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Preface

Intrusion Detection Systems (IDSs) are an important component of security measures pro-
tecting computer systems and networks from potential abuse. It has been more than 30
years since John Anderson published one of the earliest papers on IDSs in the Computer
Security Threat Monitoring and Surveillance in 1980. Since then many different efficient
approaches for IDSs have been proposed and implemented in practice. However, the re-
search on intrusion detection is still an active field and attracts attention of many scientists
because of its challenges and the IDSs’ necessity for our daily life when using Internet.

Nowadays, Intrusion Detection Systems are facing a new challenge in dealing with
big network data and have to operate in changing and adversarial network environments
with diverse protocols, services, applications and so on. Existing approaches, such as the
manual method using expert knowledge, will be inappropriate for IDSs. Machine learning,
which is a field of study that gives computers the ability to learn without being explicitly
programmed, is becoming more and more important for solving these challenges. This is
because of the efficiency and effectiveness of the automatic learning algorithms, especially
when the amount of network data is increasing rapidly. However, one of the important
research questions before machine learning can be applied for IDSs in practice is about the
reliability of detection results provided by automatic learning algorithms. So far previous
research on intrusion detection have not studied this question well.

This disseratation aims to develop new reliable machine learning algorithms including
a new reliable feature-selection measure, a new reliable ensemble-feature-selection frame-
work, a general Lp-norm support vector machine and an optimal K-means clustering al-
gorithm. In addition, this disseratation applies the new proposed algorithms in build-
ing various reliable intrusion detection systems, such as Web application firewalls (WAFs),
network-based intrusion detection systems, botnet-malware detection systems, host-based
intrusion detection systems and testing of WAFs.

The experiments and the algorithm designs were mainly conducted at Norwegian In-
formation Security Laboratory, Gjøvik University College. Several results were obtained
during long-term cooperation with the Information Security Institute (IFA) at Spanish Na-
tional Research Council (CSIC) in Spain, with the Department of Computer Science at
Universidad Carlos III (UC3M) in Spain, with the Center for Advanced Security Research
Darmstadt (CASED) in Germany and with the Machine Learning Group at University of
California at Santa Cruz in USA.

The research activities have so far resulted in five scientific journal articles, two book
chapters and eleven peer-reviewed conference papers.
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Summary

The principal focus of the present dissertation is to develop new machine learning methods
for increasing the reliability, efficiency and effectiveness of intrusion detection systems.
The dissertation studies (i) feature selection methods, (ii) supervised learning algorithms
and (iii) un-supervised learning algorithms. Applications in intrusion detection include
(1) general network-based intrusion detection systems, (2) general host-based intrusion
detection systems, (3) Web application firewalls, (4) botnet-malware detection systems, and
(5) testing systems of Web application firewalls.

For the new machine learning methods, we propose to reformulate (i) a class of feature
selection methods, e.g. correlation-based and mutual-information-based feature selection,
(ii) Lp-norm support vector machines and (iii) the K-means clustering algorithm as discrete
optimization problems and propose to unify them into one framework. We prove that these
algorithms can be casted into a mixed 0-1 linear programming problems (M01LP), in which
the number of variables and constraints are linear in the number of the input features. The
obtained M01LP is solved by means of adequate algorithms, such as the branch and bound
algorithm or the D.C. (Difference of Convex Functions) programming approach. The new
formulation of machine learning algorithms allows to (a) realize the same representation
of many different algorithms, (b) easily combine these algorithms to study their reliability
including their optimality, generalization, consistency and robustness and (c) optimize the
feature selection process and learning model selection process.

For the applications in intrusion detection systems, we conduct experiments on five
different datasets: KDD CUP 1999, UNM audit dataset, CSIC 2010 HTTP dataset, ECML-
PKDD 2007 HTTP dataset, and Botnet Malware. The experimental results show that our
new proposed approaches (a) decrease the computational efforts due to optimal learning
algorithms and optimal feature selection, (b) increase the reliability including the general-
ization and robustness and (c) increase the efficiency and effectiveness of network-based
intrusion detection systems, host-based intrusion detection systems, Web application fire-
walls, botnet-malware detection systems and testing systems of Web application firewalls.
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Sammendrag

Doktorgradsoppgaven fokuserer på utvikling av maskinlæringsmetoder for forbedring av
pålitelighet og effektivitet av inntrengingsdeteksjonssystemer (IDS) for datasystemer. Opp-
gaven studerer (i) egenskaps seleksjonsmetoder (ii) veiledede læringsalgoritmer og (iii)
ikke-veiledede læringsalgoritmer. Anvendelser av IDSer inkluderer (1) generelle nettverk-
baserte IDSer, (2) generelle vert-baserte IDSer, (3) Web-applikasjonsbrannmurer, (4) botnet
skadevareoppdagelsessystemer, (5) ondsinnedee pdf–fil oppdagelsessystemer og (6) syste-
mer for testing av Web-applikasjonsbrannmurer.

For nye maskinlæringsmetodene foreslår vi reformulering av (i) en klasse av egen-
skaps eleksjonsmetoder, for eksempel korrelasjonsbaserte og felles informasjonsbaserte
egenskape seleksjon, (ii) Lp-norm støttevektormaskiner og (iii) K-gjennomsnittsklynger til
diskrete optimaliseringsproblemer. Vi foreslår også et felles rammeverk for å formulere
disse problemene. Videre beviser vi at disse algoritmene kan konverteres til blandede 0-1
lineærprogrammeringsproblemer (M01LP), hvor antall variabler og betingelser er lineære
i antall inputegenskaper. Anskaffede M01LP problemet løses med passende algoritmer,
for eksempel ”Branch-and-Bound” eller ”Difference of Convex Functions” (D.C.) program-
meringstilnærminger. Denne reformuleringen av maskinlæringsalgoritmer muliggjør (a)
felles representasjon av mange forskjellige algoritmer, (b) enkel kombinasjon av disse al-
goritmene for å studere deres pålitelighet (inkluderer deres optimalisering, generaliser-
ing, konsistens og robusthet) og (c) optimalisering av egenskapsseleksjonsprosessen og
læringsmodellseleksjonsprosessen.

Som eksempel på anvendelse i inntrengingsdeteksjons prosessen, gjennomførte vi eksp-
erimenter med 6 forskjellige datasett: KDD CUP 1999, UNM revisjons datasettet, CSIC
2010 http datasettet, ECML-PKDD 2007 http datasettet, botnet skadevare og ondsinnede
pdf filer. De eksperimentelle resultatene viser at vår nye tilnærming (a) reduserer behovet
for regnekraft på grunn av bruken av optimalisertee læringsalgoritmer og egenskapsse-
leksjonsmetoder, (b) forbedrer påliteligheten, inkludert generalisering og robusthet og (c)
forbedrer effektivitet av nettverk-baserte IDSer, vert-baserte IDSer, Web applikasjonsbran-
nmurer, botnet skadevaredeteksjonssystemer, ondsinnede pdf-fil oppdagelsessystemer og
systemer for testing av Web-applikasjonsbrannmurer.
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Petrović for their guidance and help throughout my PhD. My deepest gratitude to all of
you for being my mentors during the last four years.

In addition, I acknowledge the other HiG faculty and staffs who have taught and sup-
ported me. In particular, I would like to thank Prof. Dr. Patrick Bours, Dean Morten Irgens,
Prof. Dr. Christoph Busch, Kathrine Huke Markengbakken, Hilde Bakke, Associate Prof.
Dr. Nils Kalstad Svendsen, Jayson David Mackie, Dr. Knut Wold, Jan Kåre Testad, Aneta
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Chapter 1

Introduction

Simplicity is prerequisite for
Reliability.

EDSGER DIJKSTRA

In this chapter, Section 1.1 first introduces an overview on perspectives of machine
learning techniques to build intrusion detection systems. This section then provides
a detailed discussion on reliability, efficiency and effectiveness issues of these systems.
Research questions and motivations to develop new computational machine learning
algorithms are described in Section 1.2. Section 1.3 summarizes the contributions of this
work. Finally, Section 1.4 presents the structure of the dissertation.

1.1 Motivation and General Considerations

Intrusion Detection Systems (IDSs) have become an important security tool for manag-
ing risk and an indispensable part of overall security architecture [105]. An IDS gathers
and analyzes information from various sources within computers and networks to identify
suspicious activities that attempt to illegally access, manipulate, and disable computer sys-
tems. Examples of IDSs are general network intrusion detection systems, Web application
firewalls, botnet-malware detection systems, and so on.

The two main intrusion detection approaches are misuse detection and anomaly detec-
tion [43]. Misuse detection systems, for instance, SNORT [116], detect intrusions by look-
ing at specific signatures of known attacks. This approach is similar to the way of detecting
viruses in many antivirus applications. A set of patterns of known attacks is necessary to
be built in advance for further detections. It is easy to implement misuse detection sys-
tems. However, these systems are not effective against novel attacks that have no matched
patterns yet. Anomaly detection systems, such as IDES [78], can overcome the shortcom-
ing of the misuse detection systems. An anomaly detector assumes that normal behavior
are different from abnormal behavior. Therefore, abnormal activities can be detected by
looking at normal activities only. In fact, in these systems, a profile of normal behavior
is set up and is utilized to flag any observed activities that deviate significantly from the
established profile as anomalies or possible intrusions. Although anomaly detection sys-
tems have potential of detecting novel attacks, it is difficult to produce effective models of
normal patterns by hand and these systems tend to generate more false positive alerts than
the misuse detection systems.

To cope with these problems, the intrusion detection task has been formulated as a sta-
tistical pattern recognition task (see, for example, [46, 53, 144]) and machine learning is
the core to build these systems due to its efficiency and effectiveness (see Figure 1.1 for
the model of a statistical pattern recognition sytem). According to Arthur Samuel [122],
machine learning is a field of study that gives computers the ability to learn without be-
ing explicitly programmed. In [90], Tom Mitchel provides another definition of machine
learning saying that a computer program is said to learn from experience E with respect
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Figure 1.1: Model for statistical pattern recognition [62]

to some task T and some performance measure P , if its performance on T , as measured
by P , improves with experience E. By means of this approach, an intrusion detection sys-
tem learns and models the normal and abnormal behavior from a given dataset, which is
the experience E. The IDS then uses the gained model to classify new patterns. Figure
1.1 shows the formal model of the IDS, which is essentially a statistical pattern recognition
system. The IDS consists of two phases: training and testing. In the training phase, several
models learn or, in other words, are built to differentiate normal and abnormal behavior
in the given dataset E. The performance of the built models is measured by determining
the classification accuracy P . In the testing phase, the best model performed on the testing
dataset is selected as a potential intrusion detection system.

In more detail from Figure 1.1, the test and training patterns as raw data are normal-
ized, noise as well as unwanted data are removed by the pre-processing modules. In the
training phase, to have an efficient and precise modeling of the normal and abnormal be-
havior, an automatic process named feature extraction/selection first looks for a represen-
tative attribute set from the training patterns. There exist many different ways of selecting
attributes by considering the relationships between them, such as correlation-based or mu-
tual information-based methods. Second, depending on whether the given training dataset
has the true labels or not, to model the behavior there are two different approaches: super-
vised and unsupervised learning models. With supervised learning algorithms, such as
neural networks or support vector machines, the true labels of the training dataset are
available for learning process. In some cases, the unsupervised learning algorithms, such
as the K-means clustering, can still learn the normal and abnormal behavior on the dataset
without their true labels. We shall cover these methods in more detail in the next chapter.
In the classification phase, the built model or trained classifier is applied to assign the test
pattern to one of the pattern classes under consideration of the selected attributes from the
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training phase.

Due to the efficiency of the automatic learning techniques, the machine-learning-based
intrusion detection systems (ML-IDSs) allow to detect quickly the attacks while demanding
much less manual work. Because of this reason, the approach is becoming more and more
important for computer security [82], especially when the huge amount of network data
that needs to be analyzed by intrusion detection systems is increasing rapidly. Moreover,
the ML-IDSs have demonstrated to be more effective in terms of classification accuracy
than domain experts and other existing IDS approaches as shown in previous works (see,
for example, [144]).

Machine Learning    

  based Intrusion 

Detection Systems 

Reliability 

Efficiency Effectiveness 

Figure 1.2: The Reliability, Efficiency and Effectivess Principle

However, the ML-IDSs are mostly not being used in practice for information security
systems. One of the controversies of this is about the reliability issue of intrusion detec-
tion results when applying automatic machine learning methods [125]. The most common
approach in practice is still the misuse IDSs, which is a domain-experts-based and a highly-
reliable approach. Although, they are much less efficient and effective in detecting novel
attacks than the ML-IDSs. Therefore, increasing the overall reliability, efficiency and effec-
tiveness of ML-IDSs is important and critical task. See Figure 1.2 for the REE (Reliability,
Efficiency and Effectiveness) principle of a ML-IDS.

Several works attempt to provide formal estimations and methodologies of reliable clas-
sifications with machine learning (see, for example, [70]). However, it is still difficult to
define what exactly the reliablity is. This dissertation aims to analyze and get a better un-
derstanding of the reliability of a pattern recognition process in general. From this, we
develop new reliable machine learning algorithms. We apply our new algorithms to build
reliable intrusion detection systems.

From Figure 1.1, it can be seen that the reliability of a ML-IDS is first involved in the
training phase, particularly in (1) feature extraction/selection and (2) in learning steps.
When the ML-IDS operates in a changing or an adversarial network environment, (3) the
reliable detection results in the presence of potential attacks targeted to it are also impor-
tant.
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Ad. 1 Reliability in feature extraction/selection includes the appropriateness, consis-
tency, steadiness and optimality. First, a feature extraction/selection method needs to be
appropriately chosen for a particular dataset. For example, within a dataset that has many
features linearly correlated to each other, a correlation-based feature selection method [59]
should be applied. Second, the feature selection results should be consistent in each time
the algorithm is run. This requirement depends strongly on the search methods that we use
to select features. For example, the genetic algorithm using to search for the best feature
subsets is not consistent with different initial populations, thus providing different feature
sets or unreliable feature selection results. The exhaustive search is a completely reliable
method as it finds the best feature subset from scanning all possibilities. However, it be-
comes inefficient when the number of features is large. Therefore, a near optimal search
strategy, such as branch and bound algorithm or D.C. programming, is a good candidate
for reliable feature selection. We will show this in the next chapters. Third, a feature selec-
tion method should provide as much steady performance of a classifier as possible. That
means the difference between the detection rates before and after selecting features should
not be large. We will formalize these requirements and provide new reliable feature selec-
tion methods in the Section 3.1 and the Section 3.2.

Ad. 2 Reliability in learning includes the appropriateness, generalization and optimal-
ity. First, a learning algorithm to model normal and attack behavior needs to be appro-
priately applied. For example, given a training dataset without labels, an unsupervised
learning algorithm, such as K-means [63], should be used. Second, a machine-learning-
based intrusion detection system should have a generalization ability to detect future at-
tacks. This can be done through simple models with a good performance on training data
to avoid the over-fitting phenomenon, in which the model is fit perfectly to the training
dataset, but cannot detect well the future pattern with slight differences from the training
data. Third, a learning process is normally to solve an optimization problem. Therefore, an
optimal search strategy, such as branch and bound or langrangian methods, is necessary.
We will provide new reliable learning algorithms in the Section 3.3 and the Section 3.4.

Ad. 3 Reliability of a machine-learning-based intrusion detection system in a changing
or an adversarial network environment includes the adaptability and the robustness. First,
the ML-IDS is required to be adaptive when the type of attacks is changing all the time. This
can be solved by running several ML-IDSs at the same time to detect attacks. However,
the difficulty lays on combining their outputs. We will discuss about several combination
approaches, such as ensemble learning and online learning, in Section 5.2.1. Second, in the
presence of training data noise (including label and feature noise), the ML-IDS might learn
wrong patterns, thus providing unreliable classification results. Therefore, the robustness
of ML-IDSs to ignore the data noise in the training phase is necessary. We will provide
several research directions, such as the use of non-convex loss functions instead of convex
ones, in the Section 5.2.2.

1.2 Objectives of the Dissertation

The goal of the dissertation is to answer the following research questions:

1. How to generalize, optimize various feature-selection methods and select an ap-
propriate method for a particular case in such an efficient way that provides reliable
features for effective intrusion detection?

2. How to combine feature-selection methods in such an efficient way that provides
reliable features for effective intrusion detection?
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3. How to generalize and optimize existing supervised machine-learning algorithms
in such an efficient way that provides reliable and effective intrusion detection sys-
tems?

4. How to generalize and optimize the existing unsupervised machine-learning algo-
rithms in such an efficient way that provides reliable and effective intrusion detection
systems?

5. How to integrate expert knowledge into automatic feature selection and learning
processes in such an efficient way that provides much more reliable and effective
intrusion detection results?

6. How to apply new methodologies to different intrusion detection systems, such
as general intrusion detection, Web application firewalls, testing of Web application
firewalls, and botnet-malware detection systems ?

1.3 Contributions of the Dissertation

The contributions of the dissertation are visualized in Figure 1.3 and summarized as fol-
lows:

1. Generalization of feature-selection methods-New reliable feature selection pro-
cess: In this dissertation, we first analyze the main factors that affect the reliabil-
ity in the feature-selection process: the choice of feature-selection methods and the
search strategies for relevant features. We introduce a formal definition of a reliable
feature-selection process. The definition provides formal measurements of reliability
in feature-selection, i.e., the steadiness of a classifier’s performance and the consis-
tency in search for relevant features. Second, we propose new methods to address
the main causes of unreliable feature-selection process. In particular, we introduce
a new methodology of determining appropriate instances from a class of feature-
selection methods. We call this class a generic-feature-selection (GeFS) measure. We
also propose a new search approach that ensures the globally optimal feature sub-
set by means of the GeFS measure. The new search approach is based on solving a
mixed 0-1 linear programming (M01LP) problem by means of the branch-and-bound
algorithm. In this M01LP problem, the number of constraints and variables is linear
in the number of full set features. Finally, we validate our new proposed methods
by applying the GeFS measure to intrusion detection systems. This contribution has
been presented in [93, 94, 98].

2. Combination of feature-selection methods-New ensemble feature selection frame-
work: This dissertation studies a phenomenon in feature selection process that affects
the reliability of feature selection results: the over-selecting phenomenon. A feature se-
lection method is required to be general enough to find representative features from
training data, which are then used for classifying test patterns. The situation when
the features selected from the training data are quite different from the representa-
tive features of the testing data is called over-selecting. The main causes of the over-
selecting phenomenon are: (i) non-comprehensive consideration of statistical proper-
ties of the training data, (ii) heuristic search strategies for feature selection and (iii)
small sample size of the data set for training. In this dissertation, we show the in-
fluence of the over-selecting phenomenon on the over-fitting phenomenon of machine
learning algorithms. We propose a new framework to address principal causes of
over-selecting, thus reducing the chance of over-fitting and providing reliable results.
Our new framework that we call ensemble-feature-selection measure (EnFS), allows
the consideration of many statistical properties of a given data set at the same time by
combining many feature selection methods used in the filter model. From the chosen
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feature selection measures, a new combined measure is constructed. We also propose
a new search algorithm that ensures the globally optimal feature subsets by means
of the constructed measure. Similar to the case of the generic-feature-selection mea-
sure, this new search approach is based on solving a mixed 0-1 linear programming
(M01LP) problem by means of the branch-and-bound algorithm. In order to evalu-
ate the quality of our EnFS measure, we chose the design of an intrusion detection
system (IDS) as a possible application. Experimental results obtained over the KDD
CUP’99 benchmarking data set for IDS [73, 72] show that our EnFS measure is capa-
ble of reducing over-fitting by addressing over-selecting, thus providing more reliable
feature selection results. This contribution has been presented in [96].

3. Supervised machine learning-New general Lp-norm Support Vector Machines: This
dissertation analyzes the popular Lp-norm Support Vector Machines (Lp-SVMs with
p = 1 or p = 2) algorithms to deal with small datasets. When the training dataset is
small, the distribution of the target variable, which the model is trying to predict, is
likely to be changed in the testing data, thus leading to over-fitting phenomenon and
unreliable classification results. In this case, it is worth selecting few important fea-
tures for building compact and simple models to reduce the chance of over-fitting in
the future. The filter model for feature selection, such as the GeFS and EnFS measures
from previous contributions, might not be a good choice, since there are not enough
samples to estimate statistical properties of the dataset. The wrapper and embedded
models use the performance of a machine learning classifier, which is a good crite-
ria to select important features and at the same time to keep the model as accurate
as possible. In this dissertation, we focus on the embedded feature selection model
that is based on the Lp-norm support vector machines (Lp-SVMs) to cope with small
datasets. We realize that the Lp-SVMs do not comprehensively remove irrelevant and
redundant features, because the Lp-SVMs consider n full-set features be important
for training while skipping other 2n− 1 possible feature subsets at the same time. We
propose to generalize the Lp-SVMs into a new general Lp-norm Support Vector Ma-
chine (GLp-SVM) that takes into account all 2n possible feature subsets. We represent
the GLp-SVM as a mixed 0-1 programming problem (M01LP). We prove that solv-
ing the new proposed M01LP optimization problem results in a smaller error penalty
and enlarges the margin between two support vector hyper-planes, thus possibly giv-
ing more reliable classification results and a better generalization capability of SVMs
than solving the traditional Lp-SVMs. Moreover, by following the new general for-
mulation we can easily integrate expert knowledge into the GLp-SVMs by adding
the constraints x1 + x2 + .. + xn = T, xi = 1, where T is the pre-defined number of
selected features and xi is the pre-defined important feature, to the proposed M01LP
optimization problem. In order to reduce the computational complexity of directly
solving the M01LP problem, we propose to equivalently transform it into a mixed
0-1 linear programming (M01LP) problem if p = 1 or into a mixed 0-1 quadratic pro-
gramming (M01QP) problem if p = 2. The M01LP and M01QP problems can then
be solved by using the branch and bound algorithm. Experimental results obtained
over the UNM and MIT Lincoln Lab benchmark datasets for host-based intrusion de-
tection systems show that our new proposed GLp-SVM outperforms the traditional
Lp-SVMs by improving the classification accuracy by more than 7.48%. This contri-
bution has been presented in [97, 100].

4. Unsupervised machine learning-New optimization approach for K-means cluster-
ing It has been shown that the K-means clustering problem is anNP−hard optimiza-
tion problem, even if K is fixed to 2. That means there are no algorithms running in
polynomial time to find globally optimal K-means clustering. Many heuristic ap-
proaches were proposed and applied to different application domains. However, the
question on how to efficiently find more accurate and more reliable K-means cluster-
ing for large-scale data are still open. In this dissertation, we propose a new search
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method for optimal K-means with K = 2. The main ideas are to cast the K-means
problem into a mixed 0-1 linear programming problem which can be solved by using
the D.C. (Difference of convex functions) programming approach. This contribution
has been present in [92].

5. Expert knowledge-New way of integration of expert knowledge This dissertation
provides a new efficient way of integrating expert knowledge to the automatic fea-
ture selection and learning processes. It can easily be done by assigning values to
binary variables in the mixed 0-1 linear programming problems, which are reformu-
lated forms of feature selection and learning problems, to indicate the importance
of features. Our approach is a combination of automatic machine learning methods
and expert knowledge, thus the obtained intrusion detection results are much more
reliable. This contribution has been presented in [94, 95, 100].

6. Application of new algorithms-Applications to information security and digital
forensics problems We apply successfully the new proposed methods to enhance
the reliability, efficiency and effectiveness of the general network intrusion detection
systems, Web application firewalls, botnet-malware detection systems, and tesing of
Web application firewalls. This contribution has been presented in [26, 94, 95, 96, 97,
98, 99, 100, 101, 102, 106].

In summary, this dissertation combines five journal articles, two book chapters and
eleven peer-reviewed conference articles in a partially rewritten format.
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Figure 1.3: Contributions of the dissertation
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1.4 Structure of the Dissertation

The structure of the dissertation is organized as follows:

1. Introduction This general introduction is followed by an overview on perspectives
of machine learning techniques to build intrusion detection systems. A detailed dis-
cussion on reliability, efficiency and effectiveness issues of machine-learning-based
intrusion detection systems is given. Research questions and motivations to develop
new computational machine learning algorithms are described.

2. Theoretical Background This chapter discribes basic machine learning techniques in
more detail: feature selection, supervised and unsupervised algorithms. Two popular
operational research approaches for machine learning are provided: convex and non-
convex optimization techniques.

3. New Reliable Machine Learning Algorithms The new proposed algorithms are about
feature selection, supervised learning and unsupervised learning. In particular, this
chapter introduces a new reliable feature-selection process, a new ensemble feature-
selection framework, general Lp-norm support vector machines, and optimal K-means
clustering via D.C. (Difference of Convex Functions) Programming.

Major contributions have been published in five international journal articles, two
book chapters and eleven peer-reviewed conference and workshop articles.

4. Applications to Intrusion Detection Systems This part describes successful appli-
cations of new developed machine learning algorithms to enhance the reliability, ef-
ficiency and effectiveness of network-based intrusion detection systems, host-based
intrusion detection systems, Web application firewalls, botnet-malware detection sys-
tems, and testing systems for Web application firewalls.

5. Conclusions The theoretical and empirical findings are discussed in detail: new
reliable machine learning methods via an operational research approach and their
applications to security and forensics. Future works on the reliability of machine-
learning-based intrusion detection systems in changing and adversarial network en-
vironments are provided.

In summary, the dissertation introduces (1) new reliable machine-learning algorithms in-
cluding (i) a new reliable feature-selection process, (ii) a new reliable ensemble feature-
selection framework, (iii) a general Lp-norm support vector machines and (iv) an opti-
mal K-means clustering algorithm. Moreover, the dissertation shows (2) the sucessful ap-
plications of the new algorithms to intrusion detection systems. Finally, the dissertation
provides (3) several research directions on reliability of machine-learning-based intrusion
detection systems in a changing or an adversarial network environments.
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Chapter 2

Theoretical Background

Nothing happends in the universe
that does not have a sense of either
certain maximum or minimum.

LEONHARD EULER

Machine Learning 
via optimization, 
e.g. convex and 

non-convex 

Feature 
Extraction        

e.g. CFS and 
mRMR 

Unsupervised 
Learning      

e.g. K-means 

Supervised 
Learning      
e.g. SVM 

Figure 2.1: Machine learning algorithms addressed in the dissertation

This chapter provides a background on various machine learning algorithms, which is
integral to and motivates this dissertation. First, Section 2.1 describes three main groups
of machine learning techniques in more detail: feature extraction/selection, supervised
learning and unsupervised algorithms with concrete illustrations. In fact, we introduce
various feature extraction methods, such as correlation feature selection, the support
vector machines from supervised learning and the k-means from unsupervised learn-
ing. We also analyze their disadvantages to motivate our research in the next chapter.
Finally, Section 2.2 presents two popular operational research approaches for machine
learning: convex and non-convex optimization techniques. The content of this chapter
is visualized in Figure 2.1.
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2. THEORETICAL BACKGROUND

2.1 Machine Learning

2.1.1 Feature Construction

A feature, which is a synonym for input variable or attribute, is any representative in-
formation that is constructed from the raw data set. A special pattern, which is directly
selected from the data set, can be considered a feature, for example, a representative sub-
string of SQL injection code in an HTTP request. The distributions of characters or groups
of characters are features. In some cases, the structures or semantics of data sets are consid-
ered features. The relations between patterns or between features of the data are normally
hidden, but are important for representing the data. Therefore, they are necessary to be
constructed from the data. The process of determining the most compact and informative
features of a given data set is called Feature Construction. By means of this process not
only the efficiency of data storage is improved, but also the processing performance of a
statistical pattern recognition system, such as an intrusion detection system, is increased.

A feature construction algorithm consists of two steps: feature extraction and feature
selection. Feature extraction is one of the key steps in the data representation process for
many tasks, such as classification or regression problems, largely conditioning the success
of any subsequent statistic or modeling of a given raw data. This process refers to determin-
ing representative features from the original data. One can manually extract the features
by looking at direct patterns in the data, for example, as we carry through when building
signatures or rules for misuse intrusion detection systems. For automatic feature extrac-
tion, several approaches, such as n-grams, association rule learning and frequent episode
extraction, are usually applied. These methods will be introduced in more detail in the next
sections.

At the feature extraction stage, one should bear in mind that no information should
be lost from the original data set. A common idea is to take into account all the possi-
ble informative features. However, adding more features seems to come at a price: it in-
creases the dimensionality of the data that is considered, thus increasing the complexity of
a pattern recognition system. Moreover, the irrelevant and redundant features are possibly
contained in the set of features. The main focus of this section is to determine methodolo-
gies for deciding whether or not a feature is relevant. We call the methodologies feature
selection methods. In general, feature selection can provide the following benefits [56]:

• General data reduction, i.e., to limit storage requirements and increase algorithm
speed;

• Feature set reduction, i.e., to save resources in the next round of data collection or
during utilization;

• Performance improvement, i.e., to gain predictive accuracy;

• Data understanding, i.e., to gain knowledge about the process that generated the data
or simply visualize the data.

There are two ways of selecting features for intrusion detection systems: manual and
automatic. The automatic feature selection methods, which include filter, wrapper and
embedded models from machine learning, will be emphasized later in this section.

2.1.1.1 Feature Extraction

In this section, we present feature extraction methods for intrusion detection systems that
include 1) association rule learning, 2) frequent episode extraction and 3) n-grams extrac-
tion.
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Association Rule Learning: Association rule learning [12] is one of the most popular
methods in data mining for discovering interesting relations between variables or features
in large data sets. Such interesting relations are normally hidden in the raw data, and when
they are extracted, they can be utilized for describing the data efficiently. For example,
whenever one buys bread, she or he is likely to also buy butter and milk. Such information
can be utilized as a base for describing customers’ behavior for making marketing activ-
ities. Another example in intrusion detection is that certain programs only get access to
certain system files in specific directories, certain users (normal users or super users) have
certain behavior or activities, such as normal users use mostly the utilities of the systems,
whereas super users manage the systems, for instance, creating new users, new profiles
or logging activities of other users, processes and so on. In this example, the interesting
relations, which are associations between users and the used programs, are necessary to
be extracted and should be included in normal and suspicious usage profiles for further
intrusion detection. For instance, if we have a profile of all users in a system, in which only
super users have the right to modify a directory, then if a normal user attempts to carry out
the modification, his activity should be detected as suspicious, since in the profile of the
system, there is no description of this activity for normal users.

The formal definition of association rule learning is given as follows: Let I = {i1, i2, .., in}
be a set of n features called items of a system audit data. Let D = {r1, r2, .., rm} be a set of
records in this dataset. Each record ri contains a subset of features in I . A rule is defined
as an implication of the form:

X ⇒ Y, whereX, Y ⊆ I,X ∩ Y = 0

When interpreting the above example in intrusion detection according to this defini-
tion, the following are item sets: X = i1 = programmer(users) and Y = i2 = C −
compiler(used− programs). The implication X ⇒ Y is an association rule.

Before describing the main idea of association rules learning algorithms, two impor-
tant concepts are introduced: the support SUPP (X) of an item set X , and the confidence
CONF (X ⇒ Y ) of a rule X ⇒ Y as follows:

• The support of an item set X (SUPP (X)) is defined as the proportion of records in
the data set that contain the item set X .

• The confidence CONF (X ⇒ Y ) of a rule (X ⇒ Y ) is defined as follows:

CONF (X ⇒ Y ) =
SUPP (X ∪ Y )

SUPP (X)

An association rule learning algorithm consists of two separate steps: First, choosing a
minimum threshold of the support values and looking for all possible frequent item sets in
the data that have support values exceeding the chosen threshold. Second, these obtained
frequent item sets are utilized to construct rules, which have confidence values exceeding
the minimum threshold. There are several efficient algorithms for association rule learning,
such as Apriori [13] and Eclat [150] algorithms.

Frequent Episode Extraction: Frequent episodes [84, 85] are normally utilized for repre-
senting sequential audit data. In fact, frequent episodes are collections of events occurring
frequently together. For example, in the sequence of Figure 2.2, the episode ”E is followed
by F” occurs several times:

Episodes, in general, are partially ordered sets of events. In intrusion detection, when
discovering episodes in a system audit data, the goal is to look for relations between se-
quential patterns. Such relations will then be analyzed to understand the temporal as well
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Figure 2.2: A sequence of events

as statistical nature of many attacks and normal users’ behavior. From that, additional
features will be extracted for detecting incoming traffic.

Let I = {i1, i2, .., in} be a set of n features called items of system audit data. Let D =
{r1, r2, .., rm} be a set of records in this dataset. Each record ri contains a subset of feature
in I . A frequent episode is defined as an expression of the form:

X,Y ⇒ (Z,w)

where X,Y, Z ⊆ I and w is the width of considered time interval.

N-grams Extraction: Many attacks that exploit vulnerabilities of protocols and services
can be detected by analyzing header information from network packets or by monitor-
ing the network traffic connection attempts and session behavior. For detecting attacks
that tend to send bad payloads to vulnerable services or applications, such as viruses or
malicious codes, consideration of the header information is not sufficient. The payload in-
formation of packets is necessary to be analyzed. Some patterns of attacks can be selected
from the payload by using domain knowledge in order to build a set of signatures. For
automatic feature extraction, n-grams extraction method is usually applied [114, 136, 137].
An n-gram is a subsequence of n items from a given sequence. In the case of intrusion de-
tection, if a payload is considered as a string, then an n-gram is a substring of n characters.
With an assumption that payloads of normal traffic are different from payloads of attack
traffic, the following is an automatic feature construction method based on n-grams extrac-
tion for intrusion detection: We consider n-grams (n ≥ 1), thus the space S of all possible
n-grams has the size of 28n, as considering 8 bits representation for each character:

S = {n− gramsi|i = 1...28n}

Given a payload p, a feature vector of p can be constructed as follows:

xp = (x1, x2, .., x28n)

where xi is the number of appearances of n− gramsi in p.

2.1.1.2 Feature Selection

This section presents the main idea of automatic feature selection methods for intrusion
detection systems that include the wrapper model, the filter model and the embedded
model from machine learning [56, 74].

The wrapper model assesses selected features by a learning algorithm’s performance.
In other words, in a wrapper model, one employs a learning algorithm and utilizes its
performance to determine the quality of selected features. Therefore, the wrapper method
requires a lot of time and computational resources to obtain the best feature subsets. How-
ever, these wrapper approaches are aimed at improving results of the specific classifiers
they work with. Later in this dissertation, one of the most popular machine learning al-
gorithms, which are usually applied in the wrapper model -Support Vector Machine [133],
will be introduced.
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The filter model considers statistical characteristics of a data set directly without in-
volving any learning algorithm. Due to the computational efficiency, the filter method is
usually utilized to select features from high-dimensional data sets, such as intrusion detec-
tion systems. The filter model encompasses two groups of methods: the feature ranking
methods and the feature subset evaluating methods. The feature ranking methods assign
weights to features individually based on their relevance to the target concept. The feature
subset evaluating methods estimate feature subsets not only by their relevance, but also by
the relations between features that make certain features redundant. It is well known that
the redundant features can reduce the performance of a pattern recognition system [56].
Therefore, the feature subset evaluating methods are more suitable for selecting features
for intrusion detection. A major challenge in the IDS feature selection process is to choose
appropriate measures that can precisely determine the relevance and the relation between
features of a given data set. Since the relevance and the relation are usually characterized
in terms of correlation or mutual information [56], in the following, two measures are con-
sidered: the correlation feature selection (CFS) measure [59] and the minimal-redundancy-
maximal-relevance (mRMR) measure [108]. It will be shown, in the next chapter, that these
two measures can be fused and generalized into a generic feature selection (GeFS) measure
for intrusion detection and it will also be presented how to obtain the best feature subsets
by means of the GeFS measure.

In contrast to the filter and wrapper models, the embedded model of feature selection
does not separate the learning from the feature selection part. The embedded model in-
tegrates the selection of features in the model building. An example of such model is the
decision tree induction algorithm [45], in which at each branching node, a feature has to be
selected. Another example of the embedded model are SVM-based feature selection meth-
ods [57, 140], in which the task of feature selection can be understood as looking for the
feature subsets that lead to the largest possible generalization or equivalently to minimal
risk.

Correlation based Feature Selection: The Correlation Feature Selection (CFS) measure
proposed by Hall in 1999 [59] evaluates subsets of features on the basis of the following
hypothesis: ”Good feature subsets contain features highly correlated with the classification, yet
uncorrelated to each other”. This hypothesis gives rise to two concepts. One is the feature-
classification (rcfi ) correlation and another is the feature-feature (rfifj ) correlation. The
feature-classification correlation rcfi indicates how much a feature fi is correlated to a tar-
get variable C, while the feature-feature correlation rfifj is, as the very name says, the
correlation between two features fi, fj . The following equation from [52] used in [58] gives
the merit of a feature subset S consisting of k features:

MeritS(k) =
krcf√

k + k(k − 1)rff
. (2.1)

Here, rcf is the average feature-classification correlation, and rff is the average feature-
feature correlation, as given below:

rcf =
rcf1 + rcf2 + ...+ rcfk

k

rff =
rf1f2 + rf1f3 + ...+ rfkf1

k(k−1)
2

Therefore, we can rewrite (2.1) as follows:

MeritS(k) =
rcf1 + rcf2 + ...+ rcfk√

k + 2(rf1f2 + rf1f3 + ...+ rfkf1)
. (2.2)

13



2. THEORETICAL BACKGROUND

In fact, the equation (2.1) is Pearson’s correlation coefficient, where all variables have
been standardized. It shows that the correlation between the feature subset S and the target
variable C is a function of the number k of features in the subset S and the magnitude of
the inter-correlation among them, together with the magnitude of the correlation between
the features and the target variable C. From the equation (2.1), the following conclusions
can be drawn: The higher the correlation values between the features of the subset S and
the target variable C, the higher the correlation between the feature subset S and the target
variable C; The lower the correlation between the features in the subset S, the higher the
correlation between the feature subset S and the target variable C.

The task of feature selection by means of the CFS measure is as follows: Suppose that
there are n full set features. We need to find the subset S of k features, which has the
maximum value of MeritS(k) over all 2n possible feature subsets:

max
S
{MeritS(k), 1 ≤ k ≤ n}. (2.3)

When the number of features n is small, we apply the brute force method to scan all
these subsets. But when this number becomes large, the heuristic and random search
strategies, such as the best first search or genetic algorithm, are usually chosen due to their
computational efficiency. Consequently, the given results will always be approximate. It is
desirable to get optimal subsets of features. In the next chapter, we propose a new method
to find these optimal subsets.

In order to apply (2.1) to estimate the merit of a feature subset, it is necessary to calculate
the correlation between features. Following is the detail of the correlation calculation for
the CFS measure

For discrete class problems when the C variable is discrete, the CFS first discretizes nu-
meric features using the technique of Fayyad and Irani [47]. The correlation of two features
X and Y is defined as symmetrical uncertainty SU(X,Y ) coefficient by the formula:

SU(X,Y ) = 2[
H(X)−H(X|Y )

H(X) +H(Y )
],

where H(X), H(Y ) are the entropies of variables X and Y , respectively; H(X|Y ) is the
conditional entropy.

For continuous class problems, the measure for estimating the correlation between ran-
dom variables is standard linear Pearson’s correlation. The formula for correlation when
the two features X and Y are both continuous is given below:

rXY =

∑
xy

nσXσY
,

where σX and σY are standard deviations of variables X and Y , respectively.

When the featureX is continuous and the feature Y is discrete, the Pearson’s correlation
is computed as follows:

rXY =

k∑
i=1

p(X = xi)rXbi
Y ,

where k is the number of discrete values of X , Xbi is a binary variable that takes value
1 when X has value xi and 0 otherwise.

14
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When both variables involved are discrete, binary variables are created for both and the
correlation is computed as follows:

rXY =

k∑
i=1

l∑
j=1

p(X = xi, Y = yj)rXbi
Ybj
,

where k and l are the numbers of discrete values of X and Y , respectively.

Beside the correlation-based feature selection measure, which considers the linear re-
lation between features, there exists nonlinear feature selection method that is based on
mutual information from information theory. In the following, we introduce the mutual
information based feature selection in more detail.

Mutual Information based Feature Selection By means of mutual information, the fea-
ture selection is to find a feature subset S with k features from the full-set of n features,
which jointly have the largest dependency on the target class C. This scheme, called Max-
Dependency, has the following form [108]:

max
Sk

{I(Sk, C)},

where I(Sk, C) is the mutual information between the feature subset Sk = {xi, i = 1...k}
and the target class C. The I(Sk, C) value is calculated as follows:

I(Sk, C) =

∫ ∫
p(Sk, C) log

p(Sk, C)

p(Sk)p(C)
dSkdC

I(Sk, C) =

∫ ∫
p(x1, ..., xk, C) log

p(x1, ..., xk, C)

p(x1, ..., xk)p(C)
dx1...dxkdC

Although the Max-Dependency feature selection scheme has the theoretical value and
can be applied when the number of features is small. It is difficult to obtain an accurate esti-
mation for multivariate densities p(x1, ..., xk) and p(x1, ..., xk, C) because of two reasons in
the high-dimensional space: 1) number of samples is often not large enough and 2) the mul-
tivariate density estimation often involves computing the inverse of the high-dimensional
covariance matrix, which is usually an ill-posed problem [131]. Therefore, in 2005 Peng et.
al. [108] proposed a heuristic approach, called Minimal-Redundancy-Maximal-Relevance
(mRMR), to the optimal Max-Dependency. The main idea of Peng’s method is to select fea-
tures based on maximal relevance, which approximates the I(Sk, C) with the mean value
of all mutual information values between individual feature xi and the target class C.

maxD(Sk, C) =
1

k

k∑
i=1

I(xi, C)

The features selected by means of the maximal-relevance can have a rich redundancy,
which is the dependence among these features. The class-discriminative power would not
change much if we remove redundant features. The mutual information can be utilized to
estimate the redundancy of k features in the subset S as follows:

minR(Sk) =
1

k2

∑
xi,xj∈Sk

I(xi, xj)

The Minimal-Redundancy-Maximal-Relevance (mRMR) measure is defined as follows:

max
Sk

= D(Sk, C)−R(Sk)
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max
Sk

=
1

k

k∑
i=1

I(xi, C)− 1

k2

∑
xi,xj∈Sk

I(xi, xj)

The interpretation of the mRMR measure is that we want to maximize the relevance of
features to the target class C (D(Sk, C)) and at the same time to minimize the redundancy
between features (R(Sk)). It has been shown in [108] that the mRMR is equivalent to Max-
Dependency for the first-order incremental search. Peng et. al. proposed to apply many
heuristic search methods, such as incremental search, to solve the mRMR feature selection
problem.

In summary, we have introduced the main feature construction methods, which moti-
vate our research in this dissertation. In the next section, we describe the main focused
supervised and unsupervised machine leanring algorithms.

2.1.2 Supervised Learning Algorithms

This section is devoted to an introduction of the supervised learning, which is the machine
learning task to infer a function from a labeled training dataset. We first discuss about the
generalization ability of supervised learning algorithms. Second, we describe one of the
most popular supervised learning algorithms: the support vector machines.

Ability of generalization The generalization ability of machine learning algorithms can
be predicted by using the well-known bounds based on the Vapnik-Chernovenkis (VC)
dimension [133]. Given some machine learning algorithm f and let TrainErr(f) be its train-
ing error or fraction training set misclassified. Under the assumption that all the training
samples and testing samples are independently drawn from a common generating distri-
bution, Vapnik and Chernovenkis [133] showed that with probability of 1 − p, the testing
error (TestErr(f)) of the machine learning algorithm f is bounded as follows:

TestErr(f) ≤ TrainErr(f) +

√
h(log(2m/h) + 1− log(p/4))

m

wherem is the number of training samples; h is VC dimension or the measure of the f ’s
power. In fact, h is the maximum number of points that can be arranged so that f shatters
them. h does not depend on the choice of the training set. This bound gives us a way to
estimate the error on future data based on only the training error and the VC dimension of
the algorithm f .

However, the above assumption regarding the common distribution of training and
testing samples is not always true in real world, since very often the process generating
the training set is not the same as that selecting the testing set. In these cases, there is no
overlap between the two sets. Therefore, one has to consider the off-training set (OTS)
generalization error, i.e., generalization error for test sets that contain no overlap with the
training set [142, 143]. Wolpert [142, 143] has stated that ”one can’t say: if empirical mis-
classification rate is low; the Vapnik-Chervonenkis dimension of your generalizer is small;
and if the training set is large, then with high probability your OTS error is small.”. This
statement is an implication of the well known No-Free-Lunch (NFL) theorems [142, 143],
which indicate that there are no a priori distinctions between learning algorithms. Also by
this statement, there is no evidence of generalization ability of any machine learning if it is
trained only on the training samples as a part of the whole data space. However, several
machine learning algorithms were used in many applications with limited success.
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2.1 MACHINE LEARNING

In the following, we will describe the support vector machine algorithm, which has
been applied for the intrusion detection tasks (see, for example, [66] ).

2.1.2.1 Support Vector Machine

0wx b 
Separating hyperplane 

Margin 

d

d

Figure 2.3: Support Vector Machines

We are given a training dataset D that contains m data points:

D = {(ai, ci)|ai ∈ Rn, ci ∈ {−1, 1}}mi=1

Here ai is an n-dimensional real vector and ci is an indicator of the class where the point ai
belongs to.

A hyperplane, which separates the positive (c = 1) from negative (c = −1) instances, is
called separating hyper-plane. The formula of the hyperplane is given as follows: wx− b =
0, where w is normal vector to the hyperplane, x is the point of the hyperplane, b is a real
value and the 1

||w|| is the perpendicular distance from the hyperplane to the origin.

Let d+(d−) be the shortest distance from the separating hyperplane to the closest posi-
tive (negative) data point. Define the Margin of the separating hyperplane to be ((d++d−)).

For the separable case when the positive and negative data points are linearly separated,
they satisfy the following constraints: aiw − b ≥ 0, for ci = 1,

aiw − b ≤ 0, for ci = −1.

or they can be combined into one set of inequalities:

ci(aiw − b)− 1 ≥ 0,∀i.
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Therefore, the margin is simply d++d− = 2
||w|| . In order to get the highest confidence in

classification, we want to choose w and b to maximize the margin. This provides not only
the best classification performance on the training data, but also leaves much room for the
correct classification of the future data. The linear support vector machines problem can be
formulated as follows [40]:

max
w∈Rn,b∈R

1

||w||2

such that

 ci(aiw − b) ≥ 1,

i = 1,m.
(2.4)

The problem 2.4 is a typical convex optimization problem, which we describe in more
detail in the next section. Here we show the main ideas of solving the 2.4.

We first study the Lagrangian formulation [27] of the problem (2.4). The reason for
doing this is that the constraints in (2.4) are replaced by constraints on the Lagrange mul-
tipliers themselves, which will be much easier to handle. With non-negative Lagrange
multipliers αi, i = 1,m, the problem (2.4) is equivalent to the following problem:

min
w,b,α
{Lp =

1

2
||w||2 −

m∑
i=1

αi[ci(aiw − b)− 1]} (2.5)

The problem (2.5) can now be solved by using standard quadratic programming tech-
niques, such as the gradient descent or stochastic gradient descent algorithms [28, 104].
Another popular approach is to apply the Karush-Kuhn-Tucker (KKT) conditions as nec-
essary and sufficient conditions for w, b, α to be a solution [69]. In the next section on the
convex optimization for machine learning, we will discuss this method in more detail.

The Karush-Kuhn-Tucker (KKT) conditions of the problem (2.5) is given below:

∂
∂wj

Lp = wj −
∑m
i=1 αiciaij = 0, j = 1, n,

∂
∂bLp = −

∑m
i=1 αici,

ci(aiw − b)− 1 ≥ 0,

αi[ci(aiw − b)− 1] = 0,

αi ≥ 0,∀i = 1,m

(2.6)

For the non-separable case that allows for incorrect classified instances, all the data
points of D satisfy the following constraints:

{ci(aiw − b) ≥ 1− ξi, i = 1,m}

where ξi ≥ 0 is a slack variable that measures the degree of misclassification of the
data point ai. The linear support vector machines problem can then be formulated as fol-
lows [40]:

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi (2.7)
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such that

 ci(aiw − b) ≥ 1− ξi,

C > 0, ξi ≥ 0, i = 1,m.

By using Lagrange multipliers, we equivalently transform the problem (2.7) to the follow-
ing problem:

min
w,b,ξ,α,β

{Hp =
1

2
||w||2 + C

m∑
i=1

ξi −
m∑
i=1

αi[ci(aiw − b)− 1 + ξi]−
m∑
i=1

βiξi} (2.8)

where αi, βi ≥ 0, i = 1,m.
The KTT conditions for the problem (2.8) are as follows:



∂
∂wj

Hp = wj −
∑m
i=1 αiciaij = 0, j = 1, n,

∂
∂bHp = −

∑m
i=1 αici = 0,

∂
∂ξi
Hp = C − αi − βi = 0,

αi[ci(aiw − b)− 1 + ξi] = 0,

ci(aiw − b)− 1 + ξi ≥ 0,

βiξi = 0, αi, βi, ξi ≥ 0,∀i = 1,m

(2.9)

2.1.3 Unsupervised Learning Algorithms

This section describes the main idea of unsupervised learning and discuss a concrete sam-
ple, which is one of the most popular unsupervised learning algorithm and also the moti-
vation for our new algorithm in the next chapter.

By constrast with supervised learning, in unsupervised learning there are no target out-
put labels in the training and testing datasets. The machine simply receives inputs x1, x2, ...
and the task is to learn and differentiate them. It seems to be mysterious to image what the
machine could possibly learn from the data without knowledge about samples, such as
normal and abnormal instances in network intrusion detection. However, in the unsuper-
vised learning it is possible to find and learn the hidden structures inside the unlabeled
data. Two groups of the unsupervised learning algorithms are: 1) Dimensionality reduc-
tion and 2) Clustering analysis.

Ad.1 Dimensionality reduction [50] is the process of transforming the data in the high-
dimensional space into a space of fewer dimensions. This process has a similar goal with
the feature selection in section 2.1.1.2, but in this case the input data doesn’t have output la-
bels. Approaches to dimensionality reduction includes, for example, Principal Component
Analysis (PCA), Independent Component Analysis (IDA) and so on.

Ad.2 Clustering analysis [45] is the task of dividing a set of samples into clusters, in
each of which samples are more similar to each other by means of a distance, such as the
euclidean distance, than those in other cluster. In some cases, clustering can also be con-
sidered as a form of classification in that it derives labels of samples with cluster labels.
Various types of clustering are hierarchical, partitional, exclusive, fuzzy clustering algo-
rithms and so on.

In the following, we describe the K-means clustering algorithm, which is one of the
most popular unsupervised learning algorithm, in more detail.
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2.1.3.1 K-means Clustering Algorithm

K-means clustering algorithm is a method of clustering analysis that aims to partition m
input instances into K clusters, in which each instance belongs to the nearest cluster by
means of the mean value. More formally, let S = (a1, a2..., am) be a dataset with m in-
stances, each of which is an n−dimensional vector. The objective in K-means clustering is
to group these instances into categories C1, C2, ..., CK for the given value K, such that the
following objective function is maximized:

JK =

K∑
k=1

∑
i∈Ck

(ai − µk)2 (2.10)

Here µk represents the mean vector of the instances from Ck: µk = 1
mk

∑
i∈Ck

ai, where
mk = |Ck| is the number of instances in Ck.

Cluster 1 

Cluster 2 

Figure 2.4: Sample of K-means clustering with K = 2

The first idea of the K-means clusteting algorithm was introduced by Hugo Steinhaus
in 1956 [127] and the term ”K-means” was first used by James MacQueen in 1967 [79]. In
1982, Lloyd [75] proposed a heuristic algorithm for K-means clustering, which then be-
came a standard and widely used approach of unsupervised learning in many different
application domains. We describe the Lloyd’s algorithm in more detail below.

Given the dataset S = (a1, a2..., am), the algorithm consists of two following iterative
steps:

• Initialization step: Select arbitrarily initial cluster centersC = {c1 = a1, c2 = a2, .., cK =
aK};

• Assignment step: Assign every ai ∈ S, i = 1,m to the cluser Ck whose cluster center
ck is closest to it, i.e., ||ai − ck|| ≤ ||ai − cj || for all k 6= j;

• Update step: Calculate the new means to be the centroid of the instances in the clus-
ter: ck = 1

|Ck|
∑
i∈Ck

ai
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The algorithm is converged when the assignments no longer change. See 2.1 for sum-
mary of Lloyd’s algorithm.

Algorithm 2.1: Lloyd’s method for K-means clustering.

1. K Initial cluster centers C = {c1 = a1, c2 = a2, .., cK = aK};

2. Assign ai ∈ S, i = 1,m to the cluser Ck if ||ai − ck|| ≤ ||ai − cj || for all k 6= j;

3. Set ck = 1
|Ck|

∑
i∈Ck

ai;

4. If clusters or centers have changed, goto step 2. Otherwise, stop.

In summary, previous sections describe the main focused machine learning algorithms,
which are feature construction methods, supervised and unsupervised learning. In the next
section, we introduce two main optimization techniques for machine leanring: convex and
non-convex optimization.

2.2 Optimization for Machine Learning

Many machine learning problems have been formulated as convex and non-convex opti-
mization problems [24]. In this section, we first describe the main concepts and methods of
the widely-used convex optimization for machine learning: Lagrange duality and Karush-
Kuhn-Turker (KKT) conditions. Second, we introduce the non-convex optimization tech-
niques, which include the branch and bound algorithm and the D.C. programming ap-
proach.

2.2.1 Convex Optimization for Machine Learning

Techniques of Convex Optimization (CO) become important tools for machine learning
algorithms, such as Support Vector Machines. The uniqueness of the optimal solution al-
lows the understandings of the learning process in the theoretical analysis. Moreover, the
use of CO tools permits fast implementations of the learning algorithms in practice. In
this section, we first introduce the basic concepts of CO, such as convex set, convex func-
tion and convex optimization problems. Second, we provide the duality theorems and the
Karush-Kuhn-Turker (KKT) conditions, which are necessary and sufficient conditions for
optimality of the convex optimization problem.

Definition 2.1 (Convex set)
A set S ⊆ Rn is convex if for all x, y ∈ S and any α ∈ [0, 1], the point αx+ (1− α)y is in S or

αx+ (1− α)y ∈ S

.

Definition 2.2 (Convex function)
A function f : Rn → R is convex if for all x, y ∈ domf and any α ∈ [0, 1], we have the following
inequality:

f(αx+ (1− αy)) ≤ αf(x) + (1− α)f(y)

.
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Figure 2.5: Sample of a convex set

Figure 2.6: Sample of a convex function

Theorem 2.1 (First order convexity conditions)
Suppose f : Rn → R is differentiable. Then f is convex if and only if for all x, y ∈ domf the
following inequality is satisfied:

f(y) ≥ f(x) +∇f(x)T (y − x)

Theorem 2.2 (Second order convexity conditions)
Suppose f : Rn → R is twice differentiable. Then f is convex if and only if for all x ∈ domf the
following inequality is satisfied:

∇2f(x) ≥ 0

Definition 2.3 (Convex optimization problems)
An optimization problem is convex if its objective f(x) is a convex function, the inequality con-
straints gi(x) are convex, and the equality constraints hj(x) are affine:

min
x
f(x) (Convex function),

such that

 gi(x) ≤ 0, i = 1, ..,m, (Convex sets),

hj(x) = 0, j = 1, .., p, (Affine).
(2.11)
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Theorem 2.3 (Global minimizer)
If x is a local minimizer of a convex optimization problem, it is a global minimizer.

Theorem 2.4 (Condition for a global minimizer)
∇f(x) = 0 if and only if x is a global minimizer of f(x).

2.2.1.1 Lagrange Duality

This section describes a powerful concept in convex optimization theory known as La-
grange duality [104]. We focus on the main intuitions and mechanics of Lagrange duality,
in particular, we describe the Lagrangian, its relation to primal and dual problems, and the
Karush-Kuhn-Tucker (KKT) conditions as necessary and sufficient conditions for optimal-
ity of the convex optimization problem as formulated in Eq. (2.11).

Definition 2.4 (Lagrangian)
Given the convex constrained minimization problem (2.11), the Lagrangian is a function L : Rn ×
Rm × Rp → R, defined as

L(x, α, β) = f(x) +

m∑
i=1

αigi(x) +

p∑
j=1

βjhj(x) (2.12)

where x is primal variable of the Lagrangian and α, β are dual variables of the Lagrangian.

To show the relationship between the Lagrangian and the original optimization prob-
lem (2.11), we introduce the notions of the primal and dual problems associated with the
Lagrangian.

Definition 2.5 (Primal problem)

min
x

[
max

α,β:αi≥0,∀i
L(x, α, β)

]
︸ ︷︷ ︸

θP (x)

= min
x
θP (x) (2.13)

In this equation, the function θP : Rn → R is called the primal objective and a point x ∈ Rn is
primal feasible if gi(x) ≤ 0, i = 1, ...,m and hj(x) = 0, j = 1, ..., p .

Definition 2.6 (Dual problem)

max
α,β:αi≥0,∀i

[
min
x

L(x, α, β)
]

︸ ︷︷ ︸
θD(α,β)

= max
α,β:αi≥0,∀i

θD(α, β) (2.14)

Here, the function θD : Rm × Rp → R is called the dual objective and a point (α, β) is dual
feasible if α ≥ 0.

Theorem 2.5
We call p∗ = θP (x∗) and d∗ = θD(α∗, β∗) the optimal values of primal and dual problems, respec-
tively. If (α, β) is dual feasible, then θD(α, β) ≤ p∗.
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The theorem shows that given any feasible (α, β), the dual objective θD(α, β) provides
a lower bound on the optimal value p∗ of the primal problem.

Theorem 2.6 (Weak duality)
For any pair of primal and dual problems, d∗ ≤ p∗.

Theorem 2.7 (Strong duality)
For any pair of primal and dual problems which satisfy certain technical conditions called constraint
qualifications, then d∗ = p∗.

A number of different constraint qualifications exist, of which the most commontly in-
voked constraint qualification is know as Slater’s condition: a primal/dual problem pair
satisfy Slater’s condition if there exist some feasible primal solutions x for which all in-
equality constraints are strictly satisfied (i.e., gi(x) < 0, i = 1, ...,m). Below is the necessary
and sufficient conditions for optimality of the convex optimization problem (2.11).

Theorem 2.8 (The Karush-Kuhn-Tucher (KKT) conditions)
Suppose that x∗ ∈ Rn, α∗ ∈ Rm and β∗ ∈ Rp satisfy the following conditions:

1. (Primal feasibility) gi(x∗) ≤ 0, i = 1, ...,m and hj(x∗) = 0, j = 1, ..., p,

2. (Dual feasibility) α∗i ≥ 0, i = 1, ...,m,

3. (Complementary slackness) αigi(x∗) = 0, i = 1, ...,m, and

4. (Lagrangian stationarity)∇xL(x∗, α∗, β∗) = 0

Then x∗ is primal optimal and α∗, β∗ are dual optimal. Furthermore, if strong duality holds,
then any primal optimal x∗ and dual optimal (α∗, β∗) must satisfy the conditions 1 through 4.

Beside the convex optimization formulation, various machine learning algorithms are
non-convex optimization problems. In the next section, we describe non-convex optimiza-
tion techniques for machine learning.

2.2.2 Non-convex Optimization for Machine Learning

This section describes non-convex optimization (NCO) techniques to solve a mixed 0-1 lin-
ear programming problem, which is a common reformulated form of many machine learn-
ing algorithms that we will study in the next chapter. In particular, we provide the main
ideas of two approaches: the branch and bound and D.C. (Difference of Convex Functions)
algorithms.

The general formulation of Mixed 0-1 Linear Programming Problem is given as follows:

min f(x, y) = cTx+ dT y,

such that



Ax+By ≤ b,

x ∈ [lbx, ubx],

x ∈ Rn, y ∈ {0, 1}m,

(2.15)
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2.2 OPTIMIZATION FOR MACHINE LEARNING

where the objective function f : Rn × Rm → R is a linear function. The variable vector
x is bounded by lbx and ubx, which are constants specifying the lower and upper bounds
of x. The variable vector y is binary: y ∈ {0, 1}m.

The difficulty of solving (2.15) is that the binary variable y destroys the convexity prop-
erty of the constraint set. Therefore, we cannot apply the convex optimization techniques
described in previous section to solve the (2.15). In the following, we describe two pop-
ular approaches to non-convex optimization problems in general and to Mixed 0-1 Pro-
gramming problems in particular: the Branch & Bound and the DC (Difference of Convex
Functions) Programming.

2.2.2.1 Branch and Bound

In this subsection, we describe the main principles of the Branch-and-Bound algorithm and
its application to solve the problem (2.15).

Let the set of constraints in (2.15) be the region of feasible solutions S = {(x, y) ∈
Rn × {0, 1}m : Ax + By ≤ b, x ∈ [lbx, ubx], y ∈ {0, 1}m}. The problem (2.15) can then be
expressed as:

min
(x,y)∈S

f(x, y) = cTx+ dT y. (2.16)

Let P be a set of potential solutions of the (2.15). The set P contains the set S for which
the function f(x, y) is still well defined. For example, P can be the set of constraints without
limitations on the binary variable y: P = {(x, y) ∈ Rn×Rm : Ax+By ≤ b, x ∈ [lbx, ubx], y ∈
[0, 1]}. Let g(x, y) be a function defined on S (or P ) with the property that g(x, y) ≤ f(x, y)
for all (x, y) ∈ S (resp. (x, y) ∈ P ). The function g(x, y) is called the bounding function of
the function f(x, y). Both the set P and the function g(x, y) are very useful in the Branch-
and-Bound context. Figure 2.7 illustrates an example relation between the set S of feasible
solutions and the set P of potential solutions and between the objective function f(x, y)
and the bounding function g(x, y).

In general, solving a problem with the Branch-and-Bound algorithm is to search through
a search tree, in which the root node corresponds to the original problem, and every other
node is a subproblem of the original problem. Given a current node N of the search tree,
the children of N are subproblems derived from N by adding some new constraints. For
example, the problem (2.15) can be divided into the two following subproblems by splitting
the constraint of the variable x ∈ [lbx, ubx]:

min
(x,y)∈S1

f(x, y) = cTx+ dT y. (2.17)

where S1 = {(x, y) ∈ Rn × {0, 1}m : Ax+By ≤ b, x ∈ [lbx,
lbx+ubx

2 ], y ∈ {0, 1}m}

and

min
(x,y)∈S2

f(x, y) = cTx+ dT y. (2.18)

where S2 = {(x, y) ∈ Rn × {0, 1}m : Ax+By ≤ b, x ∈ ( lbx+ubx2 , ubx], y ∈ {0, 1}m}
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Figure 2.7: Sample of a relation between the set S of feasible solutions and the set P of
potential solutions and between the objective function f(x, y) and the bounding function
g(x, y) [37]

The search tree is constructed dynamically during the search and consists initially of
only the root node as the original problem. To each node in the search tree, a bounding
function g(x, y) associates a real number called the bound for the node. For the leaves
of the search tree, the bound equals the value of the corresponding solution, whereas for
internal nodes the value is a lower bound for the value of any solution of the subproblem
corresponding to the node. The general scheme of the Branch-and-Bound algorithm is
sketched as follows:

Algorithm 2.2: General scheme of Branch and Bound algorithm for a problem F .

1. Incumbent U = +∞;

2. Select a sub-problem Fi;

3. If (Fi is infeasible), then delete it;

4. Else, compute the lower bound lb(Fi);

5. If (lb(Fi) ≥ U ), then delete Fi;

6. Else, if (the solution to Fi satisfies all the constraints of F ), then U := lb(Fi);

7. Else, break Fi into sub-problems and goto step 2.
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2.2 OPTIMIZATION FOR MACHINE LEARNING

The Branch-and-Bound algorithm for a minimization problem hence contains three
main components [37]:

• A bounding function providing for a given subspace of the solution space a lower
bound for the best solution value obtainable in the subspace.

• A strategy for selecting the live solution subspace to be investigated in the current
iteration

• A branching rule to be applied if a subspace after investigation cannot be discarded,
hereby subdividing the subspace considered into two or more subspaces to be inves-
tigated in subsequent iterations.

Since the complexity of the Branch-and-Bound algorithm depends on the number of
variables and constraints, in some cases it is unsuitable for large-scale optimization prob-
lems. In the next section, we describe an alternative method for the large-scale non-convex
optimization problems: The D.C. (Difference of Convex Functions) programming approach.

2.2.2.2 DC Programming Approach

In this subsection, we introduce the DC Programming approach for solving a large-scale
Mixed 0-1 Linear Programming problem (2.15).

The DC algorithm (Difference of Convex Functions algorithm or DCA) has been first
introduced by Pham in 1985 as an extension of the sub-gradient methods, and extensively
developed by Le and Pham since then [16, 17]. The DCA is designed for nonlinear, non-
convex, non-smooth, and large-scale programming problems and has successfully been
applied for solving many real world non-convex optimization problems [15, 18, 103, 126,
130].

The DCA is a continuous optimization method for solving DC program with convex
constraints. To be able to apply the DCA for solving the problem (2.15), we first need to
handle the discrete constraint of variable y ∈ {0, 1}m by representing it via a continuous
formulation. Second, we can transform the problem (2.15) to a DC program.

Fortunately, the binary set {0, 1}m can easily be represented as

{y ∈ {0, 1}m} ⇔ {y ∈ [0, 1]m : p(y) ≤ 0} (2.19)

where the function p(y) =
∑m
i=1 yi(1− yi) is continuous and p(y) ≥ 0,∀y ∈ [0, 1]m and

p(y) = 0 if and only if y ∈ {0, 1}m.

Let K = {(x, y) ∈ Rn × [0, 1]m : Ax+ By ≤ b, x ∈ [lbx, ubx], y ∈ [0, 1]m} be a nonempty
and compact set. The problem (2.15) can be expressed as:

min{f(x, y) = cTx+ dT y : (x, y) ∈ K, y ∈ {0, 1}m}. (2.20)

By using (2.19), we formulate the problem (2.20) as an equivalent problem:

min{f(x, y) = cTx+ dT y : (x, y) ∈ K, p(y) ≤ 0}. (2.21)
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Note that the problem (2.21) can’t be handled directly by DCA due to the non-convex
constraint p(y) ≤ 0. Fortunately, the problem can be reformulated as a DC program via
penalization techniques with a positive penalty parameter t as follows:

min{Ft(x, y) = cTx+ dT y + tp(y) : (x, y) ∈ K}. (2.22)

When t is a large positive number, minimizing Ft(x, y) over the convex setK will either
force p(y) to be zero or force y to be binary. According to the general result of the penalty
method [77], given a large number t, the minimizer of the (2.22) should be found in a region
where p(y) is relatively small.

Definition 2.7 (Cubic neighborhood)
(see [77]) Let ỹ ∈ {0, 1}m. The set N(ỹ) = {y : ||y − ỹ||∞ ≤ 1

5} is called a 1
5 -cubic neighborhood

of the binary point ỹ.

Definition 2.8 (Global Minimizer via penalty method)
(see [77]) Suppose that t is large enough, if (x∗, y∗) is a global minimizer of (2.22) and y∗ is in a
1
5 -cubic neighborhood of a binary point ỹ, then (x∗, ỹ) is a solution of the problem (2.20).

However, the problem (2.22) is a non-convex, nonlinear optimization problem that is
difficult to solve. Fortunately, we can represent Ft(x, y) as a difference of convex functions
(DC):

Ft(x, y) = g(x, y)− h(y)

where g(x, y) = f(x, y) = cTx+dT y and h(y) = −tp(y) are convex functions. Therefore,
the problem 2.22 can be reformulated as a DC programming problem:

min{Ft(x, y) = g(x, y)− h(y) : (x, y) ∈ K}. (2.23)

According to the general framework of DCA [15, 18, 103, 126, 130], we need to construct
the two following sequences: {Xk = (xk, yk)} and {Y k = (uk, vk)}. To get the Y k =
(uk, vk), we compute the subdifferential of the function h(y) at the point Xk = (xk, yk),
denoted by ∂h(xk, yk).

Definition 2.9 (Subdifferential)
(see [16]) Let Γ0(Rn) denote the convex cone of all lower semi-continuous proper convex functions
on Rn. For all θ ∈ Γ0(Rn) and x0 ∈ dom(θ) = {x ∈ Rn : θ(x) < +∞}, ∂θ(x0) denotes the
subdifferential of θ at x0.

∂θ(x0) = {y ∈ Rn : θ(x) ≥ θ(xo)+ < x− x0, y >, ∀x ∈ Rn}

It is well-known that if θ is differentiable at x0, then ∂θ(x0) reduces to the {∇θ(x0)}. In
our case, the convex function h(y) is defined as h(y) = −tp(y) = −t

∑m
i=1 yi(1− yi), which

is a continuously differentiable function. Therefore, ∂h(xk, yk) = {∇(x,y)h(xk, yk)}. The
vector Y k = (uk, vk) can be computed as follows:

(uk, vk) ∈ ∂h(xk, yk)⇔ (uk = 0, vk = −t
m∑
i=1

(1− 2yki )ei) (2.24)
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2.2 OPTIMIZATION FOR MACHINE LEARNING

where ei is the i-th unit vector of Rm.

Let g∗ = sup{< x, y > −g(x) : x ∈ Rn} be the conjugate function of g. For computing
(Xk+1 = (xk+1, yk+1)) ∈ ∂g∗(uk, vk), it is equivalent to solve the following linear program:

(xk+1, yk+1) ∈ argmin{g(x, y)− < (x, y), (uk, vk) >: (x, y) ∈ K} (2.25)

This DC algorithm can be terminated when one of the following conditions is satisfied:

1. One of the sequences {Xk} or {Y k} converges, i.e.,

||Xk+1 −Xk|| ≤ ε1
or

||Y k+1 − Y k|| ≤ ε1

2. The sequence {Ft(Xk) = g(xk, yk)− h(yk)} converges, i.e.,

||Ft(Xk+1)− Ft(Xk)|| ≤ ε2

3. If (xk, yk) is in a ε3-cubic neighborhood of a binary point (xk, yk).

The DC algorithm is summarized as follows:

Algorithm 2.3: Difference of Convex Functions algorithm (DCA) [103]

1. Initialization:

• Choose an initial point X0 = (x0, y0)

• Let t be a large enough positive value

• Let ε1, ε2 and ε3 be sufficiently small positive values

• Iteration number k = 0

2. Repeat to construct the two following sequences:

• (uk, vk) ∈ ∂h(xk, yk)⇔ (uk = 0, vk = −t
∑m
i=1(1− 2yki )ei)

• (xk+1, yk+1) ∈ argmin{g(x, y)− < (x, y), (uk, vk) >: (x, y) ∈ K}

3. Until one of the conditions is satisfied:

• ||Xk+1 −Xk|| ≤ ε1 or ||Y k+1 − Y k|| ≤ ε1
• ||Ft(Xk+1)− Ft(Xk)|| ≤ ε2
• ||(xk, yk)− (xk, ỹk)||∞ ≤ ε3

The convergence of the DCA is described in the following theorem (see [16]).

Theorem 2.9 (Convergence properties of the DC algorithm)
1. DCA generates a sequence {(xk, yk)} such that the sequence {Ft(xk, yk)} is decreasing and

bounded below.

2. If the optimal value of (2.23) is finite and the infinite sequences {Xk} and {Y k} are bounded,
then every limit point X∞ of the sequence {Xk} is a Karush-Kuhn-Tucker point.
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2. THEORETICAL BACKGROUND

In summary, this chapter provided a background on various machine learning algo-
rithms, which are integral to and motivate the current dissertation. First, Section 2.1 de-
scribed three main groups of machine learning techniques in more detail: feature extrac-
tion/selection, supervised learning and unsupervised algorithms with concrete illustra-
tions. Second, Section 2.2 presented two popular operational research approaches for ma-
chine learning: convex and non-convex optimization techniques. In the next chapter, we
introduce the new developed machine learning algorithms.
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Chapter 3

New Reliable Machine Learning Algorithms

Entities should not be multiplied
unnecessarily.
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Figure 3.1: Model of a reliable statistical pattern recognition system

A critical question when utilizing automatic pattern-recognition systems for decision
making (e.g. intrusion detection) is whether we can trust the outcomes of a classifier.
In other words, is the classification accuracy reliable? According to Figure 3.1, the total
reliability of a pattern-recognition system is affected by the preprocessing reliability,
the feature extraction/selection reliability and the classification reliability. In this sec-
tion, we describe the new efficient feature selection methods, supervised and unsuper-
vised learning algorithms to address this reliability issue. In particular, we propose new
Generic-Feature-Selection-Measure [93, 94], a new Reliable Feature-Selection Method
[98], a new Reliable Ensemble-Feature-Selection Framework [96], General Lp-norm Sup-
port Vector Machines [97, 100], and Optimal K-means Clustering [92].
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3.1 A New Reliable Feature-Selection Process

A feature-selection process consists of a feature-selection method and a search strategy for
relevant features, such as exhaustive search, best-first search or genetic search. There ex-
ist three categories of feature-selection methods: the filter, the wrapper and the embedded
models [56, 74]. The wrapper model utilizes a classifier’s performance in assessing and
selecting features, whereas the filter model considers statistical properties of the data set
without involving any learning algorithms. The embedded model integrates feature selec-
tion into the learning process of a classifier.

We distinguish two main factors that affect the reliability in the feature-selection pro-
cess: (1) the choice of feature-selection methods and (2) the search strategies for relevant
features.

Add. 1 Each data set has its own statistical properties. Based on the estimation of these
properties, a feature-selection method seeks representative patterns of the data. Thus, the
wrong choice of feature-selection methods leads to non-representative patterns and the
feature-selection results become unreliable. Further on, the classifier’s performance might
not be steady as the classifier has learnt on non-representative data set.

Add. 2 The second factor is the search strategies employed in the feature-selection pro-
cess. Even though we utilize appropriate feature-selection methods, the heuristic-search
strategies might provide inconsistent results with different executions yielding different
minima. Consequently, the feature-selection results are unreliable as well.

In this section, we first introduce a formal definition of a reliable feature-selection pro-
cess. Our definition reflects the main factors that affect the reliability in a feature-selection
process. Moreover, our definition establishes formal measurements of the feature-selection
reliability, i.e., the steadiness of a classifier’s performance and the consistency in search for
relevant features.

We then propose new methods in order to address the main causes of the unreliable
feature-selection process: (3) the inappropriate choice of feature-selection methods and (4)
the heuristic search strategies.

Add. 3 We introduce a new methodology for determining appropriate instances of a
class including several feature-selection methods of the filter model, e.g. the correlation-
feature-selection measure (CFS) [59] and the minimal-redundancy-maximal-relevance mea-
sure (mRMR) [108]. We call this class a generic-feature-selection (GeFS) measure. Follow-
ing our new proposed methodology, we first analyze the statistical property of a data set.
We then choose the CFS measure if the data set has many features that are linearly corre-
lated to the class label and to each other. Otherwise, the mRMR measure is selected.

Add. 4 We propose a new search approach that ensures the globally optimal feature
subset by means of the GeFS measure. The new approach is based on solving a mixed 0-1
linear programming problem (M01LP) by using the branch-and-bound search algorithm.
In this M01LP problem, the number of constraints and variables is linear in the number
of full set features. In addition, the new proposed search method allows us to easily in-
tegrate expert knowledge in the feature-selection process. That significantly increases the
reliability of the feature relevance estimation.
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3.1.1 Definition of Reliability in Feature-Selection Process1

In this subsection, we introduce a formal definition of a reliable feature-selection process.
As we discussed in the introduction, the reliability of a feature-selection process is affected
by the choice of feature-selection methods and the search strategy for relevant features.
Thus, we measure the reliability of a feature-selection process via the steadiness of a classi-
fier’s performance and the consistency in search for relevant features as explained below.
We first provide several important notations.

Given a data set D, a classifier C and a feature-selection method FS. Suppose that
we run the FS algorithm M times to select features from the data set D . With different
executions of a search strategy utilized in the feature-selection process, the feature-selection
results might be different. Let Xi, (i = 1,M) be the selected feature subset in the ith run.
Acci, (i = 1,M) is the classification accuracy of the classifier C performed on Xi. AccF is
the classification accuracy of the C performed on full set of features.

Definition 3.1 (Consistency of feature selection)
A search strategy utilized in feature-selection process is consistent, with level of approximation α or
αconsistent, if, for a given M ,

|X1 ∩X2 ∩ ... ∩XM |
|X1 ∪X2 ∪ ... ∪XM |

= α. (3.1)

The greater the α is, the more consistent the search strategy is. When α = 1 for every
M , we say that the search strategy is truly consistent.

Definition 3.2 (Steadiness of feature selection)
A feature-selection method generates βsteadiness of the classifier C, if, for a given M :

β =
AccF − 1

M

∑M
i=1 |AccF −Acci|
AccF

. (3.2)

The greater the β is, the better the classifier’s steadiness safeguarded by the feature-
selection method is. Thus, the wrong choice of feature-selection methods might affect the
steadiness of a classifier’s performance.

Definition 3.3 (Reliability of feature selection)
A feature-selection method is called (α, β)reliable, if, for a given M , the search strategy utilized in
the feature-selection process is αconsistent and the feature-selection method generates βsteadiness of
the classifier C.

In conventional view, the reliability [14] is defined in terms of stability, consistency and
equivalence. However, in our case the equivalence condition contradicts our defined con-
sistency condition. The reason is that in terms of equivalence condition determined by Dai
[42] a feature-selection process would be considered reliable if different selected feature
subsets lead to the same performance of a classifier; whereas, the consistency condition al-
lows only one feature subset to be selected by the search strategy. Thus, in feature selection
we do not take the equivalence measurement into account.

In the next subsection, we introduce a generic-feature-selection (GeFS) measure and
propose a new methodology for determining appropriate instances of the GeFS measure.
A new search method for relevant features by means of the GeFS measure will be described
subsequently.

1A part of this section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. Reliability in a feature-selection process for intrusion detection.
In Reliable Knowledge Discovery, H. Dai, J. N. K. Liu, and E. Smirnov, Eds. Springer US, 2012, pp. 203-218.
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3.1.2 Generic Feature Selection Measure2

In this subsection, we give an overview of the generic feature selection (GeFS) measure,
which belongs to the filter model for feature selection. As discussed in the Section 2.1.1.2,
the filter model considers statistical characteristics of a data set directly without involv-
ing any learning algorithms [56]. Due to the computational efficiency, the filter method is
usually used to select features from high-dimensional data sets, such as intrusion detec-
tion systems. The filter model encompasses two groups of methods: the feature-ranking
methods and the feature-subset-evaluating methods. The feature-ranking methods assign
weights to features individually based on their relevance to the target concept. The feature-
subset-evaluating methods estimate feature subsets not only by their relevance, but also by
the relationships between features that make certain features redundant. It is well known
that the redundant features can reduce the performance of a pattern recognition system.
Therefore, the feature-subset-evaluating methods are more suitable for selecting features in
many applications. A major challenge in the reliable feature selection process is to choose
appropriate measures that can precisely determine the relevance and the relationship be-
tween features of a given data set.

Since the relevance and the relationship are usually characterized in terms of correlation
or mutual information, we focus on two measures: the correlation-feature-selection (CFS)
measure [59] and the minimal-redundancy-maximal-relevance (mRMR) measure [108]. We
show that these two measures can be fused and generalized into a generic-feature-selection
(GeFS) measure. We reformulate the feature selection problem by means of the GeFS mea-
sure as a polynomial mixed 0-1 fractional programming (PM01FP) problem. We improve
the Chang’s method [33, 34] in order to equivalently reduce this PM01FP problem into a
mixed 0-1 linear programing (M01LP) problem. Finally, we propose to use the branch-and-
bound algorithm to solve this M01LP problem, whose optimal solution is also the globally
optimal feature subset.

Definition 3.4 (Generic feature selection measure)
A generic feature-selection measure utilized in the filter model is a function GeFS(x), which has
the following form:

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n
i=1Bi(x)xi

, x ∈ {0, 1}n (3.3)

In this definition, the vector x is binary: x = (x1, . . . , xn); the binary value of each
variable xi indicates the appearance (xi = 1) or the absence (xi = 0) of the feature fi; a0, b0
are constants; Ai(x), Bi(x) are linear functions of variables x1, . . . , xn; n is the number of
features.

Definition 3.5 (Optimization of generic feature-selection measure)
The feature selection problem is to find x ∈ {0, 1}n that maximizes the function GeFS(x).

max
x∈{0,1}n

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n
i=1Bi(x)xi

(3.4)

Following the definition 3.5, it is easy to integrate the expert knowledge into feature
selection process. In fact, to get more reliable feature selection results, if domain experts
want to select T features from n full-set features and want a particular important feature,

2A part of this section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. Towards a generic feature-selection measure for intrusion de-
tection. In International Conference Pattern Recognition (2010), pp. 15291532.
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for example xi, to appear in the selected feature set, then the problem of feature selection
by means of the generic feature selection measure (GeFS) is defined as follows:

max
x∈{0,1}n

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n
i=1Bi(x)xi

(3.5)

such that


T ≤ n,

x1 + x2 + ...+ xn = T,

xi = 1.

There are several feature selection measures, which can be represented by the form
(3.4), such as the correlation-feature-selection (CFS) measure, the minimal-redundancy-
maximal-relevance (mRMR) measure, the Mahalanobis distance and so on.

Correlation Feature Selection Measure: As discribed in the Section 2.1.1.2, the Corre-
lation Feature Selection (CFS) measure evaluates subsets of features on the basis of the
following hypothesis: ”Good feature subsets contain features highly correlated with the classifica-
tion, yet uncorrelated to each other” [59]. The following equation gives the merit of a feature
subset S consisting of k features:

MeritSk
=

krcf√
k + k(k − 1)rff

Here, rcf is the average value of all feature-classification correlations, and rff is the
average value of all feature-feature correlations. The CFS criterion is defined as follows:

max
Sk

[ rcf1 + rcf2 + ...+ rcfk√
k + 2(rf1f2 + ..+ rfifj + ..+ rfkf1)

]
(3.6)

Suppose that there are n full-set features. We use binary values of the variable xi in
order to indicate the appearance (xi = 1) or the absence (xi = 0) of the feature fi in the
globally optimal feature set. We denote the correlation values rcfi , rfifj by constants ai, bij ,
respectively. Therefore, the problem (3.6) can be described as an optimization problem as
follows:

max
x∈{0,1}n

[ (
∑n
i=1 aixi)

2∑n
i=1 xi +

∑
i 6=j 2bijxixj

]
(3.7)

It is obvious that the CFS measure is an instance of the GeFS measure. We denote this
measure by GeFSCFS .

Correlation is used to measure the linear relationship between variables (see Figure 3.2
on the left side for example). However, if the variables are non-linearly related to each
others when the data points are distributed as clouds (see Figure 3.2 on the right side for
example), using correlation values might fail. In the following, we study a more general
measure for non-linear relationship estimation-the mutual information-based measure and
its application to feature selection problems.
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Figure 3.2: Samples of correlation

The mRMR Feature Selection Measure: As discribed in the Section 2.1.1.2, the mRMR
[108] is a mutual information based feature selection measure. In this method, relevant
features and redundant features are considered simultaneously. In terms of mutual infor-
mation, the relevance of a feature set S for the class C is defined by the average value of all
mutual information values between the individual feature fi and the class C as follows:

D(S, c) =
1

|S|
∑
fi∈S

I(fi; c)

The redundancy of all features in the set S is the average value of all mutual information
values between the feature fi and the feature fj :

R(S) =
1

|S|2
∑

fi,fj∈S

I(fi; fj)

The mRMR criterion is a combination of two measures given above and is defined as
follows:

max
S

[ 1

|S|
∑
fi∈S

I(fi; c)−
1

|S|2
∑

fi,fj∈S

I(fi; fj)
]

(3.8)

By using binary values of the variable xi as in the case of the CFS measure to indicate
the appearance or the absence of the feature fi, we can also rewrite the problem (3.8) as an
optimization problem as follows:

max
x∈{0,1}n

[∑n
i=1 cixi∑n
i=1 xi

−
∑n
i,j=1 aijxixj

(
∑n
i=1 xi)

2

]
(3.9)

It is obvious that the mRMR measure is an instance of the GeFS measure that we denote
by GeFSmRMR.

The task of feature subset selection by means of the GeFS measure: Suppose that there
are n full set features. We need to find a subset of features, which has the maximum value
of GeFS(x) over all 2n possible feature subsets. In other words, we need to solve the
following optimization problem:
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max
x∈{0,1}n

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n
i=1Bi(x)xi

When the number n of features is small, we apply the brute force method to scan all 2n

possible features subsets. But when this number becomes large, the heuristic and random
search strategies, such as the best first search or genetic algorithm [107], are usually cho-
sen due to their computational efficiency. Consequently, the given results will always be
approximate and unreliable. It is desirable to get the globally optimal subset of features.

In the next subsection, we propose a new method to find these optimal subsets. The
main idea is that we consider the optimization problem (3.4) as a polynomial mixed 0-1
fractional programming (P01FP) problem, which will be equivalently converted to a mixed
0-1 linear programming problem and be solved by using the branch and bound algorithm.

3.1.3 Polynomial Mixed 0-1 Fractional Programming

A general polynomial mixed 0− 1 fractional programming (PM01FP ) problem [33, 34] is
represented as follows:

min

m∑
i=1

(ai +
∑n
j=1 aij

∏
k∈J xk

bi +
∑n
j=1 bij

∏
k∈J xk

)
(3.10)

(3.11)

such that


bi +

∑n
j=1 bij

∏
k∈J xk > 0, i = 1,m,

cp +
∑n
j=1 cpj

∏
k∈J xk ≤ 0, p = 1,m,

xk ∈ {0, 1}, k ∈ J ; ai, bi, cp, aij , bij , cpj ∈ <.

By replacing the denominators in (3.11) by positive variables yi(i = 1,m), the PM01FP
then leads to the following equivalent polynomial mixed 0− 1 programming problem:

min

m∑
i=1

(
aiyi +

n∑
j=1

aij
∏
k∈J

xkyi

)
(3.12)

(3.13)

such that


biyi +

∑n
j=1 bij

∏
k∈J xkyi = 1; yi > 0,

cp +
∑n
j=1 cpj

∏
k∈J xk ≤ 0, p = 1,m,

xk ∈ {0, 1}; ai, bi, cp, aij , bij , cpj ∈ <.

(3.14)

(3.15)

In order to solve this problem, Chang [33, 34] has proposed a linearization technique
to transfer the terms

∏
k∈J xkyi into a set of mixed 0 − 1 linear inequalities. Based on this

technique, the PM01FP becomes then a mixed 0−1 linear programming (M01LP ), which
can be solved by means of the branch-and-bound method to obtain the global solution.
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Proposition 3.1 (Chang’s method for linearization)
A polynomial mixed 0−1 term

∏
k∈J xkyi from (3.13) can be represented by the following program

[33, 34], where C is a large positive value:

min zi

such that

 zi ≥ 0,

zi ≥ C(
∑
k∈J xk − |J |) + yi

(3.16)

Proposition 3.2
A polynomial mixed 0− 1 term

∏
k∈J xkyi from (3.15) can be represented by a continuous variable

vi, subject to the following linear inequalities [33, 34], where C is a large positive value:


vi ≥ C(

∑
k∈J xk − |J |) + yi,

vi ≤ C(|J | −
∑
k∈J xk) + yi,

0 ≤ vi ≤ Cxk, k ∈ J.

(3.17)

We now formulate the feature selection problem (3.4) as a polynomial mixed 0− 1 frac-
tional programming (PM01FP ) problem.

Proposition 3.3 (GeFS via optimization)
The feature selection problem (3.4) is a polynomial mixed 0−1 fractional programming (PM01FP )
problem.

Remark: By applying Chang’s method [33, 34], we can transform this PM01FP prob-
lem into an M01LP problem. The number of variables and constraints is quadratic in the
number n of full set features. This is because the number of terms xixj in (3.4), which are
replaced by the new variables, is n(n+ 1)/2. The branch-and-bound algorithm can then be
utilized to solve this M01LP problem. But the efficiency of the method depends strongly
on the number of variables and constraints. The larger the number of variables and con-
straints an M01LP problem has, the more complicated the branch-and-bound algorithm
is.

In the next subsection, we present an improvement of the Chang’s method to get an
M01LP problem in which the number of variables and constraints is linear in the number
n of full set features.

3.1.4 Optimization of the GeFS measure3

By introducing an additional positive variable, denoted by y, we now consider the follow-
ing problem equivalent to (3.4):

min
x∈{0,1}n

(−GeFS(x)) = −a0y −
n∑
i=1

Ai(x)xiy (3.18)

3This section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. Optimizing a class of feature selection measures. In NIPS 2009
Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML) (2009).
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such that
{
b0y +

∑n
i=1Bi(x)xiy = 1; y > 0. (3.19)

This problem is transformed into a mixed 0-1 linear programming problem as follows:

Proposition 3.4 (Optimization of the GeFS Measure)
A term Ai(x)xiy from (3.18) can be represented by the following program, where C is a large posi-
tive value:

min zi

such that

 zi ≥ 0,

zi ≥ C(xi − 1) +Ai(x)y,
(3.20)

PROOF

(a) If xi = 0, then zi ≥ C(0− 1) +Ai(x)y ≤ 0 will force min zi to be zero, because zi ≥ 0
and C is a large positive value.

(b) If xi = 1, then zi ≥ C(1 − 1) + Ai(x)y ≥ 0 will force min zi to be Ai(x)y, because
zi ≥ 0.

Therefore, the above program on zi reduces to:

min zi =

 0, if xi = 0,

Ai(x)y, if xi = 1.

which is the same as Ai(x)xi = min zi.

Proposition 3.5
A termBi(x)xiy from (3.19) can be represented by a continuous variable vi, subject to the following
linear inequality constraints, where C is a large positive value:

vi ≥ C(xi − 1) +Bi(x)y,

vi ≤ C(1− xi) +Bi(x)y,

0 ≤ vi ≤ Cxi

(3.21)

PROOF

(a) If xi = 0, then the constraints become
vi ≥ C(0− 1) +Bi(x)y,

vi ≤ C(1− 0) +Bi(x)y,

0 ≤ vi ≤ 0,

vi is forced to be zero, because C is a large positive value.
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(b) If xi = 1, then the constraints become
vi ≥ C(1− 1) +Bi(x)y,

vi ≤ C(1− 1) +Bi(x)y,

0 ≤ vi ≤ C,

vi is forced to be Bi(x)y, because C is a large positive value.

Therefore, the constraints on vi reduce to:

vi =

 0, if xi = 0,

Bi(x)y, if xi = 1.

which is the same as Bi(x)xiy = vi.

We substitute each term xiy that will appear in (3.20),(3.21) by new variables ti satisfy-
ing constraints from Proposition 3.2. The total number of variables for theM01LP problem
will be 4n+ 1, as they are xi, y, ti, zi and vi(i = 1, n). Therefore, the number of constraints
on these variables will also be a linear function of n. As we mentioned above, with Chang’s
method [33, 34] the number of variables and constraints depends on the square of n. Thus
our new method actually improves Chang’s method by reducing the complexity of the
branch and bound algorithm.

We now present a new methodology for determining appropriate instances of the GeFS
measure as well as a new search strategy for obtaining subsets of relevant features by
means of this measure. The new methodology requires a statistical analysis of properties of
the given dataset, i.e. computation of correlation values between features. Depending on
these correlation values, the correlation-based or mutual information-based feature selec-
tion methods will be selected. In fact, we choose the GeFSCFS measure if the dataset has
many features that are linearly correlated to the class label and to each other. Otherwise,
the GeFSmRMR measure is selected.

However, before doing this analysis, a visualization of data points into two dimensional
space is necessary [19]. The reason is that even though the correlation value between two
features is high, their relation can still be non-linear. The Anscombe’s quartet [19] illustrates
this phenomenon. In fact, in Figure 3.3 we have four different cases of the relation between
variables x and y (the dataset is given in Appendix). The correlation value between x and y
is 0.816 in each case, which is a very high value. The fourth example (bottom right) shows
that one outlier is enough to produce a high correlation value, even though the relationship
between two variables is not linear.

The new search strategy for relevant features by means of the GeFS measure is sum-
mazied in Algorithm 3.1.

In summary, this section first has analyzed the main factors that affect the reliability in
the feature-selection process: the choice of feature-selection methods and the search strate-
gies for relevant features. A formal definition of a reliable feature-selection process were
introduced. The definition provides formal measurements of reliability in feature-selection,
i.e., the steadiness of a classifier’s performance and the consistency in search for relevant
features. Second, this section has proposed new methods to address the main causes of un-
reliable feature-selection process. In particular, this section has introduced a new method-
ology of determining appropriate instances from a class of feature-selection methods. This
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Figure 3.3: Graphs of the Anscombe’s quartet.

Algorithm 3.1: The search strategy for relevant features by the GeFS measure.

1. Visualize the dataset into two dimensional space to see whether the relationships
between features are linear or non-linear.

2. Analyze the statistical properties of the given dataset in order to choose the
appropriate feature selection instance (GeFSCFS or GeFSmRMR) from the generic
feature selection measure GeFS. We choose the GeFSCFS measure if the dataset has
many features that are linearly correlated to the class label and to each other.
Otherwise, the GeFSmRMR measure is selected.

3. According to the choice of feature selection instance from Step 1, we construct the
optimization problem 3.4 for the GeFSCFS measure or for the GeFSmRMR measure.
In this step, we can use expert knowledge by assigning the value 1 to the variable if
the feature is relevant and the value 0 otherwise.

4. Transform the optimization problem of the GeFS measure to a mixed 0-1 linear
programming (M01LP) problem, which is to be solved by means of the
branch-and-bound algorithm. A non-zero integer value of xi from the optimal
solution x indicates the relevance of the feature fi regarding the GeFS measure.

class is called a generic-feature-selection (GeFS) measure. This section has also proposed a
new search approach that ensures the globally optimal feature subset by means of the GeFS

41
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measure. The new search approach is based on solving a mixed 0-1 linear programming
(M01LP) problem by means of the branch-and-bound algorithm.

So far, we have studied the reliable feature selection methods for the dataset, which
has representative linear or non-linear relationships between features. However, in many
cases looking at only one statistical relationship is not sufficient to select relevant features,
because the dataset can have a mixture of these statistical properties. In the next section,
we propose a new ensemble feature selection framework that allows to consider many
different statistical properties of a given data set at the same time by combining many
feature selection methods used in the filter model. Therefore, the new proposed framework
provides much more reliable feature selection results.

3.2 A New Reliable Ensemble Feature-Selection Framework4

A typical problem when utilizing filter model for selecting features is the over-selecting phe-
nomenon. From the Figure 3.1, in the classification phase, the feature measurement module
picks a part of testing data under consideration based on the measured features from the
training phase. This assumes that the selected features from the training phase will be rep-
resentative for the testing data. In fact, this is not always true. The phenomenon happening
when the selected features from the training phase are quite different from the represen-
tative features of the testing data is called over-selecting. In this case, the feature selection
results are unreliable and the testing patterns are quite different from the patterns that the
system has learned, thus the classification process might perform poorly. Since the model
is adapted to another data distribution and might become overfitted, the over-selecting phe-
nomenon might imply the over-fitting phenomenon of learning algorithms as well.

There are three main causes of the over-selecting phenomenon that lead to unreliable
feature selection results: (i) non-comprehensive consideration of statistical properties of
training data, (ii) heuristic search strategies for feature selection and (iii) small sample size
of the data set for training.

Add i. The first cause is that we usually use only one feature selection method for se-
lecting features from a given data set. Since each feature selection measure is considered a
representation of a statistical property of the data set, the feature selection results are not
general at all, because a data set usually has a set of statistical properties. Therefore, in
many cases we take into account the most representative property of the training data and
neglect the less representative ones, which might appear as the most representative prop-
erties in the testing data. Consequently, the selected features from the training data and the
representative features of the testing data are different. It is necessary to consider as many
statistical properties as the data has.

Add ii. The second cause of over-selecting is that many feature selection methods use
heuristic search strategies, such as genetic algorithms, to find locally optimal feature sub-
sets. Therefore, in the case of many local optima, with different settings of heuristic search
methods, different locally optimal feature subsets may be selected. For example, when
using genetic algorithm for selecting the best feature subsets by means of the correlation-
feature-selection (CFS) measure [59], with different initial populations or with different
probabilities of mutation, different solutions may be found. Since each selected feature
subset can give a good accuracy of a classifier, domain experts might confuse on choos-
ing the best one for the feature measurement module in the classification phase. Thus the

4This section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. A new ensemble-feature-selection framework for intrusion de-
tection. In 11th International Conference on Intelligent Systems Design and Applications (ISDA), Spain, 2011, pp.
213-218.
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finally selected feature subset might be quite different from the representative one of the
testing data.

Add iii. The third reason of the over-selecting phenomenon is the small sample size of
a data set for training. In this case, not all the statistical properties are presented in the
training data set.

In this section, we propose a new framework to address the principal causes of the
over-selecting phenomenon: (1) non-comprehensive consideration of statistical properties
of training data and (2) heuristic search strategies for feature selection. Next section will
describe a new general Lp-norm Support Vector Machines to deal with small datasets.

Add 1. Our new framework that we call Reliable Ensemble Feature Selection measure
(EnFS), allows to consider many statistical properties of a given data set at the same time
by combining many feature selection methods used in the filter model. Unlike the ensem-
ble feature selection techniques proposed by Saeys et. al. in [120] and Tuv in [56], with
our approach, a new formula of feature selection score is constructed from chosen feature
selection measures for combining.

Add 2. We also propose a new search algorithm that ensures the globally optimal feature
subset by means of the constructed measure. The new search approach is based on solving
a mixed 0-1 linear programming (M01LP) problem by means of the branch-and-bound
algorithm. In this M01LP problem, the number of constraints and variables is linear in the
number of full set features.

3.2.1 Reliable Ensemble Feature-selection Measure

This subsection introduces the definition of a new reliable ensemble feature-selection mea-
sure.

Definition 3.6 (Ensemble feature-selection measure)
An ensemble-feature-selection measure (EnFS) is defined as a linear combination of m instances of
the generic-feature-selection measure 3.3 as follows:

EnFS(x) =
1

m

m∑
k=1

a0k +
∑n
i=1Aik(x)xi

b0k +
∑n
i=1Bik(x)xi

(3.22)

Definition 3.7 (Optimization of ensemble feature-selection measure)
The problem of feature selection by means of the ensemble-feature-selection measure is to find x that
maximizes the function EnFS(x):

max
x∈{0,1}n

EnFS(x) =
1

m

m∑
k=1

a0k +
∑n
i=1Aik(x)xi

b0k +
∑n
i=1Bik(x)xi

(3.23)

Among m chosen instances, some of them can be univariate methods used in the filter
model, such as information gain, distance measures [56], etc. The others can be multivari-
ate methods, such as the correlation-feature-selection (CFS) measure [59], the minimal-
redundancy-maximal-relevance (mRMR) measure [108], etc. This framework is able to
consider many feature selection methods at the same time while keeping the spirit of the
filter model by maximizing the defined score EnFS(x).

To get more reliable results, if domain experts want to select T features from n full-
set features and want a particular important feature, for example xi, to appear in the se-
lected feature set, then the problem of feature selection by means of the ensemble-feature-
selection measure (EnFS) is defined as follows:
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max
x∈{0,1}n

EnFS(x) =
1

m

m∑
k=1

a0k +
∑n
i=1Aik(x)xi

b0k +
∑n
i=1Bik(x)xi

(3.24)

such that


T ≤ n,

x1 + x2 + ...+ xn = T,

xi = 1.

In the next subsection, we consider the optimization problems (3.23), (3.24) as polyno-
mial mixed 0−1 fractional programming (P01FP ) problems and show how to solve them.

Proposition 3.6 (EnFS via optimization)
The feature selection problem (3.23) or (3.24) is a polynomial mixed 0 − 1 fractional programming
(PM01FP ) problem.

Remark: By applying Chang’s method [33, 34], this PM01FP problem can be trans-
formed into an M01LP problem. The number of variables and constraints is quadratic
in the number n of full set features. This is because the number of terms xixj in (3.23),
which are replaced by the new variables, is n(n + 1)/2. The branch-and-bound algorithm
can then be used to solve this M01LP problem. But the efficiency of the method depends
strongly on the number of variables and constraints. The larger the number of variables
and constraints an M01LP problem has, the more complicated the branch-and-bound al-
gorithm is.

In the next subsection, we present an improvement of the Chang’s method to get an
M01LP with a linear number of variables and constraints in the number of full set vari-
ables. We also give a new search strategy to obtain the relevant subsets of features by means
of the EnFS measure.

3.2.2 Optimization of the EnFS measure

By introducing additional positive variables, denoted by yk(k = 1, . . . ,m), the following
problem equivalent to (3.23) is considered:

min
x∈{0,1}n

(−EnFS(x)) = − 1

m

m∑
k=1

(
a0kyk +

n∑
i=1

Aik(x)xiyk

)
(3.25)

such that

 yk > 0, k = 1, . . . ,m

b0kyk +
∑n
i=1Bik(x)xiyk = 1

(3.26)

This problem is transformed into a mixed 0-1 linear programming problem as follows:

Proposition 3.7 (Optimization of the EnFS measure)
A term Aik(x)xiyk from (3.25) can be represented by the following program, where M is a large
positive value:

min zik

such that

 zik ≥ 0,

zik ≥M(xi − 1) +Aik(x)yk,
(3.27)
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PROOF The proof of this proposition is in the same line as in the proposition 3.4. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the program min zik reduces to:

min zik =

 0, if xi = 0,

Aik(x)yk, if xi = 1.

which is the same as Aik(x)xiyk = min zik. �

Proposition 3.8
A term Bik(x)xiyk from (3.26) can be represented by a continuous variable vik, subject to the
following linear inequality constraints, where M is a large positive value:


vik ≥M(xi − 1) +Bik(x)yk,

vik ≤M(1− xi) +Bik(x)yk,

0 ≤ vik ≤Mxi

(3.28)

PROOF The proof of this proposition is in the same line as in the proposition 3.5. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the constraints on vik reduce to:

vik =

 0, if xi = 0,

Bik(x)yk, if xi = 1.

which is the same as Bik(x)xiyk = vik. �

Each term xiyk in (3.27), (3.28) is substituted by a new variable tik satisfying constraints
from Proposition 3.2. Then the total number of variables for the M01LP problem will
be
(
(3m + 1)n + m

)
, as they are xi, yk, tik, zik and vik(i = 1, . . . , n; k = 1, . . . ,m). There-

fore, the number of constraints on these variables will also be a linear function of n. As we
mentioned above, with Chang’s method [33, 34] the number of variables and constraints
depends on the square of n. Thus our method actually improves Chang’s method by re-
ducing the complexity of the branch and bound algorithm.

Remark: To solve the optimization problem (3.24), we can apply the same technique for
solving the problem (3.23).

In summary, this section has studied a phenomenon in feature selection process that af-
fects the reliable feature selection results: the over-selecting phenomenon. A feature selec-
tion method is required to be general enough to find representative features from training
data, which are then used for classifying test patterns. The situation where the features se-
lected from the training data are quite different from the representative features of the test-
ing data is called over-selecting. The main causes of the over-selecting phenomenon are: non-
comprehensive consideration of statistical properties of the training data, heuristic search
strategies for feature selection and small sample size of the data set for training. In this
section, we have shown the influence of the over-selecting phenomenon on the over-fitting
phenomenon of machine learning algorithms. We have proposed a new framework to ad-
dress principal causes of over-selecting, thus reducing the chance of over-fitting and provid-
ing reliable results. Our new framework that we call Ensemble Feature Selection measure
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(EnFS), allows to consider many statistical properties of a given data set at the same time by
combining many feature selection methods used in the filter model. From the chosen fea-
ture selection measures, a new combined measure is constructed. We have also proposed
a new search algorithm that ensures the globally optimal feature subset by means of the
constructed measure. Similar to the case of the generic feature selection measure, this new
search approach is based on solving a mixed 0-1 linear programming (M01LP) problem by
means of the branch-and-bound algorithm.

In the next sections, we first analyze the limitations of the new GeFS and the EnFS
methods for feature selection in some special cases, such as when the dataset is quite small
or highly imbalanced. We then propose new methods to overcome these limitations.

3.2.3 The limitations of the GeFS and the EnFS methods for feature selection

The Generic Feature Selection (GeFS) measure and the Ensemble Feature Selection (EnFS)
framework may fail if the dataset is (1) highly imbalanced or (2) quite small in size, but (3)
has many features. We give a more detailed analysis as below.

Add 1. For the case of highly imbalanced datasets, the portion of instances of a class is
much larger than the other ones. This is a typical problem in many application domains,
such as in network security. The number of normal communication traffic patterns ob-
served in a network exceeds the number of attack traffic patterns. When we calculate the
correlation value between a feature X and the class label Y (corr(X,Y ), see the calcula-
tion below), the Portion A of attacks might not affect much to the value cor(X,Y ). That
means only the Portion N of normal instances will contribute to estimate relevance and
redundancy of features. It might happen that two features X1, X2, which have the same
portion N but have quite different portion A, provide the same high correlation values
cor(X1, Y ) = cor(X2, Y ) and one of them will be selected due to redundancy. But it turns
out that both of them are needed to differentiate types of attacks.

The correlation value between two random variables X and Y is defined as follows:

cor(X,Y ) =
cov(X,Y )

δXδY
=
E(X − µX)(Y − µY )

δXδY
=

∑m
i=1(xi − µX)(yi − µY )

δXδY

If we normalize the dataset so that µX = µY = 0; δX = δY = 1, then the correlation
value is computed as follows:

cor(X,Y ) =

m∑
i=1

(xiyi) =

Portion N︷ ︸︸ ︷
Normal∑
i=1

(xiyi) +

Attack∑
i=1

(xiyi)︸ ︷︷ ︸
Portion A

Add 2. When the dataset is small, it might happen that there are not enough instances
to exactly estimate the joint probabilities p(x, y) between features in the formula 3.29 of
mutual information computation (see below). Therefore, the mutual information-based
feature selection method cannot be utilized to select features.

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)
) (3.29)

Add 3. To select features in highly imbalanced and small datasets with many features,
the wrapper and embedded methods, which use a classifier’s performance as a measure-
ment, are a good choice. The reason is that the selected features contribute mostly to differ-
entiate (classify) instances in the datasets. It is also the main objective of a feature selection
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process. In the next section, we focus on the one of the most popular embedded methods
for feature selection as well as for classification task: Lp-norm (p=1 or 2) Support Vector
Machines.

3.3 General Lp-norm Support Vector Machines5

In this section, we propose a new general Lp-norm Support Vector Machine, which is par-
ticularly useful in combat with small training datasets.

When the training dataset is small, the distribution of the target variable, which the
model is trying to predict, might likely be changed in the testing data, thus leading to over-
fitting phenomenon and unreliable classification results. In this case, it is worth select-
ing few important features for building compact and simple models to reduce the chance
of over-fitting in the future. The filter model for feature selection might not be a good
choice, since there are not enough samples to estimate statistical properties of the dataset.
The wrapper and embedded models use the performance of a machine learning classi-
fier, which is a good criterion to select important features and at the same time to keep
the model as accurate as possible. Due to the computational efficiency when dealing with
small datasets, several machine learning algorithms were applied in previous work, such
as neural networks (see, for example, [61, 149]). In this section, we focus on the embed-
ded feature selection model that is based on the support vector machine (SVM) to cope
with small datasets. In fact, we propose a new general Lp-norm SVM (GLp-SVM) with a
formal proof that the GLp-SVM selects a lower number of important features while provid-
ing better and more reliable accuracy than the traditional Lp-SVM. According to Occam’
razor principle [45] saying that ”other things being equal, a simpler explanation is better
than a more complex one”, thus our new GLp-SVM is to be preferred because the simplic-
ity, which is understood as the number of features being used for building the model, is
desirable in itself. Below we first analyze the drawback of the traditional Lp-norm SVMs.

The traditional Lp-norm Support Vector Machines (Lp-SVMs, with p = 1 or p = 2)
were studied in many previous work and were demonstrated to be efficient in solving
a broad range of different practical problems (see, for example, [30, 40, 57, 83, 140, 91,
113, 134, 151, 138]). As other machine learning classifiers, the performance of Lp-SVMs
strongly depends on the quality of features from a dataset. The existence of irrelevant
and redundant features in the dataset can reduce the accuracy of Lp-SVMs. We realize
that the traditional Lp-SVMs do not comprehensively consider irrelevant and redundant
features. In fact, the Lp-SVMs consider all n full-set features to be important for training.
However, there probably exist irrelevant and redundant features among n full-set features.
Furthermore, in many cases L2-SVM was shown not to select any features [30]. The L1-
SVM provides some relevant features, but it cannot remove redundant features [30]. In
order to improve the performance of the Lp-SVMs by looking at important features, it is
necessary to test all 2n possible combinations of features for training. In this section, we
generalize the Lp-SVMs into a new general Lp-norm Support Vector Machine (GLp-SVM)
that takes into account all 2n possible feature subsets. In the formulation of the GLp-SVM,
we encode the data matrix by using the binary variables xk (k = 1, n) to indicating the
appearance of the kth feature (xk = 1) or the absence of the kth feature (xk = 0). Following
this proposed encoding scheme, our GLp-SVM can be represented as a mixed 0-1 nonlinear
programming problem (M01NLP). The objective function of this M01NLP is a sum of the
inverse value of margin by means of Lp-norm and the error penalty. We prove that the
minimal value of the objective function from the GLp-SVM is not greater than the one

5This section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. On general definition of l1-norm support vector machines for
feature selection. International Journal of Machine Learning and Computing 1, 3 (2011), 279-283.
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from the traditional Lp-SVMs. As a consequence, solving our new proposed M01NLP
optimization problem results in a smaller error penalty and enlarges the margin between
two support vector hyper-planes, thus possibly giving better generalization capability or
more reliable classification results of SVM than those obtained by solving the traditional
Lp-SVMs. Moreover, by following the new general formulation we can easily integrate
expert knowledge into the GLp-SVMs by adding the constraints x1+x2+..+xn = T, xi = 1,
where T is the pre-defined number of selected features and xi is the pre-defined important
feature, to the proposed M01NLP optimization problem.

In order to reduce the computational complexity of directly solving the M01NLP prob-
lem, we apply Chang’s method [33, 34] to equivalently transform it into a mixed 0-1 linear
programming (M01LP) problem if p = 1 or a mixed 0-1 quadratic programming (M01QP)
problem if p = 2. The obtained M01LP and M01QP problems can then be efficiently solved
by using the branch and bound algorithm.

3.3.1 A General Lp-norm Support Vector Machine

Our goal is to develop a new SVM-based method capable of identifying the best feature
subset for classification. To achieve this goal, our first contribution is a novel general for-
mulation of the Lp-norm Support Vector Machines (Lp-SVMs). In the standard Lp-SVMs,
we are given a training data setD withm instances: D = {(ai, ci)|ai ∈ Rn, ci ∈ {−1, 1}}mi=1,
where ai is the ith instance that has n features and ci is a class label. ai can be represented
as a data vector as follows: ai = (ai1, ai2, ..., ain), where aij is the value of the jth feature in
the instance ai.

For the two-class classification problem, a Support Vector Machine (SVM) learns a sep-
arating hyper-plane w · ai = b that maximizes the margin distance 2

||w||pp , where w =

(w1, w2, ..., wn) is the weight vector and b is the bias value. The standard form of the SVM
is given below [40, 133]:

min
w,b,ξ

1

p

∥∥w∥∥p
p

+ C

m∑
i=1

ξi,

such that


ci(
∑n
j=1 aijwj − b) ≥ 1− ξi,

ξi ≥ 0, i = 1,m.
(3.30)

Above, ξi is slack variable, which measures the degree of misclassification of the in-
stance ai, and C > 0 is the error penalty parameter; p = 1 or p = 2. If p = 1, then we have
the L1-norm support vector machine (L1-SVM) that was first proposed by Bradley and
Mangasarian [30]. If p = 2, then we have the traditional L2-norm support vector machine
(L2-SVM) [40].

From (3.30), we observe that the traditional Lp-norm SVMs consider all n features to be
important for training. However, there probably exist irrelevant and redundant features
among n features of the dataset [56, 74]. The performance of Lp-SVMs might be reduced
because of these features. Therefore, it is necessary to test all 2n possible feature subsets for
training the Lp-SVMs.

When the number of features n is small, we can apply the brute force method to scan
all 2n subsets. However if this number of features becomes large, a more computationally
efficient method that also ensures the best feature subset is required. In the following, we
first show how to generalize the problem (3.30) into a general Lp-norm SVM (GLp-SVM),
which is in fact a mixed 0-1 nonlinear programming (M01NLP) problem. We then describe
how to solve this M01NLP optimization problem in order to get globally optimal solution.
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Firstly, we use the binary variables xk (k = 1, n) for indicating the appearance of the
kth feature (xk = 1) or the absence of the kth feature (xk = 0) to encode the data vector ai
(i = 1,m) as follows:

 ai = (ai1x1, ai2x2, ..., ainxn).

x = (x1, x2, ..., xn) ∈ {0, 1}n.
(3.31)

With the encoding scheme (3.31), the problem (3.30) can be generalized into the follow-
ing mixed 0-1 nonlinear programming (M01NLP) problem:

min
w,ξ,b,x

1

p

∥∥w∥∥p
p

+ C

m∑
i=1

ξi,


ci
(∑n

j=1 aijwjxj − b
)
≥ 1− ξi,

ξi ≥ 0, i = 1,m;C > 0,

xj ∈ {0, 1}, j = 1, n.

(3.32)

Proposition 3.9 (Generalization capacity of the GLp-SVMs )
Suppose that S1 and S2 are the minimal values of the objective functions from (3.30) and (3.32),
respectively. The following inequality is true:

S2 ≤ S1 (3.33)

PROOF

It is obvious, since the problem (3.30) is one case of the problem (3.32) when x equals to
(1, 1, .., 1) or x = (x1, x2, .., xn) = (1, 1, .., 1). �

Remark:

1. As a consequence of the Proposition 3.9, solving the problem (3.32) results in a smaller
error penalty and enlarges the margin between two support vector hyper-planes, thus
possibly giving a better generalization capability of SVM than solving the traditional
Lp-norm SVMs in (3.30).

2. To get more reliable classification results, if domain experts want to select T features
from n full-set features and want a particular important feature, for example xi, to
appear in the selected feature set, then the problem of feature selection by means of
the GLp-SVM is defined as follows:

min
w,ξ,b,x

1

p

∥∥w∥∥p
p

+ C

m∑
i=1

ξi,
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

ci
(∑n

j=1 aijwjxj − b
)
≥ 1− ξi,

ξi ≥ 0, i = 1,m;C > 0,

xj ∈ {0, 1}, j = 1, n,

x1 + x2 + ...+ xn = T,

xi = 1.

(3.34)

3. Normally, we can apply popular optimization techniques, such as the branch and
bound algorithm, to directly solve a mixed 0-1 non-linear programming problem.
However, with non-linear constraints, the problem (3.32) becomes even more diffi-
cult to solve. In the next subsection, we propose a new approach to linearize the
constraints in (3.32), thus reducing the computational complexity of solving (3.32).

3.3.2 Optimizing the General Lp-norm Support Vector Machine

The main idea of our new proposed method is to linearize mixed 0− 1 terms wjxj in (3.32)
by applying Chang’s method. In this way, we equivalently transform the optimization
problem (3.32) into a mixed 0-1 linear programming (M01LP) problem if p = 1 or into a
mixed 0-1 quadratic programming (M01QP) problem if p = 2. The obtained M01LP and
M01QP problems can then be efficiently solved by using the branch and bound algorithm.

Proposition 3.10 (Optimization of the GLp-SVMs)
A mixed 0− 1 term wjxj from (3.32) can be represented by a continuous variable zj , subject to the
following linear inequalities [33, 34], where M is a large positive value:

zj ≥M(xj − 1) + wj ,

zj ≤M(1− xj) + wj ,

0 ≤ zj ≤Mxj .

(3.35)

PROOF The proof of this proposition is in the same line as in the Proposition 3.5. The main
idea is to consider two cases when xi = 0 and xi = 1. Thus the constraints on zj reduce to:

zi =

 0, if xj = 0,

wj , if xj = 1.

which is the same as wjxj = zi.

Remark:

1. All the constraints in (3.32) are now linear. We consider the first case when p = 1.
We define w = p − q with p = (p1, p2, ..., pn) ≥ 0, q = (q1, q2, ..., qn) ≥ 0 and eTn =
(1, 1, ..., 1). The problem (3.32) is then equivalent to the following problem [25]:

min
p,q,ξ,b,x

eTn
(
p+ q

)
+ C

m∑
i=1

ξi,
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

ci
(∑n

j=1 aij(pj − qj)xj − b
)
≥ 1− ξi,

ξi ≥ 0, i = 1,m;C > 0,

xj ∈ {0, 1},
pj , qj ≥ 0, j = 1, n.

(3.36)

By applying the Proposition 3.10, we substitute terms pjxj and qjxj in (3.36) by new
variables tj and vj , respectively, satisfying linear constraints. By performing this sub-
stitution, we in fact transform the problem (3.36) into a mixed 0-1 linear program-
ming (M01LP) problem. The total number of variables for the M01LP problem will
be 6n+m+ 1, as they are b, ξi, xj , pj , qj , tj , zj and vj(i = 1, ...,m; j = 1, ..., n). There-
fore, the number of constraints on these variables will also be a linear function of n.
We propose to use the branch and bound algorithm to solve this M01LP problem.

2. If p = 2, then it is obvious that the optimization problem (3.30) is equivalent to the
following mixed 0-1 quadratic programming problem, which can be solved by using
the branch and bound algorithm:

min
w,ξ,b,x,z

1

2

∥∥w∥∥2
2

+ C

m∑
i=1

ξi,



ci
(∑n

j=1 aijzj − b
)
≥ 1− ξi,

zj ≥M(xj − 1) + wj ,

zj ≤M(1− xj) + wj ,

0 ≤ zj ≤Mxj ,

ξi ≥ 0, i = 1,m;C > 0,

xj ∈ {0, 1}, j = 1, n.

(3.37)

In summary, this section has analyzed the popular Lp-norm Support Vector Machines
(Lp-SVMs with p = 1 or p = 2) algorithms. We have realized that the Lp-SVMs do not
comprehensively consider irrelevant and redundant features, because the Lp-SVMs con-
sider all n full-set features to be important for training while skipping other 2n− 1 possible
feature subsets at the same time. In this section, we have generalized the Lp-SVMs into a
new general Lp-norm Support Vector Machine (GLp-SVM) that takes into account all 2n

possible feature subsets. We represent the GLp-SVM as a mixed 0-1 nonlinear program-
ming problem (M01NLP). We prove that solving the new proposed M01NLP optimization
problem results in a smaller error penalty and enlarges the margin between two support
vector hyper-planes, thus possibly giving a better generalization capability of SVMs than
solving the traditional Lp-SVMs. Moreover, by following the new formulation we can
easily control the sparsity of the GLp-SVM by adding a linear constraint to the proposed
M01NLP optimization problem. In order to reduce the computational complexity of di-
rectly solving the M01NLP problem, we have proposed to equivalently transform it into
a mixed 0-1 linear programming (M01LP) problem if p = 1 or into a mixed 0-1 quadratic
programming (M01QP) problem if p = 2. The M01LP and M01QP problems can then be
solved by using the branch and bound algorithm.
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Previous sections have introduced the new reliable feature selection methods and new
supervised learning algorithms. In the next section, we propose a new reliable unsuper-
vised learning algorithm based on the popular K-means clustering: an optimal and large-
scale K-means clustering algorithm.

3.4 An Optimal K-means Clustering6

To deal with datasets without labels, there exist several unsupervised learning algorithms
[45]. In this section, we focus on the K-means clustering algorithm [79], which is one of
the most popular unsupervised learning methods. K-means clustering aims to partition
m observations into K clusters in which each observation belongs to the cluster with the
nearest mean value. As shown in section 2.1.3, the formal description of the K-means
clustering is given below.

Let S = (a1, a2..., am) be a dataset with m instances, each of which is an n−dimensional
vector: ai = (ai1, .., ain) ∈ Rn. The objective in K-means clustering is to group these
instances into K categories C1, C2, ..., CK for a given K, such that the following objective
function is minimized:

JK =

K∑
k=1

∑
i∈Ck

(ai − µk)2 (3.38)

Here µk is the mean vector of the instances from the category Ck: µk = 1
mk

∑
i∈Ck

ai,
where mk is the number of instances in Ck: mk = |Ck|.

Even though many other approaches of the K-means algorithm exist and were success-
fully applied to many application domains (see, for example, [63, 65, 145]), there are still
two open research questions: (1) How to properly initialize the K seeds? and (2) How to
efficiently find the optimal K-means clustering algorithm for large-scale problems?

In this section, we propose a new initialization method for K-means clustering that
allows to automatically select good initial points as well as the number K of clusters. We
also propose a new search method for optimal K-means with K = 2. The main ideas are to
cast these problems into mixed 0-1 linear programming problems which can be solved by
using D.C. programming approach. The details of our new methods are described below.

3.4.1 New Initialization Method for K-means Clustering

To initialize the K-means clustering, the number of clustersK needs to be specified first and
then the seed points are selected. Several popular approaches are applied to determine the
value of K [110]. For example, we use the visualization to indicate the number of clusters
because of its simplicity and explanation possibilities. The value of K can also be equal to
the number of clusters or can also be specified by the users. To select the seed points for
K-means, several methods are widely applied. For instance, Milligan et.al. [88] proposed
to use hierarchical clustering algorithms to find the K initial seeds. In [31], Bradley and
Fayyad suggested to use boostrap-type procedure, in which several different subdatasets
are clustered by using the K-means. Each clustering then provides a different candidate
set of centroids from which the seeds are chosen. Another approach [89], which has been
shown to be a very effective method for well-separated groups, is to find initial seeds that

6This section is published under the title:

Nguyen, H. T. An optimal k-means clustering and application to intrudion detection. Tech. rep., Norwe-
gian Information Security Laboratory, Gjøvik University College, Norway
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are well separated from each others by means of the euclidean distance. Because of the
effectiveness, in this section we focus on this method. Following describes the detail of the
algorithm.

We realize that this algorithm is a greedy search, thus providing suboptimal and unre-
liable solutions in general. The question on how to get more appropriate or more reliable
initialization algorithm is still open. In the following, we propose a new reliable initializa-
tion method for K-means clustering that allows to automatically select good initial points
as well as the number K of clusters. The objective is to search for the best subset of initial
points that has a maximal value of total distances between them. To do this, we first cast
this search problem into a mixed 0-1 linear programming (M01LP) problem which can be
solved by using D.C. programming approach. The domain knowledge can also be eas-
ily intergrated into this search process by adding an additional constraint to the M01LP
problem. The details of our new method are described belows.

Let dij be an euclidean distance between two instances ai and aj of the set S. Therefore,

the total distance between all instances in the set S is: dS =
∑m

i=1

∑m
j=1,j 6=i d

i
j

2 . The task is
to find the subset P of the set S that has the maximal value dP . In the following, by using
binary variables, which indicate the appearance (xi = 1) or the absense (xi = 0) of the ith

instance in the selected subset P , we formalize the task as a mixed 0-1 linear programming
(M01LP) problem which can be solved by using D.C. programming approach.

max
x∈{0,1}m

∑m
i=1(

∑m
j=1,j 6=i d

i
jxj)xi

2
∑m
i=1 xi

(3.39)

⇔ min
x,y

[−
m∑
i=1

(

m∑
j=1,j 6=i

dijxj)xiy]

such that

 2
∑m
i=1 xiy = 1,

x ∈ {0, 1}m, y > 0.
(3.40)

Proposition 3.11 (New initialization of the K-means)
A polynomial mixed 0−1 term (

∑m
j=1,j 6=i d

i
jxj)xiy from (3.40) can be represented by the following

program:
min zi

such that


zi ≥ 0,

zi ≥M(xi − 1) + (
∑m
j=1,j 6=i d

i
jxj)y,

(3.41)

where M is a large positive value.

PROOF The proof of this proposition is in the same line as in the proposition 3.4. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the program min zi reduces to:

min zi =


0, if xi = 0,

(
∑m
j=1,j 6=i d

i
jxj)y, if xi = 1.

which is the same as (
∑m
j=1,j 6=i d

i
jxj)xiy = min zi.
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Proposition 3.12
A polynomial mixed 0− 1 term xiy from the above constraints can be represented by a continuous
variable vi, subject to the following linear inequality constraints: vi ≥M(xi − 1) + y,

vi ≤M(1− xi) + y,
0 ≤ vi ≤Mxi

(3.42)

where M is a large positive value.

PROOF The proof of this proposition is in the same line as in the proposition 3.5. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the constraints on vi reduces to:

vi =

 0, if xi = 0,

y, if xi = 1.

which is the same as xiy = vi.

3.4.2 Optimal 2-means Clustering via a Mixed 0-1 Programming Problem

It has been shown that the K-means clustering problem is an NP−hard optimization prob-
lem, even if K is fixed to 2 [80]. That means there are no algorithms running in polynomial
time to find globally optimal K-means clustering. Many heuristic approaches were pro-
posed and were applied to many application domains [63]. However, the question on how
to find reliable and optimal K-means clustering for large-scale data is still open.

In this section, we will formalize the K-means clustering problem withK = 2 as a mixed
0-1 linear programming problem (M01LPP). The obtained M01LPP can be solved by using
the DC programming approach [16, 17].

The K-means method is determined by minimizing the sum of squared errors, where
µk represents the mean vector of the instances from the cluster Ck, µk = 1

mk

∑
i∈Ck

ai;
mk = |Ck| is the number of instances in Ck.:

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(ai − µk)2

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i − 2aiµk + µ2
k)

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i ) +

K∑
k=1

∑
i∈Ck

(−2aiµk) +

K∑
k=1

∑
i∈Ck

(µ2
k)

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i ) +

K∑
k=1

µk
∑
i∈Ck

(−2ai) +

K∑
k=1

mk(µ2
k)

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i ) +

K∑
k=1

µk
∑
i∈Ck

(−2ai) +

K∑
k=1

mk(

∑
i∈Ck

ai

mk
)µk

min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i ) +

K∑
k=1

µk
∑
i∈Ck

(−2ai) +

K∑
k=1

µk
∑
i∈Ck

ai
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min
C=(C1,C2,..,CK)

JK =

K∑
k=1

∑
i∈Ck

(a2i )−
K∑
k=1

µk
∑
i∈Ck

ai

When K = 2 then,

min
C=(C1,C2)

JK =

2∑
k=1

∑
i∈Ck

(a2i )−
2∑
k=1

µk
∑
i∈Ck

ai (3.43)

The above (3.43) problem is equivalent to the following problem, since the sum
∑2
k=1

∑
i∈Ck

(a2i )
is constant:

min
C=(C1,C2)

JK = −
2∑
k=1

µk
∑
i∈Ck

ai = −
2∑
k=1

(
∑
i∈Ck

ai)
2

mk
(3.44)

min
C=(C1,C2)

JK = −
(
∑
i∈C1

ai)
2

m1
−

(
∑
i∈C2

ai)
2

m2

We use binary values of the variable xi in order to indicate the appearance (xi = 1) or
the absence (xi = 0) of the instance ai in the cluster C1. Therefore, the problem (3.44) is
equivalent to the following discrete optimization problem:

min
x∈{0,1}m

[−
(
∑m
i=1 aixi)

2∑m
i=1 xi

−
(
∑m
i=1 ai(1− xi))2∑m
i=1(1− xi)

]

⇔ min
x∈{0,1}m,y

[−
m∑
i=1

(

m∑
j=1

ajxj)aixiy1 −
m∑
i=1

(

m∑
j=1

aj(1− xj))ai(1− xi)y2]

such that


∑m
i=1 xiy1 = 1, y1 > 0∑m
i=1(1− xi)y2 = 1, y2 > 0

(3.45)

Proposition 3.13 (Optimization of the K-means)
A polynomial mixed 0− 1 term (

∑m
j=1 ajxj)aixiy1 from (3.45) can be represented by the following

program:
min zi

such that


zi ≥ 0,

zi ≥M(xi − 1) + ai
∑m
j=1 ajxjy1,

(3.46)

where M is a large positive value.

PROOF The proof of this proposition is in the same line as in the proposition 3.4. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the program min zi reduces to:

min zi =


0, if xi = 0,

ai
∑m
j=1 ajxjy1, if xi = 1.

which is the same as (
∑m
j=1 ajxj)aixiy1 = min zi.
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Proposition 3.14
A polynomial mixed 0− 1 term (

∑m
j=1 aj(1− xj))ai(1− xi)y2 from (3.45) can be represented by

the following program:
min ti

such that


ti ≥ 0,

ti ≥M(−xi) + ai
∑m
j=1 aj(1− xj)y2,

(3.47)

where M is a large positive value.

The proof of this proposition is in the same line as in the proposition 3.4. The main idea is
to consider two cases when xi = 0 and xi = 1, thus the program min ti reduces to:

PROOF

min ti =


0, if xi = 1,

ai
∑m
j=1 aj(1− xj)y2, if xi = 0.

which is the same as (
∑m
j=1 ajxj)ai(1− xi)y2 = min ti.

Proposition 3.15
A polynomial mixed 0− 1 term xiyj from the above constraints can be represented by a continuous
variable vij , subject to the following linear inequality constraints: vij ≥M(xi − 1) + yj ,

vij ≤M(1− xi) + yj ,
0 ≤ vij ≤Mxi

(3.48)

where M is a large positive value.

PROOF The proof of this proposition is in the same line as in the proposition 3.5. The main
idea is to consider two cases when xi = 0 and xi = 1, thus the constraints on vij reduces to:

vij =

 0, if xi = 0,

y1, if xi = 1.

which is the same as xiyj = vij .

In summary, this section has proposed a new initialization method for K-means clus-
tering that allows to automatically select good initial points as well as the number K of
clusters. This section has also proposed a new search method for optimal and large-scale
K-means clustering algorithm with K = 2. The main idea is to cast these problems into
mixed 0-1 linear programming problems which can be solved by using the D.C. program-
ming approach.
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Chapter 4

Applications to Intrusion Detection Systems

Theory without practice is empty;
Practice without theory is blind.

JOHN DEWEL

This part describes successful applications of new developed machine learning algo-
rithms to enhance the efficiency, effectiveness and reliability of intrusion detection sys-
tems in different layers: application layer, network layer and operating system layer. In
particular, as shown in Figure 4.1 we studied Web Application Firewalls [98, 102] for the
application layer. We applied the new methods to the Network-based Intrusion Detec-
tion Systems [94, 95, 96, 99] and Botnet-malware Detection Systems [26] in the network
layer. For the operating system layer, Host-based Intrusion Detection Systems [97, 100]
were analyzed. Finally, we show the application of new proposed machine learning al-
gorithms to increase the efficiency and effectiveness of the testing process of intrusion
detection systems, e.g. Web Application Firewalls [106].

Application Layer 

Network Layer 

Operating System Layer 

 

•Web Application Firewalls 

 

•Network Intrusion Detection 

• Botnet Malware Detection 

 

•Host-based Intrusion Detection 

Testing of 
Intrusion 
Detection 
Systems, 
e.g. Web 

Application 
Firewalls 

Reliability 

Efficiency Effectiveness 

Machine Learning based Intrusion Detection Systems 

Figure 4.1: Applications to Intrusion Detection Systems
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4. APPLICATIONS TO INTRUSION DETECTION SYSTEMS

4.1 Web-based Attack Detection1

Web attacks pose many serious threats to modern Internet. The number of Web attacks is
steadily increasing. Consequently, Web Application Firewalls (WAFs) [23] need to be more
and more effective. One of the approaches for improving the effectiveness of WAFs is to
apply computational intelligence methods. In fact, it has been shown that these methods
enhance the overall performance of many types of intrusion detection systems ( see, for ex-
ample, [38, 95, 118, 129, 144] ) and particularly of the WAFs (see, for example, [68, 132, 146]).
In this section, we focus only on the feature selection methods for WAFs. Achieving reduc-
tion of the number of relevant traffic features without negative effect on detection accuracy
is a goal that greatly increases the available processing time of WAFs and reduces the re-
quired system resources. As there exist many feature selection algorithms (see for example
[56, 74]), the question that arises is which ones can be applied for intrusion detection in
general and for Web attack detection in particular. The most of the feature selection work
in intrusion detection practice is still done manually and the quality of selected features de-
pends strongly on expert knowledge. For automatic feature selection, the wrapper and the
filter models from machine learning are frequently applied [56, 74]. The wrapper model
assesses the selected features by learning algorithm’s performance. Therefore, the wrapper
method requires a lot of time and computational resources to find the best feature subsets.
The filter model considers statistical characteristics of a dataset directly without involving
any learning algorithms. Due to the computational efficiency, the filter method is usually
utilized to select features from high-dimensional datasets, such as intrusion detection sys-
tems. Moreover, this method allows to estimate feature subsets not only by their relevance,
but also by the relationships between features that make certain features redundant. A ma-
jor challenge in the IDS feature selection process is to choose appropriate measures that can
precisely determine the relevance and the relationship between features of a given dataset.

Since the relevance and the relationship are usually characterized in terms of correla-
tion or mutual information [56, 74], we focus on our new proposed generic feature selec-
tion (GeFS) measure for intrusion detection [94] (see Section 3.1.2). This measure consists
of two instances that belong to the filter model from machine learning: the correlation fea-
ture selection (GeFSCFS) measure [59] and the minimal-redundancy-maximal-relevance
(GeFSmRMR) measure [108]. As described in Section 3.1.2, in a given dataset if there are
many features that are linearly correlated to each other, then the GeFSCFS measure is
recommended for selecting features. Otherwise, the GeFSmRMR measure is alternatively
chosen as it considers non-linear relations through the analysis of mutual information be-
tween the features.

In this section, we propose to use the GeFS measure (see subsection 3.1.2) for selecting
features in Web attack detection. We conducted experiments on the ECML/PKDD 2007
dataset, which was generated for the ECML/PKDD 2007 Discovery Challenge. However,
the attack requests of this dataset did not target any real Web application. Therefore, we
additionally generated our new CSIC 2010 dataset, which contains the traffic directed to
an e-commerce Web application. From our expert knowledge about Web attacks, we listed
30 features that we considered relevant for the detection process. Then, we extracted the
values of these 30 relevant features from the datasets. By applying the GeFS measure,
we wanted to know within the particular datasets which features among the 30 extracted
features are the most important for the Web attack detection process. In order to do that, we
analyzed the statistical properties of the datasets to see whether they had linear correlation
or non-linear relations between features. To do that, the data points of the datasets were
visualized in the two-dimensional space and the correlation coefficients were computed.

1This section is published under the title:

Nguyen, H. T., Torrano-Gimenez, C., Alvarez, G., Franke, K., and Petrović, S. Enhancing the effectiveness
of web application firewalls by generic feature selection. Logic Journal of IGPL (2012).
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4.1 WEB-BASED ATTACK DETECTION

We then chose the GeFSCFS measure for feature selection from the CSIC 2010 dataset
and the GeFSmRMR measure for the ECML/PKDD 2007 dataset. The detection accuracies
obtained after the feature selection by means of four different classifiers were tested.

Furthermore, in this section we validate our new proposed methods in addressing the
reliability issue in feature-selection process as described in Section 3.1. The aim is to show
that in order to yield the steadiness of a classifier’s performance, analyzing the statistical
property of a data set before determining appropriate instances of the GeFS measure is
necessary. We also show that our new proposed search approach is consistent in search
for relevant features, thus providing more reliable feature-selection results than heuristic
search strategies do.

The section is organized as follows. Section 4.1.1 describes two datasets for the exper-
iment in more detail: the ECML/PKDD 2007 and the CSIC 2010 HTTP. We also introduce
the features from expert knowledge for Web attack detection. Experimental setting is given
in Section 4.1.2 and experimental results are discussed in Section 4.1.3.

4.1.1 Datasets

We conducted experiments on the ECML/PKDD 2007 data set, which was generated for
the ECML/PKDD 2007 Discovery Challenge [112]. In fact, we utilized the training set,
which is composed of 50,000 samples including 20% of attacks (i.e. 10,000 attacks and
40,000 normal requests). The requests are labeled with specifications of attack classes or
normal traffic. The classes of attacks in this data set are: Cross-Site Scripting, SQL Injection,
LDAP Injection, XPATH Injection, Path traversal, Command Execution and SSI attacks.
However, the attack requests of this data set were constructed blindly and did not target
any real Web application. Therefore, we additionally generated our new CSIC 2010 data
set for experiments.

The CSIC 2010 data set [2] contains traffic targeted to a realistic Web application devel-
oped for this purpose. It consists of an e-commerce Web application running on an Apache
server and it is composed of several Web pages that allow users to do actions such as buy-
ing items with a shopping cart or registering by providing their personal data. Some of
the Web pages require certain parameters, for example the user’s name and address for the
registration process or the name of the product that the user wants to buy.

The traffic of the CSIC 2010 dataset is automatically generated and it contains normal
and anomalous requests to all the Web pages composing the e-commerce Web application,
with different values for those Web pages including parameters. In total, 36,000 normal re-
quests and more than 25,000 anomalous requests are included in the dataset. As the traffic
is generated, all the requests are labeled (either as normal or as anomalous). The HTTP
dataset CSIC 2010 includes modern Web attacks such as SQL injection, buffer overflow,
information gathering, CRLF injection, XSS, server side include and parameter tampering.

The traffic is generated as explained in the sequel: First, real data is collected for all
the parameters of the Web application. All the data (names, surnames, addresses, etc.) is
extracted from real databases. These values are stored in two databases: one for the normal
values and other for the anomalous ones. Additionally, all the public available pages of
the Web application are listed. For every Web page, normal and anomalous requests are
generated. In the case that normal requests have parameters, the parameter values are
filled out with data taken from the normal database randomly. The process is analogous
for anomalous requests, where the values of the parameters are taken randomly from the
anomalous database. In Figure 4.2 it can be observed a scheme of the traffic generation
process. The dataset is available in [2], where further details about the dataset can also be
found.
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Database of 

normal values 
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anomalous values 

Web pages 

Normal traffic Anomalous traffic 

Figure 4.2: Scheme of the HTTP traffic generation process.

Table 4.1: Names of 30 features from expert knowledge for Web attack detection [18].
? refers to features selected by the GeFSCFS from CSIC-2010 data set; † refers to fea-
tures selected by the GeFSmRMR from CSIC 2010 data set; • refers to features selected
by the GeFSCFS from ECML/PKDD 2007 data set; and � refers to features selected by the
GeFSmRMR from ECML/PKDD 2007 data set.

Feature Name Feature Name

Length of the header “Accept-Charset” † Length of the path ?
Length of the arguments ? � Length of the header “Accept” †
Length of the header “Accept-Encoding” † Length of the request ? �
Length of the header “Accept-Language” † Length of the header “Cookie” †
Length of the header “Content-Length” † Length of the header “Content-Type”
Length of the Host † Length of the header “Referer” †
Length of the header “User-Agent” † Method identifier
Number of arguments ? Number of letters in the arguments ?
Number of digits in the arguments ? Number of distinct bytes
Number of other char in the arguments • � Number of letters char in the path ?
Number of digits in the path ? † Number of ’special’ char in the path ?
Number of other char in path † Number of cookies †
Maximum byte value in the request ? † Minimum byte value in the request �
Number of ’special’ char in the arguments ? † • � Entropy �
Number of keywords in the path Number of keywords in arguments
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4.1 WEB-BASED ATTACK DETECTION

Figure 4.3: Sample of distributions of data points from the CSIC 2010 dataset.

4.1.2 Experimental Setting

By utilizing our expert knowledge about Web attacks, we listed 30 features that we consid-
ered relevant for the detection process (see Table 4.1). Some features refer to the length of
the request, the length of the path or the headers, as length is important for detecting buffer-
overflow attacks. We also observed that the non-alphanumeric characters were present in
many injection attacks. Therefore, we took four types of characters into account: letters,
digits, non-alphanumeric characters and other characters. As the non-alphanumeric char-
acters have a special meaning in a set of programming languages, in Table 4.1 we refer to
them as ’special’ char. We analyzed the appearance of the characters in the path and in the
argument’s values. We also studied the entropy of the bytes in the request. Additionally,
we collected the keywords of several programming languages that were often utilized in
the injection attacks and counted the number of their appearances in different parts of the
request as a feature.

We analyzed statistical properties of the data sets to see whether they had linear or
non-linear relations between features. From this analysis, the appropriate feature selection
instance from the GeFS measure was chosen for each data set according to Algorithm 3.1
described in Section 3.1. In order to do that, we first visualized the whole data sets in
the two-dimensional space to get a plot matrix. In this plot matrix, each element was the
distribution of data points depending on the values of a feature and the class label or the
values of two features. Figure 4.3 and Figure 4.4 show the sample distributions of data
points of the CSIC 2010 data set and the ECML/PKDD 2007 data set, respectively. We
then calculated the correlation coefficients between the features. From these, we observed
that the CSIC 2010 data set has many features that are linearly correlated to each other,
whereas in the ECML/PKDD 2007 data set the non-linear relations between features are
more representative. In fact, in the CSIC 2010 data set, more than 63 % of the correlation
coefficients are greater than 0.5, whereas in the ECML/PKDD 2007 data set more than
83% of the correlation coefficients are less than 0.09. Therefore, we chose the GeFSCFS
measure for selecting features from the CSIC 2010 data set, and the GeFSmRMR measure
for selecting features from the ECML/PKDD 2007 data set. Moreover, the GeFSCFS and
the GeFSmRMR measures were also applied to the ECML/PKDD 2007 and to the CSIC
2010 data sets, respectively, to see how the wrong choices of feature selection methods
would negatively affect the detection performance.
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Figure 4.4: Sample of distributions of data points from the ECML/PKDD 2007 data set.

We applied the new proposed search method described in Section 3.1.2 to find glob-
ally optimal feature subsets by means of the GeFSCFS and the GeFSmRMR measures. We
compared our new global search method with heuristic search strategies in term of relia-
bility. In order to do that, we utilized the genetic search and the Peng’s method [108] to
select features from the data sets. Four classifiers with 10-fold cross validation were uti-
lized to evaluate detection performances before and after feature selection: C4.5, CART,
RandomTree and RandomForest [45]. All the obtained results are listed in the tables 4.2,
4.3 and 4.4.

4.1.3 Experimental Results and Discussion

Table 4.2 shows the number of full-set features and the number of features selected by the
GeFSCFS measure and the GeFSmRMR measure (Table 4.1 shows which features were se-
lected). Table 4.3 summarizes the detection rates of four different classifiers performed on
the CSIC 2010 data set and the ECML/PKDD 2007 data set. Table 4.4 indicates the consis-
tency and steadiness values of four different feature-selection methods, i.e., the GeFSCFS ,
theGeFSmRMR, the GA-CFS (genetic search with the CFS measure) and the mRMR (Peng’s
method).

Table 4.2: Full-set features and the number of selected features.

Data Set Full− set GeFSCFS GeFSmRMR

CSIC 2010 30 11 14

ECML/PKDD 2007 30 2 6
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Table 4.3: Detection rates of four different classifiers performed on the CSIC 2010 data set
and the ECML/PKDD 2007 data set. The Ge-CFS and Ge-mRMR are notations ofGeFSCFS
and GeFSmRMR, respectively.

Classifiers CSIC 2011 data set ECML/PKDD 20007 data set

Full-set Ge-CFS Ge-mRMR Full-set Ge-CFS Ge-mRMR

C4.5 94.49 94.06 79.80 96.37 86.45 91.62
CART 94.12 93.71 79.85 96.11 86.45 91.54
RandomTree 92.30 92.70 71.36 96.89 86.39 93.41
RandomForest 93.71 93.68 71.70 98.80 86.39 95.18

Average 93.65 93.53 75.67 97.04 86.42 92.93

Table 4.4: Consistency and steadiness values of different feature-selection methods.

Measurements CSIC 2011 data set ECML/PKDD 20007 data set

Ge-CFS Ge-mRMR GA-CFS Ge-CFS Ge-mRMR mRMR

Consistency(%) 100 100 25 100 100 27

Steadiness(%) 99.87 80.80 97.33 89.05 95.76 92.14

It can be observed from Table 4.3 that following our new proposed methodology the
choice of appropriate instances of the GeFS measure leads to steady performance of clas-
sifiers. In fact, the GeFSCFS measure performed well on the CSIC 2010 data set and pro-
vided better results than theGeFSmRMR measure. In more detail, with theGeFSCFS mea-
sure we almost keep the detection accuracies with only 0.12% of difference, whereas with
theGeFSmRMR measure we reduce detection rates by 17.89%. On the ECML/PKDD 20007
data set, the GeFSmRMR measure provides better results than the GeFSCFS measure.

Following the definitions 3.1 and 3.2, we calculated the consistency and steadiness val-
ues of the feature-selection methods. These values are shown in Table 4.4. We observed
that our new proposed search method for relevant features is consistent with 100% consis-
tency. The heuristic search strategies provided inconsistent feature-selection results with
only 25% consistency. At the same time, the steadiness values generated by the heuristic
search strategies are less than the ones obtained by utilizing our global search approach.

Finally, the overall performance, which include the detection performance and run-
time performance, of the WAFs has been improved by the appropriate choices of feature
selection measures. As shown in Figure 4.5(a), for example, the C4.5-based WAF trained on
important features by means of theGeFSCFS measure is comparative with the one trained
on the full-set features. At the same time, more than 50% of run-time for training the WAF
is reduced.

In summary, this section has proposed to apply the generic feature selection (GeFS) mea-
sure for Web attack detection. Statistical properties of the generated CSIC 2010 dataset and
the ECML/PKDD 2007 dataset were first analyzed. Based on this analysis, the GeFSCFS
measure and the GeFSmRMR measure were chosen for selecting features from the CSIC
2010 dataset and the ECML/PKDD 2007 dataset, respectively. The detection accuracies
obtained after the feature selection by means of four different classifiers were tested. The
experiments show that by choosing appropriate instances of the GeFS measure, 63% of ir-
relevant and redundant features were removed from the original dataset, while reducing
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Figure 4.5: Detection performance (ROC curves) of different C4.5 classifiers.

only 0.12% the detection accuracy of WAFs. At the same time, the new proposed methods
provide reliable feature-selection results and outperform the heuristic approaches in term
of reliability.

In the next section, we introduce the application of our new proposed reliable machine
learning algorithms to the network-based intrusion detection systems and to the botnet-
malware detection systems in the network layer (see Figure 4.1).

4.2 General Network-based Intrusion Detection2

Network-based Intrusion Detection Systems (NIDSs) have become important security tools
applied in many contemporary network environments. They gather and analyze informa-
tion from various sources on hosts and networks in order to identify suspicious activities
and generate alerts for an operator. The task of network intrusion detection is often an-
alyzed as a pattern recognition problem-an NIDS has to tell normal from abnormal be-
haviour. It is also of interest to further classify abnormal behaviour in order to undertake
adequate counter-measures. An NIDS can be modeled in various ways (see for example
[41], [55]). A model of this kind usually includes a representation algorithm (for repre-
senting incoming data in the space of selected features) and a classification algorithm (for
mapping the feature vector representation of the incoming data to elements of a certain set
of values, e.g. normal or abnormal etc.). Some NIDSs, like the models presented in [55],
also include the feature selection algorithm, which determines the features to be used by
the representation algorithm. Even if the feature selection algorithm is not included in the
model directly, it is always assumed that such an algorithm is run before the very intrusion
detection process.

The quality of the feature selection algorithm is one of the most important factors that
affect the effectiveness of an NIDS. The goal of the algorithm is to determine the most rele-
vant features of the incoming traffic, whose monitoring would ensure reliable detection of
abnormal behaviour. Since the effectiveness of the classification algorithm heavily depends
on the number of features, it is of interest to minimize the cardinality of the set of selected

2This section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. Improving effectiveness of intrusion detection by correlation
feature selection. International Journal of Mobile Computing and Multimedia Communications (IJMCMC) 3, 1 (2011),
21-34.
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features, without dropping potential indicators of abnormal behaviour. Obviously, deter-
mining a good set of features is not an easy task. The most of the work in practice is still
done manually and the feature selection algorithm depends too much on expert knowl-
edge. Automatic feature selection for reliable intrusion detection remains therefore a great
research challenge.

In this section, we consider automatic feature selection procedures from the filter model
[56] for network intrusion detection purposes. The filter method directly considers statis-
tical characteristics of the data set, such as correlation between a feature and a class or
inter-correlation between features, without involving any learning algorithms. Thus, the
filter method is suitable to select features from high-dimensional data sets for NIDSs. We
focus on the new proposed generic feature-selection (GeFS) measure from Section 3.1

This section is organized as follows. Subsection 4.2.1 describes the KDD CUP 1999
dataset in more detail. We provide the procedure to extract features from the captured
1998 DARPA dataset. Experimental setting is given in subsection 4.2.2 and experimental
results are discussed in subsection 4.2.3. In subsection 4.2.4 we show the comparison of our
new proposed algorithm with the existing methods. Finally, we apply the new ensemble-
feature-selection framework (see Section 3.2) for network-based intrusion detection sys-
tems in subsection 4.2.5.

4.2.1 Datasets

The 1998 DARPA and the KDD CUP 1999 Data Sets In 1998, MIT’s Lincoln Laboratory
launched a research project to evaluate the different intrusion detection systems, sponsored
by the Air Force Research Laboratory [73]. The goal of the project was mainly to create a
benchmarking data set for intrusion detection by simulating background traffic and attack
traffic. It took seven weeks to gather the training data and two weeks for the testing data
to take place. The generated traffic was similar to that on a government site containing
hundreds of users. Custom software automata simulated hundreds of programmers, sec-
retaries, managers and other types of users running common UNIX application programs.
Many types of traffic were created by using a variety of network services. User automata
sent and received e-mails, browsed Web sites, sent and received files using FTP or used
Telnet to log into remote computers and performed works and so on. More details of the
simulated network are described in the sequel. The inside of the Air Force base network
contains three machines, which were the most frequent victims of attacks (Linux2.0.27,
SunOS 4.1.4 and Sun Solaris 2.5.1), and a gateway to hundreds of other inside emulated
PCs and workstations. The outside of this network simulated the Internet. It contained a
sniffer to capture traffic, a gateway to hundreds of emulated workstations on many other
subnets and a second gateway to thousands of emulated Web servers. Data collected for
evaluating IDSs included network sniffing data from the outside sniffer, Sun Basic Security
Module (BSM) audit data captured from the Solaris hosts and full disk dumps from the
three UNIX victim machines.

For the normal traffic, a large amount of Web, telnet and E-mail traffic was generated
between the inside PC’s with workstations and the outside workstations with the websites.
In addition, there are many user automata of various types (e.g. secretaries, managers and
programmers) on outside workstations, who performed work using telnet and other ser-
vices on the three inside victim machines, and the other inside workstations. The contents
of network traffic, such as SMTP, HTTP and FTP file transfers, as they mentioned are either
statistically similar to live traffic, or sampled from public-domain sources. For example,
some e-mail message contents were created using statistical bigrams frequencies to pre-
serve word and two-word sequence statistics from a sampling of roughly 10,000 actual
E-mail messages to and from computer professionals filtered using a 40,000 word dictio-
nary to remove names and other private information. Similar approaches were applied to
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Table 4.5: Sample of network connection records [71]

Timestamp Duration Service src bytes Flag
1.1 1 HTTP 10 S0
13.4 60 FTP 1000 SF
15.3 600 SMTP 100 S0

produce content for FTP file transfer. The contents of the Web servers were initially cap-
tured using a custom Web automaton that was run on the real Internet.This automaton
was programmed to visit thousands of Web sites popular with university and government
personnel with a frequency that depends on the site’s popularity and to visit a random
number of links at each site before moving to other sites.

For the attack traffic, there were more than 3,000 instances of 38 different simulated at-
tacks against victim UNIX hosts. All the attacks can be categorized into 4 main groups:
Denial of Service (DoS) attacks, Probe attacks, User to Root (U2R) attacks and Remote to
Local (R2L) attacks. In more details, DoS attacks (e.g. smurf) load a legitimate network ser-
vice, others (e.g. teardrop, Ping of Death) create malformed packets, which are incorrectly
handled by the victim machine, and others (e.g. apache2, back, syslogd) take advantage
of software bugs in network daemon programs. The Probe attacks or Scan attacks are pro-
grams that can automatically scan a network of computers to gather information and search
for known vulnerabilities. The U2R attacks attempt to obtain privileges normally reserved
for the super users. In the case of R2L attacks, an attacker, who does not have an account on
a victim machine, sends packets to that machine and gains local access. Some R2L attacks
exploit buffer overflow in network server software (e.g. imap, named, sendmail), others
exploit weak or misconfigured security policies (e.g. dictionary, ftp-write, guest) and one
(xsnoop) is a trojan password capture program.

Feature Construction from the 1998 DARPA to the KDD CUP 1999 Data Sets In 1999,
Lee W. and Stolfo S. [71, 72] proposed a novel framework, MADAM ID, that applies data
mining algorithms to extract frequent patterns from system audit data and construct pre-
dictive features from the patterns. Machine learning algorithms were then applied as intru-
sion detection systems to distinguish attacks from normal traffic in the audit records that
are represented by feature vectors. They conducted the experiments on the 1998 DARPA
data set as follows: the raw tcpdump data sets provided by the Lincoln Laboratory were
fist summarized into network connection records, in which a set of intrinsic features from
domain knowledge was utilized. Examples of network connection records and the list of
intrinsic features are given in Table 4.5 and Table 4.6

The association rule learning algorithms were applied to search frequent associations
or relations between intrinsic features. From those associations, Lee W. and Stolfo S. gen-
erated frequent episodes of sequential patterns of both the gathered normal and the attack
traffic. Then they compared the obtained patterns to look for the intrusion-only patterns
that appear only in the intrusion data sets. Those intrusion patterns were utilized as guide-
lines for constructing additional features to build better classification models.

In the Table 4.7, there is an example of frequent SYN flood patterns that they found
in the audit data. This SYN flood pattern guides to construct the following additional
features: a count of connections to the same dst host in the past 2 seconds, and among
these connections, the percentage of those that have the same service, and the percentage
of those that have the S0 flag.

The additional features automatically constructed by Lee’s proposed method [71] are
summarized below:
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Table 4.6: Intrinsic features of individual TCP connections [71]

ID Feature Name Description Type
1 Duration length (number of seconds) of the connection continuous
2 protocol type type of the protocol, e.g. tcp, udp, etc. discrete
3 Dervice network service on the destination, e.g., http, tel-

net, etc.
discrete

4 src bytes number of data bytes from source to destination continuous
5 dst bytes number of data bytes from destination to source continuous
6 flag normal or error status of the connection discrete
7 land 1 if connection is from/to the same host/port;0

otherwise
discrete

8 wrong fragment number of wrong fragments continuous
9 urgent number of urgent packets continuous

Table 4.7: Sample of intrusion pattern [71]

Frequent Episode Meaning
(flag=S0, service=http,dst host=victim), (flag=S0,
service=http,dst host=victim) (flag=S0, ser-
vice=http,dst host=victim)→ [0.93, 0.03, 2]

93% of the time, after two http
connections with S0 flag are
made to host victim, within 2
seconds from the first of these
two, the third similar connection
is made, and this pattern occurs
in 3% of the data).

• The ”same host” features that examine only the connections in the past 2 seconds that
have the same destination host as the current connection: the number of such con-
nections, the percentage of connections that have the same service as the current one,
the percentage of different services, the percentage of SYN errors, and the percentage
of REJ (i.e., rejected connection) errors.

• The ”same service” features that examine only the connections in the past 2 seconds
that have the same service as the current connection: the count of such connections,
the percentage of different destination hosts, the percentage of SYN errors, and the
percentage of REJ errors.

They called these features ”time-based” features for connection records. For several
”slow” Probe attacks that scan the destination hosts or ports using more time than 2 sec-
onds, there were not any intrusion-only patterns of these attacks within 2 seconds of con-
nection. Therefore, Lee W. and Stolfo S. proposed to sort the connection records by the
destination hosts and to consider 100 connections instead of the time window of 2 seconds.
The automatic feature construction algorithms were applied again to obtain a mirror set of
”host-based traffic” features as the ”time-based traffic” features. All names of ”time-based”
and ”host-based traffic” features are listed in the Table 4.8 and Table 4.9, respectively.

As many attacks, such as R2L and U2R attacks, are embedded in the payloads of the
packets and involve only a single connection, the automatic feature construction algorithm,
which is based on frequent sequential patterns of connection records, would fail to create
any features of these attacks. Therefore, Lee W. and Stolfo S. proposed to look at the pay-
loads of packets and combine it with domain knowledge to define suitable features for R2L
and U2R attacks. These features are [71]: number of failed logins, successfully logged in or
not, whether logged in as root, whether a root shell is obtained, whether a su command is
attempted and succeeded, number of attempts to access control files (e.g., ”/etc/passwd”,
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Table 4.8: Traffic features computed using a two-second time window [71]

ID Feature Name Description Type
10 Count number of connections to the same host in the

past two seconds
continuous

11 serror rate % of connections that have ’SYN” errors continuous
12 rerror rate % of connections that have ’REJ’ errors continuous
13 same srv rate % of connections to the same service continuous
14 diff srv rate % of connections to different services continuous
15 srv count number of connections to the same service in the

past two seconds
continuous

16 srv serror rate % of connections that have ’SYN’ errors continuous
17 srv rerror rate % of connections that have ’REJ” errors continuous
18 srv diff host rate % of connections to different hosts continuous

Table 4.9: Traffic features computed using a window of 100 connections [71]

ID Feature Name Description Type
19 dst host count number of connections to the same

host in the past two seconds
continuous

20 dst host serror rate % of connections that have ’SYN” er-
rors

continuous

21 dst host rerror rate % of connections that have ’REJ’ errors continuous
22 dst host same srv rate % of connections to the same service continuous
23 dst host diff srv rate % of connections to different services continuous
24 dst host srv count number of connections to the same ser-

vice in the past two seconds
continuous

25 dst host srv serror rate % of connections that have ’SYN’ er-
rors

continuous

26 dst host srv rerror rate % of connections that have ’REJ” errors continuous
27 dst host srv diff host rate % of connections to different hosts continuous
28 dst host same src port rate % of connections to the same source

port
continuous

”.rhosts”, etc.), number of compromised states on the destination host (e.g., file/path ”not
found” errors, and ”Jump to” instructions, etc.), number of hot indicators, (e.g., access to
system directories, creation and execution of programs, etc.), and number of outbound
connections during an ftp session. These features are summarized in Table 4.10.

4.2.2 Experimental Setting

This section demonstrates the application of the generic-feature-selection (GeFS) measure
for network-based intrusion detection systems. According to Algorithm 3.1 described in
Section 3.1, it is necessary to analyze the statistical property of the KDD CUP 1999 dataset
to see whether it has linear or non-linear relations between features. From this analysis, an
appropriate feature-selection instance from the GeFS measure is chosen. In order to do that,
we first visualize the whole KDD CUP 1999 dataset in the two-dimensional space. Figure
4.6 shows the sample distributions of data points of the KDD CUP 1999 dataset. We then
calculate the correlation coefficients between the features. From these, we observe that the
KDD CUP 1999 dataset has many features that are linearly correlated to each other. In fact,
in the KDD CUP 1999 dataset, more than 74 % of the correlation coefficients are greater
than 0.5. Therefore, we chose the GeFSCFS measure for selecting features from the KDD
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Table 4.10: Content features within a connection suggested by domain knowledge [71]

ID Feature Name Description Type
29 host number of ’hot’ indicators continuous
30 num failed logins number of failed login attempts continuous
31 logged in 1 if successfully logged in; 0 otherwise Discrete
32 num compromised number of ’compromised’ conditions continuous
33 root shell 1 if root shell is obtained; 0 otherwise Discrete
34 su attempted 1 if ’su root’ command attempted; 0 other-

wise
Discrete

35 num root number of ’root’ accesses continuous
36 num file creations number of file creation operations continuous
37 num shells number of shell prompts continuous
38 num access files number of operations on access control files continuous
39 num outbound cmd number of outbound commands in an ftp ses-

sion
continuous

40 is hot login 1 if the login belongs to the ’hot’ list; 0 other-
wise

Discrete

41 is guest login 1 if the login is a ’guest’ login; 0 otherwise Discrete

CUP 1999 dataset.

Figure 4.6: Sample of distributions of data points from the KDD CUP 1999 dataset.

For evaluating the performance of our newGeFSCFS approach, two different available
feature selection methods based on the CFS measure [36] are implemented. One is the best-
first-CFS method, which uses the best first search strategy to find the locally optimal feature
subset. The other one uses the genetic algorithm for search. Note that the best first search
and genetic algorithm may not guarantee to find the globally optimal solution. However,
we can overcome this issue with our new method. We did not choose the exhaustive search
method since it is not feasible for feature selection from data sets with a large number of
features. We applied machine learning algorithms for evaluating the classification accuracy
on selected features, since there is no standard network-based intrusion detection systems.
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We performed our experiment using 10% of the overall (5 millions) KDD CUP’99 IDS
benchmarking labeled data [72]. This data set described in the previous section contains
normal traffic and four main attack classes: (i) Denial of Service (DoS) attacks, (ii) Probe at-
tacks, (iii) User to Root (U2R) attacks and (iv) Remote to Local (R2L) attacks. The numbers
of instances for the four attack classes and normal class are quite different, e.g the relation
of the number of U2R to the number of DoS is 1.3 ∗ 10−4. Details of the number of class
instances are given in Table 4.11 .

Table 4.11: The partition of KDD CUP’99 data set used in the experiment

Classes Number-of-instances Percentage

KDD99-normal 97.278 18.30%
KDD99-DoS 391.458 73.74%
KDD99-Probe 41.113 7.74%
KDD99-U2R 52 0.01%
KDD99-R2L 1.126 0.21%

Total 531.027 100%

We tested the performance of our newly proposed GeFSCFS feature selection method
in more detail below:

1. Feature selection is performed on the basis of the whole data set: (1a) Each attack class
and the normal class are processed individually, so that a five-class problem can be
formulated for feature extraction and classification with one single classifier. (1b) All
attack classes are fused so that a two-class problem can be formulated, meaning the
feature selection and classification for normal and abnormal traffic is performed. It
might be well possible that the attack-recognition results are not satisfactory for all of
the classes, since the number of class instances are unevenly distributed, in particular
classes U2R and R2L are under-represented. The feature selection algorithm and the
classifier, which is used for evaluation of the detection accuracy on selected features,
might concentrate only on the most frequent class data and neglect the others. As a
consequence, we might miss relevant characteristics of the less represented classes.

2. As the attack classes distribute so differently, we prefered to process these attack
classes separately. With the specific application of IDS we can also formulate four
different two-class problems. Four classifiers shall be derived using specific features
for each classifier in order to detect (identify) a particular attack. The rationale for
this approach is that we predict the most accurate classification if each of the four
intrusion detectors (classifiers) is fine-tuned according to significant features. This
approach might also be very effective, since the four light-weight classifiers can be
operated in parallel.

For understanding the effect, as mentioned in 1), we conducted a small experiment. The
aim was to show that the classifier highly neglected U2R attack instances. In order to do
that, we mixed all attack classes to get only one data set and considered a five-class (normal,
DoS, Probe, U2R and R2L) problem. The C4.5 machine learning algorithm was used as a
classifier. We applied 5-fold cross-validation for evaluating the detection accuracy of the
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C4.5. The result of the experiment is given in Table 4.12. It can be seen from Table 4.12 that
the C4.5 highly misclassified U2R attack instances with 34.6% error.

Table 4.12: Misclassified instances (UI) by the C4.5 classifier

Classes Number of UI Percentage

Normal 65 0.07%
DoS 21 0.01%

Probe 39 0.10%
U2R 18 34.6%
R2L 39 3.46%

In order to perform the experiment 2), we added normal traffic into each attack class to
get four data sets: Nor&DoS, Nor&Probe, Nor&U2R and Nor&R2L. With each data set,
we ran three feature selection algorithms: our new GeFSCFS method, the best-first CFS-
based and the genetic algorithm CFS-based methods. The numbers of selected features and
their identifications are given in Table 4.13 and Table 4.14, respectively. We then applied
the C4.5 and the BayesNet machine learning algorithms on each original full set as well
as each newly obtained data set that includes only those selected features from feature
selection algorithms. By applying 5-fold cross-validation evaluation on each data set, the
classification accuracies and false-positive rates are reported in Table 4.15 and in Table 4.16,
respectively.

Our newGeFSCFS method was compared with the best-first-CFS and genetic-algorithm-
CFS methods regarding the number of selected features and regarding the classification
accuracies of 5-folds cross-validation of BayesNet and C4.5 learning algorithms. The Weka
tool [139] was used for obtaining the results. In order to solve the M01LP problem for op-
timizing the GeFS (see Section 3.1.2), we used TOMLAB tool [60]. All the obtained results
are listed in tables 4.13, 4.14, 4.15 and 4.16.

4.2.3 Experimental Results and Discussions

Table 4.13: Number of selected features (GA: genetic algorithm)

Data Set Full-set Our-method Best-first GA

Nor&Dos 41 3 6 11
Nor&Probe 41 6 7 17
Nor&U2R 41 1 4 8
Nor&R2L 41 2 5 8

Table 4.13 shows the number of features selected by our approach and those selected
by using the best-first and GA search strategies. The identification of selected features is
given in Table 4.14 (for feature names, see tables 4.6, 4.8, 4.9 and 4.10). Table 4.15 and Table
4.16 summarize the classification accuracies and false-positive rates, respectively, of the
BayesNet and the C4.5 performed on four data sets (see above).
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Table 4.14: Identifications of Selected Features

Data Set Identifications

Nor&Dos 4, 5, 31

Nor&Probe 4, 5, 13, 26, 27, 31

Nor&U2R 33

Nor&R2L 29, 41

It can be observed from Table 4.13 that our GeFSCFS approach selects the smallest
number of relevant features in comparison with the full and the feature sets selected by the
best-first and GA search strategies. Especially in some cases, our new method compresses
the full set of features extremely. For example, only one feature was selected out of 41
features of the Nor&U2R data set.

Table 4.15: Classification accuracies of C4.5 and BayesNet performed on KDD’99 dataset

Data Set C4.5 BayesNet

Full-Set GeFS BF GA Full-Set GeFS BF GA

Nor&DoS 97.80 98.89 96.65 96.09 99.99 98.87 99.09 99.72
Nor&Probe 99.98 99.70 99.71 99.89 98.96 97.63 97.65 99.19
Nor&U2R 99.97 99.96 99.97 99.95 99.85 99.95 99.97 99.93
Nor&R2L 98.70 99.11 99.01 98.86 99.33 98.81 98.95 99.28

Average 99.11 99.41 98.84 98.69 99.53 98.82 98.91 99.52

Table 4.16: False-positive rates of C4.5 and BayesNet performed on KDD’99 dataset

Data Set C4.5 BayesNet

Full-Set GeFS BF GA Full-Set GeFS BF GA

Nor&DoS 0.019 0.1 0.133 0.03 0.2 1.03 1.27 0.002
Nor&Probe 0.034 0.37 0.38 0.025 1.07 3.2 3.21 0.8
Nor&U2R 0.005 0.016 0.002 0.004 0.126 0.021 0.004 0.048
Nor&R2L 0.012 0.011 0.021 0.01 0.67 0.38 0.31 0.047

Average 0.018 0.12 0.13 0.017 0.51 1.15 1.19 0.22

In the Table 4.15, it can be observed that with our approach the average classification
accuracies are slightly different from the ones obtained by using the best-first search or the
genetic algorithm. The absolute difference between them does not overcome 0.69%. In the
case of the C4.5 classifier, we got better performance. In the Table 4.16, with our method
the false-positive rates are better than the ones obtained by applying the best-first search,
yet worse than the full-set and GA search.
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Even though the gained detection performances are comparative to other methods, the
overall gain of the feature selection classification procedure lies in significantly improved
efficiency (see Figure 4.7 for the training time of the NIDSs) and in obtaining the classifica-
tion results due to reduced number of relevant features.
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Figure 4.7: Training time of C4.5-based and BayesNet-based NIDSs performed KDD’99
dataset.

Therefore, based on all these experiments we can say that in general our new GeFS
measure outperforms the best-first-CFS and genetic-algorithm-CFS methods by removing
much more redundant features and still keeping the classification accuracies or even get-
ting better performances. Thus it can be used to find optimal subsets of relevant features
by means of the CFS measure for intrusion detection systems.
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4.2.4 A Comparison of Feature Selection Methods for Intrusion Detection3

In previous subsection, we have showed that our proposed search method outperforms
the heuristic search strategies by removing much more redundant features from the KDD
CUP 1999 data set and still keeping the classification accuracies or even getting better per-
formances. In this subsection, we validate our proposed feature selection measures by
comparison with various automatic feature-selection algorithms for intrusion detection.
The feature-selection algorithms involved in this comparison are previously known SVM-
wrapper [129], Markov-blanket [35] and Classification & Regression Trees (CART) algo-
rithms [35]. The details of these methods are given below.

SVM-wrapper for feature selection: Sung and Mukkamala [129] used the ranking method
to select important features for intrusion detection: One input feature is deleted from the
data at a time and the resultant data set is then used for the training and testing of the clas-
sifier Support Vector Machine (SVM) [40]. Then the SVMs performance is compared to that
of the original SVM (based on all features) in terms of relevant performance criteria, such
as overall accuracy of classification, training time and testing time. The deleted feature will
be ranked as ”important”, ”secondary” or ”insignificant” according to the following rules:

• If accuracy decreases and training time increases and testing time decreases, then the
feature is important.

• If accuracy decreases and training time increases and testing time increases, then the
feature is important.

• If accuracy decreases and training time decreases and testing time increases, then the
feature is important.

• If accuracy is not changed and training time increases and testing time increases, then
the feature is important.

• If accuracy is not changed and training time decreases and testing time increases,
then the feature is secondary.

• If accuracy is not changed and training time increases and testing time decreases,
then the feature is secondary.

• If accuracy is not changed and training time decreases and testing time decreases,
then the feature is insignificant.

• If accuracy increases and training time increases and testing time decreases, then the
feature is secondary.

• If accuracy increases and training time decreases and testing time increases, then the
feature is secondary.

• If accuracy increases and training time decreases and testing time decreases, then the
feature is insignificant.

3This section is published under the title:

Nguyen, H. T., Petrovic, S., and Franke, K. A comparison of feature-selection methods for intrusion detec-
tion. In 5th International Conference on Mathematical Methods, Models and Architectures for Computer Network
Security, MMM-ACNS (Russia, 2010), pp. 242-255.
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Table 4.17: Performance of SVM using selected features (SF) [129]

Classes Number-of-SF Accuracy

Normal 25 99.59%
DoS 19 99.22%

Probe 7 99.38%
U2R 8 99.87%
R2L 6 99.78%

A B C 

F 

E 

Figure 4.8: Sample of Markov blanket

Markov blanket for feature selection: Markov blanket MB(F ) of the output variable F
is defined as the set of input variables such that all other variables are probabilistically in-
dependent of F . Knowledge of MB(F ) is sufficient for perfectly estimating the distribution
of F and thus for classifying F . Markov blanket has been applied for feature selection in
many domains [56]. In 2004, Chebrolu et. al. [35] proposed to use Markov blanket for
selecting important features for intrusion detection. In order to do that, they constructed a
Bayesian Network (BN) from the original data set. A Bayesian network B = (N,A) is a Di-
rected Acyclic Graph (DAG) (N,A) where each node n ∈ N represents a domain variable
(e.g. a data set attribute or variable), and each arc a ∈ A between nodes represents a prob-
abilistic dependency among the variables. A BN can be used to compute the conditional
probability of one node, given values assigned to the other nodes. From the constructed
BN, the Markov blanket of a feature F is the union of F ’s parents, F ’s children and even-
tually other parents of F ’s children. An example of a Bayesian Network is given in Figure
4.8. The blue-filled nodes constitute the MB(F ):

For conducting the experiment, Chebrolu et. al. randomly chose 11,982 instances from
the overall (5 millions of instances) KDD CUP’99 dataset. 17 features were selected and
the Bayesian Network [45] was used for classifying the obtained data set after removing
irrelevant features. The results are given in Table 4.18.
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Table 4.18: Performance of Bayesian Network using selected features (SF) [35]

Classes Number-of-SF Accuracy

Normal 17 99.64%
DoS 17 98.16%

Probe 17 98.57%
U2R 17 60.00%
R2L 17 98.93%

Table 4.19: Performance of CART using selected features (SF) [35]

Classes Number-of-SF Accuracy

Normal 12 100%
DoS 12 85.34%

Probe 12 97.71%
U2R 12 64.00%
R2L 12 95.56%

The Classification and Regression Trees for feature selection: The Classification and Re-
gression Trees (CART) approach [45] is based on binary recursive partitioning. The process
is binary because parent nodes are always split into exactly two child nodes and recur-
sive because it is repeated by treating each child node as a parent. The key elements of
CART methodology are a set of splitting rules in a tree; deciding when the tree is com-
plete and assigning a class to each terminal node. Feature selection for intrusion detection
is based on the contribution of the input variables to the construction of the decision tree
from the original data set. The importance of features is determined by the role of each
input variable either as a main splitter or as a surrogate. Surrogate splitters are consid-
ered as back-up rules that closely mimic the action of primary splitting rules. For example,
in the given model, the algorithm splits data according to the variable protocol type and
if a value for protocol type is not available. Then the algorithm might use the service fea-
ture as a good surrogate. Feature importance, for a particular feature is the sum across
all nodes in the tree of the improvement scores that the predictor has when it acts as a
primary or surrogate splitter. For example, for the node i, if the feature appears as the
primary splitter then its importance could be given as iimportance. But if the feature ap-
pears as the nth surrogate instead of the primary variable, then the importance becomes
iimportance = (pn) × iimprovement in which p is the surrogate improvement weight which is a
user controlled parameter set between 0 and 1.

Chebrolu et. al. [35] conducted the experiment on the data set, which contains ran-
domly chosen 11,982 instances from the overall (5 millions of instances) KDD CUP’99 data
set. 12 features were selected and the CART [45] was used for classifying the obtained data
set after removing irrelevant features. The results are given in Table 4.19.

Since different intrusion detection systems used different feature-selection methods and
different classifiers with the aim of achieving the best classification results, we compared
the general performance of intrusion detection systems in terms of numbers of selected
features and the classification accuracies of the machine learning algorithms giving the best
classification results. For our experiment, we used the decision tree algorithm C4.5 [111]
as classifier for the full-set data as well as for the data sets obtained by removing irrelevant
features by means of the GeFSCFS and GeFSmRMR measures. All the obtained results are
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shown in Figure 4.9 and Figure 4.10.
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Figure 4.9: Number of selected features (on average)

Figure 4.9 shows the average number of features selected by theGeFS feature-selection
method and those selected by existing approaches. Figure 4.10 summarizes the average
classification accuracies of chosen machine learning algorithms as classifiers for intrusion
detection process.

It can be observed from Figure 4.9 that the GeFSCFS feature-selection method selects
the smallest number of relevant features. Figure 4.9 shows that with the recently proposed
approach the average classification accuracies are approximately the same or even better
than those achieved by applying other methods.

4.2.5 Application of New Reliable Ensemble Feature Selection Framework for
Intrusion Detection4

So far, in previous subsections we have applied the new reliable feature selection methods
for the dataset, which has either a representative linear or non-liear relationships between
features. However, in many cases a dataset has a mixture of statistical properties. Consid-
ering only one linear or non-linear property by applying a single feature selection method
will lead to the over-selecting phenomenon, over-fitting and unreliable intrusion detection
results (see the detail discussion in Section 3.2).

In this subsection, (1) we illustrate the over-selecting phenomenon by conducting an
experiment on the KDD CUP’99 benchmarking IDSs data set [71, 72]. (2) We also show

4This section is published under the title:

Nguyen, H. T., Franke, K., and Petrović, S. A new ensemble-feature-selection framework for intrusion de-
tection. In 11th International Conference on Intelligent Systems Design and Applications (ISDA), 2011 (nov. 2011), pp.
213 218.
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Figure 4.10: Classification accuracies (on average)

the influence of the over-selecting phenomenon on the over-fitting phenomenon of ma-
chine learning algorithms. Moreover, (3) we demonstrate how our new ensemble feature
selection (EnFS) measure (see Section 3.2) is capable of reducing over-fitting by addressing
over-selecting, thus providing more reliable intrusion detection results.

Experimental Setting Add 1. In order to illustrate the over-selecting phenomenon when
the selected features from the training data are quite different from the representative fea-
tures of the testing data, we separately implemented the GeFSCFS and the GeFSmRMR

measures [94, 98] defined the section 3.1 for selecting features from a part of the KDD CUP
1999 data sets, which is different from the datasets in previous subsections. In fact, we
selected 10% of the overall (5 millions of instances) KDD CUP’99 IDS benchmarking la-
belled data as the training data set. Another 5% of the remained KDD CUP’99 data were
randomly selected and used as the testing data. As discussed before, these data sets con-
tain normal traffic and four different attack classes: (i) Denial of Service (DoS) attacks, (ii)
Probe attacks, (iii) User to Root (U2R) attacks and (iv) Remote to Local (R2L) attacks. Since
the two attack classes U2R and R2L have been criticized [87, 119], we did not consider them
for this experiment. Details of the number of class instances are given in Table 4.20.

As the attack classes distribute so differently, the feature selection algorithms might
concentrate only on the most frequent class data and neglect the others. Therefore, we
chose to process these attack classes separately. In order to do that, we added normal
traffic into each attack class to get two data sets: Normal&DoS and Normal&Probe. With
each data set, we separately ran two feature-selection algorithms: the GeFSCFS and the
GeFSmRMR. The feature sets selected from the training data (Train) and from the testing
data (Test) were then compared with each other by means of the Jaccard distance [56].
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Table 4.20: The partition of KDD CUP’99 data set used in the experiment

Classes Training Set Testing Set

Instances Percentage Instances Percentage

Normal 97,278 18.35 56,234 24.73
DoS 391,458 73.88 150,046 65.99
Probe 41,113 7.77 20,987 9.28

Total 529,849 100% 227,357 100%

This distance measures the similarity between two sets Train and Test, and is defined as
follows:

J(Train, Test) =
|Train

⋂
Test|

|Train
⋃
Test|

The results of this experiment are given in Table 4.21.

Add 2. In order to show the influence of the over-selecting phenomenon on the over-
fitting phenomenon of machine learning algorithms, we applied the C4.5 [111] and the
BayesNet [45] algorithms on the newly obtained training and testing data sets that include
only the selected features from the original training data. The obtained classification accu-
racies were then compared with each other. The differences between testing and training
classification accuracies are calculated as follows:

DIFF (Train, Test) = AccTest −AccTrain

Table 4.22 shows the obtained results of this experiment.

Add 3. To validate our new ensemble feature selection measure in addressing the first
two main causes of the over-selecting phenomenon as mentioned above, we proposed to
combine the GeFSCFS with the GeFSmRMR measures as follows:

max
x∈{0,1}n

EnFS =
1

2

[
GeFSCFS +GeFSmRMR

]
(4.1)

The new constructed feature selection measure 4.1 was then used for selecting features
from the original training and testing data sets. We applied our new proposed search algo-
rithm and used the TOMLAB tool [60] for solving the M01LP problem. We also applied
10-folds cross-validation of the C4.5 and the BayesNet machine learning algorithms on the
newly obtained data sets that include only the selected features from the original training
data. The Weka tool [139] was used for determining classification accuracies, which were
then compared with each other. All results are given in Table 4.21 and Table 4.22.

Experimental Results Table 4.21 shows the Jaccard distances of feature sets selected from
the training data (Train) and the testing data (Test). The differences between testing and
training classification accuracies are given in Table 4.22.
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Table 4.21: Jaccard distance of two selected feature sets Train and Test

Data Set GeFSCFS GeFSmRMR EnFS

Normal&Dos 0.14 0.33 0.75

Normal&Probe 0.29 0.40 0.81

Table 4.22: The differences between Testing and Training accuracies (AccTest −AccTrain).
The Ge-CFS and Ge-mRMR are the notations of GeFSCFS and GeFSmRMR, respectively.

Data Set C4.5 BayesNet

Ge-CFS Ge-mRMR EnFS Ge-CFS Ge-mRMR EnFS

Normal&DoS –2.80 –1.98 +2.89 –1.99 +1.36 +1.87

Normal&Probe –2.01 +0.19 +1.11 +0.03 –0.17 +2.81

It can be observed from Table 4.21 that the over-selecting phenomenon occurs when
the GeFSCFS and the GeFSmRMR measures were applied separately. Because the Jaccard
distances of the selected feature sets Train and Test are very low, such as in the case of the
Normal&DoS data set with the GeFSCFS feature selection measure, the J(Train, Test) =
0.14. With the new ensemble feature selection measure EnFS, the Jaccard distances of the
selected feature sets Train and Test are the greatest. This indicates that the feature sets
selected by means of the EnFS from the training and the testing data sets are more similar
than those selected by means of the GeFSCFS or the GeFSmRMR measures.

From Table 4.22, it can be observed that the over-fitting phenomenon happened when
we applied the C4.5 and the BayesNet algorithms on the data sets, which contain only
features selected by means of theGeFSCFS measure or theGeFSmRMR measure. With the
EnFS, this over-fitting phenomenon did not happen.

In summary, this subsection has illustrated the over-selecting phenomenon by conduct-
ing an experiment on the KDD CUP’99 benchmarking IDSs data set. The influence of
the over-selecting phenomenon on the over-fitting phenomenon of machine learning algo-
rithms was shown. Moreover, this section has applied the new ensemble feature selection
(EnFS) measure (see Section 3.2) to reduce the over-fitting by addressing over-selecting,
thus providing more reliable intrusion detection results.

In the next section, we continue to introduce the application of our new proposed reli-
able machine learning algorithms to the botnet-malware detection systems in the network
layer (see Figure 4.1).

4.3 Botnet-Malware Detection5

In this section, we show the application of the generic feature selection (GeFS) measure
(see subsection 3.1.2) in botnet-malware detection. We first describe our own generated

5This section is submitted under the title:

Berg, P. E., Franke, K., Nguyen, H.T. Generic Feature Selection Measure for Botnet Malware Detection, The
12th International Conference on Intelligent Systems Design and Applications (ISDA) (accepted, 2012).
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dataset, on which the experiments were conducted. We then use the static and dynamic ap-
proaches [48, 121, 147] to extract features and to generate two separate feature sets. We an-
alyze the statistical properties of the extracted feature sets to choose appropriate instances
from the GeFS measure. Since there are no standard botnet-malware detection systems,
we apply five different machine learning algorithms (Naive-Bayes, K-nearest neighbors,
C4.5, SVM and Bayesian Network [45]) to evaluate the detection rates as well as the false
positive rates on datasets containing the selected features.

4.3.1 Datasets

In this section, we describe the dataset, which was acquired in a master thesis [26], and
show how to extract important features for the botnet-malware detection task.

Dataset Acquisition: The data acquisition consists of two steps: 1) Setting and 2) Gener-
ating.

Ad. 1 Malware and benign software need to be manually downloaded and stored in our
database. This is done to be sure that the analyzed malware is utilized in a known botnet
and that we can acquire a suitable dataset in a limited time. Furthermore, to appropriately
test the classifiers, benign executables should share some similar behavior when they are
analyzed with static and dynamic analysis tools, for example some network-related activ-
ities. Different portable software, such as mail clients, browsers, network tools, instant
message clients and BitTorrent clients [7] were used to generate 50 benign samples. We
used the malicious softwares from Web sites, such as vxheavens [11], packetstorm [6] and
offensivecomputing [5], to generate 90 malware samples. These malware samples are from
three large malware families: SpyBot [3], Torpig [4] and SdBot [128]. They exist in botnets
where one of their tasks is to establish and maintain a connection with the botmaster’s
C&C server and await further commands. The reason for choosing these samples is that
we wish to study characteristics of botnet-malware that utilize different behavior on the
host. In more detail, three malware families are as follows:

-SpyBot [3] is a worm that propagates through P2P-sharing and IRC. This worm can
also infect hosts that are already compromised by common backdoor programs. In botnets,
various versions of SpyBot have been used for C&C related activities and launched DDoS
attacks.

-Torpig [4] also known as Sinowal or Anserin, is a Trojan that logs keystrokes and activity
to certain bank Web sites. The Trojan employs domain flux in order to communicate with
its main C&C servers [128].

-SdBot [128] also known as Randex or Agent, is a backdoor that connects to an IRC
channel using its own IRC client. From here an adversary can remotely control the infected
host to for example perform DDoS attacks against a third party and try to infect other users
connected to other IRC channels.

Ad. 2 The second step involves gathering and analyzing the executables’s behavior. For
this task, we utilize static and dynamic analysis tools (see, for example [22, 81]). The static
analysis tool [81] will analyze the dataset without executing the files and therefore avoids
to infect the system. Here the portable executable (PE) format need to be exploited by using
a PE parser (e.g., pefile), that enables us to retrieve information from the different sections
and store this in a static report. The reason for choosing this static analysis approach is that
behavior-based characteristics of the files are available without going to a lower abstraction
level that requires an analysis of the assembly code. Hence, this approach will not be
vulnerable to obfuscation techniques that are applied to the code to confuse the investigator
or the disassembler, and have given good results when applied in malware detectors in
recent research.
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With dynamic analysis approach, a sandbox (e.g., Anubis [22]) is applied to run the ex-
ecutables in a controlled manner utilizing an isolated environment. Thus, the executables,
with malicious intent, do not have any propagation opportunities. The sandbox needs to
emulate a computer instead of a virtual machine that operates by executing instructions
directly on the real processor. This will ensure that malware cannot escape from the emu-
lated environment, and malware cannot detect its presence as easily as with, for example
VMWare [10, 21]. The purpose of utilizing a sandbox is that malware will be loaded into
memory and executed, to retrieve its system interactions in a controlled manner. Thus,
in addition to defeating polymorphism and metamorphism, it will unpack and decrypt
malware that is protected by packers and cryptors when it is loaded into memory before
execution. Recent research shows that analyzing malware with sandboxes has given sat-
isfactory results ( see, for example [115, 141] ). When utilizing a sandbox, the executable’s
actions need to be monitored and logged, to further produce a dynamic report. All actions
stored in the dynamic report will reflect the executable’s behavior when it is run on an
actual system.

Feature Extraction: We apply the static and dynamic approaches [49, 121, 148] to extract
features from the originally acquired dataset. Table 4.23 and Table 4.24 summarize the
extracted features from both static and dynamic analysis.

Table 4.23: Static features

Feature Value Description

DLL import Boolean(s) Reflects imported DLL in the PE-header of an executable

Function calls String(s) Reflects all functions called within a DLL

The static feature set needs to be built to handle several DLL names and function call
names in order to represent the behavior of each sample:

feature setstatic = (...dll namei, .., dll function namei, ..)

Here the dll namei represents the imported DLL used in a sample and the dll function namei
represent the names of the functions called within a DLL. This implies that the feature
dll function namei holds several feature values:

dll function namei = (functioni1, .., functionin).

Similarly, we constructed the dynamic feature set from the extracted entities in the dy-
namic reports. Here each sample is represented by multiple entities:

feature setdynamic = (entity1, .., entityi, .., entityl)

where each entityi is a set of features as follows: entityi = (featurei1, .., featureim). Since
dynamic reports may contain multiple entities of similar type, for example created file, it is
needed to store multiple feature values for each feature: feature = (value1, .., valuek). For
more detail, in the following we describe where the extracted features come from.
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Table 4.24: Dynamic features

Entity Description

1:Loaded DLL Features from loaded DLL dependencies information

2:Created registry key Features holding information on created registry keys

3:Modified registry key Features related to registry modifications

4:Read registry value Features from read registry values information

5:Created file Features corresponding to name of created files

6:Modified file Features on modifications done to existing files

7:Deleted file Features related to deleted files by the executable

8:Read file Features describing files read by the executable

9:Memory mapped file Features describing memory mapped files, e.g. DLL usage

10:Driver communication Features reflecting communication to a system driver

11:Control communication Features that correspond to file system control operations

12:Thread status Features related to creation of threads and their status

13:Remote thread created Features describing processes created by threads

14:Process created Features that reflect process creation and its purpose

15:Socket Features describing network socket connections

16:DNS query Features corresponding to DNS queries to domain names

17:SMTP conversation Features extracting from e-mail using SMTP

18:HTTP conversation Features reflecting properties in a HTTP conversation

19:TCP conversation Features reflecting properties in a TCP transmission

20:UDP conversation Features reflecting properties in a UDP transmission

DLL Dependencies: DLL dependencies are the type of system libraries the executable re-
quires in order to execute. Since the executables satisfy the portable executable standard,
the required libraries will be available on a Windows-based system. However, the type of
libraries applied is dependent on the type of Windows version the executable is designed
for. Both the static and dynamic analysis tools are able to retrieve type of libraries the exe-
cutable is dependent on, where the PE parser also extracts the different function calls that
are used within each library.

Registry Activities: Retrieving features reflecting the registry activity is needed to reveal
configuration settings applied by the executables. This type of activity is especially relevant
for malware that makes sure that they will be run after a reboot by adding autorun keys and
values to the Windows registry [8]. Additionally, malware can use the registry to make sure
that certain services will be disabled/enabled and to open ports; for example, disabling
the antivirus service and enabling remote login. Thus, typical registry mechanisms that
malware exploits need to be retrieved by the sandbox, see entities 2-4 in Table 4.24.

File Activities: File activities are a common operation performed by executables. A typi-
cal example is installers that store temporary installation data when the executable is run-
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ning. Malware utilizes file activities for many reasons, for example primitive actions to
stay undetected by an average user. Malware tends to copy itself to different directories,
often system directories, where its filename is changed to something that does not seem
suspicious. Also, malware may hide its tracks by deleting itself from the directory it was
launched. See entities 5-9 in Table 4.24.

Process and Thread Activities: A process represents an instance of the executable when
it is running, and each process can be made up of several executing threads that perform
specific tasks. Retrieving features from these activities is important, because it is from these
components all communication to system drivers and libraries are initiated, see entities 10-
14 in Table 4.24. Events typically observed from malware are that they spawn additional
processes with similar or identical names to running system processes.

Network Activities: Features describing network activities related to protocols such as
HTTP, SMTP, TCP and UDP, need to be retrieved in order to observe which actions the
executable is performing to other hosts on the network or Internet, see entities 15-20 Table
4.24. Malware that is utilized in a botnet, to expand the botnet, communicate with a C&C
server, or launch attacks, may be logged by the sandbox and found in the dynamic reports.
A newly infected bot will announce that it exists by trying to connect to the C&C server.
Since embedded IP-addresses tend to be blacklisted, a series of DNS queries will be per-
formed to resolve the correct IP-address. Furthermore, bot malware may be propagated
by searching for hosts with known vulnerabilities. Port scanning is part of this activity,
which is often done by exploiting weaknesses in TCP and/or UDP protocol at the victim
to reveal open ports [123, 124]. Note that the fact when these activities are retrieved and
later used as features really depends on several aspects. The amount of time the sandbox
uses to analyze the executable sets a limit on how much network activity is logged. Also,
C&C servers might have been taken offline and therefore not available to the specific bot
anymore.

In total, we extracted 1814 static features and 5494 dynamic features from the originally
acquired dataset. With these huge amounts of features, it is necessary to utilize feature
selection methods for improving the effectiveness of botnet-malware detection. In the next
subsections, we will show the experimental setting and results of the application of the
generic feature selection (GeFS) measure to the extracted feature sets.

4.3.2 Experimental Setting

After extracting the static and dynamic feature sets from the originally generated dataset,
we analyzed their statistical properties to see whether they have linear or non-linear rela-
tions between features. From this analysis, the appropriate feature selection instance from
theGeFS measure was chosen for each dataset according to the Step 1 of the search method
3.1 described in Section 3.1. In order to do that, we first visualized the whole datasets in
the two-dimensional space to get a plot matrix, in which each element was the distribution
of data points depending on the values of a feature and the class label or the values of
two features. For instance, Figure 4.11 shows the sample distributions of data points of the
dynamic feature set. We then calculated the correlation coefficients between the features.
From these, we observed that these feature sets have many features that were linearly cor-
related to each other as shown in Table 4.25. Therefore, we chose the GeFSCFS measure
for selecting features from the feature sets.

We applied the optimization algorithm proposed in subsection 3.1.4 to find globally
optimal feature subsets by means of the measure GeFSCFS . We then combined the fea-
tures that were selected from the static and dynamic feature sets. In this experiment, we
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Figure 4.11: Sample of distributions of data points from the dynamic feature set.

Table 4.25: Percent of correlation values between features of the data sets

Feature Sets Greater-than 0.1 Less-than 0.09

Static 86.96% 13.04%

Dynamic 97.24% 2.76%

compared the GeFSCFS measure with the GACFS and the BFCFS methods [59] that used
the genetic-algorithm (GA) and the best-first (BF) search, respectively, to find relevant fea-
tures. Five classifiers with 10-fold cross validation were used to evaluate detection perfor-
mances before and after feature selection: Naive-Bayes, K-nearest neighbors, C4.5, SVM
and Bayesian Network [45]. All the obtained results are given in the tables 4.26 and 4.27.

4.3.3 Experimental Results and Discussions

Table 4.26 shows the number of full-set features before feature selection and the number
of features selected by the GeFSCFS , the GACFS and the BFCFS methods. Table 4.27
summarizes the average detection rate as well as the average false positive rate of five
different classifiers (Naive-Bayes, K-nearest neighbors, C4.5, SVM and Bayesian Network)
performed on the generated datasets.

It can be observed from Table 4.26 that the GeFSCFS removes 99.9% of irrelevant and
redundant features from original datasets. Moreover, the GeFSCFS measure outperforms
theGACFS andBFCFS methods by removing much more redundant features and more 18
redundant features, respectively.
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Table 4.26: The number of selected features (BF: best first; GA: genetic algorithm).

Feature Sets Full-set GeFS BF GA

Static 1814 7 11 515
Dynamic 5494 5 19 1956
Combination 7308 12 30 2471

Table 4.27: Experimental results on the dataset.

Feature Sets Average Detection Rate Average False Positive Rate

Full-set GeFS BF GA Full-set GeFS BF GA

Static 97.84 97.2 97.85 97.19 20.25 13.71 11.67 20.48
Dynamic 88.60 87.74 87.74 87.30 16.20 9.22 6.62 10.14
Combination 93.76 95.11 93.77 90.74 17.96 9.74 7.89 12.83

In the Table 4.27, it can be seen that the Full-set and GACFS approaches gave good
detection rates, but very high false positive rates. Furthermore, the numbers of features
using in these cases are large. Therefore, we are not interested in the experimental results
given by the Full-set and GACFS approaches.

The GeFSCFS and the BFCFS methods provided good detection rates as well as false
positive rates in the case of combination feature sets. Those results are comparable with
each other. However, the feature selection results given by the GeFSCFS measure are usu-
ally more reliable than the ones obtained by applying the BFCFS method (about reliability
in feature selection, see section 3.1). The reason is that theBFCFS utilized a heuristic search
method, i.e., the best first search to find relevant features by means of the CFS measure.
With different settings of the search process, we might select different feature subsets. Fur-
thermore, as the Table 4.26 shows the BFCFS selected more features than the GeFSCFS .
Thus, the results provided by the GeFSCFS are the best.

In summary, this section has proposed to apply the generic feature selection (GeFS) mea-
sure for botnet-malware detection systems in the network layer according to Figure 4.1.
This section has analyzed statistical properties of the new generated datasets. Based on
this analysis, the GeFSCFS measure was chosen for selecting relevant features from the
datasets. The experiment in this section has compared the GeFSCFS measure with the
genetic-algorithm-CFS and the best-first-CFS methods regarding the feature selection ca-
pabilities in botnet-malware detection. The detection accuracies obtained after the feature
selection by means of five different classifiers were tested. The experimental results showed
that 99.9% of irrelevant and redundant features were removed from the datasets, while
keeping or yielding even better classification performances. Moreover, the GeFSCFS mea-
sure outperformed the genetic-algorithm-CFS and the best-first-CFS methods by removing
much more redundant features and by providing more reliable feature selection results.

In the next section, we introduce the application of our new proposed machine learning
algorithms to the host-based intrusion detection system in the operating system layer (see
Figure 4.1).
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4.4 Host-based Intrusion Detection6

If the network-based intrusion detection systems (NIDSs) described in Section 4.2 collect
input data by monitoring network traffic (e.g, packets captured by network interfaces),
the host-based intrusion detection systems (HIDSs), on the other hand, rely on events col-
lected by the hosts they monitor [135]. Depending on the type of audit data, HIDSs can
be categorized into two classes: operating system-level intrusion detection systems and
application-level intrusion detection systems. In this section, we focus on the first class of
the HIDSs.

HIDSs in this class use information provided by the operating system (OS) to identify
attacks. This information can be system calls, such as file system modifications, user logons
and so on. For the OS-level auditing data-gathering mechanisms, see [135] for example.

Many different features can be extracted from the captured audit data to detect attacks.
However, not all of them are important and relevant for detection task. Therefore, a fea-
ture selection process is necessary. In this case, the wrapper model for feature selection is
preferable than the filter model for feature selection, which was applied to NIDSs in Section
4.2. The first reason is that the wrapper model assesses features by a learning algorithm’s
performance, thus providing more reliable and accurate intrusion-detection results. The
second reason is that the wrapper method still works efficiently with the audit data cap-
tured at the OS-level of a computer, which is normally much smaller than the data that
NIDSs can capture in the network.

In this work, we propose to apply our new general Lp-norm SVM (Section 3.3), which
is a feature-selection method of the wrapper model, for the host-based intrusion detection
systems.

4.4.1 Datasets

We conduct the experiment on two benchmark datasets for host based intrusion detection
sytems:(1) UNM [9] and (2) the MIT Lincoln Lab databases [73].

Ad. 1 The University of New Mexico (UNM) provides a number of system call datasets
[9] for testing host-based intrusion detection systems (HIDSs). The system calls were col-
lected when executing different kinds of programs, which vary widely in their size and
complexity and contain different kinds of intrusions (buffer overflows, Trojan programs
and so on). The normal data are ”synthetic” and ”live”. The synthetic traces were gener-
ated in production environments by running a prepared script with chosen program pa-
rameters. The live normal data is captured during normal usage of applications. Each trace
is the list of system calls issued by a single process from the beginning of its execution to
the end. Trace lengths vary widely because of the differences in program complexity and
because some traces are daemon processes and others are not.

In the UNM datasets, a feature is defined as the number of occurrence of a system call in
an input sequence [64]. Each instance in the UNM datasets, which is labeled as ”normal”
or ”intrusion”, has a large number of feature values, such as Xlock has 200 features. We
used five different datasets from the UNM database: ”L-inetd”,”Login”, ”PS”,”S-lpr” and
”Xlock”. More detail on the numbers of features of the datasets is given in Table 4.28.

Ad. 2 The datasets generated by MIT Lincoln Lab in 1998 [73] were used for benchmark-
ing of different intrusion detection systems and were introduced in Section 4.2. However,
in this section we only consider two system call datasets for testing host-based intrusion

6This section is published under the title:

Nguyen, H. T., Petrović, S., and Franke, K. A general l1-norm support vector machine for feature selection. In 3rd
International Conference on Machine Learning and Computing (Singapore, 2011), pp. 591-595.
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detection systems: ”RawFriday” and ”RawMonday” datasets. The ”RawFriday” and the
”RawMonday” datasets have 53 and 54 features, respectively.

4.4.2 Experimental Setting

This subsection aimed to apply the embedded model to select important features from
the UNM and MIT Lincoln Lab datasets. Particularlly, we ran four different algorithms
on the chosen datasets: L1-norm SVM (L1-SVM), L2-norm SVM (L2-SVM), GL1-norm
SVM (GL1-SVM) and GL2-norm SVM (GL2-SVM). For the L2-SVM and the traditional
L1-SVM, we used the Mangasarian’s code from [1]. To implement the new general Lp-
SVM (GLp-SVM, p=1 and p=2), the TOMLAB tool [60] was used for solving the mixed 0-1
linear programming problem if p = 1 and the mixed 0-1 quadratic programming prob-
lem if p = 2. The values of the error penalty parameter C used for the experiment were:
2−10, 2−9, 2−8, ..., 2, ..., 28, 29, 210. We applied 10-fold cross validation for estimating the av-
erage classification accuracies as well as the average number of selected features. All the
best results obtained over those penalty parameters were chosen and are given in the Table
4.28 and the Table 4.29.

4.4.3 Experimental Results and Discussions

Table 4.28: Number of selected features (on average)

Data Sets Full-set L2-SVM GL2-SVM L1-SVM GL1-SVM

RawFriday [73] 53 33.9 33.9 2.4 1.9
RawMonday [73] 54 26 26 1 1
L-inetd [9] 164 33.5 23 13.5 2.4
Login [9] 164 46 30 9.6 2
PS [9] 164 22 22 5 2
S-lpr [9] 182 36.9 36.9 3.2 2
Xlock [9] 200 46.8 46.8 7.5 1

Average 140.1 35.01 31.22 6.02 1.75

Table 4.29: Classification accuracies (on average)

Data Sets L2-SVM GL2-SVM L1-SVM GL1-SVM

RawFriday [73] 98.40 100 84.2 98.80
RawMonday [73] 100 100 95.65 100
L-inetd [9] 88.33 90.05 85.00 85.83
Login [9] 80.00 85.00 65.00 81.67
PS [9] 100 100 100 100
S-lpr [9] 100 100 87 99.11
Xlock [9] 100 100 96.19 100

Average 95.24 96.43 87.57 95.05

Table 4.28 shows the number of features selected by our GLp-norm SVMs and those se-
lected by the traditional Lp-norm SVMs. Table 4.29 summaries the classification accuracies
of 10 folds cross-validation of the SVMs performed on 7 datasets.
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It can be observed from Table 4.28 that our new method GL1-SVM removes dramati-
cally irrelevant and redundant features from the full-set of features. Surprisingly, in some
cases the GL1-SVM selected only one important feature, such as in the Xlock and Raw-
Monday datasets. Moreover, in comparison with other methods the GL1-SVM provided
a smallest number of important features. The GL2-norm SVM selects smaller numbers of
features than the L2-SVM, but larger than the L1-SVM.

From the Table 4.29, it can be seen that the GL1-SVM provided higher performance
than the one given by the traditional L1-SVM. In fact, the GL1-SVM improved the classi-
fication accuracy by more than 7.48%. This phenomenon can be explained by the fact that
L1-SVM is just a case of the GL1-SVM, thus solving the GL1-SVM results a better classifi-
cation accuracy than solving the traditional L1-SVM. Moreover, the datasets contain many
irrelevant and redundant features that negatively affect the performance of SVMs. These
explanations can also be applied to the case of the GL2-SVM and L2-SVM. As shown in
Table 4.29, GL2-SVM gave the best classification accuracy on average. In some cases, such
as in the Xlock and RawMonday datasets, one feature is enough to identify attacks and
normal traffic.

In summary, this section has applied the new general Lp-norm support vector machine
(GLp-SVM) for the host-based intrusion detection systems. The experiment was conducted
on two datasets: the UNM and the MIT Lincoln Lab. The experimental results showed that
the GLp-SVM provided better classification accuracies than the traditional Lp-SVMs do,
while using fewer numbers of features. Therefore, the intrusion detection results of HIDS
are more reliable than the ones obtained by runing the traditional Lp-SVM.

Previous sections have introduced the applications of our new proposed reliable ma-
chine learning algorithms for various intrusion detection systems in three different layers:
application layer, network layer and operating system layer. In the next section, we show
the last application of our new algorithms in this dissertation to test of Web Application
Firewalls (see Figure 4.1).

4.5 Testing of Web-Application Firewalls7

This section presents a new methodology to simplify the evasion of an Web Application
Firewall (WAF), thus providing an efficient testing of the WAF. State-of-the-art evasion
techniques are based on looking for flaws or vulnerabilities in the behaviour of these sys-
tems, but this behaviour is normally unavailable or difficult to understand. To cope with
this problem, we propose to model WAFs using Genetic Programming (GP) and feature
selection methods. The resulting models detect Web attacks similarly to the WAF, but are
simpler to understand and process. Accordingly, evasions over the original WAF are found
by looking at these models. We run the experiments using HTTP traffic obtained from a
simulated environment and an experimental WAF. The results show that feature selection
aids to considerably speed up the evasion search.

In the following, we first introduce the data used, the contents and how it is collected.
Second, we explain how we construct the experimental WAF, its characteristics and perfor-
mance.

7This section is submitted under the title:

Pastrana, S., Gimenez, C. T., Nguyen, H. T., and Orfila, A. A methodology to simplify the evasion of web
application firewalls. Computers & Security Journal, Elsevier. (submitted, 2012)
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Table 4.30: 89 characters constructed using n-grams from the HTTP dataset CSIC 2010.
? refers to features selected by the GeFSCFS measure and � to features selected by the
Consistency measure.

Features Extracted with N-grams
! � ” # � $ ? LF Space ?
% � : & � ’ ? ( ) ?
* � + � , - � . � / ?
0 1 � 2 3 ? � 4 � 5 ? �
6 ? 7 ? � 8 � 9 � ; < ? �
= � > ? � ? @ A B
C � D ? � E F ? G � H ? �
I ? J K � L ? � M � N ?
O ? P ? Q R ? S ? � T �
U ? V ? � W ? X � Y ? � Z ? �

a ? b c d e ?
f ? � g h i j � k ? �
l � m ? n ? � o p ? q ?
r s ? � t u v ? w ?
x � y z ? � — ? ˜

4.5.1 Datasets

A current problem in Web attack detection is the lack of publicly available datasets to test
WAFs. The DARPA dataset [73] has been widely used for intrusion detection. However, it
has been criticized by the research community [87]. Its Web traffic is out of date and does
not include many of the current attacks, which makes it inappropriate for the detection of
Web attacks. Therefore, we decided to use the CSIC 2010 HTTP dataset as described in
subsection 4.1.1.

For feature construction, we use features from expert knowledge (see Table 4.1 in Sec-
tion 4.1.1) in addition with the features extracted by using n-grams method as described in
subsection 2.1.1.1. An n-gram is a subsequence of n items from a given sequence [32, 86].
In byte sequences, the number of possible subsequences with length n is 256n. In this work
we set n = 1 (the simplest case), thus the number of 1-grams is 256. We establish a corre-
spondence between the 256 1-grams and the 256 ASCII characters.

With the assumption that normal requests are different from the anomalous ones, we
use the following automatic feature construction method based on the n-gram method for
intrusion detection: Given an HTTP request p, a feature vector of p is the vector xp =
(x1, x2, . . . , x28n), where xi is the number of appearances of the ith n-gram in the request p,
which is considered as a string of characters. Therefore, in the case of 1-grams the number
of appearances of each character is a feature. We observe that in the CSIC 2010 HTTP
dataset only 89 characters are present. Thus, they can be considered features. These 89
characters are listed in Table 4.30.

We combine these 89 features with 28 features from expert knowledge to construct a
dataset with 117 features. The dataset is divided into three subsets by randomly selecting
instances from it. One third of the dataset is used to train and generate the detection engine
of the WAF (below we give details of the construction process). The second subset is used
to train the GP models and the third subset to test these models. Each instance of the
dataset is selected only once, so it is assured that instances are not repeated among the
three subsets.
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4.5.2 Experimental WAF

Figure 4.12: Structure of the WAF studied. It is composed of a raw traffic preprocessor and
the detection engine.

The WAF that we are going to evade is a detector that, given a trace of data, classifies
it as normal or intrusive. The detection engine of the WAF is a decision tree algorithm, the
C4.5 [111]. We choose to use a decision tree due to the fact that this kind of algorithms
is widely used in the field. In fact, the winner of the famous DARPA intrusion detection
contest [73] was an algorithm based on decision trees [109]. We have trained the WAF to
classify the HTTP packets using both normal and intrusive packets. In the training mode,
we give an initial dataset from which the tree learns how to classify the instances. Fig-
ure 4.12 shows the structure of the WAF created. First, the raw traffic is preprocessed as
explained in the previous section to extract the features and label each HTTP packet, indi-
cating whether it is normal or intrusive. Then, one third of the dataset is entered to train
the detector using the C4.5 algorithm in the WEKA software [139]. As output, the software
returns the decision tree that represents the detection engine of the WAF.

In order to evaluate the effectiveness of this WAF, we first define the measures used.
Table 4.31 shows the contingency matrix of a detection system. From its notation, several
metrics are defined:

• Hit rate (H).

H =
TP

TP + FN
(4.2)
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Table 4.31: Contingency matrix for binary classification problems: True Negatives (TN),
False Positives (FP), False Negatives (FN) and True Positives (TP)

Detection
Negative Positive

Real Negative TN FP
Positive FN TP

Table 4.32: Contingency matrix obtained testing the C4.5-based WAF performed on the
CSIC 2010 HTTP dataset

Detection
Negative Positive

Real Negative 23272 1045
Positive 768 15625

Table 4.33: Detection rate (H), false alarm rate (F) and CID index of the C4.5-based WAF
performed on the CSIC 2010 HTTP dataset

H 0.957
F 0.0468

CID 0.734

• False positive rate (F).

F =
FP

FP + TN
(4.3)

• CID index [54] measures the amount of uncertainty of the input resolved once the IDS
output is obtained, and takes into account the prevalence (B in the following formula)
in the dataset besides the hit rate (H) and the false positive rate (F).

Cid =−BHlog BH

BH +HF

−B(1−H)log
B(1−H)

B(1−H) + (1−B)(1− F )

− (1−B)(1− F )log
(1−B)(1− F )

(1−B)(1− F ) +B(1−H)

− (1−B)Flog
(1−B)F

(1−B)F +BH

(4.4)

Table 4.32 and Table 4.33 show the effectiveness of the C4.5-based WAF performed on
the CSIC 2010 HTTP dataset. These metrics correspond to the detection of new HTTP
traces, i.e. the two thirds of the dataset that were not used in the training phase of the WAF.
We explain further how these traces are used when modeling the WAF in the next section.
The WAF obtains pretty good results detecting the HTTP attacks included in the dataset
and has a low false positive rate. Therefore, it is valid to apply our methodology, as we
explain below.

4.5.3 Experimental Setting

Figure 4.13 shows a schematic view of the methodology that we use to look for evasions
over a given WAF. The required inputs to the methodology are the WAF studied and the la-
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Figure 4.13: Scheme of the methodology followed.

beled dataset (dotted line circles in the figure) used to model it. At this point, labeled means
that it is known whether each instance in the dataset is normal or attack. The methodology
can be divided into 4 main sub-tasks: the output recording, the feature selection process,
the modeling phase and the evasion search.

Output recording: As explained above, Table 4.32 and Table 4.33 show the effectiveness
of the WAF implemented with the C4.5 algorithm when classifying new traces. We obtain
the output given for each trace exposed to the WAF. We take note of this output and write
it at the end of the trace to obtain a final trace with the following format:

F1, F2, F3, ..., F117, L,O

Here, each Fi is the ith input feature (from the total of 117 features), L is the label indi-
cating whether the trace is actually normal or intrusive and O is the output given by the
WAF for this trace. Note that, if the label (L) and the output (O) have the same value, it is
a correctly classified instance, otherwise it is a false positive (if L=0) or a false negative (if
L=1). After this process the dataset contains information about how the WAF classifies the
instances (i.e., its behaviour). This information is used in the modeling phase, as explained
below.

Feature Selection: In order to optimize the modeling process and the evasion search, we
apply feature selection. Our hypothesis is that looking for evasions over the model ob-
tained from a subset of the most important features may be easier and faster than looking
at the model obtained with the complete set of features. Therefore, we apply the GeFS
measure for feature selection (see subsection 3.1.2). In order to select the appropriate GeFS
instance (GeFSCFS or GeFSmRMR), we analyse the statistical properties of the dataset
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Figure 4.14: Sample of distributions of data points from the HTTP dataset CSIC 2010 with
117 extracted features

with the 117 constructed features to see whether there are linear or non-linear relation-
ships between features (the GeFSCFS measure is recommended in the case where linear
relationships exist, and the GeFSmRMR measure otherwise). For the statistical properties
analysis, we first visualize the whole dataset in the two-dimensional space to get a plot ma-
trix, where each element is the distribution of data points depending on, either the values
of a feature and the output of the WAF, or the values of two features. Figure 4.14 is a sam-
ple of data point distributions of the features extracted from the HTTP dataset CSIC 2010.
In the figures the axes represent, respectively, the length of the request vs. the number of
the 1-gram ’z’ and the length of the arguments vs. the number of letters in the argument’s
values. Blue points represent normal requests and red points, anomalous ones. As it can be
seen in the figures, there are linear relations between the features of the dataset. To confirm
our observations from the figures, we additionally calculate the correlation coefficients be-
tween the features. By observing these coefficients, we see that most of the features of the
dataset do not have linear relationships to the label and that many features are linearly cor-
related to each other. In fact, more than 40% of the correlation values between features are
greater than 0.09, which means that between those features there are linear relationships.
Therefore, our conclusion is that the appropriate measure for selecting features from the
HTTP dataset CSIC 2010 is GeFSCFS .

In the tables 4.30, 4.34 and 4.37, the symbols ? and � are used to point out the features se-
lected by the GeFSCFS and Consistency measures from the whole set of features extracted
from the CSIC 2010 dataset. Note that indeed many of the features selected are critical for
the detection of Web attacks, like the ’ character for instance, that is included in many SQL
injection attacks.

Modeling: As previously mentioned, the modeling of the WAF is performed using Ge-
netic Programming (GP). Table 4.35 shows the values used for the GP parameters. These
values have been obtained using the cross-validation technique [67] and getting the com-
bination of parameters that gives the best results. This technique can be summarized as
follows :
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Table 4.34: 28 features constructed using expert knowledge from the HTTP dataset CSIC
2010. ? refers to features selected by the GeFSCFS measure and � to features selected by
the Consistency measure.

Features Extracted with Expert Knowledge
Length of the request ? �
Length of the path ?
Length of the arguments
Length of the header “Accept” �
Length of the header “Accept-Encoding”
Length of the header “Accept-Charset”
Length of the header “Accept-Language” �
Length of the header “Cookie” �
Length of the header “Content-Length”
Length of the header “Content-Type”
Length of the Host
Length of the header “Referer” �
Length of the header “User-Agent” �
Method identifier
Number of arguments
Number of letters in the arguments ? �
Number of digits in the arguments �
Number of ’special’ char in the arguments ? �
Number of other char in the arguments �
Number of letters char in the path
Number of digits in the path ? �
Number of ’special’ char in the path �
Number of other char in path ?
Number of cookies �
Number of distinct bytes �
Entropy ? �
Number of keywords in the path ?
Number of keywords in the arguments

1. Divide the entire training set into k smaller sets (called folds). Each fold contains
different traces; therefore a trace is not repeated among different folds.

2. Establish a random value for each parameter. It is recommended to delimit the valid
values to avoid incoherences (for example, an incoherent value is a number of gener-
ations lower than two).

3. With these parameter values, and for each fold k:

a) Merge all the folds but k into a set.

b) Train a model using as training set the previously merged one.

c) Test the model using the fold k.

d) Store the results to be processed later.

4. Return to step 2 and repeat the process as often as desired. To ensure enough vari-
ability in the values, we recommend to repeat the process at least 4n times, where n
is the number of parameters tuned.

95



4. APPLICATIONS TO INTRUSION DETECTION SYSTEMS

Table 4.35: GP (Genetic Programming) parameters used in the experiments

Name Value
Number of generations 300
Maximal tree depth 15
Population size 1000
Tournament size 8
Crossover rate 90%
Mutation rate 10%

Table 4.36 describes the functions used in the GP algorithm. Most of them outputs a
binary value. In order to obtain the models, we run the GP training phase using the second
third of the dataset (the first one was used to train the WAF with the C4.5 algorithm).
Finally, the models are tested using the last third of the dataset. This test measures the
effectiveness of the models classifying data as the WAF did. We perform comparisons in
terms of classification error (see Eq. 4.5).

class error =
incorrectly classified events

total events
(4.5)

This double training-testing phase is repeated 7 times in order to obtain a statistically
significant measure which does not depend on the initial random seed. Therefore, as we
obtain 7 different models, in Section 4.5.4 we provide the test accuracy for both the best
model and the average of these seven models. These 7 experiments are repeated in 3 cases:

1. With the overall set of features (117)

2. With the 47 features selected by GeFSCFS

3. With the 54 features selected by Consistency.

We compare the accuracy of the models obtained and discuss the advantages of selecting
features before modeling the WAF. As remarked above, our hypothesis is that looking for
evasions over the models obtained from a subset of the most important features may be
easier or faster than looking at models obtained with the complete set of features. This
hypothesis is supported by the results, as we show in Section 4.5.4.

Evasion Search : The evasion search is made by using a special brute-force approach.
This search consists of modifying one by one the variables (features) placed at the leaves of
the models. These are the features that the original WAF takes into account in the detection
process. The objective is to convert true positives of the WAF into false negatives (see Table
4.31). Therefore, for each feature in the leaves of the models, we change its value in every
attack trace that was detected as such, generating a new dataset of modified attack traces.
This modified dataset is given as input to the original studied WAF to check whether new
false negative appears. Each modified attack that is not detected by the WAF is considered
an evasion candidate. We say candidate because before considering it a real evasion of the
WAF we have to check two requirements:

1. Data obtained with the change must represent valid HTTP traffic.

2. Modifications are performed only in attack traces. It is necessary to confirm that the
modified trace still represents the attack.
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Table 4.36: List of functions used with GP (Genetic Programming)

Name Description of Functions
ADD Addition of two numbers
AND Logic AND operation between two

numbers
GREATER Compares two values. Returns 1 if the

first is greater, otherwise 0
LEAST Compares two values. Returns 1 if the

first is lower, otherwise 0
MULT Multiplication of two numbers

OR Logic OR operation between two num-
bers

MAX Returns the maximum of two values
MIN Returns the minimum of two values
RL Bitwise left rotation in one position of

a value
NOT Logic NOT operation of a value

Table 4.37: Sorted list of the 10 features with more frequency of appearance in the GP
models obtained with the overall set of features. The last two columns indicates whether
each feature has been selected by GeFSCFS and Consistency respectively

Feature Frequency GeFSCFS Consistency
Number of special char. in arguments 128 ? �

Number of ”-” 106 ?
Number of ”A” 105 ? �
Number of ”1” 76 ?
Number of ”U” 55 ?

Number of arguments 50
Number of ”k” 49
Number of ”∼” 42 ? �
Number of ”I” 41 ? �
Number of ”e” 32 �

4.5.4 Experimental Results

The first modeling of the WAF has been carried out using the overall set of features. The
resulting leaves of the tree models indicate which are the most relevant features considered
by the WAF in the detection. Table 4.37 indicates the 10 features that appear with major
frequency (in descending order) in the leaves of these models obtained by GP when used
the complete set of features. For each of the features, the table shows whether it has been
selected by any of the selection methods studied. We can see that five of the most frequent
features in the models were also indicated by GeFSCFS (two of them were also selected by
Consistency). This means that GP is able to identify the most relevant features to be used
in this scenario in a similar way that the GeFSCFS does.

We have also modelled the WAF using the subset of 47 features selected in a previous
step by GeFSCFS and the 54 subset selected by Consistency. Using this much smaller sub-
set of features, we have obtained models that classify nearly equal to the model obtained
using the overall subset of features (see Figure 4.15). As explained above, the use of GP
may perform a similar feature selection. However, the GP process spent a major amount
of resources, so if saving time or resources is critical it is better to previously select the fea-
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Figure 4.15: Classification error of both the best GP individual and the average of the GP
individuals using the complete dataset (All Features), the subset selected byGeFSCFS and
the subset selected by Consistency

tures. Therefore, when the only goal is modeling, it seems better to use the overall set of
features, as by the nature of GP, it makes an internal selection that nearly coincides with the
two other methods. However, in this work our aim is to look for evasions. In the models
obtained with a previous feature selection, the number of different variables in the leaves
of the trees is lower than in the models obtained using all the features. That means that,
when looking for evasions it is better to directly focus on the principal features indicated,
so it is easier by looking at the GeFSCFS and Consistency models. In fact, the query is
faster looking through these models than looking up on the models obtained without fea-
ture selection. Concretely, a 21 % of the time is reduced using the GeFSCFS model and a
15 % is reduced using the Consistency model.

We have obtained around fifty thousand evasion candidates on the dataset, that is, cases
where just a feature change makes the WAF to fail the detection. For some traces, we have
found several ways to perform the evasion, that is, several candidates. However, for each
of these candidates, we have to analyse if it is still an attack and the viability of performing
the corresponding change from the HTTP protocol point of view (for instance, it makes no
sense to set the ”length of the path” feature to zero). In order to give a semantic result of
how an evasion may succeed, we have manually analysed some of the candidates. Below
we show two illustrative examples of evasion of an SQL Injection attack and an XSS attack.

Figure 4.16 shows an HTTP packet that encapsulates a classical SQL Injection attack.
Analysing the models we have realized that part of the detection is based on the length of
the path (feature number 2). Originally, the path had 45 bytes:

http://localhost:8080/store1/members/edit.jsp

By brute force search on this feature we have seen that forcing this length path to be
greater than or equal to 50, this attack evades the detection. According to the HTTP proto-
col, this modification can be performed by adding null information, such as ”../../”. This
change also causes that the attack succeeds. The path of the changed packet is:

http://localhost:8080/store1/../../members/edit.jsp
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Figure 4.16: HTTP Packet encapsulating a simple SQL Injection attack

Figure 4.17: HTTP Packet encapsulating a simple Cross-Site Scripting attack

It is also possible to change the slash character (/) by its URI codification (%2f):

http://localhost:8080%2fstore1%2fmembers%2fedit.jsp

These two modifications provoke the WAF to fail the detection, that is, the SQL Injection
attack evades the detection.

Another example is shown in Figure 4.17. The detection of this XSS attack by the WAF
takes into account the number of hyphen characters (-) in the method, path and arguments.
The packet corresponds to a POST request where the arguments are given in the DATA
field. As we can see, the only hyphen in the packet is in the name of the city. We have
realized that by adding 4 more hyphens we evade the detection. This can be done by
faking part of the information given as arguments. For instance, we can set the surname to
be Panella-Villasev (realize that, for example in Spain, people usually have two surnames,
so a hyphen is normally used to avoid problems in databases that are expecting just one
word), another one into the address (San-Lorenzo), an extra one into the city (Alegria–
Dulantzi) and another one into the e-mail address (great-inventions). These changes affect
only the fields of the parameters, so the complete packet still represents valid HTTP traffic.
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In summary, this section has applied the generic-feature-selection (GeFS) measure to sim-
plify the evasion process of Web Application Firewalls (WAFs), thus providing an efficient
testing method of WAFs. The experiment was conducted on the CSIC 2010 dataset. The
experimental results showed that the GeFS measure provided a more accurate and simpler
modelling of WAFs than the using of full-set of features and the Consistency measure, thus
speeding up the evasion search. In particular, the total amount of CPU time spent when
using all features is 3 hours and 20 minutes, whereas using GeFS measure reduced the time
by 21% (2 hours and 30 minutes of CPU time).
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Chapter 5

Conclusions

A conclusion is the place where you
get tired of thinking.

ARTHUR BLOCH

The theoretical and empirical findings are discussed in detail: new reliable machine
learning methods via an operational research approach and their applications to infor-
mation security problems (Section 5.1). Future work on the reliability of machine learn-
ing based intrusion detection systems in a changing or an adversarial network environ-
ment are provided (Section 5.2).

5.1 Summary of Findings

This dissertation is mainly divided in two parts: reliability analysis of a statistical pattern
recognition system with new proposed reliable algorithms and applications to information
security problems. We summarize each part in turn.

5.1.1 New Reliable Machine Learning Algorithms

The first part of this dissertation is about analyzing the reliability of a statistical pattern
recognition system. First, we studied the main factors that affect the reliability in the fea-
ture selection process: the choice of feature selection methods and the search strategies
for the relevant features. We introduced a formal definition of a reliable feature-selection
process. The definition provides formal measurements of reliability in feature-selection,
i.e., the steadiness of a classifier’s performance and the consistency in search for relevant
features. We proposed new methods to address the main causes of unreliable feature-
selection process. In particular, we introduced a new methodology of determining appro-
priate instances from a class of feature-selection methods. We called this class a generic-
feature-selection (GeFS) measure. We also proposed a new search approach that ensures
the globally optimal feature subset by means of the GeFS measure. The new search ap-
proach is based on solving a mixed 0-1 linear programming (M01LP) problem by means of
the branch-and-bound algorithm.

Moreover, we analyzed the influence of the over-selecting phenomenon, which is the
situation when the features selected from the training data are quite different from the rep-
resentative features of the testing data, on the over-fitting phenomenon of machine learning
algorithms. We proposed a new framework to address principal causes of over-selecting,
thus reducing the chance of over-fitting and providing reliable results. Our new frame-
work that we called Ensemble Feature Selection measure (EnFS), allows the consideration
of many statistical properties of a given data set at the same time by combining many fea-
ture selection methods used in the filter model. From the chosen feature selection measures,
a new combined measure is constructed. We also introduced a new search algorithm that
ensures the globally optimal feature subsets by means of the constructed measure. Similar
to the case of the generic feature selection measure, this new search approach is based on
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solving a mixed 0-1 linear programming (M01LP) problem by means of the branch-and-
bound algorithm.

Second, we proposed to generalize the traditional Lp-norm Support Vector Machines
(Lp-SVMs) into a new general Lp-norm Support Vector Machines (GLp-SVMs) that takes
into account all possible feature subsets. We represented the GLp-SVM as a mixed 0-1
nonlinear programming problem (M01NLP). We proved that solving the new proposed
M01NLP optimization problem results in a smaller error penalty and enlarges the margin
between two support vector hyper-planes, thus possibly giving more reliable classifica-
tion results and a better generalization capability of SVMs than solving the traditional Lp-
SVMs. Moreover, by following the new general formulation we can easily integrate expert
knowledge into the GLp-SVMs, thus the classification results are much more reliable.

Third, we proposed a new initialization method for K-means clustering and a new
search method for optimal K-means with K = 2. In fact, we casted the K-means prob-
lem into a mixed 0-1 linear programming probblem, which can be solved by using the D.C.
(Difference of convex functions) algorithm. This approach provides more accurate and
more reliable K-means clustering than many heuristic approaches do.

5.1.2 Applications for Intrusion Detection Systems

In the second part of this dissertation, we applied our new machine learning algorithms in
building reliable intrusion detection systems to detect attacks in three different layers: (1)
application layer, (2) network layer and (3) operating system layer.

Ad. 1 In the application layer, we applied the generic-feature-selection (GeFS) measure
to select important features for Web attack detection. We conducted the experiment on
the CSIC 2010 and ECML/PKDD 2007 datasets. Statistical properties of the datasets were
first analyzed. Based on this analysis, theGeFSCFS measure and theGeFSmRMR measure
were chosen for selecting features from the CSIC 2010 dataset and the ECML/PKDD 2007
dataset, respectively. The detection accuracies obtained after the feature selection by means
of four different classifiers were tested. The experiments show that by choosing appropri-
ate instances of the GeFS measure, 63% of irrelevant and redundant features were removed
from the original dataset, while reducing only 0.12% the detection accuracy of WAFs. At
the same time, the new proposed methods provide reliable feature-selection results and
outperform the heuristic approaches in term of reliability.

Ad. 2 In the network layer, first we applied the generic-feature-selection (GeFS) measure
to select important features for network-based intrusion detection systems. The bench-
marking KDD CUP 1999 dataset was used in our experiment. We compared our new GeFS
measure with various existing feature-selection methods, such as the SVM-based method,
the Markov-blanket-based method and so on. Experimental results showed that our ap-
proach outperforms the existing ones by removing much more redundant features and
still keeping the classification accuracies or even getting better performances. Second, we
demonstrated the advantage of the GeFS measure in providing the most important features
for the reliable detection of botnet malware.

Ad. 3 In the operating system layer, we analyzed the characteristics of the attack and
normal behavior in system calls, such as file system modifications, user logons and so on.
We applied the new proposed general Lp-norm support vector machines (GLp-SVMs) for
host-based intrusion detection systems. We conducted an experiment on the UNM and
the MIT Lincoln Lab datasets. The experiment showed that the GLp-SVMs provided more
reliable detection results than the ones obtained by the traditional Lp-norm SVM. Because
the GLp-SVMs gave better generalization capabilities, while in many cases selecting fewer
features. In fact, the GLp-SVMs improved the classification accuracy of the traditional Lp-
SVMs by more than 13.49% and surprisingly, in some cases the GLp-SVMs used only one
important feature.
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Finally, we applied the generic-feature-selection (GeFS) measure to simplify the evasion
process of Web Application Firewalls (WAFs), thus providing an efficient testing method of
WAFs. We conducted the experiment on the CSIC 2010 dataset. The experimental results
showed that the GeFS measure provided a more accurate and simpler modelling of WAFs
than the using of full-set of features and the Consistency measure, thus speeding up the
evasion search. In particular, the total amount of CPU time spent when using all features
is 3 hours and 20 minutes, whereas using GeFS measure reduced the time by 21% (2 hours
and 30 minutes of CPU time).

5.2 Future Work

In terms of future work, our vision is to build highly-reliable machine learning based in-
trusion detection systems in the changing and adversarial network environments. This
section outlines various directions for this vision.

5.2.1 Adaptive Intrusion Detection Systems

Network environments become more and more diverse with the presence of many differ-
ent network protocols, services, applications and so on. With this diversity, many different
types of attacks appear and target at a computer or a network everyday. A single type of in-
trusion detection systems (IDSs), which has its own advantages and disadvantages, seems
to be insufficient to detect all the attacks. For example, misuse IDSs, such as SNORT [117],
can only detect attacks, which are described in the databases. This approach is known as a
signature-based IDS. The anomaly IDSs [78] can detect novel attacks based on significant
deviations of the observed activities from the established profiles of the legitimate users.
However, at the same time these IDSs generate more false positives than the misuse IDSs.
In addtion, it is difficult to produce effective models of legitimate patterns by expert knowl-
edge. Several data-driven IDSs by using machine learning [144] are developed to cope with
these problems. But this approach strongly depends on the utilized classifiers and the IDSs
might perform well in a particular network environment with particular attack types. For
example, the Decision-Tree-based IDS detects well the denial-of-service attacks, but it fails
to identify most of the user-to-root and remote-to-local attacks [119]. Of course this hap-
pens with the particular KDD CUP 1999 dataset [72], yet it might likely happen in many
other datasets. This phenomenon is according to No-Free-Lunch Theorem [142, 143] that
says there are no universal classifiers for every kind of data.

In the adversarial network environments, the situation is even worse as attackers might
launch and change the types of attacks every time, thus the streams of the data are un-
predictable. Since we don’t know which types of attacks are coming next, the primary
difficulty lays on selecting of the best IDS at a certain time. In our scenario, we assume that
each IDS has its own favorite types of attacks to detect.

One might think to run several IDSs at the same time and then either select the IDS
that works well on average, or select the one that provides the best performance in the
previous data that is believed to be representative. However, this manual selection costs
a lot of efforts and usually are incorrect since the stream of the data in the heterogeneous
and adversarial network environments are changed all the time.

One might also think to automatically combine the outputs of the IDSs. A simplest way
to combine the IDSs’ outputs is the majority voting. At any time, the final decision will be
the prediction of the most frequent output. This approach is very efficient, but incorrect
in many cases since the majority can be wrong. Several efficient fusion techniques for
ensemble IDSs ( see, for example, [39] ) were proposed. However, there are no theoretical
guarantees about the ability of the ensemble IDSs to follow the best IDS or to follow the
sequence of the best IDSs in different segments of the data. This ability is understood as
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the adaptability of the IDSs. Another combination method named Hedge/Boosting [51],
which is a very efficient online learning framework. It has also the theoretical guarantee
that says the combination of IDSs will have the performance close to the performance of
the best IDS for the whole period of time T . However, this approach is sensitive in the
adversarial environments, in which attackers intend to destroy the superiority of the best
IDS by changing the attacks all the time. After T times, all the baseline IDSs will perform
badly the same, thus the combination by means of the Hedge/Boosting might not be useful.
This adversarial activity targeted at the ensemble IDSs can be included into the Exploratory
category [20] for online machine learning.

In the future work, we propose to apply another efficient online learning framework,
which is the mixing algorithm introduced by Bousquet&Warmuth (2002) [29], to combine
different outputs of the baseline IDSs. We call the new proposed method an Adaptive
Intrusion Detection System (A-IDS). The mixing algorithm consists of two steps: the Loss
Update and the Mixing Update. The Loss Update is essentially the Hedge algorithm [51]. The
beauty of the Mixing Update is that it efficiently remembers the IDSs that perform well in the
past through the weight values and quickly recover them to deal with their favorite data at
the current moment. Therefore, the A-IDS quickly adapts to the changing environments,
such as heterogeneous and adversarial network environments. More details on how and
why the algorithm works are given in [29].

5.2.2 Robust Intrusion Detection Systems

In an adversarial network environment where a machine learing-based intrusion detection
system (ML-IDS) is deployed, attackers can adaptively manipulate the data to mislead the
training process of the ML-IDS. This manipulation can be done by adding feature noise,
such as unimportant patterns or features, to the flow of network data which will be cap-
tured for training ML-IDSs. For example, attackers can attach data noise to a network
where a honeypot is running to collect attack samples. Moreover, in many cases attack-
ers bypass the ML-IDS or the ML-IDS accidentally misclassifies some attack and normal
samples. These introduce the label noise into the training datasets for the ML-IDS.

In the presence of training data noise (including feature and label noise), the ML-IDS
might learn wrong patterns, thus providing unreliable classification results. Therefore, the
robustness of ML-IDSs to ignore the data noise in the training phase is necessary. In the
following, we describe two potential approaches for robust intrusion detection systems.

First, feature selection helps to look for important patterns while skipping the data
noise. In the future work, we propose to apply and test our new reliable feature-selection
algorithms (see Chapter 3) for robust intrusion detection systems in dealing with train-
ing data noise. Second, it has been recently shown that the convexity property of various
machine learning algorithm, such as support vector machines and logistic regression al-
gorithm, makes them not robust to the data noise [76]. The use of non-convex machine
learning methods, such as the t-logistic regression [44], might solve the problem. In the
future work, we study this approach for robust intrusion detection systems.
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Appendix A

Anscombe’s Quartet

Below is four datasets (I, II, III and IV) of the Anscombe’s quartet. These datasets were
generated by the statistician Francis Anscombe in 1973 [19] to show the importance of vi-
sualization of a dataset before statistically analysing it and the effect of outliers on statistical
properties.
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Nomenclature

IDS Intrusion Detection System

NFL No-Free-Lunch Theorems

SVM Support Vector Machine

CFS Correlation Feature Selection

mRMR Minimal Redundancy Maximal Relevance

GeFS Generic Feature Selection

EnFS Ensembel Feature Selection

GLp-SVM General Lp-norm Support Vector Machine

CO Convex Optimization

NCO Non-convex Optimization

M01LP Mixed 0-1 Linear Programming

PM01FP Polynomial Mixed 0-1 Fractional Programming

DCA Difference of Convex Functions Algorithm

WAF Web Application Firewall

NIDS Network-based Intrusion Detection System

HIDS Host-based Intrusion Detection System

GP Genetic Programming

GA Genetic Algorithm

BF Best First Search

C4.5 Decision Tree

CART Classification And Regression Tree

Malware Malicious Software

TN True Negative

FP False Positive

FN False Negative

TP True Positive
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