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Abstract

This paper aims to give a survey of full-reference image quality met-
rics, including metrics specifically designed to evaluate image quality, but
also metrics for image difference, image fidelity, and more. These metrics
have in common that they try to predict the perceived difference between
an original image and a modified version of it, this modification can typi-
cally be compression, halftoning and blurring. They output one numerical
value and/or an image difference map. More than 100 image quality metrics
have been reviewed and categorized, and short descriptions and analysis of
all metrics and their relationships are given. This should prove valuable to
researchers in various fields, to find the most appropriate metric for their ap-
plication, and to give a better understanding of the state of the art of the field
of image quality metrics.
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1 Introduction

The need for an objective method to evaluate image difference has become greater
as the number of image reproduction methods increase. Many would like to find
the best image among several reproductions from a computable metric without
asking many observers, both due to the time and resources needed to do the lat-
ter. To eliminate psychophysical experiments to find the best reproduction, image
quality metrics have been developed. These metrics have thecommon goal to pre-
dict image quality that reflects the perceived image quality, but none have yet been
successful on a global scale, because of this more and more metrics appear, either
for overall quality or for specific reproduction methods (for example banding in
prints, compression artifacts, noise, etc.). A survey is therefore needed. We will
limit the survey to full-reference image quality metrics, the goal of this survey is
to help researchers find the most appropriate metrics for their field, and to give
a better understanding of the state of the art of the field. This should also result
in a good tool for further improvements in full-reference image quality metrics.
The purpose is to give a survey, rather than giving a criticalreview of individual
papers.

First we explain some terminology and what kind informationthat can be
found in this article. Then a survey of the full-reference metrics are given, where
each section is given by the name of the author, and the name ofthe metric if
stated. If independent testing of the metrics has been done this is also mentioned.
A discussion chapter is given before concluding remarks. A table with all metrics
in chronological order based on year of publication is also given together with a
map showing the connection between a number of the image quality metrics.

1.1 Terminology

The terminology used by different authors is quite different. A metric in mathe-
matics can be defined as a function which defines a distance between elements of
a set. A strict metric (ρ(x,y)) is essentially an abstract distance, with the following
properties:ρ(x,y) = 0 if x = y, symmetry, triangle inequality and non-negativity.
The metrics in this survey do not necessarily follow this, and can differ for one or
more properties.

Metrics have been developed for image quality, image difference, image fi-
delity, image similarity, color difference, halftoning, difference predictors and
video quality. Even though they are developed for differentfields they all have
in common that they are full-reference, meaning that they calculate the difference
between a complete original and a reproduction (Figure 1). Reduced-reference
(where parts of the reference is available) and no-reference metrics (no reference
available) have also been proposed, but these are not covered in this paper.
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Some metrics are hybrids, they can be used for both image quality, halfton-
ing and color difference, such as S-CIELAB [Zhang and Wandell, 1996], or in
both image and video quality. We have tried to adopt the authors terminology
in the different publications, and therefore many terms will be used throughout
this survey. Performance is a term often used by researchers, this term will also
be used throughout this survey to indicate correlation between metric score and
mean opinion score, z-score or similar observer score.

Figure 1: Full-reference image quality assessment, where an original is available
in the quality calculation. The final quality measure is based on information ex-
tracted from both the original image and the distorted image.

1.2 Mapping of important components

A number of components have been registered in order to get anoverview of the
metrics. The main objective for what kind of reproduction method they were in-
tended for, this can be image quality, halftoning, color difference etc. We have
adopted the formulations and terminology of the authors as close as possible. We
have also noted whether they use any model of the human visualsystem (HVS),
if they work on different scales (i.e. multiscale), if they are spatial or non-spatial,
and if they are color or grayscale metrics. The type of evaluation performed in
the original publication has also been registered, with thenumber of scenes and
reproductions. In the case of subjective evaluation the number of observers has
been noted. The experience of the observers has also been registered, since sev-
eral researchers have found differences in preference for experts and non-experts.
[Deffner et al., 1994; Dugay, 2007; Dugay et al., 2008; Engeldrum, 2000; Heyn-
derickx and Bech, 2002]. The expertise of the observers will affect the evaluation
of the metric, and therefore it is important to have this information when choos-
ing an image quality metric. Some suggestions on publications where the metrics
have been evaluated are also made, in order to show which metrics that are widely
evaluated by other researchers and which metrics that need more evaluation.
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1.3 Review of image difference metrics

Eckert and Bradley [1998] reviewed a number of image quality metrics, and dis-
cussed how they incorporate different visual factors in their design. This review
was directed toward still image compression.

Ahumada Jr [1993] did a review on image quality metrics for monochrome
images, with the intention of helping researchers in searchof a suitable metric.
The metrics were divided in groups for halftoning, image quality and image com-
pression. Ahumada also proposed a framework for image quality measurements.

Eskicioglu [2000] reviews criteria for monochrome compressed image quality
from 1974 to 1999. Eskicioglu states that simple HVS incorporated in quality
measures will improve their performance.

Beaton [1983] reports an evaluation of 14 image quality measures for both
soft-copy and hard-copy images. The degradations on the images were noise and
blur. A database of 10 scenes, and a total of 250 images were used in the evalua-
tion. The result indicated that several measures correlated with subjective scores.

Dosselmann and Yang [2005] reviewed and summarized a set of 10 image
quality metrics. The metrics were evaluated on 60 images with 8 different distor-
tion types. The conclusion by the authors was that no metric was superior to any
other.

Ouni et al. [2008] gave a review of subjective and objective image and video
quality metrics, including full-reference, reduced reference and no-reference met-
rics. They give a brief introduction to some metrics, and they conclude that there
is still much work left.

Most of these reviews are rather short (less than 10 pages), and many of them
are more than 10 years old. This contributes to the need of a new and better review
of image quality metrics.

2 Full-reference metrics

This section gives a short introduction to the different full-reference image quality
metrics.

2.1 Mean square error

The mean square error (MSE) is the cumulative squared error between the com-
pressed and the original image.

MSE=
1

MN

M−1

∑
y=0

N−1

∑
x=0

[R(x,y)−S(x,y)]2
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where R(x,y) is the original image, S(x,y) is the reproduced version of the original,
M and N are the dimensions of the images. The MSE has been used due to its easy
calculation and analytical tractability [Teo and Heeger, 1994].

2.1.1 RMSE

The root mean squared error (RMSE) is the square root of MSE.

RMSE=
√

MSE

It is well known that MSE and RMSE is inaccurate in predicting perceived dis-
tortion [Teo and Heeger, 1994], and therefore many extensions of these measures
have been proposed.

2.1.2 SNR

The signal to noise ratio (SNR) of an image is usually defined asthe ratio of the
mean pixel value to the standard deviation of the pixel values. Due to it’s simple
calculation SNR has been widely used in objective quality measurement.

SNR= 10· log10

(

∑M
y=0∑M

x=0S(x,y)2

MN ·MSE

)

2.1.3 PSNR

The Peak Signal to Noise Ratio is a measure of the peak error between the com-
pressed and the original image.

PSNR= 20· log10

(

255
RMSE

)

The higher the PSNR, the better the quality of the reproduction. SNR and PSNR
have usually been used to measure the quality of a compressedor distorted image.

2.1.4 Mitsa and Varkur, CSF weighted MSE

Mitsa and Varkur [1992] investigated the effect of contrastsensitivity function
(CSF) on quality measures incorporated in halftoning algorithms. They used a
CSF weighted MSE with different types of CSFs. They used both band pass and
low pass CSFs from Mannos and Sakrison [1974] and Barten [1990]. 4 different
halftoning algorithms were used, and these were evaluated by 12 observers. The
results indicate that a low pass CSF performs better than a band pass when com-
pared against psychovisual data. The CSF by Barten also performs slightly better
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than the one from Mannos and Sakrison. This could be because Barten’s model
incorporates information about viewing conditions and thedisplay device. The
authors conclude that factors that significantly improves the performance of the
metrics are:

• Information about the printing device and the viewing conditions.

• Information about the angular sensitivity of the visual system.

• Utilization of a lowpass CSF instead of a bandpass one.

2.1.5 Lin

Lin [1993] proposed a metric for halftone image quality based on the root mean
square error (RMSE). This metric applies a CSF on the Fourier transformed orig-
inal grayscale image and the halftoned image before using the RMSE on the im-
ages. The metric also incorporates the viewing distance, this is important because
the visibility of the halftone pattern varies according to the distance. The metric
is evaluated objectively, with 2 different CSFs from Mannos and Sakrison [1974]
and Nill and Bouzas [1992].

2.1.6 Ayed et al., WMSE

Ayed et al. [2002] proposed a quality metric based on MSE called weighted mean
squared error (WMSE). Because this is a mathematically definedmetric, it does
not depend on the images being tested, the viewing conditions or the individual
observers. The MSE is calculated with a weighting function that is a relative mea-
sure of the spatial frequency activity. From this measure wecan easily get WP-
SNR. The metric was tested on two original images distorted with seven different
corruptions; white uniform noise, gaussian noise, impulsive salt-pepper noise and
multiplicative speckle noise. The metric was evaluated by the authors, and the
conclusion was that WMSE outperforms MSE.

Evaluation of WMSE is found in [Ayed et al., 2002; Samet et al.,2005].

2.1.7 Samet et al., NwMSE

Samet et al. [2005] proposed an image quality metric based onMSE, called New
weighted Mean Square Error (NwMSE). It takes into account the pixels neigh-
bourhood information, it also accounts for that the HVS is less sensitive to con-
trast areas with high spatial frequency activity, and that the variance in low spatial
frequency activity regions is small.
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2.1.8 Brailean et al., LIPMSE

Brailean et al. [1991] proposed a metric based on the logarithmic image process-
ing (LIP) model by Jourlin and Pinoli [1988]. This model (LIPMSE) accommo-
dates spatial masking, by calculating the contrast at one point depending on the
surrounding of that point. Once the original and reproduction are transformed
into the contrast domain, MSE is used to calculate the fidelity of the images. The
metric is evaluated on one image blurred by a Gaussian MTF. The results indi-
cate that the LIPMSE outperforms the traditional MSE. This metric was used by
the authors to find the number of iterations in an image enhancing algorithm for
restoring blurred images.

2.1.9 Rushmeier et al., CSF weighted MSE

Rushmeier et al. [1995] presented image quality metrics based on different CSF
models. The first one uses the CSF from Mannos and Sakrison [1974] where the
similarity between the images is computed in the Fourier space. The second is
after Gervais et al. [1984] where the effect of phase as well as magnitude in the
frequency domain representation of the image is included. The third is adapted
from Daly [1993], where the effects of adaptation and non-linearity are combined
in one transformation, the overall distance between the images is computed as
MSE. The metrics are evaluated objectively on synthetic images against a real
scene.

2.1.10 Mitsa and Alford

Mitsa and Alford [1994] proposed two image quality metrics for digital halfton-
ing, one for single-channel visual models and one for multiple-channel. The
single-channel metric is the mean square error between the contrast sensitivity fil-
tered halftone image and contrast sensitivity filtered original image. The multiple-
channel metric is based in the frequency-domain halftoningerror and is formu-
lated as a vector-magnitude.

2.1.11 Iordache and Beghdadi,SNRW

Iordache and Beghdadi [2001] proposed an image dissimilarity measure based
on a joint spatial/spatial-frequency representation using Wigner-Ville distribution.
The measure is built on the fact that structured distortionsare more annoying than
unstructured distortions. Results show thatSNRW outperforms SNR. A PSNR
version of this metric (PSNRW) is found in [Beghdadi and Iordache, 2006].

Evaluation ofSNRW is found in [Beghdadi and Pesquet-Popescu, 2003; Ior-
dache and Beghdadi, 2001].
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2.1.12 Beghdadi and Pesquet-Popescu,SNRWAV

Beghdadi and Pesquet-Popescu [2003] proposed an image quality metric based
on a non-redundant wavelet decomposition. The metric is inspired by the HVS,
and this is also incorporated into the metric. The metric wasevaluated by 25
observers on one image reproduced with 3 different distortions. Results indi-
cate thatSNRWAV outperform PSNR andSNRW. A PSNR version of this metric
(PSNRWAV) is found in [Beghdadi and Iordache, 2006].

2.1.13 Wan et al.,DÉCOR-WSNR

Wan et al. [2007] introduced the decorrelated weighted signal-to-noise-ratio (DÉCOR-
WSNR). This metric uses a Point Spread Function (PSF) to mimic thehuman eye
and it also incorporates a constant for the relationship between the halftoned im-
age and original.

2.1.14 Egiazarian et al, PSNR-HVS

Egiazarian et al. [2006] proposed PSNR-HVS based on the HVS and PSNR. The
metric uses a scanning window to remove mean shift and contrast stretching simi-
lar to UIQ [Wang and Bovik, 2002]. PSNR-HVS is then calculated on the scanned
images by using PSNR, where MSE is calculated as described by Nill [1985].

2.1.15 Munkberg et al., mPSNR

Munkberg et al. [2006] proposed an image quality metric for HDR images. The
HDR image was divided into LDR images at different exposures, then computing
an average of the peak signal-to-noise ratios (PSNR) of each individual exposure.

2.1.16 Chou and Li, PSPNR

Chou and Li [1995] incorporated the properties of the HVS intothe estimation
of the just-noticeable-difference (JND) profile. The estimation of JND profiles
are done in the spatial domain through analyzing local properties of image sig-
nals. The JND profiles are further used in the calculation of afidelity criterion
called peak signal-to-perceptible-noise ratio (PSPNR). This measure is based on
the PSNR calculation. The criterion was used in order to compress images, and
could reach higher perceptual quality at lower bit rates than other methods.

Evaluation found in [Chou and Li, 1995; Mayache et al., 1998]
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2.1.17 Lambrecht and Farrell, CMPSNR

Lambrecht and Farrell [1996] proposed a distortion measure(CMPSNR) built on
the opponent-colors theory and on multi-channel model of spatial vision. The
opponent-color space chosen was the same as proposed by Poirson and Wandell
[1993]. The metric transforms the original and reproduction to the opponent color
space, then a Gabor filterbank is applied before masking and eventually pooling of
the errors in the image. The metric was evaluated by two observers on one scene
compressed with 400 different JPEG levels. The results indicate that CMPSNR is
better than RMS, and also more consistent.

2.2 Color difference

In this section color difference metrics and formulas are reviewed.

2.2.1 CIELAB ∆E∗
ab

The CIE [1986] published the CIELAB (L∗a∗b∗) color space specification, with
the idea of a perceptually uniform color-space. In a color space like this it is easy
to calculate the distance between two colors, by using the Euclidean distance. A
sample color with CIELAB valuesL∗

s, a∗s, b∗s and a reference colorL∗
r , a∗r , b∗r . The

distance is given by

∆E∗
ab =

√

(∆L∗)2 +(∆a∗)2 +(∆b∗)2, (1)

where∆L∗ = L∗
s −L∗

r , ∆a∗ = a∗s −a∗r and∆b∗ = b∗s −b∗r .
The most common way of using∆E∗

ab as an image difference metric is by
calculating the color difference in each pixel and finding the mean of these values.

∆E∗
ab =

∑m
x=0∑n

y=0∆E∗
ab(x,y)

m·n
, (2)

wherem is the width of the image andn is the height of the image. Other measures
of the ∆E∗

ab can be the minimum value or the maximum value in the computed
difference.

The CIELAB metric has served as a satisfactory tool for measuring perceptual
difference between uniform patches of colors. The human visual system is not
as sensitive to color differences in fine details as comparedto large patches, yet
the CIELAB color metric will predict the same visual difference between the two
cases since there is no spatial variable in the CIELAB color metric [Zhang and
Wandell, 1998].
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Wang and Luo [2008] proposed weighting filters for the CIELAB∆E∗
ab based

on how observers assess differences, results from this research indicate that these
filters do not improve the performance of the formula.

There are also other versions of this using the CIELUV color space.

∆E∗
uv =

√

(∆L∗)2 +(∆u∗)2 +(∆v∗)2. (3)

Evaluations of∆E∗
ab are found in [Bando et al., 2005; Bonnier et al., 2006;

Chou and Liu, 2007; Hardeberg et al., 2008; Kim et al., 2005, 2006; Pedersen,
2007; Pedersen and Hardeberg, 2008, 2009b; Pedersen et al.,2008; Sano et al.,
2003; Song and Luo, 2000; Wang and Luo, 2008; Zhang and Wandell, 1998;
Zhang et al., 1997b]

2.2.2 CMC

The CMC color difference (∆ECMC) formula [Clarke et al., 1984] is based on the
colorimetric principles of the CIE 1976 system. The CMC formula has acceptance
in industrial color control applications.∆ECMC is a modification of CIEL∗C∗h∗

color difference [Sharma, 2002].
Evaluations of CMC can be found in [Sano et al., 2003; Song and Luo, 2000].

2.2.3 Luo and Rigg, BFD

The BFD colour-difference formula was introduced in 1987 [Luo and Rigg, 1987],
and it provided a correction for the CMC in the blue region [Imai et al., 2001].

Evaluation of BFD can be found in [Song and Luo, 2000].

2.2.4 CIE ∆E94

The CIE∆E94 [Commission Internationale de l’Eclairage, 1995] was developed
as it became clear that the CIELAB∆E∗

ab did not correlate with the perceptual
color difference. This formula is based on CIE lightness∆L∗, chroma∆C∗, and
hue∆H∗ differences.

∆E∗
94 =

√

(

∆L∗

kLSL

)2

+

(

∆C∗

kCSC

)2

+

(

∆H∗
ab

kHSH

)2

, (4)

wherekL, kC, kH are scaling parameters,SL, SC, SH are lightness, chroma and hue
scaling functions [Sharma, 2002].∆L∗, ∆C∗ and∆H∗ are referred to lightness,
chroma and hue differences.

Evaluation of∆E94 can be found in [Guarneri et al., 2005; Sano et al., 2003;
Song and Luo, 2000; Zhang and Wandell, 1998].
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2.2.5 CIE ∆E00

The CIE∆E00 [Commission Internationale de l’Eclairage, 2001; Luo et al., 2001]
was published because of the same problems as CIE∆E94 [Sharma, 2002].

∆E00 =

√

( ∆L′

kLSL

)2
+
(∆C′

ab

kCSC

)2
+
(∆H ′

ab

kHSH

)2
+RT

(∆C′
ab

kCSC

)(∆H ′
ab

kHSH

)

, (5)

wherekL, kC, kH , SL, SC, SH are scaling parameters as in∆E94 and RT is an
additional scaling function depending on chroma and hue [Sharma, 2002].∆L′,
∆C′ and∆H ′ are differences in lightness, chroma and hue. Features fromboth the
CMC and BFD have been incorporated in∆E00.

Evaluations of CIE∆E00 can be found in [Chen et al., 2008; Jin and Field,
2003; Sano et al., 2003; Song and Luo, 2000].

2.2.6 Granger, DP

Granger [2008] proposed a metric for the ATD color space [Granger, 2001; Guth
and Lodge, 1973] named Delta Perception (DP). This metric isbased on the prin-
ciple that the final perception of color difference is a linear function of each vi-
sion’s channel. It also uses the opponent physiology of the HVS. The final value
of color difference is calculated using a City block metric onluminance, saturation
and hue.

2.2.7 Seim and Valberg, SVF

Seim and Valberg [1986] proposed the SVF formula, based on 3 stages: (1) the
absorption of quanta in the three cone pigments (Si , i=1,3) is a linear, (2) the rela-
tive sensitivies of the three cone types are determined by the achromatic adapting
stimulus using von Kries coefficient rule and saturating hyperbolic intensity func-
tions (Vi, i=1,3) account of the nonlinear transformations of the resulting cone ex-
citations, (3) linear opponent combinations (Fi, i=1,2) of the hyperbolic functions
can be used to approximate chromatic signal processing. Thecolor difference is
calculated using the Euclidean distance of theS, V andF .

2.3 Spatial color difference metrics

This section handles spatial metrics, both new and extensions of other non-spatial
metrics.
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2.3.1 Zhang and Wandell, S-CIELAB

Zhang and Wandell [1996] proposed a spatial extension to theCIELAB color met-
ric (Figure 2). This metric should fulfill 2 goals, a spatial filtering to simulate the
blurring of the HVS and a consistency with the basic CIELAB calculation for large
uniform areas. The image is separated into an opponent-color space, and each op-
ponent color image is convolved with a kernel determined by the visual spatial
sensitivity of that color dimension. Finally the filtered image is transformed into
CIE-XYZ, and this representation is transformed using the CIELAB formulae.

Original
image

Color
separation

Spatial
filtering

CIELAB
calculation

S-CIELAB
representation

Figure 2: S-CIELAB workflow. Spatial filtering is done in the opponent color
space.

Evaluation of S-CIELAB can be found in [Bai et al., 2006; Bando etal., 2005;
Bonnier et al., 2006; Bouzit and MacDonald, 2000; Feng et al., 2002; Hardeberg
et al., 2008; Hertel, 2005; Jin and Field, 2003; Kim et al., 2005, 2006; Pedersen,
2007; Pedersen and Hardeberg, 2008, 2009a,b; Pedersen et al., 2008; Yu et al.,
1998; Zhang and Wandell, 1998; Zhang et al., 1997b]

2.3.2 Johnson and Fairchild, modified S-CIELAB

Johnson and Fairchild [2001] describe CSFs that generally serve to decrease the
perceived differences for high frequency image information, such as halftone dots.
The CSF removes information about edges in scenes since thesemostly contain
high frequencies. To avoid this a simple edge-enchancing kernel can be applied,
as a convolution with a common Sobel kernel. The results indicate that adding a
more precise CSF will improve the performance of S-CIELAB, and it can further
be improved by accounting for localization using edge-enhancing filters.

Evaluation of the modified S-CIELAB is found in [Johnson and Fairchild,
2001].

2.3.3 Spatial CIE∆E00

Chen et al. [2008] proposed a spatial extension of CIE∆E00 with cortex transform
decomposition. A multi-channel decomposition is applied using cortex transform
[Daly, 1993] in order to simulate HVS selectivites to different spatial frequencies
and orientations. Then the sub-images are weighted by a luminance CSF [Daly,
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1993] and a chroma CSF [Johnson and Fairchild, 2003]. Finallya pixel level
comparison between the orignal and distorted image is carried out using CIE∆E00.

2.3.4 Nakauchi et al., PD

Nakauchi et al. [1999] proposed a gamut mapping algorithm based on a perceptual
image difference measure (PD). The image difference measure used is similar to
S-CIELAB, it uses the∆E∗

ab with a spatial filtering. But there are differences, in
S-CIELAB the spatial filtering is performed in the opponent color space, while in
the proposed measure this is done directly on the CIELAB representation. This is
done to calculate the optimal gamut mapping more efficiently. The measure has
options to tune weighting parameters using a 3 channel structure, with tunable
peak gains for each channel. The input to the model is a difference map between
an original and a reproduction, the results are 9 planes (L, aand b for the original,
reproduction and difference map), and these planes are spatially filtered.

The measure was used to find the minimum distance in the gamut mapping
algorithm. This optimization is iterative, and stops when the difference is lower
than a threshold. The results indicate that the proposed gamut mapping algorithm
performs better than other tested algorithms (clipping, minimum∆ L, minimum∆
C, minimum∆ H, norm L), and that the proposed image difference metric outper-
forms∆E∗

ab and∆L. The authors also state that the number of iterations needed is
too high for any practical use.

2.3.5 Kimmel et al.

Kimmel et al. [2005] proposed a metric between 2 color images. This metric is
closely related to a variational framework for Retinex [Kimmel et al., 2003], S-
CIELAB [Zhang and Wandell, 1996] and PD [Nakauchi et al., 1999]. The metric
is a similarity measure in the Sobolev space, where the proximity of the derivatives
capture detailed information and the small scale differences between the original
and the reproduction. The metric was intended as a variational approach to space-
dependent color gamut mapping.

2.3.6 Fairchild and Johnson, iCAM

Fairchild and Johnson [2002] proposed the iCAM model. This model incorporates
an image difference metric and it is influenced by S-CIELAB andresearch in
many different fields. The iCAM adds several preprocessing steps, in addition to
a spatial filtering. The spatial filtering used serves to modulate spatial frequencies
that are not perceptible, and enhance frequencies that are most perceptible. In
addition a module of spatial localization is incorporated,to account for the HVS
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sensitivity to edges. Also a contrast detection is found within iCAM to account for
local and global contrast. Finally a color difference formula is used to calculate
a color difference map, which can be further analyzed using different statistical
methods [Fairchild and Johnson, 2004], such as mean, maximum, and minimum.
An analysis of the different statistical methods for iCAM is done by Fernandez
et al. [2003].

Evaluation of iCAM can be found in [Bonnier et al., 2006; Fairchild and John-
son, 2002, 2004; Fernandez et al., 2003; Hardeberg et al., 2008; Liu et al., 2005;
Orfanidou et al., 2008; Pedersen, 2007; Pedersen and Hardeberg, 2008; Pedersen
et al., 2008]

2.3.7 Morovic and Sun,∆Icm

This image difference metric was proposed by Morovic and Sun[2002]. This
metric is based on previous work by the same authors [Sun and Morovic, 2002],
where they try to understand what factors contribute to judgments made by ob-
servers in experiments where they judge the quality of colorreproduction. They
proposed a seven step image difference metric. These seven steps includes the use
of a 99th percentile in∆E97s from CIECAM97s2. A CSF is also applied, the same
as in S-CIELAB. A weighting of the∆E97s with the ratio 1:2:1 for∆J, ∆C and
∆H. A proportion of unacceptable differences are also taken into account. The
distribution of lightness differences is included. The lightness and chroma from
the original are also incorporated and at last how the spatial details have changed
from the original to the reproduction.

2.3.8 Jin et al., CVDM

Jin et al. [1998] proposed the Color Visual Difference Model (CVDM). The four
steps in CVDM is a color space conversion, where the image is transformed in
the opponent color space similar to the process in S-CIELAB [Zhang and Wan-
dell, 1996]. The CSF used is adopted from VDP [Daly, 1993] for the luminance
channel, while for the chroma channels the CSF is derived fromMullen [1985]. A
cortical transform is performed on the three color channelsbefore a visual mask-
ing. After this a CSF weighted difference between the two images is calculated.
The overall visual difference is added to the filtered reference image, creating
a new image. These two images are tranformed back to CIELAB andthen the
CIELAB color difference formulae is used to compute a visiblecolor difference
map.

In addition to the reference image and reproduction image, parameters such
as viewing distance, resolution of the images and white point must be given. The
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model is created to detect the visibility of blur, noise, grating and compression
artifacts.

Evaluation of CVDM can be found in [Feng et al., 2002; Jin et al., 1998]

2.3.9 Feng et al., CVDM extension

An extension of CVDM is proposed by Feng et al. [2002]. The extension made
was to apply the CSF and the cortex transform in the CIELAB spaceinstead of
in the opponent color space, after identifying two problemswith CVDM: filter-
ing in the opponent color space sometimes produce out-of-gamut colors, and the
CSFs used are low pass filters with a peak sensitivity of 1. The luminance CSF
is derived from Barten’s CSF [Barten, 1999], resulting in better sensitivity. A
pair comparison experiment was carried out to obtain perceived halftone pattern
visibility. The results indicate that the modified CVDM predicts texture visibility
better than S-CIELAB, and the overall correlation is a bit higher for the modified
CVDM than for S-CIELAB.

2.3.10 Taylor et al., IFA

Taylor et al. [1998] proposed an image fidelity assessor (IFA), which accepts two
grayscale images as input and generates a probability map asoutput. The input
images are run through a multiresolution decomposition to generate a number of
channels, each containing the response of a particular receptive field. These recep-
tive fields are modelled by Gabor functions. A local contrastcalculation produces
contrast images that describe the response of an ensemble ofneurons tuned to
a particular spatial frequency and orientation. A psychometric Look Up Table
(LUT) is used in the psychometric selector to select the mostappropriate psy-
chometric function. The difference between the contrast images for each channel
is then applied to the appropriate psychometric function toproduce a probabil-
ity map, these maps are then summarized using a method calledlimited memory
probability summation to create an overall probability map. This model is influ-
enced by the VDP [Daly, 1993] and the VDM [Lubin, 1995].

2.3.11 Wu et al., CIFA

Wu et al. [2001] proposed a color extension of IFA [Taylor et al., 1998] called
color image fidelity assessor (CIFA). This extension involves adding two oppo-
nent channels (Red-Green and Blue-Yellow), and can be linked to the CVDM [Jin
et al., 1998]. The main differences are related to the input and output mismatch.
CIFA employs a novel spatial opponent feature, it characterizes the spatial inter-
action of colors, and CIFA uses normalization of chromatic responses to remove
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dependency on the luminance level. The metric consists of 3 components, an
achromatic IFA and two chromatic IFAs. The difference between these are found
in the signal decomposition stage and the psychometric LUTs. In the chromatic
IFAs, the luminance contrast is replaced by a chromatic difference. The authors
conclude that CIFA provides good predictions over a wide range of distortion
types.

2.3.12 Neumann et al

Neumann et al. [1997, 1998] proposed a perception based image metric. This met-
ric takes into account a CSF based on the work by Mannos and Sakrison [1974]
and the CIELUV color space. A number of rectangles are placed in the image, in
each rectangle the CIE color difference is calculated and summed up to an overall
difference between the images.

2.3.13 Yee, pdiff

Yee [2004] proposed a perceptual metric for production testing. The images are
transformed from RGB to CIELAB, where a CSF Barten [1990] is applied and
the visual masking from Daly Daly [1993] is used. The difference between the
original and reproduction is then computed, and these values are compared to a
threshold, one for luminance and one for color. If above the threshold value the
difference is perceivable, if below it is not perceived.

2.3.14 Pefferkorn and Blin, CCETT visual metric

Pefferkorn and Blin [1998] proposed the CCETT visual metric forcolor quanti-
zation errors on still images. This metric incorporates a merging of a chromatic
model and an achromatic model. The achromatic errors are estimated from the
original and reproduction images, where a pre-processing of the image is done.
Then a retinal processing where a logarithmic response is used, a processing of
the mean local luminance for both images is also carried out before an isotropic
spatial filtering. After the retinal processing a cortical processing is done, where
a splitting of the frequency against orientation is done anda neuronal contrast re-
sponse is applied. The modelling of chromatic errors is doneby a pereptual color
representation and a perceptual color-difference. The images are transformed to
the CIELAB colorspace, where lightness, chroma and hue can bedefined. The
color difference is calculated using∆E∗

94. The third stage of this chromatic model
is the comparison of color difference, where a local perception of color differ-
ences are calculated. A comparison of color differences of each pixel according
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to its neighbourhood is calculated in both the reference andreproduction. A vari-
ation of the neighbourhoods of the images is also taken into account. The metric
is calculated by summing the errors of the achromatic and chromatic model. The
chromatic error is weighted, because of the lower sensitivity to local chromatic er-
rors. The metric is evaluated with a subjective test, where 6images were encoded
with MPEG-2. One test with chromatic images and one with achromatic images.
The CCETT visual metric has a strong correlation with the MOS.

2.3.15 Hong and Luo

This algorithm for color difference is based on the known fact that systematic
errors over the entire image are quite noticeable and unacceptable. The algorithm
proposed by Hong and Luo [2006, 2002] is based on some conjectures, these are:

• Pixels or areas of high significance can be identified and a suitable weight
allocation can be found.

• Larger areas of the same color should be weighted higher.

• Larger color difference between the pixels should get higher weights.

• Hue is an important color perception for discriminating colors within the
context.

The first step is to transfer each pixel in the image fromL∗, a∗, b∗ to L∗, C∗
ab, h∗ab.

Then a histogram based on the hue angle is computed, and sorted ascending so
weights can be applied to 4 different quartiles of the histogram. The overall color
difference is calculated by multiplying the weighted hue angle for every pixel with
the color difference pixel-by-pixel.

Evaluation of the hue angle metric can be found in [Hardeberget al., 2008;
Hong and Luo, 2006, 2002; Pedersen, 2007; Pedersen and Hardeberg, 2008, 2009a,b;
Pedersen et al., 2008]

2.3.16 Pedersen and Hardeberg, SHAME

Pedersen and Hardeberg [2009a,b] proposed an extension of the measure by Hong
and Luo [2002]. The spatial hue angle measure (SHAME) used a spatial filtering
similar to S-CIELAB [Zhang and Wandell, 1996]. The filtered images (original
and reproduction) are used as input to the measure by Hong andLuo [2002]. The
results indicate that the spatial filtering combined with the weight allocation in the
hue angle measure improve the prediction of perceived imagequality.
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2.3.17 Pedersen and Hardeberg, SHAME-II

Pedersen and Hardeberg [2009a,b] also proposed another extension of the mea-
sure by Hong and Luo [2002]. The spatial filtering is performed in the frequency
domain, similar to Johnson and Fairchild [2001], this results in a more precise fil-
tering. The filtered images are then used as input to the hue angle measue by Hong
and Luo [2002]. The results indicate that a precise spatial filtering is important
for image quality measures.

2.3.18 Chou and Liu, P-CIELAB

Chou and Liu [2007] proposed an image fidelity measure for color images named
P-CIELAB (∆PE). This measure is based on∆E∗

ab, and only the errors exceeding
a visibility threshold are taken into account. The visibility threshold is estimated
by a proposed visual model that varies from pixel to pixel with local properties
of luminance, chroma and background uniformity. The results indicate a better
performance by the proposed metric than for∆E∗

ab and PSNR.

2.3.19 Farrugia and Peroche

Farrugia and Peroche [2000] proposed an image metric for computer graphics.
The metric treats contrast with a CSF decomposition, a local contrast calculation
done for the short, medium and long cone receptors and contrast masking is done
in the AC1C2 color space. The color difference is computed using the CIELAB
∆E∗

ab, while the contrast maps are computed using the Minkowski metric. The
color difference map and contrast map is calibrated in JND, and the sum of these
is used to obtain the final difference map. Another variant ofthis metric is found
in Farrugia et al. [2004].

2.4 Structural similarity

This section reviews metrics based on structural similarity, both for grayscale and
color images.

2.4.1 Wang and Bovik, UIQ

The Universal Image Quality Index (UIQ) was proposed by Wangand Bovik
[2002]. This is a mathematically defined image quality metric for grayscale im-
ages, with no HVS model incorporated. Because of this the metric is independent
of viewing conditions and individual observers. It is also easy to calculate and has
low complexity. The index models any distortion as a combination of loss of cor-
relation, luminance distortion and contrast distortion. The final measure,Q, is in
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the range [-1,1], where 1 is equivalent to two identical images. The results shown
by the authors indicate that UIQ outperform MSE significantly for different types
of distortion. The test images had 7 types of distortion; salt-and-pepper noise,
mean shift, JPEG compression, additive gaussian noise, multiplicative speckle
noise, contrast stretching and blurring. The authors also stress the point that the
ranking done by UIQ is the same as by the observers, and the correlation between
Q values and mean subjective rank (MSR) is high.

Evaluation of UIQ can be found in [Egiazarian et al., 2006; Gayle et al.,
2005; Hardeberg et al., 2008; Pedersen and Hardeberg, 2009b; Samet et al., 2005;
Shnayderman et al., 2004, 2006; Wang and Bovik, 2002; Wang et al., 2004]

2.4.2 Toet and Lucassen,Qcolor

Toet and Lucassen [2003] introduced a color image fidelity metric based on the
UIQ by Wang and Bovik [2002]. The UIQ is performed on each channel in the
l , α andβ channels, these channels are calcualted by a transformation from the
LMS space. The final color metric is defined as

Qcolor =
√

wl (Q1)2 +wα(Qα)2 +wβ(Qβ)2, (6)

where Q is the UIQ calculation. Thew indicate weights that can be set according
to the distortion in each channel. The results indicate a correlation between the
ranking of image fidelity by the observers and the ranking based on theQcolor

values.

2.4.3 Egiazarian et al., UQI-HVS

Egiazarian et al. [2006] proposed an extension of UIQ by Wangand Bovik [2002].
This metric takes into account the human visual system by using an one-level
discrete wavelet transform similar to the on in JPEG2000. Asa result of this the
image is divided into 4 frequency subbands, and the UIQ values are calculated for
each subband. The final value (UQI-HVS) is obtained by summing the 4 weighted
subband values.

2.4.4 Wang et al., SSIM

The SSIM (structural similarity) index proposed by Wang et al. [2004] attempts
to quantify the visible difference between a distorted image and a reference im-
age. This index is based on the UIQ [Wang and Bovik, 2002]. The algorithm
defines the structural information in an image as those attributes that represent the
structure of the objects in the scene, independent of the average luminance and
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contrast. The index is based on a combination of luminance, contrast and struc-
ture comparison. The comparisons are done for local windowsin the image, the
overall image quality is the mean of all these local windows.

MSSIM(X,Y) =
1
M

M

∑
j=1

SSIM(x j ,y j), (7)

whereX andY is the reference and distorted images,x j andy j are image content
in local window j andM indicates the total number of local windows. Figure 3
shows the SSIM flowchart, where signalx or signaly has perfect quality and the
other is the distorted image.

Figure 3: SSIM flowchart, signal x and y goes through a luminance and contrast
measurement before comparison of luminance, contrast and structure. A combi-
nation of these results in the final similarity measure. Picture from Wang et al.
[2004].

Evaluation of SSIM can be found in [Beghdadi and Iordache, 2006; Bouzer-
doum et al., 2004; Brooks and Pappas, 2006; Chen et al., 2006b; Dosselmann and
Yang, 2005; Egiazarian et al., 2006; Gao et al., 2005; Gayle et al., 2005; Harde-
berg et al., 2008; Larson and Chandler, 2008; Lee and Horiuchi, 2008; Lee et al.,
2006; Pedersen, 2007; Pedersen and Hardeberg, 2008, 2009b;Pedersen et al.,
2008; Samet et al., 2005; Sheikh and Bovik, 2006; Sheikh et al., 2004; Shnay-
derman et al., 2006; Silva et al., 2007; Wang and Simoncelli,2005; Wang et al.,
2003b, 2004; Yao et al., 2005]

2.4.5 Wang et al., multiscale SSIM

A multiscale version of SSIM was proposed by Wang et al. [2003b]. The original
and reproduction is run through the SSIM, where the contrastand structure is
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computed for each subsampled level. The images are low-passed filtered and
downsampled by 2. The lightness (l) is only computed in the final step, contrast
(c) and structure (s) for each step. The overall values are obtained by multiplying
the lightness value with the sum of contrast and structure for all subsampled levels.
Weighting parameters for l, c and s are suggested based on experimental results.

Evaluation of multiscale SSIM can be found in [Sheikh et al.,2006; Wang
et al., 2003b]

2.4.6 Chen et al., ESSIM

Chen et al. [2006b] proposed an edge-based SSIM (ESSIM). Thismetric was de-
veloped due to the findings that SSIM fails to predict perceived difference in badly
blurred images. This measure replaces the structural comparision with an edge-
based structural comparision based on the Sobel operator and an edge direction
histogram. The metric is evaluated on the LIVE database, andthe results indicate
that ESSIM perform better than SSIM and PSNR.

2.4.7 Chen et al., GSSIM

Chen et al. [2006a] proposed a gradient-based SSIM (GSSIM). This metric is very
similar to the ESSIM by Chen et al. [2006b], it uses a Sobel filter in horizontal
and vertical direction just as ESSIM. The difference is thatboth the structure
and contrast comparision are based on the Sobel filtered images. The metric is
evaluated on the LIVE database, and the results indicate that GSSIM performs
better than SSIM and PSNR, both on an overall basis and for blurred images.

2.4.8 Bonnier et al.,SSIMipt

A color extension of SSIM was developed and tested by Bonnier et al. [2006],
where each SSIM for each channel in the IPT color space were performed. After
the transformation all three channels were combined with a geometrical mean.
This implementation is similar to the one used by Toet and Lucassen [2003] on
UIQ.

2.4.9 Gao et al., CBM

Gao et al. [2005] proposed an extension to SSIM, based on a fuzzy Sugeno in-
tegral. The content-based metric (CBM) has l(x,y) and c(x,y) similar to SSIM
[Wang et al., 2004] but the s(x,y) is modified from containingvalues between -1
and 1 to contain values between 0 and 1 due to the Sugeno integral. By analyzing
the content of the original and reproduction the image is partitioned into 3 parts;
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edge, texture and flat regions. Then the similarity measure of each part is cal-
culated by synthesizing the SSIMs of all the pixels in the corresponding regions
with the Sugeno integral. Finally the overall image qualityis evaluated with the
weighting average of the three regions. The results indicate a higher performance
by the CBM than SSIM, PSNR and fuzzy integral (FE) on a set of JPEGand
JPEG2k compressed images.

2.4.10 Dong et al., RCBM

Dong et al. [2007] proposed another extension to SSIM using rough fuzzy in-
tegrals (RCBM). The CBM by Gao et al. [2005] is always based on pixelwise
integral, making the analysis less flexible, by using the rough fuzzy integral this
should become more flexible. The image is partitioned into 3 parts as in CBM;
edges, texture and flat regions. The rough fuzzy integral is then applied instead
of the fuzzy integral. Finally the lower and upper measurements of the three parts
are calculated using the weighting average. This method results in an upper and
lower limit, and therefore being more flexible than the CBM.

2.4.11 Wang and Simoncelli, CWSSIM

Wang and Simoncelli [2005] address the problem SSIM has withtranslation, scal-
ing and rotation. The solution for this is to extend SSIM to the complex wavelet
domain. In order to apply this metric (CWSSIM) for comparing images, the im-
ages are decomposed using a complex version of the steerablepyramid transform.
The CWSSIM is computed with a sliding window, and the overall similarity is
estimated as the average of all local CWSSIM values. From the objective test
done, CWSSIM outperform SSIM and MSE. The authors also tested the metric as
a similiarity measure on 2430 images.

Evaluation of CWSSIM can be found in [Brooks and Pappas, 2006; Wang and
Simoncelli, 2005].

2.4.12 Brooks and Pappas, WCWSSIM

Brooks and Pappas [2006] presented a multi-scale weighted variant of the com-
plex wavelet SSIM (WCWSSIM). This extension of the CWSSIM have weights
based on the CSF to handle local mean shift distortions. They use SSIM, CWS-
SIM and WCWSSIM to evaluate video quality. They also show examples with
local mean shifts where CWSSIM have problems, and they proposethe WCWS-
SIM to account for these problems. The authors conclude thatWCWSSIM is
superior to SSIM and CWSSIM.
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2.4.13 Lee et al., DTWT-SSIM

Lee et al. [2006] proposed a dual-tree wavelet transform extension of SSIM (DTWT-
SSIM), this extension should be less sensitive to translation, scaling and rotation
than SSIM. The mean intensity of luminance signals (µx andµy) are replaced by
a sum of the six sub-bands of the DTWT coefficents. This is a similarity mea-
sure used for classification, and has been tested on the MNISThandwritten digit
database [Lecun et al., 1998]. 4860 images were created withscaling, shift, blur-
ring and rotating. The results show a higher correct identification rate for DTWT-
SSIM than for SSIM and MSE. The authors also indicate that DTWT-SSIM can
be used in other fields, as face recognition or content-basedimage retrieval.

2.4.14 Mindru and Jung

Mindru and Jung [2006] proposed a similarity metric for image quality based on
SSIM [Wang et al., 2004] andI∗color [McCormick-Goodhart et al., 2004]. The
original and reproduction are transformed into XYZ, after this the images are
filtered with a spatial human visual observer model before going back to XYZ.
The final measure is a weighted combination of SSIM andI∗color.

2.4.15 Lee et al., CISM

Lee et al. [2007] and Lee and Horiuchi [2008] proposed a hybrid error diffusion
algorithm which uses an internal pseudorandom number and a 4x4 mask. To
verify the quality of the algorithm a structural similaritymeasure for color images
is proposed. This measure builds on SSIM, but differs on several points. The
RGB image is transformed to CIEXYZ and further to CIELAB, then a DFT is
performed on the transformed image, both original and reproduction. A HVS
filter is applied on both images. For the luminance channel the model proposed
by Sullivan et al. [1991] and N̈as̈anen [1984] is used, and for the chrominance a
filter based on results by Mullen [1985] is used. Then the HVS filtered images
are transformed to RGB again after an inverse DCT. The input in the similarity
part is the HVS filtered RGB values. A comparison of the mean RGB, variance
RGB and structure is performed, and a combination of these is done in order to
obtain the similarity measure. This is done for all three channels, and the authors
propose to weight each channel with 1/3. This results in a final measure (CISM)
where the mean SSIM for each channel is summed. The results indicate that the
proposed algorithm performs better than other error diffusion algorithms, and that
CISM outperforms SSIM.
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2.4.16 Lam and Loo

Lam and Loo [2008] proposed an image quality metric based on SSIM, but the
structure of the image is extracted using a quadtree decomposition. These quadtree
segments during decomposition are used to examine contrastand luminance.

2.4.17 Silva et al., SEME

Silva et al. [2007] proposed an image similarity measure based on a modified ver-
sion of the measurement of enchancement by entropy. This measure is a similarity
measure, and can therefore also be used as a quality measure.The similarity en-
chancement by entropy (SEME) is defined with 2 variants, one with the a number
of horizontal and vertical blocks in the image, and with maximum and minimum
luminance in each block. The other is similar, but it incorporates a MSE weight-
ing function. The metric has been compared to PSNR, SSIM and MSE. 4 different
SEME are tested, with block size 3 and 4 for both variants of the measure. The
results indicate that SSIM is better than SEME, but with onlyminor differences.
The SEME is though twice as fast as SSIM , but slower than MSE and PSNR.
The dataset contained 233 images from the LIVE database, distorted with JPEG
compression.

2.4.18 Franti

Franti [1998] proposed a distortion mesure for statisticaland structural errors in
digital images. The method consist of 3 quality factors, detecting contrast errors,
structural errors and quantization error. Contrast maskingis performed on the
contrast errors and on the structural errors, but not on the quantization errors. The
final measure is a sum of the weighted factors. 3 different scenes with 14 distorted
versions were used to evaluate the proposed measure, 15-39 observers were used.
The results indicate that the proposed measure perform better than PQS and MSE.

2.5 Difference predictors

Difference predictors are reviews in this section, these metrics are used to predict
the difference between two images.

2.5.1 Daly, Visible Differences Predictor

This is an algorithm proposed by Daly [1993]. The goal of the Visible Differences
Predictor (VDP) is to determine the degree to which physicaldifferences become
visible differences. The author states that this is not an image quality metric, but
it addresses the problem of describing the differences between two images. The
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output from this algorithm is an image containing the visible differences between
the images. Two different visualization techniques are proposed for the output
VDP, the free-field difference map optimized for compression, and the in-context
difference showing the output probabilites in color on the reference image. The
VDP can be used for all image distortions including blur, noise, algorithm arti-
facts, banding, blocking, pixellation and tone-scale changes.

Evaluation of VDP is found in [Daly, 1993; Li et al., 1998]

2.5.2 Fewerda and Pellacini, FDP

Another predictor, Functional Difference Predictors (FDPs) [Ferwerda and Pel-
lacini, 2003], has been built on the same principles as VDP [Daly, 1993]. VDPs
predict whether images will be visibly different, but FDPs predict whether they
are functionally different, affecting the user’s ability to perform a task [Ferwerda
and Pellacini, 2003].

2.5.3 Bradley, WVDP

Bradley [1999] proposed a wavelet extension of the VDP [Daly,1993]. The orig-
inal and reproduction are transformed in to the wavelet domain. The differences
between these are tested against a contrast masking. A psychometric function
is used to estimate the probability of error detection for each wavelet coefficient.
These detection probabilities are combined to get a visibledifference map. A CSF
is not explicity found in WVDP, but is incorporated in the contrast masking.

2.5.4 Mantiuk, HDR-VDP

Mantiuk et al. [2004] proposed an extension of VDP for HDR images. The exten-
sions done improve the model’s prediction of perceivable differences in the full
visible range of luminance and under the adaptation condition. HDR-VDP takes
into account aspects of high contrast vision in order to predict perceived differ-
ences. This model does not take into account chromatic changes, only luminance.

Evaluation of HDR-VDP is found in [Mantiuk et al., 2004, 2005].

2.6 Discrimination models

2.6.1 Lubin, VDM

Lubin [1995] proposed the visual discrimination model (VDM). This model is
based on the just-noticiable-differences (JND) model by Carlson and Cohen [1980].
The model design was motivated by speed and accuracy. Input to the model is a
reference image and a distorted version, both grayscale. A set of parameters must
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be defined based on the viewing conditions. The first step includes a simulation
of the optics of the eye before sampling the retina cone mosaic. The sampling is
done by a gaussian convolution and point sampling. The next stage converts the
raw luminance signal into units of local contrast based on a method similar to Peli
[1990]. After this each pyramid level is convolved with 4 pairs of spatially ori-
ented filters. Then on the 4 pairs of filters an energy responseis computed. Each
energy measure is normalized and each of these values are as input to a non-linear
sigmoid function. The distance between the vectors can be calculated and results
in a JND map as output, but the values across this map can be used to calculate
mean, maximum or other statistical measure of the similarity between the images.
This single value can further be converted into probabilityvalues.

2.6.2 Lubin, Sarnoff JND Vision Model

The Sarnoff JND Vision Model [Lubin, 1997a,b] is a method of predicting the
perceptual ratings that observers will assign to a degradedcolor-image sequence
relative to its nondegraded counterpart. The model takes two images, an original
and a degraded image, and produces an estimate of the perceptual difference be-
tween them. The model does a front end processing to transform the input signals
to light outputs (YCbCr to Yuv), and then the light output is transformed to psy-
chophysically defined quantities that seperately characterize luma and chroma. A
luma JND map and a chroma JND map are created. The JND maps are then used
for a correlation summary, resulting in a measure of difference between the orig-
inal and the degraded image. It should be noted that the metric was developed as
a video quality metric, showing a high correlation between predicted quality and
perveiced quality. The model has also been tested on JPEG data, where a high
correlation also was found. Lubin concludes that the model has wide applicability
as an objective picture quality measurement tool.

Evaluation of Sarnoff can be found in [Brill et al., 1999; Li etal., 1998; Lubin,
1997b; Sheikh and Bovik, 2006; Sheikh et al., 2004, 2006; Wanget al., 2003b,
2004]

2.6.3 Bolin and Meyer, Simplified color extension of VDM

Bolin and Meyer [1998, 1999] proposed a simpliflied VDM [Lubin, 1995] for
realistic image synthesis by using the Haar wavelet and a simpler spatial pool-
ing operation with a smaller filter than the one found in VDM. This version was
extended to handle color and it includes the effects of chromatic aberration.

Evaluation of this metric is found in [Bolin and Meyer, 1998, 1999].
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2.7 DCT based metrics

2.7.1 Watson

Watson [1993a,b] proposed a metric based on DCT, the method treats each DCT
coefficient as an approximation to the local response of a visual channel. The met-
ric is built to optimize individual images made from JPEG, MPEG etc. The model
incorporates contrast masking, luminance masking, perceptual quantization, JND,
spatial error pooling, frequency error pooling, an optimization method and bit rate
optimization.

Evaluation of this metric is found in [Mayache et al., 1998; Watson, 1993a,b].

2.7.2 Silverstein and Klein

Silverstein and Klein [1993] proposed a DCT image fidelity metric for displayed
text. The closest fit for of ASCII symbols to rectangular segments of a gray-scale
image. Each segment was converted into a DCT coefficient matrix which was
compared to the coefficient matrix of each ASCII symbol. The image segment
was replaced with the symbol that had the least weighted Euclidean distance.

2.8 Wavelet based metrics

2.8.1 Lai et al.

Lai et al. [1997] proposed a fidelity measure based on the Haarwavelet. This mea-
sure was more refined by Lai et al. [1998] where they still use the Haar wavelet
to simulate the HVS in luminance and chrominance. Based on thewavelet rep-
resentation the contrast at each pixel is computed, the contrast is adjusted by the
masking effect and the threshold curve is truncated. The suprathreshold at each
resolution is computed, and the error measure is based upon this. The errors
are computed in luminance, red-green and yellow-blue dimensions with respect
to their individual contrast threshold curves. The final measure is a geometrical
mean of these.

2.8.2 Veryovka et al.

Veryovka et al. [1998] used a multiscale approach to analyzeedges, this measure
was created for halftone images. Two types of edges were identified: reproduced
edges and egde artifacts. Reproduced edges are those edges that are present in
the original images, while edge artifacts are those introduced by the halftoning
algorithm. The authors use the wavelet tranform proposed byMallat and Hwang
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[1992] abd Mallat and Zhong [1992], and applied this to the halftoned image. Ex-
trema points are identified and linked together to form edge contours. Edges that
correspond to high frequency noise are removed together with weak edges. Short
edges are also removed, short edges are defined as edges smaller then 7 pixels.
The strength of an edge artifact is calculated as the averageof the magnitudes of
edge points at a given scale. The metric is tested on clustered dot dither, ordered
dispersed dither and Floyd-Steinberg error diffusion.

2.8.3 Sheikh et al., IFC

Sheikh et al. [2004] and Sheikh [2004] proposed an image quality assessment
method based on natural scene statistics (NSS). The NSS model used is Gaussian
scale mixtures (GSM) in the wavelet domain. The distortion model used is also
described in the wavelet domain. This model captures two important, and com-
plementary, distortion types: blur and additive noise. TheInformation Fidelity
Criterion (IFC) is the mutual information between the source and the distorted
images. The IFC is not a distortion metric, but a fidelity criterion. It theoretically
ranges from zero (no fidelity) to infinity (perfect fidelity).The IFC was evaluated
on the LIVE database, and the results show that the IFC outperform the Sarnoff
JNDmetrix, and a vector version of IFC even outperform SSIM.

2.8.4 Yao et al.,QMCS

Yao et al. [2007] proposed an image quality measure based on curvature similar-
ity, and builds on the ideas of Wang et al. [2004]. The metric attempts to exploit
structural similarity in wavelet bands using differentialgeometric information.
The reference image and distorted image are decomposed intoa 4 level structure
with a total of 13 subbands using 9/7 biorthogonal wavelet filter banks. In each
subband mean surface curvature maps are obtained, and the similarity between
two curvature maps are found with a correlation formula. Theoverall quality
measure is computed by summing the values for all subbands. The results indi-
cate a better performance byQMCSthan SSIM, Sarnoff and PSNR on the LIVE
database.

2.8.5 Gayle et al., M-DWT

Gayle et al. [2005] proposed a full-reference image qualitymeasure in the Discrete
Wavelet Transform (DWT) domain. The measure applies DWT to theluminance
layer of the orignal and degraded image, and for each band thestandard deviation
of differences are calculated. The measure was evaluated by14 observers on 30
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full color scenes. The proposed measure (M-DWT) is better correlated with MOS
(mean opinion score) than PSNR, UIQ and SSIM.

2.9 Various metrics

2.9.1 Damera-Venkata et al.,DM and NQM

Damera-Venkata et al. [2000] proposed a distortion measure(DM) and noise qual-
ity measure (NQM). For theDM the frequency distortion in the reproduction is
found, then the deviation of this from an allpass response. Finally a weighting
of the deviation by a HVS model, and integration of the visible frequencies. The
NQM is based on Peli’s contrast pyramid [Peli, 1990], and it takes into account
variations in distance, variations in local luminance mean, interaction between
spatial frequencies and contrast masking effects.

Evaluation of these metrics are found in [Damera-Venkata etal., 2000; Sheikh
et al., 2006]. NQM is also found in [de Freitas Zampolo and Seara, 2004; de Fre-
itas Zampolo and Seara, 2005], while DM is also found in [de Freitas Zampolo
and Seara, 2003].

2.9.2 de Freitas Zampolo and Seara,DQM and CQM

de Freitas Zampolo and Seara [2003] proposed measures basedon theNQM by
Damera-Venkata et al. [2000]. The distortion quality measure (DQM) is based on
NQM, and is done in the frequency distortion assessment block. The results show
superior performance of theDQM over theNQM. The authors also propose the
CQM, a composit quality measure, that combines frequency distortion with noise
injection. This measure was derived fromNQM andDQM, and a high correlation
against the subjective score is found.

Evaluation ofDQM andCQM is found in [de Freitas Zampolo and Seara,
2003; de Freitas Zampolo and Seara, 2004].

2.9.3 de Freitas Zampolo and Seara,B-CQM

de Freitas Zampolo and Seara [2004] proposed an extension oftheCQMproposed
by the same authors [de Freitas Zampolo and Seara, 2003]. This extension uses the
Bayesian networks, and is based on the experimental data from[de Freitas Zam-
polo and Seara, 2003]. Results indicate increased performance forB-CQM over
NQM andDQM.

2.9.4 Yu et al.

Yu et al. [1998] proposed a metric for color halftone visibility based on Weber’s
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law [Weber, 1965]. The first step is to transform the RGB valuesof the patch
to XYZ, the Fourier transform is applied to find the luminancein the frequency
domain. A cut-off radial frequency is defined, then a new image is defined in the
frequency domain according to the cut-off radial frequency. The inverse Fourier
transform is applied to the previous image, and the standarddeviation of this is
found. This value is compared to the limit given by the mean luminance and a
factor. If the value is higher than the limit the cut-off radial frequency is increased,
and a new check against the limit is done. When the the value is lower than the
limit, the cut-off radial freqeuency is reported as the frequency threshold. The
metric is evaluated with a psychovisual experiment with 8 observers and 6 scenes
and 5 different halftone algorithms. The results indicate that the proposed metric
performs better than S-CIELAB on the same dataset.

2.9.5 Yu and Parker, KLK

Yu and Parker [1998] evaluated and proposed quality metricsfor individual blue-
noise binary patterns; the HWMSE (HVS weighted mean square error), LF (low-
est frequency component), AMD (average distance beween nearest neighboring
minority-pixel pairs) and KLK (kurtosis local kurtosis). Ametric similar to the
AMD has earlier been proposed by Wong [1997]. The KLK is proposed by the
authors, where for each minority pixel a lowpass gaussian isapplied to its neigh-
bourhood. The kurtosis of the filter output in this neighbourhood is calculated and
then the kurtosis of all kurtosis distributions to get a single numerical value for the
quality. Based on these quality metrics an optimization of blue-noise binary pat-
terns is performed. They conclude that by using quality metrics to choose the best
blue-noise binary pattern they reflect the visually best blue-noise binary pattern.

2.9.6 Ivkovic and Sankar

Ivkovic and Sankar [2004] proposed an algorithm for image quality assessment
built on the linear relationship between blocks of pixels. The first step in this
model is to process both the original image and the reproduction with a simple
HVS model. This HVS model consists of a brightness perception function and a
CSF. The CSF contains an user defined parameter for changing with the reference
image content. The correlation coefficient is then computedon the different blocks
on the image. At last the overall quality measure is computedas the average
correlation coefficient. The metric is evaluated on three images reproduced with
contrast stretching, additive white noise, blurring and JPEG2000 coding. The
results were evaluated by the authors, and the proposed algorithm was found to
perform better than MSE.

34



2.9.7 Chaddha and Meng

Chaddha and Meng [1993] introduced an image distortion measure for monochrome
images. This measure splits the error signal in 2 parts. One for the orthogonal-
space, where parts of the error signal is correlated with local features, and one
for the sub-space error signal, where parts of the error signal is uncorrelated with
local features. This splitting is done by a 2-D adaptive filter, where a sliding filter
of 9×9 is used. The second stage of the measure is a full wave rectifier, used for
outputting absolute values. Then a logarithmic non-linearity is performed, and as
a fourth stage where the image is raised to a power of 2. The fifth stage consists of
a weighted summer. Then a relative weighting of the two distortion measures is
done to obtain the final distortion measure. The result from the metric is compared
against perceived distortion, and the proposed measure outperform MSE both in
correlation and correct ranking. This metric is also extended to video [Chaddha
and Meng, 1993].

2.9.8 N̈as̈anen

Näs̈anen [1984] examined the visibility of halftone dot textures, and a method
based on the human visual contrast sensitivity was proposed. The estimated vis-
ibility is expressed as the visual resolution frequency, that is the highest funda-
mental spatial frequency where a periodic dot texture is visible for the observers.
The results from this method correspond with those from a psychophysical exper-
iment.

2.9.9 Sheikh and Bovik, VIF

Sheikh and Bovik [2006] proposed the visual information fidelity (VIF) metric.
This metric quantifies the Shannon information present in the reproduction rela-
tive to the information present in the original. The naturalscene model used is a
Gaussian scale model (GSM) in the wavelet domain, and as a HVSmodel they
use an additive white Gaussian noise model. The VIF metric showed a higher
correlation with perceived quality from the LIVE database than Sarnoff, PSNR
and SSIM, and with a lower RMSE.

Evaluation of VIF is found in [Larson and Chandler, 2008; Sheikh and Bovik,
2006; Sheikh et al., 2006].

2.9.10 McCormick-Goodhart et al.,I∗

McCormick-Goodhart et al. [2004] proposed a computational model for ”retained
image appearance”. TheI∗ metric is a combination of an image appearance func-
tion for the lightness and contrast (I∗B&W) and retained image appearance function
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for the color information (I∗color). The totalt error is weighted with a factorω.

I∗ =
I∗color +(I∗B&W ×ω)

1+ω
. (8)

The results indicate thatI∗ is consistent with visual results of print aging, in terms
of contrast and color loss.

2.9.11 Yeh et al.,E

Yeh et al. [1998] presented a perceptual distortion measure(E) for edge-like arti-
facts in image sequences. The measure does a spatial processing, then a temporal
processing before a distortion pooling. The spatial processing is divided into 4
parts. The first part being a distortion detection, where a lowpass filter is added
along a directionθ, and a bandpass filter alongθ+90. Then an absolute value for
the current position is calculated. The spatial masking is done on the background
luminance and on the background spatial activity. The spatial nonlinearity and
summation are then carried out. The results indicate thatE is more correlated
with the HVS than MSE.

2.9.12 Shnayderman et al.,M−SVD

Shnayderman et al. [2004, 2006] proposed an image quality metric using singu-
lar value decomposition (M−SVD), according to the authors it is reliable across
different distortion methods. The measure works in blocks,and calculates the dif-
ference between the singular values of these blocks. A totalvalue can be found by
a simple summation of the blocks. It was tested using 6 different distortion types
(JPEG, JPEG2000, gaussian blur, gaussian noise, sharpening and DC-shifting)
on 5 different scenes with 10 observers. The results show better performance by
M−SVDthan UIQ and MSE. Because this metric does not require a HVS model,
it is simple and does not have any assumptions about viewing distance or the dis-
tortion type. It can be used for both local and global measurements.

2.9.13 Pappas and Neuhoff, LSMB

Pappas and Neuhoff [1999] proposed the least-squares model-based (LSMB) ap-
proach to digital halftoning that exploits both a printer model and a visual model
to create high quality images. The squared error between theoutput of the printer
model and the visual model is used for optimization of halftoning. Results in-
dicate that the LSMB error metric agrees well with visual evaluations of image
quality. LSMB image quality metric can be computed over the whole image or
over a small segment of the image. The evaluation of performance of the LSMB
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techinque is done in terms of 1) spatial resolution (sharpness) 2) texture (visibility
of halftone pattern) 3) gray-scale resolution (number of perceived gray levels) 4)
gray scale distortion of halftoned images.

2.9.14 Scheermesser and Bryngdahl

Scheermesser and Bryngdahl [1996] introduced a texture metric for halftone im-
ages. It is a numerical metric for the occurrence or absence of specific textures in
quantized images. The metric conforms to the visual impression of the image, it
permits a judgement over visually unrecognizable texture features, and it results
in a number for easy interpretation. The authors also state that this metric could
be used as an optimization algorithm for halftoning.

2.9.15 Scheermesser and Bryngdahl

Scheermesser and Bryngdahl [1997] proposed a space-varianttexture metric for
halftone images that allows the identification and quantification of spatially de-
pendent texture characteristics. 2 approaches are given for investigation of the
image, one on segmentation and on a continuous distribution.

2.9.16 Barten, SQRI

Barten [1990] proposed the square-root integral (SQRI), in this metric a fixed
mathematical expression for the contrast sensitivity of the eye is used. This results
in the ability to detect various phenomenon as resolution, addressability, contrast,
luminance, display size and viewing distance. The results indicate a linear corre-
lation with perceived image quality.

Evaluation of SQRI is found in [Barten, 1990; Bouzit and MacDonald, 2000].

2.9.17 Nijenhuis and Blommaert

Nijenhuis and Blommaert [1997] presented a framework for an alternative metric
that uses the distance in a perceptual space to predict the perceived impairment of
reproduced images. This metric include attributes inducedby Michelson’s con-
trast and average luminance.

2.9.18 Avadhanam and Algazi, PDM

Avadhanam and Algazi [1999] proposed an image fidelity metric, called the pic-
ture distortion metric (PDM), based on visual masking. The main components
of the metric are perceptual nonlinearity, CSF, cortex bands, visual masking and
error summation. The CSF used is adopted from the VDP [Daly, 1993], together
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with the cortex bands. They introduce a new approach to masking, where the
response is normalized for each band. The metric is evaluated with 5 different
scenes, coded with JPEG and a wavelet coder. The results indicate a high correla-
tion and high correct ranking for PDM, a high scene dependency is also found.

2.9.19 Karunasekera and Kingsbury,Eθ

Karunasekera and Kingsbury [1994, 1995] proposed a measure(Eθ), which is di-
vided into 3 parts. Edge detection, where the original imageand the reproduction
are filtered with a directional filter. Masking of artifacts due to surrounding activ-
ity and brightness. Accounting for the nonlinearity in the human visual system is
done before error calculation. The error calculation is theaverage of transformed
error, either of a part of the image or the entire image. The ranking by the metric
match the subjective ranking well.

Evaluation ofEθ is found in [Karunasekera and Kingsbury, 1994, 1995; May-
ache et al., 1998]

2.9.20 Miyahara et al., PQS

Miyahara et al. [1996] introduced the Picture Quality Scale(PQS). The measure
is based on luminance coding error, spatial frequency weighting of errors, random
errors and disturbances, structured and localized errors and disturbances, and prin-
cipal component analysis. The PQS is calculated as a linear combination of the
different principal components. The metric was evaluated by a psychophysical
experiment with 5 scenes and 9 expert observers. A strong correlation is found
for PQS, and the performance of the proposed measure is better than WMSE.

Evaluation of PQS is found in [Miyahara et al., 1996; Sheikh et al., 2006].

2.9.21 Safranek and Johnston

Safranek and Johnston [1989] introduced a simple metric based on the PIC (per-
ceptual image coder), where an error pooling is done on the subband indexes. The
coder incorporates a model that ensures that the most sensitive areas are not over-
coded. A texture masking adjusment model is incorporated inorder to code areas
with different frequency content at different levels.

2.9.22 Westen et al., PEM

Westen et al. [1995] proposed the Perceptual Error Measure (PEM), which in-
corporates the HVS light sensitivity, spatial frequency and orientation sensitivity,
and masking effects. The model is based on local band-limited contrast in ori-
ented spatial frequency bands. The PEM calculation is basedon a simple vector
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norm over frequency bands and positions, and weights can be given to the differ-
ent frequency bands, positions and orientations. The results indicate a superior
performance by PEM over PSNR.

2.9.23 Nilsson,QMa

The halftoning quality metric proposed by Nilsson [1999] incorporates models of
both the printer and the observers. This model is based on earlier work by Nilsson
and Kruse [1997]. The print model consist of 2 parts, one withthe mechanical
distortion of the halftone and one with the optical effects of the paper. The ob-
server model has been adopted from Mannos and Sakrison [1974] for the HVS,
and for the modulation-transfer function (MTF) values and data from Sullivan
et al. [1993] is used. An adaptive filter is used to separate the halftone characteris-
tics from the original image, and Fourier analysis of the separations using weight
functions to derive measurements on different aspects of quality. The square root
of the averaged energy in each frequency band (Hr ) is used as a descriptor of the
signal. The final measure (QMa) is computed as a sum of theHr and a weighting
function.

2.9.24 Kipman, ImageXpert metrics

Kipman [1998] presented a set of image quality tests for printers and media, these
tests include dot quality, halftone quality, line quality,text quality, color quality,
smear/overspray and spatial resolution. These metrics area part of the ImageXpert
software.

Evaluation of these metrics are found in [Brill et al., 1999; Kipman, 1998]

2.9.25 Wilson et al.,∆g

Wilson et al. [1997] proposed a metric for gray-scale comparison. The metric
is built on a modification of the Hausdorff metric, which measures how far 2
compact non-empty subsets of a metric space are from each other. The distance
between the original and reproduction is the distance between their respective
subgraphs. The metric was tested on different kind of distortion, among them
JPEG compression. The results indicate that the∆g for some kind of distortions
are better than the RMS.

2.9.26 Guarneri et al.,PQSI

Guarneri et al. [2005] proposed a quality metric (PQSI) for color interpolated
images. The metric is divided into two error models, one for aliasing error and
one for zipper error (on-off pattern caused by the interpolation process). The
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aliasing error is obtained by combining error masks from thered, green and blue
channels. For the zipper error a procedure selecting the mask pixels belonging to
an on-off pattern, and their sum resulting in the final error.The metric has been
evaluated on a data set interpolated with 5 different interpolation algorithms. The
results indicate a correlation with the mean opinion score.

2.9.27 Imai et al.

Imai et al. [2001] proposed a color difference metric based on Mahalanobis dis-
tance [Mahalanobis, 1936] by using covariance matrices fordifferences of light-
ness, chroma and hue angle. The CIE94 color difference can be derived from the
simplified Mahalanobis perceptual difference.

2.9.28 Bouzerdoum et al., NNET

Bouzerdoum et al. [2004] proposed a method (NNET) for image quality assess-
ment by using multilayer perception (MLP), based on neural network. The MLP
is designed to extract a set of features from the original image to predict image
fidelity. The features, the two mean values, the two standarddeviations, covari-
ance and MSE, are extracted from blocks in the image, and are fed as inputs to
the network. Evaluation of the measure was done on the LIVE database with 354
pairs of reference and test images. The results indicate that NNET outperforms
SSIM both in correlation coefficient, RMSE, MAE and standard error.

2.9.29 Carnec et al., Quality Assesser

Carnec et al. [2003] proposed the Quality Assesser. This is a reduced-reference
metric, but is referred here because the input to the system is the original and re-
production. The metric is divided into two parts, perceptual representation and
structural features extraction. The perceptual representation includes a low level
processing and a perceptual sub-band decomposition. In thestructural features
extraction of a reduced representation is found based on fixation points. This is
done for both the original and reproduction. The similaritymeasure is based on
the processed original and reproduction where different similarity measures were
tested. The best measure was based on structural information, other measures
based solely on contrast or a combination of contrast and structure did not per-
form as well. The overall results indicate a strong correlation between MOS and
calculated quality.

2.9.30 Teo and Heeger

Teo and Heeger [1994] described a perceptual distortion model that is consis-
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tent with spatial pattern psychophysics, it explains both contrast and orientation
masking. The metric uses the steerable pyramid transform which decomposes
the image into several spatial frequency and orientation bands. The detection of
visible distortion is done locally with a simple squared-error norm.

2.9.31 Heeger and Teo, PDM

A model for perceptual image fidelity (PDM) was proposed by Heeger and Teo
[1995]. This model is an extension of the 1994 model for perceptual distor-
tion. The model accounts for contrast sensitivity, luminance masking and con-
trast masking. The model consists of 3 parts, a retinal component (responsible for
contrast sensitivity and mean luminance masking), a cortical component (respon-
sible for contrast masking) and the last component is a detection mechanism. The
detection mechanism takes the distorted image and the original image, both nor-
malized, and calculates the fidelity. The authors show an example of how PDM
can predict image fidelity, where 3 JPEG compressed versionsof an image are
computed with approximately the same MSE.

2.9.32 Yao et al., VQMESC

Yao et al. [2005] proposed a visual quality metric considering error and contrast.
The predicted quality is modeled by measuring error spread and isotropic local
contrast. The quality index is the ratio of error spread normalized with isotropic
local contrast. The results indicate a good correlation with MOS. This measure is
also extended to video quality.

2.9.33 An et al., MHI

An et al. [2005] proposed an objective image quality measure, MHI (mean homo-
geneity index), based on homogeneity for grayscale images.The proposed mea-
sure takes the image structure into account and uses a measure based on second
derivative masks to determine the local image homogeneity.The more uniform
the region surrounding the pixel, the larger the homogeneity. The output is a ho-
mogeneity map, which can be averaged to obtain a measure for overall image
quality. The results indicate better performance by MHI than SSIM and PSNR.

2.9.34 Xu et al.

Xu et al. [2005] proposed an metric for HDR images based on thelogarithmic
response of the human visual system. The metric uses the log[RGB] color space
root-mean-square-error. The authors convert the pixles into a logarithmic RGB
color space and then they compute the traditional RMS error.
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2.9.35 Orfanidou et al., ”Busyness”

Orfanidou et al. [2008] proposed a ”busyness” metric for image quality. Ofranidou
et el. defines ”busyness” as the presence or absence of details in the scene. The
measure is based on a simple segmentation technique, using aSobel filter and
basic morphology functions. This metric relates directly to the spatial frequencies
in the image.

2.9.36 Gorley and Holliman, SBLC

Gorley and Holliman [2008] proposed an image quality metricfor stereoscopic
images. The Stereo Band Limited Contrast (SBLC) accounts for HVSsensitiv-
ity to contrast in luminance changes in regions with high spatial frequency. The
metric incorporate Michelson’s contrast and different algorithms to extract edges,
corners and regions of high spatial frequency.

2.9.37 Other image quality metrics

An overview of several image quality metrics can be found in [Beaton, 1983;
Dosselmann and Yang, 2005; Eskicioglu et al., 1995; Silva etal., 2007]. Some of
the metrics described are:

• Average Difference

• Structural Content

• Normalized Cross-Correlation

• Correlation Quality

• Maximum Difference

• Image Fidelity

• Laplacian Mean Square Error

• Normalized Absolute Error

• Normalized Mean Square Error

• Czenakowski Distance

• Minkowsky Metric

• Lowest Frequency Component
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• Average distance beween nearest neighboring minority-pixel pairs

• Frequency Weighted Mean Square Error

• HVS Weighted Mean Square Error

• Perceptual Equivalent Passband

• Equivalent Width

• Squared Spatial Frequency

• Modulation Transfer Function Area

• Gray Shade Frequency Product

• Integrated Contrast Sensitivity

• Perceived Modulation Ratio

• Information Content

Several of these metrics were evaluated by Eskicioglu et al.[1995] for gray scale
compression

For a detail overview on research on perceptual video quality metrics see
Winkler [1999] and Wang et al. [2003a]. A survey of no-reference and reduced-
reference metrics is done by Engelke and Zepernick [2007].

3 Discussion and Conclusion

Evaluation of the metrics is an important step in the development of a full-reference
image quality metric, without this step the performance of the metric cannot be
determined. Unfortunately this is not always done to the extent that is needed in
order to show the metric’s performance to predict perceiveddifference or quality.
More than 15 of the metrics reviewed have only been tested on one scene, either
subjectively or objectively. This is not enough to reveal important aspects of the
metric’s performance. Even so some metrics have been extensively tested and
the development and availability of the LIVE database [Sheikh and Bovik, 2006;
Sheikh et al., 2006, 2007; Wang and Bovik, 2002; Wang et al., 2004] has resulted
in more extensive testing of several metrics. This databasecontains JPEG com-
pression (169 images), JPEG2000 compression (175 images),gaussian blur (145
images), white noise (145 images) and bit errors in JPEG2000bit stream (145
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images)1 with corresponding difference mean opinion score (DMOS). Many of
the metrics based on the UIQ [Wang and Bovik, 2002] have been tested on scenes
from this database. One key element to the popularity of thisdatabase is the fact
that is both free and available online. The use of this database makes it easy
to compare metrics since they are tested with the same dataset. Also recently a
new database was proposed, the TID2008 by Ponomarenko et al.[2008]. 654 ob-
servers judged 25 originals with 17 types of distortion on 4 levels. The goal of this
database is to evaluate the performance of image quality metrics, and to compare
and develop new metrics.

Many metrics are also benchmarked against the performance of only MSE or
RMS. Many researchers have shown that these measures do not predict image
difference or image quality very well. Newly developed full-reference metrics
should therefore be compared against other state of the art metrics in order to de-
termine their performance. UIQ [Wang and Bovik, 2002], SSIM [Wang et al.,
2004], iCAM [Fairchild and Johnson, 2002], Quality Assesser[Carnec et al.,
2003] and S-CIELAB [Zhang et al., 1997a] are available online, making a com-
parison against these easy. Some authors have tested their metrics against these,
but still more researchers should test their newly developed metrics against other
the commonly used metrics. The SSIM and S-CIELAB have been tested thor-
oughly, the availability online could be one reason for this.

By making the metrics available for other researchers it is also easier to dis-
cover advantages and disadvantages with the metrics, and therefore helping the
development of new and better metrics.

We have given an extensive survey of full-reference image quality metrics
with the aim to help researchers to find the most appropriate metric and improve
the state of the art knowledge in this field. This survey will help researchers
developing an universal full-reference image quality metric.
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APPENDIX

A Image quality metric overview

In Table 1 we show an overview of the metrics in this survey. The metrics are sorted in chronological order, then the name of
the metric if given any by the authors, then the author names in column three. For the type column the metrics are grouped
by type. ID = image difference, IQ = image quality, IF = image fidelity, CD = color difference, HT = halftoning, DP =
difference predictor, VQ = video quality , IS = image similarity. For the column HVS, the metric must have a HVS model
or CSF filter that simulates the HVS. The metrics like SSIM, whoindirectly simulate the HVS is set to ”no”. MS indicate
whether the metrics are multiscale. S/NS indicate whether the metric is spatial (FFS, FVS, VFS, VVS) or non-spatial (NS).
We have divided the spatial metrics into 3 groups, FFS = fixed size of filter and fixed calculation, FVS = fixed size of
filter and variable calculation, VFS = variable size of filterand fixed calculation, VVS = variable size of filter and variable
calculation. Fixed size indicate that the filter, block or similar is fixed for the whole image, variable size indicate that the
filter or block changes according to the image content. Fixedcomputation indicate the same calculation within the filteror
block, variable calculation indicate that the calculationis dependent on the image content. C/G indicate whether the metric
are for color or grayscale images. The test column indicate what kind for evaluation that has been performed. This is either
objective or subjective, for the metrics where the authors has done the subjective test this is marked with (A). Scenes indicate
the number of scenes used in the original work where the metric was proposed, the same for modification and observers.
For scenes the first number of the number of scenes, while the second number in ( ) indicate the total number of images
(originals× number of modifications). For observers the total number of observers is stated, and inside the ( ) number of
experts are stated if this information is given by the author. - indicate that this information is not available or not stated by
the authors. The last column refers to the section where the metric is reviewed in the article.
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Table 1: Metrics: ID = image difference, IQ = image quality, IF = image fidelity, CD = color difference, HT = halftoning, DP =difference
predictor, VQ = video quality , IS = image similarity.

Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
1976 ∆E∗

ab CIE CD No No NS Color - - - - 2.2.1
1984 CMC Clarke et al. CD No No NS Color - - - - 2.2.2
1984 Näs̈anen HT Yes No FFS Gray sub. 4 (128) Dot profiles 3 1 observers in the

main experiment, 2
in control experi-
ment.

2.9.8

1986 SVF Seim and Valberg CD No No NS Color obj. - - - 2.2.7
1987 BFD Luo and Rigg CD No No NS Color - - - - 2.2.3
1989 Safranek and John-

ston
IQ No No FFS Gray obj. 30 - 2.9.21

1990 SQRI Barten IQ No No FFS Gray sub. 5 (35) Resolution 20 sub. data from Wes-
terink and Roufs.

2.9.16

1991 LIPMSE Brailean et al. IF Yes No FFS Gray sub. 1 (1) Gaussian blur 1 (A) Metric used to re-
store a blurred im-
age.

2.1.8

1992 Mitsa and Varkur HT Yes No VFS Gray sub. 11 (44) Halftoning 12 3 metrics tested,
same procedure but
different CSFs.

2.1.4

1993 VDP Daly DP Yes No FFS Gray - - - - 2.5.1
1993 Watson IQ No No FFS Gray obj. - 2 (8) - 2.7.1
1993 Silverstein and

Klein
IQ No No FFS Gray obj. - - - 2.7.2

1993 Lin HT Yes No FFS Gray obj. 1 (5) Halftoning - CSF filter from
Mannos et al. and
Nill et al. tested.

2.1.5

Continued on Next Page. . .
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
1993 Chaddha and MengIQ No No FFS Gray sub. 6 (48) Compression arti-

facts
60 Also extended to

video. Only the
results from one
scene presented.

2.9.7

1994 Mitsa and Alford HT Yes No VFS Gray sub. 11 (44) Halftoning 2.1.10
1994 Eθ Karunasekera and

Kingsbury
IQ Yes No FFS Gray sub. 1 (8) Lapped Orthogo-

nal Transform
8 Observer expertise

not stated.
2.9.19

1994 Teo and Heeger IQ Yes Yes VFS Color s/o 1 (2) - (A) 2.9.30
1995 ∆E94 CIE [1995] CD No No NS Color - - - - Tested in various

papers on various
type of scenes.

2.2.4

1995 PDM Heeger and Teo IF Yes Yes VFS Gray sub. 1 (3) JPEG (A) Extension of Teo
and Heeger [1994]

2.9.31

1995 PSPNR Chou and Li IQ Yes No FFS Gray obj. - - - 2.1.16
1995 Rushmeier et al. IS Yes No FFS Gray obj. Various Synthetic images - Comparing real and

synthetic images
2.1.9

1995 PEM Westen et al. IQ Yes No VFS Gray sub. 6(105) PCM, DPCM,
DCT and SBC
coding at different
bit rates

7 (5) 2.9.22

1995 VDM Lubin IQ Yes Yes VFS Gray sub
/obj

- - - Various testing 2.6.1

1996 S-
CIELAB

Zhang and Wandell ID,
HT

Yes No FFS Color obj. - JPEG-DCT,
halftoning and
patterns

- 2.3.1

1996 PQS Miyahara et al. IQ Yes No FFS Gray sub. 5(25) global and local
distortion

9 (9) 2.9.20

Continued on Next Page. . .
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
1996 CMPSNR Lambrecht and Far-

rell
IQ Yes No VFS Color sub. 1 (400) JPEG 2 2.1.17

1996 Scheermesser and
Bryngdahl

HT No No VVS Gray obj. 2 (8) Halftoning - Also tested on 2 test
pattern.

2.9.14

1996 PQS Miyahara et al. IQ Yes No FFS Gray sub. 5 (25) - 9 (9)
1997 Sarnoff

JND
Vision
Model

Lubin IQ Yes Yes FFS Color sub. 5 (15) MPEG-2 with dif-
ferent bit-rates

20 Also tested on
JPEG data.

2.6.2

1997 Neumann et al. ID No No VFS Color obj. - - - - 2.3.12
1997 Wong HT No No FFS Gray - - - -
1997 Nijenhuis and

Blommaert
IQ No No NS Gray sub. 2 (25) Interpolation 6 2.9.17

1997 Lai et al. IF Yes Yes VFS Color sub. 1(1) JPEG2000 (A) 2.8.1
1997 Scheermesser and

Bryngdahl
HT No No VVS Gray obj. 2 (-) Halftoning - 2.9.15

1997 ∆g Wilson et al. IS No No VFS Gray sub. 1 (5) JPEG, different
distortion types

(A) 2.9.25

1998 IFA Taylor et al. IF Yes Yes FFS Gray obj. - - - - 2.3.10
1998 CVDM Jin et al. ID Yes No FFS Color obj. - - - 2.3.8
1998 Lai et al. IF Yes No FFS Color sub. 1(1) JPEG2000 (A) 2.8.1
1998 Yu et al. HT Yes No FFS Color sub. 6 (36) Halftoning 8 (8) 2.9.4
1998 KLK Yu and Parker HT No No FFS Color sub. 5 (20) Halftoning 10 2.9.5
1998 Veryovka et al. HT Yes Yes VFS Gray obj. 1/1 (3/3) Halftoning - - 2.8.2
1998 E Yeh et al. VQ Yes No FFS Gray sub. 1 (9) Block artifacts 8 Sequence of 64

frames.
2.9.11
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
1998 CCETT

visual
metric

Pefferkorn and Blin IQ Yes No FFS Color sub. 6 (30) MPEG-2 16 2.3.14

1998 Bolin and Meyer DP Yes No FFS Color sub. - - (A) 2.6.3
1998 Franti IQ No No FFS Gray sub. 3 (42) Compression 15-39 Possiblilty for color

images
2.4.18

1999 WVDP Bradley DP Yes No FFS Gray obj. 1 (3) Noise - 2.5.3
1999 PDM Avadhanam and Al-

gazi
IF Yes No FFS Color sub. 5/5(50/75) Compression 5(2)/5(2) 2.9.18

1999 LSMB Pappas and NeuhoffHT Yes No FFS Gray - - - - Used for halftoning
optimization

2.9.13

1999 QMa Nilsson HT Yes No VVS Gray obj. 1(3) Halftoning - 2.9.23
1999 PD Nakauchi et al. ID Yes No FFS Color sub. 8 (48) Gamut mapping 10 Used to optimize

gamut mapping
2.3.4

2000 DM and
NQM

Damera-Venkata
et al.

IQ No No FVS Gray sub. - Various (A) 2.9.1

2000 Farrugia and Per-
oche

ID Yes No FFS Color obj. 4(8) (A) 2.3.19

2001 ∆E00 CIE [2001] CD No No NS Color - - - - 2.2.5
2001 CIFA Wu et al. ID Yes Yes FFS Color sub. 1(1) Hue (A) 2.3.11
2001 Johnson and

Fairchild
IQ,
HT

Yes No FFS Color sub. 1(72) Sharpness - S-CIELAB with
different CSF
filters.

2.3.2

2001 Imai et al. CD No No NS Color sub. 6(12) - - 2.9.27
2001 SNRW Iordache and Begh-

dadi [2001]
IS No No FFS Gray sub. 1(3) Salt-and-pepper

noise, blurring,
JPEG

5 (0) 2.1.11

Continued on Next Page. . .
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
2002 iCAM Fairchild and John-

son
ID Yes No FFS Color - - - - 2.3.6

2002 Hong and Luo ID No No NS Color obj. 2 Local color
change

- 2.3.15

2002 UIQ Wang and Bovik IQ No No FFS Gray sub. 1 (8) Different distor-
tion types

22 2.4.1

2002 Feng et al. IQ Yes No FFS Color sub. 2 (14) Halftoning Extension of
CVDM

2.3.9

2002 ∆Icm Morovic and Sun ID No No FFS Color sub. 7 (32) Gamut mapping - 2.3.7
2002 WMSE Ayed et al. IQ No No FFS Gray obj. 2 (14) Noise - - 2.1.6
2003 Qcolor Toet and Lucassen IF No No FFS Color sub. 2 (21) Quantization 4-16 2.4.2
2003 FDP Ferwerda and Pel-

lacini
DP Yes No NS Gray sub. 8 (24) Computer gener-

ated images
18 2.5.2

2003 MSSIM Wang et al. IQ No Yes FFS Gray sub. 29 (344) JPEG and JPEG2k- Scenes from LIVE 2.4.5
2003 M−SVD Shnayderman et al. IQ No No FFS Gray sub. 5 (30) JPEG, JPEG2k,

G.Noise, G.Blur
, Sharpening, DC
shift

10 (5/5) Color extension
possible

2.9.12

2003 SNRWAV Beghdadi and
Pesquet-Popescu

IQ No No FFS Gray sub. 1 (3) Gaussion noise,
JPEG and grid
pattern

>25 2.1.12

2003 DQM and
CQM

de Freitas Zampolo
and Seara

IQ No No FFS Gray sub. 4 (45) Frequency distor-
tion

7 2.9.2

2003 Quality
Assesser

Carnec et al. IQ Yes No VFS Color sub. - (90) JPEG and JPEG2k- Also tested on
LIVE

2.9.29

2004 B-CQM de Freitas Zampolo
and Seara

IQ No No NS Gray sub. 1 (81) Frequency distor-
tion and noise in-
jection

2.9.3

Continued on Next Page. . .
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
2004 SSIM Wang et al. IQ No No FFS Gray sub. 29 (344) JPEG and JPEG2k- Scenes from LIVE 2.4.4
2004 Ivkovic and Sankar IQ Yes No FFS Gray obj. 5 (20) Contrast strech-

ing, white noise,
blur, JPEG2k

- 2.9.6

2004 NNET Bouzerdoum et al. IQ No No FFS Gray sub. - JPEG and JPEG2k- Scenes from LIVE 2.9.28
2004 I∗ McCormick-

Goodhart et al.
IQ No No FFS Color sub. - 2 printsystems - 2.9.10

2004 HDR-
VDP

Mantiuk et al. DP No Yes VFS Grey sub. - Quantization,
noise

(A) 2.5.4

2004 pdiff Yee ID Yes Yes FFS Color - - Film production - 2.3.13
2004 IFC Sheikh et al. IF No No FFS Gray sub. 29 (344) JPEG, JPEG200,

Noise, Blur
20 - 25 Scenes from LIVE 2.8.3

2005 CBM Gao et al. IQ No No FFS Gray sub. 29 (344) JPEG and JPEG2k- Scenes from LIVE 2.4.9
2005 CWSSIM Wang and Simon-

celli
IS,
IQ

No No FFS Gray obj. 1 (12) Distortion as
JPEG, noise etc.

- 2.4.11

2005 PQSI Guarneri et al. IQ No No - Color sub. - 5 Interpolation al-
gorithms

- 2.9.26

2005 M-DWT Gayle et al. IQ No No NS Color sub. 5 (30) JPEG, JPEG2k,
blur, noise, sharp
and DC-shift

14 Stated as a color
metric, but only op-
erates on luminance

2.8.5

2005 VQM ESCYao et al. IQ No No FFS Gray sub. - (344) JPEG and JPEG2k- Scenes from LIVE 2.9.32
2005 MHI An et al. IQ No No FFS Gray sub. 1 (4) JPEG, JPEG2k,

gaussian noise
and speckled
noise

(A) 2.9.33

2005 Kimmel et al. IS No Yes FFS Color sub. 3 (3) Gamut mapping (A) Used for gamut
mapping optimiza-
tion

2.3.5
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
2005 Xu et al. ID No No NS Color sub. - Compression (A) 2.9.34
2005 NwMSE Samet et al. IQ Yes No FFS Gray sub. - JPEG2k, JPEG,

and blurring
Scenes
from
LIVE

2.1.7

2006 VIF Sheikh and Bovik IF Yes No FFS Gray sub. 29 (344) JPEG and JPEG2k- Scenes from LIVE 2.9.9
2006 WCWSSIMBrooks and PappasVQ Yes Yes FFS Color sub. 3 (5) Video com-

pression and
transmission
distortion

- Various testing of
the metric.

2.4.12

2006 DTWT-
SSIM

Lee et al. IS No No FFS Gray obj. 10 (4860) Blurring, scaling
,rotation and shift

- Tested on handwrit-
ten data as a simi-
larity measure.

2.4.13

2006 ESSIM Chen et al. IQ No No FFS Gray sub. - (489) JPEG2k, JPEG,
and blurring

- 2.4.6

2006 GSSIM Chen et al. IQ No No FFS Gray sub. - (489) JPEG2k, JPEG,
and blurring

- 2.4.7

2006 UQI-HVS Egiazarian et al. IQ Yes No FFS Gray sub. 2 (44) Noise, blur, JPEG
and JPEG2000

56 2.4.3

2006 PSNR-
HVS

Egiazarian et al. IQ Yes No FFS Gray sub. 2 (44) Noise, blur, JPEG
and JPEG2000

56 2.1.14

2006 Mindru and Jung IQ Yes No FFS Color sub. 1 (3) Halftoning (A) 2.4.14
2006 SSIMcolor Bonnier et al. ID No No FFS Color sub. 15 (90) Gamut mapping 22 2.4.8
2006 mPSNR Munkberg et al. IQ No No NS Color sub. 16 (-) HDR (A) 2.1.15
2007 RCBM Dong et al. IQ No No FFS Gray obj. 29 (204) JPEG Scenes from LIVE 2.4.10
2007 SEME Silva et al. IS No No FFS Gray sub. (233) JPEG - Scenes from LIVE 2.4.17
2007 CISM Lee et al. HT Yes No FFS Color obj. 1 (28) Halftoning - 2.4.15
Continued on Next Page. . .
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Table 1 – Continued
Year Metric Author(s) TypeHVS MS S/NS C/G Test Scenes Modification ObserversComment Section
2007 P-

CIELAB
(∆PE)

Chou and Liu IF No No VFS Color sub. 3 (6) JND profile and
JPEG

(A) 2.3.18

2007 QMCS Yao et al. IQ No No FFS Gray sub. 29 (344) JPEG and JPEG2k- Scenes from LIVE 2.8.4
2007 DÉCOR−

WSNR
Wan et al. HT Yes No FFS Gray obj. 1 (3) Error diffusion - 2.1.13

2008 DP Granger CD No No NS Color obj. - 2.2.6
2008 Lam and Loo IQ No No NS Gray sub. 2 (6) Noise 2.4.16
2008 SBLC Gorley and Holli-

man
IQ No No NS Gray sub. 3 (54) JPEG compres-

sion
20 2.9.36

2008 ”busyness”Orfanidou et al. IQ No No FFS Gray sub. 10 (80) JPEG and JPEG2k
compression

10 Psychophysical
data from Allen
et al. [2004]

2.9.35

2008 Spatial
∆E00

Chen et al. IQ Yes No FFS Color obj. 1 (1) Blurring - 2.3.3

2009 SHAME Pedersen and Hard-
eberg; Pedersen and
Hardeberg

IQ Yes No FFS Color Sub - - - Various testing 2.3.16

2009 SHAME-
II

Pedersen and Harde-
berg

IQ Yes No FFS Color Sub - - - Various testing 2.3.17
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B Metric map

This map shows the connections between the different metrics available. Only the most common metrics are shown, i.e.
those with connections to other metrics. Connections between them can be that they are influenced, directly descender
or have adapted one or several modules from the parent metric. Other connections can also be found, but they are not
necessarily shown here. A gray square indicates a metric forgrayscale images, while a red oval indicates a metric for color
images.
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