Managing signatures for IDS in a distributed

environment - A study of a signature
management system

David Ormbakken Henriksen

Master’s Thesis
Master of Science in Information Security
30 ECTS
Department of Computer Science and Media Technology
Gjgvik University College, 2012

Avdeling for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjovik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjgvik

Norway

Managing signatures for IDS in a distributed
environment - A study of a signature management
system

David Ormbakken Henriksen

2012/06/30

Managing signatures for IDS in a distributed environment - A study of a signature management system

Abstract

There has been a 36 percent increase in detected computer attacks from 2010 to 2011 according
to the latest Symantec threat report. An increase in the total number of attacks from the previous
year to the next is a trend that has been going strong for a while. A natural consequence and a
parallel trend to this trend is that the human work of intrusion detection becomes more resource
demanding each year. This in turn demands from the security practitioners that they become
more efficient in their daily work, and routine work is were the biggest potential gain in efficiency
can be found.

Intrusion detection systems (IDS) are a big part of intrusion detection work and human IDS-
work consists of a lot of routine work. In particular management of signatures. Managing signa-
tures for intrusion detection systems is an ongoing process, which currently is too inefficient. This
thesis will show how human efficiency can be improved in this process by the use of a dedicated
management system.

iii

Managing signatures for IDS in a distributed environment - A study of a signature management system

Sammendrag

Ifglge den siste trussel rapporten fra Symantec har det veert en 36 prosent gkning i oppdagede
dataangrep fra 2010 til 2011. Dette er en trend som har vart i mange &r nd og en trend som ser
ut til & fortsette de kommende arene. En naturlig konsekvense av denne trenden og en paral-
lel trend til denne trenden er at det menneskelige arbeidet med inntrengingsdeteksjon blir mer
ressurskrevende veert ar. Dette igjen krever av menneskene som jobber med inntrengingsdeteks-
jon at de blir effektive i sitt daglige arbeid og rutine arbeid er hvor det stgrste potensialet i gkt
effektivitet kan bli hentet.

Inntrengingsdeteksjons- systemer (IDS) er i dag en stor del av inntrengingsdeteksjons- arbeid
og dette arbeidet bestir av mye rutinearbeid. Da spesielt i arbeidet som omfatter forvaltning av
signaturer. Arbeidet med forvaltning av signaturer er en gjentagende prosess som i dag er for
ueffektiv. Denne masteroppgaven vil vise hvordan menneskelig effektivitet kan bli forbedret i
denne prosessen ved hjelp av et dedikert forvaltningssystem.

Managing signatures for IDS in a distributed environment

- A study of a signature management system

Contents
Abstract e e e e iii
Sammendrag e e e e e e e e e e e e e e e v
Contents e e e e e e e e e vii
Listof Figures e e e e ix
Listof Tables xi
Preface e e xiii
1 Introduction e e e e 1
1.1 Topiccovered i i i i e e e e e 1
1.2 Keywords o o v vt e e e 1
1.3 Problem description e 1
1.4 The signature management ProCesS . . . « « « v v v v v v v v v e e 2
1.4.1 Explanationofthe process v 2
1.4.1.1 Pre-processingphase. 3
1.4.1.2 Monitoring phase 3
1.4.1.3 Analysisphase 3
1.4.1.4 Responsephaset 3
1.5 Justification, motivation and benefits 5
1.6 Research question i ittt 5
1.7 Claimed contributions e 5
2 Relatedwork e 7
2.1 Existing opensource tools e 7
2.2 Related work conclusion 8
3 Methods e e e 11
3.1 Keystroke-level modelling 11
3.2 Questionnaire e e e e e e e e e e e e e e e e e e 11
4 The signature management Systemo 13
4.1 System reqUIr€ments it e it e e e e e e e e e e e e 13
4.1.1 Userinterface o i v i i e e e e e 13
4.1.2 Scalability and Performance 13
4.1.3 CommuniCation o v vttt e e e e e e e e e e e e e e 14
4.1.4 Compatibility and environment, 14
4.1.5 Previouswork. 14
4.2 Designchoices e e e 14
4.2.1 Platform e e e e e 14
4.2.2 Programming language e 14
4.2.3 Userinterface e e e e 15

vii

Managing signatures for IDS in a distributed environment - A study of a signature management system

4.2.4 Webframework 15

4.2.5 Database 15

4.2.6 Communication o v vttt e e e e 15

4.2.7 Architecture 15

4.2.7.1 update.pyo oo e e e e e e e 15

4.2.7.2 distribution.py e 17

4.2.7.3 Web.PY e e 17

4.2.7.4 Database 17

4.3 Implementation i e e e e e e 17
4.3.1 Graphical userinterface 18

4.3.1.1 Ruleview 18

4.3.1.2 Rule-setview 19

4.3.1.3 Sensor VIiEWo e e e e e e 21

4.3.1.4 Advanced tuningview 21

5 Experimentsandresults e 25
5.1 Keystroke-level modelling 25
5.1.1 Scenario 1: Inspect signature SyntaxX « « v v v v v v 0. .. 27

5.1.2 Scenario 2: Lookup signature reference 28

5.1.3 Scenario 3: Disable signature 29

5.1.4 Scenario 4: Distribute signature changetoasensor 31

5.1.5 Scenario 5: Reload signature change onasensor 32

516 Results. e 32

5.2 Questionnaire e e e e e e e e e e e e e e e e e 35
5.2.1 Testsubjects e 35

522 Testing. o v i i e e e e e e e e e e e e e 35

5.2.3 Results. e e 35

5.2.4 Reliabilityand validity 36

6 Conclusion 39
6.1 Futurework e 39
Bibliography e 41
Appendix A Web-based questionnaire 45
Appendix B update.py e e e e e 47
Appendix C distribute.py e 57
Appendix D web.py e e 63
Appendix E config.py 83
Appendix F templates.html L 87

viii

Managing signatures for IDS in a distributed environment - A study of a signature management system

O 00O N O U1 A WN -

_ =
]

[P -
A WODN

List of Figures

Example of the cognitive load when performing signature syntax lookup
The signature managment Process « . o v v v v vt vttt e

Actions in the signature management process currently supported (green colour)

System architecture
Database tables
Update report
Ruleview

GUI:
GUI:
GUI:
GUI:
GUL:
GUL:

Suppression and thresholding option in the rule view

Rule-set view
Sensor view

Advanced tuning view

Task scenarios chosen for the KLM experiment

Time used for scenario 2 as a function of the number of references to lookup

Time used for scenario 4 and 5 as a function of the number of sensors

ix

N

16
17
19
20
21
22
23
24
26
34

Managing signatures for IDS in a distributed environment - A study of a signature management system

O 00N O U1 A WN -

_ =
=]

[P -
A WON

List of Tables
Operators and execution times used oot i e 25
Operators and execution timesnotused 25
Scenario 1 - Prototype i i e e e e e e e e e 28
Scenario 1 - Manualmethod 28
Scenario 2 - Prototype 29
Scenario 2 - Manualmethod 29
Scenario 3 - Prototype o i i i e e e e e e e e 30
Scenario 3 - Manualmethod 31
Scenario 3-PulledPork 31
Scenario 4 - Prototype e e e e e e e e e 32
Scenario 4 - Manualmethod 32
Scenario 5-Manualmethod 32
Results obtained from all the scenarios 33
Results obtained from the questionnaire 36

xi

Managing signatures for IDS in a distributed environment - A study of a signature management system

Preface

The author of this thesis has since 2009 until recently been working with intrusion detection
and incident response at the Norwegian Armed Forces Critical Infrastructure Protection Centre
(CIPC) located at Jgrstadmoen, just outside Lillehammer city. The thesis topic and much of the
work done in this thesis is based on experiences gained from working daily with intrusion detec-
tion systems at this centre.

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Slobodan Petrovic, for his valuable input
during this thesis work and for always being available. Secondly, I would like to thank my pre-
vious colleagues at the Critical Infrastructure Protection Centre for taking the time to test the
prototype and for answering the questionnaire. In relations, I would also like to thank previous
colleagues and friends, not working at this centre any more, for their support and construct-
ive discussions. Lastly, I would like to thank my opponent, Kristian Nordhaug, for his honest
feedback on my written report and work.

xiii

Managing signatures for IDS in a distributed environment - A study of a signature management system

1 Introduction

1.1 Topic covered

Looking at recent years research, concerned with intrusion detection systems (IDS), there has
been done a lot of research, but only a small amount of this research actually addresses the
human side of intrusion detection work [1]. The fact of the matter is that an IDS’s successfulness
in detecting intrusions depends largely on human interaction in the different phases of intrusion
detection work.

The well-known problem with signature based IDS is the huge number of false-positives that
they generate [2] [3] [4]. Looking past the technological solutions to this problem (where there
has been done a lot of work) and looking at what IDS-operators can do to address this problem,
two things come to mind: configuration of network variables and tuning of signatures. Con-
figuring network variables is mainly a one time job, while managing signatures is an ongoing
process, which becomes more resource demanding each year. The acknowledged open source
IDS (OSIDS) Snort [5] had approximately 3000 signatures available for use in 2005 and in 2010
the number of signatures available had increased to approximately 15,000, which is an increase
of 5 times in 5 years and there is nothing that indicates that this won’t keep up. We can imaging
the additional complexity added when managing more than one IDS, where all the IDS have their
own customized signature set. In addition customizing the signature sets requires deep know-
ledge and skills about the IDS and the defended network [6]. It becomes clear that management
of signatures in IDS is a challenging task [7].

1.2 Keywords

Information security, usable security, intrusion detection, distributed networks, signature man-
agement, security tools, snort, python

1.3 Problem description

The ever increasing threat against information assets requires ever more attention from inform-
ation security professionals [8]. Monitoring the network and analysing abnormalities looking for
malicious traffic is a time consuming process that never ends. It is therefore vital that the detec-
tion tools being used are adapted to the security practitioner’s needs and way of working. The
most widely deployed IDS/IPS (Intrusion prevention system) in the world, with over 4 million
downloads and nearly 400,000 registered users [5], Snort, suffers from poorly implemented/lack
of management of detection signatures. IDS-operators spend an unnecessary amount of time, or
do not spend the necessary time on the basis of lack of time, in the signature management pro-
cess. Snort, like other OSIDS (e.g. Suricata [9], Bro [10]) was not primarily developed with ease
of use in mind. The management of rules is therefore text/commando-line based, complex and
very manual, which in turn results in a process that is unnecessarily cognitive demanding and

Managing signatures for IDS in a distributed environment - A study of a signature management system

Figure 1: Example of the cognitive load when performing signature syntax lookup

time consuming (see Figure 1 for an example of the cognitive load). The complexity also makes
it harder for new operators to gain an understanding, making the learning curve unnecessarily
steep. There is no built-in scalability either when it comes to the signature management process.
It is today very common to have more than one sensor with an IDS deployed within a com-
pany. All these sensors are then usually connected to a centralized server from where they are
controlled. It should then not be necessary to do some of the same actions multiplied with the
number of sensors, but currently it is. In conclusion, the human work of managing signatures
for intrusion detection systems have the potential to be done more efficiently than it is today by
introduced a dedicated tool into the IDS signature management process.

1.4 The signature management process

The term “signature management process” is used sporadically in research papers (e.g. [7]), but
the actual process has not really been explained in any paper. As it is important to understand
this process, for the understanding of this thesis, this chapter will try to give an explanation. The
following explanation is primarily based on the author’s experiences with IDS work.

1.4.1 Explanation of the process

As the different superior phases of human intrusion detection work have already been defined
in previous research, it is natural to explain the signature management process in that context.
There are four phases in intrusion detection work. The first three where identified and named:
monitoring, analyse and response phase by Goodall in 2004 [11] and supplemented with a
fourth phase named pre-processing by Thompson in 2006 [12]. The pre-processing phase is the
first phase. All actions related to installation, configuration or maintenance of an IDS can be
said to belong to this phase. The second phase is the monitoring phase. This is the phase where
possible malicious network traffic is detected and alerted. According to Thompson [12], initial
analysis should also be looked at as part of this phase, but this paper, for simplicity sake, does
not do that. After some network traffic has been detected as suspicious the IDS-operator moves
into the analysis phase. The analysis phase is where the decision whether the incident is real
(true-positive) or false (false-positive) is to be taken. According to Goodall [11] an IDS-operator
will only enter the response phase if a real attack has been identified. What Goodall failed to
realize is that even a false-positive may need some kind of response, which becomes clear when
you take the signature management process into account. Reading Thompson’s research [12],

Managing signatures for IDS in a distributed environment - A study of a signature management system

the false-positive response can be understood to be part of the pre-processing phase, but again
for simplicity sake, response to a false-positive is in this paper part of the response phase. Having
explained the different phases, this chapter will precede with a simple explanation of the actions
taken in regards to the signatures in the different phases. All these actions are what ultimately
makes up the signature management process (see Figure 2 for a graphical representation). From
Figure 2 it is possible to see that the IDS signature management process is actually two somewhat
independent processes, but this thesis will keep on referring to it as one process.

1.4.1.1 Pre-processing phase

Before the IDS becomes active on the network for the first time, it is in this phase important
to disable the signature sets that are superfluous, violate the privacy of the users or that detect
traffic patterns that don’t violate the company’s policies. This could for example be signature
sets that detect the use of instant messaging services, torrent services or VoIP. This will reduce
the amount of alerts in the monitoring phase and let the operators focus on the incidents that
really matter. It is in this phase common to disable/enable signature sets and not disable/enable
single signatures, as that is to time demanding. IDS placed in different parts of the network may
have different signature sets enabled or disabled depending on the policy for that network and
depending on other detection systems that are already in place. After finishing this task, the IDS-
operator has to distribute the correct signatures too the corresponding IDS. Disabling/enabling
signature sets is more or less a one time task, while writing custom signatures and downloading
and updating signatures are the never ending tasks of this phase.

1.4.1.2 Monitoring phase

The monitoring phase doesn’t involve any human interaction in regards to signatures.

1.4.1.3 Analysis phase

When an alert is produced the IDS-operator needs to know why. In all simplicity the alert was
produced because the signature matched some traffic passing trough the network, but the oper-
ator needs to know if that traffic is harmful or could be harmful to the company’s assets. The first
thing the IDS-operator needs to look at, to make it clear, is the relevant signature syntax. From
the signature syntax the operator can usually extract the following information: a short descrip-
tion of the signature, internet references, the actual rule syntax that triggered the event and a
signature category. The operator will further use this information in correlation with information
like network packet data and netflow data to be able to make a decision. The more information,
the easier it will be for the operator to make his decision. As the signature based actions in this
phase are done for each alert, it is safe to say that they are a daily part of IDS work.

1.4.1.4 Response phase

If the IDS-operator finds the alert to be false-positive, the operator may decide: that the signature
is not good enough and thereby disable it or modify it, that the signature is good enough but
what it detected is not of interest and suppress/threshold it or that the signature will not trigger
on the same traffic again and therefore no action is needed. Suppression gives the operator the
possibility to block IP-addresses or IP-ranges for that signature. Thresholding lets the operator
choose how "aggressive" the signature should be. He could then for example choose to extend

Managing signatures for IDS in a distributed environment - A study of a signature management system

The intrusion detection
phases

|_ —| Downloadiupdate signatures
—| Disablefanable signature sat

_| Write custom signature

Signature actions related to the phases

Ilnspact & understand signature syntax I

v

I Lookup signature references

I Pre-pracessing d
| I Distribute signatures |
' Y
: I Relcad zignatures |
e = . . e e
| ¥
|
|
| s
= Monitoring

|

|

| Analyze

|

| gﬂlﬁtlfg Donothing |

- - _ _ R]

|_ T Fr | T e e S S e] T R T A P R R e =1

| J OR OR |

| r ¥ ¥ |
Response Thresholdisuppress signature Disable signature Modify signatura

| | J | | | |

| i | |

| I Distribute signatures I |

¥
| I Reload signatures I |
__________________________ —

Figure 2: The signature managment process

Managing signatures for IDS in a distributed environment - A study of a signature management system

the amount of traffic allowed to pass before the same alert triggers again. If the operator chooses
to respond he also has to choose which IDS he wants to apply the response to and he has to
distribute the changes to desired IDS. Bearing the problem of a huge amount of false-positives
in mind, it is easy to see that an IDS-operator will often perform signature based actions in this
phase.

1.5 Justification, motivation and benefits

The ones that have worked or work daily with IDS will at least agree upon one thing, and
that is that there is a lot of routine work involved in the day to day operations of an IDS. The
quality of this routine work depends solely on the skill set of the individual operator, but the
time spent doing this work does not. Even though it is obvious, for the IDS-operators, that the
signature management process can be improved, it is a matter of taking time to improve the
process versus using that time to do the process. As mentioned earlier time is already something
security practitioners are in short supply of, which means that they implement partial solutions,
but don’t have the time to do it right. Through interviews conducted with 9 IDS-operators in 2008
[1], the time consuming process of signature management is mentioned by many of the interview
objects as an obstacle to the usefulness of IDS. The reason was that reducing the occurrences
of false-positive alerts where partly done by filtering signatures and filtering signatures was
very time consuming, time they already had too little of. The need for more efficient signature
management has also been requested in many forum posts on the Internet over the years (e.g.
[13], [14] and [15]).

This research aims at showing how much time can be spared by improving this process and
at giving the IDS-operators a tool, which if taken into use, could make their life easier. The
motivation behind this research is primarily based upon the authors first-hand experiences from
working daily with different intrusion detection systems in a complex environment.

1.6 Research question

Based on the previous discussion, the following research question has been defined:

e To what extent would a graphical tool improve human efficiency in the IDS signature man-
agement process, in terms of time, compared to the existing manual method?

1.7 Claimed contributions

This master thesis will provide the following contributions:

e Definition of the IDS signature management process.

e Definition of a method to create a scalable and efficient system for managing signatures for
Snort and other OSIDS like Suricata that use the same signatures.

e An implementation of a usable prototype based on the method mentioned above.

Managing signatures for IDS in a distributed environment - A study of a signature management system

2 Related work

As stated earlier there has not been done much research that addresses the human side of in-
trusion detection work. It is therefore very little research that specifically targets the signature
management process, as this is primarily a human based process in IDS work. The majority of the
research that we have found concludes that introducing tailored tools into IDS work is a solution
that has the potential to improve the human efficiency in the targeted process, for example:

[12] states that one of the most challenging tasks with intrusion detection work is that the
IDS-operators have to manually integrate information from a variety of tools and resources which
adds a cognitive burden on the operators. A complete tool could lighten some of this burden. [1]
points out that much research has focused on improving the usability perspective by providing
tools with a visual interface for the monitoring and analysis phase of intrusion detection work,
but that the pre-processing and response phase have been neglected in this area. [7] acknow-
ledges the need to automate the IDS signature management process by the use of a tool. The
reason is that this process, if a larger signature set is introduced, would be too inefficient if done
manually.

When it comes to creating tools, previous research states that graphical user interfaces are
preferred ahead of the command-line interface (CLI), but only if the graphical interface com-
pletely removes the need to interact with the CLI to complete the desired task. In other words,
as long as all the details needed are being presented [12] [16].

The next section will explain the related work with regard to existing tool-support for IDS-
operators in the signature management process.

2.1 Existing open source tools

On the official support Website for Snort there are currently listed two dedicated signature man-
agement tools. They are: Oinkmaster [17] and Pulled Pork [18].

Oinkmaster is the one of the two listed above that has been around the longest as it was
released in 2001. This third party tool is programmed in Perl and is based on the command-line
interface. Current version is 2.0. Oinkmaster supports the update and enables/disables action in
the pre-processing phase, and the change and disable/enable rule action in the response phase.
Currently it is not being maintained.

Pulled Pork is an official tool in the way that it was developed and is maintained by one of
the members of the Sourcefire team. It was released in 2008/2009. As Pulled Pork is currently
maintained, many environments that previously used Oinkmaster have now started using this
tool instead [19]. Pulled Pork supports the same actions as Oinkmaster in the signature manage-
ment process, which are: update rules, enable/disable rule-set and enable/disable/change rule.
Pulled Pork is also programmed in Perl and is command-line based. The current version is 0.6.1.

An even newer script, which is not on the official support website, was released in 2011. It

Managing signatures for IDS in a distributed environment - A study of a signature management system

is called Polman [20] and is a third-party contribution. In contrast to Oinkmaster and Pulled
Pork, Polman acknowledges that many environments have more than one sensor and therefore
have the need for custom rule-sets for different sensors, instead of using the same rule-sets on all
sensors. Polman has the ability to disable/enable rule-sets and rules for different sensors. It does
this by creating a new database for each sensor, which contains the same rules, but not necessar-
ily the same configuration. Polman supports: update rules, enable/disable rule and rule-set. This
tool is as the two others written in Perl and is purely command-line based. The latest version is
0.3.2 and this tool currently seems to be maintained.

Also worth mentioning is an application called Snorby [21]. Snorby is a graphical user inter-
face based tool created to support the monitoring phase of intrusion detection work, which from
Figure 2, one can see is not a phase that contains any signature actions, but Snorby has partial
support for looking-up signature syntax and signature references, which are signature actions
in the analysis phase. The developer behind Snorby is aware of the need for better signature
support (like tuning), as it was requested on his feedback forum for over a year ago, but as this
tool was not initially created to support the signature management process, he replied that it
was a hard task to implement it now. According to his Web page it is a feature to come, but the
progress is going slow. Current version of Snorby is: 2.5.1.

2.2 Related work conclusion

Currently there are no tools for Snort that supports the whole signature management process,
nor are there any tools that provide a graphical user interface for this process. As mentioned in
the introduction, many IDS-operators create partial solutions and the tools currently available
can be looked at as such solutions. Figure 3 gives an overview of the actions in the signature
management process that are currently supported.

Managing signatures for IDS in a distributed environment - A study of a signature management system

The intr:ii::eietection Signature actions related to the phases

:_ — Download/update signatures | |
| [Disablelenablesignaturs set | |
| Pre-procsssing 1 Wirite custam signaliire | :

I L
| 1 I Distribute signatures |

I T |
| : | Relcad signatures | |
L T e S S S

I '

|

|

Il—l- Monitoring
-t 1 —1r
| |Inspa|:t & understand signature syntax | |

¥ ‘L
| | Lookup signature references | |
| Analyze |
|
| gmlﬁtl?; Do nathing | :
| OR N
|_ e e | i e i e e e S O | I T R S AN Y- T T -1
| I OR OR |
| |
| Response I_Thresl'ruld-'su;:pre-sssignature | Dlmue:mnmra] | MW%@M ||
| 4 |
| I Distribute signatures | |
¥

| | Reload signatures | |
__________________________ 1

Figure 3: Actions in the signature management process currently supported (green colour)

Managing signatures for IDS in a distributed environment - A study of a signature management system

3 Methods

This thesis has been a quantitative research study based on existing methods. In all simplicity
the course of events in this study has been: Identify the different actions of the signature man-
agement process and then uncover related work related to this process. Further this information
along with the authors experience and input from previous colleagues has been used to develop
a prototype, which in turn has been used for testing.

To test for improved efficiency, keystroke-level modelling has been used. In addition the proto-
type has been installed at the Critical Infrastructure Protection Centre, where the IDS-operators
working there have tested it and provided feedback through a Web-based questionnaire. The
main reason for doing this second testing was to get more information that could supplement
the findings in the keystroke-level modelling experiment, but also to get feedback on the overall
usability aspect, as efficiency is not the only factor of usability that will be taken into account
when a company/person chooses whether to take a tool into use or not.

3.1 Keystroke-level modelling

As mentioned above, keystroke-level modelling (KLM) was used in this thesis to test for im-
proved efficiency in terms of time. The reason for using this method is that it is fast, relatively
simple and that it measures exactly what we want to measure (time used in human-computer
interaction). This method also produces results that are easily comparable. The KLM framework
is well known and has been used by many researcher throughout the years. The time estimates
that are provided within the framework are well tested and we can therefore assume that they
are reasonable accurate. The paper [22] was used for guidance when executing the experiment.

3.2 Questionnaire

When using a questionnaire to measure something, the most difficult part is to frame the ques-
tions with regard to validity. The questions used in this questionnaire were therefore taken from
the article [23] that offers a framework called USE-questionnaire where an assortment of already
framed questions/statements for measuring usability can be chosen among. This framework also
proposes an answering scale to be used together with these questions and this scale where there-
fore used together with the selected questions.

11

Managing signatures for IDS in a distributed environment - A study of a signature management system

4 The signature management system

This chapter will describe the requirements set, the design choices taken and the actual imple-
mentation of the signature management system.

4.1 System requirements

The main purpose of this system is to make the process of signature management more efficient.
The signature management system is to be based on the signature management process outlined
in Figure 2 and explained in Section 1.4.

4.1.1 User interface

The system shall provide a graphical user interface (GUI) to the user. The main purpose of this
GUI is to act as a layer of abstraction, hiding some of the underlying complexity and at the same
time reducing the cognitive load put on the users in this process. The GUI is key to improving
efficiency, so the design of it needs to be thoroughly thought through. User navigation should be
as effective as possible and user assistance should be offered in form of text based instructions
where deemed appropriate. Most of the actions that are part of the signature management pro-
cess should be able to be carried out through the GUI. In other words not all actions need to
be implemented as this is a prototype. For actions that could be sensor specific, the user shall
be presented with a drop down list from where he has the option to choose which sensor to
apply the action to. For example the action of disabling a signature could be a sensor specific
action and for this action the user should then be presented with a "choose sensor" option. As the
signature management process can be said to be two independent processes, the system should
present the user with two different views. One view that is signature set based and supports the
pre-processing phase and one view that is single signatures based and supports the analysis and
response phase. The system should also have a sensor view and have functionality to add sensors
into the system. Considering the amount of information this system will handle, some kind of
information filtering needs to be implemented in the GUI. The system should offer a possibility
for free text searching and for information sorting.

4.1.2 Scalability and Performance

The system should be able to scale to support an unlimited number of sensors. Depending on
the number of sensors some loss in performance must be expected, but this system should be
able to handle at least five sensors without any notable loss in performance for the user. Further
the system should be able to support an unlimited number of signatures, but maximum 20.000
signatures without any notable loss in performance for the user. Notable loss in performance is
in this context meant as more than 5 seconds in which the user needs to wait before he can
continue with his use of the system.

13

Managing signatures for IDS in a distributed environment - A study of a signature management system

4.1.3 Communication

The system must be able to connect to sensors so that it can deliver new/updated signatures and
send commands, so that it can tell the IDS software on that sensor to take the new signatures into
use. This system must also be able to download signatures from specified sources and regularly
update them afterwards. When updating it is important that the system keeps track of changes
so that changes made by the user do not get overwritten. The communication of distributing
signatures and updating signatures could take place on an internal network only or over the
Internet. All communication should be logged by the system. The GUI should present the user
with a distribution and updating button. This way the user can manually update the system
and sensors when needed. The system should also make sure that signatures are automatically
updated and distributed, so that the sensors have the newest signatures at all times without any
human interaction.

4.1.4 Compatibility and environment

The system is expected to be installed on a centralized server, either dedicated or existing, within
a distributed network, from where it can communicate with all relevant sensors within the net-
work and the internet. The system shall be compatible with the signature management process
of Snort. This will also make the system compatible with Suricata, as Suricata uses the same
signatures as Snort.

4.1.5 Previous work

When designing the system previous work should be taken into consideration. Either previous
work could be implemented as a part of this system or ways of doing things in previous work
could be done the same in this system.

4.2 Design choices

This section will describe the choices made during the design phase of this system. The choices
that were made resulted in a very portable system with few dependencies and easy installation.

4.2.1 Platform

The Snort IDS was originally developed for Unix-like platforms (e.g. Linux and BSD). Although
Snort now is compatible with Windows, most third-party support tools have been and are being
developed for Unix-like platforms. For this system the platform of choice is Linux and the oper-
ating system (OS) to be developed in is Ubuntu as this is the OS the author is the most familiar
with. This means that the system can be installed on all Linux platforms and most of the other
Unix-like platforms.

4.2.2 Programming language

Many programming languages can be used to implement this system (e.g. Perl and Ruby), but
the programming language of choice is Python. This is the programming language the author has
the latest experiences with and the best knowledge of. There will also be used some JavaScript
on the client side of this application, see Section 4.2.3.

14

Managing signatures for IDS in a distributed environment - A study of a signature management system

4.2.3 User interface

This system will have a Web-based user interface. The advantage of a Web-based interface is
that it only needs to be installed once and is thereafter easily accessible by all computers on
the internal network and the Internet independent of the computer’s OS. To display the data
to the user the DataTables plug-in [24] built on the jQuery Javascript library [25] will be used.
This plug-in provides an easy way for retrieving data for further organizing and displaying that
data in a Web based dynamic table. It also has built in column sorting and searching, which is a
requirement of this system. With performance in mind this system will use server-side processing.

4.2.4 Web framework
Since this system is to be programmed in python and demands high performance Tornado [26]
is the web server/framework to be used. Tornado is a relatively new web framework written in

Python. It is know for high performance and is therefore often used for real-time applications
[27].

4.2.5 Database

SQLite version 3 [28] will be used as the database to where this system will organize and store
all of its detection signatures and other related information. SQLite is a very fast and minimalistic
database. The advantage of this database is that it does not require any installation to work and
that it is just a single file on the hard-drive, which makes backup of the system very easy.

4.2.6 Communication
For distribution of signatures this system will use Rsync [29]. OpenSSH (Secure Shell) [30] will
be used for sending commands. Both of these applications are installed in Ubuntu by default.

4.2.7 Architecture

Figure 4 shows the architecture of this system. The arrows in this figure indicates the flow of
data. The architecture is a result of the specifications given in Section 4.1 and the design choices
made above. This system will mainly consist of three scripts:

e update.py
e distribute.py

e web.py

The reason for dividing them up this way and not include all code in one script is the requirement
that states that the action of updating and distribution of signatures should be done automatically
and be possible to trigger manually. Separating them this way fulfils that requirement. The scripts
purpose and functionality will be discussed in the next sections.

4.2.7.1 update.py

For downloading of signatures the already existing script Pulled Pork was considered to be used,
to save some time in the development phase. Unfortunately this script has some shortages that
force the need to customize it for use with this system, which seems to be just as time consuming.
Some of these shortages are that Pulled Pork does not bind the rule set name to the signatures

15

Managing signatures for IDS in a distributed environment - A study of a signature management system

extemal
signatures

SEnsor

distribute, py update. py

.db

local
wab. py signatures

Server

user

Figure 4: System architecture

16

Managing signatures for IDS in a distributed environment - A study of a signature management system

[||
[[
rules SENSors <sname>_threshold L— =zgname=>_disabled 1
PK |sidnr PK |sname PK |id | 1 |PK |sid
rEwr ip sid
SOUFGE_name path type
ruleset_name uname syntax
rule_name cmd comment
ref sensor N
date
rule_syntax

Figure 5: Database tables

(which only leaves class type) and does not keep the downloaded files on disk after use (compat-
ibility with Snorby among other things). The update script will therefore manage downloading,
extraction and database insertion of signatures from local and external sources. All actions this
script does will be logged and signature archives, if possible, will be checked for freshness by the
use of md5 before potentially downloading them (feature of Pulled Pork).

4.2.7.2 distribution.py

This script will handle distribution of signatures and other relevant files to sensors. Distribu-
tion.py will extract and read information from the database to know which sensors are supposed
to have which signatures and which tuning rules. The extracted information will be stored in
sensor specific files on local hard drive before being distributed. All actions this script does will
be logged to a file.

4.2.7.3 web.py

This is the main script that will run on top of Tornado and provide for communication between
the user, the database and the two other scripts. This script will extract data from the database
and pass it along to the jQuery script running in the user’s browser. This script will also handle
all actions available for the user, such as insertion of data into the database, manipulation of data
in the database or running the distribution or update script.

4.2.7.4 Database

Figure 5 shows the tables with values that will be used in this system’s database. There will be
one table containing signature information, one table containing sensor information and two
tables for each sensor that will contain tuning information. The last two tables will be generated
at the same time a new sensor is registered by the user and deleted at the time the user deletes
the corresponding sensor.

4.3 Implementation

To be able to prove to what extent this system would improve efficiency a prototype was de-
veloped.

17

Managing signatures for IDS in a distributed environment - A study of a signature management system

The implemented system meets the specifications outlined in Section 4.1 and is designed ac-
cording to the choices described in Section 4.2. In the implementation phase of the update.py
script there where some choices that needed to be made that were not considered earlier in the
process:

e Signatures that are disabled by default (commented out) in the signature sets downloaded
from source will be ignored and thereby not imported into this systems database. There is
probably a good reason why these signatures already have been disabled and with perform-
ance in mind the choice to ignore them was made.

e When two signatures have the same identification number (SID) the system will keep the
signature with the highest revision number (REV) in the systems database. Optimally the
system should keep all revisions of a signature so that the user can see what changes have
been made in a new version. Again as this is a prototype and because of performance this
system only keeps the latest revision of a signature in its database.

e If a signature has been disabled by a user and then that signature is updated to a new revi-
sion, it will not be enabled again in this system. This choice is based on the choice above. As
the user has no option to see the previous revision of the signature (the reason why it was
disabled) this system is not enabling disabled-signatures if a new revision is downloaded.

The code for the update.py script can be found in Appendix B, the code for the distribute.py
script is in Appendix C and the code for the web.py script can be found in Appendix D. The code
for the configuration file and for one of the templates made can be found in Appendix E and F
respectively. The whole system can be viewed and downloaded from this thesis repository found
at GitHub [31].

4.3.1 Graphical user interface

As the graphical user interface (GUI) of this system is a big part of this thesis, with regard to
efficiency, this section will explain the implemented user interface.

The implemented GUI has an always present navigation bar at the top from where the user
can choose to navigate to one of four views or by the click of the mouse choose to initiate the
distribute or update signature process. Figure 6 shows an example of the type of report the
user will be presented with after initiating the update process from the GUI The four different
views are: rule, rule-set, sensor and advanced tuning, and they will be explained in the next sub
sections.

4.3.1.1 Rule view

The rule view, as pointed out in the specification, is designed to support the analysis and response
phase of intrusion detection work. All actions related to these phases, except for option to modify
signature, are therefore available to the user trough this view. Figure 7 shows how this view looks
to the user, in use, through the browser. All vital signature information is organized in columns.
By default, the information in the table is ordered by newest signature by date first, but the user

18

Managing signatures for IDS in a distributed environment - A study of a signature management system

Update Report
Rule update started: 8:16 26/4/2012
Updating rules for source: sourcefire

Dowloading mdS: http://www.snort.org/reg-rules/snortrules-snapshot-2520.tar.gz.md 5/ NG

Comparing mdS checksums...

Mo new rules to download

Updating rules for source: emergingthreats

Dowloading md5S: http://rules.emergingthreats.net/open-nogpl/snort-2.9.0/emerging.rules.tar.gz.md5s
Downloading rules: http://rules.emergingthreats.net/open-nogpl/snort-2.9.0/emerging.rules.tar.gz
Extracting files...

Starting operations on .conf and .map files...

Done. Files have been moved or merged

Reading in rules...

Inserting rules into db...

Finished. success

Figure 6: GUI: Update report

has the possibility to order the column of choice either descending or ascending. The user also
have the option to perform free text search trough all columns by the use of the input field in the
upper right corner. When working with large signature-sets that is the best way to go. Further
this view has built-in click-able reference links that will open a reference in a new window/tab
if clicked. The plus/minus symbol to the left of each signature lets the user view/hide the whole
signature syntax. The reason for hiding the syntax is that the view would be to complex if always
displayed. The syntax if also not fetched from the database before the user initiates it, so it has a
performance aspect to it too. The status information column displays all registered sensors and
the fill colour green or red informs the user that the relevant signature is either enabled (green)
or disabled (red) on that sensor. The sensor could also have a yellow exclamation mark next to it
which means that on that sensor, a signature has either an active suppression or thresholding rule
affecting it. All signatures have a check box. By checking a box and choosing disable/enable the
checked signature will be disabled/enabled. Choosing suppression (S...) or thresholding (T...)
the user will be presented with a new window with input fields, see Figure 8. This window also
presents the user with a help button, which if clicked will guide the user trough this process.

4.3.1.2 Rule-set view

The rule-set view looks very much like the rule view. The big difference between these two
views, as the names state, is the displaying of single signatures versus signature-sets. Figure 9
shows this view in action. This view is primarily meant to be used in the pre-processing phase
of intrusion detection work. When setting up the IDS for the first time it makes more sense
to disable signature-sets instead of single signatures, and that is what this view offers to help
the user with. This view could have been integrated with the rule view, but to not complicate
and to reduce cognitive load on the user it became a view of its own. In addition to displaying
signature-sets, this view has a new column called "number of rules" which displays the total count
of signatures in a signature-set. Further, this view also has the status information column, but in

19

Managing signatures for IDS in a distributed environment - A study of a signature management system

Disable Enable selected (SelectAll SelectNone), on sensor:|all sensors [»| Execute ORuse: ©T. ©s. Search:
ource.Rulesef
Sid ¢ Rev Added ~ Name S1 & = Reference Status information

[463 11 2012-04-26 ICMP-INFO unassigned type 7 undefined| 53 sourcefire.icmp-info E = (+]
54 -
13 2012-0425 ATTACKRESPONSES command complet| ge SIS EE o)
responses
S6
alert tcp SHTTP_SERVERS SHTTP_PDRTS -> SEXTERNAL_NET any (msg:"ATTACK-RESPONSES command completed”; flow:established; content:"C d completed”; nocase;
metadata:policy balanced-ips drop, policy security-ips drop, service http; reference:bugtraq,1806; classtype:bad-unknown; sid:494; rev:13;)
fire.attack-
[497 14 2012-04-25 ATTACK-RESPONSES file copied ok Sourcelire.atack™ puGTRAQ, CVE, s1)
responses
[498 7 2012-04-26 ATTACK-RESPONSES id check returned root TSRS i ()
responses
[F s69 18 2012-04-26 RPC snmpXdmi overflow attempt TCP sourcefire.rpc BUGTRAQ, CWE, NESSUS, URL, E (+)
[7] 6aa 15 2012-04-26 5SQL =a login failed sourcefire.sgl BUGTRAQ, CVE, NESSUS, E (+)
[0 1002 14 2012-04-26 WEB-IIS cmd.exe access sourcefire.web-iis 51 Q
1239 11 2012-04-26 NETBIOS RFParalyze Attempt sourcefire.netbios BUGTRAQ, CWE, NESSUS, E (+)
[1661 11 2012-04-26 WEB-IIS cmd32.exe access sourcefire.web-iis &1 (-}
alert tcp SEXTERNAL_NET any -> SHTTP_SERVERS SHTTP_PORTS (msg:"WEB-IIS cmd32.exe access"; flow:to_server,established; content:"cmd32.exe"; fast_pattern; nocase;
http_uri; metadata:policy balanced-ips drop, policy connectivity-ips drop, policy security-ips drop, service http; classtype:web-application-attack; sid:1661; rev:11;)
[F] 1844 15 2012-04-26 IMAP authenticate overflow attempt sourcefire.imap BUGTRAQ, BUGTRAQ, CVE, , NESSUS, E (+)
[F1 1930 11 2012-04-26 IMAP auth literal owverflow attempt sourcefire.imap BUGTRAQ, CVE, CV E (+]
[0 1941 15 2012-04-26 TFTP GET filename overflow attempt sourcefire.tftp BUGTRAQ, BUGTRAQ, BUGTRAQ, CVE, CVE, CVE, NESSUS, E Q
[F] 2007 13 2012-04-26 RPC kcms_server directory traversal attempt sourcefire.rpc BUGTRAQ, CVE, URL, E (+)
D 2091 13 2012-04-26 WEB-1I5 WEBDAV nessus safe scan attempt sourcefire.web-iis BUGTRAQ, CVE, NESSUS, NESSUS, URL, E (+)
[2123 4 2012-04-26 ATTACK-RESPONSES Microsoft cmd.exe banner sourcefire.attack- ooy, 51 (+)
responses
&l (+)

[F] 2176 6 2012-04-26 NETBIOS SMB startup folder access sourcefire.netbios

m

GUI: Rule view

Figure 7

20

Managing signatures for IDS in a distributed environment - A study of a signature management system

¥ Thresholding ®
event_filter gen_id |1 . sig_id . type | limit El . track | by_src El . count . seconds

|

5i on sensor: | all sensors El comment:

Submit Help

& g
any -> SHOME_NET 139 (msqg:"NETBIOS RFParalyze Attempt™; flow:to_server,established; content:"BEAVIS™; content:"

:onnectivity-ips drop, policy securibu-ins deon: referencehuntran 1163 reference:rue 2000-N347: reference:nessus, 1

Supprassion *x

-115 cmd32.exe access suppress gen_id (1 . sig_id ¢ track | by_src IZ|r ip
' authenticate overflow attempt

" on sensor: | all sensors : comment:
'auth literal overflow attempt

GET filename overflow attemp ESsUE
lkcms_server directory traversi Submit Help

P
-1IS WEBDAV nessus safe scanawempr SUOTCETTE WED =TS DO T Iy W Ey MES oo, eSOy Oy

Figure 8: GUI: Suppression and thresholding option in the rule view

this view each sensor will have a disabled signature count in red, if not the whole signature-set
is disabled, but only some of the signatures belonging to it.

4.3.1.3 Sensor view

The sensor view is the user’s sensor management view. In this view, the user can register, modify
and delete sensors. When registering a sensor the user will be asked to specify different options
that the system will need in order to distribute the signatures. The sensor name the user chooses
is also the name that will appear in the status information column in the rule and rule-set view.
This view is displayed in Figure 10.

4.3.1.4 Advanced tuning view

This view displays all active suppression and thresholding rules and gives the user information
on what sensors and signatures they affect. When creating a rule the user has the ability to give
a reason why that rule was created, this view displays that comment. Further, this view gives the
user the option to remove rules listed in this view. This view is displayed in Figure 11.

21

Disable Enable selected [Select Al

Select None), on sensor:| all sensors E Execute Search:

Source.Ruleset-name % Last updated & # of rules « Status information

Managing signatures for IDS in a distributed environment - A study of a signature management system

[[] emergingthreats.web_specific_apps 2012-04-26 5207 EEHEE.

[[] emergingthreats.compromised 2012-04-26 1760 BEEEEEE

[C] emeragingthreats.trojan 2012-04-26 1519 B Bl EH Bl EE B
[] emeragingthreats.rbn 2012-04-26 922 BEEEEEE

[] emergingthreats.malware 2012-04-26 905 51 | [Is2 Iss | |
[C] emergingthreats.current_svents 2012-04-26 535 BEEEEEE

[[] sourcefire.web-activex 2012-04-26 532 BEEEEEE

[[] sourcefire.specific-threats 2012-04-26 440 BEEEEEE

[[] sourcefire.web-client 2012-04-26 336 EH EH ER Bl El El
[] emeragingthreats.policy 2012-04-26 263 ElEEIEREA R
[[] sourcefire.file-identify 2012-04-26 229 B EEEEEE

[C] emergingthreats.botcc 2012-04-26 210 EEEEEE

[[] emergingthreats.web_server 2012-04-26 207 BEEEEEE

[[] sourcefire.exploit 2012-04-26 181 BEEEEEE

[[] emergingthreats.scan 2012-04-26 171 BEEEEEE

[F] emergingthreats.tor 2012-04-26 164 EEEEEE

[[] sourcefire.botnet-cnc 2012-04-26 160 EEEEEE

[] emergingthreats.activex 2012-04-26 140 [F==E=EE =

[C] emergingthreats.exploit 2012-04-26 125 BEEEEEE

[[] sourcefire.netbios 2012-04-26 124 BEEEEEEE

[] emergingthreats.web_client 2012-04-26 119 BEEEEEE

[[] sourcefire.web-misc 2012-04-26 114 BEEEEEEE

[F] emergingthreats.p2p 2012-04-26 104 BEEEEEE

[] emergingthreats.mobile_malware 2012-04-26 76 BEEEEEE

[[] emergingthreats.games 2012-04-26 70 BEEEEEE

[] emergingthreats.rbn-malvertisers 2012-04-26 70 BEEEEEE

m

Rule-set view

GUI:

Figure 9

22

Managing signatures for IDS in a distributed environment - A study of a signature management system

Remove selected 10 Add sensor 10 Edit sensor Search:
Sensor name - IP / Domain name Path to rules dir. Reload rules co
Fs1 152.168.1.20 fhome/rules/ snort -HUP snort
[0 s2 152.168.1.21 fhome/rules/ snort -HUP snort
[Os2 152.168.1.22 fhome/rules/ snort -HUP snort
54 152.168.1.24 fhome/rules/ snort -HUP snort
Showing 1 to 4 of 4 entries Show | 10 _m entries

This program is distributed in the hepe that

bring home the bacon, 2 signature managment system for Snort
Powsred by: Pythan, Tornado, SQLite and jQuery

bring home the bacan Capyright (C) 2012 David Ormbakkan Henriksen

This program is fres softwars: you can redistributs it and/ar madify it under the terms of the GNU General Public Licenss = published by the Fres Softwars Foundstion, sither varsion 3 of the License, or any later varsion.
| be useful, but WITHOUT ANY WARRANTY;
¥ou should have received a copy of the GNU General Public Licznse zlong with this pragram. If net, see hteps//www.gnu.arg/lice

thout even the implied »

rranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

1ew

GUI: Sensor vi

Figure 10

23

Managing signatures for IDS in a distributed environment - A study of a signature management system

Remove selected Search:
Sid = Type o Syntax Comment Sensor o
[1661 threshold er gen_id 1,sig_id 1661,type threshold track by_src,count 5,seconds 60 generates to many alarms on this sensor S1
[£] 17654 suppress suppress gen_id 1,sig_id 17654, track by_src,ip 192.168.0.0/24 legitimate traffic ALL
Showing 1 to 2 of 2 entries Show | 50 _m entries

bring heme the bacon, a signature managment system for Snort
Powered by: Pythan, Tornado, SQLite and jQuery

bring home the bacen Copyright (€) 2012 David Ormbakken Henriksen
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundatien, either version 3 of the License, or any later version.
be useful, but WITHOUT ANY RRANTY

This program is distributed in the hope that it

Vou should have recsived a copy of the GNU General Public License slong with this program. If not, see https//www.gnu.org/li

thout even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, See the GNU General Public License far more details.

: Advanced tuning view

GUI

Figure 11

24

Managing signatures for IDS in a distributed environment - A study of a signature management system

5 Experiments and results

This chapter will present and discuss the results obtained from the experiments conducted in this
thesis. This chapter will also describe the execution of the experiments.

5.1 Keystroke-level modelling

By the use of the keystroke-level model (KLM) execution times can be estimated for specific task
scenarios. To measure the efficiency of the newly developed system against the already existing
methods of doing things, 5 task scenarios were chosen from the signature management process
and applied to the KLM (see Figure 12). The chosen task scenarios were: Inspect signature syn-
tax, lookup signature reference, disable signature, distribute signature change to sensor and load
signature change on sensor. From Figure 12, one can see that the chosen task scenarios consti-
tute a common series of actions that follow each other in the analysis and response phases of the
signature management process. In addition, these are the actions most frequently performed by
the IDS-operators. For each scenario, the keystroke-level actions (operators) have been listed and
the execution time for all listed actions has been added up and compared. Further, the execution
times for all scenarios have been added up and compared.

Operator | Description Execution time
K Keystroke 0.2 sec
P Point with mouse to a target on the display | 1.1 sec
B Press or release mouse button 0.1 sec
BB Click mouse button 0.2 sec
H Move hands to keyboard or mouse 0.4 sec

Table 1: Operators and execution times used

All operators and execution times used in this experiment are listed in Table 1. The execution
time for K is based on the assumption that IDS-operators are above average typists and therefore
type an average of 55 words per minute.

Operator | Description Execution time
M Mental act of routine thinking or perception 1.2 sec
W(t) Waiting for the system to respond (time t must be determined) | -

Table 2: Operators and execution times not used

Table 2 lists the operators available in the KLM but not being used in this experiment. Choosing
how many mental acts of thinking and where they appear is a really difficult task, and the fact

25

Managing signatures for IDS in a distributed environment - A study of a signature management system

The intrusion detection

phases
|_ ________
|
|
| I Pre-processing
|
|
|
S| PR
| ¥
|
|
I»—l- honitoring
[_ 4 — 1 —]
| ¥
|
| Analyze
|
|
| _ _
|_ e
| v
|
| Response
|
|
|

Signature actions related to the phases

Downloadiupdate signatures |

Disablefanable signature set |

|
|
_| White custom signalure | |
h
|
|
|

| Disfribute signatures |
¥

I Reload signaturas |

1. [Inspect & understand signature syntax |

2. | Lookup signature references |

If False-
positive

___________________ i
___________________ 3
OR OR |
r 3' L 4 L & |
I_Thre-shuldn'suppresssignature 11 Disable signaiure | [Modify signature ||
| |

L4
4. | Disbibule signatures | |

¥
5. | Reload signatures | J

Figure 12: Task scenarios chosen for the KLM experiment

26

Managing signatures for IDS in a distributed environment - A study of a signature management system

that the cognitive load is presumably lower when using the prototype was the reason why M was
not used in this experiment. In other words, not taking M into account in this experiment will not
affect the results of the prototype in any positive way with regard to the other methods, rather
on the contrary. For the chosen task scenarios there are no waiting times of any significance and
that is the reason why W(t) is not being used in this experiment.

The equation used in this experiment therefore looks like this:

T=K(n)+Pn)+B(n)+BB(n)+H(n)

where:

T is the total execution time
1 is the number of occurrences
K, P, B, BB and H is the operators execution time corresponding to Table 1

The difficult part when executing this experiment was to decide on what path and file names
to use in some of the keystroke-level actions for the methods involving the use of a shell. To
not affect the results in the prototype’s favour the paths were not used, assuming that the user
always knows where the current directory is, and the file names where kept to a minimum. As
a consequence of this, the actual results from the experiment favour the shell based methods.
In other words, the results obtained with regard to the shell based methods are better in terms
of time than what they would generally be in a production environment. For each scenario, the
scenario and the choices made that affect the result are described.

5.1.1 Scenario 1: Inspect signature syntax

In this scenario the user has received an IDS alert that was triggered by a signature with ID:
12193. The user wants to inspect the signature syntax to understand why the alert triggered.

Scenario assumptions:
e The keystroke-level action number 1 in Table 4 assumes that the shell is already standing in

the signature directory.

Scenario keystroke-level actions and calculations:

27

Managing signatures for IDS in a distributed environment - A study of a signature management system

Descriptive action Keystroke-level action

Search with SID in GUI: . Point with mouse to a target on the display
. Click mouse button

. Hand to keyboard

. Type: 12193 <enter>

. Hand to mouse

. Point with mouse to a target on the display
. Click mouse button

Expand signature to see syntax:

NOU b WN =

Table 3: Scenario 1 - Prototype

Table 3 calculations:

0.2secx6+ 1.1sec *2+0.1sec * 0+ 0.2sec x 2 + 0.4sec * 2 = 4.6sec

Descriptive action Keystroke-level action
Search with SID in shell: | 1. Type: grep<space>-F<space>‘12193’<space>*<enter>

Table 4: Scenario 1 - Manual method

Table 4 calculations:

0.2sec* 18+ 1.1sec * 0 + 0.1sec * 0 + 0.2sec * 0 + 0.4sec * 0 = 3.6sec

5.1.2 Scenario 2: Lookup signature reference

This scenario continues from the previous scenario in the way that the signature syntax is already
displayed to the user. In this scenario the user wants to lookup one of the signature references
that he found within the signature syntax.

Scenario assumptions:

e The keystroke-level actions 6-10 in Table 6 assume that the user already has an Internet
browser window open in a shared view with the shell.

e The keystroke-level actions for the manual method assume that the reference to be looked-up
is a complete URL. The Websites being used as reference the most often have a compressed
URL, rendering copy-paste directly into the browser useless.

Scenario keystroke-level actions and calculations:

28

Managing signatures for IDS in a distributed environment - A study of a signature management system

Descriptive action Keystroke-level action
Click on hyperlink in GUI: | 1. Point with mouse to a target on the display
2. Click mouse button

Table 5: Scenario 2 - Prototype

Table 5 calculations:

0.2sec* 0+ 1.1secx 1 +0.1sec * 0 + 0.2sec * 1 + 0.4sec * 0 = 1.3sec

Descriptive action Keystroke-level action

Copy link from shell window: 1. Point with mouse to a target on the display
2. Press mouse button

3. Point with mouse to a target on the display
4. Release mouse button

5. Type: <ctrl>c
6
7
8
9
1

Paste link into browser window: . Point with mouse to a target on the display
. Click mouse button

. Type: <ctrl>v

. Hand to keyboard

0. Type: <enter>

Table 6: Scenario 2 - Manual method

Table 6 calculations:

0.2sec*5+ 1.1sec*3+0.1sec*2+0.2secx 1 +0.4sec *x 1 =5.1sec

5.1.3 Scenario 3: Disable signature

In this scenario the user wants to disable the signature with ID: 12193. The manual method
for doing this, described in Table 8, is a bad way to do this as the changes will be overwritten
when the signature file is updated. Nonetheless it is the only way to do it. Suppress is often
used instead, but the big difference between suppress and disabling is that when a signature is
suppressed it will still be used by the IDS, thus still using resources, but when disabled it will not
be used. As Pulled Pork has disabling functionality and preserves changes, it was also tested in
this experiment. When testing Pulled Pork for this scenario the default file names were used.

Scenario assumptions:

e Scenario 3 for the manual method assume that the user already knows which rule-set (name)
the SID is found within.

e The keystroke-level action number 1 in Table 8 assume that the shell is standing in the signa-
ture directory.

e The keystroke-level action number 1 in Table 8 assume that the signature-set file name con-
taining the SID only consists of four letters (All signature-set files end with ".rules").

29

Managing signatures for IDS in a distributed environment - A study of a signature management system

e The keystroke-level actions 1 and 7 in Table 9 assume that the disablesid.conf and the pulled-
pork.conf have been moved to this application’s root directory (they are by default found in
"app-root-dir/etc").

e The keystroke-level action 1 in Table 9 assume that the shell is standing in this application’s
root directory.

Scenario keystroke-level actions and calculations:

Descriptive action Keystroke-level action

Check box next to signature in GUI: | 1. Point with mouse to a target on the display
. Click mouse button

. Point with mouse to a target on the display
. Click mouse button

. Point with mouse to a target on the display
. Click mouse button

. Point with mouse to a target on the display
. Click mouse button

Select sensor:

Click execute button:

ONOUT A~ WDN

Table 7: Scenario 3 - Prototype

Table 7 calculations:

0.2sec* 0+ 1.1sec x4 +0.1sec * 0 + 0.2sec x4 + 0.4sec * 0 = 5.2sec

30

Managing signatures for IDS in a distributed environment - A study of a signature management system

Descriptive action Keystroke-level action

Open signature file for editing: | 1. Type: vim<space>name.rules<enter>
Search in file: 2. Type: <shift>/12193<enter>
Activate insert mode: 3. Type: i

Go to start of line: 4. Type: <home>

Disable signature in file: 5. Type: #

Exit and save: 6. Type: <esc>:wqg<enter>

Table 8: Scenario 3 - Manual method

Table 8 calculations:

0.2sec * 31+ 1.1sec * 0+ 0.1sec * 0 + 0.2sec * 0 + 0.4sec * 0 = 6.2sec

Descriptive action Keystroke-level action

Exit and save:
Run changes:

Type: <esc>:wqg<enter>
. Type: pulledpork.pl <space>-c<space>pulledpork.conf
<space>-<shift+t><enter>

Open file for editing: 1. Type: vim <space>disablesid.conf<enter>
Go to end of file: 2. Type: <shift>g
Activate insert mode: 3. Type: i
Go to start of new line: | 4. Type: <end> <enter>
Disable signature: 5. Type: 1:12193
6.
7

Table 9: Scenario 3 - Pulled Pork

Table 9 calculations:

0.2sec* 74 +1.1sec *x 0 + 0.1sec * 0 + 0.2sec * 0 + 0.4sec * 0 = 14.8sec

5.1.4 Scenario 4: Distribute signature change to a sensor

In this scenario the user wants to distribute all signatures from the current server to a sensor.
The user only needs to update the signatures on the sensor that have been changed or are new.
As the prototypes scales with regard to distribution, the prototype will distribute the signatures
to all registered sensors when applying the keystroke-level actions in Table 10.

Scenario assumptions:

e The keystroke-level action 1 in Table 11 assume that the shell is standing in the signature
directory.

e The keystroke-level action 1 in Table 11 assume that the signatures are found in the "/snort"
directory on the sensor.
e The keystroke-level action 1 in Table 11 assume that the sensor name is five characters long.

Scenario keystroke-level actions and calculations:

31

Managing signatures for IDS in a distributed environment - A study of a signature management system

Descriptive action Keystroke-level action
Click distribute button in GUI: | 1. Point with mouse to a target on the display
2. Click mouse button

Table 10: Scenario 4 - Prototype

Table 10 calculations:

0.2sec* 0+ T1.1sec* 1 +0.1sec * 0+ 0.2sec x 1 + 0.4sec * 0 = 1.3sec

Descriptive action Keystroke-level action

Copy files over the network: | 1. Type: rsync<space>-avz<space>* <space>sname:/snort/ <enter>

Table 11: Scenario 4 - Manual method

Table 11 calculations:

0.2sec* 27 + 1.1sec * 0 + 0.1sec * 0 + 0.2sec * 0 + 0.4sec * 0 = 5.4sec

5.1.5 Scenario 5: Reload signature change on a sensor

In this scenario the user wants to "restart" the IDS so that it starts using new or updated sig-
natures. The prototype is not tested as a part of this scenario, because the prototype already
performs this action when applying the keystroke-level action described in Table 10.

Scenario assumptions:

e The keystroke-level action number 1 in Table 12 assume that the sensor name is 5 characters
long.

Scenario keystroke-level actions and calculations:

Descriptive action | Keystroke-level action
Log-into sensor: 1. Type: ssh<space>sname <enter>
Load changes: 2. Type: killall <space>-<shift+ HUP> <space>snort<enter>

Table 12: Scenario 5 - Manual method

Table 12 calculations:

0.2sec* 26+ 1.1sec * 0 + 0.1sec * 0 + 0.2sec * 0 + 0.4sec * 0 = 5.2sec

5.1.6 Results

The results from this experiment show that by using the prototype in 4 of the 5 scenarios chosen
from the signature management process, the user would achieve increased efficiency compared
to using the manual method. In Table 13 the results obtained from all the experiments can be

32

Managing signatures for IDS in a distributed environment - A study of a signature management system

found. This Table also contains a calculation of the total time used for completing scenario 1
trough 5 for each method. From these calculations one can see that the prototype’s total time is
less than half of what the manual method’s total time is. Using Pulled Pork in scenario 3 instead
of the manual method, which is very common, will increase the total time and emphasize the
difference in efficiency even more.

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Time total
Prototype: 4.6 sec 1.3 sec 5.2 sec 1.3 sec - 12.4 sec
Manual method: | 3.6 sec 5.1 sec 6.2 sec 5.4 sec 5.2 sec 25.5 sec
Pulled Pork: - - 14.8 sec - - -

Table 13: Results obtained from all the scenarios

In the scenarios, recurrences were not considered. For example, for scenario 2 it is very common
that a signature contains more than one reference. Figure 13 shows the time used as a function of
the number of references to lookup. From this Figure, one can see that the time ratio is constant,
but the big difference in time between the manual method and using the prototype were so great
from the start, that increasing the number of references would drastically increase the total time
used for the manual method. In scenario 4 and 5 in this experiment there was only one sensor
involved. Figure 14 shows time used in these scenarios as a function of the number of sensors.
As the prototype was developed with sensor scalability in mind, the time used for these scenarios
will not increase when increasing the number of sensors. From Figure 14, one can see that the
pattern is horizontal. For the manual method this is not the case. From the Figure, one can see
that the pattern increases uniformly, which means that the time when using the manual method
is multiplied with the number of sensors.

33

Managing signatures for IDS in a distributed environment - A study of a signature management system

30

25 T

20

15 Manual method

m— Prototype

Time in seconds

10

1 2 3 4 5

Mumber of references

Figure 13: Time used for scenario 2 as a function of the number of references to lookup

60

50 ‘/

30 Manuzal method

= Prototype

Time in seconds

20

10

1 2 3 4 5

Number of sensors

Figure 14: Time used for scenario 4 and 5 as a function of the number of sensors

34

Managing signatures for IDS in a distributed environment - A study of a signature management system

5.2 Questionnaire

As mentioned in the methods chapter a USE-questionnaire has been used to supplement the
results from the KLM experiment, but also to get feedback on the other aspects of usability.

5.2.1 Test subjects

The test subject in this experiment were information security practitioners employed at the Nor-
wegian Armed Forces Critical Infrastructure Protection Centre (CIPC) working actively with in-
trusion detection. The majority of theses operators have a minimum of two years experience
working with IDS, and they are in the main target group of users that this system is intended for.

5.2.2 Testing

The prototype was installed at a test server at the CIPC and the IDS-operators present were
given a short introduction to its features and limitations. Further the operators were given the
opportunity to ask questions. Beforehand the Web-based questionnaire had been created and
the operators were at the end of the sessions provided with the link to it before they were left
alone with the prototype. From what we understand, the prototype was a week later installed
on one of the CIPC servers belonging to their production/live environment. The answers to the
questionnaire could therefore be from experiences with the prototype in a testing or a production
environment.

The questionnaire that was used can be found in Appendix A. Questions 1 to 3 measure per-
ceived usefulness/efficiency, questions 4 to 5 measure perceived ease of use, question 6 measure
perceived ease of learning and the last two questions measure satisfaction. In addition, there
was a non-mandatory question giving the test subjects the opportunity to give written feedback
on any improvements or new features that they feel would make the system more useful. The
answers to the questionnaire were given on a scale from 1 to 7, where 1 appeared to the test
subject as strongly disagree and 7 as strongly agree.

5.2.3 Results

After approximately three weeks the questionnaire was closed and the results gathered. The
results showed that 6 operators had taken the time to test the prototype and answer the ques-
tionnaire. This is a very small sample size, but considering the total number of people at CIPC
currently working with IDS, the sample size is most likely representative for that group (see Sec-
tion 5.2.4 for discussion about validity).

Table 14 shows the results, by the use of mean and median calculations, obtained from the ques-
tionnaire. Overall the prototype is rated very high, which indicates that the prototype is usable,
something the fact that CIPC introduced the system into their production environment also does.
The highest group results are found in the usefulness/efficiency group, which does not come as a
surprise as this prototype was primarily developed to improve this aspect. These results support
the results obtained in the KLM experiment. The lowest result, obtained from question 7, can be
explained by interpretation of the results from the non-mandatory feedback question. 3 operat-
ors chose to answer this question. Half of the feedback contained within the replies were directed
at improving the current design, while the other half were directed at adding new features to the
system. From the suggestions on improvements to current design there were none that would

35

Managing signatures for IDS in a distributed environment - A study of a signature management system

Question Mean | Median
1. This system would help me be more effective 6.3 6

2. This system would be useful in my work with Snort 6 6

3. This system would save me time if I used it 6.5 6.5

4. This system is easy to use 6 6

5. This system requires the fewest steps possible to accomplish what

I want to do with it 5.5 5

6. This system is easy to learn to use 5.5 6

7. This system works the way I want it to work 5 5

8. I prefer this system over alternative tools available for Snort today | 6.3 6

Table 14: Results obtained from the questionnaire

improve directly upon the efficiency of the system. Suggestions regarding new features do not
come as a surprise, as in the design phase of this prototype some features were left out on pur-
pose.

Some comments on improvements to current design:
e The system should show more clearly that it is working.
e The views should show 100 entries by default.

e When disabling a rule-set, the already done tuning on single rules disappears. I'd like the
tuning to stay, in case I decide to temporarily disable a rule-set.

Some comments on new features:
e Add/remove rule-set sources from the web GUI.
e The system should support commenting.

e When tuning, select why I want to tune it. What means, if [want to tune it because I do not
want to see this alarm/alert/event triggering (hence disabling the sig and all future revisions)

or if I want to tune it because it is simply not good enough (meaning future revisions should
be enabled by default).

5.2.4 Reliability and validity

The sample size for this questionnaire is too small for this experiment to be scientifically valid.
Although the current sample size is too small for the results to be representative, the size needed
for the results to be, can be discussed. People having a job where they work daily with IDS are not
part of a large group compared to the people not belonging in this group. The people belonging
to this special group also share many other properties like similar education. Bearing that in
mind, supplementing the results obtained in this thesis with results obtained from 6 to 9 other
test subjects, working for a different company, should be sufficient to produce a valid result. The
results obtained in this thesis could therefore be used as an indication to what the valid results

36

Managing signatures for IDS in a distributed environment - A study of a signature management system

would look like.

As mentioned earlier, this questionnaire was not intended to be used as measurement of
improved efficiency compared to existing solutions, but rather as a supplement to the already
obtained results. In addition, the questionnaire was intended to bring feedback on the rest of the
usability aspect, which it has done.

Looking at the answers given, the overall score is very high. As the test subjects where not
observed through the testing and response phase of this experiment, it is possible that one of
the test subjects could have expressed his thoughts loudly and in that way affected another test
subject, which in turn would affect the results. This is not an unlikely scenario, but since there
are no answers to any of the questions that significantly differentiate themselves from the others,
it should be safe to say that this has not been the case as it is unlikely that one person would
actively affect five other persons in that way.

This questionnaire would most likely produce the same results if given to the same test subject
group, but given to another test subject group the results would not necessarily be exact, but they
should not be too different considering the homogeneity of the test subjects.

37

Managing signatures for IDS in a distributed environment - A study of a signature management system

6 Conclusion

This thesis has defined the intrusion detection system (IDS) signature management process and
proposed a method for creating an efficient system that supports the human work with regard
to the identified actions belonging to that process. Further this thesis has implemented a usable
system based on that method. The research question will now be addressed.

e To what extent would a dedicated graphical tool improve human efficiency in the IDS signa-
ture management process, in terms of time, compared to the existing manual method?

Considering the overall test results, it can be concluded that a graphical tool, such as the one
created in this thesis, has the potential to reduce the time actually spent performing actions in
the IDS signature management process by half compared to time spent when using the manual
method. Or in other words, the graphical tool has potential to increase the work done actually
performing actions in this process by twice as much compared to the work done when using
the manual method. Considering an environment with more sensors, the potentially gained re-
duction in time spent would be reduced even more as discussed in Section 5.1.6 and showed in
Figure 14. The results from the questionnaire, which can be found in Table 14 in Section 5.2,
shows that the perceived efficiency of the system is concurrent with the test results. The results
from the questionnaire also indicated that the overall usability of such a system, designed ac-
cording to the method described in this thesis, is very high. This in turn indicates that such a
system will be preferred instead of the manual method if such a system is made available.

The results from this thesis show that a system as the one developed in this thesis can be a
great contribution to solving the false-positive problem, as this system would help IDS-operators
be more efficient in the work of filtering signatures, which in turn will reduce the false-positive
rate and thereby make the IDS more useful. In addition, by using less time in the IDS signature
management process, IDS-operators would have more time to do other tasks.

6.1 Future work

This thesis has presented a system that if taken into use would increase human efficiency in IDS
work. The system developed is usable, but it is a prototype and is therefore not considered stable
enough by the author to be used in a production environment. By using the work done in this
thesis as guidance for creating a new tool or by improving on the work done in this thesis, a
stable tool with proved efficiency improvement could be obtained. Further, the configuration of
IDS network variables and settings, which today is also a manual process, could be considered
to be implemented as a part of this tool as well. From the results obtained through the ques-
tionnaire, the other aspects of usability of this system showed promise, but as the sampling size

39

Managing signatures for IDS in a distributed environment - A study of a signature management system

was too small, the other aspects of this system’s usability were not satisfactorily demonstrated.
As previously mentioned, the whole aspect of usability is taken into account when a person/-
company decides whether to take a tool into use or not. The usability aspect should therefore
be tested more accurately before being able to say that such system could replace the manual
method.

40

Managing signatures for IDS in a distributed environment - A study of a signature management system

(1]

(2]

(3]

(4]

(5]

(6]

[71

(8]

[91

[10]

[11]

Bibliography

Werlinger, R., Hawkey, K., Muldner, K., Jaferian, P., & Beznosov, K. 2008. The challenges
of using an intrusion detection system: is it worth the effort? In Proceedings of the 4th
symposium on Usable privacy and security, SOUPS 08, 107-118, New York, NY, USA. ACM.

Zomlot, L., Sundaramurthy, S. C., Luo, K., Ou, X., & Rajagopalan, S. R. 2011. Prioritizing
intrusion analysis using dempster-shafer theory. In Proceedings of the 4th ACM workshop on
Security and artificial intelligence, AlSec 11, 59-70, New York, NY, USA. ACM.

Hooper, E. june 2006. An intelligent detection and response strategy to false positives and
network attacks: operation of network quarantine channels and feedback methods to ids.
In Security, Privacy and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006.
Second International Workshop on, 6 pp. —21.

Shimamura, M. & Kono, K. june 2006. Using attack information to reduce false positives
in network ids. In Computers and Communications, 2006. ISCC ’06. Proceedings. 11th IEEE
Symposium on, 386 — 393.

Snort, a open source network intrusion prevention and detection system. http://www.
snort.org/. [Online; accessed 10-April-2012].

Koike, H. & Ohno, K. 2004. Snortview: visualization system of snort logs. In Proceed-
ings of the 2004 ACM workshop on Visualization and data mining for computer security,
VizSEC/DMSEC ’04, 143-147, New York, NY, USA. ACM.

Stakhanova, N. & Ghorbani, A. A. 2010. Managing intrusion detection rule sets. In Proceed-
ings of the Third European Workshop on System Security, EUROSEC ’10, 29-35, New York,
NY, USA. ACM.

Symantec. April 2012. Internet security threat report: The 2011 threat landscape. 17.

The open information security foundation - suricata. http://www.
openinfosecfoundation.org/. [Online; accessed 10-April-2012].

The bro network security monitor. http://bro-ids.org/. [Online; accessed 10-April-
2012].

J. Goodall, W. L. & Komlodi, A. 2004. The work of intrusion detection: Rethinking the role
of security analysts. In Proc of the Americas Conference on Information Systems (AMCIS),
1421-1427.

41

http://www.snort.org/
http://www.snort.org/
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/
http://bro-ids.org/

Managing signatures for IDS in a distributed environment - A study of a signature management system

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. S. Thompson, E. R. & Yurcik, W. 2006. Network intrusion detection cognitive task
analysis: Textual and visual tool usage and recommendations. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting (HFES), 669-673.

Forum thread: Managing snort signature tuning. https://www.alienvault.com/
forum/index.php?t=msg&goto=7951&S5=219d2b75fab903353d269a7£2803d83. [Online;
accessed 17-May-2012].

Forum thread: Centrally manage snort. https://www.alienvault.com/forum/index.
php?t=msg&goto=2657&S=dbcdcf2e6b355cde653308c34825233. [Online; accessed 17-
May-2012].

Forum thread: Manage snort rules. https://www.alienvault.com/forum/index.php?t=
msg&th=3154&goto=10105&S=1891264ef18b1608005e488ace1352. [Online; accessed 17-
May-2012].

Thompson, R. S., Rantanen, E. M., Yurcik, W., & Bailey, B. P. 2007. Command line or pretty
lines?: comparing textual and visual interfaces for intrusion detection. In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI 07, 1205—, New York, NY,
USA. ACM.

Oinkmaster. http://oinkmaster.sourceforge.net/. [Online; accessed 17-April-2012].

Pulled pork. http://code.google.com/p/pulledpork/. [Online; accessed 17-April-
2012].

Spenneberg, R. April 2011. Snort helpers, article published in linux pro magazine, available
online. http://www.linuxpromagazine.com/content/download/61729/482620/file/
032-038_snort.pdf. [Online; accessed 06-May-2012].

Polman. http://www.gamelinux.org/?p=240. [Online; accessed 17-April-2012].
Snorby. http://snorby.org/. [Online; accessed 17-April-2012].

Kieras, D. 2001. Using the keystroke-level model to estimate execution times. the university
of michigan, unpublished report. http://www.pitt.edu/~cmlewis/KSM.pdf. [Online;
accessed 12-June-2012].

Lund, A. M. October 2001. Measuring usability with the use questionnaire, usability inter-
face society for technical communication usability sig publication. 8(2).

Datatables, a plug-in for the jquery javascript library. http://datatables.net. [Online;
accessed 28-April-2012].

jquery, a fast and concise javascript library. http://jquery.com. [Online; accessed 28-
April-2012].

Tornado, a open source web server. http://www.tornadoweb.org. [Online; accessed 28-
April-2012].

42

https://www.alienvault.com/forum/index.php?t=msg&goto=7951&S=219d2b75fab903353d269a7f2803d83
https://www.alienvault.com/forum/index.php?t=msg&goto=7951&S=219d2b75fab903353d269a7f2803d83
https://www.alienvault.com/forum/index.php?t=msg&goto=2657&S=dbcdcf2e6b355cde653308c34825233
https://www.alienvault.com/forum/index.php?t=msg&goto=2657&S=dbcdcf2e6b355cde653308c34825233
https://www.alienvault.com/forum/index.php?t=msg&th=3154&goto=10105&S=189f264ef18b1608005e488aee1352
https://www.alienvault.com/forum/index.php?t=msg&th=3154&goto=10105&S=189f264ef18b1608005e488aee1352
http://oinkmaster.sourceforge.net/
http://code.google.com/p/pulledpork/
http://www.linuxpromagazine.com/content/download/61729/482620/file/032-038_snort.pdf
http://www.linuxpromagazine.com/content/download/61729/482620/file/032-038_snort.pdf
http://www.gamelinux.org/?p=240
http://snorby.org/
http://www.pitt.edu/~cmlewis/KSM.pdf
http://datatables.net
http://jquery.com
http://www.tornadoweb.org

Managing signatures for IDS in a distributed environment - A study of a signature management system

[27]

(28]

[29]

[30]

[31]

Taylor, B. September 2009. The technology behind tornado, friendfeed’s web server. http:
//backchannel.org/blog/tornado. [Online; accessed 28-April-2012].

Sqlite, the most widley deployed sql database engine in the world. http://www.sqlite.
org/. [Online; accessed 28-April-2012].

Rsync. http://www.samba.org/ftp/rsync/rsync.html. [Online; accessed 29-April-
2012].

Openssh. http://www.openssh.com/. [Online; accessed 29-April-2012].

Github, repository: bringhomethebacon. https://github.com/davhenriksen/
bringhomethebacon. [Online; accessed 7-May-2012].

43

http://backchannel.org/blog/tornado
http://backchannel.org/blog/tornado
http://www.sqlite.org/
http://www.sqlite.org/
http://www.samba.org/ftp/rsync/rsync.html
http://www.openssh.com/
https://github.com/davhenriksen/bringhomethebacon
https://github.com/davhenriksen/bringhomethebacon

Appendices

44

Managing signatures for IDS in a distributed environment - A study of a signature management system

A Web-based questionnaire

This system would help me be more effective This system requires the fewest steps possible to accomplish what I

want to do with it

Strongly disagree
Disagree

Slightly disagree

Meither agree nor disagres
Slightly agree

Agree

Strongly agree

This system would be useful in my work with Snort

Strongly disagres
Disagres

Slightly disagree

Meither agree nor disagree
Slightly agree

Agree

Strongly agree

This system would save me time if I used it

Strongly disagree
Disagres

Slightly disagree

Meither agree nor disagree
Slightly agree

Agres

Strongly agree

This system is easy to use

Strongly disagree
Disagree

Slightly disagree

Meither agree nor disagres
Slightly agree

Agree

Strongly agree

45

Strongly disagree
Diisagres

Slightly disagree

Meither agree nor disagree
Slightly agree

Agrees

Strongly agree

This system is easy to learn to use

Strongly disagree
Disagres

Slightly disagree

Meither agree nor disagree
Slightly agree

Agree

Strongly agree

This system works the way I want it to work

Strangly disagres
Disagres

Slightly disagree

MNeither agree nor disagree
Slightly agree

Agres

Strangly agree

I prefer this system over alternative tools available for Snort today

Strongly disagree
Diisagree

Slightly disagree

Meither agree nor disagree
Slightly agree

Agree

Strongly agree

Any changes or improvements that could have made this system more
usaful?

Managing signatures for IDS in a distributed environment - A study of a signature management system

B update.py

The script that handles updating of signatures and the insertion of them into the database.

#!/usr/bin/env python

update. py

Henriksen (davidohenriksen@gmail.com)

#
bring home the bacon Copyright (C) 2012 David Ormbakken
#
#

This program is free software: you can redistribute it and/or
modify

EiS

it under the terms of the GNU General Public License as

published by

H*

or

FHoF W W H

import
import
import
import
import
import
import
import

the Free Software Foundation, either version 3 of the License,
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

os
Sys
urllib2
tarfile
sqlite3
datetime
re

glob

from collections import defaultdict

from config import x

def merge or _move_ file(path, file name):

distr_file _path = C_distribute_dir+file_ name
tmp_file path = path+file name

if not os.path.exists(tmp_file path):

47

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = 'Error:_’+file_ name+’_could_not_be_found_at_
path:_’+tmp file path

print txt

write logfile (txt)

else:
tmp FILE = open(tmp_file path, "r")

if not (os.path.exists(distr file path)):
distr_ FILE = open(distr_file path, "w")
for line in tmp_ FILE:
if line.strip():
if not line.startswith(’#’):
distr_FILE.write(line

)

tmp_ FILE. close ()
distr_FILE.close ()

else:
distr FILE = open(distr_file path, "r")
tmp = distr_FILE.readlines ()
distr_FILE.close ()
distr FILE = open(distr_file path, "a")
for line in tmp FILE:
if line.strip():
if not line.startswith (’#’):
if line not in tmp:
distr_ FILE.
write (line

)

tmp_ FILE. close ()
distr_FILE.close ()

def write logfile (txt):
FILE = open(C_updatelog,’a’)
FILE . write(str (txt)+’\n’)
FILE. close ()

def check md5(md5, file name):
if os.path.exists(file name):

txt = "Comparing,_md5_checksums...'

print txt

write logfile (txt)

FILE = open(file name,"r"

if not (cmp(FILE.readline () ,md5) == 0):
FILE. close ()
FILE = open(file name, "w")

48

Managing signatures for IDS in a distributed environment - A study of a signature management system

FILE . write (md5)
FILE. close ()
return True
else:
FILE. close ()
return False
else:
FILE = open(file_name, "w"
FILE . write (md5)
FILE. close ()
return True

def download md5(url):

try:
txt = "Dowloading,_md5: _"+url
print txt
write logfile (txt)
md5 = urllib2 .urlopen(url).read().replace(’"’,’ ")
return md5

except urllib2 .HTTPError, e:
txt = ’HTTP_Error:_ ’+str (e)
print txt
write logfile (txt)

except urllib2.URLError, e:
txt = ’URL_Error: ’+str(e)
print txt
write logfile (txt)

def download rules(url, filename):

try:
txt = "Downloading_rules: "+url
print txt
write logfile (txt)
tmp = urllib2 .urlopen(url)
FILE = open((C_tmp_dir+filename) ,"w"
FILE.write (tmp.read ())
FILE. close ()
return True

except urllib2 .HTTPError, e:
txt = 'HTTP_Error:_’+str(e)
print txt
write logfile (txt)
return False

except urllib2.URLError, e:
txt = 'URL_Error:_ ’'+str(e)
print txt
write logfile (txt)
return False

49

Managing signatures for IDS in a distributed environment - A study of a signature management system

def extract file (filename ,name):

try:

txt = ’Extracting_files ...
print txt

write logfile (txt)

FILE = tarfile.open((C_tmp_dir+filename),’r:gz’)
FILE. extractall (C_tmp_dir+name)

FILE.close ()

return True

except StandardError, e:

def find(regex,

txt = "TAR_Error:",e
print txt

write logfile (txt)
return False

string):

res = re.search(regex, string)
if not (res is None):

else:

return

res = ((res.group()).strip())

res = ’'none’
res

def find ref(string):

ref tmp

70

ref =

= re.findall (r’(?<=reference:) (.x?) (?=;)’, string)

if not os.path.exists(C_distribute dir+’reference.config’):

else:

for hit in ref tmp:
ref = ref+’_)’

for hit in ref tmp:
FILE = open((C_distribute dir+’reference.
config’), ’'r’)
hit = hit.strip ("http’)
hit hit.strip (’https’)
key = re.match(r’ (.%?)(?=,)’,hit).group()
url lastpart = re.search(r’(?<=\,).x’,hit).
group ()
url firstpart =
regex = r’(?<=%s).x’ % key
for line in FILE:
tmp = re.search(regex,line, re.
IGNORECASE)
if tmp is not None:
url firstpart = tmp.group()

7

50

Managing signatures for IDS in a distributed environment - A study of a signature management system

ref = ref+(’<a_rel="nofollow"_target="_blank"
Lhref=""4+url firstpart.strip O+
url lastpart.strip ()+’"_target="_blank">"+
key.upperO+’,_ ")
FILE. close ()
return ref

def read rule files(path,source):

txt = "Reading_in_rules..."
print txt

write logfile (txt)

rules = []

filepaths = glob.glob(path+’*.rules’)
for filepath in filepaths:
ruleset = os.path.basename(filepath).replace(’.rules’
, '7).replace(’emerging—", ’’)
FILE = open(filepath ,"r")
for line in FILE:
if line.strip ():
if not line.startswith(’#’):
sid = find(r’(®?<=["1]sid:)
(.x?)(?=;)’,line)
rev = find(r’(?<=rev:) (.x?)
(?=;)’,line)
name = find (r’(?<=msg:") (.*?)
(?=";)",line)
ref = find ref(line.lower())
rules.append ([sid ,rev,source,
ruleset ,name, ref ,date, line
D)
FILE. close ()
return rules

def insert _into_db(rules):
txt = "Inserting_rules_into_db..."
print txt
write logfile (txt)

db = sqlite3.connect(C_db_path)
cursor = db.cursor ()

for line in rules:
sid ,rev,source,ruleset ,name, ref ,date,rule = line

try:
cursor.execute ("SELECT_sidnr ,_revnr FROM
rules_WHERE_sidnr_=_(?)_.", [sid])
res = cursor.fetchone ()
except StandardError, e:

51

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = "Exiting_with_error:_"+str(e)
print txt

write logfile (txt)

sys.exit ()

if res is None: #if true = new sid

try:

cursor.execute (’’’INSERT INTO rules (
sidnr , revnr,source_name,
ruleset_name ,rule_name, ref, date,
rule_syntax)

VALUES (?,?,?,?,?,?,?,?) 77’ [[sid ,rev,
source ,ruleset ,name, ref ,rule _date,
rule])

except StandardError, e:

txt = "Exiting_with_error:_"+str(e)

print txt

write logfile (txt)

sys.exit ()

elif (res[1] is not None):
if not res[1] < rev: #if true = old sid, but
new/higher rev
try:
cursor.execute (’’’UPDATE
rules SET revar = (?),

source_name = (?),
ruleset_ name = (?),

rule_ name = (?), vref = (?),
date = (?), rule syntax

=(?) WHERE sidnr = (?) 777,

[rev,source ,ruleset ,name, ref,
rule date ,rule,sid])

except StandardError, e:

txt = "Exiting_with_error:_ "+
str (e)

print txt

write logfile (txt)

sys.exit ()

db.commit ()

cursor.close ()

db.close ()

txt = ’Finished._success!’
print txt

write logfile (txt)

FUNCTIONS END

52

Managing signatures for IDS in a distributed environment - A study of a signature management system

GLOBAL VARIABLES START
now = datetime.datetime .now()

date = "%d:%d_%d/%d/%d’ % (now.hour,now.minute ,now.day,now.month,now.
year)

rule date = now. strftime ("%Y—%m%d")

GLOBAL VARIABLES END

MAIN START

txt = "Rule_update_started: "+date
print txt

write logfile (txt)

#operations on local rule source

if not (C _locale rule path == ’7):
txt = ’Updating_rules_for_source:_local’
print txt

write logfile (txt)
insert_into_db(read rule files(C _locale rule path, ’local’))

#operations on external rule sources
for source in C_rule_sources:

source_name, md5 url, rule url, rules path, files path =

source

source_name = source name.lower () .replace(’,’, ’’)
txt = ’Updating_rules_for_source:_’+source name
print txt

write logfile (txt)

if not (md5 url == ’’):
if check md5 ((download md5(md5 url)),(C_tmp_dir+
source_name+’.md5’)):
if not (download rules(rule url,(source name+
’.tar.gz’)) is False):

if not (extract file ((source name+’.

tar.gz’),source_name) is False):
if not (files path == ’none’)

txt = ’Starting_,
operations,_on,,.
conf_and_.map_
files ...’

print txt

write logfile (txt)

for f in C files:

53

Managing signatures for IDS in a distributed environment - A study of a signature management system

merge or_move_file

((
C_tmp_dir+
source_name
+7/ 7+
files path
), fI0D)
txt = ’Done._Files_,
have_been_moved_or
_merged’
print txt

write logfile (txt)

insert_into_db(
read rule files ((C_tmp_dir
+source_name+’/’+
rules _path) ,source name))
else:
txt = "No_new_rules_to_download"
print txt
write logfile (txt)
else:
txt = ’Skipping_md5_check’
print txt
write logfile (txt)

if not download rules(rule url,(source name+’.tar.gz’
)) is False:
if not (extract file ((source name+’.tar.gz’),
source_name) is False):
if not (files path == ’'none’):
txt = ’Starting_operations_on
_.conf_and_ .map_files ...’
print txt
write logfile (txt)
for f in C _files:
merge _or_move file ((
C tmp_dir+
source_name+’/’+
files_path),f[0])
txt = ’Done. Files_have_been_
moved,_or_merged’
print txt
write logfile (txt)

insert_into_db(read _rule files ((
C_tmp_dir+source _name+’/’+
rules_path) ,source name))
else:

54

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = "No_new,_rules_to_download"
print txt
write_logfile (txt)

MAIN END

55

Managing signatures for IDS in a distributed environment - A study of a signature management system

C distribute.py

The script that extracts signatures from the database and then distributes them to the sensors.

#!/usr/bin/env python

distribute.py

bring home the bacon Copyright (C) 2012 David Ormbakken
Henriksen (davidohenriksen@gmail.com)

H* H*

This program 1is free software: you can redistribute it and/or

modify

or

FHRHFHRHH OH R

import
import
import
import
import
import

it under the terms of the GNU General Public License as
published by
the Free Software Foundation, either version 3 of the License,

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

os
SYs

urllib2
sqlite3
datetime
subprocess

from config import x

FUNCTIONS START
def write logfile (txt):

FILE = open(C_distrblog,’a’)
FILE . write(str (txt)+’\n’)
FILE. close ()

def get sensors():

db = sqlite3.connect(C_db_path)
cursor = db.cursor ()

try:

57

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = "Collecting_sensor_information..."
print txt

write logfile (txt)

cursor .execute ('SELECT_x*_FROM_sensors ’)
all sensors = cursor. fetchall ()

return all sensors

except StandardError, e:
txt = ’Exiting_with_error: ’'+str(e)
print txt
write logfile (txt)
sys.exit ()

cursor.close ()
db. close ()

def get rules(sname):
db = sqlite3.connect(C_db_path)
cursor = db.cursor ()

try:
sql = ’SELECT_sid _FROM_ ’+sname+’ disabled’
cursor.execute (sql)

tmp = cursor. fetchall ()

txt = ’Disabled_rule_count: ’+str (len (tmp))
print txt

write logfile (txt)

disabled = ",".join(str (x[0]) for x in tmp)

sql = ’SELECT_rule syntax FROM rules WHERE_sidnr NOT
IN_,(’+disabled+’)”’
cursor.execute (sql)

rules = cursor.fetchall ()
txt = ’Enabled_rule_count: ’'+str(len(rules))
print txt

write logfile (txt)
return rules

except StandardError, e:
txt = ’Exiting_with_error:_’'+str(e)
print txt
write logfile (txt)
sys.exit ()

cursor.close ()
db.close ()

def create_ dir (name):

try:
if not os.path.isdir (name):

58

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = ’Creating_directory:_ +name
print txt

write logfile (txt)

os . mkdir (name)

except StandardError, e:
txt = ’Exiting_with_error:_’'+str(e)
print txt
write logfile (txt)
sys.exit ()

def write rules (sname, rules):
try:
dir_ name = C_distribute_dir+sname+’/’
create_dir (dir_name)
txt = ’Writing_ +sname+’.rules ...’
print txt
write logfile (txt)

FILE = open(dir_name+sname+’.rules’, "w")

for rule in rules:
FILE . write (rule[0])

FILE. close ()

except StandardError, e:
txt = ’Exiting_with_error:_’'+str(e)
print txt
write logfile (txt)
sys.exit ()

def get threshold (sname):
db = sqlite3.connect(C_db_path)
cursor = db.cursor ()

try:
txt = ’Checking_for_threshold_and_suppress_rules...
print txt
write logfile (txt)

sql = ’SELECT_syntax_FROM_, '+sname+’ threshold’
cursor.execute(sql)
threshold = cursor.fetchall ()

txt = ’Threshold/suppress_rule_count: _ ’+str (len(

threshold))
print txt

59

Managing signatures for IDS in a distributed environment - A study of a signature management system

write logfile (txt)

if not str(len(threshold)) == ’0’:
return threshold

else:
return False

except StandardError, e:
txt = ’Exiting_with_error: ’'+str(e)
print txt
write logfile (txt)
sys.exit ()

cursor.close ()
db. close ()

def write threshold (sname, threshold):
try:
dir_ name = C_distribute_dir+sname+’/’

if len(threshold) is not ’'0’:
txt = ’Writing_threshold.conf...’

print txt
write logfile (txt)

FILE = open(dir_name+’threshold.conf’,

for rule in threshold:
FILE . write (rule[0]+ ’\n’)

FILE. close ()

except StandardError, e:
txt = ’Exiting_with_error:_’'+str(e)
print txt
write logfile (txt)
sys.exit ()

def transfer files (dir_name, dest):
try:
for file in os.listdir (dir_name):
if 7.’ in file:
txt = ’Syncing_file:_’+file
print txt
write logfile (txt)

tmp = dir_name+file

60

HWH)

Managing signatures for IDS in a distributed environment - A study of a signature management system

p = subprocess.Popen(["rsync","—auvz"
,"—e" ,"ssh" ;tmp, dest],stdout=
subprocess.PIPE)

for line in p.stdout:

if line.replace(’\n’,’’).

strip () :
txt = line
print txt

write logfile (txt)
p.stdout. close ()

except StandardError, e:
txt = ’Error:_’+str(e)
print txt
write logfile (txt)

def distribute (sname,ip, path,uname):
try:
dest = uname+’@’+ip+’: +path

txt = ’File_transfer_started ...’
print txt
write logfile (txt)

transfer files (C_distribute_dir , dest)
transfer files (C_distribute dir+sname+’/’,dest)

except StandardError, e:
txt = ’Error:_ ’+str(e)
print txt
write logfile (txt)

def reload rules (ip,uname,cmd) :
try:
txt = ’'Reloading_rules_on_sensor...’
print txt

write logfile (txt)

command = cmd+’ && ,exit’
p = subprocess.Popen(["ssh","—x","—1" ,uname, ip,
command] , stdout=subprocess.PIPE)

for line in p.stdout:

txt = line+’\n’

print txt

write logfile (txt)
p.stdout.close ()

except StandardError, e:

61

Managing signatures for IDS in a distributed environment - A study of a signature management system

txt = ’Error:_ ’'+str(e)
print txt
write logfile (txt)

FUNCTIONS END

GLOBAL VARIABLES START

now = datetime.datetime .now()

date = ’"%d:%d_%d/%d/%d’ % (now.hour,now.minute ,now.day,now.month,now.
year)

GLOBAL VARIABLES END

MAIN START

txt = "Rule_distribution_started: "+date
print txt

write logfile (txt)

all sensors = get sensors()
for sensor in all sensors:
sname, ip , path ,uname,cmd = sensor
txt = ’'Gathering_rules_for _sensor:_’+sname
print txt
write logfile (txt)
write rules (sname, get rules (sname))
threshold = get threshold (sname)
if threshold is not False:
write threshold (sname, threshold)
distribute (sname, ip , path ,uname)
reload rules (ip ,uname,cmd)
txt = ’Done.’
print txt
write logfile (txt)

MAIN END

62

Managing signatures for IDS in a distributed environment - A study of a signature management system

D web.py

The web server script. Handles all communication between the server and the client.

#!/usr/bin/env python

web.py

bring home the bacon Copyright (C) 2012 David Ormbakken
Henriksen (davidohenriksen@gmail.com)

H* H*

modify

or

FHRHFHRHH OH R

import
import
import
import
import

import
import
import
import
import

import

os
sqlite3
re

Sys

This program 1is free software: you can redistribute it and/or

it under the terms of the GNU General Public License as
published by
the Free Software Foundation, either version 3 of the License,

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

subprocess

tornado

tornado

.httpserver
tornado.

ioloop

.web
tornado.
tornado.

options
autoreload

simplejson as json
from tornado.options import define, options

define ("port", default=8080, help="run_on_the_given_port", type=int)

class Application (tornado.web. Application):
def init__ (self):

63

Managing signatures for IDS in a distributed environment - A study of a signature management system

handlers = [

(r"/", MainHandler) ,

(r"/rulesets", RulesetsHandler),

(r"/rules", RulesHandler),

(r"/sensors", SensorsHandler),

(r"/get rulesets", GetRulesetsHandler),

(r"/get _rules", GetRulesHandler),

(r"/get _sensors", GetSensorsHandler),

(r"/add_sensor", AddSensorHandler),

(r"/remove_sensor", RemoveSensorHandler),

(r"/open_rule", OpenRuleHandler),

(r"/getsensorname", GetSensorNameHandler),

(r"/tuning rules", TuningRulesHandler),

(r"/tuning rulesets", TuningRulesetsHandler),

(r"/update_sensor", UpdateSensorHandler),

(r"/update", UpdateHandler),

(r"/atuninghelp", ATuningHelpHandler),

(r"/suppress", SuppressHandler),

(r"/threshold", ThresholdHandler) ,

(r"/atuning", ATuningHandler),

(r"/get_atuning", GetATuningHandler),

(r"/remove_atuning", RemoveATuningHandler),

(r"/distribute", DistributeHandler),

]

settings = dict(

#login_url="/auth/login",

template path=os.path.join (os.path.dirname(__file),

"templates"),

static_path=os.path.join (os.path.dirname(__file),
static"),

autoescape=None)

tornado.web. Application. _init__ (self, handlers, xx
settings)

"

class RemoveATuningHandler(tornado.web.RequestHandler):
def post(self):
syntax = self.request.arguments.get("atuningid")

db = sqlite3.connect(’../DB.db")
cursor = db.cursor ()

try:

cursor.execute (’SELECT_sname_FROM _ sensors ’)

all sensors = cursor.fetchall ()

for hit in all sensors:
table = hit[0]+’ threshold’
sql = ’DELETE_FROM %s, WHERE, syntax="%

s"’ % (table,syntax[0])

cursor.execute(sql)

64

Managing signatures for IDS in a distributed environment - A study of a signature management system

db. commit ()

except StandardError ,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’RemoveATuningHandler_ERROR:_ '+str
(e)+’\n’)
FILE. close ()

cursor.close ()
db.close ()

class GetATuningHandler (tornado.web.RequestHandler):
def get(self):
db = sqlite3.connect(’../DB.db"’)
cursor = db.cursor ()

atuning = []

try:
cursor.execute (’SELECT_sname_FROM, sensors ’)
all sensors = cursor.fetchall ()
for hit in all sensors:
table = hit[0]+’ threshold’
sql = ’SELECT_x*_FROM_, ’+table
cursor.execute (sql)
for row in cursor:
idnr, sid , typ , syntax ,comment,
Sensor = row
check = "<center><input_type
=’checkbox’_name=’
atuningid ’_value="%s"></
center>" % (syntax)
tmp = (check,sid,typ,syntax,
comment, sensor)
if tmp not in atuning:
atuning .append (tmp)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write (’GetATuningHandler_ERROR: _ ’+str (e)
+’\n’)
FILE. close ()

cursor.close ()
db.close ()

self.write(json.dumps({"aaData":atuning},sort_keys=
True,indent=4))

65

Managing signatures for IDS in a distributed

environment - A study of a signature management system

class ThresholdHandler (tornado.web.RequestHandler):

def post(self):

db = sqlite3.connect(’../DB.db"’)

cursor

= db. cursor ()

if ’sigid’ not in self.request.arguments:

self.write(’Input_missing._Try_again.’)

elif ’count’ not in self.request.arguments:

self.write (’Input_missing._Try _again.’)

elif ’sec’ not in self.request.arguments:

else:

self.write(’Input_missing._Try_again.’)

genid = self.request.arguments. get("genid")
sigid = self.request.arguments.get("sigid")
typ = self.request.arguments. get("type")
track = self.request.arguments.get("track")
count = self.request.arguments. get("count")
sec = self.request.arguments. get("sec")
sensor = self.request.arguments. get("select")
comment = ’’

if ’comment’ in self.request.arguments:
tmp = self.request.arguments. get ("
comment")
comment = tmp[0]

syntax = ’event filter_gen id_’+genid[0]+,
sig _id_ ’+sigid[0]+ "’ ,type_ +typ[0]+ "’ ,track
"+track[0]+ ’,count_’+count[0]+ ’,seconds_ '+
sec[0]

try:
def insert_t(table,x):

sql = ’INSERT_OR_IGNORE_INTO
"+table+’_(id, sid, type,
syntax ,comment, Sensor)
VALUES_ (null , "+sigid [0]+"’
,"threshold"," +syntax+’
", " ’+comment+’" " +x+"") ’

cursor.execute (sql)

if not (sensor[0] == "all"):
table = sensor[0]+’ threshold

’

insert_t(table,sensor[0])

66

Managing signatures for IDS in a distributed environment - A study of a signature management system

class

else:
cursor . execute (’SELECT_sname,_,
FROM_ sensors ')
all sensors = cursor.fetchall
0O
for hit in all sensors:
table = hit[0]+"’
_threshold”’
insert_t(table, ’ALL’)

db.commit ()
self.write(’threshold_rule_for _sid:_’
+sigid [0]+ ’_has_been_added!’)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write ('ThresholdHandler_ERROR: ,’
+str(e)+’\n’)
FILE. close ()
self.write(str(e))

cursor.close ()
db.close ()

SuppressHandler (tornado .web. RequestHandler) :
def post(self):
db = sqlite3 .connect(’../DB.db")
cursor = db.cursor ()

if ’sigid’ not in self.request.arguments:
self.write(’Input_missing._Try_again.’)

elif ’ip’ not in self.request.arguments:
self.write(’Input_missing._Try_again.’)

else:
genid = self.request.arguments. get("genid")
sigid = self.request.arguments.get("sigid")
track = self.request.arguments.get("track")
ip = self.request.arguments.get("ip")
sensor = self.request.arguments. get("select")
comment = ’’

if ’comment’ in self.request.arguments:
tmp = self.request.arguments. get ("
comment")
comment = tmp[0]

67

Managing signatures for IDS in a distributed environment - A study of a signature management system

syntax = ’suppress_gen_id_’+genid[0]+,sig id
o +sigid[0]+ " ,track ’'+track[0]+’,ip_ +ip
(0]

try:

def insert t(table,x):
sql = ’INSERT_OR_IGNORE_INTO_,
"+table+’_(id,sid, type,
syntax ,comment, SEnsor)
VALUES_ (NULL, *+sigid [0]+’
,"suppress"," "+syntax+’","
‘+comment+’"," +x+7") "’

cursor.execute (sql)

if not (sensor[0] == "all"):
table = sensor[0]+’ threshold

’

insert_t(table,sensor[0])

else:
cursor.execute ('SELECT_sname_,
FROM_,sensors ’)
all sensors = cursor. fetchall

0O

for hit in all sensors:
table = hit[0]+"’
_threshold”’
insert _t(table, ’ALL’)

db.commit ()
self.write(’suppress_rule_for_sid:_ '+
sigid [0]+ ’_has_been_added!’)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’ThresholdHandler_ERROR: ’
+str(e)+’\n’)
FILE. close ()
self.write(str(e))

cursor.close ()
db. close ()

class DistributeHandler (tornado.web.RequestHandler):
def get(self):
self.write(’’’<html xmlns="http://ww.w3.0rg/1999/
xhtml">
<head>
<title>Distribute report</title >

68

Managing signatures for IDS in a distributed environment - A study of a signature management system

<link type="text/css" rel="stylesheet" href="../static/css/custom.css
u/>

<link type="text/css" rel="stylesheet" href="../static/css/demo_page.
css'"/>

</head>

<body>

 Distribute report </br>’"")

try:
p = subprocess.Popen(["python","../ distribute
.py"1, stdout=subprocess.PIPE)

for line in iter (p.stdout.readline, ’’):
self.write (’ ’)
self.write(line)
self.write (’</br>")

p.stdout.close ()

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’DistributeHandler_FRROR:_’+str (e)
+’\n’)
FILE. close ()

self.write(’’’</body>
</html>""")

class UpdateHandler(tornado.web.RequestHandler):
def get(self):
self.write(’’’<html xmlns="http://ww.w3.0rg/1999/
xhtml">
<head>
<title >Update report</title >
<link type="text/css" rel="stylesheet" href="../static/css/custom.css
n/>
<link type="text/css" rel="stylesheet" href="../static/css/demo_page.
css'"/>
</head>
<body>
 Update Report</br>’"")

try:
p = subprocess.Popen(["python","../update.py"
1, stdout=subprocess.PIPE)

for line in iter (p.stdout.readline, ’’):
self.write(’ ’)
self.write(line)
self.write(’</br>")

p.stdout.close ()

69

Managing signatures for IDS in a distributed environment - A study of a signature management system

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write ('UpdateHandler_ERROR:_ ’'+str (e)+’\n
")
FILE. close ()

self.write(’’’</body>
</html>""")

class UpdateSensorHandler (tornado.web.RequestHandler):
def post(self):
db = sqlite3.connect(’../DB.db")
cursor = db.cursor ()

sensor = self.request.arguments. get("select")
try:
if not (sensor[0] != ’all’):
cursor.execute ('SELECT_sname,_FROM,
sensors’)
all sensors = cursor.fetchall ()

def update(f,v,s):
sql = ’UPDATE_sensors SET_ ’+f+’=""+v+
" _WHERE,_sname=""+s+"""’

cursor.execute (sql)
" in self.request.arguments:
ip = self.request.arguments. get("ip")
if not (sensor[0] == ’all’):
update("ip",ip[0],sensor[0])

if "ip

else:
for hit in all sensors:
update ("ip",ip[0], hit
[01)

if "path" in self.request.arguments:
path = self.request.arguments. get ("

path")
if not (sensor[0] == ’all’):
update ("path" ,path[0],sensor
[on
else:

for hit in all sensors:
update ("path" ,path
[0],hit[0])

if "uname" in self.request.arguments:

70

Managing signatures for IDS in a distributed environment - A study of a signature management system

uname = self.request.arguments. get("
uname")
if not (sensor[0] == ’all’):
update ("uname" ,uname[0],
sensor [0])
else:
for hit in all sensors:
update ("uname" ,uname

[0],hit[0])

if "cmd" in self.request.arguments:
pw = self.request.arguments. get("cmd"

)
if not (sensor[0] == ’all’):
update ("cmd" ,ecmd[0], sensor
[0
else:

for hit in all sensors:
update ("cmd" ,cmd[0],
hit[0])

db.commit ()
self.write(’Sensor_updated! _Refresh_page_to,,
see_changes.’)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’UpdateSensorHandler_ERROR: ’+str (
e)+’\n’)
FILE. close ()
self.write(str(e))

cursor.close ()
db.close ()

class TuningRulesetsHandler (tornado.web.RequestHandler) :
def post(self):
source _ruleset = self.request.arguments. get ("
rulesetid")
sensor = self.request.arguments.get("sensor")
action = self.request.arguments. get("action")

db = sqlite3 .connect(’../DB.db"’)
cursor = db.cursor ()

sids = 7’
try:
def disable sid (table,sid):

71

Managing signatures for IDS in a distributed environment - A study of a signature management system

value = sid.split(’,’)
for entry in value:
sql = ’INSERT_OR_IGNORE_INTO_,
"+table+’_ (sid)_VALUES_(’+
entry+’)’
cursor.execute (sql)

def enable sid (table,sid):
sql = ’DELETE_FROM,_ ’+table+’_WHERE,
sid _IN_(’+sid+’)"’
cursor.execute (sql)

length = len(source ruleset)
counter =1
for hit in source_ruleset:
split = hit.split(’.”)
sql = ’SELECT_sidnr_from_rules_ WHERE
source_name=""+split[0]+ " _AND_
ruleset name=""+split[1]+ """’
cursor.execute (sql)
tmp = cursor. fetchall ()
sids = sids+(",".join(str(x[0]) for x
in tmp))
if not (counter == length):
sids = sids+","
counter +=1

if not (sensor[0] == ’all’):
table = sensor[0]+’ disabled’
if not (action[0] == "enable"):

disable_sid (table , sids)
else:
enable sid(table,sids)

else:
cursor.execute ('SELECT_sname, FROM,
sensors’)
all sensors = cursor.fetchall ()

for hit in all sensors:
table = hit[0]+’ disabled”’
if not (action[0] == "enable"
):
disable sid (table,
sids)
else:
enable sid (table, sids
)

db.commit ()

72

Managing signatures for IDS in a distributed environment - A study of a signature management system

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’TuningRulesetsHandler_ ERROR: '+
str(e)+’\n’)
FILE.close ()

cursor.close ()
db. close ()

class TuningRulesHandler (tornado.web.RequestHandler) :
def post(self):

sids = self.request.arguments. get(’sidnr’)
sensor = self.request.arguments. get(’sensor’)
action = self.request.arguments. get(’action’)

db = sqlite3 .connect(’../DB.db"’)
cursor = db.cursor ()

def disable sid (table,sid):
sql = ’INSERT_OR_IGNORE_INTO_ '+table+’_(sid)_
VALUES_ (’+sid+’)"’
cursor.execute(sql)

def enable sid (table,sid):
sql = ’DELETE_FROM_, ’+table+’ WHERE_sid="+sid
cursor.execute(sql)

try:
if not (sensor[0] == "all"):
table = sensor[0]+’ disabled’
for sid in sids:

if not (action[0] == "enable"
):
disable sid (table, sid
)
else:
enable sid(table,sid)
else:
cursor.execute ('SELECT_sname_FROM
sensors’)
all sensors = cursor. fetchall ()

for hit in all sensors:
table = hit[0]+’ disabled”’
for sid in sids:
if not (action[0] ==

"enable"):
disable sid (
table , sid)

73

Managing signatures for IDS in a distributed environment - A study of a signature management system

else:
enable sid(
table , sid)

db. commit ()

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write (’TuningRulesHandler,ERROR: ’+str (e
)+’\n’)
FILE.close ()

cursor.close ()
db. close ()

class GetSensorNameHandler (tornado.web.RequestHandler) :
def get(self):
db = sqlite3.connect(’../DB.db")
cursor = db.cursor ()

try:
cursor.execute (’SELECT_sname_FROM _sensors ’)
selectbox = ’'<select_name="select" _id="select
"><option_value="all">all_sensors </option>
’

for sensor in cursor:
selectbox = selectbox+’<option_value
=""+sensor[0]+ "> +sensor[0]+ </
option>’

selectbox = selectbox+’</select>’
self.write(selectbox)
except StandardError,e:

FILE = open("weberrorlog.txt","a")

FILE . write (" GetSensorNameHandler_ERROR: "+str
(e)+"\n")

FILE. close ()

self.write(’<select><option>FRROR</option></
select>")

cursor.close ()
db. close ()

class OpenRuleHandler (tornado.web.RequestHandler):
def get(self):
sid = self.get argument("sid")
db = sqlite3.connect(’../DB.db’)
cursor = db.cursor ()

74

Managing signatures for IDS in a distributed environment - A study of a signature management system

try:
cursor.execute ('SELECT_rule syntax _FROM rules
WHERE sidnr_=_(?)’, [sid])
rulesyntax = cursor.fetchone ()
self .render("open_rules.html",rulesyntax=
rulesyntax [0])

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’OpenRuleHandler_ERROR:_ ’'+str (e)+’
\n’)
FILE . close ()

cursor.close ()
db. close ()

class RemoveSensorHandler (tornado.web.RequestHandler):
def post(self):
snames = self.request.arguments.get("sensorid")

db = sqlite3.connect(’../DB.db"’)
cursor = db.cursor ()

try:
for sensor in snames:

sql = ’DELETE_,_FROM_sensors_WHERE,
sname="%s"’ % (sensor)

cursor.execute(sql)

sql = ’DROP_TABLE %s_ disabled’ % (
sensor)

cursor.execute (sql)

sql = ’'DROP_TABLE %s threshold’ % (
sensor)

cursor.execute(sql)

db. commit ()

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’RemoveSensorHandler, ERROR: ’+str (
e)+’\n’)
FILE. close ()

cursor.close ()
db.close ()

class AddSensorHandler(tornado.web.RequestHandler):

def post(self):
db = sqlite3 .connect(’../DB.db")

75

Managing signatures for IDS in a distributed environment - A study of a signature management system

cursor = db.cursor ()

if ’sname’ not in self.request.arguments:

elif

elif

elif

elif

else:

self.write(’Sensor_NOT_added._Input_missing.
Try_again.’)

’ip’ not in self.request.arguments:
self.write(’Sensor_NOT_added._Input_missing.
Try_again.’)

’path’ not in self.request.arguments:
self.write(’Sensor_NOT_added._Input_missing.
Try_again.’)

‘uname’ not in self.request.arguments:
self.write (’Sensor_NOT_added._Input_missing.
Try_again.’)

’emd’ not in self.request.arguments:
self.write(’Sensor_NOT_added._Input_missing.
Try_again.’)

sname self.request.arguments. get ("sname")
sname = sname[0]

ip = self.request.arguments. get("ip")

ip = ip[0]

path = self.request.arguments. get("path")
path = path[0]

uname = self.request.arguments. get("uname"
uname = uname[0]

cmd = self.request.arguments. get("cmd")
ecmd = ¢md[0]
try:

db = sqlite3 .connect(’../DB.db"’)
cursor = db.cursor ()
cursor.execute(’’’INSERT INTO sensors
(sname, ip , path , uname, cmd)
VALUES (?,?,?,?,?) 7’
,(sname, ip , path,
uname,cmd))
sql = ’CREATE_TABLE_ ’+sname+’

disabled (sid _INTEGER_PRIMARY_KEY
))

cursor.execute (sql)

sql = ’CREATE_TABLE_ ’+sname+’
threshold (id_INTEGER_PRIMARY_KEY
,_Sid _INTEGER, _type TEXT,_syntax,

76

Managing signatures for IDS in a distributed environment - A study of a signature management system

TEXT, ,comment_TEXT, sensor TEXT)’
cursor.execute(sql)
self . write (sname+’_added!_Refresh,
page_to_see_changes.’)
db. commit ()

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’AddSensorHandler_ERROR:’
+str(e)+’\n’)
FILE. close ()
self . write(str(e))

cursor.close ()
db. close ()

class GetSensorsHandler (tornado.web.RequestHandler):
def get(self):

db = sqlite3.connect(’../DB.db"’)
cursor = db.cursor ()

sensors = []

try:
cursor .execute (’SELECT_x*_FROM_sensors ’)
for row in cursor:
sname, ip , path ,uname,cmd = row
check = "<center><input_type=’
checkbox’ name=’sensorid ’_value=%
s’></center>" % (sname)

sensor = (check,sname,ip,path,uname,
cmd)

sensors.append (sensor)

except StandardError ,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write (’GetSensorsHandler_FERROR:_ '+str (e)
+’\n’)
FILE. close ()

cursor.close ()
db.close ()

self.write(json.dumps({"aaData":sensors},sort _keys=
True ,indent=4))

class GetRulesHandler (tornado.web.RequestHandler):

def get(self):
db = sqlite3 .connect(’../DB.db"’)

77

Managing signatures for IDS in a distributed environment - A study of a signature management system

cursor = db.cursor ()

details = ’'<img_class="sig"_src="static/images/open.
png|l>7
sigs = []

try:
cursor.execute (’SELECT_*_FROM_ rules ’)
all rules = cursor.fetchall ()
cursor .execute (’SELECT_sname_FROM, sensors ’)
all sensors = cursor.fetchall ()

for row in all rules:
sidnr ,revnr , source ,ruleset ,name, ref ,
date , rule = row
status ="’
for hit in all sensors:
sql = ’SELECT_sid_FROM_, +hit
[0]+’ disabled WHERE_sid=’
+str (sidnr)
cursor.execute (sql)
res = cursor.fetchone ()
sql = ’SELECT_sid_FROM %
s_threshold WHERE_sid="%s"
> % (hit[0],sidnr)
cursor.execute (sql)
tmp2 = cursor.fetchone ()
if not (res is None):
if not (tmp2 is None)

status =
status+’<
font_class
="red"> "+
hit[0]+ </
font><font
_class="
yellow">1</
font>
;) #red/
yellow

else:

status =
status+’<
font_class
="red">"+
hit[0]+ </
font>

78

Managing signatures for IDS in a distributed environment - A study of a signature management system

;7 #red

else:
if not (tmp2 is None)

status =
status+’'<
font_class
="green">"’
+hit[0]+"’
<
font_class
="yellow
">!&
nbsp;’ #
green/
yellow

else:

status =
status+’<
font_class
="green">"’
+hit[0]+’
&
nbsp;’ #
green

check = ’<input_type="checkbox" _name
="sidnr" _,value="%i">" % (sidnr)

source_ruleset = "%s.%s’ % (source,
ruleset)

sig = (check, sidnr, revnr, date,
name, source ruleset, ref, status,

details)
sigs.append(sig)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE . write (’GetRulesetsHandler_ERROR:_ ’+str (e
)+’\n’)
FILE. close ()

cursor.close ()
db.close ()
self . write(json.dumps({"aaData":sigs},sort_keys=True,

indent=4))
class GetRulesetsHandler (tornado.web.RequestHandler) :
def get(self):

79

Managing signatures for IDS in a distributed environment - A study of a signature management system

db = sql
cursor

rulesets

try:

ite3 .connect(’../DB.db’)
db. cursor ()

[]

cursor.execute ("SELECT_DISTINCT_ruleset name,
_source_name_FROM_rules")
query = cursor. fetchall ()

for row in query:

ruleset ,source

source_ruleset
ruleset)

check = ’<center><input_type="
checkbox" _name="rulesetid" _value
="%s"></center>’ % (source_ruleset
)

sql = ’SELECT_sidnr_from_rules_WHERE
source_name="%s"_AND_ruleset name
="%s"’ % (source,ruleset)

cursor.execute (sql)

tmp = cursor.fetchall ()

row
%s.%s’ % (source,

count = len (tmp)
sids = 7, .join(str (x[0]) for x in
tmp)

cursor.execute (’SELECT_sname_FROM
sensors’)
all sensors

sql

cursor. fetchall ()
"SELECT_MAX(date) _FROM _rules,,
WHERE_source_name="%s"_AND_

ruleset name="%s"’ % (source,
ruleset)

cursor.execute(sql)

max_date = cursor.fetchone ()

)

status
for x in all sensors:
sensor x[0]
sql ’SELECT_,sid _FROM %
s_disabled WHERE _sid _IN_(,
%s,_,)’ % (sensor,sids)
cursor.execute(sql)
tmp2 = cursor. fetchall ()

scount = len (tmp2)
if not (scount == count):
if not (scount == 0):
status =
status+'<

80

Managing signatures for IDS in a distributed environment - A study of a signature management system

font_class
="green">%
s<
font_class
="red">%s
&
nbsp;’ % (
sensor,
scount)
else:
status =
status+’<
font_class
="green">%
s&
nbsp;’ %
sensor
else:
status = status+'<

font_class="red">%

s ’ %

sensor

rset = (check,source_ruleset ,max_date
,count, status)
rulesets.append(rset)

except StandardError,e:
FILE = open(’weberrorlog.txt’,’a’)
FILE.write (’GetRulesetsHandler_ ERROR: ’+str (e
)+’\n’)
FILE. close ()

cursor.close ()
db.close ()
self.write(json.dumps({"aaData":rulesets},sort_keys=

True,indent=4))

class ATuningHandler (tornado.web.RequestHandler) :
def get(self):
self.render("atuning.html")

class ATuningHelpHandler (tornado.web.RequestHandler) :
def get(self):
self .render ("atuninghelp.html")

class SensorsHandler (tornado.web.RequestHandler):

def get(self):
self.render("sensors.html")

81

Managing signatures for IDS in a distributed environment - A study of a signature management system

class RulesHandler(tornado.web.RequestHandler):
def get(self):
self.render("rules.html")

class RulesetsHandler (tornado.web.RequestHandler):
def get(self):
self .render("rulesets.html")

class MainHandler (tornado.web.RequestHandler) :
def get(self):
self .render("index.html")

def main():
tornado . options.parse_command_line ()
http_server = tornado.httpserver.HTTPServer(Application ())
http server.listen (options. port)
tornado.autoreload. start ()
tornado.ioloop.IOLoop.instance ().start ()

if name == " main__
main ()

",

82

Managing signatures for IDS in a distributed environment - A study of a signature management system

E config.py

The configuration file.

#!/usr/bin/env python
CONFIG FILE

C_rule_sources = []
C_files = []
C_db name = ’DB.db’

#H#H##H## DO NOT MODIFY VARIABLES ABOVE THIS LINE #####H####

Specify path to tmp. dir. (must be manually created). Must be full
path and path must end with a trailing slash.

Example: ’/home/user/bringhomethebacon/tmp/’

C_tmp_dir = ’’

Specify path to ditribute dir — dir that contains all files to be
ditributed (must be manually created). Must be full path and path
must end with a trailing slash.

Example: ’/home/user/bringhomethebacon/files to distribute/’

C_distribute_dir = 7’

Specify path to sms folder. Must be full path and path and path
must end with a trailing slash.

Example: ’/home/user/bringhomethebacon/’

C_db_path = ’’+C_db name

Specify path to local rules dir. Must be full path and path must
end with a trailing slash.

Example: ’/home/user/rules/’

Leave blank if not using local rules or choosing to use web—GUI to
add rules.

C_locale rule path = "’

Specify path and name for update.py logfile. Must be full path.

Example: ’/home/user/bringhomethebacon/updatelog. txt’

C_updatelog = "’

Specify path and name for distribute.py logfile. Must be full path.

Example: ’/home/user/bringhomethebacon/distributelog. txt’
C _distrblog = 7’

83

Managing signatures for IDS in a distributed environment - A study of a signature management system

NB: Remember to set correct permissions on folders and files!

Select files to be moved to the distribute dir. If file already
exists in that dir, it will be updated if any changes.

The file —folder option must be specified in external sources for
this to work. Use default values if not sure.

C_files.append (['reference.config’])

C files.append ([’sid—msg.map’])

C_files.append ([’gen—msg.map’])

C _files.append ([’ classification.config’])

C_files.append ([unicode .map’])

HHAH AR AA#### ADD EXTERNAL RULE SOURCES
BELOW ##-HHHHHHH HHA H H #

INFO:

#

Use this syntax to add more rule sources: rule_sources.append([
rule—source—name, md5—urlx, rule—urlsx, rule—folderxxx, file—
folder x*x*x])

#

x Rule—url must point to a tar.gz file

xx Md5—url is optional. if no md5—url, keep it blank (’’), else md5
—url must point to a file that only contains md5 sum

xxx Rule—folder is the path (within the tar.gz) to where the rule
files reside. If no folder, keep it blank: ’’

xxxx File—folder is the path (within the tar.gz) to where gen—msg.
map, reference.config etc. reside.

If no folder, keep it blank: ’’. Else if the tar.gz dont have these
files , use none: ’'none’.

#

See VRT and ET example below for more information.

#

A A

VRT—rules

Specify snort version. Example: ’2920’. Use snort —V to get snort
version
C_vrt_snort_version =

)

’

C_oinkcode =

C _rule_sources.append ([
>Sourcefire’,

84

Managing signatures for IDS in a distributed environment - A study of a signature management system

"http://www. snort.org/reg—rules/snortrules—snapshot—’+
C _vrt_snort_version+’.tar.gz.md5/’+C _oinkcode,

"http://www. snort.org/reg—rules/snortrules —snapshot—"+
C _vrt_snort_version+’.tar.gz/’+C_oinkcode,

‘rules/’,

“etc/’

1

ET—rules

Specify snort version. Example: ’2.9.0°. Use snort —V to get snort
version

C_et_snort_version = ’’

C _rule_sources.append ([

’Emerging,_Threats’,

"http://rules.emergingthreats.net/open—nogpl/snort—’"+
C et _snort_version+’/emerging.rules.tar.gz.md5’,

"http://rules.emergingthreats.net/open—nogpl/snort—"+
C_et_snort_version+’/emerging.rules.tar.gz’,

"rules/’,

‘rules/’,

D

85

Managing signatures for IDS in a distributed environment - A study of a signature management system

F templates.html

One of the many templates that makes up the graphical user interface.

Rule—view template

{% extends "base.html" %}
{% block head %}

<script type="text/javascript" charset="utf—-8">
$(document) .ready (function () {
var oTable = $(’#dataTable’) .dataTable({

"bProcessing": true,

"sAjaxSource": ’/get rules’,

"bDeferRender": true,

"bJQueryUI": true,

"bPaginate": true,

"sPaginationType": "full numbers",

"bStateSave": false,

"bAutoWidth": false,

"iDisplayLength": 50,

"sDom": ’'<"header ui—toolbar ui—widget—header
ui—corner—tl ui—corner—tr ui—helper—
clearfix"fr>t<"footer ui—toolbar ui—widget
—header ui—corner—bl ui—corner—br ui—
helper—clearfix"ipl >’,

"aaSorting": [[3,’desc’]],

"aoColumns": [

{ "bSearchable": false, "bSortable":
false , "sWidth": "15px"},

{"sWidth": "60px"},

{ "bSearchable": false, "bSortable":
false, "swWidth": "30px"},

{ "sWidth": "80px"},

null ,

null,

{ "bSearchable": false, "bSortable":
false},

{ "bSearchable": false, "bSortable":
false},

{ "bSearchable": false, "bSortable":
false , "sWidth": "15px"}
1
}).fnSetFilteringDelay (1000);

87

Managing signatures for IDS in a distributed environment - A study of a signature management system

new FixedHeader(oTable);
$(’td img’) .live ("click ’, function () {
var nTr = this.parentNode.parentNode;
if (this.src.match(’close’)){
/* This row is already open — close
it *x/
this.src = "static/images/open.png";
oTable.fnClose(nTr);

else {
/* Open this row x/
row = oTable.fnGetData(nTr);
this.src = "/static/images/close.png
$.get(’/open_rule’,{’sid ":row[1]},
function (data) {
oTable.fnOpen(nTr, data);
1)
}
s
$.get("/getsensorname", function (data) {
$("div.header") .append(’<
input type="radio" id="radiol" name="
choice" value="disable" checked="checked
"/><label for="radiol">Disable </label><
input type="radio" id="radio2" name="
choice" value="enable" /><label for="
radio2">Enable</label ><span id="
selectl">selected (</
span>), on sensor: <span id="
select2 > ’,data,’ <a class="
submitbutton">Execute OR use: <
span id="atuning">’);
$("#thr—sensor") .append(data) ;
$("#sup—sensor") .append(data) ;

$("#radio").buttonset();

$ (".submitbutton") . button (). click (function ()
{

var sData = $(’input’, oTable.
fnGetNodes ()).serialize () ;

var sensor = $(’[name=select]’).val()

var action = $(’input[name=choice]:
checked’) .val();

$.post("/tuning rules", "sensor="+
sensor+"&action="+action+"&"+sData

>

88

Managing signatures for IDS in a distributed environment - A study of a signature management system

function () {oTable.
fnReloadAjax (’/ get _rules’)
1)
s

$("#options") .append(’
Select All");

$(".selectall") .button().click (function() {
$(’input’, oTable.fnGetDisplayNodes ()
).attr (’checked’, ’checked’) ;
s

$("#options") .append(’
Select None"’);

$(".deselectall") .button (). click (function() {
$(’input’, oTable.fnGetDisplayNodes ()
).attr (’checked’, false);

s

$("#atuning") .append(’T..&
nbsp’) ;

$("#atuning") .append(’S..");

$(".thr") .button({icons: {primary: "ui—icon—
newwin"}}) . click (function () {
$(#thr—dialog’) .dialog (’open’) ;
s
$(".sup") .button({icons: {primary: "ui—icon—
newwin"}}) . click (function () {
$(#sup—dialog’) .dialog ("open’) ;
1)

$("#thr—dialog") .dialog ({
autoOpen: false,
width: 750,
buttons: {
’Submit’: function () {
fData = $(#thrform’)
.serialize ();
$.post("/threshold",
fData, function (
data) {
alert (data);
s
$(this).dialog (’close
)5

89

Managing signatures for IDS in a distributed environment - A study of a signature management system

s
1
</script>
{% end %}
{% block body %}

<div id="container">

b

’

elp’: function() {
window . open ("/
atuninghelp") ;

}
s
$("#sup—dialog") . dialog ({
autoOpen: false,
width: 550,
buttons: {
’Submit’: function() {
fData = $(’#supform’)
.serialize ();
$.post("/suppress",
fData, function (
data) {
alert (data);
s
$(this).dialog (’close
)5

’

elp’: function() {
window. open ("/
atuninghelp") ;

I

<div id="header">
<div id="toolbar">

</div>

<table width="100%" cellspacing ="0" border="0" id="
dataTable">

<thead>
<tr>
<th></th>
<th>Sid </th>
<th>Rev</th>
<th>Added</th>

90

Managing signatures for IDS in a distributed environment - A study of a signature management system

<th>Name</th>
<th>Source.Ruleset </th>
<th>Reference </th>
<th>Status information </th>
<th></th>
</tr>
</thead>
<tbody>
</tbody>
</table>
</div>
</div>
<div id="thr—dialog" title ="Thresholding" style="display:none;">
<form id="thrform" method="post">
<fieldset>
event filter <label for="genid">gen id</
label >
<input type="text" size="3" value="1" name="
genid" id="genid" class="text ui—widget—
content ui—corner—all" />
,
<label for="sigid">sig id </label>
<input type="text" size="8" name="sigid" id="
sigid" class="text ui—widget—content ui—
corner—all" />
,
<label for="type">type</label>
<select name="type" id="type'>
<option value="limit">limit </option>
<option value="threshold">threshold </
option>
<option value="both">both</option>
</select>
,
<label for="track">track </label>
<select name="track" id="track">
<option value="by src">by_ src</option
>
<option value="by dst">by dst</option
>
</select>
,
<label for="count">count</label>
<input type="text" size="3" name="count" id
="count" class="text ui—widget—content ui—
corner—all" />
,
<label for="sec">seconds</label>

91

Managing signatures for IDS in a distributed environment - A study of a signature management system

<input type="text" size="3" name="sec" id="
sec" class="text ui—widget—content ui—
corner—all" />
</br>
<label for="select"></label>
</br>
on sensor:

<label for="comment">comment:</label>
<input type="text" size="50" name="comment"
id="comment" class="text ui—widget—content
ui—corner—all" />
</fieldset >
</form>
</div>
<div id="sup—dialog" title="Suppression" style="display:none;">
<form id="supform" method="post">
<fieldset>
suppress
<label for="genid">gen id</label>
<input type="text" size="3" value="1" name="
genid" id="genid" class="text ui—widget—
content ui—corner—all" />
,
<label for="sigid">sig id </label>
<input type="text" size="8" name="sigid" id="
sigid" class="text ui—widget—content ui—
corner—all" />
,
<label for="track">track</label>
<select name="track" id="track">
<option value="by src">by src</option
>
<option value="by_ dst">by dst</option
>
</select>
,
<label for="ip">ip</label>
<input type="text" size="15" name="ip" id="ip
" class="text ui—widget—content ui—corner—

all" />
</br>
<label for="select"></label>
</br>

on sensor:

<label for="comment">comment:</label>

92

Managing signatures for IDS in a distributed environment - A study of a signature management system

<input type="text" size="50" name="comment"
id ="comment" class="text ui—widget—content
ui—corner—all" />
</fieldset >
</form>
</div>
{% end %}

93

	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Preface
	Introduction
	Topic covered
	Keywords
	Problem description
	The signature management process
	Explanation of the process
	Pre-processing phase
	Monitoring phase
	Analysis phase
	Response phase

	Justification, motivation and benefits
	Research question
	Claimed contributions

	Related work
	Existing open source tools
	Related work conclusion

	Methods
	Keystroke-level modelling
	Questionnaire

	The signature management system
	System requirements
	User interface
	Scalability and Performance
	Communication
	Compatibility and environment
	Previous work

	Design choices
	Platform
	Programming language
	User interface
	Web framework
	Database
	Communication
	Architecture
	update.py
	distribution.py
	web.py
	Database

	Implementation
	Graphical user interface
	Rule view
	Rule-set view
	Sensor view
	Advanced tuning view

	Experiments and results
	Keystroke-level modelling
	Scenario 1: Inspect signature syntax
	Scenario 2: Lookup signature reference
	Scenario 3: Disable signature
	Scenario 4: Distribute signature change to a sensor
	Scenario 5: Reload signature change on a sensor
	Results

	Questionnaire
	Test subjects
	Testing
	Results
	Reliability and validity

	Conclusion
	Future work

	Bibliography
	Appendix Web-based questionnaire
	Appendix update.py
	Appendix distribute.py
	Appendix web.py
	Appendix config.py
	Appendix templates.html

