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Abstract

Most face detection algorithms can be divided into two sub-problems, initial
visual guidance and face/non-face classification. In this paper we propose an
evaluation protocol for face/non-face classification and provide experimen-
tal comparison of six algorithms. The overall best performing algorithms
are the baseline template matching algorithms. Our results emphasize the
importance of preprocessing.
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1 Introduction

Face detection is an important and necessary first step in most face recogni-
tion applications. Face detection serves to localize potential face regions in
images and classify them as faces or non-faces. This is a difficult task due to
the dynamic appearance and variability of faces as opposed to more static
objects such as vehicles or weapons. In addition to face recognition, areas
such as content-based image retrieval, intelligent human-computer interfaces,
crowd surveillance, video coding and email content security also make use of
face detection algorithms.

The last decade has shown a great deal of research effort put into face
detection technology. A comprehensive survey can be found in Hjelméas and
Low [5], where the algorithms are classified as feature-based or image-based.
Several algorithms perform very well, and the choice of algorithm is mostly
dependent on the requirement of the application to perform in real-time or
not. However, not much work has been done on comparing existing algo-
rithms. Some of the image-based algorithms report results on a common
dataset (the CMU/MIT dataset), but there does not exist a specific eval-
uation protocol for this dataset. This has lead to different interpretations
of testing parameters (such as how many faces are present,! or how to re-
port correct detections vs. false alarms) for this set, which makes it hard to
compare the algorithms.

In this paper we provide an experimental comparison of six face detection
algorithms, categorized as two baseline, two image-based and two feature-
based algorithms. One of the feature-based algorithms is a new version of
an existing technique, while the rest are implemented based on previously
published papers by other authors. The algorithms are selected based on
findings in [5], and also to represent significantly different approaches. We
also propose an evaluation protocol for the face/non-face classifier in face
detection algorithms.

In section 2, we present an overview of the dataset we have selected
for training and testing, while section 3 described the testing protocol in
detail. Section 4 presents the algorithms, while section 5 and 6 contains the
experimental results and discussion. Finally we conclude in section 7.

'Recently, a ground truth has been established and is available at
http://www.vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html but since
this includes cartoons and line-drawn faces, it has not been applied consistently in face
detection tests.



Figure 1: Example images from the XM2VTS training set.

2 The dataset

The dataset consists of images from the XM2VTS? [7] and AR? [6] face
databases, and non-face images collected from the world wide web. The
XM2VTS dataset is used for training. It contains 8 images of 295 subjects for
a total 2360 images. All images are frontal view face images with a high de-
gree of variation with respect to skin color, hair style, facial hair and glasses.
However, there is not much variation in facial expression, most of the sub-
jects have a neutral look with the mouth closed. The images are taken at
four sessions with a month interval between sessions. For this training set,
the coordinates of the eyes are available. Examples of the training images
are shown in figure 1.

For testing, we use the AR dataset with 3313 images from 136 subjects
where most of the subjects images have been captured during two sessions
with a 2 week interval between the sessions, from which we define the fol-
lowing subsets:

Easy An easy dataset with 1783 face images. All subjects vary their facial
expression, and there are large variations in lighting, but there are
no facial occlusions. In 14% of the images the subjects where told
to screamn when the image was captured, thus these images have and
extreme facial expression. Example images are shown in figure 2.

Sunglasses A difficult dataset with 765 face images. All subjects are wear-
ing dark sunglasses. Example images are shown in figure 3.

Scarf A difficult dataset with 765 face images. All subjects are wearing a
scarf covering the mouth area. Example images are shown in figure 4.

From the world wide web, we have collected manually a set of 67 large
images with considerable structure, which might contain face-like patterns,
which we use as the negative test set. In addition we have further collected

*http://www.ee.surrey.ac.uk/Research/VSSP/mm2vtsdb/sample_front.htm
3h'l'.'l'.p ://rvll.ecn.purdue.edu/~aleix/aleix_face_DB.html



Figure 2: Example images from the Easy testing set.
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Figure 3: Example images from the Sunglasses testing set.

Figure 4: Example images from the Scarf testing set.



a few large images for bootstrap training of the SNoW algorithm (described
later).

The resolution of the training images (XM2VTS) are originally 720x 576,
but we only use an extracted window covering the center of the face (rescaled
to 2020 or 60 x 60 pixels, and geometrically normalized with respect to the
eyes). Similarly, the resolution of testing images (AR) are originally 768x 576,
but we focus the search on subset covering the facial area (see the following
section for details). The test sets and training sets are non-overlapping. All
images are converted to 8 bit grayscale images (256 graylevels).

3 The evaluation protocol

Most face detection tasks can be divided into two steps, where the first
step is an algorithm for visual guidance (focusing the search based on vi-
sual clues/low-level features such as color or motion, or simply an exhaustive
search at all scales and locations) and the second step is the actual face/non-
face classification. In this section we propose a protocol for evaluating the
second step. Not all proposed face detection algorithms work in this two-step
fashion, but since the general problem of face detection can be decomposed
into these two steps, all face detection approaches would benefit (in terms of
accuracy) from decomposing or combining their algorithm this way. Decom-
posing the problem leads to easier selection of the appropriate technique for
the two sub-problems.

The key elements of the evaluation protocol are the following (tailored
to the datasets used in our experiments) :

e The face classifiers generate a confidence score sy, Where
algo € {bE,bC,PCA,SNoW, Gradient, Gabor} indicates the face
classifier algorithm.

e The multiresolution scanning algorithm: a n X n window w scans the
entire image with 1 pixel step size and the image is subsampled by
a factor of 1.2 until all scales and locations have been included. The
face classifiers are applied at each location and scale. n is set to 20 for
the image-based and baseline algorithms, and 60 for the feature-based
algorithms. However, the 20 x 20 windows are just downscaled versions
of the 60 x 60 windows in order to have the same number of testing
windows w for all algorithms.

e A correct detection of a face in a face image I is registered if the
window w which produces the highest confidence score, max,,(sqi40),
is correctly centered in I and has sggo > taigo. We have manually
located the center (z.,y.) of the face for all the test images, so we
define w correctly centered to be w located such that its center region
{(5 £ %, 5 £ %)} encompasses (2, yc).



e The correct face detection rate CD is simply

number of images with face correctly detected
CD gestset =

total number of images

where testset € {Easy, Sunglasses, Scarf} indicates the test set used,
and the total number of images is 1783 for the Kasy dataset and 765
for the Scarf and Sunglasses dataset. We know that for the face
images there is only one face present in each image.

e For the false alarm rate FA, we are simply interested in the number
of false alarms relative to the total number of windows w produced by
the multiresolution scanning algorithm on the negative test set. This
number is 5938360, so the false alarm rate is computed from

number of false detections
5938360

A false alarm is a window w where the face classifier produces a 4140 >
talgo- We do not count false alarms in the face images (the positive test
sets).

FA =

e Results are reported in terms of ROC (Receiver Operator Character-
istics) curves, which shows the trade-off between correct face detec-
tion rate CD and the false alarm rate FA. The threshold ¢4, for
the face classifier is varied in a range to produce a false alarm rate
10-* < FA<107%

4 The algorithms

Six algorithms are compared in the present work. They are categorized as
two baseline algorithms, two image-based algorithms, and two feature-base
algorithms. In this chapter the six algorithms are presented. The algorithms
are implemented in C-++ using the Qt library? by inheriting a new class
GrayProcessingImage from the QImage class provided by the library.

4.1 Baseline: bE

Standard template matching is used as baseline algorithms for comparison.
The training images are geometrically normalized such that a 20 x 20 window
containing the eyes (in fixed positions), nose and mouth, can be extracted
(see figure 5 for an example).

We compute the template by simply averaging these training images. The
resulting template and the testing windows are preprocessed by extracting a
best fit linear plane and by histogram equalization. The resulting templates
are shown in figure 6.

“http://www.troll.no



Figure 5: Example of a geometrically normalized 20 x 20 face from the train-

ing set.

(a) (b)
(c) (d)

Figure 6: (a) The 20 x 20 face template obtained from averaging the training
images, (b) preprocessed with the subtraction of a best linear fit plane, (c)
histogram equalized, and (d) both best linear fit and histogram equalization.



Matching is performed by measuring Euclidian distance (L2) between
template and testing window,

dve = Y _(Iij — Tij)?, (1)
i,
where I is the pixel value of the testing window at position (7, 5), and Tj;
is the pixel value of the template at the same position.

4.2 Baseline: bC

The second baseline algorithm is exactly the same as the bE algorithm except
that matching is performed by computing the correlation coefficient between
the template and the testing window instead of the L2 norm. The distance
is defined as

dvc =1-c(I,J), (2)

where ¢(I, J) is the correlation coefficient between the testing window I and
the template T defined as

> [T = D) (Tij = T)]

Vi T - 1", [Ty - 1)

where I and T denote the average pixel value in the testing window and the
template, respectively.

c(I,J) =

; 3)

4.3 Image-based: PCA

Principal Component Analysis (PCA) can be used to create a face space
consisting of eigenfaces (some examples shown in figure 7) as an orthogonal
basis, on which new faces can be projected to achieve a more compact rep-
resentation. To our knowledge, this technique was first proposed by Sirovich
and Kirby [12]| and later further developed by Turk and Pentland [10]. In our
implementation, we use the reconstruction error €2 = ||@|| — >_1 ; y? (where
y; are projection coefficients and ||@|| is the mean subtracted window) as a
measure for the score s,.,. We only keep the first principal component for
representation (thus n =1).

4.3.1 Computing face space

The basic procedure for computing face space is as follows:

We have a training matrix Q = [@}@)...0854,] of size 2360 x 400 where
w;,% € 1,...,2360 denotes the pre-processed, mean-subtracted and vectorized
extracted 20 x 20 training images (thus 400 x 1 in vectorized form). We form

the covariance matrix
» =070 (4)



PC #1 PC #2 PC #3 PC #4

PC #5 PC #6 PC #7 PC #8

PC #9 PC #10 PC #11 PC #12

PC #13 PC #14 PC #15 PC #16

Figure 7: The first 16 eigenfaces (principal components) computed from the
training set.

and solve the eigenvalue problem

A=3Tso (5

~—

where ® is the eigenvector matrix of > and A the corresponding eigenvalues.
The projection coefficients for a new pre-processed, mean-subtracted and
vectorized extracted test window @ is computed by

y = oL " (6

~—

where ®,, represents the selected subset of ®, which in our case consists
simply of the eigenvector with the largest eigenvalue.

4.4 Image-based: Snow

The SNoW (Sparse Network of Winnows) learning architecture, proposed by
Roth in [3], has been successfully applied to face detection by Roth et. al. in
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[11]. We have implemented this algorithm using the software available from
the website® of Roth for training, and our own implementation for testing.
The technical details of of the algorithm are described in [11]. For simplicity,
we have selected the primitive {position x intensity} features, which
extract n X n Boolean features in a n X n X g dimensional feature space from

flz,y) = (9 x ((y x n) +2)) + w(z,y) (7)

where n = 20 is the size of the extracted window w and g = 256 is the
number of graylevels, which yields f as a 20 x 20matrix (but used later in
vectorized form) of indexes to the active features for w. We use the Winnow
update rule for training, and an incremental training procedure similar to the
bootstrap training proposed by Sung and Poggio [14]. The classifier consists
of two linear units (similar to perceptrons), one representing the class of
faces and non-faces respectively. The linear units have weights wi’ # 0,u €
{face, nonface} in the 102400 dimensional feature space only where a feature
has been active during training. Classification is performed by computing

£(400)
Opace = ), wl** (8)

i:f(l)

£(400)
Ononface = w;wnface (9)

i:f(l)

and using the score function

SSNoW = Oface - Ononface- (10)

4.5 Feature-based: Gradient

This feature-based face/non-face classificator is a modification of an original
idea by Maio and Maltoni [1]. The basic idea is to extract a directional image
consisting of pairs of directions and strengths from the testing window. The
directional image is then compared with an artificially constructed template.
Since our approach on some points differs from the original work, we go
through it in detail.

4.5.1 Construction of the directional image

The computation of the directional image was described by Donahue and
Rokhlin [2]. The algorithm works in a two-step fashion. First, the image
point-normal is determined for each window of 2 x 2 pixels. Secondly, the
normal vector field is projected onto the image plane, and 3 x 3 of these are
averaged in order to reduce noise, and the directional vector is taken as the
orthogonal vector to the resulting averaged projected normal vector.

*http://12r.cs.uiuc.edu/~cogcomp/
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(a) (b) (c)

Figure 8: (a) The 60 x 60 geometrically normalized face image (best linear
fit plane subtracted and histogram equalization applied), and corresponding
(b) n1 and (c) ne normal vector component.

Point-normal determination The point-normal n(z,y) = (n1,ne,1) is
determined from the 2 x 2 neighborhood of (x,y) constituted by the pixels
at (z+ Ly+1), (z,y+1), (z,y), and (z + 1,y). The pixel values at these
locations are denoted ay, a2, as, and a4, respectively. The components 7,
and ne are then obtained by fitting the pixel values to the plane

p(z,y) = —mz —nay +c (11)
using the least squares method, giving
ny = (—a1 +a2+as —aq) /4 (12)
ng = (—a1 —ag + a3 + aq) /4 (13)
c= (a1 +az+a3z+aq)/d (14)
The resulting normal vector component images are shown in figure 8.

Determining the average tangent direction For determining the av-
erage tangent direction and strength in the image we choose an approach
slightly different from the one outlined by Donahue and Rokhlin [2|. The
projected normal vector is obtained by averaging the ny and ns components
over a 3 x 3 window, resulting in two 20 x 20 normal images. The directional
strength of this image element is taken as y/n? + n3. The corresponding
undirected angle in the range [—90°,90°] is obtained from arctan(ng/n;)
and encoded as an integer in the range [0,255], where 0 represents —90°,
and 255 represents 90°. The resulting images are shown in figure 9.

The combination of direction and strength represented by these two im-
ages can be visualized by drawing an image with line segments with corre-
sponding lengths and directions, see figure 10. We observe that the directions

12



(a) (b)

Figure 9: (a) The 20 x 20 image representing the directional strength of the
60 % 60 face image shown in figure 8, and (b) corresponding directional image.

are close to horizontal in the regions of the eyes, eyebrows, and mouth, and
close to vertical in the region of the root of the nose.

4.5.2 Construction of the directional template

The directional image computed for each testing window by the method
outlined in the previous section is to be compared to an artificially designed
directional template. We start with an initially empty directional image, and
add elliptical elements for eyes, eyebrows, nose and mouth. All elements are
taken to have a horizontal direction except the nose, which is vertical (cf.
figure 9). In contrast with the work of Maio and Maltoni [1|, we only use
one such template. The geometric parameters for the template (¢ and b in
Reference [1|) are chosen such that the directional template resembles the
averaged face template used in the baseline algorithms (cf. figure 6) as closely
as possible. The relative weights are chosen in accordance with the original
work being 58(x2), 81(x2), 138, and 253 for the eyebrows, eyes, nose, and
mouth, respectively. The resulting template is visualized in figure 11.

4.5.3 The metric algorithm

When the template and the directional image corresponding to the testing
window are known, the distance between the two can be found. Let o7;; and
or;; denote respectively the directional strength of the testing window and
the template at position (4, j), and ¢r;; and ¢r;; the corresponding directions
encoded as described earlier. The metric is then defined as

>4, OTi,joTij X Albrij, $145)

, 15
Zi,j O01ij0Tij 15)

dGrad ient —

13
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Figure 10: Visualization of the directional image represented in figure 9.

Figure 11: Visualization of the artificially constructed directional template.
The dots correspond to locations with zero weight, and are not included in
the distance function.
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where A is a function returning the angle between the two direction argu-
ments.5

4.6 Feature-based: Gabor

Gabor features are widely applied for local feature extraction in face recogni-
tion systems and have also been used for face detection [9] and facial feature
detection [13]. Gabor features are extracted using a set of 2D Gabor filters
[4]. In our implementation we use a set of 40 filters (5 sizes, 8 orientations,
figure 12) v generated from a wavelet expansion of a Gabor kernel, pa-
rameterized (determining the wavelength and orientation) by the vector k
[15]:

k2 2,2 . 2
o) = e (ex o), (16)
where ) 5
cos v+2 vis
k = v K v — 2_7 = . ].
(Fomt). b=2Fn = ug a7)

We create a Gabor template which is a 60 x 60 window where the set of 40
Gabor coeflicients have been extracted at the two locations corresponding
to the eyes. In other words, we have a template which simply represents the
average eyes. We only keep the magnitude of the complex coeflicients and
compare the template with the extracted subwindow at each location using
the normalized correlation coefficient.

5 Results

5.1 The effect of preprocessing

In order to determine what kind of preprocessing to apply for the training
images, templates and testing images, we try out different approaches using
the bE-algorithm. Two different kinds of preprocessing — subtraction of best
fit linear plane and histogram equalization — are applied in different com-
binations. The results given in figure 13 show that the preprocessing is of
major importance for the algorithm to work correctly. The highest CD is
obtained when both kinds of preprocessing is applied to both the training
images and the template. This combination is thus applied for the remaining
algorithms.

5.2 Face/non-face classification results

The results for all algorithms are shown in figure 14 for the Easy dataset,
figure 15 for the Scarf dataset, and figure 16 for the Sunglasses dataset.

5Note that this cannot be obtained by simply subtracting the two angles, since, e.g.,
the directional difference between —89° and 89° is 2° and not 178°.
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Figure 12: Example of Gabor filters (five sizes and eight orientations).
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Figure 13: The effect of preprocessing on the ROC curve using the bE algo-
rithm.
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(B) — Easy dataset
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Figure 14: Comparison of algorithms on the Easy dataset.

The baseline template matching algorithms are the overall best performing
algorithms.

6 Discussion

The PCA algorithm gives the best results when using only the first principal
component, thus reducing the algorithm to a modified correlation measure.
The reason for this is possibly that the size of the training set is not large
enough to provide a general basis for representing the class of faces. We
believe that this could be the reason since a general face class consisting of
geometrically normalized faces should be Gaussian [8], and examination of
the training data when plotting the projection coefficients of the first two
principal components (figure 17) showed us that this is not the case.

The size of the training set is possibly also the reason to the poor perfor-
mance of the SNoW classifier, since the classifier had no problems learning
the face/non-face classification during training and initial testing. During
training of the SNoW classifier, the bootstrap method had little effect, since
the classifier hardly made errors. The results also show that it is not due to
a high false detection rate that the classifier performs below expectations,
but the correct detection rate is not high enough, which could indicate that
we need a much larger positive training set. In the original application of
the SNoW face detector in Roth et al. [11], additional positive training sam-
ples was generated by mirroring and slight rotation of the face images. This
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Figure 15: Comparison of algorithms on the Scarf dataset.

(C) - Sunglasses dataset
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Figure 16: Comparison of algorithms on the Sunglasses dataset.
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Figure 17: Plot of the training set coefficient represented by the first two
principal components.

procedure might very well have improved performance significantly in our
experiments also.

The abandoning of the ellipsis around the face introduced an important
alteration for the Gradient algorithim compared to the original work of Maio
and Maltoni [1]. This might explain why the algorithm performs less than
ideally. In the original work, the total weight of the ellipsis in the distance
function was approximately 2-3 times the weight of the remaining template,
indicating the importance of the ellipses.

Selection of the Gabor filters for the Gabor algorithin was accomplished
by manual inspection, and we have no reason to believe that these filters
are optimal for representing the face class (in terms of the eyes here). This
is a plausible explanation of the relatively poor performance of the Gabor
classifier. However, we must note that this classifier is based only on locat-
ing the eyes at two fixed locations, and as we can see this leads to decent
performance for the easy and scarf datasets, while the algorithm completely
collapses for the sunglasses dataset.

7 Conclusions

To our knowledge, detailed comparison of the preprocessing effects in face
detection has not been presented earlier, thus figure 13 is quite significant.
Simple template matching algorithms are not always used as a baseline for
comparison, and our results should be taken as a strong indication that this
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is necessary. Due to the complexity of the other algorithms such as different
selection of training set size, training parameters, template and filter design,
improved performance can most likely be achieved. However, in our scenario,
the simple baseline algorithms show impressive performance with the right
kind of preprocessing.
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