + �t

ht = α0 + α1�
2
t−1 + α2ht−1

With Rt the daily returns, and �t the error term.

While trying to develop the best model we will use models with both one and zero AR-lags.
The benefit of few AR-lags is that it is easier to handle in a Monte Carlo simulation.

1www.mathworks.com/access/helpdesk r13/help/toolbox/garch/overvi13.html
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4. Descriptive Statistics

We know that there can be significant correlation and persistence in the ACF of the squared
returns.

(a) ACF and PACF of the squared returns 2009 (b) ACF and PACF of the squared returns 2010

Figure 4.6: ACF and PACF of squared returns

From Figure 4.6 it can be seen that the squared returns are correlated. From the theory of
financial time series, the result is not surprising. The ACF appears to die out in the end,
something that indicates the possibility of a variance process close to being non-stationary.

4.5 Quantifying the correlation

There are several tests applicable to quantify the preceding qualitative checks for correla-
tion. The most common tests are the Ljung-Box-Pierce Q-test and Engle’s LM test for the
presence of ARCH effects.

4.5.1 Q-test for the 2009 contract

Normally the Q-test is used as a post-estimation test applied to the fitted residuals. We
use the test as a part of the pre-fit analysis. The reason for this is that the default model
assumes that returns are a simple constant plus a pure innovations process. Under the
null hypothesis of no autocorrelation, the Q-test statistic is asymptotically Chi-Square
distributed, (see Box et al. [1994]).
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4.5. Quantifying the correlation

Q-Statistics on Raw data 2009
Lag Statistic P-value
Q( 5) 18.8134 0.0020822
Q( 10) 23.7332 0.0083410
Q( 20) 50.6013 0.0001816

Table 4.4: Q-Statistics on Raw data 2009

Q-Statistics on Squared data 2009
Lag Statistic P-value
Q( 5) 143.898 0.0000000
Q( 10) 263.401 0.0000000
Q( 20) 369.076 0.0000000

Table 4.5: Q-Statistics on Squared data 2009

P-values in Table 4.4 and 4.5 confirm significant autocorrelation in our raw data for the
2009 futures contract. Later in the thesis, different GARCH-models will be used to try to
reduce or eliminate the autocorrelation.

ARCH-test for the 2009 data
Test Statistic P-value

ARCH 1-2 test: F(2.1206)= 15.499 [0.0000]
ARCH 1-5 test: F(5.1200)= 10.104 [0.0000]
ARCH 1-10 test: F(10.1190)= 7.6451 [0.0000]

Table 4.6: ARCH-test for the 2009 data

Engle’s LM ARCH test is conducted with ARCH 1-2, 1-5 and 1-10 lags. All lags are sig-
nificant according to the LM ARCH test in Table 4.6. With significant ARCH effects in
the dataset, it is reasonable to use ARCH and GARCH models.
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4.5.2 Q-test for the 2010 contract

Significant autocorrelation, for the 2010 contract, is confirmed in Table 4.7 and 4.8. Later
we will use different GARCH-models to try to reduce or eliminate the autocorrelation in
the 2010 data as well.

Q-Statistics on Raw data 2010
Lag Statistic P-value
Q( 5) 19.0916 0.0018481
Q( 10) 28.8874 0.0012994
Q( 20) 52.3512 0.0001012

Table 4.7: Q-Statistics on Raw data 2010

Q-Statistics on Squared data 2010
Lag Statistic P-value
Q( 5) 66.0453 0.0000000
Q( 10) 120.391 0.0000000
Q( 20) 244.720 0.0000000

Table 4.8: Q-Statistics on Squared data 2010

ARCH-test for the 2010 data
Test Statistic P-value

ARCH 1-2 test: F(2.1219)= 18.457 [0.0000]
ARCH 1-5 test: F(5.1213)= 11.046 [0.0000]
ARCH 1-10 test: F(10.1203)= 8.3404 [0.0000]

Table 4.9: ARCH-test for the 2010 data

Engle’s LM ARCH test is conducted for the 2010 data. P-values in Table 4.9 confirm
significant ARCH effects. For this reason ARCH and GARCH models are reasonable to
use.
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4.6 Value at Risk

Value at risk ECX Futures Contracts
ECX Futures Contract 2009 ECX Futures Contract 2010

Value at risk 99% 6.80966 6.81072
Value at risk 1% -8.01281 -8.39296
Value at risk 97.5% 5.15872 5.11976
Value at risk 2.5% -6.01574 -6.22737
Value at risk 95% 3.94201 3.96521
Value at risk 5% -4.54102 -4.45391
Conditional VaR 99% 9.43429 9.31940
Conditional VaR 1% -12.10315 -12.07169
Conditional VaR 97.5% 7.31423 7.23684
Conditional VaR 2.5% -8.92977 -8.89584
Conditional VaR 95% 5.92579 5.89814
Conditional VaR 5% -7.01218 -7.03356

Table 4.10: Raw data empirical Value at Risk

The empirical Value at Risk and the Conditional Value at Risk are summarized in Table
4.10. Calculations can be found in the CD at the end of the thesis. The cutoff value in the
2009 contract is 5.15872% and 5.11976% in the 2010 contract with 95% confidence level.
Additionally, the downside cutoff value is -6.01574% for the 2009 contract and -6.22737%
for the 2010 contract. Since 95% confidence interval is the most common in risk manage-
ment with financial data, it is employed as a standard in our further calculations. A two
tailed test for VaR with a 95% confidence level is represented by 97.5% and 2.5% values.
The conditional value at risk is 7.31423% (2009) and 7.23684% (2010) and the downside is
-8.92977% (2009) and -8.89584% (2010).

In Chapter 7 we will look at univariate GARCH models and estimate VaR using Monte
Carlo simulations (MCS).

In the next section a more detailed analysis of the 2009 and 2010 contracts will be con-
ducted.
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4.7 Analysis

There are several reasons for using returns in financial studies. The main reason is that
return series are easier to handle than price series because the former have more attractive
statistical properties. Many models that appear to be non-linear, can be made linear by
making logarithmical transformations. However, many relationships in finance are intrin-
sically non-linear. As Campbell et al. [1997] state, the payoff to options are non-linear in
some of the input variables, and investors’ willingness to trade off returns and risks are
also non-linear, Brooks [2008].

When looking at prices and returns in energy markets, it is important to provide a formal
foundation for acceptance or rejection of distributions built into our pricing models. We
will use the Jarque-Bera test of normality to answer the distribution question:

JB = T

�
γ̂2

6
+

(δ̂ − 3)2

24

�

Kurtosis describe the degree of flatness of a distribution. It is defined as:

δ =
�� +∞

−∞ [x− E(X)]4f(x)dx
�
/σ4

The kurtosis of a normal distribution is 3. A kurtosis coefficient greater than 3 indi-
cates that the tails decay less quickly than for the normal distribution, implying a greater
likelihood of large values, positive or negative. Such distribution is called leptokurtic, or
fat-tailed, Brooks [2008].

Skewness describe departures from symmetry. It is defined as:

γ =
�� +∞

−∞ [x− E(X)]3f(x)dx
�
/σ3

The skewness of a normal distribution is 0. Negative skewness indicates that the distribu-
tion has a long left tail and hence generates large negative values. The opposite yields for
a positive skewness, Brooks [2008].
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4.7. Analysis

QQ plot is a plot of the percentiles of a standard normal distribution against the cor-
responding percentiles of the observed data. If the observations follow approximately a
normal distribution, the resulting QQ plot should be roughly a straight line with a positive
slope, Katenka [2008].

(a) Curve of normal distribution 2009 (b) QQ plot for the 2009 futures contract

Figure 4.7: Normal distribution and QQ-plot for the 2009 contract

Figure 4.7 (a) shows the 2009 contract with a normal distribution. Taking a closer look we
can observe negative tails. The QQ plot in Figure 4.7 (b) shows indication of an underlying
distribution that has heavier tails compared to those of a normal distribution.

(a) Curve of normal distribution 2010 (b) QQ plot for the 2010 futures contract

Figure 4.8: Normal distribution and QQ plot for the 2010 contract

According to Figure 4.8 (a) and (b) the 2010 contract prove the same pattern as the 2009
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contract. Over the next pages we give a more thorough numeric analysis of these indica-
tions.

The summary of price statistics are presented in Table 4.11 and 4.12. Skewness exists, the
kurtosis is larger than 3, and the results in the tables are clearly showing that the data
have non-normality and asymmetry’s features. The value of the Jarque-Bera test is 18.145
in the 2009 contract, and 19.803 in the 2010 contract. As expected from the figures above,
the P-values are small and we reject the null hypothesis of normal distribution (the null
hypothesis of JB test is normality), Zhang [2009].

ECX Futures Price 2009
Factors Statistic t-test P-value
Skewness 0.033733 0.47984 0.63134

Excess Kurtosis -0.59586 4.2414 2.2217e-05
Jarque-Bera 18.145 .NaN 0.00011478

Table 4.11: ECX Futures Price 2009

ECX Futures Price 2010
Factors Statistic t-test P-value
Skewness 0.072968 1.0435 0.29673

Excess Kurtosis -0.60580 4.3351 1.4569e-05
Jarque-Bera 19.803 .NaN 5.0102e-05

Table 4.12: ECX Futures Price 2010

The 2009 contract exhibits a negative skewness according to the Table 4.13. This tells
us that the probability for extreme negative values are greater than for extreme positive
values. The kurtosis is negative as well, implying that the probability is higher for large
decreases in the price. With a high Jarque-Bera coefficient, the null hypothesis of normal
distribution is rejected.

ECX Futures Returns % 2009
Factors Statistic t-test P-value
Skewness -0.89729 12.763 2.6227e-37
Excess Kurtosis 11.655 82.959 0.0000
Jarque-Bera 7016.5 .NaN 0.0000

Table 4.13: ECX Futures Returns % 2009
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ECX Futures Returns % 2010
Factors Statistic t-test P-value
Skewness -0.87110 12.457 1.2810e-35
Excess Kurtosis 11.051 79.083 0.0000
Jarque-Bera 6383.5 .NaN 0.0000

Table 4.14: ECX Futures Returns % 2010

The returns from 2010 contract exhibit negative skewness according to Table 4.14. The
kurtosis indicates that the probability for extreme increases in the returns, rt, is higher
compared to a normal distribution. From the Jarque-Bera there is no normal distribution.

It is widely known that financial asset returns do not follow a normal distribution, but they
are almost always leptokurtic, or fat-tailed. This is also a fact for our data. This observation
has implications for economic modeling. First, models are required to be robust to non-
normal error distributions. Second, the risk of holding a particular security is probably
no longer appropriately measured by its variance alone. In risk management, assuming
normality when returns are leptokurtic will result in a systematic underestimation of the
risk of the portfolio. Consequently, the use of a Student’s t distribution has been employed
to systematically allow for leptokurtosis in financial data, Brooks [2008]. Due to this, a
Student’s t distribution will be standard in our further modeling.
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4.8 Monthly variations

This section presents a closer look at the monthly variations for prices and returns. The
data is daily prices and returns of the ECX futures contracts with expirations December
2009 and 2010.

4.8.1 Monthly variations for the ECX 2009 Futures Contract

Monthly prices
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean 18.45 18.174 18.799 20.814 20.546 21.296 21.353 20.139 20.131 19.394 18.327 18.521
Std.dev 4.0295 6.5929 5.3194 6.147 3.9922 4.8446 5.0145 3.4577 3.9832 3.6424 3.2997 2.9408
Variance 16.2369 43.4663 28.2960 37.7856 15.9377 23.4701 25.1452 11.9557 15.8659 13.2671 10.8880 8.6483
Kurtosis -0.616212 -0.79477 3.5446 -1.1765 -1.3691 -1.1735 -1.5932 -0.57248 -1.2567 -1.3460 -0.68887 -0.32766
Skewness 0.48822 -0.79484 2.1371 0.032871 0.47547 0.55790 0.035062 -0.65680 -0.093587 -0.11001 -0.64022 -0.48586

Min 11.5 8.2 10.06 12.14 14.08 12.39 13.03 14.18 12.79 13.05 12.63 13.49
Max 25 28.5 27.55 32.9 27.15 29.8 30.53 26.29 26.06 24.09 24.31 23.94

Jarque-Bera 1.2221 2.6323 29.548 0.34715 2.5472 2.4037 2.2252 1.9677 1.4798 1.6276 1.9379 0.96395
Count 90 81 88 90 111 108 110 111 107 111 107 110

Table 4.15: Descriptive statistics of prices

Table 4.15 gives an overview of the monthly variations for the ECX 2009 futures contract.
Monthly differences are evident. March has a much higher positive kurtosis then any of
the other months. For all the other months the kurtosis is slightly negative. The positive
skewness in March indicates that there is a higher probability for extreme positive prices.
As we can see form the Jarque-Bera, none of the months are totally normal distributed
but all months except of March are close to a normal distribution. The highest variance is
observed in the months February-April.
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4.8. Monthly variations

(a) Mean (b) Standard deviation

Figure 4.9: Mean and standard deviation for the price of the 2009 contract

Monthly means and standard deviations are drawn in Figure 4.9 (a) and (b). There is a
tendency of higher prices in the spring and summer time of the period. The reason for
this can be high energy prices. Another reason might be that the warm summers increases
the use of electricity, which again increases the price for CO2 allowances, (ref: Chapter 6,
Price Dynamics). An example of this would be the hot and dry July of 2006 in Europe,
which led to higher demand for electricity even as hydro resources were low and nuclear
resources were off-line. This pushed the price of EUAs higher, Benz and Trueck [2009].
From Figure 4.9 (b) we can observe some variation in the standard deviation for each
month. February-April have the highest standard deviation in prices.

Monthly returns
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean -0.41393 -0.10256 0.51767 -0.0414 0.6039 0.087105 -0.4149 0.14687 -0.37398 -0.10126 -0.2174 0.1448
Std.dev 2.6928 3.906 2.8622 4.0914 3.3595 2.3615 3.0965 1.7452 2.4492 2.1641 2.5217 2.1057
Variance 7.2512 15.2568 8.1922 16.7396 11.2862 5.5767 9.5883 3.0457 5.9986 4.6833 6.3590 4.4340
Kurtosis 0.40250 2.5076 1.7696 -1.6985 -0.96655 0.95645 1.8525 1.1736 -0.25091 -0.82458 -0.45340 2.5426
Skewness -0.38133 -0.96339 1.1959 0.22482 0.41599 0.94737 -1.3208 -0.84509 -59276 0.11831 -0.13990 1.1819

Min -8.5903 -9.4346 -8.1126 -28.108 -8.8262 -5.6545 -15.062 -4.1847 -7.4627 -6.99 -9.1559 -7.5748
Max 6.0945 11.366 8.7508 6.2914 19.319 6.684 8.6094 4.9797 5.399 4.5445 5.4214 7.1826

Jarque-Bera 0.68169 8.3338 8.4830 0.64314 1.4909 4.1295 9.1087 4.0577 1.3461 0.64393 0.26020 11.048
Count 90 81 88 90 111 108 110 111 107 111 107 97

Table 4.16: Descriptive statistics for the months January-December 2009

Descriptive statistics for monthly returns are summarized in Table 4.16. The highest posi-
tive kurtosis is in February and December. There are no months of very positive or negative
skewness. January, April, October and November are close to normally distributed, since
the Jarque-Beras are close to zero. The highest variance is observed in February, April
and May. The reason for this was large movements in the price during these months of 2006.
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(a) Mean (b) Standard deviation

Figure 4.10: Mean and standard deviation for the returns of the 2009 contract

The highest average returns are observed in March and May, (see Figure 4.10 (a)). Jan-
uary, July and September have the greatest negative average returns. From Figure 4.10
(b), variation in the standard deviations for each month are evident. February, April and
May possess the highest standard deviation in returns. One reason for the high standard
deviation in both prices and returns in April is that in April 2006, it became clear that
corporate participants had been granted around 10% more allowances than they actually
needed, to cover their 2005 emissions. The consequent was that a surplus of EUAs flooded
the market and prices crashed 60% within a week, from a high of around e30 per ton of
CO2 to e11, Benz and Trueck [2009].
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4.8.2 Monthly variations for the ECX 2010 Futures Contract

We will now take a look at the monthly variations for the 2010 futures contract, see Table
4.17. The results are expected to be similar to the ones of the 2009 contract, since both
contracts cover the same period of time.

Monthly prices
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean 18.872 18.642 19.397 21.418 21.045 21.793 21.888 20.664 20.614 19.84 18.735 18.249
Std.dev 4.0068 6.6223 5.3296 6.1864 4.0615 4.8697 5.1078 3.5522 4.0892 3.6796 3.3586 3.379
Variance 16.0544 43.8549 28.4046 38.2715 16.4958 23.7140 26.0896 12.6181 16.7216 13.5395 11.2802 11.4176
Kurtosis -0.61258 -0.91145 3.1677 -1.1765 -1.3776 -1.1532 -1.5873 -0.53293 -1.2692 -1.3290 -0.70984 -0.045570
Skewness 0.48575 -0.60403 2.0383 0.032871 0.47096 0.56331 0.043464 -0.66409 -0.074228 -0.079420 -0.64232 -0.72374

Min 11.9 8.43 10.49 12.78 14.78 12.96 13.5 14.57 13.05 13.32 12.81 12.45
Max 25.15 29 28.1 33.55 27.79 30.79 31.71 27.27 27 24.85 24.91 24.55

Jarque-Bera 1.2091 1.9084 25.543 0.34715 2.5529 2.3827 2.2111 1.9627 1.4969 1.5675 1.9747 1.9225
Count 90 81 88 90 111 108 110 111 107 111 107 110

Table 4.17: Descriptive statistics of prices 2010

As expected, March differs from the other moths with a positive kurtosis (see Table 4.17),
a high positive skewness and high Jarque-Bera. The other months have negative kurtosis,
skewness close to zero, and a low Jarque-Bera. The highest variances are observed in
February and April.

(a) Mean (b) Standard deviation

Figure 4.11: Mean and standard deviation for the prices of the 2010 contract

Monthly means and standard deviations for the 2010 contract are given in Figure 4.11 (a)
and (b). The trend is the same as for the 2009 contract; higher prices in the spring and
summer time of the period. The reason for this is discussed in Chapter 6, Price Dynamics.
February-April have again the highest standard deviation in prices.
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Monthly returns
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean -0.41017 -0.0585 0.52131 -0.047514 0.58825 0.098825 -0.41288 0.14497 -0.39076 -0.10254 -0.21053 -0.017849
Std.dev 2.6742 3.9133 2.8478 4.028 3.3462 2.3659 3.0648 1.7159 2.3877 2.1551 2.4732 2.2353
Variance 7.1513 15.3139 8.1100 16.2248 11.1971 5.5975 9.3930 2.9443 5.7011 4.6445 6.1167 4.9966
Kurtosis 0.56402 1.5817 1.9132 -1.6985 -0.90100 0.91297 1.7167 1.3075 -0.26320 -0.63639 -0.42048 1.9669
Skewness -0.35004 -0.51308 1.0819 0.22484 0.41675 0.93438 -1.2869 -1.0202 -0.58905 0.12034 -0.15005 1.0450

Min -8.2997 -9.3014 -7.8216 -27.427 -8.9948 -5.9689 -14.8 -4.422 -7.428 -7.4184 -9.219 -8.6877
Max 5.8951 11.354 8.4068 6.2003 19.117 6.6543 8.5642 4.97 5.2032 4.5943 5.3879 6.9854

Jarque-Bera 0.74087 2.9625 7.9945 0.64312 1.3810 3.9653 8.3750 5.6276 1.3358 0.40505 0.24463 7.5505
Count 90 81 88 90 111 108 110 111 107 111 107 110

Table 4.18: Descriptive statistics for the months January-December 2010

Descriptive statistics for monthly returns in the 2010 contract, are presented in Table 4.18.
The results are different from the 2009 contract in that the 2010 contract has the highest
positive kurtosis in December. December and March have the highest positive skewness,
and July has the highest negative skewness. The Jarque-Beras are highest in March, July
and December. The largest variances are observed in February, April and May.

(a) Mean (b) Standard deviation

Figure 4.12: Mean and standard deviation for the returns of the 2010 contract

According to Figure 4.12 (a) March and May obtain the highest average returns, while
January, July and September achieve the greatest negative average returns, similar to the
2009 contract. When it comes to the standard deviations for the returns of the 2010
contract, they are the highest in February, April and May, corresponding confirmed by
Figure 4.12 (b).
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Chapter 5

Methods

5.1 Volatility

Risk can be measured by the standard deviation of unexpected outcomes, or sigma (σ),
also called volatility. Volatility refers to fluctuations in some phenomenon over time. It
can be seen as the uncertainty or risk about the size of changes in for example a security’s
value. High volatility indicates that the security’s value can potentially be spread out over
a larger range of values. High volatility means that the security’s value can change dra-
matically in value either way, over a short period of time. If the volatility of the security
is low, then it’s value will not fluctuate as much. Volatility can be measured using either
standard deviation or variance of the return from the security or market index.1

Modeling and forecasting market volatility have been subject of extensive empirical and
theoretical research over the past decade. There are several reasons for this. Volatility is
considered as one of the most important concepts in finance. Volatility, measured by the
standard deviation or variance of returns, is often used as a measure of the total risk of
financial assets, Brooks [2008]. Modern option pricing theory, beginning with Black and
Scholes [1973], accords volatility a central role in determining the fair price of an option.
While the returns volatility of the underlying asset is only one of five parameters in the
basic Black and Scholes option pricing formula, its importance is magnified by the fact
that it is the only one that is not directly observable. Both theorists and practitioners are
concerned with the behavior of volatility and the construction of option pricing models in
which volatility can change. To hedge volatility risk is also an important issue for market-
makers, Jorion [2007].

Volatility is also important in portfolio management. Portfolio management involves de-
ciding what assets to include in the portfolio, given the goals of the portfolio owner. The
risk of a portfolio comprises systematic risk, also known as undiversifiable risk, and un-
systematic risk which is known as diversifiable risk. Unsystematic risk can be diversified

1http://www.investopedia.com/terms/v/volatility.asp
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away to smaller levels by including a greater number of assets in the portfolio. An optimal
portfolio displays the lowest possible level of risk for it’s level of return.

5.2 Historical volatility

The historical estimate is the simplest model for volatility. It involves calculating the
variance or standard deviation of returns over some historical period. This becomes the
volatility forecast for all future periods. The historical average variance or standard devi-
ation was used as the volatility input to several options pricing models. There is growing
evidence suggesting that the use of volatility predicted from more advanced time series
models leads to more accurate option values. However, historical volatility is still used as
a benchmark for comparing the forecasting ability of more advanced time models, Brooks
[2008].

5.3 Correlation

Correlation between two variables measures the degree of linear association between the
two of them. If two variables, x and y, are correlated, it means that the two variables are
being treated completely symmetrical. Thus, it does not mean that changes in x cause the
changes in y, or the other way around. It is only stated that there is evidence for a linear
relationship between the two variables. The movements in the two are on average related to
an extent given by the correlation coefficient, Brooks [2008]. The correlation coefficient, r, is
a measure of the strength and direction of the linear relationship between the two variables.
The range of the coefficient, r, is from -1 to +1, and the sign r indicates the direction
of the correlation between the two variables. The two variables are perfectly positively
correlated if r= +1, and perfectly negatively correlated if r= -1. The two variables are
totally uncorrelated when r=0, Studenmund [2006].

5.4 EWMA

The exponentially weighted moving average (EWMA) is a simple extension of the historical
volatility measure. The model allows more recent observations to have a stronger impact
on the forecast of volatility than older observations. The latest observations carries the
largest weight, and the weights of previous observations decline exponentially over time.
Another advantage is that the effect on volatility of a single event declines at an exponential
rate as weights attached to recent events fall. The EWMA model can be expressed like this:

σ2
t = (1− λ)

∞�

j=0

λj(rt−j)− r̄)2

34



5.5. ARMA

Here σ2
t is the estimate of the conditional variance for the period t. r̄ is the average return

estimated over the observations and λ is the decay factor. The decay factor determines
how much weight is given to recent versus older observations, Brooks [2008].

5.5 ARMA

An autoregressive model (AR) is one where the current value of a variable, y, depends only
upon the values that the variable took in previous periods plus a added error term.

yt = µ+
t�

i=1

φiyt−i + ut

The simplest class of a time series model is the moving average (MA) process. MA(q) can
be expressed as:

yt = µ+
q�

i=1

θiut−i + ut

The moving average model is a linear combination of a white noise process, so that yt
depends on the current and previous values of a white noise disturbance term.

The autoregressive volatility model (ARMA) is a simple version of a stochastic volatility
model. By combining the AR(p) and MA(q) models, the ARMA(p, q) process will be
a combination of those two parts. The model states that the current value of a series y
depends linearly on its own previous values. In addition a combination of current and
previous values is added by a white noise error term, Brooks [2008].

5.6 Time-varying volatility

Earlier research on volatility shows that for many assets, there are periods of turbulence
and periods of calm. If volatility is persistent over some time, a volatility measure should
weight recent returns more heavily than older returns. ARCH and GARCH models, which
we are going to use in our analysis, give more weight to recent returns, McDonald [2006].

5.7 Non-linear models

Many relationships in finance are non-linear. The payoffs to options are non-linear in some
of the input variables, and investors’ willingness to trade off returns and risks are non-
linear. These relationships are clear motivations to consider non-linear models in order to
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capture better the relevant features of the data.

There are a number of different non-linear models, but only a small number of the models
have been found useful for modeling financial data. The most popular and most used non-
linear financial models are the ARCH and GARCH models. They are used for modeling
and forecasting volatility, Brooks [2008].

5.8 ARCH

The Autoregressive Conditional Heteroscedasticity (ARCH) of Engle [1982] is an important
and widely used volatility model. The model attempts to capture statistically the ebb and
flow of volatility. The ARCH process allow the conditional variance to change over time
as a function of past errors, leaving the unconditional variance constant. It was the first
model that provided a systematic form for volatility modeling. The basic idea behind the
ARCH model is that if volatility is high today it is more likely than average to be high
tomorrow. In other words, the current level of volatility tend to be positively correlated
to its levels during the preceding periods. This is called volatility clustering. A plausible
explanation to the tendency for volatility in financial markets to appear in bunches regards
information. The information arrivals that drive price changes occur in bunches, rather
than being spread evenly. The assumption made under the classical linear regression model
that the variance of the errors is constant is known as homoscedasticity. If the variance
of the errors is not constant, than it is known as heteroscedasticity. In the context of
financial time series, it is unlikely that the variance of the errors will be constant, Brooks
[2008]. After Engle introduced the ARCH model, this type of models has been widely used
in modeling economic phenomena and financial time series. However, after the ARCH
process was appropriated, people found a lot of weaknesses in this new type of models, like
the long lag length, a large number of parameters and it is not easy to control the existent of
negative variance, in order to solve this, Bollerslev [1986] proposed the generalized ARCH,
GARCH model.
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5.9. GARCH

Figure 5.1: Futures prices and returns

Figure 5.1 shows the day to day futures prices of the ECX 2010 futures contract and
its returns. We observe that the volatility is fluctuating and that volatility clustering is
present.

5.8.1 ARCH effects

Before estimating a GARCH model, it is sensible to test for ARCH effects to make sure
this type of models is appropriate. One can compute Engels LM ARCH test of Engle [1982]
to test if there is ARCH effects in a series, as we did in Chapter 4, Descriptive Statistics.
The test statistics is distributed X2(p) under the null hypothesis of no ARCH effect.

5.9 GARCH

The Generalized Autoregressive Conditional Heteroskedasticity of Bollerslev [1986] and
Taylor [1986], has been very popular in the empirical literature as it usually provides a
good fit with the empirical data. It allows the conditional variance to be dependent upon
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5. Methods

previous lags. The conditional variance equation also called GARCH (1,1) is:

σ2
t = α0 + α1u

2
t−1 + βσ2

t−1

or the GARCH (p,q)

σ2
t = w +

q�

i=1

αi�
2
t−i +

p�

j=1

βjσ
2
t−j

σ2
t is known as the conditional variance since it is a one-period ahead estimate for the vari-

ance calculated based on relevant past information. The GARCH model makes it possible
to interpret the current fitted variance, as a weighted function of a long-term average value,
which is dependent on α0. α1u2

t−1 is information regarding volatility during the previous
period, and βσ2

t−1 is the fitted variance form the model during the previous period. Iden-
tification and estimation of GARCH models is performed by maximum likelihood. The
method works by finding the most likely values for the parameters given the actual data.
The maximum likelihood estimation is used to find parameter values for both linear and
non-linear models, Brooks [2008].

5.9.1 The unconditional variance GARCH

The conditional variance is changing, but the unconditional variance of ut is constant. It
is given by:

var(ut) =
α0

1− α1 − β

As long as α1+β < 1. For α1+β ≥ 1, the unconditional variance of ut is not defined, and
will be termed “non-stationarity in variance”. α1 + β = 1 will be known as a “unit root in
variance”, Brooks [2008].

It is known that volatility series are mean-reverting. This means that if the volatility
currently are at a high level relatively to the historical average, it will fall back towards its
average level. If the volatility is at a low level, it has a tendency to rise back towards the
average. The time it takes for the volatility to move halfway back to its stationary level,
given that it have moved away from it, is given by:

λ = log(0.5)/ log(a+ b)

5.10 New GARCH models

Since the GARCH model was introduced there have arrived extensions and new variants.
Problems and restrictions are some of the reasons for this. One of the primary restrictions
of the GARCH model is that it enforce a symmetric response of positive and negative
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5.10. New GARCH models

shocks volatility shocks. It has been argued that in financial time series, negative shocks
cause volatility to rise more than positive shocks of the same magnitude. Two models that
take asymmetry into account are the GJR model and the exponential GARCH (EGARCH).

5.10.1 The GJR model

This model is a simple extension to the GARCH with an additional term added to account
for asymmetries. The GJR model can be written as:

σ2
t = α0 + α1u

2
t−1 + βσ2

t−1 + γu2
t−1It−1

Where It−1 = 1 if ut−1 < 0
=0 otherwise

For a leverage effect, we would see γ > 0. The condition for non-negativity will be: α0 > 0,
α1 > 1, β ≥ 0, and α1 + γ ≥ 0, Brooks [2008].

5.10.2 EGARCH

There are several ways to express the exponential GARCH model, and one possible speci-
fication is this:

ln(σ2
t ) = w + βln(σ2

t−1) + γ
ut−1�
σ2
t−1

+ α

�
|ut−1|�
σ2
t−1

−
�

2

π

�

One of the advantages this model has over the simple GARCH, is because of how the ln(σ2
t )

is modeled. Because of this, then even if the parameters is negative, σ2
t will be positive.

It also allows asymmetries, because if the relationship between volatility and returns is
negative, γ , will also be negative, Brooks [2008].

5.10.3 ARFIMA-GARCH

Several studies have shown that the dependent variables (interest rate returns, exchange
rate returns, etc.) may exhibit significant autocorrelation between observations widely
separated in time. In such case, yt is said to display long memory and is best modeled by a
fractionally integrated ARMA process. This ARFIMA process was developed in Granger
(1980) and Granger and Joyeux (1980). The ARFIMA(n,ζ, s) is given by:

Ψ(L)(1− L)ζ(yt − µt = Θ(L)�t

where the operator (1− L)ζ accounts for the long memory of the process, Laurent [2009].
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5.11 Multivariate GARCH models

Multivariate GARCH models are in general pretty similar to the univariate models, except
that the multivariate models also specify equations for how the covariances move over
time. There have been proposed several different multivariate GARCH formulations the
literature, but we are going to concentrate on two of the most popular ones; the diagonal
BEKK and RiskMetics.

5.11.1 RiskMetrics

J.P.Morgan (1996) uses the exponentially weighted moving average model (EWMA) to
forecast variance and covariances. RiskMetrics define the variance and covariances as
IGARCH type models. The RiskMetrics model is defined as:

Ht = (1− λ)�t−1�
�
t−1 + λHt−1

or alternatively

Ht =
(1− λ)

(1− λ)t−1

t−1�

i=1

λt−1�t−1�
�
t−1

The decay factor λ (0 < λ < 1) proposed by RiskMetrics is equal to 0.94 for daily data
which we will use. The decay factor is not estimated but suggested by RiskMetrics. In
respect, this model is easy to work with in practice, Laurent [2009].

5.11.2 The diagonal BEKK

In the diagonal BEKK model both parameter matrices are diagonal. The number of
parameters to be estimated is significantly lower while maintaining the main advantage
of this specification, the positive definiteness of the conditional covariance matrix. The
diagonal BEKK model is given by the following equations:

h11,t = a211 + b211�
2
1,t−1 + c211h11,t−1

h22,t = a211 + a222 + b222�
2
2,t−1 + c222h22,t−1

h12,t = h21,t = a11a22 + b11b22�1,t−1�2,t−1 + c11c22h12,t−1

h21,t = h12,t

The diagonal BEKK model exhibit essentially the same problem as the full BEKK model
since there is no parameter in any equation that exclusively governs a particular covariance
equation, Baur [2001].
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5.12. Akaike’s Information Criterion

5.12 Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) is an index used to help us determine which of
a number of alternative statistical models best fits the data by including or excluding
competing factors. It is a measure of the information lost when a given model is used to
describe reality. The AIC can be defined as:

AIC = ln(σ̂2) +
2k

T

where σ̂2 is the residual variance, k=p+q+1 is the total number of parameters estimated
and T is the sample size. The lowest value indicates the best model, while models with
higher values are rejected, Everitt [1998].

The multivariate version of Akaike’s information criterion can be defined as:

MAIC = ln|
�̂

|+ 2k�/T

where
�̂

is the variance-covariance matrix of residuals, T is the number of observations
and k� is the total number of regressors in all equations, Brooks [2008].
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Chapter 6

Price Dynamics

Brokers, traders and risk managers buy and sell emission allowances and derivatives. For
these groups, the price behavior and dynamics of the CO2 emission allowances is of great
importance in order to realize trading strategies, risk strategies and investment decisions.
They constantly have to hedge their positions against irregular and unexpected carbon
price fluctuations. This section contains an overview of the main variables that influence
the CO2 emission allowance price.

Research is done on which variables influence the volatility of the CO2 emission allowance
prices. Research done by Springer [2003] and Christiansen et al. [2005] identified the car-
bon prices’ main drivers to be economic growth, energy prices, weather conditions and
policy issues. While allowance supply is fixed by each member state through the National
Allocation Plans, allowance demand is a function of the level of CO2 emissions, which
again depends on the before mentioned factors.

Previous literature has pointed out energy prices to be the most important driver of the
volatility of the carbon prices due to the ability of power generators to switch between
fuel inputs (Kanen [2006], Christiansen et al. [2005], Bunn and Fezzi [2007], Convery and
Redmond [2007]). The option to switch from natural gas to coal in their inputs is backed
up by Bataller et al. [2006] who found this variable to be statistically significant. This idea
is supported by, Lowrey [2006]:

“...if the price of gas increases relatively to the price of coal, then the cost of switching
from gas to coal increases and - other things being equal - the demand for coal will increase.
Therefore, the demand for carbon allowances to cover that generation will also rise, leading
to a resultant increase in the emission allowance price.”

High energy-prices contribute to an increase in carbon prices.

Weather conditions may influence the volatility of the EUA prices because it influences
energy demand. Numerous studies have highlighted the effect of climate on energy prices.
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6. Price Dynamics

These studies have indicated that the relationship between temperature and electricity is
non-linear. Only increase and decrease, beyond a certain threshold, can lead to increased
demand for power. Warm summers increase the demand for air conditioning, electricity,
and derived coal. Cold winters increase the demand for natural gas and heating fuel. Be-
cause of the increase in input, power generators’ CO2 emissions will increase the demand
for allowances, Alberola et al. [2007]. From their research Alberola et al. [2007] found that
seasonal average matter more than temperatures themselves on CO2 price changes during
extreme weather events.

Political and institutional features impact the carbon price. The gap between initial allo-
cation to industrials and their business-as-usual emission forecasts are problematic. During
the last week of April 2006, prices collapsed dramatically when operators disclosed 2005
verified emissions data, which showed that the scheme was oversupplied. The EUA price
fell 54% in four days after this happening, Alberola et al. [2007]. Changes in policy di-
rectives and regulations may have consequences for the demand and supply of emission
allowances. The NAPs set the rules and reduction targets, Benz and Trueck [2009]. An
example of this was the changes in rules from Phase I to Phase II when it was allowed to
bank emission allowances.

Carbon prices may be affected by the economic activity of the various sectors covered by
the EU ETS. Economic growth has a major impact on CO2 emissions and therefore on al-
lowances demand and supply from installations. Industrial sectors that experience higher
production growth than their projections, are expected to be net buyers of allowances.
Industrial sectors that experience lower production than their projections are expected to
be net sellers of allowances, Alberola et al. [2007].

From the discussion above it is possible to specify a structural model of the factors that
influence the volatility of the CO2 prices:

σco2 = f(Pcoal, Pelectricity, Pgas, Poil, T )

Where P denotes the price of the different commodities that influence the CO2 price. T is
the temperature variable which can affect the CO2 price during extreme weather events.
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Chapter 7

Results

In this chapter we will analyze our data with univariate GRACH models. We want to find
the model that explains the volatility best without losing to much information.

7.1 GARCH-modeling of the 2009 Futures Contract

Several different GARCH models are used for modeling the 2009 futures contract. GARCH,
GJR, EGARCH and ARFIMA models are conducted to find the best model for our data.
The models were run with different p and q levels as well as different AR-lags, to find the
best fit to our data.

Tables 7.1-7.4 display all parameters for some of the different GARCH models tested with
t-values and p-values. We have chosen to only present the models that gave reasonable
results. EGARCH and ARFIMA models did not give adequate results, and are therefore
excluded from the further analysis.

GARCH (1,1) AR (1) GARCH
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.123849 2.180 0.0295 0.123074 2.009 0.0448
C (V) 0.437152 3.950 0.0001 0.430182 3.962 0.0001
AR (1) 0.080942 2.717 0.0067
Alfa (1) 0.165850 4.867 0.0000 0.165660 4.982 0.0000
Beta (1) 0.791837 29.30 0.0000 0.791997 30.00 0.0000

Student (DF) 4.587160 7.070 0.0000 4.690047 6.785 0.0000

Table 7.1: GARCH (1,1) and AR(1) GARCH
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ARMA GARCH (1,1) AR (1) GARCH (2,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.124654 2.070 0.0387 0.119518 1.935 0.0532
C (V) 0.430847 3.967 0.0001 0.204405 3.766 0.0002
AR (1) -0.277746 -1.381 0.1675 0.082464 2.787 0.0054
MA (1) 0.362951 1.895 0.0584
Alfa (1) 0.165149 4.974 0.0000 0.071572 3.666 0.0003
Beta (1) 0.792522 30.04 0.0000 1.515619 14.51 0.0000
Beta (2) -0.607437 -6.970 0.0000

Student (DF) 4.673029 6.698 0.0000 4.704436 6.6680 0.0000

Table 7.2: ARMA GARCH (1,1) and AR (1) GARCH (2,1)

GJR (1,1) AR (1) GJR (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.106576 1.823 0.0686 0.100791 1.579 0.1146
C (V) 0.467901 3.960 0.0001 0.458773 4.005 0.0001
AR (1) 0.081504 2.718 0.0067
Alfa (1) 0.124214 3.467 0.0005 0.121427 3.393 0.0007
Beta (1) 0.785917 27.87 0.0000 0.787193 29.06 0.0000

Gamma (1) 0.078447 1.497 0.1346 0.082126 1.560 0.1191
Student (DF) 4.644064 7.015 0.0000 4.738763 6.744 0.0000

Table 7.3: GJR (1,1) and AR (1) GJR (1,1)

GJR (2,1) AR (1) GJR (2,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.099599 1.713 0.0870 0.096996 1.527 0.1271
C (V) 0.192636 3.472 0.0005 0.1934926 3.569 0.0004
AR (1) 0.081776 2.736 0.0063
Alfa (1) 0.043520 2.178 0.0296 0.044964 2.094 0.0365
Beta (1) 1.579890 12.31 0.0000 1.567651 12.42 0.0000
Beta (2) -0.658874 -6.155 0.0000 -0.649353 -6.197 0.0000

Gamma (1) 0.029768 1.770 0.0769 0.031693 1.822 0.0687
Student (DF) 4.541308 6.950 0.0000 4.670708 6.633 0.0000

Table 7.4: GJR (2,1) and AR (1) GJR (2,1)
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Test
Model Obs Parameters LL AIC JB
GARCH (1,1) 1211 5 -2785.134 4.607984 2091.6
AR (1) GARCH 1211 6 -2780.307 4.601663 1950.9
ARMA GARCH (1,1) 1211 7 -2779.324 4.601691 2116.9
AR (1) GARCH (2,1) 1211 7 -2778.203 4.599840 2042.3
GJR (1,1) 1211 6 -2783.734 4.607323 1779.1
AR (1) GJR (1,1) 1211 7 -2778.833 4.600880 1664.4
GJR (2,1) 1211 7 -2782.096 4.606270 2470.4
AR (1) GJR (2,1) 1211 8 -2776.607 4.598856 2209.8

Table 7.5: Test for GARCH models

Table 7.5 summarizes the different GARCH models. Our evaluation criteria to find the
best model are the AIC value, log likelihood value and the number of significant parame-
ters. The problem of autocorrelation is also taken into account. The best model based on
our criteria is the AR (1) GARCH (1,1). All of the model’s parameters are significant and
the AIC is low. The model also reduced some autocorrelation in the data. Two other good
models are the GARCH (1,1) and the AR (1) GARCH (2,1). These models have all their
parameters significant, but the AIC level for the GARCH (1,1) is higher. AR (1) GARCH
(2,1) is a much more complex model than the AR(1) GARCH (1,1). Because of this we
have chosen the AR(1) GARCH (1,1) as the best model.

Figure 7.1: ACF and PACF of the residuals 2009
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The GARCH model eliminates the autocorrelation in lag one (see Figure 7.1). The re-
maining autocorrelation in our data is not of any concern.

Q-Statistics on Standardized Residuals
Lag Statistic P-value
Q( 5) 17.6902 0.0014186
Q( 10) 20.3770 0.0170735
Q( 20) 35.2779 0.00993647

Table 7.6: Q-Statistics on AR (1) GARCH (1,1) 2009 futures

Q-Statistics on Squared Standardized Residuales
Lag Statistic P-value
Q( 5) 3.41200 0.3323556
Q( 10) 10.1895 0.2519751
Q( 20) 19.2400 0.3771874

Table 7.7: Q-Statistics on AR (1)GARCH (1,1) 2009

If we compare the results from the Q-statistics in Table 7.6 and 7.7 with the Q-statistics
from the raw data, the autocorrelation in squared residuals is eliminated. Despite of that,
there is still significant autocorrelation in the residuals.

(a) Log-returns (b) Residuals

Figure 7.2: Log-returns and residuals for the 2009 contract

From the Figure 7.2 it is evident that the volatility in the residuals corresponds to that of
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the raw data, and the model is suited for Monte Carlo simulation.

To eliminate the autocorrelation, dummy variables were tried out. A dummy variable is an
artificial variable constructed such that it takes the value unity whenever the qualitative
phenomenon it represents occurs, and zero otherwise. Dummy variables can also be used
to capture changes in the intercept, changes in the slope, and changes in both the inter-
cept and the slope. Most important for our study is the fact that dummy variables can
minimize or eliminate the autocorrelation and capture the differences among more than
two classifications, such as seasons and regions, Kennedy [2003].

We made two dummies, Monday and Friday, in OxMetrics. These dummies were included
in several GARCH models to test the impact of dummies on our result. The results, which
are presented in appendix, show that the dummies had little or no effect on our modeling.
One of the reasons for this is because there is not a large autocorrelation problem in the
AR (1) GARCH (1,1) model, which is the best model.

We will now take a closer look at the 2010 futures contract, and try to find the best model
for this contract as well.

7.2 GARCH-modeling of the 2010 Futures Contract

The same types of GARCH models are used for the 2010 contract, as for the 2009 contract.
The results are summarized in Table 7.8-7.11.

GARCH (1,1) AR (1) GARCH
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.111368 2.002 0.0455 0.110830 1.864 0.0625
C (V) 0.440992 3.941 0.0001 0.435495 3.959 0.0001
AR (1) 0.071680 2.449 0.0145
Alfa (1) 0.163391 4.851 0.0000 0.163974 4.952 0.0000
Beta (1) 0.794672 29.34 0.0000 0.794257 29.87 0.0000

Student (DF) 4.355361 7.588 0.0000 4.428321 7.293 0.0000

Table 7.8: GARCH (1,1) and AR(1) GARCH
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ARMA GARCH (1,1) AR (1) GARCH (2,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.112329 1.918 0.0554 0.108042 1.804 0.0715
C (V) 0.436563 3.962 0.0001 0.206456 3.900 0.0001
AR (1) -0.282576 -1.403 0.1608 0.073403 2.533 0.0114
MA (1) 0.358028 1.866 0.0622
Alfa (1) 0.163294 4.934 0.0000 0.071745 3.829 0.0001
Beta (1) 0.795073 29.92 0.0000 1.516873 14.97 0.0000
Beta (2) -0.608623 -7.135 0.0000

Student (DF) 4.397059 7.220 0.0000 4.475985 7.161 0.0000

Table 7.9: ARMA GARCH (1,1) and AR (1) GARCH (2,1)

GJR (1,1) AR (1) GJR (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.097418 1.701 0.0892 0.092549 1.493 0.1356
C (V) 0.468969 3.896 0.0001 0.462853 3.949 0.0001
AR (1) 0.072914 2.471 0.0136
Alfa (1) 0.128446 3.580 0.0004 0.125639 3.492 0.0005
Beta (1) 0.788991 27.32 0.0000 0.789265 28.34 0.0000

Gamma (1) 0.066417 1.265 0.2060 0.071891 1.353 0.1763
Student (DF) 4.396382 7.544 0.0000 4.463447 7.254 0.0000

Table 7.10: GJR (1,1) and AR (1) GJR (1,1)

GJR (2,1) AR (1) GJR (2,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.092711 1.621 0.1054 0.090703 1.466 0.1428
C (V) 0.199378 3.409 0.0007 0.200607 3.660 0.0003
AR (1) 0.073822 2.529 0.0116
Alfa (1) 0.049704 2.193 0.0285 0.050965 2.282 0.0227
Beta (1) 1.559351 10.91 0.0000 1.550160 12.15 0.0000
Beta (2) -0.642113 -5.343 0.0000 -0.635467 -5.948 0.0000

Gamma (1) 0.024476 1.377 0.1689 0.026698 1.442 0.1495
Student (DF) 4.364934 7.457 0.0000 4.456204 7.148 0.0000

Table 7.11: GJR (2,1) and AR (1) GJR (2,1)
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Test
Model Obs Parameters LL AIC JB
GARCH (1,1) 1224 5 -2804.930 4.591388 2145.9
AR (1) GARCH 1224 6 -2800.784 4.586248 2025.6
ARMA GARCH (1,1) 1224 7 -2799.891 4.586423 2184.7
AR (1) GARCH (2,1) 1224 7 -2798.616 4.584340 1990.0
GJR (1,1) 1224 6 -2803.963 4.591398 1892.9
AR (1) GJR (1,1) 1224 7 -2799.667 4.586056 1783.0
GJR (2,1) 1224 7 -2802.411 4.590540 2319.0
AR (1) GJR (2,1) 1224 8 -2797.586 4.584291 2101.8

Table 7.12: Test for GARCH models 2010

Also the evaluation criteria for finding the best GARCH model are the same as for the 2009
contract. The best model is the AR (1) GARCH (1,1). For this model, all the parameters
were significant and the AIC level is low. The model reduced some autocorrelation in
our data. Two other good models were the GARCH (1,1) and the AR (1) GARCH (2,1).
These models had all its parameters significant, but the AIC level was a bit higher for the
GARCH (1,1). As pointed out earlier the AR(1) GARCH (2,1) is a very complex model,
and this is the reason why we have chosen to appoint the AR(1) GARCH (1,1) as our best
model.

Figure 7.3: ACF and PACF of the residuals 2010
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Q-Statistics on Standardized Residuals
Lag Statistic P-value
Q( 5) 18.2905 0.0010827
Q( 10) 19.9433 0.0182659
Q( 20) 36.1542 0.0101045

Table 7.13: Q-Statistics on AR (1) GARCH (1,1) 2010 futures

Q-Statistics on Squared Standardized Residuales
Lag Statistic P-value
Q( 5) 2.49631 0.4759583
Q( 10) 8.58019 0.3789372
Q( 20) 17.1013 0.5161497

Table 7.14: Q-Statistics on AR (1)GARCH (1,1) 2010 futures

The Q-statistics in Table 7.13 and 7.14 show the same results as for the 2009 contract,
which means that the autocorrelation in squared residuals are eliminated. There is still
significant autocorrelation in the residuals.

Also for the 2010 contracts, we tried to reduce the level of autocorrelation by using dummy
variables for Monday and Friday. This did not reduce the autocorrelation and the dummies
did not affect the results.

(a) Log-returns (b) Residuals

Figure 7.4: Log-returns and residuals for the 2010 contract

The figure above compares the volatility in the residuals to the raw data. The residuals
follow the raw data good, indicating that Monte Carlo simulation can be applied to this
model.
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Chapter 8

Value at Risk

8.1 VaR of Univariate GARCH models

In this section we will analyze the Value at Risk in an AR (1) GARCH (1,1) model for
ECX Future Contract 2009 and ECX futures contract 2010. From Chapter 10, we found
that AR (1) GARCH (1,1) was the best model according to our evaluation criteria. The
models’ ability to calculate Value at Risk is tested using the Kupiec LR test. As a standard,
the Student’s t distribution is used, but according to Giot and Laurent [2001], student t
distribution can cause some problems. This will be discussed later. Due to the problems,
we will also test VaR with a skewed Student’s t distribution.

A Monte Carlo simulation will be implemented after the models are tested, and the results
from the simulation will be compared with the empirical Value at Risk (ref: Chapter 4).

(a) AR (1) GARCH (1,1) VaR 2009 (b) AR (1) GARCH (1,1) VaR 2010

Figure 8.1: VaR models
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From Figure 8.1 we can observe the VaR in-sample with 95% confidence interval. If the
graphs are correct, 2.5% of the observations are below the downside VaR and 2.5% above
the upside VaR. The next step is to see if the stated probability is actually achieved.

8.2 Kupiec test

To test if the stated probability is actually achieved we use the Kupiec LR test in OxMetrics.
Since the computed empirical failure rates define a sequence of yes/no observations, it is
possible to test this hypothesis:

H0 : f = α against H1 : f �= α

where f is the failure rate, Laurent [2009].

With use of the Kupiec LR test, we can test our hypothesis. The LR statistics for testing
a hypothesis with the Kupiec test are:

LR = −2log

�
αN(1− α)T−N

f̂N(1− f̂)T−N

�

where N is the number of VaR violations, T is the total number of observations and α is
the theoretical failure rate. Under the null hypothesis, that f is the true failure rate, the
LR test statistics is asymptotically distributed as a x2(1), Laurent [2009].

The failure rate is widely applied in studying the effectiveness of VaR models. The defi-
nition of failure rate is the proportion of the number of times the observations exceed the
forecasted VaR to the total number of observations. By assessing the differences between
the pre-specified VaR level and the failure rate, it is possible to judge the performance of
VaR models. If the failure rate is close to the pre-specified VaR level, we can conclude that
the VaR model is well specified, Tang and Shieh [2006].

Kupiec LR test
Quantile Failure rate Kupiec LRT P-value ESF1
0.95000 0.96449 5.9312 0.014875 5.8419
0.97500 0.97770 0.37686 0.53929 6.4032
0.99000 0.99587 5.4161 0.019951 9.8498

Table 8.1: Short positions 2009
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8.2. Kupiec test

Table 8.1 and 8.2 contain the results from the Kupiec LR test for 2009. Our main focus
is on quantile 0.975 and 0.025 level since we want to test the 95% confidence interval. In
short position we do not reject the null hypothesis because the P-value is not significant
when the critical value is 5%. In the long position the null hypothesis is also retained.

Kupiec LR test
Quantile Failure rate Kupiec LRT P-value ESF1
0.05000 0.063584 4.3481 0.037051 -5.8474
0.02500 0.031379 1.8727 0.17117 -7.2181
0.01000 0.013212 1.1465 0.28429 -9.3273

Table 8.2: Long positions 2009

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.95000 0.95670 1.2090 0.27152 5.6181
0.97500 0.97467 0.0053402 0.94175 6.0940
0.99000 0.99592 5.5705 0.018266 9.6757

Table 8.3: Short positions 2010

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.05000 0.064542 5.0114 0.025181 -5.8584
0.02500 0.031863 2.1791 0.13990 -7.2683
0.01000 0.012255 0.58652 0.44377 -9.4996

Table 8.4: Long positions 2010

Table 8.3 and 8.4 show the results for the 2010 futures contract. The results in quantile
0.975 (0.025) are satisfactory and the null hypothesis is retained in both short and long posi-
tions. High numbers are observed in quantile 0.99 (short position) and 0.05 (long position).

The Student’s t distribution can cause difficulties with the Kupiec LR test, due to, in some
cases, very large critical values of the Student’s t distribution, Giot and Laurent [2001].
In our models we did not experience problems with the main quantiles (0.975,0.025), but
some other quantiles showed high significant Kupiec observations. Since we are aware of
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8. Value at Risk

the problem, we choose to run a model with skewed Student’s t distribution to compare
with the already used Student’s t distribution.

8.2.1 Skewed Student’s t distribution

The skewed Student’s t distribution improves the results for both negative and positive
returns. According to Giot and Laurent [2001], skewed Student’s t distribution handles the
problem with conservativeness of the symmetric Student t distribution, causing unusual
high levels of long and short VaR.

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.95000 0.95706 1.3319 0.24847 5.6303
0.97500 0.97275 0.24452 0.62096 6.0560
0.99000 0.99174 0.39478 0.52980 8.3972

Table 8.5: Short positions 2009

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.05000 0.056152 0.92955 0.33498 -6.0659
0.02500 0.027250 0.24452 0.62096 -7.6585
0.01000 0.011561 0.28370 0.59428 -9.6654

Table 8.6: Long positions 2009

The results from Table 8.5 and 8.6 (the 2009 contract) indicate that the quantiles cannot
be rejected. Therefore, the null hypothesis is kept in both long and short positions. The
failure rates are low enough to not be significant.
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8.3. Monte Carlo simulation

Kupiec LR test
Quantile Failure rate Kupiec LRT P-value ESF1
0.95000 0.95016 0.00068871 0.97906 5.4153
0.97500 0.97304 0.18833 0.66431 6.0230
0.99000 0.99183 0.44165 0.50632 7.7702

Table 8.7: Short positions 2010

Kupiec LR test
Quantile Failure rate Kupiec LRT P-value ESF1
0.05000 0.058824 1.9033 0.16770 -6.0033
0.02500 0.026961 0.18833 0.66431 -7.6879
0.01000 0.012255 0.58652 0.44377 -9.4996

Table 8.8: Long positions 2010

From the 2010 results the quantiles are retained. The null hypothesis is kept in long and
short positions with low failure rates and insignificant results, (see Table 8.7 and 8.8).

The Kupiec tests indicate that the AR (1) GARCH (1,1) model is well specified and the
stated probability is achieved with a 95% confidence interval. Kupiec tests with skewed
Student’s t distribution give better results for all quantiles. Since our main focus is on the
0.975 and 0.025 quantiles, we choose to keep the Student’s t distribution and run a Monte
Carlo simulation for the AR (1) GARCH (1,1) model.

8.3 Monte Carlo simulation

Simulation experiments enable the determination of the effect of changing one factor of
a problem, while leaving all other factors unchanged. In econometrics, simulation is very
useful when models are complex or sample sizes are small, Brooks [2008].

The idea behind the Monte Carlo approach is to simulate repeatedly a random process
for the financial variable of interest, covering a range of possible solutions. Variables are
drawn from pre-specified probability distributions that are assumed to be known, Jorion
[2007]. Monte Carlo simulation is used to investigate the properties and behavior of various
statistics of interest. It is often applied when the properties of a particular estimation
method are not known. Simulations are useful tools in finance, and Brooks [2008] points
out situations such as:

• The pricing of exotic options, where an analytical pricing formula is unavailable
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8. Value at Risk

• Determining the effect on financial markets of substantial changes in the macroeco-
nomic environment

• Stress testing risk management models to determine whether they generate capital
requirements sufficient to cover losses in all situations

The simulation method is by far the most powerful approach for evaluating value at risk.
It can potentially account for a wide range of risks, like price risk and volatility risk.
Simulations can account for nonlinear exposures and complex pricing patterns. In addition,
they can be extended to longer horizons, which is important for credit risk measurement
and complex models of expected return, Brooks [2008].

Comparing descriptive statistics
Contract 09 Contract 10 MCS Contract 09 MCS Contract 10

Min -28.108 -27.427 -20.4808 -21.5408
Mean -0.014121 -0.025405 0.1362 0.1216
Max 19.319 19.117 20.7808 21.7915
Std.dev 2.8392 2.8175 3.0718 3.1100
Kurtosis 11.655 11.051 10.705 12.0825
Skewness -0.89729 -0.87110 0.00274 0.00941

Table 8.9: MCS ECX Futures Contracts

The Monte Carlo simulation is run in OxMetrics and then sorted in Excel. Our data
consists of 1000 observations and 5000 simulations. If we compare the minimum, maximum,
mean and standard deviation with the descriptive statistics there are relations between the
raw data and the simulated data. Our goal using Monte Carlo simulation is to test if the
AR (1) GARCH (1,1) is a good model for volatility. The model is well specified if the
results of Monte Carlo simulations are equal, or almost equal, to the raw data (see Table
8.9).

Comparing Value at Risk
VaR 97,5% VaR 2,5% CVaR 97,5% CVaR 2,5%

Contract 09 5.15872 -6.01574 7.31423 -8.92977
Contract 10 5.11976 -6.22737 7.23684 -8.89584
MCS Contract 09 6.3173 -5.7299 9.4831 -8.8108
MCS Contract 10 6.3329 -5.7663 9.6382 -8.9827

Table 8.10: Comparing Value at Risk
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8.3. Monte Carlo simulation

We have compared the levels of Value at Risk in Table 8.10. The two first rows are raw
data from both contracts with full dataset. The third and fourth rows represent the VaR
with Monte Carlo simulation. We observe that the Monte Carlo simulation gives us higher
VaR in short and long position for both contracts. Since the difference in the results are
not very different we can conclude that the AR (1) GARCH (1,1) is a good model for
volatility for the chosen CO2 futures contracts.

8.3.1 Distributions

The following distributions are drawn from the Monte Carlo simulations we have computed
in Excel.

(a) Minimum returns 2009 (b) Maximum returns 2009

Figure 8.2: Distributions for minimum and maximum returns 2009

(a) Mean returns 2009 (b) Mean returns 2010

Figure 8.3: Distributions for average returns 2009 and 2010
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(a) Minimum returns 2010 (b) Maximum returns 2010

Figure 8.4: Distributions for minimum and maximum returns 2010

Above we have presented the distributions for minimum, maximum and average returns
for the 2009 and 2010 contracts. More distributions of other parameters are found in the
appendix at the end of the thesis.
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Chapter 9

After the structural break

At the start of the new CO2 emissions market the price of one EUA was traded at e8 on
January 1 2005. The EUA price rose to e25-30 until the release of 2005 verified emissions
on April 24, 2006. This had a depressive effect on EUA prices as shown by the sharp
break in the EUA futures December 2009 price. Verified emissions were about 80 million
tons of 4% lower than the amount of allowances distributed to installations for 2005 emis-
sions, Chevallier and Sevi [2009].

Figure 9.1: The cutoff line for price and returns 2010

As displayed in the figure, we have divided the dataset into two periods due to the presence
of one structural break following the simultaneous releases of 2005 verified emissions. We
will now take a closer look at the volatility form the period after this structural break.
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9. After the structural break

The reason for this is that before the price adjustment on April, 2006 allowance trading
may be characterized as uncertain with heterogeneous expectations related to the EUA
price pattern. The release of the 2005 verified emissions gave industrials a hint about their
net long/shot positions. Since the end of 2007, the liquidity of the EU ETS has been
increasing, Chevallier and Sevi [2009].

Descriptive statistics for both contracts with the new datasets are found in appendix. The
2009 contract has a minimum value of -9.4346%, the average return is -0.039931%, and
a maximum of 11.366%. The 2010 contract contains a minimum value of -9.3014%, the
average return is -0.057864%, and a maximum of 11.354%. If we compare these results
we find them to be, as expected, almost equal. The standard deviation for the 2009
contract is 2.5222 and 2.5092 for the 2010 contract. The futures contracts have significant
autocorrelations and ARCH effects in the raw data. As earlier we will try to eliminate the
autocorrelation and find the best GARCH-models for both contracts. Since the Jarque-
Beras are high 145.13 (2009) and 163.78 (2010) we will use a Student’s t distribution.

9.1 Univariate GARCH-modeling

We will now run some univariate GARCH-models with the new dataset. In the light of
previous modeling (ref: Chapter 7) we choose to present the four best GARCH-models.

9.1.1 GARCH-modeling of ECX Futures Contract 2009

GARCH (1,1) AR (1) GARCH (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.056450 0.8755 0.3815 0.054079 0.7864 0.4318
C (V) 0.266940 2.300 0.0217 0.267762 2.321 0.0205
AR (1) 0.066983 1.935 0.0533
Alfa (1) 0.140572 3.872 0.0001 0.141551 3.955 0.0001
Beta (1) 0.827442 19.58 0.0000 0.825878 19.71 0.0000

Student (DF) 6.388634 5.056 0.0000 6.584866 4.862 0.0000

Table 9.1: GARCH (1,1) and AR(1) GARCH (1,1)
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9.1. Univariate GARCH-modeling

AR (1) GARCH (2,1) GJR (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.054863 0.7927 0.4281 0.024764 0.3695 0.7118
C (V) 0.207062 3.047 0.0024 0.255000 2.198 0.0282
AR (1) 0.071736 2.063 0.0394
Alfa (1) 0.089754 4.200 0.0000 0.083888 2.310 0.0211
Beta (1) 1.404807 8.994 0.0000 0.836604 18.03 0.0000
Beta (2) -0.520732 -3.551 0.0004

Gamma (1) 0.088476 2.073 0.0384
Student (DF) 6.875672 4.585 0.0000 6.700141 4.838 0.0000

Table 9.2: AR (1) GARCH (2,1) and GJR (1,1)

Test
Model Obs Parameters LL AIC JB

GARCH (1,1) 908 5 -2043.776 4.512723 58.865
AR (1) GARCH (1,1) 908 6 -2041.810 4.510594 59.068
AR (1) GARCH (2,1) 908 7 -2040.500 4.509911 58.430

GJR (1,1) 908 6 -2041.314 4.509502 49.524

Table 9.3: Test for GARCH models

To find the best model we use the same evaluation criteria as in Chapter 7. AR(1) GARCH
(1,1) was found to be the best model. The Jarque-Bera indicates that the residuals follows
a normal distribution better, compared to the earlier results. From the QQ plot in Figure
9.1 we can observe that the residuals are not totally normal distributed. The significant
P-values in Table 9.4 indicates some autocorrelation.

Q-Statistics of the 2009 contract
Lag Statistic P-value
Q( 5) 11.9681 0.0175903
Q( 10) 14.0239 0.1214782
Q( 20) 30.4034 0.0468835

Table 9.4: Q-Statistics of the 2009 contract
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9.1.2 GARCH-modeling of ECX Futures Contract 2010

GARCH (1,1) AR (1) GARCH (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.043502 0.6956 0.4869 0.041936 0.6344 0.5260
C (V) 0.272010 2.213 0.0272 0.273139 2.248 0.0248
AR (1) 0.057406 1.677 0.0940
Alfa (1) 0.138253 3.657 0.0003 0.139909 3.748 0.0002
Beta (1) 0.830011 18.46 0.0000 0.827767 18.63 0.0000

Student (DF) 5.641427 5.677 0.0000 5.796820 5.453 0.0000

Table 9.5: GARCH (1,1) and AR(1) GARCH (1,1)

AR (1) GARCH (2,1) GJR (1,1)
Coefficient t-value P-value Coefficient t-value P-value

C (M) 0.043295 0.6523 0.5144 0.018162 0.2795 0.7799
C (V) 0.210878 2.946 0.0033 0.265342 2.125 0.0338
AR (1) 0.060885 1.776 0.0760
Alfa (1) 0.091738 3.776 0.0002 0.089465 2.380 0.0175
Beta (1) 1.372364 7.027 0.0000 0.835909 17.02 0.0000
Beta (2) -0.490206 -2.704 0.0070

Gamma (1) 0.078227 1.765 0.0778
Student (DF) 6.010098 5.153 0.0000 5.848700 5.509 0.0000

Table 9.6: AR (1) GARCH (2,1) and GJR (1,1)

Test
Model Obs Parameters LL AIC JB

GARCH (1,1) 921 5 -2065.353 4.495881 77.873
AR (1) GARCH (1,1) 921 6 -2063.852 4.494794 77.906
AR (1) GARCH (2,1) 921 7 -2062.806 4.494692 83.018

GJR (1,1) 921 6 -2063.551 4.494140 65.179

Table 9.7: Test for GARCH models
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GARCH (1,1) is the best model for the 2010 contract. The other models have a slightly
lower AIC level. The AR-lag for the AR(1) GARCH (1,1) is not significant, and the gamma
parameter for the GJR is not significant either. Compared to the results in Chapter 7 we
observe lower Jarque-Bera. Q-statistics in Table 9.8 show significant autocorrelation.

Q-Statistics of 2010 contract
Lag Statistic P-value
Q( 5) 17.9396 0.0030231
Q( 10) 19.3637 0.0358793
Q( 20) 36.0353 0.0152347

Table 9.8: Q-Statistics of 2010 contract

9.2 Value at Risk

In this section Value at Risk is calculated and compared to the results with the results in
Chapter 8. A Monte Carlo simulation is also conducted and compared with the results
form the previous simulations.

Value at risk ECX Futures Contracts
ECX Futures Contract 2009 ECX Futures Contract 2010

Value at Risk 97.5% 4.89258 4.90619
Value at Risk 2.5% -5.47686 -5.64067
Conditional VaR 97.5% 6.43376 6.46766
Conditional VaR 2.5% -7.04483 -7.23793

Table 9.9: Value at Risk

From the figures on the next page the Value at Risk limits are calculated with a AR(1)
GARCH (1,1) model for the 2009 contract, and a GARCH (1,1) for the 2010 contract.
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(a) AR (1) GARCH (1,1) VaR 2009 (b) GARCH (1,1) VaR 2010

Figure 9.2: VaR models

9.2.1 Kupiec test

The Kupiec LR tests are presented in Table 9.10 and 9.11.

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.97500 0.97797 0.34292 0.55815 5.6705
0.02500 0.035242 3.4738 0.062349 -5.9519

Table 9.10: Short and long positions 2009

Kupiec LR test
Quantile Failure rate Kupiec LR P-value ESF1
0.97500 0.97937 0.76663 0.38126 5.6702
0.02500 0.039088 6.4179 0.011297 -5.9852

Table 9.11: Short and long positions 2010

The results from the Kupiec tests states that the null hypothesis are retained for both
short and long positions for the 2009 contract. For the 2010 contract the long position is
significant with a P-value of 0.011297, and the null hypothesis is rejected. Which means
that 3.9% is the empirical limit for the long position.
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9.3 Monte Carlo simulation

Monte Carlo Simulations
Contract 09 Contract 10 MCS Contract 09 MCS Contract 10

Min -9.4346 - 9.3014 -21.5408 -16.9826
Mean -0.039931 -0.057864 0.0575 0.0456
Max 11.366 11.354 21.7915 17.0083
Std.dev 2.5222 2.5092 2.8108 2.8228
Kurtosis 1.9497 2.0493 5.9070 6.81807
Skewness -0.092939 -0.13082 0.00401 -0.00734

Table 9.12: MCS ECX Futures Contracts

All our simulations have 1000 observations and 5000 simulations. If we compare the mini-
mum, maximum, mean and standard deviation with the descriptive statistics, we observe
the relations between the raw data and the simulated data.

Comparing Value at Risk
VaR 97,5% VaR 2,5% CVaR 97,5% CVaR 2,5%

Contract 09 4.89258 -5.47686 6.43376 -7.04483
Contract 10 4.90619 -5.64067 6.46766 -7.23793
MCS Contract 09 5.8518 -5.4694 8.2840 -7.8666
MCS Contract 10 5.8295 -5.4676 8.3834 -8.0018

Table 9.13: Comparing Value at Risk

In Table 9.13 we have compared the levels of Value at Risk. The new data shows a higher
VaR in short positions and about the same VaR in long positions. Since the deviations
between the results are not very different we conclude that AR(1) GARCH (1,1), and
GARCH (1,1) are good models for volatility.

Even though we did not manage to eliminate all autocorrelations, with the new datasets,
the Monte Carlo simulations indicates that AR(1) GARCH (1,1) is a good model for VaR
and volatility.
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9.3.1 Distributions

The following distributions are drawn form the Monte Carlo simulations we have computed
in Excel.

(a) Minimum returns 2009 (b) Maximim returns 2009

Figure 9.3: Distributions for minimum and maximum returns 2009

(a) Mean returns 2009 (b) Mean returns 2010

Figure 9.4: Distributions for average returns 2009 and 2010
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(a) Minimum returns 2010 (b) Maximim returns 2010

Figure 9.5: Distributions for minimum and maximum returns 2010

Above we have presented the distributions of minimum, maximum and average returns
for the new dataset. More distributions of other parameters are possible to find in the
appendix at the end of the thesis.
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Chapter 10

Multivariate modeling

Multivariate modeling framework leads to more relevant empirical models than working
with separate univariate models. From a financial point of view, it opens the door to bet-
ter decision tools in various areas, such as asset pricing, portfolio selection, option pricing,
hedging, and risk management, Laurent [2009].

We are going to model the dependence between the prices of carbon and oil, carbon and
coal, carbon and electricity and carbon and gas. With several time-series it is important
to model the dependence between these in a good way. The dependence can take different
shapes. Changes in the time-series can fluctuate symmetrically or correlate. The trends
in the time-series can move in the same way, also called co integration. Earlier values of
one time-series can explain the future value of another, also called causality. The most
obvious application of multivariate GARCH models is the study of the relations between
the volatilities and co-volatilities of several markets.

10.1 Data

The data under consideration are daily log-returns series of futures on electricity, coal, oil,
natural gas and carbon emission allowances. Since we will establish the joint behavior
of commodities , the analysis consists of monthly and yearly futures. In this section we
briefly discuss the specifics of each time series. The data analysis starts at the beginning
of 2006 and all the different returns are converted into Euro to easier compare it to the
CO2 returns.
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10.1.1 Electricity

Electricity has the unique feature that it is not storable. A second main feature is the
necessity for a transmission network, which prevents a global market. These characteris-
tics of electricity have strong implications on the trading products and their prices. The
non-storability of electricity causes high price movements on the spot market. In the for-
ward and futures market with delivery dates in the far future the price movements are
much smaller, because the availability of power and weather dependent demand are still
unknown. The time series of electricity prices are taken from the ICE-traded futures. The
futures prices are quoted in EUR/MWh. For the analysis of volatility and correlation, we
will use price series of monthly futures, Borger et al. [2007].

10.1.2 Coal

For some time now coal futures have been traded at several exchanges, among them the
ICE in London and the EEX. They offer trades in coal with different points of delivery. In
the following we have picked Rotterdam as an example. The futures prices are quoted in
US$/t, but we have converted it to EUR/t, Borger et al. [2007].

The coal contracts were introduced at the ICE in March 2006. This is the shortest series
of our data. We have chosen to start all of the series in 2006 to compare them to the same
period of time.

10.1.3 Natural Gas

Natural gas is one of the most important primary energy sources covering about 25% of
worldwide consumption. It is primarily used as a fuel for electricity generation, transporta-
tion and heating. The worldwide natural gas consumption has a higher growth rate then
oil consumption. With growing demand for primary energy sources, gas prices have risen
and large investments have been made, Borger et al. [2007].

The only exchange in Europe offering sufficient historical price data for futures on natural
gas is the ICE. Available products are monthly, quarterly and seasonal gas futures. Seasonal
contracts start delivery in October and April. Futures prices are quoted in GBP, we convert
all prices to EUR, Borger et al. [2007].

10.1.4 Oil

The crude oil market is the largest commodity market in the world. The most important
trading exchanges are New York, London and Singapore. Available products are monthly
futures contracts for at least the next 12 months quoted in US$/barrel, we have converted
it to EUR/barrel. Crude oil comes in a variety of grades, determined by it’s gravity and
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sulfur content. The world benchmark crude oil is the Brent crude form the North Sea. We
will use the Brent price in our analysis, Eydeland and Wolyniec [2003].

Crude oil needs to be refined in order to yield products that can be directly consumed.
The most popular refined product is gasoline, as well as heating oil and fuel oil used by
utilities.

10.1.5 CO2 emissions

Earlier in the thesis we have described the CO2 market. In this multivariate analysis we
will use the 2010 futures contract and compare it to the other commodities.

Figure 10.1: Prices for the different commodities

The figure shows the price development for the different commodities from 2006 until the
end of 2009.
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10.2 Results

10.2.1 QQ plots

There is a variety of procedures for testing for normality in our data. The most prominent
visual test is a QQ plot comparing quantiles of the empirical distribution with quantiles
from a normal distribution. In case of normality this plot should give a straight line. The
method can be applied to multivariate time series as well, since each linear combination of
the time series should be normal, in particular each time series itself, Borger et al. [2007].

Figure 10.2: QQ plot for the different commodities

Figure 10.2 shows the QQ plot of log-returns of gas, oil, coal, CO2 and electricity futures
contracts. The oil and CO2 contracts are the contracts with distribution closest to normal
distribution. This is also confirmed by the Jarque-Beras in the descriptive statistics at the
next page.
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10.2.2 Descriptive Statistics

Descriptive Statistics
Carbon Oil Gas EL Coal

Min -9.3014 -8.0471 -29.803 -26.961 -12.183
Mean -0.04241 0.040972 -0.043918 -0.030446 0.063194
Max 11.354 11.79 48.183 30.29 15.295
Std.dev 2.5278 2.0829 3.8469 2.9875 2.3306
Skewness -0.096949 0.19418 4.0541 1.2945 -0.35092
Excess kurtosis 2.0396 3.2892 52.276 30.575 5.2435
Jarque-Bera 149.37 390.34 99582 33503 995.85
Q (5) 24.9407 14.2878 1.81083 0.900264 28.7970
P-value 0.0001431 0.0138812 0.8746521 0.9702025 0.0000254
Q2(5) 185.883 155.994 0.120807 0.559426 140.939
P-value 0.0000000 0.0000000 0.9997415 0.9897855 0.0000000
Q (10) 33.5666 18.1235 4.40344 6.74460 33.2247
P-value 0.0002187 0.0529163 0.9273176 0.7493163 0.0002497
Q2(10) 312.717 328.876 0.322822 1.00401 226.158
P-value 0.0000000 0.0000000 0.9999992 0.9998247 0.0000000
ADF -12.5872 -12.5006 -12.5708 -13.2576 -12.2884

Table 10.1: Descriptive Statistics

Carbon and coal have negative skewness, which means higher possibility for large negative
values. Gas and Electricity have much higher Jarque-Beras then the rest, and does not
follow a normal distribution. We can observe significant autocorrelations in carbon, oil and
coal, which have the highest Q-value in both 5 and 10 lags. All of the five future contracts
are stationary according to the ADF-test.
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10.2.3 Volatility plots

Figure 10.3: Volatility plots for the different commodities

The volatility plots indicate large volatility clusters in coal, oil and carbon. Volatility
clusters occurs often when the dataset contains autocorrelation.
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10.2. Results

10.2.4 ACF and PACF plots

Figure 10.4: ACF and PACFplots for the different commodities

The ACF and PACF plots of log-returns indicate autocorrelation in oil, carbon and coal.
For coal and carbon an AR(1) lag may be reasonable to use in the GARCH model. From
the univariate analysis we used one AR-lag for CO2 and it will be reasonable to do this in
the multivariate analysis as well.

The next sections consist of two multivariate GARCH models, RiskMetrics and diagonal
BEKK. After a discussion with our tutor we found those models most relevant for this
thesis.
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10.3 Test of models

Test for MGARCH models
Model Derivatives Obs Parameters LL AIC JB(CO2) JB(Derivatives)
RiskMetrics (1,1) CO2/Oil 854 3 -3596.468 8.429668 134.62 8.9287
AR (1) RiskMetrics (1,1) CO2/Oil 854 5 -3593.087 8.426434 138.64 9.6810
Diagonal BEKK (1,1) CO2/Oil 854 10 -3623.014 8.508230 93.292 7.6879
AR (1) Diagonal BEKK (1,1) CO2/Oil 854 12 -3620.168 8.506248 91.328 8.1458
RiskMetrics (1,1) CO2/Gas 854 3 -3942.433 9.239890 169.93 82068
AR (1) RiskMetrics (1,1) CO2/Gas 854 5 -3937.835 9.233806 165.46 85455
Diagonal BEKK (1,1) CO2/Gas 854 10 -3842.544 9.022350 65.558 1.2322e+05
AR (1) Diagonal BEKK (1,1) CO2/Gas 854 12 -3836.637 9.013201 64.491 1.5113e+05
RiskMetrics (1,1) CO2/El 854 3 -3822.525 8.959075 189.02 33879
AR (1) RiskMetrics (1,1) CO2/El 854 5 -3821.814 8.962095 191.13 33510
Diagonal BEKK (1,1) CO2/El 854 10 -3745.148 8.794259 60.881 40263
AR (1) Diagonal BEKK (1,1) CO2/El 854 12 -3744.687 8.797861 60.441 40317
RiskMetrics (1,1) CO2/Coal 854 3 -3614.155 8.471089 123.93 303.27
AR (1) RiskMetrics (1,1) CO2/Coal 854 5 -3597.741 8.437332 118.71 422.20
Diagonal BEKK (1,1) CO2/Coal 854 10 -3597.814 8.449214 79.607 372.23
AR (1) Diagonal BEKK (1,1) CO2/Coal 854 12 -3637.292 8.546351 96.139 739.71

Table 10.2: Test for MGARCH models

Four different multivariate GARCH models have been tested to find the best bivariate
model. RiskMetrics (1,1) and diagonal BEKK (1,1) came out as the best models. For the
two AR (1) models, the AR lags were not significant (see appendix). Now a closer analysis
of RiskMetrics (1,1) and diagonal BEKK (1,1) will be presented.

10.3.1 RiskMetrics

RiskMetrics
Carbon Oil Carbon Gas Carbon EL Carbon Coal

Cst1 0.012623 0.011773 0.001283 0.023138
P-value 0.8681 0.8825 0.9868 0.7473
Cst2 0.109935 -0.069903 -0.000693 0.136427
P-value 0.0656 0.3203 0.9915 0.0159
Skewness -0.47845 -0.038072 -0.41849 -1.0197 -0.32715 -0.55119 -0.45978 0.29241
Excess kurtosis 1.6934 0.49510 2.0187 47.981 2.2100 30.837 1.6240 2.8602
Jarque-Bera 134.62 8.9287 169.93 82068 189.02 33879 123.93 303.27
Q (5) 14.1073 2.77992 10.5016 5.95495 10.2203 0.658196 17.7988 31.7833
P-value 0.0149418 0.7338711 0.0622082 0.3106268 0.0692281 0.9851839 0.0032095 0.0000066
Q2 (5) 26.6495 6.23237 30.3996 0.521803 26.6889 0.936347 27.2766 6.97354
P-value 0.0000667 0.2842603 0.0000123 0.9913032 0.0000656 0.9675347 0.0000504 0.2226157
Q (10) 16.3999 3.43471 15.3694 7.24575 14.2174 2.09075 21.2621 34.7445
P-value 0.0887431 0.9692690 0.1191628 0.7020591 0.1633058 0.9955961 0.0193384 0.0001380
Q2 (10) 31.8064 7.73086 39.4264 0.960862 31.1673 1.90645 31.9481 8.31438
P-value 0.0004313 0.6551077 0.0000214 0.9998567 0.0005505 0.9970081 0.0004085 0.5981585

Table 10.3: RiskMetrics

Table 10.3 contains the results form RiskMetrics. We have done a bivariate analysis with
carbon as the main y-variable in every estimation. First is carbon versus oil. The results
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10.3. Test of models

shows negative skewness in both contracts. Kurtosis is lower than 3, which indicates a
more normal distribution than in the descriptive statistics. The Jarque-Bera is still high
for carbon, but oil has a lower JB. This indicates a more normal distribution for the oil
contract. From the Q-statistics carbon has significant autocorrelations in lag 5 and lag 20.
There are no problems with autocorrelations for the oil contract.

(a) Covariance between carbon and oil (b) Correlation between carbon and oil

Figure 10.5: Covariance and correlation between carbon and oil

Covariance measures if two variables move linearly together. If the two variables are inde-
pendent form each other, their covariance is equal to zero. Positive covariance means that
the two variables tend to move in the same direction, while a negative covariance indicates
that they move in opposite directions, Jorion [2007].
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10. Multivariate modeling

Carbon and gas are also negatively skewed. The kurtosis is lower for the carbon contract
compared to descriptive statistics (Table 10.1), while the gas contract still contains high
kurtosis and Jarque-Bera.

(a) Covariance between carbon and gas (b) Correlation between carbon and gas

Figure 10.6: Covariance and correlation between carbon and gas

Carbon and electricity are negative skewed and again carbon has a kurtosis lower then 3.
Electricity contains high kurtosis and Jarque-Bera after the modeling. Lag 5 and lag 20
shows significant autocorrelation in the carbon data. There is significant autocorrelation
in electricity.

(a) Covariance between carbon and El (b) Correlation between carbon and El

Figure 10.7: Covariance and correlation between carbon and el
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10.3. Test of models

Finally we take a look at carbon and coal. Carbon is negatively skewed while the coal
contract is positively skewed. Both contracts have low kurtosis, but the Jarque-Bera is too
high to conclude normality in the data. There are big differences in the q-statistics. While
the other contracts had small significant autocorrelations, the carbon and coal contracts
have large significant autocorrelations all lags. This will obvious affect the result in further
analysis.

(a) Covariance between carbon and coal (b) Correlation between carbon and coal

Figure 10.8: Covariance and correlation between carbon and coal

The Figures 10.5-10.8 indicates that the conditional covariance between carbon and the
other commodities tends to bee positive, which indicates that they are not independent
form each other. The correlation between them is changing rapidly over time, but tends
to be positive.
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10.3.2 Diagonal BEKK

h11,t = a211 + b211�
2
1,t−1 + c211h11,t−1

h22,t = a211 + a222 + b222�
2
2,t−1 + c222h22,t−1

h12,t = h21,t = a11a22 + b11b22�1,t−1�2,t−1 + c11c22h12,t−1

h21,t = h12,t

Diagonal BEKK
Carbon Oil Carbon Gas Carbon EL Carbon Coal

Cst1 0.022914 0.016364 0.021946 0.038133
P-value 0.7492 0.8000 0.7351 0.5404
Cst2 0.100484 -0.142014 -0.021502 0.152759
P-value 0.0552 0.0197 0.7088 0.0029
C11 2.158080 0.905149 0.610230 0.444454
P-value 0.0000 0.0000 0.0213 0.0000
C12 0.304054 0.304054 2.812927 2.812927 2.056167 2.056167 0.049809 0.049809
P-value 0.0000 0.0000 0.0000 0.0000 0.0470 0.0470 0.1157 0.1157
C22 0.000000 0.000008 0.818416 0.171286
P-value 0.0000 0.9977 0.7111 0.0011
b1.11 0.000000 0.896506 0.929020 0.925605
P-value 1.0000 0.0000 0.0000 0.0000
b1.22 -0.943721 -0.078487 0.397326 0.961134
P-value 0.0000 0.6354 0.1867 0.0000
a1.11 0.509712 0.443019 0.370016 0.350194
P-value 0.0000 0.0000 0.0000 0.0000
a1.22 0.298979 0.257495 0.124496 0.269391
P-value 0.0000 0.6793 0.5022 0.0000
Skewness -0.033343 0.078302 -0.34250 4.2363 -0.34890 1.3711 -0.42314 0.30189
Excess kurtosis 1.6178 0.43764 1.1718 58.232 1.1063 33.526 1.2333 3.1775
Jarque-Bera 93.292 7.6879 65.558 1.2322e+05 60.881 40263 79.607 372.23
Q (5) 18.4786 4.48175 12.3298 1.22349 10.2145 1.04833 16.5404 30.1559
P-value 0.0024027 0.4823283 0.0305375 0.9426036 0.0693808 0.9585741 0.0054591 0.0000137
Q2 (5) 43.4172 3.63747 10.6375 0.212003 12.1008 0.572925 10.2796 7.78250
P-value 0.0000000 0.6026966 0.0590600 0.9989792 0.0334325 0.9892093 0.0676889 0.1686369
Q (10) 25.6268 6.34892 15.7154 4.03107 14.2962 5.74311 20.4564 32.7677
P-value 0.0042759 0.7851467 0.1080753 0.9459343 0.1599047 0.8363648 0.0252199 0.0002980
Q2 (10) 87.0259 11.1564 14.4478 0.415939 16.1720 1.03630 14.4947 9.31240
P-value 0.0000000 0.3454639 0.1535301 0.9999973 0.0948126 0.9997973 0.1515982 0.5027349

Table 10.4: Diagonal BEKK

From Table 10.4 we can observe negative b1.22 values for oil and gas. This may cause more
unreliable results in the following analysis.
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10.3. Test of models

(a) Covariance between carbon and oil (b) Correlation between carbon and oil

Figure 10.9: Covariance and correlation between carbon and oil

(a) Covariance between carbon and gas (b) Correlation between carbon and gas

Figure 10.10: Covariance and correlation between carbon and gas

We can observe high fluctuations in both covariance and correlation for carbon/oil and
carbon/gas. The reason for this is the negative b1.22 values in the diagonal BEKK model.
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10. Multivariate modeling

(a) Covariance between carbon and El (b) Correlation between carbon and El

Figure 10.11: Covariance and correlation between carbon and el

(a) Covariance between carbon and coal (b) Correlation between carbon and coal

Figure 10.12: Covariance and correlation between carbon and coal

The Figures 10.9-10.12 from the diagonal BEKK indicates that the conditional covariance
between carbon and the other commodities tends to be positive. Covariance form the
diagonal BEKK model looks more unstable compared to the results form the RiskMetrics
model. The correlation between the them is changing rapidly over time, but tends to be
positive.

We compare the modeling for RiskMetrics and diagonal BEKK to find the best estimation
of volatility. The RiskMetrics model gave the best results for CO2/oil, and CO2/electricity,
while the diagonal BEKK best modeled the CO2/gas, and CO2/coal contracts. Based
on these results we want to test the Value at Risk for CO2/oil, and CO2/gas with a
RiskMetrics, and CO2/electricity, CO2/coal with diagonal BEKK.
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10.4. Portfolio Value at Risk

10.4 Portfolio Value at Risk

”A portfolio can be characterized by positions on a certain number of constituent assets.
If the positions are fixed over the selected horizon, the portfolio rate of return is a linear
combination of the returns on underlying assets, where the weights are given by the relative
amounts invested at the beginning of the period,” Jorion [2007].

Previously we have looked at univariate Value at Risk for CO2 contracts. In this section
we will focus on CO2 contracts in a portfolio with other energy commodities. The rea-
son for this is that many market participants use CO2 contracts as a hedge in portfolios.
Therefore, it will be interesting to look at Value at Risk for CO2 contracts compared to
other energy contracts.

The portfolio’s calculations are presented on the CD. To limit the thesis, portfolios with
two commodities are made, with 50% allocation between the commodities. Log-returns,
squared log-returns, conditional variances, and conditional correlation are all included to
execute the variance-covariance matrix multiplications.

Predicted variance and realized variance are calculated, and multiplied with 0,5 to get 50%
in CO2 and commodity (x). This section contains of four different portfolios; CO2 and oil,
CO2 and gas, CO2 and electricity, and CO2 and coal.

For many portfolios, the assumption of normally distributed returns does not apply. Fat
tailed distributions are rule rather than exception for financial market factors and the
inclusion of non-linear derivative instruments in the portfolio gives rise to distributional
asymmetries. Whenever these deviations from normality are expected to cause serious bi-
ases in VaR calculations, one has to resort either to alternative distribution specifications
(like the t-distribution) or to historical and Monte Carlo simulation methods, Hallerbach
[1999]. A value at risk measure with student’s t distribution is complex because of the
uncertainty of calculation with the degrees of freedom. We have tried to translate the
variances to a VaR measure with normal distribution. We are aware of the problem with
these transformations.
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10. Multivariate modeling

The results are presented, as earlier, with figures consisting of portfolio’s returns and VaR
limits (97.5%, 2.5%). Kupiec tests are used to test the VaR limits.

(a) VaR carbon and oil (b) Var carbon and el

Figure 10.13: VaR RiskMetrics

(a) VaR carbon and coal (b) Var carbon and gas

Figure 10.14: VaR Diagonal BEKK
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Kupiec LR test
Contracts Quantile Failure rate Kupiec LRT P-value
CO2/Oil 0.975 0.9742 0.0200 0.8872
CO2/Oil 0.025 0.0351 3.1989 0.0736
CO2/Gas 0.975 0.9777 0.2753 0.5997
CO2/Gas 0.025 0.0234 0.0894 0.7649
CO2/El 0.975 0.9718 0.3245 0.5688
CO2/El 0.025 0.0328 1.9378 0.1639
CO2/Coal 0.975 0.9765 0.0894 0.1115
CO2/Coal 0.025 0.0340 2.5326 0.7649

Table 10.5: Kupiec test

The Kupiec test has significant P-values for all positions. The null hypothesis is retained,
which means that the log-returns lies within a two tailed 95% confidence interval. This
indicates that RiskMetrics and diagonal BEKK are good models for modeling Value at
Risk for their respective portfolios.
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Chapter 11

Conclusion

This thesis presented an understanding of ECX CO2 futures contracts returns’ volatility,
and value at risk for these derivatives. The thesis is relevant for the future development
of the carbon markets. This is a new market, so predictable models for the volatility in
returns and value at risk are essential to effectively be able to get a better overview.

Through various empirical statistical analyses we have been able to make conclusions for
modeling univariate GARCH, multivariate GARCH, Monte Carlo simulations, and value
at risk for the 2009 CO2 futures contract and the 2010 CO2 futures contract.

Prices and returns fluctuations for the CO2 futures derivatives show very similar charac-
teristics for the period they have been traded. The datasets are stationary and significant
autocorrelations are found, as well as volatility clusters and non normal distributions.
Monthly variations show that March is a special month compared with the others.

From the univariate modeling, we found the AR (1) GARCH (1,1) to be the best model for
both contracts according to our evaluation criteria. The model contains most information,
has most significant parameters, and reduce autocorrelations in the dataset. We conclude
that value at risk, based on the Kupiec test, gives us a good indication of the cutoff line
and the conditional value at risk. Results from Monte Carlo simulations confirm our con-
clusions to be trustworthy, since those results do not contain major differences from the
GARCH results. We tried to eliminate all autocorrelations with dummy variables, but the
new results were not significant.

The price adjustments that took place in April 2006, due to the release of the verified
emissions, led to extreme volatility movements in returns. We did a new research with
data after this structural break, to check if the results were better after the changes. The
new results found the GARCH (1,1) to be the best model for the 2010 contract, and, still
the AR (1) GARCH (1,1) as the best model for the 2009 contract. The results reduced, but
did not eliminate, the autocorrelations as we hoped. Value at risk is well predicted in short
positions, but it contains more uncertainty in long positions. Monte Carlo simulations give
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grounds for concluding that AR (1) GARCH (1,1) and GARCH (1,1) are good models for
the returns’ volatility and value at risk.

We have tested CO2 in bivariate portfolios with oil, gas, electricity, and coal. The datasets
from all derivatives are stationary and contain significant autocorrelations. RiskMetrics
and diagonal BEKK are used with different specifications, and we found the RiskMetrics
(1,1) to be the best model for CO2/oil and CO2/electricity. The diagonal BEKK model was
the best model for CO2/gas and CO2/coal. The value at risk has been studied in portfolios
with allocation of 50% in CO2 futures and 50% in the other commodities. Results from
covariances and correlations between the different contracts have been used to calculate
the value at risk. Our findings show that the null hypotheses are retained and that both
models gives us a good measure of value at risk for the futures contracts.
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Critique and further research

The results form our modeling have proven it difficult to find a perfect GARCH model
with all parameters significant and no autocorrelation.
In this thesis we looked exclusively at European Climate Exchange futures. It may be of
interest to compare the same contracts from various exchanges, to see if arbitrage opportu-
nities can arise. Out of sample forecasting and tick-by-tick data are suggestions for further
work in the univariate analysis.

It also may be of interest to test all the different energy derivatives in the same multivariate
GARCH model. It will be natural to test various multivariate GARCH models, such as
the CCC (Constant Conditional Correlation) model and the DCC (Dynamic Conditional
Correlation) model, to better describe the correlations between the derivatives.

Our portfolios are only bivariate portfolios with CO2 futures as the common feature. For
further work it will be interesting to look at portfolios existing of (1) several energy futures
contracts, for example 20% in each of our contracts (CO2, oil, gas, electricity, and coal),
and (2) CO2 contracts versus other assets such as stocks, bonds and currency.
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******************************
 ** G@RCH( 3) SPECIFICATIONS **
 ******************************
Dependent variable : Logreturns_09
Mean Equation : ARMA (1, 0) model.
1 regressor(s) in the conditional mean.
Variance Equation : GARCH (1, 1) model.
No regressor in the conditional variance
Student distribution, with 4.62265 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -2778.51
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst(M)               0.068359   0.067367    1.015  0.3104
Monday (M)           0.272080    0.14612    1.862  0.0628
AR(1)                0.081051   0.029752    2.724  0.0065
Cst(V)               0.426469    0.10945    3.896  0.0001
ARCH(Alpha1)         0.166036   0.033372    4.975  0.0000
GARCH(Beta1)         0.792834   0.026797    29.59  0.0000
Student(DF)          4.622645    0.67219    6.877  0.0000

No. Observations :      1211  No. Parameters  :         7
Mean (Y)         :  -0.01412  Variance (Y)    :   8.06079
Skewness (Y)     :  -0.89729  Kurtosis (Y)    :  14.65479
Log Likelihood   : -2778.512  Alpha[1]+Beta[1]:   0.95887

TESTS :
---------
Information Criteria (to be minimized)
Akaike          4.600349  Shibata         4.600283
Schwarz         4.629824  Hannan-Quinn    4.611447
---------------

Normality Test

                   Statistic       t-Test      P-Value
Skewness            -0.88193       12.545   4.2426e-36
Excess Kurtosis       5.9972       42.688       0.0000
Jarque-Bera           1971.8         .NaN       0.0000
---------------

Q-Statistics on Standardized Residuals
  --> P-values adjusted by 1 degree(s) of freedom 
  Q(  5) =  17.9425   [0.0012665]**
  Q( 10) =  20.2112   [0.0166528]* 
  Q( 20) =  36.7810   [0.0084504]**
  Q( 50) =  61.6668   [0.1057453]  
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------
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Q-Statistics on Squared Standardized Residuals
  --> P-values adjusted by 2 degree(s) of freedom 
  Q(  5) =  3.23815   [0.3563436]  
  Q( 10) =  10.0134   [0.2640862]  
  Q( 20) =  18.9430   [0.3953422]  
  Q( 50) =  51.4743   [0.3394023]  
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------
ARCH 1-2 test:    F(2,1204) =  0.25619 [0.7740]  
ARCH 1-5 test:    F(5,1198) =  0.64241 [0.6674]  
ARCH 1-10 test:   F(10,1188)=   1.0227 [0.4216] 
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 ******************************
 ** G@RCH(11) SPECIFICATIONS **
 ******************************
Dependent variable : Log_returns10_%
Mean Equation : ARMA (1, 0) model.
1 regressor(s) in the conditional mean.
Variance Equation : GARCH (1, 1) model.
No regressor in the conditional variance
Student distribution, with 4.36899 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -2799.38
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst(M)               0.063205   0.065618   0.9632  0.3356
Monday (M)           0.237265    0.14325    1.656  0.0979
AR(1)                0.071416   0.029265    2.440  0.0148
Cst(V)               0.435745    0.11148    3.909  0.0001
ARCH(Alpha1)         0.164655   0.033437    4.924  0.0000
GARCH(Beta1)         0.794363   0.027080    29.33  0.0000
Student(DF)          4.368985    0.59276    7.371  0.0000

No. Observations :      1224  No. Parameters  :         7
Mean (Y)         :  -0.02540  Variance (Y)    :   7.93840
Skewness (Y)     :  -0.87110  Kurtosis (Y)    :  14.05134
Log Likelihood   : -2799.377  Alpha[1]+Beta[1]:   0.95902

TESTS :
---------
Information Criteria (to be minimized)
Akaike          4.585584  Shibata         4.585519
Schwarz         4.614807  Hannan-Quinn    4.596581
---------------

Normality Test

                   Statistic       t-Test      P-Value
Skewness            -0.89324       12.774   2.2994e-37
Excess Kurtosis       6.0531       43.316       0.0000
Jarque-Bera           2031.4         .NaN       0.0000
---------------

Q-Statistics on Standardized Residuals
  --> P-values adjusted by 1 degree(s) of freedom 
  Q(  5) =  18.4852   [0.0009917]**
  Q( 10) =  20.0161   [0.0178130]* 
  Q( 20) =  36.3624   [0.0095243]**
  Q( 50) =  58.2016   [0.1727426]  
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
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---------------

Q-Statistics on Squared Standardized Residuals
  --> P-values adjusted by 2 degree(s) of freedom 
  Q(  5) =  2.34338   [0.5042620]  
  Q( 10) =  8.42544   [0.3930519]  
  Q( 20) =  16.7674   [0.5391469]  
  Q( 50) =  41.3559   [0.7399749]  
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------
ARCH 1-2 test:    F(2,1217) = 0.074033 [0.9286]  
ARCH 1-5 test:    F(5,1211) =  0.46459 [0.8028]  
ARCH 1-10 test:   F(10,1201)=  0.84199 [0.5880] 
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TESTS :
=======

---- Database information ----
Sample:    2006-06-22 - 2009-12-14 (908 observations)
Frequency: 1
Variables: 4

Variable        #obs  #miss    type          min         mean          max      std.dev
Date             908      0    date       2006-06-22            2009-12-14
Logreturns09     908      0  double      -9.4346    -0.039931       11.366       2.5222
Constant         908      0  double            1            1            1            0
Trend            908      0  double            1        454.5          908       262.12

Series #1/1: Logreturns09
---------
Normality Test

                   Statistic       t-Test      P-Value
Skewness           -0.092939       1.1452      0.25212
Excess Kurtosis       1.9497       12.026   2.6081e-33
Jarque-Bera           145.13         .NaN   3.0563e-32
---------------
ARCH 1-2 test:    F(2,903)  =   37.767 [0.0000]**
ARCH 1-5 test:    F(5,897)  =   25.650 [0.0000]**
ARCH 1-10 test:   F(10,887) =   17.796 [0.0000]**
---------------
Q-Statistics on Raw data
  Q(  5) =  24.9281   [0.0001439]**
  Q( 10) =  32.2308   [0.0003665]**
  Q( 20) =  57.5264   [0.0000171]**
  Q( 50) =  82.8729   [0.0023859]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------
Q-Statistics on Squared data
  Q(  5) =  187.157   [0.0000000]**
  Q( 10) =  321.848   [0.0000000]**
  Q( 20) =  418.963   [0.0000000]**
  Q( 50) =  531.179   [0.0000000]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------------------------------------

ADF Test with 2 lags
No intercept and no time trend
H0: Logreturns09 is I(1)

ADF Statistics: -17.0852

Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)
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        1%        5%       10%
  -2.56572  -1.94093  -1.61663

OLS Results
                  Coefficient    t-value
y_1                 -0.945788    -17.085
dy_1                 0.063136     1.4251
dy_2                -0.053055    -1.5963
RSS               5627.080871
OBS                905.000000

Information Criteria (to be minimized)
Akaike          4.671924  Shibata         4.671902
Schwarz         4.687861  Hannan-Quinn    4.678010
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TESTS :
=======

---- Database information ----
Sample:    2006-06-22 - 2009-12-31 (921 observations)
Frequency: 1
Variables: 4

Variable        #obs  #miss    type          min         mean          max      std.dev
Date             921      0    date       2006-06-22            2009-12-31
Logreturns10     921      0  double      -9.3014    -0.057864       11.354       2.5092
Constant         921      0  double            1            1            1            0
Trend            921      0  double            1          461          921       265.87

Series #1/1: Logreturns10
---------
Normality Test

                   Statistic       t-Test      P-Value
Skewness            -0.13082       1.6235      0.10449
Excess Kurtosis       2.0493       12.729   4.0813e-37
Jarque-Bera           163.78         .NaN   2.7252e-36
---------------
ARCH 1-2 test:    F(2,916)  =   36.003 [0.0000]**
ARCH 1-5 test:    F(5,910)  =   24.437 [0.0000]**
ARCH 1-10 test:   F(10,900) =   16.273 [0.0000]**
---------------
Q-Statistics on Raw data
  Q(  5) =  23.6848   [0.0002496]**
  Q( 10) =  30.0221   [0.0008495]**
  Q( 20) =  57.3067   [0.0000184]**
  Q( 50) =  80.3205   [0.0041835]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------
Q-Statistics on Squared data
  Q(  5) =  183.718   [0.0000000]**
  Q( 10) =  308.078   [0.0000000]**
  Q( 20) =  407.607   [0.0000000]**
  Q( 50) =  517.542   [0.0000000]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
---------------------------------------------

ADF Test with 2 lags
No intercept and no time trend
H0: Logreturns10 is I(1)

ADF Statistics: -17.1599

Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)

        1%        5%       10%
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  -2.56572  -1.94093  -1.61663

OLS Results
                  Coefficient    t-value
y_1                 -0.947972    -17.160
dy_1                 0.054424     1.2306
dy_2                -0.055283    -1.6757
RSS               5664.531488
OBS                918.000000

Information Criteria (to be minimized)
Akaike          4.664200  Shibata         4.664179
Schwarz         4.679959  Hannan-Quinn    4.670215
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  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnsoil

 *******************************
 ** MG@RCH(13) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : Diagonal BEKK (1, 1).
No regressor in the conditional variance
Multivariate Student distribution, with 6.45124 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3620.17
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.019664   0.075524   0.2604  0.7946
Cst2                 0.101887   0.053521    1.904  0.0573
AR_1-1               0.062695   0.038040    1.648  0.0997
AR_1-2               0.030385   0.035380   0.8588  0.3907
C_11                 2.162439   0.094391    22.91  0.0000
C_12                 0.302529   0.058970    5.130  0.0000
C_22                 0.000002 1.2977e-06    1.481  0.1389
b_1.11               0.000000    0.17284     0.00  1.0000
b_1.22              -0.944114   0.011290   -83.63  0.0000
a_1.11               0.505281   0.067899    7.442  0.0000
a_1.22               0.298676   0.029335    10.18  0.0000
df                   6.451235    0.97303    6.630  0.0000
No. Observations :       854  No. Parameters  :        12
No. Series       :         2  Log Likelihood  : -3620.168
Elapsed Time : 4.82 seconds (or 0.0803333 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.506248  Shibata         8.505860
Schwarz         8.572992  Hannan-Quinn    8.531809
---------------

Individual Normality Tests
--------------------------
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 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness           -0.025837      0.30878      0.75749
Excess Kurtosis       1.6012       9.5795   9.7538e-22
Jarque-Bera           91.328         .NaN   1.4732e-20

 Series: Logreturnsoil

                   Statistic       t-Test      P-Value
Skewness            0.079877      0.95463      0.33976
Excess Kurtosis      0.45100       2.6981    0.0069727
Jarque-Bera           8.1458         .NaN     0.017028

Vector Normality test:   Chi^2(4)  =   71.562 [0.0000]**

Starting estimation process...

  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnsgas

 *******************************
 ** MG@RCH(14) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : Diagonal BEKK (1, 1).
No regressor in the conditional variance
Multivariate Student distribution, with 2.87796 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3836.64
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.016386   0.067175   0.2439  0.8073
Cst2                -0.137474   0.064325   -2.137  0.0329
AR_1-1               0.045203   0.035718    1.266  0.2060
AR_1-2               0.091877   0.037683    2.438  0.0150
C_11                 0.870017    0.14105    6.168  0.0000
C_12                 2.687970    0.25221    10.66  0.0000
C_22                 0.004092   0.032837   0.1246  0.9009
b_1.11               0.904168   0.020284    44.58  0.0000
b_1.22              -0.027097   0.048802  -0.5552  0.5789
a_1.11               0.427166   0.057948    7.372  0.0000
a_1.22               0.443043    0.15724    2.818  0.0050
df                   2.877960    0.23517    12.24  0.0000
No. Observations :       854  No. Parameters  :        12
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No. Series       :         2  Log Likelihood  : -3836.637
Elapsed Time : 7.63 seconds (or 0.127167 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          9.013201  Shibata         9.012814
Schwarz         9.079945  Hannan-Quinn    9.038762
---------------

Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.33098       3.9557   7.6314e-05
Excess Kurtosis       1.1723       7.0131   2.3304e-12
Jarque-Bera           64.491         .NaN   9.9066e-15

 Series: Logreturnsgas

                   Statistic       t-Test      P-Value
Skewness              4.5220       54.044       0.0000
Excess Kurtosis       64.540       386.11       0.0000
Jarque-Bera       1.5113e+05         .NaN       0.0000

Vector Normality test:   Chi^2(4)  =   640.37 [0.0000]**

Starting estimation process...

  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: LogreturnsEL

 *******************************
 ** MG@RCH(15) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : Diagonal BEKK (1, 1).
No regressor in the conditional variance
Multivariate Student distribution, with 3.22886 degrees of freedom.

Strong convergence using numerical derivatives
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Log-likelihood = -3744.69
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.023893   0.066316   0.3603  0.7187
Cst2                -0.021254   0.058338  -0.3643  0.7157
AR_1-1               0.021718   0.034677   0.6263  0.5313
AR_1-2               0.006012   0.024388   0.2465  0.8053
C_11                 0.614247    0.26877    2.285  0.0225
C_12                 2.010525     1.0275    1.957  0.0507
C_22                 0.907042     1.9221   0.4719  0.6371
b_1.11               0.928446   0.040555    22.89  0.0000
b_1.22               0.403203    0.30289    1.331  0.1835
a_1.11               0.371455   0.077327    4.804  0.0000
a_1.22               0.129663    0.18768   0.6909  0.4898
df                   3.228860    0.28893    11.18  0.0000
No. Observations :       854  No. Parameters  :        12
No. Series       :         2  Log Likelihood  : -3744.687
Elapsed Time : 6.17 seconds (or 0.102833 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.797861  Shibata         8.797474
Schwarz         8.864605  Hannan-Quinn    8.823422
---------------

Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.34772       4.1557   3.2425e-05
Excess Kurtosis       1.1022       6.5942   4.2748e-11
Jarque-Bera           60.441         .NaN   7.5059e-14

 Series: LogreturnsEL

                   Statistic       t-Test      P-Value
Skewness              1.3718       16.394   2.0938e-60
Excess Kurtosis       33.548       200.71       0.0000
Jarque-Bera           40317.         .NaN       0.0000

Vector Normality test:   Chi^2(4)  =   2606.6 [0.0000]**

Starting estimation process...
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  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnscoal

 *******************************
 ** MG@RCH(16) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : Diagonal BEKK (1, 1).
No regressor in the conditional variance
Multivariate Student distribution, with 5.11378 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3637.29
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.045087   0.073306   0.6151  0.5387
Cst2                 0.155094   0.060010    2.584  0.0099
AR_1-1               0.053829   0.036855    1.461  0.1445
AR_1-2               0.196039   0.035785    5.478  0.0000
C_11                 2.250507    0.10302    21.85  0.0000
C_12                 0.314017   0.084878    3.700  0.0002
C_22                 0.000000     0.0000    +.Inf  0.0000
b_1.11               0.000000    0.32245     0.00  1.0000
b_1.22              -0.934682   0.021887   -42.70  0.0000
a_1.11               0.470922   0.070684    6.662  0.0000
a_1.22               0.330513   0.055566    5.948  0.0000
df                   5.113782    0.66290    7.714  0.0000
No. Observations :       854  No. Parameters  :        12
No. Series       :         2  Log Likelihood  : -3637.292
Elapsed Time : 4.27 seconds (or 0.0711667 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.546351  Shibata         8.545963
Schwarz         8.613095  Hannan-Quinn    8.571912
---------------

Individual Normality Tests
--------------------------
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 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness           -0.019929      0.23818      0.81174
Excess Kurtosis       1.6432       9.8307   8.3011e-23
Jarque-Bera           96.139         .NaN   1.3297e-21

 Series: Logreturnscoal

                   Statistic       t-Test      P-Value
Skewness             0.43979       5.2560   1.4718e-07
Excess Kurtosis       4.4738       26.765  8.3488e-158
Jarque-Bera           739.71         .NaN  2.3616e-161

Vector Normality test:   Chi^2(4)  =   341.45 [0.0000]**
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 *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnsoil

 *******************************
 ** MG@RCH( 5) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : RiskMetrics with lambda = 0.94.
No regressor in the conditional variance
Multivariate Student distribution, with 9.14087 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3593.09
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.013857   0.081662   0.1697  0.8653
Cst2                 0.111978   0.060453    1.852  0.0643
AR_1-1               0.070711   0.039130    1.807  0.0711
AR_1-2               0.017578   0.039553   0.4444  0.6569
df                   9.140871     1.4627    6.249  0.0000
No. Observations :       854  No. Parameters  :         5
No. Series       :         2  Log Likelihood  : -3593.087
Elapsed Time : 0.63 seconds (or 0.0105 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.426434  Shibata         8.426366
Schwarz         8.454244  Hannan-Quinn    8.437084
---------------

Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.47829       5.7161   1.0899e-08
Excess Kurtosis       1.7266       10.330   5.1733e-25
Jarque-Bera           138.64         .NaN   7.8377e-31

 Series: Logreturnsoil
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                   Statistic       t-Test      P-Value
Skewness           -0.041719      0.49860      0.61806
Excess Kurtosis      0.51488       3.0803    0.0020678
Jarque-Bera           9.6810         .NaN    0.0079030

Vector Normality test:   Chi^2(4)  =   68.017 [0.0000]**

Starting estimation process...

  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnsgas

 *******************************
 ** MG@RCH( 6) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : RiskMetrics with lambda = 0.94.
No regressor in the conditional variance
Multivariate Student distribution, with 3.57785 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3937.84
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.018519   0.082109   0.2255  0.8216
Cst2                -0.064131   0.075431  -0.8502  0.3955
AR_1-1               0.027674   0.042642   0.6490  0.5165
AR_1-2               0.075520   0.027969    2.700  0.0071
df                   3.577856    0.17838    20.06  0.0000
No. Observations :       854  No. Parameters  :         5
No. Series       :         2  Log Likelihood  : -3937.835
Elapsed Time : 0.58 seconds (or 0.00966667 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          9.233806  Shibata         9.233738
Schwarz         9.261616  Hannan-Quinn    9.244456
---------------

13.0. Appendix

117



Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.41752       4.9899   6.0406e-07
Excess Kurtosis       1.9881       11.894   1.2734e-32
Jarque-Bera           165.46         .NaN   1.1799e-36

 Series: Logreturnsgas

                   Statistic       t-Test      P-Value
Skewness             -1.0894       13.020   9.4548e-39
Excess Kurtosis       48.957       292.89       0.0000
Jarque-Bera           85455.         .NaN       0.0000

Vector Normality test:   Chi^2(4)  =   4734.9 [0.0000]**

Starting estimation process...

  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: LogreturnsEL

 *******************************
 ** MG@RCH( 7) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : RiskMetrics with lambda = 0.94.
No regressor in the conditional variance
Multivariate Student distribution, with 3.70946 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3821.81
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.002742   0.080207  0.03419  0.9727
Cst2                -0.001440   0.065660 -0.02193  0.9825
AR_1-1               0.032139   0.040708   0.7895  0.4300
AR_1-2               0.000571   0.026037  0.02193  0.9825
df                   3.709469    0.18889    19.64  0.0000
No. Observations :       854  No. Parameters  :         5
No. Series       :         2  Log Likelihood  : -3821.814
Elapsed Time : 0.53 seconds (or 0.00883333 minutes).

TESTS:
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------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.962095  Shibata         8.962027
Schwarz         8.989905  Hannan-Quinn    8.972745
---------------

Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.33132       3.9597   7.5042e-05
Excess Kurtosis       2.2209       13.286   2.7757e-40
Jarque-Bera           191.13         .NaN   3.1410e-42

 Series: LogreturnsEL

                   Statistic       t-Test      P-Value
Skewness            -0.53054       6.3406   2.2887e-10
Excess Kurtosis       30.669       183.48       0.0000
Jarque-Bera           33510.         .NaN       0.0000

Vector Normality test:   Chi^2(4)  =   3096.4 [0.0000]**

Starting estimation process...

  *************
 ** SERIES  **
*************
#1: LogreturnsCO2
#2: Logreturnscoal

 *******************************
 ** MG@RCH( 8) SPECIFICATIONS **
 *******************************
Conditional Mean : ARMA (1, 0) model.
No regressor in the conditional mean.
Conditional Variance : RiskMetrics with lambda = 0.94.
No regressor in the conditional variance
Multivariate Student distribution, with 6.75445 degrees of freedom.

Strong convergence using numerical derivatives
Log-likelihood = -3597.74
Please wait : Computing the Std Errors ...

 Robust Standard Errors (Sandwich formula)
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                  Coefficient  Std.Error  t-value  t-prob
Cst1                 0.018470   0.075121   0.2459  0.8058
Cst2                 0.137113   0.067653    2.027  0.0430
AR_1-1               0.050040   0.039620    1.263  0.2069
AR_1-2               0.182507   0.038539    4.736  0.0000
df                   6.754456    0.78371    8.619  0.0000
No. Observations :       854  No. Parameters  :         5
No. Series       :         2  Log Likelihood  : -3597.741
Elapsed Time : 0.58 seconds (or 0.00966667 minutes).

TESTS:
------------

  ***********
 ** TESTS **
***********
Information Criteria (to be minimized)
Akaike          8.437332  Shibata         8.437264
Schwarz         8.465142  Hannan-Quinn    8.447982
---------------

Individual Normality Tests
--------------------------

 Series: LogreturnsCO2

                   Statistic       t-Test      P-Value
Skewness            -0.44661       5.3376   9.4203e-08
Excess Kurtosis       1.5932       9.5315   1.5497e-21
Jarque-Bera           118.71         .NaN   1.6668e-26

 Series: Logreturnscoal

                   Statistic       t-Test      P-Value
Skewness             0.36478       4.3595   1.3033e-05
Excess Kurtosis       3.3664       20.140   3.2919e-90
Jarque-Bera           422.20         .NaN   2.0870e-92

Vector Normality test:   Chi^2(4)  =   233.41 [0.0000]**
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