
Identification and Utilization of Contextual
Features Using Post-Filtering in an E-Commerce

Context-Aware Recommender System

Stian Lohna

Master’s Thesis
Master of Science in Media Technology

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2010

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Identification and Utilization of Contextual Features
Using Post-Filtering in an E-Commerce Context-Aware

Recommender System

Stian Lohna

1st July 2010

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Abstract

Recommender systems are systems that provide recommendations to a user based on informa-
tion gathered about that user or by finding other similar users. Only a few years ago, these
recommender systems were solely dependent on either explicit information given by the user or
implicitly gathered information such as user patterns- and actions. During these last few years
we have seen a slightly increased interest incorporating context within recommender systems in
order to provide better recommendations. There have been however, little or no contribution to
find those contextual features that are useful and relevant to recommender systems that operates
in an e-commerce setting. By exploiting more of the information that lies in the users’ context, it’s
possible to generate more personalized recommendations related to the context. For instance, if
a person at work visits an online store, the person might prefer getting work-related recommen-
dations compared to personal-related. Applying contextual features into recommender systems
could convert window-shoppers into buyers, increase cross-sell and customer satisfaction and
ultimately generate more revenues to the company. In addition, the consequences of using the
proposed contextual features in a fine-grained collection compared to a coarse-grained one will
be studied and analyzed.

To start on the task of finding relevant contextual features and how they can affect the fi-
nal recommendation outcome, a survey was conducted in companionship with one of Norway’s
biggest auction-based online stores, where over 35000 customers participated.

iii

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Preface

This Master thesis is the final work done at the Master in Media Technology study in the Faculty
of Computer Science and Media Technology at Gjøvik University College. The topic was found
during the first semester and was chosen because of high interest in electronic publishing and
web technologies.
I want to thank my supervisor Rune Hjelsvold for his encouragement and helpful guidance du-
ring the last semester when I was writing this thesis.
I would also like to thank the great people from Netthandelen.no AS for their collaboration with
the customer survey. I especially want to thank my good friend Espen Doknes for his active parti-
cipation and for making this opportunity possible. I would also like to thank the company’s owner
Einar Øgrey Brandsdal that accepted to have competition prizes to encourage the customers to
participate in the survey. Erik Jensen and Dag Øyvind Godtfredsen should also be thanked for
your constructive meetings. The last person from Netthandelen.no AS I want to thank is Ingvar
Orten for working overtime the evening before the survey launch. I hope you all liked the effect
the survey provided - the best Wednesday in your company’s history measured in income, custo-
mer visits and purchases.
And last, I want to thank my family for their support.

Stian Lohna, 1st July 2010

v

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Contents

Abstract . iii
Preface . v
Contents . vii
List of Figures . xi
List of Tables . xv
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 1
1.3 Problem description . 1
1.4 Justification, motication and benefits . 1
1.5 Research questions . 2

2 Choice of methods . 3
3 Related work . 5

3.1 Recommender Systems methods . 5
3.2 Context interpretation . 6
3.3 The search for contextual features . 6
3.4 Choosing an Collaborative Filtering algorithm . 7

3.4.1 The search . 7
3.4.2 The Weighted Slope One Scheme . 8

3.5 Implementation of contextual information in Recommender Systems 9
3.6 Measuring a Context-Aware Recommender System’s performance 9

4 Contextual features . 11
5 Survey prototype . 15

5.1 Justification of prototype development . 15
5.2 Planning and preparations . 15
5.3 Development . 16

6 Survey development . 19
6.1 Planning and preparations . 19
6.2 Reputation addon . 19
6.3 Survey walkthrough . 20
6.4 Optimalization . 21
6.5 Security . 22

7 Results . 25
7.1 Survey preparations and response . 25

7.1.1 Measures to increase the participation of the survey 25
7.1.2 Candidate selection . 25

vii

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7.1.3 Finding the best e-mail subject . 25
7.1.4 Participants . 26

7.2 Implementation of the Weighted Slope One algorithm 26
7.2.1 Precomputing Popularity Differentials . 26
7.2.2 Implementing Non-Personalized Recommendations 29
7.2.3 Implementing Personalized Recommendations 30

7.3 Non-contextualized recommandation performance 31
7.3.1 Setup and preparations . 31
7.3.2 Results . 33

7.4 Tag distribution over the contextual features . 35
7.4.1 Introduction . 35
7.4.2 Setup . 35
7.4.3 Raw data . 37
7.4.4 Theshold selection and filtered data . 38
7.4.5 Limitations . 40

7.5 Contextualized recommandation performance and outcome 44
7.5.1 Introduction . 44
7.5.2 The choice of post-filtering instead of pre-filtering or contextual modeling 44
7.5.3 Setup . 45
7.5.4 Isolated scenarios . 47
7.5.5 Combined scenarios . 49

8 Discussion . 53
8.1 Introduction . 53
8.2 Contextual features and their relevance . 54
8.3 Granularity level in contextual features and its impact 58

9 Conclusion . 61
10 Further work . 63
Bibliography . 65
A Appendix . 69

A.1 The survey website pages . 69
A.2 Weighted Slope One prediction performance . 72
A.3 Total tags and unique products . 72

A.3.1 Unfiltered . 72
A.3.2 Filtered . 74
A.3.3 Unfiltered tags . 76
A.3.4 Filtered tags . 77
A.3.5 Exclusive classifications . 78
A.3.6 Contextualized post-filtering performance 79
A.3.7 Unique products vs minimum tag count 80
A.3.8 Contextualized recommendation performance 81

A.4 Source code snippets . 83
A.4.1 SQL snippets . 83

viii

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.4.2 Survey application C# snippets . 90
A.4.3 Weighted Slope One algorithm and cross-fold validation in MATLAB . . . 102
A.4.4 Database diagram . 108

A.5 Survey application evaluation . 109

ix

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

List of Figures

1 Basis of Slope One schemes: User A’s ratings of two items and user B’s rating of a
common item are used to predict user B’s unknown rating. 8

2 The different approaches that are used to get contextualized recommendations. . 10
3 Shows how to find the different values for true positive, false positive and false

negative. Image adapted from [1]. 10
4 The initial and proposed contextual features with most impact are shown in this

class diagram. 12
5 The prototype layout in Silverlight, developed in Microsoft Expression Blend 3

with Sketchflow. This particular product, a heat pump, is a gift to the customer’s
partner. The occasion was the partner’s birthday. The heat pump is also tagged as
being specially related to summer and winter. 17

6 Showing the customer visits and completions of the survey during the twelve days. 26
7 Histogram of the participating customers and their age. 27
8 Product detail page with related products . 30
9 Product list with personalized recommendation. The predicted rating value is

shown for demonstration. 31
10 Example showing users with their ratings for items, before and after extraction a

single user to prepare a k-fold cross-validation. 32
11 Illustrates the partitioning to test and training set for one user. Only two partitio-

nings are shown, partition 3 to 10 are not demonstrated. 32
12 Illustrates the flowchart for predicting a rating for the missing item and by calcu-

lating an error rate one time for one user. The error rate in this example would be
|3− 4| = 1. 34

13 The results from the different metrics that were used to calculate the error rate on
the ten training and test sets. 34

14 An overview over the total tags collected and the unique products of the different
contextual groups except usage. 37

15 Tags and the unique products covered for usage and season. 38
16 An overview over how many products that have at least been tagged n times. . . 39
17 Shows the number of unique products before and after the tag filtering. 40
18 Shows an overview over the total tags and unique products of those products that

have a greater tag count than the average, collected for the different contextual
groups except usage. The unfiltered version is in figure 14. 40

19 An overview over the average tag counts for the different contextual features. . . 41
20 An overview over the tag counts for the different contextual features, unfiltered

versus filtered (using average tag count). Numbers for usage is shown seperately
in the appendix. 41

xi

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

21 An overview over unique products related to the different contextual features,
unfiltered versus filtered (using average tag count). Numbers for usage is shown
seperately in the appendix. 42

22 Tags and the unique products related to usage, unfiltered versus filtered (using
average tag count). 42

23 Percentage of possible unique products that potentially could have been misclas-
sified. Only contextual features that were prone to have errors and with average
tag count being at least 1 are included. 43

24 Flowchart for calculating precision, recall and F-score. This process was executed
for each contextual feature. 46

25 Precision, Recall and F-score for season and weather. 47
26 Precision, Recall and F-score for usage and special day / holiday. 47
27 Precision, Recall and F-score for gift reciever and occasion. 48
28 General contextual features: Precision, Recall and F-score versus different granu-

larity levels. 50
29 General contextual features: Unique products versus different granularity levels. . 51
30 General contextual features: Precision, Recall and F-score versus different granu-

larity levels. 51
31 Specified contextual features: Unique products versus different granularity levels. 52
32 The Long Tail: An example of a power law graph showing popularity ranking. To

the right is the long tail; to the left are the few that dominate. Notice that the
areas of both regions match. Image courtesy of Wikipedia.com 54

33 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 55

34 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 56

35 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 56

36 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 57

37 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 57

38 Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied. 58

39 A graph showing the mean and median of predictions for the customers with n
ratings. 59

40 The conclusive contextual features with most impact are shown in this class diagram. 62
41 The welcome page. 69
42 The product survey page. 70
43 The reputation addon. 71
44 Tags and the unique products covered for special day / holiday and weather. . . . 72
45 Tags and the unique products covered for gift reciever and occasion. 73

xii

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

46 Tags and unique products related to usage and special day / holiday that have a
greater tag count than the average. 74

47 Tags and the unique products related to season and weather that have a greater
tag count than the average. 74

48 Tags and the unique products related to gift reciever and occasion that have a
greater tag count than the average. 75

49 Unfiltered data. 76
50 Filtered data. 77
51 Products that were classified to maximum one subfeature within each main contex-

tual feature. 78
52 Performance for the different, single contextual features: Precision, Recall and F-

score . 79
53 Number of unique products versus minimum tag count. 80
54 Precision, Recall and F-score for isolated scenarios. 81
55 Precision, Recall and F-score for combined scenarios. 82
56 The database diagram. 108

xiii

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

List of Tables

1 Slope One scheme with three users and three items 8
2 The questions used in the reputation survey . 21
3 Customer’s ID used directly in a query string for identification 22
4 Customer’s GUID used as identification instead of the customer ID 23
5 Some statistics about the survey response. 26
6 Rating data after data cleanup . 28
7 Rating data after only selecting customers that have ten ratings. 28
8 Total tags and the unique products for season . 38
9 The scenarios that used only the general contextual features. 49
10 The scenarios that used the specialized contextual features. 50
11 The Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared

Error (RMSE) and the Normalized RMSE for each test and training set and their
averages. 72

xv

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1 Introduction

1.1 Topic covered by the project

In the last decade we have experienced an incredible growth of the Internet and its users. The
same has the number of online services like online shops that sell everything between rocks and
tires to music and movies, and dedicated communities and social networks have also skyrocketed
with seemingly no limitations. We use these services to buy and sell products worldwide with
ease, hook up with friends or meet new people, watch movies and video clips from all over the
world while at the same time getting the latest news from news sites that matches our diverse
interests. All this activity has over the years resulted in an enormously amount of electronically
stored information, and inconveniently lead to huge difficulties to find and present relevant
personalized information that fit the user. However, all this information content can and should
not be judged to be the cause of this problem, in fact, we are instead limited by the quality of the
tools we use to search and find the information.

1.2 Keywords

Recommender systems, Context-aware, Contextual features, Collaborative filtering, Multidimen-
sional data, Electronic commerce

1.3 Problem description

One of the biggest challenges in recommender systems is the context of the user. The content and
artifacts a user might be interesting in, often depend on a specific situation: The current location,
season, weather and activity are just some of the variables that could have a drastic effect on the
user’s goal. For example, if a female person in her twenties visit a global online travel agency
during the winter, which recommendations should be offered? What if male person in his thirties
visited the same travel agency at the same time from work, but is located on the other side of the
planet where it is summer? This generation of recommender systems in use today typically does
not take context into account, and are thus unaware of the user’s actual goal.

1.4 Justification, motication and benefits

One of the golden rules in world of business is to know your customer. When a customer enter
a physical shop, it takes little information from the person to make the seller understand the
customer’s needs, wishes and ultimately goals. However, if a person goes online and visit the
online shop to the same company, the company will have severe problems to understand the
person’s goals, and is only able to treat the customer as any other anonymous customer. This
may give the person the impression that this company is only providing commodities and services
under the impression that one size fits all, and could be the reason why the company lost that
sale.

1

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

By doing this master thesis, it is hoped to find relevant contextual features that can be used by
recommender systems that operates in an e-commerce setting. In addition, how they can affect
the final recommendations will also be analyzed. Using the right contextual features in the right
circumstances, can contribute to convert window-shoppers into buyers, increase cross-sell and
customer satisfaction and ultimately generate more revenues to the company.

1.5 Research questions

1. What are some of the contextual features that could be relevant to context-aware recommen-
der systems that are used in e-commerce online stores that offers a great variety of products?

2. Using a post-filtering approach, how does a coarse-grained versus a fine-grained use of
contextual features affect the final recommendation outcome?

2

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

2 Choice of methods

The different research questions requires different methodologies in order to be analyzed and
evaluated properly.

The first research question that addresses on how to find some of the contextual features
that could be relevant to context aware recommender systems that operates in an e-commerce
setting, will require a combination of qualitative and quantitative methodology. The qualitative
method regards the selection of some initial proposals of contextual features, which will be based
on the most cited definition of context. A survey will be developed, hosted at Netthandelen.no
and targeted towards their customers where they will among other things tag their previously
bought products to the suggested contexts they consider being related in some way. By using a
quantitative method, the tags and products will be analyzed to measure the popularity of each
proposed contextual feature. In addition, a comparison between the number of tags versus the
number of unique products they cover will be performed. This comparison will be performed on
raw and filtered data, where the filter is a threshold that acts as a classification tool, based on
the average number of tags of each contextual feature.

The second and last research question require a quantitative method in order to measure
how the contextual features affect the final recommendation results. This will be accomplished
by using the post-filtering approach, which means that the different contextual features are ap-
plied after every possible recommendation have been predicted for every customer using the
Weighted Slope One algorithm. This algorithm will base its predictions from the data set gene-
rated from the survey that was developed, where the customer left a rating for each product
describing how satisfactory it was. After post-filtering has been applied, the final recommenda-
tions will be analyzed for every customer, which will give the measurements of the exactness and
completeness of the possible recommendations to the average customer.

3

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

3 Related work

3.1 Recommender Systems methods

A recommender system is a subtype of information filtering technique which offers specialized
dynamic content adapted for normally a single user or a group of users. The content contain
typically some kind of product or commodity, often referred to as items, like movies, music,
books, images, web sites or computer hardware components.
There exists different types of techniques behind recommender systems, and a summarization of
some of types that are most often used in recommender systems are listed below:

• Content-Based A recommendation is given based by estimating the similarity between the
current item and the items the user earlier has shown some kind of interests of, like buying,
viewing or commenting [2], or by analyzing the item descriptions to identify items that are
of particular interest to the user [3]. However, systems that are only based on this setup have
the disadvantage of having the user profile as the only source of information, and this type of
information is of the kind that doesn’t change too often. It’s also normal to require the user
to enter explicit personal information, like interests and demographic information.

• Collaborative filtering Recommender systems based on the collaborative filtering approach,
predicts user preferences for items by analyzing the relationship between users and items. It’s
the most social one among the different recommender systems, where the recommendations
are based on the feedback from the users. This feedback is often a rating describing the item
in some way. The system can then try to predict which items that would be most liked by the
users. The collaborative filtering versions are divided into two subtypes, and how the pre-
dictions are computed depends on the different types of neighborhoods. One neighborhood
revolves around users and the other around items.
The user-based neighborhood is based on that it’s likely that a user belongs in a larger group
of similar and like-minded users [4]. Items that are frequently purchased or liked by the va-
rious members of the group can be used to form a basis for recommended items. The system
can predict a rating value for a item to a user. It tries to guess what the user would have
rated the item, and the best guesses becomes the best recommendations. The rating can be
computed as the mean of the ratings’ values from the similar users. [5]
The item-based neighborhood exploit the similarity among the items [5]. It is measured using
other methods compared to content-based approaches. It isn’t the content, like for instance
the descriptions of the items that are analyzed, but the historical information that is analyzed
to identify relations between the items.[4] The relationships are identified by looking into the
set of items that the users have rated, to calculate the similarities between them and a given
item.[6] It’s then possible to compute predictions by taking for instance a weighted average
of the target user’s ratings on these similar items.

5

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

• Hybrid A hybrid system is a system that uses and combines different types of techniques,
for instance, an combination of Content-Based and Collaborative Filtering techniques. [7]
summarizes some examples:

• Cluster models Maintains profiles for clustered users that have similar preferences. Recom-
mended items are based on other users in the same cluster.

• Demographic filtering approaches Recommends items based on demographic information
as age, profession, education, nationality and geographical location.

• Knowledge-Based Aggregates the users needs, preferences as well as location to recom-
mend items.

3.2 Context interpretation

Recommender systems comes in various forms, and the type that most closely resembles context-
aware recommender systems are the content-based ones.
The semantic web is in many ways relatively new and far from being a common element in the
Internet as we know it today. However, we see signs that both public and commercial interest are
increasing, and some call it Web 3.0. It is hoped that the incorporation of the semantic web will
result in one of the next generation’s new recommender systems.[8].
[9] presents a general framework that is for semantically enabled recommender systems that
uses ontologies to improve the understanding of the context of the users, and gives examples
how to deal with them and decide what to do. For instance, if their contextual sensor, which
collects contextual information, finds out that it is a rainy day at the current user’s location, then
the system tries to avoid recommending outdoors events and concerts in that area. If Christmas
holiday is coming up, and the user’s last click was on a comedy movie, the framework will try to
recommend (comedy) movies that are, in some way, related to Christmas. They are able to know
that the recommended movie is a comedy that is related to Christmas, because all their item- and
context-related information is incorporated by the system by using an ontology. They mention
the example CD [Garth Brooks - Beyond the Season] → [suitable for holiday] → [Christmas].
This example shows one variation on how the inferring capabilities of semantic ontologies using
knowledge representation languages like Web Ontology Language (OWL) can prove to be one
kind of tool to recommender systems when it comes to dealing with context.

3.3 The search for contextual features

Before the search for which contextual features that matters in a recommender system that
operates within the e-commerce field, it could be valuable to know what context actually means.
There isn’t no common technical definition of context that seemingly everyone agrees on. But
ranked after number of citations, the most popular definition was proposed by Abowd et al.[10]:

"‘Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves"’.

Since we have x different unknown variables taken from this context cloud, we must find
those contextual features y, that matters more than others. Abowd et al.[10] presented four

6

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

contexts that were stated being the four primary ones. Those four are location, identity, time and
activity. Their tasks is to answer questions about who, what, when and where. These are consi-
dered to be the first level of contexts. Other context types can be derived from these, creating
new context levels.

Adomavicius et al.[11] uses a contextual approach on recommender system that recommends
movies, using the contextual features like:

• Time: Represents when the movie can or wants to be seen, time of day, day of week, month
and year

• Place: Where the movie can be seen. For instance, in movie theaters, or home.

• Companion: If the person wants to see the movie alone or with somebody else, like friends,
girlfriend/boyfriend, family, co-workers etc.

Hussein et al.[9] implements contextual features in a framework that suites a virtual shopping
and leisure portal that involves DVDs, CDs, sport events and concerts. In their framework they
focused on the users’ location and surrounding areas at a given time and the weather situation
at these locations.

In October 2008, Adomavicius and Tuzhillin stated that it exists a need to know more about
what kind of contextual features that matters in different applications.[12] This statement seems
to be still valid. No previous research about contextual features for context-aware recommender
systems have been found prior or during the work of this thesis. Research about context-aware
recommender system seem to focus on the recommendation performance and how to improve
it. In the performance tests, a few, often simple contextual features are picked as examples to
prove the different hypothesises. Frequently used contextual features used in the measurements
are season and holiday, used for instance in [13] and [14].

3.4 Choosing an Collaborative Filtering algorithm

3.4.1 The search

There exists a great variety of different collaborative filterings algorithms, and [15] presents an
overview over some of the different algorithms and areas. [15] states that the most well-known
collaborative filtering algorithms are the nearest neighbor algorithms, but also probabilistic al-
gorithms that involves Bayesian-network models are noteworthy.
However, [16] introduced a family of algorithms for collaborative filtering called Slope One. It is
a purely item-based technique, the same kind that Amazon.com use [17], and the three propo-
sed slope one schemes have predictors of the form f(x) = x+ b, which pre-compute the average
difference between the ratings of one item and another for users who rated both. [16] states
their aim was to provide robust Collaborative Filtering schemes that are:

• Easy to implement and maintain, the algorithms should be easy to implement and test.

• Updateable on the fly: the addition of a new rating should change all predictions instanta-

7

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

User Item 1 Item 2 Item 3
Jack 5 3 2
Bill 3 4 Didn’t rate it
Chris Didn’t rate it 2 5

Table 1: Slope One scheme with three users and three items

neously.

• Expect little from first visitors: A user with few ratings should receive valid recommendations.

• Accurate within reason: the schemes should be competitive with the most accurate schemes,
but a minor gain in accuracy is not always worth a major sacrifice in simplicity or scalability.

A simple demonstration of how the Slope One algorithm works is demonstrated in figure 1.
Another example with three items is demonstrated in table 1.

Figure 1: Basis of Slope One schemes: User A’s ratings of two items and user B’s rating of a
common item are used to predict user B’s unknown rating.

In table 1, the average difference between item 2 and 1 is (2+(−1))/2 = 0.5, thus on average,
item 1 is rated above item 2 by 0.5. Also the average difference between item 3 and 1 is 3. If we
try to predict the rating of Chris for item 1 using his rating for item 2, we get 2+ 0.5 = 2.5. Using
the same approach we can predict his rating for item 3 by calculating 5+ 3 = 8.
[15] presents the the Slope One algorithm family as three different schemes, the SLOPE ONE

Scheme, the WEIGHTED SLOPE ONE Scheme and the BI-POLAR SLOPE ONE. They are mentioned
in order of complexity, where the Bi-Polar Slope One scheme is the most complex one.

3.4.2 The Weighted Slope One Scheme

In the prototype, the Weighted Slope One scheme was chosen for implementation. The advantage
with this version compared to Slope One Scheme is that it considers the number of ratings
observed. This could be very important when one popular item has many ratings, while another
item has few, but is rated generally high. The weighting mechanism even out these differences
accordingly. Given a training set χ, and any two items i and j with ratings uj and ui, respectively

8

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

in some user rating u (annotated as u ∈ Sj,i(χ)), we can consider the average deviation of item
i with respect to item j as:

devj,i =
∑

u∈Sj,i(χ)

uj − ui
card(Sj,i(χ))

The symmetric matrix defined by devj,i can be computed once and updated quickly when
new data is entered.
We can now define the Weighted Slope One prediction as the following weighted average

PwS1(u)j =

∑
i∈S(u)−{j}(devj,i + ui)cj,i∑

i∈S(u)−{j} cj,i

where cj,i = card(Sj,i(χ)), and card(Sj,iiscardinality.

3.5 Implementation of contextual information in Recommender Systems

Three approaches exists to create a context-aware recommender system. Those are pre-filtering,
post-filtering and contextual modeling. These are visualized in figure 2/

Pre-filtering incorporates the context prior the computation of the predictions. Those items
that were remaining after the pre-filtering, can be used to compute predictions, using for instance
an traditional item-based approach. When the predictions are done, the items can be recommen-
ded to the user.

Post-filtering incorporates the context after the predictions have been calculated. The predic-
tions have been based on all the original items, and traditional techniques can also be used to
calculate them. Post-filtering are applied to the items of these predictions, and the remaining
items are the recommendations.

Contextual modeling integrates the process into one combined model. It’s a tight coupled ap-
proach compared to pre- and post-filtering. The contextual features are evaluated directly inside
the recommendation-generating algorithms [14].

3.6 Measuring a Context-Aware Recommender System’s performance

Precision and recall are common measurements in information retrieval and statistical classi-
fication tasks. This also applies to F-score (also known as F1 score and F-measure) which is a
measure of test’s accuracy. It considers both precision p and the recall r of the test to compute
the score which is the harmonic mean of precision and recall. This is one of the possible metrics
used in recommender systems.[18][19]. These metrics have also been used in the initial and
recent works [20] to measure the performance of context-aware recommender systems, where
the goal is to compare the use of pre-filtering versus post-filtering of contextual information,
use of folksonomy in combination with collaborative filtering recommendation [21], and in tag-
aware recommender systems [22]. In other words, when a new variable is introduced that affects
the predictions made by recommender systems by using some kind of classification, then these
metrics are suited for these occasions.
Precision is the number of relevant documents retrieved divided by the number of retrieved
documents, while Recall is defined as the ratio of the number of relevant documents that are

9

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 2: The different approaches that are used to get contextualized recommendations.

Figure 3: Shows how to find the different values for true positive, false positive and false nega-
tive. Image adapted from [1].

retrieved to the total number of relevant documents. [23][1]. Below is the formulas for each of
them shown in the context of classification:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

Fscore = 2× precision× recall
precision+ recall

The values for TP, FP and FN are found using the matrix in figure 3.

10

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

4 Contextual features

Since no related work regarding relevant contextual features were found prior or during this
thesis, some initial contextual features had to be selected and proposed from scratch. The most
cited definition of context [10] was used as a guideline, and the context types that Abowd et
al. claimed to be the main primary ones were used as the foundation. Those primary types of
context are location, identity, time and activity.

However, in the setting of recommender systems used in online stores, there was something
that those primary types didn’t cover. When customers visit an online store, they most likely
have a reason for coming, a purpose. This is a part of the customers’ context. A context-aware
recommender system’s goal is not only to sense the different contexts, but also try to infer some
of the customers goals and needs. So a new primary type for context used in context-aware
recommender systems is proposed and used during this thesis, and that is intention. Those five
primary types now look at who’s, where’s, when’s, what’s and why’s.
The proposed contextual features were put in a class hierarchy. The context class is something
abstract and is the parent of the hierarchy. The class hierarchy is shown in figure 4.

The primary type identity, contains the main contextual feature gift receiver. Used as a default
in the survey, identity is the participating customer. However, if the customer had purchased a
product as a gift, then identity is used to describe the gift receiver.

Weather was the proposed contextual feature under location. Weather was selected because
it’s something that situates the customers and can influence their needs. If it’s sunny, some cus-
tomers might realize that they need a pair of sunglasses and will thus visit an online shop to
find some. It’s possible to identify users location with the accuracy down to city level or better
by using geo targeting. It exists several services that offers this, and will probably gain popu-
larity with W3C’s Geolocation API which is included in the upcoming HTML5. The extracted
location could then be used online weather services, which returns the weather for that particu-
lar moment or weather forecasts. And finally it’s possible to recommend products related to the
weather.

Time was divided into to main contextual features; season and special day / holiday. Season
is something just like weather, it changes. Weather is also often considered as being related to
season. Different seasons affects customers in different ways. If it’s winter, an appropriate recom-
mendation could be a vacation somewhere with warmer climate, or a pair of skis if the weather
forecast say that snow is coming in addition. Recommendations for special day / holiday can be
a music album with Christmas songs, safety goggles for fireworks, easter decorations or even the
Norwegian flag and national customes1.
The intended usage was chosen to belong to the activity type. Different types of recommendations
can be given dependent of time of day, or by looking at the identity, if the customer is a personal

1May 17 is the Norwegian Constitution Day and is a national holiday observed each year.

11

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 4: The initial and proposed contextual features with most impact are shown in this class
diagram.

12

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

account or a corporate account. If it’s typical work hours and / or the customer is logged in using
a corporate account, then it would feel natural to get work related products recommended.
And finally, the proposed primary type purpose, have the main contextual feature gift occasion
as its child. This is used in this thesis to directly to describe the occasion for the gift. But this is
just an example. Purpose is something more essential than this, it can be used to add additional
information about all of the other contextual features. One might ask: Why do this customer
come to this online shop? Because the customer needs to buy a gift. And why do the customer
need to buy a gift? Because it’s someones birthday. Why do you buy a pair of sunglasses as a gift?
Because the person lost the old ones. Why do you buy a pair of skis? Because it will snow during
the upcoming weekend.

These proposed contextual features will be used in the survey for data gathering, and later
in contextualized post-filtering of recommendations to measure performance and evaluate their
final impact of the recommendation outcome.

13

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

5 Survey prototype

5.1 Justification of prototype development

A prototype was developed during the project because of the many advantages it gives. First of
all, this was done because it is a cost effective and quick way to get a better overview of the
basic design and layout of the survey website. In addition it provides the opportunity to quickly
identify which elements that were to be included and their associated functionality. It was also
important to provide Netthandelen.no AS with a proof of concept to maintain and increase their
interest in the project and thus their commitment to it. This encourages their active participation
and results in a higher input and output from both parties.

5.2 Planning and preparations

There are many ways to make a prototype, ranging from simple paper drafts to full scale deve-
lopment. It was early decided that a interactive prototype was preferred, as this yields increased
understanding of what the final system looks like. This key point applies to both the develo-
per and the company who reviews the prototype. It does however require more effort from
the developer compared to doing some sketches on paper. In order to deal with this seemingly
inverse proportional problem, Microsoft Expression Blend 3 with Sketchflow were used. This
combination offers an opportunity to create a interactive prototype that don’t require too much
development time. It resembles the Adobe Flash editor in many ways, but it offered some fea-
tures that were considered as advantages for being used in this project, and hence, it was chosen
for the prototype development. With Expression Blend it is possible to build the output into two
different formats; Microsoft Silverlight and as an application based on Windows Presentation
Foundation. The former format was chosen as this made it possible to present versions of the
prototype remotely with ease by using a web browser if needed. It was also the most reasonable
alternative since the final version of the survey would be a website, so by having the prototype
in a browser it was created a stronger resemblance between those two.
It was also agreed upon that each customer was supposed to give information about maximum
ten products. This limit was chosen as it seemed to be well balanced between what was fair and
reasonable to expect from the customer, and what was considered enough data to be able to
generate valid predictions.
A collaborative filtering algorithm is based on some kind of input from users, and will not work
without it. Based on this fact, a rating describing the satisfaction had to be obligatory, or else the
product entry would be considered useless. Everything else however was not obligatory, but it
was hoped that the customers would tag relevant information about the product regardless of
this. It was also known that not all of the products in the database are necessarily related to any
of the given contexts. This decreases the chance for a product to be falsely tagged, but it does
also increase the chance that customers skip the contextual tagging.

15

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

The user design is a very important aspect of a survey. A badly designed survey could lead to that
fewer customers would complete it. To avoid this, is was planned to keep the survey as simple
as possible. Questions should be clear and have enough space between each other to avoid gi-
ving the impression as being too crammed. The layout should be neat and minimalistic to avoid
distractions, but at the same time not being boring. It was a goal trying to keep the height of
each page of the survey little enough in order to avoid too much scrolling. And finally it was
considered important to motivate the subject, and a solution to this was to inform the customer
about how many products that were remaining.

5.3 Development

The development of the prototype went quite smoothly since some ground rules were set from
the beginning. These ground rules acted like guide lines and provided the foundation of the pro-
totype.
Microsoft Expression Blend 3 offers three ways to develop interactions. One way is purely based
on using the graphical user interface, which may be the fastest way, but also the most limited.
The second one is purely based on programming which is quite the opposite. The last one is
a combination between these two and offers the best from both sides. As a result of this, this
method was chosen.
A simple layout was designed and a random product was chosen to be the demonstrative pro-
duct, as shown in figure 5. Programming was needed to create the color transitions that would
happen when the mouse cursor was hovering above a star. More programming was also needed
to demonstrate the functionality when a the product was tagged as being bought to somebody
else other than the customer. In this case, a box would appear and provide the customer to ans-
wer additional contextual information about it, like shown in figure 5. Since it was bought to
somebody else, it doesn’t necessarily mean that it was a gift. This is why an additional question
was needed: “Was it a gift from you?”. Right below came the follow-up question: “If yes; what
was the occasion?”. These questions covered to who the product was bought to, if it was a gift
or not, and finally the occasion if it was a gift.
The next contextual question regarded intention and activity. It was about the usage of the pro-
duct, if it was supposed to be used during the customer’s personal time, or at work. Both answers
at the same was considered valid. After this, the next question was time related. It asked about
if the product was related to a certain season. Alternatives were “No”, “Summer”, “Autumn”,
“Winter” and “Spring”. Then the question about location came up, if the product was related to
a certain type of weather. Alternatives were “No”, “Sun”, “Rain”, “Snow” and “Wind”. The last
question was about time, if the product was related to a special day, for instance a holiday. The
customer could choose between “No”, “Christmas”, “New Year’s Eve”, “Eastern”, the Norwegian
holiday“May 17th” and “Others / not given”.

16

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 5: The prototype layout in Silverlight, developed in Microsoft Expression Blend 3 with
Sketchflow. This particular product, a heat pump, is a gift to the customer’s partner. The occasion
was the partner’s birthday. The heat pump is also tagged as being specially related to summer
and winter.

17

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

6 Survey development

6.1 Planning and preparations

When the prototype was considered finished, an office was made available at Netthandelen.no
AS, where the development of the survey system was undertaken. The survey was integrated
into Netthandelens.no AS’s existing system, so a set of conventions and guide lines had to be
followed. The tools that were used for the development was Visual Studio 2010 and MS SQL
Server 2008. The survey was implemented using ASP.NET C# 3.5. Since the survey directly used
customer data, a database model was supplied. The model was used to create the database and
tables with the necessary data that would be used locally during the development. Some data
was provided, like product information and some non-sensitive customer information. Customer
Id, postal code, gender and birth day were supplied to be used during the development. It wasn’t
possible to identify any customers from the data provided. The development took place in three
stages. The first step was to use the prototype as template and start the development and test and
debug during this period, which happened locally. The second step was to deploy the survey that
was considered final to the test environment the Netthandelen.no AS used. The deployment of
the survey to the test environment meant a feature freeze. By their convention, only debugging
was allowed at this period of time. The final step was the deployment of the survey to the
production servers, and at this step was considered as the final code freeze with limited test
possibilities before the official launch. If it turned out that something didn’t work at all or as
expected, the launch would have been delayed at least one week, since new builds were deployed
on the production server every Monday.

6.2 Reputation addon

In addition the the product data that were collected, some customer information was also im-
portant to gather to get a better understanding about those who had completed the survey. Net-
thandelen.no AS wanted to take advantage of this opportunity when reaching to its customers
on this level. In addition to just letting the customer give feedback about the products, they also
wanted to have the customers give feedback about the company itself. This meant that another
module to the survey had to be implemented, which was named the reputation survey. This part
would come right after the customer was finished about the product survey. This was made on
purpose, so it wouldn’t affect the product survey in any way since the customers were unaware
about it until they were finished with the product survey. The reputation survey was divided into
two parts. In the first part, the customer had to enter or update information about her gender
and her birth date. In addition, it was a list that represented different types of interests. The user
could choose to select any that were interested. In the second and last part of the reputation
survey, five questions about Netthandelen.no AS were added. The customers had to answer by
using the star system, just like they did with rating the products. The same concept was used

19

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

since it is a simple and uniform way to measure and the customer already knew how to use it.

6.3 Survey walkthrough

All pages had similar design and theme, and figures of the welcome page, product survey and
reputation survey are in the appendix, figures 41, 42, 43 respectively. In addition, all the pages
had a similar validation test.

Default.aspx: This page was the starting point of the survey. It was the page the customer landed
on after clicking on the link in the email that was sent to them. From the customer’s view,
it only act like a introduction page. But in reality, it was more to it than that. In addition
to validate the customer for being an actual customer, it also logged information about the
time the customer first visited the survey. In also logged how many times the customer had
visited the survey and if she already was finished with it.

It was important to make the page feel light-weight and seem overcoming in order to not
scare the customer away already on this page.

ProductSurvey.aspx: When the customer clicked the “Start Survey” button on Default.aspx, she
was redirected here. This is the main part of the survey. Exactly the same layout that was
used in the prototype was applied to the web version. JavaScript was used for the color
transition of the stars when the mouse cursor was hovering above one them them. It acted
in the same way as the prototype; if for instance the cursor is above the third star, then the
first and second star is also highlighted. When the user click on a star, then the stars stay
that way. To improve consistency and clarity, a rating description was included just below
the stars.

Small changes to some of the questions were made, after some discussion with Netthan-
delen.no AS on how to make them as clear as possible. In addition, the customer support
staff reviewed the survey, which resulted to some additional small changes of the text infor-
mation and questions in general. It was necessary to analyze this throughly with different
people since it is common to interpret text and questions differently. Icons represented as
question marks were also included with the questions about season, weather and special
days, and gave an example of each of those when the mouse cursor was hovering above
them. This was another initiative to reduce the chance that the customer didn’t understand
the question correctly. JavaScript and CSS were used in combination to show and hide the
box that depended on who the product was bought to. This box contained the form inputs
to give additional context information about if the product was a gift or not, and what
the occasion was. In general, JavaScript was used extensively in order to create necessary
interactivity, and also to provide the most seamlessly flow as possible.
As mentioned earlier, the only thing that was obligatory was to provide a rating to each
product. But it was of course hoped that the customer did provide additional relevant in-
formation.
If a customer didn’t rate the product, an error message get visible right above the rating
stars to notify about this. To provide progress information to the customer, just right to the
submit button it would say how many products that were remaining. The maximum limit

20

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1. All in all, how satisfied are you with Netthandelen.no?
2. How were your experiences with the products compared to the expectations to them?
3. If you have been in contact with customer support, how would you rate this experience?
4. If you receive newsletters from us, how useful or relevant is the information in the e-mail?

Table 2: The questions used in the reputation survey

was set to ten, just like what was planned before the development started.
When at least a rating has been provided, two things could happen. If the customer have
remaining unrated products, a new page will load with the next unrated product. If the
customer don’t have any remaining products, then the customer will be redirected to the
reputation survey.

CustomerSurvey.aspx: This was the additional survey that Netthandelen.no AS wanted to in-
clude. On the top of the page were the customer information forms, like gender and birth,
that was obligatory to submit. The interest section was also placed at the top, but wasn’t
obligatory. If the customer already had entered personal information about gender, birth
date or interests, then this would be pre-selected at page load. The customer could change
them even though they were pre-selected.

The reputation questions are shown in table 2, where the customer would rate the different
things that were asked about in the same manner that they did with the products.

When the customer finally clicked the submit button, the last page was shown.

Takk.aspx: This page was the end screen and thanked the user for the participation. Behind the
scenes, it marked the customer as having both of the surveys complete.

6.4 Optimalization

At the time of the execution of the survey, Netthandelen.no AS had over 900 000 registered
customers. Their main web page was had everyday between 30 000 and 60 000 unique visitors.
The e-mail about the survey was queued and sent to the customers in a relatively short time,
meaning many customers could visit the survey at the same time. It was of utmost importance
that the survey wouldn’t become slow or even worse; shut down. A slow website leads to decrea-
sed user experience, thus increasing the chance that the customer doesn’t complete the survey.
Two things were possible to optimize, and that were the graphical content of the survey and the
system itself. A typical survey isn’t particular heavy in terms of content, pictures or images used
for layout, they are rather the opposite, quite lightweight, and this survey was no exception. Ap-
plications and particularly the database and how those two things communicate are typically the
bottlenecks in systems that suffers from bad performance. Even though Netthandelen.no AS had
powerful servers with high capacity, no risk were taken when it came to this. With this in mind
and also to do what many consider as best practice, stored procedures in the database were used
instead of dynamic SQL. One of the advantages with stored procedures compared to dynamic
SQL, is reduced network traffic between the application and the database server. For instance,
instead of transmitting a series of complex SQL statements, this can be reduced to one stored

21

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Customer ID Customer’s personal URL
Customer # 900000: Default.aspx?customerID=900000
Customer # 900001: Default.aspx?customerID=900001

Table 3: Customer’s ID used directly in a query string for identification

procedure call. Another advantage is the possibility to encapsulate business logic at the database
level if wanted.

6.5 Security

Security was another aspect that had to be dealt with. As little as possible of customer infor-
mation should be exposed in order to identify the customer, and the risk for abuse should be
minimal as possible. Netthandelen.no AS stored information about their customers in their da-
tabase, where the customer profiles were identified by their customer IDs. There were several
possible ways to identify the customers that visited the survey. One solution was that they could
log on using their original credentials assigned to Netthandelen.no AS. The other solution was
to identify the user by a query string from the URL. The first solution was not particularly consi-
dered as a possible choice because of its obvious disadvantages were considered more serious
than the advantages. It was the most secure solution, as the customers have to log in manually
and no customer information would have been exposed in any way. However it was also the
most impractical and slowest solution for the customers. It would have given a decreased user
experience, and an increased number of customers would not have chosen to participate in the
survey. The other and more efficient alternative was to identify the customers by having some
kind of identification code in the query string. The simplest method to achieve this would proba-
bly be to include the customer ID in this query string. However there would have been multiple
implications by doing this. First and foremost, the customer IDs are generated in an increasing
manner. One customer could have the ID of 900000 and another customer could have 900001.
Table 3 demonstrates how the this would be like in a query string located in a relative URL.

However this exposes the customer ID and sometimes is this something people want to avoid.
In this case it was particular important to use a different approach, because a customer could
easily change the URL, changing the customerID to something else. This would have loaded the
survey for another customer, which first of all would have logged and registered this customer
referred in the query string as a participant of the survey, and would also expose up to ten pro-
ducts this customer had previously bought. It’s easy to see that this alternative is not acceptable
in any way. But the query string was nevertheless the way to go, but some modification had to
be done. A new table in the database was created which consisted of two columns; CustomerID
and CustomerGUID. The column CustomerID contained the original customer ID, and associated
with this ID, a Global Unique Identifier (GUID) was randomly created for each customer. A GUID
is a special type of identifier used in software applications to provide a unique reference number
[24], and with the latest version of the GUID specification it is considered statistically impossible
to create two identical GUID’s. Once every CustomerID had a dedicated GUID, the GUID could
be used as identification instead of the customer ID in the query string, as demonstrated in table

22

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Customer ID Customer’s personal URL
Customer # 900000: Default.aspx?guid=21EC2020-3AEA-1069-A2DD-08002B30309D
Customer # 900001: Default.aspx?guid=3F2504E0-4F89-11D3-9A0C-0305E82C3301

Table 4: Customer’s GUID used as identification instead of the customer ID

4.
This created URLs that were practically unique to each customer. It does exists numerous tools

and methods to create unique codes, and many of them would probably have done the job equally
as good in practical terms. However, GUID was used because of its simplicity when coming to
the generation in most programming languages. With this solution implemented, nobody could
tamper with the URL. In case somebody did, they would have been redirected to another page
with an explainable error message.
On all pages there are several validation techniques to make sure that the person who is loading
the survey page actually are a customer. In case a validation fails, the customer will be redirected
to a page that explains the error. The first common test is to retrieve and parse the GUID from
the query string. It has to be supplied or else an user friendly error is shown. The next validation
is to check if the GUID has a valid GUID format. The third validation is to check if the supplied
GUID is associated with a customer ID. Those three validations are the common ones that are on
every page. There are also a few additional validation checks on some of the pages that varies:

ProductContextSurvey.aspx: At each page load, it checks if the customer has completed the
product survey. This is to prevent from back button attacks, where the user knowingly or
otherwise, tries to resubmit already submitted information (or changes to it) that shouldn’t
be resubmitted. In this a case, a duplicate rating of the product would have occurred with
its corresponding contextual information, which also would have been duplicated. If it de-
tects that the customer is completed with the the product survey then the system transfers
the customer to the next survey; the reputation survey.

CustomerSurvey.aspx: This page is also set up that it isn’t possible to submit data multiple
times. If the customer already has completed this survey, then the system transfer the
customer to the final page (Takk.aspx).

Takk.aspx: The final page checks on page load whether the customer has completed both the
surveys or not. Both surveys have to be completed to view this page, or else the system will
transfer the customer to the start page (Default.aspx).

23

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7 Results

7.1 Survey preparations and response

7.1.1 Measures to increase the participation of the survey

Since a major part of this thesis is based on quantitative research, it was important to get as much
data as possible to increase the validity of results and conclusions. To motivate the customers to
participate, Netthandelen.no AS agreed to give all customers that completed the survey one
exemption of the handling fee during their next purchase. In addition, three customers would
win a gift card with a value of 3000 Norwegian kroner (NOK).

7.1.2 Candidate selection

Two criterias had to be fulfilled by the customers to be a valid candidate for the survey. Since
the survey presented previously bought products, it was necessary that the customer had at least
bought one product. The second criteria was that the products had to be bought by the customer
at least 14 days prior the official launch of the survey. This would increase the probability that
the product had arrived to the customer and that the customer have got an impression of it.
When this process was complete, a total of 430 000 customers had been selected as valid candi-
dates.

7.1.3 Finding the best e-mail subject

After finding customers that were suitable candidates, the process of finding the best subject
line that would be used in the survey e-mail started. Different subject lines can get different
click-through rates. 30 000 randomly selected customers were divided into three groups. Each
group got assigned one subject line each. The proposed subject lines are below, translated from
Norwegian to English:

• Help us to get better!

• Competition: Win gift cards!

• Customer survey

In addition, a small group consisting of 1000 customers was also created and got its own
subject line: “We need your help!”. The survey e-mail was first sent to these customers, to see if
any problems with the survey occurred. Though it wasn’t the same population size as the other
three groups, it was possible to get and indication about the click-through ratio here as well.
Since no problems were reported after sending the survey invite to the customers in the small
test group, the process of sending e-mails to the other groups started. After two hours the click-
through rates were measured, and the best subject line was “Customer survey”. It was however
a close tie to “Competition: Win gift cards!”.

25

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Customers participated: 35615
Ratings: 261795
Unique products: 15790
Ratings on product average: 16.56
Ratings on customer average: 7.35

Table 5: Some statistics about the survey response.

7.1.4 Participants

Twelve days after the survey was launched, the data gathered was extracted for analysis. 430 000
e-mails had been sent, however 130 000 e-mails bounced back, indicating delivery errors. Most
of the bounces were caused by that the e-mails no longer existed. This means that approximately
300 000 e-mails were successfully sent and delivered. As seen in figure 5, a total of 35615
customers participated in the survey. A histogram of the customers that participated and their
age is shown in figure 7. They had rated 261795 products, of which 15790 were unique products.
The two first days accounted for 83% of all the customer visits, and indications of this can be seen
in figure 6. Even though new customers kept coming to the survey after the twelve first days, it
was decided not to gather anymore for the analysis. It did however benefit Netthandelen.no AS
as the customers continued to rate, tag products and update some of their personal information.

Figure 6: Showing the customer visits and completions of the survey during the twelve days.

7.2 Implementation of the Weighted Slope One algorithm

7.2.1 Precomputing Popularity Differentials

The Slope One algorithms work on the intuitive principle of a "‘popularity differential"’ between
items for users. This allows us to determine how much better one item is liked than another.
However, in a real setting on production level, the calculation of this popularity differential in
real time with many items, users and ratings would be too costly. As briefly mentioned, the

26

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 7: Histogram of the participating customers and their age.

symmetric matrix defined by devj,i can be computed once and updated quickly when new data
is entered. This means that once it’s calculated, it will be required a lot less resources to generate
predictions and recommendations for users compared to if it was needed to be calculated on the
fly.
In order to implement the precomputing ability, we must generate a new database table to store
this data. [25] presents a database-driven approach to item-to-item Collaborative Filtering in
PHP and SQL that can support a full range of applications. The implementation of the Weighted
Slope One algorithm was based on this, however a more efficient implementation was developed
after thoroughly testing the first proposed approach, since [16] obviously tries to present their
in an easy manner where optimization is not that important. [16] used PHP and SQL for their
implementation, and since this project used C#, MATLAB and T-SQL (MS SQL Server) , the PHP
and MySQL code had to be translated to C#, MATLAB and T-SQL respectively.
The database table Deviation that stores the calculated item-to-item matrix of the popularity
differential where we compute by subtracting the average rating of the two items, is defined in
listing 7.1.

Listing 7.1: he SQL that creates the deviation table

1 CREATE TABLE [Deviation](
2 [ItemID1] [int] NOT NULL,
3 [ItemID2] [int] NOT NULL,
4 [Count] [int] NOT NULL,
5 [Sum] [int] NOT NULL)

In listing 7.1 we see that we store only Count and Sum aggregates and not simply the average.
This is a consequence of the fact that we can both add data and update the deviation table online.

The main implementation was as previously mentioned done in MATLAB. MATLAB was cho-
sen because of it’s considered as the de facto standard for implementing a wide variety of algo-
rithms. The Weighted Slope One algorithm developed in MATLAB is a good match, as it generates

27

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Customers Ratings Unique products
35614 254090 15789

Table 6: Rating data after data cleanup

Customers Ratings Unique products
20035 200350 14550

Table 7: Rating data after only selecting customers that have ten ratings.

large matrices. Fortunately, MATLAB is specially designed to operate with matrices, which usually
results in a quicker development time. It also allowed for a more direct way when dealing with
test and training set; the need to export the popularity differential data from one format into
MATLAB was not necessary, since both the calculation of the popularity differentials and the
generation of the test and training set were done at the same place.

When the implementation of the algorithm was completed, it was necessary to import the ra-
ting data from the database. As we know, this data was stored in a table containing the customer
Id, product Id and finally, the rating itself. MATLAB do offer possibilities to connect to several
type of databases, including MS SQL Server, however in this case, the most simple method was
more than enough. The rating data was exported from the database to a text file, using tabu-
lators to separate the columns and line breaks to separate the rows. Another MATLAB function
was then developed to import this data, storing it as a matrix in memory and saved as a .MAT
file for faster and easier import for later use.

To summarize the response represented in figure 5, 35614 customers completed the survey.
Those customers generated a total of 261795 ratings distributed over 15790 unique products.
Prior the popularity differentials were calculated, the data collected had to be checked for ano-
malies and invalid data in case it were any. This was done prior the export to MATLAB, and was
done The results after the cleanup is presented in table 6.

Not too much data were removed at this stage. Even though 7705 ratings were removed, no
customers were removed and only one unique product was removed. However, it was decided to
filter out even more data. The item-to-item based collaborative filtering has a characteristic that
it shares with most of the other types of recommender systems; the more ratings a user have,
the more reliable and accurate are the predictions given[16]. The customers that participated in
the survey rated between one to a maximum of ten products. In an ideal and realistic situation,
there wouldn’t be any maximum limit to the number of ratings the customer could give, but the
survey was a special case and it was limited to the extent of how much work it was expected
of the customer. Because of this, and to properly prepare the dataset for the creation of the test
and training set, it was decided to remove the customers and their ratings for those customers
who didn’t have the maximum possible number of ratings, which was ten. The results after this
cleanup is shown in table 7.

As we see in table 7 compared to table 5, 15579 customers have been removed with their
53740 ratings. 1239 unique products were also removed because of this. The decrease of data by
removing customers that didn’t have ten ratings may seem large at first, however the remaining

28

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

amount is still more than enough to get valid results. Prior the data cleanup, the average of
ratings of each customer was ≈ 7.35, which explains why the reduction wasn’t larger. The high
average was also an advantage when creating the test and training sets.

During the testing of the Weighted Slope One algorithm in MATLAB, it became clear that
significantly computational time was required in order to complete the whole dataset, because
of the large amounts of data in it. To save time, it was decided to use computational power from
the “cloud”. Amazon Web Services offers a wide range of different kind of web services located
in the cloud. One of the web services is Amazon Elastic Compute Cloud (EC2) which basically is
a virtual server powered by Linux or Windows, controlled though an API or directly by remote
desktop software. A virtual server, or instance as Amazon calls it, comes in different versions
regarding processing power and system memory. The instance that offered the most powerful
CPU was rented and MATLAB and Microsoft SQL Server were installed on it. The data were then
exported to the server and set up, before finally starting the popularity differential calculation
function in MATLAB. Once it was complete, it had created the deviation matrix that contained
the popularity differential data. It was of the size 1418338 rows by 4 columns and in the same
format as shown in listing 7.1, except for the part being stored in MATLAB. With this in place,
the foundation for both non-personalized and personalized recommendations were set.

7.2.2 Implementing Non-Personalized Recommendations

As [25] states, a recommendation is "‘non-personalized"’ if it doesn’t depend on a user profile.
An example of this, a basic search engine provides a result based on the search query, and the
result isn’t personalized to a specific user. However, it can be useful to provide related items in
addition to the result. This way we can help the user find items that the user likes as much or
more than the current item. This approach is different from a similarity measure where we seek
to present similar items, [25] states that item-to-item algorithms are not necessarily based on
similarity across items.
A typical approach could be the following example: A user click on a item 1 from the item list
to see more details about the product. A new page loads which contains this information. In
addition, a list of related items is included. The list is generated by looking for items (called
ItemID2) that:

• A sufficient large number of people (defined by a threshold) rated both item 1 and ItemID2,

• On average, we want ItemID2 to be rated as high as possible among users who also rated
item 1.

Once the deviation table has been computed, the following SQL code in listing 7.2 ranks all
the related items where we set the count threshold to 2 and the current item that are being
browsed is currentItemID.

Listing 7.2: The SQL for Non-Personalized Recommendations

1 SELECT TOP 10 d.itemID2, d.Sum, d.Count, (CAST(d.Sum AS decimal) / d.Count) AS
average

2 FROM Deviation d

29

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

3 WHERE d.Count > 2 AND ItemID1 = @currentItemID
4 ORDER BY (d.Sum / d.Count) DESC

After further expanding the SQL code to join in the product table from the prototype, and
added some users that rated some different items, the online shop prototype now presents related
products to the current product the user clicked on, shown in figure 8.

Figure 8: Product detail page with related products

7.2.3 Implementing Personalized Recommendations

Another typical scenario that involves item recommendations is for instance a list of products
where the system with relatively high precision know that the user would like. This is done by
letting the system try to predict the rating the user would have given an item, and optionally sort
the list based on the highest rating predicted.
Listing 7.3 presents the function that only selects the best items that most probably are most
interesting to the user. This SQL function was proposed in [25]. currentUserID is the ID of the
current user that the recommendations are calculated for.

Listing 7.3: Function for presenting the items with the highest rating prediction

1 SELECT d.ItemID1 AS item, CAST(SUM(d.Sum + d.Count * r.RatingValue) AS decimal) /
SUM(d.Count) AS avgrat

2 FROM Rating r, Deviation d
3 WHERE r.UserID = @currentUserID
4 AND d.ItemID1 <> r.ItemID
5 AND d.ItemID2 = r.ItemID
6 GROUP BY d.ItemID1

30

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7 ORDER BY avgrat DESC

In the online shop prototype with personalized recommendations implemented, assuming
that a certain user is logged in and that the user and multiple others has rated on some different
items, a list containing the best predicted items for the current user will be presented, as shown
in figure 9.

Figure 9: Product list with personalized recommendation. The predicted rating value is shown
for demonstration.

As we see in figure 9, the system has tried to predict the most interesting products to the
current user, and for demonstration, the predicted value is included with each item. The system
thinks that the current user would have given the blue radio a rating of 5, and the flashlight
4. This is why the blue radio is at the top, because statistically speaking, it is more interesting
to the current user. It’s also important to note that the Slope One algorithm schemes are able
to generate recommendations after only given a few ratings, which significantly reduces the
typical "‘Cold-Start Problem"’. However, it’s typical that the more ratings we have, the quality of
recommendations increases. [7]

7.3 Non-contextualized recommandation performance

7.3.1 Setup and preparations

One of the most common methods to measure how collaborative filtering algorithms that calcu-
lates predictions perform, is to see how accurate the personalized predictions of the systems are.
This was done by creating a training and test set from the rating matrix that contained all the
ratings from the customers. To achieve a more stable and valid performance result, a ten-fold
cross-validation was performed. This means that the rating matrix was partitioned into ten sub-
samples. This is illustrated in figure 10 for one user only, but the same procedure happens to each
user. Of these ten subsamples, a single subsample is retained as the validation data for testing the
model, and the remaining nine subsamples are used as training data. This is illustrated in figure
11. The cross-validation data is then repeated ten times, with each of the ten subsamples used
exactly once in the validation data, and an error rate that defines the accuracy can be calculated
by comparing the prediction against the actual value in the test set. This is shown in figure 12.

31

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Finally, the ten error rates are averaged to produce a single estimation.

Figure 10: Example showing users with their ratings for items, before and after extraction a
single user to prepare a k-fold cross-validation.

Figure 11: Illustrates the partitioning to test and training set for one user. Only two partitionings
are shown, partition 3 to 10 are not demonstrated.

The Statistics Toolbox in MATLAB was used for the partitioning and to create the test and
training sets. A function was developed in MATLAB that iterated through a training set, and by
aggregating the nine ratings for each user and using the personalized method for Weighted Slope
One, a rating was predicted for the missing item. This rating was compared to the real rating
that was stored in the test set, and the difference between them; the error rate ei, was calculated
by using the formula below.

ei = |fi − yi|

32

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

where fi is the predicted rating and yi is the true rating. When the error rate had been computed
for all predictions, it was averaged for the particular training and test set it worked on. Mean
Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and the
Normalized RMSE were used to calculate this for comparisons. MAE is given by:

MAE =
1

n

n∑
i=1

|fi − yi|

where fi is the prediction and yi is the true value, which in this case is the true rating. These
are also used during the calculation of the MSE, which is given by:

MSE(f, y) =
1

n

N∑
i=1

(fi − yi)
2

The RMSE the square root of the MSE:

RMSE =
√
MSE

And the Normalized RMSE is given by:

Normalized RMSE =
RMSE

xmax − xmin

where xmax is the highest error rate reported and xmin is the minimum. The Normalized
RMSE is often expressed as a percentage, where lower values indicate less residual variance.

7.3.2 Results

Figure 13 presents the results from each training and test set using different error rate metrics.
Detailed data are in table 11 in the appendix. The averages for MAE, MSE, RMSE and Normalized
RMSE 0.2708, 0.2077, 0.4557 and 5.99% respectively.

33

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 12: Illustrates the flowchart for predicting a rating for the missing item and by calculating
an error rate one time for one user. The error rate in this example would be |3− 4| = 1.

Figure 13: The results from the different metrics that were used to calculate the error rate on the
ten training and test sets.

34

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7.4 Tag distribution over the contextual features

7.4.1 Introduction

The first research question regards the process of trying to identify some relevant contextual
features, and a set of them have been suggested and presented in this thesis. Customers have
participated in the survey where they could tag some of their previously bought products to
indicate that they are related to some of the given contextual features.
Trying to answer this research question, three things must be studied:

• What is the distribution of the tags over the different contextual features?

• For each contextual feature, how were the tags distributed over the products?

• The customers classified the products to related contexts using a social tagging model. Did
they tag the products similarly, or was it large variations?

The distribution of the tags will directly show which contextual features that got most tags,
but it doesn’t say anything about the spread of the products - how many unique products that
were tagged. The holiday Christmas could for instance have more tags than the season summer,
but the actual number of different products that were tagged being related to Christmas might
be very small, while the number of different products tagged being related to summer could be
significantly higher. By including this ratio in the analysis, it’s possible to get a better overview
compared to only look at the tag distribution only.
Since the customers were given the task and responsibility to classify products being related to
certain contextual features by tagging them, it’s expected that there will be variations among the
tags belonging to a product. Because of this, a kind of cutoff filter will be used, making sure that
it’s more likely that the products that were accepted by the filter are classified with increased
validity. The filter will be based on the average tag count for the different contextual features.
Those products who were tagged at least the equivalent times as the average tag count, are
classified as being related to that particular contextual feature.

7.4.2 Setup

The tags were stored in the survey database. Each tag entry contained information to find the
customer behind the tag and of course the product that was tagged. To directly find the general
distribution of the tags over the different contextual features, a SQL script was written that
returned the total tag count of the selected contextual features. This SQL script is included in
listing 7.4 and shows how to return the total number of tags related to any kind of season. This
means that the count is the total count of summer, autumn, winter and spring combined. A filter
is also included, since it turned out that it existed some dummy products in the database which
had their product Id being 0, and those were thus ignored during the count.

Listing 7.4: Returns the total number of tags related to any kind of season

1 SELECT COUNT(1) AS TotalTags FROM ProductSeasonRelated psr
2 JOIN FakturaLinjer fl ON fl.FakturaLinjeID = psr.FakturaLinjeID
3 WHERE fl.ProduktID > 0

35

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

This SQL script was executed for every main contextual feature class, which was the total count
of all their subclasses:

• All kinds of usages

• All kinds of gift receivers

• All kinds of gift occasion

• All kinds of seasons

• All kinds of weather types

• All kinds of special days / holidays

In addition to get the overall distribution, it was also necessary to specify it, meaning that each
of the subclasses of the main contextual features also had to be considered separately. A simple
adjustment to the SQL script was enough to do this, shown in listing 7.5. In this example, we
see that we have narrowed down the counting mechanism to only count tags belonging to the
season summer, which had the corresponding Id of 1.

Listing 7.5: Returns the total number of tags related to the season summer

1 SELECT COUNT(1) AS TotalTags FROM ProductSeasonRelated psr
2 JOIN FakturaLinjer fl ON fl.FakturaLinjeID = psr.FakturaLinjeID
3 WHERE fl.ProduktID > 0 AND psr.SeasonID = 1

This SQL script was executed for each of the subclasses belonging to each of the main contextual
features to get a finer distribution over all different available contextual features.

Now that the tag distribution have been mapped, the number of unique products that were
covered for each of the main contextual features had to be found. Another SQL script was made
to accomplish this, shown in listing 7.6, where season is the current contextual feature selected.
To specify a certain season or any other contextual feature, only a small change is necessary to
the code to find this.

Listing 7.6: Returns the total number of unique products related to any season

1 SELECT COUNT(1) AS UniqueProducts FROM (SELECT DISTINCT fl.ProduktID
2 FROM ProductSeasonRelated psr --change tablename to the wanted contextual feature
3 JOIN FakturaLinjer fl ON psr.FakturaLinjeID = fl.FakturaLinjeID
4 WHERE fl.ProduktID > 0
5 /* uncomment to find more specified results
6 * AND psr.SeasonID = 1
7 */
8) AS derived

36

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7.4.3 Raw data

Figure 14 is the result from executing the SQL in listing 7.4, with small changes to get the dif-
ferent types of the main contextual features. It shows the total, unfiltered tags for the different
contexts given by the customers, and the number of unique products that was covered by those
tags. In the figure, the contextual sub-features are grouped into their main types, except for
usage which is shown separately in figure 15 because of its high values compared to the other
ones. For instance, “Any Season” are the aggregated tags for summer, autumn, winter and spring.

Figure 14: An overview over the total tags collected and the unique products of the different
contextual groups except usage.

The contextual feature usage got most of the tags. It got a total of 265085 tags. Those tags
was spread over 15739 unique products, which accounted for 99.68% of the overall number of
unique products that were rated by the customers. Season came on second place with a total of
82643 tags and 7894 products. According to this, the customers meant that 49.99% of all the
products that were rated, were in some way related to at least one kind of season. Next comes
gift receiver and occasion, which always have the same count since they can’t exist without each
other. They have each 47937 tags spread over 9552 products. The last two are weather with
37630 tags and 6030 products, and special day / holiday with 13234 tags distributed over 3138
products.

Figure 15 presents the data for the different seasons. Summer is clearly the one with most tags
and have most unique products, respectively 32307 and 5831. Despite this, autumn, winter and
spring does not have significantly fewer unique products compared to summer. More detailed
figures that show the differences between the other contextual sub-features are included in the
appendix.

37

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Usage (b) Season

Figure 15: Tags and the unique products covered for usage and season.

Summer Autumn Winter Spring
Total tags 32307 18554 16952 14830
Unique products 5831 4340 3175 4036
% of all season products 73.87 % 54.98 % 40.22 % 51.13 %
% of overall products 36.93 % 27.49 % 20.11 % 25.56 %

Table 8: Total tags and the unique products for season

7.4.4 Theshold selection and filtered data

Excluding the very general contextual feature usage, season clearly has the most tags among the
different contextual features. Because of this, season will be used to demonstrate the selection
process for for deciding a tag threshold that will act as a cutoff filter. This filter will do quality
assurance, where the appointed products are classified with increased validity. In figure 15 the
different tags for season are distributed over the different seasons. The tag count and unique
products are shown in table 8.

Figure 16 shows how many products related to the different seasons that have a minimum
and a certain tag count. A product can be tagged as being related to multiple seasons if the
customer found this fitting. The plot shows that the majority of the products have very few tags.
For instance, 44 % of all products related to summer have only been tagged once. 12 % have
been tagged at least ten times and 0.5 % have been tagged at least 100 times. The products’ tag
counts where compared to each other to analyze the classification quality. It was clear that the
more times they had been tagged, the more valid were the classifications.And those with very
few tags, and especially those with only one tag, were very likely to be misclassified.

In order to get more reliable classifications, some kind a filtering had to be introduced. A
common method was chosen, the threshold, being a number. Those products who were tagged at
least the same number of times as the threshold, would be classified as being related to a given
contextual feature. But what should the threshold be? Different methods were evaluated. One
way was to set the threshold to a certain number, 20 for instance. But it could be a challenge

38

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 16: An overview over how many products that have at least been tagged n times.

if the same limit would be used across all of the different contextual features, since the number
of tags and unique products varies among the contextual features. And the process of actually
picking a certain number manually is highly subjective. So a more quantitative approach was
chosen. The threshold was set to be the average tag count for the products related to a given
contextual feature. This average value was rounded to the nearest integer. For instance, the
products related to summer had an average tag count of 5.54. This means that products had
to be tagged at least 6 times to be classified as summer related products. The different average
tag counts are presented in figure 19 and were found using the SQL script in listing A.5 from
the appendix. Other methods were also considered, for instance median and mode. They were
both discarded because it returned too low values. Mode was always one for every contextual
feature. Median showed slightly more variation, but still inadequate. The median for summer
was 2, autumn 1, winter 1 and spring 1. The majority of all contextual features had medians
being 1. The only exception was usage, with spare time. This one had a median of 5, the highest
value retrieved. Work had a median of 1. It was concluded that the median values were too low
to be used to classify products with higher validity. In fact, if the threshold was set to one, then
it wouldn’t have any practical use. There would be no difference between unfiltered and filtered
results - those products that were tagged have at least been tagged once.
An overview over how many products that have least been tagged n times to seasons are showed
in figure 16. For instance, almost 6000 products have been tagged to summer at least one time.
When only considering products that have been tagged to summer at least two times, this number
is reduced to approximately 3000. The precise reduction in percent is 56 %. Even though the
mean also returned a few values of one for some contextual features, it was chosen as being the
best alternative.
Having too many products classified would have increased the risk of misclassifications, and too
few could have made it more difficult or even impossible to identify overall relevant contextual
features, because of the data would have become too sparse. The mean average returned values
somewhere in the middle.

Using the SQL script in listing A.7 in the appendix, the filtering resulted in a significant
reduction in unique products, as seen in figure 17. Unique products season went from 7894

39

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) (b)

Figure 17: Shows the number of unique products before and after the tag filtering.

to 1659, which gives a reduction of 79 %.

Figure 18: Shows an overview over the total tags and unique products of those products that
have a greater tag count than the average, collected for the different contextual groups except
usage. The unfiltered version is in figure 14.

Figure 20 show how many tags that was considered before and after the filter was introduced,
while figure 21 compares the number of unique products before and after filtering for all of the
different contextual features. This was found using the SQL in listing A.6 from the appendix.

7.4.5 Limitations

One thing that could have influenced the calculation of the tag count averages, was the lack of
restriction that prevented customers from rating and tagging same products multiple times. For
instance, a customer could hypothetically have bought ten garden hoses, which means that the
customer would have rated and possibly tagged this product ten times. Let’s say the customer
tagged all of them being related to summer, and the average tag count for summer was 5.54.
Since the garden hose had ten tags, it would have been classified as being related to summer. In
this case this would be a correct classification, but if the customer tagged in a way that would
have been considered wrong by the majority of customers, then a misclassification would have

40

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 19: An overview over the average tag counts for the different contextual features.

Figure 20: An overview over the tag counts for the different contextual features, unfiltered versus
filtered (using average tag count). Numbers for usage is shown seperately in the appendix.

41

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 21: An overview over unique products related to the different contextual features, unfil-
tered versus filtered (using average tag count). Numbers for usage is shown seperately in the
appendix.

(a) Total tags for Usage - unfiltered VS filtered (b) Total unique products for Usage - unfiltered VS filtered

Figure 22: Tags and the unique products related to usage, unfiltered versus filtered (using ave-
rage tag count).

42

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

occurred. The whole idea with the limit is that a classification is more trustworthy if ten different
customers tagged the same product the same way only one time each, compared to that only one
customer tags the same product ten times. The latter did in fact occur, and this was measured.
Those contextual features that had products that were potentially misclassified are shown in
figure 23, and those numbers wear found by using the SQL script in listing A.8. If one customer
tagged one product multiple times (at least the average tag count number) the same way for
that particular contextual feature, then this is recorded and contributes to the chart. However
as mentioned, they are only potentially misclassified, they could very well be tagged in what’s
considered correct. In addition, some of the contextual features are less suitable to be classified
than others. It’s typically more natural to classify a product being related to summer compared to
birthday, however, there exists products that are directly related to birthdays, like birthday cards
for instance.

Figure 23: Percentage of possible unique products that potentially could have been misclassified.
Only contextual features that were prone to have errors and with average tag count being at
least 1 are included.

The second limitation that could have affected the overall tag distribution, was the sort me-
chanism that was used in the survey. Since products were sorted by their purchasing price in
descending order, this could have resulted in less variations among the products that were cho-
sen by the survey. There are some indications of this. A few products had over 200 tags within
one contextual feature. Since these few products appeared that frequently in the survey, it means
that they were some of the popular and expensive products that seemed to be relevant to one
or more contextual features. It’s challenging to measure how accurately this could have affected
the outcomes, since Netthandelen.no AS is based on an auction based model, meaning that one
customer could spend for instance 5000 NOK on a product, and another customer spend 2000

43

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

NOK on the same product. It’s however, probable that this had a very low impact on the final
outcome because of the large number of participating customers and the number of unique pro-
ducts that were included in the survey.

The third limitation that could have affected the overall tag distribution and thus the averages
for each of the contextual features was that the customers couldn’t revert and change some tags
after they had submitted a particular product. This could hypothetically affect the outcome in
case a customer had tagged and submitted one product, and later on realized that it was wrong,
for instance caused by an initial misunderstanding.

The last limitation is regards the competition aspect. It’s always a possibility that some of the
customers feedback were somewhat affected by the competition itself. For instance, some could
have believed that if they gave good feedback, this would increase the chance of winning. They
could also been positively surprised by the initiative of the competition, and give better feedback.
It’s difficult to measure this potential effect.

7.5 Contextualized recommandation performance and outcome

7.5.1 Introduction

The second research question regards how the contextual features can affect the final recom-
mendation outcome. To measure this, an experiment was conducted, that consisted of two parts.
The first part focused on the performance of the context-aware recommender system that was
implemented. This process consisted of the following:

1. Calculate all possible predictions for a customer

2. Using these predictions, only select those products that are classified as being related to one
or multiple contexts. This is post-filtering, since predictions are generated prior filtering.

3. Calculate precision and recall and finally an F-score for the customer to measure the retrieval
performance.

The second part regarded more on how the final recommendation outcome generally was af-
fected by the different contextual features, by looking at the number of recommendations before
and after using post-filtering. Different scenarios in forms of different contextual features with
and with combinations were simulated to study the differences between them, and hopefully get
some indication of which consequences that might happen when granularity level increases.

7.5.2 The choice of post-filtering instead of pre-filtering or contextual modeling

As described in the related work section, pre-filtering is used when contextual information is
applied prior the calculation of recommendations. Post-filtering is the opposite, applied after
the calculation of recommendations. Both pre- and post-filtering are methods that uses loose
coupling. Contextual modeling are the integration and merging of contextual information and
the prediction system becoming one tightly coupled model.

Post-filtering was used in the experiment because of the following reasons and explained
below:

44

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1. Recent research shows that post-filtering can lead to better performance compared to pre-
filtering

2. Pre- and post-filtering seems to be the most popular and flexible alternatives for implemen-
tation, especially with existing systems

3. A contextual model requires to be implemented directly into recommendation algorithms

4. Pre-filtering is less suitable for model-based predictors, like the Slope One family

5. Pre-filtering is reported to increase the data sparsity, which basically leaves the predictor with
less data to work with

Pre-filtering was considered, but post-filtering seemed to be a more logical choice. The reasoning
behind this decision is that the Slope One family algorithms are model-based. Model-based re-
commender systems precompute parts of the necessary calculations off-line (the principle behind
the deviation matrix used by Slope One), because they tend to be too computationally expensive
and would have suffered if used to generate predictions real-time. Pre-filtering is more suited
for memory-based recommender systems since they calculate predictions on the fly. This means
in practical terms that if pre-filtering was used with contextual features, the deviation matrix
would had to be calculated for each of the different contextual features that were used, which in
general can’t be considered feasible in realistic scenarios. And last, recent research show that pre-
filtering often lead to greater sparsity from the very beginning, reducing the dataset the predictor
can work with, and decreasing the overall performance compared to post-filtering.[14][20]

7.5.3 Setup

The deviation matrix was as mentioned before, pre-calculated in MATLAB. This matrix was ex-
ported to a text file and then imported to the table in the database, called Deviation. Using
the personalized recommendation approach, all possible predictions were calculated for a cus-
tomer in MS SQL Server this time, using the Weighted Slope One algorithm. To measure the
performance of the contextual recommendations on a customer basis, three separate SQL scripts
were used to filter out only those recommended products that were related to at least one gi-
ven context and to calculate the F-score from precision and recall. This procedure was done on
every customer from the reduced dataset, which were customers that had rated ten products. To
have this procedure automated, two of the mentioned SQL scripts was converted to two separate
scalar-valued functions in MS SQL Server. The third SQL script called those functions and saved
the precision, recall and F-score for every customer in a table. The flowchart for this procedure
is shown in figure 24.

Although this process were automated to calculate precision, recall and F-score for all cus-
tomers, it was necessary to specify which context that should be used and enter the threshold
(average tag count). The main SQL script where this values are set are shown in listing A.9,
which calls the two scalar-valued functions in listings A.10 and A.11. The former function re-
turns the number of products that are related to the specified context. The latter function return
the number of true positives. This is the number of products related to the given context that are
recommended to the customer. All possible predictions for the specified customer are calculated
here, but only those products being related to the given context are considered. The calculation

45

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 24: Flowchart for calculating precision, recall and F-score. This process was executed for
each contextual feature.

of precision is in this application only based on the number of true positives, since either it re-
turns some relevant and recommended products or it doesn’t. This method does not return false
positives. This means that if there at least one true positive, then precision will be one, or zero
otherwise.
The calculations were computationally expensive. The calculation of one contextual feature,
summer for instance, was measured and estimated to require over 200 hours. If only accounting
single contextual feature scenarios, this would have required a total of 225 days on a dedicated
modern physical server. When including scenarios using multiple contextual features, it would
have required an estimated additional 100 days. It’s probably possible to optimize the process
further using different methods, but this would have required more time just to do this. The
solution was to use cloud computing. Amazon EC2’s most powerful (CPU wise) instance was
rented. It did one calculation in an average of 30 minutes, instead of 200 hours. Different sce-
narios were set up. First, isolated scenarios were simulated, measuring all the different types of
contextual features. After this, more complex simulations were initiated and measured. These
scenarios used at least two different contextual features combined, up to maximum five. The
results are saved in different tables, as described in figure 24. Then precision, recall and F-score
is averaged across all the 20035 customers using the SQL script in listing 7.7.

Listing 7.7: This SQL gives the average precision & recall and F-score for all customers.

1 SELECT AVG(a.Prec) AS avgPrec, AVG(Recall) AS avgRecall, AVG(Fscore) AS avgFscore
2 FROM [NHSurveyFinal].[dbo].[PrecRecSeasonSummer] AS a

46

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7.5.4 Isolated scenarios

The isolated scenarios used only one contextual feature each and measured separately for com-
parison between each other and against those scenarios that used multiple contextual features.
On the performance graphs, the F-score and recall have similar patterns. The reason for this is
that precision in all cases were 1, which means that recall is a variable with great influence.
Regarding precision always being one; it’s an either-or scenario. In this setting, all retrieved pro-
ducts is required to be relevant. So even if only one product is retrieved, it means that it’s rele-
vant, and hence precision is one. Figure 25 (a) show the performance for the different contextual
features under season, and (b) shows the same for weather. Figure 26 (a) shows for usage, and
(b) special day / holiday. The last figure 27 shows the performance for receiver (a) and occasion
(b).

(a) Season (b) Weather

Figure 25: Precision, Recall and F-score for season and weather.

(a) Usage (b) Special Day / Holiday

Figure 26: Precision, Recall and F-score for usage and special day / holiday.

47

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Gift Reciever (b) Gift Occasion

Figure 27: Precision, Recall and F-score for gift reciever and occasion.

48

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

7.5.5 Combined scenarios

To get some indication on what happens when multiple contextual features are included in the
recommendation process, five scenarios were set up. In addition, each of those scenarios was
divided into two sub-scenarios. The final choice of which contextual features that were used was
based on a combination of those who had the largest tag count and matched each others in a
natural and realistic way. For instance, the season winter and weather snowy is a natural couple
compared to season summer and weather snowy. The five scenarios were the following:

Generalized contextual features:

Contextual feature parent class Subclass
Scenario #1

Season Any
Scenario #2

Season Any
Special day Any

Scenario #3
Season Any
Special day Any
Receiver Any

Scenario #4
Season Any
Special day Any
Receiver Any
Occasion Any

Scenario #5
Season Any
Special day Any
Receiver Any
Occasion Any
Weather Any

Table 9: The scenarios that used only the general contextual features.

Specialized contextual features:
Figure 28 show the performance of the different scenarios that use generalized contextual

features. The more contextual features that are used, the larger the F-score gets. At the same
time, the numbers of unique products that are finally recommended to the customer after post-
filtering with the different contextual features, are reduced when the granularity level of used
contextual features increases.
However, the performance of specialized contextual features show less variation compared to the
generalized one, seen in figure 30. The numbers of unique products in these specialized scenarios
follow the same patterns as the generalized one, but results in even fewer recommendations.
When using all five contextual features at once, the number of recommendations is only 27.
These observations are of practical reasons explained in the discussion chapter.

49

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Contextual feature parent class Subclass
Scenario #1

Season Winter
Scenario #2

Season Winter
Special day Christmas

Scenario #3
Season Winter
Special day Christmas
Receiver Partner

Scenario #4
Season Winter
Special day Christmas
Receiver Partner
Occasion Christmas

Scenario #5
Season Winter
Special day Christmas
Receiver Partner
Occasion Christmas
Weather Snowy

Table 10: The scenarios that used the specialized contextual features.

Figure 28: General contextual features: Precision, Recall and F-score versus different granularity
levels.

50

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 29: General contextual features: Unique products versus different granularity levels.

Figure 30: General contextual features: Precision, Recall and F-score versus different granularity
levels.

51

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 31: Specified contextual features: Unique products versus different granularity levels.

52

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

8 Discussion

8.1 Introduction

Suggesting contextual features that can be used in context-aware recommender systems is only
one side of the story. The process of identifying the relevant ones another one. In this thesis
some contextual features were suggested, applied and measured. The main classes time, loca-
tion, activity and identity were based on Dey and Abowd’s work on context-aware computing
[10] and an additional contextual feature, purpose, was introduced in this thesis to be used in
context-aware recommender systems. Some of the subclasses were based on previous work, as
mentioned in related work. In 2008, Adomavicius and Tuzhilin agreed on that more research
had to be conducted to find relevant contextual features that could be applied to context-aware
recommender systems. Despite this, no previous research have been found that directly focused
on the contextual features themselves, but some have been used as examples. For instance, a
few were used to present context-aware recommender frameworks or measure the differences
in performance between pre- and post-filtering. The contextual features themselves were one of
the main things that this thesis focused on - to get some indications on which contextual features
that could be used in a e-commerce setting.
It’s indications because there is no right or wrong or exact science when it comes to identifying
contextual features. Which ones to use in an e-commerce setting depends on the market and
potential niches that an e-store operates in. Many e-stores sells products that are hard to classify
as being related to a certain context. For instance, lets use a context-aware recommender system
that senses which season it currently is. A store that sells nuts and bolts might not have that
much use for this, while a travel agency could have benefited more from this.
While some e-stores have reduced need for context-aware recommender systems, others have an
increased need. Especially e-stores that have taken advantage of the retail possibilities the Inter-
net provides, can get increased value from context-aware recommender systems. Amazon.com
is an example of an online store that leverages “The Long Tail” principle. The Long Tail refers
to the statistical property that a larger share of population rests within the tail of a probability
distribution than observed under a ’normal’ or Gaussian distribution, as seen in figure 32.

Amazon take advantage of this; in addition to sell the few, but most popular products, they
also offer a lot of niche products. In this jungle of products, it can be difficult for the customers
to find the products they are looking for. Since a traditional recommender system only consider
users and products when generating recommendations, it often contributes to the feedback loop,
where popular products get the most feedback in form of ratings, which further increases the po-
pularity. This means that unless the customer is a “gray sheep”, a person with very atypical taste,
then typically only the few and popular products get recommended to the majority of customers.
A context-aware recommender system can affect this feedback loop by recommending products
based on the context that situates the customer, which gives more variety. Products that normally

53

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 32: The Long Tail: An example of a power law graph showing popularity ranking. To the
right is the long tail; to the left are the few that dominate. Notice that the areas of both regions
match. Image courtesy of Wikipedia.com

don’t get recommended because they are aren’t among the most popular ones, will have a greater
chance of being recommended, and thus gain popularity.
Using the proposed contextual features, a context-aware recommender system can for instance
sense that Christmas is upcoming, and start recommending products related to Christmas. If the
system let the customers explain their purpose of their purchase in some way, then this infor-
mation can be exploited to recommend gift ideas to different persons as well. Another scenario
is being aware of the customers’ location and season, and for instance get the weather forecast,
and if it’s summer and sunny; recommend a pair of waterskiis. If the customer is visiting during
typical work hours or is a business customer, then it could recommend a desk fan instead.
Amazon.com and Ebay.com uses recommender systems as a targeted marketing tool in addition
to the traditional way by just recommending products. They use recommendations for instance
in newsletters in e-mail campaigns. It’s possible that they in fact see recommender systems as
being more valuable for the marketing purposes themselves, and that the accuracy of the re-
commendations is not necessarily top priority. McNee et al. claims that this race for developing
the best algorithms that produces the best accuracies in different metrics have actually been
detrimental to the field [26]. The popular “Netflix Price” is an example of this. This was a com-
petition about developing the best recommender algorithm that would be used by the video
streaming service company Netflix, where the winner would win one million dollar [27]. McNee
et al. and Konstan further states that it’s more important that a recommendation is meaningful
to the user instead of just having a good accuracy on some metric. The users come to an online
store because they reason for coming: they have a purpose [28]. This is a important aspect, and
this is where context-aware recommender systems come into play: to provide more meaningful
recommendations by taking the customers context into account.

8.2 Contextual features and their relevance
Season

Excluding usage, season was the contextual feature that got most of the tags. 82643 tags were
collected, and divided over 7894 products. This accounts for 50 % of all the products in total.
Using the average filter to get more valid classifications, the number of products is reduced
to 1659 products (10.5 %). Summer was the season with most unique products. During the

54

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

analysis of the data, it seemed to exist a pattern that those products that were tagged as summer,
often were tagged as spring and autumn additionally. 34 % of all seasons related products were
actually tagged as spring, summer and autumn. Figure 33 shows the products and their tags for
that are exclusively related to one specified season. A product is counted as exclusive if it’s for
instance tagged only as summer, and not as any other season.

(a) Products (b) Products’ tags

Figure 33: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

What we see is that the majority of exclusive products and their tags are divided across two
distinct classes with stark contrast to each other: summer and winter. This indicates that the
level of granularity in season doesn’t need to be more than two. A reduction means in this
case increased generalization. The generalization will not have a large impact on season and it
reduces complexity and source for disagreements when it comes to classifying the products.

Weather

The contextual feature weather collected a total of 37630 tags across 6030 products. Unfiltered,
this accounted for 38 % of all products. After the average filter is applied, the number of products
is reduced to 1404 (9 %). The subclass sunny got the most the most tags, and had twice as many
unique products compared to any other weather contexts. When it comes to exclusivity, figure
34 show that there is one subclass that stands out and that is sunny weather.

It seems logical to claim that the season summer and weather sunny are related, and can
explain the large values for sunny. One might expect that this relationship would apply to winter
and snowy in the same manner, but this isn’t the case. This can possibly be explained that winter
is more general than snowy. A heat pump for instance is related to winter, but not necessarily to
snowy weather. When comparing the numbers for the different subclasses between season and
weather, it seems to be only one weather subclass that shows a weak presence and that is windy.
Sunny is the clear winner, but rainy and snowy could also be considered to be valid suggestions
for contextual features.

Special day / Holiday

The contextual feature special day got the fewest tags in total, which was 13234, across 3138
products. Unfiltered, this accounted for 20 % of all products. After filtering, this number reduced

55

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Products (b) Products’ tags

Figure 34: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

to 971 (6 %). The subclass eastern had an average tag count of 1.48, and when obeying to
the rounding rule, this was rounded down to 1 when used in the average filter. An average tag
count of one is useless to the average filter since all tags are considered anyways. To be more
comparable, eastern’s average will be increased to two. What we see in figure 35 is that in this

(a) Products (b) Products’ tags

Figure 35: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

case, two subclasses are considered popular, and that is Christmas and the generic class called
others. The Christmas class can be useful in many cases. It exists an industry just for Christmas
related products. The “other” class could be explored further, in case a higher granularity level
can discover new useful contextual features that are now unknown. This being said, Christmas
class do have more tags than “others”, which means that the Christmas contextual feature offers
higher validity in terms of being correctly classified.

Gift reciever

The gift receiver context explores more about the activity of the purchase. It gives information
about to who this gift was. Moreover, we can see some indications about to which people do we
buy gifts to. 60 % of all products have been gifted some someone at least one time. When finding

56

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

products that are exclusive to a certain receiver, we get information about to who we buy gifts
to, but also some about the different niches that are popular for gifts. The subclass others have
an tag count average of 1.33, and was adjusted to 2 for better comparisons. From figure 36 we

(a) Products (b) Products’ tags

Figure 36: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

see that three subclasses to receiver is noteworthy suggestions and those are partner, children
and the generic subclass other family. “Others family” is comparable to partner in terms of num-
ber of products, but have only half the number of tags compared to partner, meaning less validity.

Gift occasion

The gift occasion context reveals the purpose about the gift. It gives the answer to why a cus-
tomer bought a product to this other person. Of all the subclasses to occasion, it turns out that
birthday is the most popular class. Second comes the generic “others” and third comes Christmas.
Valentine’s Day, Mother’s Day and Father’s Day have averages of 1.10, 1.21 and 1.09 respectively,
which are not useful to be used in the average filter. Like the other contextual features in this
position, they are set to 2 for comparable reasons. Even with and without filtering, figure 37

(a) Products (b) Products’ tags

Figure 37: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

57

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

shows that Valentine’s Day, Mother’s Day and Father’s Day have practical no impact in this case
and can’t be considered being meaningful to be used in this setting.

Usage

Almost every product was tagged to one of the two usage types; spare time or work. When we
look in figure 38 at those products that were exclusively tagged to the different types, we see
that spare time was without doubt the most popular one.

(a) Products (b) Products’ tags

Figure 38: Products and their tags that are exlusively tagged to certain contexts. The “average
filter” is applied.

8.3 Granularity level in contextual features and its impact
Isolated scenarios

In the contextualized recommendation performance experiment, we saw how the context-aware
recommender system performed using the different contextual features. Recall for the different
contextual features ranged between 0.54 and 0.61, and a total average of 0.56 across all the
contextual features. This means that a little more than half of all related products were retrieved.
In recommender terminology; it was possible to generate recommendations using more than half
of all related products that were available. This was however with customers that had ten ratings
each. Since the Weighted Slope One algorithm is an item-based algorithm, it’s in general able to
generate more predictions for customers with many ratings compared to those with few. If all
customers were used in the experiment, all logic based on item-based algorithms and results
from experiments indicates that precision will be much more sensitive. Recall would also be
lower, which finally results in a lower F-score. Even though only customers with ten ratings
were used, the multiple scenario experiments showed that precision started to slightly decrease
when multiple contextual features were used simultaneously. It then becomes clear that precision
will get lower for customers with few available predictions even when only using one contextual
feature. Figure 39 show the average number of predictions for the customers that have n ratings.
The number of available predictions increased with the number of ratings a customer had.

Combined scenarios

The results from the experiment where different numbers of multiple contextual features were
used, reveals a pattern regarding recall and thus F-score. They increase when we add more

58

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 39: A graph showing the mean and median of predictions for the customers with n ratings.

contextual features that are used simultaneously. The reason for this is because for each contex-
tual feature we add, fewer products that have been tagged and classified with that combination
are available. The chance of retrieving more of them increases when the number of related pro-
ducts decreases.
If we only evaluate scenarios of the general types, where we for instance use all seasons, we start
with 7894 products. Once we add another general type, the special day, this number decreases
to 2088. Add receiver and occasion and it is reduced to 760. Add the last one to the combina-
tion, weather, and we end up with 481 products. Using all five in one combination, only 3 % of
all products can be potentially recommended. And this is with customers with ten ratings. With
customers with less ratings this number would have been lower.

Recommendation impact

A context-aware recommender system tries to suggest items based on the users situation. Custo-
mers coming to an online store have goals, they have a purpose behind the visit. Their purpose is
based on their needs, which often is affected by the surrounding context. Season, location, wea-
ther, holidays and different types of relationships with others are some of the contexts that does
this. Ideally, the recommender would offer recommendations that directly matches and fulfills
the customers goals.
While using one contextual feature that filter out the recommendations, the customer can get a
better impression on how the online store tries to help the customer. It doesn’t presume that one
size fits all. It can also be used as new way of using recommender systems in targeted marketing,
for instance by sending an e-mail with Christmas related products that are recommended. This
can be a benefit, targeted marketing becoming more automated than before, where it required
sale staff manually picking off top of the line products which often led to a one size fits all ap-
proach. However, let’s say a given context was the reason for a customer’s visit in the first place

59

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

and is shown related recommendations. Just because the recommendations are related, doesn’t
mean that they are good recommendations. For instance, a customer get a book about gardening
recommended because it summer. This book would never have appeared on the customer’s list of
recommended products, because it wasn’t a good enough recommendation in the first place. But
since the contextual feature works like a filter removing unrelated products, the book appears
on the recommendation list because there aren’t any better recommendations - the good ones
are unrelated. And the more contextual features we use simultaneously, the greater this impact
becomes. To counter-effect this, it’s necessary to add more products with great variety. A greater
quantity will offer more alternatives which could be better recommendations. The variety is good
when it comes to which contextual features to use. These limitations is something one have to
consider when developing and implementing a context-aware recommender system.
Since context-aware recommender systems considers the users context and thus increasing perso-
nalization, it increases the need to explain the recommendation given. Since contextual features
reduces the number of available predictions, we may as mentioned end up with recommenda-
tions that may not be good, either at all or at first glance. The customer might not understand
completely why this recommendation is present, the customer might not be aware of the inten-
tion behind the context-related recommendation. As Bilgic and Mooney states in [29], the goal
of a good explanation should not be to “sell” the user on a recommendation, but rather to enable
the user to make a more accurate judgment of the true quality of an item. This will improve
user acceptance of the recommendations [30]. And this will lead to increased understanding of
the recommendation, where the system explains that it tried to understand the user’s goal by
analyzing the context of the user.

60

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

9 Conclusion

Research Question 1: What are some of the contextual features that could be relevant to
context-aware recommender systems that are used in e-commerce online stores that offers
a great variety of products?

A set of contextual features were selected and studied to find out which ones that are reaso-
nable to use in context-aware recommender systems. Since no previous work regarding this was
found prior or during the work of this thesis, some initial contextual features had to be chosen
from scratch. The foundation of the contextual features was based on the the work of Abowd et
al.[10], who have the most cited definition of context and claim that the four most important
primary context types are location, identity, activity and time. However, in the setting of recom-
mender systems, it was found that those four weren’t enough. They didn’t describe the intention.
For which purpose does a customer visit an online store? This thesis propose this new primary
context type, and it was directly used as an example to explain why a customer gifted a given
product to a given person.

The set of contextual sub-features started off with a relatively great variety. The customers
tagged previously bought products to the different contextual features they found relevant. Du-
ring the analysis, it became clear that something had to be done in order to get increased validity
of the classifications. To do this in an objective way, the average tag count for each contextual
feature was used as a cutoff filter. Those products who weren’t tagged at least equivalent times
as the average, were not classified as being related to the given contextual feature. The number
of classified products was measured before and after using this method, including their tags. In
addition, the number of exclusive classified products, which were products that only were clas-
sified to maximum one contextual sub-feature, was measured.

Which contextual features to actually use in a real life scenario, depends on the online store
and the number and types of product categories. Some are however more general and relevant
than others. The contextual features in figure 40 are the ones that stood out and had the big-
gest impact on the data gathered from Netthandelen.no, an auction-based online shop that sell
products ranging over 190 categories.

61

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 40: The conclusive contextual features with most impact are shown in this class diagram.

Research Question 2: Using a post-filtering approach, how does a coarse-grained versus
a fine-grained use of contextual features affect the final recommendation outcome?

In this experiment, the results are based on customers with ten ratings. Those were selected
because of two reasons: Most customers had ten ratings and to improve prediction performance.
Scenarios using only one contextual feature showed acceptable performance. All customers could
get context-related recommendations using any kind of contextual feature. On average, it was
possible to generate recommendations using more than half of all related products available.
The scenarios that used multiple contextual features revealed implications. The higher granu-
larity level of contextual features we use, the fewer recommendations becomes available. In
addition, there is no guarantee that those recommendations that are available, are actual good
ones. Online stores that sells a large range of products in many categories, can allow themselves
to use a higher level of granularity for contextual features. The opposite applies to online stores
with few products and categories.

62

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

10 Further work

In this thesis some initial contextual features were proposed to be used in context-aware recom-
mender systems. To further increase the validity and relevance of them, a proposal for future
work would be a survey. This survey can be divided into two parts. The first part would be to
have some participants answering questions about how they would feel having contextual recom-
mendations based on the proposed contextual features. Potentially new additions of contextual
features could also be included. The second part could be an experiment where participants ac-
tually get some recommendations from a context-aware recommender system under different
simulated scenarios using the proposed or new contextual features. They could then describe
how they felt about them. Their answers from prior the experiment could then be compared to
their answers after the experiment.

Another suggestion for future work is to directly compare prediction performance between a
traditional recommender system and a context-aware one that uses a high level granularity of
contextual features. This could help to see how better or worse the predictions are.

In this thesis, customers tagged the products to different contextual features during their
participation of the survey. If it’s wished that the customers should be responsible for the classi-
fications on a regular basis, then some other possibilities should be considered. It would be chal-
lenging and perhaps unwise to ask, expect or demand that customers would do this explicitly,
either directly at the online store website or by other contact methods like e-mail. Possibilities
using explicit and implicit gathering methods could be considered. One implicit way to identify a
product being bought as a gift, is to offer gift wrapping. If one want to know the receiver and the
occasion for the gift, then it’s possible to offer birthday cards as they often reveal both of these
things.

63

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Bibliography

[1] Manning, C. D., Raghavan, P., & Schtze, H. 2008. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA.

[2] Goy, A., Ardissono, L., & Petrone, G. 2007. Personalization in e-commerce applications. In
The Adaptive Web, Brusilovsky, P., Kobsa, A., & Nejdl, W., eds, volume The Adaptive Web,
chapter 16, 485–520. Springer-Verlag Berlin Heidelberg.

[3] Pazzani, M. & Billsus, D. 2007. Content-based recommendation systems. 325–341.

[4] Deshpande, M. & Karypis, G. 2004. Item-based top-n recommendation algorithms. ACM
Trans. Inf. Syst., 22(1), 143–177.

[5] Celma, O. Music Recommendation and Discovery in the Long Tail. PhD thesis.

[6] Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. 2001. Item-based collaborative filtering
recommendation algorithms. In WWW ’01: Proceedings of the 10th international conference
on World Wide Web, 285–295, New York, NY, USA. ACM.

[7] Koutsabasis, P. & Darzentas, J. 2008. Item-based filtering and semantic networks for
personalized web content adaptation in e-commerce. In SETN ’08: Proceedings of the 5th
Hellenic conference on Artificial Intelligence, 148–159, Berlin, Heidelberg. Springer-Verlag.

[8] Adomavicius, G. & Tuzhilin, A. April 2005. Toward the next generation of recommen-
der systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data
Engineering, IEEE Transactions on, 17(6), 734–749.

[9] Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. 2009. Context-aware recommendations on
rails. CARS-2009.

[10] Abowd, G. D., Dey, A. K., Brown, P., Davies, N., Smith, M., & Steggles, P. 1999. Towards a
better understanding of context and context-awareness. In HUC ’99: Proceeding of the 1st
international symposium on Handheld and Ubiquitous Computing, 304–307. Springer.

[11] Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. 2005. Incorporating contex-
tual information in recommender systems using a multidimensional approach. ACM Tran-
sactions on Information Systems, 23, 103–145.

[12] Adomavicius, G. & Tuzhilin, A. 2008. Context-aware recommender systems. In RecSys ’08:
Proceedings of the 2008 ACM conference on Recommender systems, 335–336, New York, NY,
USA. ACM.

65

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

[13] Gorgoglione, M. & Panniello, U. 2009. Including context in a transactional recommender
system using a pre-filtering approach: Two real e-commerce applications. In WAINA ’09:
Proceedings of the 2009 International Conference on Advanced Information Networking and
Applications Workshops, 667–672, Washington, DC, USA. IEEE Computer Society.

[14] Panniello, U., Gorgoglione, M., & Palmisano, C. 2009. Comparing pre-filtering and post-
filtering approach in a collaborative contextual recommender system: An application to e-
commerce. In EC-Web 2009: Proceedings of the 10th International Conference on E-Commerce
and Web Technologies, 348–359, Berlin, Heidelberg. Springer-Verlag.

[15] Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. 2007. Collaborative filtering recom-
mender systems. In The Adaptive Web, Brusilovsky, P., Kobsa, A., & Nejdl, W., eds, volume
The Adaptive Web, chapter 9, 291–324. Springer-Verlag Berlin Heidelberg.

[16] Lemire, D. & Maclachlan, A. 2005. Slope one predictors for online rating-based collabora-
tive filtering. In Proceedings of SIAM Data Mining (SDM’05).

[17] Linden, G., Smith, B., & York, J. 2003. Amazon.com recommendations: Item-to-item colla-
borative filtering. IEEE Internet Computing, 7(1), 76–80.

[18] Breese, J. S., Heckerman, D., & Kadie, C. 1998. Empirical analysis of predictive algorithms
for collaborative filtering. 43–52. Morgan Kaufmann.

[19] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. 2000. Analysis of recommendation al-
gorithms for e-commerce. In EC ’00: Proceedings of the 2nd ACM conference on Electronic
commerce, 158–167, New York, NY, USA. ACM.

[20] Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., & Pedone, A. 2009. Experimen-
tal comparison of pre- vs. post-filtering approaches in context-aware recommender systems.
In RecSys ’09: Proceedings of the third ACM conference on Recommender systems, 265–268,
New York, NY, USA. ACM.

[21] Xiao, R., Hong, F., Xiong, J., Zheng, X., & Zhang, Z. 2009. Syncretizing context information
into the collaborative filtering recommendation. Database Technology and Applications,
International Workshop on, 0, 33–36.

[22] Tso-Sutter, K. H. L., Marinho, L. B., & Schmidt-Thieme, L. 2008. Tag-aware recommender
systems by fusion of collaborative filtering algorithms. In SAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, 1995–1999, New York, NY, USA. ACM.

[23] Raghavan, V., Bollmann, P., & Jung, G. S. 1989. A critical investigation of recall and
precision as measures of retrieval system performance. ACM Trans. Inf. Syst., 7(3), 205–
229.

[24] Globally unique identifiers (guids) - http://msdn.microsoft.com/en-us/

library/cc246025(v=PROT.10).aspx. Accessed (May, 2010).

66

http://msdn.microsoft.com/en-us/library/cc246025(v=PROT.10).aspx
http://msdn.microsoft.com/en-us/library/cc246025(v=PROT.10).aspx

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

[25] Lemire, D. & McGrath, S. Implementing a rating-based item-to-item recommender system
in php/sql. Technical Report D-01, Ondelette.com, January 2005.

[26] McNee, S. M., Riedl, J., & Konstan, J. A. 2006. Accurate is not always good: How accuracy
metrics have hurt recommender systems.

[27] Netflix price - http://www.netflixprize.com/. Accessed (June, 2010).

[28] Joseph konstan on human-computer interaction - http://www.acm.org/ubiquity/
interviews/v6i10_konstan.html. Accessed (June, 2010).

[29] Bilgic, M. & Mooney, R. J. 2005. Explaining recommendations: Satisfaction vs. promo-
tion. In In Proceedings of Beyond Personalization 2005, the Workshop on the Next Stage of
Recommender Systems Research(IUI2005, 13–18.

[30] Herlocker, J., Konstan, J. A., & Riedl, J. 2000. Explaining collaborative filtering recommen-
dations. 241–250.

67

http://www.netflixprize.com/
http://www.acm.org/ubiquity/interviews/v6i10_konstan.html
http://www.acm.org/ubiquity/interviews/v6i10_konstan.html

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A Appendix

A.1 The survey website pages

Figure 41: The welcome page.

69

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 42: The product survey page.

70

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 43: The reputation addon.

71

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Special Day / Holiday (b) Weather

Figure 44: Tags and the unique products covered for special day / holiday and weather.

A.2 Weighted Slope One prediction performance

Test & training set # MAE MSE RMSE Normalized RMSE
1 0.2702 0.2074 0.4554 6.02 %
2 0.2719 0.2103 0.4585 6.01 %
3 0.2712 0.2079 0.4559 6.14 %
4 0.2678 0.2008 0.4481 5.79 %
5 0.2710 0.2054 0.4532 5.91 %
6 0.2680 0.2048 0.4525 6.11 %
7 0.2688 0.2046 0.4524 6.14 %
8 0.2744 0.2108 0.4591 6.04 %
9 0.2735 0.2168 0.4656 5.77 %
10 0.2712 0.2081 0.4562 5.96 %
Average 0.2708 0.2077 0.4557 5.99 %

Table 11: The Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE) and the Normalized RMSE for each test and training set and their averages.

A.3 Total tags and unique products

A.3.1 Unfiltered

72

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Gift Reciever (b) Gift Occasion

Figure 45: Tags and the unique products covered for gift reciever and occasion.

73

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Usage (b) Special Day / Holiday

Figure 46: Tags and unique products related to usage and special day / holiday that have a
greater tag count than the average.

(a) Season (b) Weather

Figure 47: Tags and the unique products related to season and weather that have a greater tag
count than the average.

A.3.2 Filtered

74

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

(a) Gift Reciever (b) Gift Occasion

Figure 48: Tags and the unique products related to gift reciever and occasion that have a greater
tag count than the average.

75

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.3 Unfiltered tags

Figure 49: Unfiltered data.

76

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.4 Filtered tags

Figure 50: Filtered data.

77

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.5 Exclusive classifications

Figure 51: Products that were classified to maximum one subfeature within each main contextual
feature.

78

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.6 Contextualized post-filtering performance

Figure 52: Performance for the different, single contextual features: Precision, Recall and F-score

79

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.7 Unique products vs minimum tag count

Figure 53: Number of unique products versus minimum tag count.

80

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.3.8 Contextualized recommendation performance

Figure 54: Precision, Recall and F-score for isolated scenarios.

81

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Figure 55: Precision, Recall and F-score for combined scenarios.

82

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.4 Source code snippets

A.4.1 SQL snippets
Stored procedures used in the survey

Below are a few of the stored procedures that were used by the survey application.

Listing A.1: Retrieves up to ten products bought by the customer.

1 /*
2 <summary>
3 Stored Procedure: usp_GetNextFakturaLinjeIDByMedlemsID
4

5 Usage: Returns a recordset containing maximum 10 FakturaLinjer (products).
6 If the customer has already rated some of the product then they are excluded.
7 Products that was purchased within the last 14 days are also excluded.
8 <param name="@MedlemsID">The customers MedlemsID</param>
9

10 Version: 0.1
11 </summary>
12 */
13

14 CREATE PROC [dbo].[usp_GetNextFakturaLinjeIDByMedlemsID](
15 @MedlemsID int)
16

17 AS
18 SET NOCOUNT ON
19

20 BEGIN
21

22 DECLARE @CurrentCustomersRatingCount AS int
23

24

25 SELECT @CurrentCustomersRatingCount = COUNT(1) FROM dbo.ProductRating AS pr
26 JOIN [NH].[dbo].[FakturaLinjer] AS fl ON pr.FakturaLinjeID = fl.FakturaLinjeID
27 JOIN [NH].[dbo].[Fakturaer] AS f ON fl.FakturaID = f.FakturaID
28 AND f.MedlemsID = @MedlemsID
29

30 -- Declare and set variables
31 DECLARE @Top AS int, @DateLimit AS datetime
32 SET @Top = 10 - @CurrentCustomersRatingCount --Customer will maximum rate about 10

products
33 SET @DateLimit = GETDATE() - 14 --Customer will not rate products that was ordered

within the last 14 days
34

35 SELECT TOP (@Top) fl.FakturaLinjeID, p.ProduktID, p.Navn, p.Bilde1
36 FROM [NH].[dbo].FakturaLinjer AS fl
37 LEFT JOIN [NH].[dbo].Produkter AS p
38 ON fl.ProduktID = p.ProduktID
39 LEFT JOIN [NH].[dbo].Fakturaer AS f
40 ON fl.FakturaID = f.FakturaID
41

42 WHERE f.MedlemsID = @MedlemsID
43 AND f.FakturaDato < @DateLimit
44 AND f.FakturaStatus in (4,7)
45 AND fl.ProduktType < 6
46

47 -- Make sure the customer hasn’t already rated the product
48 AND NOT EXISTS (SELECT 1 FROM dbo.ProductRating AS pr
49 LEFT JOIN [NH].[dbo].[FakturaLinjer] AS fl2
50 ON pr.FakturaLinjeID = fl.FakturaLinjeID
51 LEFT JOIN [NH].[dbo].[Fakturaer] AS f2

83

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

52 ON fl2.FakturaID = f2.FakturaID
53 WHERE fl.ProduktID = fl2.ProduktID
54 AND f2.MedlemsID = @MedlemsID)
55

56 -- Sort by descending purchasing price
57 ORDER BY fl.PrisEksMva DESC
58

59 END

Listing A.2: Insert or updates an existing record in the table that keeps track on the customers participation.

1 /*
2 <summary>
3 Stored Procedure: usp_CreateOrUpdateProductContextSurveyEntry
4

5 Usage: Insert or updates an existing record in the table ProductContextSurveyEntry,
based on the input parameters.

6 <param name="@SurveyID">The ID of the current survey.</param>
7 <param name="@MedlemsID">The customers MedlemsID.</param>
8 <param name="@SurveyIsCompleted">If not null, it will tag the survey entry as

completed</param>
9

10 Version: 0.1
11 </summary>
12 */
13

14 CREATE PROC [dbo].[usp_InsertOrUpdateProductContextSurveyEntry](
15 @SurveyID AS int,
16 @MedlemsID AS int,
17 @SurveyIsCompleted AS bit)
18

19 AS
20

21 /* Declare the ReturnValue. It will be to report the status back to the application
22 * 0 = Operation failed
23 * >0 = Operation success. Returns the ID of the record created or updated
24 */
25 DECLARE @ReturnVerdi AS int
26 SET @ReturnVerdi = 0
27

28 DECLARE @ExistingProductContextSurveyEntryID AS int
29

30 BEGIN
31 IF EXISTS (SELECT [ID] FROM [ProductContextSurveyEntry] WHERE [SurveyID] =

@SurveyID AND [MedlemsID] = @MedlemsID)
32 BEGIN
33 -- Modes:
34 -- If @SurveyIsCompleted != null the survey is completed and we set the

SurveyCompletedDate
35 -- If @IncrementProductsEvaluatedCount IS null AND @SurveyIsCompleted IS null,

then increment the visitor count
36

37 IF @SurveyIsCompleted IS NOT NULL
38 BEGIN
39 UPDATE [ProductContextSurveyEntry]
40 SET [SurveyCompletedDate] = GETDATE()
41 WHERE [SurveyID] = @SurveyID AND [MedlemsID] = @MedlemsID
42 END
43 ELSE
44 BEGIN
45 UPDATE [ProductContextSurveyEntry]

84

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

46 SET [SurveyVisits] = [SurveyVisits] + 1
47 WHERE [SurveyID] = @SurveyID AND [MedlemsID] = @MedlemsID
48 END
49

50 IF @@ROWCOUNT IS NOT NULL
51 BEGIN
52 SET @ReturnVerdi = @@ROWCOUNT
53 END
54 END
55

56 ELSE
57

58 BEGIN
59 INSERT INTO [ProductContextSurveyEntry] ([SurveyID], [MedlemsID])
60 VALUES (@SurveyID, @MedlemsID)
61

62 IF SCOPE_IDENTITY() IS NOT NULL
63 BEGIN
64 SET @ReturnVerdi = SCOPE_IDENTITY()
65 END
66 END
67 RETURN @ReturnVerdi
68 END

Listing A.3: Check the customer’s participating status.

1 /*
2 <summary>
3 Stored Procedure: usp_GetProductContextSurveyStatusForUserByMedlemsID
4

5 Usage: Returns a ReturnValue that describes the ProductContextSurvey status for a
given customer

6 <param name="@MedlemsID">The customers MedlemsID</param>
7 <param name="@SurveyID">The ID of the ProductContextSurvey</param>
8

9 Version: 0.1
10 </summary>
11 */
12

13 CREATE PROC [dbo].[usp_GetProductContextSurveyStatusForUserByMedlemsID](
14 @MedlemsID int,
15 @SurveyID int)
16

17 AS
18

19 /* Declare the ReturnValue. It will be to report the status back to the application
20 *-1 = Couldn’t find anything about the given customer
21 * 0 = Customer has not completed the survey
22 * 1 = Customer has completed the survey
23 */
24 DECLARE @ReturnValue AS int
25 SET @ReturnValue = -1
26

27 BEGIN
28

29 --Check first if the customer has activated this survey, regardless of completion
30 IF EXISTS(SELECT [ID] FROM [dbo].[ProductContextSurveyEntry] WHERE [MedlemsID] =

@MedlemsID AND [SurveyID] = @SurveyID)
31 BEGIN
32 --Customer has activated the survey
33 --Check if customer has completed the survey or not

85

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

34 IF EXISTS(SELECT [ID] FROM [dbo].[ProductContextSurveyEntry] WHERE [MedlemsID]
= @MedlemsID AND [SurveyID] = @SurveyID AND [SurveyCompletedDate] IS NOT
NULL)

35 BEGIN
36 --Customer has completed the survey
37 SET @ReturnValue = 1
38 END
39 ELSE
40 BEGIN
41 --Customer has not completed the survey
42 SET @ReturnValue = 0
43 END
44

45 END
46

47 RETURN @ReturnValue
48

49 END

Listing A.4: Updates the customers’ interests.

1 /*
2 <summary>
3 Stored Procedure: usp_InsertMedlemmerNyhetsGrupperFromCSV
4

5 Usage: Insert new rows in MedlemmerNyhetsGrupper, assigning a relationship between
a customer and a NewsGroup, where the [NyhetsGrupper].NyhetsgruppeId

6 is contained in a CSV varchar which is parsed, and is identified by the MedlemsID.
All pre-existing relationship records belonging to the user is deleted.

7 <param name="@MedlemsID">The MedlemsID</param>
8 <param name="@NyhetsgruppeIdCSV">The NyhetsgruppeId that the user selected,

contained in a CSV varchar</param>
9

10 Version: 0.1
11 </summary>
12 */
13

14 CREATE PROC [dbo].[usp_InsertMedlemmerNyhetsGrupperFromCSV](
15 @MedlemsID int,
16 @NyhetsgruppeIdCSV varchar(8000))
17

18 AS
19

20 /* Declare the ReturnValue. It will be to report the status back to the application
21 * 0 = Operation failed
22 * 1 = Operation success.
23 */
24 DECLARE @ReturnValue AS int
25 SET @ReturnValue = 0
26

27 BEGIN
28

29 -- Create temp table in memory that will contain the NyhetsGruppeIds that the
user selected

30 DECLARE @tmpNyhetsgrupperIds TABLE (ID int identity(1,1) NOT NULL,
NyhetsgruppeId varchar(80))

31

32 --Start the transaction
33 BEGIN TRANSACTION
34

86

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

35 -- Parse the CSV varchar that contains the NyhetsgruppeIds, seperated by a ’,’.
Insert the result into the temp table

36 INSERT INTO @tmpNyhetsgrupperIds
37 SELECT s FROM dbo.ufn_ParseString(@NyhetsgruppeIdCSV)
38

39 IF @@ERROR <> 0
40 BEGIN
41 -- Rollback the transaction
42 ROLLBACK
43 -- Raise an error and return
44 RAISERROR (’Error in parsing the CSV string containing the NyhetsGruppeIds.’,

16, 1)
45 RETURN
46 END
47

48 --Delete all pre-existing records belonging to this customer in the
MedlemmerNyhetsgrupper table

49 DELETE FROM [NH].[dbo].[MedlemmerNyhetsGrupper] WHERE [MedlemsID] = @MedlemsID
50 IF @@ERROR <> 0
51 BEGIN
52 ROLLBACK
53 RAISERROR (’Error in deleting records in MedlemmerNyhetsGrupper belonging to a

customer.’, 16, 1)
54 RETURN
55 END
56

57

58 -- Get the last ID created from the temp table and store the id, which will be
used in the while loop as the limit

59 DECLARE @LastTempTableID int
60 SET @LastTempTableID = SCOPE_IDENTITY()
61

62 -- Start while loop, iterating through the new NyhetsGruppeIds that we have
parsed and extracted into the temp table from the CSV varchar input

63 -- But only start it if we actually got new NyhetsGrupper to insert
64 IF @LastTempTableID IS NOT NULL
65 BEGIN
66 DECLARE @i as INT, @NyhetsgruppeId as INT
67 SET @i = 1
68 WHILE @i <= @LastTempTableID
69 BEGIN
70 -- Get the NyhetsgruppeId
71 SELECT @NyhetsgruppeId = [NyhetsgruppeId] FROM @tmpNyhetsgrupperIds WHERE [ID

] = @i
72

73 -- Insert into MedlemmerNyhetsGrupper, the ReturnValue is 1 if successful, 0
otherwise

74 EXEC @ReturnValue = usp_InsertMedlemmerNyhetsGrupper @MedlemsID = @MedlemsID,
@NyhetsgruppeId = @NyhetsgruppeId

75

76 IF @ReturnValue = 0 OR @@ERROR <> 0
77 BEGIN
78 ROLLBACK
79 RAISERROR (’Error occurred during insert of new record in

MedlemmerNyhetsGrupper, via usp_InsertMedlemmerNyhetsGrupper’, 16, 1)
80 RETURN
81 END
82

83 -- Increment loop iterator
84 SET @i = @i + 1
85 END
86 END

87

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

87 ELSE
88 BEGIN
89 -- The CSV was empty, thus no insertions were done. This is allowed.
90 SET @ReturnValue = 1
91 END
92

93

94 -- Everything OK, commit the transaction.
95 COMMIT
96

97 -- Last check to see if the transaction itself was successful
98 IF @@ERROR <> 0
99 BEGIN

100 SET @ReturnValue = 0
101 END
102

103 RETURN @ReturnValue
104 END

Total tags and unique products

Below are a few of the SQL scripts that were used during the analysis.

Listing A.5: Returns the average tag count for products related to summer

1 SELECT AVG(CAST(derived.theCount AS dec)) FROM (SELECT fl.ProduktID, COUNT(fl.
ProduktID) AS theCount

2 FROM ProductSeasonRelated AS psr
3 JOIN FakturaLinjer AS fl ON fl.FakturaLinjeID = psr.FakturaLinjeID
4 WHERE psr.SeasonID = 1 AND fl.ProduktID > 0
5 GROUP by fl.ProduktID) AS derived

Listing A.6: Returns the total tag count for each of the products related to summer

1 SELECT fl.ProduktID, COUNT(fl.ProduktID) AS theCount
2 FROM ProductSeasonRelated AS psr
3 JOIN FakturaLinjer AS fl ON fl.FakturaLinjeID = psr.FakturaLinjeID
4 WHERE psr.SeasonID = 1 AND fl.ProduktID > 0
5 GROUP BY fl.ProduktID
6 /* Uncomment to find the total tags of products that have at least 10 tags
7 * HAVING COUNT(fl.ProduktID) >= 10
8 */
9 ORDER BY theCount DESC

Listing A.7: Returns the total number of unique products that have been tagged a certain amount of times for
products related to summer

1 SELECT COUNT(1) FROM (SELECT DISTINCT fl.ProduktID
2 FROM ProductSeasonRelated AS psr
3 JOIN FakturaLinjer AS fl ON fl.FakturaLinjeID = psr.FakturaLinjeID
4 WHERE psr.SeasonID = 1 AND fl.ProduktID > 0
5 GROUP BY fl.ProduktID
6 HAVING COUNT(fl.ProduktID) = 1) AS derived

Listing A.8: Returns the total number of unique products that might have been misclassified as being related
to summer.

88

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1 SELECT COUNT(DISTINCT derived.ProduktID) FROM
2 (SELECT f.MedlemsID, fl.ProduktID, psr.SeasonID, COUNT(fl.produktid) AS

DuplicateProductTags FROM ProductSeasonRelated psr
3 JOIN FakturaLinjer fl on fl.FakturaLinjeID = psr.FakturaLinjeID
4 JOIN Fakturaer f on f.FakturaID = fl.FakturaID
5 WHERE fl.ProduktID > 0 and psr.SeasonID = 1
6 GROUP BY f.MedlemsID, fl.ProduktID, psr.SeasonID
7 HAVING COUNT(fl.produktid) >= @averageTagCount) AS derived

Listing A.9: The main SQL script that starts the procedure to calculate precision & recall and F-score for all
customers within the specified context and threshold.

1 SET NOCOUNT ON
2

3 DECLARE @Threshold int, @SeasonID int
4 SET @Threshold = 6
5 SET @SeasonID = 1
6

7 DECLARE @SeasonThresholdCount int
8 SELECT @SeasonThresholdCount = dbo.udf_Season_ThreshHold_Count(@SeasonID,

@Threshold)
9

10 DECLARE @tabellen TABLE
11 (
12 UserID int,
13 TP float,
14 FN float,
15 Prec float,
16 Recall float,
17 Fscore float
18)
19

20 INSERT INTO @tabellen (UserID, TP)
21 SELECT derived.UserID,
22 dbo.udf_Season_TP(derived.UserID, @SeasonID, @Threshold) as TP
23 FROM (SELECT DISTINCT rm.UserID FROM RatingMatrix AS rm) AS derived
24

25 UPDATE @tabellen SET FN = @SeasonThresholdCount - TP,
26 Prec = CASE WHEN TP > 0 OR TP < 0 THEN TP / TP ELSE 0 END,
27 Recall = TP / @SeasonThresholdCount
28 UPDATE @tabellen SET Fscore = (CASE WHEN Prec + Recall > 0 OR Prec + Recall < 0

THEN 2 * ((Prec * Recall)/(Prec + Recall)) ELSE 0 END)
29

30 INSERT INTO PrecRecSeasonSummer (UserID, TP, FN, Prec, Recall, Fscore)
31 SELECT tab.UserID, tab.TP, tab.FN, tab.Prec, tab.Recall, tab.Fscore
32 FROM @tabellen AS tab

Listing A.10: A scalar-valued function used to return the number of products being related to the specified
context.

1 CREATE FUNCTION [dbo].[udf_Season_ThreshHold_Count]
2 (
3 @SeasonID int,
4 @ThreshHold int
5)
6 RETURNS int
7 AS
8 BEGIN
9

89

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

10 DECLARE @SeasonThreshHoldCount int
11

12 SELECT @SeasonThreshHoldCount = COUNT(1) FROM (SELECT rm.ItemID, COUNT(rm.ItemID)
AS summen

13 FROM ProductSeasonRelated AS psr
14 JOIN RatingMatrix AS rm
15 ON rm.FakturaLinjeID = psr.FakturaLinjeID
16

17 WHERE psr.SeasonID = @SeasonID
18

19 GROUP BY rm.ItemID
20 HAVING COUNT(rm.ItemID) >= @ThreshHold) AS derived
21

22 RETURN @SeasonThreshHoldCount
23

24 END

Listing A.11: A scalar-valued function used to return the number of true positives used in the calculation of
precision and recall

1 CREATE FUNCTION [dbo].[udf_Season_TP]
2 (
3 @UserID int,
4 @SeasonID int,
5 @ThreshHold int
6)
7 RETURNS int
8 AS
9 BEGIN

10 DECLARE @TruePositive int
11

12

13 SELECT @TruePositive = COUNT(1)
14 FROM (select derived.item FROM (SELECT d.ItemID1 AS item, CAST(SUM(d.Sum + d.Count

* r.Rating) AS decimal) / SUM(d.Count) AS avgrat
15 FROM RatingMatrix r, Deviation d
16 WHERE r.UserID = @UserID
17 AND d.ItemID1 <> r.ItemID
18 AND d.ItemID2 = r.ItemID
19 GROUP BY d.ItemID1) AS derived
20 JOIN Produkter AS p
21 ON p.ProduktID = derived.item
22

23 JOIN (SELECT rm.ItemID
24 FROM ProductSeasonRelated as psr
25 JOIN RatingMatrix as rm
26 ON rm.FakturaLinjeID = psr.FakturaLinjeID
27 WHERE psr.SeasonID = @SeasonID
28 GROUP BY rm.ItemID
29 HAVING COUNT(rm.ItemID) >= @ThreshHold) AS derived2
30 ON derived2.ItemID = derived.item) AS finalDerived
31

32 RETURN @TruePositive
33

34 END

A.4.2 Survey application C# snippets

Listing A.12: The webpage in the survey where the customers rated and tagged the products.

90

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1

2 using System;
3 using System.Collections.Generic;
4 using System.Linq;
5 using System.Web;
6 using System.Web.UI;
7 using System.Web.UI.WebControls;
8 using SurveyLib.ProductContextSurvey;
9 using SurveyLib.ProductContextSurvey.Entities;

10

11 /// <summary>
12 /// Page: ProductSurvey.aspx
13 /// Version: 0.3
14 /// </summary>
15 public partial class _ProductSurvey : System.Web.UI.Page
16 {
17

18 protected void Page_Load(object sender, EventArgs e)
19 {
20 //Get the GUID from the query string and get the MedlemsID. If it is null

or empty, set local GUID var to null
21 string GUID = !string.IsNullOrEmpty(Request.QueryString["guid"]) ? Request.

QueryString["guid"] : null;
22

23 //Only continue if we got a valid GUID
24 if (GuidUtility.IsGuid(GUID))
25 {
26 //GUID is valid
27 //Get information of the user that owns the GUID
28 Medlem medlem = new Medlem().Load(GUID);
29

30 //If the Medlem.ID is zero, it means that we didn’t find any user with
the provided GUID.

31 if (medlem.ID > 0)
32 {
33 //The user existed
34

35 //Save the medlemsID into view state for optimization reasons, it
will be directly used in submit event. It will only be read
from viewstate directly on postback, and since we set this on
every page load, the chance of XSS or other tampering will be
dramatically reduced / eliminated

36 ViewState["MedlemsID"] = medlem.ID;
37

38 if (!IsPostBack) //First page load
39 {
40 //Check if the customer has previously completed the survey
41 int surveyID = 1; //manually set for now
42 bool? isProductContextSurveyCompletedForCustomer = new

UserSurveyTracking().
IsProductContextSurveyCompletedForCustomer(medlem.ID,
surveyID);

43 if (isProductContextSurveyCompletedForCustomer != null && (bool
)(!isProductContextSurveyCompletedForCustomer))

44 {
45 List<FakturaLinje> fakturaLinjer = new FakturaLinje().

GetNextUnratedFakturaLinjer(medlem.ID);
46

47 //Load first product for first page load
48 //If for some reason no products were returned, then send

the customer to the error page with an explanation
49 if (fakturaLinjer == null || fakturaLinjer.Count == 0)

91

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

50 {
51 Response.Redirect("Feil.aspx?error=" + Server.UrlEncode

("Beklager, det viser seg at du har mottatt denne
spoerreundersoekelsen ved en feiltakelse. Vi har
proevd aa filtrere saa godt som mulig paa forhaand,
men en sjelden gang slipper noen faa gjennom. Vi
beklager for forstyrrelsen. Ha en fin dag videre!
Beskjeden nedenfor kan du se bort i fra."), true);

52 }
53 LoadProduct(fakturaLinjer[0].Produkt, fakturaLinjer[0].ID);
54

55 //Count the number of uniquely bought products for the
customer. The product limit will be used in a TOP
clause

56 SurveyStepStatus(fakturaLinjer.Count);
57 }
58 else if (isProductContextSurveyCompletedForCustomer != null &&

(bool)(isProductContextSurveyCompletedForCustomer))
59 {
60 //The customer has already completed this survey at an

earlier time!
61 TransferToCustomerSurveyPage();
62 }
63 else
64 {
65 //isProductContextSurveyCompletedForCustomer is null, no

information about the survey for this customer was
found

66 Response.Redirect("Feil.aspx?error=" + Server.UrlEncode("Du
maa starte kundeundersoekelsen fra begynnelsen av."));

67 }
68 }
69 }
70 else
71 {
72 //Response.Write("No user found!");
73 Response.Redirect("Feil.aspx?error=" + Server.UrlEncode("Gjenkjente

ingen brukere med de opplysningene som ble gitt."));
74 }
75 }
76 else
77 {
78 //Not a valid GUID, the URL was probably altered by the user
79 //Response.Write("Not a valid GUID");
80 Response.Redirect("Feil.aspx?error=" + Server.UrlEncode("En ugyldig

identifikasjonskode var oppgitt."));
81 }
82 }
83

84 private int SurveyStepStatus(int productsLimit)
85 {
86 litProductsRemaining.Text = productsLimit.ToString();
87

88 return productsLimit;
89 }
90

91 protected void ResetControls()
92 {
93 //Reset controls
94 ddlGiftToWho.SelectedIndex = -1;
95 rblWasItAGift.SelectedIndex = 0; //Yes
96 ddlGiftOccasion.SelectedIndex = -1; //Bursdag

92

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

97 cblProductUsage.SelectedIndex = -1;
98 rbSeasonNo.Checked = false;
99 cblSeason.SelectedIndex = -1;

100 rbWeatherNo.Checked = false;
101 cblWeather.SelectedIndex = -1;
102 rbSpecialDayNo.Checked = false;
103 cblSpecialDay.SelectedIndex = -1;
104

105 hdRating.Value = "";
106 }
107

108 protected void TransferToCustomerSurveyPage()
109 {
110 Server.Transfer("CustomerSurvey.aspx");
111 }
112

113 protected void LoadProduct(Produkt produkt, int thisFakturaLinjeID)
114 {
115 //Load and view the product from FakturaLinjeID
116

117 imgProductImage.ImageUrl = "http://www.netthandelen.no/prodbilder/medium/"
+ produkt.Bilde1;

118 imgProductImage.Height = 190;
119 imgProductImage.Width = 190;
120

121 litProductName.Text = produkt.Navn;
122

123 //Store the FakturaLinjeID for the product loaded, which will be used to
save

124 hdThisFLID.Value = thisFakturaLinjeID.ToString();
125 }
126

127

128 protected void btnNextProduct_Click(object sender, EventArgs e)
129 {
130 if (string.IsNullOrEmpty(hdRating.Value))
131 {
132 pnError.Visible = true;
133 return;
134 }
135 else pnError.Visible = false;
136

137 //Save the entered information about the product
138 FakturaLinje fakturaLinje = new FakturaLinje();
139 fakturaLinje.ID = Convert.ToInt32(hdThisFLID.Value);
140

141 Produkt produkt = new Produkt();
142 ProductContext productContext = new ProductContext();
143

144 //Add the product rating
145 productContext.Rating = Convert.ToInt32(hdRating.Value);
146

147 //Only add gift context if this product was a gift
148 if (!ddlGiftToWho.SelectedItem.Text.Equals("Meg") && rblWasItAGift.

SelectedItem.Text.Equals("Ja"))
149 productContext.AddGiftContext(Convert.ToInt32(ddlGiftToWho.

SelectedValue), Convert.ToInt32(ddlGiftOccasion.SelectedValue));
150

151 //Add selected usage context
152 foreach (ListItem item in cblProductUsage.Items) if (item.Selected)

productContext.AddUsageContext(Convert.ToInt32(item.Value));
153

93

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

154 //Add selected season context
155 foreach (ListItem item in cblSeason.Items) if (item.Selected)

productContext.AddSeasonContext(Convert.ToInt32(item.Value));
156

157 //Add selected weather context
158 foreach (ListItem item in cblWeather.Items) if (item.Selected)

productContext.AddWeatherContext(Convert.ToInt32(item.Value));
159

160 //Add selected special day context
161 foreach (ListItem item in cblSpecialDay.Items) if (item.Selected)

productContext.AddSpecialDayContext(Convert.ToInt32(item.Value));
162

163 //Add the product context object to the parent Produkt object
164 produkt.Context = productContext;
165

166 //Add the Produkt object to the parent FakturaLinje object
167 fakturaLinje.Produkt = produkt;
168

169 //Store the product context to the database
170 bool transactionSuccess = fakturaLinje.SubmitContextualProductData();
171

172

173

174 //Load the next products, if any. If Count = 0, then user is complete with
the survey.

175 //First, get the customers MedlemsID from ViewState, it is set directly
before this event is loaded, on every Page_Load

176 int medlemsID = 0;
177 if (ViewState["MedlemsID"] == null || !Int32.TryParse(ViewState["MedlemsID

"].ToString(), out medlemsID) || medlemsID <= 0)
178 {
179 //ViewState containing MedlemsID is null or couldn’t be parsed to int,

which means it somehow got tampered with
180 //TODO: ERROR & LOG HANDLING
181 //Response.Redirect("http://www.netthandelen.no", true);
182 Response.Redirect("Feil.aspx?error=" + Server.UrlEncode("En ugyldig

informasjon var forsoekt angitt."));
183 }
184

185 //Valid MedlemsID
186 List<FakturaLinje> fakturaLinjer = new FakturaLinje().

GetNextUnratedFakturaLinjer(medlemsID);
187 if (fakturaLinjer.Count == 0)
188 {
189 //Confirm that the user has completed the survey.
190 bool sqlSuccess = new UserSurveyTracking().ProductContextSurveyEntry(1,

medlemsID, true);
191 TransferToCustomerSurveyPage();
192 }
193 else
194 {
195 //More products remains, survey is not completed.
196 //Reset the forms to default
197 ResetControls();
198

199 //Load next product
200 LoadProduct(fakturaLinjer[0].Produkt, fakturaLinjer[0].ID);
201

202 //Update navigation status
203 int productsLimit = fakturaLinjer.Count;
204 SurveyStepStatus(productsLimit);
205 }

94

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

206 }
207 }

Listing A.13: This class had the responsibility of retrieving products and storing contextual information about
the products.

1

2 using System;
3 using System.Collections.Generic;
4 using System.Configuration;
5 using System.Data;
6 using System.Data.SqlClient;
7 using System.Linq;
8 using System.Transactions;
9 using System.Web;

10

11

12 namespace SurveyLib.ProductContextSurvey.Entities
13 {
14 /// <summary>
15 /// Class: FakturaLinje
16 /// Version: 0.1
17 /// </summary>
18 public class FakturaLinje
19 {
20 public int ID { get; set; }
21 public Produkt Produkt { get; set; }
22

23

24 private readonly string ConnString = new ConnectionStringUtility().
GetConnectionString();

25

26

27 public FakturaLinje()
28 {
29 //
30 // TODO: Add constructor logic here
31 //
32 }
33

34 /// <summary>
35 /// Gets the number of number of products bought by the customer.
36 /// Maximum 10 products are counted, and products that have been ordered in

the past 14 days are excluded from the count.
37 /// </summary>
38 /// <param name="medlemsID">The customers MedlemsID</param>
39 public int CountBoughtProductsForUser(int medlemsID)
40 {
41 using (SqlConnection conn = new SqlConnection(ConnString))
42 {
43 //Add the product rating
44 using (SqlCommand cmd = new SqlCommand("[dbo].[

usp_GetNumberOfBoughtProductsByMedlemsID]", conn))
45 {
46 cmd.CommandType = CommandType.StoredProcedure;
47

48 //Input: @MedlemsID
49 SqlParameter parameter = new SqlParameter("@MedlemsID",

SqlDbType.Int);
50 parameter.Direction = ParameterDirection.Input;
51 parameter.Value = medlemsID;

95

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

52 cmd.Parameters.Add(parameter);
53

54 //Output: @ReturnValue
55 parameter = new SqlParameter("@ReturnValue", SqlDbType.Int);
56 parameter.Direction = ParameterDirection.ReturnValue;
57 cmd.Parameters.Add(parameter);
58

59 conn.Open();
60 cmd.ExecuteNonQuery();
61

62 return Convert.ToInt32(cmd.Parameters["@ReturnValue"].Value);
63 }
64 }
65 }
66

67 /// <summary>
68 /// Gets a List of FakturaLinje, containing up to 10 rows from

FakturaLinjer. The rows are selected as long the FakturaLinjeID isn’t
in ProductRating, this means that the customer has rated the
FakturaLinjeID.

69 /// We don’t want the customer to rate the same FakturaLinjeID more than
once. In addition, products that was bought within the last 14 days are
also excluded. And the recordset is ordered as FakturaLinje.PrisEksMva
DESC.

70 /// </summary>
71 /// <param name="medlemsID">The customers MedlemsID</param>
72 public List<FakturaLinje> GetNextUnratedFakturaLinjer(int medlemsID)
73 {
74 List<FakturaLinje> fakturaLinjer = new List<FakturaLinje>();
75

76 using (SqlConnection conn = new SqlConnection(ConnString))
77 {
78 //Add the product rating
79 using (SqlCommand cmd = new SqlCommand("[dbo].[

usp_GetNextFakturaLinjeIDByMedlemsID]", conn))
80 {
81 cmd.CommandType = CommandType.StoredProcedure;
82

83 //Input: @MedlemsID
84 SqlParameter parameter = new SqlParameter("@MedlemsID",

SqlDbType.Int);
85 parameter.Direction = ParameterDirection.Input;
86 parameter.Value = medlemsID;
87 cmd.Parameters.Add(parameter);
88

89 conn.Open();
90 SqlDataReader dr = cmd.ExecuteReader();
91 while (dr.Read())
92 {
93 fakturaLinjer.Add(new FakturaLinje()
94 {
95 ID = Convert.ToInt32(dr["

FakturaLinjeID"]),
96 Produkt = new Produkt()
97 {
98 ID = Convert.

ToInt32(dr
["ProduktID
"]),

99 Navn = dr["Navn
"].ToString
(),

96

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

100 Bilde1 = dr["
Bilde1"].
ToString()

101 }
102 });
103 }
104 }
105 }
106

107 return fakturaLinjer;
108 }
109

110 /// <summary>
111 /// Stores the given contextual data about a product from the user into the

database
112 /// </summary>
113 public bool SubmitContextualProductData()
114 {
115 using (SqlConnection conn = new SqlConnection(ConnString))
116 {
117 //Add the product rating
118 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductRating]", conn))
119 {
120 cmd.CommandType = CommandType.StoredProcedure;
121

122 //Input: @FakturaLinjeID
123 SqlParameter parameter = new SqlParameter("@FakturaLinjeID

", SqlDbType.Int);
124 parameter.Direction = ParameterDirection.Input;
125 parameter.Value = ID;
126 cmd.Parameters.Add(parameter);
127

128 //Input: @Rating
129 parameter = new SqlParameter("@Rating", SqlDbType.Int);
130 parameter.Direction = ParameterDirection.Input;
131 parameter.Value = Produkt.Context.Rating;
132 cmd.Parameters.Add(parameter);
133

134 conn.Open();
135 cmd.ExecuteNonQuery();
136 }
137 }
138

139 //Only run usp_InsertProductGiftRelated and
usp_InsertProductGiftOccasionRelated if we got any data about
it

140 if (Produkt.Context.GiftContext != null)
141 {
142 using (SqlConnection conn = new SqlConnection(ConnString))
143 {
144

145 using (SqlCommand cmd = new SqlCommand("[
usp_InsertProductGiftRelated]", conn))

146 {
147 cmd.CommandType = CommandType.StoredProcedure;
148

149 //Input: @FakturaLinjeID
150 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
151 parameter.Direction = ParameterDirection.Input;
152 parameter.Value = ID;

97

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

153 cmd.Parameters.Add(parameter);
154

155 //Input: @ToWhoID
156 parameter = new SqlParameter("@ToWhoID", SqlDbType.Int)

;
157 parameter.Direction = ParameterDirection.Input;
158 parameter.Value = Produkt.Context.GiftContext.ToWhoID;
159 cmd.Parameters.Add(parameter);
160

161 conn.Open();
162 cmd.ExecuteNonQuery();
163 }
164

165 }
166

167 using (SqlConnection conn = new SqlConnection(ConnString))
168 {
169 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductGiftOccasionRelated]", conn))
170 {
171 cmd.CommandType = CommandType.StoredProcedure;
172

173 //Input: @FakturaLinjeID
174 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
175 parameter.Direction = ParameterDirection.Input;
176 parameter.Value = ID;
177 cmd.Parameters.Add(parameter);
178

179 //Input: @OccasionID
180 parameter = new SqlParameter("@OccasionID", SqlDbType.

Int);
181 parameter.Direction = ParameterDirection.Input;
182 parameter.Value = Produkt.Context.GiftContext.

OccasionID;
183 cmd.Parameters.Add(parameter);
184

185 conn.Open();
186 cmd.ExecuteNonQuery();
187 }
188 }
189 }
190

191

192

193 //Add selected usage context
194 foreach (ProductUsageContext productUsageContext in Produkt.Context

.ProductUsageContext)
195 {
196 using (SqlConnection conn = new SqlConnection(ConnString))
197 {
198 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductUsageRelated]", conn))
199 {
200 cmd.CommandType = CommandType.StoredProcedure;
201

202 //Input: @FakturaLinjeID
203 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
204 parameter.Direction = ParameterDirection.Input;
205 parameter.Value = ID;
206 cmd.Parameters.Add(parameter);

98

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

207

208 //Input: @UsageID
209 parameter = new SqlParameter("@UsageID", SqlDbType.Int)

;
210 parameter.Direction = ParameterDirection.Input;
211 parameter.Value = productUsageContext.UsageID;
212 cmd.Parameters.Add(parameter);
213

214 conn.Open();
215 cmd.ExecuteNonQuery();
216 }
217 }
218 }
219

220 //Add selected season context
221 foreach (ProductSeasonRelatedContext productSeasonRelatedContext in

Produkt.Context.ProductSeasonRelatedContext)
222 {
223 using (SqlConnection conn = new SqlConnection(ConnString))
224 {
225 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductSeasonRelated]", conn))
226 {
227 cmd.CommandType = CommandType.StoredProcedure;
228

229 //Input: @FakturaLinjeID
230 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
231 parameter.Direction = ParameterDirection.Input;
232 parameter.Value = ID;
233 cmd.Parameters.Add(parameter);
234

235 //Input: @SeasonID
236 parameter = new SqlParameter("@SeasonID", SqlDbType.Int

);
237 parameter.Direction = ParameterDirection.Input;
238 parameter.Value = productSeasonRelatedContext.SeasonID;
239 cmd.Parameters.Add(parameter);
240

241 conn.Open();
242 cmd.ExecuteNonQuery();
243 }
244 }
245 }
246

247

248 //Add selected weather context
249 foreach (ProductWeatherRelatedContext productWeatherPelatedContext

in Produkt.Context.ProductWeatherRelatedContext)
250 {
251 using (SqlConnection conn = new SqlConnection(ConnString))
252 {
253 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductWeatherRelated]", conn))
254 {
255 cmd.CommandType = CommandType.StoredProcedure;
256

257 //Input: @FakturaLinjeID
258 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
259 parameter.Direction = ParameterDirection.Input;
260 parameter.Value = ID;

99

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

261 cmd.Parameters.Add(parameter);
262

263 //Input: @WeatherID
264 parameter = new SqlParameter("@WeatherID", SqlDbType.

Int);
265 parameter.Direction = ParameterDirection.Input;
266 parameter.Value = productWeatherPelatedContext.

WeatherID;
267 cmd.Parameters.Add(parameter);
268

269 conn.Open();
270 cmd.ExecuteNonQuery();
271 }
272 }
273 }
274

275 //Add selected special day context
276 foreach (ProductSpecialDayRelatedContext

productSpecialDayPelatedContext in Produkt.Context.
ProductSpecialDayRelatedContext)

277 {
278 using (SqlConnection conn = new SqlConnection(ConnString))
279 {
280 using (SqlCommand cmd = new SqlCommand("[

usp_InsertProductSpecialDayRelated]", conn))
281 {
282 cmd.CommandType = CommandType.StoredProcedure;
283

284 //Input: @FakturaLinjeID
285 SqlParameter parameter = new SqlParameter("

@FakturaLinjeID", SqlDbType.Int);
286 parameter.Direction = ParameterDirection.Input;
287 parameter.Value = ID;
288 cmd.Parameters.Add(parameter);
289

290 //Input: @SpecialDayID
291 parameter = new SqlParameter("@SpecialDayID", SqlDbType

.Int);
292 parameter.Direction = ParameterDirection.Input;
293 parameter.Value = productSpecialDayPelatedContext.

SpecialDayID;
294 cmd.Parameters.Add(parameter);
295

296 conn.Open();
297 cmd.ExecuteNonQuery();
298 }
299 }
300 }
301

302 return true;
303 }
304 }
305 }

Listing A.14: This class had contained the methods for adding contextual information to the products.

1

2 using System;
3 using System.Collections.Generic;
4 using System.Configuration;
5 using System.Data;

100

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

6 using System.Linq;
7 using System.Web;
8

9

10 namespace SurveyLib.ProductContextSurvey.Entities
11 {
12 /// <summary>
13 /// Class: ProductContext
14 /// Version: 0.1
15 /// </summary>
16 public class ProductContext
17 {
18 public int Rating { get; set; }
19 public ProductGiftRelatedContext GiftContext { get; set; }
20 public List<ProductUsageContext> ProductUsageContext { get; set; }
21 public List<ProductSeasonRelatedContext> ProductSeasonRelatedContext { get;

set; }
22 public List<ProductWeatherRelatedContext> ProductWeatherRelatedContext {

get; set; }
23 public List<ProductSpecialDayRelatedContext>

ProductSpecialDayRelatedContext { get; set; }
24

25 private readonly string ConnString = new ConnectionStringUtility().
GetConnectionString();

26

27

28 public ProductContext()
29 {
30 //Initiate a default ProductUsageContext list
31 ProductUsageContext = new List<ProductUsageContext>();
32 ProductSeasonRelatedContext = new List<ProductSeasonRelatedContext>();
33 ProductWeatherRelatedContext = new List<ProductWeatherRelatedContext>()

;
34 ProductSpecialDayRelatedContext = new List<

ProductSpecialDayRelatedContext>();
35 }
36

37 /// <summary>
38 /// Adds gift context of the product.
39 /// </summary>
40 /// <param name="toWhoID">The description ID of the gift receiver.</param>
41 /// <param name="occasionID">The description ID of the gift occasion.</

param>
42 public void AddGiftContext(int toWhoID, int occasionID)
43 {
44 ProductGiftRelatedContext ProductGiftRelatedContext = new

ProductGiftRelatedContext();
45 ProductGiftRelatedContext.ToWhoID = toWhoID;
46 ProductGiftRelatedContext.OccasionID = occasionID;
47

48 GiftContext = ProductGiftRelatedContext;
49 }
50

51 /// <summary>
52 /// Adds usage context of the product.
53 /// </summary>
54 /// <param name="usageID">The description ID of the usage type.</param>
55 public void AddUsageContext(int usageID)
56 {
57 ProductUsageContext productUsageContext = new ProductUsageContext();
58 productUsageContext.UsageID = usageID;
59

101

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

60 ProductUsageContext.Add(productUsageContext);
61 }
62

63 /// <summary>
64 /// Adds season related context of the product.
65 /// </summary>
66 /// <param name="seasonID">The description ID of the season.</param>
67 public void AddSeasonContext(int seasonID)
68 {
69 ProductSeasonRelatedContext productSeasonRelatedContext = new

ProductSeasonRelatedContext();
70 productSeasonRelatedContext.SeasonID = seasonID;
71

72 ProductSeasonRelatedContext.Add(productSeasonRelatedContext);
73 }
74

75 /// <summary>
76 /// Adds weather related context of the product.
77 /// </summary>
78 /// <param name="weatherID">The description ID of the weather type.</param>
79 public void AddWeatherContext(int weatherID)
80 {
81 ProductWeatherRelatedContext productWeatherRelatedContext = new

ProductWeatherRelatedContext();
82 productWeatherRelatedContext.WeatherID = weatherID;
83

84 ProductWeatherRelatedContext.Add(productWeatherRelatedContext);
85 }
86

87 /// <summary>
88 /// Adds special day related context of the product.
89 /// </summary>
90 /// <param name="specialDayID">The description ID of the special day.</

param>
91 public void AddSpecialDayContext(int specialDayID)
92 {
93 ProductSpecialDayRelatedContext productSpecialDayRelatedContext = new

ProductSpecialDayRelatedContext();
94 productSpecialDayRelatedContext.SpecialDayID = specialDayID;
95

96 ProductSpecialDayRelatedContext.Add(productSpecialDayRelatedContext);
97 }
98 }
99 }

A.4.3 Weighted Slope One algorithm and cross-fold validation in MATLAB

Listing A.15: Function that is used when the ratings are parsed from text file into a matrix.

1 function ratingMatrix = addRating(ratingMatrix, userID, itemID, rating)
2

3 % Add the rating into the rating matrix
4 rowSize = size(ratingMatrix,1);
5 ratingMatrix(rowSize + 1,1) = userID;
6 ratingMatrix(rowSize + 1,2) = itemID;
7 ratingMatrix(rowSize + 1,3) = rating;
8

9 end

Listing A.16: Parses the text file containing all the ratings

102

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1 clear all;
2

3 % Init the rating matrix and the deviation matrix
4 ratingMatrix = []; %[ActiveUserID, ItemID, Rating]
5 deviationMatrix = []; %[ItemID1, ItemID2, Count, Sum]
6

7 tStart = tic;
8

9 %numUsersLimit = 100;
10

11 fid=fopen(’ratingMatrixFiltered30mai.txt’);
12 currUser=0;
13 numUsers=0;
14 while 1
15 tline = fgetl(fid);
16 if ~ischar(tline), break, end
17 numLine=sscanf(tline,’%f’);
18 activeUserID = numLine(1);
19 itemID = numLine(2);
20 rating = numLine(3);
21 ratingMatrix = addRating(ratingMatrix, activeUserID, itemID, rating);
22 %uncomment to activate user calculation limit
23 %{
24 if currUser~=numLine(1),
25 numUsers=numUsers+1;
26 currUser=numLine(1);
27 end
28 if numUsers>numUsersLimit, break;end
29 %}
30 end
31

32 tElapsedLoadRatingMatrix = uint64(toc(tStart));
33 disp([’Loaded the rating matrix from text file in seconds: ’, num2str(

tElapsedLoadRatingMatrix)]);
34

35 tStart = tic;
36

37 currentDeviationSize = 0;
38

39 for i = 1:size(ratingMatrix,1)
40 [ratingMatrix, deviationMatrix, ratingDifferenceMatrix] =

popularityDifferential(ratingMatrix, deviationMatrix, ratingMatrix(i,1),
ratingMatrix(i,2), ratingMatrix(i,3));

41

42 % Periodically display current computation time
43 if (size(deviationMatrix,1) > currentDeviationSize + 99999)
44 currentDeviationSize = size(deviationMatrix,1);
45 tElapsedPopularityDifferential = uint64(toc(tStart));
46 disp([’Current elapsed seconds: ’, num2str(tElapsedPopularityDifferential)

]);
47 disp([’Current Deviation matrix size: ’, num2str(currentDeviationSize)]);
48 end
49

50 end
51 % Show calculation time
52 tElapsedPopularityDifferential = uint64(toc(tStart));
53 disp([’Did the popularity differential matrix in seconds: ’, num2str(

tElapsedPopularityDifferential)]);

Listing A.17: Calculates the popularity differentials that are stored in the deviation matrix.

103

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

1 function [ratingMatrix, deviationMatrix, ratingDifferenceMatrix] =
popularityDifferential(ratingMatrix, deviationMatrix, activeUserID, itemID,
rating)

2

3

4 % Get all of the user’s rating pairs
5 % First, find all the indicies of the current user from the rating matrix
6 indActiveUserInRatingMatrix = find(ratingMatrix(:,1) == activeUserID);
7

8 % Generate the matrix that shows the rating differene to the other items
9 % the user has previously rated

10 ratingDifferenceMatrix = [ratingMatrix(indActiveUserInRatingMatrix,2), rating -
ratingMatrix(indActiveUserInRatingMatrix,3)];

11

12 % Look though the ratingDifferenceMatrix
13 for i = 1:size(ratingDifferenceMatrix,1)
14 % For every one of the user’s rating pairs, update the deviation table
15 otherItemID = ratingDifferenceMatrix(i,1);
16 ratingDifference = ratingDifferenceMatrix(i,2);
17

18 % If the pair (itemID, otherItemID) is already in the dev table, then
19 % we want to update 2 rows
20 indDeviation = [];
21 if (size(deviationMatrix,1) > 0)
22 indDeviation = find(deviationMatrix(:,1) == itemID & deviationMatrix(:,2)

== otherItemID);
23 end
24

25 if (size(indDeviation,1) > 0)
26 deviationMatrix(indDeviation,3) = deviationMatrix(indDeviation,3) + 1;
27 deviationMatrix(indDeviation,4) = deviationMatrix(indDeviation,4) +

ratingDifference;
28

29 % We only want to update if the items are different
30 if (itemID ~= otherItemID)
31 indDeviation = find(deviationMatrix(:,1) == otherItemID &

deviationMatrix(:,2) == itemID);
32 deviationMatrix(indDeviation,3) = deviationMatrix(indDeviation,3) + 1;
33 deviationMatrix(indDeviation,4) = deviationMatrix(indDeviation,4) -

ratingDifference;
34 end
35

36 else %We want to insert 2 rows into the dev table
37 %We only want to insert 2 rows into the dev table
38 if (itemID ~= otherItemID)
39 rowSize = size(deviationMatrix,1);
40 deviationMatrix(rowSize + 1,1) = itemID;
41 deviationMatrix(rowSize + 1,2) = otherItemID;
42 deviationMatrix(rowSize + 1,3) = 1;
43 deviationMatrix(rowSize + 1,4) = ratingDifference;
44 %Note the +2 instead of +1, because we adding the "inverse"-row
45 deviationMatrix(rowSize + 2,1) = otherItemID;
46 deviationMatrix(rowSize + 2,2) = itemID;
47 deviationMatrix(rowSize + 2,3) = 1;
48 deviationMatrix(rowSize + 2,4) = -ratingDifference;
49 end
50 end
51

52

53 end

104

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

Listing A.18: Does the cross-fold validations and calculate the different error rates for the predictions that
are calculated with the function below.

1 tStart = tic;
2

3 % Create training sets, 10-fold
4 c = cvpartition(ratingMatrix(:,1),’kfold’,10);;
5

6 % Set which fold to work on: 1-10
7 fold = 1;
8

9 % Get logical vector for the selected training set fold
10 TRID = training(c,fold);
11

12 % Get logical vector for the selected test set fold
13 TEID = test(c,fold);
14

15 % Find indicies that makes the selected training set fold
16 indTRID = find(TRID(:,1) == 1);
17

18 % Extract training set data
19 train = ratingMatrix(indTRID,:,:);
20

21 % Find indicies that makes the selected test set fold
22 indTEID = find(TEID(:,1) == 1);
23

24 % Extract test set data
25 test = ratingMatrix(indTEID,:,:);
26

27 %Prepare for MAE
28 numberOfRatings = size(test,1);
29 sum = 0;
30 mseSum = 0;
31

32 % Calculate predictions for all the missing items in the training set using
Weighted Slope One

33 predictionMatrix = zeros(numberOfRatings,3);
34 uberMatrix = zeros(numberOfRatings,6);
35 for i=1:numberOfRatings
36 %temp, only for user 1, afterwards use loop in loop for all users
37 %if (fictTest1(i,1) == 1)
38 predictionMatrix(i, 1) = test(i,1);
39 predictionMatrix(i, 2) = test(i,2);
40 predictionMatrix(i, 3) = predictItemForUser(ratingMatrix,

deviationMatrix, test(i,1), test(i,2));
41

42 % All in one matrix:
43 % UserID - ItemID - True Rating - Predicted Rating - Error Rate - Variance
44 uberMatrix(i, 1) = predictionMatrix(i, 1); %userid
45 uberMatrix(i, 2) = predictionMatrix(i, 2); %itemid
46 uberMatrix(i, 3) = test(i, 3); %true rating
47 uberMatrix(i, 4) = predictionMatrix(i, 3); %predicted rating
48 uberMatrix(i, 5) = predictionMatrix(i, 3) - test(i, 3); %error
49 uberMatrix(i, 6) = uberMatrix(i, 5)^2; %variance
50

51 % Calculate the sum that will be used in MAE
52 sum = sum + abs(predictionMatrix(i, 3) - test(i, 3));
53

54 % Calculate the sum that will be used in MSE
55 mseSum = mseSum + uberMatrix(i, 6);
56 % end
57 end

105

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

58

59 % Calculate MAE
60

61 MAE = (1/numberOfRatings) * sum
62

63 % Calculate MSE
64 MSE = mseSum / size(uberMatrix,1)
65

66 % Calculate RMSE
67 RMSE = sqrt(MSE)
68

69 % Normalized RMSE
70 NormalizedRMSE = RMSE / (max(uberMatrix(:,5)) - min(uberMatrix(:,5)))
71

72 tElapsedPopularityDifferential = uint64(toc(tStart));
73 disp([’Calculated MAE etc in seconds: ’, num2str(

tElapsedPopularityDifferential)]);

Listing A.19: Calculate the predictions using the Weighted Slope One algorithm.

1 function prediction = predictItemForUser(ratingMatrix, deviationMatrix, userID,
itemID)

2

3 denom = 0; %denominator
4 numer = 0; %enumerator
5 k = itemID;
6

7 %Find all the ratings for the user except for the current item
8 indUserRatings = find(ratingMatrix(:,1) == userID & ratingMatrix(:,2) ~= itemID);
9 userRatings = ratingMatrix(indUserRatings,:,:);

10

11 for i = 1:size(userRatings,1)
12 %For all the items the user has rated
13 j = userRatings(i,2);
14 ratingValue = userRatings(i,3);
15

16 %Get the number of times k and j have both been rated by the same user
17 indUserItems = find(deviationMatrix(:,1) == k & deviationMatrix(:,2) == j);
18 userItems = deviationMatrix(indUserItems,:,:,:);
19

20 %Skip the calculation if it isn’t found
21 if (size(userItems) > 0)
22 for n = 1:size(userItems,1)
23 count = userItems(n,3);
24 sum = userItems(n,4);
25

26 %Calculate the average
27 average = sum / count;
28

29 %Increment denominator by count
30 denom = denom + count;
31

32 %Increment numerator
33 numer = numer + (count * (average + ratingValue));
34 end
35 end
36 end
37

38 if (denom == 0)
39 prediction = 0;
40 else

106

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

41 prediction = numer / denom;
42 end
43

44 end

107

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.4.4 Database diagram

Figure 56: The database diagram.

108

Identification and Utilization of Contextual Features Using Post-Filtering in an E-Commerce Context-Aware Recommender System

A.5 Survey application evaluation

The survey can be tested in a sandbox environment for evaluation. The full source code can also
be downloaded.
The URL is: http://www.webwave.no/nhsurvey.

109

http://www.webwave.no/nhsurvey

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motication and benefits
	Research questions

	Choice of methods
	Related work
	Recommender Systems methods
	Context interpretation
	The search for contextual features
	Choosing an Collaborative Filtering algorithm
	The search
	The Weighted Slope One Scheme

	Implementation of contextual information in Recommender Systems
	Measuring a Context-Aware Recommender System's performance

	Contextual features
	Survey prototype
	Justification of prototype development
	Planning and preparations
	Development

	Survey development
	Planning and preparations
	Reputation addon
	Survey walkthrough
	Optimalization
	Security

	Results
	Survey preparations and response
	Measures to increase the participation of the survey
	Candidate selection
	Finding the best e-mail subject
	Participants

	Implementation of the Weighted Slope One algorithm
	Precomputing Popularity Differentials
	Implementing Non-Personalized Recommendations
	Implementing Personalized Recommendations

	Non-contextualized recommandation performance
	Setup and preparations
	Results

	Tag distribution over the contextual features
	Introduction
	Setup
	Raw data
	Theshold selection and filtered data
	Limitations

	Contextualized recommandation performance and outcome
	Introduction
	The choice of post-filtering instead of pre-filtering or contextual modeling
	Setup
	Isolated scenarios
	Combined scenarios

	Discussion
	Introduction
	Contextual features and their relevance
	Granularity level in contextual features and its impact

	Conclusion
	Further work
	Bibliography
	Appendix
	The survey website pages
	Weighted Slope One prediction performance
	Total tags and unique products
	Unfiltered
	Filtered
	Unfiltered tags
	Filtered tags
	Exclusive classifications
	Contextualized post-filtering performance
	Unique products vs minimum tag count
	Contextualized recommendation performance

	Source code snippets
	SQL snippets
	Survey application C# snippets
	Weighted Slope One algorithm and cross-fold validation in MATLAB
	Database diagram

	Survey application evaluation

