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Abstract

Network Intrusion Detection System (NIDS) analyzes network traffic for malicious activities and
report’s findings from events that intend to compromise the security of the computers and other
equipment. NIDS looks into both headers and payloads of the network packets to identify possible
intrusions.

NIDS models that only use Central Processing Units (CPU) such as the IDS Snort, have in
the last decade struggled with the CPU as the bottleneck of the system. Network traffic has been
increasing more rapidly than the clock-speed of CPUs. The CPUs have gained more cores, but
lack implementation for utilizing multi-core CPUs and are unable to cope with the bandwidth
throughput we are starting to see in high-tech network infrastructure that they are set to protect.
The massive flows of data packets overload the NIDS and lead to packet loss which makes them
pass by unchecked for malware and intrusion attempts, increasing the false-negative rate. The
main cause of this is the network packet inspection module in the detection engine of the NIDS.
The detection engine consists of numerous functions and ultimately contains an algorithm for
string searching. This thesis will focus on accelerating the NIDS by parallelizing this algorithm.

In the recent years modern GPUs have evolved from being a tool that only displays high-
end graphics for games, to be used for general-purpose scientific and engineering computing
across a range of platforms [35]. GPU computing is the short term used when ordering the
GPU to take over and accelerate the computationally-intensive calculations normally done by
the CPU, and instead let the CPU take care of the more sequential parts of the application.
They then work together solving tasks in a heterogeneous co-processing computing model. Using
Graphics Processing Units (GPU) for general-purpose scientific and engineering computing has
grown exponentially the last few years. This has happened mostly from the work Nvidia has
put into their CUDA platform and programming model. Some of the most common areas for
use of GPU is fluid dynamics, seismic processing, molecular dynamics, computational chemistry,
finance and supercomputing. Programs need to be specifically designed to run optimized on a
GPU, and special programming APIs have been designed explicitly for GPU computing. The most
well known ones are CUDA and OpenCL. In the recent year’s modern GPUs have evolved from
being the tool that displays high-end graphics for games, to be the tool used in general-purpose
scientific and engineering computing across a range of platforms.

The goal of this project was to harness the power within GPUs and use it to accelerate NIDS
such as Snort, by using CUDA technology. Several papers have been published on the topic of GPU
acceleration, however only a handful of them targeted NIDS with varying results. We believe this
can be improved dramatically by further research in how different hardware components interact
and how to exploit the components and their APIs in new ways for creating high-performance
algorithm solutions.

We present our implementations of known string search algorithms programmed in C++ and
CUDA, with analysis of these algorithms and conclude with contributions from our experiments
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and theoretical analysis.
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Sammendrag

NIDS analyserer nettverkstrafikk for ondsinnede aktiviteter og rapporterer funn fra hendelser
som har til hensikt å kompromittere sikkerheten til datamaskiner og annet utstyr. En NIDS ser
inn både header og payload av nettverkspakker og identifiserer mulige inntrengere i systemer.

NIDS modeller som kun benytter hovedprosessoren (CPU) som produktet Snort, har i det
siste tiåret kjempet med CPU som flaskehalsen i systemet. Nettverks trafikken har økt raskere
enn klokke-hastigheten til CPU. Selv om CPU har fått flere kjerner, mangler det implementering
for å utnytte multi-core prosessorer i NIDS De klarer ikke lenger å takle mengden av trafikk
gjennomstrømming vi ser i high-tech nettverksinfrastruktur der de er satt for å beskytte. De
massive strømmene av datapakker overbelaster NIDS, som gjør at de krysser forbi uten å bli
sjekket for malware og innbruddsforsøk. Den viktigste årsaken til dette er modulen for inspeksjon
av nettverk pakker i deteksjon motoren på NIDS. Deteksjons motoren består av mange funksjoner
og inneholder en algoritme for streng søk. Denne oppgaven vil fokusere på å aksellerere NIDS
ved å parallelisere denne algoritmen.

GPU databehandling er slang uttrykket for å bruke GPU til å overta og aksellerere intensive
beregninger, normalt gjort av CPU. CPU vil istedet få frihet til å ta seg av den mer sekvensielle
delen av søknaden. De arbeider deretter sammen for å løse oppgavene i en heterogen co-
prosessor databehandlings modell. Bruken av Graphical Processing Units (GPU) for generell
vitenskapelig og teknisk databehandling har vokst eksponentielt de siste årene. Dette har skjedd
hovedsakelig på grunn av arbeidet Nvidia har lagt inn i sin CUDA plattform og programmerings
modell. Noen av de vanligste områdene for bruk av GPU er veskedynamikk, seismisk prosesser-
ing, molekylær dynamikk, beregningsorientert kjemi, økonomi og supercomputing. Programmer
må være spesielt designet for å kjøre optimalisert på en GPU, og spesielle programmerings APIer
har blitt designet eksplisitt for GPU databehandling. De mest kjente er CUDA og OpenCL. I de
siste årene har moderne GPUer utviklet seg fra å være verktøyet som viser high-end grafikk for
spill, til å være et verktøy som brukes i generell vitenskapelig og teknisk databehandling på en
rekke plattformer.

Målet med dette prosjektet er å utnytte kraften i GPU og bruke den til å akselerere NIDS som
Snort, ved hjelp av CUDA-teknologi. Flere artikler er publisert om temaet GPU-akselerasjon, men
bare en håndfull målrettet mot NIDS, med varierende resultater. Vi tror dette kan forbedres
dramatisk ved videre forskning på hvordan ulike maskinvarekomponenter samhandler, og
hvordan man best utnytter komponentene og deres APIer på nye måter for å skape nye høyder
for ytelse i algoritmiske løsninger.

Vi presenterer våre implementasjoner av kjente streng søk algoritmer, programmert i C++
og CUDA, samt analyse av disse algoritmene og konluderer med bidrag fra våre eksperimenter
og teroretiske analyse.
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1 Introduction

Network Intrusion Detection System models that only use Central Processing Units (CPU) such as
Snort, have in the last decade struggled with the CPU as the bottleneck of the system. Network
traffic has been increasing more rapidly than the clock-speed of CPUs. The CPUs have gained
more cores, but lack implementation for utilizing multi-core CPUs and are unable to cope with
the bandwidth throughput we are starting to see in high-tech network infrastructure that they
are set to protect. The massive flows of data packets overload the NIDS and lead to packet loss
which makes them pass by unchecked for malware and intrusion attempts, increasing the false-
negative rate. The main cause of this is the network packet inspection module in the detection
engine of the NIDS. The detection engine consists of numerous functions and ultimately contains
an algorithm for string searching. This thesis will focus on accelerating the NIDS by parallelizing
this algorithm.

Using Graphics Processing Units (GPU) for general-purpose scientific and engineering
computing has grown exponentially the last few years. Ordering the GPU to take over and
accelerate the computationally-intensive calculations normally done by the CPU, the two work
together solving tasks in a heterogeneous co-processing computing model. Some of the most
common areas for use of GPU is fluid dynamics, seismic processing, molecular dynamics,
computational chemistry, finance and supercomputing. Programs need to be specifically designed
to run optimized on a GPU, and special programming APIs have been designed explicitly for GPU
computing. The most well known ones are CUDA and OpenCL. In the recent year’s modern GPUs
have evolved from being the tool that displays high-end graphics for games, to be the tool used
in general-purpose scientific and engineering computing across a range of platforms.

1.1 Problem Statement

NIDS models that use Central Processing Units (CPU) for computation have in the last decade
struggled more and more with the CPU becoming the bottleneck of the system. Network traffic
has been increasing more rapidly than the clock-speed of CPUs making it harder and harder to
keep up inspection of all network traffic that they are set to protect. The CPUs have gained more
cores, but NIDS such as Snort [52] lack implementation for utilizing multi-core CPUs and are
unable to cope with the bandwidth throughput. The massive flow of data packets overloads the
NIDS and forces the NIDS to drop packets to keep up the real-time surveillance, letting them
pass by unchecked for malware and intrusion attempts further increasing the total false-negative
rate. A good GPU implementation can dramatically increase the amount of calculations that can
be performed at the same time and boost performance of the NIDS, reducing false-negative rate
caused by dropping packets. When gaining more computational power the system can handle
more traffic without affecting performance of the NIDS, and the cost of the NIDS can be reduced
by many factors as the hardware requirement is less to perform equally to the standard CPU
based model. Figure 1 show a graph displaying the evolution of GPU and CPU the last decade in
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Figure 1: GPU vs CPU - Floating point operations (FLOPs) [13]
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the case of floating point operations (FLOPs) per second possible.
There are two main types of NIDS, signature-based, and anomaly-based. This thesis focus

on signature-based systems that monitor network traffic using known attack patterns. NIDS
analyze network traffic for malicious activities and reports findings from events that intend
to compromise the security of the computers and other equipment. A NIDS looks into both
headers and payloads of the network packets to identify possible intrusion. This is known as deep
packet inspection (DPI). Most Signature based NIDS consist of different modules; from Network
Traffic, Packet Capture, Packet Decoding, Preprocessors, Detection Engine, to Output-Logging
and Alerting, all highly customizable to the user’s needs [34]. In most of these modules there are
components consuming huge amounts of computational power, especially Preprocessors and the
Detection Engine. Cabrera et al. (2004) [9] reported that signature matching in Snort accounts
for over 60% of the total processing time alone. Since then the ammount of signatures active in
Snort has quadrupled, making it an even more demanding process.

1.2 Contributions

In this master thesis, we examine the viability of using Graphical Processing Units (GPU) in
a Network Intrusion Detection System (NIDS) to accelerate the detection engine process with
CUDA parallelization technology from Nvidia. We will show that utilizing GPUs for taking over
the signature matching we can theoretically increase the overall performance of NIDS, reducing
the chance of dropping packets, increasing false negative rate, from too high packet throughput
on the network.

The thesis contribute with answers to the following research questions:

1. To what extent can NIDS performance be increased by using GPU?

2. What parts of the NIDS can be optimized?

3. Which program specific factors give the increase, or decrease in performance?

1.3 Choice of Methods

In addition to theoretical analysis, the experimental part of this thesis is of decisive importance,
thus the refinements of the experimental model will show how efficient the GPU implementation
of the NIDS search algorithm is compared to its original implementation. For this, a qualitative
and experimental methodology [27] will be used to answer the research questions. Learning
the tools and programming languages to work with GPUs and CUDA, and technologies that are
found in NIDS will take a large portion of time spent on the master thesis. A deep dive into the
core of NIDS is needed to find the best abilities and weaknesses.

Addressing the first research question, Can NIDS performance be increased by using GPU? a
careful review of literature and documentation of current NIDS systems and GPU technology
is necessary, to understand exactly which parts of the pipeline is suited for parallelization. We
believe that the best way to gain this knowledge is to experiment with the technologies involved
and find more optimal solutions to problems encountered in a normal NIDS. Understanding
how it everything fit together, the technologies behind and the architectural weaknesses in NIDS
will be needed to start the experimental creation of a GPU based implementation to answer the

3
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research questions.
The answer to the second research question What parts of the NIDS can be optimized? will

be based on the gathered knowledge and be subject of even deeper analysis while conducting
experiments to determine to the full extent of which factors that play a part in performance,
both positive and negative directions. Experiments will be performed in a lab environment, set
up with the latest technology possible to take advantage of all the enhancements made from
previous versions of CUDA and compute power to get as accurate results as possible.

Finally, the third research question Which program specific factors give the increase, or decrease
in performance? will be highlights from our experimentation and programming and be a valuable
collection of tips and tricks as to how we found the different systems to work in synergy gaining
performance boosts, and performance loss from different methods and techniques used to archive
a certain function in our code. These experiences will be part of our contribution to whomever
would continue the work for implementing GPU acceleration into an NIDS.

By offloading the work from the CPU to the GPU, the systems can perform massive amounts
of parallel calculations and gain high performance boosts to reduce or completely eliminate
packet loss. To be able to create algorithms for the GPU, experiments need to be performed to
determine what data should be processed on the GPU rather then CPU as the GPU will only give
performance boots at tasks that can be done in parallel. Sequential processing would still be
done far better by the CPU.

Theoretical problems of the project will be to look at algorithms, how these will need to be
rewritten to fit GPU architectures, optimization techniques for the GPU and look for direct access
methods towards other hardware, especially the main memory and the network interface itself.

Technical side of the project will be to implement a prototype / proof-of-concept software
with the GPU accelerated IDS algorithms utilizing the researched optimization methods.

Finally, methods for benchmarking the performance of NIDS will be applied and a comparison
carried out between the results of the project and the state-of-the-art open source systems.

1.4 Outline

In Chapter 2 we give details of related work in regards to signature-based NIDS that utilize
content or regular expressions. Next we provide a technical background to the Graphical
Processing Units, CUDA technology and NIDS architectures. Chapter 3 shows our design and
implementation of string matching algorithms using CUDA and evaluates the results from our
prototype implementation compared to related work. Chapter 4 concludes our findings and
work.

4
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2 State of the Art

This chapter presents the most related work from the perspective of this thesis, then continues
with a background overview of the technologies used; Graphical Processing Units, the CUDA
architecture, and Network Intrusion Detection Systems.

2.1 Related work

In normal signature-based NIDS systems the most crucial operation performed is the pattern
matching. Pattern matching is the technique of searching through a string to find a specific
pattern given as binary data or a set of characters. It is used in all fields of study and technologies,
from indexing libraries, search engines on the Internet such as Google, or locating a word in a
text file. These search tools can often let the user customize the criteria of the search in different
ways, from searching for a particular character, one word or many, titles or content, or based on a
given length. This flexibility of search dates back to the 1950’s with S.T. Kleene’s [45] formalism
of regular sets, known in computing as regular expressions.

In the art of pattern matching two main classifications exist, single- and multi pattern
algorithms. Single pattern matching algorithms will search through a text for each known pattern
individually, which means it will loop through the whole text as many times as the total number
of patterns. Original examples of single pattern algorithms are the Knuth-Morris-Pratt(MKP) [26]
and Boyer-Moore(BM) [8]. Multi-pattern string algorithms operate quite differently, searching
through the known text only once, looking for all patterns at the same time. This is done by
preprocessing the patterns into a Final State Machine(FSM) or finite automata, that is further
used to conduct the actual matching with the text. For multi-pattern algorithms we use two
main types of automata, Non-Deterministic Finite Automaton (NFA) and Deterministic Finite
Automaton (DFA) (DFA and regular expressions can be found in [50]). An NFA will generate a
state for each possible input symbol, leading to many possible next states. The DFA on the other
hand will only have one possible next state for each symbol, following the path of transition. It
will jump deterministically from one state to another. Downside with DFA is the huge amount of
memory needed to generate a next state for all symbols used. Examples of multi-pattern string
matching algorithms include Aho-Corasick [1], Wu-Manber [61] and Commentz-Walter [11] (all
algorithms can also be found in [33]). Most NIDS that are signature-based use a type of finite
automata combined with regular expressions as described for their pattern matching.

Many approaches have attempted to take parts of NIDS and split them into elements for basic
multi-threading parallelism realized by normal CPU multi-core processors [20, 21, 47, 48, 54].
Attempts at accelerating NIDS through special hardware other then the CPU have also been made
for years. Commercial NIDS systems have for example been using technologies like Application-
Specific Integrated Circuits (ASIC) or Field-Programmable Gate Arrays(FPGA), chips designed
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and programmed solely to run a single algorithm or a small system. The use of Ternary Content-
addressable Memory (TCAM) have also been done by Yu et al. [62] and Meiners et al. [30].
Both where quite fast, but in hardware extremely expensive. Chip circuits (FPGAs) also have
the downside that when changing a rule or adding a new rule set, one must program a whole
new circuit and then recompile the whole automaton, a very time consuming and difficult
task. Improved approaches to FPGAs include Sidhu and Prasannas implementation of regular
expressions on FPGAs (2001) [49], Baker et al. with a signature based method (2004) [4], and
later Dharmapurikar et al. with bloom filters(2004) [14] and Kennedy et al. on a Statix 3 FPGA
(2010) [23]. Attig et al. also proposed improvement to FPGAs with payload content scanning
and header processing (2005) [2].

Several research efforts have been attempted at developing adoptions of string matching
algorithms for Graphical Processing Units (GPU):

Huang et al.(2008) [19] attempted intrusion detection on a GPU based on the Wu-Manber
algorithm [61]. Smith et al.(2009) [50] created an extended DFA with regular expressions on a
GPU for intrusion detection and evaluated GPUs for network packet signature matching. Marziale
et al.(2007) [29] use GPU for accelerating in-place file carving tools. Zha et al.(2011) [63]
implemented a CUDA algorithm based on Aho-Corasick [1] with a Tesla GT200 card.

Jacob and Broadly attempted to accelerate Snort on a GPU with their PixelSnort (2006) [22].
They focused on offloading the string matching algorithm from the CPU to the GPU with
a simplified single-pattern KMP algorithm [26]. This was at an early stage, not using new
technology such as CUDA or OpenCL. They programmed the basic fragment shader in OpenGL
to perform the calculations like normal visual graphics programming. Pixelsnort did not achieve
any speed-up under normal conditions.

Related work combining CUDA and NIDS has been done by Vasiliadis et al. in multiple research
papers: [55] was an attempt to gain high performance in NIDS (Snort) using Graphics
Processors. They observed that single pattern matching algorithms like KMP were not suited
for GPU computing, and rather tried using multi-pattern matching algorithms. The authors
chose to port the algorithm Aho-Corasick [1] (Snort’s standard detection engine algorithm),
and concluded that it could boost performance of Snort at the time by a factor of two. The
single-threaded architecture of Snort restricted the scalability of their work, not managing to
utilize the power of multi-core CPU. The authors tried different approaches to start kernels on
the GPU; assigning a single packet to each multiprocessor, assigning a single packet to each
stream processor, and splitting up the packet into chunks to utilize the warp with size of their
current GPU.

In [56] the team created a regular expression matching engine tailored to IDS use, and
combined it with the work from Gnort. This experiment claimed a 60% increase in the overall
packet processing throughput in Snort. However, the solution used only one GPU. The team
realized the problems within Snort’s single-thread architecture and wanted to further research
Snort’s performance when running multiple executions at the same time, one on each core.

In [58] the authors presented a pattern matching library for GPU. The library supports both
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string searching and regular expression matching on the CUDA architecture. In addition the
paper discussed the performance impact of different types of memory hierarchies and presented
possible solutions for memory congestion problems.

Later Vasiliadis and Ioannidis published [51] modified the open source antivirus ClamAV from
Sourcefire with their own GPU accelerated engine. They used the same methods and ideas from
prior work [55, 56, 58].

The latest published contribution from the team combining all previous work [57] the authors
propose a new framework model for NIDS, combining commodity hardware, general purpose
hardware components, in a single-node design for high-performance network traffic analysis.
The main idea is that no component needs to be synchronized, or wait for other executions to
gain access to resources.

Chen-Hsiung Liu et al. created the PFAC Library [10]; string matching on the GPU using the
Aho-Corasick algorithm. The program is written such that for every input byte a thread on the
GPU is started, and the instance of the algorithm will run from that location until no match is
found against a pattern. The PFAC library does not support multi-GPU but the authors claim it
can easily be combined with other threading libraries to perform string matching on multiple
GPUs at once.

2.1.1 Summary

The thesis will most importantly focus on [55] by Vasiliadis et al. titled Gnort: High Performance
Network Intrusion Detection Using Graphics Processors. Results presented in Chapter 3 will be
discussed and analyzed against this paper.

2.2 Technical Background

This section will give overview of technology used throughout the thesis. This includes Graphics
Processing Units (GPUs), CUDA programming, Network Intrusion Detection Systems (NIDS) and
well known algorithms for use in pattern matching.

2.2.1 Graphical Processing Units

The constant global demand for high-definition graphics in 3D games and realtime visualization
for applications have lead to massive investments in developing Graphic Processing Units (GPU)
for harnessing computational power in an extremely efficient parallel processing computational
model. The GPUs have grown almost exponentially in processing power and memory bandwidth.

In this thesis we have chosen to work with the CUDA architecture. CUDA is Nvidia’s standard
parallel architecture and is exclusively integrated into nearly every Nvidia graphics card today.
API and compiler support is available for C, C++, Fortran, Matlab and more. It gives direct
access to the hardware without the need of other APIs [41]. CUDA offers the most optimal
platform for GPU computation with fast calls as it is tailored specifically for the hardware,
also giving fast Direct Memory Access (DMA) and other functions that would be needed for
a real-time NIDS system. We believe CUDA is the most promising framework for further research
and development due to the quality of the API, development kit, documentation, free on-line
education and training, books and example programs.

The first GPUs were produced by Nvidia in 1999, designed as graphics accelerators to
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handle all visuals that are to be seen on the screen of the computer and only supporting
some specific functions [35]. Using these GPUs for scientific work was at this time hard, as the
only programming language available was OpenGL [25]. Scientists had to take the calculations
they wanted to perform and map them to problems with triangles and polygons that could be
represented visually on the screen [41]. Newer cards have gained more processors with higher
frequency, higher number of CUDA cores, increased memory and API support. Figure: 2, shows an
image of a high-end Nvidia GeForce graphics card (GTX 580), also used during the experiments
in this thesis.

Figure 2: Gainward GeForce GTX 580 1536MB GDDR5 Memory ([18])

2.2.2 CUDA

Nvidia supplies CUDA developers with an up to date programming guide [37] with the release of
each CUDA revision as well as a best practice guide for CUDA C development[36]. We strongly
recommend anyone who wish to gain more insight in CUDA to read these documents found in
the CUDA-Toolkit documentation: [38]. Books with best practices examples for CUDA has also
been released.

Nvidia provides three types of cards that all support CUDA: Tesla, Quadro and GeForce,
respectively [39].

Tesla is the scientific GPU card, designed for data centers and workstation computing
applications. It is based on the “Fermi” GPU computing architecture, and can deliver massive
application performance. Tesla have full double precision on floating numbers, faster PCIe
communication and large data set support. It also has Nvidia GPUDirect with InfiniBand,
used by the major “supercomputers” around the world. It also has two DMA engines for dual
access to main memory. Special drivers for Windows also exist for Tesla, reducing CUDA kernel
overhead. Tesla also supports Error Correcting Code (ECC) Memory, for critical applications with
uncompromised computing accuracy and reliability, where it protects register files, L1/L2 caches,
shared memory and DRAM.

Quadro is the professional graphics solution and is created to process the max possible
triangles per second possible. Quadro is also based on the Fermi architecture and has two DMA
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engines, but not the other functions that are unique to Tesla. Quadro is often used by digital
content creators such as in the movie industry, design engineers, geo-scientists and more.

GeForce is the normal consumer version, much cheaper than the other two, though almost the
same graphics power as the Quadro and Tesla, but only one built in DMA engine and none of the
other features. This is the type that is referred to as a “gamer” card, found in laptops and normal
desktop workstations.

Interface

CUDA consists of a set of extensions to the normal C language and a runtime library. Source
files containing CUDA-code must therefore be compiled with Nvidia’s own compiler: nvcc. The
runtime is built from the CUDA driver API which is also accessible to developers. A program
can use the runtime library or driver API, or both at once without problems. nvcc is accessable
from command line and is supported in all newer versions of the biggest operating systems,
namely Windows(7,Vista and XP), Mac OS X, and Linux. Linux has supported Toolkit versions
for Fedora, Ubuntu, RedHat, OpenSuse and SUSE Enterprise Server, but other distributions such
as Arch Linux work as well.

New revisions of CUDA have a compute capability flag within a given GPU, and is defined by a
major and a minor revision number. Compute capability describes which features are supported
by the CUDA hardware. At this moment of writing, the newest cards are based on the Fermi
architecture and has compute capability 2.x. Current features are detailed in [38].

Compute capability is set as an option flag. Example: arch=compute_20, -code=sm_20 will
set the compiler to compute capability 2.0. Nvidia has also added macros to be used within
code to switch between different code-paths based on compute capabilities by calling for
example:_ _CUDA _ ARCH _ _.

Parallelization

The GPU core is organized in a “Single Instruction Multiple Data-architecture(SIMD). The idea
is to execute multiple copies of a program in parallel with only one single call to the GPU. In
CUDA, the executed code sent to the GPU is called a kernel. An example is provided where we
add two vectors A and B and store the result in C: Listing 2.1. The code looks and feels like
normal C-code. However, there are identifiers that separate host-code from device-code, here
represented with __global __. The second important part of this example is how the function
VecAdd is called from within main(). The difference from a normal C function call is “«<B, T»>”
which is an execution configuration syntax that tells the GPU to launch B-number of blocks,
containing T-number of threads. In the documentation of CUDA the word warp can often be
seen. This describes the minimum group size of threads that can be processed in SIMD fashion
for maximum performance. However, we do not work with warps directly, this is rather the
purpose of blocks. A block is a collection of these threads and can share memory and work
together. Blocks are again clustered in a grid pattern, making it relatively easy to access any
specific thread within the program.

1 // Kernel definition

2 \_\_global\_\_ void VecAdd(float* A, float* B, float* C)
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3 {

4 int i = threadIdx.x;

5 C[i] = A[i] + B[i];

6 }

7

8 int main()

9 {

10 ...

11 // Kernel invocation of BB blocks with TT threads.

12 VecAdd <<<BB, TT >>>(A, B, C);

13 }

Listing 2.1: Example of launching a kernel in CUDA with C code [38]

Figure 3: 2D layout of threads and blocks on a GPU [46].

Memory Access

A basic assumption within the CUDA programming model is that the threads are executed on
a separate device from the host application running on the CPU. These devices hold their own
separate memory spaces, accessible for the programmer. Note some General-Purpose computing
on Graphical Processing Units (GPGPU devices) such as laptops have an integrated graphics chip
on the motherboard, in addition to a second more powerful GPU chip. These share the main
memory of the laptop seamlessly, but this does not change the programming model.
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On CUDA GPUs contain two main types of memory storage, on-chip and on-board. The on-
chip memory is by far the fastest, however limited in size, merely some kilobytes(KB) storage.
These memory spaces are known as the register, shared memory and texture memory. They are
used effectively when the programmer wants to reuse data multiple times very quickly. The
on-board memory is the largest memory storage on the GPU card, measured in gigabytes(GB),
known as global memory. Compared to on-chip, global memory is rather slow, and is used for
storing data over time while executing programs. Table 1 contains benchmark results of Nvidia’s
GF100 chip memory access speed, found in cards such as GTX 470 and 480.

Memory Speed Location Cached Access Scope
Register memory ≈ 8000GB/s on-chip No Read/Write One thread
Shared memory ≈ 1600GB/s on-chip N/A Read/Write All threads in a block
Global memory ≈ 177GB/s on-board Yes Read/Write All threads + host

Mapped memory ≈ 8GB/s host Yes Read/Write All thread + host

Table 1: Benchmark results of a Nvidia GF100 chip [16].

Device Memory transfer Speed
580 GTX Host→ Device 3889.6 MB/s
580 GTX Device→ Host 4323.7 MB/s

580 GTX to 280GTX Device→ Device 163636.7 MB/s

Table 2: Bandwidth results between the Main Memory(host), GeForce 580 GTX and GeForce 280GTX,
(Bandwidth tester [38])

Memory Space

Experienced programmers like to call these memory spaces for variable type qualifiers. These
qualifiers specify in which device memory a variable will be stored. CUDA supports automatic
variable declaration without the use of qualifiers, and will generally be placed in the register.
However, the compiler may choose to place it somewhere else as it feels fit. To force a location
of a variable we therefore declare where we want it located. This is done by calling for example:
_ _shared _ _, _ _constant _ _or _ _global _ _.

Device

qualifiers will declare that the variable will be sent to the GPU device. _ _device _ _can be used
together with any of the other memory target qualifiers to further declare where the variable
should be stored. Using this qualifier alone, the variable will be stored in global memory by
default and has a lifetime for the whole execution of the program or until it is released. Each of
the qualifiers have performance and usability consequences that will greatly affect the running
program if not used correctly:

Global

memory (_ _global _ _qualifier) is located on-board also known as DRAM and is the biggest
memory storage on the GPU card. The performance related to global memory resides in the
fact that all global memory accesses have to be performed perfectly coalesced. This means
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that all memory requests sent from all threads needs to be combined into a single memory
transaction. Efficient use of global memory is essential in a program by avoiding memory
bandwidth limitations through data reuse. (Details regarding performance of global memory
see [36]).

Shared

memory (_ _shared _ _qualifier) is located on-chip, a copy for each block launched on the GPU. A
running thread has only access to the copy within its own block, and cannot change or read from
other blocks. The lifetime of shared memory is the same as the lifetime of the block it is created
for. This makes it ideal for programs that need cooperation between some threads, without the
need of synchronizing every thread on the GPU. This memory is much faster then global memory,
and should by all means be used whenever possible where many threads need access to the same
memory.

Constant

memory (_ _constant _ _qualifier) has a size of 64KB that also holds an 8KB cache. This memory
is used to hold constant variables that will and cannot change during the execution of the kernel,
and can only be set from the host, before kernel is launched. All threads on the GPU have access
to constant memory.

Registers

are the fastest cache memory on the GPU. To achieve peak performance in a program, registers
are the best choice with the lowest latency and highest bandwidth.

Texture

is a wrapper around the global memory already mentioned. Texture memory is read only on
the device and can only be set from the host. It is however relatively small, only an 8KB cache.
Texture memory is a hardware interpolation of the block, and will be used most effectively if it
can read clustered blocks on the global memory. This memory is mostly used for graphics, when
utilizing multi-sampling techniques and more.

Page-Locked Host

memory, also called pinned memory is located on the host memory and not on the device. The
allocated memory will not be swapped to disk by the OS, but remains at the same location, with
the same address space for the whole duration of the program.

Performance Metrics

Measuring performance accurately is important when we want to optimize CUDA. [36] lists the
most optimal methods:

The runtime of kernels can be measured using timers from either CPU or the GPU. There are
however many pitfalls and advantages to using either one. The GPU operates asynchronously
when calling kernels and memory operations also work asynchronously when set. The CPU
has to be synchronized through the CUDA API to be able to measure correctly. This blocks the
calling CPU thread until all kernels are completed. This approach is therefore only usable when
measuring the overall performance, and not on a particular kernel or stream [36].
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Using GPU timers is carried out by recording timestamps of events on the GPU itself, and
is therefore OS independent. This is fully supported by the CUDA API and is quite intuitive to
use. All parts of the code can be measured by calling cudaEventRecord() and give a start or stop
parameter. The cudaEventElapsedTime() will then give the duration of the event. The GPU timer
is measured in milliseconds, and has around half a millisecond resolution [36].

The most important part to measure is the bandwidth of data transfers. This can be done
either as theoretical or as effective bandwidth calculation. The structure of the data itself and
GPU memory used will have the largest impact on performance. Theoretical max bandwidth
is hardware dependent and found in the product specifications. The GPU used for this thesis
was a GeForce 580 GTX, with DDR5 RAM, with a clock rate of 2.01GHz and 384-bit bus width.
Theoretical max performance is therefore 192.096 GB/sec: (2001 ∗ 106 ∗ (384/8) ∗ 2)/109 =

192.096GB/sec

Effective bandwidth is found after timing the events and activities and calculating the data
accesses of the program. This can be done for each array, matrix or whatever is needed. The
math behind effective bandwidth is straightforward: basically, the total amount of data bits read
per time unit, here in seconds.

Bandwidth can also be analyzed in the CUDA Visual Profiler cudaprof. The tool can display
useful statistics such as how well the code is performing compared to the hardware limit of the
system.

Multi-GPU programming

Using multiple GPUs in programming does not automatically require much extra effort from the
programmer. CUDA itself is built to support it. The part left for the programmer is to select the
correct GPU for the upcoming work which can become quite messy if not done correctly. When
a CPU program will send work to the GPU, it establishes a context(view of a GPU) between the
calling CPU thread and the GPU. The context contains all states for that GPU, from the virtual
address space, streams, events, allocated blocks of memory, and more. The important part is
that only one context can be active at a GPU at any given time. Even though a GPU can only be
working with one context at a time, it can be used by many contexts. The CPU is in charge of
swapping between the contexts, and uses the CUDA driver to do so. This can be done in such
a way that each CPU thread switches contexts itself, or one thread handle context switching for
all, when the GPU goes idle. Note that any memory allocated by one context cannot be accessed
by other contexts, as the allocations are in different virtual address spaces [36]. The problem left
for gaining high performance is building the functions to handle the switching and delegating
workloads to the different GPUs, including in the calculation estimates of how long the work will
take for each GPU, and taking into account their different specifications if they are not of the
same type. Figure 4 displays an installation using two Nvidia graphics cards.

Calculation Correctness

There are standards set for calculations such as binary floating-point representations in the IEEE
754. CUDA devices follow these with only some exceptions. They come from the same problem
as any other calculation performed in parallel, where doing two operations simultaneously can
change the answer if either one is done before the other. In CUDA the programmer must be
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Figure 4: Multiple Nvidia GPUs

extremely careful to make sure threads reading the same memory do so in an atomic fashion to
prevent faulty answers.

Nvidia provides a debugger for all systems, such as CUDA-GDB for Linux, and Parallel
Nsight for Windows. The debugging tools are created for extensive control over everything that
happens on and with the GPU, from what threads, blocks and warps that are active, to memory
consumption and variables, and also how much of the total bandwidth of the card is being used
by the program or kernel-wise for further optimization of the code. More details of the debuggers
can be found at [40].

2.2.3 NIDS

Snort and Suricata methodology is based on misuse detection. These are signature-based systems
where it looks for difference between abnormal and normal traffic that comes through the
network using known attack patterns. Abnormal traffic detection bases itself on previous
encounters, turned into attack signatures from observations and traces of malware. Both Snort
and Suricata support a variety of accelerators; this includes pfring, and spesific network hardware
such as endace capture-cards, napatech capture-cards, Intel X10 capture-cards, and myricom
capture-cards.

Rules and Signatures

Rules and Signatures are created to counter vulnerabilities. Microsoft’s definition of a vulner-
ability, by Scott Culp [52]: "A vulnerability is any flaw that makes it infeasible, even when
implemented or used properly, to prevent an attacker from; usurping privileges, regulating
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internal protected operations, compromising data, or assuming trust that was not explicitly
granted." Exploits are the practical term for the techniques or methodologies that take advantage
of the actual vulnerabilities.

Signatures as used in Snort and Suricata are defined as any detection method that use a
piece of data, content, marks or characteristics to uniquely identify a known exploits entering
the network. The signatures have limited protection capabilities, since the exploit first has to be
detected before a signature can be written to detect it. Any zero-day exploit would pass through
signature detection easily.

Rules are based on detecting the process of how a vulnerability would run on the system. This
detection method is designed to work against zero-day exploits, where the signatures may have
been changed to be undetectable, but where the overall process of the vulnerability remain the
same and still can be detectable. A rule often uses a signature that it will look for; in Snort Rule
Language (SRL) this is named content and can consist of plain text or be combined with regular
expressions 2.1.

All rules used in Snort and Suricata are based on the SRL. The Sourcefire VRT Certified Rules
are the official rules explicitly for Snort and are created, tested and approved by the Sourcefire
Vulnerability Research Team (VRT). The Snort community also has their own internally shared
rules; Community Rules referring to all rules that are created and tested by the community and
are freely available to everyone using Snort.

Another type, Shared Object (SO) rules, are loadable modules that can extend detection
capabilities of the NIDS. The rules were first made with Snort version 2.6.0 with its new API.
The rules written in C code, allow for detection of vulnerabilities that would be impossible to
detect by a mere text based rule from the normal Snort rule language. This functionality is also
used by the VRT to release binary modules without publishing the actual vulnerability. This is
used in cooperation with vendors such as Microsoft, who through joint programs like MAPP [31]
can share vulnerability information with NIDS and antivirus companies who create patches and
detection methods before they are known to the public [24].

The largest open source community Emerging Threats specialize in creating rule-sets for both
Snort and Suricata and other firewalls. The community has been at work since early 2003, though
under different names, originally as Bleeding Snort. Emerging Threats is also funded by the US
Army Research Office and the National Science Foundation. The rulesets are updated daily and
are free to use for any organizations, commercial and private.

A typical SRL rule usually consist of an action, header, rule-options (content signatures), ID,
and revision number. An example of a rule from Emerging Threats for both Snort and Suricata is
provided in Listing 2.2:
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1

2 alert tcp HOME_NET any -> EXTERNAL_NET HTTP_PORTS

3 (msg:"ET TROJAN Dapato/Cleaman Checkin";

4 flow:established ,to_server;

5 content:".php?rnd="; http_uri;

6 fast_pattern; content:"GET";

7 http_method; pcre:"/\?rnd=\d{5 ,7}\ x20HTTP1 \/1\.[01]\ x0d\x0aHost\

x3a\x20/";

8 content :!"User -Agent |3a|"; http_header;

9 content :!"Accept |3a|"; http_header;

10 reference:md5 ,1 d26f4c1cfedd3d34b5067726a0460b0d;

11 reference:md5 ,45 b3b6fcb666c93e305dba35832e1d42;

12 reference:url ,www.microsoft.com/security/portal/Threat/

Encyclopedia/Entry.aspx?Name=Trojan %3 AWin32 %2 FCleaman.G;

classtype:trojan -activity;

13 sid :2014200;

14 rev :3;)

Listing 2.2: An example of a rule [15]

Snort

Snort (developed and maintained by Sourcefire) has for over a decade been de facto standard
when it comes to open source NIDS with millions of downloads and over 400,000 registered
users world wide. It has become the most known and used open source IDS/IPS in the world,
capable of performing real-time traffic analysis and packet logging, protocol analysis, content
string matching, and attack vectors such as buffer overflows, port scans, and much more. The
downside to Snort is that there is no standard support for multi-core CPUs or GPU acceleration.
Additionally, the official development of the new version Snort 3.0 has been put on hold since
around 2008. However, the community is still developing plugins and minor upgrades. The
possibilities an administrator has in regard to configuration in Snort are quite massive. The
system can be put into three main modes; run as a mere IP logger like tcpdump on specific IPs,
a packet-logger of network traffic, or as full NIDS (default). Together with a configured firewall,
Snort can also act as an Intrusion Prevention System (IPS) (snort in-line mode). This however is
not much used and is not encouraged, as it requires huge amount of testing and configuration of
rules for allowing/blocking the correct traffic. As mentioned, Snort is not multi-threaded, which
is its most significant weakness. It is however possible, with great effort to set up snort to run
with multi-processes, assigning one snort execution to each CPU core and have them cooperate.
It requires lots of configuration but is the way most large companies and organizations have
managed to keep up in speed and is well tested.

Snort as a whole has grown fairly large, and consist of many major modules, each addressing
its own important part of the NIDS. As it is open source it takes advantage of other projects, and
uses the libpcap library [53] for packet capturing. The packet is then handled by a packet decoder
and delivered to the module with pre-processors. Next in the pipeline is the detection engine where
string matching is done. If the module detects abnormal traffic, the event is reported to the alert-
module, which will generate a packet alert and send it to screen or a custom database. Figure 5
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show the basic data flow of Snort NIDS, which is based on the pcap runmode.

Figure 5: Basic data flow of a Snort NIDS

The problem with Snort lies in the fact that the code base has started to become quite old and
outdated for today’s hardware. It does not support multi-core processors, and is only run as a
single thread, as mentioned before. Snort does not have any actual support for GPU acceleration.
It has such a large code base that it has proven a gigantic task to rewrite the system for multi-
threading. The Snort 3.0 project, which was supposed to address this issue has been put on ice
and has not been in development for the last years. NIDS administrators have however found
a workaround for managing the problem. They build the system and configure snort in such a
way that they can run one instance of Snort on each core, combining the power and splitting the
workload between multiple processes. This has been done for quite some time, but it is hard to
set up, and maintain.

A good thing about Snort is that it has been well documented over the decade it has been in
development and there are countless sub-projects that have been built to support and enhance
the power of snort, releasing the main thread of snort of some of the workload. Most of the
projects develop for the alerting module, making better ways of controlling the visual display
of alerts and events for the administrators. Some also make it possible to control many Snort
sensors at once, such as those used in massive organizations and business infrastructures, over
many locations around the world. This makes it possible to have one control center for traffic
analysis. Barnyard2 [17] enables parsing of the open source log file standard unified2, and lets
Snort save computational power by saving data efficiently by only saving to the disk and taking
no further actions. Oinkmaster is another project that handles updating and managing the rule
sets in Snort. It can handle all the major types of rules, such as VRT rules, community rules,
Emerging Threat rules and other 3rd party such as those released for Suricata. The full list of
additional improvements to Snort can be found in [12].

Suricata

Suricata (developed and maintained by the non-profit organization Open Information Security
Foundation (OSIF)) is basically a “clone” or “fork” of Snort in the way that it uses the same
solution for creating rules and signatures. In this way, the community behind Snort can continue
using their expertise without much effort for developing code, rules and signatures for Suricata
instead. Suricata’s main mission is to continue open IDS development where the Snort team has
failed, without being blocked by the licenses governing Snort. The solution is to have a scaled,
enterprise-ready IDS for government as well as private sector. The program code is written in C,
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and is mainly designed for scalability. It utilizes multi-threading on CPU which allows the IDS to
easily take advantage of all hardware power given. Suricata is also the only open source system
that has started implementing GPU acceleration support [42], though still at an experimental
stage. Worth mentioning is that Nvidia is one of the technology partners of OSIF to help develop
CUDA GPU acceleration. Currently, Suricata uses a Wu-Manber algorithm implementation in
their GPU detection engine, but the future plan is to implement Aho-Corasick to get rid of extra
post processing and pattern chopping, as well as the issue with using byte blocks (see section
2.2.4 for more details on Wu-Manber). It neither takes advantage of the texture, shared memory
and mapped memory, which in the latest releases of CUDA has been improved in speed and
bandwidth by a great amount[36]. As of now, the speed of the GPU implementation is still not
faster then an equal CPU version.

Suricata has also managed to get Ivan Ristić to join their development team, one of the
lead developers from ModSecurity. Ristic created the library libhtp a security-aware parser for
the HTTP protocol, which has been included into the Suricata project, providing very advanced
processing of network streams within Suricata [42].

A mentionable problem with Suricata, compared to Snort, is the lack of documentation. There
are hardly any resources on the net, by the community or the developers, such as guides for
installation and maintenance, or details about the implementation itself. The documentation
available on the OSIF WIKI is disappointingly short and barely enough to get the system
running [43].

Suricata is also based on the pcap run-mode like Snort, module based implementation for;
capturing, decoding, stream processing, and detection module. Figure 6 show the Suricata run-
mode. Most of the same 3rd party tools used for Snort, also work for Suricata. OSIF recommend
the use of the open source software tools BASE [5] and Squil [59] for managing events in
Suricata.

Figure 6: Runmode for a pcap device in Suricata [43]
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2.2.4 Algorithms

In a NIDS detection engine, the main component is the string matching algorithm. The objective
of the algorithm is to search for a string (also called a pattern), or multiple strings (multi-
pattern). Single pattern matching algorithms will search through a text for each known pattern
individually, which means they will loop through the whole text as many times as the total
number of patterns. Original examples of single pattern algorithms are the Knuth-Morris-
Pratt(KMP) [26] and Boyer-Moore(BM) [8]. Multi-pattern string algorithms operate quite
differently, searching through the known text only once, looking for all patterns at the same
time. Aho-Corasick [1] and the Wu-Manber [61] are the most original and used multi-string
algorithms. String algorithm requires one or many search string inputs, and a text or datafile
to compare against. Over the last 50 years there have been many algorithms developed for
searching strings and patterns. They are optimized for different types of work, and vary in
complexity.

Within string matching there are two different problems for algorithms, exact string matching
and approximate string matching. Exact is the classical approach, and what is mostly used by
NIDS, as it sets out to find the perfect match to a given pattern or string. Approximate string
matching takes error into account, and can find strings even though some characters are wrong,
or missing. An example of approximate search is Google search, which give a “Did you mean this
word?” if the user spelled wrong compared to what is indexed the most.

String algorithms follow three different approaches in general, prefix searching, suffix
searching and factor searching. This is based on which direction the search window is shifted.
For prefix search we try to find the longest prefix of the window that is also a prefix of the strings
or patterns searched after. In suffix search the window shifts backwards, and the algorithm tries
to find the longest suffix of all strings and patterns. Suffix is best used when the strings are actual
words where the endings are the same on many words such as “ion” or “ing”. Factor search also
work backwards, looking at the suffix of the window, but also takes into account that it is a factor
of the string or pattern.

Complexity

When we are to analyze an algorithm we concentrate on the order of growth of the algorithm’s
operation count to perform a given task, meaning the amount of resources such as memory
usage and time consumption that are needed for execution. This will give us a indicator of the
algorithm’s efficiency. Scientists like to talk about this as algorithm complexity, the difference
in matching time, quantified based on the input to the algorithm. Complexity in this thesis is
represented with the O-notation, pronounced “big oh”. A formal definition is given in many
books, for example in [28]: “A function f(x) is said to be in O(g(x)), denoted f(x) ∈ O(g(x)), if
f(x) is bounded above by some constant multiple of g(x) for all large x, i.e., if there exist some
positive constant c and some nonnegative integer x0 such that f(x) ≤ cg(x) for all x ≥ n0”.

Basically, time complexity is calculated by counting all the elementary operations the
algorithm has to perform on the computer. We estimate that all elementary operations take the
same fixed amount of time, leaving us with a constant factor that will provide us with an overall
impression of the algorithm. Typically we want to know two complexity scenarios, average and
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worst-case. For instance, an algorithm could have a complexity of O(2n) which would be an
exponential growth, often seen in worst-case scenarios, or O(n) meaning it would take linear
time to the input of the algorithm, often seen in average time. Note, exponential growth is really
bad and not wanted in any algorithm.

Naïve string search

The naïve string search is the most basic form of string search algorithms. It performs no
techniques for optimizing memory or increase of speed. The algorithm will start at the first
text symbol in n, and try to match it against the first symbol in s, the search string / pattern. If
this is matched as positive, the algorithm increment its counters, and compares the next string
symbol s+1 to the next symbol in the text n+1. The process will continue until the whole string
is found, or the algorithm reach a mismatch. It will then either report a success, or fail back to
the first string symbol s, and restart the matching process against the next symbol in the text
(doing n=n+1). The average complexity of naïve string search is O(s+ n), and has a worst-case
scenario at (O(s ∗ n)). Example of naïve string matching; see Table 3.

Table 3: Naïve string search
String Pattern: a b b a

Text: a b a b a b b a
Iteration 1: a b b
Iteration 2: a
Iteration 3: a b a
Iteration 4: a
Iteration 5: a b b a

Knuth-Morris-Pratt (KMP)

There are of course smarter ways of searching for a string in a given text in less worst-case time
then (O(s ∗ n)), one is the Knuth-Morris-Pratt (KMP) algorithm invented in 1974 by Donald
Knuth, Vaughan Pratt and James H. Morris. The optimization performed in this algorithm is that
when a mismatch occurs, one can skip the next or several following characters to avoid doing
a re-comparison of the same symbol which is a waste of time and computational power. This is
because KMP keeps the information unlike the naïve approach that does nothing further with
the data found during the scans of the text. To achieve this, the algorithm needs to precompute
a failure function(Table 4. The function indicate the largest possible shift for the skipping of
characters. In detail, the failure function

∫
for pattern s, store the length of the longest prefix of s

inside j that is a suffix of s[1, . . . , j]. The true objective is to map the repeated substrings inside the
pattern itself. When the failure function is complete the main algorithm can start, and will run
like the naïve function until it meets a mismatch. When it does it will look up the failure function
table, and seek out the location of the closest suffix that matches the prefix of the pattern. This
leads to a worst-case of O(s+ n), and a required memory usage with size of (s) for the failure
table.

The algorithm generates an automaton from the text, using O(s) time (Figure 7).
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Table 4: Knuth-Morris-Pratt - Failure Function
x 0 1 2 3 4 5

P[x] a b a a b a
f(x) 0 0 1 1 2 3

Figure 7: Knuth-Morris-Pratt - Algorithm Walkthrough [7]

When the algorithm then runs the search against this automata, the worst-case scenario
matching time has been reduced to O(s+ n). This algorithm is still limited by the fact that it
is a single pattern matching algorithm, meaning this process has to be repeated for every string
or pattern that wants to be searched. The algorithm is great if one only need to look for a low
number of strings, but rapidly becomes too demanding when reaching higher numbers such as
in NIDS with thousands of rules and signatures. Example execution of KMP see Figure 2.2.4.

21



GPU Accelerated NIDS Search

Figure 8: Knuth-Morris-Pratt - Example Execution [7]

Boyer-Moore (BM)

The string search algorithm Boyer-Moore was developed in 1977 by Bob Boyer and J Strother
Moore. BM is like KMP, a single-pattern search algorithm, the main difference of the two is that
BM starts its search with the last character of the pattern, rather then the first as most other
algorithms - it works backwards. The idea behind it is that if the last character does not match,
there is no reason to go through all the characters from the beginning. BM also uses “failure
function” like the KMP algorithm although it is called bad character shift rule and another good
suffix shift rule. Improved versions of Boyer-More have been even better, further increasing the
logic where where to look for match in fewest iterations possible. The Turbo-Boyer-More requires
some extra memory space, storing the factor of the text from the previous iteration where
a suffix shift was successful (did not mismatch). Turbo-BM has O(2n) as worst-case scenario,
and an average of O(n). Another derivative of BM is Boyer-Moore-Horspool. It uses less space,
but require an even better suffix table. The inner loop of the algorithm makes it perform less
overhead for each iteration of the loop. While the average complexity of BM-Horspool is O(n),
the worst-case scenario O(s ∗ n) is higher then the real BM algorithm, but theoretical worst-
case is hard to achieve in practice. All Boyer-Moore algorithms works better with longer pattern
strings, longer will make it possible to skip characters faster while shifting the pattern string.
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Figure 9: Boyer-Moore - Last Function [6]

Figure 10: Boyer-Moore - Example Execution [6]
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Aho-Corasick (AC)

Aho-Corasick (AC) was published in 1975 by Alfred V. Aho and Margaret J. Corasick [1], and
is the most known multi-pattern search algorithm. The main objective is to construct a Final
State Machine (FSM) for pattern matching from known keywords (or given as a dictionary),
then process input strings against the FSM with exact-set matching. When AC was developed
the fastest algorithm to perform bibliographic searches was KMP, which was not very effective
on large datasets. This leed to the idea of creating a linear-time method by preconstructing a
search pattern from all the known keywords, a generalization of KMP for multiple strings. The
algorithm itself can be broken into four different parts; construction of a goto function (Algorithm
2.2.1 and Figure 11), construction of a failure function(Algorithm 2.2.2 and Figure 12)
establishing a pattern matching machine(Algorithm: 2.2.3), and finally construction of the next
move function(Algorithm 2.2.4). The last part is only used in the Deterministic Finite Automaton
(DFA) version of the algorithm.

Algorithm 2.2.1: AHO-CORASICK - GOTO FUNCTION(K)

Input: Set of keywords K = {y1,y2,...yk}
Output: Goto function g and a partially computed output function
Comment: We assume output(s) is empty when state s is first created and

g(s,a) = fail if a is undefined or if g(s,a) has not yet been defined.
The procedure enter(y) insert into the goto graph a path
that spells out y.

newstate← 0
for i← 1 to k

do enter(yi)
for each a such that g(0, a) = fail

do g(0, a)← 0

procedure: enter(a1a2....am) :

state← 0
j← 1
while g(state, aj) 6= fail

do
{
state← g(state, aj)
j← j+ 1

for p← j to m

do

newstate← newstate+ 1
g(state, ap)← newstate
state← newstate

output(state)← {a1a2...am}

24



GPU Accelerated NIDS Search

Figure 11: Aho-Corasick - goto function [44]

Algorithm 2.2.2: AHO-CORASICK - FAILURE FUNCTION(g, output)

Input: Goto function g, and output function output
Output: Failure function f and output function output

queue← empty
for each a such that g(0, a) = s 6= 0

do
{
queue← queue

⋃
{s}

f(s)← 0
while queue 6= empty

do



Comment: let r be the next state queue
queue← queue− {r}
for each a such that g(r, a) = s 6= fail

do



queue← queue
⋃
{s}

state← f(r)
while g(state, a) = fail

do

state← f(state)
f(s)← g(state, a)
output(s)← output(s)

⋃
output(f(s))

Figure 12: Aho-Corasick - failure function [44]

AC has been used in numerous different projects since its creating. In NIDS the first was
written in 2002 by Marc Norton and released with Snort in version 2.0 with support only for
Non-Deterministic Finite Automaton (NFA). This early version was not very effective, and in
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2003 Daniel Roelker joined the development team. The new version included a massive speed
optimization and improved memory usage. The update added sought after state transitions
abilities to formats such as full-matrix, sparse-matrix, banded-matrix, and sparse-banded-matrix.
The overall biggest update was support for both NFA and DFA. Even today AC is still the fastest
algorithm and default in the Snort detection engine. The research team of Zha et al.(2011) [63]
attempted to make CUDA implementation of Aho-Corasick and claimed good results, speedups
between 8.5-9.5 times more then against a single-thread CPU, and 2.4-3.2 times more then a
multi-threaded CPU. Suricata, the NIDS with GPU acceleration has the Aho-Corasick algorithm
on their todo-list for future implementation.

Algorithm 2.2.3: AHO-CORASICK - PATTERN MATCHING MACHINE(x)

Input: x = a1a2...an where each ai is an input symbol
Output: goto function g, failure function f, and output function

state← 0
for i← 1 to n

do



while g(state, ai) = fail

do


state← f(state)
state← g(state, ai)
if output(state) 6= empty

then
{

print i
print output(state)

Algorithm 2.2.4: AHO-CORASICK - NEXT MOVE FUNCTION(g, f)

Input: Goto function g, falure function f
Output: Next move function δ

queue← empty
for each symbol a

do

δ(0, a)← g(0, a)
if g(0, a) 6= 0

then queue← queue
⋃

g(0,a)
while queue 6= empty

do



Comment: let r be the next state in queue

queue← queue− {r}
for each symbol a

do

if g(r, a) = s 6= fail
do
{
queue← queue

⋃
{s}δ(r, a)← s

else δ(r, a)← δ(f(r), a)
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Figure 13: Aho-Corasick - Output of Next Move Function δ
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Wu-Manber (WM)

The Wu-Manber (WM) was published by Sun Wu and Udi Manber in 1992 [61] and was based on
the standard Boyer-Moore algorithm and numeric scheme work by Baeza-Yates and Gonnet [3].
Like Aho-Corasick, WM is a multi-pattern string algorithm handling tens of thousands of patterns
at once. The algorithm is designed for typical searches, rather than worst-case scenarios. It
takes a different path to multi-patterns then AC and is based on the single-pattern Boyer-Moore
approach, turned into a multi-pattern algorithm. The major change against normal BM is the
preprocessing stage. Instead of looking at characters one by one, WM looks at them in blocks.
However, short patterns still slow down the algorithm just like with BM, as the max possible shift
is the max length of shortest pattern.

The WM algorithm creates four different tables in preprocessing; shift, hash, suffix and prefix.
The Shift table is similar to regular shift table in BM and is used to determine how many characters
can be skipped, based on the blocks. The blocks are mapped into an integer used in the shift table.
Hash table is used to determine which pattern is the candidate for the match and to verify the
match if the shift value is 0, and minimize the total number of patterns needed for comparison.
It contains a list of patterns where the last block character hash into integers that match the shift
table index. Suffix table give optimization against normal text search, where natural language is
not random. Suffixes such as “ing” or “ion” are very often used while writing English text. These
endings cause collision in the hash table. At this point the shift will return 0, and the algorithm
has to examine all possible patterns with this suffix. This can lead to allot of patterns that need to
be checked. The prefix table is then introduced to hash prefixes of the patterns as they are much
less likely to match and cause collision. The chance that patterns have the same suffix and prefix
is very small [61]. The average runtime complexity of WM is defined to be O(BN/m), where B
is the size of blocks used, N is the size of the text searched and m is the minimum length of all
patterns.

The original paper of the Wu-Manber algorithm [61] is very fussy. It does not provide anything
that permits the reader to calculate the best size of shift and hash tables, and none of the
functions are specified, except a partially implemented main method (Algorithm 2.2.5).

Algorithm 2.2.5: WU-MANBER - MULTIPLE STRING MATCHING(B, SHIFT,HASH)

Input: Precomputation of B, SHIFT and HASH tables
pos← `min
while pos ≤ n

do



i← h1(tpos−B+1...tpos)
if SHIFT [i] = 0

then

list← HASH[h2(tpos−B+1...tpos)]
Verify all the patterns in list one by one against the text
pos← pos+ 1

else pos← pos+ SHIFT [i]

Wu-Manber algorithm was used in the NIDS Snort for a period of time, between the first
version of Aho-Corasick and the second improved version, however it was found inferior to AC
and is no longer the default algorithm, but remains as an optional configuration. Sun Wu and
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Udi Manber also implemented their algorithm into a UNIX search tool; agrep(1989-1991) [60],
that has later been ported to other operating systems such as OS/2, DOS, Windows and Linux.
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3 Implementations & Results

This chapter contains the contribution of the thesis. In it, we have created multiple programs
in C++ with the CUDA API from Nvidia. The code is based on the algorithms described in
section 2.2.4. We have created a CPU version and a GPU version to compare the performances of
the algorithms against each other.

3.1 Scope

The experiments we conducted where performed to be comparable with the previous work in the
area as described in section 2, most importantly the work of Vasiliadis et al [55]. With [55] the
team implemented the Knuth-Morris-Phat and Aho-Corasick algorithm. The main features they
found that caused drastic drop of performance was the overhead of the PCI bus while transferring
to the GPU. The solution was to create a buffer for packets, then transfer the collected packets
in one large combined memory copy. The numbers acquired for the KMP algorithm seemed
unrealistically low, under 1Mbit/s at 4000 patterns, which was the reason we chose to perform
an experiment on this algorithm as well. The Aho-Corasick implementation results were also
vague, as it reached only a 1.4 Gbit/s of speed, limited at 1000 random patterns while a real
Snort engine would run on average with 10 000 to 20 000 patterns. They also neglected to
mention the size of the network packet. However, the next experiment had a network packet size
of 1500 bytes and a speed of 2.6 Gbit/s. The second claim stated that it is unrealistic to process
small network packets on the GPU. Together this did not feel like a sound implementation of
Aho-Corasick, as this algorithm’s speed is mainly bound to the amount of patterns used, not the
size of the packets which would only increase processing time, NIDS should theoretically perform
slower with larger network packets. Their implementation neither took into account the fact that
the signatures may have capital letters which would limit all specific signatures. The kernels
implemented also used global variables for all threads to write into. This is strongly discouraged.
Even though atomic operations will stop any race conditions, it will force the different threads to
use additional resources waiting for access. The PFAC Library [10] mentioned in section 2 uses
this type of method and is therefore not chosen for comparison as we do not further investigate
this approach. Vasiliadis et al. published more papers since 2008. However, these hold massive
implementations, that include packet capturing, preprocessing and multi threading of the CPU
to gain even higher effect from asynchronous memory transfer to the GPU. Implementing this
would effectively improve our approach as well, however the limited resources forced us to take
out these improvements from our scope of work.

3.2 Limitations

To limit the size of the project we focus on the main area of the NIDS, the detection engine itself.
While a normal NIDS take input from the network card, we chose to have one static string of
text for the experiments where we could place a known number of signatures that we wanted
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to detect. This approach was chosen because taking data from the network card and input into
the program would be just another module, with basically the same end result, one long string
of characters that we use as input into the GPU algorithm. The second limitation introduced
is to skip regular expression signatures, as the parser for the input would become significantly
more complex, while the end result would still be the same, only a much larger pattern array
input for the algorithm. The last limitation applied was to use the same procedure for sending
and retrieving data with the GPU for all the algorithms. The approach used for sending and
retrieving is most likely not optimal. However, it is consistent throughout the experiments and
lets us perform comparison between the algorithms performance in a much more consistent way.
We focused on creating a common pool of functions that use the same techniques, such that
any optimizations would affect all implementations at the same time, and leave the algorithm
specific optimizations for the kernel itself. The overall simplified structure of the NIDS prototype
can be seen in figure: 14.

3.3 Lab Environment

For the project we set up a fresh installation with the following hardware components shown
in Table 5 and software in Table 6. A clean and minimal system installation was performed
to maximize the performance of the hardware we had to our disposal. Note that while the
experiments where conducted Nvidia released a new version of their Nsight Visual Studio Edition
2.2, with local single GPU CUDA debugging! This new feature was too good to be left out which
gave us a much easier way of debugging our code, and we switched to this software while
performing the second experiment and found many bottlenecks for both experiment one and
two, which was implemented for both.

CPU Intel Core i7-920 Processor
Motherboard Gigabyte GA-EX58-UD5, X58

Hard disk Corsair CM SSD 128GB
Memory Corsair XMS3 DDR3 1600MHz 6GB CL7
GPU #1 Nvidia GeForce GTX 580
GPU #2 Nvidia GeForce GTX 460

Table 5: Lab Environment Hardware

Software used for programming CUDA:
CUDA compute versions include support for new functions and hardware calls, and one has

to program accordingly towards the target audience of the program. For our system running with
two Nvidia cards, the lowest CUDA compute version is 2.0, strangely enough on the newest card
Nvidia GTX 580. This has to be specified to the nvcc-compiler, as to what architecture it should
compile for. The GPUs does not have the same processing power, and will not finish the task
given at the same time. Table 7 shows details from the Nvidia GTX 580 card, and Table 8 for the
GTX 460 card. For this reason we chose to use the GTX 580 for the single core tests, as it has the
highest performance, even though it has lower compute version. The optimization performed
in the higher compute version did not account for the performance gained in general by the
improved hardware. From the details it is worth noticing is the difference in maximum global
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Figure 14: Detection Engine using GPU
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Compiler & IDE Visual Studio 2010 Ultimate Trial
CUDA Toolkit CUDA Toolkit version 4.1 RC

CUDA SDK Nvidia GPU Computing SDK 4.1
Debugger Exp 1 Nvidia Parallel Nsight 2.1
Debugger Exp 2 Nvidia Parallel Nsight 2.2

Aditional Libraries
Libs #1 Boost Library 1.49.0
Libs #2 Thrust Library 1.51
Visuals Matlab 7.11.0

Table 6: Required software for programming

memory available and also the number of multi-processors. Other variables remain the same,
such as the number of warps, threads per block and thread dimensions, which are standard
for the compute version 2.x. These numbers must always be carefully taken into account when
designing a program. For our project, we chose to lock the code to our specific GPU card, while a
real program would implement functions designed for each different compute versions that can
be used by the users.

CUDA Information Nvidia GTX 580
Compute capability: 2.0
Clock rate: 1566000
Device copy overlap: Enabled
Execution timeout: Disabled
Memory information
Total global memory: 1610612736 bytes
Total constant memory: 65536 bytes
Max memory pitch: 2147483647 bytes
Texture alignment: 512
Multi processor count: 16
Shared mem per mp: 49152 bytes
Registers per mb: 32768 bytes
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)

Table 7: Hardware Details: GeForce GTX 580
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CUDA Information Nvidia GTX 460
Compute capability: 2.1
Clock rate: 1630000
Device copy overlap: Enabled
Execution timeout: Disabled
Memory information
Total global memory: 1073741824 bytes
Total constant memory: 65536 bytes
Max memory pitch: 2147483647 bytes
Texture alignment: 512
Multi processor count: 7
Shared mem per mp: 49152 bytes
Registers per mb: 32768 bytes
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)

Table 8: Hardware Details: GeForce GTX 460

3.4 Experiment #1

The main objective of this experiment was to get CUDA up and running, working together with
the different libraries exploring the CUDA environment and in the end create a basic prototype
for a naïve string search (see Section: 2.2.4) for more details on this type of algorithm. For input
to this prototype we chose to use a small word list of bad words, abbreviations and some “leet
speak” alternatives of these bad words from the English language. The “bad word” list contained
a total of 458 different words (or patterns) to be processed against our input text. The second
larger word list contained over 50000 words. This was downsized to 35500 real and unreal
words from A to Z from the British English language [32]. This then created an approximately
"‘worst case"’ having the kernels needed to go through every single option of different starting

35



GPU Accelerated NIDS Search

characters.

Algorithm 3.4.1: NAÏVE STRING SEARCH, SINGLE THREAD CPU VERSION(x)

Input: Set of patterns (dictionary) and (packet data).
Output: Occurrences of patterns found in the input packet data.
Comment: We assume the patterns has been processed into a list or array and

that the input data is an array of characters.

index← 0
for i← 0 to sizeof(dictionary)

do



for j← 0 to size of(input text)

do



for k← 0 to string length of(dictionary[i])

do



if dictionary[i][j] 6= packet[i+ index]
do
{

Break out of loop
else Increase index by 1

if index == string length of (dictionary[i])

do
{

Report pattern(dictionary[i]) found at location i

Algorithm 3.4.2: NAÏVE STRING SEARCH, ACCELERATED ON GPU(x)

Input: Set of patterns, int array with pattern lengths(offsets) and packet data.
Output: Occurrences of patterns found in the input packet data.
Comment: Each pattern is given its own thread on the GPU

We assume the patterns has been processed into a list or array and
that the input data is an array of characters.

index← 0
for i← 0 to size of(input text)

do



for j← pattern offset[threadid]
to pattern offset[threadid +1]

do



if pattern− list[j] 6= packet[i+ index]
do
{

Break out of loop
else Increase index by 1

if index == string length of (dictionary[i])

do
{

atomically lock the output memory space required
Report pattern(dictionary[k]) found at location i
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3.4.1 Execution

For optimizing the code, the best way to transfer data into the GPU is to perform one large
memory transfer requiring to only access memory once. This is quite important as for every
network packet the information has to be copied over. Saving processing time is our number one
objective. CUDA does not have any support for standard library function calls such as STRING,
and we must use basic character arrays (char *) to hold our data. Arrays of arrays are also
problematic and would make memory operations messier. For performance we rather make a
normal one dimensional character array with all the content of the packet and send in other
variables containing other metadata needed. The same goes for patterns, we insert the pattern-
offset values (the length of the words) in a separate integer array.
The pattern list and offset array has only to be copied to the GPU once for the duration of the
program. Even though we change input text and rerun the string searching kernel, we only pass
pointers to where in the GPU memory the patterns are stored, not the actual information. This
is however not true for the actual content of the input text, which is sent to the GPU for each
execution of a new kernel. The same optimization technique is used, the packet is stored as a
character array, and transfered in one large bulk of memory copy.

The last step that needs to be done before launching the GPU kernel is to specify memory space
where the kernel is to store the output of the algorithm it will be running. This memory space is
reserved(malloc’ed) and GPU memory address pointer stored on the CPU side, and then sent to
the GPU as a kernel parameter. This has to be done because the kernel does not have an actual
output back to the calling function. We have to manually retrieve the data that now has been
placed in the reserved memory space on the GPU from our CPU function that started the kernel
in the first place. To save memory transfer bandwidth, the output of the algorithm is purely the
ID of the pattern that was found and the location of the input text where it was located.
The final operations on the output are carried out by the CPU. In a normal setting we would
process this data into a logging file or a database, however for our prototype implementation,
displaying the results directly to the screen is more then sufficient. A commented version of the
engine and kernel (also CPU single thread version) implemented to handle naïve string search is
included in the Appendix A.1.

Packets Runtime Speed
100 5.8ms 11.02Mbit/s
800 45.2ms 11.31Mbit/s
3000 139.5ms 11.32Mbit/s
6000 339.3ms 11.31Mbit/s
9000 508.53ms 11.32Mbit/s
20000 1142.2ms 11.21Mbit/s

Table 9: Average execution runtime of the Naïve string search on GPU

The two implementations of naïve string search were made so they used the same method
for processing the word list and input text. Results show a 5x improvement in speed for the GPU
version. Compared to the CPU version of the algorithm, the GPU had an average 0.3ms runtime,
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and the CPU 2ms runtime. The method used to measure this was to start timing the program
at the point where it in an NIDS would run in loop against incoming network packets, and not
adding in the time needed to transfer the dictionary to the GPU memory which is only done once
for the whole execution of the program.

Figure 15: Naïve GPU Execution, 456 patterns checked vs. packets with length of 40 chars.

3.4.2 Analysis

This experiment gave us much insight into how CUDA works in general, parallel bottlenecks,
upsides and downsides. Starting up the GPU to do computational work is quite expensive in
form of time, meaning starting a new kernel on the GPU for each network packet that enter the
system is impossible. What we found out, was that taking a collection of packets that has entered
the system, preferably by the use of preprocessors extracts only the main content we wish to
search as we simulated in this experiment, then concatenates the data into one long array to
be processed by the GPU. Memory transfers themselves is what takes time, not the amount they
copy over. The overhead caused by the PCI bus is the main reason why this approach is faster.
Doing collections of packets also makes it possible to overlap the different network packets with
ease. If the preprocessor that arranges the network packets to the GPU can do so in sequential
order, it would mean "‘free"’ overlap of the packets in a session processed. The GPU handles
thousands of threads at once, but there is a limit to how many that are actually processed at the
same time. The Nvidia 580GTX as used in this experiment has 16 multiprocessors. Each of them
can handle 1024 threads, giving a total of 16384 kernels at once. This however does not stop us
from starting even more kernels. The additional kernels are placed in a queue, and will be run
by the multiprocessors when they have completed their previous task.

Kernels, or threads as described in Section 2.2.2, are put together in blocks, and it is these
blocks that are loaded onto the multiprocessors. The size of these blocks is always set by the
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programmer, and is very program dependent. We experimented with many different sizes, where
the documentation advises the size should be a multiplication of the size of the warp, in our case
32, where we deemed a block size of 512 yielded the best results in terms of speed.

We experimented on the two different approaches of starting these kernels (single-pattern
and multi-pattern algorithms described in section 2.1). The first use the patterns themselves as
the kernel base. What this means is that for each pattern, we start a kernel and only process that
pattern on this specific kernel. The kernel will loop through the packet or collection of packets,
looking for a match. The second approach starts a kernel for each packet and runs every pattern
listed against this single packet.

We also attempted a third approach, (which actually was our initial idea from state of the art
research for how to process packets). In this method we started a kernel for each single character
in the network packet, processing all listed patterns, starting from this character until match or
no match was found. This is also the method used in PFAC Library [10] mentioned in Section 2.1.
The method proved highly ineffective due to the memory transfers and overall cost of creating
variables on the GPU for every single character, and was after testing dismissed as flawed as we
could not reach any useful speeds while testing.

3.5 Experiment #2

For this experiment we wanted to accelerate well known algorithms for string search as described
in Section 2.2.4. These algorithms are specifically designed for performing string search and
should theoretically perform better then a naïve brute force approach. The algorithms we chose
to focus on were based on how they would react against being run on a GPU rather then CPU and
the overhead calculations needed for the algorithms to function. In the end we chose the Knuth-
Morris-Phatt, and Aho-Corasick, as they are two different algorithms from the two main factions,
single-pattern and multi-pattern string search algorithms. We did not implement every algorithm
listed in Section 2.2.4, as they are merely provided to give the reader an overall picture of the
different types of algorithms available, their weaknesses and strengths, where they use similar
techniques to achieve their best performance.

3.5.1 Knuth-Morris-Pratt (KMP)

The first algorithm we wanted to implement was the Knuth-Morris-Pratt(KMP) (as described
in Section 2.2.4). KMP is a single pattern algorithm, similar to the Naïve approach. The
implementation was done in relatively similar way, such that each pattern received a thread
on the GPU. The KMP method requires preprocessing of the patterns in order to find prefixes and
suffixes, to be able to skip one or more characters in the actual search process. This preprocessing
time would in an actual NIDS only be required to run once at startup, and is therefore not
included in the presented results. The KMP is quite similar to the naïve algorithm. However,
we observed that the extra preprocessed failure table gave a marginal speed increase at around
16.5%.

Preprocessing

The preprocessing is done on the GPU where it is based on incrementing two variables, prefix and
suffix, where prefix starts at 0 and suffix starts at 1. These variables are indexes of the character
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array that makes up the pattern. We do a while loop over the suffix position we count and check
that it has not reached the size of the char array. If a match between the prefix position and
the suffix position is found, the location is stored in an array on the GPU. The suffix and prefix
indexes are incremented and the loop checks the next round of characters. If it did not find a
match, only the suffix index is incremented, the loop restarts and the past prefix is again used
to match the new suffix. The preprocessed failure table stays on the GPU for the duration of the
program. The location of the GPU memory has already been stored in host memory when the
pre-kernel was started and will be used as input for the actual KMP kernel later.

Packets Runtime Speed
100 5.22ms 12.2 Mbit/s
800 40.5ms 12.6 Mbit/s
3000 152.7ms 12.56 Mbit/s
6000 306.2ms 12.53 Mbit/s
9000 459.3ms 12.54 Mbit/s
20000 1021.3ms 12.53 Mbit/s

Table 10: KMP execution, 456 patterns checked vs. packets with length of 40 chars.

Algorithm 3.5.1: KNUTH-MORRIS-PHATT(KMP), PREPROCESSING(x)

Input: Set of patterns (dictionary), pattern offsets
Output: Table containing failure function
Comment: We assume the patterns has been processed into a list or array

index← 0
for i← 0 to sizeof(dictionary)

do



for j← 0 to size of(input text)

do



for k← 0 to string length of(dictionary[i])

do



if dictionary[i][j] 6= packet[i+ index]
do
{

Break out of loop
else Increase index by 1

if index == string length of (dictionary[i])

do
{

Report pattern(dictionary[i]) found at location i

Execution

As KMP is a single pattern algorithm, we chose to place one pattern on each kernel thread on the
GPU. The kernel then starts a while-loop over an index for the packet input, we increment until
we reach the size of the packet.We check if the current character in the pattern array matches
the character in the packet at our given index. If true, we increment both the index of the packet
and the index of the pattern array. When the loop then restarts we check the next character in
line from both pattern and packet, which is repeated until we either locate the whole pattern
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and store results to the output file, or we find a mismatch. At a mismatch we first check if the
index of the pattern has been incremented, which means there might be a suffix that matches
this prefix that was found doing the preprocessing of failure states in the patterns. We then set
this index to the content of the preprocessed failure table of this given index. For example, if the
character behind the index 3 was an a, we check the failure table at the index 3 which represent
this a to see if there are more a’s in the current pattern that we can jump at, to continue the
matching process. This effectively let us skip any extra characters between the first and the last
a. If there was no increased pattern index to begin with, the algorithm only increments the index
for the packet and restarts the loop process.

Figure 16: KMP GPU execution, 456 patterns checked vs. packets with length of 40 chars.
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Algorithm 3.5.2: KNUTH-MORRIS-PHATT(KMP), GPU EXECUTION(x)

Input: Set of patterns (dictionary), pattern offsets (p_offsets),
table of failure states (f_table)

Output: Occurrences of patterns found in the input packet data.
Comment: We assume the patterns has been processed into a list or array and

that the input data is an array of characters.

tid← ThreadID
pattern_index← p_offsets[tid]
packet_index← 0
while pattern_index < packetsize

do



if dictionary[patternindex] 6= packet[packet_index]

do



if pattern_index == pattern_size− 1

do


while current_output_location 6= free

do
{

Find new location
Report dictionary[tid], found at location i
pattern_index+ 1
packet_index+ 1

else if pattern_index > 0
do
{
pattern_index = f_table[p_offset[tid+ pattern_index− 1]

else
{
packet_index+ 1

Figure 17: KMP CPU Implementation, 456 patterns checked vs. packets with length of 40 chars.

Analysis

The improvement in speed from Naïve to KMP was less then we had expected, but at the same
time confirmed Vasiliadis et al. [55] claim that KMP does not work well on GPU. Overall the
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KMP implementation proved that our initial hypothesis of how to parallelize algorithms on
the GPU was flawed, and reaching the desired speed could not be done with a single-pattern
methodology. However when analyzing our results we saw that our method on how to start
kernels in the KMP was poorly chosen as we had no easy way to optimize the number of threads
to run simultaneously. If we were to have more patterns then the maximum parallel thread
amount, the additional kernels would stay in queue until the multiprocessor had completed the
previous work. This does not by itself make it very bad, however the performance drops quite
many percent as can be seen in Figure 16. However, this would benefit more from using multiple
GPUs instead of one, and split the amount of patterns that has to be started as kernels over all
accessible GPUs if the total number of possible threads when combining the GPUs exceeded the
total number of patterns. At maximum, we achieved results showing 12.56 Mbit/s processing
power with our GPU implementation at 456 patterns. The CPU version was more impressive,
yielding at best 14.5 Mbit/s with the same number of patterns. We believe the solution for the
GPU would be to have the kernels based on packets for starting a thread. This would solve the
issue with unused or queued kernels that we had in our prototype as it bases the kernels on the
patterns.

3.5.2 Aho-Corasick (AC)

The Aho Corasick algorithm (see section: 2.2.4) is very different from both the naïve and the
KMP algorithms. It is based on performing multiple pattern searches at once, meaning each
thread started on the GPU will compare the input towards all given patterns before it stops. This
process would be quite troublesome if we did not have preprocessing of the patterns and would
take far too much computational power. The Aho Corasick method does this by first creating a
tree structure as shown in section: 2.2.4 at Figure 11.

Preprocessing

The preprocessing in Aho-Corasick is more advanced then the KMP algorithm, requires more
work, but the increase in speed is worth the trouble. As stated in the technical background
of the algorithm in section 2.2.4 it consist of four different parts; construction of a goto
function (Algorithm 2.2.1 and Figure 11), construction of a failure function(Algorithm 2.2.2 and
Figure 12) establishing a pattern matching machine(Algorithm 2.2.3), and finally construction
of the next move function(Algorithm 2.2.4). In our implementation for the GPU we early saw
the problems with the pattern matching machine part of the algorithm. Aho-Corasick uses a
tree structure to handle all patterns, however tree structures proved to be extremely hard to
construct on the GPU. Creating it on the CPU and transferring to the GPU was also unsuccessful,
as all nodes in the tree contain pointers to memory locations in main memory, and not to memory
located on the GPU. To solve this problem, the tree was created in CPU, traversed with a depth
first search (DFS) approach, then the data was stored as a character array, similar to the naïve
and KMP approaches. This gave us a single array containing all the patterns in one single line
and the same effectiveness in memory access as the previous algorithms. The failure function and
the output function were solved by creating two additional arrays, the same size of the character
array, and using its index to map both failure states and output states on the respective index
locations as the character array with the DFS traversal results. The output and failure states
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Figure 18: Aho Corasick Implementation. Red and blue areas are run once to limit the computation needed,
green is looping over new packets placed into the malloced memory space on the GPU for each new
collection of packets.
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were mapped inside the tree class for the patterns as they were enrolled in the tree structure.
The failure array contained indexes for the pattern character array, as to which new index to
jump if the algorithm should not find a positive match. The output array contained the index of
the pattern as it was stored in the dictionary of patterns in the host memory. This approach gave
us the ability to only send the content of the output array back to the CPU after executing the
kernels, if and only if this pattern was found, limiting additional memory transfers from each
kernel launch.

Execution

Executing our Aho-Corasick kernel was done by giving each thread one packet. To gain
performance we perform one large memory copy of all the packets concatenated into one single
transfer. These are again "‘split back"’ by a second array of indexes containing the length of each
packet. Each kernel has a thread index (TID), and by using this TID as index in length array, the
kernels know the location in memory of their packet at TID to TID+1, the start of the next packet.
Next we created a while loop to run from the start to the end of this packet, where we check
if the current character in the packet does not match the current character in the pattern. If so
we set the pattern index to the correct position given in the failure table that was preprocessed
and restart the loop. However if they did match, we then check if this character was the last
character in a word that matched the pattern. This is given in the output array, at the same index
as the character being checked. If it was the last character, we store the result in the output array.
The loop restarts to continue checking as the current results may be its own pattern, but also a
prefix of a longer pattern, not yet found. The kernel ends as it reaches the point checking the last
character in the packet input.

Figure 19: Occupancy at 1024 kernels per block.

CPU Implementation

To have comparable numbers between CPU and GPU we created another implementation purely
located on the host memory and using a single thread on CPU, like a Snort system would
run. The prototype uses the same dictionary system as the GPU version, but has it’s own
functions for handling packets and outputs. The tree structure on the other hand is the same
function, though using a parameter to cancel the request for GPU memory assertion built into
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Figure 20: Occupancy at 512 kernels per block.

Packets Runtime Speed MB/s Speed Mbit/s
7000 9,03ms 61,99MB/s 496 Mbit/s
8000 9,62ms 66,48MB/s 532 Mbit/s
9000 15,23ms 47,25MB/s 378 Mbit/s

10000 15,49ms 51,62MB/s 413 Mbit/s
11000 16,22ms 54,23MB/s 434 Mbit/s
12000 16,72ms 57,38MB/s 460 Mbit/s
13000 17,42ms 59,68MB/s 478 Mbit/s

Table 11: GPU Aho Corasick. 456 signatures checked vs. packets with length of 80 chars.

Packets Runtime Speed Speed Mbit/s
7000 6,68ms 83,79MB/s 670Mbit/s
8000 6,99ms 91,45MB/s 732 Mbit/s
9000 11,17ms 64,40MB/s 515 Mbit/s

10000 11,51ms 69,49MB/s 556 Mbit/s
11000 12,07ms 72,87MB/s 583 Mbit/s
12000 12,34ms 77,78MB/s 622 Mbit/s
13000 12,87ms 80,75MB/s 646 Mbit/s

Table 12: GPU Aho Corasick. 35500 signatures checked vs. packets with length of 80 chars.
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that piece of code. For measuring the speed of this function we use the built in windows API
call QueryPerformanceFrequency and LARGEINTEGER to get as high resolution measurements as
possible. The code works at the exact same way as the GPU version with one difference. Instead
of analyzing the packets in parallel, every packet is placed in a stack and searched one by one.
However the search is non stop, which avoids the need to take overlapping into account.

Figure 21: Aho-Corasick CPU Execution, 456 patterns checked vs. packet length of 80chars.

Analysis

The experimentation gave us insight into parallelization of such an advanced algorithm as Aho-
Corasick really is. We had to radically change our approach to gain enough processing power if
it ever were to support a multi-gigabyte NIDS solution. We did many different attempts to find
the most optimal approach. The results yielded many interesting numbers, where few were not
expected and gave us reason to overhaul the system again and again. Before the experiment we
had a numerous amount of probable bottlenecks that we had to counter. However, it showed
many of these bottlenecks were solved by the parallelization process itself. A result that proved
quite illogical at first was the speed variation from the different number of signatures loaded into
the algorithm. The GPU managed to work even faster with higher number of patterns. Going from
the small pattern set of 456 to the large set of 35500 patterns, the prototype execution increased
in speed a staggering 37% on the same amount of packets. The results show we gain increase in
speed as there are less race conditions from the different threads against the memory of the GPU.
(Tables 11 and 12). The size of the input packets however change the speed dramatically for the
GPU. This proves the importance of using preprocessors to limit the amount of data checked by
the detection engine of the NIDS. We tested a range of sizes of the packets, from 40 to 1500 bytes,
where the size of 40 with 35500 patterns yielded results over 1.1 Gbit/s speed (see Table 13).
The Aho-Corasick CPU implementation performed better then both naïve search and KMP, both
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CPU and GPU versions. It achieved a top peak in performance with packets of size 40 chars,
and 35500 patterns a 7.65 MB/s, or 61.5Mbit/s (see Figure 21). However, lowering the number
of patterns from the same set down to 1000 gave a dramatic increase in performance reaching
a staggering 127 MB/s, or 1016 Mbit/s. The last number is close to the GPUs performance in
Mbit/s. However, it should not be miss-interpreted that they perform equally as the GPU handle
76 times more patterns at the same time. At the same time it shows the algorithms do not have
linear performance, closest at 35500 patterns the GPU only reaches a 17.8 times increase in
performance over the CPU implementation.

Figure 22: Aho-Corasick GPU Execution, 35500 patterns checked vs. packet length of 80chars.

Packets Runtime Speed Speed Mbit/s
8000 2,72ms 132,2 MB/s 1058,2 Mbit/s
8000 2,63ms 136,8 MB/s 1094,2 Mbit/s
8000 2,61ms 137,6 MB/s 1100,2 Mbit/s
8000 3,20ms 112,3 MB/s 898,9 Mbit/s
8000 2,64ms 136,1 MB/s 1089,1 Mbit/s
8000 2,63ms 136,3 MB/s 1090,9 Mbit/s

Table 13: GPU Aho Corasick. Multiple runs of 35500 patterns checked vs. packet length of 40chars.

Finding the optimal way to set flags and boundaries in a CUDA program to run proved quite
difficult with Aho-Corasick, as it depends much on what is actually being calculated on the GPU,
the amount of memory that has to be read and also IF, FOR and WHILE loops in the kernels. The
goal of the kernels executed is to have them all complete at the same time, avoiding worst case
scenarios, making kernels in the active block sit and wait for the last kernel to complete. To do
this we used the NSight CUDA Analyser software to spot the bottlenecks in the system.
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One large improvement found for the Aho-Corasick specifically was the use of a lower block
size then what the graphics card should theoretically use. Our Nvidia 580 GTX card has a max of
1024 kernels per block (see section 3.3 for details of the card), an execution with 1024 kernels on
each block showed the program only could reach an occupancy level of 66.7% (see Figure 19),
using only 2/3rd of the total power available. This was solved by lowering the amount of kernels
per block to 512, wich is also a multiplication of the warp size 32 giving us a total amount of
threads multiplied by 16 which then fits the number of multiprocessor cores on the Nvidia 580
GTX perfectly, reaching an occupancy level of 100%, (see Figure 20).
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4 Conclusions

In this thesis, we have researched Network Intrusion Detection Systems (NIDS) and experi-
mented with prototype implementations of known algorithms; naïve string search, Knuth-Morris-
Pratt and Aho-Corasick. The prototypes were limited to the detection engine of the NIDS that
holds string search algorithms that perform matching of one array of characters against another.
NIDS systems normally hold tens of thousands patterns or signatures of viruses and known
attacks and use these to check incoming network traffic for malicious activity and code. The
thesis focused on improving the performance of NIDS systems by accelerating the detection
engine algorithms with parallelization by the use of Graphical Processing Units (GPUs), which
by hardware are developed for doing thousands upon thousands of similar tasks at the same
time. We chose to work with Nvidia GPUs and the CUDA API in C++ programming language to
develop our implementations, found to be the leading choice in parallel technology. The main
goal of the thesis was to find out if the performance of NIDS algorithms could be enhanced by the
use of GPUs, and what factors in the algorithms that created the highest increase in performance
and also the largest bottlenecks in the prototype implementation.

First we performed theoretical analysis of graphic cards, CUDA, NIDS solutions and a wide
variety of known high-performance string search algorithms. This also included research of tools
and technologies to enhance the quality of our work to locate weaknesses and bottlenecks in the
systems. Next we performed a series of experiments to dig deeper into CUDA and parallelization
techniques starting with the simplest form of algorithmic approach, naïve string search, also
known as brute-force method. This provided us with insight into CUDA and also shifts our
mindset into how sequential tasks could be performed in parallel which proved to be rather
difficult at times. The experiment yielded the expected result that a naïve approach is not
sufficient to handle network speeds as we see in a NIDS today. Next, we implemented the
KMP algorithm that is an advanced version of naïve string search requiring preprocessing of the
patterns. This however did not improve the speed with sufficient amounts such that it could be
viable in a NIDS setting. Finally, we worked with Aho-Corasick which is the state of the art multi-
pattern algorithm used in the open source NIDS as a CPU implementation today such as Snort
and Suricata. This algorithm reached staggering 1100 Mbit/s with 33500 patterns. Previous work
shows similar speeds but with only 1000 patterns [55], which is quite a feat in the amount of
pattern data processed, 77 times more.

4.1 Research Questions

This subsection will highlight how we answered our research questions in this thesis.

4.1.1 To what extent can NIDS performance be increased by using GPU?

This was the main objective of the thesis and is best presented in the discussion of our
implementations of Aho-Corasick at Section 3.5.2, were results show the GPU to execute a
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hundred times faster then the CPU version of the algorithm, with over seventy times more
patterns.

4.1.2 What parts of the NIDS can be optimized?

This question was discussed and analyzed in the Technical background of NIDS at Section 2.2.3
where we also present the basic data flow charts of the NIDS Snort and Suricata, and highlight
that the Detection Engine module is best suited for GPU acceleration. We also acknowledge that
the preprocessing module of these NIDS also has potential for GPU acceleration. However, this
was not further researched in this thesis.

4.1.3 Which program specific factors give the increase, or decrease in performance?

The specific factors presented that increased and decreased the performance for GPU algorithms
are based on the implemented algorithms. We discuss and analyze these factors in each
subsection of the experiments. For experiment one see Section 3.4.2. For experiment two see
Section 3.5.1 and Section 3.5.2. The most important factors are also presented in the following
section.

4.2 Summary of Contributions

In the thesis we have contributions as results of our experiments. We present our GPU and
CPU implementations of the algorithms naïve string search(Appendix A.1), KMP(Appendix A.2)
and Aho-Corasick(Appendix A.3). In addition, we here reveal design specific recommendations
of factors we found to have the highest impact on our prototypes. These are design specific
recommendations on how to gain performance on the GPU for further implementation of the
algorithms into existing NIDS such as Snort and Suricata.

• Results show that our GPU accelerated multi-pattern algorithm perform over a hundred times
better, with over 70 times more patterns then any of our single pattern algorithms executed
on both GPU and CPU, including the CPU version of our multi-pattern algorithm.

• Network packets should be preprocessed by the use of a buffer into a concatenated packet
based on session order and stored into an array. This will provide an easy way to overlap
packets under processing, if the pattern to be found is split directly at the packets. In addition,
and even more importantly this will provide a way to do a single malloc and transfer of the
data into the GPU memory.

• Kernel and block size require runtime testing as it should not be static unless the program is to
do the exact same work on the exact same amount of data each time. A better implementation
would contain a dynamic function to measure performance and handle the adjustments of
the block and kernel sizes(Appendix A.4.3).

• Creation of kernels must be based on packets in one way or another, to achieve per-
formance and be able to work with the recommended solution stated in the previous
point(Appendix A.4.3).
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4.3 Future Research

The first future research proposal is to use NVIDIA GPUDirect technology found in Tesla CUDA
cards. These cards allows sharing of pinned host memory with other devices, and allows for
accelerated transfers of GPU data to other devices such as network cards that have support
for Infiniband. This would make it possible to make an implementation that directly copied
the network packets that enter the computer directly to the GPU memory, without the extra
overhead of passing through the host memory. This in theory is perfect for a NIDS solution and
would increase performance dramatically. We did get the chance as we hoped in this thesis to
work on these types of cards. As of the implementations presented in this paper, there are still
areas of improvement. As we executed the algorithms we observed memory leakage on the GPU.
However, they proved quite hard to locate with the debugging tools at our disposal. Next is the
engine that starts up the kernels on the CPU that is working at a single core level, there are
potential speed increases by using multi-threading for this solution. This is also necessary for
using more then one GPU at the same time, which would require one thread to manage patterns,
packets and output, and one thread for each GPU unit. Next, the implementations do not fully
utilize the fastest memory available on the GPU, constant memory, but instead use global memory
and the automatic caching within CUDA 4.x. We did not attempt to place functionality within the
tree structure of Aho-Corasick for supporting regular expressions. However, we believe this could
be altered quite easily and that all the structures including the kernel would work just as well. We
also propose more effort in research into GPU acceleration of preprocessors of the NIDS, which
could be the topic for a master thesis in the future. Finally, the Aho-Corasick algorithm should be
attempted to be incorporated into an actual NIDS, Snort or Suricata. The base work and structure
should now be known, adjusting the modules to fit within the actual NIDS implementation
should not be too difficult. We strongly believe that the proposed recommendations for potential
performance increase should justify the efforts taken.
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A Appendix

A.1 Experiment #1:Naïve String Search

A.1.1 Naïve Search Engine

1 #include "cuda_runtime.h"

2 #include "dictionary.cuh"

3 #include "monitor.cu"

4 #include "packetInput.cu"

5

6

7 #include "naiveKernel.cu"

8

9 #include "book.cu"

10

11 #include <ostream >

12 #include "outputHandler.cu"

13

14 template <class T>

15 void naiveEngine(int device){

16

17 ofstream myfile ("naiveGPU.data", ios:: trunc);

18 // myfile << "[GPU]" << endl;

19

20 if(! myfile.is_open ()) return;

21 else{

22

23 HandleError <T>( cudaSetDevice(device), "ahoe", 15);

24

25 int *current = new int;

26 HandleError <T>( cudaGetDevice(current), "ahoe", 18);

27 std::cout << "Using GPU: " << *current << endl;

28

29 cudaDeviceReset ();

30

31

32 // Information and monitoring

33 PM<T> monitor;

34 PacketData <T> *packet;

35

36 // Dictionary <T> dictionary (" corncob.txt");

37 Dictionary <T> dictionary("badwords.txt");

38
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39 OutputHandler <T> *output;

40 int repeats = 0;

41

42 //load dict to GPU Memory

43 dictionary.upload ();

44

45 int blocks;

46 int threads;

47

48

49 while(true){

50

51 repeats += 1000;

52

53 if (repeats >= 10000){

54 myfile.close();

55 return;

56 }

57

58 cout << "num packets at once: " << repeats << endl;

59

60 //if(repeats == 0){

61 // myfile.close();

62 // return;

63 //}

64 // create Packet

65 packet = new PacketData <T>( repeats);

66

67 output = new OutputHandler <T>(repeats , 4);

68

69 //Loop of the NIDS starts here

70 monitor.startPM (); //start the monitor for watching GPU

71

72 //load data to GPU

73 packet ->upload ();

74 output ->upload ();

75

76 //easy fix use all multicores

77 blocks = 32;

78 threads = (int)(dictionary.num_patterns/blocks)+1;

79

80

81 naiveKernel <T><<<blocks , threads >>>(dictionary.d_list ,

dictionary.d_offsets , dictionary.num_patterns , packet ->

d_packet , packet ->h_packet_size , output ->d_output , output ->

repeats , output ->deltaout);

82

83 output ->download ();

84
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85 monitor.stopPM (); //Stop the monitor

86

87 //for(int j=0; j< output ->repeats*output ->deltaout; j=j+2)

88 //if(output ->log_output[j] != -1){

89 // cout << dictionary.h_list[output ->log_output[j]] << "

found in packet: " << output ->log_output[j+1] << endl;

90 //}

91

92 cout << "time: " << monitor.elapsedTime << "ms " <<

(((1000/ monitor.elapsedTime) * packet ->packet_string_size *

repeats)/1000000) <<" MB/s " << (((1000/ monitor.

elapsedTime) * packet ->packet_string_size * repeats)

/1000000) *8 << " Mbit/s" << endl;

93

94 myfile.precision (5);

95 myfile.setf(ios::fixed , ios:: floatfield);

96 myfile << repeats << " " << packet ->packet_string_size << "

" << monitor.elapsedTime << " " << (((1000/ monitor.

elapsedTime) * packet ->packet_string_size * repeats)

/1000000) <<endl;

97

98 }

99 }

100 }

Listing A.1: Naïve Engine

63



GPU Accelerated NIDS Search

A.1.2 Naïve Search Kernel

1 #ifndef _KERNEL_CU_

2 #define _KERNEL_CU_

3

4 #include "cuda_runtime.h"

5 #include <stdio.h>

6

7 template <class T>

8 __global__ void naiveKernel(char* pattern_list ,

9 int *pattern_offset ,

10 int num_patterns ,

11 char* packet_input ,

12 int packet_size ,

13 int *output ,

14 int repeats ,

15 int deltaout)

16 {

17

18 //The threadID we use is found by combining the treadId , blockId

, and blockDim.

19 int tid = (threadIdx.x + blockIdx.x * blockDim.x);

20 // Counters used for processing

21 int index =0;

22 int findings = 0;

23

24 // printf ("%c, %i, %i%, %c, %i, %i, %i, %i\n", pattern_list[tid],

pattern_offset[tid+1], num_patterns , packet_input[tid],

packet_size , output[tid], repeats , deltaout);

25

26 //For every character in the input text we run the kernel

27 for(int i=0; i<packet_size; i++){

28 //The kernel is limited to one pattern each , based on the

thread id the current kernel has the kernel will loop

29 //over the length of the pattern it was given.

30 for(int j=pattern_offset[tid]; j<= pattern_offset[tid +1]; j++)

{

31 // Break out of the loop if the characters in the pattern and

input text is not the same

32 if(pattern_list[j] != packet_input[i+index ]) break;

33 //The character in the pattern and input text matched , we

increment the index and

34 // check the next characters unless the whole patter is now

matched

35 else index ++;

36

37 //We found the whole pattern if the index and the length of

the pattern is the same
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38 if(index == pattern_offset[tid+1] - pattern_offset[tid]){

39

40 //// atomically try to lock the location in the output

array for this thread only , if not , try next possible

location

41 // while(atomicCAS (& output[row], -1, tid) != -1){

42 // //If the location is taken , jump two elements , as

another thread has also reserved the second array

element

43 // row = row+2;

44 //}

45 ////we insert the position of the pattern in the second

reserved element

46 // atomicExch (& output[row+1], i);

47 //}

48 output[deltaout * tid + findings] = tid;

49 output[deltaout * tid + findings +1] = i;

50

51 findings = findings + 2;

52

53 }

54 }

55 //The current characters of the pattern and input text did not

match , we reset the index counter.

56 index = 0;

57 }

58 //The whole input text has been processed , the kernel will end

59 }

60

61 #endif

Listing A.2: Naïve Kernel
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A.1.3 Naïve Search CPU Implementation

1 #ifndef _CPUENGINE_

2 #define _CPUENGINE_

3

4 //This file will hold the Naive string matching algorithm that

will only run on the CPU

5 #include "dict.h"

6 #include <string >

7

8 #include <stdio.h>

9 #include <windows.h>

10

11 struct Container{

12 string pattern;

13 int pos;

14

15 Container(string pattern , int pos){

16 this ->pattern = pattern;

17 this ->pos = pos;

18 }

19 };

20

21 template <class T>

22 void runCPUengine (){

23

24 // Create the Dictionary

25 Dict dictionary;

26 dictionary.genDictionary("badwords.txt");

27

28 char * packet = "This is a fake network packet containing some

bad words such as shit and asshole (assh0le), all these

bitchy words will be detected , and there should be 5 bad

words , however it will find prefixes of larger words that are

also other words in the list , such as ass.";

29 int packet_size = strlen(packet);

30 int index = 0;

31 vector <Container > out_data;

32

33 //To time the exection

34 clock_t start = clock();

35

36 for(int j=0; j< dictionary.c_list.size(); j++){

37 for(int i = 0; i< packet_size; i++){

38 for(int k =0; k < strlen(dictionary.c_list[j]); k++){

39

40 if(dictionary.c_list[j][index] != packet[i+index]) break;

41 else index ++;
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42

43

44 if(index == strlen(dictionary.c_list[j]))

45 out_data.push_back(Container(string(dictionary.c_list[j]),

i));

46 }

47 index =0;

48 }

49

50 }

51 // Print the time for the algorithm execution

52 printf("Time elapsed for CPU engine: %3.1f ms\n", (( double)clock

() - start));

53

54 // Print the findings

55 for(int i = 0; i < out_data.size(); i++){

56 cout << out_data[i]. pattern << " at pos: " << out_data[i].pos

<< endl;

57 }

58 }

59

60 #endif

Listing A.3: Naïve Kernel
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A.2 Experiment #2: Knuth-Morris-Phatt (KMP)

A.2.1 KMP Engine

1 #include "cuda_runtime.h"

2 #include "dictionary.cuh"

3 #include "trie.cu"

4 #include "monitor.cu"

5

6 #include "packetInput.cu"

7 #include "outputHandler.cu"

8

9 #include "kmpKernel.cu"

10

11 #include "kmpPreProc.cu"

12

13 template <class T>

14 void kmpEngine(int device){

15

16

17 ofstream myfile ("kmpGPU.data", ios:: trunc);

18 // myfile << "[KMP]" << endl;

19

20 if(! myfile.is_open ()) return;

21 else{

22

23 HandleError <T>( cudaSetDevice(device), "ahoe", 15);

24

25 int *current = new int;

26 HandleError <T>( cudaGetDevice(current), "ahoe", 18);

27 std::cout << "Using GPU: " << *current << endl;

28

29 cudaDeviceReset ();

30

31

32 // Information and monitoring

33 PM<T> monitor;

34 PacketData <T> *packet;

35

36 // Dictionary <T> dictionary (" corncob.txt");

37 Dictionary <T> dictionary("badwords.txt");

38

39 //load dict to GPU Memory

40 dictionary.upload ();

41

42 //easy fix use all multicores

43 int blocks;

44 int threads;
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45

46 blocks = 32;

47 threads = (int)(dictionary.num_patterns/blocks)+1;

48

49 cout << blocks << " & " << threads << endl;

50

51 // Preprocessing for KMP and upload

52 KmpPreProc <T> preproc(dictionary);

53 preproc.upload(dictionary);

54

55 //Run preproc kernel to generate the table for the patterns

56 prekmpKernel <T><<<blocks ,threads >>>(dictionary.d_list ,

dictionary.d_offsets , preproc.d_pre_table);

57

58 OutputHandler <T> *output;

59 int repeats = 1000;

60

61 while(true){

62

63 repeats += 1000;

64

65 if (repeats >= 10000) {

66 myfile.close();

67 return;

68 }

69

70 cout << "num packets at once: " << repeats << endl;

71

72

73 // create Packet

74 packet = new PacketData <T>( repeats);

75

76 output = new OutputHandler <T>(repeats , 3);

77

78 //Loop of the NIDS starts here

79 monitor.startPM (); //start the monitor for watching GPU

80

81 //load data to GPU

82 packet ->upload ();

83 output ->upload ();

84

85

86 //kmpKernel <T><<<1, 1>>>(dictionary.d_list , dictionary.

d_offsets , preproc.d_pre_table , packet ->d_packet , packet ->

h_packet_size , output ->d_output , output ->deltaout);

87 kmpKernel <T><<<blocks , threads >>>(dictionary.d_list ,

dictionary.d_offsets , preproc.d_pre_table , packet ->d_packet

, packet ->h_packet_size , output ->d_output , output ->deltaout

);
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88

89 output ->download ();

90

91 monitor.stopPM (); //Stop the monitor

92

93 //for(int j=0; j< output ->repeats*output ->deltaout; j=j+2)

94 //if(output ->log_output[j] != -1){

95 // cout << dictionary.h_list[output ->log_output[j]] << "

found in packet: " << output ->log_output[j+1] << endl;

96 //}

97

98 cout << "time: " << monitor.elapsedTime << "ms " <<

(((1000/ monitor.elapsedTime) * packet ->packet_string_size *

repeats)/1000000) <<" MB/s " << (((1000/ monitor.

elapsedTime) * packet ->packet_string_size * repeats)

/1000000) *8 << " Mbit/s" << endl;

99

100 myfile.precision (5);

101 myfile.setf(ios::fixed , ios:: floatfield);

102 myfile << repeats << " " << packet ->packet_string_size << "

" << monitor.elapsedTime << " " << (((1000/ monitor.

elapsedTime) * packet ->packet_string_size * repeats)

/1000000) <<endl;

103 }

104 }

105 }

Listing A.4: KMP Engine
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A.2.2 KMP Preprocessing

1 #ifndef _PREPROC_

2 #define _PREPROC_

3

4 #include "cuda_runtime.h"

5 #include "dictionary.cuh"

6 #include "book.cu"

7

8 template <class T>

9 struct KmpPreProc{

10 // Space for the preprocessing table

11 int * h_pre_table;

12 int * d_pre_table;

13

14 KmpPreProc(Dictionary <T> &dict){

15 h_pre_table = new int[dict.num_elements ];

16 for(int i=0; i< dict.num_elements; i++){

17 h_pre_table[i] = 0;

18 }

19 }

20

21

22 void upload(Dictionary <T> &dict){

23 HandleError <T>( cudaMalloc ((void **)&d_pre_table , sizeof(int)*

dict.num_elements), "preproc", 23);

24 HandleError <T>( cudaMemcpy(d_pre_table , h_pre_table , sizeof(int

)*dict.num_elements , cudaMemcpyHostToDevice), "preproc",

24);

25 }

26

27 ~KmpPreProc (){

28 HandleError <T>( cudaFree(d_pre_table), "preproc", 28);

29 // delete [] h_pre_table;

30 }

31 };

32

33 #endif

Listing A.5: KMP PreProcessing
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A.2.3 KMP Kernel

1 #ifndef _KERNEL_KMP_

2 #define _KERNEL_KMP_

3

4 #include "cuda_runtime.h"

5 #include <stdio.h>

6

7 template <class T>

8

9 __global__ void prekmpKernel(char* g_pattern_list ,

10 int *g_pattern_offset ,

11 int * g_pre_table)

12 {

13

14 //The threadID we use is found by combining the treadId , blockId

, and blockDim.

15 int tid = (threadIdx.x + blockIdx.x * blockDim.x);

16

17 // First create the failure table

18 int suffix_pos = 1;

19 int prefix_pos = 0;

20 // printf (" alloc %i\n", tid);

21

22 // Making the code a bit easyer to read

23 int pattern_size = g_pattern_offset[tid +1] - g_pattern_offset[

tid];

24 int pattern_start = g_pattern_offset[tid];

25

26 // Continue while the suffix position is less then the size of

the pattern given to the thread

27 while(suffix_pos < pattern_size){

28

29 //If a match is found between the prefix position and the

suffix position we store the location in the table

30 if(g_pattern_list[pattern_start + prefix_pos] ==

g_pattern_list[pattern_start + suffix_pos ]){

31 // printf ("in if!!!\n");

32 g_pre_table[g_pattern_offset[tid] + suffix_pos] = prefix_pos

+1;

33 prefix_pos ++;

34 suffix_pos ++;

35 }

36 //If they do not match , but prefix is over 0, a match was

found earlier

37 else if(prefix_pos > 0) {

38 prefix_pos = g_pre_table[g_pattern_offset[tid] + prefix_pos

-1];
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39

40 }

41 // There was no match , so we continue with next char as suffix

42 else{

43 g_pre_table[g_pattern_offset[tid]+ suffix_pos] = 0;

44 suffix_pos ++;

45 }

46 }

47 }

48

49

50 template <class T>

51 __global__ void kmpKernel(char* g_pattern_list ,

52 int *g_pattern_offset ,

53 int * g_pre_table ,

54 char* g_packet_input ,

55 int g_packet_size ,

56 int *g_output ,

57 int deltaout)

58 {

59 //The threadID we use is found by combining the treadId , blockId

, and blockDim.

60 int tid = (threadIdx.x + blockIdx.x * blockDim.x);

61

62 int pattern_size = g_pattern_offset[tid +1] - g_pattern_offset[

tid];

63 int pattern_start = g_pattern_offset[tid];

64

65 int ip = 0; //index pattern

66 int it = 0; //Index text

67 int findings = 0;

68

69

70 while( it < g_packet_size) {

71

72 if(g_pattern_list[pattern_start+ip] == g_packet_input[it]){

73 //If we find a match we store the findings in the output file

74 if(ip == pattern_size -1){

75 g_output[deltaout * tid + findings] = tid;

76 g_output[deltaout * tid + findings +1] = (it -(

pattern_size) -1);

77 findings = findings + 2;

78 }

79 ip++;

80 it++;

81 }

82 //If ip is more then 0, a match was found earlier and we go

back to this location

83 else if(ip > 0){

73



GPU Accelerated NIDS Search

84 ip = g_pre_table[g_pattern_offset[tid]+ip -1];

85 }

86 //No new match was found , and we increase the index of the

input file

87 else{

88 it++;

89 }

90 }

91 }

92

93 #endif

Listing A.6: KMP Kernel

74



GPU Accelerated NIDS Search

A.3 Experiment #2: Aho-Corasick (AC)

A.3.1 Aho-Corasick Engine

1 #include "cuda_runtime.h"

2 #include "dictionary.cuh"

3 #include "trie.cu"

4 #include "monitor.cu"

5 #include "packetInput.cu"

6 #include "outputHandler.cu"

7

8 #include "ahoKernel.cu"

9

10 #include "book.cu"

11

12 #include <ostream >

13

14

15 template <class T>

16 void ahoEngine(int device){

17

18 ofstream myfile ("ahoGPU.data", ios:: trunc);

19 // myfile << "[GPU]" << endl;

20

21 if(! myfile.is_open ()) return;

22 else{

23

24 HandleError <T>( cudaSetDevice(device), "ahoe", 15);

25

26 int *current = new int;

27 HandleError <T>( cudaGetDevice(current), "ahoe", 18);

28 std::cout << "Using GPU: " << *current << endl;

29

30 cudaDeviceReset ();

31

32

33 // Information and monitoring

34 PM<T> monitor;

35 PacketData <T> *packet;

36

37 Dictionary <T> dictionary("corncob.txt");

38 // Dictionary <T> dictionary (" badwords.txt");

39

40 //Aho Corasick

41 mTrie <T> trie;

42

43 // dictionary.num_patterns

44 for(int i=0; i <1000;i++){
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45 trie.addWord(dictionary.h_list[i], i);

46 }

47 // Parse the trie generate Metadata //1 because GPU

48 trie.parseTrie (1);

49

50 OutputHandler <T> *output;

51 int repeats = 8000;

52

53 int loops = 0;

54 while(loops < 10){

55 // while(true){

56 // cout << endl;

57 // cout << endl;

58

59 // repeats += 1000;

60

61 //if (repeats >= 10000) {

62 // myfile.close();

63 // return;

64 //}

65

66 cout << "num packets at once: " << repeats << endl;

67

68 //if(repeats == 0){

69 // myfile.close();

70 // return;

71 //}

72 // create Packet

73 packet = new PacketData <T>( repeats);

74

75 output = new OutputHandler <T>(repeats , 1);

76

77 //Loop of the NIDS starts here

78 monitor.startPM (); //start the monitor for watching GPU

79

80 //load data to GPU

81 packet ->upload ();

82 output ->upload ();

83

84 ahoKernel <T><<<packet ->blocksPerGrid , packet ->

threadsPerBlock >>>(trie.d_pattern , trie.d_failure , trie

.d_output_check , packet ->d_packet , packet ->

d_packet_offsets , output ->deltaout , packet ->repeats ,

output ->d_output);

85

86 output ->download ();

87

88 monitor.stopPM (); //Stop the monitor

89
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90 // int j=0;

91 //for(int j=0; j< output ->size*output ->deltaout; j=j+2)

92 //if(output ->log_output[j] != -1){

93 // cout << dictionary.h_list[output ->log_output[j+1]] <<

" found in packet: " << output ->log_output[j] << endl;

94 //}

95

96 cout << "time: " << monitor.elapsedTime << "ms " <<

(((1000/ monitor.elapsedTime) * packet ->

packet_string_size * repeats)/1000000) <<" MB/s" <<

(((1000/ monitor.elapsedTime) * packet ->

packet_string_size * repeats)/1000000) *8 << " Mbit/s"

<< endl;

97

98 myfile.precision (5);

99 myfile.setf(ios::fixed , ios:: floatfield);

100 myfile << repeats << " " << packet ->packet_string_size <<

" " << monitor.elapsedTime << " " << (((1000/

monitor.elapsedTime) * packet ->packet_string_size *

repeats)/1000000) <<endl;

101

102 loops ++;

103 }

104 myfile.close();

105 return;

106 }

107 }

Listing A.7: The Main function

77



GPU Accelerated NIDS Search

A.3.2 Aho-Corasick Kernel

1

2

3

4 template <class T>

5 __global__ void ahoKernel(char *pattern , int* failure , int2 *

output_check , char *packet , int *packet_offsets , int deltaout ,

int repeats , int * output){

6

7 // printf (" pattern: %c, failure: %i, output1: %i, output2: %i,

packet: %c, outarr: %i \n", pattern [1], failure [1],

output_check [1].x, output_check [1].y, packet [0], output [1]);

8 int tid = (threadIdx.x + blockIdx.x * blockDim.x);

9

10 int findings = 0;

11 int index = 1; // offset from start in pattern

12 int i = 0;

13

14

15

16 // packet to work on start at packet_offset given by threadID or

break

17 int start = packet_offsets[tid];

18 int end = packet_offsets[tid +1];

19

20 // Overlapping the packets.

21 //int overlap = 5;

22 //if(start > overlap) start - overlap;

23 //end = end + overlap;

24

25 if(tid+1 > repeats){

26 return;

27 }

28

29 while(start+i <= end){

30

31 if(packet[start+i] != pattern[index ]){

32

33 index = failure[index ];

34 }

35 else {

36

37 if(output_check[index ].x == true) {

38

39 output[deltaout * tid + findings] = tid;

40 output[deltaout * tid + findings +1] = output_check[index

].y;
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41

42 findings = findings + 2;

43

44 }

45 i++;

46 index ++;

47 }

48

49 if(index == 0) {

50 // __syncthreads ();

51 start ++;

52 index = 1;

53 i=0;

54 }

55

56 }

57 }

Listing A.8: The Kernel
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A.3.3 Aho-Corasick Tree Structure

1 #ifndef _CTRIE_

2 #define _CTRIE_

3

4 #include "cuda_runtime.h"

5 #include <iostream >

6 #include <vector >

7 #include <string >

8

9 using namespace std;

10

11 template <class T>

12 class mNode {

13 public:

14 mNode () {

15 data = ' ';

16 leaf = false;

17 id=0; }

18 ~mNode () {}

19 char content () { return data; }

20 void setContent(char c) { data = c; }

21

22 bool getLeaf () { return leaf; }

23 void setLeaf () { leaf = true; }

24

25 void setId(int x){id = x;}

26 int getId(){return id;}

27

28 void setPid(int x){pid = x;}

29 int getPid (){return pid;}

30

31 mNode* findChild(char c);

32 void appendChild(mNode* child) { mChildren.push_back(child); }

33 vector <mNode*> Children () { return mChildren; }

34

35 private:

36 char data;

37 bool leaf;

38 int id;

39 int pid;

40 vector <mNode <T>*> mChildren;

41 };

42

43 template <class T>

44 class mTrie {

45 public:

46 mTrie ();
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47 ~mTrie ();

48 void addWord(std:: string s, int pid);

49 void parseTrie(bool GPU);

50 void DFS(mNode <T>* child ,int fail);

51 int getElements (){return elements ;}

52 void setIndex(mNode <T>* child);

53 int * getAlpha ();

54

55

56 //GPU

57 char* d_pattern;

58 int *d_failure;

59 int2 *d_output_check;

60

61 //CPU

62 char * cPattern;

63 int * failure;

64 int2 * output;

65

66 private:

67 mNode <T>* root;

68 int elements;

69 std:: string pattern;

70 int index;

71 int* root_data;

72

73 };

74

75 template <class T>

76 mNode <T>* mNode <T>:: findChild(char c)

77 {

78 for ( int i = 0; i < mChildren.size(); i++ )

79 {

80 mNode* tmp = mChildren.at(i);

81 if ( tmp ->content () == c )

82 {

83 return tmp;

84 }

85 }

86

87 return NULL;

88 }

89 template <class T>

90 mTrie <T>:: mTrie()

91 {

92 root = new mNode <T>();

93 root ->setPid (-1);

94 elements = 0;

95 index = 0;

81



GPU Accelerated NIDS Search

96

97

98 }

99 template <class T>

100 mTrie <T>::~ mTrie()

101 {

102 cudaFree(d_pattern);

103 cudaFree(d_failure);

104 cudaFree(d_output_check);

105 }

106 template <class T>

107 void mTrie <T>:: addWord(std:: string s, int pid)

108 {

109

110 mNode <T>* current = root;

111

112 if ( s.length () == 0 )

113 {

114 current ->setLeaf (); // an empty word

115 return;

116 }

117

118

119

120

121 for ( int i = 0; i < s.length (); i++ )

122 {

123 mNode <T>* child = current ->findChild(s[i]);

124 if ( child != NULL )

125 {

126 current = child;

127 }

128 else

129 {

130 mNode <T>* tmp = new mNode <T>();

131 tmp ->setPid (-1);

132 tmp ->setContent(s[i]);

133 current ->appendChild(tmp);

134 current = tmp;

135 elements ++;

136 }

137 if ( i == s.length () - 1 ){

138 current ->setLeaf ();

139 current ->setPid(pid);

140 }

141 }

142 }

143

144 template <class T>
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145 void mTrie <T>:: parseTrie(bool GPU){

146

147 cPattern = new char[elements ];

148 failure = new int[elements ];

149 output = new int2[elements ];

150

151 index =0;

152 setIndex(root);

153 index =0;

154 DFS(root , root ->getId ());

155 strcpy(cPattern , pattern.c_str ());

156

157 if(GPU){

158 //Copy the pattern

159 cudaMalloc ((void **)&d_pattern , sizeof(char)*elements);

160 cudaMemcpy( d_pattern , cPattern ,sizeof(char)*elements ,

cudaMemcpyHostToDevice);

161

162 //Copy the failure

163 cudaMalloc ((void **)&d_failure , sizeof(int)*elements);

164 cudaMemcpy(d_failure , failure , sizeof(int)*elements ,

cudaMemcpyHostToDevice);

165

166 //Copy the output

167 cudaMalloc ((void **)&d_output_check , sizeof(int2)*elements);

168 cudaMemcpy(d_output_check , output , sizeof(int2)*elements ,

cudaMemcpyHostToDevice);

169 }

170 }

171

172 template <class T>

173 void mTrie <T>::DFS(mNode <T>* child , int fail){

174 pattern += child ->content ();

175 failure[index] = fail;

176 output[index].x = child ->getLeaf ();

177 output[index].y = child ->getPid ();

178 index ++;

179 if(child ->Children ().size() == 0) {//this is the leaf

180 }

181 else if(child ->Children ().size() == 1) DFS(child ->Children ().at

(0), fail);

182 else{

183 for(int i=0; i< child ->Children ().size(); i++){

184 if(i < child ->Children ().size() -1)

185 DFS(child ->Children ().at(i), child ->Children ().at(i+1) ->

getId ());

186 else

187 DFS(child ->Children ().at(i), child ->getId());

188 }
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189 }

190 }

191

192 template <class T>

193 int * mTrie <T>:: getAlpha (){

194

195 root_data = new int[root ->Children ().size()];

196

197 for(int i=0; i < root ->Children ().size(); i++){

198 root_data[i] = root ->Children ().at(i)->getId ();

199 }

200

201 return root_data;

202 }

203

204 template <class T>

205 void mTrie <T>:: setIndex(mNode <T>* child){

206

207 child ->setId(index);

208 index ++;

209

210 for(int i=0; i< child ->Children ().size(); i++){

211 setIndex(child ->Children ().at(i));

212 }

213 }

214

215

216

217 #endif

Listing A.9: The Tree Structure
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A.3.4 Aho-Corasick CPU Implementation

1 #include "cuda_runtime.h"

2 #include "dictionary.cuh"

3 #include <string >

4 #include "trie.cu"

5 #include <ostream >

6

7 #include <Windows.h>

8 using namespace std;

9

10 template <class T>

11 void ahoCPUEngine (){

12

13 //// Windows get processor count

14 SYSTEM_INFO sysinfo;

15 GetSystemInfo (& sysinfo);

16 int numCPU = sysinfo.dwNumberOfProcessors;

17

18 // Timing high resolution

19 LARGE_INTEGER t1, t2, frequency;

20 double elapsedTime;

21

22 QueryPerformanceFrequency (& frequency);

23

24 int delta = 1000;

25

26 //Open an output file

27 ofstream myfile ("ahoCPU.data", ios:: trunc);

28

29 // myfile << "packets strlen timeused MB/s" << endl;

30 // myfile << "[CPU]" << endl;

31

32

33 //If we can open the file

34 if(! myfile.is_open ()) return;

35 else{

36

37 // Create the dictionary of words for the trie

38 Dictionary <T> dictionary("badwords.txt");

39 // Dictionary <T> dictionary (" corncob.txt");

40

41 // Generate trie

42 mTrie <T> trie;

43

44 // dictionary.num_patterns

45 // Addwords

46 for(int i=0; i <1000;i++){
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47 trie.addWord(dictionary.h_list[i], i);

48 }

49

50 // Create Metadata //0 because CPU

51 trie.parseTrie (0);

52

53

54 // const string packet_string = "This is a fake network packet

containing some bad words such as shit and asshole or (

assh0le), all these bitchy words will be detected , and

there should be 7 results , it will find parts of larger

words that are prefix of other words in the list aswell ,

such as ass .";

55 const string packet_string = "This is a fake network packet

containing some bad words such as shit";

56

57

58 string mstring;

59 int * output;

60 int repeats = 0;

61

62 while(true){

63

64 repeats += 1000;

65

66 if (repeats >= 10000) {

67 myfile.close();

68 return;

69 }

70

71 cout << "num packets at once: " << repeats << endl;

72

73 mstring = " ";

74 for(int i=0; i< repeats; i++){

75 mstring += packet_string;

76 }

77

78 output = NULL;

79 output = new int[repeats * delta];

80

81 for(int i=0; i< repeats*delta; i++){

82 output[i] = -1;

83 }

84

85 // Start the counter to make it similar to GPU version

86 QueryPerformanceCounter (&t1);

87

88 int index = 0;

89 int start = 1;
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90 int i=0;

91 int findings = 0;

92

93 while ((start+i) < mstring.size()){

94

95 if(mstring[start + i] != trie.cPattern[index ]){

96

97 index = trie.failure[index ];

98 }

99 else {

100 if(trie.output[index ].x == true) {

101

102

103 output[findings] = (start+i); // which packet

104 output[findings +1] = trie.output[index ].y; //which

signature

105 findings = findings + 2;

106

107 }

108 i++;

109 index ++;

110 }

111

112 if(index == 0) {

113 start ++;

114 index = 1;

115 i=0;

116 }

117

118 }

119

120 QueryPerformanceCounter (&t2);

121

122 //int j=0;

123 //for(int j=0; j< repeats*delta; j=j+2){

124 // if(output[j] != -1){

125 // cout << dictionary.h_list[output[j+1]] << " found in

packet: " << output[j]/ (int)packet_string.size() +1 << "

at location: " << output[j]% (int)packet_string.size() <<

endl;

126 // }

127 // }

128 elapsedTime = (t2.QuadPart - t1.QuadPart) * 1000.0 / frequency

.QuadPart;

129 cout << "Elapsed Time: " << elapsedTime << " ms." << "\

nProcessors on system: " << numCPU << ".\ nTheoretical

optimal threaded performance: " << elapsedTime/numCPU << "

ms." << endl;

130
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131 myfile.precision (5);

132 myfile << repeats << " " << packet_string.size() << " " <<

elapsedTime << " " << (((1000/ elapsedTime) * packet_string

.size() * repeats)/1000000) <<endl;

133 }

134 }

135 }

Listing A.10: CPU Implementation of Aho-Corasick
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A.4 Experiment - Common Functions

A.4.1 Dictionary Structure

1 #ifndef _DICT_

2 #define _DICT_

3

4 //#include "cuda_runtime.h"

5 #include <vector >

6 #include <iostream >

7 #include <fstream >

8 #include <string >

9 #include <list >

10

11 #include "book.cu"

12

13 using namespace std;

14

15 template <class T>

16 struct Dictionary{

17 int dicsize;

18 char *list;

19 char * d_list;

20 int * offsets;

21 int * d_offsets;

22 int max_len;

23 int num_patterns;

24 vector <string > h_list;

25 int num_elements;

26

27 Dictionary(const char * filename){

28

29 d_list = NULL;

30 d_offsets = NULL;

31

32 max_len =0;

33 num_patterns =0;

34 string temp , line;

35 int i =0;

36 int curr_offset =0;

37

38 ifstream myfile (filename);

39

40 if (myfile.is_open ())

41 {

42 string size;

43 getline (myfile , size);

44 dicsize = atoi(size.c_str ());
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45 offsets = new int[dicsize ];

46 offsets [0]=0; //set first line

47

48 while ( myfile.good() )

49 {

50 getline (myfile , line);

51 h_list.push_back(line);

52 temp += line.c_str();

53 curr_offset +=line.size();

54 offsets[i+1] = curr_offset;

55 if (max_len < line.size()) max_len = line.size();

56 i++;

57 }

58 myfile.close();

59 }

60 else{

61 cout << "cant open file:" << filename << endl;

62 system("pause");

63 return;

64 }

65

66 num_elements = temp.size()+1;

67 list = new char[num_elements ];

68 strcpy(list , temp.c_str ());

69 num_patterns=i;

70 }

71

72 void upload (){

73 HandleError <T>( cudaMalloc ((void **)&d_list , strlen(list)*

sizeof(char)), "dict", 29);

74 HandleError <T>( cudaMemcpyAsync(d_list , list , strlen(list)*

sizeof(char), cudaMemcpyHostToDevice), "dict", 52);

75

76 HandleError <T>( cudaMalloc ((void **)&d_offsets , sizeof(int)*

dicsize), "dict", 74);

77 HandleError <T>( cudaMemcpyAsync(d_offsets , offsets , sizeof(

int)*dicsize , cudaMemcpyHostToDevice), "dict", 75);

78 }

79

80 ~Dictionary (){

81 if(d_offsets != NULL) HandleError <T>( cudaFree(d_offsets), "

dict", 81);

82 if(d_list != NULL)HandleError <T>( cudaFree(d_list), "dict", 81)

;

83 // delete [] offsets;

84 // delete [] list;

85 }

86 };

87 #endif

90



GPU Accelerated NIDS Search

Listing A.11: The Dictionary Structure
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A.4.2 Output Handler

1 #ifndef _OUTPUTHANDLER_

2 #define _OUTPUTHANDLER_

3

4 #include "cuda_runtime.h"

5

6 #include "book.cu"

7

8 template <class T>

9 struct OutputHandler{

10

11 int repeats;

12 int *h_output; //CPU

13 int *d_output; // Device

14 int *log_output;

15 int deltaout;

16

17 OutputHandler(int repeats , int delta){

18

19

20 deltaout = delta;

21 this ->repeats = repeats;

22

23 // h_output = realloc(h_output , repeats*deltaout);

24 h_output = new int[repeats*deltaout ];

25 // log_output = realloc(log_output , repeats*deltaout);

26 log_output = new int[repeats *deltaout ];

27

28 // initialize output set every char to -1.

29 for(int i=0; i< repeats*deltaout; i++){

30 h_output[i] = -1;

31 }

32 HandleError <T>( cudaMalloc ((void **)&d_output , sizeof(int)*

repeats*deltaout), "out", 29);

33 }

34

35 void upload (){

36 // Malloc and Copy the output -list to the GPU -

37 HandleError <T>( cudaMemcpyAsync(d_output , h_output , sizeof(int)*

repeats*deltaout , cudaMemcpyHostToDevice), "out", 34);

38 }

39

40

41 void download (){

42 HandleError <T>( cudaMemcpyAsync(log_output , d_output , sizeof(

int)*repeats*deltaout , cudaMemcpyDeviceToHost), "out", 39);

43 }
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44

45 ~OutputHandler (){

46 // delete h_output;

47 // delete log_output;

48 HandleError <T>( cudaFree(d_output), "out", 44);

49

50 }

51

52 };

53

54 #endif

Listing A.12: The Output Handler
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A.4.3 Packet Handler

1 #ifndef _PACKETDATA_

2 #define _PACKETDATA_

3

4 #include "cuda_runtime.h"

5 #include <algorithm >

6 #include <math.h>

7 #include <xutility >

8 #include <string >

9 #include "book.cu"

10

11 // const string packet_string = "This is a fake network packet

containing some bad words such as shit and asshole or (assh0le)

, all these bitchy words will be detected , and there should be

7 results , it will find parts of larger words that are prefix

of other words in the list aswell , such as ass .";

12 // const string packet_string = "This is a fake network packet

containing some bad words such as shit and asshole ";

13 const string packet_string = "This is a fake network packet

containing bad words such as shit";

14 template <class T>

15 struct PacketData{

16

17 int packet_string_size;

18

19

20

21 char * h_packet;

22 char * d_packet;

23 int h_packet_size;

24 int num_threads;

25 int * packet_offsets;

26 int * d_packet_offsets;

27 int repeats;

28 int threadsPerBlock;

29 int blocksPerGrid;

30

31 PacketData(int repeats){

32

33

34 packet_string_size = packet_string.size();

35

36 this ->repeats = repeats;

37 packet_offsets = new int[repeats +1];

38

39 string mstring;

40 packet_offsets [0] = 0;
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41 for(int i=0; i< repeats; i++){

42 mstring += packet_string;

43 packet_offsets[i+1] = mstring.size();

44

45 }

46

47 h_packet_size = mstring.size();

48 h_packet = new char[h_packet_size ];

49 strcpy(h_packet ,mstring.c_str ());

50

51 num_threads = repeats;

52

53

54 threadsPerBlock = min(512, num_threads);

55 blocksPerGrid = (num_threads + threadsPerBlock -1) /

threadsPerBlock;

56

57

58 HandleError <T>( cudaMalloc ((void **) &d_packet , h_packet_size*

sizeof(char)), "packet", 46);

59 HandleError <T>( cudaMalloc ((void **) &d_packet_offsets , sizeof(

int)*( repeats +1)), "packet", 47);

60 }

61

62 void upload (){

63 //Copy the packet

64 HandleError <T>( cudaMemcpyAsync(d_packet , h_packet ,

h_packet_size*sizeof(char), cudaMemcpyHostToDevice), "

packet", 52);

65 HandleError <T>( cudaMemcpyAsync(d_packet_offsets ,

packet_offsets , sizeof(int)*( repeats +1),

cudaMemcpyHostToDevice), "packet", 53);

66 }

67

68

69 ~PacketData (){

70 HandleError <T>( cudaFree(d_packet), "packet", 57);

71 HandleError <T>( cudaFree(d_packet_offsets), "packet", 58);

72 delete h_packet;

73 delete packet_offsets;

74 }

75 };

76

77 #endif

Listing A.13: The Packet Handler

A.4.4 Monitoring
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1 #ifndef _MONITOR_CUH_

2 #define _MONITOR_CUH_

3 #include "cuda_runtime.h"

4

5 #include <stdio.h>

6 #include <iostream >

7 #include <string >

8

9 using namespace std;

10

11 template <class T>

12 struct PM{

13

14 cudaEvent_t start , stop;

15 float elapsedTime;

16

17 void startPM (){

18

19 // Capture start and end time to see performance.

20

21 cudaEventCreate (& start);

22 cudaEventCreate (&stop);

23 cudaEventRecord(start , 0);

24 }

25

26 void stopPM () {

27

28 cudaEventRecord(stop , 0);

29 cudaEventSynchronize(stop);

30

31 cudaEventElapsedTime (& elapsedTime , start , stop);

32

33 // printf ("Time used: %3.1f ms\n", elapsedTime);

34

35 cudaEventDestroy(start);

36 cudaEventDestroy(stop);

37 }

38

39

40 void devInfo (){

41

42

43 cudaDeviceProp prop;

44

45 int count;

46

47 cudaGetDeviceCount (& count);

48 printf("Number of CUDA devices on this system: %d\n", count);
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49

50

51 for(int i= 0; i<count; i++){

52 cudaGetDeviceProperties (&prop , i);

53 printf("CUDA Information for device %d \n", i+1);

54 printf("Name: %s\n", prop.name);

55 printf("Compute capability: %d.%d\n", prop.major , prop.minor);

56 printf("Clock rate: %d\n", prop.clockRate);

57 printf("Device copy overlap: ");

58

59 if(prop.deviceOverlap)

60 printf("Enabled\n");

61 else

62 printf("Disabled\n");

63

64 printf("Execution timeout: ");

65 if(prop.kernelExecTimeoutEnabled)

66 printf("Enabled\n");

67 else

68 printf("Disabled\n");

69

70 printf("Memory information for device %d \n", i+1);

71 printf("Total global memory: %ld\n", prop.totalGlobalMem);

72 printf("Total constant memory: %ld\n", prop.totalConstMem);

73 printf("Max memory pitch: %ld\n", prop.memPitch);

74 printf("Texture alignment: %ld\n", prop.textureAlignment);

75 printf("Multi processor count: %d\n", prop.multiProcessorCount

);

76 printf("Shared mem per mp: %ld\n", prop.sharedMemPerBlock);

77 printf("Registers per mb: %d\n", prop.regsPerBlock);

78 printf("Threads in warp: %d\n", prop.warpSize);

79 printf("Max threads per block: %d\n", prop.maxThreadsPerBlock)

;

80 printf("Max thread dimensions: (%d, %d, %d)\n", prop.

maxThreadsDim [0], prop.maxThreadsDim [1], prop.maxThreadsDim

[2]);

81 printf("<<<<<<<<<<<End of device %d>>>>>>>>>>\n", i+1);

82 cout << "." << endl;

83 cout << ".." << endl;

84 cout << "..." << endl;

85 }

86

87

88 printf("<<<<<<<<<<<STARTING PROGRAM >>>>>>>>>>\n");

89 cout << "." << endl;

90 cout << ".." << endl;

91 cout << "..." << endl;

92 }

93 };
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94

95 #endif

Listing A.14: Monitoring
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