
Automatic rule-extraction for malware
detection on mobile devices

Andrii Shalaginov

Masteroppgave
Master i Teknologi - Medieteknikk

30 ECTS
Avdeling for informatikk og medieteknikk

Høgskolen i Gjøvik, 2013

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Automatic rule-extraction for malware detection on
mobile devices

Andrii Shalaginov

2013/06/02

Automatic rule-extraction for malware detection on mobile devices

Abstract

Malware causes damage not only to personal computers, yet also to contemporary mobile de-
vices. With growing performance and storage capabilities users of mobile devices tend to store
more sensitive information than before. Additionally, mobile platforms allow to use charged tele-
com services via installed software applications for extending the functionality of devices. Beside
certified application-distribution services, users can download applications from uncertified de-
velopers. The amount of applications have been increasing exponentially each year and part of
them are distributed by third-party markets. Taking all these aspects into account, mobile devices
have become attractive targets for attackers and their malicious software.

Mobile platforms possess restricted access to information and execution of applications. In
order to be able to execute some functionality, applications require a user to provide a set of
permissions. Another protection mechanism is commercial Anti-Virus (AV) software that uses so-
called signatures. These signatures define indicators used for malicious applications recognition.
The detection process of such software can be as simple as file names comparison or as complex
as checking system artifacts. Sometimes signatures can be composed only as a result of advanced
malware reverse engineering. Despite the fact of the existing protection solutions, there is still a
challenge to detect malware automatically in dynamic environment. This is because the malware
detection process involves evaluation of different factors, which accompany malware execution.

This study focuses on deriving fuzzy rules for malware detection automatically. Challenges
of malware detection are many-fold and therefore we will focus on mobile devices in this study.
We introduce precise artifacts that mobile malware leaves during execution. In this study a vir-
tualized environment is involved in studying dynamic malware behavior. In addition, analysis of
static malware attributes is performed. The goal is not only to derive malware detection rules
automatically, yet also empower them with linguistic meaning that is understandable by human.
The thesis will establish a method in, which combination of Artificial Neural Networks (ANN)
and Fuzzy Logic (FL) is utilized for rules extraction. In result, such rules are human-explainable,
which allows forensics analyst to use them in a court of law. Finally, the thesis presented here pro-
vides justification of how derived rules can be applied in an automated analysis of large amount
of mobile malware.

iii

Automatic rule-extraction for malware detection on mobile devices

Acknowledgements

This thesis concludes 2 years of study in the Master of Information Security study program at the
Gjøvik University College.

I would like to express my deep gratitude to my supervisor, Prof. Katrin Franke, for her in-
valuable advices, supervision, shared experience and inspiration in machine learning and pattern
recognition.

Thank you also to my colleagues, particularly Ruslan Puzyriov, Knut Borg and Heng Zhang for
sharing ideas, valuable feedback and fruitful discussions. I would like to extend my thanks to all
members of staff at Gjøvik University College for creating an excellent environment for scientific
work and for conducting such thesis research.

Last but not least, I would like to thank my mother and my fiancé for believing in me; for their
understanding and motivation during the work. Without their unwavering support, it would have
been difficult to accomplish this work.

Andrii Shalaginov, 2013/06/02

v

Automatic rule-extraction for malware detection on mobile devices

Contents

Abstract . iii
Acknowledgements . v
Contents . vii
Glossary . ix
Acronyms . xi
List of Figures . xiii
List of Tables . xvii
Listings . xix
1 Introduction . 1

1.1 Keywords . 1
1.2 Covered Topic . 1
1.3 Research area . 1
1.4 Research questions . 3
1.5 Methodology to be used . 3
1.6 Justification, Motivation and Benefits . 4
1.7 Limitations . 5
1.8 Thesis Contribution . 5
1.9 Thesis structure . 6

2 State of the art . 9
2.1 Malware with focus on mobile devices . 9

2.1.1 Mobile OS and Markets protection . 10
2.1.2 Commercial AV software . 11

2.2 Security Metrics . 12
2.3 Machine learning and pattern recognition in malware detection 13
2.4 Malware detection & analysis using neuro-fuzzy 15

3 Methodology . 17
3.1 Theoretical surveying of defined problem area . 17
3.2 Retrieving of security metrics from applications testing process 18

3.2.1 User profiles creation . 18
3.2.2 Artifacts . 19
3.2.3 Nature of data . 21
3.2.4 Features extraction . 21
3.2.5 Security metrics construction . 24

3.3 Malware detection using Machine Learning (ML) 25
3.3.1 Dynamic-focused methods . 26
3.3.2 Feasibility of building automated malware detection expert system 28

vii

Automatic rule-extraction for malware detection on mobile devices

3.4 Analysis and neuro-fuzzy rules extraction for malware detection 29
3.4.1 Overview of the procedure . 29
3.4.2 Fuzzy logic . 30
3.4.3 Rules extraction using neuro-fuzzy . 31
3.4.4 Application in big data analysis . 41

4 Experimental setup & Results . 47
4.1 Overview of the collected dataset . 47
4.2 Extracted security metrics . 49

4.2.1 Detection reliability . 51
4.2.2 Digital evidence perspective . 52

4.3 Malware detection process and influence of stored information 52
4.4 Significance and reliability of malware detection 54

4.4.1 Results of automated analysis . 55
4.4.2 On-line learning perspective . 57

4.5 Fuzzy rules for malware detection . 57
4.5.1 Evaluation of classification process . 58
4.5.2 Accuracy of classification . 58

5 Discussions . 63
5.1 Data and Experiments . 63

5.1.1 Methodology . 63
5.1.2 Dataset . 63
5.1.3 Complexity . 64
5.1.4 Robustness & Reliability . 66

5.2 Implementation Architecture . 66
5.2.1 Application testing and feature extraction 69
5.2.2 Advantage of virtual environment usage 70
5.2.3 Rule-construction module . 70
5.2.4 Performance concerns . 73

5.3 On-site defence perspective . 74
6 Summary of Findings & Implications . 77

6.1 Overview of main results . 77
6.2 Theoretical implications . 79
6.3 Practical Implications . 79
6.4 Further work . 80

Bibliography . 83
A Data sets . 93
B User profile’s details . 101
C Extracted rules for proof-of-concept experiment . 105
D Android application launch logs . 109
E Features selection for Security Metrics . 115
F Implemented source code . 117
G Miscellaneous information . 135

viii

Automatic rule-extraction for malware detection on mobile devices

Glossary

Android Package
File

Compressed installation package used for Android applications distribu-
tion and installation

Black Box Testing Testing and exploration of functionality of an application without knowl-
edge about an entire structure

Emulator A software/hardware solution that is able to imitate computer or device

Features Single measurement of some parameter, also called attribute

Features Extraction A process of deriving features from the raw measurable data or character-
istics within a mobile device

Fuzzy Logic A variant of the classical logic, which uses truth degree for each linguistic
variable rather than simple binary true or false statements

Fuzzy Rule A conditional IF-THEN statements that are composed from linguistic vari-
ables

Linguistic Terms The discrete linguistic variable in fuzzy theory that can have truth degree
(instead of classical true or false)

Linguistic Rules In this study means fuzzy rules used for malware detection

Linguistic Variables The variables in fuzzy logic theory, which can take linguistic terms as val-
ues. In this work security metrics are considered as linguistic variables

Membership Func-
tion

In fuzzy logic represents degree of truth that a given value belongs to
some fuzzy term

Neuro-Fuzzy Fuzzy logic theory that uses artificial neural network to derive the estimate
and derive the rules

Rules Construction A process of composing rules from the security metrics consist of two
stages: all possible rules extraction and selection of the most relevant rules

Rules Mining In this work rules mining means construction of essential fuzzy rules for
malware detection

Security Metrics A complex characteristic of some security-related domain that consists of
several raw features

ix

Automatic rule-extraction for malware detection on mobile devices

Security Metrics
Construction

A process of composing selected raw features into a security metric ac-
cording to a domain

Smartphones A mobile device that usually has a mobile phone functionality with an
installed operation system

Virtualization A software/hardware solution for deploying virtual analogue of a soft-
ware/hardware

x

Automatic rule-extraction for malware detection on mobile devices

Acronyms

ANN Artificial Neural Networks

API Application Programming Interface

APK Android Package File

ARM Advanced RISC Machine

AV Anti-Virus

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DEX Dalvik Executable Format

EM Expectation Maximization

FL Fuzzy Logic

GPU Graphics Processing Unit

JNI Java Native Interface

HDD Hard Disk Drive

MF Membership Function

ML Machine Learning

NF Neuro-Fuzzy

OS Operating System

PC Personal Computers

PR Pattern Recognition

RAM Random-Access Memory

SDK Software Development Kit

SVM Support Vector Machine

VM Virtual Machine

xi

Automatic rule-extraction for malware detection on mobile devices

List of Figures

1 Sample of AV killer code in Visual Basic . 12
2 General ML approach . 14
3 Model of fuzzy rules construction in neuro-fuzzy [54] 15
4 "Black Box" testing scheme . 25
5 Sample of approximation usage. Blue points - obtained values, red points - ap-

proximation of previous existing interval values (at 1 and 40) and future one (at
52) . 27

6 Android application function calls sequence obtained from strace [72] 27
7 Graph of the Android application function calls 28
8 Expert system model . 28
9 Membership functions examples [79] . 31
10 Scheme of a single layer perceptron . 33
11 Simple Neuro-Fuzzy (NF) system architecture . 34
12 AND-OR rule-extraction principle[80] . 35
13 Scheme of rule-extraction process . 36
14 Sample of extended NF scheme [81] . 37
15 Example of weights error function with obvious local minimum 38
16 Influence of the learning rate on Gradient Descent performance: blue rate is opti-

mal, red is adjustable [83] . 39
17 Distribution of Iris Data set features for different classes [89] 40
18 Rules for Setosa-Versicolor classification, three terms 41
19 Rules for Setosa-Versicolor classification, five terms 42
20 Sample of fuzzy rules extracted for Iris dataset classification [86] 43
21 Effect of overfitting in ANN [93] . 44
22 Scheme of the features extraction for each application during testing 48
23 Correlation between ’permissions_number’ and ’manifest_size’ features for both

classes . 48
24 Correlation between ’res_folder_size’ and ’filesize’ features for both classes 49
25 Correlation between ’package_entropy’ and ’cpu_usage_peak’ features for both

classes . 49
26 Gaussian distribution in extracted features . 50
27 Scheme of the security metrics construction from the features 50
28 Information about created YAFFS2 image with user sensitive information 53
29 Extracted list of function calls that contains user sensitive information 53
30 Whois response for the IP address 46.252.18.96 53
31 Function calls traces that includes attempts to connect to the external IP address

114.80.156.144 . 55

xiii

Automatic rule-extraction for malware detection on mobile devices

32 Whois response for the IP address 114.80.156.144 56
33 The information returned to the client when visited 114.80.156.144 56
34 Example of HTTP requests to an external IP address using POST and GET 57
35 Whois response for the IP address 208.73.210.171 58
36 Advertising website that is located on the found IP address 59
37 Scheme of rules extraction for malware classification 60
38 Example of extracted fuzzy rules for malware detection after processing malicious

and benign application . 60
39 Data Flow Diagram of the rule-construction system using, drawn in ArgoUML . . 61
40 Sample of ANN learning implementation using OpenMP in C++ 71
41 Sample of rules weights adjustment function using naive Compute Unified Device

Architecture (CUDA) in C++ . 72
42 Sample of ANN learning implementation (weights adjustment) using naive CUDA

in C++ . 72
43 Sample of weights adjustment using Thrust library in C++ 73
44 Sample of folder with collected benign applications 93
45 Sample of folders with corresponding applications information after tests execution 94
46 Sample of the information extracted for each particular application 94
47 Sample of a browser history in Android . 101
48 History of performed user calls . 102
49 User messsages . 102
50 Sent emails . 102
51 Contacts stored on mobile devices . 103
52 Structure of the extracted information from userdata.img 104
53 Fuzzy rules for Setosa-Virginica classification problem, three terms in each linguis-

tic variable . 105
54 Fuzzy rules for Versicolor-Virginica classification problem, three terms in each lin-

guistic variable . 106
55 Fuzzy rules for Setosa-Virginica classification problem, five terms in each linguistic

variable . 106
56 Fuzzy rules for Versicolor-Virginica classification problem, five terms in each lin-

guistic variable . 107
57 Translation of permissions into risk levels . 127
58 Amount of developed code . 133
59 GeForce N210 parameters from Nvidia-settings 135
60 GeForce N210 memory characteristics in CUDA-z 136
61 Information about GeForce N210 in CUDA-z . 137
62 GeForce N210 performace measures in CUDA-z 138
63 Profiling of ANN learning with CUDA support by means of Nvidia Profiler [115]

that shows execution time distribution among various operations 139
64 Sample of configuration-settings page, which was implemented in the testing lab-

oratory . 140

xiv

Automatic rule-extraction for malware detection on mobile devices

65 Sample of application-testing page in the testing laboratory 141
66 Sample of application-analysis page in the testing laboratory 142

xv

Automatic rule-extraction for malware detection on mobile devices

List of Tables

2 Mapping categorical permissions names to numerical risk levels 22
3 Labels and description of the security features . 24
4 Results of rules extraction using proposed method, three terms in each linguistic

variable . 45
5 Results of rules extraction using proposed method, five terms in each linguistic

variable . 46
6 Calculated feature merits (weights) using RELIEF for ’METRICdynamics’ security

metric . 51
7 Calculated feature merits (weights) using RELIEF for ’METRICsdk’ security metric 51
8 Classification accuracy of Expectation Maximization (EM) (clustering), Support

Vector Machine (SVM), MP (Multilayer Perceptron), BN (Baessian Belief Net-
work), J48 (C4.5 decision tree) from Weka package [94] 51

9 Confusion Matrix for malware classification problem 59
10 Booting time of an Android 4.2.2 Software Development Kit (SDK) emulator, seconds 74
11 Booting time of an Android 2.3.3 SDK emulator, seconds 74
12 Characteristics of the data pulled during dynamic tests for 252 benign and 360

malicious, MB . 74
13 Amount of time taken by ANN learning process for different amount of metrics

(variables) with five terms, seconds (user time from a Linux time command) . . . 75
14 Calculated feature merits (weights) using RELIEF for ’METRICpermissions’ security

metric . 115
15 Calculated feature merits (weights) using RELIEF for ’METRICstatic’ security metric 115
16 Calculated feature merits (weights) using RELIEF for ’METRICresources’ security

metric . 115

xvii

Automatic rule-extraction for malware detection on mobile devices

Listings

A.1 Sample of ARFF file with extracted features . 95
A.2 Sample of ARFF file with derived security metrics 99
D.1 Sample of launch log of the Android application 109
F.1 Implementation of Android Emulator Start/Stop phases in test_cycle.php 117
F.2 Implementation of App’s Install, Launch, UI Test, Uninstall phases in test_cycle.php 120
F.3 Entropy analysis functionality in analysis.php . 125
F.4 Implementation of Mean and Standard Deviation calculation in C++ 128
F.5 Implementation of ANN learning in C++ using OpenMP 129
F.6 Rules selection implementation in C++ using STL 130
F.7 Sample of cubic spline approximation implemented in C++ 131

xix

Automatic rule-extraction for malware detection on mobile devices

1 Introduction

This Chapter provides an overview of the defined research area and questions to be answered.
Additionally, methodology and contribution of this thesis are summarized.

1.1 Keywords

Mobile malware, automated malware detection & analysis, machine learning, rules extraction,
neuro-fuzzy approach.

1.2 Covered Topic

In the recent decade a popularity of mobile devices like smartphones have increased considerably
due to functional and computational abilities. They are much more portable and consume less
energy in comparison with general Personal Computers. This fact extends their usage in business
and home related activities such as surfing the Internet, purchasing goods, interacting with Inter-
net banking, etc. During early 2000th, malicious software was associated mainly with Personal
Computers (PC). Such software targets the computer systems, network infrastructure, sensitive
private information as well as taking control over the computer system operation in general.

Currently a vast amount of malware has been developed on mobile platforms, which makes
the user’s sensitive information vulnerable to malicious actions. As malicious programs develop
the signature-based Anti-Virus (AV) software develops as well. Signature-based detection utilizes
a set of signatures or rules. The signatures can represent not only a MD5 hash sum1 of the
files, yet also text regular expressions, source code patterns, specific Application Programming
Interface (API) calls, names, etc. Developers of most signature-based Anti-Virus (AV) programs
aim to filter out all known malware. However, such rules are very specific and maintainable
mostly by malware analysts or reverse engineers [1]. Moreover, the Anti-Virus (AV) software is
not able to deal with dynamically changeable and proactive environment [2]. This is because
detection signatures are composed manually and therefore sets of signatures are often outdated.

This thesis aims to develop a malware-detection method based on deriving of Neuro-Fuzzy
(NF) rules using automated rule mining. Neuro-Fuzzy (NF) approach provides human under-
standable and explainable rules, which do not require additional post processing. Furthermore,
in a court of law a judge and a jury may understand the reasoning behind the extracted rules,
which is very important under computational forensics investigation of digital evidences.

1.3 Research area

In general, computers allow user to install additional software on it. These applications can be
either benign or malicious. Benign applications are considered to be useful and serve as it is
required. In contrast, malicious software or malware is intended to execute harmful operations

1MD5 is an obsolete cryptographic has sum algorithm, which is suitable for purposes of content comparison due to
low computational complexity than modern SHA-2 or SHA-3

1

Automatic rule-extraction for malware detection on mobile devices

either against the computers or users sensitive information. In a historical perspective, the first
malware sample appeared a few decades ago [3]. Since performance of the computers grew,
they got cheaper and intentions to create malicious software increased. Starting with a simple
password stealer (keylogger) they now are able to perform large-scale attacks against businesses
and public people. This thesis includes analysis of what kind of information can be stolen from
user on contemporary mobile Android devices.

The malware detection on mobile devices is in demand and recently a developing field within
computer security. Mobile devices are gradually replacing PC. Modern mobile devices capable
of storing vast amount of data. Among that data there are sensitive personal information such
as passwords, mail and bank account details. This thesis shows that fraudulent schemes have
migrated from PC to mobile devices already. Despite complex protection mechanisms in mobile
Operating System (OS), user undertakes control of applications privileges. That makes a whole
mobile device vulnerable to attacks in case of carelessness or mistake. Additionally, software
markets are flooded by fake applications with malicious payloads [4, 5]. Moreover, common
user can not distinguish malware from benign applications due to lack of knowledge [6]. The
author focuses on human understanding of malware detection in this thesis.

The important step in malware analysis is a collection of specific attributes by which a mal-
ware can be characterized. Mobile malware reverse engineering provides comprehensive view on
malware functionality instead of only deep analysis [7]. However, this process is mainly manual
and based purely on knowledge of the analyst in contrast to Anti-Virus (AV) software. Anti-
Virus (AV) software uses signatures databases, which are hardly interpretable by average person
or by court of law [8]. Furthermore, signatures contain single measurements (or features) of
parameters in time, which are discrete and targeted only on specific malware. This means that
there should be used security metrics instead of pure discrete features. The study [9] has shown
that security metrics are more suitable for human representation and abstraction of features. This
is because features are mainly collected through statistical analysis while metrics are mapped by
analyst. Influence of such metrics on malware detection and forensics soundness is described
later in this thesis.

Machine Learning (ML) is a domain of computational intelligence, which allows to build
adaptive and expert systems. Such systems can improve their performance and learn new as
well as using already collected knowledge. Support Vector Machine (SVM) is one of the best
classification methods, which provides high performance on different tasks [10]. Despite the
fact that there were developed many powerful algorithms, we concentrate our work on the
Neuro-Fuzzy (NF) approach. The biggest advantage of Neuro-Fuzzy (NF) is the possibility of
a non-linear2 statistical model construction for classification and regression purposes [4]. Ad-
ditionally, Fuzzy Logic (FL) is understandable by human brain. Furthermore, Neuro-Fuzzy (NF)
has considerable significance in dealing with large data analysis. The goal is also to utilize Neuro-
Fuzzy (NF) as a tool for automated analysis.

There exist several approaches such as signature-based misuse and behavioral-based anomaly

2Means that the model uses nonlinear combination of the parameters and does not linearly and directly dependent
on the input data. In other words we can state that the first derivative of non-linear model function is dependent on one
or several parameters

2

Automatic rule-extraction for malware detection on mobile devices

detection [11, 12]. Because of various obfuscation, fragmentation and masking techniques,
signature-based concept becomes less reliable than experimental behavioral-based according to
recent studies. Machine Learning (ML) provides more flexibility in building detection rules than
manual analysis. This is because Machine Learning (ML) utilizes statistics and learning instead of
purely defining parameters for each malware [13]. Neuro-Fuzzy (NF) approach can be applied
for extraction of detection rules based on malicious and benign application’s statistics [14]. This
thesis aims to extract human-explainable rules for malware detection.

1.4 Research questions

This research aims on construction of detection rules utilizing a Neuro-Fuzzy (NF) approach.
Previous known work on Neuro-Fuzzy (NF) application in malware detection is designed only
for PC [15]. This work is not applicable for usage on mobile devices. It means that our work
makes innovative contribution to forensically sound malware detection on mobile devices. The
author’s previous work on automated mobile applications testing is used as to support the study
[16]. Security metrics based on application’s features (parameters) are introduced here. Such
metrics enable both automated malware-detection rules and human comprehension. This thesis
seeks to answer the following research questions:

1. What kind of security metrics could be applied for malware detection and what is the
detection reliability of such metrics?

2. How do user profiles (various sensitive and private information stored on the device) affect
malware behavior and what kind of data are stored/transmitted by malware?

3. Are the results of static and dynamic testing of mobile applications reliable for automated
malware detection?

4. Is it possible to automatically extract corresponding advanced fuzzy rules and provide a
fair detection rate?

1.5 Methodology to be used

In order to solve the research problems we organize the research as following. Thesis includes
both justification of proposed theorems and proof-of-concept demonstration. For theoretical part
we elaborate on foundation of theory for security metrics and motivate reasons for using it.
For practical part the neural-network theory is combined with fuzzy-rule extraction that leads
to a Neuro-Fuzzy (NF) approach. This is necessary for achieving reliable classification based on
gained security metrics.

The practical part is conducted with an experimental setup that allows the author to test
and to classify given software samples based on extracted metrics and fuzzy rules. As a mobile
platform for our experiments the Android OS was selected. The rationale behind selecting the
Android is that Android security model allows the user to install third party software. The user is
also entitled to grand execution privileges to applications. Subsequently it provides more threats
to user privacy.

3

Automatic rule-extraction for malware detection on mobile devices

The dataset used for experiment on mobile applications is partially based on the previously
collected data during work on a testing laboratory [16]. Essentially, that dataset was supple-
mented by approximately 50% of benign applications. The practical part was performed in sev-
eral tests. First of all malicious and benign applications are labeled and gathered into a single set.
In addition the author completed it by different versions of applications targeted on different An-
droid Application Programming Interface (API). Secondly, expert-defined features are extracted
from each application. Thirdly, security metrics are composed from extracted features. As a re-
sult, train and test metrics sets are utilized in practical part. All datasets are provided together
with thesis report (for details see the Appendix A).

During conducted experiments, quantitative and qualitative performance measures are col-
lected and presented. Gathered and generated datasets are supplied on DVD along with the
report. In summary, one can outline used methodology:

1. Collect malicious and benign applications.

2. Preprocess the applications dataset and extract features.

3. Create specific user profile (store sensitive information).

4. Implement and perform static and dynamic tests over dataset.

5. Extract features (parameters) for each application.

6. Construct security metrics using expert knowledge.

7. Implement fuzzy-neuro model.

8. Extract fuzzy rules from trained Artificial Neural Networks (ANN).

9. Estimate classification accuracy using extracted rules.

1.6 Justification, Motivation and Benefits

The amount of malware on mobile devices has been growing significantly since it first was dis-
covered in 2010th. Few years ago privacy threats may have been considered minor due to storing
limitation and complexity of the mobile programs. Yet now they are having impact on more sen-
sitive data as well as converting a mobile phone to an attacker’s remote terminal.

To the authors knowledge there exists no reliable signature-based solutions for automated
testing and malware detection for mobile platforms. Researches have targeted on either auto-
mated testing or non-interpretable and non-automated malware detection.

In the authors work signature-based malware detection takes into consideration fuzzy pat-
terns by which malicious and benign applications can be distinguished. Applying signature-based
solutions one can bring fast and reliable detection of the malware sample in mobile system. Sub-
sequently, fuzzy-rule utilization allows not only to detect malware, yet also to give humans an
understandable form of signatures. The main difference of such approach from behavioral-based
detection is the independence from user behavioral and centralized databases [17, 18]. More-
over, in contrast with behavioral-based it can manage without any user interaction. Furthermore,
NF approach can be trained from data that applications generate during automated execution.

4

Automatic rule-extraction for malware detection on mobile devices

The author generated single user profile with specific sensitive information. As it is shown,
the effect of this profile on malware detection can be neglected. This is because amount of
applications that sends user’s sensitive data is small in comparison to total amount on market.

After the project is accomplished and researched questions are solved, possible automated and
human-understandable malware detection will be established. The system will be adaptable to
any new applications properties and metrics. The research can provide significant aid in mobile
malware detection and defense for large organizations, public and private software markets.
Finally the proposed procedure will encourage future experimental behavioral-based methods
using security metrics.

1.7 Limitations

This thesis is targeted on examining mobile application data, which are available under static and
dynamic tests. This means that the author have a limited amount of time on probing and testing
each particular application manually. To counter this problem automated routine is implemented
in order to reduce the amount of necessary time. All possible features are extracted during the
test cycle. However there is a probability to miss some of the related details due to automated
testing procedure.

Due to privacy limitations it was impossible to perform large-scale data collection for user’s
profile study. In order to solve this problem we were working on producing single user profile
based common data that users tend to store/utilize on mobile devices. It is reasonable to use only
one user profile with stored information in the most popular applications. These applications
are: phone book, calendar, browser, mail, messages and calls. We do not consider additional
user profiles because their variance does not affect the malware detection process significantly. If
there is no sensitive user-related information in the profile they does not influence the detection
at all.

To our awareness there has been work on hardening of mobile applications and security solu-
tions [19]. As it was examined in this work, application platforms and mobile markets have own
protection mechanisms. In contrast to this, we emphasize on forensic soundness of automated
malware detection using Machine Learning (ML), i.e. Neuro-Fuzzy (NF). Besides available hard-
ening it is necessary to create additional means of protection. We focus our examination on
Android OS (Operating System), because of exponential growing amount of malware for this
platform. Furthermore this platform allows to distribute third-party application bypassing the
official market Google Play [20]. Unlike this fact, iOS mobile OS represents itself very strict and
conservative system in application installation domain [21]. For general user it is possible to
install application on iOS file system just from App Store [22]. That is why only Android OS
represents interest for us from perspective of this research.

1.8 Thesis Contribution

This thesis seeks to provide better justification behind human understandable malware detection
rules. Using these rules, user can transfer knowledge gained about malware to another users. It
will increase total security awareness of common mobile devices target customer auditory. Also it
can be mentioned that such detection method is capable of performing large-scale investigation

5

Automatic rule-extraction for malware detection on mobile devices

of mobile markets. One can say that this is a promising area of research in information security.
Based on that, the contribution of master thesis can be outlined as following.

Initially, we focus on gaining new knowledge in a defined problem area in order to build
reliable classification based on human understandable rules. For this we extract parameters from
an application during its static and dynamic testing. These parameters are also called features.
Using features, security metrics age going to be created with help of analyst knowledge. The
metrics are more general and interpretable by users than specific and narrow technical features.
Then proposed detection method using NF approach and based on extracted metrics is utilized.
As a result, we obtain fuzzy rules that are both human explainable and reliable for malware
detection. Moreover, this is applicable in automated applications testing in big datasets.

As a significant achievement of the thesis, one can highlight practical work on datasets and
experimental setup. First of all, sizeable datasets and user profile are created, which are im-
portant for further research in this area. Among datasets there are collection of various mobile
applications, extracted features and constructed metrics for each of the application. Addition-
ally, examination of user profile and its influence on malware behavior is analyzed. It leads to
developing of emulated sensitive information in every aspect of mobile platform usage. Finally,
prototype is constructed for proving the concept and understanding of weaknesses / strengths
of theory. To authors knowledge neither data set nor suitable automated environment were pro-
posed before.

One can also mention implications and impact of performed theoretical studies and practical
implementation. It was found that there exists a huge amount of possibilities to extract features.
Some of the features are irrelevant for malware detection while others are very important. Per-
formed research proved under theoretical foundation that human understandable rules can be
extracted from automated analysis of mobile applications. From experimental point of view, the
training time of the proposed method on metrics is considerably less that on raw features. Ac-
curacy of detection based on features does not differ significantly. This thesis found that usage
of virtualization and Graphics Processing Unit (GPU) acceleration provides significant speed-up
of the test and execution process. In most cases emulator took less time to boot than physical
devices with the same configuration. Additionally, it was noticed that many applications have
concealed dependency on specific device hardware. Finally, extracted rules based on features are
not so difficult to perceive as based on features.

1.9 Thesis structure

The thesis is organized to provide better understanding of the problem. First, theoretical back-
ground and proposed method are described. Then practical aspects are given. The work has
following structure:

• Chapter 2 provides overview of the research area. Initially, malware with focus on mobile
devices and related details are described. Then follow literature about security applications
parameters and security metrics. After the application of ML approach in malware detection
is presented. Finally, details are given that focus on fuzzy-rule extraction using ANN .

• Chapter 3 seeks theoretical answers on defined research questions. Firstly, extraction pro-

6

Automatic rule-extraction for malware detection on mobile devices

cess of security metrics from available artifacts on mobile devices are presented. Secondly,
justification behind utilization of ML and Pattern Recognition (PR) in malware detection is
outlined. This chapter finalizes with proposed innovative method of fuzzy-rule extraction
for malware analysis based on studied scientific literature in the Chapter 2.

• Chapter 4 consists of all practical results. Initially, construction of datasets process is de-
scribed. Then security metrics and extracted detection rules are analyzed. Moreover, relia-
bility of static ans dynamic tests and automated testing are discussed.

• Chapter 5 includes discussions of overall findings and implementation architecture con-
cerns. In the end, important details and findings in implementation architecture are men-
tioned.

• Chapter 6 provides conclusions, theoretical and practical implications and suggestions for
future work.

7

Automatic rule-extraction for malware detection on mobile devices

2 State of the art

The important step of each research is to get overview of existing methods and developed ap-
proaches for problem area. This chapter provides overview of the relevant scientific literature in
order to lay foundation and support the contributions of the thesis.

2.1 Malware with focus on mobile devices

Mobile devices can be considered as an evolution of stationary PC. They inherited main compo-
nents and building principles in both hardware and software perspectives. Despite the fact that
mobile devices have own security-protection mechanisms the classical threats landscape can be
projected substantially from PC to mobile devices. At the moment the main difference between
these two platforms is access to paid services via mobile OS. This aspect makes portable platforms
vulnerable to a new horizon of misuse attacks.

Closer look on architecture of mobile devices gives a clear understanding that it is hardly
possible to launch unnoticeable background process because of resources limitations on mobile
platform. In this case it is more likely for attackers to use fake popular applications or write
own "valuable" software and mask malicious payload in such a way [4]. It means that malware
activity will not be noticeable while executing benign functionality.

After extensive study, one can map normal PC environment with possible attacks to a mobile
devices environment with corresponding components [23]:

1. Client → mobile devices

2. Network → wireless communication like GSM, WiFi, etc

3. Server → usually consumer web-based services

Moreover, one can highlight main types of malicious actions targeted against mobile platforms
[24, 25, 4]:

1. Scam - misleading offers for premium rates services

2. Phishing - type of fraud aimed on gathering sensitive information such as passwords, bank
account numbers, etc [26, 27, 28]

3. Spam - sending messages to persons in a contact list without user’s authorization

4. SMS1 Trojans - subscribe a mobile devices to send SMS to a premium rates services

5. Information stealer - steals specific sensitive data in order to sent it to attackers

1Short Messaging Service

9

Automatic rule-extraction for malware detection on mobile devices

6. Illegal positioning - sends GPS2 data without user permission

7. Pop-up advertising (adware) - publish advertisements consistently on the screen

8. Botnets - hidden functionality that allows to connect to multiple bot-clients and execute
massive spam or denial of service attacks [29]

Major amount of security attacks against mobile platforms are usually related to problems in
access control that is granted by user to an application. Even though security-permissions model
in mobile OS is well-thought-out and complex, users still has dangerous granting permissions
role [30]. It means that a user can negligently provide such permissions to an application in a
rush. In addition, there exist also a vulnerability that allows to send SMS even without requesting
actual ’SEND_SMS’ permission [31, 32]. Also taking into the consideration the fact that third-
party applications can be installed on Android OS, one can conclude that mobile platforms are
exposed to attacks.

2.1.1 Mobile OS and Markets protection

This subsection provides overview of the recent technologies and approaches in malware protec-
tion on mobile devices. There are mentioned the drawbacks and limitations of existing solutions.

Recent software and hardware architecture in mobile platforms provide standard security
mechanisms in order to protect device and user’s data from unauthorized actions. According to
recent study of Android and iOS platforms security [33], they have following basic mechanisms:

• Device access control,

• Sensitive data reading/altering restriction by processes,

• Each application is provided by specific permissions (granted by user) [25],

• Limited interaction between hardware and software layers,

• Protection against various types of web-attacks.

Over the last year the total amount of applications on official Android Market have been
achieved number in eleven billions and will be growing exponentially in nearest future [34].
As one can see from the statistics [35], Android and iOS occupies over 80% of the mobile plat-
forms marketplace. Android shows more bigger grows of its share, taking up more than 50% of
Smartphone OS Market in 2012.

The main difference between these two popular platforms is that Android OS allows to use
third-party markets for applications distribution, while iOS has single App Store. One can also
mention that Android is an open project, so manufacturers of devices can change the UI, which
may affect security issues. Furthermore, Google Play does not provide sufficient security testing
of all applications available on Market, just basic scan [36]. Client-side protection mechanisms
for Android were mentioned before as well in recent studies [25, 33, 36, 37]. Of course, it
is impossible to have trusted security level for applications from Black markets. Both platforms

2Global Positioning System

10

Automatic rule-extraction for malware detection on mobile devices

have some problems with upgrading to a new version of OS because of hardware or manufacturer
limitations.

Now we want to concentrate more on market-side protection that can be found on official
markets. Below we give some details of available protection routines:

Android Google offers to its customers a centralized market called Google Play where au-
thorized users can submit their applications. All applications on the market has signature
and pass through basic validation. If an application is found malicious after submission
then it can be blocked. Yet this very depends on user reviews and comments [19]. In 2012
Google announced Bouncer systems that filters malware on Google Play Market [38]. Even
taking into consideration Google statement about decreasing total number of installed mal-
ware there are still no details available about this system.

iOS Apple App Store represents well protected and safe market of mobile applications
[37]. All entries are precisely checked before posting and users can be assured that ap-
plications are safe to use and does not contain malicious payloads or viruses [39]. Addi-
tionally, Apple does not reveal API, which reduces number of known vulnerabilities on this
platform.

Windows Mobile Windows Phone Apps store [40] offers only around hundred of applica-
tions in comparison with to million on Google Play. Only after validation and subscription
procedure, a developer can submit applications on this market. The submission process in-
cludes validation and certification of the applications. According to Microsoft MSDN [41],
the security policies and certificates inside the devices are checked before launching the
applications. Based on the input and configuration, the OS provides normal or privileged
execution. However, we can say that popularity of this platform is falling down dramati-
cally, which caused decrease in mobile marketshare to a few percents in total.

2.1.2 Commercial AV software

The problem that occurs in mobile devices protection from malicious software is a lack of a strong
and a comprehensive internal solution. Contemporary AV programs for PC show detection rates
over 90% because of well-studied drawbacks and vulnerabilities over the past few decades [42].
In case of mobile platforms, such programs are not so complex and mostly can not show confident
detection rate. As we see from the testing of various mobile AV solutions, only around 25% of
them can produce more than 90% detection rate [43]. It can be explained by pure study of all
possible vulnerabilities, bugs and coding errors due to time constraints. That is why, examination
of recent mobile malicious software needs manual processing by corresponding specialists and
takes much time.

Drawbacks of existing signature-based solutions
With growing amount of new variants of viruses and zero-day attacks, classical signature-

based AV software becomes less efficient for malware detection [1, 2, 44]. This is caused by the
fact that such kind of AV software relies on statical signature sets, which are filled and updated by
developer company. This is one problem that escalates difficulties in signatures composing, due
to lackness of special knowledges in the field. Prior to signatures composing, it is necessary to

11

Automatic rule-extraction for malware detection on mobile devices

obtain and perform very deep reverse engineering of the malware sample. The second problem,
which appears after signatures composing is its complexity. Common information technologies
aware user can not imagine the whole picture of malware-detection process. As an example we
can consider mass-mailer written in Visual Basic. It has a functionality to disable popular AV
solution as it is presented in the Figure 1.

Figure 1: Sample of AV killer code in Visual Basic

In order to detect this malicious software, the ClamAV AV uses logical signatures [45] of the
following format:
Worm.Godog; Target : 0; ((0|1|2|3)&(4)); (0); (1); (2); (3); (4)

Despite the fact that such signature can detect malware it is hardly understandable and un-
interpretable without special knowledge of the field. Moreover, in court of law it is impossible to
use such rules without additional description and scientific justifications.

2.2 Security Metrics

Considering inefficiency of using pure features in signature-based malware detection, our deci-
sion is to concentrate on security metrics. Risen security-threat landscape indicates that there
should be applied more advanced transformation of measurable features available for applica-
tion. Taking this fact into consideration, we concluded that security metrics may help to solve
problem and improve malware-detection process. Security metrics were considerably studied last
decade. They can be treated as human interpretations of raw measurable parameters, which are
turned into valuable information [9, 46, 47].

To our knowledge, there were no scientific and practical work on security-metrics construction
for mobile devices. Furthermore, such concept have not appeared, yet in the area of mobile
malware detection.

Influence of user profile
Recent mobile devices allow to store vast amount of information in a comparatively very

limited physical size. It makes them irreplaceable in ratio of portability / volume of stored private
information. Undoubtedly, this fact makes them vulnerable to various privacy threats such that
malware or hidden information stealing.

Examination of stored information is vital for understanding how user’s profile (this informa-
tion) affects malware behavior. The main obstacle for transition from classical signature-based
solutions to a novel anomaly-detection mechanisms lies in discovery dependency between user’s
profile and malware success. It may happen that malware triggers only under special circum-

12

Automatic rule-extraction for malware detection on mobile devices

stances and availability of certain information.
Based on general user’s normal day web activity examination, there can be dedicated few

major domains [24]:

• Internet

• Social network [48]

• Content services

• Search engines

• Messaging

• Calling services

According to study [24], social networking and media resources take more attention by gen-
eral user. This is caused by the fact that usually such resources propose own ready-to-use ap-
plications that considerably simplifies navigation. Despite usability, it makes possibility to fake
such application and build-in malicious payload. Furthermore, due to the same appearance, gen-
eral user has no ability to distinguish between genuine and fake applications [29]. However,
extracted security metrics may reveal significant differences interpretable by common user.

2.3 Machine learning and pattern recognition in malware detection

Classical signature-based solution are no more efficient for successful malware detection because
of encryption, polymorphism and other obfuscation methods. Recently problem of malware de-
tection has been migrating to a machine learning and a PR domains. It allows to perform not only
general statical checking and comparison routine, yet also to analyze a program in the dynamic
environment. The key feature of Machine Learning (ML) is that it allows to build educable and
adjustable system based on collected data. Furthermore, it is possible to achieve sufficient level
of detection of malware samples even without human interaction.

For successful detection, there should be present two parts: learning algorithm and train-
ing labeled dataset with malicious and benign applications [10]. The example of general ML
approach is shown in the Figure 2.

During training phase, a statistical model is going to be learned from input training dataset.
After learning process has been performed, a statistical model can be used for classification or
prediction of a new unlabeled input pattern.

Overview of existing approaches. Pros & Cons
There was performed a significant work on ML approaches adaptation for malware detection

on mobile devices [49, 50, 51, 52]. According to taxonomy in the ML book, one distinguish
following general ML techniques [10]:

• Supervised - learning of statistical model from labeled dataset or other known information
for supervision.

• Unsupervised - learning from unlabeled dataset, where the task of ML is to reveal hidden or
unknown patterns without any additional information.

13

Automatic rule-extraction for malware detection on mobile devices

Figure 2: General ML approach

However, in real case it is more suitable to use mixed approaches. Such models combines
supervised and unsupervised techniques for getting more reliable results. Despite the advantage
of using mixed approaches, there are some difficulties with ML in malware detection. Initially,
features and attributes have to be extracted from applications. Then extracted data have to be
preprocessed for further using. Finally, qualitative and quantitative criteria of the end of learning
process need to be defined.

After extensive study of existing ML approaches, one can highlight disadvantages and advan-
tages of the following procedures, which are more appropriate for the task [10, 49, 50, 52]:

• SVM - binary supervised classification procedure.

Pros: Robustness and Generalization. Understandable classification process.

Cons: Performs well on linearly-separable3 classes data, otherwise requires complex non-
linear transformation by means of kernels.

• ANN - non-linear simulation of learning and decision making activity in human brain.
Particularly Self-organizing map (SOM) procedure is a variant of ANN.

Pros: Flexible in case of non-linear classes, supports high degree of complexity.

Cons: Complex and incomprehensible, which is hard to interpret.

• K-means - unsupervised learning procedure.

Pros: Fast partitional clustering

Cons: Significantly depends on initial centroids and as results may provide quite different
results.

• K-Nearest Neighbor - supervise binary classification procedure. Utilizes lazy learning for
decision making.

3Basically means that the hyperplane of format y = a · x + b can be used for classes separation. In simple words, the
line separates instances of the first and the second classes, if depicted. From the other side, derivative of such hyperplane
function’s is not be dependent on input parameters

14

Automatic rule-extraction for malware detection on mobile devices

Pros: Fast performance, understandable decision making process.

Cons: Inappropriate in case of outliers and noised components in training data set.

• Naive Bayes Classifier - simple probabilistic classifier for multi-class problems.

Pros: Helpful in case of missing features in data set, relatively fast.

Cons: Uses initial assumption that features are strongly independent.

• Fuzzy-Neuro - statistical model that utilized both ANN and fuzzy logic and provides human
interpretable reasoning of the defined problem.

Pros: Allows to model non-linearity of high degree in classification problems. Extracts hu-
man understandable linguistic fuzzy rules from complex ANN.

Cons: Learning and optimization of extracted rules for malware detection can be time-
consuming in case of big data set.

One can conclude that NF is the most appropriate procedure for malware detection in case
if it should be interpreted by human. Furthermore, one can extract linguistic rules as a result of
processing collected data set by this procedure. This approach has already presented it successful
perspective in previous works related to rules extraction [53].

2.4 Malware detection & analysis using neuro-fuzzy

Mentioned in previous section ML approaches are well-studied and have powerful theoretical
basis behind them. However, the main drawback of most approaches is almost uninterpretable
final statistical model. Despite successful usage in malware detection, it is hard to extract human
understandable patterns or rules. The only exception from this provide NF, which output is set of
fuzzy rules based on the model as it is shown in the Figure 3. Furthermore, NF inference systems
are adoptive and can be learned in live environment without complete re-training.

Figure 3: Model of fuzzy rules construction in neuro-fuzzy [54]

After extensive study of literature, one can be concluded that NF inference systems can be ap-
plied in information security and computational forensics. The study [14] presents that adaptive

15

Automatic rule-extraction for malware detection on mobile devices

NF resolves problem of malicious executable .exe files detection. Authors outlined good perfor-
mance and accuracy in malware detection. Second study [13] emphasizes on tolerance to noised
and mistaken data and adaptive capabilities.

In the research [15] it was proposed a three fuzzy sets (benign, suspicious and malicious)
detection method using neuro-fuzzy. Despite the fact that method has high detection rate, rules
are understandable to an expert only in a very narrow domain. Multiple network-related fea-
tures are used in NF anomaly-detection system in [55] . Such system gains high detection rate
on more than 40 extracted feature. However, features used in rules like "srv-diff-host-rate" are
not understandable for unaware user. This fact makes rules applicable in a narrow specialists
environment.

Taking into consideration advantages of NF adaptive systems, our proposal is to use secu-
rity metrics [56]. Initially, extracted rules based on these metrics are understandable for both
common and expert users. Then, gained knowledge can help to detect, analyze and prevent
malware. Finally, it will increase total awareness and understanding about malicious software
among mobile device users.

NF has a significant application perspective in computational forensics and information secu-
rity, as it is comprehensively studied in the researches [57, 58]. Also these researches arise the
question whether FL can be applied in the dynamically changing data. In a comparative study
[59] it was proved the advantage of using fuzzy logic with human reasoning and powerful ANN
for novel attacks detection. The master thesis is going to prove that it is possible to apply it in
live environment without loss of forensic soundness. In the studied literature, NF has not been
applied for human interpretable malware detection on mobile devices.

16

Automatic rule-extraction for malware detection on mobile devices

3 Methodology

This chapter provides description of the methodology that was used for the research. We give
overview of scientific methods and approaches that were used in order to retrieve answers on
defined research questions. First of all, security metrics construction process is described. Then,
overview of ML in perspective of the malware detection is given. Finally, we concentrate on
fuzzy-rule extraction for malware detection.

3.1 Theoretical surveying of defined problem area

We are planning to utilize ML and PR as a concept for designing of self-learning systems and
computational intelligence. This aspect is crucial in malware detection and can provide sufficient
confidence without human interaction.

Existing malware classification methods using Linear-Discriminant Analysis or Support-Vector
Machine can provide reliable classification. They are appropriate for usage in linearly-separable
metrics space for both benign and malicious applications. It means that these methods can have
errors on training set in case of not linearly separable data. Therefore, SVM offer additional
transformation by means of kernel or multiple kernel solutions. This is a complex task that
requires extensive examination of the input data’s statistical characteristics. One can also use
ANN as classification algorithm that utilize non-linear transformation of the data intrinsically.
Finally, the strategy of Machine Learning (ML) usage for malware classification can be described
as following:

1. Training phase

1.1. Perform automated data gathering from static and dynamic phases of each application
testing

1.2. Extract features from gathered testing data

1.3. Evaluate each feature merit in the particular security metric

1.4. Build and estimate each metric’s value based on the features

1.5. Model ANN and estimate it parameters using fuzzy approach. The each rule weight
is adjusted by means of one-dimensional optimization procedures such that gradient
descent or golden section search

1.6. Statistical relationship is binding between input and output for each metric by means
of fuzzy patches using Gaussian Membership Function (MF)

1.7. Extract all possible combinations of FL rules that can characterize both classes

1.8. Tune obtained rules by evaluating of ANN neurons weights

2. Testing phase

17

Automatic rule-extraction for malware detection on mobile devices

2.1. Construct classification model using derived fuzzy rules

2.2. Estimate membership of an unclassified application to the set of rules in classification
model

2.3. Make a final decision with respect to gained knowledge

3.2 Retrieving of security metrics from applications testing process

This Section is devoted to security-metrics construction. These metrics are human understand-
able indicators of security assets, by which any application can be treated from Information
Security perspective.

Our strategy for solving defined problem is to apply ML approach based on NF for fuzzy rules
extraction. This rules further will be used as a basis for classification model. Also they include not
only encoded malicious software specific details, yet also are understandable for general human
brain in quantitative domain.

Malicious and benign applications are going to be gathered in order to get training dataset
with equal distribution of samples from both classes.

3.2.1 User profiles creation

Android emulator [30] provides a powerful tool to create and use customizable runtime images.
When Android emulator is launching, it uses few important images with following information:
kernel, system, SD1 card, user and cache data [60]. Obviously, we concentrate our attention on
user data image. Here we should distinguish two types of images with user information [30]:

• userdata.img - copy of system user-related initialization data,

• userdata-qemu.img - Android SDK writes user specific data and runtime session informa-
tion on this image.

Our aim is to create user information that will not be not lost after emulator relaunch. There-
fore, for this experiment we created userdata-qemu.img image with the information under emu-
lated Android 2.2. This image can be used in later Android emulator [30] versions due to back-
ward capabilities. Following data were generated in popular and necessary applications, which
are used commonly on mobile devices (for more information see the Appendix B):

1. Phone book
Ivan Petrov 476-666-66
ivan.petrov@gmail.com
Teknologiveien
Gjovik
Norway
2815
HiG

See the Figure 51 for details.

1Secure Digital memory card - popular format of non-volatile storage: https://www.sdcard.org

18

Automatic rule-extraction for malware detection on mobile devices

2. Browser history
yandex.ru
ria.ru
tsn.ua

See the Figure 47 for details.

3. Calls
to Ivan Petrov
9.43 pm
Friday 22,
2013

See the Figure 48 for details.

4. SMS
to Ivan Petrov:
Testimon
9.44pm

See the Figure 49 for details.

5. Mail boxes
cmatlis@ukr.net
password: cmatlis1
name: Andrii

6. Sent mails
to: andrii.shalaginov@hig.no
topic: Androidlab
body: Qwerty

See the Figure 50 for details.

3.2.2 Artifacts

Before extracting features from application and its tests results we need to look into artifacts
inside mobile platforms, which can be examined. As we mentioned before, iOS is a conserva-
tive and more protected system. That is why we examine Android platform more strongly and
precisely for artifacts seeking.

After extensive study of Android platform, we decided to concentrate on some of the plat-
form’s discoverable data. Basically these artifacts in bunch allow to characterize each application
as unique and unconventional instance under dynamic and statical analysis.

In security features extraction our attention is focused on the next artifacts that are closely
related to an application [5]:

1. Android Android Package File (APK) [30]

1.1. Total size of package

19

Automatic rule-extraction for malware detection on mobile devices

1.2. Entropy of different parts of package (helps to reveal encrypted information)

1.3. Length of package name, length, etc

1.4. Permissions

1.5. Specific version requirements to Android platform.

2. Computational resources

2.1. Central Processing Unit (CPU) utilization2

2.2. Actual and virtual memory consumption [61]

2.3. Amount of generated threads3 during execution

2.4. Occupied memory on device’s storage

3. Stored information

3.1. Volatile Random-Access Memory (RAM) memory

3.2. Application’s own folder4

3.2.1. SQLite5 databases

3.2.2. Different files

3.2.3. Binary libraries with Java Native Interface (JNI)

3.2.4. Web cache and browser cookies

3.2.5. Shared preferences

3.3. External memory (like SD card)

3.4. Different log files

4. Application execution

4.1. Frequently requested host

4.2. Type of user’s sensitive information, which was transmitted

4.3. User and system functions calls traces

4.4. Log of the application launching process

4.5. Stolen and transmitted IMEI6 or UDID7 codes

Usage of defined above artifacts significantly depends on application functionality, purposes
and possible intentions. It may happen that application presents only static information on the
screen and resources consumption is non-changeable as a result.

2In this particular case shows percentage of maximal possible CPU computational capacity, which is using by the
running applications

3In computational theory, thread means smallest part of the data processing that can be assign by the CPU. One
running process (application) can contain several threads, which can be executed in parallel and independently

4All information related to installed applications inside Android device is stored in the folder ’/data/data/application’
5SQLite - lightweight relational database management system without client-server separation of the architecture
6International Mobile Equipment Identity
7Universally Unique Identifier

20

Automatic rule-extraction for malware detection on mobile devices

3.2.3 Nature of data

Since artifacts have different information nature and expression, our task is to process them
properly for further using. Computer-based realization of statistical methods can hold naturally
only numerical data so all used features are transformed from high level to low level numerical
data. Additionally, this data needs to be scaled and normalized in order to achieve generalization.
So, the task is to perform preliminary statistical pre-processing of raw security features for getting
appropriate classification results.

For defined problem one can distinguish following possible data types, which can appear
during application testing [62]:

• According to quality measure:

1. Categorical

1.1. Nominal (unsorted)

1.2. Ordinal (can be sorted according to some criteria; have central tendency)

• According to quantity measure:

1. Binary

2. Continuous

3. Discrete

4. Range

As an example of categorical data we can consider requested permissions. Each of the per-
missions has following string format ’RECEIVE_SMS’ that briefly describes the feature or a func-
tionality of the device that an applications intends to use. In order to extract security-related
meaning we decided to assign degree of security risk that such permission can cause according
to studies [63, 64]. Therefore, we performed mapping as it is depicted in the Table 2. It was
empirically defined 5 levels of risks: 0 - low, 1 - medium, 2 - high, 3 - dangerous, 4 - critical. The
higher the number assigned to a permission, the more damage it can cause.

In additional, it should be mentioned that non-numerical features have to be transformed
in corresponding numerical values with entire meaning preserving. This is done by utilizing
probabilistic modeling of each item appearance in nominal and ordinal features types.

3.2.4 Features extraction

Most of the contemporary mobile applications have a complex and an object-oriented nature
with implementation of sophisticated functionality. In addition to this, various code obfuscation,
fragmentation and slicing techniques were invented, which make manual reverse engineering
process difficult, time-consuming and sometimes infeasible [12, 65]. That is why our proposal is
to concentrate first on "black box" tests (to be discussed in the Section 3.3) of the application. It
gives an opportunity to develop unified test concepts that suits for different application testing.

Initially, features that are extracted based on pure static tests. During this phase an application
is not executed. Finally, feature extraction from dynamic tests is performed in protected emulated
environment .

21

Automatic rule-extraction for malware detection on mobile devices

Permission name Risk Level
READ_EXTERNAL_STORAGE 1
WRITE_EXTERNAL_STORAGE 1
READ_SMS 2
SEND_SMS 2
RECEIVE_SMS 2
READ_CONTACTS 2
WRITE_CONTACTS 2
WRITE_SECURE_SETTINGS 3
AUTHENTICATE_ACCOUNTS 3
PROCESS_OUTGOING_CALLS 3
READ_LOGS 3
BILLING 4
ADD_SYSTEM_SERVICE 4

Table 2: Mapping categorical permissions names to numerical risk levels

During static applications testing following goals are achieved:

• Code structure traversal

Disassembled Android Dalvik Executable Format (DEX) file can be characterized by dif-
ferent features: amount of implemented functions, functions calls, required libraries or
resources, used variables, stored in functions predefined information, etc.

• Processing of accompanying to application information

Following descriptive statistics features to be gathered: entropy (gives understanding whether
stored data is encrypted or compressed by means of bigger value of entropy [66]), seeking
for frequency of specific keywords (function names or locations), ip addresses, etc.

• Calculation of different application’s parts sizes

Reveals hidden and unusual data that are stored inside application package. May contain
malicious payloads.

After artifacts analysis, security features are constructed manually based on expert knowl-
edge. This is a crucial task in ML that allows us to utilize automated application testing and
analysis on prepared data. After features construction it was empirically chosen several domains
for building corresponding security metrics. Each of the domains can be described by several
relevant features. Then, RELIEF method was applied to weight features in security metrics.

There are a lot of possible artifacts and we decided to concentrate on the most important
and relevant for the defined problem. Following security-related features are going to be derived
during statical and dynamical tests including continuous behavioral analysis:

Feature name Description
id_featureSet Identity number of processed features during statical and analysis

test of application

22

Automatic rule-extraction for malware detection on mobile devices

id_app Identity number of an application in database
id_test Identity number of performed test
sdkVersion Minimal version of software development kit (Android API ver-

sion), needed for application execution
targetSdkVersion Target version of software development kit (Android API version),

necessary for successful application execution and running all de-
veloped functionality without restrictions

app_label_length Length of the application’s label
package_name_length Length of the application’s label (usually has a format

’com.application’)
filesize Size of APK installation package file
permissions_highest The highest numerical level of permissions [!!!link to description]
permissions_avg Average numerical level of permission
permissions_number Amount of permissions requested by application
pull_data_size Amount of application’s own data that were stored and collected

during dynamic test cycle in application’s folder ’/data/data/ap-
plication’

log_launch_size Size of pulled log file that contains verbose system output during
application launch process

cpu_usage_peak Peak value of CPU utilization during dynamical test of application
cpu_usage_avg Average value of CPU utilization during dynamical test of appli-

cation
cpu_usage_stdev Standard deviation value of CPU utilization during dynamical test

of application
thr_usage_peak Maximal amount of created threads by an application during dy-

namic test
thr_usage_avg Average amount of threads created by an application during dy-

namical test
thr_usage_stdev Standard deviation of amount of threads created by an application

during dynamical test
vss_usage_peak Maximal size of virtual memory used by an application during

dynamic test
vss_usage_avg Average size of virtual memory used by an application during dy-

namic test
vss_usage_stdev Standard deviation of size of virtual memory used by an applica-

tion during dynamic test
rss_usage_peak Maximal size of resident memory used by an application during

dynamic test
rss_usage_avg Average size of resident memory used by an application during

dynamic test
rss_usage_stdev Standard deviation of size of resident memory used by an appli-

cation during dynamic test
shared_prefs Number of shared preferences XML files in ’/data/-

data/share_prefs’ folder
shared_prefs_size Size of all shared preferences files
databases Number of stored databases in ’/data/data/databases’
databases_size Size of all stored databases

23

Automatic rule-extraction for malware detection on mobile devices

files Number of stored databases in ’/data/data/files’
files_size Size of all stored files
package_entropy Shannon entropy of the APK installation package [66]. The En-

tropy is a measure of an information uncertainty, which helps to
reveal encrypted information inside the file

package_number_files Total number of files in APK package
manifest_size Size of APK configuration file ’AndroidManifest.xml’
res_folder_size Size of the folder with additional resources such that interface

and multimedia elements
assets_folder_size Size of directory with application’s assets
classes_dex_size Size of Dalvik Executable Format (DEX) files (already compiled

Java classes)
classes_Dex_entropy Shannon’s entropy of Dalvik Executable Format (DEX) files
execution_time

Table 3: Labels and description of the security features

The assumption regarding relevance of all features is not always true and depends usually on
the application functionality. Therefore, we try to select most stable and robust ones.

3.2.5 Security metrics construction

During statical analysis of given application and dynamic testing, we are able to extract multiple
features (or measurements), which describe each particular application. Metrics are more related
to human interpretation than low-level raw input features [9]. Our task is to create metrics
that are repeatable, measurable and can characterize some domain by bunch of raw features. It
means that previously mentioned features need to be converted into a numerical metrics, which
are expressed in form of mathematical equations.

In order to assess influence of malware on such important information-security assets like
Confidentiality, Integrity and Availability we need to perform related security-metrics construc-
tion. One can consider extracted features as a characteristics of some domains of mobile plat-
form. So, they can be composed into single security metric, which has much more significance
than single feature. Moreover, security metrics are treated as particular domain’s property.

Our proposal for security metric is to utilize linear combiner over features, which are in the
same domain and have similar meaning:

Metrici =
1

N
·wk ·

N∑
k=1

Featureki
(3.1)

Where Metrici - corresponding security metric, Featureki
- a feature that belongs to this

metric, wk - weight of a particular feature in the security metric and N - amount of features that
are related to the metric.

As an example, CPU utilization can be characterized by a single security metric:

CPUMetric =

3∑
k=1

cpu_usagemk
·wk (3.2)

24

Automatic rule-extraction for malware detection on mobile devices

Where CPUMetric - is a security metrics that describes CPU usage, wi - weight of each
particular feature in this metric and set of corresponding features is m = {avg, stdev, peak}.

Weights define significance and level of influence of each particular feature on security metric.
The optimization procedure along with expert knowledge needs to be applied in order to find
optimal weights. After study of corresponding feature-selection approaches for binary, RELIEF

was chosen as the most appropriate method [10, 67]. It provides feature selection and attributes
quality evaluation for defined binary classification problem. What is more, the RELIEF estimates
not only correlation between the features, yet also interrelation. Additionally, RELIEF shows the
importance of particular attribute in distinguishing between instances from opposite classes (for
the details, please see the Figure 3.3). Nevertheless, feature selection problem and particularly
RELIEF are open for the future study.

Wi =Wi − diff (xi, nearHit)
2
+ diff (xi, nearMiss)

2 (3.3)

where xi - an input pattern, Wi - merit (weight) of corresponding feature, nearHit - nearest
example for the same class, nearMiss - nearest example from the opposite class.

The features were divided into several domains: statical tests data, dynamical tests data,
resources usage, permissions, SDK details. Then, RELIEF was applied to each domain that gives
features weights.

3.3 Malware detection using ML

ML an PR were defined previously as a powerful and suitable tool for malware detection problem.
In this Chapter we support idea for ML usage by considering different sides of the detection
process. In this thesis, an application testing is considered as a "black box" process [68]. It means
that there used only low-level observable information, yet not an abstract-level information such
that functionality or implementation details. "Black box" paradigm to be used in dynamic tests is
shown in the Figure 4.

Figure 4: "Black Box" testing scheme

By utilizing mentioned paradigm we want to dig into two following problems:

• Features extraction from available observation in "black box" testing process, which is nec-
essary for detection.

• Reliable malware detection as automated process using ML instead of non-automated anal-
ysis like androidguard [69].

25

Automatic rule-extraction for malware detection on mobile devices

3.3.1 Dynamic-focused methods

Dynamic "black box" test routine targeted on collecting behavioral observations in volatile dy-
namic environment. Generally it includes next steps: start data logging process, application in-
stallation and launch, user activity simulation, application stop and installation, stop logging
process. User simulation allows to execute predefined combinations of actions in application to
be tested. Additionally, network is simulated in order to capture live network traffic, which is
generated by the application.

In addition to static test, dynamic test has to be executed for achievement of more comprehen-
sive understanding of general intentions and functionality of an application. Basically dynamic
application test is an execution in emulated or real environment with pre-selected sequence of
actions. It is a powerful instrument that helps to collect data, which characterizes an application
over period of observation. Information flow tracking, function calls and network traffic are go-
ing to be extracted. Eventually, features extraction from different behavioral observation is done.
We mention some of the possible statistical models, which cover different domains of behavioral
analysis.

Probabilistic models

Dynamic behavioral test is a stochastic process that is defined by an application and execution
conditions. In spite of the fact that test initial test conditions are equal, the observable data
varies. Probabilistic models are important for modeling some covert process and prediction fu-
ture actions. The most powerful approaches, which found application in malware detection are
Hidden Markov Model, Gaussian Mixture Model, n-gram, etc.

For example, probabilistic model can be used for detection patterns in log files. Log files are
verbose output of some events. Based on frequency of such events and their order in sequence,
we can predict whether application is trying to execute malicious operation or such operations
are benign. Example of such log file obtained while launching Android application is presented
in the Appendix D.

In real world, no absolutely correct prior information is available. Therefore, this information
defined from empirical considerations either extracted from collected statistics. The idea behind
utilization of probabilistic models is forecasting nature of some process. It means that unknown
or missing data can be easily modeled by such models.

Time series

Some of the behavioral data observable in dynamic test represent sequence of simple events (or
measures) like CPU or memory utilization. Such sequences are called time series and usually are
taken within equal time ranges. It can be processor load, memory usage, network traffic, etc.
For analysis it may be required to have more previous observations than already exist. Due to
software and hardware delays, the resources usage measurements can be obtained once in 3-10
seconds while communicating with emulator. Also it might be required to predict future value in
a time range, which is unavailable in previously accumulated information. Therefore, time series
analysis might be used as a powerful supplementary tool.

From observed data during dynamic tests we use cubic spline8 approximation model in order

8Approximation by piece-wise polynomial function with defined degree

26

Automatic rule-extraction for malware detection on mobile devices

to predict values of consumption of the resources for past events and future. Samples of the
implementation is C++ is presented in the Appendix F. The results are depicted on the Figure
5, where X-axis - time in seconds and Y-axis - CPU utilization. As it can be seen, the red points in
the Figure represent predicted values.

Figure 5: Sample of approximation usage. Blue points - obtained values, red points - approximation of
previous existing interval values (at 1 and 40) and future one (at 52)

Additionally, for this purposes can be used different methods with outliers and missing data
correction: Extrapolation, Linear Prediction, Alignment Prediction, Kalman Filter [70]. Finally,
we would like to emphasize that time series analysis is a promising area of ML, which can find
application in malware detection.

Information-based dependencies

Dynamic behavior of an launched application can be characterized by function calls during ex-
ecution. As it was studied before [71], all application call a huge number of functions during
launch and running process. Such sequences of user’s or system’s functions calls may produce
calls graphs. Similar obfuscated malware implies same functionality and uses the same functions,
yet in slightly different calling order. In the Figure 6, the function calls of initial installation of
the Android application is depicted.

Figure 6: Android application function calls sequence obtained from strace [72]

Such function call traces can be expressed by means of the graphs represented in the Fig-
ure 7. The obtained graph can based in information-based dependencies comparison for similar

27

Automatic rule-extraction for malware detection on mobile devices

patterns detection.

Figure 7: Graph of the Android application function calls

Therefore, graph-based dependency matching techniques might be used for pattern allocation
in dynamically tested applications. It means that by comparing such patterns, malware detection
method can be enforced and protected against polymorphism and obfuscation.

3.3.2 Feasibility of building automated malware detection expert system

Due to constraints in common user’s knowledge it is not possible to prevent malware even with
sophisticated detection solution. This problem appears because malware-prevention systems usu-
ally requires human interaction in critical situations.

The expert system as a solution for mentioned problem can use both knowledge database
and user interface for interaction as it is shown on the Figure 8. However, the challenge of expert
systems utilization is to achieve appropriate trade-off between required operator knowledge and
detection rate [73]. User interaction has to be kept as little as possible for performance and
stability of detection considerations.

Figure 8: Expert system model

By looking toward theory, we are considering a possibility of making on-line and trainable
malware detection expert system. We are proposing to use FL as a flexible mechanism in dealing
with behavioral data processing. Such an expert system is suing previously collected and learned
knowledge for performing detection without human interaction. Even taking into consideration
complexity of such system it allows to optimize malware prevention process.

Since malware is developed usually by unknown people or organizations, it appears hard to
obtain comprehensive entire structure and implemented functionality. Hence, manual malware
reverse engineering is the most appropriate approach for getting such sort of knowledge. As
malware reverse engineer intends to manually disassemble and analyze any kind of programs.
Although, such methods has a high level of efficiency, precise manual processing is infeasible
under time constraints and numerous samples. Thereafter, detection signatures should be pro-
duced.

Taking into account mentioned challenges, our proposal is to utilize ML as both program
analysis and malware detection procedure. Initially, all possible features are extracted utilizing

28

Automatic rule-extraction for malware detection on mobile devices

statistical methods. Finally, detection procedure is performed based on extracted decision rules.
This is elaboration on the author’s previous work on automated comprehensive mobile applica-
tions analysis and detection [16].

Perspective in big data analysis

As it was mentioned before, manual applications testing and analysis are not appropriate for
examination of large collections of these applications. Current applications databases such that
mobile app markets (like Google Play [20] or Apple Store [22]) and entire company’s application
pool are growing exponentially and continuously. Additionally, they are widely distributed and
rapidly changing environments with proactive nature. Most of the existing basic ML solutions are
targeted on off-line data processing and learning from training set [49]. In case if training set
is changing, statistical model should be retrained from the beginning. These are the challenges
that appears while dealing with big data analysis [74].

For slackness of defined challenges our goal is to use ANN learning for rules extraction. ANN is
trained from input pattern gradually, which allows to utilize more recent data and apply forgive-
ness principle over "old" data. It implies that detection rules extraction is appropriate for using
in a huge data on-line analysis with dynamic nature. In contrast to off-line methods, ANN helps
to reduce overall operation complexity and training time for building corresponding statistical
models. It can be also added that proposed malware detection utilizes ML over both dynamical
and statistics test data unlike existing Google Bouncer technology [38].

3.4 Analysis and neuro-fuzzy rules extraction for malware detection

In this Section the author gives overview of existing fuzzy logic rules construction and their
significance in expert systems. Furthermore, our own procedure for binary classification problem
with rules tuning is presented.

Basically, fuzzy rules that are going to be studied further represent linguistic patterns ex-
tracted using neuro-fuzzy approach:

IF METRIC1 = A AND METRIC2 = B) => CLASS = [benign|malicious] (3.4)

Where A and B can be any linguistic quantitative terms.
Human understandable decision can be treated as scientific knowledge derived from scien-

tific methodology according to the Daubert criteria. Therefore, this is a crucial part of forensics
investigation and understanding of malware’s success conditions can be resolved by proposed
methodology.

3.4.1 Overview of the procedure

Basically, through this work we are seeking for malware detection approach, which could provide
both reliable detection process and native human understanding of this process. From studied
researches [13, 15, 14], it can be concluded that FL is a more appropriate ML procedure for this
task. The FL represents itself a powerful and well studied area of classic logic, which is widely
used in computer-based decision making systems [75, 76]. It combines both adjustable features
sets and deducible by human reasoning and conclusion.

By contrast with classical mathematical logic, FL utilizes linguistic variables in conclusion

29

Automatic rule-extraction for malware detection on mobile devices

making process. Transition from numerical, continuous or ordinal values features to a linguistic
variables is performed [76]. This operation utilizes various statistical methods in order to obtain
numerical parameters, which characterize each term of a corresponding variable. The linguistic
variables represents fuzzy sets of a particular raw input feature or security metric [75, 77].

3.4.2 Fuzzy logic

Despite of the fact that FL is a domain of classical binary logic with two possible values (True and
False), fuzzy logic outcome conclusion could be any real values in [0,1] interval. This is because
of usage so-called degree of fuzzy statement’s membership, which is defined as a membership
function [76]. So, each statement IF-THEN in FL can be not only TRUTH or FALSITY, yet also
may hold concept of PARTIAL TRUTH that agrees with human understanding and reasoning.

Fuzzy sets inherited belongings principle from classical logic theory. Each set includes ele-
ments with the same sense or similar characteristics, which distinguish them from others. Yet,
element of fuzzy set has degree of membership to this set [76]. General set is a collection of ele-
ments A = {(xi)}, which belongs to a set with 100% degree. In FL, one element can be assigned
to more than one fuzzy set. So we have:

A = {(xi, µ(xi))} (3.5)

Where µ(xi) - is a membership degree of a particular element of this fuzzy set.
The membership degree is defined by membership function, which depends on statistical

nature of the corresponding feature in a fuzzy set. There could be mentioned few possible Mem-
bership Function (MF) [75, 78]:

• Triangular

µ(xi) = max(min(
x− a

b− a
,
c− x

c− b
), 0) (3.6)

• Trapezoidal

µ(xi) = max(min(
x− a

b− a
,
d− x

d− b
), 0) (3.7)

• Gaussian

µ(xi) =
1

e
(x−a)2

2b2

(3.8)

• Bell-shaped

µ(xi) =
1

1+ |
(x−a)
c

|2b
(3.9)

All the statistical parameters (a, b, c, d) in equations above are taken from the analysis of
a given fuzzy set’s elements. Example of parameters influences on membership functions are
presented in the Figure 9. Most real data contain white noise and fault entries, which influences

30

Automatic rule-extraction for malware detection on mobile devices

all elements in fuzzy set to be normally distributed (for more details see the Figure 26). It means
that the most appropriate membership function for the malware detection based on real data is
Gaussian9 membership function.

Figure 9: Membership functions examples [79]

The most important phase of FL statements construction is a transition from general raw input
features or metrics to linguistic variables [79]. One can describe it as following:

1. For a particular new linguistic variable, there should be defined subjective linguistic terms:
T(linguisticVariable) = term1, term2, term3. These terms can be used as general mea-
sure applicable in most cases: LOW,MEDIUM,HIGH or other specific values.

2. By utilizing statistical analysis over input feature x0...xn, we extract defined above (in the
Figure 9) parameters (a, b, c, d) for membership functions for each term in a linguistic
variable.

3. Calculation of Membership Function (MF) µ(xi) for arbitrary test raw input feature xi for
all used terms in linguistic variable are performed. The minimal value

One can sketch the general transformation process that assigns a linguistic term with degree
of membership to a new input raw feature. So this process provides a fuzzy association to many
linguistic terms with truth value, which is much better to use in computational intelligence sys-
tems instead of discrete associations. It means that one can organize detection procedure in a
way, which is appropriate for both detection and human natural reasoning. Decision rules are
based on linguistic variables as values of logical statements.

3.4.3 Rules extraction using neuro-fuzzy

Because of we need to resolve the binary classification problem, our task is to construct deci-
sion trees for two classes utilizing fuzzy logic. This means that the general logic statement are
extracted:

9The Gaussian or the Normal distribution is usually used in case if it is necessary to deal or to model the real life case
data.

31

Automatic rule-extraction for malware detection on mobile devices

IF x0 ∈ LinguisticVar0(term) & . . .& xn−1 ∈ LinguisticVarn−1(term) THEN y ∈ Ck,
where LinguisticVar0 and LinguisticVarn−1 are corresponding linguistic variables. Addition-
ally, the corresponding terms for each linguistic variable should be found based on minimal value
of Membership Function (MF). Each part x0 ∈ LinguisticVar0(termq) of the rule is called atom
and y ∈ Ck - consequent or conclusion [75]. In our classification problem, each consequent has
only two possible verbal values (benign or malicious). Meanwhile, malware detection problem
is a multi-domain problem, so there are significant amount of atoms in each rule.

It can be highlighted that rule-construction process becomes a considerable procedure in
malware detection process. Consider rules construction as a processing and transformation from
raw input features to a useful and a significant set of relevant rules. It combines two steps:

1. Rules extraction

During this step, all possible rules are extracted using extracted fuzzy sets from raw input
features. Complexity of this step equals to O(Mn) and depends from amount of input
features. It means that amount of all possible extracted rules grows exponentially with
increasing input data dimensionality n. Also amount of possible terms in each linguistic
variable M affects complexity as well.

2. Rules selection

Since constructed rules contain multiple rules with irrelevant or insignificant sense, addi-
tional filtering has to be applied. By means of statistical learning we select the most relevant
and weighty rules for defined problem.

Considering rule-selection task as the main optimization problem we would like to denote
next Section to this step. For performing multidimensional and non-linear optimization, ANN is
better solution than any existing evaluation methods. ANN provides human-like reasoning of the
problem and can be natively interpreted as results.

Adaptive learning systems such as ANN have became important statistical modeling tools
in recent few decades. Due to flexibility in model construction ANN is widely used in pattern
classification. The main disadvantage of the ANN is a complexity of a statistical model that was
extracted from data. This is because all obtained weights for each layers are difficult to interpret
and to represent in human-understandable manner.

General feed-forward10 single-layer11 perceptron has functional structure, which is shown in
the Figure 10. It consists of input neurons, neurons strengths defined by corresponding weights
and linear combiner.

Building of a statistical model utilizing ANN includes following steps as any of ML and PR
approaches [76]:

• Training

During this phase, collected classified patterns (processed malware samples) are going to
be processed. This process means extracting statistical parameters for construction of the

10The feed-forward ANN implies that the signals inside the network are going strictly from input to output without
cycles and reverse connections

11The single layer ANN consist of only single layer of the output nodes

32

Automatic rule-extraction for malware detection on mobile devices

Figure 10: Scheme of a single layer perceptron

model. Training is an iterative mechanism that allows to extract the meaningful informa-
tion for characterization of given data. Finally, this characterization provides possibility for
new data classification without using given data set and expert knowledge.

• Testing

Given new unclassified sample of application (pattern), ANN defines its class (malicious or
benign) with some tolerance (error threshold) based on learned statistical model.

As the measure of learned model quality, stopping criteria can be utilized. It is necessary
to use such criteria due to limit execution of Training phase when model does not show any
improvement on it. That is why Training of ANN includes following stopping criteria:

• Nepochs - amount of epochs,

• |di − yi| < ε - absolute difference between actual model output and desired class of the
sample is less than defined error threshold,

• |Wk −Wk−1| < ε - absolute difference between ANN weights on current and previous step
is less than defined error threshold,

• |W
′

k −W
′

k−1| < ε - absolute difference between derivatives of the ANN weights on current
and previous step is less than defined error threshold.

Output signal from the combiner can be additionally processed by means of activation func-
tion. The weights define degree of influence with which corresponding input neuron affects
output signal. By contrast with general ANN, in NF adaptive systems input neurons receives pre-
viously processed metrics or features while preserving general concept [76]. It means that there
is a bigger amount of inputs due to considering of each term in each linguistic variable as a input
neuron. Furthermore, that we treat each term’s membership function as a neuron input instead
of using raw input features.

In general simple NF system, additional layer of Mn linguistic terms is added as it is depicted
in the Figure 11. Training phase is performed by means of adjusting each rule’s weight. Finally,
rules have the following format:

33

Automatic rule-extraction for malware detection on mobile devices

R1 : IF x1 is A
1
1 AND x2 is A

1
2 THEN z is B1 (3.10)

Figure 11: Simple NF system architecture

For our task we use following structure of the NF system:

• Layer 1

Raw input data vector. This is security features.

• Layer 2

Process of input data fuzzification according to defined fuzzy membership function and
terms in each linguistic variable.

• Layer 3

Rules extraction. Each rule represents one ofMn possible combinations of terms in linguis-
tic variables.

• Layer 4

ANN output signal to be compared with corresponding pattern (class identification num-
ber) of input data.

Mentioned previously NF procedure is an integral part of fuzzy inference system, which goal
is to extract associative rules for decision making [56]. By applying fuzzy inference principle,
training of NF system 11 can be treated as dual optimization problem. First, AND operand has
to be applied in order to find the membership degree of each constructed rules with following
format example [77]:

IF (x0 ∈ LinguisticVar0(term1)) AND (x1 ∈ LinguisticVar1(term3)) (3.11)

The membership degree according to T-norm [76] is calculated as next:

Class1∧ Class2 = min(µA(X), µBX) = µA(X) · µB(X) (3.12)

34

Automatic rule-extraction for malware detection on mobile devices

We are using linguistic term membership function values multiplication as a way for fuzzy
AND computing. Operation OR is based on maximization of membership values and is performed
as following:

Class1∧ Class2 = max(µA(X), µBX) = µA(X) · muB(X) (3.13)

So for each extracted rule we compute rule’s membership function using fuzzy inference
principle as it is shown in the Figure 12.

Figure 12: AND-OR rule-extraction principle[80]

Input features distribution defines distribution of output membership values for. Each rules in
output has its own distribution over input linguistic terms. It means that depending on the un-
labeled new data, the output rules membership function varies. Transition from input linguistic
fuzzy terms in addition to transition security features to security metric provides more possibility
to model precise non-linear dependency between input raw data and class label.

We realized that ANN is suitable adaptive procedure. Thus, it is used as rule-construction
engine in our work. The rule-construction process is represented in the Figure 13. To cope with
procedure understanding problem, we applying bunch of ANN and FL. So, NF ensembles both
non-linear statistical modeling and rules extraction for malware detection.

Innovative rules tuning and selection

In this subsection, the authors are solving the critical question: whether all of the contracted
rules are going to be used or amount of necessary rules can be decreased? We introduce our
approach for rules selection based on consequent decision weights.

The extended structure of fuzzy inference system is presented on the Figure 14. Each layer
should have corresponding array of weight for each neuron in this layer. This increases robustness
and non-linearity of the NF. However, we are considering NF as a rules extraction instrument.

35

Automatic rule-extraction for malware detection on mobile devices

Figure 13: Scheme of rule-extraction process

That is why for our problem, the most important role play each rules layer weights. As basic
approximation, we assign to input layer and to consequent layer equal weights and do not use
them in calculations.

Extracted metrics tend to have normal distribution, which is characterized by central tendency
and dispersion. Therefore, Gaussian functions is used for membership degree values calculation
[76]:

µ(xi) =
1

e
(x−a)2

2b2

(3.14)

After the rules extraction phase, we are faced with two problems:

1. Rules redundancy

So, we need to prune Mn rules in order to obtain simpler and robust model. This model is
described by selected rules and can classify application with some degree of tolerance.

2. Covering the range of fuzzy set values

It might happen that due to complexity in metric’s relationship, obtained statistical model
(rules) can have overfitting [10]. It means that less significant rules (based on negligible
amount of training samples) produces error on testing phase.

Problem 1 can be solved by utilizing Delta learning rule, which is variation of a Hebbian learn-
ing rule [82]. It justifies that the neurons, which have stronger degree of influence, have bigger
value of connection’s weight. As we need to select most relevant rules, the selection decision
should include rules weights as a decisive factor [formula]. In other words, rules that have the
smallest weights is excluded from statistical model. Finally, this approach provides most impor-
tant and significant rules for classes separation.

36

Automatic rule-extraction for malware detection on mobile devices

Figure 14: Sample of extended NF scheme [81]

Problem 2 is solved by transferring defined two classes problem in a single class domain: part
of the samples are labeled "class A" and all others are "non class A". Therefore, according to logic
theory, one can extract rules for only single class whose rules have bigger significance.

It should be mentioned that NF can not be trained for each class separately, because informa-
tion from other class is lost. That is why input membership function’s statistical parameters are
extracted from all data set. Finally, NF is trained based on two-classes labeled data.

The main idea of our new proposed method is to utilize unsupervised and supervised ML
approaches together in fuzzy inference system for rules construction:

• Supervised learning - approaches for training with labeled samples.

Neuro-fuzzy takes as labeled input samples from both classes, which allows to build error
cost function for weight optimization as following:

C =
∑

(yi − di)
2 (3.15)

This function is related to posterior probability of appearance of each input pattern after
processing given data. The example of error cost function that is described by the Equation
3.15 is presented in the Figure 15. Our task is to minimize this function that provides us
optimal weights values for each rule. By utilizing Gradient Descent [10] the cost function
C can be optimized in order to get optimal value of weight. The optimization problem is
related to rules weight. Therefore, the best direction of adjusting will be along the partial
derivative of the cost function. After differentiating using chain rule, the partial derivative

37

Automatic rule-extraction for malware detection on mobile devices

of the function will have following form:

∂C

∂ωi
=
∂
(
(yi − di)

2
)

∂i
=
∂
(
(yi − di)

2
)

∂di
· ∂di
∂ωi

= −2 · (yi − di) .
∂di

∂ωi
(3.16)

Figure 15: Example of weights error function with obvious local minimum

• Unsupervised learning - approaches for revealing concealed dependencies and structures in
data.

Processing extraction of constructed rules according to some user-defined criteria such that
neuron weight or membership function values.

Error cost function represents multidimensional function over rule’s weights as input vari-
ables. In order to find local minimum of this function, we use first-order optimization method
- Gradient Descent (GD). Using the partial derivative of the cost function 3.16 we can find the
optimal change of the weight:

∆ωi = −α · (yi − di) · xi (3.17)

where actual output of the Network is yi = 1
1+ez , z =

∑
iwixi and xi is an input pattern.

GD optimizes cost function in direction that is opposite to gradient of the error cost function
in a particular input value. It means that each weight is adjusted separately from other and
proportionally to projected error on current iteration. Despite solving optimization problem,
there exists other drawback of GD usage. The rate α should be chosen optimally on in order to
get local minimum for each of the weights on each iteration. The Figure 16 is showing difference
in using different rates [83]. As the enhancement of the GD, one-dimensional optimization can
be used in order to find optimal learning rate.

Finally, the constructed fuzzy rules should follow the next concept [84]:

• Consistency

Set of rules has to be the same over different runs with the same input parameters.

• Steadiness

Classification using extracted rules set should provide the same accuracy of classification
on the same testing data set.

38

Automatic rule-extraction for malware detection on mobile devices

Figure 16: Influence of the learning rate on Gradient Descent performance: blue rate is optimal, red is
adjustable [83]

Proof-of-concept demonstration

As a basic example we have chosen to utilize Iris Data Set for training and testing of proposed
previously method [85]. The dataset consists of four numerical features: ’sepal length’, ’sepal
width’, ’petal length’, ’petal width’. In total there represented 150 instances. The fuzzy rules were
used successfully for Iris Data set classification before [86, 87, 88], so we decided to execute
proof-of-concept demonstration on this dataset. Despite the fact that this data set has originally
three classes, we modify it for our purposes. The following binary classification problems were
obtained with 100 data samples in each:

1. Iris Setosa vs Iris Versicolour

2. Iris Setosa vs Iris Virginica

3. Iris Versicolour vs Iris Virginica

Each of four features represented in Iris Data set has normal distribution as it is shown in the
Figure 17. Using this assumption, we provide fuzzification using Gaussian membership function
mentioned previously.

Among mentioned 100 samples, 90 are used as a training dataset and 10 as a testing dataset.
Further experiments including training/testing phases were performed with equal amount of
terms in each used linguistic variable. There were also utilized three (LOW, MEDIUM, HIGH)
and 5 terms (VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH). For linguistic variables with
three terms, we use following membership functions centroids: µ − σ, µ, µ + σ. In case of five
terms, the set includes following centroids: µ − 2 · σ, µ − σ, µ, µ + σ, µ + 2 · σ. The procedure
can be sketched in pseudo-code as following algorithm depicted in a Pseudocode 1.

The results of proposed procedure execution are presented in the Tables 4 and 5. There was
use ANN with 1000 epochs. More information and examples of extracted rules can be found in

39

Automatic rule-extraction for malware detection on mobile devices

Figure 17: Distribution of Iris Data set features for different classes [89]

the Appendix C.
The Figures 18 and 19 show results of rules extraction process for Setosa-Versicolor classifi-

cation problem with three and five terms in linguistic variable respectively.
In compare to other studies targeted on fuzzy rules extraction our method provide more naive

rules. Example of the corresponding fuzzy rules are shown in the Figure 20. It can be noticed
that the rules represented in the Figure 18 has less complex expression. However, the detection
accuracy of proposed method is not vary significantly from the method that was used in [86].

Anomaly-detection perspective

The malware detection problem with utilizing fuzzy rules can be solved from anomaly-detection
perspective as well. The main difference between anomaly (behavioral-based) and signature
(knowledge-based) detection mechanisms is using baseline of normal behavior [1, 2]. Particu-
larly, one can distinguish two behavioral domains:

• User - specific interaction between a user and a device.

• Program - interaction a program and OS under specific conditions and triggered events,
which mainly depends on user activity and stored information.

The baseline can be learned gradually or defined initially as a prior information. However,
most of the available anomaly-detection solutions are experimental and depend on area of uti-

40

Automatic rule-extraction for malware detection on mobile devices

Figure 18: Rules for Setosa-Versicolor classification, three terms

lization. This is because user influences program execution and it varies a lot from host to host. As
a result, there are no universal datasets of normal behavior such that in case of signature-based
solutions.

One can state that for anomaly detection, proposed security metrics can be used. NF is able
to learn continuously from new data and partially "forget" old one. That is why there is a per-
spective of tuning proposed method with special focus on behavioral analysis. Supporting metrics
should be developed in order to characterize efficiently behavioral patterns. For example, Hidden
Markov Model can be utilized for probabilistic modeling of program execution with dependency
on user location and time [10, 90]. Our future work can be sketched as extension of developed
method in order to analyze behavioral data. As it was studied earlier [91], a lot of behavioral
data are accessible on mobile devices. Therefore, elaboration on behavioral analysis using NF
can provide appropriate detection rate. Moreover, extensive study of user profiles is needed.

3.4.4 Application in big data analysis

Recently amount of applications in applications markets is growing exponentially. This leads to
impossibility to process and analyze all the applications using available security solutions in rea-
sonable time. Big amount of applications are submitting and new vulnerabilities are discovering
every day. One can characterize such markets as a huge dataset, widely distributed, proactive,
dynamic and rapidly changing environment. As results, the problems related to huge data are
appearing [74].

41

Automatic rule-extraction for malware detection on mobile devices

Figure 19: Rules for Setosa-Versicolor classification, five terms

Several advantages of proposed method for a huge data analysis can be highlighted. Firstly,
security metrics help to eliminate curse of dimensionality [92]. This is due to the fact that di-
mensionality of security metrics vector is much less than dimensionality of raw features vector.
Consequently, complexity of the statistical model is less and learning time is shorter. Secondly, NF
is fast, flexible and extremely adoptable method. Additionally, it has an ability to learn new data
continuously without full re-training of the fuzzy model. Therefore, there is no need to update
whole data base of signatures as it is in pure signature-based solutions.

Known obstacles
In this section we provide overview of possible obstacles that one can face during feature-

extraction process.
From one side, one can consider input data as a source of errors and inaccuracies in rules

extraction. It was mentioned previously that data preprocessing is a vital step in each ML pro-
cess. Due to diversity of data types (like nominal and ordinal features) and noise in input data,
rules can be extracted with considerable level of error. Therefore, utilizing of normalization and
filtering helps to decrease influence of such negative factors.

From the other side, specific details of proposed method have to be taking into account.
ANN is utilized as a complex and powerful pattern matching procedure that allows to solve
us defined problem. However, due to significant theory beside it, there are some unavoidable
drawbacks. This is in accordance to "no free cheese rule". Initially, we should consider overfitting
of the statistical model in training phase. Due to this specificity of ANN, after some number of
epochs, model is becoming over-trained. This leads to small error on training set validation and
incremental error on testing set as it is presented in the Figure 21.

42

Automatic rule-extraction for malware detection on mobile devices

Figure 20: Sample of fuzzy rules extracted for Iris dataset classification [86]

As a slack solution to this problem, one can propose to use more advanced stopping criteria
and use them in ensemble. It ensures that the model does not overfit train data. That is why early
stopping is needed for getting more generalized model.

43

Automatic rule-extraction for malware detection on mobile devices

Figure 21: Effect of overfitting in ANN [93]

44

Automatic rule-extraction for malware detection on mobile devices

Data: Labeled dataset
neural network weights initialization;1

read Training and Testing data set;2

calculation of µ and σ for each of classes and dataset in total;3

neural network training;4

while not successful Stopping Criteria do5

while not all of input patterns are processed do6

while not all of constructed rules do7

assign degree of membership for current input[i] ∀ terms;8

end9

linear combiner takes as input all membership degrees;10

while not all of constructed rules do11

calculate error rate for current rule;12

using Gradient Descent adjust corresponding weight;13

end14

calculation of activation function over all rules;15

end16

end17

sorting constructed rules according to weight value in descendant order;18

defining class ID for each constructed rule;19

while not all of constructed rules do20

calculate cumulative membership degree (CMD) for current rule;21

if CMD for C1 bigger than for C2 then22

assigning C1 to the rule;23

else24

assigning C2 to the rule;25

end26

end27

performing selection process of rules;28

define main class ID of rule with the most significant weight value;29

while not all of sorted constructed rules do30

if class ID of current rule is the same as main class then31

assign current constructed rule as a selected rule;32

else33

exit ;34

end35

end36

Result: Extracted malware detection rules
Algorithm 1: Proposed rule-construction algorithm

Data SubSet Rules extracted Rules selected Accuracy Main class
Setosa-Versicolor 81 12 100% Versicolor
Setosa-Virginica 81 11 100% Virginica
Versicolor-Virginica 81 11 70% Virginica

Table 4: Results of rules extraction using proposed method, three terms in each linguistic variable

45

Automatic rule-extraction for malware detection on mobile devices

Data SubSet Rules extracted Rules selected Accuracy Main class
Setosa-Versicolor 625 48 100% Versicolor
Setosa-Virginica 625 64 100% Virginica
Versicolor-Virginica 625 58 70% Virginica

Table 5: Results of rules extraction using proposed method, five terms in each linguistic variable

46

Automatic rule-extraction for malware detection on mobile devices

4 Experimental setup & Results

This chapter provides practical aspects and discussions for each defined previously research ques-
tion. As a material of the experiment, data collection process is described. Additionally, statistical
properties of collected data are going to be presented.

By utilizing our expert knowledge, we developed test framework for experiments justification
of found theoretical answers. Initially, security metrics construction from collected applications
are performed. Then importance of static and dynamic tests is shown. After that we concentrate
our attention on malware detection suing linguistic rules and related topics. Finally, results of
user profile influence on malware detection are overviewed.

Moreover, important implementation details and corresponding discoveries are examined.
Our goal is not only to present practical proof for theoretical answer, yet also to reveal unusual
and previously unknown pros and cons of the theory.

4.1 Overview of the collected dataset

This section contains description of the material that are going to be used in our experiments.
Our experiments are conducted on manually constructed dataset, which was generated using
malicious and benign applications. In point of the fact, we collected separately 521 samples of
known to be malicious applications. It should be mentioned that some applications have the
same functionality. However, most of the were slightly modified by attackers in order to avoid
signature-based AV software. It means that MD5 hash sums1 are different for each of used ap-
plications. Due to mentioned aspects, we finally got 388 unique malware with only 353 suitable
for dynamic and static tests. Furthermore, 460 applications (251 suitable for testing) known to
be benign from official Android Market were gathered. In this dataset, we assigned Class 1 to a
malicious application’s features vector and Class 0 to corresponding vector of benign application.
For experimental purposes, it was used following collections and datasets:

• benignApplications - folder with collection of APK files of the applications defined as benign.

• maliciousApplications - folder with collection of APK files of the applications defined as
malicious.

• featuresDatasets/appsFeatures_all_filtered.arff - dataset ARFF2 file with extracted features
after static and dynamic testing processes

• securityMetricsDataset/constructedMetrics_all_filtered.arff - dataset ARFF file with constructed
security metrics from the extracted previously features.

1MD5 is an obsolete 128bit cryptographic hash algorithm, suitable for
2Attribute-Relation File Format, an ASCII file format used for storing data instances with common attributes. Applica-

ble for using in Weka software package

47

Automatic rule-extraction for malware detection on mobile devices

The examples of used datasets are presented in the Appendix A.
The extraction process of feature vector for each of application to be analyzed is presented in

the Figure 22. First, an application is sent in a specific way to the testing laboratory. Then, static
and dynamic tests are performed with previously defined sequence of actions. This sequence is
consistent over all tested applications. It means that tests conditions are equal and can easily be
repeated later.

Figure 22: Scheme of the features extraction for each application during testing

For more precise understanding of the problem, descriptive statistics should be applied [10].
As it could be seen from the Figures 23, 24 and 25, there are noticeable dependencies between
difference features. The last statements means that Pearson correlation3 is not zero for these
pairs of features and dependent [94].

Figure 23: Correlation between ’permissions_number’ and ’manifest_size’ features for both classes

From the performed descriptive statistics analysis, we see that a features values have Gaussian
(Normal) distribution (in the Figure 26. Therefore, as membership function in the NF approach
it is logical to use Gaussian membership function, which fits to the dataset.

So, one can summarize that constructed data set has appropriate statistical properties and
can be used with previously defined theoretical methodology.

3Pearson correlation is a coefficient of the linear correlation between two variables in data samples

48

Automatic rule-extraction for malware detection on mobile devices

Figure 24: Correlation between ’res_folder_size’ and ’filesize’ features for both classes

Figure 25: Correlation between ’package_entropy’ and ’cpu_usage_peak’ features for both classes

4.2 Extracted security metrics

The purpose of this section is to provide results of proposed security metrics usage in malware
detection. As it was stated previously, security metrics represent additional transformation be-
tween features from raw data and ML approach. More specifically it means extracting a new
layer of knowledge from already available.

For example, one can consider application’s CPU utilization time series over period of time.
Since one can not use time series in a raw format as input data to the ML approach, we need
to involve mapping to a single value. This transformation also should preserve information from
time series and reflect its property.

Metrics construction process is depicted on the Figure 27. Each of the metrics is an abstrac-
tion of specific knowledge domain, which uses function over raw features related to this domain.
Resources usage and functions structure can be considered as two different domains, while they
might be characterized by more raw features. As a basic abstraction level, we concentrate our

49

Automatic rule-extraction for malware detection on mobile devices

Figure 26: Gaussian distribution in extracted features

attention on linear combiner, which takes weighted values from input features. Each of the fea-
ture has own weights ai that we defined empirically from background knowledge and available
statistics information.

Figure 27: Scheme of the security metrics construction from the features

There is an obstacle, which have been faced during the method development. Features weights
ai need to be adjusted precisely through optimization methods instead of using prior available
information. The last procedure was performed by using following classes in Weka package [94]:

• weka.attributeSelection.ReliefFAttributeEval - RELIEF method with amount of nearest neigh-
bors for attribute estimation equal to 10.

• weka.attributeSelection.Ranker - search methods for ranking attributes in RELIEF.

It is important to utilize metrics rather than features, because such metrics add one more layer
of non-linear abstraction to fuzzy inference systems. Finally, this fact provides more broader flex-
ibility in building expert system. Therefore, posterior information from such methods is used in
metrics construction based on collected statistical information. A positive property of proposed
methods is an input vector data dimensionality reduction. Security metrics allow to use smaller

50

Automatic rule-extraction for malware detection on mobile devices

amount of input data for building statistical model, which leads to mitigation of a curse of di-
mensionality [92]. Apparently, utilization of security metrics will influence the detection process,
yet does not have significant impact on the detection rate.

4.2.1 Detection reliability

As was mentioned in the Chapter 3, expert knowledge and statistical analysis are using to build
the metrics. Execution of RELIEF method together with 10-fold cross-validation gives us the fol-
lowing features merit (weights) for the dynamic metric 6 and sdk-related metric 7. Other metrics
data are presented in the Appendix E (Tables 14, 15 and 16). After evaluation, weighted features
are linearly combined into a metric.

feature average merit average rank
databases 0.015 ± 0.001 1.3 ± 0.64
log_launch_size 0.014 ± 0.002 1.9 ± 0.3
databases_size 0.008 ± 0.005 2.9 ± 0.7
shared_prefs 0.005 ± 0.001 4.3 ± 0.78
shared_prefs_size 0.005 ± 0.001 4.9 ± 0.54
execution_time 0.005 ± 0 5.7 ± 0.64
files 0.004 ± 0 7.2 ± 0.4
pull_data_size 0.003 ± 0.001 7.9 ± 0.54
files_size 0.001 ± 0 8.9 ± 0.3

Table 6: Calculated feature merits (weights) using RELIEF for ’METRICdynamics’ security metric

feature average merit average rank
targetSdkVersion 0.064 ± 0.001 1 ± 0
sdkVersion 0.044 ± 0.003 2 ± 0 1

Table 7: Calculated feature merits (weights) using RELIEF for ’METRICsdk’ security metric

In order to prove reliability of extracted security metrics, classification accuracy was tested
based on metrics. Weka was used to perform these tests and the results are presented in the
Figure 8 [94].

Approach EM SVM MP BN J48
Accuracy on 36 features 51.49% 90.23% 92.88% 91.22% 94.03%
Accuracy on 5 metrics 52.98% 82.61% 86.92% 86.09% 90.89%

Table 8: Classification accuracy of EM (clustering), SVM, MP (Multilayer Perceptron), BN (Baessian Belief
Network), J48 (C4.5 decision tree) from Weka package [94]

It can be seen that even though classification accuracy does not affected mostly, the complex-
ity of the input data and statistical model is decreased. So it could be concluded that assumption
about security metrics usage is proper. Finally, we extensively proved that selected security met-
rics can be used in malware detection without significant degradation of the result.

51

Automatic rule-extraction for malware detection on mobile devices

4.2.2 Digital evidence perspective

Beside developing reliable and interpretable malware detection and analysis methods, we are
looking toward forensic soundness of the security metrics. In order to construct proofs, police
use so-called jurisdiction data, which is going to be used further in court of law [58]. Such data
can be connected to a person or some activities, ones it is proved to be derived from scientific
method.

According to Daubert standard, there have to be satisfied following conditions [95]:

• Enough data are used for testimony construction. Data (pure technical features) are trans-
ferred to knowledge (explainable security metrics). Process is simple and repeatable.

• Used scientific methodology is reliable, interpretable and relevant. NF is repeatable ML ap-
proach with known small rate of potential error. Extracted rules present human-like rea-
soning of the knowledge.

• Methodology was applied properly. Process of metrics and rules extraction is automated and
can be cross-validated. Therefore, no human error present in method application to given
data.

It can be concluded that used security metrics fits Daubert guidelines and can be used as
evidences and proof in court of law.

4.3 Malware detection process and influence of stored information

The goal of this Section is to measure and to estimate influence of stored information on mal-
ware detection. The experiments for this Section are like previous based on developed testing
laboratory. To investigate such influence on malware detection, we created artificial user profile,
which contains "sensitive information". Finally, automated search operations are performed over
an application’s data pulled from tests.

New mobile device usually contains only pre-installed applications and samples of the content
like music, pictures and audio files. In order to get more clear picture of "black box" behavior
in such problem, user profile is created. When emulator is starting from the scratch, both user-
data.img and userdata-qemu.img images are used and filled by the information.

In testing laboratory, all user data are wiped and emulator is relaunched after successful
application test is performed. So for created image utilization it should be connected on every
startup. According to Android SDK developer documentation this operation has following format:
-initdata userdata-qemu.img [30]. The information about the created YAFFS24 image is presented
in the Figure 28. Also, stored available information on this image can be extracted by yaffs2 utility
[96] as it is shown in the Figure 52 [97].

Automated search over all extracted information reveals only single application that was
transmission user sensitive information (the function calls are presented in the Figure 29).
Among all function calls, we found traces that contain information to be sent about accounts,
sent SMS details and IMEI code.

Prior to sendto()5 operations there also can be seen attempts to connect to remote host
4A file system designed for flash memory with negated AND logic architecture
5A command that sends a message on a socket

52

Automatic rule-extraction for malware detection on mobile devices

Figure 28: Information about created YAFFS2 image with user sensitive information

Figure 29: Extracted list of function calls that contains user sensitive information

46.252.18.96 (see the Figure 30 for whois details). This IP address is located in Germany and is
resolved to few hundred websites like "real estate bests services". Such sites likely can be fraudu-
lent resources. Also we notice that this website on this IP address should contain wat.php script,
which receives POST request with sensitive information from the devices.

Figure 30: Whois response for the IP address 46.252.18.96

As it can be concluded, user profiles usage in automates analysis is perspective and powerful
area of malware analysis. This is because manual reverse engineering requires much more time
and human efforts to extract the same data. After searching the Internet we found examination
of the same malware sample with help of not automated testing box solution DroidBox [98, 99].
Results of our test and test in found report are almost identical: sensitive information leakage.
However, our test approach allows to extract more specific details from pulled data about infor-

53

Automatic rule-extraction for malware detection on mobile devices

mation leakage based on user profile.
Summary
To summarize, user sensitive information experiments, we state that it has influence on the

malware detection. It was shown earlier in this Section that we were able to intercept sensitive
information that applications try to sent to external sources. This can be crucial decisive factor
in malware detection. However, very few evidences that sent in open text format were found.
Hence, more deep tests and examination is required for revealing such information sent in en-
crypted or modified format. In conclusion, the achieved during experiments results are impres-
sive and were not considered before in such perspective in literature. Furthermore, user profiles
and user behavioral information can be used as one of the malware detection key factors.

4.4 Significance and reliability of malware detection

Due to growing complexity and range of possible attacks on mobile platform, pure statical analy-
sis is no longer reliable. Recent malware tend to hide malicious actions by means of obfuscation,
encryption and downloaded payload execution [12, 100]. It could happen that application just
carry an address of a malware that it loads on the devices while executing. Therefore, static and
dynamic tests of a "black box" application have to be performed. This gives not only comprehen-
sive picture of the application, yet allows to detect privacy threats more reliably.

One can consider static test as an analysis of the application without using it according to
its main purpose. At the same time dynamic test has aim to execute application as intended in
protected environment. For the experiment setup we are using re-developed testing laboratory
for mobile malware designed by author previously [16]. It has following predefined by us testing
routine for each application:

1. Static phase

1.1. Installation package structure analysis;

1.2. Java code extraction;

1.3. Resources and assets processing.

2. Dynamic phase

2.1. Simulation of 500 random user actions with help of UI6/Application Exerciser Monkey,
which is provided by Android SDK [30];

2.2. Stored information processing and extracting from an emulated virtual mobile device;

2.3. Tracing of all function calls during application execution by means of strace utility
[72];

2.4. Applications traffic intercepting with tcpdump [101]. Further extraction from raw cap
dump into XML7 structure is performed by Tshark program from Wireshark package
[102];

6User Interface
7eXtensible Markup Language - common markup language, which is often used for storing different data structures

or parameters

54

Automatic rule-extraction for malware detection on mobile devices

2.5. User profile simulation by means of prepared userqemu-data.img image file;

2.6. Resource usage tracking (CPU utilization, Virtual memory set size, Resident memory
set size and number of launched threads [61]) from available information in top and
ps Linux programs.

4.4.1 Results of automated analysis

Manual reverse engineering of application based on expert knowledge can be considered as
the most informative analysis [103, 104, 105]. This is because of specific designing issues of
each particular application and comprehensive awareness of an expert. Despite this fact that
automated analysis with well designed testing routing could provide efficient results.

The author would like to emphasize on capabilities of the automated applications process-
ing. By execution designed previously testing routine, there were collected feature vectors for
each application. Upon manual reviewing of the extracted data, there should be mentioned few
valuable artifacts.

Traced function calls obtained by Strace utility for a malware is presented in the Figure 31
[72]. As it could be seen, there are attempts to connect to external IP address 114.80.156.144
and get name of the virtual device’s local address IP 10.0.2.15. Both addresses are IPv4 and are
expressed in IPv6 format.

Figure 31: Function calls traces that includes attempts to connect to the external IP address 114.80.156.144

For examination purposes the author checked that external IP address by publicly available
whois service [106] and the output is presented in the Figure 32. One found that this address
belongs to China and there hundreds of websites domains connected to this IP.

However, most of the websites are either blocked or protected from direct browser access (see
Figure 33). The error 4048 appeared often, which makes think that there could be located some
concealed scripts that accept only specific GET/POST requests9.

Now we look more deeply into another domain of dynamic tests, network traffic analysis.
Screenshot of the Wireshark GUI depicting obtained traffic dump is shown in the Figure 34
[102]. There are several 3-way handshake TCP requests to external IP addresses. Those requests
are integral part of HTTP protocol10 request. As no human interaction were taken during tests
execution, these requests were generated by application itself.

8HTTP 404 or not found error implies that server is able to receive requests, but requested resources are unavailable
or absent

9Two commonly used methods for client-server communication. GET sends data using address url of the page (or

55

Automatic rule-extraction for malware detection on mobile devices

Figure 32: Whois response for the IP address 114.80.156.144

Figure 33: The information returned to the client when visited 114.80.156.144

Whois11 is of one of the IP addresses states that it is located in USA and there are few thou-
sands of reverse connected domain.

By following couple of registered websites domains, it brings us to the same page presented in
the Figure 36. Information on the page recommends us to participate in an arbitrary survey. Even
if some answers were given falsely on purpose, we got a "unique chance" to buy a possibility to
win IPhone 5 after several similar surveys during one month. Moreover, it seems that we need to
sent SMS to a top-rate chargeable services that finally cost us around 100$. Finally, one can also
notice that such web site has Geo targeting that provides translated content based on location
of a client. Basically, from our experience in information security area, one can say that this is
typical fraud page.

One can conclude that it was shown how information from both static and dynamic tests are
crucial for malware detection. All the presented data were extracted without any human partici-
pation. So, static and dynamic test can be treated as reliable source of information for automated

header of the request), while POST sends data through concealed variables (body of the request)
10Hyper Text Transfer Protocol - server-client interaction foundation for WWW
11Request for getting human-readable information about domain name, particularly dates, name servers and owner

56

Automatic rule-extraction for malware detection on mobile devices

Figure 34: Example of HTTP requests to an external IP address using POST and GET

malware detection. Moreover, functionality of a Android SDK emulator grants automated analy-
sis with good trade-off between complexity of performed tests and spent time. Finally, it has to be
mentioned that fraud intentions spreads not only on general PC, yet already we found evidences
on mobile devices.

4.4.2 On-line learning perspective

New malware samples and variations of already existing appear everyday on Mobile Markets.
This results in growing amount of applications from which statistical features are extracted. Typ-
ical off-line ML based malware detection solutions require much computational resources and
time to get all applications processed. Therefore, we are looking towards adaptable malware
detection. Statistical properties of the model can be easily adjusted during adding new appli-
cations. This fact makes it possible to build on-line learning system that will partially retrain a
statistical model after changing applications dataset. Most off-line learning approaches require a
lot of time and are inefficient in dealing with a huge data storage (application’s markets).

Proposed detection mechanism is based on ANN that has an ability to be trained continuously.
Thus, features from a new application can be extracted on-fly and as rules are adjusted immedi-
ately with a smallest delay. By utilizing this concept, we are projecting application classification
challenge into data streams mining, treating new coming applications as a stream. This is a new
and developing area of computational intelligence that was extensively studied in the research
[107]. In conclusion, one can say that such malware detection adaptive system will be more
flexible that existing regularly updated signature-based AV software.

4.5 Fuzzy rules for malware detection

The aim of the Section is to present and discuss results of linguistic rules application in malware
detection. To perform comprehensive testing we created following procedure (see the Figure 37)
based on developed earlier theoretical justification. Initially, all possible rules are constructed

57

Automatic rule-extraction for malware detection on mobile devices

Figure 35: Whois response for the IP address 208.73.210.171

based on extracted metrics on preprocessing step. Then, ANN is used for rules construction and
tuning based on class with highest weight in learned model.

Extracted in this way rules can be treated as malware patterns with fuzzy nature. What is
interesting about such rules is flexibility in training process. One can say that important downside
of the classic signature-based solutions is the need for regeneration of signature when one of the
characteristics of malware is changed. Linguistic terms in fuzzy rules compose an abstraction
layer, which use statistical parameters of previously extracted metrics. Therefore, there is no
need to change rules significantly, yet only statistical parameters behind them. It can be seen
that the parameters are purely based on constructed metrics.

4.5.1 Evaluation of classification process

Proposed method is not just provide a simple signature matching, yet also linguistic rules extrac-
tion. Compare to NNge12 and Decision Tree classification methods in Weka [94], our method does
not produce hardly-understandable rules based only on discrete numerical values. Instead, fuzzy
IF-THEN rules are extracted. So, the prerequisites for mobile malware success one can define as
following extracted rules in the Figure 38.

Whole process leads to determination of rules with bigger membership value of input metric
vector for an application to be classified. Used security metrics are accessible from emulated
and native mobile device environment. Furthermore, such method has moderate computational
complexity that does not consume much resources.

The developed system for fuzzy rules extraction has following Data Flow Diagram13

4.5.2 Accuracy of classification

Malware detection is a binary classification problem. That is why confusion matrix 9 is used
in performance evaluation of classification using extracted rules [10]. This matrix shows infor-
mation about amount of actual and predicted classes (benign and malicious) So, classification

12Algorithm based on Nearest-Neighbor principle, which is using hyperrectangles that can be viewed as if-then rules
13Represents flow of the different data through the developed system, particularly revealing processing steps

58

Automatic rule-extraction for malware detection on mobile devices

Figure 36: Advertising website that is located on the found IP address

accuracy [10] can be estimated as following

Accuracy =
Nc

N
· 100% (4.1)

Where Nc - is an amount of correctly classified applications and N - is a total amount.

benign (predicted) malicious (predicted)
benign (actual) 200 51
malicious (actual) 92 261

Table 9: Confusion Matrix for malware classification problem

Proposed method shows unified accuracy 76.32% (using the Equation 4.1) on security metrics
dataset for both malicious and benign applications. If we compare the Table 8, it can be seen
that the accuracy of proposed method is less than the SVM classifier. However, this difference is
6-7%, while SVM has much more complex nature and uninterpreted statistical model. Further,
accuracy can be increased by applying more advanced filtering methods in order to exclude noise
and mistaken data from the features dataset.

Summary
In overall mobile malware detection process using fuzzy rules can be applied in this process.

The goal was to find how reliable such rules are and what is the accuracy on real-world data.
Results considerably indicates that theory behind security metrics and their construction were
proper. From this point we can see that our method is able do detect human-understandable and
computational efficient malware detection. During experiments, we notice that benign applica-
tions are more selective in mobile devices. It means that they are not launched if a device is not

59

Automatic rule-extraction for malware detection on mobile devices

Figure 37: Scheme of rules extraction for malware classification

Figure 38: Example of extracted fuzzy rules for malware detection after processing malicious and benign
application

suitable or has different configuration. From another perspective, malicious applications have
simpler requirements and can be run on almost all devices. Furthermore, it was found that both
classes of application has significant statistical differences in collected raw features.

60

Automatic rule-extraction for malware detection on mobile devices

Figure 39: Data Flow Diagram of the rule-construction system using, drawn in ArgoUML

61

Automatic rule-extraction for malware detection on mobile devices

5 Discussions

This chapter provides comprehensive discussions of theoretical and practical aspects of this mas-
ter thesis.

5.1 Data and Experiments

In this Section the used data, developed method and experimental considerations will be dis-
cussed.

5.1.1 Methodology

The methodology was formulated after extensive study of related research literature, presented
in the Chapter 2. The work is targeted on creating pro-active malware detection and analysis
system using machine learning. The advantage of built up methodology is an application in auto-
mated analysis of large datasets of applications like software markets or commercial collections.
As it was found, automated analysis reveals sometimes more useful information for malware
detection in artifacts than manual reverse engineering can do. As continuation of the research,
on-site defense can be developed for usage on mobile devices.

The drawback of proposed methodology is that it requires expert knowledge in proper con-
struction of security metrics from statistical analysis. As an alternative to this, multidimensional
optimization can be utilized in order to detect proper weights for each of the features related to
security metric’s domain.

In the thesis, our goal was to concentrate on developing forensics soundness detection method.
The NF procedure was chosen in order to obtain human-understandable detection rules with neg-
ligible detection error. Completed further tests on other ML approaches like SVM shown that the
methodology was chosen properly.

5.1.2 Dataset

One can state that there were no previously collected datasets for applications on mobile plat-
forms. Construction of generalized dataset was a significant challenge not just because of diffi-
culties in gathering malware for mobile devices, yet also because of making sure that they are
malicious. Eventually, we gathered around thousand of both types of applications. Due to ethical
and legal considerations, it was decided to use publicly available sources like this [108] for col-
lecting the applications. All the malicious applications were cross-validated with help of free and
open-source ClamAV1 AV software. The dataset consists of all popular applications with most re-
cent versions. It is suitable for future researches in the field and malware detection benchmarks
because the amounts of benign and malicious applications are balanced.

In order to answer the research questions, we were using two more datasets. Execution of
dynamic and static automated tests brought a first dataset consisted from an extracted features

1http://www.clamav.net/lang/en/

63

http://www.clamav.net/lang/en/

Automatic rule-extraction for malware detection on mobile devices

for each application. Gradually, using RELIEF method was extracted the second dataset with se-
curity metrics for each applications. These two datasets are suitable not for testing the reliability
of malware detection process, yet also for extracting decision rules.

5.1.3 Complexity

It was shown in the Chapter 4 that implemented fuzzy-rule construction module achieves impres-
sive time performance while learning from metrics dataset. With help of parallel execution the
ANN learning process and the rule-construction processes cause delay around 5-6 seconds. This
value is much less than collecting and updating signatures datasets for classical signature-based
AV software. It can be considered as one of the achievements of the research.

For obtaining more scientifically sound measures of complexity, following complexity metrics
are evaluated [109]:

• Algorithmic complexity

It is analyzed how amount of features and linguistic terms affects complexity of the rule-
construction algorithm. While executing, each atomic operation on individual input data
sample requires several processor instructions, which amount depends on the operation.
While learning, ANN executes several such operations on each of the dimension (attribute)
in the input data sample. ANN learning represents a NP-complete problem that can be
solved in a polynomial time. The dependency on input data is linear, while dependency on
input data dimensionality is polynomial.

The amount of necessary operational step for ANN learning and rules extraction can be
defined as following function:

f1 (n) = L ·N · (n+ 1) ·Mn (5.1)

N - amount of the input data samples, n - dimensionality of the input data, M - number of
terms in each linguistic variable (security metric), L - amount of epochs in ANN learning
phase.

The amount of necessary operations for rules selection is defined by function:

f2 (n) = 2 ·Mn · log (N) (5.2)

The total amount of steps in ANN learning and rules extraction can be estimated as follow-
ing:

f (n) = f1 (n) + f2 (n) = L ·N · (n+ 1) ·Mn + 2 ·Mn · log (N) (5.3)

The result roughly best-case algorithmic complexity of the rules construction process is:

A (n) = O (n ·Mn) (5.4)

Apparently, the computational complexity is growing when the dimensionality of the input
data is increasing.

64

Automatic rule-extraction for malware detection on mobile devices

• Time complexity

Considering implementation and practical usage of the method, the problem of runtime
complexity evaluation arises. The rules extraction algorithm is treated as sequential algo-
rithm. While applying multiprocessor optimization, the time complexity can be decreased
because of execution multiple tasks in parallel. In our case this is done by learning and
evaluating parameters for each rule in parallel. Other operations have to be executed only
serially. If we denote p as an amount of execution threads and modify the expression 5.4,
then the algorithmic complexity per each thread are as following:

f (n) =
1

p
(L ·N · (n+ 1) ·Mn) + 2 ·Mn · log (N) (5.5)

Final best-case runtime complexity of rules construction depends on the amount of thread
and have following equation:

T (n) = O

(
n · M

n

p

)
(5.6)

The best time complexity can be obtained if number of execution threads is equal to total
number of constructed fuzzy rules. This is because rules parameters evaluation is the most
inner task in ANN learning. Theoretically, the speed up while using parallel computing can
be equal to number of execution threads. However, in real case this number depends on
data transferring overheads and therefore it is less or almost equal to amount of threads
in best case scenario. We denote faction of total operations that should be executed only
serially as α:

α =
2 ·Mn · log (N)

L ·N · (n+ 1) ·Mn + 2 ·Mn · log (N)
(5.7)

Then, according to Amdahl’s law [110], the maximal possible speedup of the parallel algo-
rithm will be following:

Sp =
1

α+ 1−α
p

(5.8)

The delays are caused by transferring data from CPU to GPU and back. However, GPU
can provide more threads to execute threads than CPU, which is a big advantage of its
utilization.

• Space complexity

Space complexity of the method is an important factor in evaluation of performance. We
can defined that amount of memory blocks necessary for storing the rules and correspond-
ing weights:

f (n) = 2 ·Mn (5.9)

65

Automatic rule-extraction for malware detection on mobile devices

The total space complexity has exponential dependency on input data dimensionality as it
is depicted in the Equation 5.10.

S (n) = O (Mn) (5.10)

One can summarize that the algorithm has optimal time-space-tradeoff that does not require
additional storage space except RAM memory. Apparently, it causes less possible execution de-
lays.

5.1.4 Robustness & Reliability

Under the robustness term we understand the ability of the malware detection method to with-
stand different obfuscation and protection techniques inside malware. While testing other ML
methods on the acquired dataset, it was shown that the results are not so different from the
proposed methods. It means that the method is able to detect malware by extracted metrics even
if its payload is hidden.

Reliability of the method implies not only proper detection of malware sample, yet also un-
derstanding by human brain. In this case extracted rules contain readable linguistic terms, which
conceals complex numerical parameters. By reading fuzzy rules used for detection, common
user can estimate the prerequisites for successful malware execution. Moreover, it increases user
awareness about information security more than average AV software.

5.2 Implementation Architecture

Testing laboratory for mobile malware developed by author previously is re-build and re-coded
significantly for using in this Master Thesis [16]. Basically, there exist a problem in testing mo-
bile applications and extracting corresponding security-related features. This is because of per-
formance limitations and diversity of modern mobile platforms configuration. Although, mobile
devices are cheap and widespread, it is infeasible task to test dataset of collected application
on one or several devices in a short time range. Devices from different producers has different
Android API level, installed applications and hardware specification

For undertaking all the mentioned challenges, it was completely rebuild Testing and Analy-
sis functionality of previously implemented by author testing laboratory. This leads to fulfilling
following testing laboratory requirements: feature extraction and selection, security metrics ex-
traction, rules construction.

Experimental setup was performed on three computers with following hardware details:

1. PC 1

• CPU: AMD Athlon 4400+ X2, 2.3 Ghz (1M L2 cache 2000MHz HT)

• RAM: 4GB, DDR2 667Mhz

• Hard Disk Drive (HDD): Seagate 250GB, 16MB cache, SATA2

• GPU: MSI GeForce N210, Core 589MHz, 1GB GDR3 64bit, CUDA 1.2

2. PC 2

66

Automatic rule-extraction for malware detection on mobile devices

• CPU: Intel Core2 6300 1.86GHz x2 (2M L2 cache, 1066 MHz FSB)

• RAM: 2GB, DDR2 533Mhz

• HDD: Seagate 80GB, 8MB cache, SATA2

• GPU: Intel GMA x3000, 256MB, 64bit

3. PC 3

• CPU: Intel Core2 Duo T8100 2.10GHz x2 (3M L2 cache, 800MHz FSB)

• RAM: 3GB, DDR2 667Mhz

• HDD: Hitachi 120GB, 8MB cache, SATA1

• GPU: Intel GMA x3100, 384MB, 64bit

Additionally, there were installed next software:

• OS: Ubuntu 12.04 64bit

• Android SDK v22

• Apache Web Server v2.2.22-1ubuntu1.3

• PHP v5.3.10-1ubuntu3.6

• MySQL v5.5.31-0ubuntu0.12.04.1

• WireShark v1.6.7-1

• tcpdump v4.2.1-1ubuntu2

• g++ v4:4.6.3-1ubuntu5

• OpenMP v4.6.3-1ubuntu5

• Thrust v1.6.0 (only for PC1)

• CUDA v5.0 (only for PC1)

The source code was developed (more detailed description and source code listings can be
found in the Appendix F) during work on master thesis and has following structure:

• androidlab/test_cycle.php - Implementation of testing cycle as a part of the testing labo-
ratory [16] in PHP using MVC2. This part is able to setup configuration of the static and
dynamic tests, launch automated testing of multiple applications using various emulator
parameters.

• androidlab/analysis.php - Test data analysis and feature extraction functionality was imple-
mented in PHP using MVC.

2Model-View-Controller, a template for application development that helps to separate data, view and functionality.
MVC provides flexibility and more-understandable implementation in building a software carcase

67

Automatic rule-extraction for malware detection on mobile devices

• NeuralNetwork/main.cpp - Perform ANN learning based on the train data, fuzzy-rule ex-
traction for binary classification problem using NF approach.

• NeuralNetwork/main.cu - A variant of main.cpp, which is optimized for multiprocessing
and implemented with help of CUDA native code.

Limitations
Within given working time constraints there were defined implementation and usage limita-

tions. Under these limitations it was possible to implement, test and analyze data for successful
answering on defined research questions. The quality and quantity boundaries are the following:

• Only Android with version at least 4.0 was used for the experiments. However, there is
a support for older platform versions (like Android 2.2 and Android 2.3.3), yet without
possibility of taking the screenshots.

• Emulated Android device was not rooted in order to achieve real case scenario. According
to our observations, some of the malware requires rooting operation while executed.

• It was created and developed only single user profile because of time limitations and neg-
ligible effect on malware detection process.

• The testing laboratory is able to extract logs of installation, UI testing, launch and uninstal-
lation processes. In feature extraction was used only application launch log (An example
can be seen in the Appendix D).

• The maximal amount of APK files processed at once in App Management sub-system is
limited to 500.

• Testing of large amount (thousands) of applications can reach standard 30 seconds timeout
of PHP script execution on Apache server.

• Despite the fact that all checks of necessary system components and software are imple-
mented in the testing laboratory, some parts of the LAMP server3 can be missing.

• C++ code was compiled with 64bit Linux architecture support, which can cause problems
while executing on old 32bit machines. It is possible to filter out this problem by means
X86_64 emulation such that QEMU [111].

• Amount of ANN learning epochs was chosen empirically as 1000. It means that the perfor-
mance of the method does not improve significantly with bigger amount of epochs.

• Implemented module has support only 3 and 5 terms linguistic variables, which is enough
for the experiments

• Input labeled data for rule-construction module can have only single-precision real-values
(type ’float’) of features/metrics with that allows to store no more than 7 digits of precision.

3http://help.ubuntu.ru/wiki/lamp

68

http://help.ubuntu.ru/wiki/lamp

Automatic rule-extraction for malware detection on mobile devices

• OpenMP support has effect only in case if the CPU has support of the multi-threading
features (by means of several processors, cores or hardware threads. Otherwise, effect
of the multi-threading support will be negligible or even negative because of sequential
execution of the sub-task

• CUDA experimental implementation is targeted only on modern Nvidia cards with support
of 32bit single-precision floating-point numbers and operations support (CUDA version has
to be at least 1.2).

In order to achieve consistency, elegance and readability, all source code was implemented
with help of the next guidance: PHP Zend Framework4 and C++5 coding conventions. By using
common programming style, the program part is readable and understandable for everybody
from the area. Moreover, the maintenance and further development will consume less time on
code reading and functionality understanding.

5.2.1 Application testing and feature extraction

Because of rebuilding of the testing laboratory, it becomes possible to launch testing from the
scratch and perform wider dynamic tests. User profile was connected to study influence of stored
information. Network traffic is captured and parsed into XML format. User and system function
calls are also collected. Experiment that consists of static and dynamic testing of applications
was conducted as it is described in the Chapter 3. All developed PHP code was optimized and
profiled in order to achieve the best possible performance.

Android SDK [30] offers system images with Advanced RISC Machine (ARM). However, ARM
instructions are quite different from personal computer architectures like x86 and extended x86-
64 [112]. That is why emulator execution and round test takes much time. In order to deal with
this, it was decided to increase performance of the testing laboratory by means of three main
steps:

1. x86-64 system architecture

The personal computer, which is used for testing has x86-64 architecture. It is logical to
use native x86 instructions instead of ARM instructions emulation. Android Software De-
velopment Kit (SDK) provides x86 system image for last version of Android (4.2.2). Usage
of 64 bit extension gives more allocatable address space and performance improvements
[113].

2. VM acceleration

Basically, running Android emulator [30] on x86-64 architecture require virtualization of
emulated host. In order to improve total performance, kernel-based Virtual Machine (VM)
(KVM) was installed on Linux. KVM is a program solution, which supports hardware virtu-
alization (Intel VT or AMD-V technologies) [111]. According to Android Developers [30],
it is possible to turn on support of KVM in Android virtual machine by using parameters: -
qemu -m 512 -enable-kvm. Virtualization provides more protected and isolated environment
on host machine, which allows to execute several VM at the same time.

4http://framework.zend.com/manual/1.12/en/coding-standard.html
5http://www.c-xx.com/ccc/ccc.php

69

 http://framework.zend.com/manual/1.12/en/coding-standard.html
http://www.c-xx.com/ccc/ccc.php

Automatic rule-extraction for malware detection on mobile devices

3. GPU acceleration

To compensate complex calculations for drawing visual elements in emulator screen, GPU
acceleration should be used. In 2012, Google announced that latest Android emulator [30]
versions support graphical acceleration by means of host graphical card utilization. This
leads to faster redrawing and execution of visual effects on emulator. In order to use such
acceleration, launch parameter -gpu on is needed [30].

Taking into consideration all mentioned adjustments in configuration, one can state that the
speed of emulator execution has increased considerably. Specific performance details of obtained
configuration is discussed further.

5.2.2 Advantage of virtual environment usage

During work on the testing laboratory, we obtained valuable experience while deployed virtual-
ized environment. It was noticed considerable time reduction on launch in comparing not only to
emulated ARM, yet also to real mobile devices. In contrast to mobile device, emulator has shorter
launch period and dynamic testing phase. As results of using virtualization, multiple instances
of emulator can be launched on multi-core PC at the same time without noticeable performance
drops. From our point of view, such testing laboratory can find application in large-scale testing
and automated forensics investigation of mobile applications

5.2.3 Rule-construction module

NF functionality for rules construction based on security metrics was implemented with help of
C++ language and Standard Template Library (STL). The reason behind choice C++ is that it
has low-level memory interaction. Compilable nature of C++ allows to achieve smaller execu-
tion time than interpretable nature of PHP or Python.

Developed module has following working algorithm:

1. Reading of training / validation labeled datasets (2 classes)

2. Unsupervised centroids detection for each of input metric using Radial Basis Function based
on a standard deviation and a mean

3. Rules extracted for all possible combinations of metrics

4. ANN learning. It was used following NF parameters:

• amount of epochs: 1000

• weights learning rule: Delta

4w = µ · (yi − di) · f(network) · xi (5.11)

Where µ - step of learning, di - class of the input patter predicted by ANN, yi - actual
class of the input pattern, f(network) - output value of the activation function, xi -
input pattern [76, 93].

• Initial Gradient Descent step: 0.1

70

Automatic rule-extraction for malware detection on mobile devices

• membership function: Gaussian µ(xi) = 1

e
(x−a)2

2b2

• activation function: Sigmoid: di = 1
1+e−f(network)

5. Rules tuning and selection using neurons weights

6. Validation of trained model

While developing the rules construction, we found that there exists narrow performance
places in ANN learning. This is caused by consequent execution of mathematical operations
targeted on weights update and membership values recalculation for each of the rules. However,
the problem can be easily divided into sub-problems. Modern hardware and software technolo-
gies offer flexible and powerful computational resources, particularly paralleling. As it can be
seen that if several of sub-problems execute in parallel, then less time is needed to solve the
whole problem of ANN learning. After extensive studying of related literature, we decided to
choose following technologies and corresponding API:

• OpenMP. Specification for multi-threading on PC for C/C++ and Fortran, which supports
both data and task parallelisms [114]. The main advantage is flexibility in dividing calcu-
lation tasks into several sub-tasks, independently from processor architecture. Moreover,
there are no need to use API or implement additional functionality. OpenMP consists of
#pragma compiler directives, which describe specific implementation details. The Figure
40 shows how OpenMP is used in order to improve performance of ANN learning. As it
can be seen, outer for-loop uses paralleling into several sub-loops. Local copy of variable
"output" is calculating for each sub-loop. When calculations are finishes, global "output" is
calculated from local copies. As results, total increase of speed is almost equal to amount
of thread (or cores).

Figure 40: Sample of ANN learning implementation using OpenMP in C++

• CUDA native code. CUDA targeted on scientific calculations and computing as it is stated
on the web-site of NVIDIA6 company [115]. Graphic card available to authors supports
only CUDA version 1.2, which is limited only to a single-precision float operations. In our
case ANN learning does not require double-precision and compatible for usage with such

6http://www.nvidia.com

71

http://www.nvidia.com

Automatic rule-extraction for malware detection on mobile devices

version of CUDA. Despite the fact that CUDA native code is compatible with C/C++, it
requires to use specific Nvidia compiler - nvcc. There is the example of developed kernel
functions in the Figure 41. GPU has multiple kernel that allows to split for loops into several
parallel tasks.

Figure 41: Sample of rules weights adjustment function using naive CUDA in C++

Then linear combiner with activation function and weights adjustments function are called
inside ANN learning phase. As it could be seen from the Figure 42, learning phase con-
tain two kernel functions, which execute in parallel. In order to achieve good results, we
need to specify amount of threads and corresponding number of blocks as kernel function
parameters <BLOCK_NUM, THREAD_NUM>

Figure 42: Sample of ANN learning implementation (weights adjustment) using naive CUDA in C++

CUDA utilizes multiple threads on GPU (in our case 512) in contrast to a few threads on
CPU. That is why we are able to execute kernel functions in multiple parallel threads.
As amount of threads are large, then the calculations related to each rule are executed in
parallel. On considerable amount of rules, we noticed significant speed-up in ANN learning.
Additional information related to used GPU specification and CUDA characteristics can be
found in the Appendix G.

• Thrust. This is a library that consistent and unified storage containers (such that vectors)
and fast algorithms for such vectors processing [116]. It has the same purpose as Stan-
dard Template Library (STL) for C++ - simplifying and supporting of CUDA-related [115]
software development. Thrust provides level of abstraction above native CUDA code. For
ANN learning optimization, we applied GPU acceleration in computing of activation func-
tion. This operation consists of inner product calculation of weights and rules membership
vectors. Implementation of Thrust code is depicted in the Figure 43. By transferring both

72

Automatic rule-extraction for malware detection on mobile devices

vectors data to a GPU memory, then several cores inside GPU are used to compute inner
product. We noticed that speed-up can be observed only on big amount of data in vectors,
because they need to be transferred to GPU, then processed and transferred back. It causes
additional delays, even in spite of fast parallel execution of inner product. Thrust is more
aimed on processing of stream data, sorting and transformation of vectors. As a result, it
is not suitable in case of specific atomic mathematical operations on each vector’s element
that requires multiple CPU-GPU interactions.

Figure 43: Sample of weights adjustment using Thrust library in C++

It can be summarized that parallel computing is powerful computational approach. Moreover,
it was proved that proposed method has abilities to perform calculations in parallel. This requires
complex optimization of data manipulation and calculation procedures. Nevertheless, it is feasi-
ble to achieve a huge speed-up on multi-core CPUs and GPUs systems. In our view, automated
analysis of the mobile applications obtains more benefits while using parallel computing.

5.2.4 Performance concerns

In this subsection we present all performance aspects of mobile application testing. Further it
is shown the advantage of using the testing laboratory in automated mobile application testing.
As it was mentioned previously, mobile devices spend much time on booting, which makes them
hardly applicable for big datasets testing in dynamic environment.

Single application testing time of existing not automated solution DroidBox is around 10
minutes [99]. Our testing laboratory with implemented features uses around 1.5 minutes to test
one application. This is because significant optimization work was made while implementing the
laboratory. Particularly, application execution in emulated environment and ANN learning were
adjusted.

The experiments were executed with following configuration. For emulated environment we
used VM with 1024MB of RAM memory and 256M VM heap7. Intel and AMD Virtualization (for
both testing machines) and GeForce N210 acceleration were enabled. It should be mentioned
that only Android version higher than 4.0.x supports GPU acceleration. There were performed
several launches and average times of Android 4.2.2 emulator boot is as presented in the Table
10.

In order to compare performance of real device, we were able to test booting time on Archos
101 Internet Tablet (CPU ARM 1Ghz, RAM 256MB). The total time of Android 2.2.1 booting on

7Type of memory used for dynamical allocation

73

Automatic rule-extraction for malware detection on mobile devices

Processor ARM EABI v7 native x86
Athlon X2 4400+ 2.3 2.3GHz x2 (1) 130 32
Intel Core2 6300 1.86GHz x2 (2) 124 29
Intel Core2 Duo T8100 2.10GHz x2 (3) 108 22

Table 10: Booting time of an Android 4.2.2 SDK emulator, seconds

this devices is 40-50 seconds, which is bigger than time for emulated Android 2.3.3 (for details
see the Table 11.

Processor ARM EABI v7 native x86
Athlon X2 4400+ 2.3 2.3GHz x2 (1) 53 21
Intel Core2 6300 1.86GHz x2 (2) 58 24
Intel Core2 Duo T8100 2.10GHz x2 (3) 45 19

Table 11: Booting time of an Android 2.3.3 SDK emulator, seconds

While performing application static and dynamic tests, there were extracted different data
from emulated device. The Figure 12 shows diversity in data sizes for benign and malicious
applications.

Applications Total Traffic Function calls Databases Shared preferences
Benign 825 552 15 10 0.113
Malicious 1679 978 114 5 0.094

Table 12: Characteristics of the data pulled during dynamic tests for 252 benign and 360 malicious, MB

Average test time of application decreased from about 200 seconds to 80 seconds per each
application while using emulated environment optimization. In total it took N hours to test
benign and N hours to test malicious applications.

Another side of optimization is ANN learning. We tried various paralleling techniques and
obtained the results, shown in the Figure 13. It can be seen that OpenMP improved performance
significantly, while Thrust spent excess time on transferring data between CPU and GPU.

To summarize achieved results, we make next statements. Modern computational approaches
and technologies help to optimize time complexity of developed theoretical base. Applying paral-
lel computing makes possible to achieve better speed than it was projected for the single-thread
program.

5.3 On-site defence perspective

Before we consider only analysis of mobile applications in emulated environment of personal
computer. At the same time, developed security metrics and rules extraction method can be
applied for malware detection on real mobile device. However, there might be shortage in ex-
tracted features used for security metrics construction due to access limitations. All other data
are available for analysis including applications data storage and functions calls.

In our view such defense could be organized as C++ library using JNI to interact with An-
droid OS that based on Java [30]. There are no need to use emulated environment as result.

74

Automatic rule-extraction for malware detection on mobile devices

Used technology 125 rules (3 var) 3125 rules (5 var) 15625 rules (6 var)
Seq. execution 6 253 1508
OpenMP 5 161 860
CUDA native 3 4 5
Thrust 8 233 1903

Table 13: Amount of time taken by ANN learning process for different amount of metrics (variables) with
five terms, seconds (user time from a Linux time command)

Unfortunately OpenMP, Thrust and CUDA native code are not supported Android OS features at
the moment of writing the master thesis. However, NVIDIA announced that it will be produced
a tablet Tegra 5 in 2014 with CUDA support [117]. Developing of on-site detection and analysis
program can be defined as future work.

75

Automatic rule-extraction for malware detection on mobile devices

6 Summary of Findings & Implications

In this master thesis, we investigated automatic fuzzy-rule extraction for malware detection in
mobile devices. Particularly, there were answered four research questions. In order to answer
them, the big dataset with around thousand malicious and benign application for mobile devices
was composed. To the knowledge, such dataset did not exist before. That means it should be
developed by ourselves.

6.1 Overview of main results

The first research question was "What kind of security metrics could be applied for malware de-
tection and what is the detection reliability of such metrics?". In order to answer this research
question, we performed analysis and study of corresponding literature. Security metric is a collec-
tion of features from a particular domain related to information security. It was found that there
exists developed security metrics theory for the PC, which are not appropriate for the mobile
platforms. Therefore, it was proposed the method of metrics construction from raw features. Ad-
ditionally, we utilize expert knowledge and RELIEF feature-selection method in order to evaluate
significance of particular feature in each metrics. As a result, five security metrics were extracted
from 36 features. This is less than tens of features previously used for malware detection [118].
In the Chapter 4 it was proved that detection process is more understandable than SVM, while
classification accuracy is not significantly affected.

The second question was defined as "How do user profiles (various sensitive and private
information stored on the device) affect malware behavior and what kind of data are stored/-
transmitted by malware?". To get answer on this question, it was study ways and types of user
information that can be stored on the devices. Common user profile with sensitive information
(contacts, messages, etc) was generated and used further during malicious and benign applica-
tions testing. After processing of the test data it was shown that there is sensitive information
leakage, yet only a single malicious application sent such data in the open format. We can state
that presence of sensitive information affects malware detection, yet the influence is negligible.

The third question was declared as following: "Are the results of static and dynamic testing of
mobile applications reliable for automated malware detection?". While seeking answer regarding
this question, we conducted study of the literature related to manual analysis. Furthermore, we
rebuilt experimental part that was based on previous work [16]. It was improved testing process
(both static and dynamic phases) and extended amount of features that are extracted for each
application. The executed tests showed that automatically extracted data have the same meaning
for malware detection as data from manual analysis. However, manual analysis is much slower
and required malware reverse engineering knowledge. Furthermore, in case of used binary li-
brary it is necessary to apply advanced disassemblers like IDA pro1. Finally, we say that proposed

1https://www.hex-rays.com/products/ida/index.shtml

77

https://www.hex-rays.com/products/ida/index.shtml

Automatic rule-extraction for malware detection on mobile devices

methodology and developed test routine are much efficient in time and complexity perspective
than manual analysis with the same reliability.

The last of the fourth research questions is "Is it possible to automatically extract correspond-
ing advanced fuzzy rules and provide then fair detection rate?". Firstly, it was proved that fuzzy
rules can be not only used in malware detection, yet can be interpretable for human. We propose
robust and efficient malware detection method based on NF approach. The rules were not only
extracted from the training dataset, yet also there were selected the most significant according to
weights in neural-network. It allows to use smaller amount of rules without significant affect on
the detection. For results comparison were used advanced methods SVM and EM as presented
in the Chapter 4. Nevertheless, proposed method for rules extraction is presented. It provides
reliable detection rate with human-understandable statistical model. Secondly, there was im-
plemented module for rules construction in C++. The performed tests demonstrated that our
method can be used in malware detection with appropriate detection rate.

The thesis also uncovered that parallel computing is able to improve performance of the pro-
posed detection method. As an additional part of experiments, we conducted implementation
part along with parallel computing support. Then complexity results show that utilization of
parallel abilities of modern CPUs for ANN learning can not compete with NVIDIA CUDA tech-
nology. This is because GPU with CUDA support allows to execute the sub-tasks in thousands
of threads, while CPUs have just tens of threads. It was proved by authors that even complex
learning phases can be considerably optimized in time complexity domain. During experiments
we achieved speed up in hundreds of times in compare to single CPU execution. We can conclude
that usage of sophisticated theoretical methods along with modern computational technologies
and optimization provides effective and fast solutions for malware detection.

Summary
In order to conclude findings, it can be mentioned achieved findings in following areas:

• A comprehensive and full-scale database of benign (460) and malicious (521) mobile ap-
plications for Android platform.

• Unique dataset that consists of extracted information from static and dynamic (traffic,
function calls) tests. There were tested 353 malicious and 251 benign applications. Note:
amount of tested applications is less than amount of collected. This is because same appli-
cation has different names in various software market. After MD5 hash sum comparison
of collected applications we found duplicates and therefore decided to test only unique
applications.

• Dataset of 40 features extracted from performed tests with 604 labeled samples (two
classes).

• Dataset of five constructed security metrics from the features with 604 labeled samples
(two classes).

Theoretical and corresponding implementation achievements are next:

• Security metrics theory and extraction method.

78

Automatic rule-extraction for malware detection on mobile devices

• A novel theoretical justification for human-understandable fuzzy-rule extraction in mal-
ware detection using NF approach.

• Improved "Testing" and "Analysis" parts of previously developed by authors testing labora-
tory [16].

• Implemented in C++ rules extraction method (with OpenMP and CUDA support).

• A starting vector and base for future work on parallel and optimization of the proposed
rules extraction approach.

6.2 Theoretical implications

In this Section theoretical implications of the performed research are investigated. The thesis
seeks for the method of deriving malware detection rules that are both reliable and interpretable
by human. Corresponding security metrics were extracted for these purposes from the applica-
tions. In addition to this, it was studied performance of the other binary classification methods in
order to compare detection error. This Section provides theoretical implications of the researched
area and findings.

It was found that applying security metrics can decrease complexity of statistical model used
for malware detection. This is because dimensionality of metrics vector for each application is
less in a few times then the feature vector. This is important aspect, because complexity of the
detection method affect time complexity of model construction. It could happen that statistical
learning from features will be infeasible due to dimensionality.

Despite the fact that there are already known research on security metrics and their appli-
cation for PC and networks [119, 9, 120, 121, 47], there are still no theory for mobile devices.
Only few of the security metrics can be projected from PC domain to mobile platform like CPU
utilization. Other metrics are available only on mobile platform like stored databases and shared
preferences in XML. Another difference of existing research on security metrics is that there are
only used expert knowledge for metrics construction from the features. The author used attribute
selection approach RELIEF for obtaining corresponding weights that requires minimum of expert
knowledge.

As it was presented in the proof of concept in the Chapter 3, the method is able to utilize
less detection rules without significant loss of accuracy. We can say that proposed detection
methodology was successful because of there was used real dataset and the method provided
good results on it. Finally, the derived rules can be used for teaching the security unaware or
vulnerable users of mobile devices.

6.3 Practical Implications

The used dataset was composed from APK packages that are suing for applications installation of
Android platform. Such applications were collected from publicly available samples of malicious
an benign applications for Android platform. Also the practical findings of the study are totally
replicable under the chosen methods that were described in the Chapter 3.

We understood that the features from applications tests can contain irrelevant data and noise
components, which influence building of security metrics. However, have not caused huge error

79

Automatic rule-extraction for malware detection on mobile devices

rates in malware detection neither in proposed method nor in other ML classification methods
like SVM or EM. All performed tests in proof-of-concept in the Chapter 3 and in real malware
detection in the Chapter 4 presented the method can be used as human-interpretable malware
detection. Moreover, common user without deep technical knowledge of information security
can understand the idea behind fuzzy rules. It offers insight of prerequisites for malware success
even under deployed protection mechanisms and installed AV software.

The thesis found that application of parallel optimization of the method decreases time com-
plexity by several orders of magnitude. We studied the method’s complexity in the Chapter 5
and all further conclusions are scientifically proved. This is an interdisciplinary research that
was inspired by seeking for reducing time complexity without damaging the accuracy. We found
that CUDA can be considered as the best options in paralleling of the ANN learning process.
During work on implementation we obtained valuable experience that reveals drawbacks and
limitations of the multiprocessing. As a result, we state that parallel computing can significantly
decrease delays while performing rules mining in dynamic and proactive environment. This is
very important while using malware detection in critical infrastructures or for sensitive data
protection.

6.4 Further work

To the authors hope this master thesis introduces a sizeable step to forensically sound malware
detection using fuzzy rules in pro-active environment. Some of the existing difficulties and per-
spectives for future were discussed in master thesis already. We want to concentrate on most
important fields of work that can be researched.

• Extraction of additional features

During the work on the master thesis, there were extracted nearly forty different raw fea-
tures from each application during static and dynamic testing. However, there are still per-
spective of extraction much more specific features. In our view, detection based on bigger
amount of features is more robust.

• Metrics composition

As was discussed previously in the Chapter 3, RELIEF method was chosen in order to ex-
tract merits for each particular feature in a single metric. However, later it was shown in
the Chapter 4 that the extracted fuzzy rules based on the metrics do not provide the best
results in malware classification. Therefore, further research should be performed on fea-
ture selection. Particularly, we foresee utilization of generic feature selection measure [84]
and SVM attributes evaluation.

• On-side defense

Since this work was targeted the field of malware analysis in proactive automated environ-
ment, we did not concentrate much attention on device-side malware detection. Neverthe-
less, extracted features and later metrics are feasible to extract from inside mobile OS as
well. As a result, C++ library should be developed using rule-construction module. Then,

80

Automatic rule-extraction for malware detection on mobile devices

through the JNI interface it is connected to Android application in order to provide fast
data exchange.

• On-line learning testing

The important thing is not only to develop strong theoretical base but also to utilize strong
and efficient optimization while implementing. In our view, there should be provided ad-
ditional tests in order to test time complexity and applicability of the method in dynamic
and changeable environment.

• Expert system perspective

The master thesis studied the testing, analysis and detection of the malware on mobile
devices. Despite the reliable detection, the malware prevention and isolation should be
performed as well.

81

Automatic rule-extraction for malware detection on mobile devices

Bibliography

[1] The pros and cons of behavioral based, signature based and whitelist based se-
curity (online). URL: http://www.windowsecurity.com/articles-tutorials/
misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-
Security.html (Visited 09.04.2013). 1, 11, 40

[2] Why relying on antivirus signatures is simply not enough anymore (online). URL:
http://blog.webroot.com/2012/02/23/why-relying-on-antivirus-signatures-is-
simply-not-enough-anymore/ (Visited 09.04.2013). 1, 11, 40

[3] Morris worm - source code, investigations and study (online). 2012. URL: http://
ftp.cerias.purdue.edu/pub/doc/morris_worm/ (Visited 27.05.2013). 2

[4] Dunham, K. 2009. Mobile Malware Attacks and Defense. Syngress Publishing. 2, 9

[5] Hoog, A. 2011. Android Forensics: Investigation, Analysis and Mobile Security for Google
Android. Syngress Publishing, 1st edition. 2, 19

[6] Mobile app security study (online). URL: https://viaforensics.com/resources/
reports/mobile-app-security-study/ (Visited 10.05.2013). 2

[7] Hamon, V. Operational cryptology and virology lab (online). 2012. URL: http://
cvo-lab.blogspot.fr/2012/08/android-malware-smszombie-in-depth.html (Visited
05.12.2012). 2

[8] Asef: Android security evaluation framework (online). URL: http://code.google.com/
p/asef/ (Visited 16.11.2012). 2

[9] Payne, S. C. A guide to security metrics. Technical report, 2006. 2, 12, 24, 79

[10] Kononenko, I. & Kukar, M. 2007. Machine Learning and Data Mining: Introduction to
Principles and Algorithms. Horwood Publishing Limited. 2, 13, 14, 25, 36, 37, 41, 48, 58,
59

[11] Nwokedi Idika, A. P. M. A survey of malware detection techniques. 2007. 3

[12] Marpaung, J., Sain, M., & Lee, H.-J. feb. 2012. Survey on malware evasion techniques:
State of the art and challenges. In Advanced Communication Technology (ICACT), 2012
14th International Conference on, 744 –749. 3, 21, 54

[13] Singh, R., Kumar, H., & Singla, R. October 2011. Review of soft computing in malware
detection. Special issues on IP Multimedia Communications, (1), 55–60. Published by
Foundation of Computer Science, New York, USA. 3, 16, 29

83

http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons -Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons -Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons -Behavioral-Signature-Whitelist-Security.html
http://blog.webroot.com/2012/02/23/why-relying-on-antivirus-signatures-is-simpl y-not-enough-anymore/
http://blog.webroot.com/2012/02/23/why-relying-on-antivirus-signatures-is-simpl y-not-enough-anymore/
http://ftp.cerias.purdue.edu/pub/doc/morris_worm/
http://ftp.cerias.purdue.edu/pub/doc/morris_worm/
https://viaforensics.com/resources/reports/mobile-app-security-study/
https://viaforensics.com/resources/reports/mobile-app-security-study/
http://cvo-lab.blogspot.fr/2012/08/android-malware-smszombie-in-depth.html
http://cvo-lab.blogspot.fr/2012/08/android-malware-smszombie-in-depth.html
http://code.google.com/p/asef/
http://code.google.com/p/asef/

Automatic rule-extraction for malware detection on mobile devices

[14] Altaher, A., Almomani, A., & Ramadass, S. 2012. Application of adaptive neuro-fuzzy
inference system for information secuirty. Journal of Computer Science, 8(6), 983–986. 3,
15, 29

[15] Zhang, Y., Pang, J., Yue, F., & Cui, J. 2010. Fuzzy neural network for malware detect. In
Intelligent System Design and Engineering Application (ISDEA), 2010 International Confer-
ence on, volume 1, 780–783. doi:10.1109/ISDEA.2010.314. 3, 16, 29

[16] Shalaginov, A. Testing laboratory for mobile applications and malware analysis. IMT4882
Specialization Course Project Report, Gjøvik University College, dec 2012. 3, 29, 54, 66,
67, 77, 79

[17] Xie, L., Zhang, X., Seifert, J.-P., & Zhu, S. 2010. pbmds: a behavior-based malware
detection system for cellphone devices. In Proceedings of the third ACM conference on
Wireless network security, WiSec ’10, 37–48, New York, NY, USA. ACM. URL: http://
doi.acm.org/10.1145/1741866.1741874, doi:10.1145/1741866.1741874. 4

[18] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. 2011. Crowdroid: behavior-based mal-
ware detection system for android. In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, SPSM ’11, 15–26, New York, NY, USA. ACM.
URL: http://doi.acm.org/10.1145/2046614.2046619, doi:10.1145/2046614.2046619. 4

[19] Adolphi, B. Cross-platform evaluation of mobile app hardening. Master’s thesis, Gjøvik
University College, Norway, 2012. 5, 11

[20] Google play (online). URL: https://play.google.com/store (Visited 20.03.2013). 5, 29

[21] Kaspersky security bulletin 2012. malware evolution (on-
line). URL: http://www.securelist.com/en/analysis/204792254/
Kaspersky_Security_Bulletin_2012_Malware_Evolution (Visited 16.03.2013).
5

[22] Apple app store (online). URL: http://www.apple.com/iphone/from-the-app-store/
(Visited 20.03.2013). 5, 29

[23] Designing a defense for mobile applications. examining an ecosystem of risk. Technical
report, 2013. 9

[24] Mobile malware report: How users drive the mobile threat landscape. Technical report,
2013. 9, 13

[25] Boksasp, T. & Utnes, E. Android apps and permissions: Security and privacy risks. Master’s
thesis, NTNU - Trondheim, Norwegian University of Science and Technology, Norway,
2012. 9, 10

[26] Felt, A. P. & Wagner, D. 2011. Phishing on mobile devices. In In W2SP. 9

[27] Asokan, N. 2007. Phishingand mobile phones. USEC ‘07 “The Future of Phishing”panel
discussion. 9

84

http://dx.doi.org/10.1109/ISDEA.2010.314
http://doi.acm.org/10.1145/1741866.1741874
http://doi.acm.org/10.1145/1741866.1741874
http://dx.doi.org/10.1145/1741866.1741874
http://doi.acm.org/10.1145/2046614.2046619
http://dx.doi.org/10.1145/2046614.2046619
https://play.google.com/store
http://www.securelist.com/en/analysis/204792254/Kaspersky_Security_Bulletin_2012_Malware_Evolution
http://www.securelist.com/en/analysis/204792254/Kaspersky_Security_Bulletin_2012_Malware_Evolution
http://www.apple.com/iphone/from-the-app-store/

Automatic rule-extraction for malware detection on mobile devices

[28] Van der Merwe, A. J. & Seker, R. Mobile phishing (online). 2004. URL:
http://hufee.meraka.org.za/Hufeesite/staff/the-hufee-group/altas-documents/
Twopager-Nov142k4.pdf (Visited 17.12.2012). 9

[29] Castillo, C. A. Android malware past, present, and future (online). URL:
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-
present-future.pdf. 10, 13

[30] Android sdk (online). URL: http://developer.android.com/index.html (Visited
10.11.2012). 10, 18, 19, 52, 54, 69, 70, 74

[31] Send_sms capability leak in android open source project (aosp), affecting gingerbread, ice
cream sandwich, and jelly bean (online). Xuxian Jiang. URL: http://www.csc.ncsu.edu/
faculty/jiang/send_sms_leak.html (Visited 01.06.2013). 10

[32] Grace, M., Zhou, Y., Wang, Z., & Jiang, X. feb 2012. Systematic detection of capability
leaks in stock Android smartphones. In Proceedings of the 19th Network and Distributed
System Security Symposium (NDSS). URL: http://www.csc.ncsu.edu/faculty/jiang/
pubs/NDSS12_WOODPECKER.pdf. 10

[33] Android vs ios infographic (online). URL: http://www.veracode.com/resources/
android-ios-security (Visited 10.04.2013). 10

[34] Android and security (online). URL: http://googlemobile.blogspot.no/2012/02/
android-and-security.html (Visited 08.04.2013). 10

[35] Android based phones rules the world’s smartphones market (online). URL: http://
www.androidnova.org/tag/mobile-os-usage-statistics/ (Visited 12.04.2013). 10

[36] Android security overview (online). URL: http://source.android.com/tech/security/
(Visited 02.02.2013). 10

[37] Svajcer, V. Technical report. 10, 11

[38] Circumventing google’s bouncer, android’s anti-malware system (online). URL:
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-
androids-anti-malware-system (Visited 03.04.2013). 11, 29

[39] ios security. Technical report, 2012. 11

[40] Windows phone apps (online). URL: http://www.windowsphone.com/en-us/store (Vis-
ited 26.05.2013). 11

[41] Miscrosoft msdn - how device security affects application execution (online). URL: http:
//msdn.microsoft.com/ (Visited 26.05.2013). 11

[42] Whole product dynamic: Real world protection test report, anti-virus comparative - octo-
ber 2012. Technical report, 2012. 11

85

http://hufee.meraka.org.za/Hufeesite/staff/the-hufee-group/altas-documents/Twopa ger-Nov142k4.pdf
http://hufee.meraka.org.za/Hufeesite/staff/the-hufee-group/altas-documents/Twopa ger-Nov142k4.pdf
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present -future.pdf
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present -future.pdf
http://developer.android.com/index.html
http://www.csc.ncsu.edu/faculty/jiang/send_sms_leak.html
http://www.csc.ncsu.edu/faculty/jiang/send_sms_leak.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.veracode.com/resources/android-ios-security
http://www.veracode.com/resources/android-ios-security
http://googlemobile.blogspot.no/2012/02/android-and-security.html
http://googlemobile.blogspot.no/2012/02/android-and-security.html
http://www.androidnova.org/tag/mobile-os-usage-statistics/
http://www.androidnova.org/tag/mobile-os-usage-statistics/
http://source.android.com/tech/security/
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-androi ds-anti-malware-system
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-androi ds-anti-malware-system
http://www.windowsphone.com/en-us/store
http://msdn.microsoft.com/
http://msdn.microsoft.com/

Automatic rule-extraction for malware detection on mobile devices

[43] Test report: Anti-malware solutions for android. Technical report, 2012. 11

[44] Moser, A., Kruegel, C., & Kirda, E. dec. 2007. Limits of static analysis for malware de-
tection. In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, 421 –430. doi:10.1109/ACSAC.2007.21. 11

[45] Logical signatures in cmalav 0.94 (online). 2008. URL: http://vrt-blog.snort.org/
2008/09/logical-signatures-in-clamav-094.html (Visited 27.12.2012). 12

[46] Chris I. Cain, E. C. Establishing a security metrics program. Technical report, 2011. 12

[47] Rathbun, D. Gathering security metrics and reaping the rewards. Technical report, 2009.
12, 79

[48] Torgersen, G. Online data explosion brings new forensic collection techniques (online).
URL: http://www.evidencemagazine.com/index.php?option=com_content&task=
view&id=1184&Itemid=9 (Visited 20.04.2013). 13

[49] Sahs, J. & Khan, L. aug. 2012. A machine learning approach to android malware detec-
tion. In Intelligence and Security Informatics Conference (EISIC), 2012 European, 141 –147.
doi:10.1109/EISIC.2012.34. 13, 14, 29

[50] Shamili, A., Bauckhage, C., & Alpcan, T. 2010. Malware detection on mobile devices
using distributed machine learning. In Pattern Recognition (ICPR), 2010 20th International
Conference on, 4348–4351. doi:10.1109/ICPR.2010.1057. 13, 14

[51] Bose, A., Hu, X., Shin, K. G., & Park, T. 2008. Behavioral detection of malware on
mobile handsets. In Proceedings of the 6th international conference on Mobile systems,
applications, and services, MobiSys ’08, 225–238, New York, NY, USA. ACM. URL: http:
//doi.acm.org/10.1145/1378600.1378626, doi:10.1145/1378600.1378626. 13

[52] Shabtai, A., Fledel, Y., & Elovici, Y. dec. 2010. Automated static code analysis for clas-
sifying android applications using machine learning. In Computational Intelligence and
Security (CIS), 2010 International Conference on, 329 –333. doi:10.1109/CIS.2010.77.
13, 14

[53] Franke, K. The influence of physical and biomechanical processes on the ink trace - Method-
ological foundations for the forensic analysis of signatures. PhD thesis, University of Gronin-
gen, 2005. 15

[54] Mathworks - fuzzy inference process (online). URL: http://www.mathworks.se/help/
fuzzy/fuzzy-inference-process.html (Visited 28.05.2013). xiii, 15

[55] Amiri, F., Lucas, C., & Yazdani, N. 2009. Anomaly detection using neuro fuzzy system. 16

[56] Jang, J.-S. 1993. Anfis: adaptive-network-based fuzzy inference system. IEEE Transactions
on Systems, Man and Cybernetics, 23(3), 665–685. doi:10.1109/21.256541. 16, 34

86

http://dx.doi.org/10.1109/ACSAC.2007.21
http://vrt-blog.snort.org/2008/09/logical-signatures-in-clamav-094.html
http://vrt-blog.snort.org/2008/09/logical-signatures-in-clamav-094.html
http://www.evidencemagazine.com/index.php?option=com_content&task=view&id=1184&I temid=9
http://www.evidencemagazine.com/index.php?option=com_content&task=view&id=1184&I temid=9
http://dx.doi.org/10.1109/EISIC.2012.34
http://dx.doi.org/10.1109/ICPR.2010.1057
http://doi.acm.org/10.1145/1378600.1378626
http://doi.acm.org/10.1145/1378600.1378626
http://dx.doi.org/10.1145/1378600.1378626
http://dx.doi.org/10.1109/CIS.2010.77
http://www.mathworks.se/help/fuzzy/fuzzy-inference-process.html
http://www.mathworks.se/help/fuzzy/fuzzy-inference-process.html
http://dx.doi.org/10.1109/21.256541

Automatic rule-extraction for malware detection on mobile devices

[57] Stoffel, K., Cotofrei, P., & Han, D. 2010. Fuzzy methods for forensic data analysis. In Soft
Computing and Pattern Recognition (SoCPaR), 2010 International Conference of, 23–28.
doi:10.1109/SOCPAR.2010.5685848. 16

[58] Stoffel, K., Cotofrei, P., & Han, D. 2012. Fuzzy clustering based methodology for multi-
dimensional data analysis in computational forensic domain. In International Journal of
Computer Information Systems and Industrial Management Applications, 400–410. 16, 52

[59] Sulaiman Al amro, K. A. & Ajlan, A. A. A comparative study of computational intelligence
in computer security and forensics. 2011. 16

[60] Under the hood of android emulator (appcert) (online). URL: https://wiki.diebin.at/
Under_the_hood_of_Android_Emulator_(appcert) (Visited 02.05.2013). 18

[61] Android memory usage (online). URL: http://elinux.org/Android_Memory_Usage (Vis-
ited 20.04.2013). 20, 55

[62] Understanding statistics: Data types, variables, and p value. Technical report, 2010. 21

[63] Default android permissions explained, security tips, and avoiding malware (on-
line). 2010. URL: http://androidforums.com/android-applications/36936-
android-permissions-explained-security-tips-avoiding-malware.html (Visited
16.03.2013). 21

[64] Chia, P. H., Yamamoto, Y., & Asokan, N. 2012. Is this app safe?: a large scale study
on application permissions and risk signals. In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, 311–320, New York, NY, USA. ACM. URL:
http://doi.acm.org/10.1145/2187836.2187879, doi:10.1145/2187836.2187879. 21

[65] Krassas, N. Android malware analysis (online). 2011. URL: http://
resources.infosecinstitute.com/android-malware-analysis/ (Visited 20.05.2013).
21

[66] Gray, R. M. Entropy and information theory (online). 1990. URL: http://
ee.stanford.edu/~gray/it.pdf (Visited 20.05.2013). 22, 24

[67] Antonio Arauzo-Azofra, J. M. B. & Castro, J. L. 2004. A feature set measure based on
relief. 25

[68] Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. 2010. State of the art: Automated black-box
web application vulnerability testing. In Security and Privacy (SP), 2010 IEEE Symposium
on, 332–345. doi:10.1109/SP.2010.27. 25

[69] Androguard: reverse engineering, malware and goodware analysis of android applications
(online). URL: http://code.google.com/p/androguard/ (Visited 28.11.2012). 25

[70] Kiseleva, A., Kiselev, G., Sergeev, A., & Shalaginov, A. 2011. Processing the input data
in multimodal applications. Scientific and Technical Journal “Electronics and Communica-
tions”, 2, 86–92. Kiev, Ukraine. 27

87

http://dx.doi.org/10.1109/SOCPAR.2010.5685848
https://wiki.diebin.at/Under_the_hood_of_Android_Emulator_(appcert)
https://wiki.diebin.at/Under_the_hood_of_Android_Emulator_(appcert)
http://elinux.org/Android_Memory_Usage
http://androidforums.com/android-applications/36936-android-permissions-explaine d-security-tips-avoiding-malware.html
http://androidforums.com/android-applications/36936-android-permissions-explaine d-security-tips-avoiding-malware.html
http://doi.acm.org/10.1145/2187836.2187879
http://dx.doi.org/10.1145/2187836.2187879
http://resources.infosecinstitute.com/android-malware-analysis/
http://resources.infosecinstitute.com/android-malware-analysis/
http://ee.stanford.edu/~gray/it.pdf
http://ee.stanford.edu/~gray/it.pdf
http://dx.doi.org/10.1109/SP.2010.27
http://code.google.com/p/androguard/

Automatic rule-extraction for malware detection on mobile devices

[71] Sand, L. A. Information-based dependency matching for behavioral malware analysis.
Master’s thesis, Gjovik University College, Norway, 2012. 27

[72] Strace (online). URL: http://linux.die.net/man/1/strace (Visited 07.05.2013). xiii,
27, 54, 55

[73] Barnett, J. A. 1982. Some issues of control in expert system. In IEEE International
Conference on Cybernetics and Society, 421 –430. 28

[74] Kusnetzky, D. What is "big data?" (online). 2010. URL: http://www.zdnet.com/blog/
virtualization/what-is-big-data/1708. 29, 41

[75] Scarpiniti, M. 2009. Neural networks. lesson 9 - fuzzy logic. Infocom Dept. - "Sapienza"
university of Rome. 29, 30, 32

[76] Fuller, R. 1995. Neural Fuzzy Systems. Abo Akademi University. 29, 30, 32, 33, 34, 36, 70

[77] Looney, C. G. & Dascalu, S. 2007. A simple fuzzy neural network. In Proceedings of the
ISCA 20th International Conference on Computer Applications in Industry and Engineering,
CAINE 2007, November 7-9, 2007, San Francisco, California, USA, 12–16. ISCA. 30, 34

[78] Holeňa, M. 2005. Extraction of fuzzy logic rules from data by means of artificial neural
networks. Kybernetika, 41(3), [297]–314. URL: http://eudml.org/doc/33755. 30

[79] Fuzzy logic description detailed (online). URL: http://wing.comp.nus.edu.sg/pris/
FuzzyLogic/DescriptionDetailed2.html (Visited 15.04.2013). xiii, 31

[80] Lee, M. A. & Wessel, D. 1993/04/16 1993. Real-time neuro-fuzzy systems for
adaptive control of musical processes. In Applications of Fuzzy Logic Technology, vol-
ume 2061, 464–75, Boston, MA. URL: http://cnmat.berkeley.edu/publications/
real_time_neuro_fuzzy_systems_adaptive_control_musical_processes. xiii, 35

[81] S. Bouharati, K. Benmahammed, D. H. & El-Assaf, Y. 2008. Application of artificial neuro-
fuzzy logic inference system for predicting the microbiological pollution in fresh water. In
Journal of Applied Sciences, volume 8, 309–315. xiii, 37

[82] Wilamowski, B. 2003. Neural network architectures and learning. In Industrial Tech-
nology, 2003 IEEE International Conference on, volume 1, TU1–T12 Vol.1. doi:10.1109/
ICIT.2003.1290197. 36

[83] Gradient descent method (online). URL: http://fourier.eng.hmc.edu/e176/lectures/
NM/node20.html (Visited 20.05.2013). xiii, 38, 39

[84] Nguyen, H. T., Franke, K., & Petrovic, S. aug. 2010. Towards a generic feature-selection
measure for intrusion detection. In Pattern Recognition (ICPR), 2010 20th International
Conference on, 1529 –1532. doi:10.1109/ICPR.2010.378. 38, 80

[85] Fisher, R. A. Iris data set (online). 1986. URL: Downloadedfromhttp://
archive.ics.uci.edu/ml/datasets/Iris. 39

88

http://linux.die.net/man/1/strace
http://www.zdnet.com/blog/virtualization/what-is-big-data/1708
http://www.zdnet.com/blog/virtualization/what-is-big-data/1708
http://eudml.org/doc/33755
http://wing.comp.nus.edu.sg/pris/FuzzyLogic/DescriptionDetailed2.html
http://wing.comp.nus.edu.sg/pris/FuzzyLogic/DescriptionDetailed2.html
http://cnmat.berkeley.edu/publications/real_time_neuro_fuzzy_systems_adaptive_co ntrol_musical_processes
http://cnmat.berkeley.edu/publications/real_time_neuro_fuzzy_systems_adaptive_co ntrol_musical_processes
http://dx.doi.org/10.1109/ICIT.2003.1290197
http://dx.doi.org/10.1109/ICIT.2003.1290197
http://fourier.eng.hmc.edu/e176/lectures/NM/node20.html
http://fourier.eng.hmc.edu/e176/lectures/NM/node20.html
http://dx.doi.org/10.1109/ICPR.2010.378
Downloaded from http://archive.ics.uci.edu/ml/datasets/Iris
Downloaded from http://archive.ics.uci.edu/ml/datasets/Iris

Automatic rule-extraction for malware detection on mobile devices

[86] Akbarzadeh, V., Sadeghian, A., & dos Santos, M. V. 2008. Derivation of
relational fuzzy classification rules using evolutionary computation. In FUZZ-
IEEE, 1689–1693. IEEE. URL: http://dblp.uni-trier.de/db/conf/fuzzIEEE/
fuzzIEEE2008.html#AkbarzadehSS08. xiii, 39, 40, 43

[87] Borovinskiy, V. (online). 39

[88] Jagielska, I., Matthews, C., & Whitfort, T. 1999. An investigation into the appli-
cation of neural networks, fuzzy logic, genetic algorithms, and rough sets to auto-
mated knowledge acquisition for classification problems. Neurocomputing, 24(1–3), 37 –
54. URL: http://www.sciencedirect.com/science/article/pii/S0925231298000903,
doi:10.1016/S0925-2312(98)00090-3. 39

[89] Discriminating between iris species (online). URL: http://www.r-bloggers.com/
discriminating-between-iris-species/ (Visited 12.02.2013). xiii, 40

[90] Kiseleva, A. & Shalaginov, A. 2010. Hidden markov model for dealing with context
application. In Proceedings of the XVIII Ukrainian-Polish Conference "CAD in Machinery
Design. Implementation and Education problems", 20–22, Lvov, Ukraine; Warsaw, Poland.
41

[91] Chiang, H.-S. & Tsaur, W.-J. aug. 2010. Mobile malware behavioral analysis and preven-
tive strategy using ontology. In Social Computing (SocialCom), 2010 IEEE Second Interna-
tional Conference on, 1080 –1085. doi:10.1109/SocialCom.2010.160. 41

[92] Wang, L. High dimensional data analysis (online). URL: http://
lilywang.myweb.uga.edu/Research/highdimension.pdf (Visited 04.05.2013). 42,
51

[93] Pricing and hedging derivative securities with neural networks: Bayesian regulariza-
tion, early stopping, and bagging (online). URL: http://neuron.csie.ntust.edu.tw/
homework/94/neuron/Homework3/M9409204/discuss.htm (Visited 12.04.2013). xiii, 44,
70

[94] Weka (online). URL: http://www.cs.waikato.ac.nz/~ml/weka/ (Visited 08.12.2012).
xvii, 48, 50, 51, 58

[95] Daubert - viaforensics (online). URL: https://viaforensics.com/computer-forensic-
ediscovery-glossary/what-is-daubert.html (Visited 16.05.2013). 52

[96] yaffs2utils - utilities to create/extract a yaffs2 image on linux (online). URL: http://
code.google.com/p/yaffs2utils/ (Visited 19.04.2013). 52

[97] Forensic analysis of the android file system yaffs2 (online). 2011. URL:
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1100&context=adf (Visited
01.06.2013). 52

89

http://dblp.uni-trier.de/db/conf/fuzzIEEE/fuzzIEEE2008.html#AkbarzadehSS08
http://dblp.uni-trier.de/db/conf/fuzzIEEE/fuzzIEEE2008.html#AkbarzadehSS08
http://www.sciencedirect.com/science/article/pii/S0925231298000903
http://dx.doi.org/10.1016/S0925-2312(98)00090-3
http://www.r-bloggers.com/discriminating-between-iris-species/
http://www.r-bloggers.com/discriminating-between-iris-species/
http://dx.doi.org/10.1109/SocialCom.2010.160
http://lilywang.myweb.uga.edu/Research/highdimension.pdf
http://lilywang.myweb.uga.edu/Research/highdimension.pdf
http://neuron.csie.ntust.edu.tw/homework/94/neuron/Homework3/M9409204/discuss.ht m
http://neuron.csie.ntust.edu.tw/homework/94/neuron/Homework3/M9409204/discuss.ht m
http://www.cs.waikato.ac.nz/~ml/weka/
https://viaforensics.com/computer-forensic-ediscovery-glossary/what-is-daubert. html
https://viaforensics.com/computer-forensic-ediscovery-glossary/what-is-daubert. html
http://code.google.com/p/yaffs2utils/
http://code.google.com/p/yaffs2utils/
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1100&context=adf

Automatic rule-extraction for malware detection on mobile devices

[98] Are (android reverse engineering) (online). URL: http://maj3sty.tistory.com/993
(Visited 09.05.2013). 53

[99] Droidbox: Android application sandbox (online). URL: http://code.google.com/p/
droidbox/ (Visited 25.11.2012). 53, 73

[100] Zhou, Y. & Jiang, X. may 2012. Dissecting android malware: Characterization and
evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, 95 –109. doi:
10.1109/SP.2012.16. 54

[101] Tcpdump - command-line packet analyser (online). URL: http://www.tcpdump.org/ (Vis-
ited 07.05.2013). 54

[102] Wireshark - network traffic analyser (online). URL: http://www.wireshark.org/ (Visited
07.05.2013). 54, 55

[103] Passeri, P. One year of android malware (full list) (online). 2011. URL: http://
hackmageddon.com/2011/08/11/one-year-of-android-malware-full-list/ (Visited
10.11.2012). 55

[104] Current android malware (online). 2012. URL: http://forensics.spreitzenbarth.de/
android-malware/ (Visited 10.11.2012). 55

[105] Sms zombie in depth (online). 2012. URL: http://cvo-lab.blogspot.fr/2012/08/
android-malware-smszombie-in-depth.html (Visited 07.12.2012). 55

[106] Domaintools (online). URL: http://whois.domaintools.com/ (Visited 03.05.2013). 55

[107] Abbass, H. A., Bacardit, J., Butz, M. V., & Llorà, X. Online adaptation in learning classi-
fier systems: Stream data mining (online). 2004. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.89.9243&rep=rep1&type=pdf (Visited 03.04.2013). 57

[108] Parkour, M. Mobile malware dump from july 2011 (online). URL: http:
//contagiodump.blogspot.no/2011/03/take-sample-leave-sample-mobile-
malware.html (Visited 16.12.2012). 63

[109] S.Adamchik, V. Algorithmic complexity (online). 2011. URL: http://www.cs.cmu.edu/
~adamchik/15-121/lectures/Algorithmicy/complexity.html (Visited 24.05.2013).
64

[110] Taft, D.-P. I. G. Amdahl’s law (online). URL: http://www.gordon-taft.net/
Amdahl_Law.html (Visited 30.05.2013). 65

[111] Kvm - kernel based virtual machine (online). URL: http://www.linux-kvm.org (Visited
12.04.2013). 68, 69

[112] Grisenthwaite, R. Armv8technology preview (online). 2011. URL: http://www.arm.com/
files/downloads/ARMv8_Architecture.pdf (Visited 10.05.2013). 69

90

http://maj3sty.tistory.com/993
http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16
http://www.tcpdump.org/
http://www.wireshark.org/
http://hackmageddon.com/2011/08/11/one-year-of-android-malware-full-list/
http://hackmageddon.com/2011/08/11/one-year-of-android-malware-full-list/
http://forensics.spreitzenbarth.de/android-malware/
http://forensics.spreitzenbarth.de/android-malware/
http://cvo-lab.blogspot.fr/2012/08/android-malware-smszombie-in-depth.html
http://cvo-lab.blogspot.fr/2012/08/android-malware-smszombie-in-depth.html
http://whois.domaintools.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9243&rep=rep1&type=p df
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9243&rep=rep1&type=p df
http://contagiodump.blogspot.no/2011/03/take-sample-leave-sample-mobile-malware. html
http://contagiodump.blogspot.no/2011/03/take-sample-leave-sample-mobile-malware. html
http://contagiodump.blogspot.no/2011/03/take-sample-leave-sample-mobile-malware. html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Algorithmicy/complex ity.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Algorithmicy/complex ity.html
http://www.gordon-taft.net/Amdahl_Law.html
http://www.gordon-taft.net/Amdahl_Law.html
http://www.linux-kvm.org
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf

Automatic rule-extraction for malware detection on mobile devices

[113] J.Stan Cox, Piyush Agarwal, N. G. H. H. Ibm websphere application server 64-bit per-
formance demystified (online). 2007. URL: ftp://ftp.software.ibm.com/software/
webserver/appserv/was/64bitPerf.pdf (Visited 12.05.2013). 69

[114] The openmp api specification for parallel programming (online). URL: http://
openmp.org/ (Visited 20.05.2013). 71

[115] Nvidia compute unified device architecture (online). URL: https://
developer.nvidia.com/category/zone/cuda-zone (Visited 20.05.2013). xiv, 71,
72, 139

[116] Thrust - code at the speed of light (online). URL: code.google.com/p/thrust/ (Visited
21.05.2013). 72

[117] Latif, L. Nvidia says tegra 5 ’logan’ will support cuda (online). URL:
http://www.theinquirer.net/inquirer/news/2255917/nvidia-says-tegra-5-
logan-will-support-cuda (Visited 18.05.2013). 75

[118] Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. 2012. Madam: a multi-level anomaly
detector for android malware. In Proceedings of the 6th international conference on Math-
ematical Methods, Models and Architectures for Computer Network Security: computer net-
work security, MMM-ACNS’12, 240–253, Berlin, Heidelberg. Springer-Verlag. URL: http:
//dx.doi.org/10.1007/978-3-642-33704-8_21, doi:10.1007/978-3-642-33704-8_21.
77

[119] Establishing a security metrics program. Technical report, Chris I. Cain, Erik Couture. 79

[120] Aiello, M. Security metrics. 2005. 79

[121] Bayuk, J. april 2011. Alternative security metrics. In Information Technology: New
Generations (ITNG), 2011 Eighth International Conference on, 943 –946. doi:10.1109/
ITNG.2011.162. 79

91

ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf
http://openmp.org/
http://openmp.org/
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone
code.google.com/p/thrust/
http://www.theinquirer.net/inquirer/news/2255917/nvidia-says-tegra-5-logan-will- support-cuda
http://www.theinquirer.net/inquirer/news/2255917/nvidia-says-tegra-5-logan-will- support-cuda
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1109/ITNG.2011.162
http://dx.doi.org/10.1109/ITNG.2011.162

Automatic rule-extraction for malware detection on mobile devices

A Data sets

Figure 44: Sample of folder with collected benign applications

93

Automatic rule-extraction for malware detection on mobile devices

Figure 45: Sample of folders with corresponding applications information after tests execution

Figure 46: Sample of the information extracted for each particular application

94

Automatic rule-extraction for malware detection on mobile devices

Listing A.1: Sample of ARFF file with extracted features

@relation maliciousAndBenignAppFeatures

@attribute id_featureSet numeric
@attribute id_app numeric
@attribute id_test numeric
@attribute sdkVersion numeric
@attribute targetSdkVersion numeric
@attribute app_label_length numeric
@attribute package_name_length numeric
@attribute filesize numeric
@attribute permissions_highest numeric
@attribute permissions_avg numeric
@attribute permissions_number numeric
@attribute pull_data_size numeric
@attribute log_launch_size numeric
@attribute cpu_usage_peak numeric
@attribute cpu_usage_avg numeric
@attribute cpu_usage_stdev numeric
@attribute thr_usage_peak numeric
@attribute thr_usage_avg numeric
@attribute thr_usage_stdev numeric
@attribute vss_usage_peak numeric
@attribute vss_usage_avg numeric
@attribute vss_usage_stdev numeric
@attribute rss_usage_peak numeric
@attribute rss_usage_avg numeric
@attribute rss_usage_stdev numeric
@attribute shared_prefs numeric
@attribute shared_prefs_size numeric
@attribute databases numeric
@attribute databases_size numeric
@attribute files numeric
@attribute files_size numeric
@attribute package_entropy numeric
@attribute package_number_files numeric
@attribute manifest_size numeric
@attribute res_folder_size numeric
@attribute assets_folder_size numeric
@attribute classes_dex_size numeric
@attribute classes_dex_entropy numeric
@attribute execution_time numeric
@attribute class {0,1}

@data
1, 201, 891, 4, 4, 19, 10, 82174 , 2, 0.428571 , 7, 12, 19080 , 0,
0, 0, 9, 9, 0,

0.481159 , 0.481159 , 0, 0.025627 , 0.025627 , 0, 0, 0, 0, 0, 2, 8,
6.38049 , 27,

95

Automatic rule-extraction for malware detection on mobile devices

4120, 144, 0, 40276, 5.61094 , 85.85, 1

2, 450, 890, 4, 4, 19, 10, 103945 , 2, 0.428571 , 7, 12, 18526 , 0,
0, 0, 9,

8.57143 , 1.91663 , 0.481152 , 0.45824 , 0.102465 , 0.025597 , 0.024378 ,
0.005451 , 0,

0, 0, 0, 2, 8, 6.67897 , 27, 4120, 168, 0, 40276 , 5.61094 , 84.49 , 1

3, 449, 889, 4, 4, 19, 10, 131978 , 2, 0.428571 , 7, 12, 14490 , 0,
0, 0, 9, 9,

0, 0.481159 , 0.481159 , 0, 0.025612 , 0.025612 , 0, 0, 0, 0, 0, 2, 8,
6.86501 , 27,

4120, 192, 0, 40276, 5.61094 , 83.03, 1

4, 201, 891, 4, 4, 19, 10, 82174 , 2, 0.428571 , 7, 12, 19080 , 0,
0, 0, 9, 9, 0,

0.481159 , 0.481159 , 0, 0.025627 , 0.025627 , 0, 0, 0, 0, 0, 2, 8,
6.38046 , 27,
4120, 144, 0, 40276, 5.61094 , 85.85, 1

5, 450, 890, 4, 4, 19, 10, 103945 , 2, 0.428571 , 7, 12, 18526 , 0,
0, 0, 9,

8.57143 , 1.91663 , 0.481152 , 0.45824 , 0.102465 , 0.025597 , 0.024378 ,
0.005451 , 0,

0, 0, 0, 2, 8, 6.67895 , 27, 4120, 168, 0, 40276 , 5.61094 , 84.49 , 1

6, 449, 889, 4, 4, 19, 10, 131978 , 2, 0.428571 , 7, 12, 14490 , 0,
0, 0, 9, 9,

0, 0.481159 , 0.481159 , 0, 0.025612 , 0.025612 , 0, 0, 0, 0, 0, 2, 8,
6.865, 27,

4120, 192, 0, 40276, 5.61094 , 83.03, 1

7, 464, 898, 4, 4, 19, 10, 797581 , 2, 0.272727 , 12, 16, 18480 ,
2, 0.25,

0.622495 , 9, 9, 0, 0.489651 , 0.488813 , 0.002514 , 0.028187 ,
0.027884 , 0.000454 ,
3, 12, 0, 0, 0, 0, 5.54015 , 603, 4684, 2420, 0, 49400, 5.73651 ,
99.49, 1

8, 208, 897, 4, 4, 19, 10, 95298 , 2, 0.428571 , 7, 12, 22778 , 0,
0, 0, 9, 9, 0,

0.481159 , 0.481159 , 0, 0.025612 , 0.025612 , 0, 0, 0, 0, 0, 2, 8,
6.61806 , 27,
4120, 168, 0, 40276, 5.61094 , 84.64, 1

9, 463, 896, 4, 4, 19, 10, 92111 , 2, 0.428571 , 7, 12, 14560 , 0,
0, 0, 9, 9, 0,

0.481152 , 0.481152 , 0, 0.0256 , 0.0256 , 0, 0, 0, 0, 0, 2, 8,
6.51616 , 27, 4120,

96

Automatic rule-extraction for malware detection on mobile devices

168, 0, 40276, 5.61094 , 86.1, 1

10, 462, 895, 4, 4, 19, 10, 136607 , 2, 0.428571 , 7, 12, 14348,
0, 0, 0, 9, 9,

0, 0.481152 , 0.481152 , 0, 0.025616 , 0.025616 , 0, 0, 0, 0, 0, 2, 8,
6.98069 , 27,

4120, 216, 0, 40276, 5.61094 , 82.71, 1

11, 459, 894, 4, 4, 19, 10, 131910 , 2, 0.428571 , 7, 12, 22501,
0, 0, 0, 9,

8.57143 , 1.91663 , 0.481159 , 0.458247 , 0.102467 , 0.025604 ,
0.024385 , 0.005453 , 0,
0, 0, 0, 2, 8, 6.87135 , 27, 4120, 192, 0, 40276 , 5.61094 , 84, 1

12, 458, 893, 4, 4, 19, 10, 128363 , 2, 0.428571 , 7, 12, 18799,
0, 0, 0, 9, 9,

0, 0.481152 , 0.481152 , 0, 0.025608 , 0.025608 , 0, 0, 0, 0, 0, 2, 8,
6.77124 , 27,

4120, 192, 0, 40276, 5.61094 , 83.18, 1

13, 457, 892, 4, 4, 19, 10, 88928, 2, 0.428571 , 7, 12, 14637, 0,
0, 0, 9, 9,

0, 0.481152 , 0.481152 , 0, 0.025597 , 0.025597 , 0, 0, 0, 0, 0, 2, 8,
6.414, 27,

4120, 168, 0, 40276, 5.61094 , 86.09, 1

14, 201, 891, 4, 4, 19, 10, 82174, 2, 0.428571 , 7, 12, 19080, 0,
0, 0, 9, 9,

0, 0.481159 , 0.481159 , 0, 0.025627 , 0.025627 , 0, 0, 0, 0, 0, 2, 8,
6.3804 , 27,

4120, 144, 0, 40276, 5.61094 , 85.85, 1

15, 450, 890, 4, 4, 19, 10, 103945 , 2, 0.428571 , 7, 12, 18526,
0, 0, 0, 9,

8.57143 , 1.91663 , 0.481152 , 0.45824 , 0.102465 , 0.025597 , 0.024378 ,
0.005451 , 0,

0, 0, 0, 2, 8, 6.6789 , 27, 4120, 168, 0, 40276 , 5.61094 , 84.49 , 1

16, 449, 889, 4, 4, 19, 10, 131978 , 2, 0.428571 , 7, 12, 14490,
0, 0, 0, 9, 9,

0, 0.481159 , 0.481159 , 0, 0.025612 , 0.025612 , 0, 0, 0, 0, 0, 2, 8,
6.86497 , 27,

4120, 192, 0, 40276, 5.61094 , 83.03, 1

17, 448, 888, 4, 4, 19, 10, 103138 , 2, 0.428571 , 7, 12, 22635,
0, 0, 0, 9,

8.57143 , 1.91663 , 0.481159 , 0.458247 , 0.102467 , 0.025581 ,
0.024363 , 0.005448 , 0,
0, 0, 0, 2, 8, 6.63956 , 27, 4120, 168, 0, 40276 , 5.61094 , 84.13 , 1

97

Automatic rule-extraction for malware detection on mobile devices

18, 447, 887, 4, 4, 19, 10, 90538, 2, 0.428571 , 7, 12, 18898, 0,
0, 0, 11, 11,

0, 0.483143 , 0.483143 , 0, 0.025642 , 0.025642 , 0, 0, 0, 0, 0, 2, 8,
6.44543 , 27,

4120, 168, 0, 40276, 5.61094 , 83.95, 1

19, 445, 886, 4, 4, 19, 10, 113902 , 2, 0.428571 , 7, 12, 22764,
0, 0, 0, 9, 9,

0, 0.481152 , 0.481152 , 0, 0.025616 , 0.025616 , 0, 0, 0, 0, 0, 2, 8,
6.76884 , 27,

4120, 192, 0, 40276, 5.61094 , 85.48, 1

20, 444, 885, 4, 4, 19, 10, 101622 , 2, 0.428571 , 7, 12, 14855,
0, 0, 0, 9, 9,

0, 0.481152 , 0.481152 , 0, 0.025604 , 0.025604 , 0, 0, 0, 0, 0, 2, 8,
6.60965 , 27,

4120, 168, 0, 40276, 5.61094 , 84.5, 1

98

Automatic rule-extraction for malware detection on mobile devices

Listing A.2: Sample of ARFF file with derived security metrics

@relation maliciousAndBenignAppSecurityMetrics

@attribute METRICpermissions numeric
@attribute METRICstatic numeric
@attribute METRICsdk numeric
@attribute METRICresources numeric
@attribute METRICdynamic numeric
@attribute class {0,1}

@data
0.373286 ,4040.440198 ,0.432 ,0.101561 ,267.60125 ,1
0.373286 ,4672.347495 ,0.432 ,0.101176 ,259.83845 ,1
0.373286 ,5485.845146 ,0.432 ,0.101561 ,203.32715 ,1
0.373286 ,4040.440196 ,0.432 ,0.101561 ,267.60125 ,1
0.373286 ,4672.347494 ,0.432 ,0.101176 ,259.83845 ,1
0.373286 ,5485.845145 ,0.432 ,0.101561 ,203.32715 ,1
0.512364 ,25206.584083 ,0.432 ,0.106987 ,259.34045 ,1
0.373286 ,4421.580353 ,0.432 ,0.101561 ,319.3672 ,1
0.373286 ,4329.150424 ,0.432 ,0.10156 ,204.3225 ,1
0.373286 ,5620.622012 ,0.432 ,0.101561 ,201.33755 ,1
0.373286 ,5483.873577 ,0.432 ,0.101176 ,315.486 ,1
0.373286 ,5381.003769 ,0.432 ,0.101561 ,263.6539 ,1
0.373286 ,4236.836477 ,0.432 ,0.10156 ,205.40045 ,1
0.373286 ,4040.440192 ,0.432 ,0.101561 ,267.60125 ,1
0.373286 ,4672.34749 ,0.432 ,0.101176 ,259.83845 ,1
0.373286 ,5485.845143 ,0.432 ,0.101561 ,203.32715 ,1
0.373286 ,4648.941815 ,0.432 ,0.101176 ,317.36265 ,1
0.373286 ,4283.528614 ,0.432 ,0.117681 ,265.04375 ,1
0.373286 ,4961.634606 ,0.432 ,0.101561 ,319.1754 ,1
0.373286 ,4604.975781 ,0.432 ,0.10156 ,208.4445 ,1

99

Automatic rule-extraction for malware detection on mobile devices

B User profile’s details

For purposes of examination of pulled from dynamic analysis data, we developed following artifi-
cial information. This information is considered to be sensitive in the real world. This information
was entered in the most popular and the most used applications on mobile platform:

Figure 47: Sample of a browser history in Android

In the Figure 52 the output of the tree utility1 for extracted information from userdata.img is
presented.

1http://linux.die.net/man/1/tree

101

http://linux.die.net/man/1/tree

Automatic rule-extraction for malware detection on mobile devices

Figure 48: History of performed user calls

Figure 49: User messsages

Figure 50: Sent emails

102

Automatic rule-extraction for malware detection on mobile devices

Figure 51: Contacts stored on mobile devices

103

Automatic rule-extraction for malware detection on mobile devices

Figure 52: Structure of the extracted information from userdata.img

104

Automatic rule-extraction for malware detection on mobile devices

C Extracted rules for proof-of-concept experiment

Examples of extracted rules from Iris Data set processing are shown below. There were used
three and five terms in each linguistic variable)security metrics).

Figure 53: Fuzzy rules for Setosa-Virginica classification problem, three terms in each linguistic variable

105

Automatic rule-extraction for malware detection on mobile devices

Figure 54: Fuzzy rules for Versicolor-Virginica classification problem, three terms in each linguistic variable

Figure 55: Fuzzy rules for Setosa-Virginica classification problem, five terms in each linguistic variable

106

Automatic rule-extraction for malware detection on mobile devices

Figure 56: Fuzzy rules for Versicolor-Virginica classification problem, five terms in each linguistic variable

107

Automatic rule-extraction for malware detection on mobile devices

D Android application launch logs

Listing D.1: Sample of launch log of the Android application

D/AndroidRuntime(1735): >>>>>> AndroidRuntime START
com.android.internal.os.RuntimeInit <<<<<<
D/AndroidRuntime(1735): CheckJNI is ON
D/dalvikvm(1735): Trying to load lib libjavacore.so 0x0
D/dalvikvm(1735): Added shared lib libjavacore.so 0x0
D/dalvikvm(1735): Trying to load lib libnativehelper.so 0x0
D/dalvikvm(1735): Added shared lib libnativehelper.so 0x0
D/AndroidRuntime(1735): Calling main entry com.android.commands.
am.Am
D/dalvikvm(1735): Note: class Landroid/app/ActivityManagerNative;
has 156

unimplemented (abstract) methods
I/ActivityManager(1200): START u0 {flg=0 x10000000
cmp=com.example.android.service /.Main} from pid 1735
D/PermissionCache(786): checking android.permission.
READ_FRAME_BUFFER for
uid =1000 => granted (1292 us)
D/dalvikvm(787): WAIT_FOR_CONCURRENT_GC blocked 1ms
I/ActivityManager(1200): Start proc com.example.android.service
for activity
com.example.android.service /.Main: pid =1746 uid =10003 gids ={50003 ,
3003, 1015,

1028}
D/AndroidRuntime(1735): Shutting down VM
D/dalvikvm(1735): GC_CONCURRENT freed 95K, 17% free 483K/580K,
paused 0ms+0ms ,
total 2ms
E/SurfaceFlinger(786): ro.sf.lcd_density must be defined as a
build property
D/ (786): HostConnection::get () New Host Connection
established
0xb8ea85e0 , tid 877
D/dalvikvm(787): GC_EXPLICIT freed 36K, 7% free 2323K/2472K,
paused 0ms+1ms ,
total 107ms
D/dalvikvm(787): GC_EXPLICIT freed <1K, 6% free 2323K/2472K,
paused 0ms+0ms ,
total 52ms
E/Trace (1746): error opening trace file: No such file or
directory (2)

109

Automatic rule-extraction for malware detection on mobile devices

D/dalvikvm(787): GC_EXPLICIT freed <1K, 6% free 2323K/2472K,
paused 1ms+17ms ,
total 18ms
D/ (786): HostConnection::get () New Host Connection
established
0xb8ea8c00 , tid 863
V/PhoneStatusBar(1270): setLightsOn(true)
E/SurfaceFlinger(786): ro.sf.lcd_density must be defined as a
build property
W/IInputConnectionWrapper(1354): showStatusIcon on inactive
InputConnection
D/ (1746): HostConnection::get () New Host Connection
established
0xb8733960 , tid 1746
I/ActivityManager(1200): Displayed com.example.android.service /.
Main: +922ms
E/WVMExtractor(789): Failed to open libwvm.so
D/AudioSink(789): bufferCount (4) is too small and increased to
12
I/ActivityManager(1200): START u0 {act=android.intent.action.VIEW
dat=http: //14243444. com/send.php?a_id =000000000000000& telno
=15555215554& m_addr=
cmp=com.android.browser /. BrowserActivity} from pid 1746
D/dalvikvm(1200): GC_FOR_ALLOC freed 236K, 11% free 4481K/4996K,
paused 14ms ,
total 18ms
E/SurfaceFlinger(786): ro.sf.lcd_density must be defined as a
build property
I/ActivityManager(1200): moveTaskToBack: 3
I/ActivityManager(1200): Start proc com.android.browser for
activity
com.android.browser /. BrowserActivity: pid =1790 uid =10025 gids
={50025 , 3003,
1015, 1028}
E/Trace (1790): error opening trace file: No such file or
directory (2)
I/ActivityThread(1790): Pub com.android.browser;browser:
com.android.browser.provider.BrowserProvider2
I/ActivityThread(1790): Pub com.android.browser.home:
com.android.browser.homepages.HomeProvider
I/ActivityThread(1790): Pub com.android.browser.snapshots:
com.android.browser.provider.SnapshotProvider
W/ApplicationContext(1790): Unable to create external files
directory
D/dalvikvm(1790): GC_CONCURRENT freed 174K, 11% free 2537K/2832K,
paused

8ms+0ms , total 20ms
E/ActivityThread(1790): Failed to find provider info for com.
google.settings

110

Automatic rule-extraction for malware detection on mobile devices

E/ActivityThread(1790): Failed to find provider info for com.
google.settings
D/dalvikvm(1790): GC_FOR_ALLOC freed 150K, 9% free 2766K/3032K,
paused 11ms ,
total 12ms
W/BrowserProvider(1790): Upgrading database from version 23 to 24
E/SQLiteLog(1790): (1) no such table: _sync_state_metadata
D/TilesManager(1790): Starting TG #0, 0xb875ae60
D/dalvikvm(1790): GC_CONCURRENT freed 74K, 7% free 3079K/3308K,
paused 8ms+0ms ,
total 13ms
D/WebViewTimersControl(1790): onBrowserActivityResume
D/WebViewTimersControl(1790): Resuming webview timers ,
view=com.android.browser.BrowserWebView{a6f48048 VFEDHVCL .F....I.
0,0-0,0}

V/NFC (1790): this device does not have NFC support
E/SurfaceFlinger(786): ro.sf.lcd_density must be defined as a
build property
D/libEGL (1790): loaded /system/lib/egl/libEGL_emulation.so
D/ (1790): HostConnection::get () New Host Connection
established
0xb87f6c80 , tid 1790
D/libEGL (1790): loaded /system/lib/egl/libGLESv1_CM_emulation.
so
D/libEGL (1790): loaded /system/lib/egl/libGLESv2_emulation.so
D/ (786): HostConnection::get () New Host Connection
established
0xb8eaf470 , tid 873
W/EGL_emulation(1790): eglSurfaceAttrib not implemented
D/OpenGLRenderer(1790): Enabling debug mode 0
E/SQLiteLog(1790): (1) no such table: Origins
D/WebKit (1790): ERROR:
D/WebKit (1790): Application Cache Storage: failed to execute
statement
"DELETE FROM Origins" error "no such table: Origins"
D/WebKit (1790):
D/WebKit (1790):
external/webkit/Source/WebCore/loader/appcache/
ApplicationCacheStorage.cpp (556)
: bool WebCore::ApplicationCacheStorage::executeSQLCommand(const
WTF::String &)
E/SQLiteLog(1790): (1) no such table: DeletedCacheResources
I/ActivityManager(1200): Displayed com.android.browser /.
BrowserActivity:
+1 s305ms
D/TilesManager(1790): new EGLContext from framework: b8823790
D/GLWebViewState(1790): Reinit shader
D/GLWebViewState(1790): Reinit transferQueue

111

Automatic rule-extraction for malware detection on mobile devices

W/IInputConnectionWrapper(1790): showStatusIcon on inactive
InputConnection
D/dalvikvm(1790): GC_CONCURRENT freed 164K, 8% free 3338K/3620K,
paused
5ms+0ms , total 13ms
D/dalvikvm(1790): GC_FOR_ALLOC freed 15K, 9% free 3323K/3620K,
paused 9ms,
total 10ms
I/dalvikvm -heap(1790): Grow heap (frag case) to 4.014MB for
694092 - byte
allocation
D/dalvikvm(1790): GC_FOR_ALLOC freed <1K, 7% free 4001K/4300K,
paused 12ms ,
total 13ms
D/dalvikvm(1790): GC_CONCURRENT freed <1K, 7% free 4001K/4300K,
paused 1ms+0ms ,
total 7ms
D/ (1790): HostConnection::get () New Host Connection
established
0xb85b5050 , tid 1814
D/ (786): HostConnection::get () New Host Connection
established
0xb8eb0680 , tid 869
D/ExchangeService(1602): Received deviceId from Email app: null
D/ExchangeService(1602): !!! deviceId unknown; stopping self and
retrying
D/ExchangeService(1602): !!! EAS ExchangeService , onCreate
D/ExchangeService(1602): !!! EAS ExchangeService , onStartCommand ,
startingUp =

false , running = false
D/ExchangeService(1602): !!! EAS ExchangeService , onStartCommand ,
startingUp =

true , running = false
W/ActivityManager(1200): Unable to start service Intent {
act=com.android.email.ACCOUNT_INTENT } U=0: not found
D/ExchangeService(1602): !!! Email application not found;
stopping self
E/ActivityThread(1602): Service com.android.exchange.
ExchangeService has leaked
ServiceConnection
com.android.emailcommon.service.ServiceProxy \$
ProxyConnection@a6f03090 that was
originally bound here
E/ActivityThread(1602): android.app.ServiceConnectionLeaked:
Service
com.android.exchange.ExchangeService has leaked ServiceConnection
com.android.emailcommon.service.ServiceProxy \$
ProxyConnection@a6f03090 that was
originally bound here

112

Automatic rule-extraction for malware detection on mobile devices

E/ActivityThread(1602): at
android.app.LoadedApk \$ ServiceDispatcher.<init>(LoadedApk.java:969
)
E/ActivityThread(1602): at
android.app.LoadedApk.getServiceDispatcher(LoadedApk.java:863)
E/ActivityThread(1602): at
android.app.ContextImpl.bindService(ContextImpl.java:1418)
E/ActivityThread(1602): at
android.app.ContextImpl.bindService(ContextImpl.java:1407)
E/ActivityThread(1602): at
android.content.ContextWrapper.bindService(ContextWrapper.java:473
)
E/ActivityThread(1602): at
com.android.emailcommon.service.ServiceProxy.setTask(ServiceProxy.
java:157)
E/ActivityThread(1602): at
com.android.emailcommon.service.ServiceProxy.setTask(ServiceProxy.
java:145)
E/ActivityThread(1602): at
com.android.emailcommon.service.ServiceProxy.test(ServiceProxy.
java:191)
E/ActivityThread(1602): at
com.android.exchange.ExchangeService \$7. run(ExchangeService.
java:1850)
E/ActivityThread(1602): at
com.android.emailcommon.utility.Utility \$2. doInBackground(Utility.
java:551)
E/ActivityThread(1602): at
com.android.emailcommon.utility.Utility \$2. doInBackground(Utility.
java:549)
E/ActivityThread(1602): at android.os.AsyncTask \$2. call(
AsyncTask.java:287)
E/ActivityThread(1602): at
java.util.concurrent.FutureTask.run(FutureTask.java:234)
E/ActivityThread(1602): at
java.util.concurrent.ThreadPoolExecutor.runWorker(
ThreadPoolExecutor.java:1080)
E/ActivityThread(1602): at
java.util.concurrent.ThreadPoolExecutor \$ Worker.run(
ThreadPoolExecutor.java:573)
E/ActivityThread(1602): at java.lang.Thread.run(Thread.java:856)
E/StrictMode(1602): null
E/StrictMode(1602): android.app.ServiceConnectionLeaked: Service
com.android.exchange.ExchangeService has leaked ServiceConnection
com.android.emailcommon.service.ServiceProxy \$
ProxyConnection@a6f03090 that was
originally bound here

113

Automatic rule-extraction for malware detection on mobile devices

E Features selection for Security Metrics

feature average merit average rank
permissions_highest 0.077 ± 0.006 1 ± 0
permissions_avg 0.038 ± 0.003 2 ± 0
permissions_number 0.029 ± 0.003 3 ± 0

Table 14: Calculated feature merits (weights) using RELIEF for ’METRICpermissions’ security metric

feature average merit average rank
package_entropy 0.068 ± 0.003 1 ± 0
manifest_size 0.059 ± 0.002 2 ± 0
classes_dex_entropy 0.048 ± 0.003 3 ± 0
classes_dex_size 0.035 ± 0.002 4.2 ± 0.4
package_number_files 0.029 ± 0.003 5.3 ± 0.64
filesize 0.029 ± 0.007 5.5 ± 0.67
res_folder_size 0.022 ± 0.002 7 ± 0
assets_folder_size 0.006 ± 0.001 8 ± 0

Table 15: Calculated feature merits (weights) using RELIEF for ’METRICstatic’ security metric

feature average merit average rank
vss_usage_peak 0.03 ± 0.004 1.2 ± 0.4
vss_usage_avg 0.03 ± 0.004 1.8 ± 0.4
rss_usage_avg 0.015 ± 0.001 3 ± 0
rss_usage_peak 0.012 ± 0.001 4 ± 0
thr_usage_avg 0.004 ± 0.001 5.3 ± 0.46
thr_usage_peak 0.004 ± 0.001 5.7 ± 0.46
rss_usage_stdev 0.003 ± 0 7.4 ± 0.49
cpu_usage_peak 0.002 ± 0.001 7.9 ± 0.94
cpu_usage_stdev 0.001 ± 0 9.5 ± 0.67
thr_usage_stdev 0.001 ± 0 10.5 ± 1.2
vss_usage_stdev 0.001 ± 0 10.6 ± 1.5
cpu_usage_avg 0.001 ± 0 11.1 ± 0.7

Table 16: Calculated feature merits (weights) using RELIEF for ’METRICresources’ security metric

115

Automatic rule-extraction for malware detection on mobile devices

F Implemented source code

Listing F.1: Implementation of Android Emulator Start/Stop phases in test_cycle.php

1 /**
2 * Launch emulator with defined parameters chosen through the web
panel

3 */
4 private function startAVD () {
5 global $config_table , $vm_avds_table , $android_sdk_home ,

$android_adb , $android_user_config , $android_emulator ,
$vm_avds_table;

6 shell_exec($android_sdk_home . "/" . $android_adb . " kill -
server");

7 sleep (10);
8 shell_exec($android_sdk_home . "/" . $android_adb . " devices");
9 //Check if there are anny emulators in the memory - otherwise do

no show the Launch button
10 if (strlen(shell_exec($android_sdk_home . "/" . $android_adb . "

devices | sed -n 2p")) <= 1 && strlen(shell_exec("ps -A|grep
emulator")) <= 1) {

11 // IMPORTANT to create the link
12 if (is_dir(’/tmp/. android ’))
13 shell_exec("rm /tmp/. android");
14 shell_exec("ln -s " . $android_user_config . " /tmp/");
15

16 // Insert into DB Started Emulator ID
17 //Check if AVD is in the runing loop
18 if (isset($_POST[’avd_to_run ’])) {
19 $startAVDname = $_POST[’avd_to_run ’];
20 $query = "INSERT INTO $config_table
21 (‘item ‘,‘value ‘) VALUES
22 (’launchedAVD ’,’" .

mysql_real_escape_string($startAVDname)
. "’)

23 ON DUPLICATE KEY UPDATE ‘value ‘= ’" .
mysql_real_escape_string($startAVDname)
. "’; ";

24 //Check whether it is possible to execute query
25 if (mysql_query($query) === FALSE)
26 $this ->output .="Impossible to

execute INSERT/UPDATE query!
";
27

28 // Insert into DB Started Emulator API
29 $query = "INSERT INTO $config_table

117

Automatic rule-extraction for malware detection on mobile devices

30 (‘item ‘,‘value ‘) VALUES
31 (’launchedAVD_API ’, (SELECT ‘api_level ‘

FROM " . $vm_avds_table . " WHERE ‘
avd_name ‘=’" . mysql_real_escape_string(
$startAVDname) . "’))

32 ON DUPLICATE KEY UPDATE ‘value ‘= (SELECT
‘api_level ‘ FROM " . $vm_avds_table . "

WHERE ‘avd_name ‘=’" .
mysql_real_escape_string($startAVDname)
. "’); ";

33 //Check whether it is possible to execute query
34 if (mysql_query($query) === FALSE)
35 $this ->output .="Impossible to

execute INSERT/UPDATE query!
";
36 }else {
37 $query = "SELECT * FROM $config_table WHERE ‘item ‘=’

launchedAVD ’;";
38 $res = mysql_query($query);
39 $row = mysql_fetch_assoc($res);
40 $startAVDname = $row[’value’];
41 }
42

43 //Read test configuration from DB
44 $query = "SELECT ‘value ‘ FROM $config_table WHERE item=’

testConfiguration ’";
45 $res = mysql_query($query);
46 $row = mysql_fetch_row($res);
47

48 if ($row != FALSE && count($row) > 0) {
49 $config_array = unserialize($row [0]);
50 }
51

52 // Launch Android Emulator in an detached screen as
background process

53 //-snapstorage <file > file that contains all
state snapshots (default <datadir >/ snapshots.img)

54 //-no-snapstorage do not mount a snapshot
storage file (this disables all snapshot functionality)

55 //-snapshot <name > name of snapshot within
storage file for auto -start and auto -save (default ’default -
boot ’)

56 //-no-snapshot perform a full boot and do
not do not auto -save , but qemu vmload and vmsave operate on
snapstorage

57 //-no-snapshot -save do not auto -save to
snapshot on exit: abandon changed state

58 //-no-snapshot -load do not auto -start from
snapshot: perform a full boot

118

Automatic rule-extraction for malware detection on mobile devices

59 //-snapshot -list show a list of available
snapshots

60 //-no-snapshot -update -time do not do try to correct
snapshot time on restore

61

62 print_r($config_array);
63

64 $avd_parameters = "";
65 if (isset($config_array[’disable_audio ’]))
66 $avd_parameters .="-noaudio ";
67 if (isset($config_array[’enable_gpu ’]))
68 $avd_parameters .="-gpu on ";
69 if (isset($config_array[’disable_boot_anim ’]))
70 $avd_parameters .="-no-boot -anim ";
71 if (isset($config_array[’disable_window ’]))
72 $avd_parameters .="-no-window ";
73 if (isset($config_array[’traffic ’])) {
74 $avd_parameters .="-tcpdump traffic.cap ";
75 echo shell_exec("rm " . $android_sdk_home . "/tools/

traffic.cap");
76 }
77 if (isset($config_array[’use_profile ’])) // IMPORTANT TO

UNLOCK DEVICE which producec userdata
78 $avd_parameters .="-initdata /home/andymir/websites/

androidlab/userdata -qemu.img ";
79 // INCREASE time of AVD load , but erase all data , more

natural environment
80 $avd_parameters .="-no-snapshot -wipe -data ";
81

82 shell_exec("export DISPLAY =:0; screen -d -m " .
$android_sdk_home . "/" . $android_emulator . " -avd " .
$startAVDname . " " . $avd_parameters);

83 //echo $android_sdk_home ."/". $android_emulator ." -avd ".
$_POST[’avd_to_run ’]." ". $avd_parameters;

84 $this ->output .="Android Emulator was launched successfully!
It will be ready in a few minutes!";

85 }else
86 $this ->output .="There is an Android

Emulator entity in the memory. Try to stop first!";
87 }
88

89 /**
90 * Stop runnning emulator and existing instances
91 */
92 private function stopAVD () {
93 global $android_sdk_home , $android_adb , $config_table;
94 // Ensure that adb server is running
95 shell_exec($android_sdk_home . "/" . $android_adb . " devices");
96 sleep (2);

119

Automatic rule-extraction for malware detection on mobile devices

97

98 //Kill all running emulators
99 echo shell_exec($android_sdk_home . "/" . $android_adb . " emu

kill");
100 echo shell_exec("killall emulator64 -x86");
101 sleep (5);
102 echo shell_exec("killall emulator64 -x86");
103 echo shell_exec("killall emulator");
104 sleep (5);
105 echo shell_exec("killall emulator");
106 echo shell_exec("killall adb");
107 sleep (5);
108 echo shell_exec("killall adb");
109

110 $this ->output .="Android Emulator was stopped successfully!";
111 }

Listing F.2: Implementation of App’s Install, Launch, UI Test, Uninstall phases in test_cycle.php

1 // INSTALL App
2 // uninstall app initially if installed
3 //If AVD is not fully booted , then quit and abort test cycle
4 $uninstall_result = shell_exec($android_sdk_home . "/" .
$android_adb . " uninstall " . $package_name);

5 while (strpos($uninstall_result , "Error: Could not access the
Package Manager. Is the system running?") !== FALSE) {

6 sleep (20);
7 $uninstall_result = shell_exec($android_sdk_home . "/" .

$android_adb . " uninstall " . $package_name);
8 }
9

10 $test_app_process_echo .= "
11 ---<

br >Initial Uninstall!
" . $uninstall_result;
12

13 //Clear log buffer
14 shell_exec($android_sdk_home . "/" . $android_adb . " logcat -c ")

;
15 // install
16 $test_app_process_echo .= "
17 ---<

br >Install!
" . shell_exec($android_sdk_home . "/" .
$android_adb . " install " . $apk_file);

18 //
---<
br >Install!
" . shell_exec($android_sdk_home . "/" .
$android_adb . " wait -for -device install " . $apk_file);

19 //Due to bug in Android SDK r21 , we should filter the log output
20 if (isset($config_array[’log_install ’])) {

120

Automatic rule-extraction for malware detection on mobile devices

21 $parsed_data = shell_exec($android_sdk_home . "/" .
$android_adb . " logcat -d ");

22 $parsed_data = preg_replace(’/((.*) Unexpected value from
nativeGetEnabledTags: 0\r\n)/’, ’’, $parsed_data);

23 $log_install = $parsed_data;
24 }
25 // CREATE folder for EACH TEST
26 $folder_name = $test_data_folder . "Test_" . date(’Y_m_d_H_i_s ’);
27 echo shell_exec("mkdir " . $folder_name);
28

29 //

30 //RUN/STOP App
31 //Clear log buffer
32 shell_exec($android_sdk_home . "/" . $android_adb . " logcat -c ")

;
33 // launch
34 $test_app_process_echo .= "
35 ---<

br>Start App!
";
36 $string_tmp = shell_exec($android_sdk_home . "/" . $android_adb .

" shell am start -n " . $package_name . "/" .
$launchable_activity_name);

37

38 //Cut noisy output of am start
39 $test_app_process_echo .= substr($string_tmp , 0, strpos($string_tmp

, "usage: am [start"));
40

41 //Start tracing if necessary
42 if (isset($config_array[’trace ’])) {
43 //echo shell_exec($android_sdk_home . "/" . $android_adb . "

shell rm /data/misc/trace.txt");
44

45 shell_exec("screen -d -m " . $android_sdk_home . "/" .
$android_adb . " shell strace -e trace=all -p$(" .
$android_sdk_home . "/" . $android_adb . " shell ps | grep " .
$package_name . " | awk ’{ print $2 }’) -tt -f -o /data/misc/

trace.txt 2>&1");
46 }
47

48 print "<pre >";
49

50 //Read cpu/memory consumption
51 if (isset($config_array[’read_cpu_usage ’])) {
52 $read_cpu_usage = array();
53 //Need to detect which column is CPU ,THR and VSS
54 $tmp_testeg = shell_exec($android_sdk_home . "/" .

$android_adb . " shell top -n 1 | grep CPU");

121

Automatic rule-extraction for malware detection on mobile devices

55 print_r($tmp_testeg);
56 for ($i = 0; $i < 20; $i++) {
57 if (strpos($tmp_testeg , "PCY") !== FALSE && strpos(

$tmp_testeg , "PR") !== FALSE) // Android >4.0
58 $tmp = shell_exec($android_sdk_home . "/" .

$android_adb . " shell top -n 1 | grep " .
$package_name . " | awk ’{print$3 ,$5 ,$6 ,$7}’");

59 elseif (strpos($tmp_testeg , "PCY") !== FALSE && strpos(
$tmp_testeg , "PR") === FALSE) // Android 2.3.3

60 $tmp = shell_exec($android_sdk_home . "/" .
$android_adb . " shell top -n 1 | grep " .
$package_name . " | awk ’{print$2 ,$4 ,$5 ,$6}’");

61 elseif (strpos($tmp_testeg , "PCY") === FALSE && strpos(
$tmp_testeg , "PR") === FALSE) // Android 2.2

62 $tmp = shell_exec($android_sdk_home . "/" .
$android_adb . " shell top -n 1 | grep " .
$package_name . " | awk ’{print$2 ,$4 ,$5 ,$6}’");

63

64 print_r($tmp);
65 if ($i == 0)
66 $start_execution_time = getTime ();
67 if (strlen($tmp) > 1) {
68 $tmp = explode(" ", $tmp);
69 $read_cpu_usage[number_format ((getTime () -

$start_execution_time), 2)][’CPU’] = $tmp [0];
70 $read_cpu_usage[number_format ((getTime () -

$start_execution_time), 2)][’THR’] = $tmp [1];
71 $read_cpu_usage[number_format ((getTime () -

$start_execution_time), 2)][’VSS’] = $tmp [2];
72 $read_cpu_usage[number_format ((getTime () -

$start_execution_time), 2)][’RSS’] = $tmp [3];
73 }
74 }
75 }else
76 sleep (10);
77

78 print "</pre >";
79

80 //adb shell top -n 1 | grep com.android.keychain
81 // Adoird 4.0
82 //PID PR CPU% S #THR VSS RSS PCY UID Name
83 //1201 0 0% S 10 174272K 17912K bg system com.

android.keychain
84 // Android 2.3.3
85 // PID CPU% S #THR VSS RSS PCY UID Name
86 // Android 2.2
87 // PID CPU% S #THR VSS RSS UID Name
88 // 563 7% S 35 191320K 32160K system system_server
89 //adb shell ps -p -c

122

Automatic rule-extraction for malware detection on mobile devices

90 //-c show CPU (may not be available prior to Android 4.x) involved
91 //USER PID PPID VSIZE RSS CPU PRIO NICE RTPRI SCHED

WCHAN PC NAME
92 //echo $(adb shell ps | grep com.android.phone | awk ’{ system ("

adb shell cat /proc/" $2 "/stat");}’ | awk ’{print $14+$15;}’)
93 // SCREENING if necessary
94 if (isset($config_array[’screenshot ’])) {
95 $test_app_process_echo .= "
96 ---<

br >Screening!
";
97 $test_app_process_echo .= shell_exec($android_sdk_home . "/" .

$android_adb . " shell screencap /data/local/" .
$selected_app_details[’md5_name ’] . ".png ");

98 $test_app_process_echo .= shell_exec($android_sdk_home . "/" .
$android_adb . " pull /data/local/" . $selected_app_details[’
md5_name ’] . ".png " . $folder_name . "/screenshot.png ");

99 if (file_exists($folder_name . "/screenshot.png"))
100 $screenshot = true;
101 }
102

103 //Stop App
104 $test_app_process_echo .= "
105 ---<

br>Stop!
" . shell_exec(
$android_sdk_home . "/" .
$android_adb . " force -stop " .
$package_name);

106 //Due to bug in Android SDK r21 , we should filter the log output
107 if (isset($config_array[’log_launch ’])) {
108 $parsed_data = shell_exec($android_sdk_home . "/" .

$android_adb . " logcat -d ");
109 $parsed_data = preg_replace(’/((.*) Unexpected value from

nativeGetEnabledTags: 0\r\n)/’, ’’, $parsed_data);
110 $log_launch = $parsed_data;
111 }
112 // Ensure that app was stopped completely
113 shell_exec($android_sdk_home . "/" . $android_adb . " force -stop "

. $package_name);
114 shell_exec($android_sdk_home . "/" . $android_adb . " shell kill $

(" . $android_sdk_home . "/" . $android_adb . " shell ps | grep "
. $package_name . " | awk ’{ print $2 }’)");

115 $android_sdk_home . "/" . $android_adb . " shell kill $(" .
$android_sdk_home . "/" . $android_adb . " shell ps | grep " .
$package_name . " | awk ’{ print $2 }’)";

116 //Stop Browser if was opened
117 shell_exec($android_sdk_home . "/" . $android_adb . " shell kill ‘

" . $android_sdk_home . "/" . $android_adb . " shell ps | grep
browser | awk ’{ print $2 }’‘");

118

123

Automatic rule-extraction for malware detection on mobile devices

119

120 //

121 //UI TESTS
122 //TODO: ADD resources usa capturing
123 if (isset($config_array[’ui_tester ’])) {
124 sleep (5);
125 //Clear log buffer
126 shell_exec($android_sdk_home . "/" . $android_adb . " logcat -

c ");
127 //Due to bug in Android SDK r21 , we should filter the log

output
128 $test_app_process_echo .= "
129 ---<

br>UI Tests
" .
shell_exec(
$android_sdk_home . "/" .
$android_adb . " shell
monkey -p " .
$package_name . " -v 500
--throttle 50 --pct -touch
70");

130 // Create log
131 if (isset($config_array[’log_test ’])) {
132 $parsed_data = shell_exec($android_sdk_home . "/" .

$android_adb . " logcat -d ");
133 $parsed_data = preg_replace(’/((.*) Unexpected value from

nativeGetEnabledTags: 0\r\n)/’, ’’, $parsed_data);
134 $log_test = $parsed_data;
135 }
136 }
137

138 // Finish Tracing if necessary
139 if (isset($config_array[’trace ’])) {
140 shell_exec($android_sdk_home . "/" . $android_adb . " pull /

data/misc/trace.txt " . $folder_name . "/");
141 }
142

143

144 //

145 //PULL App data from Android Emulator
146 if ($config_array[’pull_data ’]) {
147 $test_app_process_echo .= "
148 ---<

br>Pull Data!
" .
shell_exec(

124

Automatic rule-extraction for malware detection on mobile devices

$android_sdk_home . "/" .
$android_adb . " pull /
data/data/" .
$package_name . " " .
$folder_name . "/data/ ");

149 //check wether it exists
150 if (is_dir($folder_name . "/data/"))
151 $pull_data = true;
152 }
153

154 //

155 // BUGREPORT
156 if (isset($config_array[’bugreport ’])) {
157 shell_exec($android_sdk_home . "/" . $android_adb . "

bugreport > " . $folder_name . "/bugreport");
158 }
159

160 //

161 // UNINSTALL App
162 // Ensure that app was stopped completely
163 shell_exec($android_sdk_home . "/" . $android_adb . " force -stop "

. $package_name);
164 shell_exec($android_sdk_home . "/" . $android_adb . " shell kill $

(" . $android_sdk_home . "/" . $android_adb . " shell ps | grep "
. $package_name . " | awk ’{ print $2 }’)");

165 $android_sdk_home . "/" . $android_adb . " shell kill $(" .
$android_sdk_home . "/" . $android_adb . " shell ps | grep " .
$package_name . " | awk ’{ print $2 }’)";

166 //Stop Browser if was opened
167 shell_exec($android_sdk_home . "/" . $android_adb . " shell kill ‘

" . $android_sdk_home . "/" . $android_adb . " shell ps | grep
browser | awk ’{ print $2 }’‘");

168

169 //Clear log buffer
170 shell_exec($android_sdk_home . "/" . $android_adb . " logcat -c ")

;

Listing F.3: Entropy analysis functionality in analysis.php

1 // Working with package
2 $package_entropy = 0;
3 $package_number_files = 0;
4 $manifest_size = 0;
5 $res_folder_size = 0;
6 $assets_folder_size = 0;
7 $classes_dex_size = 0;

125

Automatic rule-extraction for malware detection on mobile devices

8 $classes_dex_entropy = 0;
9 $execution_time = 0;

10

11 $apk_file = $permanent_folder . $row[’md5_name ’] . ".apk";
12 echo shell_exec("mkdir tmp/");
13 shell_exec("unzip " . $apk_file . " -d tmp/");
14 // entropy package
15 shell_exec("tar -cf tmp.tar tmp/");
16 $package_entropy = $this ->entropy(file_get_contents("tmp.tar"));
17 shell_exec("rm tmp.tar");
18 //total files
19 $package_number_files = shell_exec("find tmp/ |wc -l");
20 // manifest size
21 $manifest_size = filesize("tmp/AndroidManifest.xml");
22 //res size
23 if (is_dir("tmp/res")) {
24 $size = explode("\t", exec("du -hk " . "tmp/res"), 2);
25 $size [0] == "tmp/res" ? $size [0] : 0;
26 $res_folder_size = $size [0];
27 }
28 // assets size
29 if (is_dir("tmp/assets")) {
30 $size = explode("\t", exec("du -hk " . "tmp/assets"), 2);
31 $size [0] == "tmp/assets" ? $size [0] : 0;
32 $assets_folder_size = $size [0] . "
";
33 }
34 // classes_dex size
35 $classes_dex_size = filesize("tmp/classes.dex");
36 // entropy dex
37 $classes_dex_entropy = $this ->entropy(file_get_contents("tmp/

classes.dex"));
38 echo shell_exec("rm -rf tmp/");

126

Automatic rule-extraction for malware detection on mobile devices

Figure 57: Translation of permissions into risk levels

127

Automatic rule-extraction for malware detection on mobile devices

Listing F.4: Implementation of Mean and Standard Deviation calculation in C++

1 // Calculate mean and standard deviation for both classes
separately

2 //Mean
3 int numEntriesTmp1 , numEntriesTmp2;
4 for (int j = 0; j < dim; j++) {
5 tmp1 = 0;
6 tmp2 = 0;
7 numEntriesTmp1 = 0;
8 numEntriesTmp2 = 0;
9 for (int i = 0; i < N; i++) {

10 if (classID[i] == 0) {
11 tmp1 += input[i][j];
12 numEntriesTmp1 ++;
13 } else if (classID[i] == 1) {
14 tmp2 += input[i][j];
15 numEntriesTmp2 ++;
16 }
17 }
18 tmp1 = tmp1 / numEntriesTmp1;
19 means1.push_back(tmp1);
20 tmp2 = tmp2 / numEntriesTmp2;
21 means2.push_back(tmp2);
22 }
23

24 //StDev
25 for (int j = 0; j < dim; j++) {
26 tmp1 = 0;
27 tmp2 = 0;
28 numEntriesTmp1 = 0;
29 numEntriesTmp2 = 0;
30 for (int i = 0; i < N; i++) {
31 if (classID[i] == 0) {
32 tmp1 += (input[i][j] - means1[j])*(input[i][j] -

means1[j]);
33 numEntriesTmp1 ++;
34

35 } else if (classID[i] == 1) {
36 tmp2 += (input[i][j] - means2[j])*(input[i][j] -

means2[j]);
37 numEntriesTmp2 ++;
38

39 }
40 }
41 tmp1 = sqrt(tmp1 / numEntriesTmp1);
42 stDev1.push_back(tmp1);
43 tmp2 = sqrt(tmp2 / numEntriesTmp2);
44 stDev2.push_back(tmp2);
45 }

128

Automatic rule-extraction for malware detection on mobile devices

Listing F.5: Implementation of ANN learning in C++ using OpenMP

1 // Weights Initialization
2 for (long long int j = 0; j < numberRules; j++)
3 weights.push_back (1 / (numberRules));
4

5 // Neural Network learning
6 for (int i = 0; i < 1000; i++) {
7 for (int m = 0; m < N; m++) {
8 // Assigning degree of membership
9 float output = 0;

10 #pragma omp parallel for reduction (+: output)
11 for (long long int j = 0; j < numberRules; j++) {
12 float tmp1 = 1;
13 tmp1 = fuzzificationFunction(input[m][0], means [0],

stDev[0], (int) j / (int) pow(nFuzzySets , dim - 1));
14 for (int l = 1; l < dim; l++)
15 tmp1 *= fuzzificationFunction(input[m][l], means[l

], stDev[l], (int) j / (int) pow(nFuzzySets , dim -
l - 1) % (int) pow(nFuzzySets , 1));

16 rules[j] = tmp1;
17 output += weights[j] * rules[j];
18 }
19

20 // Adjusting weighrs
21 #pragma omp parallel for
22 for (long long int k = 0; k < numberRules; k++)
23 weights[k] += 0.1 * (classID[m] - sigmoidFunction(

output)) * rules[k];
24

25 }
26 }

129

Automatic rule-extraction for malware detection on mobile devices

Listing F.6: Rules selection implementation in C++ using STL

1 // Sorting constructed rules according to fuzzy -neuro weight value
2 vector <short int > rulesAtomId;
3 map <float , vector <short int > > rulesMap;
4 for (long long int k = 0; k < numberRules; k++) {
5 rulesAtomId.clear();
6 rulesAtomId.push_back ((int) k / (int) pow(nFuzzySets , dim - 1)

);
7

8 for (int l = 1; l < dim; l++) {
9 rulesAtomId.push_back ((int) k / (int) pow(nFuzzySets , dim

- l - 1) % (int) pow(nFuzzySets , 1));
10 }
11 rulesMap.insert(std::pair <float , vector <short int > >(weights[k

] + 1e-5 * k, rulesAtomId));
12 }
13

14 // Assigning Class ID to extracted rules
15 std::map <float , vector <short int > >:: reverse_iterator it;
16 vector < vector <short int > >extractedRules;
17 vector <short int >extractedRulesClasses;
18 vector <short int > ruleTmp;
19 for (it = rulesMap.rbegin (); it != rulesMap.rend(); it++) {
20 ruleTmp.clear ();
21 float degC1 = 1, degC2 = 1;
22 // Membership degree calculation for each class
23 for (int l = 0; l < dim; l++) {
24 degC1 *= fuzzificationFunction(means1[l], stDev[l], means[

l], it ->second[l]);
25 degC2 *= fuzzificationFunction(means2[l], stDev[l], means[

l], it ->second[l]);
26 ruleTmp.push_back(it ->second[l]);
27 }
28 // Defining class
29 if (degC1 > degC2) {
30 extractedRulesClasses.push_back (0);
31 } else {
32

33 extractedRulesClasses.push_back (1);
34 }
35 extractedRules.push_back(ruleTmp);
36 }

130

Automatic rule-extraction for malware detection on mobile devices

Listing F.7: Sample of cubic spline approximation implemented in C++

1 void splineInterpolationProcessSplines(std::vector <float > &x, std
::vector <float > &y) {

2 int n = x.size();
3

4 //Check if sizes of vector are the same and content no less
than 2 element

5 if (n > 1 && n == y.size()) {
6 std::vector <float > alpha;
7 std::vector <float > beta;
8 spline_tuple tmp;
9

10 alpha.reserve(n);
11 beta.reserve(n);
12 splines.reserve(n);
13

14 for (std:: size_t i = 0; i < n; ++i) {
15 tmp.x = x[i];
16 tmp.a = y[i];
17 splines.push_back(tmp);
18 }
19

20 // Calculate C coefficients
21 //Ci -1 = 0
22 splines [0].c = splines[n - 1].c = 0.;
23 alpha.push_back (0);
24 beta.push_back (0);
25

26 for (std:: size_t i = 1; i < n - 1; ++i) {
27 float h_i = x[i] - x[i - 1], h_i1 = x[i + 1] - x[i];
28 float A = h_i;
29 float C = 2. * (h_i + h_i1);
30 float B = h_i1;
31 float F = 6. * ((y[i + 1] - y[i]) / h_i1 - (y[i] - y[i

- 1]) / h_i);
32 float z = (A * alpha[i - 1] + C);
33 alpha.push_back(-B / z);
34 beta.push_back ((F - A * beta[i - 1]) / z);
35 }
36

37 for (std:: size_t i = n - 2; i > 0; --i)
38 splines[i].c = alpha[i] * splines[i + 1].c + beta[i];
39

40 // Calculate B and D coefficients
41 for (std:: size_t i = n - 1; i > 0; --i) {
42 float h_i = x[i] - x[i - 1];
43 // Di = (Ci - Ci -1)/hi
44 splines[i].d = (splines[i].c - splines[i - 1].c) / h_i

;

131

Automatic rule-extraction for malware detection on mobile devices

45

46 //Bi = 1/2 * Hi * Ci - 1/6 * Hi^2 * Di + (Fi - Fi -1) /
Hi

47 splines[i].b = h_i * (2. * splines[i].c + splines[i -
1].c) / 6. + (y[i] - y[i - 1]) / h_i;

48 }
49

50 //Clear temp vectors memory
51 std::vector <float >().swap(alpha);
52 std::vector <float >().swap(beta);
53

54 } else {
55 std:: string str("Vectors have different sizes");
56 //throw std:: runtime_error(str.c_str());
57 }
58 }
59

60 double splineInterpolationGetResult(float xArg) {
61 if (! splines.size()) {
62 std:: string str("Spline is not defined");
63 //throw std:: runtime_error(str.c_str());
64 }
65

66 int n = splines.size();
67 spline_tuple s;
68

69 if (xArg <= splines [0].x)
70 s = splines [1];
71 else if (xArg >= splines[n - 1].x)
72 s = splines[n - 1];
73 else {
74 // Search nearest spline
75 std:: size_t i = 0, j = n - 1;
76 while (i + 1 < j) {
77 std:: size_t k = i + (j - i) / 2;
78 if (xArg <= splines[k].x)
79 j = k;
80 else
81 i = k;
82 }
83 s = splines[j];
84 }
85

86 //dx = (X -Xi)
87 float dx = (xArg - s.x);
88

89 // Calculate value of polynom , based on spline coefficients:
90 //Si = Ai + Bi * (X-Xi) + Ci/2 * (X-Xi)^2 + Di/6 * (X-Xi)

^3.

132

Automatic rule-extraction for malware detection on mobile devices

91 return s.a + (s.b + (s.c / 2. + s.d * dx / 6.) * dx) * dx;
92 }

In order to estimate amount of developed code, we used CLOC1 utility as it is depicted in the
Figure 58.

Figure 58: Amount of developed code

1http://cloc.sourceforge.net/

133

http://cloc.sourceforge.net/

Automatic rule-extraction for malware detection on mobile devices

G Miscellaneous information

Nvidia-settings1 Linux package provides graphic card characteristics.

Figure 59: GeForce N210 parameters from Nvidia-settings

CUDA-Z2 is a powerful info too for obtaining precise information about CUDA features in
graphic card.

1 http://packages.debian.org/en/squeeze/nvidia-settings
2http://cuda-z.sourceforge.net/

135

http://packages.debian.org/en/squeeze/nvidia-settings
http://cuda-z.sourceforge.net/

Automatic rule-extraction for malware detection on mobile devices

Figure 60: GeForce N210 memory characteristics in CUDA-z

136

Automatic rule-extraction for malware detection on mobile devices

Figure 61: Information about GeForce N210 in CUDA-z

137

Automatic rule-extraction for malware detection on mobile devices

Figure 62: GeForce N210 performace measures in CUDA-z

138

A
utom

atic
rule-extraction

for
m

alw
are

detection
on

m
obile

devices

Figure 63: Profiling of ANN learning with CUDA support by means of Nvidia Profiler [115] that shows execution time distribution among various
operations

139

Automatic rule-extraction for malware detection on mobile devices

Figure 64: Sample of configuration-settings page, which was implemented in the testing laboratory

140

Automatic rule-extraction for malware detection on mobile devices

Figure 65: Sample of application-testing page in the testing laboratory

141

Automatic rule-extraction for malware detection on mobile devices

Figure 66: Sample of application-analysis page in the testing laboratory

142

	Abstract
	Acknowledgements
	Contents
	Glossary
	Acronyms
	List of Figures
	List of Tables
	Listings
	Introduction
	Keywords
	Covered Topic
	Research area
	Research questions
	Methodology to be used
	Justification, Motivation and Benefits
	Limitations
	Thesis Contribution
	Thesis structure

	State of the art
	Malware with focus on mobile devices
	Mobile OS and Markets protection
	Commercial AV software

	Security Metrics
	Machine learning and pattern recognition in malware detection
	Malware detection & analysis using neuro-fuzzy

	Methodology
	Theoretical surveying of defined problem area
	Retrieving of security metrics from applications testing process
	User profiles creation
	Artifacts
	Nature of data
	Features extraction
	Security metrics construction

	Malware detection using ML
	Dynamic-focused methods
	Feasibility of building automated malware detection expert system

	Analysis and neuro-fuzzy rules extraction for malware detection
	Overview of the procedure
	Fuzzy logic
	Rules extraction using neuro-fuzzy
	Application in big data analysis

	Experimental setup & Results
	Overview of the collected dataset
	Extracted security metrics
	Detection reliability
	Digital evidence perspective

	Malware detection process and influence of stored information
	Significance and reliability of malware detection
	Results of automated analysis
	On-line learning perspective

	Fuzzy rules for malware detection
	Evaluation of classification process
	Accuracy of classification

	Discussions
	Data and Experiments
	Methodology
	Dataset
	Complexity
	Robustness & Reliability

	Implementation Architecture
	Application testing and feature extraction
	Advantage of virtual environment usage
	Rule-construction module
	Performance concerns

	On-site defence perspective

	Summary of Findings & Implications
	Overview of main results
	Theoretical implications
	Practical Implications
	Further work

	Bibliography
	Data sets
	User profile's details
	Extracted rules for proof-of-concept experiment
	Android application launch logs
	Features selection for Security Metrics
	Implemented source code
	Miscellaneous information

