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Abstract

As the internet has become the new playground for organized crime and foreign intelligence,
the sophistication of internet attacks has increased. The traditional attacks targeting listening
services on the target computer is no longer as viable as it used to, much thanks to firewalls,
NAT and more secure administration of servers. This has forced the attackers to find new targets,
which they have found in client applications, and in the users themselves. Client-side attacks
are now the most used method of attack on the internet. A popular vector for conducting such
attacks are malicious PDF documents. Traditional signature based network intrusion detection
systems (IDS) have a hard time detecting such threats, and no good alternative solutions have
been discovered.

In this thesis we seek the answer to the question ”How can malicious PDF-documents trans-
ferred in a network be detected? “ An anomaly based network IDS approach was chosen, sev-
eral machine learning classifiers were investigated and Support Vector Machines gave the best
accuracy and performance. Several features of PDFs are analyzed in order to retrieve those sig-
nificant for the detection of malicious PDF documents. Experiments were performed to find the
best combination of features and SVM configurations to maximize performance of the detection
algorithm. A real world study was also performed by implementing the algorithm in a network
belonging to the Norwegian Defence.
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Sammendrag

Internett har med tiden blitt den nye tumleplassen for organisert kriminalitet og fremmed et-
terretning. Nettverksangrep over internett har stadig blitt flere og mer sofistikerte. Takket være
brannmurer, NAT og bedre sikkerhetsbevissthet blant administratorer er tradisjonelle angrep mot
lyttende tjenester på offerets maskin er ikke lenger en foretrukket metode. Dagens metode for
angrep er klient-side angrep. En populær vektor for slike angrep er ondsinnede PDF dokumenter.
Tradisjonelle signaturbaserte inntrengningsdeteksjonssystemer (IDS) har problemer med å de-
tektere slike angrep, og det finnes ingen gode alternativer.

I denne masteroppgaven forsøker vi å besvare spørsmålet ”Hvordan kan ondsinnede PDF
dokumenter detekteres i nettverket? “ En tilnærming med anomali-basert nettverks IDS ble valgt.
Flere metoder fra maskin læring ble undersøkt, og Support Vector Machines gav best nøyaktighet
og ytelse. Flere attributter i PDF formatet har blitt analysert for å finne frem til de som er sig-
nifikante for å kunne detektere ondsinnede PDF dokumenter. Eksperimenter har blitt gjennom-
ført for å finne den beste kombinasjonen av attributter og SVM konfigurasjon for å maksimere
ytelsen til deteksjonssystemet. En test har også blitt gjennomført i et virkelig scenario ved å
implementere systemet i et nettverk tilhørende det norske Forsvaret.
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1 Introduction

In this chapter the topic of this thesis will be presented, and insight into the challenges we wish
to solve is provided. We also give some motivations towards why it is important to solve these
challenges, and how this will be a benefit for the community. Finally the research questions are
presented, along with the the planned contributions of the project.

1.1 Topic Covered by the Project

Over the past 10-15 years, corporations, government and other organizations, and even the indi-
vidual person have become ever more dependent on information and communication tecnology
(ICT) for effectively solving every day tasks. A disruption in the ICT systems can be catastrophic
for an organization heavily dependent on it. A study performed by Ponemon Institute [7] reports
a median annual cyber attack cost of $3.8 million for the 45 companies that were surveyed. The
annual costs ranged from $1 million to $52 million, such figures could without doubt lead to
bankruptcy.

For some organizations, the threat from foreign intelligence and industrial espionage is a
big concern. And both organizations and the private citizen have to deal with organized cyber-
criminals constantly feeding the internet with malware, like viruses, worms and trojans, which
are designed to steal our banking information, steal our online identity, create huge botnets, fill
our inboxes with spam, and so on [8, 9, 10].

This thesis will focus on a modern and widely used class of attacks on ICT systems, namely
client-side attacks. Client-side attacks, as opposed to server-side attacks, are aimed at the client
applications running on a users computer, and are often enhanced by exploiting the users lack of
information security knowledge.

Client-side attacks have surpassed server-side attacks as the attackers method of choice[11],
some of the reasons for this will be discussed later on.

Popular applications to target are the ones that are found on “all” computers; internet browsers
like Internet Explorer, document viewers like Adobe Reader, runtime environments like Java and
media file viewers like Flash Player. Exploitation of the users lack of knowledge is often done by
social engineering, e.g. phishing or scareware.

This project will focus on one of the most widely used attack vectors, namely malicious PDF
documents. The goal is to create a new and efficient approach for a network intrusion detection
system (NIDS), capable of detecting malicious PDF documents that are transferred over a net-
work. Due to the shortcomings of traditional signature based NIDS, the proposed NIDS will be
anomaly based and perform classification using a machine learning classifier.

The author of this paper has been working in the information security field for several years,
with intrusion detection and incident handling as one of his main tasks. This will be very valuable
in conducting this project, as it will require a deep and practical understanding of intrusion

1
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detection. Also the project will require deep and practical understandings of machine learning
techniques, this will have to be acquired by the author, and is available through the project
supervisor who has extensive knowledge and experience in the area.

1.2 Keywords

Computer network security, Intrusion detection, Artificial intelligence, Pattern recognition, Fea-
ture extraction

1.3 Problem Description

Client-side attacks have become the preferred method of network attacks. Organized crime reg-
ularly launch huge campaigns on the internet where the goal is to fool the regular users into
opening content exploiting common applications found on most personal computers [12]. This
gives the attacker a plethora of vulnerabilities to exploit in all kinds of client applications, as well
as exploiting the users lack of security knowledge.

In [13] Provos et al. explains how lately this attack strategy has become prevalent.

The proliferation of technologies such as Network Address Translators (NATs) and firewalls
make it difficult to remotely connect and exploit services running on users’ computers. This
filtering of incoming connections forced attackers to discover other avenues of exploitation.
Since applications that run locally are allowed to establish connections with servers on the
Internet, attackers try to lure users to connect to malicious servers. Such attacks fall into the
category of “client-side attacks“ and have been on the rise for the past couple of years.“

Provos et al. goes on to explain another reason for this paradigm shift in network attacks:

Contrary to the small set of applications running in the tightly managed and frequently updated
commercial servers, a personal client computer contains a large number of applications that
are usually neither managed nor updated. To make things worse, discovering older, vulnerable
versions of popular applications is an easy task: a single visit to a compromised web site is
sufficient for an attacker to detect and exploit a browser vulnerability.

One group of such client applications are PDF readers. A PDF reader is found on most com-
puters, whether it is Adobe Reader, Foxit Reader or some other brand. By fooling the user into
opening a malicious PDF document or rendering such a document in the browser, an attacker
can perform a client-side attack. In fact, using PDFs for this purpose has been prevalent for the
last couple of years and is still on the rise [1] as can be seen in figure 1.

2
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Figure 1: Number of CVEs reported on MS Office and PDF file formats [1]

In [14] Toralv Dirro, a security strategist at McAfee Labs, argues that the percentage of ex-
ploitative malware targeting PDF vulnerabilities is skyrocketing. In 2007 and 2008, only 2% of
all malware that included a vulnerability exploit leveraged an Adobe Reader or Acrobat bug.
That figure jumped to 17% in 2009 and to 28% during the first quarter of 2010.

Protection against such attacks today relies, to a great extent, on signature based IDS and
anti virus software. Such tools work great for detecting known attacks that have already been
analyzed, and remain static in their signature. However, adversaries are putting great effort into
obfuscation of the exploit code, making their attacks dynamic in its signatures. The nature of
PDF and it’s support for embedded JavaScript gives the attacker great opportunities in making
dynamic exploit code, as they allow for techniques such as embedded objects, dynamic and
advanced code, encoding and encryption.

Also, the nature of client-side attacks make them ideal for targeted attacks against specific
persons or organizations. Such targeted attacks are often carried out by highly resourceful enti-
ties, like governments or organized crime. Such entities must be expected to be in possession of
zero-day exploits. When such exploits are used, signature based approaches are rendered next
to useless.

In the authors own experience from several years as a network security analyst, signature
based protection measures have very low detection rate for client-side attacks. The problems of
signature based approaches will be bypassed by looking at anomalies in the PDFs, rather than
specific signatures.

There exists tools already that will help with the analysis of malicious PDF and JavaScript
based on anomalies, e.g. PDFiD [15] or PDF X-ray [16]. However, these tools are tools for manual
anaysis that require a lot of user interaction. To the best efforts of the author, no existing network
based IDS tools that attempt anomaly detection of malicious PDF have been found.

3
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1.4 Justification, Motivation and Benefits

Client-side attacks have become a huge problem in todays internetworked world. Such attacks
are widely used in online organized crime such as identity theft, fake anti-virus and creation
of botnets. Also such attacks are often used in targeted attacks, such as the 2011 attack on the
Norwegian Armed Forces where several hundred employees received a malicious PDF by e-mail
[17], or the 2010 attack on the leader of the Nobel Peace prize committee in Norway [18].

To the authors best knowledge, there is at present no good tools for detecting malicious
PDFs in network traffic, as the existing signature based alternatives do not provide good enough
detection of these threats.

When the project is solved it will enable detection of modern client-side attacks using PDFs
as an attack vector. The method and tool will also be extensible to other attack vectors. The IDS
tool will make it harder for organized crime to conduct their large scale campaigns against in-
ternet users and it will make targeted attacks more difficult to perform. When solved the entire
IDS research community will be beneficiaries and be able to use the new knowledge in applied
IDS research. The research will also provide some ideas leading the community towards com-
mercially viable IDS products based on machine learning. A successful project will be of great
importance to organizations, and the general population, who have to deal with highly motivated
and resourceful threats every day.

1.5 Research Questions

From the previous sections the following research questions are formed, and should lead to con-
tributions relevant to solving the identified challenges:

Main research question:
How can malicious PDF-documents transferred in a network be detected?

Sub research questions:

• Which features are significant for detecting malicious PDF documents?

• Which classifier design and configuration yields optimal performance in malicious PDF de-
tection?

• How can a real-world IDS be implemented based upon our findings?

1.6 Methodology

The main research question of the project is “How can malicious PDF-documents transferred in a
network be detected?”. To solve this question we will develop a prototype IDS that can be used
in experiments. This way we can identfy all functions needed for such an IDS, and we can get
empirical results to support our findings. The IDS will be based on a machine learning classifier
that is trained using two different feature vector datasets.

The first feature vector is based on what is perceived to be the “expert knowledge“ in the field
for detecting malicious PDF, i.e. state-of-the-art or best practice. It contains features that other
researchers believe to be significant. A literature study, combined with personal knowledge, will
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be the main sources for creating this feature vector. This vector will only serve as a starting
point, as it will be subjected to feature selection and performance testing, in order to find the
most relevant features for detecting malicious PDF.

The second type of feature vector is one based on n-grams. The use of n-grams in the detection
of malicious network traffic has been successful in other areas, like the detection of malicious
HTTP headers [19]. The idea of using a classifier trained with n-grams for detection of malicious
PDFs is novel and will be compared to the performance of the expert knowledge based feature
vector to determine its feasibility for use in a working real-world IDS application. In the experi-
ments different sizes of n will be chosen to see which one gives the optimal performance, mainly
based on the success rate of detection, but also on computational performance.

The classifier will first be tested offline, on a dataset containing both malicious and benign
PDF documents. Several experiments will be conducted to determine the optimal configuration
of the classifier. Based on these experiments the classifier with the best performance will be se-
lected and implemented into a prototype IDS application. This IDS application will then be tested
in a real-world setting.

To summarize the methodology:

1. Collect extensive dataset for experimentation.

2. Perform literature study to reveal the state-of-the-art and "expert knowledge" on detecting/-
analyzing malicious PDF.

3. Extract an expert knowledge feature vector.

4. Perform feature selection on the feature vector.

5. Extract an n-gram feature vector.

6. Train, test and optimize a machine learning classifier for detecting malicious PDF.

7. Implement and evaluate real-world PDF analysis.

In all experiments quantitative measures will be used to evaluate performance of the classifier.
Where applicable qualitative measures will also be used.

1.7 Thesis Contributions

The master thesis project will have the following contributions:

• A new and efficient approach for an anomaly based NIDS for detecting malicious PDFs.

• A detection method that can be extended to other types of network attacks.

• Knowledge on significant features for detecting malicious PDFs.

• A sizable dataset available for further research.
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1.8 Thesis Outline

The following chapters are organized to provide the reader with a top-down approach to the
problem at hand. First the several disciplines involved in making an IDS based on machine
learning is presented, before we dive into the experiments and the results that are obtained.

• Chapter 2-4 introduces the disciplines and the theoretical background needed to follow and
understand the rest of the thesis. It also provides related work performed by others within
the different areas.

• Chapter 5 presents the proposed IDS solution and the experimental design that will be used
in order to obtain the needed knowledge to create the IDS.

• Chapter 6 presents the results of the experiments, along with intermediate discussions and
conclusions.

• Chapter 7 presents the overall discussion of the thesis.

• Chapter 8 concludes the thesis.

• Chapter 9 presents suggestions for future work.
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2 Network Intrusion Detection

In this chapter we will introduce the reader to network attacks, and how they are detected, what
types of intrusion detection systems exist and how their performance is measured. The chapter
will also present related work performed by other researchers on the topics.

2.1 Client-side Attacks

We often divide information security into the fields of computer security and network security.
By computer security we mean measures taken to protect the individual computer from attacks.
When we speak about network security we mean measures taken to protect the entire network,
including connected systems and devices, from attacks.

In a similar manner, attacks on our computer systems may be conducted locally at the host,
or remotely over the network. We often refer to the latter as network attacks.

Traditionally network attacks have been targeted at the services running on the computers
and servers, in so called server-side attacks. These attacks rely on the target running services
on open ports, and exploits vulnerabilities in these services. Server-side attacks are generally
conducted in five phases, described by Ed Skoudis in [20].

• Reconnaissance

• Scanning

• Exploitation

• Keeping Access

• Removing tracks

However, with more and more computers protected from such attacks by firewalls set up to
block new incoming traffic by default, attackers have changed tactics. Firewalls typically block
new inbound connection attempts, but allow users behind the firewall to create outbound con-
nections. This allows both parties of an established connection to communicate freely in both
direction over that channel [21]. This fact is exploited by attackers in what we call client-side
attacks.

Client-side attacks exploit vulnerabilities in client software, such as web browsers, e-mail
applications, media players, runtime environments, and last but not least document viewers.

As we have already seen in figure 1, the exploitation of PDF document viewers has been
significant for the last couple of years, and seems to still be on a rise. PDF document viewers are
popular targets for several reasons.

First of all we have all got one, and PDF is the de-facto standard for document exchange.
Hence, we are all able to open a PDF document, and expect to receive PDF documents from all
kinds of sources.
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Second PDF is an old format, but at the same time extremely versatile. This allows the at-
tackers to use the versatility to exploit pieces of code in ways that the authors never could have
imagined. Chapter 3 will provide a deeper look at the PDF format and how it is exploited.

Third there is a huge user population out there who don’t care enough to update their PDF
viewer software. A recent study performed by anti-virus vendor Avast [2] shows that 6 out of
10 users run a vulnerable version of Adobe Reader. Figure 2 shows the patch level of the Adobe
Reader user population in greater detail.

Figure 2: Patch level of Adobe user base [2]

2.2 Intrusion Detection

In security, and also information security, we often speak of three general principles; Protection,
Detection and Reaction.

• Protection is all measures that we can put in place before an incident has occurred. In infor-
mation security this includes measures such as firewalls, passwords and policies.

• Detection is the measures that we can put in place to be alerted when an incident has occurred,
or is occurring, on our systems. In information security this includes measures such as anti-
virus and IDS.

• Reaction is all measures that we can put in place after an incident has occurred. In information
security this includes measures such as digital forensics, backup and insurance.

In this thesis we are only concerned with detection, as we are trying to build a system capable
of detecting malicious PDF documents being transferred over a network. In other words we are
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attempting to create a narrow-scope network intrusion detection system.

2.2.1 Classification of IDS

Generally an intrusion detection system can be classified in two different ways; by scope of
protection or by detection model [22].

In the scope of protection an IDS may be classified as host based or network based. A host
based IDS (HIDS) is installed on the individual computer, and will protect only this computer.
It collects it’s data from sources internal to the computer and monitors file system activities
and application executions. A network based IDS (NIDS) is deployed at a strategic point in the
network. It monitors the network traffic for suspicious activities.

In the scope of detection model an IDS may be classified as signature (misuse) based or
anomaly based. A signature based IDS, like Snort [23] relies on comparing certain patterns
(signatures) indicating maliciousness, to the packets in the network traffic. This approach is
similar to the way of detecting viruses in many antivirus applications. To create such a signature
the malicious activity needs to be observed and analyzed. Hence, signature based IDS will never
be able to detect novel attacks that have never been seen before (zero-day). An anomaly based
IDS, like IDES [24], establishes a profile of what is normal, and alerts when deviations from this
profile is detected. Anomaly based IDS can overcome the shortcoming of the misuse detection
systems and has the potential to detect novel attacks. However, it is not easy to define normal
behaviors and these systems have a high risk of generating false positives.

In this thesis we wich to overcome the limitations of the exsiting signature based approaches
by creating an anomaly based NIDS capable of detecting novel malicious PDF documents.

Figure 3: Generic network IDS

Figure 3 shows how an IDS generally functions. In the figure we see that traffic is first taken
from the monitored network. This traffic is sent into a pre-processing step, where it is prepared
for the detection algorithm. This preparation may include parsing of protocol headers and data,
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decoding of data, assembly of fragmented data, and much more.
The processed data is then passed on to the detection algorithm. In a signature based IDS

this algorithm is basically a pattern matcher searching for special signatures in the data. In the
case of anomaly based IDS the algorithm looks for activity outside (or within) an established
baseline. The anomaly based algorithm can be as simple as just a set of thresholds. However, in
this master thesis will will implement this as a machine learning algorithm.

When the detection algorithm has detected an event, this event is sent to the alert filter. This
filter is tuned by the operator who decides which events will cause an alert. Such tuning of the
filter may include setting IP addresses, ports or session states that should not generate an alert,
and also setting thresholds that say that several events of the same type must be observed before
generating an alert. The filter is mostly used to filter out false positives.

If alert criteria are met, an alert is generated and presented to the operator, who will respond
with the proper action.

This thesis is about creating an anomaly based network IDS, where a baseline for what is
considered normal and what is considered abnormal will be established through training of a
machine learning classifier on a large labeled dataset.

In [25], Sommer and Paxson look into the basic challenges of making an IDS based on ma-
chine learning techniques. The challenges they point out are: Difficulties with outlier detection,
high cost of errors, semantic gap for the operators, diversity of network traffic, difficulties with
evaluation and operation in adversarial environment.

The master thesis project proposed in this paper will have to take these challenges seriously
to avoid the same pitfalls as other researchers in the area has fallen into. Sommer and Paxson go
on to provide some advice for future research in the field:

• Understand the threat model

• Keep the scope narrow

• Reduce the costs

• Realistic evaluation

Following the provided advise will raise the quality of the master thesis project, therefore they
will be taken into consideration when making the experimental design.
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2.2.2 IDS Performance

Before discussing IDS performance we need to introduce some terminology. When an IDS makes
a decision it has four possible outcomes.

• True positive (TP) - The IDS gives an alert and there has actually been an incident.

• True negative (TN) - The IDS does NOT give an alert, and there has actually NOT been an
incident.

• False positive (FP) - The IDS gives an alert, but there has actually NOT been an incident.

• False negative (FN) - The IDS does NOT give an alert, but there has actually been an incident.

From these we can define some measures of performance.
True positive rate (TPR) is the number of true positives over the total number of incidents. TPR
is also referred to as sensitivity in machine learning, and is discussed in greater detail in section
4.1.2.

TPR =
TP

TP + FN
(2.1)

True negative rate (TNR) is the number of true negatives over the total number of non-incidents.
TNR is also referred to as specificity in machine learning, and is discussed in greater detail in
section 4.1.2.

TNR =
TN

TN+ FP
(2.2)

False positive rate (FPR) is the number of false positives over the total number of non-incidents.

FPR =
FP

TN+ FP
(2.3)

False negative rate (FNR) is the number for false negatives over the total number of incidents.

FNR =
FN

FN+ TP
(2.4)

Base rate is the total number of incidents over the total number of decisions that are made.

Baserate =
TP + FN

N
(2.5)
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To be able to use these measures one needs a dataset where every packet is labeled with
the correct output class, e.g. benign or malicious. Finding or creating such a dataset is a big
challenge for IDS research. A large part of the IDS research community relies on the outdated
KDD Cup ’99 dataset1. This dataset has, in addition to being hopelessly old, been criticized on
several aspects in papers such as [26, 27, 28]. The critiques include the age of the dataset, the
lack of documentation on how it was created, the existence of artifacts that makes classification
trivial and bad statistics.

In [25] the authors promote real world data as the ”gold standard“ for IDS evaluation. This
advice has been followed in papers such as [19], and will also be followed in this master thesis
project.

In this thesis we create a new task specific dataset from thousands of recently collected benign
and malicious PDF files. More on the dataset and the collection of this is presented in section 6.
A real world test will also be performed according to this advice.

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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3 The Portable Document Format (PDF)

The Portable Document Format (PDF) was created by Adobe Systems in 1993 as an open stan-
dard for representing documents independent of software, hardware and operating system. In
2008 the PDF format was officially released as an open standard by the International Organiza-
tion for Standardization as ISO 32000-1. [5]

Since its release PDF has become the de facto industry standard for document exchange.
Much of its success lies in the flexibility the format offers. In addition to containing text and
images, the format also supports the embedding of Javascript and Flash, and has the ability to
open external resources from the local computer or the Internet [29]. These features however
are also the features used by attackers to exploit vulnerabilities in the PDF document viewers.

3.1 PDF File Structure

A PDF file consist of four main parts; the header, the main body, the cross-reference table and
the trailer.[5]

Figure 4: The structure of a PDF document [3].

The header should always be the single first line of the PDF file. It should be of the format
%PDF-M.N, where M.N denotes the version of the PDF standard used when producing the docu-
ment. The latest version per time of writing is 1.7.

The main body is where we find the contents of the PDF document represented as objects or
object streams. Objects will be discussed in section 3.2.

The cross-reference table, aka the xref table, is a table specifying the byte offset of every object
specified in the main body. The xref table is used for direct access to a specified object without
searching.
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The trailer giving the location of the cross-reference table and of certain special objects within
the body of the file, like the root/starting (/root) object. A single line fixed marker of the format
%%EOF, marks the end of the trailer, and thus the document. The trailer should be located directly
after the xref table. A PDF viewer conforming to the standard should read the file from the end
and the trailer therefore serves as a reference for locating the xref table.

3.2 Objects

The main part of a PDF file consists of objects. There are eight different types of objects defined
in the PDF standard, which will be briefly introduced here.

• Boolean values - Can either be True or False

• Numeric objects - PDF provides the well-known concepts of integers and real numbers.
Integers are represented with decimal digits, optionally preceded by a sign (+/-). E.g. 42
-23 Real numbers are represented with decimal digits, with a leading, trailing or embedded
decimal point (period), and optionally preceded by a sign (+/-). E.g. 42.2 -23.2123 .0101

• Strings - A string object can be either in literal or hexadecimal form. Literal strings are en-
closed by parenthesis, e.g. (Hello World!). Hexadecimal strings are enclosed in angle brack-
ets, e.g. <48656c6c6f20576f726c64210d0a>. Strings size is limited to 32kB in a 32-bit en-
vironment.

• Names - Names are used to name other objects. A name is defined by putting a forward-slash
in front of the sequence of characters making the name, e.g. /a_name. The name must be
unique.

• Arrays - Arrays are one-dimensional sequences of other objects. The array may consist of any
type of objects. Arrays are enclosed in square-brackets, e.g. [(Hello World!) 42 True ]. Arrays
may also contain other arrays.

• Dictionaries - Dictionaries are tables of key-value pairs. The keys are names and the values
can be any kind of object. Dictionary objects are the main building blocks of a PDF document.
They are commonly used to collect and tie together the attributes of a complex object, such
as a font or a page of the document.

• Streams - A stream object is, like a string, a sequence of bytes. The stream objects is however
not limited in size. Objects with large data sizes are therefor represented as steams, e.g.
images, scripts and pages. The data of a stream is placed between the starting keyword stream
and the ending keyword endstream. All streams must have a Length entry that indicated the
size of the stream in bytes. Streams may also be subjected to filters that compress or encode
the data within them. More on this in section 3.3

• The null object - The null object is simply NULL. It is returned when referencing no-existing
objects or empty dictionary entries.
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Objects may be labeled with a unique object identifier so that they can be referenced by an-
other object. A labeled object is called an indirect object. The object identifier consists of two
parts; the object number and the generation number.

The object number is a positive integer assigned to the object.

The generation number is a positive integer used only to show what revision number of the
object. In a newly created PDF file all generation numbers will be set to zero.

Together the object number and generation number uniquely identifies an indirect object.
Defining an indirect object is done in this manner:

7 0 obj

(Hello World)

endobj

This indirect object can now be referred to from any other object using the reference 7 0 R.
Like in the simplified example shown below where the object 4 0, which is a page, refers to the
content in object 7 0.

4 0 obj

<<

/Type /Page

/Parent 3 0 R

/MediaBox [0 0 612 792]

/Contents 7 0 R

...

>>

endobj

7 0 obj

...

(Hello World)

...

endobj
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3.3 Filters

As mentioned in the section above, streams may be subject to filters. Filters serve the purpose of
compressing the data, i.e. reducing its size, or encoding the data to a portable format. The use
of a filter must be included in the streams dictionary. More than one filter may also be applied to
the stream in cascade, the example below show a clear text stream object before and after being
encoded using both the /FlateDecode and /AsciiToHexDecode filters. A PDF reader will apply
the filters as specified from left to right in order to retrieve the original text.

6 0 obj

<</Length 44>>

stream

BT /F1 24 Tf 175 720 Td (Hello World!)Tj ET

endstream

endobj

6 0 obj

<<

/Length 44

/Filter /AsciiHexDecode /FlateDecode

>>

stream

789cd3ad020000d600a8

endstream

endobj

A multitude of filters are part of the PDF standard, both for compression and encoding. Some
filters have special purposes, e.g. some are specially created for images. Among the filters that
perform compression there are both lossless and lossy filters, i.e. when using lossy filters some
data/quality is lost due to the compression.

Table 1 gives an overview of the standard filters available for PDF documents, where the first
five are most relevant in the context of this paper.
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Name Description
ASCIIHexDecode Decodes data encoded in an ASCII hexadecimal representation,

reproducing the original binary data.
ASCII85Decode Decodes data encoded in an ASCII base-85 representation,

reproducing the original binary data.
LZWDecode Decompresses data encoded using the LZW (Lempel-Ziv-Welch)

adaptive compression method, reproducing the original text or binary data.
FlateDecode Decompresses data encoded using the zlib/deflate compression method,

reproducing the original text or binary data.
RunLengthDecode Decompresses data encoded using a byte-oriented run-length encoding

algorithm, reproducing the original text or binary data (typically monochrome
image data,or any data that contains frequent long runs of a single byte value).

CCITTFaxDecode Decompresses data encoded using the CCITT facsimile standard,
reproducing the original data (typically monochrome image data at 1 bit per pixel).

JBIG2Decode Decompresses data encoded using the JBIG2 standard, reproducing the original
monochrome (1 bit per pixel) image data (or an approximation of that data).

DCTDecode Decompresses data encoded using a DCT (discrete cosine transform) technique
based on the JPEG standard, reproducing image sample data that
approximates the original data.

JPXDecode Decompresses data encoded using the wavelet-based JPEG2000 standard,
reproducing the original image data.

Crypt Decrypts data encrypted by a security handler, reproducing the data as
it was before encryption.

Table 1: Standard PDF stream filters [5]

3.4 Malicious Use of PDF Documents

As already stated, PDF is the de-facto standard for document exchange. Virtually every personal
computer has a PDF reader installed, or the owner will simply have a hard time to participate
in society. Added with the fact that PDF is a highly powerful and flexible format, it is almost a
dream come true for an attacker.

In the following the most common methods of malicious PDF distribution will be discussed.
Following this will be a superficial look at some ways the exploits are actually implemented.

3.4.1 Distribution of Malicious PDF

According to [1] there are three main channels for distributing malicious PDF documents. These
are mass mailing, drive-by downloads and targeted attacks. These are all client-side attack meth-
ods and are discussed in general in section 2.1 ”Client-side attacks“.

Mass mailing is well suited for malicious PDF distribution since most people are accustomed to
receiving PDF attachments in e-mails. In a mass mailing scheme large spam campaigns are set
up to deliver e-mails containing malicious PDFs to a huge number of users. Social engineering
tricks are used to entice the receiver into opening the attached document. Often the contents of
such an e-mail shows an ingress style paragraph to a recent news event, with promise of the full
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story and exciting details inside the attached PDF document. Popular subjects include:

• E-mail from the government or a big company.

• Politics.

• Recent incident (Accidents, disasters, war).

• Controversial/sexual subjects.

Malicious PDFs sent in mass mailing campaigns will often contain embedded executable pay-
loads, which is extracted and executed when the PDF is opened in a vulnerable reader.

Due to the embedded feature of automatically opening PDF documents in most browsers, drive-
by downloads is also a popular channel for malicious PDF distribution. A user may not even notice
that a PDF has been opened on his computer when falling victim to a drive-by download.

As opposed to PDFs sent through mass mailing, a web-hosted PDF will usually be small and
not contain any embedded executables. Instead they contain small pieces of code that, after suc-
cessful exploitation, will download and execute malicious executables from the internet. Such a
scheme gives the attacker great flexibility, as he will be able to update the malicious code that is
downloaded at any time.

Targeted attacks are however where malicious PDFs fulfill its true potential. A targeted malicious
PDF is targeting an individual or an organization, and is specially crafted to be successful against
this target. The chance of success is boosted by carefully researching the target and planning the
attack. By gathering information on the target the social engineering content of the attack can
be made in such a way that the target is going to have high trust in the received PDF document.
Also the exploit can be chosen in such a way that it has a high probability of being successful on
the target system.

With targeted attacks there is often a highly motivated and resourceful organization responsi-
ble. Such threats may have access to zero-day exploits which will greatly increase the probability
of success. The number of targeted attacks is relatively low, and due to its sophistication and
stealth many are probably never reported as the victim is unaware of the compromise.
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Figure 5: Cyber attack on Norwegian Defence after Libya decision.

Figure 5 shows an example of a targeted attack against an organization. In this case the at-
tacker sent e-mails containing a malicious PDF to over 300 people working in the Norwegian
Defence. The contents of the e-mail was an ingress-style paragraph concerning extreme Islam,
and a promise of a detailed report in the attached PDF. The e-mail was signed by a fictive em-
ployee of a Norwegian government directorate. The malicious purpose of the malicious PDF is
not disclosed to public.

3.4.2 Exploit Implementation

New vulnerabilities in PDF readers and associated plugins and libraries emerges all the time,
and with most new vulnerabilities follows an exploit. Different kinds of exploits can be used in a
malicious PDF, and one single PDF may contain several exploits grouped together. In [1] PDF ex-
ploits are grouped into two distinct classes; JavaScript based and non-JavaScript based exploits.

Javascript based exploits are made possible through the JavaScript support in the PDF specifica-
tion. Attackers know to appreciate the power a scripting language like JavaScript brings to the
format. JavaScript is used to exploit vulnerabilities in the PDF JavaScript API and to fill the PDF
readers memory with malicious code, using a technique called heap spray1. A complete exploit
often consists of code that first heap sprays the readers memory with shellcode, and then call a
vulnerable function. This may result in the shellcode being executed.

According to [1] the majority of malicious PDFs today use JavaScript in one form or another.

Non-javascript based exploits are far more rare than the javascript based exploits. An alternative
to JavaScript is to use PDFs ability to embed Flash content. Such content may be used to exploit
vulnerabilities in the Flash engine, or to put shellcode in the heap of the reader. There also exist a

1Heap spray means to put a wanted sequence of bytes at a predetermined location in the memory of a target process
by having it allocate (large) blocks on the process’ heap memory and fill the bytes in these blocks with the wanted values.
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vulnerability in the way TIFF-images are handled, which can lead to code execution even without
a heap spray.

In addition to such very specific vulnerabilities, the Portable Document Format has many nice
features which can help the attacker in building a malicious PDF without the use of any vulner-
ability per se. At Black Hat Europe 2008 Eric Filiol et al. presented a paper [30] on this subject.
The features includes functionality to open other documents, open hyperlinks, change document
hierarchy placement, access resources outside the active document, execute applications, open
files, print documents, access remote resources, submit resources to remote and import data from
user. A deeper look into some of these features and their possible misuse follow:

• OpenAction - The OpenAction function lets the creator of a PDF document define actions to
trigger when the document is opened. The function does not do much by itself, but when
functions such as Launch or ActionClass area given as input to it things can get ugly. The
function is maliciously used to run exploits as soon as the PDF document is opened, giving
the victim no chance to stop it.

• AA - The AdditionalAction function works in a similar way as the OpenAction function. How-
ever, instead of triggering on the document being opened, it triggers on specific actions set
by the PDF creator. Such actions included triggering when a certain page is opened or closed,
when clicking certain areas, when mouse is over certain areas, when printing and so on.

• Action class - The Action class contains several functions that can be put inside an OpenAction
or AddidtionalAction function. There are Action Class functions for executing files, activating
hyperlinks, sending form data and much more. All these functions may aide the attacker in
creating a working malicious PDF. Today these threats are mitigated by most PDF readers by
showing the victim a confirmation box whenever an action is triggered. However, through
social engineering and the limited awareness of the general public this threat is still one to
reckon with.

Launch is a function from the Action class. It allows for execution of any file on the
target system, with optional arguments. Before confirmation boxes were implemented into
PDF readers this was the single most critical vulnerability in PDF.

SubmitForm is normally used for electronic forms. It allows the creator of the PDF to
send data from the form elements to a specified URL. This provides an excellent data channel
for an attacker to retrieve data from the target host.

ImportData lets a PDF import data into forms from an external file. This allows an at-
tacker to steal information from the victims computer. Used along with the SubmitForm func-
tion is provides all the functionality needed to build a spyware PDF.

Other functions may also pose a similar threat, for a more detailed discussion please refer to [30].
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3.5 Obfuscation of PDF Documents

Attackers use several methods to hide, or obfuscate, the malicious contents of a PDF document.
Such methods are possible due to the powerful and flexible nature of the PDF format. Espe-
cially the javascript often found in a malicious PDF document has vast amounts of obfuscation
methods.

Obfuscation is meant to throw off the analyst trying to analyze the malicious content, and
also to evade detection by signature intrusion detection systems or anti-virus solutions. The
techniques may work on their own, but often a combination is used to provide an effective
countermeasure against both detection mechanisms and human analysts. In [31], Leif Arne Sand
presents some common techniques which will be briefly discussed in the following.

3.5.1 Separating Malicious Code over Multiple Objects

As in any coding language also the malicious code of a PDF document can be spread among
several objects. The code is then made in such a way that it during execution reassembles it-
self into a complete code performing the desired actions [1]. This technique can be used both
by taking advantage of the ability to refer to indirect objects in PDF or by using custom code
spreading methods in a javascript embedded in the document. Spreading the code over multiple
objects will make the work of an analyst much harder and will throw of signature based IDS and
antivirus.

3.5.2 Applying Filters

By applying filters the author is able to encode and compress the streams of a PDF document.
Attackers can use this feature in order to evade detection by security software. If the software
does not support the filters used it will never even see the malicious code. Applying filters will
not evade a knowledgeable human analyst, but it will most certainly make his job more time
consuming.

3.5.3 White Space Randomization

Since JavaScript ignores whitespace at run-time, it is possible to insert as arbitrary amounts of
whitespace characters in the code [32]. While this will not fool the human analyst, signature
based detection mechanism may easily be thrown off. Any detection mechanism relying on the
hash sum of the JavaScript will also be fooled, as this will change when whitespace characters
are inserted.

3.5.4 Comment Randomization

Comments are also ignored by the JavaScript parser at run-time. This means that an attacker
may insert or edit comments in the source code to change it’s hash sum. This will however only
affect detection mechanisms relying on the hash sum. The method has no effect on the human
analyst.

3.5.5 Variable Name Randomization

Since one can give variables almost any name one would want, it is possible for the attacker to
change variable names. This may fool signature based detection mechanisms looking for specific
variable names, but will have little effect on the human analyst.
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3.5.6 String Obfuscation

The goal of string obfuscation is to change strings so that they seem meaningless and unreadable
to the human analyst. This can be achieved in several ways. The attacker may split the string into
several substrings, which are concatenated at run-time. Also the strings may be encoded using
schemes such as hexadecimal, unicode, base64 and so on. Finally the attacker may obfuscate
the string using an arbitrary function on it, like XOR or substitutions. A deobfuscation function
would then be executed at run-time, revealing the true string just before it is used. This method
has a huge effect on the human analyst, which will have to spend a lot of time revealing the
true content of the strings. The method is also effective for hiding for example shellcode from
signature based IDS.

3.5.7 Function Name Obfuscation

This method is applied to hide the use of standard functions, such as the often used unescape()
and eval(). Making pointers for such functions, using arbitrary names, will make a human analyst
job harder and will bypass signature based detection mechanisms looking for specific functions.

3.5.8 Integer Obfuscation

Integer obfuscation aims at representing numbers in a set of different ways. For instance if the
malicious code uses a suspicious memory address e.g. 0x08000000, detection mechanisms may
check for this address in the code. Using integer obfuscation the attacker may instead represent
0x08000000 as 16777216*8.

3.5.9 Block Randomization
Block randomization involves changing the structure of the JavaScript in such a way that it
functions in the same way, but has a different syntax. The example below shows three different
ways of writing a loop that performs exactly the same function [32].

for (i = 0; i < 100; i++) { ...do this... }

while (i < 100) {i++; ...do this...}

do { i++; ...do this... } while (i < 100)
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4 Machine Learning

In psychology learning is often defined as a relatively permanent change of behavior that is the
result of an experience. This description of human learning, called natural learning, can easily be
transferred to machine learning. In machine learning it is the machine (algorithm or program)
that changes its behavior based on some experience. This experience can be trial and error,
training data or other expert input.
Tom Mitchell defines machine learning this way [33]:

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

As we can see, this definition closely relates to that of psychology.

In this thesis the task T at hand is to classify PDF documents as malicious or benign. The
experience E is given to the classifier in form of pre-labelled PDF documents from both classes.
The performance P will hopefully increase with each new data input and is measured using
several measures.

The term Machine Learning is closely related to, and often not differentiated from several
other related terms. These are term like Data Mining (DM), Knowledge Discovery in Databases
(KDD), Intelligent Data Analysis (IDA), Artificial Intelligence (AI) and Pattern Recognition. These
are all names describing for a large part the same concepts, but with slight variations. The dif-
ferent terms have appeared in different communities, and some have catched on better than
others.
Machine Learning is founded on concepts from a large variety of research fields like: Statistics, AI,
Philosophy, Information Theory, Biology, Computational Complexity, Control Theory and surely
many more [34].

4.1 Classification Using Machine Learning

The purpose of machine learning is to enable the algorithmic problem solving that requires spe-
cial knowledge [35]. As the task we want computers to perform are getting ever more complex,
we are reaching a point where it is impossible to program the computers to perform these tasks
using static programs. With machine learning the computer will learn how to perform the task,
and improve its ability to do so with each new experience.

Machine learning contains many methods that are differentiated by how the obtained knowl-
edge is used. Some of the algorithms are supervised, like classification and regression. Some are
unsupervised, like clustering. Supervised learning means that there are some predefined output
targets that the input object variables shall map onto. In the following, classification methods are
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briefly discussed.

In classification the goal of the machine learning algorithm is to assign an object, described
with a number of features, into the correct class. The features are independent observable vari-
ables, discrete or continuous, like number of legs, number of eyes, length and temperature. While
the classes are dependent unobservable discrete variables, like human, animal, insect or alien.
Properly trained the machine will be able to put the object with two legs, two eyes, 180cm length
and temperature of 37,5 degrees into the human class. While the object with three legs, five eyes,
30 cm length and temperature of 10 degrees is correctly put in the alien class. The algorithm used
to classify the objects is called the classifier. There are several well known classifiers:

• Decision trees and rules

• Bayesian classifier

• Nearest neighbor classifiers

• Discriminant functions

• Support Vector Machines

• Artificial Neural Networks

• Hybrid algorithms

In this thesis we will be using a classifier in order to classify PDF documents as benign or
malicious. The next section will go on to explain the process of classification.

4.1.1 The Classification Process

We can describe a general high level process that is followed for all classification problems. The
process includes a training phase and a testing/operational phase, as depicted in figure 6.
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processing

Feature 
Extraction

Post-
processing
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Figure 6: The classification process
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The Training Phase

The objective of the training phase is to train a classifier, i.e. give it experience E, so that it can
perform its classification task T with a good performance P. As input to this phase we have the
training input data. This input data may be of many forms. In the case of this project it is in the
form of PDF documents, other examples may be images, comma separated vector files, audio,
or just about anything that you can digitize and feed into a computer. For a classifiers training
phase the input data will need to be labeled with the correct output class.

The raw input data may be in a form which is not suitable to extract features from directly,
therefore the first step in the training phase is pre-processing. In the pre-processing step the goal
is to clean up the data, and get it into a form which is suitable for feature extraction. Examples
of pre-processing tasks include noise filtering, decoding, decompression, removal of excess data
and so on.

The next step is the feature extraction. In this step the input data is searched for a given set
of features, and when such a feature is found it is either counted or measured. For example the
existence of the word ”Hello“ in a text may be counted or the distance between two objects in
an image may be measured. The output of the feature extraction step is a feature vector, a list of
features with its corresponding values.

The third step is the post-processing step. This is where such tasks as feature selection and
normalization is performed. Such tasks are performed on the input data in order to make it
better suited for the learning algorithm (normalization) and to make sure that only the relevant
data is fed into it (feature selection).

Finally the data is fed into the learning algorithm, where for every new piece of data the
classifier gains a little experience and hopefully performs better at the classification. In this step
we can say that the classifier learns what kind of input belongs to class A and what type of input
belongs to class B. As an example the task of the classifier in this project is to classify the input
PDF documents as either benign or malicious. For every PDF it processes in the training phase it
learns more about what a benign PDF looks like and what a malicious PDF looks like, and thus
will improve its performance as a classifier in the next phase.

The output of the learning step is a trained classifier that will be used in the testing/opera-
tional phase.

The Testing/Operational Phase

The objective of the testing phase is to classify every new piece of input data in the correct output
class. The input data needs to be labeled and in the same form as in the training phase, however
the input labels will no longer be provided to the classifiers, as it is the task of the classifier to
predict the class of the new data.

Just as in the training phase the raw input data needs to be pre-processed, the same features
need to be extracted and the same post-processing must be performed. If the same steps are not
performed in the operational phase as in the training phase the classifier will not perform as
intended or may not work at all.

In the classification step the trained classifier processes the input feature vector and based
on its experience from the training predicts its output class label. The predicted class label is
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then compared to the actual labels of the input data. Several performance measures may then
be calculated to assess the performance of the classifier. Performance measures are discussed in
section 4.1.2.

If the performance of the classifier is satisfactory it can be put to operational use. The opera-
tional phase is exactly the same as the testing phase, except that there no longer exists any labels.
The classifier now has to perform its true task of classifying data that has never been classified
before.

4.1.2 Measuring Performance

When a classifier is trained for a task its performance at that task needs to be measures in order to
determine if it can be of any use. In this section the measurement strategy called cross-validation
and some of the more frequently used performance measures as described in [35] will be dis-
cussed.

Cross-validation

As we have seen, when we want to test a classifiers performance we need to have one labeled
dataset for training and one labeled dataset for testing. The naïve way of measuring performance
would then be to split our complete dataset in half, and use one half for training and the other
for testing.

However, labeled data samples is a scarce resource and we really would want to use all our
samples for both training and testing. Then again, training and testing using the same dataset is
not a valid solution and will provide overly good performance results.

To solve this dilemma we use a well known scientific method called cross-validation, or more
precisely k-fold cross-validation. In k-fold cross-validation we split our complete dataset into k
subsets. Training is then performed on k-1 subsets, and testing is performed on the remaining
subset. The training and testing is re-iterated for k iterations, each time testing with a different
subset. For each iteration performance measures are calculated and after all k iterations they are
averaged to yield the overall value for the performance measures.[35]

Typically k=10 is chosen, which means that the dataset is split into 10 subsets. For each
iteration 9 subsets (90% of the samples) are used for training and the last one (10% of the
samples) is used for testing.

Performance Measures

Sensitivity is a performance measure for two-class problems only. It is defined as the relative fre-
quency of correctly classified positive samples. In information security this is often referred to as
the true positive rate.

Sens =
TP

TP + FN
(4.1)
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Specificity is also a performance measure for two-class problems only. It is defined as the relative
frequency of correctly classified negative samples. In information security this is often referred
to as the true negative rate.

Spec =
TN

TN+ FP
(4.2)

Accuracy is also called the Success Rate. It is defined as the number of correctly classified samples
(ncorr) over the total number of samples (n).

Acc =
ncorr

n
(4.3)

For a two-class problem the accuracy may also be written:

Acc =
nTP+TN

n
(4.4)

Balanced accuracy or balanced success rate takes into account any differences in the number of
samples belonging to each class in the test data (unbalanced dataset). It is defined as the number
of correctly classified samples from class 1 (ncorrc1

) over the total number of samples in class
1 (nc1), plus the number of correctly classified samples from class 2 (ncorrc2

) over the total
number of samples i class 2 (nc2), divided by 2.

BalAcc = (
ncorrc1

nc1
+
ncorrc2

nc2
)/2 (4.5)

Confusion matrix is a matrix showing the numbers of TP,TN,FP and FN in a very informative
way. From the confusion matrix it is easy to read how well the classifier has done, and what it
struggles with.

Given labels
Benign Malicious

Predicted labels
Benign TN FN

Malicious FP TP

Table 2: Confusion matrix

Receiver Operating Characteristic (ROC) curves show the relationship between the classifiers sen-
sitivity and specificity. On the horizontal axis the false positive rate (1-specificity) is represented,
on the vertical axis the true positive rate (sensitivity) is represented. A classifier is then tuned
by varying the thresholds for the values on the axes. The ideal classifier is the one where the
true positive rate is 1 for all values of the false positive rate, although this is never achieved for
non-trivial problems. Instead the curve is optimized for the problem at hand, depending on what
costs more of a false positive or a false negative.
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Figure 7: ROC curves

The quality of the classifier is reflected in the Area under the ROC curve (AUC). The quality can
roughly be divided into:

• 0.9-1 - Excellent

• 0.8-0.9 - Good

• 0.7-0.8 - Fair

• 0.6-0.7 - Poor

• 0.5 - 0.6 - Useless

Stability of a classification algorithm is the degree to which it generates repeatable results, given
different batches of data from the same process [36]. In [36] Peter Turney proposes using m
x 2-fold cross-validation for testing stability, observing the agreement of the learned models.
Agreement is defined as:

The agreement of f1 and f2 is defined to be PDA(f1(a) = f2(a)), the probability
that f1 and f2 assign the random variable to the same class.

We test the agreement of f1 and f2 by observing that samples are predicted to be in the same
classes (accuracy) over m re-iterations of the 2-fold cross-validation.

4.1.3 No Free Lunch Theorem

In [37] Wolpert and Macready states that:

For any algorithm, any elevated performance over one class of problems is offset
by performance over another class.

Essentially this means that even though one classifier proves to be best for one learning problem,
it is most surely not best for all learning problems. That is, there is no ”best“ classifier in a
general sense. For us it means that we have to test the performance over several classifiers, since
good performance of one classifier using selected features, and target, might not mean good
performance for all classifiers.
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4.2 Features and Feature Selection

Machine learning algorithms take what we call ”feature vectors“ as input. A feature vector x
contains a number of features xi. It can be represented in several forms, such as the “vector form”
of the “feature-value” form. In vector form feature vectors describing fruits may look something
like this:

round,orange,156,orange

round,green,85,apple

While in feature-value form the vectors may look something like this:

shape:round,color:orange,weight:156,class:orange

shape:round,color:green,weight:85,class:apple

The exact syntax for the vectors will vary for each implementation of a machine learning
method.

The values of the features may be of three types [38]:

• Real-valued numbers. E.g. weight, height, length, etc.

• Discrete numbers. E.g. count, frequency, ranks, etc.

• Categorical values. E.g. color:{red,white,blue,green}, shape:{round, square, oval}, etc.

In the examples above we have also included the class label (apple/orange) for the feature
vector. This is known as the output target and is used for training the machine learning algorithm
and testing its performance.

4.2.1 Feature Extraction

To create the feature vectors one first needs to decide what features are relevant to the learn-
ing task and then do the required measurements to determine the values of the features on a
sufficient number of samples.

By sample we mean the objects that we want the algorithm to predict something about. For
instance the fruits of the above example, or the PDF files that we will be working with in this
thesis. The sufficient number of samples will vary from one case to the next, and estimating the
performance gain of adding more samples is a difficult task. One way is to study classification
accuracy as a function of training set size is by building empirical scaling models called learning
curves [39]. Learning curves estimate the empirical error rate as a function of training set size
for a given classifier and dataset. Generally we can say that a larger set of samples is better, as
long as it does not have severe adverse effects on the computational resources needed to train
the algorithm. Ideally the samples should also be evenly distributed over all the output classes,
however this is not always achievable.

What features are relevant is often based on “expert knowledge”, that is the knowledge of
the human experts working in the field and performing the task at hand. This expert input may
serve as a starting point before doing further analysis on the performance of the features and
automatic feature selection (see next section).
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To measure the values of the features any appropriate tool can be used, from manual mea-
surements using a ruler or a tape measure, to sophisticated and automated measurements using
computers with specialized applications.

4.2.2 Feature Selection

Feature selection simply means to select the relevant features for the learning task at hand. Fea-
ture selection is done manually and the quality of selected features depends strongly on expert
knowledge. However, humans may fail and introduce features that have no importance, or even
has adverse effects, on the learning task. By removing irrelevant and redundant features, we can
improve classification performance and reduce the computational complexity. For automatic fea-
ture selection, the wrapper and the filter models from machine learning are frequently applied.
The wrapper model assesses the selected features by learning algorithm’s performance. There-
fore, the wrapper method requires a lot of time and computational resources to find the best
feature subsets. The filter model considers statistical characteristics of a data set directly without
involving any learning algorithm [40].

Several algorithms exist for automatically selecting features, in this thesis we will be using
two filter model algorithms: Golub-score and Generic Feature Selection

Golub-score Filter Method

The Golub-score algorithm uses the statistical measure “golub-score” to rank the features by their
relevance to the learning task. The Golub-score can be expressed as:

F(xi) =

∣∣∣∣µ+i − µ−i
σ+i + σ−i

∣∣∣∣ (4.6)

Where xi denotes the i’th feature. µ+i and σ+i denotes the mean and standard deviation for
the i’th feature over all samples belonging to the class +. And µ−i and σ−i denotes the mean and
standard deviation for the i’th feature over all samples belonging to the class -.
F(xi) will give the highest score to those features whose expression levels differ most on av-

erage in the two classes and also favors those with small deviations in scores in the respective
class. We then chose to keep the features with the highest score [41].
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Generic Feature selection

Generic feature selection (GeFS) is a fusion of the correlation feature-selection (CFS) measure and
the minimal-redundancy-maximal-relevance (mRMR) measure as presented by Nguyen et al. in
[40].

A generic feature-selection measure used in the filter model is a function GeFS(x), which has
the following form with x = (x1, . . . , xn):

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n

i=1 Bi(x)xi
, x ∈ {0, 1}n (4.7)

In this definition, binary values of the variable xi indicate the appearance (xi = 1) or the absence
(xi = 0) of the feature fi; a0, b0 are constants; Ai(x), Bi(x) are linear functions of variables
x1, . . . , xn.

The feature selection problem is to find x ∈ {0, 1}n that maximizes the function GeFS(x).

max
x∈{0,1}n

GeFS(x) =
a0 +

∑n
i=1Ai(x)xi

b0 +
∑n

i=1 Bi(x)xi
(4.8)

There are several feature selection measures, which can be represented by equation 4.7, such
as the correlation-feature-selection (CFS) measure, the minimal-redundancy-maximal-relevance
(mRMR) measure and the Mahalanobis distance.

Solving equation 4.8 is based on solving a mixed 0-1 linear programming problem (M01LP),
the solution process is very complex and is out of the scope of this paper.

4.2.3 The Ugly Duckling Theorem

The “Ugly Duckling Theorem” states[42]:

Given that we use a finite set of predicates that enables us to distinguish any
two patterns under consideration, the number of predicates shared by any two such
patterns is constant and independent of the choice of those patterns. Furthermore, if
pattern similarity is based on the total number of predicates shared by two patterns,
then any two patterns are “equally similar.”

To put it more simply: There is no problem-independent, privileged or “best” set of features, or
feature attributes.
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4.3 Classifiers Used in this Thesis

In this thesis we will be testing several different classifiers, both in order to select the optimal
classifier for the task at hand and to deal with the ”No free lunch“ theorem. In this section
the classifiers BayesNet, C4.5, Multilayer Perceptron and RBFNetwork will be briefly presented,
while Support Vector Machines will be presented in greater detail as this is the classifier that was
found to be best for the classification task of this thesis study, and is used throughout the paper.
All classifiers described here are implemented in the Weka machine learning framework [43],
which will be used in testing later on, and some of the classifier descriptions have been found in
the Weka documentation.

4.3.1 BayesNet

Bayesian networks are directed acyclic graphs whose nodes represent random variables in the
Bayesian sense: they may be observable quantities, latent variables, unknown parameters or
hypotheses. Edges represent conditional dependencies; nodes which are not connected represent
variables which are conditionally independent of each other. Each node is associated with a
probability function that takes as input a particular set of values for the node’s parent variables
and gives the probability of the variable represented by the node.[44]

4.3.2 C4.5

J48 [45] implements Ross Quinlan’s C4.5 algorithm [46] for generating a pruned or unpruned
C4.5 decision tree. J48 builds decision trees from a set of labeled training data using the concept
of information entropy. It uses the fact that each feature of the data can be used to make a
decision by splitting the data into smaller subsets. J48 examines the normalized information gain
(difference in entropy) that results from choosing a feature for splitting the data. To make the
decision, the feature with the highest normalized information gain is used. Then the algorithm
recurs on the smaller subsets. The splitting procedure stops if all instances in a subset belong to
the same class. Then a leaf node is created in the decision tree telling to choose that class. But
it can also happen that none of the features give any information gain. In this case J48 creates a
decision node higher up in the tree using the expected value of the class.

4.3.3 Multilayer Perceptron

The Multilayer Perceptron is an example of an artificial neural network that is used extensively
for the solution of a number of different problems, including pattern recognition and interpola-
tion. A Multilayer Perceptron consists of multiple layers of nodes in a directed graph, with each
layer fully connected to the next one. Except for the input nodes, each node is a neuron (or pro-
cessing element) with a nonlinear activation function. Multilayer Perceptron utilizes a supervised
learning technique called back propagation for training the network.[47]

4.3.4 RBF Network

A radial basis function network is an artificial neural network that uses radial basis functions
as activation functions. It is a linear combination of radial basis functions. Radial basis function
(RBF) networks typically have three layers: an input layer, a hidden layer with a non-linear RBF
activation function and a linear output layer.[48]
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4.3.5 Support Vector Machines

The Support Vector Machine (SVM) is a state-of-the-art classifier introduced in 1992 by Boser,
Guyon, and Vapnik [49]. The SVM classifier is very popular due to its high accuracy and ability
to handle datasets of very high dimensionality. As SVM is a kernel method, it only relies on
dot-products of the input data which are in turn replaced by kernel functions. The advantage of
such functions is that it allows non-linear decision boundaries using methods designed for linear
classifiers, and gives the ability to handle data with no fixed dimensionality limit. [4]

SVMs can be used to solve two-class learning problems. That means it is used to decide which
of two classes an input sample belongs to. The classes are generally denominated 1 (positive)
and -1 (negative). The goal of the SVM classifier is to find the optimal boundary between re-
gions classified as positive and negative, this boundary is called the decision boundary of the
classifier. Figure 8 shows a trivial learning problem for separating the red and blue class in a
two-dimensional space. Many decision boundaries separating the two classes exist, represented
as red lines. In three-dimensional space the decision boundary becomes a plane, and in all dimen-
sions above this it becomes a hyperplane. Figure 8 show multiple possible decision boundaries
for the problem, however only one is the optimal decision boundary. The optimal decision is the
one that is equally distant from the support vectors of both classes.

Figure 8: SVM decision boundaries

The support vectors are the vectors (data points) that are nearest to the decision boundary,
they are called support vectors because if any of them are removed the decision boundary will
change. Removing any of the other learning examples will not influence the decision boundary.
The distance from the decision boundary to the support vectors is called the margin. Hence,
finding the optimal decision boundary is a question of maximizing the margin. The decision
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boundary, support vectors and margin are illustrated in figure 9.

Figure 9: SVM concepts [4]

In this master thesis we use a Gaussian kernel with our SVM. The Gaussian kernel has two
values that need to be tweaked for optimal performance, the "inverse-width parameter γ and
"the penalty value” or “soft-margin constant” C.

For a large value of C a large penalty is assigned to errors/margin errors. This is seen in
the left panel of figure 10, where the two points closest to the hyperplane affect its orientation,
resulting in a hyperplane that comes close to several other data points. When C is decreased,
those points become margin errors; the hyperplane’s orientation is changed, providing a much
larger margin for the rest of the data [4].

As seen from the examples in figure 11 the γ parameter of the Gaussian kernel determines
the flexibility of the resulting SVM in fitting the data. If this complexity parameter is too large,
overfitting will occur (as seen in the bottom panels in the figure) [4].
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Figure 10: SVM kernel soft-margin [4]

Figure 11: SVM kernel inverse-width [4]

35





Detecting malicious PDF documents

5 Proposed Method and Experimental Design

In this chapter we will first present the proposed IDS solution and all its building blocks. Here we
also propose the experiments needed to gain the required knowledge to build the IDS. We then
look at some related work to the experiments we propose. Then we move on to the experimental
design for the proposed experiments. All experiments will be described in detail, and evaluation
criteria will be set.

Figure 12: The proposed IDS solution
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5.1 Proposed Method

This thesis proposes an IDS capable of detecting malicious PDFs that are transferred over a
network. Figure 12 shows a conceptual overview of the proposed solution. In this thesis we will
focus on gaining the knowledge needed to build such an IDS. That means that the end result
only will serve as a prototype, and not a solution ready for operational use. To create a fully
operational IDS will require a lot of engineering, which is not a goal for this master thesis, and
will thus be part of the future work.

In figure 12 the main tasks of this thesis is indicated with red boxes. This is where knowledge
has to be gained in order to create the system, and includes feature extraction, training and
classification. The green boxes indicate engineering tasks that need to be solved in order to do
the research. These tasks are session extraction and PDF extraction. The blue box, presentation,
indicates an engineering task and feature that will not be implemented in this thesis.

In the following we will take a closer look at each of the building blocks and explain how they
are solved or what research we need to do in order to solve them.

5.1.1 The Monitored Network

The monitored network could be any network, from a local office network to the internet con-
nection of a large business. Network traffic can be captured using a tap-box, a monitor port on
a switch or by placing a sensor in-line. The important part is to do the capture at a location that
all the traffic that needs to be inspected will pass through, typically on a core switch or at the
internet gateway.

5.1.2 Session Extraction

Session extraction is performed on every session where a PDF file is downloaded. This task is
performed using SNORT, u2boat [23] and tcpflow [50]. The task of SNORT is to capture the
entire session where a PDF file has been transferred and to store alert metadata for each stored
session. In our setup SNORT v.2.9.1 was used and configured to log output in the unified2 format.
To instruct SNORT to capture all sessions with PDF transfer, a new rule was created:

pdf tcp any any <> any any (msg:"PDF detected"; flow:from_server,established; \

file_data; content:"%PDF-"; fast_pattern; tag:session,0,packets,60,seconds; \

sid:2000010;)

• pdf tells SNORT to perform the custom action ”pdf“ whenever this rule is triggered.

• tcp tells SNORT to only check this rule against tcp sessions.

• any any <> any any tells snort to check this rule against all source and destination addresses
in any direction to or from any port.

• msg:"PDF detected"; gives a description of the rule for the human operator.

• flow:from_server,established; tells SNORT to only check established connections, i.e. TCP-
handshake completed.
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• file_data; will in this case tell SNORT to only look in the unchunked and uncompressed
payload of HTTP or SMTP sessions.

• content:"%PDF-"; tells SNORT to look for the string ”%PDF-“ in the payload, which we saw in
section 3 marks the start of a PDF document.

• fast_pattern; tells SNORT to use its fast pattern matching algorithm.

• tag:session,0,packets,60,seconds; tells SNORT to record the session for 60 seconds, so that we
get the entire PDF document.

• sid:2000010; assigns a signature identifier to the rule.

To create the custom action type ”pdf“ some lines where added to the SNORT configuration:

ruletype pdf {

type alert

output alert_fast: pdf.alert

}

This makes sure that every time a PDF is detected an alert is logged in a text file along with some
metadata in this manner:

09/27-09:51:43.894986 [**] [1:2000010:0] PDF detected [**] \

[Priority: 0] {TCP} 10.0.0.2:80 -> 10.0.0.4:33897

Now we use ”u2boat“ to convert the unified2 log file with the correct timestamp into a pcap
file. From the pcap file we extract the correct session using tcpflow and the involved addresses
and ports. E.g. ”tcpflow -r out.pcap ’src host 10.0.0.2 and dst port 33897’“. This yields exactly the
session we are looking for and only the traffic going in the direction that the PDF document is
sent. However, the application layer headers are still remaining in the file, and we therefore still
need to extract only the PDF itself.

5.1.3 PDF Extraction

To be able to process the PDFs we need to remove all header data that is not part of the document
format. This is done using our own flow2pdf.py-script1. It simply reads the output from tcpflow,
searches for the ”%PDF-“ string marking the start of the PDF document, and removes everything
before that marker. This yields the PDF document in its original form, ready to be processed.

5.1.4 Feature Extraction

To extract the needed features from the PDF document we have created the pdfextract.py-script2.
This script uses the PDF-parser found in the ”jsunpack-n“-tool [51] to parse and decode/decom-
press the PDF documents. Details on feature extraction are found in section 5.3.2.

Research is needed to find out which features are significant and relevant to extract for clas-
sifying PDF documents, experiments on feature selection will thus need to be conducted to gain

1See appendix A.8
2See appendix A.3
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this knowledge. This is the motivation for ”Experiment 1 - Feature and classifier selection“, found
in section 5.3.3.

5.1.5 Classification

Classification will be done using a machine learning classification algorithm. Several pieces of
knowledge need to be researched to complete this task. The best suited classifier needs to be
found, however it is not feasible to test all. Therefore a small selection is tested in ”Experiment
1: Feature and classifier selection“, found in section 5.3.3. The selected classifier then needs to be
optimized for the best possible performance. This is done in ”Experiment 2.1: Classifier Optimal-
ization“, found in section 5.3.4. Next we need to test the classifier for stability. This is performed
in ”Experiment 2.2: Classifier Stability“, found in section 5.3.4. We also design an experiment
to test the generalization abilities of the classifier, i.e. its ability to classify samples that are not
part of the training dataset. This is done in ”Experiment 2.3: Classifier Generalization“, found in
section 5.3.4. And finally we wish to test the classifier in a real-world setting, to gain hopefully
an indication of how well the proposed solution will function in operational use. We therefore
set up “Experiment 3: Real-world test”, found in section 5.3.5.

5.1.6 Training

Any classifier is dependent on a good dataset for training. In order to conduct our research we
need to collect such a dataset. We set up this as “Task 1: Collect dataset” and present it in section
5.3.1.

5.1.7 Presentation

To be a useful tool the solution will need to alert when a malicious PDF is detected and present
the alert along with relevant metadata to the IDS operator. Preferably this should be done in
a graphical user interface. The detection process itself must be fully automatic and require no
operator interaction. Other facilities that can ease the burden of the operator should also be in
place:

• Severity indication to help the operator prioritize alerts when time is limited.

• Facilities for linking notes to an event for other operators.

• Automatic checks locally and online to see it this file has been seen and analyzed earlier, in
order to prevent duplicate work.

All of the above are engineering tasks that produces no new knowledge and takes very much
time to implement. It is therefore deemed to be out of the scope of this thesis.
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5.2 Related Work

This section provides insight to some of the work which we are basing the proposed method and
the experimental design on.

5.2.1 Proposed Method

In [52] Alex Kirk of Sourcefire presents a plugin for SNORT IDS called Razorback that works
in a very similar manner as the proposed IDS. The concept of Razorback is to extract data from
the network to perform heavier offline evaluation of the content. However, the project is poorly
documented and the detection method it self seems only in the starting pit.

5.2.2 Expert Knowledge

Notable recent work in the field of malicious PDF analysis has been performed by Didier Stevens3.
Stevens has made some tools for analyzing PDF files, most relevant is the PDFiD tool[15]. This
tool looks for and enumerates 18 different keywords, or features, found in the PDF document.
These features should be familiar from the PDF standard presented in Chapter 3:

• obj
• endobj
• stream
• endstream
• xref
• trailer
• startxref
• /Page
• /Encrypt
• /ObjStm
• /JS
• /JavaScript
• /AA
• /OpenAction
• /AcroForm
• /JBIG2Decode
• /RichMedia
• /Colors with a value larger than 224

According to Stevens paper [53] the most important features for detecting malicious PDFs are:

/Page - which gives the number of pages in the PDF.
Most malicious PDFs have only one page.

/JS, /JavaScript - which indicates the use of javascript in the PDF.

3http://blog.didierstevens.com/
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Most malicious PDFs use javascript to exploit Java vulnerabilities or to create heap sprays.

/RichMedia - which indicates the use of Flash.
Many malicious PDFs use Flash to exploit Flash vulnerabilities.

/AA, /OpenAction, /AcroForm - which indicates that an automatic action is to be performed.
Often used to execute javascript without user interaction.

/JBIG2Decode,/Colors with a value larger than 224 - which indicates the use of vulnerable
filters.

In [6], Sophos researcher Paul Baccas provides findings that support the use of several of the
features used in PDFiD. Experiments performed on large datasets of benign and malicious PDFs
reveal these interesting statistics:

Javascript

Out of 64.616 PDFs that contained javascript, 63.523 were malicious. Only 1.093 were benign.
This means that approximately 98% of the PDFs containing javascript were malicious. This means
that the presence of javascript in a PDF document is a good indicator of maliciousness. However,
malicious PDFs can be made without the use of javascript, and PDFs with javascript can certainly
be benign.

Object and Stream Mismatch

Out of 10.321 PDFs that had a mismatch between the number of obj and endobj statements,
8.685 were malicious. Only 1.636 were benign. This means that approximately 84% of the PDFs
containing such a mismatch were malicious. Thus object mismatch in PDFs can serve as an
indicator of maliciousness.

Out of 2.296 PDFs that had a mismatch between the number of stream and endstream state-
ments, 1.585 were malicious. Only 711 were benign. This means that approximately 69% of the
PDFs containing such a mismatch were malicious. Thus stream mismatch in PDFs can also serve
as an indicator of maliciousness.

Cross-reference Tables

Out of 5.506 PDFs that had no startxref statement, 5.373 were malicious. Only 133 where benign.
This means that approximately 97% of the PDFs lacking a startxref table were malicious. This
means that the lack of a startxref table in PDFs is a good indicator of maliciousness.

It is also shown that invalid cross reference tables could be a good indicator, however checking
the validity of reference tables is beyond the scope of this paper and would be to time consum-
ing to implement and would take up a lot of computational resources as well. Thus it is not
implemented.

Filters

The statistics for the use of filters is somewhat indecisive, but shows that some encodings are
more prevalent in malicious PDFs than others. Out of 178 PDFs using the RichMedia filter all
178 were malicious. Out of 689 PDFs using the JBIG2Decode filter, 525 were malicious. The use
of such filters could thus be an indicator of maliciousness. Also the ASCIIHexDecode filter shows
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interesting statistics. Out of 6.451 PDFs using this filter, 6.404 were malicious.

5.2.3 N-gram feature vector

In [54] the ANAGRAM IDS using n-grams is proposed. In the training phase ANAGRAM collects
n-grams from the application layer of incoming data packets and maps this to a Bloom filter. In
operation ANAGRAM maps the n-grams from incoming packets to the Bloom filter and reports
an anomaly if a bit is 0 in one of the bit-positions of the filter that the n-gram maps to. The paper
also suggest how to avoid training the system with malicious traffic and also methods to avoid
evasion through mimicry attacks.

A novel PhD thesis written by Konrad Rieck [19] holds promising results using n-grams in in-
trusion detection. The paper gives several important contributions. First, the paper proposes
a method for extracting application layer network traffic payload into feature vectors using
n-grams. Second the paper explores the use of kernels to enable efficient learning in high-
dimensional data. Third, the paper proposes learning methods based on one-class SVM and
neighborhoods. A prototype system, SANDY, is built and evaluated. The system is trained and
evaluated using real network traffic and injected network attacks. SANDY shows very promising
results considering true-positive and false-negative rates.

Both these papers will provide some input on how to extract and manipulate the n-gram
feature vector, as well as many other relevant techniques.

5.2.4 Other tools for PDF analysis

In [55] the tool peepdf is presented. It has similar capabilities as the PDFiD tool for analyzing,
decoding and looking for suspicious elements. In addition it has functionalities for creating your
own (malicious) PDF files.

PDF X-Ray4 is a online scanning tool for PDFs. It employs several different techniques to analyze
uploaded PDF documents. It compares various hashes of the uploaded PDF to a database of
malicious PDF hashes, it checks if the PDF is related to any exploit packs, it scans the PDF file
using anti virus products, it looks for suspicious objects and it looks for particularity large objects
(>650bytes).

4https://www.pdfxray.com/
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5.3 Experimental Design

We now go on to describe the design of the experiments proposed in section 5.1.

5.3.1 Task 1: Collect Dataset

For training and testing the classifier a relatively large amount of malicious and benign PDFs
needs to be collected. The aim was to collect at least 5000 benign and 5000 malicious PDF
documents.

The benign PDFs was collected from the web using a webcrawler. Diversity in the data was
ensured by downloading from different locations with different areas of interest.

Several approaches were tested, including the open-source webcrawlers Heretrix5 and HT-
Track6. However these approaches proved to require heavy configuration and was abandoned.
In stead a simple approach using the standard Linux ”wget“ command was used. Wget provides
limited webcrawling functionality, satisfactory for the use in this project. The Alexa top 1 mil-
lion CSV-file7 was given as a seed, and wget was instructed to only download files that matched
the filter ”*.pdf“. This filter makes sure that only PDF files are downloaded. By using the Alexa
top 1 million sites it is assumed that the diversity in sites will also yield a good diversity in the
downloaded files.

Wget was executed using the following command:

wget -r -N -l 5 ---no-remove-listing -i top-1m_url -A *.pdf

-w 3 --waitretry=14 --random-wait --referer="www.google.com"

--user-agent="Mozilla/5.0 (compatible;)" --limit-rate=80k

The crawl took several weeks, and in the end a couple of thousand PDFs were collected
through this approach. However, a set of 6052 benign PDF files were also provided by Websense8

an thus took us beyond the goal of 5000 benign PDFs.
When collecting data from third party webpages there is of course no guarantee that some

data may be malicious. The existence of malicious data in the benign dataset will have adverse
effects on the planned experiments. To reduce the risk of this happening the following steps have
been taken.

All files in the benign corpus was scanned using Trend Micro, MS Security Essentials and AVG
Free. This was done using the following setup.

• A virtual machine was created in VMware for each of the three antivirus products.

• A copy of the benign corpus was then put into each VM and scanned.

• All files reported as malicious was deleted from the corpus.

From all benign files collected none was reported as malicious.

The collection of malicious PDFs was mainly done through personal connections and help-
ful members of the information security community. Especially Websense and abuse.ch made

5http://crawler.archive.org/
6http://www.httrack.com/
7http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
8http://www.websense.com/content/home.aspx
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significant contributions.
The nature of how the malicious files have been submitted to the contributors gives great

confidence in a very good variety in the dataset. Although the details are not disclosed it can
be said that the files malicious PDFs have been detected in a variety of ways and submitted by
hundreds of different people from all over the globe, and are almost guaranteed to be malicious.

Thanks to the people and organizations of the information security community the total ma-
licious corpus consists of over 20000 malicious PDF-files.

The collected files were then saved in different directories based on whether they were benign
or malicious. All files were renamed to the format: ”MD5sum.<pdf>.<bad|good>“, using our
own ”renamer.py“-script9, like in the following example:
9e107d9d372bb6826bd81d3542a419d6_PDF.bad
This uniquely identifies all files, give a good indication of its contents, and prevent accidental
opening/execution of the files.

Then all duplicates, based on the MD5-sum, were deleted using the ”uniqify.py“-script10 we
have created. After this step the data corpus consisted of 7454 unique benign and 16280 unique
malicious PDF-files.

Too get a feel for which exploits were present in the malicious PDF file corpus, all the ma-
licious files were scanned by the Microsoft Security Essentials (MSSE) anti virus solution. A
script11 was written to analyze the logs.

• Total files scanned: 16280

• Number of unique threats detected: 373

• Number of threats detected: 27231

• Number of files falsely reported as benign: 950

The numbers mean that MSSE has detected 373 threats with different signatures. However,
each signature may include more than one exploit. The high number of threats detected means
that several of the PDF documents contain more than one threat that triggers a signature. The
complete list and count of threats detected in the dataset can be found in appendix B.

As many as 950 PDF documents where reported as benign, however a manual analysis of a
random sample of these 950 PDF documents show that they are indeed malicious. Some use very
clever obfuscation techniques to hide its malicious content. We assume that the 950 undetected
malicious PDF files are indeed malicious, and that MSSE has no signatures to detect these.

9See Appendix A.2
10See Appendix A.1
11See appendix A.10
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5.3.2 Task 2: Feature Extraction

In experiment 1 the goal is to find features that are relevant and significant for the classification
of PDF documents as benign or malicious. To get a starting point expert knowledge was sought in
the literature. Two different approaches for creating a feature vector is explored. First, an ”expert
knowledge“ feature vector was built from the features that other researchers have been using to
detect and analyze malicious PDF. Second, a n-gram based feature vector is created.

Expert Knowledge Feature Vector

Based on the work of Stevens and Baccas presented in section 5.2.2 it is decided to create a
feature vector with 18 features to serve as a starting point for further research. These features
are:

• obj_mis - The mismatch between obj and endobj statements.
• stream_mis - The mismatch between stream and endstream statements.
• xref - The presence of a cross-reference table.
• trailer - The presence of a trailer.
• startxref - The presence of a startxref statement.
• /Page - The number of pages in the document.
• /Encrypt - Is the document encrypted or not?
• /ObjStm - The number of object streams.
• /JS - The number of javascript launched.
• /JavaScript - The number of embedded javascript.
• /AA - The number of additional actions.
• /OpenAction - The presence of an open action.
• /AcroForm - The number of embedded forms.
• /JBIG2Decode - The use of JBIG2Decode filters.
• /RichMedia - The use of RichMedia.
• /Colors - The use of /Colors with a value larger than 224.
• /AsciiHexDecode - The use of the asciihexdecode filter.
• /Launch - The use of the /Launch statement.

Our contribution in this sense is to merge the work of Stevens and Baccas, and later on we
will use automatic feature selection on these features to empirically determine which features are
really significant. Also, these features have never been used for automated detection of malicious
PDF documents, which we will attempt later on.

The features are extracted from the PDF document using our own pdfextract.py-script12. This
script uses the PDF-parser found in the ”jsunpack-n“-tool [51] to parse and decode/decompress
the PDF documents. Then the frequencies of all features are counted and the feature vector
for each PDF document is created. In addition the script will dump all embedded javascript to
separate files for further analysis. The script takes a directory of PDF-files as it’s input and outputs
a file with the feature vectors of all the files in the directory.

After running the extraction tool on our entire dataset we end up with a feature vector file
containing 23734 feature vectors that we can use in our experiments.

12See appendix A.3
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As an interesting small experiment we decided to see if the findings of Sophos [6] presented in
5.2.2 coincide with our own dataset. Table 3 shows a comparison of the findings. The percentages
are computed by taking the number of malicious files with the specific attribute, divided by the
total number of files with the specific attribute.

Javascript obj_mismatch stream_mismatch xref_missing
Sophos 98% 84% 69% 97%

Our data 97% 90% 21% 63%
RichMedia JBIG2Decode ASCIIHexDecode

Sophos 100% 84% 69%
Our data 89% 25% 99%

Table 3: Comparison of findings in [6] and this thesis.

As we can see from the table the findings coincide for the javascript feature, the mismatch
between obj and endobj statements, the use of RichMedia and somewhat for the lack of a cross-
reference table. Why the others do not match is hard to tell, but it may have something to do
with how the datasets are collected and the trends at the moment of collection.

N-gram Feature Vector

An n-gram is basically just a contiguous sequence of n items from a sequence of items, like a
string. An n-gram with n=1 is reffed to as an ”unigram“, n=2 is a ”bigram“, n=3 is a ”trigram“,
and so on.

The use of n-grams are popular in situations where the data has no strict structure, like in
language analysis. Unlike IDS handling well defined lower layer protocols like TCP, the proposed
IDS will handle the unstructured payload of the application layer. This makes n-grams an inter-
esting approach also for PDF classification.

Based on the work done by other researchers, presented in section 5.2.3, we wished to find
out whether such an n-gram feature vector could work for classifying PDF documents as benign
or malicious. We therefore extracted five n-gram feature vectors with n=1,2,3,4,5. These n-
gram feature vectors where extracted from the PDF documents using the ngramextractor.py-
script 13 we have created. The script lets you specify n and then extracts all n-grams from the
PDF document. It then counts the frequencies of each unique n-gram. The script takes a directory
of PDF-files as it’s input and outputs a file with the feature vectors of all the files in the directory.
The output feature vector for each PDF sample has a structure like this:

id,label ngram1:frequency,ngram2:frequency,ngram3:frequency,...,ngram<j>:frequency

The extraction of n-grams soon proved very computationally resource intensive for such large
input data as PDF documents represent. After spending days extracting all the feature vector
datasets it was decided to do a quick test to determine if the n-gram feature vectors were at
all suited for classification. The 3-gram dataset, was selected for the test. It was fed into an
SVM with all default settings and 10-fold cross-validation was performed. SVMs are known to

13See appendix A.4
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handle large dimensional datasets quite well. However the test showed that the computational
complexity was to great. The test was ended after the SVM had not finished computation for two
whole days.

Using n-grams for classification of PDF documents was thus abandoned due to the computa-
tional complexity.

Therefore the ”expert knowledge“ feature vector described in section 5.3.2 is used for further
experiments.

5.3.3 Experiment 1: Feature and Classifier Selection

The expert knowledge feature vector we have created relied heavily on human experiance and
assumptions, even though it is to a great extent supported by the findings in [6]. In this experi-
ment we wish to use statistical methods in order to analyze the features in an objective manner.
Using the two algorithms for automatic feature selection presented in 4.2.2, Golub-score filter
and Generic feature selection (GeFS), we will find out what features are really significant for clas-
sifying the documents in our dataset. Hopefully the results will be applicable to PDF documents
in general.

A great number of feature selection algorithms could have been chosen, however we have
to limit the number to two for this master thesis. The Golub-score method is selected for it’s
simplicity, which makes it easy to understand what it actually does. It has achieved good results in
other research, like in [41]. Also, the Golub-score method is readily available in the PyML Python-
library, that saves us a lot of time on implementation. The Generic Feature selection-method is
a state of the art feature selection method, and has been tested with very good results in IDS
context [40]. GeFS is mathematically advanced, and it is therefore not so easy to understand
exactly what it does.

The Golub-score is realized using the PyML Python library. GeFS is performed by fellow re-
searcher Hai Thanh Nguyen at HiG who has developed the algorithm.

After running the two algorithms on the dataset we may have two different feature vectors.
We then need to decide which one yields the best performance in classification. According to the
”no free lunch“ theorem testing with only one classifier will not tell us what the performance may
be with other classifiers. Therefore a small selection of classifiers will be used in the performance
test. As a side effect we will at the same time gain knowledge of which classifier is best suited
for our classification task.

The experiment will be performed as follows:

1. Automatic feature selection

a. Perform feature automatic feature selection on expert knowledge dataset using Golub-
filter. Save new feature vector.

b. Perform feature automatic feature selection on expert knowledge dataset using GeFS.
Save new feature vector.

2. Evaluate classification performance
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a. Perform classification using 10-fold cross-validation on both the original dataset and the
new feature vector datasets with BayesNet classifier. Save performance measures.

b. Perform classification using 10-fold cross-validation on both the original dataset and the
new feature vector datasets with SVM classifier. Save performance measures.

c. Perform classification using 10-fold cross-validation on both new the original dataset and
the feature vector datasets with C4.5 classifier. Save performance measures.

d. Perform classification using 10-fold cross-validation on both new the original dataset and
the feature vector datasets with RBFNetwork classifier. Save performance measures.

e. Perform classification using 10-fold cross-validation on both new the original dataset
and the feature vector datasets with MulitlayerPerceptron classifier. Save performance
measures.

There exists hundreds of classifiers that we could have tested, but we are simply not able to
test them all. These five are commonly used in the machine learning community and our results
can therefore with greater ease be compared to results of other research.

The performance measures used will be balanced successrate, area under ROC curve and the
confusion matrix. Analysis of the results will be performed to establish which feature vector and
which classifier achieves the best performance. The results and implications will be discussed.
Conclusion and recommendations for future experiments will be provided.

5.3.4 Experiment 2: Classifier Optimalization and Testing

Experiment 2 is actually a series of smaller experiments to optimize the performance of the
classifier and to test it thoroughly. In experiment 2.1 we optimize the classifier performance by
finding the best configuration, and we try normalization of the dataset. In experiment 2.2 we
test the classifier stability. And in experiment 2.3 we test the classifiers generalization ability,
meaning it’s ability to correctly classify samples it has never seen before.

Experiment 2.1: Optimal Configuration and Normalization

Once we have found the significant features and the best suited classifier in experiment 1, we
need to configure the selected classifier for optimal performance. A classifier will often have dif-
ferent variables that can be fine tuned and also we can try to manipulate the dataset through
normalization.

To find the optimal configuration of our classifier we design the following experiment:

1. Normalization

a. Perform normalization on the selected feature vector dataset and classify it using 10-fold
cross-validation with the selected classifier. Save performance measures.

2. Search for optimal configuration of variables

a. Select a range with 5 test values for each variable that needs to be testes.
b. Perform a grid-search by testing all combinations of values for each variable.
c. Save and analyze performance measures.

The performance measures used will be balanced successrate, area under ROC curve and the
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confusion matrix. Analysis of the results will be performed to establish which if normalization
should be used and the optimal values for each variable. The results and implications will be
discussed. Conclusion and recommendations for future experiments will be provided.

Experiment 2.2: Classifier Stability

When doing cross-validation it is possible that one does ”lucky draws“ from the samples, so
that the reported performance is not representative for the classifier we put into operational use
trained on the whole dataset. To remedy this we do a stability experiment by doing five iterations
of training and testing using 2-fold cross-validation, according to the stability measure presented
in 4.1.2. If no significant changes is shown in the performance for all five iterations we assume
that the classifier is stable and reliable.
To test the stability of the classifier we design the following experiment:

1. Do 5 iterations of training and testing the classifier using 2-fold cross-validation.

2. Save and analyze performance results.

The performance measures used will be balanced successrate, area under ROC curve and the
confusion matrix. Analysis of the results will be performed to establish if the classifier is sta-
ble. The results and implications will be discussed. Conclusion and recommendations for future
experiments will be provided.

Experiment 2.3: Classifier Generalization

Running the malicious PDF corups through MSSE shoes that there are a large number of unique
expolits present, but that there are also a large number of samples employing the same exploits.
At the same time obfuscation and subtle changes in the PDF documents will mean that even
though the MD5 hashes are all unique, the underlying exploit may indeed be the same. The
large number of samples takes us some way in mitigating the risk of having a very homogeneous
dataset. However, we wish to test the generalization abilities of our trained classifier, i.e. make
sure that the classifier also works on PDF exploits which with a high certainty is not in our train-
ing dataset.

To do this we design the following experiment:

1. Download as many PDF exploits as possible exploiting vulnerabilities discovered after the
creation date of the training dataset (January 2011).

2. Train classifier using entire dataset.

3. Classify the new malicious PDF files.

4. Analyze results.

Analysis of the results will be performed to establish if the trained classifier is able to general-
ize. The results and implications will be discussed. Conclusion and recommendations for future
experiments will be provided.
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5.3.5 Experiment 3: Real-world Test

To evaluate how our IDS solution will work in a real world setting it will be installed on a sensor
owned by the Norwegian Defence. This sensor will provide data from the internet usage of about
300 people. The goal of this experiment is simply to evaluate to what degree the solution will be
a helpful tool for security analysts and if the computational complexity is within the limits of a
sensor placed in an enterprise size network. The experiment will be performed in the following
manner:

1. Train IDS using all full dataset.

2. Leave the IDS operational for 7 or more days.

3. Report qualitatively on results and compare to other measures that are in place.

4. Report on performance (network, CPU, memory) by using the SNORT performance monitor

5. Do manual analysis of any PDF documents classified as malicious to decide if the classification
was correct.

Analysis of the results will be performed to establish if the IDS solution is applicable for real-
world use. The results and implications will be discussed. Conclusion and recommendations for
future experiments will be provided.

5.3.6 Experiment 4: A Closer Look at Embedded Javascript

After completing all of the above experiments we realized that a big number of the malicious PDF
files used javascript to perform malicious actions. This discovery is supported by the research of
Paul Baccas in [6] where he found that 94.1% of the samples containing javascript in his corpus
of 64616 PDF samples where indeed malicious. In our own dataset we found that as many as
14556 of 16296 ( 90%) malicious samples contained javascript.

This gave us the motivation to look closer at embedded javascript. We decided to create a
small experiment to create a classifier capable of classifying embedded javascript as benign or
malicious.

1. Collect malicious and benign dataset.

a. Extract all embedded javascript from malicious PDF-file corpus.
b. Collect benign javascript corpus by using a webcrawler.

2. Perform feature selection and extraction.

a. Do a literature study to find expert knowledge on what features may be relevant for
classifying javascript.

b. Add features based on own experience.
c. Create script for feature extraction.

3. Train and test SVM classifier using 10-fold cross-validation.

4. Analyze results.

The experiments are done by re-using code and gained knowledge from experiment 1 to 3 and
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can therefore be executed without too much extra work. This is important since this experiment
can be considered a ”bonus experiment“ that was not part of the original plan.

The goal of the experiment is to explore the possibilities of classifying javascript embedded
in PDF documents, and serve as a starting point for future research. The performance measures
used will be balanced successrate, area under ROC curve and the confusion matrix. Analysis of
the results will be performed to establish whether this form of javascript classification is plausi-
ble. The results and implications will be discussed. Conclusion and recommendations for future
experiments will be provided.
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6 Experiment Execution and Results

In this chapter the experiments presented in section 5 are executed. It will begin with a short
presentation of the experiment and environment setup, before it continues with the individual
experiments conducted. For each experiment the results and their implications are discussed.

The following experiments were conducted in order to build a system capable of detecting
malicious PDF:

1. Feature and classifier selection

2. Classifier Optimalization and Testing

3. Real-world Test

4. A Closer Look at Embedded Javascript

6.1 Experiment and Environment Setup

The experiments were executed on a stand-alone computer running Ubuntu Linux. It was decided
to not use any virtualization, in order to get the best performance possible. As the malware will
never be executed there was no need for the extra layer of protection virtualization would offer.

The computer on which most of the experiments were conducted had the following configu-
ration:

• CPU: 2,4GHz Intel Dual Core

• Memory: 4GB

• Harddrive: 280GB

• OS: Ubuntu Desktop 10.10

The following software and library versions have been used in the experiments:

• Python v2.6.6 [56]

• numpy v1.5.1 [57]

• PyML v0.7.7 [58]

• tcpflow v0.21 [50]

• SNORT v2.9.1 [23]

• MS Security Essentials v2.1.1116.0 Virus definitions updated on day of use. [59]

• Trend Micro Titanium v3.00 Virus definitions updated on day of use. [60]

• AVG Free v10 Virus definitions updated on day of use. [61]
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The custom source code we have created for this thesis can be found in appendix A. These
include:

• uniqify.py - Generates MD5 hash for sample files and stores them in a dictionary. When du-
plicates are detected they are deleted to make sure that our dataset has only unique samples.

• renamer.py - Renames all samples to the appropriate filename, defined in section 5.3.1.
MD5sum.<pdf>.<bad|good>

• pdfextract.py - Extracts the ”expert knowledge“ feature vector from all PDF files in the pro-
vided directory and labels the vectors with the provided label.

• ngramextractor.py - Extracts the n-gram feature vector from all PDF files in the provided
directory and labels the vectors with the provided label.

• pdfidsvm_grid.py - Performs grid search for optimal SVM values of C and γ based on the
provided dataset.

• pdfidsvm_norm.py - Tests SVM performance with optimal C and γ, using normalization on
the dataset.

• pdfidsvm.py - Tests SVM performance with optimal C and γ.

• flow2pdf.py - Removes HTTP/SMTP headers from flows extracted by the tcpflow tool.

• classify_new.py - Loads a previously trained SVM model and dataset, and classifies all new
PDF samples in the provided directory.

• parse_msse_v2.py - Parses the log output from MSSE and lists out all the threats detected
with frequency for each threat.

6.2 Experiment 1: Feature and classifier selection

This experiment was conducted as described in section 5.3.3. The goal of the experiment is to
find the significant features for classifying PDF documents as benign or malicious, and to find
the best classifier for this task.

First the complete feature vector dataset with all 18 features was run through the Golub-score
filter and the Generic feature selection algorithm. This yielded the following results:

Original Feature Vector

AA, RichMedia, xref, Encrypt, JBIG2Decode, Launch, JavaScript, OpenAction, Colors,

JS, obj_mis, startxref, AsciiHexDecode, ObjStm, AcroForm, stream_mis, Page, trailer

Golub-score Feature Vector

JavaScript, OpenAction, JS, obj_mis, AcroForm, Page, trailer

GeFS Feature Vector

JavaScript, JS, startxref, Page, trailer

We the tested how well the 5 GeFS features and the 7 Golub-score features performed at the
classification task, compared to the 18 original features.
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We tested the performance of five different classifiers using all three datasets, as described in
section 5.3.3. The results can be seen in table 4.

BayesNet C4.5/J48 RBFNet
18 7 5 18 7 5 18 7 5

Bal succ 0.973 0.94 0.976 0.995 0.995 0.975 0.718 0.797 0.874
AUC 0.996 0.995 0.996 0.997 0.998 0.994 0.879 0.922 0.926

MLP SVM
18 7 5 18 7 5

Bal succ 0.96 0.966 0.920 0.995 0.995 0.977
AUC 0.985 0.987 0.978 0.995 0.996 0.974

Table 4: Results matrix experiment 1

Figure 13 shows a plot of the balanced successrates of all the classifiers for each of the three
datasets.

Figure 13: Balanced successrate for all classifiers

As we can see the Golub-score method selected 7 features to be significant, while the GeFS
method only selected 5. Using 5 features instead of 7 will have a positive effect on the per-
formance of the classifier. However, when we inspect the numbers of table 4 and look at the
plot in figure 13 we see that using the 5 features from the GeFS methods has adverse effects
on our classifiers performance in all cases except for RBFNetwork and BayesNet. However, the
RBFNetwork classifier performs very bad no matter what dataset is selected, and the BayesNet
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classifier only gives the third best performance. On all other trails the 7 feature Golub-score
vector outperformed the 5 feature GeFS vector.

Looking further into the results we see that the reduction from 18 to 7 features as virtually
no impact on the classifier performance, with regards to accuracy. However, when testing the
computational performance in an SVM there are some benefits, as can be seen i table 5.

18 7 5
Training time, full dataset 12.59s 6.77s (-50%) 9.12s (-27%)
Testing time, 100 samples 25.8ms 14.4ms (-50%) 26.3ms (+2%)

Testing time, 1 sample 0.25ms 0.14ms 0.26ms

Table 5: Computational Complexity - Experiment 1

We observe that the reduction from 18 features to 7 features offers almost a 50% improvement
in both training and testing time. Surprisingly the reduction to 5 features does not perform as
well, and only improves training time by 27% and actually increased the testing time by 2%.
This has to mean that the five GeFS features form a more complicated function for the decision
boundary of the SVM.

Time measures are always complicated, and we have only used the standard time() function
in Python to make our measurements. Therefore variations will occur in the measurements,
especially at the millisecond level. Different samples will also give different results. Therefore we
have calculated the testing time for 100 samples, and extrapolated the testing time for 1 sample
simply by dividing by 100.

From this experiment we also learn that C4.5 and SVM classifiers have the best accuracy
performance, with marginal and insignificant difference.

Experiment 1 shows us that we should keep the Golub-score feature vector containing seven
features. It performed just as well as the 18 features of the original vector, and it outperformed
the 5 features of the GeFS vector. The C4.5 and SVM classifiers are both excellent candidates to
use as classifier for the rest of the experiments. Based on the availability of good Python libraries
we choose to move on using SVM.

The feature selection process gives us good objective recommendations as to which features
are most significant for correct classification. However, it is the authors belief, based on expert
knowledge, that some more features should be kept in order to cover some well-known ex-
ploitation methods. We therefore propose the following vector as an mixed expert knowledge
enhanced version of the Golub-score and GeFS feature vector:

AA, RichMedia, Launch, JavaScript, OpenAction, JS, obj_mis, startxref, \

AcroForm, Page, trailer
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The enhanced vector gives the following results when training and testing with SVM:

Confusion matrix:

Given labels
Benign Malicious

Predicted labels
Benign 7436 103

Malicious 18 16177

Table 6: Confusion matrix Enhanced feature vector

Balanced successrate: 0.9956

Area under ROC curve: 0.9918

Training time, full dataset, 11 features: 3.93 seconds

Testing time, 100 samples: 16,7 milliseconds

As we can see the enhanced feature vector gives slightly better successrate than any of the other
vectors and we therefore decide to keep this vector for use in the further experiments.
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6.3 Experiment 2: Classifier Optimalization and Testing

Experiment 2 consists of a series of small experiments designed to find the optimal configuration
for our classifier and to test some of its properties. Experiment 2.1 seeks optimal performance
through optimizing configuration values, and normalization. Experiment 2.2 investigates the
classifiers stability. Experiment 2.3 tests the classifiers generalization abilities.

In [62] Hsu et al. gives a very practical guide for using and configuring an SVM classifier. A
simple procedure is proposed on how to get the best SVM performance. The procedure includes
data preprocessing, kernel selection and model selection using parameter search.

6.3.1 Experiment 2.1: Optimal Configuration and Normalization

This experiment was conducted as described in section 5.3.4. The goal of this experiment was to
find the optimal configuration for the SVM classifier.

First we searched for the optimal values of the penalty value C and the inverse-width param-
eter γ for the Gaussian kernel we use with our SVM.

The 11 feature dataset was given as input to the pdfidsvm_grid.py-script1. This script loads
the dataset and then performs a grid-search using cross-validation to optimize the SVM values
of C and gamma. The search space for C=0.1, 1, 10, 100, 1000 and gamma=0.01, 0.1, 1, 10.
When the optimal values are found 10-fold cross-validation is performed on the entire dataset
using the optimal values.

The results of this experiment was:

Optimal C: 100

Optimal γ: 0.1

Sensitivity: 0.9949

Successrate: 0.9956

Balanced successrate: 0.9960

Area under ROC curve: 0.9967

Confusion matrix:

Given labels
Benign Malicious

Predicted labels
Benign 7433 83

Malicious 21 16197

Table 7: Confusion matrix Experiment 2.1 - Configuration

1See Appendix A.5
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Next we tested whether normalizing the feature vector dataset would improve classifier per-
formance. The dataset was normalized using cosine-normalization in kernel space. The 11 fea-
ture dataset was input to the pdfidsvm_norm.py-script2. It attaches the Gaussian kernel, using
optimal parameters, to the dataset and performs cosine normalization in kernel space. After nor-
malization 10-fold cross-validation is performed to see if performance has improved:

Sensitivity: 0.9950

Successrate: 0.9955

Balanced successrate: 0.9959

Area under ROC curve: 0.9980

Confusion matrix:

Given labels
Benign Malicious

Predicted labels
Benign 7429 80

Malicious 25 16200

Table 8: Confusion matrix Experiment 2.1 - Normalization

From the first experiment we learned that the optimal kernel parameters are C=100 and
γ=0.1. Looking at the performance for the classifier using these optimal parameters, compared
to the results from experiment 1 we notice that there is a slight gain from this optimalization.
The false negatives are reduced by 20%, and the false positives increase by 15%. The reason
that the gain was so small may be due to the fact that the optimal values are close to the default
values (C=100 γ=1) used in experiment 1.

From the normalization experiment we learned that normalization had no significant effect
on the classifier performance. The small difference in performance results is more likely to be a
consequence of cross-validation sampling, rather than the normalization.

Even though finding the optimal kernel parameters did not improve classifier performance
we keep the parameters as there is no adverse effect of doing this. All future experiments of this
thesis will use kernel parameters C=100 and γ=0.1.

As normalization did not improve classifier performance future experiments of this thesis will
not be using normalization. This is due to the fact that normalization is a processing step that
increases the computational complexity of the classification process, and thus will make it less
efficient.

2See Appendix A.6
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6.3.2 Experiment 2.2: Classifier Stability

This experiment was conducted as described in section 5.3.4. The goal of this experiment was to
test the stability of the classifier over multiple iterations of training and testing.

We did five iterations of 2-fold cross-validation over the 11 feature dataset. The results are
shown here:

Bal. succ. AUC
1 0.9948 0.9983
2 0.9948 0.9985
3 0.9952 0.9977
4 0.9945 0.9984
5 0.9952 0.9985

Table 9: Results Experiment 2.2

As we can see from this experiment the classifier performance is stable over multiple iter-
ations. Also the number of number of false positives and false negatives stay very stable. We
evaluate the classifier as stable and reliable, and keep it for future experiments.
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6.3.3 Experiment 2.3: Classifier Generalization

This experiment was conducted as described in section 5.3.4. The goal of this experiment was to
test whether the classifier is able to correctly classify PDF samples guaranteed to not be a part of
the training dataset.

In order to do this experiment we first needed to collect as many PDFs as possible that uses
and exploit with a newer date than our dataset creation time (January 2011). By doing a search
on the Offensive Security Exploit Database [63] we were able to find the malicious PDFs listed
in table 10.

# MD5 Date Vulnerability
1 86d2018e9ecca17cb848d62dec910f46 16 Dec 2010 Adobe Embedded Executable
2 78e13cb81b84f72a8b5a6675cad25a75 16 Dec 2010 Adobe Embedded Executable (No JS)
3 b039e93c03db20980c5b5f742a67500d 12 May 2011 SlimPDF DoS
4 7fd06913ff0144a188f29833b79b75f5 14 Mar 2011 Foxit Reader filewrite
5 1ea237047d96770aef5bed54132e0c8c 16 Dec 2010 Foxit Reader title BO
6 8849500941046136c3697cb363e7c569 28 Feb 2011 NitroPDF Heap Corruption
7 6857fa199d3e2224f80424282c5a48b6 08 Jan 2011 Nuance PDF reader Launch BO
8 84387f6929fbbb57e5cb4ffaebefbc70 07 Mar 2011 Adobe Reader X CVE-2011-0611
9 72011f96c98e3f9c78288d2e81c1db2b 11 Dec 2010 Active PDF Buffer Overflow

Table 10: Novel malicious PDF

We also include 10 new benign samples, to also test if these are classified correctly.

The experiment resulted in 15 out of the 19 PDF being correctly classified. However, four of the
malicious samples were incorrectly classified as benign:

1ea237047d96770aef5bed54132e0c8c Foxit Reader title BO

8849500941046136c3697cb363e7c569 NitroPDF Heap Corruption

72011f96c98e3f9c78288d2e81c1db2b Active PDF Buffer Overflow

b039e93c03db20980c5b5f742a67500d SlimPDF DoS

After a lot of testing it seems that the ”/AcroForm” feature in our feature vector is the culprit
of confusing our classification. Removing this from the feature vector gives us 18 out of 19 cor-
rectly classified samples. The only sample incorrectly classified is now:
8849500941046136c3697cb363e7c569 NitroPDF Heap Corruption

Analysis of this PDF shows that all it does is to open a mediabox with a specially crafted
content to crash the Nitro PDF Viewer, without any other specific malicious actions. The PDF
therefore looks and behaves very much like a benign PDF and will not be detected by our algo-
rithm.
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Removing the “/AcroForm” feature from our feature vector has adverse effects on the total
performance of our classifier. When testing using 10-fold cross-validation of the entire dataset
we now get the following results:

Sensitivity: 0.9921

Successrate: 0.9842

Balanced successrate: 0.9794

Area under ROC curve: 0.9955

Confusion matrix:

Given labels
Benign Malicious

Predicted labels
Benign 7207 129

Malicious 247 16151

Table 11: Confusion matrix Experiment 2.3

As we see from the confusion matrix removing the “/AcroForm” vector especially increases
our false positive rate. This is not good for the operators that shall use the classification model
in an IDS.

To make a comparison with a top signature based anti virus product, the novel corpus of 19
PDF documents were scanned by MS Security Essentials. As it turns out MSSE is only able to
detect 5 out of the total of 9 malicious PDFs, even though the novel samples are getting close to
one year old at the time of writing this.
1ea237047d96770aef5bed54132e0c8c Foxit Reader title BO

86d2018e9ecca17cb848d62dec910f46 Adobe Embedded Executable

72011f96c98e3f9c78288d2e81c1db2b Active PDF Buffer Overflow

84387f6929fbbb57e5cb4ffaebefbc70 Adobe Reader X CVE-2011-0611

6857fa199d3e2224f80424282c5a48b6 Nuance PDF reader Launch BO

As we can see, MSSE was not able to detect the 8849500941046136c3697cb363e7c569 Ni-
troPDF Heap Corruption sample that we were not able to detect, as well as four other samples.
Out of the four samples our classifier got incorrect in the first run, two coincide with the four
samples MSSE did not detect.

This further reinforces our belief in the generalization ability of our classifier. Having only
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9 novel malicious samples for testing is very little to draw any conclusions. And the benefit of
having “/AcroForm” as a feature by far outweighs the disadvantages from what we can see from
available data. Until we can get more new samples for testing we will need to have “AcroForm” in
our feature vector. This experiment showed that the method will be able to detect also samples
that are not part of the training dataset, even though it will not be able to catch all.
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6.4 Experiment 3: Real-world Test

This experiment was conducted as described in section 5.3.5. The goal of this experiment was to
test how the classifier, or IDS prototype, would perform in a real-world setting.

An IDS prototype was built as described in section 5.1 ”Proposed Solution”, and implemented
at a network sensor owned by the Norwegian Defence Center for Protection of Critical Infras-
tructure. This sensor monitors all internet traffic going to and from a Norwegian Defence site
with approximately 300 employees. The number of employees using the internet connection on
a daily basis is probably much lower. The experiment was started on Sunday 30th of October
and ended on Tuesday 9th of November, that is approximately 10 days of run-time. During this
time the prototype reported a total of 625 PDF downloads. It was able to extract 556 PDFs from
the logged data. The discrepancy between the reported number of downloads and the number
of extracted PDFs might be that the “%PDF” tag was also found in non-PDF traffic. Out of the
556 PDFs extracted, 150 were corrupted. There may be several reasons for this:

• PDF downloads where stopped before completion.

• The SNORT packet logging dropped some of the packages.

• Transfers were split over several TCP sessions for some reason (and SNORT will only follow
the initial session).

All of the 556 PDFs where classified, and the results from this showed that:

• 546 samples where classified as benign.

• 10 samples where classified as malicious.

The samples classified as malicious were manually analyzed by the author and found to actu-
ally be benign. The reasons for the mis-classifications being:

• Corrupted data causing object mismatches. Combined with...

• ...benign use of OpenAction to present dialogue boxes upon viewing. And...

• ...the benign use of AcroForm.

There is no way to manually analyze all the 546 samples classified as benign to determine is
they are really benign. However, as a small measure the samples where run through the MS Secu-
rity Essentials anti-virus solution to look for any obvious maliciousness. Zero malicious samples
were reported.

Also there was no malicious incidents with PDF documents reported from for the particular
site during the period.

Even though this test revealed no malicious PDF documents being transferred across this
particular network during the test period, we can say that the test was a success.
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The test revealed that the proposed IDS solution will work as assumed. The following shows
a breakdown of the timing for all involved processes from an alert until the PDF is classified:

• Converting SNORT unified2 log format to pcap: 0,5 - 3 seconds depending on logfile size.

• Extracting correct flow from pcap: 5 - 700 milliseconds depending on pcap size and flow
location in file.

• Removing headers from flow to get PDF: 0,5 - 100 milliseconds

• Extracting features from PDF: 0,2 - 4 seconds depending on PDF file size.

• Classifying a PDF file: 0,3 - 0,5 milliseconds

• Worst case total: 8 seconds

These measurements show that the proposed IDS can provide close to real-time classification
of PDF, but inline checking of the PDFs with capability to permit or deny PDFs will introduce
a delay of approximately 8 seconds. It is the authors opinion that a delay of 8 seconds will be
OK for non-interactive applications, such as e-mail. However, introducing a 8 second delay for
all PDF downloads may be considered too much for some users. It should however be noted
that a huge increase in performance probably can be achieved by implementing the method in a
compiled language, e.g. C/C++.

What remains to make the prototype viable for operational use is a portion of engineering
work to eliminate the over-reporting of malicious downloads and corrupted data. As mentioned
this may have something to do with packet drop, but unfortunately the computational perfor-
mance statistics from SNORT where not available due to technical limitations.

The number of false positives are very good. To handle 10 false positives out of 556 extracted
PDFs over a period of 10 days is no problem for an IDS operator and is well within what is
acceptable for an IDS.
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6.5 Experiment 4: A Closer Look at Embedded Javascript

This experiment was conducted as described in section 5.3.6. The goal of this experiment was
to explore the possibilities of classifying javascript embedded in PDF documents, and serve as a
starting point for future research.

Through a quick analysis of the embedded javascript found in our malicious PDF corpus we
decided to extract the following features to form the javascript feature vector:

function - Counts the number of new functions that are defined.
Malicious scripts often employ their own obfuscation functions.

eval_length - The length of the longest string passed to eval().
Malicious scripts tend to use eval() to execute dynamic code.

max_string - The length of the longest string defined.
Strings for shellcode tend to be very long, compared to strings that are normally used in
benign javascript.

stringcount - The number of strings that are defined.
Malicious code writers like to split strings into very many small strings to obfuscate the script.

replace - Counts the uses of the javascript replace() function.
This function is much used in javascript obfuscation.

substring - Counts the uses of the javascript substring() function.
This function is much used in javascript obfuscation.

eval - Counts the uses of the javascript eval() function.
Malicious scripts tend to use eval() to execute dynamic code.

fromCharCode - Counts the uses of the javascript fromCharCode() function.
fromCharCode() is used to decode Unicode encoded strings. Often used for obfuscation.

We then created a javascript corpus with malicious javascript extracted from the malicious
PDF corpus, and benign javascript extracted from the benign PDF corpus and supplemented by
a webcrawl. This resulted in 1020 unique benign samples and 4795 unique malicious samples.

The features were extracted and the feature vectors were fed into the SVM classifier. Training
and testing was performed using 10-fold cross-validation as it was in the earlier experiments.
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The results, using all 8 features, was:

Confusion matrix:

Given labels
Benign Malicious

Predicted labels
Benign 849 375

Malicious 171 4420

Table 12: Confusion matrix Experiment 4

Balanced successrate: 0.908

Area under ROC curve: 0.954

The results show that our feature vector will be a good starting point for future research
into malicious javascript. Adding classification of embedded javascript will further improve the
performance of the PDF classifier.
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7 Discussion

In this chapter follows a discussion of theoretical and practical considerations from the master
thesis.

Choice of Method

The method chosen in this master thesis was largely based on creating all the building blocks
for a working IDS capable of detecting malicious PDF documents in network traffic. The positive
side to this approach is that it gives a very practical insight into what is really needed to build
such a system. It also lets us present empirical data for all parts of the project.

The disadvantage of this approach is that it requires a lot of engineering, i.e. system design
and programming. It can be argued that this takes away focus from the pure research. However
we feel that making a practical solution makes the research more applicable and more inter-
resting. To put it in the words of John Dewel: Theory without practice is empty; practice without
theory is blind.

An alternative could be to take a more theoretical approach and device some assumptions
on how PDF should be detected by studying the literature and interviewing experts in the field.
However, it is our belief that this approach would produce more theoretical and uncertain an-
swers.

In the thesis we chose to only test five classifiers and two feature selection methods. The ideal
situation, according to the No Free Lunch and Ugly Duckling Theorems, would of course be that
we tested even more. However, as the time frame for a master thesis is rather short we had to
limit our experimentation in this aspect.

The Dataset

The main caveat of this thesis, as often with IDS research, is the dataset. Getting up-to-date and
relevant datasets for IDS testing is a challenge that many have struggled with. Building datasets
and ensuring that all factors are under control is a task suited for a master thesis or PhD research
itself.

For this master thesis we created a brand new dataset, consisting of over 20.000 PDF samples.
It is simply not feasible to subject this entire dataset to manual analysis, to consider questions
like:

• Are all samples in the benign dataset really benign?

• Are all samples in the malicious dataset really malicious?

• Is there a good variety of samples and exploits in the dataset?

• What exploits are present in the dataset?

Some measures have been taken to provide some answers to these questions. To check if all
samples in the benign dataset really is benign we set up the antivirus test in section 5.3.1. This
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test at least makes sure that there is no obvious maliciousness in the benign corpus that triggers
the signature detection of the antivirus products.

To test whether all samples in the malicious dataset really are malicious a similar test was
conducted, where the malicious PDF corpus was run through MS Security Essentials. Not sur-
prisingly most samples were detected as malicious, however 950 (5.8%) of the dataset was not
detected. Some of the PDFs not detected where selected for manual analysis, and where in-
deed malicious and used some very clever obfuscation techniques. We therefore assumed that all
16280 malicious samples indeed were malicious, as there is no proof otherwise.

From this we also learned that there are at least 373 unique exploits kinds of exploits in the
dataset, which tells us that there is a good variety of exploits in the dataset. To further ensure the
variety of samples and exploits in the dataset is very difficult. By collecting malicious samples
from sources who have received samples from all over the world for a large period of time, we
also trust to a certain degree that the corpus has a good variety of samples. Another measure
we have taken here is to make sure that all samples are unique, using MD5 hashes. However,
this measure can of course be easily fooled by obfuscation, as even a change to only one bit will
make the MD5 hash totally different. A very interesting tool to remedy this situation would be
fuzzy hashing, that is hash algorithms that produce similar hashes for similar samples. Using
fuzzy hashing for such an application is still at the research stage [64] and must be left for future
work.

From the anti virus test we know to a certain degree what exploits are present in the mali-
cious PDF corpus. However, we know nothing about the 950 samples that was not detected. So
therefore this question will remain only partly answered.

Ideally the dataset should also be more balanced. For this thesis we did not want to cut
out any of the malicious samples to make this happen, as it would have adverse effects on the
performance. For future work more benign samples should be collected in order to obtain a
balanced dataset.

Active Content

As we can see from the feature vector we use in our detection scheme, a lot of the features are
related to “active content” in PDF documents. This includes javascript, flash media, forms and
actions. So, a reasonable question to ask is “Does the method really detect maliciousness or just
active content?”. This is a valid question. As stated both in [6] and our own findings in section
5.3.6 over 90% of all PDF documents containing javascript are malicious. And while only 393
(5.2%) of our benign PDF documents contained javascript, 14556 ( 90%) of our malicious PDF
documents did.

However, basing the detection solely on active content will not yield as good results as we
have seen in this thesis with only 25 (0.3%) of the benign corpus wrongfully classified as ma-
licious. This goes to show that there is more to it than just looking for active content, like
javascript.

To further address the active content we created a starting point for classifying the javascript
themselves in experiment 4, where the basis for a feature vector for classifying javascript as
malicious or benign is formed.
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Robustness

When discussing robustness in this context we mean the ability of the classifier/detection system
to withstand evasion attempts by an active adversary. Such an adversary may craft malicious
PDF documents specifically to evade/fool our classifier. Defending against such an adversary is
hard. But hopefully the selected features used in our detection algorithm is significant enough to
reduce the adversaries ability to manipulate several and still maintain a working malicious PDF
document. We have however chosen not to design any specific experiments to test the classifiers
robustness, due to the limited time available for the completion of the master thesis. This will
therefore be a part of future work.

Need for Maintenance

The classifier and the detection method as a whole will need to be followed up over time. The
attacks, the malicious code and techniques used will inevitably change over time. So the proposed
method is not a one-shot - work forever method.

This maintenance can be done either by selecting one point in the future where a new dataset
is found, and the experiments are re-done to find the optimal classifier setup and features once
more. Another interesting approach is “online learning”. With online learning the classifier is
constantly trained with all the new samples it observes in it’s operational use. Such learning
schemes are currently undergoing research, and will therefore need to be explored in future
work.

Computational Complexity

In experiment 1 and 3 we presented several timing results to measure the computational per-
formance of the proposed method. These results show that computational performance is well
within what is acceptable for intrusion detection. Considering the real-world test approximately
600 PDF documents where transferred in the network over 10 days. That is an average of 60
samples per day. The worst case processing time for each samples is calculated to be 8 seconds.
Any up-to-scale sensor monitoring a network should be able to handle such a load.

Using the proposed method in an intrusion prevention scheme, however, could prove more
difficult at the moment. Such a scheme would imply putting the sensor in an inline-mode, that
is the sensor will receive all traffic, process it, and only let benign traffic pass after inspection.
Our proposed solution will thus induce an 8 second delay for all PDF downloads, which will be
unacceptable for the users. However, for some applications, like e-mail, a 8 second delay will
probably be accepted.

Keeping in mind that the prototype IDS solution is programmed in Python, there is also a
huge potential for performance increase. By employing compiled programming languages like C,
performance should be increased significantly.

Ethical Considerations

As always with any product monitoring the network activity of human users, there are some
ethical issues. Deploying an IDS really means that you are deploying surveillance equipment,
and this means that there are some rules that needs to be followed. There is no clear legislation
on network monitoring in Norway. But any organization implementing such measures need to
consider the Privacy Act (Personopplysningsloven), and to find their pursuant for implementing.
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Often such pursuant can be found in legislation or rules governing the specific work area of the
organization, or it can be found in the employers right of access.

In any case local policies for network monitoring needs to be established. The users of the
information system under surveillance need to be informed that the system is indeed monitored,
and give their informed consent to this.

Such ethical considerations was considered for the real-world experiment of this thesis. As
the experiment was performed on an already established sensor most of the work was however
already done. The pursuant was already in place, local policies for network monitoring exists
and all the users of the information system need to sign a document where it is explained that
the system is monitored before gaining access.

In addition we implemented some restrictions on our own. First we decided to only monitor
web traffic (HTTP) and not e-mail (SMTP). This is because we assess that there is a bigger
chance of personal information being transferred over SMTP. We also made sure that extracted
PDF documents were only analyzed by software up until it was actually classified as malicious.
This hindered that benign documents, with a higher risk of private or sensitive data, was read by
any human analyst.

All this considered, we believe that the ethical issues of network monitoring has been well
taken care of in the thesis.
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8 Conclusion

The main research question of this master thesis was “How can malicious PDF-documents trans-
ferred in a network be detected?”. The first thing we knew that we needed was a comprehensive
corpus of benign and malicious PDF documents. We obtained a huge corpus, containing over
16000 unique malicious samples and over 7000 unique benign samples.

The main research question was broken down into three subquestions. The first subquestion
was “Which features are significant for detecting malicious PDF documents?”. To answer this
question we performed a literature study seeking expert knowledge on the topic. From the ex-
pert knowledge we derived what we called the “expert knowledge feature vector”, which was
extracted from our PDF document corpus and served as our starting dataset for further research.

We then employed statistical methods to objectively select only the most relevant features
based on our dataset. Two feature selection methods were employed, and gave us two different
resulting feature vectors. An “enhanced feature vector” was then created based on the output of
the feature selection and expert knowledge. This new feature vector outperformed all the other
feature vectors, and provided the answer to our first research subquestion.

The second subquestion was “Which classifier design and configuration yields optimal perfor-
mance in malicious PDF detection?”. To answer this question we first tested the performance of
five different classifier designs. The results showed that SVM and C4.5 gave us the best results.
SVM was therefore selected as the classifier design to be used. This answered the first part of the
question. Next we needed to optimize the performance of the SVM classifier. This was achieved
through finding the optimal configuration values for the SVM and the Gaussian kernel of the
SVM. The optimal values were found and offered a slight increase in performance. Normaliza-
tion was also tested, but offered no performance increase. Thus we answered the second part of
this subquestion.

The third subquestion was “How can a real-world IDS be implemented based upon our find-
ings?”. To answer this question we created a prototype IDS and deployed it to one of the sensors
owned by the Norwegian Defence Center for Protection of Critical Infrastructure. During the 10
day test period no malicious PDF documents were detected, but the probability is high that there
really was no malicious PDFs being transferred. The test was anyways successful as it proved
that the prototype functioned as planned. For detection of malicious PDFs we have to rely on our
previous results. The test showed that our proposed implementation of our findings worked.

As a step further on the practical implementation of an IDS we conducted an experiment
where the goal was to classify embedded javascript, as javascript are found in the majority of
malicious PDF documents. This experiment showed that javascript classification using similar
methods to what we have used in the PDF experiments is plausible, and can serve as a good
starting point for future research into embedded javascript classification.

To summarize, the acquired knowledge from this master thesis is:
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• A comprehensive PDF dataset for future research ( 16280 malicious / 7454 benign).

• Increased knowledge on significant features for PDF classification, based on empirical find-
ings.

• A proven method for automated detection of malicious PDF in network traffic.

• A starting point for future research on malicious embedded javascript detection.
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9 Future Work

Hopefully this master thesis provides a step forward in malicious PDF detection, however we
also realize that there is more that should be done to further improve and validate the method
and to make it ready for operational use. Many of these items have already been presented in
the discussion, and will only be presented briefly in this chapter.

Further Validation of the Dataset

To further validate the obtained results the dataset should be further validated. One idea here is
to employ fuzzy hashing to review the similarity between samples in the PDF document corpus.
Furthermore additional benign PDF documents should be collected to obtain a balanced dataset.

Further Research on Embedded Javascript

During the work on the thesis, it was discovered that a very large part ( 90%) of all malicious PDF
documents contained embedded javascript that performs parts or all of the malicious actions.
This encouraged Experiment 4, where classification of such embedded javascript was investi-
gated. The experiment showed results that make classification of embedded javascript plausible.
Further research should be performed to improve classification of embedded javascript, as they
are an important factor in detecting malicious PDF.

Testing Robustness

It is possible that evading detection could be easily done by an active adversary by manipulating
malicious documents is such a way that they appear benign to the classifier. An experiment
should be designed and executed to test the robustness against such evasion.

Online Learning

As already discussed, there is a need for re-learning of the classifier after a period of time to
adapt to the evolving threat landscape. Such re-learning could be performed manually, but it
is our belief that manual re-learning is a too troublesome process for commercial use. Online
learning provides the solution to this, but is not fully researched yet. With online learning the
system would adapt to new threats automatically, without requiring time-consuming manual
processes.

Operator Interface

To be of any real practical use the proposed IDS needs to have a user interface. Preferably a
graphical user interface (GUI). The GUI should present alerts to the operator in a simple fashion,
and should let the operator process the alerts with ease.

To improve the GUI and the operator performance a GUI should also include some mea-
sure of certainty or severity, a database of previously analyzed PDFs, MD5 checking with online
databases. The certainty measure can possibly be implemented by using some certainty mea-
sures from the SVM, like the distance from the margin. However, this will need to be further
researched. Severity is hard to say anything about, since the proposed solution does not report
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any specifics about the exploit used like a signature based solution would. One way of dealing
with this could be to make a hybrid of the proposed IDS and a signature based IDS, so that
severity could at least be reported for well known attacks.

More features

During the work with this thesis, some new candidates to serve as features in the feature vec-
tor was discovered. These include /win, which indicates the use of a Windows command, and
/EmbeddedFile, which indicates an embedded file within the PDF. Sadly, there was no time to
include these in the feature vector an run all experiments once more at the time of this discovery.
Therefore these features, and probably even more, should be tested in the future.
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A Custom Code

Listing A.1: uniqify.py

1 #!/ usr / bin / env python
2
3
4 import os , sy s
5 import hash l i b
6
7 #md5 f u n c t i o n f o r f i l e s in Python by The jaswi Raya
8 def md5( fileName , exc ludeLine=" " , inc ludeL ine=" " ) :
9 " " " Compute md5 hash o f the s p e c i f i e d f i l e " " "

10 m = hash l i b .md5()
11 t ry :
12 fd = open ( fileName , " rb " )
13 except IOError :
14 print " Unable to open the f i l e in readmode : " , f i leName
15 return
16 content = fd . r e a d l i n e s ()
17 fd . c l o s e ()
18 for eachLine in content :
19 i f exc ludeLine and eachLine . s t a r t s w i t h ( exc ludeLine ) :
20 continue
21 m. update ( eachLine )
22 m. update ( inc ludeL ine )
23 return m. hexd iges t ()
24
25
26
27
28 #G e t t i n g f i l e l i s t :
29 path= sys . argv [1]
30 l i s t = os . l i s t d i r ( path )
31 md5_l i s t = []
32
33 for f in l i s t :
34 md5sum = md5( path+f )
35 #p r i n t ’md5 f o r ’ +f+ ’ i s ’ +md5sum
36 i f md5sum in md5_l i s t :
37 os . remove ( path+f )
38 print ’ De le t ing ’ +f+ ’ as i t i s not unique . . . ’
39 else :
40 md5_l i s t . append (md5sum)
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Listing A.2: renamer.py

1 #!/ usr / bin / env python
2
3
4 import os , sy s
5 import hash l i b
6
7 #md5 f u n c t i o n f o r f i l e s in Python by The jaswi Raya
8 def md5( fileName , exc ludeLine=" " , inc ludeL ine=" " ) :
9 " " " Compute md5 hash o f the s p e c i f i e d f i l e " " "

10 m = hash l i b .md5()
11 t ry :
12 fd = open ( fileName , " rb " )
13 except IOError :
14 print " Unable to open the f i l e in readmode : " , f i leName
15 return
16 content = fd . r e a d l i n e s ()
17 fd . c l o s e ()
18 for eachLine in content :
19 i f exc ludeLine and eachLine . s t a r t s w i t h ( exc ludeLine ) :
20 continue
21 m. update ( eachLine )
22 m. update ( inc ludeL ine )
23 return m. hexd iges t ()
24
25
26
27
28 #G e t t i n g f i l e l i s t :
29 path= sys . argv [1]
30 extens ion = sys . argv [2]
31 l i s t = os . l i s t d i r ( path )
32
33 #C a l c u l a t e md5 f o r a l l f i l e s
34 for f in l i s t :
35 md5sum = md5( path+f )
36 f i lename = path+f
37 new_filename = path+md5sum+extens ion
38 os . rename( fi lename , new_filename )
39 print ’ Renamed ’ + f i lename + ’ to ’ + new_filename
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Listing A.3: pdfextract.py

1 #!/ usr / bin / python
2 import pdf #Import s a par t o f the j sunpack−n t o o l by Blake H a r t s t e i n
3 import re , os , sys , time
4
5
6 def count_xre f ( input ) : #Counts o c c u r e n c e s o f c r o s s −r e f e r e n c e

t a b l e s
7 rg = re . compile ( r ’ \ bxre f \b ’ )
8 matches = rg . f i n d a l l ( input )
9 return len ( matches )

10
11 def c o u n t _ s t a r t x r e f ( input ) : #Counts o c c u r e n c e s o f " s t a r t x r e f "

keywords
12 rg = re . compile ( r ’ \ b s t a r t x r e f \b ’ )
13 matches = rg . f i n d a l l ( input )
14 return len ( matches )
15
16 def count_obj ( input ) : #Counts ob j keywords
17 rg = re . compile ( r ’ \ bobj \b ’ )
18 matches = rg . f i n d a l l ( input )
19 return len ( matches )
20
21 def count_endobj ( input ) : #Counts endob j keywords
22 rg = re . compile ( r ’ \ bendobj \b ’ )
23 matches = rg . f i n d a l l ( input )
24 return len ( matches )
25
26 def count_stream ( input ) : #Counts stream keywords
27 rg = re . compile ( r ’ \ bstream \b ’ )
28 matches = rg . f i n d a l l ( input )
29 return len ( matches )
30
31 def count_endstream ( input ) : #Counts endstream keywords
32 rg = re . compile ( r ’ \bendstream \b ’ )
33 matches = rg . f i n d a l l ( input )
34 return len ( matches )
35
36 def c o u n t _ t r a i l e r ( input ) : #Counts t r a i l e r keywords
37 rg = re . compile ( r ’ \ b t r a i l e r \b ’ )
38 matches = rg . f i n d a l l ( input )
39 return len ( matches )
40
41 def ge tFea tures ( data , mypdf ) : #C o l l e c t s a l l keyword f r e q u e n c i e s and

s t o r e s in a d i c t i o n a r y
42 f e a t u r e s = {}
43
44 f e a t u r e s [ ’ x r e f ’ ] = count_xre f ( data )
45 f e a t u r e s [ ’ s t a r t x r e f ’ ] = c o u n t _ s t a r t x r e f ( data )

83



Detecting malicious PDF documents

46 f e a t u r e s [ ’ t r a i l e r ’ ] = c o u n t _ t r a i l e r ( data )
47 f e a t u r e s [ ’ Page ’ ] = 0
48 f e a t u r e s [ ’ Encrypt ’ ] = 0
49 f e a t u r e s [ ’ ObjStm ’ ] = 0
50 f e a t u r e s [ ’ JS ’ ] = 0
51 f e a t u r e s [ ’ J avaSc r i p t ’ ] = 0
52 f e a t u r e s [ ’AA ’ ] = 0
53 f e a t u r e s [ ’ OpenAction ’ ] = 0
54 f e a t u r e s [ ’ AcroForm ’ ] = 0
55 f e a t u r e s [ ’ JBIG2Decode ’ ] = 0
56 f e a t u r e s [ ’ RichMedia ’ ] = 0
57 f e a t u r e s [ ’ Launch ’ ] = 0
58 f e a t u r e s [ ’ AsciiHexDecode ’ ] = 0
59 f e a t u r e s [ ’ Colors ’ ] = 0
60 i f ( count_obj ( data ) − count_endobj ( data ) ) != 0: #Mismatch

between ob j and endob j
61 f e a t u r e s [ ’ obj_mis ’ ] = 1
62 else :
63 f e a t u r e s [ ’ obj_mis ’ ] = 0
64 i f ( count_stream ( data ) − count_endstream ( data ) ) != 0: #

Mismatch between stream and endstream
65 f e a t u r e s [ ’ stream_mis ’ ] = 1
66 else :
67 f e a t u r e s [ ’ stream_mis ’ ] = 0
68
69 #Parse PDF to decompress and decode s t reams
70 i f mypdf . i s _ v a l i d () :
71 mypdf . parse ()
72
73
74 #Search parsed PDF f o r f e a t u r e s
75 for k in mypdf . o b j e c t s :
76 for i in mypdf . o b j e c t s [k ] . tags :
77 i f ’ Page ’ in i :
78 f e a t u r e s [ ’ Page ’ ] += 1
79 i f ’ Encrypt ’ in i :
80 f e a t u r e s [ ’ Encrypt ’ ] += 1
81 i f ’ ObjStm ’ in i :
82 f e a t u r e s [ ’ ObjStm ’ ] += 1
83 i f ’ JS ’ in i :
84 f e a t u r e s [ ’ JS ’ ] += 1
85 i f ’ J avaSc r i p t ’ in i :
86 f e a t u r e s [ ’ J avaSc r ip t ’ ] += 1
87 i f ’AA ’ in i :
88 f e a t u r e s [ ’AA ’ ] += 1
89 i f ’ OpenAction ’ in i :
90 f e a t u r e s [ ’ OpenAction ’ ] += 1
91 i f ’ AcroForm ’ in i :
92 f e a t u r e s [ ’ AcroForm ’ ] += 1
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93 i f ’ JBIG2Decode ’ in i :
94 f e a t u r e s [ ’ JBIG2Decode ’ ] += 1
95 i f ’ RichMedia ’ in i :
96 f e a t u r e s [ ’ RichMedia ’ ] += 1
97 i f ’ Launch ’ in i :
98 f e a t u r e s [ ’ Launch ’ ] += 1
99 i f ’ AsciiHexDecode ’ in i :

100 f e a t u r e s [ ’ AsciiHexDecode ’ ] += 1
101 i f ’ Co lors > 2^24 ’ in i :
102 f e a t u r e s [ ’ Colors ’ ] += 1
103
104 return f e a t u r e s
105
106
107 def wri teVec tor ( f ea ture s , f i lename , l a b e l ) : #Write f e a t u r e v e c t o r s to

f i l e
108
109 #SparseData format : [ id , ] l a b e l f i d 1 : f v a l 1 f i d 2 : f v a l 2
110 vec to r = s t r ( f i lename )+" , "+l a b e l
111
112 for key , value in f e a t u r e s . i t e r i t e m s () :
113 vec to r += " "+key+" : "+s t r ( value )
114
115 vec to r += " \n "
116
117 o u t f i l e = open ( " da tase t_ "+labe l , " a " )
118 o u t f i l e . wr i te ( vec to r )
119
120
121 i f __name__ == ’ __main__ ’ :
122 #Get t ime f o r usage c a l u l a t i o n s
123 s t a r t _ t i m e = time . time ()
124
125 #Get d i r e c t o r y and l a b e l from commandline
126 path = sys . argv [1]
127 l a b e l = sys . argv [2]
128
129 #Get f i l e s in d i r e c t o r y and open
130 f i l e s = os . l i s t d i r ( path )
131
132 for f in f i l e s :
133 node = open ( path+f , ’ r ’ )
134 data = node . read ()
135 node . c l o s e ()
136
137 #Parse PDF
138 print " Pars ing "+ s t r ( f )
139 mypdf = pdf . pdf ( data , f i l e )
140
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141 #E x t r a c t f e a t u r e s
142 print " E x t r a c t i n g f e a t u r e s . . . "
143 f e a t u r e s = getFea tures ( data , mypdf )
144
145 " " "
146 #Uncomment f o r p r i n t i n g to s t d o u t
147 f o r k , v in f e a t u r e s . i t e r i t e m s () :
148 p r i n t k , v
149 " " "
150
151 #Dumping j a v a s c r i p t i f a v a i l a b l e
152 i f f e a t u r e s [ ’ JS ’ ] != 0 or f e a t u r e s [ ’ J avaSc r i p t ’ ] !=

0:
153
154 decoded , decoded_headers = mypdf . ge t Ja vaS c r i p t

()
155
156 i f len ( decoded ) > 0:
157 t ry :
158 j s _ o u t = open ( ’ . / java / ’+l a b e l

+ ’ / ’+f+ ’ . j s ’ , ’w ’ )
159 head_out = open ( ’ . / java / ’+

l a b e l+ ’ / ’+f+ ’ . headers ’ , ’w ’
)

160 except IOError :
161 os . makedirs ( ’ . / j ava / ’+l a b e l )
162 j s _ o u t = open ( ’ . / java / ’+l a b e l

+ ’ / ’+f+ ’ . j s ’ , ’w ’ )
163 head_out = open ( ’ . / java / ’+

l a b e l+ ’ / ’+f+ ’ . headers ’ , ’w ’
)

164
165 i f j s _ o u t :
166 j s _ o u t . wr i te ( decoded )
167 j s _ o u t . c l o s e ()
168 i f head_out :
169 head_out . wr i te (

decoded_headers )
170 head_out . c l o s e ()
171
172 else :
173 print ’ J avaSc r ip t seems to be present ,

but no s c r i p t dumped ’
174
175 #Wri t ing SpareDatase t v e c t o r
176 print " Wri t ing to v e c t o r f i l e . . . "
177 wr i teVec tor ( f ea ture s , f , l a b e l )
178
179 #C a l c u l a t e used t ime f o r per formance measures
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180 end_time = time . time ()
181 used_time = end_time − s t a r t _ t i m e
182 print " Work done in " + s t r ( used_time ) + " seconds . "
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Listing A.4: ngramextractor.py

1 from __future__ import d i v i s i o n
2 from pyngram import calc_ngram
3 from PyML import ∗
4 import sys
5 import os
6 from s q l i t e 3 import ∗
7 import Str ing IO
8 from time import time
9

10 o u t f i l e = open ( " da ta se t . sparse " , ’ a ’ )
11 l a b e l = sys . argv [2]
12
13 #Set n
14 n_value=5
15
16
17
18
19
20
21 #De f in e method to w r i t e output to f i l e :
22
23 def wri te_output ( r e s u l t ) :
24 print " Wri t ing ve c to r s to o u t f i l e . . . "
25 o u t f i l e . wr i te ( l a b e l+ ’ ’ )
26 v e c t o r _ s t r i n g = ’ ’
27 t ry :
28 for i in r e s u l t :
29 key = s t r ( i [0])
30 value = s t r ( i [1])
31 v e c t o r _ s t r i n g = key+ ’ : ’+value+ ’ ’
32 o u t f i l e . wr i te ( v e c t o r _ s t r i n g )
33 except NameError :
34 print "Name er ro r in wr i te_output () "
35 i f v e c t o r _ s t r i n g :
36 o u t f i l e . wr i te ( ’ \n ’ )
37
38
39
40
41 #De f in e method to w r i t e output to f i l e i f a l t e r n a t e method i s used :
42 def a l t _wr i t e_ou tpu t ( curs ) :
43 print " Wri t ing ve c to r s to o u t f i l e . . . "
44 o u t f i l e . wr i te ( l a b e l+ ’ ’ )
45 v e c t o r _ s t r i n g = ’ ’
46 #t r y :
47 curs . execute ( ’ s e l e c t ∗ from ngrams order by value desc ’ )
48 for row in curs :
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49 key = row[0]
50 value = row[1]
51 v e c t o r _ s t r i n g = key+ ’ : ’+s t r ( value )+ ’ ’
52 o u t f i l e . wr i te ( v e c t o r _ s t r i n g )
53 #e x c e p t NameError :
54 # p r i n t "Name e r r o r in a l t _ w r i t e _ o u t p u t () "
55 i f v e c t o r _ s t r i n g :
56 o u t f i l e . wr i te ( ’ \n ’ )
57
58 def alt_method ( content ) :
59 print " MemoryError proces s ing f i l e . Using a l t e r n a t i v e a l t e r n a t i v e

method . "
60 content = Str ingIO . St r ing IO ( content )
61 # f i l e = open ( path+f , ’ rb ’ )
62 #Open s q l i t e 3 database f o r a l t e r n a t i v e method f o r b i g f i l e s
63 os . remove ( ’ ngram . db ’ )
64 conn = connect ( ’ ngram . db ’ )
65 curs = conn . cursor ()
66 curs . execute ( ’ ’ ’ c r e a t e t a b l e ngrams (ngram t e x t primary key , va lue

i n t e g e r ) ’ ’ ’ )
67 ngram_dict = {}
68
69 l i n e s = content . r e a d l i n e s ()
70 no_ l ines = s t r ( len ( l i n e s ) )
71 l i n e = 0
72
73 for l in l i n e s : #con t en t . r e a d l i n e s () : #Read l i n e s one at a t ime

and pas s to f u n c t i o n s
74 l i n e += 1
75
76 print " P roces s ing l i n e number : " +s t r ( l i n e )+ " of " +no_ l ines
77 hex_content = l . encode ( " hex " )
78 r e s u l t _ p a r t = calc_ngram ( hex_content , n_value ∗2)
79
80 for i in r e s u l t _ p a r t :
81 key = i [0]
82 value = i [1]
83
84
85 t ry :
86 i f key in ngram_dict : #Put r e s u l t s in a

d i c t i o n a r y f o r summing f r e q u e n c i e s
87 ngram_dict [ key ] = ngram_dict [ key ] + value
88 else :
89 ngram_dict [ key ] = value
90
91 except MemoryError : #When d i c t i o n a r y i s

f u l l , dump to s q l i t e 3 database
92 print ’ Dumping to DB ’
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93 for k , v in ngram_dict . i t e r i t e m s () :
94 t ry :
95 curs . execute ( ’ INSERT INTO ngrams VALUES

(? ,? ) ’ , ( k , v ) )
96
97 except I n t e g r i t y E r r o r :
98 curs . execute ( ’UPDATE ngrams SET value =

value+? where ngram=? ’ , ( v , k ) )
99

100
101 t ry : #Count in the key , va lue pa i r tha t caused

the memory e r r o r
102 curs . execute ( ’ INSERT INTO ngrams VALUES (? ,? )

’ , ( key , value ) )
103
104 except I n t e g r i t y E r r o r :
105 curs . execute ( ’UPDATE ngrams SET value = value

+? where ngram=? ’ , ( value , key ) )
106
107 conn . commit ()
108 print ’Dump done ’
109 ngram_dict . c l e a r () #Clear the dumped data from

d i c t i o n a r y
110
111 i f ngram_dict :
112 for k , v in ngram_dict . i t e r i t e m s () : #Dump l a s t (non

f u l l ) d i c t i o n a r y to database
113 t ry :
114 curs . execute ( ’ INSERT INTO ngrams VALUES (? ,? ) ’ , ( k , v ) )
115
116 except I n t e g r i t y E r r o r :
117 curs . execute ( ’UPDATE ngrams SET value = value+? where

ngram=? ’ , ( v , k ) )
118 conn . commit ()
119 ngram_dict . c l e a r ()
120
121
122 # f i l e . c l o s e ()
123 content . c l o s e ()
124 del content
125 del ngram_dict
126 a l t _wr i t e_ou tpu t ( curs )
127 conn . c l o s e ()
128
129
130 #MAIN:
131
132
133 s t a r t t i m e = time ()
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134 #Get d i r e c t o r y from commandline
135 path = sys . argv [1]
136
137 #Get f i l e s in d i r e c t o r y
138 f i l e s = os . l i s t d i r ( path )
139 n o _ f i l e s = len ( f i l e s )
140 counter = 0
141
142 print " Read "+ s t r ( n o _ f i l e s ) + " f i l e s to l a b e l as " + l a b e l
143
144 for f in f i l e s :
145
146 #Open a f i l e and read i n t o s t r i n g
147 f i l e = open ( path+f , ’ rb ’ )
148 i n _ f i l e = f i l e . read ()
149 print " \ nProcess ing f i l e : "+f i l e . name
150 #p r i n t ’ Reading ’+path+f
151 f i l e . c l o s e ()
152
153 #Conver t to hex and c a l c u l a t e n−gram f r e q u e n c i e s :
154
155 t ry :
156
157 hex_content = i n _ f i l e . encode ( " hex " )
158 r e s u l t = calc_ngram ( hex_content , n_value ∗2)# method e x p e c t s

i n p u t s t r i n g as 1 s t arg , s i z e o f n−gram as 2nd arg
159 wri te_output ( r e s u l t )
160 del r e s u l t
161
162 except MemoryError : #i f f i l e i s too l a r g e to p ro c e s s , p r o c e s s one

l i n e at a t ime and use S q l i t e 3 database
163 alt_method ( i n _ f i l e )
164
165
166 #Track p r o g r e s s
167 counter += 1
168 progress = i n t (( counter / n o _ f i l e s ) ∗100)
169 sys . s tdout . wr i te ( " \ r " + s t r ( progres s ) + "% done " )
170 sys . s tdout . f l u s h ()
171 del i n _ f i l e
172
173 o u t f i l e . c l o s e ()
174 endtime = time ()
175 print " \nDone . Processed "+ s t r ( n o _ f i l e s ) + " in " + s t r ( endtime−

s t a r t t i m e ) + " seconds . "
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Listing A.5: pdfidsvmgrid.py

1 #!/ usr / bin / env python
2 # −∗− cod ing : u t f −8 −∗−
3 from PyML import ∗
4 import sys , t raceback
5
6 #Get command l i n e arguments :
7 i n f i l e = sys . argv [1]
8 o u t f i l e = sys . argv [2]
9

10 #Import exper iment data :
11 data = SparseDataSet ( i n f i l e )
12
13 #Do a g r i d s ea r ch f o r o p i t i m a l v a l u e s o f C and gamma o f the Gaussian

k e r n e l :
14 param = modelSelect ion . ParamGrid (svm .SVM( ker . Gaussian () ) , ’C ’ , [0 .1 ,

1 , 10 , 100 , 1000] , ’ kerne l .gamma ’ , [0 .01 , 0 .1 , 1 , 10])
15 model = modelSelect ion . ModelSelector (param)
16
17 #Train the SVM us ing the opt imal v a l u e s :
18 print ’ T ra in ing SVM using ’ + i n f i l e
19 svm = model . t r a i n ( data )
20
21 #Save the SVM to f i l e f o r l a t e r use :
22 print " Saving t ra ined SVM to " + o u t f i l e
23 model . save ( o u t f i l e )
24
25 #Perform c ro s s −v a l i d a t i o n over data to g e t per formance s t a t i s t i c s
26 print " Performing ten−f o l d c ro s s v a l i d a t i o n "
27 r e s u l t = model . cv ( data ,10)
28
29
30 #Save s e v e r a l u s e f u l s t a t i s t i c s to f i l e :
31 r e s u l t _ s t r i n g = ’ \n\n\ n S e n s i t i v i t y : ’+ s t r ( r e s u l t . g e t S e n s i t i v i t y () ) +

’ \ nSuccess ra te : ’+s t r ( r e s u l t . getSuccessRate () ) + ’ \ nBalanced
s u c c e s s r a t e : ’+ s t r ( r e s u l t . balancedSuccessRate ) + ’ \nAuROC: ’+s t r (
r e s u l t . getROC () )

32 print r e s u l t _ s t r i n g
33
34 t ry :
35 print s t r ( r e s u l t . getConfus ionMatr ix () )
36 except :
37 pass
38
39 t ry :
40 r e s u l t . plotROC ( ’ roc . png ’ )
41 except :
42 print "#" ∗40
43 print "No ROC"
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44 print "#" ∗40
45 pass
46
47
48
49 f = open ( o u t f i l e+" _ s t a t s " , ’w ’ )
50 f . wr i te ( " \nSVM params : \n "+ s t r (svm) )
51 f . wr i te ( r e s u l t _ s t r i n g )
52
53 t ry :
54 f . wr i te ( s t r ( r e s u l t . getConfus ionMatr ix () ) )
55 except :
56 pass
57
58 f . wr i te ( ’ \n\ nDecis ion Funct ion : ’+ s t r ( r e s u l t . ge tDec i s ionFunct ion () ) )
59
60
61 f . wr i te ( " \n\n\n####INFO:####\n " )
62 f . wr i te ( s t r ( r e s u l t . g e t In fo () ) )
63 f . wr i te ( " \n\n\n####LOG:####\n " )
64 f . wr i te ( s t r ( r e s u l t . getLog () ) )
65 f . c l o s e ()
66
67 f = open ( o u t f i l e+" _ l a b e l s " , ’w ’ )
68 given = r e s u l t . ge tGivenLabe ls ()
69 pred i c ted = r e s u l t . ge tP red i c t edLabe l s ()
70 cn t r = 0
71 l a b e l _ l i s t = []
72 l a b e l 2 _ l i s t = []
73 for i in given :
74 t emp_ l i s t = [ s t r ( i ) , s t r ( p red i c ted [ cn t r ]) ]
75 l a b e l _ l i s t . append ( t emp_ l i s t )
76 cn t r += 1
77 for item in l a b e l _ l i s t :
78 f . wr i te ( "%s \n " % item )
79
80 f . c l o s e ()
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Listing A.6: pdfidsvmnorm.py

1 #!/ usr / bin / env python
2 # −∗− cod ing : u t f −8 −∗−
3 from PyML import ∗
4 import sys , t raceback
5
6 #Get command l i n e arguments :
7 i n f i l e = sys . argv [1]
8 o u t f i l e = sys . argv [2]
9

10 #Import exper iment data :
11 data = SparseDataSet ( i n f i l e )
12
13 #S p e c i f y t ype o f ke rne l , opt imal v a l u e s from p r e v i o u s exper iment s ,

and type o f norma l i za t i on
14 data . a t tachKerne l ( ’ gauss ian ’ , C=100, gamma=0.1 , normal iza t ion = ’

cos ine ’ )
15
16 #Crea t e the SVM:
17 s = SVM()
18
19 #Perform c ro s s −v a l i d a t i o n over data to g e t per formance s t a t i s t i c s
20 print " Performing ten−f o l d c ro s s v a l i d a t i o n "
21 r e s u l t = s . cv ( data ,10)
22
23
24
25 #Save s e v e r a l u s e f u l s t a t i s t i c s to f i l e :
26
27 f = open ( o u t f i l e+" _ s t a t s " , ’w ’ )
28 f . wr i te ( " \nSVM params : \n "+ s t r (svm) )
29 f . wr i te ( ’ \n\n\ n S e n s i t i v i t y : ’+ s t r ( r e s u l t . g e t S e n s i t i v i t y () ) + ’ \

nSuccess ra te : ’+s t r ( r e s u l t . getSuccessRate () )+ ’ \ nConfusionmatrix \n ’
)

30 f . wr i te ( ’ \n\ nDecis ion Funct ion : ’+ s t r ( r e s u l t . ge tDec i s ionFunct ion ) )
31 t ry :
32 f . wr i te ( s t r ( r e s u l t . getConfus ionMatr ix () ) )
33 except :
34 pass
35
36 f . wr i te ( " \n\n\n####INFO:####\n " )
37 f . wr i te ( s t r ( r e s u l t . g e t In fo () ) )
38 f . wr i te ( " \n\n\n####LOG:####\n " )
39 f . wr i te ( s t r ( r e s u l t . getLog () ) )
40 f . c l o s e ()
41
42 f = open ( o u t f i l e+" _ l a b e l s " , ’w ’ )
43 given = r e s u l t . ge tGivenLabe ls ()
44 pred i c ted = r e s u l t . ge tP red i c t edLabe l s ()
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45 cn t r = 0
46 l a b e l _ l i s t = []
47 l a b e l 2 _ l i s t = []
48 for i in given :
49 t emp_ l i s t = [ s t r ( i ) , s t r ( p red i c ted [ cn t r ]) ]
50 l a b e l _ l i s t . append ( t emp_ l i s t )
51 cn t r += 1
52 for item in l a b e l _ l i s t :
53 f . wr i te ( "%s \n " % item )
54
55 f . c l o s e ()
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Listing A.7: pdfidsvm.py

1 #!/ usr / bin / env python
2 # −∗− cod ing : u t f −8 −∗−
3 from PyML import ∗
4 import sys , t raceback
5
6 #Get command l i n e arguments :
7 i n f i l e = sys . argv [1]
8 o u t f i l e = sys . argv [2]
9

10 #Import exper iment data :
11 data = SparseDataSet ( i n f i l e )
12
13 #Attach opt imal k e r n e l from e a r l i e r expe r imen t s :
14 data . a t tachKerne l ( ’ gauss ian ’ , gamma = 0.1 , C = 100)
15
16 #Crea t e the SVM:
17 s = SVM()
18
19 #Perform c ro s s −v a l i d a t i o n over data to g e t per formance s t a t i s t i c s
20 print " Performing ten−f o l d c ro s s v a l i d a t i o n "
21 r e s u l t = s . cv ( data ,10)
22
23
24 #Save s e v e r a l u s e f u l s t a t i s t i c s to f i l e :
25 r e s u l t _ s t r i n g = ’ \n\n\ n S e n s i t i v i t y : ’+ s t r ( r e s u l t . g e t S e n s i t i v i t y () ) +

’ \ nSuccess ra te : ’+s t r ( r e s u l t . getSuccessRate () ) + ’ \ nBalanced
s u c c e s s r a t e : ’+ s t r ( r e s u l t . balancedSuccessRate ) + ’ \nAuROC: ’+s t r (
r e s u l t . getROC () )

26 print r e s u l t _ s t r i n g
27
28 t ry :
29 print s t r ( r e s u l t . getConfus ionMatr ix () )
30 except :
31 pass
32
33 t ry :
34 r e s u l t . plotROC ( ’ roc . png ’ )
35 except :
36 print "#" ∗40
37 print "No ROC"
38 print "#" ∗40
39 pass
40
41
42
43 f = open ( o u t f i l e+" _ s t a t s " , ’w ’ )
44 f . wr i te ( " \nSVM params : \n "+ s t r (svm) )
45 f . wr i te ( r e s u l t _ s t r i n g )
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46
47 t ry :
48 f . wr i te ( s t r ( r e s u l t . getConfus ionMatr ix () ) )
49 except :
50 pass
51
52 f . wr i te ( ’ \n\ nDecis ion Funct ion : ’+ s t r ( r e s u l t . ge tDec i s ionFunct ion () ) )
53
54
55 f . wr i te ( " \n\n\n####INFO:####\n " )
56 f . wr i te ( s t r ( r e s u l t . g e t In fo () ) )
57 f . wr i te ( " \n\n\n####LOG:####\n " )
58 f . wr i te ( s t r ( r e s u l t . getLog () ) )
59 f . c l o s e ()
60
61 f = open ( o u t f i l e+" _ l a b e l s " , ’w ’ )
62 given = r e s u l t . ge tGivenLabe ls ()
63 pred i c ted = r e s u l t . ge tP red i c t edLabe l s ()
64 cn t r = 0
65 l a b e l _ l i s t = []
66 l a b e l 2 _ l i s t = []
67 for i in given :
68 t emp_ l i s t = [ s t r ( i ) , s t r ( p red i c ted [ cn t r ]) ]
69 l a b e l _ l i s t . append ( t emp_ l i s t )
70 cn t r += 1
71 for item in l a b e l _ l i s t :
72 f . wr i te ( "%s \n " % item )
73
74 f . c l o s e ()
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Listing A.8: flow2pdf.py

1 #!/ usr / bin / python
2 import os , sys , time , subprocess
3
4 i f __name__ == ’ __main__ ’ :
5 #Get t ime f o r usage c a l u l a t i o n s
6 s t a r t _ t i m e = time . time ()
7
8 #Get d i r e c t o r y and l a b e l from commandline
9 a l e r t _ f i l e = sys . argv [1]

10 root_path = ’ /home/ master / master /SVM/expREAL/ ’
11 log_path = root_path+ ’ pdf / ’
12 tmp_path = root_path+ ’ tmp/ ’
13 pcap_path = root_path+ ’ pcaps / ’
14 pdf_path = root_path+ ’ pdfs / ’
15 flow_path = root_path+ ’ flow / ’
16 new_flow = root_path+ ’ new_flow/ ’
17 #Conver t a l l to pcap
18 f i l e s = os . l i s t d i r ( log_path )
19 for f in f i l e s :
20 i f ’ snor t ’ in f :
21 subprocess . check_ca l l ( [ ’ cp ’ , log_path+f ,

tmp_path ])
22 f i l e s = os . l i s t d i r ( tmp_path )
23 for f in f i l e s :
24 pcap_stime = time . time ()
25 subprocess . check_ca l l ( [ " u2boat " , tmp_path+f , pcap_path+

f+" . pcap " ])
26 #p r i n t " / var / l og / s n o r t / u2boat " , pcap_path+f , pcap_path+

f +". pcap "
27 pcap_etime = time . time ()
28 print " PCAP convers ion per f i l e " + s t r ( pcap_etime−

pcap_stime )
29
30 #Parse a l e r t f i l e
31 f0 = open ( a l e r t _ f i l e , ’ rb ’ )
32 a l e r t s = f0 . r e a d l i n e s ()
33 f0 . c l o s e ()
34
35 t ime_pat tern = ’%Y/%m/%d−%H:%M:%S ’
36
37 os . chd i r ( f low_path )
38
39 for l i n e in a l e r t s :
40 pa r t s = l i n e . s p l i t ( )
41 t t ime = " 2011/ "+ s t r ( pa r t s [ 0 ] . p a r t i t i o n ( ’ . ’ ) [0])
42 epoch = i n t ( time . mktime( time . s t rp t ime ( tt ime ,

t ime_pat tern ) ) )
43 s r c = par t s [9]
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44 ds t = par t s [11]
45 src_addr = s r c . p a r t i t i o n ( ’ : ’ ) [0]
46 s r c _ p o r t = s r c . p a r t i t i o n ( ’ : ’ ) [2]
47 print epoch , src , dst , src_addr , s r c _ p o r t
48
49
50 #Get f low
51 f i l e s = os . l i s t d i r ( pcap_path )
52 for f in f i l e s :
53 f low_st ime = time . time ()
54 subprocess . check_ca l l ( [ " tcpf low " , "−r " ,

pcap_path+f , " s r c por t "+s r c _ p o r t+" and
host "+src_addr ])

55 flow_etime = time . time ()
56 print " Per f i l e pcap to flow " + s t r (

flow_etime−f low_st ime )
57
58 #Get f i l e s in d i r e c t o r y and open
59 f i l e s = os . l i s t d i r ( f low_path )
60
61 for f in f i l e s :
62 header_st ime = time . time ()
63 node = open ( f low_path+f , ’ rb ’ )
64 data = node . read ()
65 node . c l o s e ()
66
67 new_data = data . p a r t i t i o n ( ’%PDF− ’ )
68 new_data = new_data[1]+new_data [2]
69 #new_data = new_data . p a r t i t i o n (’%%EOF ’ )
70
71 o u t f i l e = open ( pdf_path+f+" . pdf " , "w" )
72 o u t f i l e . wr i te ( new_data )
73 o u t f i l e . c l o s e ()
74 header_etime = time . time ()
75 print " Per f i l e ehader removal " + s t r ( header_etime −

header_st ime )
76
77 #C a l c u l a t e used t ime
78 end_time = time . time ()
79 used_time = end_time − s t a r t _ t i m e
80 print " Work done in " + s t r ( used_time ) + " seconds . "
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Listing A.9: classifynew.py

1 #!/ usr / bin / env python
2 # −∗− cod ing : u t f −8 −∗−
3 from PyML import ∗
4 from PyML . c l a s s i f i e r s . svm import loadSVM
5 import sys , os
6 import p d f e x t r a c t
7
8
9

10 #Get command l i n e arguments :
11 svm_f i l e = sys . argv [1]
12 da ta se t = sys . argv [2]
13 path = sys . argv [3]
14
15 #Load t r a i n e d SVM:
16 data = SparseDataSet ( da ta se t )
17 data . a t tachKerne l ( ’ gauss ian ’ , gamma = 0.1 , C = 100) #For t e s t i n g
18
19 SVM = loadSVM( svm_f i le , data )
20
21 #SVM = SVM() #For t e s t i n g
22 #SVM. t r a i n ( data , saveSpace = F a l s e ) # For t e s t i n g
23 #SVM. save ( s v m _ f i l e )
24
25 #E x t r a c t f e a t u r e s from i n f i l e s :
26
27 f i l e s = os . l i s t d i r ( path )
28
29 for f in f i l e s :
30 node = open ( path+f , ’ r ’ )
31 data = node . read ()
32 node . c l o s e ()
33
34
35 f e a t u r e s = p d f e x t r a c t . e x t e r n a l _ c a l l ( data , f )
36
37 vec to r = ’ ’
38 for key , value in f e a t u r e s . i t e r i t e m s () :
39 vec to r += key+" : "+s t r ( value )+" "
40
41
42 temp_f i l e = open ( " tmp " , "w" )
43 temp_f i l e . wr i te ( vec to r )
44 temp_f i l e . c l o s e ()
45 t e s t _ d a t a = SparseDataSet ( " tmp " )
46
47 r e s u l t = SVM. t e s t ( t e s t _ d a t a )
48 print f
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49 print vec to r
50 print r e s u l t . g e tP red i c t edLabe l s ()
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Listing A.10: parsemsse.py

1 #!/ usr / bin / python
2 import re , os , sys , time
3
4
5 i f __name__ == ’ __main__ ’ :
6
7 i n _ f i l e = sys . argv [1] #Pass input f i l e from command l i n e
8
9 f1 = open ( i n _ f i l e , ’ rb ’ )

10
11 exp lo i t _ coun t = {}
12 c o u n t e d _ f i l e s = []
13 match = "DETECTION_ADD"
14
15
16 print " Reading and pars ing log . . . "
17 #l o g l i n e s = g e t _ e x p l o i t s ( l o g )
18
19 for l in f1 : #read each l i n e in log− f i l e
20 i f match in l : #I f DETECTION_ADD l i n e s found
21 params = l . s p l i t ( ’ ’ ) #S p l i t the l i n e
22 f i le_name = params [ 5 ] . s p l i t ( ’ \\ ’ ) [ 5 ] . r s t r i p ( ’ \n ’ ) #Get

the f i l e name
23 i f f i le_name in c o u n t e d _ f i l e s :
24 print "%s a l ready counted ! " %fi le_name
25 else :
26 c o u n t e d _ f i l e s . append ( f i le_name )
27 t ry :
28 exp lo i t _ coun t [ params [2]] += 1 #Count e x p l o i t

f r e quen cy
29 except KeyError :
30 exp lo i t _ coun t [ params [2]] = 1 #Add new e x p l o i t s
31
32 else :
33 pass #I f no match , do noth ing
34
35 f1 . c l o s e ()
36 print " Wri t ing to f i l e . . . "
37
38 f2 = open ( ’ t e s t _ o u t ’ , ’ a ’ ) #Write e x p l o i t names and count to f i l e
39 for i , j in exp lo i t _ coun t . i t e r i t e m s () :
40 f2 . wr i te ( i )
41 f2 . wr i te ( ’ %d ’ %j )
42 f2 . wr i te ( ’ \n ’ )
43
44 f2 . c l o s e ()
45 print " Done . "
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B Threats Detected by MSSE

As of 15th of November 2011.

Exploit:Win32/Pdfjsc.CX 45

Exploit:Win32/Pdfjsc.CZ 1

Exploit:Win32/Pdfjsc.CS 30

Exploit:Win32/Pdfjsc.CR 1600

Exploit:Win32/Pdfjsc.CU 1

Exploit:Win32/Pdfjsc.CH 18

Exploit:Win32/Pdfjsc.CK 2

Exploit:Win32/Pdfjsc.CJ 2

Exploit:Win32/Pdfjsc.CM 15

Exploit:Win32/Pdfjsc.CL 1

Exploit:Win32/Pdfjsc.CO 8

Exploit:Win32/Pdfjsc.CA 4

Exploit:Win32/Pdfjsc.CC 4

Exploit:Win32/Pdfjsc.CG 65

Exploit:JS/Mult.BW 4

Exploit:JS/Mult.BQ 2

Exploit:JS/Mult.BX 2

Exploit:JS/Mult.BB 3

Exploit:Win32/Pdfjsc.UR 2

Exploit:Win32/Pdfjsc.UQ 2

Exploit:Win32/Pdfjsc.UP 2

Exploit:Win32/Pdfjsc.UW 8

Exploit:Win32/Pdfjsc.UV 2

Exploit:Win32/Pdfjsc.UU 2

Exploit:Win32/Pdfjsc.UT 2

Exploit:Win32/Pdfjsc.UY 2

Exploit:Win32/Pdfjsc.UX 2

Exploit:JS/Pdfcmi.K 6

Exploit:Win32/Pdfjsc.UG 2

Exploit:Win32/Pdfjsc.UF 2

Exploit:Win32/Pdfjsc.UE 8

Exploit:Win32/Pdfjsc.UD 2

Exploit:Win32/Pdfjsc.UK 2

Exploit:Win32/Pdfjsc.UJ 2

Exploit:Win32/Pdfjsc.UI 2
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Exploit:Win32/Pdfjsc.UH 2

Exploit:Win32/Pdfjsc.UO 2

Exploit:Win32/Pdfjsc.UN 2

Exploit:Win32/Pdfjsc.UM 4

Exploit:Win32/Pdfjsc.UL 2

Exploit:Win32/Pdfjsc.JO 4

Exploit:Win32/Pdfjsc.JI 16

Exploit:Win32/Pdfjsc.JX 20

Trojan:JS/Proxas.A 2

VirTool:Win32/VBInject.gen!DG 4

Exploit:Win32/Pdfjsc.JP 506

Exploit:Win32/Pdfjsc.JQ 10

Exploit:JS/Heapspray 5

Exploit:Win32/Pdfjsc.GO 312

Exploit:Win32/Pdfjsc.GI 6

Exploit:Win32/Pdfjsc.GJ 24

Exploit:Win32/Pdfjsc.GG 2

Exploit:Win32/Pdfjsc.GF 106

Exploit:Win32/Pdfjsc.GX 4

Exploit:Win32/Pdfjsc.GZ 10

Exploit:Win32/Pdfjsc.GT 124

Exploit:Win32/Pdfjsc.GV 13

Exploit:Win32/Pdfjsc.GQ 11

Exploit:Win32/Pdfjsc.GP 8

Exploit:Win32/Pdfjsc.GR 168

Exploit:Win32/Pdfjsc.IC 2

Exploit:Win32/Pdfjsc.IK 254

Exploit:Win32/Pdfjsc.PE!gen 872

Exploit:Win32/Pdfjsc.PM 64

Exploit:Win32/Pdfjsc.PN 18

Exploit:Win32/Pdfjsc.PO 2

Exploit:Win32/Pdfjsc.PH 120

Exploit:Win32/Pdfjsc.PI 10

Exploit:Win32/Pdfjsc.PK 2

Exploit:Win32/Pdfjsc.PG 2

Exploit:Win32/CVE-2010-2883 4

Exploit:Win32/Pdfjsc.PX 6

Exploit:Win32/Pdfjsc.PY 8

Exploit:Win32/Pdfjsc.PZ 2

Exploit:Win32/Pdfjsc.PT 4

Exploit:Win32/Pdfjsc.PU 2

Exploit:Win32/Pdfjsc.PW 2
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Exploit:Win32/Pdfjsc.PP 2

Exploit:Win32/Pdfjsc.PQ 490

Exploit:Win32/Pdfjsc.PR 8

Exploit:Win32/Pdfjsc.PS 28

Exploit:Win32/Pdfjsc.PL 2

Exploit:Win32/Senglot.D 4

Exploit:Win32/Pdfjsc.N 1

Exploit:Win32/Pdfjsc.L 2

Exploit:Win32/Pdfjsc.J 375

Exploit:Win32/Pdfjsc.H 46

Exploit:Win32/Pdfjsc.G 368

Exploit:Win32/Pdfjsc.D 1

Exploit:Win32/Pdfjsc.C 3

Exploit:Win32/ShellCode.E 1

Exploit:Win32/ShellCode.A 64

Exploit:Win32/Pdfjsc.X 2

Exploit:Win32/Pdfjsc.NO 6

Exploit:Win32/Pdfjsc.Q 93

Exploit:JS/Mult.AB 1

Exploit:JS/Mult.AG 20

Exploit:JS/Pdfjsc.R 48

Exploit:JS/Pdfjsc.I 6

Exploit:JS/Pdfjsc.D 4

Exploit:JS/Pdfjsc.E 96

Exploit:Win32/Pidief.B 2

TrojanDownloader:JS/Qakbot.B 2

Exploit:Win32/Pidief.D 15

TrojanDownloader:JS/Qakbot.D 12

TrojanDownloader:JS/Qakbot.G 12

Exploit:Win32/Senglot.U 2

TrojanDownloader:JS/Qakbot.H 2

Exploit:Win32/Pidief.J 54

Exploit:Win32/Pidief.K 14

Exploit:Win32/Pidief.M 4

Exploit:Win32/Pidief.O 662

Exploit:Win32/Pidief.P 98

Exploit:Win32/Pdfjsc.MZ 134

Exploit:Win32/Pidief.R 1

Exploit:Win32/Pidief.S 1

Exploit:Win32/Pidief.T 2

Exploit:Win32/Pidief.U 1

Exploit:Win32/Pidief.V 2
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Exploit:Win32/Pidief.W 8

Exploit:Win32/Pidief.X 3

Exploit:Win32/Pidief.Y 1

Trojan:SWF/Sprayload.A 1

Exploit:SWF/CVE-2010-1297.A 2

Exploit:SWF/CVE-2010-1297.F 5

Exploit:SWF/CVE-2010-1297.E 2

Exploit:Win32/Pifde 18

Exploit:Win32/Pidief.gen!A 2

Exploit:Win32/Pidief.gen!C 128

Exploit:Win32/Pidief.gen!B 4

Exploit:Win32/Pdfjsc.BG 1

Exploit:Win32/Pdfjsc.BE 1

Exploit:Win32/Pdfjsc.BN 1

Exploit:Win32/Pdfjsc.BO 2

Exploit:Win32/Pdfjsc.BL 1

Exploit:Win32/Pdfjsc.BK 28

Exploit:Win32/Pdfjsc.BH 90

Exploit:Win32/Pdfjsc.BI 112

Exploit:Win32/Pdfjsc.BU 18

Exploit:Win32/Pdfjsc.gen!B 82

Exploit:Win32/Pdfjsc.DG 99

Exploit:Win32/Pdfjsc.gen!C 22

Exploit:Win32/Pdfjsc.TP 18

Exploit:Win32/Pdfjsc.TU 2

Exploit:JS/Pdfjsc.BA 1

Exploit:Win32/Pdfjsc.TA 2

Exploit:Win32/Pdfjsc.TB 10

Exploit:Win32/Pdfjsc.TC 34

Exploit:Win32/Pdfjsc.TD 2

Exploit:Win32/Pdfjsc.TE 2

Exploit:Win32/Pdfjsc.TF 2

Exploit:Win32/Pdfjsc.TG 2

Exploit:Win32/Pdfjsc.TI 2

Exploit:Win32/Pdfjsc.TJ 2

Exploit:Win32/Pdfjsc.TK 20

Exploit:Win32/Pdfjsc.TL 18

Exploit:Win32/Pdfjsc.TM 12

Exploit:Win32/Pdfjsc.TN 16

Exploit:Win32/Pdfjsc.TO 4

Exploit:Win32/CVE-2010-2883.A 82

Exploit:Win32/Pdfjsc.AY 2
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Exploit:Win32/Pdfjsc.AV 20

Exploit:Win32/Pdfjsc.AS 22

Exploit:Win32/Pdfjsc.AJ 1

Exploit:Win32/Pdfjsc.AD 4

Exploit:Win32/Pidief.AR 1

Exploit:Win32/Pidief.AP 2

Exploit:Win32/Pidief.AU 58

Exploit:Win32/Pidief.AZ 45

Exploit:Win32/Pidief.AX 1

Exploit:JS/Mult.DC 2

Exploit:Win32/Pidief.AF 1

Exploit:Win32/Pidief.AG 1

Exploit:Win32/Pidief.AD 1

Exploit:Win32/Pidief.AE 1

Exploit:Win32/Pidief.AJ 2

Exploit:Win32/Pidief.AK 1

Exploit:Win32/Pidief.AH 1

Exploit:Win32/Pidief.AN 2

Exploit:Win32/Pidief.AL 1

Exploit:Win32/Pidief.AM 1

Exploit:Win32/Pdfjsc.FI 3

Exploit:Win32/Pdfjsc.FA 2

Exploit:Win32/Pdfjsc.FF 1

Exploit:Win32/Pdfjsc.FG 106

Exploit:Win32/Pdfjsc.FD 2

Exploit:Win32/Pdfjsc.FE 2

Exploit:Win32/Pdfjsc.FS 100

Exploit:Win32/Pdfjsc.FQ 1

Exploit:Win32/Pdfjsc.FW 4

Exploit:Win32/Pdfjsc.FU 16

Exploit:Win32/RdrJmp.A 1

Exploit:Win32/Pdfjsc.KE 1

Exploit:Win32/Pdfjsc 7

TrojanDropper:Win32/Pidrop.A 44

Exploit:Win32/Pdfheap.A 3

Exploit:Win32/Pdfjsc.HA 1

Exploit:Win32/Pdfjsc.HT 1

Exploit:Win32/Pdfjsc.HW 1

Exploit:Win32/Pdfjsc.HQ 4

Exploit:Win32/CVE-2010-0188 5

Exploit:Win32/Pdfjsc.HX 11

Exploit:Win32/Pdfjsc.SI 2
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Exploit:Win32/Pdfjsc.SH 2

Exploit:Win32/Pdfjsc.SK 2

Exploit:Win32/Pdfjsc.SJ 2

Exploit:Win32/Pdfjsc.SM 2

Exploit:Win32/Pdfjsc.SL 2

Exploit:Win32/Pdfjsc.SO 2

Exploit:Win32/Pdfjsc.SN 2

Exploit:Win32/Pdfjsc.SA 6

Exploit:Win32/Pdfjsc.SC 2

Exploit:Win32/Pdfjsc.SB 10

Exploit:Win32/Pdfjsc.SE 2

Exploit:Win32/Pdfjsc.SD 2

Exploit:Win32/Pdfjsc.SG 2

Exploit:Win32/Pdfjsc.SF 2

Exploit:Win32/Pdfjsc.SY 2

Exploit:Win32/Pdfjsc.SX 2

Exploit:Win32/Pdfjsc.SZ 2

Exploit:Win32/Pdfjsc.SQ 2

Exploit:Win32/Pdfjsc.SP 2

Exploit:Win32/Pdfjsc.SS 2

Exploit:Win32/Pdfjsc.SR 2

Exploit:Win32/Pdfjsc.SU 2

Exploit:Win32/Pdfjsc.ST 2

Exploit:Win32/Pdfjsc.SW 2

Exploit:Win32/Pdfjsc.SV 2

Exploit:Win32/Pdfjsc.EB 1158

Exploit:Win32/Pdfjsc.EK 5

Exploit:Win32/Pdfjsc.EJ 340

Exploit:Win32/Pdfjsc.EH 1490

Exploit:JS/Pdfupf.A 8

Exploit:Win32/Pdfjsc.EM 5142

Exploit:Win32/Pdfjsc.EL 6

Exploit:Win32/Pdfjsc.ES 204

Exploit:Win32/Pdfjsc.ER 162

Exploit:Win32/Pdfjsc.EP 210

Exploit:Win32/Pdfjsc.EW 1

Exploit:Win32/Pdfjsc.EV 3

Exploit:Win32/Pdfjsc.EU 128

Exploit:Win32/Pdfjsc.ET 1

Exploit:Win32/Pdfjsc.EZ 58

Exploit:Win32/Pdfjsc.EY 14

Exploit:Win32/Pdfjsc.EX 212
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Exploit:Win32/Pidief.BK 1

Exploit:Win32/Pidief.BH 1

Exploit:Win32/Pidief.BO 1

Exploit:Win32/Pidief.BM 407

Exploit:Win32/Pidief.BA 295

Exploit:Win32/Pidief.BE 1

Exploit:Win32/Pidief.BD 442

Exploit:Win32/Pidief.BX 1

Exploit:Win32/Pidief.BT 1

Exploit:iPhoneOS/Pidief.A 1

Exploit:JS/Pdfjsc.AZ 2

Exploit:Win32/Pdfjsc.JV 314

Exploit:JS/Pdfjsc.AX 2

Exploit:JS/Pdfjsc.AY 4

Exploit:Win32/Pdfjsc.JW 104

Exploit:Win32/Pdfjsc.WG 4

Trojan:Win32/Swrort.A 46

Exploit:Win32/Pdfjsc.LH 12

Exploit:Win32/Pdfjsc.LL 2

Exploit:Win32/Pdfjsc.LM 18

Exploit:Win32/Pdfjsc.LA 2

Exploit:Win32/Pdfjsc.LC 1

Exploit:Win32/Pdfjsc.LY 1

Exploit:Win32/Pdfjsc.LU 17

Exploit:Win32/Pdfjsc.LV 52

Exploit:JS/Mult.CF 1

Exploit:JS/Mult.CD 3

Exploit:JS/Mult.CA 2

VirTool:JS/Obfuscator.AG 24

VirTool:JS/Obfuscator.AD 2

Exploit:JS/Mult.CM 4

Exploit:JS/Mult.CJ 6

VirTool:JS/Obfuscator.T 2

Exploit:Win32/Pdfabdic 12

Exploit:Win32/ShellCode.gen!C 14

VirTool:JS/Obfuscator.K 4

Exploit:Win32/Pdffir.A 65

Exploit:Win32/Pdfjsc.KA 2

Exploit:Win32/Pdfjsc.KB 6

Exploit:JS/ShellCode.gen 52

Exploit:Win32/Pdfjsc.KG 2

Exploit:Win32/Pdfjsc.KI 16
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Exploit:Win32/Pdfjsc.KH 1

Exploit:Win32/Pdfjsc.KJ 2

Exploit:Win32/Pdfjsc.KL 2

Exploit:Win32/Pdfjsc.KO 2

Exploit:Win32/Pdfjsc.KQ 1

Exploit:Win32/Pdfjsc.KP 2

Exploit:Win32/Pdfjsc.KS 2

Exploit:Win32/Pdfjsc.KT 16

Exploit:Win32/Pdfjsc.KY 2

Exploit:Win32/Pdfjsc.KZ 1

TrojanDownloader:Win32/Small.gen!C 40

Exploit:Win32/Pdfjsc.MB 9

Exploit:JS/ShellCode.F 2

Exploit:JS/ShellCode.M 8

Exploit:Win32/Pdfjsc.RV 2

Exploit:Win32/Pdfjsc.RW 2

Exploit:Win32/Pdfjsc.RT 2

Exploit:Win32/Pdfjsc.RU 2

Exploit:Win32/Pdfjsc.RR 2

Exploit:Win32/Pdfjsc.RS 2

Exploit:Win32/Pdfjsc.RP 2

Exploit:Win32/Pdfjsc.RQ 2

Exploit:Win32/Pdfjsc.RZ 2

Exploit:Win32/Pdfjsc.RX 2

Exploit:Win32/Pdfjsc.RY 2

Exploit:Win32/Pdfjsc.RD 2

Exploit:Win32/Pdfjsc.RB 2

Exploit:Win32/Pdfjsc.RC 2

Exploit:Win32/Pdfjsc.RA 2

Exploit:Win32/Pdfjsc.RN 2

Exploit:Win32/Pdfjsc.RO 2

Exploit:Win32/Pdfjsc.RH 22

Exploit:Win32/CVE-2009-1862.A 4

Exploit:JS/Mult.DD 5

Exploit:Win32/Pdfjsc.MI 2

Exploit:Win32/Pdfjsc.OP 16

Exploit:Win32/Pidief.I 1

Exploit:Win32/Pdfjsc.MA 154

Exploit:Win32/Pdfjsc.OK 3

Exploit:Win32/Pidief 2

Exploit:Win32/Pdfjsc.DA 5

Exploit:Win32/Pdfjsc.DB 2
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Exploit:Win32/Pdfjsc.DC 1

Exploit:Win32/Pidief.Q 1

Exploit:Win32/Pdfjsc.DI 6

Exploit:Win32/Pdfjsc.DJ 3

Exploit:Win32/Pdfjsc.DK 2

Exploit:Win32/Pdfjsc.DM 3

Exploit:Win32/Pdfjsc.DN 20

Exploit:Win32/Pdfjsc.DR 8

Exploit:Win32/Pdfjsc.DZ 1

Exploit:Win32/Pidief.F 1

Exploit:Win32/Pdfjsc.VL 4

Exploit:Win32/Pdfjsc.QO 2

Exploit:Win32/Pdfjsc.QN 2

Exploit:Win32/Pdfjsc.QM 2

Exploit:Win32/Pdfjsc.QL 2

Exploit:Win32/Pdfjsc.QK 2

Exploit:Win32/Pdfjsc.QJ 2

Exploit:Win32/Pdfjsc.QI 2

Exploit:Win32/Pdfjsc.QH 2

Exploit:Win32/Pdfjsc.QG 2

Exploit:Win32/Pdfjsc.QF 10

Exploit:Win32/Pdfjsc.QE 2

Exploit:Win32/Pdfjsc.QD 4

Exploit:Win32/Pdfjsc.QC 2

Exploit:Win32/Pdfjsc.QA 10

Exploit:Win32/Pdfjsc.QZ 2

Exploit:Win32/Pdfjsc.QY 2

Exploit:Win32/Pdfjsc.QX 6

Exploit:Win32/Pdfjsc.QW 2

Exploit:Win32/Pdfjsc.QV 2

Exploit:Win32/Pdfjsc.QU 16

Exploit:Win32/Pdfjsc.QT 2

Exploit:Win32/Pdfjsc.QS 8

Exploit:Win32/Pdfjsc.QR 2

Exploit:Win32/Pdfjsc.QQ 2

Exploit:Win32/Pdfjsc.QP 2

Exploit:Win32/Pdfjsc.CV 3178

Exploit:Win32/Pidief.BZ 1386

Exploit:Win32/Pdfjsc.EQ 55

Exploit:Win32/Pdfjsc.gen!A 1399

Exploit:Win32/Pdfjsc.FR 1

Exploit:JS/Pdfjsc.A 190
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Exploit:JS/Pdfjsc.B 720

TrojanDownloader:JS/SetSlice 28
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