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Abstract

A working fall detection system is of medical interest and significance for people who has risk
of falling, their family, healthcare workers and the entire health care community. We always say
that prevention is better than cure or treatment. This is also true for falling, and that is why fall
prevention research and studies are very important. Ultimately though, we cannot prevent all
falls! As such, the next best thing is an immediate response and assistance for the person who
fell and possibly injured himself.

This paper is a study of fall detection systems. We will take an academic view on what they
are and their nature as an assistive tool. We will make our own fall detection system using a
smartphone as the device platform. Three specific accelerometer-based algorithms will be tested
and compared to each other. By the end of the study, we will present a prototype of our system
and its performance.
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1 Introduction

While the prevention of fall is undoubtedly a big and important research field in health care, the
study in detection of fall has in the past three to four years increased in magnitude and impor-
tance as well. This is because ultimately we cannot prevent all falls, but we can try to detect fall
accidents and give a quick response and aid.

The study in both prevention and detection of falls is mainly focused but not limited to falls
that occur in elderly population. Studies show that one out of three adults age 65 and older
falls at least once a year. Falls can lead to moderate to severe injuries, such as hip fractures and
head traumas, and can even increase the risk of early death. It can also result in psychological
problems from fear of falling [1] [2]. Falls are also the leading cause of injury deaths among
people 65 and older. Some of these deaths can be prevented with immediate medical attention,
and thus a good fall detection system is important.

1.1 Topic Covered

This paper will discuss what kind of fall detection systems we already have and their general
characteristics. There are for the most part two leading approaches for making fall detection
systems. The first one is the image-based system, and the second one is the accelerometer-based
systems In this paper our focus will be the latter. Aside from the classification of fall detection
systems, we will also see how one can typically evaluate such systems. This paper also tries to
scour and present its readers commercial fall detection systems in contrast to those being studied
and developed by research groups. In chapter 3, we will present this paper’s main topic and own
suggestion for implementing a fall detection system using a smartphone. For our prototype, three
specific algorithms were tested.

1.2 Keywords

fall detection, panic button, mobile phone, pervasive computing, mobile computing, accelerometers

1.3 Problem Description

As previously mentioned, we do have existing fall detection systems. The first arguably system
is the panic button as shown in figure 1. It can be a medical alarm bracelet or necklace which
has a clear button. It comes with a base unit which calls a predefined response center and/or
responder when an alarm is issued. The obvious problem and flaw with this is that, it is the user
who has to push the panic button and issue an alarm to get help. This will not work if the user
has become immobile or unresponsive when the accident occurs.

1
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(a) Picture taken from http://www.
medicalalerts22.info/

Figure 1: A typical panic button for the elderly

There is also the issue of mobility. If the system is using a base unit, like the one we men-
tioned earlier, then it is tied to one specific area - usually indoors. There are cases when fall
accidents happen outside as well. Cold countries like Norway experience increased amount of
fall accidents due to the roads being slippery. Existing commercial fall detection systems are very
expensive and not thoroughly tested for its effectiveness and ease of use.

Another issue is that almost all of these fall detection systems only target the elderly po-
pulation and see the elderly population as one unit. They do not account for other group of
people who might have need for such system despite not being part of the elderly population. An
example is people with epilepsy or neurodegenerative disease. Athletes can have interest in using
such systems, or solitary adventurers out in the nature. Identifying the users of these systems and
making these systems adaptable for different users is also important. There might be differences
between how different individuals fall. This should be taken into account.

These issues will be discussed in the succeeding chapters. The proposed system of this paper
will hopefully shed light to a system with better functionalities than its predecessors.

1.4 Justification, Motivation and Benefits

A working fall detection system with shown improvement over its predecessor - the panic button
- is of medical interest and significance. Although the main target for such systems is the elderly

2
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population, other people with a disorder that cause falling can use this kind of system. Such a
system will not only be helpful for these people but also for their families, caregivers and per-
haps the health care service community in general. This can only be true if the proposed system
is reliable, adaptable, effective and cheap.

In the following chapters we will see some known approaches in this fall detection research
study. We will try to comment on each approach and mention their strengths and limitations.
This paper hopes to achieve an improvement of these previous studies.

Prior to picking out this topic as the author’s master thesis, there were two things that inspi-
red and motivated the author into pursuing this track. First is interest in mobile development.
The second is an aspiration to contribute to the health care community.

1.5 Research Questions

We hope to find answers to the following research questions after our study is done. They can
also be seen as information we need in order to solve our research problem stated in section 1.3.
These questions were made at the very beginning of this study. They are subject to be changed
and modified when more knowledge in the field has been obtained.

How would one define a “fall” in terms of a fall detection system?
The first few research articles we have read about fall detection study, indicate that the term fall
can be vague when we dissect it’s meaning - when used on fall detection and perhaps fall prevention
systems. After doing this study, we hope to give this a more concrete explanation. We think that it
is important to differentiate a normal fall (from ADL), fall accident (hurtful fall) and serious fall
accident (need assistance/without recovery).

Is it possible to make a pervasive, reliable and effective fall detection system that could be
adaptable for different types of user?
Not only do we believe it is possible, it is in fact our goal to achieve so.

What is the best algorithm and/or approach for detecting fall?
We don’t have a concrete hypothesis for this yet, but we think that it is not only one algorithm but
rather a combination of two or more algorithms.

There are now countless of algorithms to be comparing with, as will be explained in Chapter 2.
We will narrow our choices to acceleration-based methods.

What constitute to be a good fall detection system?
We will propose a criteria for how well different fall detection systems are.

3
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1.6 Methodology

To be able to answer the previous research questions, we have to use scientific methodologies
which is briefly discussed in this section.

• Literature Studies. Literature work gives the basis of what kind of system and algorithms
one can make. The majority of relevant findings from literature work we have used is
presented in chapter 2.

• Experiment and Data Analysis. An experiment for data gathering is needed to be done before
making any system. This is presented in section 3.4.

• Creation and Testing of the Fall Detection System. A prototype is made based on the expe-
riment. Test and evaluation of the prototype were also done. This is presented in chapter
4. The testing part of the prototype can be seen as a continuation of the experiment. In fact
they are similar in nature (see chapter 5 for further discussion).

An in-depth approach of how we proceeded to make our fall detection system is presented in
chapter 3.

1.7 Planned Contribution

We will make a fall detection system implemented in a mobile phone. This new system will in
several ways be an improvement over its predecessors. We will come-up with a good taxonomy
and terminology related to the topic of fall detection. Lastly, our comprehensive coverage of the
science of falling as well as fall detection systems will be helpful for future researchers in this
field.

1.8 Report’s Outline

The rest of this master’s thesis is divided as follows; 1) chapter 2 provides the readers with the
related work about the research field in fall detection as well as falls in general, 2) chapter 3 will
present the readers our own approach for making a fall detection system, 3) chapter 4 shows a
prototype of the system we have made and an evaluation of it, 3) chapter 5 is a further discussion
about problems, assumptions, considerations and decisions we have had through the course of
our study, 5) chapter 6 gives a conclusion for our study, and finally 6) chapter 7 is about future
work that could be done on top of our study.

4
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2 Related Work

2.1 Study of Falls

DEFINITION OF FALL

Many research groups have tried to define what a fall is. This is because fall for one specific
group of users, e.g. elderly people, can be different to another, e.g. outdoor adventurers. One
goal for the research groups’ experimental set-ups is to distinguish Activity of Daily Livings ADLs,
from that of an actual fall. Now as mentioned, a fall for elderly people might be different for
another, so it goes without saying that a fall detection/prevention system for a group of people
might not be suited for another.

This paper contends that the term “fall” is vague. Fall detection systems might therefore be
understood very differently according to how they define and detect falls. In fact according to
The World Health Organization (WHO), there is no universal consensus on the definition of falls
[3]. This leaves room for many different interpretations of a fall, and consequently brings into
question the validity of the studies. That being said, most researchers [4] start with the following
definition of what a fall is and modify it - either by broadening and extending it or restricting it
- to suit their system;

“Fall is inadvertently coming to rest on the ground, floor or other lower level, ex-
cluding intentional change in position to rest in furniture, wall or other objects.” [3]

TYPES OF FALLS

In our study, we distinguish between two types of falls. The first one is accidental falls which
are caused by external (environmental and behavioral) factors. The second one is non-accidental
falls which are caused by internal (biological) factors.

It is important to differentiate between these two as the physics behind them are quite dif-
ferent. (Accidental falls are associated with more activity and external forces.) As such, a fall
detection system targeting one group might not be suitable for the second group. In fact, most
researches about fall detection and prevention are only about non-accidental falls. This is be-
cause fall detection and prevention studies are directly connected to elderly people, which has
grown in importance internationally in the last two to three decades. Experimental and Com-
mercial fall detection systems are therefore primarily made for and to be used by elderly people.
While elderly people can experience both non-accidental and accidental falls, usually what is
being recorded and observed are non-accidental falls due to, e.g., frailty or sickness.

5
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For accidental falls, injury specialist differentiate between same-level falls and elevated falls.
Same-level falls are more frequent but are less severe in terms of suffered injury. Elevated falls
are lower in frequency but have a high severity [5].

Among same-level falls, we find [5];

• Slip and fall. This is caused by slippery surface (icy, wet or freshly waxed surfuces). The
less traction between the surface and a person the more tendency for the person to slip and
fall.

• Trip and fall. Trip occurs when the front foot strikes an object and is suddenly stopped. The
upper body is then thrown forward and a fall occurs. As little as 3/8” rise in a walkway can
cause a person to “stub” a toe resulting in a trip and fall.

• Step and fall. The front foot lands on a surface lower than expected, such as when unexpec-
tedly stepping off a curb in the dark. Forward falls will happen most likely. A second type
of step and fall occurs when one steps forward or down and either the inside or outside of
the foot lands on an object higher than the other side. The ankle turns and one tends to
fall forward or sideways.

The most common elevated falls are; falls from ladders, vehicles and equipment, loading
docks, stairs, stools and chairs.

Non-accidental falls are not so much about how the falls happened, but rather how they are
much alike to falls that might happen to elderly people. This means research groups studying
this type of falls are trying to simulate falls from elderly patients. Factors that are considered for
fall simulations are;

• Direction of falls: forward, lateral and backward

• Body position (sitting, lying<bed>, standing, leaning, etc.) and orientation (knees apart,
with forward arm protection, using a walker or rollator, etc.) before fall

• Body position (kneeling, sitting, leaning, etc.) and orientation (ending lying flat, ending in
lateral position) after fall

• Speed of falls

• Surface to hit: hard, soft

• Activity or Responsiveness before fall

• Recovery or Activity/Inactivity after fall

• Actions and activities that might look like falls but are not, e.g. jumping

These factors are used to form different plausible fall scenarios which are later used for both
data collection, prior to training the fall detection system, and test and evaluation of finished

6
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fall detection systems. The very minimum is to simulate directional falls: forward, lateral, and
backward falls.

CAUSE OF FALLING

There are several risk factors which contribute to a higher rate of falling. In general we divide
these factors into intrinsic (biological) and extrinsic (environmental and behavioral). We can
then use these factors to find groups of people that are likely to fall, and hence make a thorou-
gher and more specific fall (detection) research.

Biological factors are [3] [6];

1. Age. The older a person, the more frequent falls and fall related injuries and mortality
happen.

2. Medical Conditions like Diabetes, Parkinson’s Disease (PD), patients who suffered stroke,
Incontinence(inability of the body to control the excretory functions), Alzheimer Disease

3. Muscle Weakness. A decline in muscle strength can interfere with balance. People with
some sort of muscle weakness has five times more tendency to fall. Furthermore persons
with lower extremity weakness, usually measured by knee extension, ankle dorsiflexion,
and chair stands, have a 1.8-fold increased risk of falling.

4. Visual Impairment. Decrease visual acuity increase the risk of multiple falls.

5. Cognitive impairment and confusion even at relatively modest levels can increase the risk
of falling.

6. Foot problems. This include severe bunion, toe deformity, ulcer and deformed nails have
a 2-fold increased risk of falling. Problem with ankle, hallux valgus deformity, impaired
tactile sensitivity, decreased toe strength, foot pain, all impair balance and increase the risk
of falling.

7. BMI. Low Body mass index is associated with increased risk of falling. Low body weight
and unintentional weight loss due to malnutrition are a particular problem.

8. Presence of chronic neurological disorder such as epilepsy.

Diseases and medical conditions that have one or more of the factors mentioned above are
likely to cause falls. The more risk factors a patient have, the higher the probability that patient
will fall. The same is true for the next type of factors.

Behavioral factors are [3] [6];

1. Sedentary behavior. Those who have previously experienced falls, tend to be less active
which causes muscle atrophy, which in turn increases the risk of falling.

7



Fall Detection Using a Smartphone

2. Medication intake. Taking in multiple types (more than 4) of medicine, irregardless of what
they are, increases risk of falls.

3. Drugs that act on the central nervous system like antidepressants, sedatives, tranquilizers,
and benzodiazepines give a higher risk of falling.

4. Alcohol Misuse. There is a direct correlation between alcohol consumption and falls.

Beside the two mentioned risk factors, researchers have also found some trends to the distri-
bution of falls. They are as follows [3] [6];

• Time. Most falls occur during the day. Only 20% happen at night (9pm-7am).

• Climate/Weather. Falls occur more on places and conditions where it is more colder. For
non-accidental falls, this might be because of the mild hypothermia that slows reaction
time. Also places where it snows sometimes can get very slippery causing accidental falls.

• Location. There are slightly more falls that occur outdoors than indoors.

• Sex. Women falls and suffer injury more often than men. Men have higher death rates
because of falling (even though women fall more often). This leads us to believe that the
physics of men falling might be different than the physics of women falling.

• Race. In USA, Caucasians have higher fall rates than Afro-Americans.

• Socioeconomic status. Women living alone tend to fall more often. Also people who has
limited access to health and social services, low income, little education and poor housing
environments are associated with higher risk of chronic disease which may be associated
with an increased risk of falling

• Depression is associated with increased risk of falls.

Since there are many risk factors associated with falls, we conclude that there are also many
different groups of people (and not just the elderly) that suffer from falling. Each of these groups
might show a different type of falls in terms of fall patterns, behavior and physics (see TYPES OF
FALLS 2.1).

PHASES OF FALLING

According to [4], there are four phases of falling. These are the prefall phase, the critical
phase, the postfall phase and the recovery phase. We have previously mentioned that when resear-
chers try to simulate falls, they make fall scenarios from a set of factors about falls. These factors
can be found on some of these phases (see TYPES OF FALLS 2.1).

In the prefall phase the person performs usual activities of daily living (ADL) (in accidental
falls the activities might vary a lot depending on what the targeted group is), with occasional
sudden movements, like sitting or lying down rapidly. Fall detection systems must be able to

8
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distinguish this phase from the next one.

The critical phase consists of the sudden movement of the body toward the ground, ending
with a vertical shock on the ground. The duration of this phase is extremely short, usually bet-
ween 300-500ms [4]. [7] determines it to be 400-800ms.

During the postfall phase, the person usually remains inactive, frequently lying on the ground.
The postfall phase shouldnt last too long to reduce the consequences of the fall.

Eventually the recovery phase is either intentional - the person stands up on his own - or with
help from another person.

We will use these phases for further discussion in section 2.3.

2.2 Taxonomy of Fall Detection Systems

Irregardless of what group of people a fall detection system is made for, a fall detection system
can either be categorized in where and how it is situated/located OR what kind of underlying
method is used behind the system.

FIRST CATEGORIZATION

The first category has the following classifications; wearable systems and ambiance systems.
Wearable systems or endosensors are systems where the device is being worn by the user. Nor-
mally, their purpose is to measure the posture, motion or a combination of both, of the user.
Typically used sensors are accelerometers and gyroscopes.

Wearable devices are usually placed either on the head, trunk, waist, wrist, knee or thigh of
the body. Several research groups, [8], [9], [10], have found that placing it on the waist is the
best place to put the device on. This is because it provides reliable indications of full-body move-
ment, in addition to its ease of acceptance by allowing attachment to an existing waist band. The
waist is also the more acceptable option as most people are already used to wearing accessories
on their waist, e.g. a belt.

Advantages of wearable devices are they are cheap, easy to be set up and operated, and
usually light-weight. Disadvantage is that with this approach, we assume that the worn device
keeps a fixed relation with the wearer, and this condition is easy to be broken. Most wearable
devices can also be quite intrusive which elderly people does not appreciate. Also the general
comment from practicing doctors is that most of the patients have low will to wear device for
detecting falls because they feel well before fall occurs. Lastly, wearable systems are exposed to
getting damaged and broken upon fall.
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Ambiance systems or exosensors are systems in the environment or the very near vicinity of
the user. They can be multiple sensors on the floor or on the bed. They can for example detect
presence of users by pressure sensors or body heat by infrared sensors.

An advantage with ambiance systems is that they are less intrusive. On the other hand, since
most ambiance systems are hidden from the user, some users don’t feel secure that the there
is a fall detection system working, because they can not see the monitoring device. Ambiance
systems can also only be used indoors making it limited for other applications and users. The
difficulty of setting-up ambiance systems can vary a lot, but in general it takes time and effort
because of their varying complexity. Different ambiance systems differ in addressing the problem
of multiple presence (other people, pets, moving things, noise, or other external factor) in the
room, but it is more likely that ambiance systems just assume that these noises are not present. In
general, wearable systems are also more popular and acceptable by users than ambiance systems.

[11] suggests to make a third group which is camera-based systems. Strictly speaking a
camera-based system can be wearable, e.g. in the walker of an elderly patient [12], or in the
user’s environment which is the more normal approach. The reason they want it categorized by
its own is that there is an own focus study with this approach. Among the ambiance systems,
camera-based ambiance system is one of the most reliable ones.

In this study we will also refer to camera-based systems as image processing-based systems and
visual-based systems. We interchange using the terms camera-based, image processing-based and
visual-based throughout this paper, but we usually mean the same thing. We vary the use of the
terms depending on what we want to emphasize. Using the term camera-based emphasizes the
use of video camera as the fall detection device, while using the term image processing-based
emphasizes the use of image processing techniques in the fall detection algorithm, and using the
term vision-based emphasizes the perception of sight or being seen.

Several different algorithms on how to calculate fall through image processing techniques are
developed. For example, according to [13], the camera can use a people-detection and tracking
algorithm. With this tracking algorithm, the centroid height of the person is determined. If the
height is below a threshold, then the person is in a “fallen” state.

Three types of image processing-based algorithms are discussed in [11]. They are;

1. Inactivity Detection Algorithm. This relies on the fact that a fall will end in an inactivity per-
iod on the floor. The algorithm overhead tracks person so to obtain the motion traces of the
person. Then it classifies the activities based on the motion traces and context information.
Inactivity is one of the classes, and inactivity will be said to be a fall it if occurs in certain
context.

2. Shape Change Analysis Algorithms. They use the principle that the shape of falling person
will change from standing to lying.
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3. 3D head motion analysis Algorithm. They use the principle that vertical motion is faster
than horizontal motion in a fall. The fall detection component computes the vertical and
horizontal velocity of the head and then uses two appropriate thresholds to distinguish
falling from walking.

These algorithms are similar to the ones we will discuss in section 2.3.2.

Advantages of camera-based fall detection systems are: they can be used to detect multiple
events simultaneously, they (ambiance-based systems) are less intrusive to users because they
are not worn by users, and lastly the recorded video can be used for remote and post verification
and analysis. Video cameras’ prices are also decreasing in the past years so that they are not as
expensive as before. Patients who want extra surveillance prefer this method.

Disadvantages with camera-based methods are: firstly, while camera-based techniques are
well established in controlled environments(laboratory, scene), they must be modified in uncon-
trolled environments where one controls neither the lighting nor the framing, secondly, as the
subject moves in a 3 dimensions space, it is also necessary to call upon more complex techniques,
namely use of 2 (or more) cameras (“stereovision”) [14], thirdly, the acceptance of this techno-
logy can pose a major problem when it comes to the user’s privacy since the cameras are usually
placed in the user’s bedroom and bathroom, fourthly, aside from [12], most camera-based sys-
tems are ambiance-based systems which means that they don’t offer mobility.

SECOND CATEGORIZATION

Image processing-based fall detection systems can either be an ambiance system or a wea-
rable device as previously mentioned. This means that the taxonomy of fall detection systems
does not end with our first classification.

In accordance to another research group, [13], we make another way to categorize fall detec-
tion devices based on what the underlying method behind the system was used - acceleration-only
methods, non-acceleration methods, and hybrid or mix methods.

In acceleration-only methods a sensor or multiple of sensors detecting acceleration/deacce-
leration are used. This method has become rather popular and perhaps the first approach in
fall detection systems aside from the panic button because of the simple fact that all falls have
a sudden acceleration change. Being able to properly and accurately detect this change is the
goal of the further research with this approach. They give fairly good results compared to non-
acceleration methods. According to [13], acceleration is a critical role in elderly mobility mo-
nitoring, and should be used in fall detection. Compared to visual and acoustic sensors, accele-
rometers consume less energy and much easier to integrate into wearable mobility monitoring
devices.
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Because our own fall detection system will be an acceleration-based type, we will present a
handful of specific equations and algorithms that is based on acceleration in section 2.4.

The research group in [15] uses rapid acceleration change to detect shock. While their system
is not a fall detection system but rather a security and health emergency system, both systems
are similar. In section 2.3 we will see that one type of algorithm fall detection systems can use,
is based on impact which can be measured by accelerometers. This is exactly the same thing
as what shock is for the previously mentioned group. Pattern recognition technique (statistical
signal processing methods) is used. The group announced an accuracy (see sec 2.5) of 91.1%.

One of the earlier implementation of acceleration-based fall detection system can be found
in [16]. It is a wearable, acceleration-based device. The system measures velocity, shock and
inactivity. First, a high velocity towards the ground has to be detected. Then, within 3 seconds
an impact has to be detected, or the event will be discarded. After the impact the general acti-
vity will be observed for 60 seconds. If during this interval at least 40 seconds of inactivity are
recorded, the system will generate an audible alarm. It only has a sensitivity (see sec 2.5) of 65%.

Any other fall detection systems that do not rely on acceleration, fall into the category of
non-acceleration method.

We have the audio-based approach where audio sensors are used to record sound, which is
later analyzed, in the user’s surrounding. A sudden noise will be considered as a fall, i.e. basing
on the assumption that falls tend to make loud sound upon impact. The problem comes when
there are other sounds and noises in the room, thus giving a high false positive rate. [17] pro-
vides a more concrete example. The paper used an array of acoustic sensors aligned vertically,
which is mounted on targeted places on the patient’s room (ambiance system). It has less false
positives because it filters out some of the noise. Then height calculation is also involved to re-
move false alarms. The array of sensors compute the height of the sound produced. If the signal
is computed to be less than two feet, it will be considered as a fall, and it will be sent for further
analysis before finally stating that it is a fall. Even with the improvement added by using height
computation, the false positive rate is still high. When tested, their system gave five false alarms
per hour.

Angular-based (body angle/orientation, angular velocity and angular acceleration) approach
using gyroscopes is also possible, although in practice this is usually done with combination of
accelerometers. [18] uses a bi-axial gyroscope worn on the trunk of the user. Experimentally,
it is one of the most successful fall detection system since it has a result of 100% specificity and
100% sensitivity (More about sensitivity and specificity in section 2.5). This is of course only
measured under controlled environments with selected number of falls to simulate.

Visual-based approach, as mentioned before, is also under this category. This is perhaps the
most popular among non-acceleration methods.
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Other less popular non-acceleration methods are; pressure-based approach like in [19], vibration-
based approach like in [20], and infrared(body-heat)-based approach like [21]. Velocity-based
approach also exists, but this usually falls under acceleration methods, since velocity is calcu-
lated from the acceleration. Non-acceleration method is not really effective and commercially
successful. The most promising of these are visual-based and angular-based approaches.

Basing on previous studies and results, researchers have tried to improve fall detection sys-
tems mainly either by a) using several of the same sensors placed on different body location e.g.
one on the thigh and another on the trunk like in [22] and [9], or b)using different sensors. It
has been observed that by adding more sensors (either of the same or different kinds), it usually
leads to better and more accurate data and thus result. This is what the third approach, the
mix/hybrid methods, is all about. In practice one of the sensors used is an accelerometer.

Terminology Explanation
Direct Detection Detection of a sudden postural variation
Accelerometric Detection of sudden movements and shocks to the body

Statimetric Detection of body height above ground level
Topemetric Detection of body spatial position
Eidolimetric Video monitoring of the body

Peripheral Detection Detection of behavioral/contextual variations
Behavioral Monitoring of behavioral sequences

Geotaximetric Monitoring of spatial localization of the person
Orthostatimetric Monitoring of the body orientation (verticality)

Kinesimetric Monitoring of vital signs
Combinatorial Detection Combination of direct and peripheral detection

Bidimentional One direct and one peripheral parameter
Tridimentional One direct and two peripheral parameters

Multidimentional One direct and three or more peripheral parameters
Axis Says how many physical dimension axis are monitored (x-, y- z-

axis)
Monoaxial Only one axis is monitored, usually the vertical axis
Multiaxial Monitors multiple axis usually giving better results

Other terminologies
Temporal Monitoring of temporal sequences like time when user is not mo-

ving
Shock Measures shock impact
Image Image Processing in Measurement

Physiological Parameter Measurement of physiological parameters
Geolocalisation Geographical localization of user/device

Cardiac Ballistics Measuring cardiac movements of the heart
Data Fusion Combining data from multiple sources and gather that informa-

tion in order to achieve inferences

Table 2: Terminology for the classification of fall detection
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An example is using two tri-axial accelerometers and gyroscopes on two different body parts
like what they have done in [9]. Not only can you measure the linear acceleration, but also the
angular velocity with this combination of sensors. Their algorithm is divided into three steps:
a)activity intensity analysis, b)posture analysis and c)transition analysis. This just means that
the algorithm checks for sudden acceleration change, the body’s start and final posture/position
and the transitions that happen in between. If certain criteria are met then the system will know
that there is a fall. This system has fast response time and low computational cost. The specificity
of the system is 92% from 72 records, and sensitivity is 91% from 70 records.

Other examples can be combining accelerometer with a microphone for audio sensing or a
magnetometer like in [8] which has 3.1% false negative (not detecting real fall) and 7.7% false
positive rate (false alarms), or combining the use of infrared sensors and pressure sensor on the
floor like in [23]. The latter achieved a reliability (see sec 2.5) of 90%. Yet another example
is combining accelerometers with air pressure sensor as done with [24]. The air sensor is used
to sense the altitude of the device. Unfortunately, the utility of this approach is limited due to
practical consideration.

[4] offers a table of terminologies based on commercial fall detection products as well as
experimental done by other research groups. This can be useful if one wants to be specific with
describing fall detection systems (see table 2). Evaluation of these systems, both commercial
and those in research groups, would have great use for these.

2.3 Principles and Algorithms for Fall Detection

There are as [14] presents two approaches to go about and detect fall. The first one, which is
also the more commonly used approach, is the analytical method, and the second one is with ma-
chine learning techniques. An example of machine learning approach is presented by [25]. Their
system is a visual-based system. By using markers, they tag different points on the body and use
these markers as reference points. They found that the reference points and the angles being
formed between them, is a very reliable data source for extracting features. Among the different
machine learning algorithms, SVM (Support Vector Machine) was reported to have performed
the best, followed by Random Forest.

2.3.1 Machine Learning

In Computer Science, the branch of artificial intelligence in which a computer generates rules
underlying or based on raw data that has been fed into it is called Machine Learning. It involves
developing algorithms that would enable computers to learn complex patterns and make intel-
ligent decisions based on that. It is a big branch in the field of Computer Science that covers
several topics. We are mostly interested in pattern recognition.

Machine learning can broadly be categorized into two fields, Unsupervised Learning and Su-
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pervised Learning. In the prior, the machine tries to identify groups of similar data from a larger
dataset. In other words, it tries to form clusters of data based on some criteria such as cost func-
tions. The machine has no prior knowledge of classes the data belongs to, it only tries to identify
natural clusters or groups of data. Supervised learning on the other hand learns from the test
set which contains classified data and predicts the classes of unseen data [26]. For fall detection
systems it is more natural to use supervised learning techniques.

Without any analytical model, one can still carry out an "intuitive" approach to the develop-
ment of machine learning based fall detection systems starting from observation (a training per-
iod) and then classification. Yet it is necessary to set criteria for classification that are sufficiently
significant and independent (discriminating). If one proceeds through a supervised training per-
iod, one can train a neural network, which will then be used to automatically classify future
situations. Only the situations met during training can be classified, the others being mixed in a
class labeled "others" (to stumble, to slip, etc.). If the training is "unsupervised", a class "fall" is
likely to be isolated if the training period is long enough, even infinite if the event of fall is rare.
Moreover the first fall event is likely to be missed since its class is still unknown before its first
occurrence [14].

For supervised learning it is important that the quality of the training data is sufficient, ex-
haustive and accurate. That is why, in the training period, it is important to be able to simulate
falls as close as to how the real falls of the group of users who will use the fall detection system.

Among the number of machine learning algorithms out there, it can be confusing picking the
right one for certain applications. There are even research studies comparing a lot of them to
try and say which is the “best” one [27] [28]. In the end it is left to a developer to choose
an appropriate method on his own discretion. For sensitive applications such as a fall detection
system, it is advisable to test and compare a number of algorithms to see which one performs
the best.

[26] is a paper comparing five different supervised learning methods for a fall detection sys-
tem. These are Naive Bayesian Classifier, Radial basis Function (RBF), Support Vector Machine,
C4.5 and Ripple Down Rule Learner. They use eight scenarios (four falls, three ADLS, and one
near fall) to gather data from and test the algorithms against. Naive Bayesian Classier, giving the
highest accuracy of 97.32% and taking the least time for building the model, was chosen as the
best one in the end.

One of the earlier fall detection system using machine learning algorithm is [7]. The group
integrated a device with tri-axial accelerometer, a single chip modem, a MCU device and some
other peripherals, to a cellphone. They used this for fall detection with the use of 1-class SVM
for preprocessing the signals and KFD (Kernel Fisher Discriminant) and k-NN (Nearest Neigh-
bor) algorithm for precise classification. They reported a 93.3% accuracy for a limited number
of scenarios.
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2.3.2 Analytical Method

Analytical method is the “manual” or empirical study of data sets and setting-up your own para-
meters (thresholds) based on them. There is a need for a thorough study of falls and phases of
falls for better understanding and result. What this study focuses on, is presented on this section.

When a fall detection system starts, it should right away detect ADLs and would not get these
confuse with falling. This happens in the prefall phase.

In the early detection of the critical phase of the fall, rapid acceleration can also signify fall.
During a fall there is a temporary period of “free fall”, during which the vertical speed increases
linearly with time due to gravitational acceleration. If one measures the vertical speed of control-
led movements of the person (to rise, to bend down, to sit down), one can then discriminate
these speeds from those occurring during a fall, which would exceed an appropriate threshold.
The difficulty lies in the choice of this threshold, if it is too low the device may also detect ne-
gative events (“false positives”), but if the threshold is too high it may not detect positive events
(“false negative”) [14]. More about false positive and false negatives in section 2.5. A learning
period may be used to overcome this difficulty. This learning period may be “supervised” by as-
king the wearer to carry out a series of voluntary movements in order to mark the normal speed
of execution.

Fall detection systems can use fall acceleration, fall velocity, body orientation, body posture,
angular acceleration and angular velocity in the critical phase as the determining factor(s) for
distinguishing falls from non-fall activities.

Eventually, the detection of the very early phase of the fall could allow launching an airbag
or a safety system that could dampen the fall or even save the user. However, this sole approach
is still highly experimental and in research.

At the end of the critical phase, the body frequently hits the ground or an obstacle. The
mechanical consequence of this is a sudden polarity inversion of the acceleration vector in the
direction of the trajectory; this is commonly referred to as the “impact shock”. Fall detection in
this phase can be done by pressure sensors, shock sensors or by accelerometer. An accelerometer
will register an intense inversion of the polarity of the acceleration vector in the direction of the
trajectory [14]. The sound produced upon impact can also be measured like what has been done
in [17].

Some systems use this approach, but the difficulty of this approach is to determine the direc-
tion of the trajectory, which is obviously variable from one fall to another. However, we know
that most falls occur in the “sagittal” plane (forward or backward) as the fall often follows a
voluntary movement, which is mainly performed in the “sagittal” plane (to sit down, to rise, to
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walk, to bend down). A second difficulty is the location of the sensor on the body relative to
the point of impact. Depending on whether or not the sensor is near the point of impact, the
signature of the signal recorded at the time of the shock can be significantly different, and it thus
becomes more difficult to recognize a fall when it occurs, thus leading to a significant number of
“false positives” [4]. That being said, we hope to find patterns through our experimental set-up
that will hopefully give us enough data so that a fall detection system can use this method viably.

The simplest approach to detect a fall is by detecting the lying position, e.g. from a horizontal
inclination sensor (a mercury contact or a ball trapped in a guide). This is based on the fact that
most falls end up in this lying positing but ultimately not all falls, [9] [14]. This is what can
be called as indirect detection of the lying posture during postfall. Another approach is to detect
when the feet are no longer in contact with the ground. Just detecting if the user is on lying
position to signify fall is of course flawed. Napping and sleeping would cause “false positives”.

In the postfall phase, a fall detection system can use the body orientation, body postures, and
the difference or transition between the body orientation or posture in prefall and postfall phases
as determining factor(s) for a fall.

In the recovery phase, the lack of movement, activity or responsiveness can be used to detect
fall as, after a “serious” fall where the person may be seriously injured, they frequently remain
immobilized in a posture. You allocate some time to observe that the person is actually immobile
by using sensors like accelerometers to register how much movement there is [14]. The draw-
back with this is that intervention or call for help will also take some time to come depending
on the delay time you put on the system. Falls that are followed by epileptic attacks will also
register a lot of movement. The time a fall detection system should wait before triggering an
alarm, based on the recovery phase, either depends on the gravity of the fall (if in critical phase,
a vertical shock showing-off-the-charts measurements was measured, then this might be a sign
of a very serious fall) or the user using the system (a user more likely to recover and stand-up
after a fall should be given a little more time to do so than a user who cannot). A good system
should lower this to maximum of one minute.

As previously mentioned, studying the body’s postures and not only its orientation can signify
that a fall has happened. This is the approach of [9]. Orientation sensors - amongst which a
gyroscope would be the best - can be used for this. Infrared sensors, cameras and other sensors
can also be used to sense immobility. A smart phone with its range of sensors (preferable a gyro-
scope, accelerometer and orientation sensor) would be suitable for the postfall phase analysis -
actually not only this last part but for all the mentioned principles above.

If the system knows more about the user then it can predict how the user will respond on this
phase upon falling. A context-aware system is much more preferable. If the system knows that
the user of the system is likely to show activity upon falling in the recovery phase, i.e. epileptic
attacks after a fall or a patient who could move the upper part of the body but not stand-up,
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then it will not confuse the registered activity as a sign of recovery and will continue to issue
an alarm. Also if the system knows, through context, that the user is likely to take more or less
time before recovery or standing-up on his own, the system can then vary the length of wait time
before issuing an alarm.

Combining the detection principles and algorithms from the different fall phases prove to
give more accurate results. Using multiple detection algorithms per fall phase tend to increase
accuracy too. The trade-off is more processing resources used by the fall detection system.

2.4 Acceleration-based Equations and Algorithms

To have an overall sense of acceleration, the device’s total acceleration from the X, Y and Z axis
are combined like most previous researchers have done in [8], [29], [22] and others. This is
called the RSS (Root-of-Sum-Squares). Different literatures may refer to this in different manner,
but in general they have this equation eq. 2.1. Other studies use the linear acceleration or the
actual acceleration of the person. This is sometimes referred to as the dynamic total acceleration,
eq. 2.2.

RSS =
√
x2 + y2 + z2 (2.1)

RSSd =
√
x2 + y2 + z2 − 9.81m/s2 (2.2)

The simplest algorithm is to just check the acceleration in the early part of the critical phase.
Standing upright will give a total acceleration (RSS) of 1G, eq. 2.3. This value plummets down
towards 0G in free fall until finally reaching impact. A threshold is set based on a training session
where data from falls are compared to data from ADLs or other non-fall activities. This value is
sometimes called the Lower Fall Peak (LFP). Finally deciding upon the threshold will give the
Lower Fall Threshold (LFT). This approach is also called thresholding.

1G = 9.81m/s2 (2.3)

Upon impact, the user receives an impact force from the ground. This force leads to the ver-
tical acceleration value increasing quickly towards the opposite direction of the acceleration due
to gravity. Measuring this will give the Upper Fall Peak (UFP). One can then proceed and make an
Upper Fall Threshold (UFT) based on a training period. One can also use UFTd (Dynamic Upper
Fall Threshold) which is the UFT based on RSSd.

These two different algorithms were tested in [22]. UFT gives a better specificity and thus
reliability than LFT. The more the user is active and doing more varied activities, the lower the
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system’s specificity is. This means plenty of false alarms. It is therefore a common practice to
combine both the LFT and UFT to make a profile. This is called the profiling algorithm.

A more elaborate profiling scheme is to also measure the falling-edge time (tFE) and rising-
edge time (tRE) as done in [10]. tFE is the time from when the RSS signal last goes below the
LFT until it reaches the UFT. tRE on the other hand is the time for when LFT is last exceeded
until UFT is exceeded. tRE is always a subset and smaller than tFE. To clarify, imagine that in t0
the RSS signal first goes below LFT and stays under it until t0+200ms. From t0+200ms the RSS
value starts to rise up until UFT is reached. UFT is reached in t0+500ms. t0+500ms - t0 is the tFE,
while t0+500ms - t0+200ms is the tRE. One can then check for the profile LFT + tFE, + UFT or
LFT + tRE, + UFT. Make note that both LFT and UFT are a prerequisite for using tFE and tRE.
Thus, profiling algorithms that only use LFT and UFT can be further expanded to also use tFE or
tRE.

In [30], they have made a similar profiling algorithm. Using a 1.5 sec window, they parti-
tioned the RSS data with 50% overlap. (Sometimes the sliding window is shorter and does not
overlap like in [31]). The algorithm finds the LFP and UFP in the current time window and take
the difference between the two giving the RSSUFP-LFP, eq. 2.4. If both the UFP and LFP reach
their respective thresholds and the LFP happens before the UFP, then a fall is flagged.

RSSUFP-LFP = tUFP − tLFP,where t = time of occurrence (2.4)

To improve on the specificity of a fall detection system, many algorithms also check for the
body posture. Most of these algorithms assume that in the post-fall phase and before the recovery
phase, the body is in the lying posture. One can then also make a threshold similar to LFT and
UFT when the body is lying, the Upper Lying Peak (ULP) and the Lower Lying Peak (LLP). This
was done in [32]. The algorithm first checks that both LFT and UFT are achieved. Then after 10
seconds if both the Upper Lying Threshold and Lower Lying Threshold were also achieved then a
fall is flagged. This profile is then LFT + UFT + wait 10 sec + LLT + ULT.

Another way to measure the critical phase of a fall is by measuring the velocity usually by
using the formula eq. 2.5. ∫

RSSd dt (2.5)

The velocity threshold is based on the integral from the time of the start of a fall until impact
[10] [29]. The velocity threshold can then also be added in a profiling algorithm or stand alone
by itself.

One can also use the fall index, eq. 2.6, or the Z2, eq. 2.7, to make fall thresholds. In
[31] they make use of both in three different types of algorithm. Algorithm one checks for both
impact and posture. The threshold for impact is based on either, Z2, UFT, UFTd, or RSSUFP-LFP

+ Monitoring of Posture. Algorithm two uses LFT + UFT (within time frame of 1 second) or
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threshold based on Z2 + Monitoring of Posture. Algorithm three uses LFT + threshold based
on velocity + UFT (within time frame of 1 second) or threshold based on Z2 + Monitoring of
Posture. Posture was detected 2 seconds after the impact using the vertical-axis acceleration,
based on the average acceleration in a 0.4 seconds time interval. The lying posture is usually
lower than 0.4G. Their findings show that the first algorithm has the best sensitivity (=97%) if
UFT or Z2 based threshold + Posture is used. The fall index was used for comparison.

FIi =

√√√√∑
k=x,y,z

i∑
i−19

((Ak)i − (Ak)i−1)2, (2.6)

where x, y, z = the acceleration from the X, Y and Z axis

Z2 =
RSS2 − RSS2d −G2

2G
(2.7)

Posture can also be measured using the scalar product of two acceleration vectors and thereby
finding the angle between them. In [10] this can either be a) between the reference gravity vector
and the current gravity vector, eq. 2.8 or b) between the vertical axis (Ay) and the gravity, eq.
2.9. The reference gravity vector is taken from the average of the tri-axial accelerometer signal
recorded when the sensor is attached and the subject is in standing position for 5 seconds. In
[24] and [33] this is between two consecutive RSS value, eq. 2.10.

Θ = arccos
referencegravity • currentgravity
‖referencegravity‖x‖currentgravity‖

(2.8)

ϕ = arccos
Ay • gravity
‖Ay‖x‖gravity‖

(2.9)

Φ = arccos
RSSt • RSSt+1

‖RSSt‖x‖RSSt+1‖
(2.10)

Some devices already have orientation sensors 1 or the more accurate gyroscopes which then
can be used instead. The research group in [8] both uses equations 2.4 and 2.11. In equation
2.11, z is the vertical axis (up and down), y is the horizontal axis(left and right) and x is the
front-back axis.

Orientation = |Ax sinΘz +Ay sinΘy +Az cosΘy cosΘz|, (2.11)

where Θx, Θy, Θz = the data from the orientation sensor
1Traditionally, before the lunch of Apple’s iPhone 4, most orientation sensors are also based on the accelerometers.

Today however, more and more smartphones have integrated gyroscope which then can be used in combination with the
accelerometer to more accurately depict the orientation of the phone.
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2.5 Evaluation of Fall Detection Systems

When we evaluate fall detection sensors we need to test in practice how well they work. That is,
we need to see that real falls will be registered.

False positive, False Negative, Accuracy, Sensitivity and Specificity have been used earlier wi-
thout really giving any explanation. We will now give them definitions and how they relate to
each other.

According to [14] there are four possible cases that could happen when we test fall detection
systems. In our test we count the number of occurrence for each case and make note of it, making
a statistical record. The four cases are as follows;

1. True Positive (TP): a fall occurs and the device detects it.

2. False Positive (FP): the device announces a fall but the fall did not happen.

3. True Negative (TN): no falls occur and the device does not say that it does.

4. False Negative (FN): a fall occurs but the device does not detect it

Based on the four cases above, we have four criteria to evaluate fall detection systems. There
is no consensus among research groups on which one(s) to use, but sensitivity and specificity are
the most important to take note of.

• Sensitivity = TP
(TP+FN) : This is the capacity to detect fall.

• Specificity = TN
(TN+FP) : This is the capacity to detect only a fall.

• Accuracy = (TP+TN)
(TP+TN+FP+FN) : Gives an overall correctness for fall detection.

• Kappa = (A−C)
(1−C) : A = Accuracy

• C = (TP+FN)
(TP+TN+FP+FN)x

(TP+FP)
(TP+TN+FP+FN)x

(FN+TN)
(TP+TN+FP+FN)x

(TN+FP)
(TP+TN+FP+FN)

Perfect sensors will give 100% (=1) on both sensitivity and specificity. In general we want to
avoid false positives and false negatives. Arguably we can say that false negatives are worst to
have than false positives. We say that it is more acceptable that the device gives us fake alarms
where there are no real falls than the device not alerting us for true falls. This is mentioned here
now because what happens most of the time is that when we adjust the parameters of our sys-
tem so that we increase either of the criteria, the reverse effect will usually be seen on the other
criteria. In other words sometimes increasing sensitivity of the device will decrease its specificity
and vice versa. This effect can also be seen in the data analysis in section 3.5.

In chapter 3, we will take a deeper look on how to make an experimental set-up to gather
these statistical data, which will then tell us the performance of our system. General experimen-
tal set-ups much like ours are done by research groups to acquire these data.
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According to [4], besides the intrinsic performance of the fall detector, other criteria must
be taken in consideration when comparing the different approaches. Such criteria relate to the
form factor, the acceptance, the usability, and the level of accomplishment.

The form factor (mass and volume of the sensor) is particularly important if the sensor is
carried by the wearer.

The acceptance of the sensor is usually lower if the sensor is carried on the person (endosen-
sor) rather than installed in his environment (exosensors). It is also influenced by the “visibility”:
a visible sensor (on the wrist, the belt, the chest...) may stigmatize the handicap or dependence.
This can also be the case with external sensors visibly placed in the domestic environment. On
the other hand some users want to have visible sensors to make them feel more secure. Accep-
tance is really subjective for different users.

The user friendliness depends on the autonomy, the range, and the packaging. The autonomy
is estimated time between two successive maintenance interventions, that is, to change/reload
batteries. The range is the maximum distance between the person and the sensor so that the
latter can efficiently perform measuring. In the case of a carried sensor, communicating wire-
lessly, it is the distance between the base station and the sensor. The type of packaging concerns
the biological innocuity, for instance biocompatibility, or the risk of injury for sensors directly in
contact with the skin.

The level of “accomplishment” was added because some promising systems are still being
tested while others are already available on the market place.

Non-fall tests (ADLs for non-accidental falls and carefully chosen activities for accidental falls)
should be measured by real potential users of the targeted population of the system, i.e. elderly
people. A minimum of five participants should perform all the series of chosen activities at least
three times. If we have fifteen chosen activities, we will get a total of 225 (15x5x3) activity
simulations. One series of activities should be measured as one. Ideally, it should be up to the
participant in which order he or she will do the activities listed in that series. This is to make the
scenario more closer to reality. The participant can also change the order of activities in the same
series for the next rounds. The participant can also choose the pace to which he or she does the
activities.

While the first four criteria are proposed by [4], this paper adds another criteria and that
is adaptability. As we first mentioned at the beginning, a good sensor capable of adapting or
tailor-suiting different individuals might be desirable.

(See also chapter 5 for further discussion about this topic.)
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2.6 Commercial Fall Detection Systems

Most of the available commercial fall detection systems are one way or another a type of a panic-
button. The set-up is always the same - a wearable accessory, a base station and a command
center. Usually their price range can be from $20 to $25. An example can be found from this site
[34]. It provides very little information about the device itself, but it is one of the cheapest out
there.

One can also find alarm buttons that does not have a base station and emits a very high noise,
91 dB, when triggered to attract attention to the user. They roughly cost $13. We will not count
these further into discussion because we find them lacking in several aspects to be a good fall
detection system.

Dedicated assistance companies are the next improvement of the panic button system. The
company acts as the command center monitoring the user twentyfour hours a day, every day of
the year. They provide better assistance as they are better equipped and trained for emergencies.
The downside is that you also pay several times more. They charge their users with monthly
subscription fee in addition to a start and equipment fees. A monthly fee can be between $20
and $30 per month depending on what kind of services the company provides. An example is
Alert-1 [35]. In Norway a similar company Hjelp 24 [36] has the same business model. Some ge-
neral security companies in Norway also offer fall detection systems in addition to normal home
security alarm mechanisms such as Securitas [37].

The above mentioned systems lack one vital specification to be a good fall detection system,
and that is to have a device that can actually sense fall. They fail in noticing if the user has fallen,
if the user is not lucid or conscious. The next type of systems have built-in sensors - or they are
sensors themselves - that can sense and detect fall. HealthSensor a.k.a iLife from iLife Solutions
[38] is the first example. It is a small wearable device that has advance microprocessors and
accelerometers. Makers of iLife describe their system to be able to distinguish between serious
falls and normal movement (ADL), even rough motions such as jogging or descending stairs.
HealthSensor (shown in figure 2) can detect inactivity as well as falls. This can be helpful in
some cases. Their website does not provide enough information about its cost, communication
capabilities and other technical details.

Brickhouse Alert [39] is another fall sensor. This has the same concept as the company mo-
nitoring systems mentioned previously. The only difference is that the device on the user can
sense falls making it effective for users who got unconscious upon falling. The company offers
an additional service of intrusion/theft detection. Pricing is from $25 to $30. It would seem that
the device is also using accelerometers to distinguish falls from normal movements.

Less popular fall sensors are pressure sensors, occupancy sensors, pull-chord sensors, and
mobility sensors which can either be camera-based or infrared based. While the previously men-
tioned sensors are mainly for private users, these less popular sensors are usually used by health
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(a) Picture taken from http://www.
ilifesolutions.com/products.html

Figure 2: iLife HealthSensor

institutions such as hospital, home for the aged and other health care facilities. Pressure sensors
as mentioned earlier detects pressure change on floors - in cases where a fall happens. Occupancy
sensors are situated on bed or chairs (wheelchairs), so that if the user falls off the chair or bed
it will be detected and the system would assume fall. Pull-chords are chords hanging all around
the room of the user, so that in case of fall the user can pull on the chord which will then sound
an alarm. Finally mobility sensor sets off an alarm if it does not detect some activity in a room
within a period of time. Some companies/net stores have gathered all of these different types of
devices and market them for sale. Seekwellness [40] and tunstall [41] are two such companies.
Their products’ price range can vary a lot.

Typical from these commercial products, are that they haven’t been tested properly much
more made a proper scientific comparison and study of. Their sensitivity and specificity is the-
refore impossible to say. Understandably the details of how these devices work internally and
how they calculate a fall are well-guarded secrets of their makers. In general wearable sensors
are more popular than ambiance systems. Companies that offer subscription to users for daily
monitoring and assistance services are more costly but seem to give users more satisfaction by
knowing that trained assistance or help is readily available.

There are also some mobile applications, which are usually free, that can be installed on
mobile phones to act as fall detection system. Such applications partly depend on which mo-
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bile phone they are installed on. Like the commercial devices above, these applications, as far
as we are concerned, haven’t been thoroughly studied. For iPhones, you can find an app called
Fall Alert [42] and for Android you can find mover [43] and cradar [44]. It is not possible to
see the codes and check their algorithm without asking the authors, but all of them seem to be
accelerometer-based. At this point, we have only partially checked cradar and mover. They seem
to use a very simple algorithm to calculate the total acceleration of the device. This rises a big
problem of giving many false positives with normal movements.

Studying and evaluating these commercial fall detection systems together with what research
groups are developing can give us a good rating system for these systems.

25





Fall Detection Using a Smartphone

3 Choice of Methods

As we have seen in chapter 2, we have a plethora of fall detection systems if we take into consi-
deration both the hardware, placement, algorithm(s) behind the system and finally the approach
that was used. Although we have commented on some of the advantages and disadvantages of
these different systems, it is outside the scope of our research to compare and study all of them
indepthly. There is a need for a precision in what kind of fall detection system one wish to make
and test. This chapter is a discussion of how one can make such decision. We will present in this
chapter our own choices and specifications. We will also present our experiment that will later
give us the information we need in making any algorithm we wish to implement.

3.1 The Targeted Users and Our Definition of a Fall

It is imperative to properly define both what a fall is, as well as who the targeted users of a fall
detection system are, as explained in section 2.1. For the intents and purposes of the system we
want to make, we define a fall to be a sudden change of body position coming to rest on the
ground, excluding intentional change, followed by inactivity. This means that we only look at
the most serious falls where the user lose consciousness after hitting the ground and therefore
losing the ability to get help. We assume that a fall that still renders the user mobile and there-
fore conscious, has not suffered that severe of an injury that he or she cannot communicate to
get help.

More specifically, our system first checks a sudden change of acceleration going towards a
negative value (or towards 0 if the acceleration is measured and normalized to G-force units).
This is an indication of a shift from a normal activity, i.e. ADL, to a fall. This is also the same as
entering the critical phase from a pre-fall phase of a fall. Then the system checks for a change
of the acceleration towards a positive value (or over 1 if the acceleration is measured and nor-
malized to G-force units). This value becomes higher the harder the impact is. This means that
the kind of surface the impact happened on matters a lot. How fast the user is falling down also
changes this value.

Since we have defined that our system only recognize serious falls, we can simplify our defi-
nition of a fall to being a fast deacceleration or acceleration towards the ground followed by a hard
impact, and finally a moment of inactivity. We will later put numbers on these values to clarify
what we mean exactly by fast deacceleration or a hard impact.

When one has decided upon a specific group of users, e.g. elderly people, all possible falls
that can occur for this group should be measured and later tested. Ideally, the measured falls are
from the users themselves. One way to do this, is to continuously monitor this group of user for

27



Fall Detection Using a Smartphone

a long period of time, like what was done in [10]. This poses one big disadvantage though. Even
for a period of 1 year, statistically it is hard to observe real falls in real environments. This was
true in the case study of [45]. A very long observation time, possibly in the span of ten years
or more, is needed to get a statistically significant number of falls to base a fall detection system
on. To counter this difficulty, one can instead simulate these expected falls with actors.

The actors that will simulate the expected falls from the targeted user group, should stay true
to how the falls are in reality. This is done by either studying video recordings of actual falls from
that group like in [45], or reading scientific literatures describing these falls in specifics, or by
talking to knowledgeable experts for the targeted users, e.g. geriatric doctors/workers, physical
therapists, neurologists, health-care providers, and probably others.

Also depending on what kind of algorithm(s) that will be later used, depicting all other cir-
cumstances of how the real falls would be is a necessity. Which means that if your algorithm is
measuring impact, it is important to simulate falls hitting on real ground surfaces (usually hard
ones) and not use any cushions. This, of course, makes it hard, but not impossible to find qua-
lified enough actors (or rather stuntmen) to simulate the falls on how they should be. A good
alternative is therefore using a good dummy representing the typical targeted user .

As we are only testing generic types of falls using the bare minimum (see section 2.1), we
will not assume any specific group of users. It will be a mistake to say that our system is made
specifically for the elderly people for example. Elderly people fall in so much more ways than
just how we will specify. They can fall from bed, chair or while using a rollator/walker, which
then produces a somewhat different fall pattern. If needed, a list totaling of nineteen different ac-
tual falls observed from a long time study of elderly people, can be found in the research of [45].

3.2 The Chosen Approach

We want to implement our fall detection system as a wearable device, more specifically in a
smartphone(see the next section). Furthermore, we will look at acceleration-only methods. There
are enough algorithms under this method to be used and compare with. Another reason for this,
is that most smartphones (probably all) and some mobile phones already support acceleration-
based methods, while only a subset of these phones support non-acceleration methods like
magnetic-based or angular-based methods. This means that a successful implementation of our
system, will result in better pervasiveness of the product. Acceleration-based systems, more than
quite often give better accuracy and results than not basing the system on this approach. This is
the same findings as in [13]. Lastly, just using acceleration-only methods is enough to analyze
all phases of falling as describe in section 2.1. Because of this, we have purposely compiled a
number of specific equations and algorithms used in wearable acceleration-based fall detection
systems in section 2.4.

In choosing between analytical approach and machine learning approach, we choose the ana-
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lytical approach. This is because machine learning algorithms are mostly designed to run on
powerful desktop machines, whereas mobile phones are constrained devices both in terms of
computation and energy budget. More lightweight and scalable algorithms are needed for mo-
bile phones in order to preserve the phones user experience (i.e., long battery life and little
computation requirements while running a mobile sensing application). There is also a need fo
a powerful device to be able to efficiently collect and analyze large scale training data sets as
a basis to build more robust classifiers. Even though smartphones are more powerful than the
average mobile phones, we still want to conserve its resources as much as possible. A similar
assessment was done in [46].

Learning and implementing efficient machine learning algorithms is also usually more diffi-
cult. In the course of our literature study, we also have found better performances with systems
not using machine learning techniques. This is of course not to say that it is impossible to imple-
ment a good fall detection system that uses machine learning techniques.

In analytical approach, one typically sets up an experiment for data gathering. These data are
later analyzed and would be the basis of the fall detection system. In theory, one can get these
data even without the experiment. This is done by studying previous researches and findings,
going through a database which was formed either by statistical agencies or other scientific com-
munities, talking to a panel of experts (focus group) or a combination of any or all the methods
just mentioned. We will however stick to performing our own experiment and data gathering.
This experiment is presented in section 3.4.

3.3 Why a Smartphone?

We have chosen to implement our system in a smartphone 12. A smartphone is a very power-
ful device and includes a range of different sensors. The most notable one is the accelerometer.
Smartphones are lightweight, highly portable and effectively make our fall detection system per-
vasive. Unlike commercial fall detection devices i.e. the panic button, smartphones can be used
both indoors and outdoors. Almost everyone owns a mobile phone and increased popularity of
smartphones is also observed. This will enable our system to reach more potential users than if
the system is developed on a specially made hardware. Implementing the system in a smartphone
combines the fall detection part of the system with the communication part, i.e., upon detecting
a bad fall the system calls for help either through SMS, phone call, e-mail or combination of all.
Furthermore smartphones offer the possibility of communicating with other devices if needed
through e.g. bluetooth. Making our system location-aware either by using GPS or W-LAN or both
is also feasible. Lastly our chosen OS platform is Android [47]. Applications made for Android
can be cheaply made.

1For the purpose of this study the choice of the term smartphone and not mobile phone is deliberate. This is to make
room for that the system we expect to make may demand a more powerful platform, i.e. a smartphone, than a traditional
mobile phone.

2At this point we will not exclude that the system could also be deployable on less powerful mobile phones as we will
only be testing accelerometer-based algorithms in this study.
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In [48] they even use a phone’s camera to take a picture of the patient’s surroundings if a fall
is detected. The picture taken together with sensor data (based on acceleremoters) and location
data (based on the integrated GPS) is then sent to a nearby emergency responder. The picture
by itself might not be valuable and perhaps will not show anything important, i.e. the phone
is inside the user’s pocket, however in other cases the picture might provide additional context
information to the responder.

There are several different approaches in fall detections in terms of what kind of equipments
and set-ups we could use. Using a smartphone with its integrated sensors (accelerometer, gyro-
scope, etc.) is only one of them. In most cases combining several equipments/sensors results in
getting better performance of the developed system. For the purpose of this paper we envision
our first system to just focus on plain fall detection. We will however open the idea for further
development of the system by using additional devices 3. The possibilities and advantages of
using the smartphone as the chosen platform, as described in the previous paragraph, will still
be open although not a part of the first prototypes of the system.

A major criticism to wearable sensor-based approaches is that, the user may forget to charge
or wear the sensor, therefore leaving the system in a non-functioning state. With the integration
of accelerometers on smartphones, it has become possible to develop fall detector applications
that can run on the smartphones. Since people are more likely to carry their phones with them-
selves, rather than an additional sensor, smartphones with integrated accelerometers can easily
be used for pervasive fall detection. In fact, with mobile phones the usual practice is that users
including the elderly people, are used to carrying them making it less likely to forget the fall
detection device.

Lastly, fall algorithms made for mobile phones do not usually rely on external servers, making
it autonomous.

For the rest of the study, we assume that the user will use the proposed system as if it is a
normal application in a mobile phone. This is to stay true on how normal users use their mobile
phones. As such we will also be able to evaluate mobile phones as fall detection platform.

3.4 The Experiment

Before making any fall detection system, we need to gather sufficient data which will become
the foundation of our fall detection system.

For this purpose, we have acquired the smartphone4 Dell Streak 5 running Android 2.2 as its
operating system. The phone’s other technical specifications are as follows;

3See section for future work
4this phone is also considered to be a mini tablet.
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• Processor: 1 Ghz

• Dimension: 6 x 3.1 x 0.4 in

• Weight: 218.29 grams

• Memory: 512MB SDRAM

• Communication and Connectivity: GSM/EDGE, UMTS, HSDPA, wifi, bluetooth, USB

• Sensors: Accelerometers(frequency measured to be 46HZ), Ambient Light Sensors, GPS,
Magnetometers/e-compass, Capacitive Sensor keys, Proximity Sensors

• Miscellaneous: Camera, Microphone, Speakers, Multi-touch

Figure 3: Data Collector Tool by Mohammad Derawi

Using a program written in Android (fig. 3), we proceeded to measure five types of falls.
These are 1)forward fall like a stick, 2)backward fall like a stick, 3)lateral “stick” fall towards
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right, 4)lateral “stick” fall towards left and 5)forward fall collapse (see appendix A). The main
difference with falling like a stick and a collapse, is that a “stick” fall does not have knee flexion
and the entire body is seemingly rigid - and thus the expression “like a stick” - while falling,
while a collapse is non-rigid often much slower than its stick fall counterpart and gives a more
unpredictable outcome in terms of speed, body position and orientation and direction of fall.

The program recording the different falls, were recording both acceleration and orientation
data in the X, Y and Z axis as well as magnetometer data. Only the acceleration data will be
used. Actually, later when we are comparing algorithms we will also use orientation based ap-
proach, but this will be based on acceleration data themselves. It will be shown later how you
can compute the orientation from the acceleration data. Note: The orientation measured by ac-
celerometers should not be confused by rotation measured by gyroscopes.

A group of three volunteers ages 25 to 28 years old, 1 female and 2 males is used to simulate
the falls. The weight varied from 64kg to 100kg, while the height was from 164cm to 173cm.
All of them performed each of the 5 different falls three times, giving a total of 45 (3x3x5) data
sets. In addition to the first group, there is a second group which consisted of using a dummy
which we calibrated the weight of to alternately change from 36kg to 28kg and finally to 26kg.
The dummy will then represent another three individuals.

In addition to performing the different falls, group 1 also performed chosen ADLs and some
other non-fall activities to compare data to (see Appendix B). These activities will later be cate-
gorized as ADLs, medium activities, and hard activities.

The phone was placed in the users’ pants’ pockets, where we have assessed to be the most
natural place for people to put their mobile phones. In practice the phone’s placement is in bet-
ween the user’s waist and the front upper-part of the thigh/femur.

Each fall was measured and recorded individually. The volunteer stands upright steadily (the
start position) for at least five seconds. This is to better clarify later, what time the fall has star-
ted. Immediately after falling, when the volunteer is already in the post-fall phase, the volunteer
is asked to remain immobile on the ground for another five seconds. This again, is to make it
easier later to distinguish the phases of the fall in the data analysis. Finally, the volunteer rises
up and remain static for another five seconds to mark the recovery phase as well as the end of
the significant data.

For the simulation of ADLs and non-fall activities, a similar approach was done. To improve
the time of the simulations, we clustered the activities in groups where it is natural. This means
for example that activities 1, 2 and 5 were done as one group and in succession. To mark the
shift from one activity to another as well as the phases of each activity, the volunteer pauses for
five seconds in each phase of activity and in between activities (just like it was done for the fall
simulations).
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It was noted if there were any anomalies in the experiment.

3.5 Results and Data Analysis

Figure 4: Data from the Accelerometers Uploaded in OpenOffice Calc

The gathered data from the Android Data Collector was uploaded to a computer. Each data
readings was first transformed to an OpenOffice Calc [49] file, which is a spreadsheet for ma-
thematical and statistical computations. The total acceleration of the device, also called the RSS,
(see eq 2.1) was computed to form a separate column in the spreadsheet.

A sample data set is shown in figure 4. Column A is the time, each row represents a timestamp
which is measured in macro seconds or 1 x 10−7 seconds. Column B, C and D are accelerome-
ter data from the phone’s X, Y and Z axes respectively. Column E is the computed RSS values.
Column E is calculated based on equation 2.10, while Column F is based on equation 2.9. The
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values from both column F and G are not yet transformed to their angular values by calling the
inverse cosine function. This transformation is done in MatLab.

Figure 5: A graph representation of a forward fall

Further data analysis, computations and graphic formations were done in MatLab. Each data-
set was studied and segmented to find and distinguish the different phases of a fall (see section
2.1) or an activity if it is an ADL/non-fall activity dataset.

A typical graph for a fall is shown in figure 5. The upper graph is a RSS plot, while the lower
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Figure 6: Falls from Group 1

Figure 7: Falls from Group 2

graph shows the scalar product between two consecutive RSS reading 5 (see eq. 2.10). The high
peaks of the lower graph directly correspond to the low peaks of the upper graph. This means

5using the full acceleration vectors and not only the RSS itself

35



Fall Detection Using a Smartphone

that we can combine a profiling algorithm that uses LFT and equation 2.10, which will give a
higher specificity. Also when at rest or in static posture, the upper graph reads almost 10 which
is almost the same as 1G. In the lower graph, static posture is roughly close to 0. This is because
in a static position, there is none or minuscule change in the acceleration vectors between two
consecutive sensor readings. Thus, we can also use this for inactivity detection. A sample set of
falls from group 1 (figure 6) and group 2(figure 7) shows similarity with each other.

In the sample fall, the entire fall happened between timestamp 8.027 and 8.043, which trans-
lates to approximately 1.6 seconds in this case. The body first touches the ground in the first
negative peak (the impact point). This is where the lower fall peaks (LFP) are based on. Upon
impact, the body registers an opposite force giving the upward peak which the upper fall peaks
(UFP) are based upon.

The data we are interested in are: the LFPs, UFPs, time between the LFP and UFP (eq. 2.4),
falling-edge and rising-edge time (2.4), and the angle between two consecutive measurements
(eq. 2.10).

The fact of the matter is that there will be several downward and upward spikes in a fall.
Choosing what peaks to represent an individual fall, all depends on what is the focus of your
algorithm. An algorithm solely based on UFPs, only needs to look at the highest spike within
the fall period (the critical phase of fall), but once a more complex profiling algorithm is used,
choosing these peaks would be important.

Similar to the algorithm that was used in [30] and [31], we picked the upper and lower
peaks with respect to the time difference between them. It is also a condition that a lower peak
comes before an upper peak, as all falls show a prominent downward spike before an upward
spike. This first set will the basis for the first algorithm.

For the second algorithm, the time between the upper and lower peaks are of less importance.
The peaks are solely chosen if they represent the maximum peaks during a fall. The only other
thing that matters is that the lower peak comes before the upper peak. The formed data set will
be the basis for the second algorithm.

As shown in figure 5, a downward spike in a fall in the upper graph, results in having an
upward spike in the lower graph (from equation 2.10). With this in mind, we first choose the
lowest peak in a fall that gives the highest corresponding angular peak. Then we choose the
upper peak directly connected to the previous chosen lower peak. The compiled data from both
group 1 and group 2, are shown in tables 3, 4 and 5. This is the basis for the third algorithm.
Note: The value of Φ is only based on the data from the critical phase of a fall.

The computation of the falling-edge time and rising-edge time were added, because we wan-
ted to see if it will help change the sensitivity of the fall detection system. These two time values
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Table 3: Compiled Fall Data from Group 1

- Min Max
LFP 1.3408 8.7308
UFP 15.4099 31.0996

RSSUFP-LFP(eq. 2.4) 41.022ms 312.928ms
Φ(eq. 2.10) 51.4881 deg 158.0417 deg

Falling-edge time (2.4) 123.128ms 512.887ms
Rising-edge time (2.4) 20.525ms 121.177ms

Table 4: Compiled Fall Data from Group 2

- Min Max
LFP 1.5183 6.3809
UFP 15.4099 32.2497

RSSUFP-LFP(eq. 2.4) 40.979ms 184.564ms
Φ(eq. 2.10) 64.2819 deg 165.3800 deg

Falling-edge time (2.4) 130.465ms 512.865ms
Rising-edge time (2.4) 41.006ms 161.188ms

Table 5: Compiled Fall Data from Groups 1 and 2

- Min Max
LFP 1.3408 8.7308
UFP 15.7667 32.2497

RSSUFP-LFP(eq. 2.4) 40.979ms 312.928ms
Φ(eq. 2.10) 51.4881deg 165.3800 deg

Falling-edge time (2.4) 123.128ms 512.887ms
Rising-edge time (2.4) 41.006ms 161.188ms
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can only be calculated after the lower and upper fall thresholds(LFT and UFT) are decided. This
means that they can also be based on and used in the first two algorithms. However, we have not
tested adding this in our prototype (see chapter 5 for the reasons).

Here is a recap of the main difference between the three algorithms so far;

1. The thresholds in the first algorithm were chosen in respect to the time between a lower
peak and an upper peak. The more these times (from all the falls) are similar to each other,
the better.

2. The thresholds in the second algorithm were chosen in respect to their absolute(max and
min) peak values.

3. The thresholds in the third algorithm were chosen in respect to the angle between two
consecutive acceleration readings.

Results from the ADLs and non-fall activities (see appendix B) were also analyzed. We have
grouped these activities into three categories. These are;

1. Light Activities or the minimum ADL list. These are what most researches include when
they measure ADLs in comparison to falls. Most elderly people should still be capable of
accomplishing these activities. This includes sitting on a chair, getting off a chair, lying
down on a table (simulation of a bed), standing up from the table and walking.

2. Medium Activities or the extended ADL list. These are: sitting on the ground, standing up
from the ground, picking up an item on the ground, kneeling, standing-up from kneeling
position, lying down on the ground, rotating while lying on the ground, standing up from
the ground (from lying position), soft/slow kicks, and finally walking up and down a stair-
case. These are activities an average person should still be able to do.

3. Hard Activities or non-fall/non-ADLs. These are activities a physically active person should
be able to do. These are; sitting fast on a chair, standing up fast from a chair, lying down
quickly on the ground, push-ups, standing up quickly from the ground, sit-ups, fast kicks,
bicycling, going up an elevated platform (0.8-1m in height), jumping down from an eleva-
ted platform (0.8-1m in height), vertical jump (from normal standing position), running,
forward leap (from a running start), running up and down a staircase, and finally jogging.

Boxplots are used to show the rest of the statistical results of the data. This is because in this
case it is easier to see the overlaps between the falls and the activities. Figure 8 shows boxplots
6
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Figure 8: Boxplots from both the Data Set of Falls and ADLs/non-fall activites
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4 Prototype

Basing on the values from the previous experiment (see section 3.4), we analyze the resulting
data to get our own thresholds. With these thresholds and a number of chosen equations (see
section 2.4), we will build our own algorithms and try to evaluate their performance (see section
2.5).

4.1 Creating the Prototype

A prototype of our system is depicted in figure 9. As mentioned, it is developed and tested in
Android for API versions 7 and higher. The application was run and tested in three different
mobile phones; Dell Streak, HTC Hero and Samsung Galaxy S. The application consists mainly
of three parts;

1. FallDetection.java : This is an activity class that shows the GUI-interface of the application.
Users can choose the sensitivity level*, telephone number and an optional e-mail address
for which a fall alarm will be sent to. This is also where the user starts and stops the
application for fall monitoring.

2. SensorService.java : This class starts a service which is similar to a Daemon process that runs
in the background. The service implements a class listener to access the mobile phone’s ac-
celerometer (and possibly other sensors). The actual fall detection algorithm is also found
in this class. Implementing a service conserves much of the phone’s resources.

3. Alert.java : This is another activity class which shows the user a notification if a fall is
detected. In here, an alert message can be sent out either via SMS, e-mail, phone call or
any combination of them. In the current prototype, only outgoing SMS and phone calls
were implemented.

* Because the prototype was only being tested by the research group and not for any actual
users yet, we have disabled the sensitivity options, as well as hardcoding a phone number to
send a SMS and call to in case of fall alarms. The sensitivity options are meant to change the
threshold levels depending on the type of user. Low sensitivity would use the thresholds which
are primarily based on Hard Activities (see section 3.4) intended for active users. Medium sen-
sitivity is based on Medium Activities intended for the average user. High sensitivity is based
on Light Activities and is intended for people with limited daily movements such as an elderly
person. For the rest of the discussion, we will assume this test version.

Upon opening the application, the user is presented with the interface shown in figure 9a. At
this point, the fall detection mechanism has yet to be started. Pushing the “Start Monitor” button
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(a) Start of Application (b) Turning on The Fall Detection Me-
chanism

(c) Fall was Detected and Started an
Alarm With a Counter

Figure 9: Fall Detection v1.2

will start the fall detection mechanism, and the button is changed to “Stop Monitoring”.

As mentioned, the version that was used in the rest of our study was intended for ease of
testing and not yet for real users. To be able to compare our chosen algorithms, three different
services are started instead of one. Each service represents a different algorithm as explained in
section 3.4.

If one or more of the services, which is now monitoring the user, detect a fall they will issue
their own alarm notification. Thus in the test version, if a fall triggers all 3 services, 3 different
alarms will be issued. Each alarm notification will also show from which service it was generated
from.

An alarm notification (fig. 9c) will give a user 20 seconds to respond. Failing to respond to
this will force the system to send an alert message to the predefined phone number. By default,
the alert message is sent via SMS and a phonecall. If the user becomes unconscious and not able
to talk, then the alert message is still conveyed via the SMS.

If the user falls but remains mobile and conscious, and the system detects the fall, the user
can choose if he or she will still send an alert message depending on how badly hurt he or she
is. The user may want to ask for help even though he or she is still conscious. In this case, the
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user can either wait until the timer runs out or push the “no” button. Pushing the “yes” button
will cancel the alert notification and the system will not send any alert message.

Appendix C provides the most important codes used in the application. A pseudo code of the
first algorithm that is used in service 1 is shown in algorithm 4.1.

Algorithm 4.1 Algorithm 1

while service_is_running do
Check for Lower Fall Threshold
if RSS ≤ 6.67 then
LFT_exceeded = true

end if
Check for Upper Fall Threshold
if RSS ≥ 15.76 then
UFT_exceeded = true

end if
Check That Both Thresholds are Exceeded
if LFT_exceeded = true and UFT_exceeded = true then

Check That LFT happens before UFT and the Time in Between
if UFT_timestamp − LFT_timestamp ≥ 0.102sec and UFT_timestamp −
LFT_timestamp ≤ 0.366sec then

Assume Fall
Fall_detected = true

end if
end if
Check Inactivity Period After Assumed Fall
if Fall_detected = true and Inactivity_period > 0.520sec and Inactivity_period <
3.500sec then

Issue an Alert Notification
end if

end while

A pseudo code of the first algorithm that is used in service 2 is shown in algorithm 4.2.

A pseudo code of the first algorithm that is used in service 3 is shown in algorithm 4.3.

All three algorithms employ an inactivity detection as mentioned earlier. We chose to use the
scalar product between 2 consecutive readings to measure inactivity. If in at least 5 consecutive
acceleration readings, the scalar product is lower than 3 degrees, depicting none or minuscule
change between the readings, then a period of inactivity is detected. In our case, this is set to at
least be 0.087 sec. We chose such short inactivity time so the system will not prolong sending an
alert issue if it is a real fall. This is because, there will be a last confirmation of inactivity in the
form of the 20 seconds alarm notification.
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Algorithm 4.2 Algorithm 2

while service_is_running do
Check for Lower Fall Threshold
if RSS ≤ 5.26 then
LFT_exceeded = true

end if
Check for Upper Fall Threshold
if RSS ≥ 16.08 then
UFT_exceeded = true

end if
Check That Both Thresholds are Exceeded
if LFT_exceeded = true and UFT_exceeded = true then

Check That LFT happens before UFT and the Time in Between
if UFT_timestamp − LFT_timestamp ≥ 0.041sec and UFT_timestamp −
LFT_timestamp ≤ 0.366sec then

Assume Fall
Fall_detected = true

end if
end if
Check Inactivity Period After Assumed Fall
if Fall_detected = true and Inactivity_period > 0.520sec and Inactivity_period <
3.500sec then

Issue an Alert Notification
end if

end while
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Algorithm 4.3 Algorithm 3

while service_is_running do
Check for Lower Fall Threshold and Orientation
if RSS ≤ 8.73 and Orientation ≥ 48.39 then
LFT_exceeded = true

end if
Check for Upper Fall Threshold and Orientation
if RSS ≥ 15.76 and Orientation ≥ 5 then
UFT_exceeded = true

end if
Check That Both Thresholds are Exceeded
if LFT_exceeded = true and UFT_exceeded = true then

Check That LFT happens before UFT and the Time in Between
if UFT_timestamp − LFT_timestamp ≥ 0.041sec and UFT_timestamp −
LFT_timestamp ≤ 0.313sec then

Assume Fall
Fall_detected = true

end if
end if
Check Inactivity Period After Assumed Fall
if Fall_detected = true and Inactivity_period > 0.520sec and Inactivity_period <
3.500sec then

Issue an Alert Notification
end if

end while
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4.2 Testing the Prototype and its Results

We have used two ways for testing the prototype;

• Controlled test. This is similar to the previous experiment where both fall simulations and
ADL/non-fall activity simulations are performed by a group of volunteers.

• Daily “continuous” test. A group of users is asked to use the system in their daily activities
as much as possible. During the logged hours the system is being used, the number of times
the system issues an alarm is counted. It is also noted if the alarm was a false alarm or a
true detected fall.

A different set of volunteers was used for testing this prototype. The group consisted of 2
females and 6 males with ages ranging from 22 to 54, height ranging from 164cm to 185cm, and
weight ranging from 65kg to 90kg. A dummy weighing now 25kg was also used in the test. The
system was tested against a total of 120 falls and 696 ADLs/non-fall activities. Table 6 shows
the sensitivity measurement for the 3 algorithms that were tested, divided to the different types
of falls.

Table 6: Sensitivity Table

- Forward Fall Left Fall Right Fall Backward Fall Collapse
Algorithm 1 56.0% 52.0% 27.3% 50.0% 29.2%
Algorithm 2 44.0% 40.0% 9.1% 41.7% 20.8%
Algorithm 3 56.0% 24.0% 13.6% 41.7% 16.7%

The specificity levels for the 3 different algorithms are shown in table 7.

Table 7: Specificity Table

- Light Activities Medium Activities Hard Activities
Algorithm 1 100.0% 99.1% 99.7%
Algorithm 2 100.0% 99.5% 99.7%
Algorithm 3 100.0% 99.1% 100.0%

Combining all the data from the test, an overall evaluation of the system based on the 3
algorithms can be calculated. The results are shown in table 8.

Table 8: Overall Results of the 3 Algorithms

- Volunteers Dummy All
- Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Algorithm 1 41.2% 99.6% 55.6% - 43.3% 99.6%
Algorithm 2 31.3% 99.7% 33.3% - 31.7% 99.7%
Algorithm 3 32.4% 99.7% 22.2% - 30.8% 99.7%

For the daily “continuous” test, only two users have submitted back their evaluation. Approxi-
mately 425 hours were logged between the 2 users. During this time, algorithm 1 had a total of 8
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alarms, algorithm 2 had a total of 6 alarms, and algorithm 3 had 8 alarms. All alarms were false,
that is no real fall happened, although in one of the alarms, it was the case of the user suddenly
throwing himself on the bed which looked for all purposes like a fall.

Further discussion about the experiment, prototype and results can be found in chapters 5
and 6.

4.3 Previous Versions and Tests

Prior to making and testing our final prototype as described in this chapter, preliminary tests and
earlier prototypes were made. Assessment of these earlier studies would be the foundation for
the final prototype.

The first prototype that was made, did not have any inactivity detection but uses all 3 al-
gorithms mentioned in section 3.4. A limited testing of the first prototype using the dummy,
showed that all three algorithms gave 100% (11 true positives/11 real falls) in sensitivity. Ho-
wever, the specificity was in an untolerable level. During a test period of approximately 2 hours,
a false alarm was issued by the application multiple times when the test subject was walking,
jumping, running or making other sudden movements. These results were in direct accordance
with the data from the previous experiment and were to be expected.

For our first attempt in implementing a system with inactivity detection, only algorithm 3
(described in section 3.5) was used in addition to the inactivity detection algorithm. To compen-
sate for the low specificity levels from the previous prototype, we have raised the thresholds into
higher levels. Testing this prototype version was done in a similar fashion as the final prototype.

A group of 2 females and 1 male different from group 1 that was used in the experiment,
volunteered for testing this prototype. The age varied from 23 to 27, the height from 159cm to
174cm, and the weight from 45kg to 80kg. The dummy, estimated now to weigh 25 kg, was also
used in the test. The results of the test showed that the system achieved a sensitivity of 62.2% (23
true positives/37 real falls) and a specificity of 96.7% (176 true negative/ 182 total activities).
Also in approximately 145 logged hours of daily “continuous” testing, only 2 false alarms were
detected. The first one was when a user was playing basketball and the second one was when
a user was kneeling on the ground and wiping(cleaning) the floor. No real falls occured during
this period.
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5 Problems and Discussion

This chapter will present our assumptions, considerations, decisions and the discussion that fol-
lowed. Chapter 3 already shows some of these discussions when we presented our choice of
methods.

5.1 Discussion About the Experiment

As far as we have gathered, there are 4 main ways to conduct an experiment to both train (gather
data for) and test a fall detection system. The first one is to gather all data in one experiment.
The gathered data will then be divided in 2; one half is used as training data and will be the
basis for any thresholds, and the other half is used for testing. Thus a sufficient amount of data
is needed.

A second method for the experiment is to separate the experiment for data gathering and the
experiment for testing. A third method is to have an experiment for data gathering and use a
special software like LabVIEW [50], to generate new random data based on some parameters
and some training data, for testing.

The third method was used in [31], where they only had 3 volunteers: 2 males (42 and 48
years) and 1 female (38 years) for 3 types of fall simulations. Each fall simulation was done at
least twice. A second group of 1 male (22 years) and 1 female (38 years) were used to perform a
list of ADLs. In testing the prototype for its sensitivity, LabView was used, which simulated other
falls based on the fall samples from the experiment.

Lastly, one can reuse training data from previous studies or relevant database and test the
final product with real people. In [30], they have used an algorithm which they claim to be
an improvement from a previous research. For testing their system, they set up two different
approaches. The first one is by using 10 young subjects to perform both ADL and falls. In the
second approach, the 10 young subjects performed the falls while 10 elderly subjects performed
the ADLs. It is unclear if the thresholds values were based on the fourth method or the first me-
thod.

In our study, we chose the second approach. Both third and fourth methods are a little bit
controversial, and we did not have any access to previous dataset nor familiarity with using spe-
cialized softwares such as LabVIEW. The choice then fell between the first and second option.

By using the first method, there will only be a need to have 1 experiment for gathering of
data. The problem with using this is that in the testing phase of the system, only the algorithm is
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being tested. It will not provide test results on how the system as a whole (algorithm, hardware,
users, situations, real-life usage, etc.) functioned. Aside from this, it was very difficult to gather
volunteers for the fall simulations because of the nature of the experiment. We would not be able
to gather a sufficient amount of participants to have enough data at once for both training and
testing a prototype unless waiting for a longer period of recruitment. The first option is best if
one only wants to compare different algorithms with no particular regard for the chosen plat-
form.

The experiment for data gathering posed a lot of complications. Firstly, the participants were
asked to do real falls. This means that they were in real danger of injuries. In fact, a couple of
our participants did suffer some minor injuries and most of them complained about bruising and
muscle pains the following day.

Again, because of the nature of the experiment only few people volunteered to participate.
All throughout our study, only 14 people participated. Among these participants, only 5 people
gave convincing real-like falls as how we explained it to them. Normally, for testing fall simula-
tions, one seeks the aid of a professional(stuntmen, judo athletes, or other fall experts) either for
supervision and instruction or for doing the fall simulation himself. For example, in the research
study of [29], only 1 gymnast was used for fall simulations both in the training and testing part
of the system. Another healthy elderly woman (83 years old) was used to measure the ADLs.
Also in [17], only one stunt actor was used for the simulations. The stunt actor was instructed
on doing five falls by the research team’s nursing collaborators. There were no data for a test
of the prototype they have made. Even with a larger participation rate (10), like in the research
study of [18], a supervision of a physical education professional was needed. Suffice to say, we
did not have this resource nor could we afford to wait for a longer time for people to participate.

In our own literature study, the most participants a research group could gather for fall simu-
lations are 10 people, mostly young and healthy. Like in the previous example, [10] had a group
of 10 healthy male performing 8 chosen falls and 4 ADLs, while a second group of 10 elderly
people (73-93 years) with 4 women and 5 men performed a list of ADLs. All these were done in
the training period. It was not clear what data they used for testing their system. Even though
they had a second group of 10 elderly people, in reality fall thresholds are based primarily on ac-
tual fall data. ADL data are used to adjust the threshold and for comparison reasons, i.e. testing
the specificity.

The difficulty of a proper experiment set-up is reflected by the whole research community of
fall detection. In the study of [51] and [52], only a total of five young (<30 years) healthy male
subjects were recruited for the study. They performed both falls and a list of ADLs. Likewise, only
2 male students participated in [13]. In [45], they got their dataset from actual fall data of 12
elderly people who have been observed in 309 patient days. Since the resulting set of fall data
was too small, accurate fall simulations based on a video recording showing 19 actual falls, were
also done. The research group was less concerned about the variation and quantity of the test
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group, but how accurate they could simulate falls based on real falls of their targeted users.

We figured during the course of our study to use a dummy for fall simulation, like how it
was done in [8]. In that study, they used a mannequin for both the training and test period.
They used the first experimental approach of only doing 1 experiment and dividing the data set
into two halves. When they have finally evaluated the performance of their system, it was only
based on test results from the mannequin. The mannequin was also in reality far from closely
anatomically resembling a human being .

Originally, when we decided to use a dummy, the plan was to get a crash dummy which as
far as we have gathered the best one resembling a human being, both in its mass, built, joint
location, flexibility, etc. In the end, the nursing department at our university provided us with
an old CPR dummy. The problem with this dummy is that it was not sturdy enough, being old
and not built for falling. Its body mass was also low. We could somehow adjust its body mass by
adding weights inside the dummy, but it won’t take long time before the dummy falls apart upon
impact. This meant that we also could not get sufficient data just from the dummy. Ultimately,
we were not satisfied in using just this dummy to base our data on. In the end, this is why we
decided to use both a dummy and volunteers for data gathering. We figured that both data set
would compliment each other, and we would be able to compare the results from each group too.

Yet another complications come from the chosen platform itself - the smartphone. As mentio-
ned in section 2.2, wearable devices are at risk of getting damaged and broken. This risk was in
fact higher in the experiment and testing phase where multiple falls were purposely simulated.
During our experiment, one Dell Streak unit was broken after multiple trials. Because of this, we
have to change to a different mobile unit. After some testing and calibration, we have deduced
that the accelerometer of the new device to have the same sensitivity and calibration as in the
Dell Streak’s. As such, we did not have to normalize our training data. This is however a step,
one ought to look at if the system will eventually be mass produced to function in any existing
mobile phone with accelerometers.

Wearable fall detection systems are assumed to be used in a fixed location. This is because in
its development phase, the gathered data are also based on a fixed spot, e.g. thigh, chest, head,
with the use of a strap or some other device to gain stability. In our study, we wanted to see how
well a mobile device function as a fall detection system if it is used as how it would normally be
used, meaning that we assume that users will still put their mobile device in their pockets. The
problem with this of course is that the instability of the device would give random noises. As we
have for example found out, pockets that are too loose will give more noise to the phone, i.e
upon impact the phone will be shaken more and give bouncing effects in oppose to if the phone
sits steadily in a tight pocket. Pockets can sit more in the front of the thigh or the side of the
thigh. Some body parts provide better and accurate readings than others as we have mentioned
in section 2.2. Also, a user can use an entirely different pocket, e.g. on the front of the shirt, to
put the phone in. In this case, the phone will be sitting higher than what is expected. One can ac-
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count for this, by offering the user extra options. It is also feasible to change the threshold levels
dynamically, but this would require implementing additional algorithm for this, like clustering
algorithms used in machine learning techniques. For our study, we have simplified our assump-
tions and did not take this into consideration as this will be a different focus of development.
Noise filtering algorithms can also be used, but for the same reason as before, we have simplified
our assumptions and did not use any preprocessing of the raw data. Our focus is immediate res-
ponse, and a system that will not eat much of the phone’s resources that it disregards the phone’s
other functionalities.

The orientation of the phone itself can also affect how the system works. For example, if one
uses equation 2.9 or 2.11 as a part of the algorithm, one needs to take into account that the
axes of the phone changes depending on its orientation, i.e. if the phone is in standing position,
lying, etc. One can adjust for this by sensing when the phone is in static mode for a longer period
of time, and defining that orientation as the start position. One can then use the proper axis for
the algorithm. In our system, we have only used the total acceleration of the phone. Meaning,
whatever the orientation of the phone is, it will still give the same total acceleration, i.e RSS.

As mentioned, during the course of our experiment we broke one mobile unit and had to
replace it with another. Although we have assessed that the new phone’s accelerometers had the
same sensitivity and range as the previous one, we found out one major flaw with it. It seemed
like sometimes the phone stops reading acceleration data. This might be due to the fact that the
phone was old and that it had some internal faults. Due to this, we have observed that the sys-
tem (regardless of the 3 algorithms) gave a way lower percentage for sensitivity for lateral falls
(towards right or left). For 4 of the volunteers, the system never detected one single fall among
either all right falls or left falls. We found out that this was when the user is falling laterally on
the side where the phone sat in. It would seem like even though the accelerometers could read
the data, some other internal parts of the phone does not do well with the force of the direct
impact.

Collapse falls also gave a very low sensitivity percentage. When the volunteers were asked to
do collapse falls, they tend to give a very slow soft fall. Ideally, collapse falls should have been
represented in all directions like in the case of the stick falls, but in our experiment it was not
possible to do so. This was because we have not procured good enough volunteers that could
simulate these types of falls. The volunteers who did try these falls, were not convincing enough
with their simulated fall, i.e. the falls did not seem real.

Alas we could also not force the volunteers to perform all types of falls as many as possible.
We let the participants evaluate which falls they are comfortable to perform, and if they are able
to give more fall simulations than the minimum of 3 per type of fall. Some participants did not
finish the minimum of three, while others dropped doing a certain type of fall completely. In
our original set-up we did not want to use any softening cushion as we are using an algorithm
that measures the impact value. The softening cushion will give a different data set than what
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one would normally get if a person falls on a hard surface, which is more normal for real falls.
Either the upper fall peaks are lower or bouncing effects (noise) will be introduced. This was
also a reason why we considered using a dummy, since we could drop the dummy on a hard sur-
face, but as mentioned earlier our dummy was not good enough to be the sole source of our data.

When we have asked our participants to do the fall simulations, we first suggested to use a
gym mat (see appendix A for the actual gym mat). This is made of rubber that was approxima-
tely a bit over 2 cm thick. After some tests, we found out that this actually did not help much.
Frontal falls were somehow doable for the participants, even though they still exposed the vo-
lunteers to pain and injury. Collapse was the easiest to do, but then again most participants were
doing it not that realistically. When we asked the participants, they did not want to continue
doing the falls on the mat. At this moment, we have decided to use a better softening cushion
anyway. We would first ask the participants to do some trial falls on the gym mat if they think
they are able to do the falls on the mat. If they can not, we offer them a softer cushion. Among
the 14 participants only 4 participants did the fall simulations on the gym mat, and not all types
of falls were done on it too. Backward stick falls were not actual at all to do on the mats, as head
injury is more likely to happen in a backward fall.

In the training session, all three volunteers did some frontal fall simulations on the gym mat
while the rest was done on a mattress which was somehow bouncy. For the testing phase, a dif-
ferent less bouncy mattress was used in combination with the gym mat or outside in the grass
field. Our problem now is that we have used different surfaces. For pre-impact algorithms this
does not matter, but in all of our three algorithms we were using a post impact algorithm when
we check for the upper fall peaks. We contemplated at this point to change our algorithm to just
use a pre-impact acceleration based algorithm, i.e. just testing for LFT. But as explained earlier,
this is unreliable and will produce plenty of false alarms. This will also mean, that we would
need to go back to the drawing board and remake our system with a different algorithm. Un-
fortunately, we did not have time for this. We decided to pursue with the test and analyze the
results anyway.

5.2 Discussion About the Prototype

Before even setting-up our first experiment and creation of a prototype, we originally planned
to use a smartphone with both gyroscopes and accelerometers. In our hypothesis based on the
literature study we have done, an approach using data from both gyroscopes and accelerometers
seemed to perform the best. We failed in procuring a device with both gyroscope and accelero-
meters. Our university did not have access to one such device at that point. As far as we have
understood, gyroscopes are also new as an integrated technology in mobile phones, and that
iPhone 4 was indeed the first mobile phone to have integrated this. Note: Gyroscope should not
be confused with orientation sensors!

Thus, we limited our research to just acceleration-based algorithms. It then became our focus
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to make an acceleration-based fall detection system to be as simple as possible to conserve the
phone’s resources so that less powerful phones can also use the system. This lead us to choose
the 3 algorithms we have now. In the very first prototype, algorithm 1 and 2 did not use any
orientation calculation by using equation 2.8, as such it was much simpler than algorithm 3, but
because we decided to implement an inactivity detection, they too had to use it. Arguably an in-
activity detection algorithm can be implemented differently, but choosing what kind of inactivity
detection algorithm to use is less important.

The computation of the falling-edge time and rising-edge time were added, because we wan-
ted to see if it will help change the sensitivity of the fall detection system. These two time values
can only be calculated after the lower and upper fall thresholds(LFT and UFT) are decided. This
means that they can also be based on and used in the first two algorithms. In fact, we made
a prototype that used this. We have later found out that the code for the algorithm we made
was not entirely correct so that we omitted the test results for it. Implementing this was more
difficult than the other 3 algorithms. We however managed to figure the threshold levels for the
falling-edge time and the rising-edge time based on the experimental results. One only needs to
make a correct code for it.

In the first prototypes, the alarm notification was set to 10 seconds. We found out that this
was too quick in case of a false alarm. For our study, we consider the alarm notification as the
second part of the inactivity detection. If we assume that the main fall detection algorithm to
have good specificity percentage, then one would not need to delay an alert issue too long. Ar-
guably, one can say that this is not needed at all if the specificity of a system is very good. Usually
though even good systems employ this, because “one can never be too sure”. The alternative for
example is to adjust the inactivity detection algorithm to detect a prolonged inactivity period
(usually over 1 min based on other systems) before directly issuing a fall alert via SMS, phone
call or whatever communication technology one has decided to use. The problem with this, is
that there will be cases when a serious fall occurs but the user will still show signs of activity, e.g.
twitching reflexes or external factor effects. The system will think that the user is fine because
of the registered activity while the truth is that the user can be badly injured. In the end, we
compromised with using a 20 seconds notification before issuing a fall alert. This time is subject
to debate though, but we have assessed this time to be not too long to delay a fall alert in case
of real falls, but also not that quick so that the user can cancel it in case of fall alarms.

5.3 Discussion About the Results

Test results show that all 3 algorithms performed poorly in the sensitivity test. This is not in
acceptable levels. For the most part this was because of the problems and complications we have
had with the experiment, hardware and equipments, participation numbers and credibility, and
other things we have mentioned in the two previous sections. We believe that if the experiment
was done without the mentioned complications, the sensitivity levels would not be as low as
what we have got. We probably could have done better by either changing our algorithm to cope
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with the circumstances we had or redo the experiment as we first conceived it to be, but alas we
did not have time to change or modify the algorithm because of the time constraint of this study
nor did we have time and resources to do the experiment, creation of prototype and testing it
one more time.

That being said, the test data still gave us relevant results which we will present in the conclu-
sion.
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6 Conclusion

We realize now that fall detection research and study is a complicated field that needs more
allocated resources to have a meaningful study. Going back to our original research questions,
we will now try to answer them based on what we have learned in our research study. There is a
need to redefine or make a more precise questions for most of these research questions. This is
because the research questions were made before we started our research study. Our knowledge
on how feasible one can answer each question was at that point limited or non-existent.

How would one define a “fall” in terms of a fall detection system?

We have learned that the term “fall” is in fact vague in how it is used for most of existing re-
search studies about fall detection systems. What this means is that, most fall detection systems
have not properly defined the types of falls they have used, usually only simulating directional
falls. This in itself does not need to bad though. If the goal is only to compare a number of
algorithms against each other then this is completely fine. When one, however, makes a fall de-
tection system for a specific group, e.g. elderly people, and based their system on a few generic
fall simulations, then the resulting system will mostly be unreliable. Thus, if one aims to make
a fall detection system for a specific group of users, it is better to use real fall data from the
targeted users. In cases where this is not possible, then proper simulation of expected falls from
that group should be done instead.

Further, we have learned that there are actually several group of users that falls under fall-risk
groups. As far as we are concerned, it is primarily only the elderly population that current fall
detection systems target.

Section 2.1 explains the most important factors to be considered when one is making a fall
detection system. These factors are the type of falls, the cause of falls, the mechanics and phases
of a fall and different fall-risk groups

For our own system, section 3.1 answers how we have defined a fall. We have not assumed
any targeted group of users as we had to limit our research focus to investigating if a smartphone
could be a good fall detection system.

Is it possible to make a pervasive, reliable and effective fall detection system that could be
adaptable for different types of user?

We are redefining this question to be: Will a smartphone prove to be a pervasive, reliable, effec-
tive fall detection system that could be adaptable for different user?
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The nature of mobile phones already support pervasiveness and adaptability. By making the
fall detection system a mobile phone application, i.e. app, it can then be easily spread to anyone
with mobile phone. While it is true that we programmed our system in Android systems, transla-
ting the application to other platforms should not be that tedious of a task as long as you already
set-up the threshold levels and still have the results from the experiment.

Since we have not configured our system to cope for different users, we were not able to test
adaptability of the system for different users. Based on our experiment though, we see that one
can at least change the sensitivity level of the system based on how active the user is. The more
active a person is, the less sensitive should the system be, i.e. it should not confuse running or
jumping as a fall. Full adaptability is something a bit more complicated and will be presented in
the next chapter.

For the chosen algorithms and the system that we ended up with, we could say that it is not
reliable since among the 3 algorithms, the best one only showed 43.3% sensitivity. This is inspite
of the specificity being in a very good level. It is true though, that this result was affected negati-
vely by the unforseen complications we have outlined in the last chapter. The system’s reliability
is poor mostly because of the implemented algorithms. This is not the same as saying that smart-
phones in general are unreliable fall detection systems. They do have their own flaws though.

A smartphone in itself is not a suitable platform to be used for falling as most of them are
fragile. In our experiment, the phones were exposed to forces they were not intended to handle.
We have learned that it is better to have the phone in a protective casing and also in a fixed
location. Although this might stigmatize the user and will beat the purpose of being able to use
a fall detection system as how one normally would use a mobile phone, this will still increase its
reliability and performance. Protective casing should also have been used in the training phase,
i.e. data gathering phase of the experiment or alternatively use a more robust accelerometers
which could tolerate falls, and just normalize the data later to be used on a mobile phone.

While reliability of the system goes to the sensitivity and specificity of a system, effectiveness
is what a system does after sensing a fall. In this case, it is very effective if it senses a fall. The
phone already has built in communication means and does not rely on a base station. It is also
not limited to just use one connectivity means. The phone also only monitors one user at a time.
The data noise one can get, is if the phone is loosely attached to the user. This is easily fixed
by using straps. Some users will not like this because the system becomes more intrusive, while
others will not mind this at all.

We conclude that most mobile phones, saved some which are specially made for physically
active users, are just not designed to tolerate hard impacts. One can alleviate this by using pro-
tective casings, but this does not promise complete protection. If the cost of saving money by
using a fall detection system in a smartphone than the more expensive commercial products,
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outweighs the cost of breaking the phone after several falls, then investing in this kind of system
is justified. This means that a fall detection system made in a mobile phone is probably most
useful for when the target group is not expected to fall too often, e.g. outdoor adventurers or
healthy elderly people below 70. Also, if one has already a smartphone that can run the appli-
cation, then investing in it should be cheaper than the alternative, but if one decides to buy a
smartphone only to use its fall detection capabilities, then this might be not that good of an idea.
Lastly, mobile phone based fall detection systems are still the best (and probably the only) alter-
native for fall detection system that can be used outdoors - this in itself is a form of adaptability.

What is the best algorithm and/or approach for detecting fall?

As we cannot compare all known approaches and algorithms that can be used in making a
fall detection system, we are redefining this question to be: Given the three accelerometer-based
algorithms in section 3.5, which is the best one?

Both in using the system against actual people and dummies and in the different types of
falls, algorithm 1 performed the best.

In section 5.1 we stated that most lateral falls on either left or right side, did not produce an
alarm in any of the 3 algorithms, and that this was probably because of some internal hardware
flaw of the device. While we still believe that, it is also possible that the algorithm is just not sui-
ted to detect lateral falls very well. Most of the volunteers in the testing phase, even when asked
to do a stick fall, would still bend or do some form of flexion when doing the lateral falls. The
profiling algorithm only measures acceleration change and not orientation or posture change, so
we have enough reason to think that also the algorithm is just not strong if a lateral “non-stick”
fall occurs.

As a last note, we ought to mention that from our literature study, it appears that combination
of gyroscope and accelerometers as well as including all phases of a fall for fall detection, is possi-
bly the best approach. By using both accelerometers and gyroscopes, one can accurately measure
(and recreate) the 6-degree freedom of movement, i.e. 1) going up and down in the Y-axis, 2)
going left and right in the X-axis, 3) going forward(front) and backward(back) in the Z-axis, 4)
rotation on the vertical axis (yaw), 5) rotation in the lateral axis (pitch) and 6) rotation on the
longitudinal axis (roll). Simply put, it will be able to accurately measure all kinds of movement
a human person can do. Also in chapter 3, we presented our concrete approach for making a
system. This is partly based on the fact that we believed that approach to be our best option for
this study. Finally, an approach or a system for detecting fall might be good for a group of people
and circumstances but not for the other. It is up to the developers team to properly assess and
define these circumstances and group of people and then decide which approach to use.

What constitute to be a good fall detection system?
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Section 2.5 provides details on how one can evaluate a fall detection system. This evaluation
is objective in its nature. Sensitivity says the ability of a system to detect falls, while specificity is
the ability of the system to only detect falls.

Given that the targeted users as well as the use-area of the system are defined, a perfect sys-
tem will give 100 % on both sensitivity and specificity. So far no system has achieved this, saved
some few which only performed a limited list of falls and ADLs in a controlled environment. As a
sort of rule of thumb, anything above 90% is still considered to be good. The lower these values
become, the less reliable a system becomes.

Sensitivity and specificity need to be both taken into consideration in evaluating a system,
but sensitivity should be given more priority.

A more subjective evaluation of a fall detection system can also be added. This will be briefly
mentioned in the future work chapter.

We have also provided the readers how we concretely evaluated and tested the system we
have made in chapters 3 and 4.

Other conclusions and realization after the study

Since there are many risk factors associated with falls, we conclude that there are also many
different groups of people (and not just the elderly) that suffer from falling. Each of these groups
might show a different type of falls in terms of fall patterns, behavior and physics.

A fall detection system might suit for one person but not for the other. This all depends on
the circumstances, type of user and the user’s preferences.

Fall experiments are very difficult. Consider the following. There are a total of 19 different
fall scenarios for elderly people. These falls should be simulated at least 3 times each. If one also
considers doing the fall scenarios on different surface, e.g. soft vs hard surface, then for every
volunteer he or she needs to simulate at least 19x3x2 (=114) falls. If the system assumes several
targeted users, to offer adaptability, then different sets of fall scenarios are added. This is so far
only the fall simulations. ADLs and non-fall activities are also to be simulated.
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7 Future Work

In our study we have only used and tested 3 specific acceleration-based algorithms implemented
in a smart phone. Section 2.4 provides other concrete acceleration-based algorithms which all
can be tested and implemented in a smartphone. They can be used as they are presented or just
use them as a basis for an improved algorithm. This is something that could be looked at in the
future.

Although our chosen algorithms performed poorly, we cannot conclude that it is in general
this type of algorithm that is bad, because of the problems and complications we have had. One
ought to look at them one more time, provided better resources in the form of participants,
equipments and time.

Also, still within the boundaries of a smartphone, we suggest looking at a comparison for a
system that uses gyroscope+accelerometer, just gyroscope, and just accelerometer, and if time
constraints still permits it, a combination with magnetometers too.

We have stated that a smartphone provides many possibilities and yet we have barely used its
potential. One can make a location-aware fall detection system, so that also the user’s location
will be sent in the outgoing alert message. One can also look at if sending a photo and audio
recording as part of the outgoing alert message, would also provide better context to assess the
situation of the user and see the severity of a fall. Since one can connect a phone to a more
powerful stationary computer, e.g. via bluetooth, one can for example perform a more advanced
machine learning algorithm in the PC if the user is indoors. If the user goes outdoors, the mobile
device shifts to a more resource saving system in the mobile phone itself.

If one has managed to implement location-aware system as well as context through picture
and sound, one can proceed to make a fully context-aware fall detection system. This means that
the system will adjust its thresholds and thus sensitivity depending on the context. Context can
be about the user - i.e. the user’s height, weight, body mass, age, gender, activeness, risk group -
location, time, or other factors that can affect falls as described in section 2.1. This is a very am-
bitious and large study though. One first need to investigate if these contexts do in fact affect the
way a person falls. The research group needs to find the relationship between a person’s profile
(e.g. age, height, weight) and the measured data. A system like this will give full adaptability for
different users.

A better more unified framework for both experimental set-up as well as evaluation of fall
detection system is also needed. The purpose of the framework is to provide uniformity and
standard for evaluation of all fall detection systems. The problem with today’s evaluation, is that
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even if a research group say that they have achieved a 100% in sensitivy or specificity, we have
no way in knowing if they have sufficient and realistic enough activity and fall scenarios unless
we thoroughly study their work. It is even worse for commercial products where tests are rarely
published. The number of times each activity or fall is tested varies much too. This is also true
for the number of participants as well as if the participants represent the targeted group of the
system (or perhaps even the general population) well.

[4] suggests one framework, but we think that this could be improved and be more detailed.
The framework should also be divided into an objective evaluation, much like what we have
done - testing the sensitivity and specificity through controlled testing and continuous daily use.
The second part is a subjective evaluation in the form of surveys and interviews of actual users
of the system as well as anyone affected by the system, e.g. the user’s family or health care provi-
der. The subjective evaluation could show what kind of user will prefer what kind of system, e.g.
wearable vs. ambiance. The GUI interface or else design of the system can be tested through the
subjective evaluation too. The feedback from this evaluation can further help improve the design
of the system.

Research in accidental falls (see section 2.1) needs to be better addressed, i.e. fall simulations
that includes trip and fall, slip and fall and so on and so forth.

62



Fall Detection Using a Smartphone

Bibliography

[1] C, T. & D, S. 2004. What are the main risk factors for falls among older people and
what are the most effective interventions to prevent these falls? Available in“http://www.
euro.who.int/__data/assets/pdf_file/0018/74700/E82552.pdf” by the World Health
Organization, Last Visited at 01-07-2011.

[2] Center for Disease Control, P., for Injury Prevention, N. C., & Control. 2010. Falls among
older adults. “http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.
html”. Last Visited at 01-07-2011.

[3] Yoshida, S. 2007. A global report on falls prevention epidemiology of falls. Avai-
lable in“http://www.who.int/ageing/projects/1.Epidemiologyoffallsinolderage.
pdf” by the World Health Organization, Last Visited at 01-07-2011.

[4] Noury, N., Rumeau, P., Bourke, A., ÓLaighin, G., & Lundy, J. 2008. A proposal for the
classification and evaluation of fall detectors. IRBM, 29(6), 340 – 349.

[5] Charles Brown, Carol Lehtola, W. J. B. 2009. Preventing injuries from slips, trips and falls.
Available in“http://edis.ifas.ufl.edu/as042” by the University of Florida, Last Visited
at 01-07-2011.

[6] Stalenhoef, P. A., and. J André Knottnerus and. Luc P de Witteb, J. P. D., & Crebolder,
H. F. 2000. The construction of a patient record-based risk model for recurrent falls among
elderly people living in the community. Available in“http://fampra.oxfordjournals.
org/content/17/6/490.abstract” by Oxford University, Last Visited at 01-07-2011.

[7] Zhang, T., Wang, J., Liu, P., & Hou, J. 2006. Fall detection by embedding an accelerometer
in cellphone and using kfd algorithm. In International Journal of Computer Science and
Network Security, Vol. 6 no. 10 pp 227–284.

[8] Dai, J., Bai, X., Yang, Z., Shen, Z., & Xuan, D. 29 2010. Perfalld: A pervasive fall detec-
tion system using mobile phones. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Conference on.

[9] Li, Q., Stankovic, J., Hanson, M., Barth, A., Lach, J., & Zhou, G. 2009. Accurate, fast fall
detection using gyroscopes and accelerometer-derived posture information. In Wearable
and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on,
138 –143.

[10] Bourke, A., van de Ven, P., Gamble, M., O’Connor, R., Murphy, K., Bogan, E., McQuade,
E., Finucane, P., ÓLaighin, G., & Nelson, J. 2010. Evaluation of waist-mounted tri-axial
accelerometer based fall-detection algorithms during scripted and continuous unscripted
activities. Journal of Biomechanics, 43(15), 3051 – 3057.

63

http://www.euro.who.int/__data/assets/pdf_file/0018/74700/E82552.pdf
http://www.euro.who.int/__data/assets/pdf_file/0018/74700/E82552.pdf
http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html
http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html
http://www.who.int/ageing/projects/1.Epidemiology of falls in older age.pdf
http://www.who.int/ageing/projects/1.Epidemiology of falls in older age.pdf
http://edis.ifas.ufl.edu/as042
http://fampra.oxfordjournals.org/content/17/6/490.abstract
http://fampra.oxfordjournals.org/content/17/6/490.abstract


Fall Detection Using a Smartphone

[11] Yu, X. 2008. Approaches and principles of fall detection for elderly and patient. In e-health
Networking, Applications and Services, 2008. HealthCom 2008. 10th International Conference
on, 42 –47.

[12] Ng, S., Fakih, A., Fourney, A., Poupart, P., & Zelek, J. 2009. Towards a mobility diagnostic
tool: Tracking rollator users’ leg pose with a monocular vision system. In Engineering in
Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the
IEEE, 1220 –1225.

[13] Perry, J., Kellog, S., Vaidya, S., Youn, J.-H., Ali, H., & Sharif, H. 2009. Survey and evaluation
of real-time fall detection approaches. In High-Capacity Optical Networks and Enabling
Technologies (HONET), 2009 6th International Symposium on, 158 –164.

[14] Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., & Lundy, J. 2007. Fall
detection - principles and methods. In Engineering in Medicine and Biology Society, 2007.
EMBS 2007. 29th Annual International Conference of the IEEE, 1663 –1666.

[15] Ketabdar, H. Detecting physical shock by a mobile phone and its applications in security
and emergency.

[16] Degen, T. & Jaeckel, H. 2003. Speedy: a fall detector in a wrist watch. In In Proceedings.
Seventh IEEE International Symposium on Wearable Computing, 184–189.

[17] Popescu, M., Li, Y., Skubic, M., & Rantz, M. 2008. An acoustic fall detector system that
uses sound height information to reduce the false alarm rate. In Engineering in Medicine
and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE,
4628 –4631.

[18] Bourke, A. & Lyons, G. 2008. A threshold-based fall-detection algorithm using a bi-axial
gyroscope sensor. Medical Engineering Physics, 30(1), 84 – 90.

[19] Aud, M. A., Abbott, C. C., Tyrer, H. W., Neelgund, R. V., Shriniwar, U. G., Mohammed, A.,
& Devarakonda, K. K. 2010. Smart carpet: Developing a sensor system to detect falls and
summon assistance. J Gerontol Nurs, 36(7), 8–12.

[20] Alwan, M., Rajendran, P., Kell, S., Mack, D., Dalal, S., Wolfe, M., & Felder, R. 0 2006. A
smart and passive floor-vibration based fall detector for elderly. In Information and Com-
munication Technologies, 2006. ICTTA ’06. 2nd.

[21] A. Sixsmith, N. Johnson, & R. Whatmore. 2005. Pyroelectric ir sensor arrays for fall
detection in the older population. J. Phys. IV France, 128, 153–160.

[22] Bourke, A., O’Brien, J., & Lyons, G. 2007. Evaluation of a threshold-based tri-axial accele-
rometer fall detection algorithm. Gait Posture, 26(2), 194 – 199.

[23] Tzeng, H.-W., Chen, M.-Y., & Chen, J.-Y. 2010. Design of fall detection system with floor
pressure and infrared image. In System Science and Engineering (ICSSE), 2010 International
Conference on, 131 –135.

64



Fall Detection Using a Smartphone

[24] Salomon, R., Luder, M., & Bieber, G. 29 2010-april 2 2010. ifall - a new embedded system
for the detection of unexpected falls. In Pervasive Computing and Communications Work-
shops (PERCOM Workshops), 2010 8th IEEE International Conference on, 286 –291.

[25] Mitja, L. & Bostjan, K. Fall detection and recognition with machine lear-
ning. Technical report, Jožef Stefan Institute, Department of Intelligent Sys-
tems, 2009. “http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_
recognition_with_machine_learning-Informatica-09.pdf”, Last Visited at 01-07-
2011.

[26] Ralhan, A. S. A study on machine learning algorithms for fall detection and movement
classification. Master’s thesis, University of Saskatchewan, “http://library2.usask.ca/
theses/available/etd-12222009-144628/”, 2009. Last Visited at 01-07-2011.

[27] Caruana, R. & Niculescu-mizil, A. 2006. An empirical comparison of supervised learning
algorithms. In In Proc. 23 rd Intl. Conf. Machine learning (ICML06), 161–168.

[28] Caruana, R., Karampatziakis, N., & Yessenalina, A. 2008. An empirical evaluation of su-
pervised learning in high dimensions. In In International Conference on Machine Learning
(ICML), 96–103.

[29] Lindemann, U., Hock, A., Stuber, M., Keck, W., & Becker, C. 2005. Evaluation of a fall
detector based on accelerometers: a pilot study. Med Biol Eng Comput, 43(5), 548–51.

[30] Jantaraprim, P., Phukpattaranont, P., Limsakul, C., & Wongkittisuksa, B. may 2010. Im-
proving the accuracy of a fall detection algorithm using free fall characteristics. In Electri-
cal Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-
CON), 2010 International Conference on, 501 –504.

[31] Kangas, M., Konttila, A., Lindgren, P., Winblad, I., & Jämsä, T. 2008. Comparison of low-
complexity fall detection algorithms for body attached accelerometers. Gait Posture, 28(2),
285 – 291.

[32] Nguyen, T.-T., Cho, M.-C., & Lee, T.-S. sept. 2009. Automatic fall detection using wearable
biomedical signal measurement terminal. In Engineering in Medicine and Biology Society,
2009. EMBC 2009. Annual International Conference of the IEEE, 5203 –5206.

[33] Salomon, R., Lux0308 andder, M., & Bieber, G. july 2010. ifall - case studies in unexpected
falls. In Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 1645 –1650.

[34] 2011. Survival store. Available in “http://survivalstore.com/r6s15lcb2.html”, Last
Visited at 01-07-2011.

[35] 2011. Alert 1. Available in “http://www.alert-1.com/”, Last Visited at 01-07-2011.

[36] 2011. Hjelp 24. Available in “http://www.hjelp24.no/alarmsentral/”, Last Visited at
01-07-2011.

65

http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_machine_learning-Informatica-09.pdf
http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_machine_learning-Informatica-09.pdf
http://library2.usask.ca/theses/available/etd-12222009-144628/
http://library2.usask.ca/theses/available/etd-12222009-144628/
http://survivalstore.com/r6s15lcb2.html
http://www.alert-1.com/
http://www.hjelp24.no/alarmsentral/


Fall Detection Using a Smartphone

[37] 2011. Securitas. Available in “http://www.securitas.com/no/no/Kundesegmenter/
Helse-og-omsorg/”, Last Visited at 01-07-2011.

[38] 2011. ilife. Available in “http://www.ilifesolutions.com/products.html”, Last Visited
at 01-07-2011.

[39] 2011. Brickhouse. Available in “http://www.brickhousealert.com/howitworks.html”,
Last Visited at 01-07-2011.

[40] 2011. Seekwellness. Available in “http://www.seekwellness.com/LPs/fall-alarms.
htm”, Last Visited at 01-07-2011.

[41] 2011. Tunstall. Available in “http://www.tunstall.co.uk/Products-and-services/
Product-overview-”, Last Visited at 01-07-2011.

[42] 2011. Fall alert. Available in “http://www.macworld.com/appguide/app.html?id=
416637&expand=false”, Last Visited at 01-07-2011.

[43] 2011. Mover. Available in “http://www.androidzoom.com/android_applications/
health/mover-m_nly.html”, Last Visited at 01-07-2011.

[44] 2011. Cradar. Available in “http://actionxl.com/CRADAR.html”, Last Visited at 01-07-
2011.

[45] Boyle, J. & Karunanithi, M. 2008. Simulated fall detection via accelerometers. In En-
gineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE, 1274 –1277.

[46] Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., & Campbell, A. sept. 2010. A
survey of mobile phone sensing. Communications Magazine, IEEE, 48(9), 140 –150.

[47] 2011. Android. Available in “www.android.com”, Last Visited at 01-07-2011.

[48] Hansen, T. R., Eklund, J. M., Sprinkle, J., Bajcsy, R., & Sastry, S. 2005. Using smart sensors
and a camera phone to detect and verify the fall of elderly persons. In In European Medicine,
Biology and Engineering Conference.

[49] 2011. Oppenoffice:calc. Available in “http://www.openoffice.org/product/calc.
html”, Last Visited at 01-07-2011.

[50] 2011. Labview. Available in “http://www.ni.com/labview/whatis/”, Last Visited at 01-
07-2011.

[51] Bourke, A. K., O’Donovan, K. J., Nelson, J., & OLaighin, G. M. aug. 2008. Fall-detection
through vertical velocity thresholding using a tri-axial accelerometer characterized using
an optical motion-capture system. In Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of the IEEE, 2832 –2835.

66

http://www.securitas.com/no/no/Kundesegmenter/Helse-og-omsorg/
http://www.securitas.com/no/no/Kundesegmenter/Helse-og-omsorg/
http://www.ilifesolutions.com/products.html
http://www.brickhousealert.com/howitworks.html
http://www.seekwellness.com/LPs/fall-alarms.htm
http://www.seekwellness.com/LPs/fall-alarms.htm
http://www.tunstall.co.uk/Products-and-services/Product-overview-
http://www.tunstall.co.uk/Products-and-services/Product-overview-
http://www.macworld.com/appguide/app.html?id=416637&expand=false
http://www.macworld.com/appguide/app.html?id=416637&expand=false
http://www.androidzoom.com/android_applications/health/mover-m_nly.html
http://www.androidzoom.com/android_applications/health/mover-m_nly.html
http://actionxl.com/CRADAR.html
www.android.com
http://www.openoffice.org/product/calc.html
http://www.openoffice.org/product/calc.html
http://www.ni.com/labview/whatis/


Fall Detection Using a Smartphone

[52] Bourke, A., O’Donovan, K., & ÓLaighin, G. 2008. The identification of vertical velocity pro-
files using an inertial sensor to investigate pre-impact detection of falls. Medical Engineering
Physics, 30(7), 937 – 946.

67





Fall Detection Using a Smartphone

A Fall Scenarios

1) Forward Fall Like a Stick

2) Backward Fall Like a Stick

3) Lateral “Stick” Fall to the Left

4) Lateral “Stick” Fall to the Right
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5) Forward Fall Collapse
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B ADLs and Non-fall Activities

1)From a standing position, sit down (normal speed) on chair. Remain sitting for 5 sec then stand
up.

2)From standing position, sit down (normal speed) on the floor . Remain sitting for 5 sec then
stand-up.

3)From standing position, bend-down and pick-up item on the floor. Rise-up.
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4)From standing position kneel down and remain kneeling for 5 sec then rise-up.

5)From standing position, quickly sit down on a chair. Stay seated for 5 sec then rise up qui-
ckly.
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6)From standing position, quickly fall down facing the floor. Assume the position of someone
who will do push-up. Remain in that position for 5 sec. Do 3-5 push-ups. Quickly rise up.

7)From standing position lie down on the floor and remain lying there for 5 sec. Rotate 180
degrees so you are facing the ground. Stay on that position for 5 sec.

Rotate 180 degrees to go back to original position. Assume sit-up position and remain in that
position for 5 sec. Do 3-5 sit-ups and stand up right after.
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8)From standing position, kick (normal speed) a punching bag. Remain standing for 5 sec.
Kick the bag again (fast/hard).

9)Mount the bicycle and start cycling and do so for 5 sec.

10)From point A, walk (normal speed) to point B (approximately 8-10m).

74



Fall Detection Using a Smartphone

11)From standing position, lie down on table and remain lying there for 5 sec then stand-up.

12)Climb up on the platform(table in this case). And remain standing there for 5 sec.

Jump down from the platform.

75



Fall Detection Using a Smartphone

13)From standing position, jump up vertically.

14)From standing position, start to run from point A to point B. Upon reaching point B and
without stopping your momentum, jump as high and as far as you can.

15)Run from point A to point B.

16)From standing position, walk (normal speed) up the stairs. Wait 5 sec on top of the stairs
then walk down. Remain standing for 5 sec.
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From standing position, run-up the stairs. Wait 5 sec on the top of the stairs then run down.

17)From point A, jog all the way to point B.
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C Codes

C.1 FallDetection.java

package falldetection.hig.no;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.os.PowerManager;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;

public class FallDetection extends Activity{

private static final String TAG = "Main";
private static final boolean debug = true;

private static EditText telephone;
private static EditText email;
private static RadioGroup sex;
private static RadioGroup sensitivity;
private static Button monitor;
private static Button close;
private ComponentName service;

public static Boolean serviceStarted;

private PowerManager pm;
private PowerManager.WakeLock w1;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
if (debug==true) Log.i(TAG, "oncreate started");
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super.onCreate(savedInstanceState);
setContentView(R.layout.main);

telephone = (EditText) findViewById(R.id.telephone);
email = (EditText) findViewById(R.id.email);
sensitivity = (RadioGroup) findViewById(R.id.sensitivity);
monitor = (Button) findViewById(R.id.monitor);
close = (Button) findViewById(R.id.close);
serviceStarted = false;

pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
w1 = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, TAG);

if (debug==true) Log.i(TAG, "oncreate finished");
}

@Override
protected void onResume()
{

if (debug==true) Log.i(TAG, "onResume started");

super.onResume();

if (debug==true) Log.i(TAG, "onResume finished");
}

@Override
public void onRestart() {
if (debug==true) Log.i(TAG, "onRestart started");

super.onRestart();

if (debug==true) Log.i(TAG, "onRestart finisehd");
}

@Override
protected void onPause()
{
if (debug==true) Log.i(TAG, "onPause started");
super.onPause();
/*unbindService(authConnection);*/
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if (debug==true) Log.i(TAG, "onPause finished");
}

@Override
protected void onStop(){

if (debug==true) Log.i(TAG, "onStop started");

super.onStop();

if (debug==true) Log.i(TAG, "onStop finished");
}

@Override
public void onBackPressed() {
// do something on back.
return;
}

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent data){
if (debug==true) Log.i(TAG, "onActivityResult started");

if (debug==true) Log.i(TAG, "onActivityResult finished");
}

@Override
protected void onDestroy(){

if (debug==true) Log.i(TAG, "onDestroy started");
//stopService(new Intent(this, SensorService.class));
super.onDestroy();
this.finish();
if (debug==true) Log.i(TAG, "onDestroy finished");
}

/*@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
savedInstanceState.putString(key, value);

}*/

public void close(View v){
if (debug==true) Log.i(TAG, "close");
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this.finish();
}

public void startMonitor(View v){
if (debug==true) Log.i(TAG, "startMonitor");

if(serviceStarted == true)
{

if (debug==true) Log.i(TAG, "service stopped");

new Thread(new Runnable() {
public void run() {

serviceStarted = false;
//cs.stopCollecting();
stopService(new Intent(FallDetection.this, SensorService3.class));
stopService(new Intent(FallDetection.this, SensorService2.class));
stopService(new Intent(FallDetection.this, SensorService.class));
if (w1.isHeld()) w1.release();

}
}).start();

monitor.setText("Start Monitoring");
}
else
{
if (debug==true) Log.i(TAG, "service started");

new Thread(new Runnable() {
public void run() {

serviceStarted = true;
if (!w1.isHeld()) w1.acquire();
startService(new Intent(FallDetection.this, SensorService3.class));
startService(new Intent(FallDetection.this, SensorService2.class));
startService(new Intent(FallDetection.this, SensorService.class));

}
}).start();

monitor.setText("Stop Monitoring");
}

82



Fall Detection Using a Smartphone

if (debug==true) Log.i(TAG, "startMonitor finished");
}

}

C.2 SensorService.java

package falldetection.hig.no;

import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import android.app.Service;

import android.content.Context;
import android.content.Intent;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Binder;
import android.os.IBinder;
import android.util.Log;

/**
*
* @author Ian James Daniel Gonzales
* v1.3
* This service uses algorithm 3
* and with inactivity detection of at least 0.5 sec.
*/

public class SensorService extends Service{

private static final String tag = "Service";
private static final boolean debug = true;

/*Default thresholds */
//private static final float UFT_max = 29.462866;
private static final float UFT_min = (float) 15.7600;
//private static final float LFT_max_low = (float) 8.0335653;
private static final float LFT_max = (float) 8.7300;
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//private static final float LFT_min = 1.3408;
//private static final float ori_max = 158.0417;
private static final float ori_min = (float) 48.3900;
//private static final long time_delay_max = 1994180;
//private static final long time_delay_min = 524195;
private static final long tre_max = 313000;
private static final long tre_min = 40900;

/*Sensitive setting threshold*/
/*private static final float UFT_sensitive_min = 15.4099;
private static final float LFT_sensitive_max = 8.7308;
private static final float ori_sen_min = 45.6950;
private static final long time_delay_sen_max = 349130;
private static final long time_delay_sen_min = 2083468;*/

/*private static float []x;
private static float []y;
private static float []z;
private static float []rss;
private static float []orientation;*/
private static float curr_rss;
private static float prev_rss;
private static float curr_x;
private static float prev_x;
private static float curr_y;
private static float prev_y;
private static float curr_z;
private static float prev_z;
private static float curr_ori;
private static float prev_ori;
private static int counter;
private static int counter_2;
private static long timestamp_fall_detected, LFT_timestamp, UFT_timestamp;

private static Vector lft_timestamps;
private static SensorManager sm;
private static List<Sensor> sensorAcc;
private static SensorListener sl;

private static boolean isRunning = false;
public static boolean aboveAccThreshold = true;
private static boolean detectedFall = false;
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private static boolean LFT_exceeded = false;
private static boolean UFT_exceeded = false;
//private static boolean limbo = false;
//private static boolean curr_on, prev_on = false;

public SensorService() {
super();
if (isRunning == false) {
isRunning = true;
}
}

@Override
public void onCreate(){
if (debug==true) Log.i(tag, "onCreate");

counter=0;
counter_2=0;
timestamp_fall_detected=0;

curr_rss = 0;
prev_rss = 0;
curr_x = 0;
prev_x = 0;
curr_y = 0;
prev_y = 0;
curr_z = 0;
prev_z = 0;
curr_ori = 0;
prev_ori = 0;

super.onCreate();
}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
if (debug==true) Log.i(tag, "onStartCommand");

sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
sensorAcc = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);
sl = new SensorListener(this);
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if(sensorAcc.size() > 0)
{
Sensor sensor = sensorAcc.get(0);
sm.registerListener(sl, sensor, SensorManager.SENSOR_DELAY_NORMAL);
}

return super.onStartCommand(intent,flags,startId);
}

@Override
public void onDestroy() {
if (debug==true) Log.i(tag, "onDestroy");
sm.unregisterListener(sl, sensorAcc.get(0));
sm.unregisterListener(sl);
isRunning = false;
super.onDestroy();
}

/**
* Calculates the scalar product of two vectors
* @param a x-axis for vector 1
* @param b y-axis for vector 1
* @param c z-axis for vector 1
* @param d x-axis for vector 2
* @param e y-axis for vector 2
* @param f z-axis for vector 2
* @param rss1 size of vector 1
* @param rss2 size of vector 2
* @return angle in degrees
*/

float orientation(float a, float b, float c, float d, float e, float f, float rss1, float rss2){
float ori = (float) Math.toDegrees(Math.acos(((a*d)+(b*e)+(c*f))/(rss1*rss2)));
if(ori>=0.0) return ori;
else return (float) 0.0;
}

private class SensorListener implements SensorEventListener
{
SensorListener(Context context) {

}
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@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// TODO Auto-generated method stub

}

@Override
public void onSensorChanged(final SensorEvent se) {
new Thread(new Runnable() {
public void run() {
//if (FallDetection.serviceStarted == true){

if (se.sensor.getType()==Sensor.TYPE_ACCELEROMETER){

curr_x=se.values[0];
curr_y=se.values[1];
curr_z=se.values[2];
curr_rss=(float)Math.sqrt((curr_x*curr_x)+(curr_y*curr_y)+(curr_z*curr_z));

/* Orientation between position at timestamp x and timestamp(x-1) */
float ori = orientation(curr_x, curr_y, curr_z, prev_x, prev_y, prev_z, curr_rss, prev_rss);
curr_ori = ori;

prev_x = curr_x;
prev_y = curr_y;
prev_z = curr_z;
prev_rss = curr_rss;

if (debug==true) Log.i(tag, "status per tick:"+counter+":orientation:"+ori+":RSS:"+(curr_rss));

/* This part counts the inactivity period */
if ((ori<3) && (prev_ori<3)){
counter_2++;
if (debug==true) Log.i(tag, "orientation below 3:"+ori);
}else counter_2=0;

prev_ori = curr_ori;

/* An alarm is issued if a fall was detected followed by inactivity period */
if ((counter_2>3) && (((se.timestamp/1000)-timestamp_fall_detected)>520000 && ((se.timestamp/1000)-timestamp_fall_detected)<3500000) && detectedFall){
startActivity(new Intent(SensorService.this, Alert.class).setFlags(Intent.FLAG_ACTIVITY_NEW_TASK));
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if (debug==true) Log.i(tag, "new activity:"+((se.timestamp/1000)-timestamp_fall_detected)+":"+counter_2);

timestamp_fall_detected=0;
counter_2=0;
detectedFall = false;
}

/* LFT check */
if (curr_rss<=LFT_max && ori>=ori_min && UFT_exceeded==false){
if (debug==true) Log.i(tag, "Lower fall threshall exceeded");

if (LFT_exceeded==false){

lft_timestamps = new Vector(1, 1);
LFT_timestamp=(se.timestamp)/1000;

}

lft_timestamps.add((long)(se.timestamp)/1000);

LFT_exceeded = true;
if (debug==true) Log.i(tag, "LFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss);
}

/* UFT check */
if (curr_rss>=UFT_min && LFT_exceeded==true && ori>=5 ){
if (debug==true) Log.i(tag, "Upper fall threshold exceeded!");

UFT_exceeded = true;
UFT_timestamp=(se.timestamp)/1000;

Iterator it = lft_timestamps.iterator();

while(it.hasNext()){
Long tmp = (Long) it.next();
if (tmp != 0 && (UFT_timestamp-tmp) >= tre_min && (UFT_timestamp-tmp)<=tre_max) {
detectedFall = true;
timestamp_fall_detected = (se.timestamp)/1000;

if (debug==true) Log.i(tag, "Fall:" +":"+ori+"::"+curr_rss+ "::"+(UFT_timestamp-tmp));
}
}
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counter=0;
LFT_exceeded = false;
UFT_exceeded = false;

if (debug==true) Log.i(tag, "UFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss+":::"+(UFT_timestamp-LFT_timestamp));
}
}
}

}).start();

} // end onSensorChanged()
}

public class MyBinder extends Binder {
public SensorService getService() {
return SensorService.this;
}
}

@Override
public IBinder onBind(Intent arg0) {
// TODO Auto-generated method stub
return null;
}

}

C.3 SensorService2.java

package falldetection.hig.no;

import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import android.app.Service;

import android.content.Context;
import android.content.Intent;
import android.hardware.Sensor;
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import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Binder;
import android.os.IBinder;
import android.util.Log;

/**
*
* @author Ian James Daniel Gonzales
* v1.3
* This service uses algorithm 1
* and with inactivity detection of at least 0.5 sec.
*/

public class SensorService2 extends Service{

private static final String tag = "Service";
private static final boolean debug = true;

/*Default thresholds */
//private static final float UFT_max = 29.462866;
private static final float UFT_min = (float) 15.7600;
//private static final float LFT_max_low = (float) 8.0335653;
private static final float LFT_max = (float) 6.6700;
//private static final float LFT_min = 1.3408;
//private static final float ori_max = 158.0417;
private static final float ori_min = (float) 48.3900;
//private static final long time_delay_max = 1994180;
//private static final long time_delay_min = 524195;
private static final long tre_max = 366000;
private static final long tre_min = 102000;

/*Sensitive setting threshold*/
/*private static final float UFT_sensitive_min = 15.4099;
private static final float LFT_sensitive_max = 8.7308;
private static final float ori_sen_min = 45.6950;
private static final long time_delay_sen_max = 349130;
private static final long time_delay_sen_min = 2083468;*/

private static float curr_rss;
private static float prev_rss;
private static float curr_x;
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private static float prev_x;
private static float curr_y;
private static float prev_y;
private static float curr_z;
private static float prev_z;
private static float curr_ori;
private static float prev_ori;
private static int counter;
private static int counter_2;
private static long timestamp_fall_detected, LFT_timestamp, UFT_timestamp;

private static Vector lft_timestamps;

//private static PowerManager pm;
//private static PowerManager.WakeLock w1;
private static SensorManager sm;
private static List<Sensor> sensorAcc;
private static SensorListener sl;

private static boolean isRunning = false;
public static boolean aboveAccThreshold = true;
private static boolean detectedFall = false;
private static boolean LFT_exceeded = false;
private static boolean UFT_exceeded = false;
//private static boolean limbo = false;
//private static boolean curr_on, prev_on = false;

public SensorService2() {
super();
if (isRunning == false) {
isRunning = true;
}
}

@Override
public void onCreate(){
if (debug==true) Log.i(tag, "onCreate2");

counter=0;
counter_2=0;
timestamp_fall_detected=0;
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curr_rss = 0;
prev_rss = 0;
curr_x = 0;
prev_x = 0;
curr_y = 0;
prev_y = 0;
curr_z = 0;
prev_z = 0;
curr_ori = 0;
prev_ori = 0;

super.onCreate();
}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
if (debug==true) Log.i(tag, "onStartCommand2");

sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
sensorAcc = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);
sl = new SensorListener(this);

//pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
//w1 = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, tag);

if(sensorAcc.size() > 0)
{
Sensor sensor = sensorAcc.get(0);
sm.registerListener(sl, sensor, SensorManager.SENSOR_DELAY_NORMAL);
}

return super.onStartCommand(intent,flags,startId);
}

@Override
public void onDestroy() {
if (debug==true) Log.i(tag, "onDestroy2");
sm.unregisterListener(sl, sensorAcc.get(0));
sm.unregisterListener(sl);
isRunning = false;
super.onDestroy();
}
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/**
* Calculates the scalar product of two vectors
* @param a x-axis for vector 1
* @param b y-axis for vector 1
* @param c z-axis for vector 1
* @param d x-axis for vector 2
* @param e y-axis for vector 2
* @param f z-axis for vector 2
* @param rss1 size of vector 1
* @param rss2 size of vector 2
* @return angle in degrees
*/

float orientation(float a, float b, float c, float d, float e, float f, float rss1, float rss2){
float ori = (float) Math.toDegrees(Math.acos(((a*d)+(b*e)+(c*f))/(rss1*rss2)));
if(ori>=0.0) return ori;
else return (float) 0.0;
}

private class SensorListener implements SensorEventListener
{
SensorListener(Context context) {

}

@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// TODO Auto-generated method stub

}

@Override
public void onSensorChanged(final SensorEvent se) {
new Thread(new Runnable() {
public void run() {
//if (FallDetection.serviceStarted == true){

if (se.sensor.getType()==Sensor.TYPE_ACCELEROMETER){

curr_x=se.values[0];
curr_y=se.values[1];
curr_z=se.values[2];
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curr_rss=(float)Math.sqrt((curr_x*curr_x)+(curr_y*curr_y)+(curr_z*curr_z));

/* Orientation between position at timestamp x and timestamp(x-1) */
float ori = orientation(curr_x, curr_y, curr_z, prev_x, prev_y, prev_z, curr_rss, prev_rss);
curr_ori = ori;

prev_x = curr_x;
prev_y = curr_y;
prev_z = curr_z;
prev_rss = curr_rss;

if (debug==true) Log.i(tag, "2status per tick:"+counter+":orientation:"+ori+":RSS:"+(curr_rss));

/* This part counts the inactivity period */
if ((ori<3) && (prev_ori<3)){
counter_2++;
if (debug==true) Log.i(tag, "2orientation below 3:"+ori);
}else counter_2=0;

prev_ori = curr_ori;

/* An alarm is issued if a fall was detected followed by inactivity period */
if ((counter_2>3) && (((se.timestamp/1000)-timestamp_fall_detected)>520000 && ((se.timestamp/1000)-timestamp_fall_detected)<3500000) && detectedFall){
startActivity(new Intent(SensorService2.this, Alert2.class).setFlags(Intent.FLAG_ACTIVITY_NEW_TASK));

if (debug==true) Log.i(tag, "2new activity:"+((se.timestamp/1000)-timestamp_fall_detected)+":"+counter_2);

timestamp_fall_detected=0;
counter_2=0;
detectedFall = false;
}

/* LFT check */
if (curr_rss<=LFT_max && UFT_exceeded==false){
if (debug==true) Log.i(tag, "2Lower fall threshall exceeded");

if (LFT_exceeded==false){

lft_timestamps = new Vector(1, 1);
LFT_timestamp=(se.timestamp)/1000;

94



Fall Detection Using a Smartphone

}

lft_timestamps.add((long)(se.timestamp)/1000);

LFT_exceeded = true;
if (debug==true) Log.i(tag, "2LFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss);
}

/* UFT check */
if (curr_rss>=UFT_min && LFT_exceeded==true){
if (debug==true) Log.i(tag, "2Upper fall threshold exceeded!");

UFT_exceeded = true;
UFT_timestamp=(se.timestamp)/1000;

Iterator it = lft_timestamps.iterator();

while(it.hasNext()){
Long tmp = (Long) it.next();
if (tmp != 0 && (UFT_timestamp-tmp) >= tre_min && (UFT_timestamp-tmp)<=tre_max) {
detectedFall = true;
timestamp_fall_detected = (se.timestamp)/1000;

if (debug==true) Log.i(tag, "2Fall:" +":"+ori+"::"+curr_rss+ "::"+(UFT_timestamp-tmp));

}
}

counter=0;
LFT_exceeded = false;
UFT_exceeded = false;

if (debug==true) Log.i(tag, "2UFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss+":::"+(UFT_timestamp-LFT_timestamp));
}
}
}

}).start();

} // end onSensorChanged()
}
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public class MyBinder extends Binder {
public SensorService2 getService() {
return SensorService2.this;
}
}

@Override
public IBinder onBind(Intent arg0) {
// TODO Auto-generated method stub
return null;
}

}

C.4 SensorService3.java

package falldetection.hig.no;

import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import android.app.Service;

import android.content.Context;
import android.content.Intent;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Binder;
import android.os.IBinder;
import android.util.Log;
import android.widget.Toast;

/**
*
* @author Ian James Daniel Gonzales
* v1.3
* This service uses algorithm 2
* and with inactivity detection of at least 0.5 sec.
*/

96



Fall Detection Using a Smartphone

public class SensorService3 extends Service{

private static final String tag = "Service";
private static final boolean debug = true;

/*Default thresholds */
//private static final float UFT_max = 29.462866;
private static final float UFT_min = (float) 16.0800;
//private static final float LFT_max_low = (float) 8.0335653;
private static final float LFT_max = (float) 5.2600;
//private static final float LFT_min = 1.3408;
//private static final float ori_max = 158.0417;
private static final float ori_min = (float) 48.3900;
//private static final long time_delay_max = 1994180;
//private static final long time_delay_min = 524195;
private static final long tre_max = 366000;
private static final long tre_min = 41000;

/*Sensitive setting threshold*/
/*private static final float UFT_sensitive_min = 15.4099;
private static final float LFT_sensitive_max = 8.7308;
private static final float ori_sen_min = 45.6950;
private static final long time_delay_sen_max = 349130;
private static final long time_delay_sen_min = 2083468;*/

private static float curr_rss;
private static float prev_rss;
private static float curr_x;
private static float prev_x;
private static float curr_y;
private static float prev_y;
private static float curr_z;
private static float prev_z;
private static float curr_ori;
private static float prev_ori;
private static int counter;
private static int counter_2;
private static long timestamp_fall_detected, LFT_timestamp, UFT_timestamp;

private static Vector lft_timestamps;

//private static PowerManager pm;
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//private static PowerManager.WakeLock w1;
private static SensorManager sm;
private static List<Sensor> sensorAcc;
private static SensorListener sl;

private static boolean isRunning = false;
public static boolean aboveAccThreshold = true;
private static boolean detectedFall = false;
private static boolean LFT_exceeded = false;
private static boolean UFT_exceeded = false;
//private static boolean limbo = false;
//private static boolean curr_on, prev_on = false;

public SensorService3() {
super();
if (isRunning == false) {
isRunning = true;
}
}

@Override
public void onCreate(){
if (debug==true) Log.i(tag, "onCreate3");

counter=0;
counter_2=0;
timestamp_fall_detected=0;

curr_rss = 0;
prev_rss = 0;
curr_x = 0;
prev_x = 0;
curr_y = 0;
prev_y = 0;
curr_z = 0;
prev_z = 0;
curr_ori = 0;
prev_ori = 0;

super.onCreate();
}
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@Override
public int onStartCommand(Intent intent, int flags, int startId) {
if (debug==true) Log.i(tag, "onStartCommand3");

sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
sensorAcc = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);
sl = new SensorListener(this);

//pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
//w1 = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, tag);

if(sensorAcc.size() > 0)
{
Sensor sensor = sensorAcc.get(0);
sm.registerListener(sl, sensor, SensorManager.SENSOR_DELAY_NORMAL);
}

return super.onStartCommand(intent,flags,startId);
}

@Override
public void onDestroy() {
if (debug==true) Log.i(tag, "onDestroy3");
sm.unregisterListener(sl, sensorAcc.get(0));
sm.unregisterListener(sl);
isRunning = false;
super.onDestroy();
}

/**
* Calculates the scalar product of two vectors
* @param a x-axis for vector 1
* @param b y-axis for vector 1
* @param c z-axis for vector 1
* @param d x-axis for vector 2
* @param e y-axis for vector 2
* @param f z-axis for vector 2
* @param rss1 size of vector 1
* @param rss2 size of vector 2
* @return angle in degrees
*/

float orientation(float a, float b, float c, float d, float e, float f, float rss1, float rss2){

99



Fall Detection Using a Smartphone

float ori = (float) Math.toDegrees(Math.acos(((a*d)+(b*e)+(c*f))/(rss1*rss2)));
if(ori>=0.0) return ori;
else return (float) 0.0;
}

private class SensorListener implements SensorEventListener
{
SensorListener(Context context) {

}

@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// TODO Auto-generated method stub

}

@Override
public void onSensorChanged(final SensorEvent se) {
new Thread(new Runnable() {
public void run() {
//if (FallDetection.serviceStarted == true){

if (se.sensor.getType()==Sensor.TYPE_ACCELEROMETER){

curr_x=se.values[0];
curr_y=se.values[1];
curr_z=se.values[2];
curr_rss=(float)Math.sqrt((curr_x*curr_x)+(curr_y*curr_y)+(curr_z*curr_z));

/* Orientation between position at timestamp x and timestamp(x-1) */
float ori = orientation(curr_x, curr_y, curr_z, prev_x, prev_y, prev_z, curr_rss, prev_rss);
curr_ori = ori;

prev_x = curr_x;
prev_y = curr_y;
prev_z = curr_z;
prev_rss = curr_rss;

if (debug==true) Log.i(tag, "3status per tick:"+counter+":orientation:"+ori+":RSS:"+(curr_rss));
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/* This part counts the inactivity period */
if ((ori<3) && (prev_ori<3)){
counter_2++;
if (debug==true) Log.i(tag, "3orientation below 3:"+ori);
}else counter_2=0;

prev_ori = curr_ori;

/* An alarm is issued if a fall was detected followed by inactivity period */
if ((counter_2>3) && (((se.timestamp/1000)-timestamp_fall_detected)>520000 && ((se.timestamp/1000)-timestamp_fall_detected)<3500000) && detectedFall){
startActivity(new Intent(SensorService3.this, Alert3.class).setFlags(Intent.FLAG_ACTIVITY_NEW_TASK));

if (debug==true) Log.i(tag, "3new activity:"+((se.timestamp/1000)-timestamp_fall_detected)+":"+counter_2);

timestamp_fall_detected=0;
counter_2=0;
detectedFall = false;
}

/* LFT check */
if (curr_rss<=LFT_max && UFT_exceeded==false){
if (debug==true) Log.i(tag, "3Lower fall threshall exceeded");

if (LFT_exceeded==false){

lft_timestamps = new Vector(1, 1);
LFT_timestamp=(se.timestamp)/1000;

}

lft_timestamps.add((long)(se.timestamp)/1000);

LFT_exceeded = true;
if (debug==true) Log.i(tag, "3LFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss);
}

/* UFT check */
if (curr_rss>=UFT_min && LFT_exceeded==true){
if (debug==true) Log.i(tag, "3Upper fall threshold exceeded!");

UFT_exceeded = true;
UFT_timestamp=(se.timestamp)/1000;
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Iterator it = lft_timestamps.iterator();

while(it.hasNext()){
Long tmp = (Long) it.next();
if (tmp != 0 && (UFT_timestamp-tmp) >= tre_min && (UFT_timestamp-tmp)<=tre_max) {
detectedFall = true;
timestamp_fall_detected = (se.timestamp)/1000;

if (debug==true) Log.i(tag, "3Fall:" +":"+ori+"::"+curr_rss+ "::"+(UFT_timestamp-tmp));

}
}

counter=0;
LFT_exceeded = false;
UFT_exceeded = false;

if (debug==true) Log.i(tag, "3UFT:"+((se.timestamp)/1000)+":"+ori+"::"+curr_rss+":::"+(UFT_timestamp-LFT_timestamp));
}
}
}
//}
}).start();

} // end onSensorChanged()
}

public class MyBinder extends Binder {
public SensorService3 getService() {
return SensorService3.this;
}
}

@Override
public IBinder onBind(Intent arg0) {
// TODO Auto-generated method stub
return null;
}

}
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C.5 Alert.java

package falldetection.hig.no;

import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.Intent;
//import android.content.Intent;
import android.media.RingtoneManager;
import android.net.Uri;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.telephony.SmsManager;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
//import android.widget.Toast;
import android.widget.Toast;

public class Alert extends Activity{

private static final String tag = "Alert";
private static final boolean debug = true;

private boolean cancelled;
private CountDownTimer ct;
private TextView text;
private TextView alert_msg;
private Button alert_yes;
private Button alert_no;
private NotificationManager nm;

public void onCreate(Bundle savedInstanceState) {
if (debug==true) Log.i(tag, "Alert Activity Created");
super.onCreate(savedInstanceState);

this.runOnUiThread(new Runnable() {
public void run() {
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setContentView(R.layout.alert);

text = (TextView) findViewById(R.id.alert);
alert_msg = (TextView) findViewById(R.id.alert_msg);
alert_yes = (Button) findViewById(R.id.alert_yes);
alert_no = (Button) findViewById(R.id.alert_no);
cancelled =false;

ct = new CountDownTimer(20000, 1000){
@Override
public void onFinish() {

if (cancelled) finish();
else callHelp();

}

@Override
public void onTick(long millisUntilFinished) {
text.setText("Seconds Remaining: "+ millisUntilFinished/1000);
}

}.start();

Uri ringURI = RingtoneManager.getDefaultUri(RingtoneManager.TYPE_ALARM);
Notification notification = new Notification();
notification.sound = ringURI;
long[] vibrate = new long[] {0, 1000, 0, 1000, 0, 1000};
notification.vibrate= (vibrate);
nm = (NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);
nm.notify(1, notification);

}
});

if (debug==true) Log.i(tag, "Alert Activity Finished");
}

@Override
public void onDestroy(){
nm.cancel(1);
super.onDestroy();
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}

@Override
public void onResume(){
if (debug==true) Log.i(tag, "onResume created");

super.onResume();

if (debug==true) Log.i(tag, "onResume finished");
}

public void yesAlert(View v){
if (debug==true) Log.i(tag, "yesAlert");

cancelled = true;
ct.cancel();
ct = null;
finish();
}

public void noAlert(View v){
if (debug==true) Log.i(tag, "noAlert");

cancelled = false;
ct.cancel();
ct=null;
callHelp();

}

/*public void onStop() {
super.onStop();
}*/

public void callHelp(){
if (debug==true) Log.i(tag, "Call Help");

text.setText("Calling for assistance");

try {
SmsManager sm = SmsManager.getDefault();
// here is where the destination of the text should go
String number = "0047********";
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//String number = "0047********";
sm.sendTextMessage(number, null, "Emergency I fell!", null, null);

/*Code to make a phone call, currently disabled*/
//Intent callIntent = new Intent(Intent.ACTION_CALL);
//callIntent.setData(Uri.parse("tel:0047********"));
//startActivity(callIntent);

finish();
} catch (ActivityNotFoundException e) {

Log.e("helloandroid dialing example", "Call failed", e);
finish();

}

/*Code to make a send e-mail, currently disabled*/
/*Intent i = new Intent(Intent.ACTION_SEND);
i.setType("message/rfc822");
i.putExtra(Intent.EXTRA_EMAIL , new String[]{"some.user@email.com"});
i.putExtra(Intent.EXTRA_SUBJECT, "i fell");
i.putExtra(Intent.EXTRA_TEXT , "fall detected algorithm 1");
try {

startActivity(Intent.createChooser(i, "Send mail..."));
} catch (android.content.ActivityNotFoundException ex) {

Toast.makeText(Alert.this, "There are no email clients installed.", Toast.LENGTH_SHORT).show();
}*/

cancelled = true;

}
}
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