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Classifying motion picture audio

Abstract

Classification of the audio track, of a motion picture, into traditional audio classes is a
challenging task. The reason for this is the amount of mixed content. Speech has of-
ten background music or environmental sounds, and music has often background en-
vironmental sounds or speech. Traditional methods for separating clear audio classes
have limited performance on mixed audio content. New methods and tools for auto-
matic classification of this type of audio are therefore needed. This project investigates
combinations of low level descriptors, dimensionality reduction by PCA and classification
by KNN. A feature set consisting of Audio Power (AP), Audio Wave Form (AWF), Root-
Mean-Square (RMS), Short Time Energy (STE), Low Short-Time Energy Ratio, Zero-
Crossing Rate (ZCR), High Zero-Crossing Rate Ratio (HZCRR) in the time domain and
Audio Spectrum Centroid (ASC), Fundamental Frequency (FuF), Mel, Frequency Cep-
stral Coefficients (MFCC), Spectrum Flux (SF) in the frequency domain is extracted on
30ms windows and integrated over a 1.2 second frame to yield a 23-dimmensional fea-
ture vector. The most suitable combination for separating speech from background music
were; AP, ASC, AWF, STE, RMS, SF, fourth MFCC, AP(min scalar), ZCR(min scalar) and
STE(min scalar). The combination has a majority of descriptors from the time domain.
Most suitable combination of LLDs to separate speech with background environmental
sounds from clear environmental sounds was found to be the 1.1, 41, 5th, 6th, 8t and
9:n Mel Frequency cepstran coefficients. MFCC is in the frequency domain. Best results
were achieved when the PCA returned 3 dimensions, and when the KNN classified the
samples based on the 4 closest neighbors. The results from testing different mixtures of
speech and music, to find the boundary where speech with background music no longer
is categorized as speech, showed that the music signal had to be minimum 8 dB below the
speech signal to be classified as speech. Some of the low level descriptors which tradition-
ally performs well when separating clear classes, performed poorly in the experiments
with mixed classes. Especially ZCR and FuF failed to separate speech with background
music from clear music. A final experiment classifies the audio track from the motion
picture ’Groundhog Day’. First 80 percent of the movie is used for training of the KNN,
and the remaining 20 percent was classified. After post processing the result was 76.9
percent correctly classified. A table of content was then based on this classification.
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1 Introduction

These days there is an enormous amount of video material available to everyone. The
challenge for most people is to find out something about the content just by reading
the tag lines, plot of the movie, ratings and reviews. The plot outline of a movie tells
something about the story, not how the story is presented. The ratings are often based
on the presence of different features, like violence, bad language, nudity and drugs. And
reviews are based on one individual’s opinion of the movie. It is seldom possible to find
out how much violence, dialog, music and silence there is in a movie. There is also lit-
tle information about what genere of music, what type of dialog and if it is a noisy or
quiet sound setting for the different scenes. Much of this could be helpful to know for
deciding to watch a movie or not. Or perhaps, decide if it is suitable for a child to watch.
Automatic content analysis, and categorizations, based entirely on video have sometimes
failed just because they are based on the visual content. In such systems dialogs may pass
undetected because the speakers are not visible, nudity filters may block documentaries
about Indians in the rain forest and humor may be mistaken for violence. In these in-
stances, audio analysis could have contributed to categorize the content more precisely.
Because the different audio classes often are mixed together in motion picture audio, tra-
ditionally methods for separating audio classes will in most cases perform poorly. New
methods will therefore be needed to classify these mixed classes correctly.

1.1 Thesis

It is possible to automatically create a table of contents of a video, based on its audio
track only, to describe its audiovisual content.

1.2 State of the Art

Audio is sometimes more difficult to categorize than video. This is because two audio
samples, that do not sound like at all, can be in the same category (e.g. a large jumbo
jet sounds different from a small single-engine piston, but both are categorized as an air-
plane. And, a male and female voice sound different, but both are categorized as human
voice). It is therefore a challenge to make algorithms that simulates the categorization
done by the humans. In the last decades, automatic content analysis of motion picture has
mostly been focusing on image and video research. But, there have been a few attempts
to analyse motion picture and television audio [30] [31] too. Audio can have equal
amount of semantic information as video, and some times more [24] [25] [26] [27].
Examples of this are for instance a sequence or a scene of a car passing by in the dark.
In the video we can see the headlights and the movement, and then assume that it is a
car. In the audio track we can hear that it is a big V8 engine, that the exhaust pipe is
broken and that the wheel bearings are dry. But, of course, some times it is the other way
around.

The first step in categorization of audio is to separate music, speech and background
noise. Music is probably the easiest to detect since music contains features that other
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sound usually do not have [23]. The second step is to separate speech from the back-
ground sounds. One problem with analysing audio from motion picture is that the differ-
ent audio categories often are mixed together. This causes problems for the algorithms
designed to classify the features extracted from audio with little noise. Some extra fea-
tures have to be added to get good classification under these conditions [36]. There
are many examples of clear speech analysis [28] [29], and also speech/music classifica-
tion [15] [22] [32] [33] [34] [42].

Other feature that is important to detect is the sound objects [35]. These objects are
short segments of sounds that can give the listener vital information. This is sounds
like a shot, a dog barking, a tyre skidding on asphalt etc. Much research has been
directed towards classifying a short sound clip into one of a pre-specified set of cate-
gories [37] [38] [39] [40].

1.2.1 Content-based segmentation

Before any retrieval of audio content can be done, we have to structure the audio. The
first classification of the audio should distinguish between speech, music, silence and
other sound sequences. This is due to the fundamental differences between these classes.
The next step could be to determine syllables, words or sentences in speech and notes,
bars or themes boundaries for music [22].

1.2.2 Silence

The way humans determine silence is relative. Complete silence (0 dB) is very seldom
in a natural environment, but can be found in digitalized audio. The silence level must
therefore be calculated for every different sound sample and be adjusted by an adaptive
threshold along the timeline.

1.2.3 Music

Music can be recognized by the frequency spectrum that it covers. Most of the time music
will contain a wide range of frequencies, ranging from 16Hz to 20kHz, and a pitch over
a span of six octaves. Because environmental sounds (noise) also often have the same
range, the frequency range alone cannot distinguish music form other sounds. One way
to separate music from other sounds is to analyze the spectrum for orderliness [1]. Tones
and their characteristic overtone pattern do not appear in environmental sounds.

1.2.4 Speech

Speech has a more limited frequency range than music, usually from 100Hz to 8kHz and
a pitch that spans three octaves. Speech alters between sound and silence in a syllabic
rhythm. The vowels duration is some what very regular. Tone duration could therefore
be a good discriminator [24].
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1.3 Project Description

The primary goal for this thesis is to combine algorithms in such way that the following
questions can be answered with a satisfying certainty:

How best to classify audio segments into for instance: Silence, Music, Speech
and Noise.

How to create a table of contents of the video, based on the audio track only, to
describe the video content.

1.4 Project Overview

Chapter 2 - Low Level Discriptors

This chapter describes the state of the art regarding the features used I this project. The
low level descriptors in the time and frequency domain is explained together with a
introduction to the scalable series.

Chapter 3 - Audio Classification

Presents the classification method KNN and the dimensional reduction by the PCA are
described.

Chapter 4 - Experimental Setup

Presents the most suitable combinations of low level descriptors to classify audio samples,
containing mixtures of audio classes.

Chapter 5 - Experimental Result

Presents the result from the classification of the audio track from the movie ’‘Groundhog

b

Day

Chapter 6 - Conclusion and Future Work

Gives the conclusion of the project and points out areas of future work
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2 Low Level Descriptors

2.1 Introduction

2.1.1 Scalable Series

Scalable series description is a way of representing a series of LLD features extracted from
sound frames at regular time interval [7]. By decomposing each serie of original sam-
ple into consecutive sub-sequences, and summarizing them into a single scaled sample.
Figure 1 shows the scaling process and the resulting scalable series description.

Originalseries @ @ © © © © © © © © © © © © © © © © © © ¢ © © ©© 0 ©0 06 @

Scaled series O O O O O 00O O o o o O
Indexi ¢ 2 3 4 5 678 9 10 11 12 13
ratio o 6 1 2

numOfElements 3 2 2 6

totalNumOfSamples 34

Figure 1: Illustration of the scaling process and the resulting scalable series description

The i is the index of the scaled series, the filled circles are the original series and
the open circles are the summarizer samples of the scale series. The scale ratio indicates
the number of original samples it describes. The numOfElements indicates the number of
consecutive elements in a sequence of scaled samples that has the same scale ratio. The
last attribute is the totalNumOfSamples which indicates the total number of samples in
the original series.

MPEG-7

The MPEG-7 Framework has two distinct types of scalable series defined in it’s standard.
These represent series of scalars and series of vectors, both types are inherited from the
scalable series description. In this thesis the same notation and attributes will be used
as in the MPEG-7 standard regarding the scalable series. In the following sections, these
two types of scalable series will be presented in detail [7].

Series of Scalars
Any temporal series of scalar LLDs can be represented by the MPEG-7 SeriesOfScalar

descriptor. The attributes of a SeriesOfScalar description are:

e Raw: Contains usually the original series of scalars whitout any scaling operation
applied. Only used if the Scaling flag is absent.

e Weight: This is an optional serie of weights. Each weight corresponds to a sample in
the original series, if this attribute is pressent. A way to use these parameters, is to
control scaling.
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e Min, Max, Mean: These coefficients represent a series of samples from the original
series. Min is the minimum value, Max is the maximum and Mean is the mean sample
value in the original sample series. The original samples are average by aritmetic
mean, taking the sample weights into account if the Weight attribute is present.

e Variance: The elements in this real-valued vector correspond to the variance com-
puted within the corresponding groups of the original samples. If the weight attribute
is present, the computation may take the sample weights into account. This attribute
is absent if the Raw element is present.

e Random: This vector contains samples taken randomly within each group of original
samples. This attribute is absent if the Raw element is present.

e First: This vector contains the first sample within each group of original samples. This
attribute is absent if the Raw element is present.

e Last: This vector contains the last sample within each group of original samples. This
attribute is absent if the Raw element is present.

These different attributes allow us to summarize any series of scalar features. This
type of description allows scalability, so that a scaled series can be derived indifferently
from an original series or from a previously scaled SeriesOfScalar. Initially, a series of
scalar LLD features is stored in the Raw vector. Each element Raw(1)(0 < 1 < L —
1) contains the value of the scalar feature extracted from the lth frame of the signal.
Optionally, the Weight series may contain the weight W(1) associated to each Raw(1)
feature.

A new SeriesOfScalar is generated by grouping the original samples (see Figure ref)
and calculating the abovementioned attributes when a scaling operation is performed.
The Raw attribute is absent in the scaled series descriptor. We can assume that the ith
scaled sample stands for the samples Raw(l) contained between 1 = lLo(i) and 1 =
LHi(i). The corresponding Min and Max values are then defined as:

Min(i) = mln{H{Llo ) Raw(l) and Max(i) = maxtHwo (1) Raw(l) (2.1)
The Mean value is given by:
LHi(i)
Mean(i) = ratio 1%(1) Raw(1) (2.2)

if no sample weight W(1) are specified in Weight. If weights are present, the Mean
value is computed as:

TH1i(1) TH1i(1)
Mean(i Z W(1)Raw(l)/ Z wW(l (2.3)
1=LLo(1) 1=LLo(1i)

In the same way, there are two computational methods for Variance depending on
wether the original sample weights are absent:

THi(1)
> Raw(l) - Mean(i)]? (2.4)

l=LLo(i)

1

Variance(i) = -
ratio

or present:
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THi(1) TH1i(1)
Variance(i) = Y W(1) [Raw(l) — Mean(i 1%/ > owa (2.5)
1=LLo(1) 1=LLo(1)

Finally, the weights W(i) of the new scaled samples are computed, if necessary, as:

- ratio . LZ wi (2.6)

Series of Vectors

When the LLDs consist of multi-dimentional vectors, the MPEG-7 SeriesOfVectors descrip-
tor represents the temporal series of feature vectors. The attributes of a SeriesOfVectors
description are:

Weight This is an optional series of weights. Each weight corresponds to a sample in
the original series, if this attribute is pressent. A way to use these parameters, is to
control scaling in the same way as for the SeriesOfScalars.

Min, Max, Mean: are three real-valued matrices where the number of rows is equal
to the sum of numOfElements over the scaled series. The number of columns is equal
to vectorSize and each row characterizes a scaled vector. For a given scaled vector, a
Min, Max and Mean row vector is extracted from the corresponding group of vectors
in the original series.The row vector Min, Max and Mean contains the minimum, max-
imum and mean coeffecients observed among the original vectors. These attributes
are absent if the Raw element is present.

Variance: The variance vectors series size is set to vectorSize. Each vector corresponds
to a scaled vector, and its coefficients are equal to the variance computed within the
corresponding group of original vectors. The computation may take the sample of
weights into account if the Weight attribute is present. This attribute is absent if the
Raw element is present.

Covariance: This is a series of covariance matrices which is represented as a three
dimentional matrix. The number of rows is equal to the sum of numOfElements pa-
rameters over the scaled series; the number of columns and the number of pages are
both equal to vectorSize. Each row is a covariance matrix describing a given scaled
vector. It is estimated from the corresponding group of original vectors. This attribute
is absent if the Raw element is present.

VarianceSummed This is an series of summed variance coeffecients and each coeffi-
cient corresponds to a scaled vector. For a given scaled vector, it is obtaind by sum-
ming the elements of the corresponding Variance vector. This attribute is absent if the
Raw element is present.

MaxSqDist: This is a series of maximum squared distance coefficients. For each scaled
vector, an MSD coefficient is estimated, representing an upper bound of the distance
between the corresponding group of original vectors and their mean. This attribute is
absent if the Raw element is present.

Random: This vector contains samples taken randomly from each group of original
samples. This attribute is absent if the Raw element is present.
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e First: This vector contains the first sample within each group of original samples. This
attribute is absent if the Raw element is present.

e Last: This vector contains the last sample within each group of original samples. This
attribute is absent if the Raw element is present.

Binary Series

The MPEG-7 standard also defines a binary form of the SeriesOfScalar and the SeriesOfVec-
tors descriptors. These are called SeriesOfScalarBinary and SeriesOfVectorsBinary, and are
used to instantiate series of scalars or vectors with a uniform power-of-2 ratio.

2.2 Time Domain

When a signal is analysed with respect to time, the term Time Domain is used. The signal
will have a value for each various discrete time point.

2.2.1 Basic Parameters

Notation used for input audio signal:

e 1 is the index of time samples
e s(n) is the input digital audio signal

e F, is the sampling rate of s(n)
Notation used for the frames:

e lis the index of the time frames

e hopSize is the time interval between two successive time frames

e Nyop denotes the integer number of time samples corresponding to hopSize
e L, is the length of a time frame

e N,, denotes the integer number of time samples corresponding to L,,

e L is the total number of time frames in s(n)

In figure 2 the different notations are portrayed. The size of hopSize and Lw that is
chosen depends on what kind of descriptors to extract. The hopSize is usually selected to
be a integer multiple or divider of 10ms (its default value).

2.2.2 Audio Power (AP)

To calculate the Audio Power (AP) the audio signal instantaneous power has to be tempo-
rally smoothed. The coefficients are the average square of waveform values s(n) within
successive non-overlapping frames (L,, = hopSize). The lth frame of the signal can be
described like this.

Nhovf‘l
> s+ WNpepl* (0<1<L—1) (2.7)

n=0

1]
Nhop

AP(1)

L is the total number of frames. The AP gives a fast representation of the spectrogram
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>
‘|||| |
|

—o——
_.Z
=

- hopSize:

Figure 2: Illustration of the notations used in Time Domain

of a signal, and makes it possible to measure the evolution of the amplitude as a function
of time. An example of a wave signal described by AP is given in figure 3. First half is
speech and second is music.

Original Speech/Music signal (44.1 kHz)
T

1 T T T T

Amplitude

-1 I I I I 1 I I I I
0 02 0.4 0.6 0.8 1 1.2 1.4 186 1.8 2

Time(Samples at 44,1 kHz) x10°

Audio Power (AP)

| | |
0 20 40 60 80 100 120 140 160
Time Frames

Figure 3: Audio Power description of a speech/music signal (first half speech, second music, 30ms
hopSize)
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2.2.3 Audio Wave Form (AWF)

AWF descriptor consists of the resulting temporal series of the lower limit and the upper
limit of the amplitude in a frame. The AWFs temporal resolution is given by the hopSize
parameters. AWF has a low storage cost and provides a simple way to display or compare
waveforms. Figure 4 shows the waveform in it’s original form and in the form described
by the AWF.

Original Speech/Music signal (44.1 kHz)
T T T

1 T T T

Amplitude

-1 1 1 1 1 1 1 1 | 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(Samples at 44,1 kHz) x10°
Audio Wave Form {(AWF)
1 T T T
051
|
=
0
(]
=
05+
_1 | | | | | |
0 50 100 150 200 250 300

Time Frames(50% overlap)

Figure 4: Audio Wave Form description of a speech/music signal (first half speech, second music,
30ms hopSize)

2.2.4 Root-Mean-Square (RMS)

RMS is often used as a measure of loudness and is a unique feature to segmentation, even
if it is closely related to short time energy. RMS is computationally inexpensive, easy to
implement and used in most audio analysis and genre classification approches [9]. It
is mostly used as a part of a low-level descriptor set [10], but has also been used to
analyze different musical aspects. RMS values can be used for estimation of tempo and
beat, which approximate the time envelope [11]. Because RMS is linked to the perceived
intensity, it can be used for mood detection. But this relation is not captured by the RMS
without first splitting the signal into several frequency bands [12]. The coefficients are
the square root of the mean of the squares of waveform values s(n) within successive
non-overlapping frames (L,, = hopSize). The lth frame of the signal can be described
like this.

10
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Nhopfl
RMS(1) = 10log;, ﬁ > s2n) (0<l<L-1) (2.8)
°P n=o0

where L is the total number of time frames. Figure 5 describes RMS for a audio signal,
where the first half is speech and the second half is music. The RMS of speech tend to
have larger variation than of music.

Original Speech/Music signal {(44.1 kHz)
1 T T T T T

Amplitude

-1 I I I I 1 I I I I
0 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Time(Samples at 44,1 kHz) x10°

Root-Mean-Square (RMS)
'1 0 T T T T T

RMS

-70 1 L 1 I 1 1 1
0 20 40 60 80 100 120 140 160

Time Frames

Figure 5: Root-Mean-Square description of a speech/music signal (first half speech, second music,
30ms hopSize)

2.2.5 Short Time Energy (STE)

Short Time Energy (STE) is an often used and very simple low level descriptor. STE is
defined as the total squared energy in a signal s(n) within successive non-overlapping
frames (L,, = hopSize). The lth frame of the signal can be described like this.

Nhop—1

STE() = )  s*(n) (0<1<L-1) 2.9)

n=0

With Nyop as the length of the frame and L is the total number of time frames. Speech
is composed of syllables and pauses between them. Relatively strong STE-values indicate
parts in the signal where voice is present. Unvoiced and silence parts will give much
lower STE-values. Because of this, a speech audio sample will give large variations in
the STE-values. Music has much shorter pauses, or no pauses, and will therefore have a
more constant STE-level. This can be seen in figure 6 which is a sample of 2.4 seconds of
speech followed by 2.4 seconds of music. Music also often carries more total energy in its
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signal, so its STE-level is usually higher than the speech STE-level. Because the variation
in the STE-values, when speech is present, is relatively easy to distinguish from both
steady high valued STE in music and steady low valued STE in silence, STE is usually a
good indicator for speech presence in an audio signal.

Original Speech/Music signal (44.1 kHz)
1 T T T T T

T
051
L]
o
=
5 0
E
<<
0.5
-1 | | | | | | | | |
0 02 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 2
Time(Samples at 44,1 kHz) x10°
Short Time Energy (STE
80 T T T T T
60 B
= 40
20 S
0 | | | |
0 20 40 60 80 100 120 140 160

Time Frames

Figure 6: Short Time Energy description of a speech/music signal (first half speech, second music,
30ms hopSize)

2.2.6 Low Short-Time Energy Ratio

The Low Short-time Energy Ratio (LSTER) is defined as the ratio of the number of frames
whose STE are less than 0.5 the average short-time energy in the window [2].

1 N—-1
LSTER = 55 ZO [sgn(0.5 % avSTE — STE(L)) + 1] (2.10)

] N-—-1
avSTE = N ZO STE(1) (2.11)

Where N is the total number of frames, STE(1) is the short time energy at the lth frame
and avSTE is the average in the window. Speech usually has more silence frames than
music, LSTER values for speech are therefore usually higher than the values for music.
Because of this, LSTER is a good feature for discriminating speech and music signals.

2.2.7 Zero-Crossing Rate (ZCR)

Zero-Crossing Rate is a much used low level descriptor in a wide range of audio applica-
tions. The definition of ZCR is the number of sign changes in signal s(n) within successive
non-overlapping frames (L,, = hopSize) devided by the length of the frame.

12
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Nhop—1
D lsgnls(m)l—sgnlsn—1) (0<1<L-1) (212

n=0

ZCR(1) = N:
op

where L is the total number of time frames.

ZCR gives a good indication of the dominant frequency, and therefore correlates well
with the spectrum centroide of a signal. Speech is mostly constructed of voiced parts and
pauses in between. A pitch can be found in the voiced periodes. The silent parts can be
seen as noice. Voiced parts will therefore give relatively small values and unvoiced larger
values. The ZCR signal will show large variations for speech and smaller variations for
music. This can be seen in figure 7. The first half of the signal is speech, and the second
half is music.

Original Speech/Music signal (44.1 kHz)
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Figure 7: Zero-Crossing Rate description of a speech and music signal (first half speech, second

music, 30ms hopSize)

2.2.8 High Zero-Crossing Rate Ratio (HZCRR)

Research has shown that the variation of the ZCR is a better discriminator than the
actual ZCR value [23]. They developed the HZCRR (High Zero-Crossing Rate Ratio). The
HZCRR is the ratio of the number of frames whos ZCR are above 1.5-folds the average
ZCR in a 1-s window.

L—-1
> [sgn(ZCR(1) — 1.5avZCR) + 1] (2.13)
1=0

T

HZCRR =
ZC il

13
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L1
1
R=—- R 2.1
aZCR = é ZCR(1) (2.14)
Speech is constructed out of syllables and silence. Therefore, most of the time, speech
will have higher HZCRR than Music [2].

2.3 Frequency Domain

When a signal is analysed with respect to frequency, the term Frequency Domain is used.
The values extracted from the frequency domain consist information of which frequen-
cies is present in the signal analysed.

2.3.1 Basic Parameters

The following notation will be used in the frequency domain:

e k is the frequency bin index

e S;i(k) is the spectrum extracted from the lth frame of s(n)

e P;(k) is the power spectrum extracted from the lth frame of s(n)

The following is based on squared magnitudes of discrete Fourier transform (DTF)
coefficients. After multiplying the frames with a windowing function w(n) (Hamming
window), the DFT is applied as:

Net—1
Sl = > s+ Nnopw(mlexp! TF5) (0 <1<LO<K< N —1) (215

n=0

where Ngr is the size of the DFT (Nt > N,,). In general, a fast Fourier transform
(FFT) algorithm is used and Nt is the power of 2 just larger than N,, (the enlarged
frame is then padded with zeros). According to Parseval’s theorem, the average power of
the signal in the 1th analysis window can be written as:

N, —1 Ny—1
s 1 ¢ 2 ] N 2
Pi=g- nZ:O s+ Nnop W) = G—— T;) Su(k) (2.16)

where the window normalization sactor E,, is defined as the energy of w(n):

N,y —1
Ew= ) wm)’ (2.17)
n=0

The power spectrum Py (k) of the lth frame is defined as the squared magnitude of
the DFT spectrum S;(k). Since the signal spectrum is symmetric around the Nyquist
frequency F/2, it is possible to consider the first half of the power spectrum only (0 <
k < Ngt/2) without losing any information. In order to ensure that the sum of all power
coefficients equates to the average power defined in Equation 2.16, each coefficient can
be normalized in the following way:

1 Nt

_ 2 _ _
Pi(k) = NrEL Si(k)]* (for k=0 and k= > ) (2.18)
Py(k) =2 1 ISUK)[®  (for 0 <k < ﬁ) (2.19)

t NerEy 2 :
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In a FFT spectrum, the discrete frequencies corresponding to bin indexes k are:

f(k) = KAF (0 < k < N¢r/2) (2.20)

where AF = F,/N¢7 is the frequency interval between to successive FFT bins, Invert-
ing the preceding equation, we can map any frequency in the range [0, Fs/2] to a discrete
bin in {O, 1 NFT/Z}

k =round(f/AF) (0 <f<F;/2) (2.21)

2.3.2 Audio Spectrum Centroid (ASC)

The ASC gives the centre of gravity of a log-frequency power spectrum. The ASC is used
as a measure for sound sharpness or brightness. The high frequency part is is primarily
measured because the cofficients for low frequencies are small. This makes it vulnerable
to the presence of white noise in the signal. All power coefficients below 62.5 Hz are
summed and represented and/or very low-frequency components from having dispropo-
tionate weight. On the discrete frequency bin scale, this corresponds to every power
coefficient falling below the index [7]:

Kiow = floor(62.5/AF) (2.22)

where floor(x) gives the largest integer less than or equal to x, and AF = F;/Ngy is
the frequency interval between two FFT bins. The result in a new power spectrum P’(k’)
is given by:

Kiow
P/(K)= > P(k) for k' =0 (2.23)
k=0
P/(k') = P(k’ + Kiow) for 1<k’ < % — Kiow (2.24)

The frequencies f'(k’) corresponding to the new bin K’ are given by:

f'(k') =31.25 for k' =0 (2.25)

N
(k') = f(k' + Kigw) for 1<k/ < % — Kiow (2.26)

where f(k) is defined as in Equation 2.20. The nominal frequency of the low-frequency
coefficients is chosen at the middle of the low-frequency band: f’(0) = 31.25Hz. Finally,
for a given frame, the ASC is defined from the modified power coefficients P’(k’) and
their corresponding frequencies f’(k’) as:

(NF1/2)=Kiow lo (k) prps
_ k’=0 gZ( 1000 P (k ))
ASC - (NFT/Z)*Klow / / (227)
2 ko P’(k’)

Each frequency f’(k’) of the modified power spectrum is weighted by the correspond-
ing power coefficient P’(k’). Several other implementations and definitions of the spec-
trum centroid can be found in the literature [43]. The log-frequency scaling approximates
the perceptual of frequencies in the human hearing system.
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Figure 8: Audio Spectrum Centroid description of a speech/music signal (first half speech, second
music, 30ms hopSize)

2.3.3 Fundamental Frequency (FuF)

Typical music consists of a series of chords which changes frequently. These chords can
be seen as groups of frequencies in a spectrum, and are present for a longer time. Music
can then be segmented into entities. On these entities, it is now possible to perform a
fundamental frequency determination [22]. The fuf results from overlying the higher
frequencies. If two frequencies f1 and f2 are played, and they are a fifth apart from
each other, the fundamental frequency, f0,is(I1+ 1/I)f1. (Where I is between 2 and 5) In
Figure 9 the different frequencies are illustrated and Figure 10 illustrates a speech/music
signal.

e Determine the lowest frequency in the signal, called f1
e Check for a frequency a fift, fourth, major or minor above f1
e Setf0=1/Ix%f1if Yes

e In not, choose f1 as the fuf

2.3.4 Mel Frequency Cepstral Coefficients (MFCC)

The quest for better speech parameterization led to various speech features, which were
reported to provide advantage in specific conditions and applications [17]. Moreover, for
some speech features, such as the well-known and widely-used MFCC, multiple imple-
mentations were developed [18] [19] [20]. These implementations differ mainly in the
number of filters, the shape of the filters, the way the filters are spaced, the bandwidth of
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Figure 9: Overlying frequencies f1 and {2
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Figure 10: Fundamental Frequency description of a speech/music signal (first half speech, second
music, 30ms hopSize)

the filters, and the manner in which the spectrum is warped. How these filters are used
to extract Mel cepstrum is illustrated in Figure 11. In addition, the frequency range of
interest, the selection of actual subset and the number of MFCC coefficients employed in
the classification [13].

An example of a Mel spaced filter bank is illustrated in Figure 12.

The mel scale, which is divided into mel units, is based on an empirical study of the
human perceived pitch or frequency. The scale of pitches are judged by listeners to be
equal in distance from another. A test was carried out where test persons were presented
with a tone at exactly 1000 Hz (which was labeled 1000 mels for reference) at 40 dB
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Figure 11: MFCC Extraction of MFCC vectors ( [7])

above the listeners threshold, then they were asked to change the frequency until they
perceived the frequency to be twise the reference. This frequency was the labeled 2000
mels. Below 500 Hz the mel and Hertz scale coincide; above that, larger and larger
intervals are judged by the listeners to produce equal pitch increments [21].

The mapping between the mel frequency scale f,.; and the linear scale f is usually
done using an approximation:

f .
el = 2595 x log1o (1 1 7‘55‘) (2.28)

To extract the MFCC vectors the input signal s(n) is first devided into overlapping
frames of N,, samples. Typically, frame duration is between 20 and 40 ms, with 50
percent overlap between adjacent frames. In order to minimize the signal discontinuities
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Figure 12: Mel spaced filter bank

at the borders of each frame a windowing function is used, such as the Hanning function
defined as:

w(n)_;{1cos []in (n—l—;ﬂ} (0<n<N,,—1) (2.29)

To obtain the magnitude spectrum, an FFT is applied to each frame and the absolute
value is taken. The spectrum is then processed by a mel-filter bank. The log-energy of
the spectrum is measured within the pass-band of each filter, resulting in a reduced
representation of the spectrum. The cepstral coefficients are finally obtained through a
Discrete Cosine Transform (DCT) of the reduced log-energy spectrum:

ci)=) {log(Ej)cos [1 (j — ;) 1\712] } (1 <i<Nj) (2.30)

where c; is the ith-order MFCC, E; is the spectral energy measured in the critical
band of the jth mel filter and Ny is the total of mel filters (typically N¢ = 24). N is the
number of cepstral coefficients ¢; extracted from each frame (typically N. = 12). The
global log-energy measured on the whole frame spectrum - or, equivalently, the ¢o MFCC
calculated according to the formula of Equation refeq:fmelApp with 1 = 0 - is generally
added to the initial MFCC vector. The extraction of an MFCC vector from the reduced
log-energy spectrum is illustrated in Figure reffig:eightOrderMFCC.

The estimation of the derivative and acceleration of the MFCC feature are usually
added to the initial vector in order to take into account the temporal changes in the
spectra. One way to capture this information is to use deltacoefficients that measure
a linear regression over a few adjacent frames. Typically, the two previous and the two
following frames are used, for instance, as follows:
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Figure 13: Extraction of an eight-order MFCC vector from a reduced log-energy spectrum ( cite7)

1Ci(l—])+1ci(l+])+Ci(l—2) (2.31)

Aci(l)zci(l_z)_i >

AACl(U = Ci(l—Z) — %Ci(l— ]) — Ci(U — %Ci(l"F ]) + Ci(l—Z) (232)

where c;(1) is the ith-order MFCC extracted from the lth frame of the signal. The
Aci(1) and AAc;(1) coefficients are the estimates of the derivative and acceleration of
coefficient c; at frame instant 1, respectively. Together with the cepstral coefficients c¢; (1),
the A and AA coefficients form the final MFCC vector extracted from frame 1.

In this thesis a version of the MSCC FB-24 HTK is used. This version has its origins
from the Cambridge HMM Toolkit described in [14]. They used a filter bank of 24 fil-
ters for speech bandwidth [0, 8000] Hz with sampling rate greater than 16 kHz. The
Mel cepstrum coefficients for a 24 second speech sample and 24 second music sample is
illustraded in Figure 14 and Figure 15.For Mel Frequency the HTK is defined by equa-
tion 2.30.

2.3.5 Spectrum Flux (SF)

Spectrum Flux(SF) is defined as the average variation value of spectrum between the
adjacent two frames. Experiments show that music has the lowest SF values, speech has
higher values than music and environmental sounds have the highest SF values [23].
Figure 16 illustrates a audio signal containing speech and music. SF is computed as the
average squared difference between tow successive spectral distributions [2]:
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Speech (female, weather report Sky News)

Mel-cepstrum coefficients
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24 second sample, scaled 30ms - 50% overlap, 24 filter bands

Figure 14: MFCC for 24 seconds of speech

L1 N¢r
>3 log(ISu(K) +8) — log(IS1—1 (k)| + 8)1° (2.33)
k=0 k=0

where Si(k) is the DFT of the lth frame, N7 is the order of the DFT, L is the total
number of frames in the signal and 4 is a small parameter to avoid calculation overflow.

1

SF =
LNgr

2.4 MPEG-7 Low-Level Descriptors

The MPEG-7 low-level descriptors consist of a collection of simple, low-complexity audio
features, and form the foundation layer of the standard. These features can be used to
characterize any type of sound. The MPEG-7 standard consists of 18 generic LLD’s, and
the temporal and spectral LLDs can be classified into the following groups:

e Basic descriptors: Audio Waveform (AFW) and Audio Power (AP)

e Basic spectral descriptors: Audio Spectrum Envelope (ASE), Audio Spectrum Centroid
(ASC), Audio Spectrum Spreads (ASS) and Audio Spectrum Flatness (ASF).

e Basic Signal Parameters: Audio Harmonicity (AH) and Audio Fundamental Frequency
(AFF)

e Temporal Timbral Descriptors: Log Attack Time (LAT) and Temporal Centroid (TC)

e Spectral Timbral Descriptors: Harmonic Spectral Centroid (HSC), Harmonic Spec-
tral Deviation (HDS), Harmonic Spectral Spread (HSS), Harmonic Spectral Varia-
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Music (Peter Gabriel, Red Rain)
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Figure 15: MFCC for 24 seconds of music
tion(HSV) and Spectral Centroid (SC)
e Spectral Basis Representation: Audio Spectrum Basis (ASB) and Audio Spectrum Pro-

jection (ASP)

In this thesis only AFW, AP, ASC and AFF will be used from the MPEG-7 standard.
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Figure 16: Spectrum Flux description of a speech/music signal (first half speech, second music,
30ms hopSize)
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3 Audio Classification

Most common segmentation is between speech, music, environmental sound and silence
segments. Speech can be further segmented into gender, age or identity, and music can be
segmented into genres and instruments. Sound can be segmented into different events,
such as explosions, applause, animal sounds, engines, etc. To get a meaningful indexing
of an audio track, the different segments and events has to be identified, and stored
in such way that a similarity test is possible. Spectral features of sounds are a good
way to describe the content. The values extracted and the time variation of the feature
will identify the event, and can be seen as the sound events fingerprint. By storing these
fingerprints in a database we can perform similarity calculations on fingerprints extracted
from an audio track. The purpose of sound classification is to create sound classes, and
try to distinguish which class the different extracted fingerprints belong to.

e The first step is to isolate the relevant sound segments from the not relevant sound,
such as noise, background music or environmental sounds.

e Then the properties that are useful for classification are extracted. It is important that
these feature vectors are rich enough to describe the content of the sound sufficiently.
One of the most used feature vectors is based on MFCC. The MPRG-7 standard uses
audio spectrum projection (ASP).

e In the classification step, reduced dimension feature vector is used to classify the
sound into classes. Statistical models are often used to do these classifications. K
Nearest Neighbor(KNN), Gaussian Mixture Models (GMMs), Hidden Markov Models
(HMMs), Neural Network (NNs) and Support Vector Machines (SVMs) are examples
of such classifiers.

What kind of feature vectors and classifier to use in the sound classification system is
critical. A combination of the different low-level feature vectors are often used to create
a compound feature vector for classification. Usually it is necessary to train the classifier
to. This is done by processing known sound material which are labeled with their correct
class.

3.1 Dimensionality Reduction

To reduce the size of the feature vectors, but retain as much as possible of the perceptual
information as possible, we remove the statistical dependencies of observations. There
are several methods known for this: Singular Value Decomposition (SVD), Principal Com-
ponent Analyses (PCA), Independent Component Analysis (ICA) and Non-Negative Ma-
trix Factorization (NMF) [7]. In this project the PCA will be used.

Principal Component Analysis (PCA)

To obtain a basis for an N-dimensional data set, such that variation of the data is maxi-
mized along the coordinate axes, PCA can be used. By ignoring the axes of lowest vari-
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ation, thereby projecting the original data into a lower dimensional space with minimal
loss of accuracy, data reduction is achieved. In figure 17, a set of data points is located in
2D space. The data exhibits equal variation along the x and y axis, however in the primed
coordinate system, there is significant variation along the x’ axis and little along y’. Thus,
the points can be represented in a one-dimensional space (along the x’ axis) while still
retaining much of the information present in the two-dimensional representation.
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Figure 17: Variation of the data is greatest along the orthogonal axes of the primed coordinate
system

We compute of the mean, T;,cqn Of the N basis appearance vectors and form matrix
A’ whose columns T* are obtained by subtracting the mean from each of the T¥’s (T =
Tmean + T%). Principal component analysis is performed via Singular Value Decomposi-
tion (SVD) on the matrix A’. SVD factors A’ into an orthonormal 48s — by — N, matrix
Y whose columns span the range of A’, a diagonal N,byN, matrix S, and a NobyN,
matrix V7.

A’ =YSVT (3.1)

The diagonal elements oy of S are the singular values of A’, and oy gives the
variation of the data along the axis specified by T*. We normalize the o} ’s such that
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the largest singular value is 1, and form matrix A whose columns consist of T* whose
corresponding singular value is greater than e. The resulting columns of A form a basis
for a low rank approximation to the range of A’ that is accurate to e percent least squares
error.

span(A) ~ span(A’) 3.2

Let N be the rank of A. Now, the appearance of an arbitrary model deformation is
represented by reduced space coordinate &),. ), consists of N, components of SVTgl,
corresponding to basis vectors retained in A. The appearance vector 17 is then computed
by:

Tj = Tmean + Araja (33)

Runtime computation is reduced to the linear combination of N basis vectors added
to the mean model appearance. In practice, only a few basis vectors are required to
approximate the original appearance space with reasonable accuracy (N, << Ng), re-
sulting in a significant reduction in the size of the required runtime data set.

3.2 Classification Methodes
The classification method used in this project, is the K Nearest Neighbor (KNN).
Nearest Neighbour classifier Model (KNN)

The K nearest neighbour classifier is an example of a non parametric classifier. The ba-
sic algorithm in such classifiers is simple. For each input feature vector to be classified,
a search is made to find the location of the K nearest training examples, and then as-
sign the input to the class having the most members in this location. This is illustrated
in Figure 18. Euclidean distance is commonly used as the metric to measure neigh-
bourhood. For the special case of K=1 we will obtain the nearest neighbour classifier,
which simply assigns the input feature vector to the same class as that of the nearest
training vector. The Euclidean distance between feature vectors X = (x1,x2,...,xn) and
Y = (y1,y2,...,yn) is given by:

(3.4)

The KNN algorithm, as mentioned earlier, is very simple yet rather powerful, and
used in many applications. However, there are things that need to be considered when
KNN classifiers are used. The Euclidean distance measure is typically used in the KNN
algorithm. In some cases, use of this metric might result in an undesirable outcome. For
instance, in cases where several feature sets (where one feature set has relatively large
values) are used as a combined input to a KNN classifier, the KNN will be biased by the
larger values. This leads to a very poor performance. A possible method for avoiding this
problem would be to normalise the feature sets. The aim is to use the KNN classifier for
finding the class of an unknown feature X.
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Figure 18: Illustration of the KNN classification method. The green circle is the sample which is
to be classified, blue squares and red triangles illustrates samples from two different classes in the
training set. If K is 3, then the 3 nearest neighbors (illustrated by the black circle with the solid
line) will decide which class the analyzed sample will be assigned. If K is 5, the 5 nearest neighbors
will be considered (illustrated by the black circle with the dotted line).
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4 Experimental Setup

4.1 Audio Database

To test the algorithms and methods we are proposing, a database of test data was needed
in addition to the audio tracks from different movies. Therefore, several samples of
speech were collected from different television channels, listed in Table 1. Talk shows
and news broadcasts were recorded to get audio samples for clear voice in quiet environ-
ment.

Table 1: Speech Samples

Sample Gender Type Duration Source
speechl female | talkshow 24 s TV2
speech2 male | talkshow 24 s TV2
speech3 male | talkshow 24s TV2
speech4 male | talkshow 24 s TV2
speech5 female | weather 24 s Sky News
speech6 | female news 24 s BBC World
speech7 | female news 24 s CNBC
speech8 female news 24 s Sky News
speech9 female news 24 s Sky News
speech10 | male news 24 s CNBC

Music was sampled from different CD’s and MP3’s. Several different categories of mu-
sic are present, both voiced and instrumental. Table 2 lists the different music samples.

Table 2: Music Samples

Sample Type | Voice | Duration
musicl pop Yes 24s
music2 metal | Yes 24 s
music3 mood | No 24 s
music4 pop Yes 24s
music5 pop No 24s
music6 mood | No 24 s
music7 | mood | Yes 24 s
music8 rock No 24 s
music9 rock Yes 24 s
musicl0 | metal No 24 s
musicll | metal | Yes 24 s

The environmental sound samples are constructed out of segments from videos, ex-
amples of background sounds digitized from radio and Internet and nature sounds sam-
pled from nature sound CDs. Table 3 lists the different environmental samples.

Beside the above mentioned samples of clear sound classes, Segments from the mo-
tion picture "The Godfather” are used for testing and training of the KNN classification.
”Groundhog Day” is used in the final experiment to test the settings purposed and chosen
in this chapter.
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Table 3: Environmental Sounds

Sample | Location Type Duration
envirl City Downtown 24s
envir2 City Highway 24s
envir3 City Engines and Car horns 24 s
envir4 City Trucks and Car horns 24s
envir5 Nature Waterfall 24s
envir6 Nature Thunder and rain 24s
envir7 Nature Heavy rain 24s
envir8 Nature Jet plane pasing 24 s
envir9 Nature Florida swamp 24s
envirl0 | Nature Waves, surf 24 s

4.2 Ground Truth

Manually categorizing of every 1.2 second of the movie "Groundhog Day” was needed. A
Matlab function was therefore created for categorizing each 1.2 second of audio. The
function played a 1.2 second sample and then asked for a category. Three different
ground truth sets were created out of this category; main classes, detailed classes and
RGB-colored for use in scatter diagram. The answer was stored in a vector according to
the sample number. Table 4 lists the main classes. Silence in the audio track of a motion
picture is more to be considered as environmental content than no content. This is be-
cause the silence in the movie describes an environment setting, and not sections with

non information.

The more detailed sub classes of the ground truth set describes the variations of the
main classes. When separating between speech with background music and music with
vocals it is necessary to have more than one music category. Table 5 lists the different

Table 4: Main classes in the Ground Truth

Class Id | Class

subclasses of music.

1
2
3

Music
Speech
Environmental sound

Table 5: Sub classes in the Ground Truth, Music

Class Id | Class | Sub-class

11 Music | Clear

12 Music | Voiced

13 Music | Environmental sounds in background

14 Music | Voice and environmental sounds in background
15 Music | Strong (dominant) voice

16 Music | Background music

The LLDs extracted from speech samples have very different characteristics when
background audio is present or not. Recognizing speech with different sounds in the
background is important when analyzing the audio track from a motion picture video.
Several sub classes of speech are therefore created to be able to recognize different types
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of speech. Table 6 lists the different subclasses of speech.

Table 6: Sub classes in the Ground Truth, Speech

Class Id | Class Sub-class

21 Speech | Clear female

22 Speech | Clear male

23 Speech | Female speech with music in background

24 Speech | Male speech with music in background

25 Speech | Female speech with environmental sounds in background
26 Speech | Male speech with environmental sounds in background

In this ground truth, silence is regarded as an environmental setting, in the same
way as city, industrial and nature sounds. Noise is also included in this category. The
environmental category is essential to describe semantic content in a motion picture.
Table 7 lists the different subclasses of environmental sounds.

Table 7: Sub classes in the Ground Truth, Environmental/noise sounds

Class Id | Class Detailed

31 Environmental | Silence

32 Environmental | City

33 Environmental | Industrial

34 Environmental | Nature

35 Environmental | White noise

36 Environmental | Brownian noise

4.3 Low-Level Descriptors

To find the most suitable LLDs for correctly classifying the different audio samples into
the predefined classes, some preliminary tests had to be carried out. First step was to find
good samples of speech, music and environmental sounds. A set of different samples of
speech and music was sampled from various TV-channels and CD’s. The environmental
sounds were sampled from various motion picture and documentary videos. See Table 1,
Table 2 and Table 3 for details. The speech and music samples were used to construct a
sample file containing alternating 24 second music and speech sample, se Figure 19.

Speech1 Music1 Speech2 Music2 Speech10 Music10

24s<

Figure 19: Alternating speech and music samples of 24 seconds

All the 23 LLD features were extracted from this sample file on a 30ms window and
grouped into 1.2 second frames. We applied PCA analysis on these features vectors to
reduce their dimensionality to only 6. The scatter diagram of the first three elements of
these PCA vectors are plotted in Figure 20.

Speech sample 9 and music sample 9 were found to be the two samples that are the
farthest apart from each other, and should therefore be the easiest samples to separate
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Clustering of Speech and music (Blue: Music, Red: Speech)
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Figure 20: Bright red and blue labels the speech and music sample which is farthest apart from
each other

with a classifier. These are marked with bright red and blue labels in Figure 20. It is
worth mentioning that speech sample one and two are much closer to music than any
other of the speech samples. The only difference noticed when listening to these samples
is that they are in Norwegian. Sample one and two are plotted in green in Figure 21. The
most likely explanation to this is that the pauses between the syllables in the Norwegian
language are shorter than in English. The variation of the power in the signal, in the
time domain, is therefore closer to music, where the variation is usually very small.
Because the speechl sample is of a female, the average frequency level is higher than
speech2 sample which are of a male speaker. This places speechl even closer to the
music samples. Sample speech3 and speech4 are also in Norwegian, but the speaker is
talking in a dialect.

The second step was to find the boundary after which it is no longer possible to sep-
arate speech from background music. To find this boundary, a new set of samples were
constructed out of the speech, music and environmental sounds samples. Figure 22 illus-
trates how these new samples are constructed. Every possible combination of the speech
and music, and the speech and environmental sounds, samples was made, creating a
total of 200 constructed samples. This step will be described in subsection 4.3.1.

All different low level features were then extracted from these audio samples, and
ground truth sets were constructed. Then PCA was applied to all different combinations
of the LLDs and the output vectors used to classify the audio samples into two groups by
the KNN. Finally, the results were checked against the ground truth. This procedure was
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Clustering of Speech and music (Blue: Music, Red: Speech)

Principal component 3
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Figure 21: Green labels clear Norwegian speech, one female and one male

i ic - Music -4 dB Music -3 dB
Music - 17 dB Music - 13 dB Music - 10 dB Music — 9 dB Music — 8 dB Music — 7 dB Music — 6 dB Music -5 dB usic ‘

Figure 22: Sample constructed for finding speech/music bounarie in dB

-15dB

done in three different experiments: First the best combination of LLDs was determined,
second the optimal number of dimensions is estimated using returned PCA, and the
number of neighbors considered in the KNN. Finally the different mixtures of speech and
music, and speech and environmental sounds, were used to find the boundary where
speech with background music, and speech with background environmental sounds, is
no longer categorized as speech.

4.3.1 Finding the best combinations of LLDs

Every possible combination of the 23 LLDs was tested. The combinations of the LLDs was
tested both with dimensional reduction by the PCA and without, to see if there were any
differences in the performance. In most cases, when testing on mixed classes, the results
were better when PCA was applied to the extracted LLDs. The results from the tests when
PCA was not applied had fewer LLDs in the combination, but overall results were lower
than when PCA was applied on a larger set of LLDs. This is illustrated in Figure 23 and
Figure 24.

There is no obvious good way to illustrate the result graphically. Because there is
only one result per combination, only two dimensions are available. One interesting part
about this figure is that there is a repeating pattern in the figure. In the same way that
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Preformance results LLD combinations {(Speech/Music)

Percent match
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Figure 23: Most suitable LLD combination when PCA was applied. (The blue dots on the zero line
is the combinations with less than 3 descriptors, these is not calculated since the PCA needs a
minimum of 3 dimensions as input in this experiment.)

some LLD combinations creates high matching rates between categorized frames and the
ground truth, while some LLD combinations create a low match. Because the test is done
in a binary way, (1000, 0100, 1100, 0010, 1010, 0110, 1110, ..., 1111), all combinations
of the previous LLDs will be repeated every time a new LLD is added.

Because of the very time consuming process of testing all the 16 777 215 possible
combination of the 23 LLDs, some LLDs was excluded during the testing. Some of them
because they performed poorly in several of the tests where LLDs where randomly se-
lected, and some because it was logical to remove them. Examples of LLDs which per-
formed poorly are Mel-cepstrum coefficients 3 to 7, and ZCR and FUF was logical to
remove. This is further explained in the two following sub sections.

Time Domain

From the time domain AP, RMS and STE were found to perform well in combination,
when separating speech and music. This is illustrated in Figure 25. RMS and the STE
calculated in the min scalar is present in all the combinations. This correlates well with
the fact that these LLDs describe the power in the signal and that music is known to have
more power than speech. Although ZCR is known to be a good descriptor to separate
speech and music [5], it is not true in this experiment. The reason for this is that speech is
mixed together with music in the samples, and the characteristics for speech are seldom
detected. HZCRR, which describes the variation in ZCR, is not present in any of the
combination. This is most likely because the variation of the ZCR is very little influenced
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Preformance results LLD combinations {Speech/Music)

Percent match
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Figure 24: Most suitable LLD combination without dimensional reduction by the PCA. (The blue
dots on the zero line is the combinations with less than 3 descriptors, these is not calculated since
the PCA needs a minimum of 3 dimensions as input in this experiment.)

by the power variations. One exception is the ZCR(min) which performs well. This is
probably because speech influences more in the low frequency area than in the high
frequency area. And when we only look at the changes in the low frequency area, which
ZCR(min) do, there is a detectable difference between speech with background music
and clear music. This is also strengthened by the fact that HZCRR, which describes the
high changes in ZCR, performs poorly when separating speech with background music
from clear music .

Frequency Domain

In the frequency domain ASC and the MFCCs were present in most combinations. This
is illustrated in Figure 26. ASC, which describes the gravity of the most dominant fre-
quency, is known to be a good to separate speech and music because speech is most of
the times in a lower frequency area than music. When speech and music are mixed to-
gether, speech will influence the gravity of the frequency spectrum so that clear music
will differentiate from speech with background music. The MFCCs, which divides the
frequency area into frequency bands perceptual equal in distance from each other, de-
scribes the frequency presence in the signal. Figure 26 illustrates that the first and the
last cepstrums is most present in the combinations. This correlates well with the knowl-
edge that speech generates most changes in the low frequency area and music generates
changes in the high frequency area. FUF, which searches for fundamental frequencies
in the signal, performs not so well in this experiment. Since speech and music is mixed

35



Classifying motion picture audio

LLD presences in the 5 percent most suitable combinations
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Figure 25: LLD presence in the 5 percent most suitable combinations of the LLDs in the time
domain. 1: AP, 2: AFW, 3: ZCR, 4: STE, 5: RMS, 6: HZCRR, 7: AP(min), 8: ZCR(min), 9: STE(min).

together in these samples, a fundamental frequency is often detected whether speech is
present or not.

Speech with background music

The most suitable combination for separating speech from background music were; AP,
ASC, AWF, STE, RMS, SF, fourth MFCC, AP(min), ZCR(min) and STE(min). This is a mix
of descriptors from both time and frequency domain, with a majority in time domain.
Descriptors in the frequency domain do not perform so well due to the fact that the
power in the signal does not influence the frequencies much.

Speech with background environmental sounds

The most suitable combination for separating speech from background environmental
sounds were only from the MFCC features. These are the first, fourth, fifth, sixth, eighth
and ninth Mel-cepstrum coefficient. MFCC is features in the frequency domain. This
means that the frequencies present in speech and environmental sounds differentiates
more than the power of the signals. This is somewhat logical. Environmental sounds
vary a lot in rhythm and frequency, and the power carried by the signal is usually lower
than music. The descriptors in the time domain will therefore not detect much difference
between speech and environmental sounds.

4.3.2 Pure speech and background music discrimination

In this experiment RMS, STE and ZCR was extracted from each of the constructed mu-
sic samples. How these samples are constructed is described above and is illustrated in
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LLD presences in the 5 percent most suitable combinations
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Figure 26: Most suitable LLD combination when PCA was applied 1: ASC, 2: FUF, 3: SF, 4-13:
MFCC, 14: ASC(min).

Figure 22. The mean value of these LLD vectors is plotted together with the standard de-
viation and the mean LLD value for the speech samples. Two times the standard deviation
is used as the confidence interval in this experiment because there are to few samples to
calculate a 95 percent confidence interval with an acceptable error rate. The confidence
interval for the speech signal is not plotted since the standard deviation were to small to
be visible in the plot. Figure 27 illustrates the development of the RMS as the distance
between the average speech dB level and the music dB level decreases. The lines crosses
when the music signal is about 6 dB lower than the speech signal. If we consider the
confidence interval, a distance of 8 db will separate all the test samples. This indicates
that it is possible to separate speech with background music from clear music, as long
as the distance between the powers of the music signal is 8 dB lower than the average
power of the speech signal.

The development of the STE(Figure 28), as the distance between the average speech
dB level and the music dB level decreases, is relatively similar to the RMS development.
Main differences are that mean STE music line crosses the average STE speech line at
-5 dB, and that the confidence interval is larger. When consider the confidence interval,
a distance of 6 dB, between speech level and background music level, is necessary to
separate speech with background music from clear music.

Figure 29 illustrates the development of the ZCR as the distance between the average
speech dB level and the music dB level decreases. As visible in the figure, the ZCR line
for the music signal does not change. This is because the ZCR feature is not influenced
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Figure 27: RMS developement of background music(Blue line) with standard deviation (Green)
and average speech level (Red line)

by the signal power. One visible difference from the two other LLDs, is that the ZCR level
for music is higher than speech. This is because the average frequency is higher for music
than speech.

4.3.3 Pure speech and background environmental sounds discrimination

Figure 30 and Figure 31 illustrates the development of the RMS and STE as the distance
between the average speech dB level and the environmental sounds dB level decreases.
The results are very similar to the ones from the speech / music experiment. This is logical
since these descriptors describe the power in the signal, and that it is well known that
noisy environmental sounds is difficult to separate from music. This is because consistent
environmental sounds and noise (especially white noise) carries much power and has
a large frequency range. One difference is that STE for environmental sounds has a
much larger standard deviation than for music. This can be explained by the fact that
environmental sounds varies much more in beat, pattern and frequency than music.

The ZCR development, Illustrated in Figure 32, is very similar to the one for music.
One noticeable difference is the level of the two ZCR lines. Environmental sounds have
a higher level than music. The reason for this is probably the high frequency present
in many of the environmental sound samples. The sound of rain falling has a very high
frequency, and can be considered close to white noise.
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Average STE developement of music
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Figure 28: STE developement of background music(Blue line) with standard deviation (Green)
and average speech level (Red line)

4.4 Classifier Evaluation

The KNN classifier was tested on the first 8 minutes of the movie Groundhog Day. The
LLDs found to be the most suitable combination in the previous section, was extracted
from the sample. Then PCA analyses were applied on these feature vectors, and reduced
their dimensionality to 3 elements per vector. Finally the elements were grouped into
two classes by the KNN. Figure 33 illustrates the result matched against the ground
truth, which was a 88.25 percent match.

The first part of the sample (frame 1 - 38) is music that starts very slow and quiet
and then picks up in power and pace. Since no training is applied to the KNN, some
for the first frames are mistaken for speech (background music). Frame 39 - 163 (only
interrupted by a jingle in frame 116 - 118) is clear speech, from four different speak-
ers, with some environmental noise. Frame 164 - 212 is clear music. Frame 213 - 259 is
speech from three different speakers, with background music. Frame 260 - 303 is clear
music. Frame 304 - 356 is speech from three different speakers with background environ-
mental sounds. Frame 357 - 372 is bad quality music (radio in background) with some
environmental noises. Frame 373 - 400 is speech (radio hosts) in background.

To find the most suitable number of neighbors to consider, a classification was per-
formed on K = 2 to K = 8. Figure 34 illustrates the result of this test. From the figure we
can conclude that K = 4 gives the best result.
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Figure 29: ZCR developement of background music(Blue line) with standard deviation (Green)
and average speech level (Red line)

4.4.1 PCA dimensionality Reduction

The method for finding the number of dimensions returned from the PCA is straight
forward. Since the most suitable combination of the LLDs contained 9 descriptors, the
number of dimensions has to be between 1 and 9. Each number from 1 to 9 dimensions
were returned from the PCA, classified by the KNN and checked against the ground truth.
Figure 35 illustrates that 3 dimensions gives the best result.
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Figure 30: RMS developement of background environmental sounds(Blue line) with standard de-
viation (Green) and average speech level (Red line)
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40 T T T T T T
STE Environmental
ffffffff STE Speech

25+ -

20+ =

STE

1 1 1 1 1 1
-16 -14 -12 -10 -8 -6 -4
Distance in dB between environmental sound and speech signal

Figure 31: STE developement of background environmental sounds(Blue line) with standard devi-
ation (Green) and average speech level (Red line)
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Figure 32: ZCR developement of background environmental sounds(Blue line) with standard de-
viation (Green) and average speech level (Red line)
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Classification of Groundhog Day, Result: 88.25 percent match
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Figure 33: Results of KNN experiment on the first 8 minutes of ’Groundhog Day’. Red circles high-
lights the ground truth and blue dots highlights the classification don by the KNN
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Results when changing the K
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Figure 34: Results when changing the number of Ks in the KNN. Best result is achieved when 4
nearest neighbourer are used to classify the classes.
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Results when changing the returned dimensions from the PCA
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Figure 35: Results when changing the returned dimensions from the PCA. Best result is achieved
when 3 dimensions is returned.
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5 Experimental Result

In this final experiment all results from the previous experiments is used to classify the
audio track from the ’Groundhog Day’.

5.1 System Setup

Figure 36 illustrates the system setup. First the signal is normalized in the preprocessing
stage, and then all LLD features is extracted on a 30 ms basis and grouped into 1.2
seconds frames, as described in chapter 4, in the next stage. Then the frames are classified
by the KNN in the third stage. In post processing stage is the ’silence frames’ classified by
the RMS feature and single misclassified frames is re classified based on the four closest
neighbors. In the final stage a table of content is created, based on the post processed
result from the KNN.

Audio - Free | 0 p L
processing

TOC Post- KNN <
processing

Figure 36: The five stages in the system setup

5.2 Audio Sample

The audio sample used in this final experiment is the audio track from the motion picture
"Groundhog Day’. The sample is 96 minutes long and includes both clear and mixed
sections of speech, music, environmental sounds and silence. All 23 LLDs where extracted
on 30 ms windows and grouped into a total of 4800 frames of 1.2 seconds. A Matlab
function was created to generate the ground truth. The function played 1.2 seconds of
the sample and then asked for the class, then next 1.2 seconds was played, and so on.
The distribution, based on the ground truth, is 65.2 percent speech, 22.9 percent music
and 11.9 percent environmental sounds.
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5.3 Low Level Descriptors

The most suitable combinations of the LLDs found in section 4.3.1 were used on this ex-
periment. In the earlier experiments the most suitable combination of the LLDs was very
different when separating speech with background music and speech with background
environmental sounds. But in this experiment the most suitable combination found for
separating speech from background music was considerable better than the one for sep-
arating speech and environmental sounds. The reason for this is probably because both
background music and environmental sounds were present in most cases in the 'Ground-
hog Day’. A separation based on the descriptors in the frequency domain was therefore
not very suitable. Because of this, only the combination of the LLDs which was most
suited for separating speech and background music was used.

5.4 Post processing

The post processing of the signal consists of two procedures. The first is for categorizing
silence into the environmental sounds class. This is done by removing the 5 percent high-
est and lowest values from the RMS feature, and then normalize the vector. A threshold
was then placed at 20 percent. Every frame with a value below the 20 percent where
then considered to be silence. The other procedure was to correct the 'drop outs’. A me-
dian filter was first introduced, but this ’corrected’ to many classifications. A function that
looked at the two closest neighbors on both side where implemented. If both neighbors
on both sides were of the same class, the investigated frame was moved to the same
class.

5.5 Training of the KNN

The first 80 percent of the ’Groundhog Day’ were used as training data for the KNN. Also
the test samples of speech, music and environmental sounds were tested as training data
for the KNN. These samples gave good classification where there were clear classes, or
speech with background music, in the ’‘Groundhog Day’ sample. But, these test samples
failed dramatically when music and environmental sounds appeared simultaneously in
the signal. A standard training set is theoretically possible, but it had to be a enormously
big database of different music, speech and environmental sounds.

5.6 Classification of the ’Groundhog Day’

Much of the music in this movie is relatively quiet and without rhythmic instruments,
such as drums and bass. Without these kinds of instruments, signal power will be signifi-
cant lower. Because the combination of LLDs used in this experiment mostly are descrip-
tors from the time domain, several music and environmental frames is misclassified as
speech. Also environmental sounds are misclassified as speech. This is probably because
of the same reason as for the speech and music separation, the lack of features from the
frequency domain. But, if features from the frequency domain are included in the LLD
combination, much of the speech with background music will be misclassified as music.
Figure 37 illustrates the result of the classification.

5.7 ToC

The table of content will be described by the classification described in the previous
section. Figure 38 illustrates a section from the classified sample, without the ground
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Classification "Groundhog Day", Result: 76.875 percent match
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Figure 37: Experimental results, classification of the ’Groundhog Day’. Red circles is the ground
truth, blue dots is the classification by the KNN and the green dots illustrated where the frames
have been corrected by the post processing (The green dots is placed above the classification to
them easier to observe).

truth and the corrections. The distribution, based on the result from the classification, is
72.2 percent speech, 20 percent music and 7.8 percent environmental sounds.
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ToC "Groundhog Day"
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Figure 38: A section of the table of content generated by the automated classification of the
"Groundhog Day’
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6 Conclusion

In this project we have investigated and implemented methods for content-based feature
extraction and classification of motion picture audio. The system includes feature ex-
traction, dimensional reduction and audio classification. Combination of these generates
a table of content which describes the content of the speech, music and environmental
sounds audio classes in the movie.

As expected, and mentioned in earlier chapters, the classification of motion picture audio
needs a different approach from the one used in the separation of clear audio classes.
The reason for this is that most of motion picture audio is mixed content. Music and
environmental audio is used most of the time to create moods, and support the visual
setting. This means that the frequency range and the power of the background music
signal is added to the speech signal. In the Experimental Setup chapter, we found that
there is still possible to separate speech with background music from clear music, if the
background music signal is 8, or more, dB lower than the power of the speech signal. It
is the features in the time domain that makes this possible. Tests showed that ZCR and
FuF performed very poorly when trying to separate speech with background music from
clear music. The reason for this is that the frequency present in the music signal is not
particularly influenced by the power level of the signal. Because of this, most features in
the frequency domain performs poorly when separating speech with background music
from clear music.

When separating speech with background environmental sound and clear environmental
sound, the results were opposite. In this case the features in the frequency domain per-
formed well, and the features in the time domain performed poorly. The reason for this
is that the average power carried in the environmental sounds signal, is lower than the
music signal and is closer to speech. The power of the environmental sounds also tend
to vary much more than music, this also resembles speech. But, in some cases the envi-
ronmental sounds is closer to noise, and this tend to be misclassified as music, because
of the wide frequency area (white noise is a well known example of this).

In the final experiment, when testing the audio track from the ’Groundhog Day’, the
combination of LLDs that was most suitable for separating speech with background mu-
sic from clear music performed much better than the combination for separating speech
with background environmental sound from clear environmental sounds. One very likely
explanation for this is that, based on the ground truth, only 11.9 percent of the audio
track contained clear environmental sounds. The percentage of environmental sounds
was even lower in the 20 percent of the audio track that were classified, only 7.8 percent.
Another explanation is that the background environmental sounds are relatively constant
in power regardless if speech is present or not. Background music tend to be faded down
when speech is present, and then faded up again when speech is no longer present. Clear
environmental sounds signals carry much power, and are therefore misclassified as music

51



Classifying motion picture audio

because of the majority of features from the time domain. To compensate for the many
misclassifications of the environmental sounds a threshold on the RMS feature was in-
troduced. After removing the upper and lower 5 percent of the RMS feature vector, the
vector was normalized. Every value below 20 percent in this vector was then considered
as silence. As explained earlier in this report a quiet environment is regarded as silence.
Finally a variation of the median filter was used to correct misclassifications of single
frames. This project has mainly focused on separating speech from other audio classes,
and since 76.9 percent of the analysed test sample was correctly classified, the result
has to be considered relatively good when 72.2 percent are judged to be speech by the
ground truth.

To sum up the above, we can conclude that this project has proven that automatic classi-
fication is possible when analyzing audio with mixed content, if the distance between the
dB levels of the speech signal is more than 8 dB from background music or environmental
sounds. We have also proven that several of the low level descriptors that traditionally
separates clear audio classes well, performs poorly on mixed audio classes.

6.1 Future Work

Experiments in this project has proven that LLDs that traditionally performs well when
separating clear audio classes, performs poorly when separating audio classes with mixed
content. Based on this, selecting LLDs that is more suited to separate mixed audio classes
is probably the most relevant future task generated by this project. Results from the ex-
periments shows that some LLDs gives good results in some variations, and performs
poorly in other. Finding these variations could be a step in the right direction.

One of the obvious future tasks based on this project is to perform the experiments in
a larger scale. The test samples used is too few to generate accurate results. Repeating
the experiments with different window and frame sizes when extracting the low level
descriptors may give different results. Another task could be to analyze further the clas-
sified classes. Speech can be processed to separate speech with background music from
speech with background environmental sound. In the experiment where most suitable
combinations of the LLDs were found, the result showed that there are large differences
in samples of background music and background environmental sounds.

Also known methods for detecting sound objects should be possible to implement. When

sound objects is present in a motion picture, the power of this signal is usually much
higher than other sounds present.
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