
HIKOS - Highly Secure, Intelligent Software
Copy-Protection

Fatbardh Veseli

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2011

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Revision history

Version # Description of change
0.1 Research Project Plan, first version, 13 December 2010.
0.2 Research Project Plan, second version (integrated the feedback suggestions), 21

December 2010.
0.7 A draft of the Master Thesis report is compiled and sent to my supervisor(s) and

my student opponent by 31 may 2011.
1.0 The final Thesis Report, 1 July 2011.

iii

HIKOS - Highly Secure, Intelligent Software Copy-Protection

1 Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and
belief, it contains no material previously published or written by another person nor material
which to a substantial extent has been accepted for the award of any other degree or diploma of
the university or other institute of higher learning, except where due acknowledgment has been
made in the text.

On the other hand, a part of my work is supervised under a Non-Disclosure Agreement, signed
between escrypt and myself. Therefore, publishing sentitive parts of the project was restricted, as
was the case with implementation details and own-created algorithms and source code for the
HIKOS project. However, the main functionalities and results are described in the thesis so as to
make the thesis readable and understandable for the audience.

Fatbardh Veseli

1

Abstract

Software piracy, which includes reproducing and distributing software products illegaly and
without authorization, continues to cause financial losses to software vendors. Dongles for hard-
ware protection have been present for a while now, but unfortunately, most of these solutions
were only effective for a short period, until these methods were circumvented and time has
showed that solutions that offer full protection from this phenomenon are impossible. In this
project, we focus on a hardware copy protection scheme based on dongles and we take the cur-
rent state-of-the-art in this area to a higher level. We provide a Highly Secure Software Copy
Protection scheme and our contribution consists of the ability of the dongle to execute a selected
part of the software inside the trusted environment in a dongle. This way, an attacker will never
have the full software available on the host, which makes reverse-engineering of it more difficult.

Additionaly, I provide a threat model and security analysis for this mechanism. Finally, I attach
parts of some algorithms I created for the Code Preprocessing, Analysis and Extraction.

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Preface

Work on my thesis has been a very valuable experience for me, both on the professional and
personal level. It was a pleasure to work under the supervision of Professor Paar and work in
the warmly equipped environment at the Chair for Embedded Security under Ruhr University
Bochum. On the other hand, I was always supported by my supervisor, Prof.Stephen Wolthusen,
who has always given me helpful feedback and oriented me in the right path during this period.
Also, the invaluable feedback and guidance from my thesis assistant, Dipl. Ralf Zimmerman, was
a true asset during this period. Also, it was a pleasure to meet and cooperate with the wonderful
team at escrypt and I would like to express my graditude for Annika Paus and Oliver Mischke
for their feedback and cooperation. I am truly thankful and happy to have had the chance to
cooperate with all of you.

On the other hand, when the motivation went down every once in a while, there was always
some cheering up with my colleagues from our student-office. It was always refreshing to take
a lunch break at the mensa with Pascal Beurer, have random coffees and refreshin talks with
Roman Kochanek and everyone at the room 605. Also, I would like to thank Mrs. Irmgard Kuhen
for all the help with the administrative and practical guides in Bochum. The same is true about
the whole team at emsec for their nice welcome and the wonderful environment. The team has a
full potential and energy, which I find amazing.

I should not forget to thank my friends Damla and Bylbyl for the wonderful dinners together
when I came tired after the daily work. I truly appreciate the friendship and your warmth during
the whole semester.

Finally, I wish to thank all the Erasmus students and great friends I made in Bochum, who
made me forget the thesis troubles in the evenings and during our splendid trips in the week-
ends, which made this a semester to remember.

Fatbardh Veseli, June 2011

3

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Contents

Revision history . iii
1 Declaration . 1
Preface . 3
Contents . 5
List of Figures . 7
List of Tables . 9
2 Introduction . 11

2.1 Topic covered by the project . 11
2.2 Keywords . 11
2.3 Justification, motivation and benefits . 11
2.4 Research questions . 12
2.5 The contribution . 13

3 Theoretical Background . 15
3.1 Copy Protection . 15

3.1.1 Software-based copy protection . 16
3.1.2 Online versus Offline validation . 16
3.1.3 Hardware Tokens (Dongles) for Copy Protection 16

3.2 Security issues about software-based copy protection 17
3.3 Dongle-based protection security . 17
3.4 Cryptography . 18

3.4.1 Public-key vs. Private-Key Cryptography 18
3.4.2 One-way cryptographic functions . 18

4 Related work . 21
5 State of the Art . 23

5.1 Cryptographic features . 23
5.2 Code Outsourcing . 24
5.3 State-of-the-Art Dongle Solutions for Software Copy Protection 24

5.3.1 Unikey Pro . 24
5.3.2 SafeNet Sentinel HASP HL . 24
5.3.3 WIBU Codemeter . 25
5.3.4 KEYLOK Fortress . 25
5.3.5 Feitian’s ROCKEY Series . 25
5.3.6 SenseLock’s EL Series . 26

6 Methodology and HIKOS . 27
6.1 Resources and Parties . 27
6.2 Products . 29

5

HIKOS - Highly Secure, Intelligent Software Copy-Protection

6.3 Development Tools . 29
7 HIKOS - The Architecture . 31

7.1 Security Concept . 31
7.2 Design Workflow . 32
7.3 Hardware Architecture . 34
7.4 Software Architecture . 35

7.4.1 Definitions . 35
7.4.2 Firmware . 35
7.4.3 Software Protection Interface . 35
7.4.4 HIKOS API . 36
7.4.5 Setup/Configuration . 36

7.5 Security Architecture . 36
7.5.1 Secure Boot . 37

8 Code Pre-processing, Analysis and Extraction . 39
8.1 Source scanning . 39
8.2 Code Extraction . 40
8.3 Post-Extraction Analysis and Reporting . 41

8.3.1 Code Packaging . 41
8.4 Wrapping Extracted Functions - Overflow Protection 42

9 Security . 43
9.1 Evaluation Criteria . 43
9.2 Threat Model . 44

9.2.1 Defense Pattern Catalog . 44
9.2.2 Attack Pattern Catalog . 46
9.2.3 Attack Tree . 46

10 Conclusion . 49
11 Future Work . 51
Bibliography . 53
A Code-Preprocessing Algorithm . 57
B Validation Algorithm . 59
C Code Scanning Algorithm . 61
D Code Extraction Algorithm . 63
E Post-Processing Analysis and Reporting Algorithm 65

6

HIKOS - Highly Secure, Intelligent Software Copy-Protection

List of Figures

1 PC Shipments and Software Sales in 2010 [1] . 12
2 The general working principal for our software copy protection solution - HIKOS 32
3 HIKOS Workflow. The color in each action represent the responsible (person or

program): light grey is the developer, blue color is for the pre-processor and the
dark grey for the IDE [2] . 33

4 A simplified model of HIKOS . 34
5 HIKOS hardware concept: a Crypto CPU with Internal Security Controller 34
6 Software Architecture - HIKOS . 35
7 A simple representation of our model - the main definitions 35
8 HIKOS License Management Overview . 38
9 Attack Tree Model. The Arrows represent consecutive steps to be performed . . . 47

7

HIKOS - Highly Secure, Intelligent Software Copy-Protection

List of Tables

1 SafeNet’s Sentinel HASP HL [3] . 25
2 WIBU Codemeter - brief overview [3, 4, 5] . 25
3 KEYLOK Fortress . 25
4 Feitian’s ROCKEY6 Smart [6] . 26
5 Some of the keywords used for code-scanning and extraction, as defined for the

HIKOS framework . 40
6 Defense pattern catalog for HIKOS . 45
7 Attack patterns and respective steps . 46

9

HIKOS - Highly Secure, Intelligent Software Copy-Protection

2 Introduction

Living in an information age, it is noticable how much the computers are used and how important
they are for many of our everyday tasks. Software solutions exist for solving many problems
we encounter. Developing a specific software usually takes a lot of efforts and investment. The
written lines of source code have a high production value, but no real material value.

Unfortunately, they are easy to copy and the developers (vendors) search for ways to protect
this intellectual property from unauthorized (unpaid) use. Therefore, different licensing schemes
were proposed to put control in the software in order to deny or grant the use of software [7].

2.1 Topic covered by the project

To software vendors, Intellectual Property is more than just an asset in the traditional business
sense, but rather the product - it is the core business product and a main source of revenues
(income). Thus, the need to protect this intellectual property becomes crucial.

This project focuses on creating a mechanism which offers a better software protection by
using a hardware dongle. A dongle itself is only a hardware token. The term dongle is used for
example in combination with Wi-Fi as well. But this hardware can be used to protect software,
for example by reading special hardware-specific information.

The role of the dongle will be crucial during the execution of the software: carefully selected
parts of the software code will be execute in a trusted environment inside the dongle while the
rest will execute normally from the host system.

2.2 Keywords

Intellectual Property protection; copy protection; software protection; software licensing; soft-
ware piracy; dongle; code extraction; automated code extraction.

2.3 Justification, motivation and benefits

There is an ever-going battle between copy protection and software piracy when it comes to
applications as an intellectual property. While the vendors try to protect their products against
unauthorized use, pirates do the opposite by circumventing - also called cracking the underlying
security mechanisms.

Therefore, it seems impossible to create a security mechanism that would be able to resist
forever. A practical solution to this challenge is to create a security system that is not feasible to
attack. In the best case, the cost to circumvent the software protection should be more expens-
ive than the price of the software itself and the effort would be as high as recreating the software.

11

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Figure 1: PC Shipments and Software Sales in 2010 [1]

It is important for software vendors to protect their software and ensure that only their au-
thorized users can use it. This is especially true for vendors that produce expensive software
packages, where the necessity of protection is bigger, the pirate interest in cracking is higher and
the companies’ possibility to invest into a more costly solution is certainly better.

Software protection dongles, as one of the more secure alternatives, are being used for some
years now. Nevertheless, because of the simplicity and security models used, most of them were
broken after a time and the protection level they offer did not show to be satisfactory. Code
migration is the new technique, which is supposed to provide a higher level of security in this
aspect. Therefore, we aim at creating a new design for the dongle protected software, which
will use the code extraction techniques and provide a much higher level of binding (linkage)
between the dongle and the protected software. Some solutions that currently exist and claim to
provide code execution in their dongles seem to be too weak. Their claims for offering Intellectual
Property protection with existing hardware seem to be unsupported by their design.

2.4 Research questions

This project is an advancement in the state-of-the-art software copy protection, but because of
the broad topic, I will focus my research trying to answer the following questions:

• Is it possible to create a dongle software protection mechanism that will require at least as
much resources to circumvent it as it would to re-create the complete software package itself?

• What mechanism for such a security solution could be appropriate so that it would make it
impossible for an attacker to reconstruct the code contained in the dongle by analyzing the
communication between the dongle and the software?

12

HIKOS - Highly Secure, Intelligent Software Copy-Protection

• How to generate a code scanning framework with automatic self-extracting capabilities that
would be suitable to be used in any software package?

• What is the metrics and a suitable model for evaluating the security of this software protection
dongle?

2.5 The contribution

Traditionally, the dongle was aimed to serve in a sense similar to an authentication: if the soft-
ware verifies the presence of the dongle, than the software could be used, otherwise it would
stop its execution. The focus of this project is to extend the role of the dongle and use the dongle
to execute a part of the program.

The idea is to perform a cross-compilation step after the code development has been finalized,
which will allow the dongle to automatically select and extract parts of the algorithm (code) ,
where it will later be executed. The challenge is to create such a framework that will enable
developers to automatically select (carefully chosen) portions of code and execute these parts in
a trusted environment on a micro-processor inside the dongle.

A very important part of the work was to create such a framework, which will be able to scan
for the software code, automatically extract part of it and load it into the dongle whilst modifying
the code references in the software package at the same time.

The added security here consists of making it impossible for the software to be executed
without the code stored in the dongle. Consequently, if an attacker tries to analyze the software
by using any of the reverse-engineering techniques, he will fail since the code will never be fully
available in the host. Whenever the software would execute such code fragments, the dongle
will receive a request along with the necessary data, execute the function on the micro-processor
and return the output to the software. This allows only black-box attacks on the dongle, as the
attacker has no control over the trusted platform. It should be impossible to recreate these al-
gorithms, if they are vital for the software and unknown to the attacker.

My contribution in this project was choosing the methodology and implementing the auto-
mated code-extraction capabilities. In this sense, I worked in defining the framework and im-
plementing such a system, with the aim of being an easy-to-use and compatible with as many
platforms as possible. Also, creating a threat model for the security of our solution is part of my
job in this thesis.

13

HIKOS - Highly Secure, Intelligent Software Copy-Protection

3 Theoretical Background

Among the different software licensing models that exist today, we have to differentiate between
[8]:

Open Source / Free Software is a special software licensing model which does not prohibit
software copying, the user is able to download and change the source code. Therefore, the
Open Source / Free Software does not need to apply any protection, since it is meant to be
free.

Freeware is similar to the Free Software, but its source is not open and therefore it is normally
not possible to do changes. Same as the previous category, this software is not meant to be
copy-protected.

Shareware usually includes such software, which you can try for free, but with limitations:
Some software from this category can be used for free for a limited period only (the so-
called free-trial) and a license must be purchased to use it beyond this period. The other
type of Shareware contains software which can be used for an unlimited period of time,
but it does not contain the full functionalities, which can be used only after upgrading to
the full version - buying the respective license.

Node Locked License is a software license model which bounds a software to a specific device
(a node). The idea is so that the user pays for every unit (node) where the software is to be
used: one licensce, one unit. Such examples include Copy-Protected Games which you can
(normally) only play with their original CD/DVD, (High-Cost) Dongle-protected software,
and so on.

Floating License is an alternative to the Node Locked Licensing, since it allows for a central
management of different licenses for more machines. The idea is that you can buy a single
license for a software, which can be installed in a (limited) number of computers and can
be used at the same time. A central server in the network is normally used to manage this
type of licensing.

3.1 Copy Protection

The licensing models described above need to be enforced in practice. While the free software
needs no extra protection, the issue is different with non-free software. Because of its nature,
law-enforcement measures are usually not enough to prevent unauthorized copying and use of
non-free software. Therefore, technical solutions have been developed to prevent software piracy,
which can be cathegorized into two different solutions:

• software-based, or

• hardware-based

15

HIKOS - Highly Secure, Intelligent Software Copy-Protection

3.1.1 Software-based copy protection

Software-based solutions are the simplest form of software copy protection. As their name sug-
gests, they use software built-in functions to validate a certain license. They come in different
forms, but the most common software-based copy protection solutions use:

Serial numbers, where a user supplies an input (a serial-key), which is a random-looking se-
quence of characters, during the software installation or at the first software execution.
The serial key is generated by some mathematical algorithm, which is usually not as ran-
dom as they should. Furthermore, an algorithm is used to validate the user-supplied input
(the serial key). Therefore, breaking the serial-key generating algorithm or the validation
function will make this mechanism useless.

Online Activations use software built-in functions to generate an installation-id and a product
key via a hash-function [3]. The software uses the hardware attributes of the host system
where it gets installed the software (license) is locked to it.

3.1.2 Online versus Offline validation

Some software vendors use a different scenarion to protect their Intellectual Property from ab-
use. They require that the software communicates over the Internet with the validating server to
check for the presence of the license in the host when the program executes, periodically during
the program execution when the user goes online, or some even require that the user is always
online to continuously check for the license. Such examples can be typically found in some com-
puter games, which require a continuous internet connection while playing.

It should be noted that the above-mentioned (hardware- and software-based) copy-protection
methods can also be combined with the Internet-based copy protection to provide a higher degree
of protection.

3.1.3 Hardware Tokens (Dongles) for Copy Protection

Software comes in different types and targets different users. In cases when it contains innovative
algorithms which are meant to be kept secret, this is a special kind of Intellectual Property, this
needs to be protected.

Most of the commercial software products in the market today apply some sort of copy pro-
tection. There are many technologies available for this purpose and each of them has their own
implementation, security and use characteristics, but generally all of them fall into one of the two
main categories: local or remote validation [9]. The dongle-based software protection schemes
fall into the former category.

Hardware-based copy protection solutions come in different forms and implementations. The
main characteristics of this protection system is the use of a special piece of hardware, together
with the software functionalities, to validate the given installation. Depending on when the hard-
ware authentication is used, we can distunguish between two main types of hardware-based copy
protection systems [8]:

Copy protection based on passive dongles. This type of protection checks with the operating

16

HIKOS - Highly Secure, Intelligent Software Copy-Protection

system if the required hardware device is connected to the computer during the installation
or when the program starts.

Copy protection based on active dongles. Unlike the passive mode, this model actively checks
for the presence of the hardware (the dongle) to prevent software abuse. Our project fo-
cuses on this type of copy protection and it will be discussed in more detail in the following
chapter.

It is common for the hardware tokens to use the Universal Serial Bus (USB) port, but there are
also other solutions that can be implemented through the Line Printing Terminal (LPT), Express
Card, SD Card, PC Parallel port, Ethernet port and so on. Therefore, the term "dongle" can be
used to mean the device that uses any of the ports to connect to the computer [3].

3.2 Security issues about software-based copy protection

The above-mentioned methods for software licencing have shown to possess weak security fea-
tures, as they were broken sooner or later. As the attackers had access to the full software in
the host, protection by serial numbers was circumvented either by analyzing disassembling the
target program, disabling the functions that were used to connect to the validation servers or
generating valid-looking serial keys which the servers accepted as authentic [3]. Some tools,
such as SoftIce for Windows systems, can be used for this purpose. With this (and other similar
tools), one can generate the assembler code for the targeted software and other debugging pos-
sibilities. After the extraction of the validation algorithm, it can be bypasses or a key generator
can be implemented for that purpose [10].

Similar attacks can be performed on most of the software-based copy protection methods
described above. Therefore, a lot of efforts are being put on an alternative measure - the use of
hardware-based solutions - dongles.

3.3 Dongle-based protection security

Dongles are pieces are hardware that are used for validating a certain copy of a software. The
dongle is produced and shipped together with the software package by the software vendor, thus
adding to the degree of the control of the publisher over the specifics of the dongle. The security
in the developed mechanisms so far has relied on the verification of the dongle presence during
software execution. The software (which is installed in the computer) checks if the dongle is
present in the system after it loads in the memory in order to continue its execution [9, 11].
This is the simplest type of the dongles, but it may be circumveneted using different breaking
mechanisms.

Attackers have broken such systems by skipping the verification step. They have observed the
call to the dongle and the respective response using an always-true answer from an emulated
dongle [11, 12] are the most implemented techniques used to break such schemes. The main
weakness here is the simplicity of the operations performed in the dongle.

Other, more complex solutions to dongle-based protection systems include the possibility to
perform some operations inside the dongle. The software send a pair of input parameters to
the dongle and compares the returned result to the expected one [9]. Analyzing the calls to the

17

HIKOS - Highly Secure, Intelligent Software Copy-Protection

dongle and dongle’s response to the software, attackers have been able to break such systems.
Emulating dongles in software and making the software communicate with the emulated dongle,
which is capable of performing the same operations as the dongle, has been a successful attack on
such systems. Techniques used in this sense include reverse-engineering methods such as code
debugging, obfuscation and similar are typical examples of such attacks [12]. Anti-Debugging
[13] and anti-obfuscating techniques have been developed by software vendors, but it is only a
matter of time until they are reverse-engineered as well [9].

Other important sources of attacks which will be useful for me during my thesis include online
reverse-engineering forums with the newest attacks and counter-attacks, such as Collaborative
RCE Knowledge Library (http://www.woodmann.com) or The seekers’ Windrose (http://www.searchlores.org).

3.4 Cryptography

Current copy-protection dongles, besided the challenge-response protocol implemented, also em-
ploy cryptographic functionalities to provide another layer of security. Encryption is the process
used to transform information (the plaintext) into a form which makes it undreadable, except
for the person(s) who posses special knowledge to decrypt it. Normally, encryption is performed
using a certain encryption algorithm and a key, while decryption is the reverse process of gener-
ating plaintext from the cipher-text (text in encrypted mode) in order to make it readable again
[14].

3.4.1 Public-key vs. Private-Key Cryptography

Traditional cryptography used to work on the principle of a secret key, which the sender and
the receiver of an ecrypted message know and use [15]. The sender encrypts the message and
the receiver is then able to decrypt it using the same key. This method is known as private
key cryptography. This system works as long as the sender and the receiver are the only ones
who have knowledge about the key, but the challenge for this system is agreeing on the same
key to use for both parties, especially in cases when the two are far away and use electronic
communication means to exchange keys. During this exchange, an adversary can intercept the
exchanged keys and consequently, is able to read, modify and forge messages [16]. Therefore,
managing keys in this system is a challenge (weakness).

To overcome this challenge, Public-Key Cryptography was proposed as an alternative. Intro-
duced by Diffie and Hellman [17] in 1976, this method was found to be useful for two primary
mechanisms: privacy protection (encryption), but also for authentication (digital signatures). The
concept is based on the idea that each party in the system gets a pair of keys: a private key, which
is kept private from a user, and a public key, which is published and may be known to the other
parties. The need for both parties to share the secret key is elliminated, as all the communication
is performed on an message encrypted with a public key, while decryption can only take place if
the receiver knows the secret key.

3.4.2 One-way cryptographic functions

One-way cryptographic functions1 are a very useful tool in cryptography. A one-way hash func-
tion is defined as a function F, such that it satisfies the following criterions [18]:

1Also known as Manipulation Detection Codes, Fingerprints, Crypto Secure Checksums or One-Way Functions [18].

18

HIKOS - Highly Secure, Intelligent Software Copy-Protection

1. F can be applied to any argument of any size. F applied to more than one argument, F is
equivalent to F applied to the bit-wise concetation of its arguments.

2. F produces a fixed size output (measured in the number of bits).

3. Given function F and an argument x, it is easy to compute F(x).

4. Given F and a "suitably chosen" (random) x, it is computationally hard to find an

x ′ 6= x

such that
F(x) = F(x ′).

So, hash functions on a given input of any size produce an output of a fixed size (length, i.e.
56 bits). It is easy to compute the hash value of a given input, but knowing the reverse process
must be computationally infeasible: knowing the hash value of an argument, it is difficult to find
the original input. Randomization functions are used to encrypt the input value in such a way
that small changes in input produce big ("unpredictable") changes in the output. Therefore, these
functions can be used for Integrity Checks.

19

HIKOS - Highly Secure, Intelligent Software Copy-Protection

4 Related work

While the dongle-based solutions have been studied and used for this purpose before, a limited
amount of work has been made in the past in the exact scope as this project. A number of dongle-
based copy protection solutions are offered today in the market, but studies and experience has
shown that most of them fail to achieve their goals - they posses design or implementation
weaknesses which can be exploited.

An early work on this area is a PhD thesis from Kent [19], where he describes the different
security models and requirements for, what he calls, "externally supplied software", including the
type of software we are interested to protect. He mentions the concept of decentralization and
bureaus as agents which serve as an intermediary between the client and the software vendor.
In this case, he acknoledges the requirement for a trustworthy and accountable intermediary,
which will be used to properly manage and charge the customers. Also, the assumption is on
the effectiveness of the measures put in place by the operating system, which enable a decent
control over execution of the protected software, but protection from reading or writing over it.
Another concept brought by the author in his work is the mutual suspicion, where he describes
the two different situations: the hostile host and the hostile code.

Program Evolution is a concept proposed by Cohen in [20]. Aiming the protection of Oper-
ating Systems, he studies the basic attack points in software systems and suggests evolution as
a combination of different defensive techniques. Acknowledging the static nature of the tradi-
tional defenses employed, he suggests a dynamic approach. Keeping in mind Shannon’s theory
of secrecy[21], the author acknowledges the complexity level evolution for performing crypt-
analysis on a given target system. Therefore, his suggestion also aims at increasing the difficulty
level for breaking the protection mechanisms, taking into account the dynamic nature of attacks.

Providing a selective survey on the software protection approaches, van Oorschot in [22]
reviews the literature and brings a number of defensive approaches from software tamper resist-
ance concepts, code obfuscation techniques, software diversity to white-box cryptography.

Gosler in [23] also provides a survey of software copy protection techniques, including dongles.
The author brings up different methods for protecting against software analysis, such as anti-
debugging techniques, use of checksums and code encryption. In any case, he acknowledges
the need to balance the techniques for software analysis and modification resistance. Addition-
ally, Gosler suggests renewing (updating) the software at (regular) periods before the interval
required by an adversary to break it, a technique known as software cycles.

Further, Herzberg and Pinter [24] propose CPU built-in cryptographic capabilities as another
method of protecting unauthorized software copying. Of course, this requirement is more feasible
today than it was in the 80s, when they made this proposal.

A paper by Kingpin [25] presents a set of successful attacks on USB hardware tokens, which
allow access to user’s private data, without having the legitimate credentials. Considering the
academic papers published in the field, the author presents mechanical, electrial and software

21

HIKOS - Highly Secure, Intelligent Software Copy-Protection

attacks on USB tokens and gives some recommendations about how to increase the security in
such areas.

A more thorough study of the attacks on microcontrollers and smartcards is brought by
Skorobogatov’s technical report in [26]. His PhD thesis brings the list of non-invasive attacks,
such as power analysis and glitching, and invasive attacks, such as reverse engineering and mi-
croprobing. Additionaly, as the title of the report suggests, he focuses on a new class of attacks,
which he calls "semi-invasive" attacks. These attacks stand in between the previous two: like in-
vasive attacks, these attacks require chip depackaging, but they do not require electrical contact
to internal chip lines, thus leaving the passivation layer intact. The author claims that this class
of attacks represents a bigger threat to hardware security than the other two, as they can be as
effective as invasive attacks, but cost as low as non-invasive ones. In the end, he also presents
some defence technologies which can (should) be used to protect from the identified attacks.

On the other hand, (Jozwiak et al., 2007) present in [27, 28] two studies where they bring
an analysis of the efficiency of the software protection devices with memory and time meters.
They also show that attacks on such systems are feasible and an attack is presented for each
type(HASP envelope for the former, and ATMega 128 MCU on the latter). They bring up the
importance of binding the software and the hardware key. One of their central contributions in
this area is their claim that the strength of the pretection offered by hardware keys is directly
linked to the dependency level between the protected software and the key: a protected software
should absolutely and completely depend upon the presence of the dongle.

Additionally, the Chair for Embedded Security at Ruhr-University Bochum together with Es-
crypt has done some internal studies for our project. I found it useful to read the Bachelor thesis
of Pöpper [29], where the author analyzes the security of some of the current dongle solutions
for software protection. Similarly, there were two seminar papers in similar regard. The first one
was from (Heggeman et al.) in [3] and dealt with protection of software from illegal copying
and discussing the security of software with regard to preventing multiple instances of software
running at the same time, binding them to a specific target, such as dongles, CD/DVD media
and other hardware tokens. The othe seminar paper from Bornhöfft [8] presents state-of-the-art
hardware methods for software licensing, including dongle protected solutions and takes a closer
look at those with code outsourcing (migration).

22

HIKOS - Highly Secure, Intelligent Software Copy-Protection

5 State of the Art

A dongle is a small device which is externally connected to a host (computer) in order to provide
protection against illegal software use. The concept of using dongles for software protection is
not new and it has gained more attention during the last three decades, but as with any other
solution, it was just a matter of time until they got broken and their protection useless.

Initially, dongles were simple and "dumb", in the sense that the software they protected was
merely checking the dongle presence 1 to validate the license. Needless to say, they were easily
emulated and therefore, the software could be used without a license. Similarly were the dongles
with specific serial numbers broken. Installing a virtual device with the characteristics of the
original dongle performed perfectly as a crack.

More intelligent dongles were used later, which possess more functionalities and could also
store the license in them, which could then be used for one specific application or for more
applications from the same vendor. Their functionalities also differed depending on whether they
provided host-based or network-based protection, offering the possibility to use a single dongle
connected to a central network server, which can authenticate licenses for several hosts on the
network. Cryptographic features that were implemented on these dongles provide a higher level
of security.

5.1 Cryptographic features

Most of the dongles in use today are capable of implementing cryptographic functions. One could
argue if these dongles can be considered as another group of dongles with security features (so-
called Crypto-Dongles [3]) or as an improvement to the group of intelligent dongles with security
capabilities. In any case, the security level here highly depends on the cryptographic capabilities,
the hardware design and the innovation level of the proposed copy-protection solution.

The simplest form of the dongles with cryptographic features works based on a challenge-
response protocol. This can be implemented either as a symmetric or assymetric encryption pro-
tocol, but because of the faster execution, most of the dongles use block (symmetric) ciphers,
such as AES. To protect the software, some dongles encrypt the communication data that are
transferred between the host and the dongle (through an API) or by encrypting important data
which are stored in the dongle, such as the license of the product.

Because of the system design, the symmetric key systems in this case are easier to attack
since the key is stored both in the host system (where the software resides) and in the dongle.
A successful attacker can gain access to either of those keys and the security measures of the
dongle will be broken.

1By checking if it is connected to the computer

23

HIKOS - Highly Secure, Intelligent Software Copy-Protection

5.2 Code Outsourcing

Another feature which is now implemented in some dongles is the ability to store and execute
(parts of) programs in the dongle. This way, a part of the software is outsourced to the dongle,
which executes the selected part of the software. In this case, the full code is not included in the
host, making it impossible for an attacker to fully reverse engineer it. The outsourced algorithms
that are to be executed on the dongle are encrypted for the dongle, which is the only party
capable of decrypting and executing it. In theory, the dongle is more trusted than the host and
the more algorithms are stored in the dongle, the better security level it provides. In practice, it
is difficult to implement a large number of algorithms in the dongle. This is due to the efforts
to produce a cheaper price, which needs to be implemented on a simpler hardware. Therefore,
there is a trade-off between security and execution speed.

This type of dongles are known to provide a higher level of protection as long as the dongle
and the material stored in it is kept secure. Therefore, the key material used for cryptographic
operations needs to be kept secure, the firmware authentic and the algorithms secret. If the
communication between the host and the dongle is encrypted, this will make the design even
more secure.

5.3 State-of-the-Art Dongle Solutions for Software Copy Protection

A number of dongle-based software copy protection solutions available in the market today and
each competes with each other claiming higher level of security, performance and adoptability.
The ones that are more important and interesting were:

• SecuTech’s Unikey Pro,

• SafeNet’s Sentinel HASP HL,

• KEYLOK Fortress,

• WIBU Codemeter,

• Feitian’s ROCKEY 6 SMART PLUS, and

• Senselock’s EL Series.

5.3.1 Unikey Pro

Unikey Pro is a solution developed by SecuTech Solution Inc., a cadanian-based company [30,
3, 31] and it provides a series of UniKey dongles. The UniKey Pro is the one offering the
highest protection level, offering network functionalities and is also equipped with real-time
clock, password-protected and/or encrypted flash drive.

5.3.2 SafeNet Sentinel HASP HL

Previously known as Aladdin solutions, the Sentinel HASP dongle is now offered by SafeNet, who
acquired the former company in 2009. [3, 32, 30]. It claims to offer an automatic file wrapper
through HASP Envelope, which provides with encryption, code obfuscation and system-level
anti-debugging technology. It supports a number of programming languages (.NET, Java and C
for MSVC 8) and can run in Windows, Mac and Linux [32].

24

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Hardware Unknown IC and an EEPROM chip, Atmel 24cl28w
User Memory 6 KB
Cryptography AES (128 bit), RSA-DSA

Price Around 50 EUR per piece

Table 1: SafeNet’s Sentinel HASP HL [3]

5.3.3 WIBU Codemeter

WIBU-SYSTEMS offers a number of software and hardware based solutions for applications or
documents protection [3, 4]. For software protection, the best solution offered is the Codemeter,
which employs a number of protection mechanisms and encryption schemes, as presented in
table 5.3.3.

Hardware Samsung Smartchip - S3 Series
User Memory 384 KB

Cryptographic scheme(s) AES (128 bit), TDES, SHA-256, RSA (1024 bit), ECC (224 bit)
Price 56,90 EUR per dongle (volume of 100 pieces)

Table 2: WIBU Codemeter - brief overview [3, 4, 5]

5.3.4 KEYLOK Fortress

KEYLOK, an american-based company, offers three software copy protection solutions based on
dongles: KEYLOK II, Fortress and S-LOK. The one that is of interest for us is the Fortress solu-
tion, which is a Windows USB only that is capable of migrating functions and executing them in
the dongle [33]. It provides an extended memory of 5,120 bytes, expandable to 55,000 bytes,
which can be used for licensing options, date-based licensing and counters. Also, it provides an

Hardware Unknown Smartcard chip
User Memory 50 KB
Cryptography Proprietary Encryption Algorithm

Price 28,25 dollars per piece (for a volume of 100-249 pieces)

Table 3: KEYLOK Fortress

Anti-Debugging Utility (PPMON.EXE), which is supposed to prevent debugging of the software.
It provides and API for communication between the host and vendors claim to have a secure
memory, but offer no further details about the type of security measures implemented. It comes
with a manual and a set of tools which are meant to make the implementation easier. It uses pro-
prietary encryption algorithm, which is not made public. Similarly, hardware implementationd
details are also kept secret.

5.3.5 Feitian’s ROCKEY Series

Dedicated to smart card and chip-based security technologies, Feitian has designed a series of
hardware solutions for software protection named ROCKEY. One of special interest for us is
ROCKEY6 Smart, which offers a higher level of security and code migration capabilities. It is a 32-
bit smart card based dongle and it claims to be cross-platform. The dongle comes equipped with

25

HIKOS - Highly Secure, Intelligent Software Copy-Protection

a smart-card, which runs on a Card Operating System with Proprietary IP - FEITIAN COS [6].
ROCKEY7.NET is the next series from Feitian, but it is limited to supporting .NET applications.

Hardware Unknown implementation
User Memory 70 KB
Cryptography RSA, DES

Table 4: Feitian’s ROCKEY6 Smart [6]

5.3.6 SenseLock’s EL Series

Senselock also offers a dongle protection for software with code migration and the vendor also
provides a patent about it [8], describing the detailed processes and operating workflow. The
patent describes both the workflow of the dongle operating with the protected code imported
and the other one mentions some improvements to enhance the performance. Here, the model
takes into consideration the limited execution speed in the dongle, they propose a model where
the software continues to execute until the current thread has finished (the dongle has returned
the computed results), which therefore requires a CPU-equipped dongle.

Senselock’s EL Stf contains an NXP (Philips) 16 bit chip, which is certified with an EAL 5+2

and contains a user memory of 8, 16 or 32 KB.

2Evaluation Assurance Level is split into levels from 1-7.

26

HIKOS - Highly Secure, Intelligent Software Copy-Protection

6 Methodology and HIKOS

The project I got engaged in had already started last year (2010) and it is ongoing for one more
year. Therefore, there was a lot of useful information I could use and previous studies the project
team had made. This made it easier for me to have a starting ground on one hand, but I did
not want to limit myself only into this, so I also made paid a certain amount of time to gather
information about the available dongle copy-protection solutions on my own. Then, it was easier
to understand which direction my task should be focused.

My work for this project I can split in two parts. In the first one, I spent most of the time
analyzing the project requirements and getting to know the tools to be used; the second step was
defining and implementing a code pre-processing framework; and finally, presenting a security
model for the project I was involved in.

The framework I creates is supposed to be platform independent and therefore we decided
to implement it in ANSI C using only standard platform-independent commands and functions.
This was a smart decision, but since I was not very familiar with C so much, it took some weeks
of preparation to start the real implementation. Later, as requirements got more and more de-
tailed, I realized that in some points ANSI C did not define any available functions, so I had to
go for platform-dependent solutions. This made some parts of the framework be possible to only
execute in certain operating systems. Also, since the framework was supposed to offer maximum
flexibility, it should not be bound to a certain language, but support any programming language
instead, this made an extra task for defining the right metrics for the syntax analysis. Testing the
framework in different platforms was also part of this major step, which took most of the time
for the whole thesis timeline.

The last step, security analysis was carried out during the lifetime of the project and a part
of it in the end. The team had already done some work on analyzing the security of some avail-
able solutions, so I could use some of their previous work. Studying our solution was an extra
work I had to carry out and especially since I did not take part in the hardware implementation,
I needed continuous feedback from the working team, which was quite helpful. Defining the
threat model and attack trees for our solution concludes the work on this thesis.

6.1 Resources and Parties

The project was implemented by two major partners:

• escrypt, an international private security solutions provider located in Bochum and their
primary focus was in developing the hardware prototype with the agreed security features,

27

HIKOS - Highly Secure, Intelligent Software Copy-Protection

and

• emsec - the Chair for Embedded Security at Ruhr-University Bochum, where I was engaged and
where my working place was located.

The team members (including me) had access to the common SVN repository, which housed
a lot of useful information about the project, the previous studies (seminar works, bachelor and
master thesis’ on specific parts of the project) and other relevant material, which was very helpful
to get into the topic more quickly.

On the other hand, the Chair offered a personal computer and the while computers and other
IT facilities I used at emsec, the Chair for Embedded Security. I had my personal computer set
up and ready to use with both Ubuntu and Windows installed and I used Eclipse CDT for the
development environment.

Also, I used the library resources with printed books and online materials from both the Gjøvik
University College and the Ruhr University in Bochum.

The project required decent knowledge in what we called "Basic Knowledge" and some Special
Knowledge was to be acquired during the project runtime. For the Basic knowledge part, the
project required

• knowledge and use of ANSI C without the use of any Operating System specific functions or
libraries;

• knowledge in Parser Programming / Regular Expressions; and

• Cross-Compilation and Code Execution on Embedded Devices

• Threat Modelling and Attack Trees

• Dongles and hardware implementations

• Cryptography and secrecy theories

Part of the basic knowledge required for the project is the knowledge about Intellectual Prop-
erty Protection, such as

• Basic Problems with Software Protection, such as reverse engineering approaches, as men-
tioned above.

• Hardware Dongles as IP Protection and the difference between Protection through hardware
and software.

Special Knowledge requirements for this project include:

• Semi-Automated Code Extraction

• Problems with automated code extraction, such as ensuring all connected nodes/data is
extracted, analyzing data dependencies, preventing side-effects, and so on.

• Problems with automated identification of "interesting" code parts for extraction (effi-
ciency, security gain, memory consumption, code/data size)

28

HIKOS - Highly Secure, Intelligent Software Copy-Protection

6.2 Products

As a result of my work, I have defined a framework for code extraction, analysis and validation,
as well as performed a threat model for the HIKOS. The framework definitions and the imple-
mentation is protected by a Non-Disclosure Agreement, as a limitation from our partner - emsec,
but the main functionalities and workflow are presented later in the report. The threat model
has been developed and is presented in the chapter of security analysis.

The result of the development for the first part is a tool that can be used in any platform, but
I have tested in only in Windows, Linux and Mac, with the requirement that the machine offersa
gcc support. The tool can be used to scan, extract and analyze a given source code.

6.3 Development Tools

I used the GCC toolchain for my project and I was working under Ubuntu using Eclipse CDT
for C/C++ support. In Windows, I tested it in Windows 7 with mingw and Eclipse CDT. The
program code was implemented in ANSI C, while for presenting the threat model, I used a tool
called AttackTree+, which is a proprietary software, but I was able to get a license for a short
period.

29

HIKOS - Highly Secure, Intelligent Software Copy-Protection

7 HIKOS - The Architecture

Our solution falls into the category of Code-Outsourcing solutions with external hardware -
dongles. The main intention is to offer a solution which will offer smart protection of the Intel-
lectual Property which will be highly secure. The innovation consists on the ability to implement
in any type of software project and run in any platform; use highly-secure design and highly-
secure hardware to provide a safe execution environment; and provide a smart code-extraction
and analysis framework to help in the process of code outsourcing.

HIKOS1 (High Security, Intelligent Software Copy-Protection) is a project (to be fully) imple-
mented by the two partners, emsec and escrypt, in a period of two years. The main aim of our
solution is to offer protection for single instances of programs with innovative algorithms rather
than large scale licence management systems. This comes because of our primary interest to
protect the intellectual property - the algorithms and the implementation details that are meant
to be kept secret. Therefore, our solution to achieving this was by extracting (carefully selected)
parts of the program and execute them in a higly secure environment - in our dongle. To help
developers for a simpler and quicker extraction procedure, we provide a framework which will
enable a semi-automatic code extraction [34].

Following is a description of the general architecture, the general concept and a workflow of
HIKOS.

7.1 Security Concept

The main protection target of our solution are single instances of programs with innovative
algorithms. Thus, the focus is on protection the intellectual property - algorithms and imple-
mentation details - by making the application depend on the dongle. Keeping these algorithms
secret is made possible by storing and decrypting them in the dongle, where the secret keys are
securely stored, which is the basic idea of our solution. If the algorithms we are protecting are
made public, then it is possible for an attacker to reconstruct it and thus this solution will not
work. Therefore, the algorithms that we store in the dongle must be secret. Our solution offers
a model where an attacker will not be able to have the full software available as long as the
extracted parts are crucial and non-trivial.

To have a secure execution, we offer a dongle with high security, which protects both the
(parts of the) software and data with high security requirements, such as encryption/decryption
keys, hash values and so on.

To protect the software, several (critical) algorithms from the source code are extracted.
The extracted functions must be (ANSI-) C code, because we will cross-compile each extracted

function for the dongle architecture. Calls to those functions are replaced by API calls to dynamic
libraries. We also provide a solution which handles the communication between the software and
the dongle, send/receive parameters and process returned values.

1from German: Hochsicherer intelligenter Kopierschutz für Software.

31

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Figure 2: The general working principal for our software copy protection solution - HIKOS

Also, to check for a valid license, a licence generator is used, which encrypts and signs the
binary for the specific device.

Following, we will describe our solution based on the description made by the project team
in [2, 35, 34]. Because these documents are not meant to be public, I will skip the details.

7.2 Design Workflow

HIKOS suite comes with three main tools: a Preprocessor, the Runtime Library and the License
Generator. The following description is compatible with the current version of the HIKOS docu-
mentation [2, 35, 34].

The Preprocessor is part of the workflow and it can be integrated into most of the IDEs auto-
matically by using pre- and post-processing project settings. Other than that, it can also be ex-
ecuted as an external tool and it scans the target source code for certain parts of the code. When
the "interesting" blocks of the code are found, they are automatically transferred to the dongle
(the extraction phase) and the same blocks of code are replaced by calls to the (respective) HIKOS
library and they are compiled in the dongle as shared libraries. More on the pre-processor will
follow in the next chapter.

The other tool, the Runtime Library, is only responsible for handling the communication
between the software and the dongle. It checks if the dongle is present before any commu-
nication takes place between the two. This does not add to the security of HIKOS, but it is used
for exception handling. When the dongle is connected to the computer and the program execu-
tion reaches a statement which calls a function from the dongle, a check is performed to see if
the dongle contains that function.

32

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Figure 3: HIKOS Workflow. The color in each action represent the responsible (person or program): light
grey is the developer, blue color is for the pre-processor and the dark grey for the IDE [2]

33

HIKOS - Highly Secure, Intelligent Software Copy-Protection

The extracted functions are handled separately: they are first embedded in the framework
and then analyzed by the pre-processor. In cases of errors or uncomplete extracted code, the pre-
processor gives out warnings and error messages with the details. After a succesful extraction, a
summary of the extraction process is shown to the user.

When the program finishes, it calls a free function, which releases the memory allocated for
the application on the dongle, as well as the license reserved for the program. The same function
can be also called automatically after a certain period of time when the program is not used.
However, the exact period has yet to be decided.

7.3 Hardware Architecture

Our solution runs on the assumption that the remote execution environment is kept secure.
Therefore, a combination of high-security hardware components has been studied and as many
security features have been implemented in hardware, I will briefly describe them.

A simplified model describing the concept of communication between a host system and the
dongle is provided in figure 4

Figure 4: A simplified model of HIKOS

Among the security requirements for the dongle were a minimum of 128 MB flash memory
for the application and the possibility to be used as a random number generator. Therefore, we
used an ARM 11 processor and an internal security monitor, including a secure internal RAM
memory. The microprocessor interacts with the externally connected memory in the dongle via a
bus system, which is also used to communicate with the smart card, as shown in figure 5.

Figure 5: HIKOS hardware concept: a Crypto CPU with Internal Security Controller

This was the initial concept, but because of the unavailability of some components, the current
prototype is implemented using a Cortex A8 microprocessor and the smart card is a J-COP card,

34

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Figure 6: Software Architecture - HIKOS

Figure 7: A simple representation of our model - the main definitions

which is certified with EAL 5+.

7.4 Software Architecture

7.4.1 Definitions

In this thesis, the following definitions will be used: Host PC represents the end user system, while
the protected software is called client software. The client software is executed in the HIKOS
dongle and interacts with it via the hardware interface implemented with USB and Ethernet
connection. The Dongle Firmware represents the operating system with special programs installed
in the Dongle.

7.4.2 Firmware

The firmware in HIKOS contains a Linux operating system and several software modules, which
are used to receive and process information with the software on the host PC, as well as some
maintainance tools.

7.4.3 Software Protection Interface

A HIKOS daemon is mapped to different hardware interfaces in order to communicate with the
protected application on the host. When the daemon receives a function call request, the message
will specify program call request together with the program ID. The daemon then checks if the
requested program code is residing on the memory and is available for execution. If the program
is not in the memory, the daemon send a message to the host, requesting transmission of the

35

HIKOS - Highly Secure, Intelligent Software Copy-Protection

(packages of) code and dismissing the function call request. Otherwise, if the requested function
is already available on the dongle memory, the service will validate the license. If this executes
with a positive result, the daemon requests data transmission from the host. It then requests
from the smart card to decrypt the functions and uses the memory to execute the program with
the received parameters from the host. In the last step, either the function returns the processed
value or the daemon returns an error code. This concludes a step of a normal communication
between the host and the dongle.

To protect from buffer overflows, I have implemented a run-time check which is supposed
to protect from such errors. This will be described in the next chapter when I describe the code
analysis and extraction process.

7.4.4 HIKOS API

An Application Programming Interface has been designed to enable two very important processes
in our model: the configuration of the dongle in terms of granting or revoking licenses, and the
interaction between the dongle and the client software. This API is distributed as a Dynamic Link
Library (DLL) on Windows platforms or as a Shared Object (SO) on Linux platforms.

7.4.5 Setup/Configuration

The Dongle Configuration Tool is used to set up the dongle using HIKOS API calls. The first step
for such a configuration is the search for the dongle. After "finding" the dongle, the configuration
tool checks if it is a valid dongle, by checking the current dongle against the enumerated dongles.
This is done through the Vendor ID on the dongle. If the dongle does not contain a Vendor ID, the
tool imports the Vendor ID and the corresponding Vendor Key in the dongle. When the dongle
has the Vendor ID present, the License Keys are checked. Depending on what the desired task is,
the vendor can import new keys or revoke existing keys on the dongle.

In the case of a new license purchase, the tool will export a unique Dongle ID, which is used
to bind a specific license to a specific dongle.

7.5 Security Architecture

The license scheme uses symmetric key cryptography, and due to legacy reasons, since older
JCOP cards did not support SHA-256, it uses SHA-1 hash for integrity verification. AES is used
to encrypt the IP packages exchanged between the host and the dongle, while RSA is used to
import the license verification keys and vendor keys, such as AES keys. The initial process starts
by the vendor encrypting the extracted code and the customer gets them encrypted on the host.

The license keys are stored in a highly secure storage - the JCOP card, which has a capacity
of 80 KB, and they never leave the smart card. For the moment, AES product keys are not stored
in the JCOP card, but they are kept in the Cortex A8 (microprocessor) as we are trying to offer a
higher performance level (the smart card will probably not provide the desired throughput).

The dongle comes equiped with a private RSA key and a signature of the public key (certific-
ate), which is signed by the dongle vendor (escrypt). The customer buying the dongle can then
export the certificate and encrypt his product keys with it. Therefore, the dongle is the only party
able to extract the keys.

The current flash does not provide memory with security features, so the product keys are

36

HIKOS - Highly Secure, Intelligent Software Copy-Protection

kept obfuscated in flash.
The communication between the processor and the smart card is encrypted, but the hardware

packaging is done on a package-on-package model. So, the microprocessor, the RAM memory and
the Flash are stacked over each other, protected by another special closed casing. This is meant
to prevent an attacker from opening the case and observing the communication from the bus
connecting those three.

7.5.1 Secure Boot

The final dongle will contain a security chip2, which is a fast ARM CPU, but contains internal
key storage and a security controller to perform hardware Triple DES. This controller contains
eFuses, which are one time programmable and will store the Triple DES key.

Without a secure boot process, an attacker could easily change the firmware in the dongle and
then bypass any security checks in the dongle. The other security measures in the dongle would
not need to be executed and therefore the security measures in our dongle would be useless.

To protect from such an attack, we use a process we call Secure Boot, during which the (highly-
secure) chip will validate the firmware. In our model we sign the firmware by a 2048-bit RSA
key, which is kept anywhere in the dongle, while the hash of the public key is safely stored in
e-Fuses. The internal security control of the security chip will validate the authenticity of the
public key (by checking the hash value in the e-Fuses, which is a SHA256 function) and validate
the whole firmware. The firmware is then able to use the Triple DES engine to decrypt the AES
key for communication with the smart-card and use it for the license validation request.

The security of e-Fuses consists on their characteristics of not being re-writable. Once set,
they cannot be altered. In the case of 3TDES key, it can also not be read, except just used by the
internal hardware to encrypt or decrypt messages.

License Management for the HIKOS project has not been completely finalized, but a general
concept has been create and it has been presented in figure 8.

2Due to the NDA I signed with escrypt, I cannot specify the exact model of the chip.

37

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Figure 8: HIKOS License Management Overview

38

HIKOS - Highly Secure, Intelligent Software Copy-Protection

8 Code Pre-processing, Analysis and Extraction

As shown in figure 3, some important steps include Code Analysis and Extraction. I defined the
framework and developed it as an independent tool to be integrated with the HIKOS framework.

This task has been implemented as a semi-automated process, during which (a part of) the
code is transferred from the source to the dongle. The processo starts by the developer marking
the parts of the code that should be extracted and our application takes care of the rest. As a
process, it is performed in the following consecutive steps:

Scanning - during this step, the Code Extractor scans the given path recursively searching for the
source files. Every line of the source files is scanned for the special keywords, which define
the positions where the extraction should start or end. Since the source can be written in
any language, the Extractor needs to know what symbol(s) are used by the language to
define block symbols. This is important to avoid compilation errors after the code has been
transferred to the dongle in the cases when the software is written in other language than
C.

Code Extraction is the step when the actual extraction process takes place. Code that is meant
to be extracted is moved from the source path to the destination into a single file until the
extraction process finishes.

Post-Extract Analysis and Reporting - Assuming that the two previous steps have successfully
completed, the framework performs an additional step to check for code validity and un-
resolved dependencies, as well as "wrap" the imported functions and package them into
libraries.

8.1 Source scanning

The first step towards extracting the code from a given source is scanning. When the CodeEx-
tractor is initialized, it receives a source path, where the project code is located. Here, we have
to differentiate between two types of scans performed:

(Recursive) Directory Scan is the process of scanning the given directory and all its subdirect-
ories for source files. This is the first level of scanning.

(Source) File Scan consists of steps to read and do the necessary computations for the with the
source files. Once a regular source file is found, the File Scanning begins. During this step,
the file is read line by line and the application looks for specific (pre-defined) keywords in
it. Such keywords include, for example, the keywords for language definitions, language
specific symbols, commands for starting/stopping extraction, starting/stopping deletion
and so on. The actual commands as used by the framework are shown in table 5.

39

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Keyword Description
@hikos_settings Signals that the original language definitions will follow in this line.

@language Defines the source language, in which the original code has been written.
@block_comment Defines the block comment symbols, as used by the specified source language.

@method The method definitions are expected to follow after this keyword.
@param Following this keyword, the method parameters

@extract_start Extraction of the code should start after this line
@extract_end Code extraction should stop after this line.

@delete_start Remove the code after this line.
@delete_end Stop removing the code after this line.

Table 5: Some of the keywords used for code-scanning and extraction, as defined for the HIKOS framework

It is important to point out the reasons for choosing such a step-by-step methodology rather
than perform everything at a single step. Of course, it could be possible to start extracting from
the source code as soon as the scanner matches the extract_start command, but due to pos-
sible errors or missing configurations in the source file, this could result inefficient. Therefore, I
found it smarter to scan the whole file first, "memorize interesting" code segments and validate
the source file configuration to make sure everything is safe to run.

As mentioned earlier, it is the developer’s responsibility to properly mark the source code with
the special keywords, by which the application initializes the necessary values. As the source
code can be written in any language, we need to make sure that we know how the language
defines comment symbols, functions and parameters, and so on. Also, we scan the whole file
to make sure that the number of extract_start and extract_end commands is following a
consecutive flow and matches each other respectively. The same is true for the delete_start and
delete_end commands. If we find inconsistencies, then something might have gone wrong or the
developer might have forgotten to properly mark the source code. In that case, the extraction is
not executed, but the developer is notified about the errors instead. This is all part of a validation
function, which makes sure that all the necessary values have been initialized during this phase
and that we are ready to continue with the next step - Code Extraction.

This procedure is recursive in the sense that every directory and subdirectory at the given
path will be scanned and the source code analysis will be performed for every source file found.

8.2 Code Extraction

The process of extracting the code from the source is performed upon a successful execution of
the previous steps, namely the scanning and validation of the source file. This is the key process
and perhaps one of the main aims of the whole tool, but not necessarily the most complicated
one. The previous step has already memorized the lines where we are supposed to start extraction
from, so in this step we read the given file once again line by line and once we reach the marked
positions for extracting code, we copy those lines into an output file (in the previously supplied
directory path) until we reach the command for stopping the extraction. This is performed for any
extract_start, extract_end that were encountered. Similarly, for the parts of code which are
marked for deletion, we merely output the complete file without those lines into another output

40

HIKOS - Highly Secure, Intelligent Software Copy-Protection

file, close and delete the current file and rename the output file to the original source file name.

8.3 Post-Extraction Analysis and Reporting

After the whole process of extraction has been successfully performed and assuming that the ex-
tracted code is stored in a single output file at the given path, we perform a post-extract analysis.
During this step, we use different techniques and tools to analyze the different characteristics of
the extracted code, apply some protection measures and split the extracted code into libraries.

The analysis we make here is based on the complete set of extracted functions and for every
function individually. One of the issues we have to take care is making sure that we offer a good
performance for the extracted functions. Keeping in mind that these funcitons will be executed
on the dongle, we have to provide some sort of metrics for measuring the complexity of the
extracted code. Therefore, we apply our knowledge and use existing tools to calculate this. As
a first step, we generate the assembly code for every extracted function. This way, we have
an approximation of how many instructions of assembly code will be required to perform the
operations in them. We used GCC compiler options to generate and save the compiler output and
then created a parser which will scan the output. This way, we could approximate the number of
assembly instructions each function will generate.

We all know about the advantages of using loops in a programming language. But, sometimes
we have to take care of the maximum and average number of steps a certain loop is executed
at every function call. This is especially important when we have to deal with nested loops.
Therefore, we also check the extracted functions for such computations. Again, GCC was shown
to be very helpful in this case. It performs code optimizations during every compilation. We can
save that information into a separate file, which we can generate using GCC. Again, another tool
for parsing the contents of this file had to be written. This way, we are able to approximate the
number of iterations in the loops and calculate loop depths (nested loops).

8.3.1 Code Packaging

Because the extracted code can occupy large memory blocks and considering the memory limit-
ations in the dongle, we agreed that we must protect the memory from overloading. Therefore,
our solution was to separate the extracted functions into different libraries and each of the lib-
raries can be loaded separately in the memory and stored there as long as those functions are
required or until the dongle memory get exhausted and we need to replace some library with
another one. There were different options available for this, but trying to figure out the one
that would perform more efficiently and require less load/unload operations to/from memory
required careful analysis. We call this a packaging problem.

The first thing we thought of was defining an upper bound for the size of a single library.
Measured in the number of bytes, we could assign a fixed value, up to which we could add
functions. The same procedure could be applied to the rest of the libraries, until we reach the
end of the code. This is similar to the Knapsack problem, where one looks for the most efficient
solution to pack the heaviest things first unti the knapsack is full.

Other techniques were also studied, but we finally came to the conclusion that we need to
define smarter metrics for assigning a function to a certain library. To avoid loading and un-

41

HIKOS - Highly Secure, Intelligent Software Copy-Protection

loading the libraries from the memory too many times, we figured out that it would be smarter
to pack inter-dependent libraries together. This way, functions calling other functions could be
grouped together into a single library. To achieve this goal, we tried different alternatives to im-
plement this, but finally we realized that we can GCC does some pre-processing and dependency
check during the compilation of the source files. Therefore, we were able to save the compiler
output and analyze it in a seperate file. This way, we could parse the file contents and use the
necessary information.

8.4 Wrapping Extracted Functions - Overflow Protection

During the scanning phase, we collect a lot of information which will be used in the later stages.
For example, one of such cases is the function specifications. We use this information to provide
some measures for protecting from runtime exceptions or buffer overflows from an unfiltered
input. Since every function will be called by some parameters, we thought of developing a meas-
ure to check the supplied parameters. For this purpose, we require that the developer defines in
advance and clearly marks in the source code every parameter type and length. This is especially
important when dealing with strings (char * in C). During the runtime, we check if the length
of the supplied parameters matched the length of the defined parameters in the source file. In
cases of inconsistencies, the execution will stop and the error flags will be raised accordingly to
be returned to the host.

42

HIKOS - Highly Secure, Intelligent Software Copy-Protection

9 Security

9.1 Evaluation Criteria

From a security point of view, a suitable concept is the one of protected subsystems, introduced
as a security requirement by Kent in [19]. It serves as a model for protecting both host-based
and distributed software, but our focus is on the former. This model is equivalent to our concept,
requiring a higher level of difficulty for an attacker to extract special part(s) of the software (the
subsystem). A subsystem is defined by Schroeder [36] as a "collection of programs and databases
that is encapsulated so that other executing programs can invoke only certain component pro-
grams within the protected subsystem, but are prevented from reading or writing component
programs or databases, and are prevented frm disrupting the intended operation of the com-
ponent programs". Such a system is intended to detect modifications and disruptions by physical
attacks, rather than preventing them.

Kent [19] also defines some additional criteria, such as:

Decentralization This criterion requires that the protection mechanisms must be decentralized
in order to gain from the advantages it offers from its centralized counterpart.

Effectiveness To meet the security requirements over a broad spectrum of attacks, the protection
mechanisms must provide a unified approach. Based on an anticipated threat environment,
the protection mechanism should change only its parameters, rather than the system itself.

Generality/Flexibility A decent protection mechanism should be compatible with a wide range
of applications, systems and equipment, rather than requiring to rely on a certain techno-
logy or equipment, which the system should be depenendent on.

Low Cost A cost-benefit analysis should result positive for the use of the protection mechanism:
the cost of using the protection should be lower than the cost of losses caused by not using
it.

Good Performance It is important for a solution to be able to perform at an acceptable time,
which does not degrade the use of the software itself. A trade-off between effectiveness
and performance may be usually required, giving each the necessary position.

Transparency The requirement is that the protection mechanism should be unobtrusive, so that
integration with the writers of external software is made with ease and without effecting
(much) the design of the external software.

Our project (HIKOS) was developed aiming to offer a secure solution for Intellectual Property
protection. But, as with any other security solution, it can only claim security aiming to fulfil
certain security assumptions. Even though companies like to promote what they call "secure"

43

HIKOS - Highly Secure, Intelligent Software Copy-Protection

solutions, we will suffice aiming a solution which will be regarded as providing a high level of
security.

Rather than performing specific attacks on the dongle, I chose the methodology of providiing
a formal way of describing HIKOS security, based on a variety of attacks. In this sense, I used the
Attack Tree model, as presented in the next section.

9.2 Threat Model

By threat model, we try to describe the security aspects of a given system, in our case - the HIKOS
dongle, by defining a set of possible attacks on it [37]. A threat model helps better understand
the overall security of a system, the probability of certain attacks being performed and apply the
necessary countermasures to protect from it.

When it comes to security standards and metrics for software protection solutions, more
specifically, dongle solutions for this purpose, there is no proper framework for assuring an ac-
ceptable security level or a proper metric for security evaluation [12]. Attampts to offer models
for evaluating the efficiency of dongle solutions for software protection have been the attention
of some studies and one such model is presented by (Piazzalunga et al.) in [12]. Their model
aims at presenting a monetized security strenght measurement for software protection dongles,
as well as a forecast of the time needed by a hypothetical attacker to break them. Three main
macrocomponents have been used as a starting point for this model:

• the dongle,

• the (dongle-protected) software, and

• the host, where this software is running.

Piazzalunga et al. [12] propose a model for evaluating the strength of dongle protection. The
methodology their propose consists of building a defense patern catalog and an attack pattern
catalog, where we list the applied protective measures and the possible attacks, respectivelly.
The results of the model are presented in an attack-tree model, with the node values specifying
the time required for an attacker to perform the attack specified, respectivelly.

I found the model adequate to start with and considering the specifics of our solution, I create
an adapted model based on [12].

9.2.1 Defense Pattern Catalog

A defense pattern includes the main attributes about the strength of the protection mechanisms
implemented [12]. Adhering to the specified principles by Viega and McGraw [38] for effective
piracy protection: scattering license management software, obfuscation of code, integrity verific-
ation and misuse detection, we can also add the principle of dongle authentication, as to protect
from communicating with an emulation software. The following defense pattern catalog adheres
to the above-mentioned principles, which in our case can be grouped into:

AES Challenge-Response. The data exchanged between the host and the dongle are encryp-
ted with AES. A random-number generator is built in the dongle hardware, so challenge-
response works with a large keyspace, making it more difficult for an attacker to find the
key. This relates to challenge distribution, since the large keyspace and the randomization

44

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Defense Pattern Attribute
AES Challenge-Response Challenge distribution

Number of AES keys used
Randomization
Large Key space (to avoid repeatibility)

Memory Usage and Protection Number of different caller addresses
Memory address separation
On-fly decryption

Communication channel protection
between the CPU and the Smartcard

Hardware 3DES encryption

Highly-Secure DES key storage (EAL 5+)
Linkage to dongle libraries Static link to libraries

High dependency level
Integrity verification Firmware integrity verification

Read-only firmware
Highly Secure components One time programmable e-fuses

Read-only portions of memory
Execute only permissions
Misuse detection and self-destruction

Table 6: Defense pattern catalog for HIKOS

function used prevent key repeatibility.

Memory usage is a protection used to detect the dongle authenticity. If we assume that an
attacker has been able to emulate the dongle, then this measure that we send different
challenge into different locations in the memory to make sure the dongle responds respect-
ively. Also, it provides protection against fake libraries. The effectiveness of memory usage
is measured through the number of different caller addresses.

Communication protection. There are several protection measures in place to prevent commu-
nication leakage between the CPU and the smart card. Only if the Internal Security Control
in the CPU is able to provide the required information to the smartcard is then possible to
retrieve the encrypted AES key.

Linkage to dongle library. The dongle can easier be emulated if there is no strong connection
between the client software and the dongle. Since we use code migration, the software is
strongly dependent on the protected code, which only the dongle can decrypt.

Misuse detection Also, the hardware components provide capabilities for detecting when de-
bugging tools are being used, which in turn calls a delete function to erase the content of
the memory and the smartcard.

Integrity verification Integrity of the firmware in the dongle is checked by the secure boot
process, as described in the previous chapter, and ensures that the verification steps are
performed in the dongle, as long as it is intact.

45

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Attack pattern Steps
Tamper with memory 1. Locate a library call in the software

2. Use debugging tools to capture password
3. Analyze and modify memory content

Emulate dongle A) 1.Recover the protected libraries
2. Develop the code for emulation library
3. Replace calls to the dongle libraries to the emu-
lated dongle libraries

Recover the protected libraries A) 1. Recover the AES key
2. Decrypt the libraries

Recover the protected libraries B) 1. Use debugging tools to read the dongle memory
during execution
2. Retrieve the content of the memory

Recover AES key 1. Observe the communication between CPU and
smartcard
2. Get the encrypted AES key from the smartcard
3. Obtain the TDES key and decrypt the AES key

Table 7: Attack patterns and respective steps

9.2.2 Attack Pattern Catalog

On the assumption that both the client software and the host it is residing on may be hostile
(untrusted host), an attacker could perform the following attacks:

Reverse-engineering attacks. In this category, an attacker would try to decrypt the encrypted
parts of the software.

Dongle Emulation. Once the previous attack has been successful, the attacker can easily emu-
late the dongle. This emulation would be used to communicate with the client software
instead of the original dongle, therefore replacing the dongle itself.

Fake library attacks. In cases when recovering the full software is impossible, an attacker can
emulate the dongle and make the software communicate with the fake libraries (not the
dongle).

Memory Tampering. Memory on the host can be tampered with and sensitive data, such as
passwords, can be retrived from an attacker through the use of a debugger. As a result, the
attacker can gain access and communicate with the dongle and already has access to the
client software.

The attack pattern catalog and the steps required for each pattern is presented in table 7.

9.2.3 Attack Tree

Introduced by Schneier in [39], attack trees has proven to be a convenient tool of describing
security of systems and to systematically categorize the variety of ways these systems can be
attacked [40].

The visual representation of threats and attacks to computer systems in a tree structure, con-
sisting of diagrams with multiple levels [41] has made this tool helpful for security practitioners

46

HIKOS - Highly Secure, Intelligent Software Copy-Protection

and analysts [40]. These trees consist of a single (common) root on the top, which represents the
attack goal, while the different ways the attack can be achieved are represented as leaf nodes.

In a given attack tree, we can find AND nodes and OR nodes. While AND nodes represent
different steps towards achieving the same goal, OR nodes represent alternatives which can be
used to achieve the attack goal. Furthermore, each of the nodes is assigned a value, which can be
used to calculate the security of the goal. One type of values is calculated by determining possible
and impossible nodes. To calculate the final value of the nodes, we perform the respective AND
or OR operation between all the children of a specific node. The value of an OR node is possible
if any of its children is possible and it is impossible if all of its children are impossible. On the
other hand, the value of an AND node is possible if all the children of the node are possible, while
it is impossible if any of its children is impossible, meaning that any of the identified attacks is
impossible to perform [39].

The model presented in figure 9 shows the different ways the dongle can be attacked. AND
connections must all be implemented for an attack to succee, while the OR branches are altern-
atives to implement a certain attack. Each node can be assigned a value, be it the time necessary
for the attack to succee or the probability for the attack to be performed considering the defense
mechanisms in place or the design of the dongle.

Figure 9: Attack Tree Model. The Arrows represent consecutive steps to be performed

47

HIKOS - Highly Secure, Intelligent Software Copy-Protection

For each given node, we can assign the values we need in order to provide a better view
of the overall security, the weakest links, and perhaps add preventive countermeasures where
necessary. A useful metrics in our case could be the probability that any of the attacks presented
here may happen, the amount of time (efforts) required for an attacker to break the security
measures, or the monetary value necessary to implement an attack. Building such values requires
experimental setup with different software using the dongle, time and tools to perform attacks,
which in the case of this thesis, could not be performed. However, this can be used as a good
basis for the vendor (escrypt) to measure the overall security of their solution and future work
could use it and finish it. A validation of field data could then be performed to check the precision
of the model.

48

HIKOS - Highly Secure, Intelligent Software Copy-Protection

10 Conclusion

The work presented on this thesis contains a short, structured description of the problems in
the field of Intellectual Property Protection, respectively Software Copy-Protection. The focus of
the project has been developing a better, more secure way of protection software with the use
of dongles. The concept is not new, but we add to the current solutions, in regards to higher
security level both in the design of the (architecture of our) solution in principle and a practical
more secure implementation of a prototype.

Security is a paramount to such a protection system and therefore this project gives special
attention to implementing state-of-the-art methods and technology in fulfilling security require-
ments as good as possible, with the aim of providing a solution that can work in any system
and development environment. Building on the best practices and filling some of the gaps in the
security of previous weaknesses, we believe that the work presented here can be used as a good
starting point for further research and analysis. Our implementation of a dongle with highly-
secure architecture, components and design is a contribution in this field and we hope that it
will be useful in protecting the Intellectual Property of many companies, thus providing a higher
level of revenues and investments in software innovation.

49

HIKOS - Highly Secure, Intelligent Software Copy-Protection

11 Future Work

Considering the amount of time during which this Master Thesis was performed, the work
presented here brings the results of carefully studied state of the art in the field of dongle pro-
tected software and provided a security analysis for HIKOS, including a threat model.

As far as the work on the code-preprocessing is concerned, it provides a framework which
can be further tested to different platforms, but its functionalities can also be extended. The
current solution I worked on works only with C functions. This can be considered as a limitation
for certain software solutions, where object-oriented solutions may be used to implement more
complex algorithms to be protected. Therefore, including support for C++, as a language that
supports objects, can require certain modifications and can be a good point for future work.

On the other hand, the threat model presented here is a basic foundation, which can be built
upon and needs to be validated with field data and the right metrics, which again, needs to take
into account the time, effort and monetary value of the attacks that can be performed, together
with respective probabilities. Consequently, a set of respective countermeasures can be suggested
wherever the results of the validation show necessary.

51

HIKOS - Highly Secure, Intelligent Software Copy-Protection

Bibliography

[1] Alliance, B. S. May 2011. Seventh annual bsa/idc global software - 2010 piracy study.

[2] Zimmermann, R. Hikos specification - software. Technical report, Ruhr University Bochum,
Chair for Embedded Security, December 2010.

[3] Heggemann, C. & Markhoff, S. Hardware method for software product identification -
dongles, cd-dvd media manipulation and other techniques. Seminar paper, Ruhr-University
Bochum - Chair for Embedded Security, January 2010.

[4] WIBU-Systems. Codemeter as token. http://www.wibu.de/codemeter.php?lang=en.

[5] WIBU-Systems. Codemeter asic. http://www.wibu.de/codemeter.php?lang=en.

[6] Feitian software protection dongle. Technical report, FEITIAN, 2010.

[7] Manoharan, S. & Wu, J. 2007. Software licensing: A classification and case study. Interna-
tional Conference on the Digital Society, 0, 33.

[8] Bornhöfft, M. January 2011. State-of-the-art hardware methods for software licensing.
Seminar paper, Chair for Embedded Security, Ruhr University Bochum.

[9] Genov, E. 2008. Designing robust copy protection for software products. In Proceedings
of the 9th International Conference on Computer Systems and Technologies and Workshop for
PhD Students in Computing, CompSysTech ’08, 49:IIIB.14–49:1, New York, NY, USA. ACM.

[10] Wikipedia. 2009. Softice. http://en.wikipedia.org/wiki/SoftICE.

[11] Spesivtsev, A., Krutjakov, A., Seregin, V., Sidorov, V., & Wegner, V. October 1992. Soft-
ware copy protection systems: structure, analysis, attacks. In Security Technology, 1992.
Crime Countermeasures, Proceedings. Institute of Electrical and Electronics Engineers 1992
International Carnahan Conference on, 179 –182.

[12] Piazzalunga, U., Salvaneschi, P., Balducci, F., Jacomuzzi, P., & Moroncelli, C. November
2007. Security strength measurement for dongle-protected software. IEEE Security and
Privacy, 5, 32–40.

[13] Gagnon, M., Taylor, S., & Ghosh, A. 2007. Software protection through anti-debugging.
Security Privacy, IEEE, 5(3), 82 –84.

[14] Wikipedia. June 2011. Encryption. http://en.wikipedia.org/wiki/Encryption.

[15] RSA-Laboratories. What is public-key cryptography?
http://www.rsa.com/rsalabs/node.asp?id=2165.

53

HIKOS - Highly Secure, Intelligent Software Copy-Protection

[16] MS, A. Public key cryprography.

[17] Diffie, W. & Hellman, M. E. 1976. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6), 644–654.

[18] Merkle, R. C. 1989. One way hash functions and des. In Proceedings on Advances in
cryptology, CRYPTO ’89, 428–446, New York, NY, USA. Springer-Verlag New York, Inc.

[19] Kent, S. T. Protecting Externally Supplied Software in Small Computers. Phd thesis, Mas-
sachusetts Insitute of Technology - Laboratory for Computer Science, 1980.

[20] Cohen, F. B. 1993. Operating system protection through program evolution. volume 12 of
Computers & Security. Elsevier Science Publishers.

[21] Shannon, C. Communications theory of secrecy systems:. Technical report, Bell Systems
Technical Journal, 1949.

[22] van Oorschot, P. October 2003. Revisiting software protection. In Information Security, 6th
International Conference, Springer-Verlag, ed, Proceedings, 1–13.

[23] Gosler, J. 1985. Software protection: Myth or reality? In Advances in Cryptology - CRYPTO
’85, 218, S.-V. L., ed, 140–157.

[24] Herzberg, A. & Pinter, S. November 1987. Public protection of software. volume 5.

[25] Kingpin. October 2000. Attacks on and countermeasures for usb hardware token devices.
In Proceedings of the Fifth Nordic Workship on Secure IT Systems Encouraging Co-operation,
35–57. Reykjavik University.

[26] Skorobogatov, S. P. Semi-invasive attacks - a new approach to hardware security analysis.
Technical report, University of Cambridge, 15 JJ Thomson Avenue Cambridge CB3 0FD
United Kingdom, April 2005.

[27] I. J. Jozwiak, A. L. & Karczak, K. 2007. Hardware-based software protection systems: Ana-
lysis of security dongles with memory. IEEE, International Multi-Conference on Computing
in the Global Information Technology.

[28] I. J. Jozwiak, A. L. & Karczak, K. 2007. Hardware-based software protection systems:
Analysis of security dongles with time meters. IEEE, 2nd International Conference of De-
pendability of Computer Systems.

[29] Pop̈per, C. Security analysis and evaluation of hardware tokens for ip protection. Bachelor
Thesis. Chair for Embedded Security - Ruhr University Bochum, September 2010.

[30] SecuTech-Inc. Unikey software protection, licensing and distribution.
http://www.secutech-inc.com/marketing-materials/UniKeychure-En.pdf.

[31] SecuTech. The unikey dongle. White paper, SecuTech Solution Inc.

54

HIKOS - Highly Secure, Intelligent Software Copy-Protection

[32] Sentinel hasp - product brief. Technical report, SafeNet, October 2010.

[33] Software piracy prevention system - keylok ii, keylok fortress. User’s manual, MAI Digital
Security (KEYLOK), May 2010.

[34] Zimmermann, R. Hikos specification - license management. Technical report, Ruhr Univer-
sity Bochum, Chair for Embedded Security, December 2010.

[35] escrypt. Auswahl und spezifikation der hikos plattform im rahmen des verbundprojektes
hikos. Technical report, December 2010.

[36] Schroeder, M. D. & Saltzer, J. Cooperation of Mutually Suspicious Subsystems in a Computer
Utility. Phd thesis, Massachusetts Insitute of Technology, September 1972.

[37] Wikipedia. Threat model. May 2011.

[38] Viega, J. & McGraw, G. 2002. Building secure software: how to avoid security problems
the right way.

[39] Schneier, B. December 1999. Attack trees - modelling security threats.
http://www.schneier.com/paper-attacktrees-ddj-ft.html.

[40] Mauw, S. & Oostdijk, M. 2005. Foundations of attack trees.

[41] Wikipedia. August 2010. Attack tree. http://en.wikipedia.org/wiki/Attack_tree.

55

HIKOS - Highly Secure, Intelligent Software Copy-Protection

A Code-Preprocessing Algorithm

Input: @source_path, @dest_path

1. Copy the given source from source_path to dest_path

2. Recursively scan the directory at dest_path and read every file

3. For every (regular) source file, do 4 - 8

4. Perform Source File Scan Algorithm

5. If Validation B algorithm performs successfully, do Extraction D

6. If Post-ExtractionE is performed successfully, do 7

7. Perform Packaging

8. End.

57

HIKOS - Highly Secure, Intelligent Software Copy-Protection

B Validation Algorithm

1. If Steps 2 - 6 are true, return true.

2. The Source language has been defined

3. The Comment Symbols have been defined

4. Methods and parameters have been initialized (defined)

5. Extract start and stop positions match (validate)

6. Delete start and stop positions match (validate)

7. Else do 8

8. Raise proper flags and Report Errors. End. False

59

HIKOS - Highly Secure, Intelligent Software Copy-Protection

C Code Scanning Algorithm

1. For every line of code read, do steps 2 - 7

2. Save language definitions positions

3. Save Language symbols definitions

4. Save Method(s) definitions, parameters and sizes

5. Save Positions for Code to be extracted

6. Save Positions for Code to be deleted

7. End.

61

HIKOS - Highly Secure, Intelligent Software Copy-Protection

D Code Extraction Algorithm

Input: @source_file_path, @dest_file_path

1. If Validation Algorithm B returns true, steps 2 - 8

2. Read the Code line by line

3. Append the extracted code into @dest_file_path

4. Copy the contents of the source code, without the code-to-be-deleted into a (temporary) file
and with blank the functions’ bodies

5. Delete the source file

6. Rename the temporary file to the original source file’s name

7. Insert API calls to protected code into functions’ bodies

8. End.

63

HIKOS - Highly Secure, Intelligent Software Copy-Protection

E Post-Processing Analysis and Reporting Algorithm

Input: Source_path, Dest_path

1. Report the number of extracted lines of code.

2. For the complexity analyxix, do steps 3 - 11

3. Generate Assembly code for the extracted functions

4. Report the number of assembly lines of code generated

5. Optimize code and calculate nested loops complexity

6. Report loops depth and average number of cycles

7. To Perform Correlation (Dependency-check)analysis, do 8 - 10

8. Use code optimization to generate correlation analysis

9. Save the optimization into an output file

10. Parse the content of the optimized output and save caller and callee functions

11. Report a summary of analysis.

12. End

65

	Revision history
	Declaration
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by the project
	Keywords
	Justification, motivation and benefits
	Research questions
	The contribution

	Theoretical Background
	Copy Protection
	Software-based copy protection
	Online versus Offline validation
	Hardware Tokens (Dongles) for Copy Protection

	Security issues about software-based copy protection
	Dongle-based protection security
	Cryptography
	Public-key vs. Private-Key Cryptography
	One-way cryptographic functions

	Related work
	State of the Art
	Cryptographic features
	Code Outsourcing
	State-of-the-Art Dongle Solutions for Software Copy Protection
	Unikey Pro
	SafeNet Sentinel HASP HL
	WIBU Codemeter
	KEYLOK Fortress
	Feitian's ROCKEY Series
	SenseLock's EL Series

	Methodology and HIKOS
	Resources and Parties
	Products
	Development Tools

	HIKOS - The Architecture
	Security Concept
	Design Workflow
	Hardware Architecture
	Software Architecture
	Definitions
	Firmware
	Software Protection Interface
	HIKOS API
	Setup/Configuration

	Security Architecture
	Secure Boot

	Code Pre-processing, Analysis and Extraction
	Source scanning
	Code Extraction
	Post-Extraction Analysis and Reporting
	Code Packaging

	Wrapping Extracted Functions - Overflow Protection

	Security
	Evaluation Criteria
	Threat Model
	Defense Pattern Catalog
	Attack Pattern Catalog
	Attack Tree

	Conclusion
	Future Work
	Bibliography
	Code-Preprocessing Algorithm
	Validation Algorithm
	Code Scanning Algorithm
	Code Extraction Algorithm
	Post-Processing Analysis and Reporting Algorithm

