
Implementation of public key algorithms in
CUDA

Hao Wu

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2010

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Implementation of public key algorithms in CUDA

Abstract

In the field of cryptography, public key algorithms are widely known to be slower than
symmetric key alternatives for the reason of their basis in modular arithmetic. The modu-
lar arithmetic in e.g. RSA and Diffie Hellman is computationally heavy when compared
to symmetric algorithms relying on simple operations like shifting of bits and XOR. The-
refore, how to make a more efficient and faster implementation of public key algorithms
is publicly concerned.

With the development of the GPGPU (General-purpose computing on graphics pro-
cessing units) field, more and more computing problems are solved by using the parallel
property of GPU (Graphics Processing Unit). CUDA (Compute Unified Device Architec-
ture) is a framework which makes the GPGPU more accessible and easier to learn for
the general population of programmers. This is because it builds on C and hides many of
the complicated details of how the GPU works from a CUDA developer. Using the unique
properties of the GPU through CUDA has greatly increased the efficiency of many com-
putational problems. Multiplication of big integers is one of the building blocks in doing
modular arithmetic. Running the public key algorithms by use of the parallel properties
of the GPU in modular multiplication and modular exponentiation may be a solution to
this problem.

The target in this research is to study and analyse the majority of algorithms related
to the modular multiplication and modular exponentiation, and then to design and make
an implementation of a public key algorithm in CUDA. Finally, this project will compare
the performance between the GPU implementation and the CPU implementation in order
to look into the possibility of improving the performance of public key algorithms. The
research questions are divided into four groups, the first one regarding modular multi-
plication and modular exponentiation of big integers and their parallelism, the second
one about integrating parallel modular multiplication and modular exponentiation into
the public key algorithm, the third one concerning optimization of the algorithm, and
final one regarding performance comparison of public key algorithm between the GPU
implementation and the CPU implementation.

iii

Implementation of public key algorithms in CUDA

Acknowledgements

First of all I will like to thank my supervisor Patrick Bours for valuable guidance through
this master thesis. His continued support, interest and inspiration were helpful during
the thesis. I will also like to thank my co-supervisor Maciej Pietka for suggestions toward
the end of the thesis period. I would also like to thank them for introducing me to the
interesting fields that are parallel computation and GPGPU.

My next thanks are going to my thesis opponent, Fredrik Gundersen, for fabulous
feedbacks to my thesis. I would also like to thank my student friends for motivation and
discussions during the master thesis.

A special thanks goes also to all my friends and family for accompanying and suppor-
ting me during the thesis period.

Hao Wu, 30th June 2010

v

Implementation of public key algorithms in CUDA

Contents

Abstract . iii
Acknowledgements . v
Contents . vii
List of Figures . ix
List of Tables . xi
Abbreviations . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 1
1.3 Problem description . 1
1.4 Justification, motivation and benefits . 2
1.5 Research questions . 2
1.6 Planned contributions . 3

2 State of the art . 5
2.1 Storage structure for large number . 5
2.2 Public-key cryptography . 7
2.3 Modular exponentiation . 8

2.3.1 Modular arithmetic . 8
2.3.2 Naive modular exponentiation . 8
2.3.3 Repeated square-and-multiply methods 9
2.3.4 Sliding-window exponentiation . 11

2.4 Modular multiplication . 11
2.4.1 Naive interleaving multiplication and reduction 12
2.4.2 Karatsuba-Ofman Method . 12

2.5 Modular reduction . 13
2.5.1 Naive modular reduction . 13
2.5.2 Barrett modular reduction . 13

2.6 Montgomery’s algorithms . 14
2.7 Cryptography in CUDA . 16

3 CUDA . 19
3.1 Kernel . 19
3.2 Memory hierarchy . 23
3.3 Program in CUDA . 25
3.4 Optimization in CUDA . 26

4 Experimental methods . 27
4.1 Experimental equipments . 27
4.2 RSA . 28
4.3 Methods . 30

4.3.1 Storage structure for large number 30
4.3.2 Parallel addition and subtraction 30

vii

Implementation of public key algorithms in CUDA

4.3.3 Parallel right shifts . 31
4.3.4 Parallel multiplication . 31
4.3.5 Parallel modular exponentiation 33

5 Results . 35
5.1 Modular multiplication . 35
5.2 Modular exponentiation . 36
5.3 RSA . 38
5.4 Result summary . 38

6 Conclusion and future work . 41
6.1 Discussion . 41
6.2 Conclusion . 41
6.3 Future work . 42

Bibliography . 43
A Subtraction in CUDA . 47
B Right shifts in CUDA . 49
C Multiplication in CUDA . 51
D Montgomery modular multiplication . 53
E Execution time of Montgomery’s programs in CUDA 55

viii

Implementation of public key algorithms in CUDA

List of Figures

1 Two object types: CDigit and CBigInt . 6
2 Doubly-linked list representation for the integer 4000000000020502 . . . 6
3 Recursive definition of modular exponentiation by squaring. 9
4 MD5-RC4 encryption performance comparison on different data sizes of

each data object [1]. 16
5 AES performance comparison among the GPUs and four common CPUs:

Throughput [Mbps] [2]. 17
6 Floating-Point Operations per Second and Memory Bandwidth for the CPU

and GPU [3]. 20
7 Grid of Thread Blocks [3]. 21
8 Parallel programming with CUDA: serial (a) and parallel (b) kernels for

computing y = a · x+ y [4]. 23
9 Memory Hierarchy [3]. 24
10 Parallel addition and subtraction. 31
11 Parallel right shift. 31
12 Multiplication and intermediate values stored in a matrix. 32
13 Add sub results in a column in parallel. 32
14 A lookup table of X. 33
15 Pre-computing the powers g2

i

mod m, i = 0,. . ., 5. 33
16 The procedure of computing g45 modm by means of the parallel modular

exponentiation. 34
17 Performance comparison of modular multiplication between CPU imple-

mentation and GPU implementation. 36
18 Performance comparison of modular exponentiation between CPU imple-

mentation and GPU implementation. 37
19 Performance comparison of RSA between CPU implementation and GPU

implementation. 39
20 Ratios comparison. 39

ix

Implementation of public key algorithms in CUDA

List of Tables

1 Modular exponentiation applies modular multiplication repeatedly. 9
2 Right-to-left binary modular exponentiation. 9
3 Left-to-right binary modular exponentiation. 10
4 Left-to-right binary moduar exponentiation with the exponent 1101. . . . 10
5 Left-to-right k-ary modular exponentiation. 10
6 Sliding-window exponentiation. 11
7 An example of Sliding-window exponentiation. 11
8 The multiplication procedure. 12
9 Naive interleaving multiplication and reduction. 12
10 The basic step of Karatsuba’s algorithm. 12
11 An example of Karatsuba’s algorithm. 13
12 Karatsuba-Ofman recursive multiplication algorithm. 13
13 Naive reduction algorithm. 14
14 Barrett modular reduction. 14
15 Montgomery modular multiplication. 15
16 Montgomery modular exponentiation. 16
17 Basic specifications of test computer. 27
18 Basic specifications of NVIDIA GeForce GT 130M. 28
19 CUDA property of NVIDIA GeForce GT 130M. 28
20 The storage structure of large numbers. 30
21 SLargeNumber structure representation for the large number -979238938. 30
22 Execution time of modular multiplication between CPU implementation

and GPU implementation. 35
23 Execution time of modular exponentiation on GPU. 36
24 Execution time of modular exponentiation on CPU. 36
25 The ratios of execution time of modular exponentiation between CPU im-

plementation and GPU implementation. 37
26 Execution time of RSA on GPU. 38
27 Execution time of RSA on CPU. 38
28 The ratios of RSA’s execution time between CPU implementation and GPU

implementation. 38
29 Execution time of Montgomery modular multiplication in CUDA. 55
30 Execution time of Montgomery modular exponentiation in CUDA. 55

xi

Implementation of public key algorithms in CUDA

Abbreviations

• GPU - Graphics Processing Unit

• CPU - Central Processing Unit

• CUDA - Compute Unified Device Architecture

• GPGPU - General-purpose computing on graphics processing units

• MP - Multiprocessor

• SP - Stream processor

• IO - Input and output

• SPMD - Single Program Multiple Data

• SIMD - Single Instruction Multiple Data

xiii

Implementation of public key algorithms in CUDA

1 Introduction

This chapter introduces the topics covered by this project, the problem description, the
justification, motivation and benefits, the research questions, and planned contributions
for the master thesis.

1.1 Topic covered by the project

Public key cryptography is a fundamental and widely used technology around the world.
Most public key algorithms are based on modular arithmetic including RSA, Elgamal and
Diffie hellman. Public key encryption and decryption is computationally heavy because
a lot of modular multiplications with very large numbers is needed to perform these
tasks. Therefore public key algorithm is known to be much slower then symmetric key
algorithms. Recently the field of using GPUs for general purpose computing has become
more widespread. Many computational problems have gained a significant performance
increase by using the highly parallel properties of the GPU. CUDA is a framework which
makes these kinds of implementations more available to the general public of program-
mers.

In this master project, we are looking into the possibility of improving the perfor-
mance of public key algorithms by using CUDA, and compare the performance between
the GPU implementation and the CPU implementation.

1.2 Keywords

Public key algorithm, parallel computation, CUDA, GPU

1.3 Problem description

Implementing a public key cryptosystem is always a tradeoff between security and ef-
ficiency. The problem with the number theoretic cryptosystems (i.e. RSA) is that they
require a lot of computational power for providing a high level of security and most
likely a low level of efficiency. Public key algorithms are known to be slower than sym-
metric key alternatives because of their basis in modular arithmetic. Therefore, how to
make a more efficient and faster implementation of public key algorithms is concerned.

Running the public key algorithms by use of the parallel properties of the GPU in
modular multiplication and modular exponentiation may be a solution to this problem.
Multiplication of big integers is one of the building blocks in doing modular arithmetic.
The field of General-purpose GPU which is about solving problems other than graphics
rendering using the GPU was until recently without a good solution. CUDA is a frame-
work which makes these kinds of implementations more available to the general public
of programmers. Using the unique properties of the GPU through CUDA has greatly in-
creased the efficiency of many computational problems.

The target in this research is to study and analyse the majority of algorithms related
to the modular multiplication and modular exponentiation, and then to design and make
an implementation of a public key algorithm in CUDA. Finally, this project will compare

1

Implementation of public key algorithms in CUDA

the performance between the GPU implementation and the CPU implementation in order
to look into the possibility of improving the performance of public key algorithms.

1.4 Justification, motivation and benefits

The necessity for information security has become more and more widespread during
these days. Fast modular exponentiation algorithms are often considered of practical
significance in public-key cryptosystems. Parallelization of public key algorithms could
be very useful for a high level of security system and save a lot of computation time.
With the combination of them, the public key cryptosystem will be more efficient and
effective for those kinds of system.

Furthermore, in this research the performance of public key algorithm will be compa-
red between the GPU implementation and the CPU implementation. It could be used to
determine the direction of parallelization of public key algorithms in the future. With the
development of the GPGPU field, modern graphics processing units (GPUs) have been
at the leading edge of increasing chip-level parallelism. Current NVIDIA GPUs are many
core processor chips with parallelism architecture. This degree of hardware parallelism
reflects the fact that GPU architectures evolved not only to fit the needs of real-time com-
puter graphics but also parallel computing. On the other hand, the GPU is easy use and
cheaper compared to a computer cluster for the purpose of parallel computations. So the
research in this field will have a different angle for parallel computation.

1.5 Research questions

The research questions are divided into four groups, the first one regarding modular mul-
tiplication and modular exponentiation of large integers and their parallelism, the second
one about integrating parallel modular multiplication and modular exponentiation into
the public key algorithm, the third one concerning optimization of the algorithm, and
final one regarding performance comparison of public key algorithm between the GPU
implementation and the CPU implementation.

First of all, public key encryption and decryption are computationally heavy because
a lot of modular multiplication and modular exponentiation with very large numbers
are needed to perform these tasks. Because the bit-length of a key needs to be larger
than 1024 bits for security reasons, the computations for public key cryptosystem are
time-consuming. This stage mainly concerns the majority of algorithms related to the
modular multiplication and modular exponentiation, and how to effectively parallelize
the modular multiplication and modular exponentiation for big integers in CUDA.

Second, how can parallel modular exponentiation be integrated into a public key
algorithm? Can the whole public key algorithm only be implemented on a GPU by using
CUDA?

Moreover, how to optimize this algorithm in order to achieve a more efficient imple-
mentation on a GPU?

Finally, the ordinary public key algorithm will be implemented on a CPU and parallel
public key algorithm on a GPU, and their performance will be compared. Can a public
key crypto algorithm be implemented fast on a CUDA-enabled GPU by using the massive
parallel processing properties? Is it more efficient to implementat it on a CPU?

2

Implementation of public key algorithms in CUDA

1.6 Planned contributions

This research will come up with results on how different the performance of public key
algorithms between the GPU implementation and the CPU implementation will be. The
focus is to contribute with new ideas on how parallel implementation of a public key
algorithm on a CUDA-enabled GPU, how to achieve more efficient implementation in
CUDA, and how to design public key algorithm from hardware aspect. If the difference
of the performance is significant, it would be no problems to use this technology to
realize the public key cryptosystem by using CUDA. Otherwise, we should reconsider the
method of parallelization for public key algorithms from another angle.

3

Implementation of public key algorithms in CUDA

2 State of the art

At the present time, security becomes a tremendously important issue to deal with when
the Internet provides essential communication between millions of people and is being
increasingly used as a tool for commerce. There are many aspects to security and many
applications, ranging from secure commerce and payments to private communications
and protecting passwords. One essential aspect for secure communications is that of
cryptography. Cryptography is the science of writing in secret code and is an ancient art.
In data and telecommunications, cryptography is necessary when communicating over
any untrusted medium, which includes just about any network, particularly the Internet.

Generally there are two types of cryptographic schemes typically used to accomplish
these goals: secret key (symmetric) cryptography and public-key (asymmetric) crypto-
graphy. The operation of cryptography typically includes two processes: encryption as
the process of transforming information so that it is unintelligible to an intruder, and
decryption as the process of transforming the encrypted information so that it is intelli-
gible again.The original unencrypted data is referred to as plaintext. It is encrypted into
ciphertext, which will in turn be decrypted into usable plaintext.

With secret key cryptography, a single key is used for both encryption and decryption,
e.g., Data Encryption Standard (DES) [5] and Advanced Encryption Standards (AES) [6].
The biggest difficulty with this approach, of course, is the distribution of the key. Public-
key cryptography has been said to be the most significant development in cryptography
in the last hundreds of year. In this scheme, a two-key cryptosystem is used in which
two parties could engage in a secure communication over a non-secure communication
channel without having to share a secret key, e.g. RSA[7], Elliptic Curve Cryptography
(ECC) [8].

The following four requirements have been identified as the framework for informa-
tion security [9]:

• Confidentiality: Protecting the data from all but the intended receivers.

• Authentication: Proving one’s identity.

• Integrity: Ensuring no unauthorized alteration of data.

• Non-repudiation: Preventing an entity from denying previous commitments or ac-
tions.

The universal technique for providing confidentiality of transmitted data is conventio-
nal cryptography. However conventional cryptosystems do not satisfy the requirements of
authentication, integrity, and non-repudiation. Public key cryptography is the first truly
revolutionary advance in cryptography that satisfies these requirements [10].

2.1 Storage structure for large number

Nowadays, most compilers support 64 bits integer operation, where the integers calcu-
lated must be at most 64 bits in length, which is too short for the RSA algorithm. In
practical applications, the length of a key n must be large enough in order to guarantee

5

Implementation of public key algorithms in CUDA

the security of a public-key cryptographic system. So the efficiency of a public-key crypto-
graphic system depends on the large number calculation speed. The classic large number
storage method [11] is string based, a large number is stored in a character type array,
and then we can construct the corresponding function to perform add, subtract, multi-
ply and divide operation based on the array. However the efficiency of this scheme is
very low because for a 1024 bits number, the length of the decimal form is about several
hundred, any numeric operation should do multiple nested loops on two long character
array, besides a large extra space is needed to store the carry flag and middle results,
which leads to heavy system resource occupation and low efficiency [12] [13] [14].

In [15], a dynamic implementation of big integers in C++ is presented. There are
two object types used in big integer implementation, CDigit and CBigInt, as represented
by in Figure 1.

Figure 1: Two object types: CDigit and CBigInt

CDigit type of objects are used to store the digits making a big integer. It has the digit
in a given base, the weight of the digit represented by the exponent of the base, the
address of the digit to the left, and the address of the digit to the right. CBigInt type of
objects are used to store big integers as a doubly-linked list of CDigit type of objects. It
holds the base in which the number is being stored, sign of the number, size to represent
the number of non-zero digits unless there is only one zero digit in the number, head to
store the address of the first digit, and tail to store the address of the last digit. A big
integer such as 400000020502 can be represented by the following expression where
b=10 is the base of the big integer, and corresponding doubly-linked list representation
is shown in Figure 2.

400000020502 = 4b15 + 2b4 + 5b2 + 2.

Generally any big integer of size n can be represented by the following expression:

cn−1b
n−1 + cn−2b

n−2 + cn−3b
n−3 . . . + c0b

0.

Figure 2: Doubly-linked list representation for the integer 4000000000020502

6

Implementation of public key algorithms in CUDA

Obviously, this data structure efficiently saves the memory if the big integer contains
lots of zero digits, and reduces the time that transfers the data among different devices.
However, arbitrary access of any digit in CBigInt is less efficient than the classic large
number storage method. Thus it is not fit for the parallel computation.

A lot of other research has been done to enhance the speed of a cryptosystem. In
[16], an efficient public key encryption scheme was proposed, which is an improved
and enhanced version of original RSA scheme. The proposed RSA encryption scheme is
based on linear group over the ring of integer modulo a composite modulus n which is
the product of two distinct prime numbers. This encryption scheme has no restriction
in encryption and decryption order and is claimed to be efficient, scalable and dynamic.
[17] proposes a new method to realize a unified architecture for both RSA and ECC
public key cryptosystems using a Signed-Digit (SD) number system so that the carry
propagation in the RSA computation can be avoided. Hence, the critical path for the
computation of RSA and ECC with the same key length can be shortened compared to
other methods using a full adder implementation.

All these methods more or less try to improve the structure or architecture of public-
key algorithm in order to enhance the computing speed of them.

2.2 Public-key cryptography

The first revolution event in the era of the public key cryptography is coming in 1976
when Diffie and Hellman [18] published their well-known paper entitled "New direc-
tions in cryptography". This paper proposed a great concept for public key cryptography
and to build a scheme without a secure communication, but able to provide a secret com-
munication. However, Diffie and Hellman suggested such technique for distributing the
private key to be employed in the classical schemes in insecure communication channel
[16].

In 1978 Rivest, Shamir and Adleman (RSA) [7] introduced the first applied scheme
which is the most popular public key scheme. The security of the RSA public key scheme
is depended on the intractability of factoring the integer modulus which is the product
of two large and distinct prime numbers. Elliptic Curve Cryptography (ECC) was first
proposed for cryptographic use independently by Neal Koblitz [19] and Victor Miller [8]
in 1986 and 1987. In 1979, Rabin [20] suggested a scheme which also relied on the
factoring of a composite modulus, which is the product of large Blum integer numbers
and the result of decryption scheme are four messages; just one from the results represent
the original message. In 1992, Shimada [21] enhanced the Rabin scheme by using the
extension Rabin public key encryption scheme, which employed certain assumption in a
private key utilizing the Jacobi symbol. In 1998, Okamoto [22] proposed a new public
key cryptosystem as secure as factoring relied on RSA and Rabin schemes. In 1999,
Pointcheval [23] introduced a new public key encryption scheme based on the dependent
RSA and Rabin Schemes. In 2006, Sahadeo Padhye [24] modified dependent RSA and
Rabin public key cryptosystem using certain conditions to public and private keys.

While compared with secret key crypto, public-key crypto can either be used for data
encryption or digital signature. However, the disadvantage of number theoretic cryp-
tosystems is that they require a lot of computational power providing a high level of
security and most likely a low level of efficiency. Public key algorithms are known to be
slower than symmetric key alternatives because of their basis in modular arithmetic. The

7

Implementation of public key algorithms in CUDA

modular arithmetic in e.g. Diffie Hellman, ECC and RSA, is computationally heavy when
compared to symmetric algorithms relying on simple operations like XOR and shifting of
bits.

Taking RSA, which is the most widely used public key algorithm, as an example. In
order to guarantee the security of an RSA system, the length of public and private keys is
usually greater than 1024 bits in current commerce use. Consequently the key generation
and data encryption/decryption process are all large number operations, which make
the speed of an RSA algorithm about 1000 times slower than a DES algorithm [11].
The processing speed is a major drawback of the RSA algorithm either for hardware or
software implementation, so how to design an effective large number operation scheme
is an important question.

2.3 Modular exponentiation

2.3.1 Modular arithmetic

In general, public-key cryptographic systems consist of raising elements to large powers
and reducing the result modulo some given element. Such operation is usually called
modular exponentiation and is performed by using modular multiplications repeatedly.
The practicality of a given cryptographic system, like DH and RSA, depends heavily on
how fast modular exponentiations are performed. Consequently, it also depends on how
efficiently modular multiplications are done as these are at the base of the computation.
This problem has received much attention over the years.

The characteristics of the modular arithmetic like addition, subtraction, and multipli-
cation as follows [25]:

(u+ v) mod m = ((u mod m) + (v mod m)) mod m
(u− v) mod m = ((u mod m) − (v mod m)) mod m
(u× v) mod m = ((u mod m)× (v mod m)) mod m

Therefore the modular arithmetic can be applied to the any step of the computation
procedure if it only includes operations of addition, subtraction and multiplication.

This section discusses methods for computing integer modular exponentiation, that
is, raising an integer g to an integer power e and then reducing the result modulo some
given integer m, especially when g, e, and m are rather large.

2.3.2 Naive modular exponentiation

The naive method of modular exponentiation applies modular multiplication repeatedly.
For example g=4, e=13, and m=497. The calculation of c ≡ ge(modm) is presented in
Table 1. The final answer for c is thus 455. It performs the modular multiplication e-1
times. This method is not efficient because e-1 modular multiplications are required.

In the field of public key algorithm, the exponent e is usually very large in order to
provide a high level of security. Therefore the performance of public key cryptosystems is
mainly determined by the implementation efficiency of the modular multiplication and
modular exponentiation. In addition the plaintext, the cipher text, or possibly a partially
ciphered text are usually large (i.e. 1024 bits or more). Thus it is essential to attempt
to minimize the number of modular multiplications performed and to reduce the time
required by a single modular multiplication in order to improve time requirements of the
encryption and decryption operations. In fact, there are much more efficient methods.

8

Implementation of public key algorithms in CUDA

1. e=1, c= 4 mod 497 = 4.
2. e=2, c=(4× 4) mod 497 = 16 mod 497 = 16.
3. e=3, c=(16× 4) mod 497 = 64 mod 497 = 64.
4. e=4, c=(64× 4) mod 497 = 256 mod 497 = 256.
5. e=5, c=(256× 4) mod 497 = 1024 mod 497 = 30.
6. e=6, c=(30× 4) mod 497 = 120 mod 497 = 120.
7. e=7, c=(120× 4) mod 497 = 480 mod 497 = 480.
8. e=8, c=(480× 4) mod 497 = 1920 mod 497 = 429.
9. e=9, c=(429× 4) mod 497 = 1716 mod 497 = 225.
10. e=10, c=(225× 4) mod 497 = 900 mod 497 = 403.
11. e=11, c=(403× 4) mod 497 = 1612 mod 497 = 121.
12. e=12, c=(121× 4) mod 497 = 484 mod 497 = 484.
13. e=13, c=(484× 4) mod 497 = 1936 mod 497 = 445.

Table 1: Modular exponentiation applies modular multiplication repeatedly.

Algorithm: Right-to-left binary modular exponentiation
Input: an element g and integer e ≥ 1, and a modulus m.
Output: ge mod m.
1. A = 1, S = g, E = e.
2. While E 6= 0 do the following:

2.1. If E is odd, then A = (A · S) mod m, E = E− 1.
2.2. E = E/2.
2.3. If E 6= 0, then S = (S · S) mod m.

3. Return (A).

Table 2: Right-to-left binary modular exponentiation.

2.3.3 Repeated square-and-multiply methods

The repeated square-and-multiply modular exponentiation algorithm [25] is based on
the simple observation that for an even e, gemod m = (ge/2 × ge/2)mod m. The recur-
sive definition of exponentiation by squaring is illustrated by Figure 3.

Figure 3: Recursive definition of modular exponentiation by squaring.

The repeated square-and-multiply algorithm reduces the amount of modular multipli-
cations needed to at most 2t, where t is the number of bits in the binary representation of
the exponent e. This method is a great improvement for a large e. The Table 2 describes
the algorithm of Right-to-left binary modular exponentiation [25] to compute gemod m,
which is base on the idea of modular exponentiation by squaring.

This algorithm is called right-to-left binary modular exponentiation, because the bi-
nary representation of the exponent is computed from right to left. The exponent e is
actually broken into its binary representation. The lowest bits of e are considered first.

The Table 3 describes Left-to-right binary modular exponentiation algorithm [25].
This algorithm considers the binary representation of the exponent from left to right.

9

Implementation of public key algorithms in CUDA

Algorithm: Left-to-right binary modular exponentiation
Input: an element g and a positive integer e =(etet−1 · · · e1e0)2,and a modulus m.
Output: ge mod m.
1. A = 1.
2. For i from t down to 0 do the following:

2.1. A = (A ·A) mod m.
2.2. If ei = 1, then A = (A · g) mod m.

3. Return (A).

Table 3: Left-to-right binary modular exponentiation.

i ei A (step2.1) A (step 2.2)
3 1 1 g mod m
2 1 g2 mod m g3 mod m
1 0 g6 mod m g6 mod m
0 1 g12 mod m g13 mod m

Table 4: Left-to-right binary moduar exponentiation with the exponent 1101.

For example, the exponent e is the binary 1101. Table 4 lists the value of A in each
iterative implementation of Left-to-right binary modular exponentiation algorithm. The
leftmost 1 of e will be considered first. Then we have another bit, so we square. That’s
g2. Now, the new bit of e is 1, so we multiply a g, that’s g3. We have another bit, so again
square, that’s g6. The new bit is 0, so nothing is multiplied. And we have one more bit,
so once again square, getting g12, and finally multiplying a g, getting g13. Indeed, 1101
is the binary representation of 13.

Obviously, the repeated square-and-multiply methods of modular exponentiation are
far more efficient than the naive method of repeated multiplication. In general, the men-
tioned repeated square-and-multiply algorithms are almost the same speed.

The Table 5 describes Left-to-right k-ary modular exponentiation algorithm [25],
which is a generalization of Left-to-right binary modular exponentiation algorithm. But
this algorithm processes more than one bit of the exponent per iteration. This method is
only efficient if the pre-computation is done once and used multiple times.

In this algorithm, the exponent e is broken into larger pieces since it is in base 2k,
instead of breaking the exponent into bits of its base-2 representation. In this way, it can
save some computations. In a similar manner, Right-to-left binary modular exponentia-

Algorithm: Left-to-right k-ary modular exponentiation
Input: g and e =(etet−1 · · · e1e0)b,where b = 2k for some k ≥ 1,and a modulus m.
Output: ge mod m.
1. Precomputation.

1.1. g0 = 1.
1.2. For i from 1 to (2k − 1) do: gi = (gi−1 · g) mod m. (Thus gi = gi mod m).

2. A = 1.
3. For i from t down to 0 do the following:

3.1. A = (A2
k

) mod m.
3.2. A = (A · gei) mod m.

4. Return (A).

Table 5: Left-to-right k-ary modular exponentiation.

10

Implementation of public key algorithms in CUDA

Algorithm: Sliding-window exponentiation
Input: g and e =(etet−1 · · · e1e0)2,with et = 1,an integer k ≥ 1,
and a modulus m.
Output: ge mod m.
1. Precomputation.

1.1. g1 = g, g2 = g2.
1.2. For i from 1 to (2k−1 − 1) do: g2i+1 = (g2i−1 · g2) mod m.

2. A = 1, i = t
3. While i ≥ 0 do the following:

3.1. If ei = 0 then do: A = A2 mod m, i = i− 1.
3.2. Otherwise (ei 6= 0), find the longest bitstring eiei−1 · · · el

such that i− l+ 1 ≤ k and el = 1, and do the following:
A = A2

i−l+1 · g(eiei−1···el)2 , i = l− 1.
4. Return (A).

Table 6: Sliding-window exponentiation.

i A Longest bitstring
13 1 101
10 g5 101
7 (g5)8g5 = g45 111
4 (g45)8g7 = g367 -
3 (g367)2 = g734 -
2 (g734)2 = g1468 101
0 (g1468)8g5 = g11749 -

Table 7: An example of Sliding-window exponentiation.

tion algorithm can be generalized to the k-ary case.

2.3.4 Sliding-window exponentiation

Sliding-window exponentiation algorithm [25] as shown in Table 6 reduces the amount
of precomputation compared to k-ary exponentiation algorithm, and reduces the average
number of multiplications performed.

The k is called the window size. For example, take e = 11749 = (10110111100101)2

and k = 3. Table 7 illustrates the steps of Sliding-window exponentiation algorithm.
When ei is 0, i is equal to 4 and 3 in the Table 7, the result A is just squared as shown in
the step 3.1 of Table 6.

2.4 Modular multiplication

The naive method of modular exponentiation applies modular multiplication repeatedly.
There are two different ways to perform modular multiplication A × B(mod m): multi-
plying, i.e. computing P = A × B; then reducing, i.e. R = P(mod m) or interleave the
multiplication and the reduction steps. The straightforward way to implement a multi-
plication is based on an iterative adder-accumulator for the generated partial products.
But this solution is very slow since the final result is only available after n clock cycles; n
is the size of the operands.

There are various algorithms that implement modular multiplication. The most pro-
minent are Karatsuba Ofman’s [26] and Booth’s [27] methods for multiplying, Barrett’s
[28] [29] [30] method for reducing, and Montgomery’s algorithms [31] for interleaving

11

Implementation of public key algorithms in CUDA

X × Y = (x4x3x2x1x0)b × (y4y3y2y1y0)b
= (x4x3x2x1x0)b × y0
+ (x4x3x2x1x0)b × y1 × b
+ (x4x3x2x1x0)b × y2 × b2
+ (x4x3x2x1x0)b × y3 × b3
+ (x4x3x2x1x0)b × y4 × b4

Table 8: The multiplication procedure.

X × Y mod m = ((x4x3x2x1x0)b × (y4y3y2y1y0)b) mod m
= (((x4x3x2x1x0)b × y0) mod m
+ ((x4x3x2x1x0)b × y1 × b) mod m
+ ((x4x3x2x1x0)b × y2 × b2) mod m
+ ((x4x3x2x1x0)b × y3 × b3) mod m
+ ((x4x3x2x1x0)b × y4 × b4) mod m

) mod m

Table 9: Naive interleaving multiplication and reduction.

multiplication and reduction.

2.4.1 Naive interleaving multiplication and reduction

An integer X = (x4x3x2x1x0)b multiplied by another integer Y= (y4y3y2y1y0)b base b
is described in Table 8. In this procedure, the operation that an intermediate result is
multiplied by bi (i > 0) can be performed by left shifts.

According to the characteristics of the modular arithmetic, modular reduction can be
applied to each intermediate result in order to avoid generating a large number when
computing X× Y mod m as shown in Table 9. The advantage is that 2n-digit full product
doesn’t need to be stored before the modular reduction starts.

2.4.2 Karatsuba-Ofman Method

Karatsuba-Ofman’s algorithm is considered one of the fastest ways to multiply long in-
tegers. Karatsuba-Ofman’s algorithm [26] is based on a divide-and-conquer strategy. A
multiplication of a 2n-digit integer is reduced to two n-digits multiplications, one (n+1)-
digits multiplication, two n digits subtractions, two right-shift operations, two n-digits
additions and two 2n-digits additions. This algorithm was proposed long ago but it is
still as far as we know.

The basic step of Karatsuba’s algorithm is shown in Table 10. It allows us to compute
the product of two large numbers x and y using three multiplications of smaller numbers,
each with about half as many digits as x or y, plus some additions and digit shifts. Taking

N = (x1 · bk + x0) · (y1 · bk + y0)
= x1 · y1 · b2k + bk(x1 · y0 + x0 · y1) + x0 · y0

Table 10: The basic step of Karatsuba’s algorithm.

12

Implementation of public key algorithms in CUDA

1234 = 12× 102 + 34
5678 = 56× 102 + 78
z2 = 12× 56 = 672
z0 = 34× 78 = 2652
z1 = (12+ 34)(56+ 78) − z2 − z0 = 46× 134− 672− 2652 = 2840
result = z2 × 102×2 + z1 × 102 + z0

= 672× 10000+ 2840× 100+ 2652 = 7006652

Table 11: An example of Karatsuba’s algorithm.

an example shown in Table 11, compute the product of 1234 and 5678, to describe the
basic method of this algorithm.

In the practical public key cryptosystem, the three multiplications in Karatsuba’s basic
step could involve large numbers. Therefore, those products can be computed by recur-
sive calls of the Karatsuba’s algorithm. The recursion can be applied until the numbers
are so small that they can be computed directly. The Karatsuba-Ofman recursive multipli-
cation algorithm applied modular reduction is shown in Table 12. Moreover, the "Product
i" (i =1, 2, 3) can be computed in parallel and applied modular arithmetic to the result.

Algorithm KaratsubaOfman(X, Y, m)
If (Size(X) = 1) Then KaratsubaOfman= OneBitMultiplier(X, Y)
Else Product1 := KaratsubaOfman(High(X), High(Y), m);

Product2 := KaratsubaOfman(Low(X), Low(Y), m);
Product3 := KaratsubaOfman(High(X)+Low(X), High(Y)+Low(Y), m);
KaratsubaOfman := (RightShift(Product1, Size(X)) mod m

+ RightShift(Product3-Product1-Product2, Size(X)/2) mod m
+ Product2) mod m;

End KaratsubaOfman.

Table 12: Karatsuba-Ofman recursive multiplication algorithm.

2.5 Modular reduction

2.5.1 Naive modular reduction

A modular reduction is simply the computation of the remainder of an integer division.
It can be presented by:

X mod m = X− bX/mc ×m

The naive sequential division algorithm, see the Table 13, successively subtracts the
modulus until the remainder that is non-negative and smaller than the modulus is found.
Note that a negative remainder may be obtained after a subtraction. In that case, we
have to store the last non-negative remainder which will be the expected remainder.
Nevertheless, a division is very expensive even compared with a multiplication.

2.5.2 Barrett modular reduction

Barrett modular reduction [28] [29] [30] shown in Table 14 computes r = x mod m
given x and m. The algorithm requires the precomputation of the quantity µ =

⌊
b2k/m

⌋

13

Implementation of public key algorithms in CUDA

Algorithm NaiveReduction(P, M)
Int R = P;
Do R = R - M;
While R > 0;
If R 6= 0 Then R = R + M;
Return R;

End NaiveReduction

Table 13: Naive reduction algorithm.

Algorithm: Barrett modular reduction
Input: positive integers x = (x2k−1 · · · x1x0)b, a modulus m, and µ =

⌊
b2k/m

⌋
;

assume b > 3.
Output: r = x mod m.
1. q1 =

⌊
x/bk−1

⌋
, q2 = q1 · µ, q3 =

⌊
q2/b

k+1
⌋
.

2. r1 = x mod bk+1, r2 = q3 ·m mod bk+1, r = r1 − r2.
3. If r < 0 then r = r+ bk+1.
4. While r ≥ m do: r = r−m.
5. Return (r).

Table 14: Barrett modular reduction.

where b is the base. The reduction then takes the form shown as below, which requires
two k-bit multiplies and one k-bit subtract.

r = x−
⌊⌊
x/bk−1

⌋
· µ/bk+1

⌋
·m , µ =

⌊
b2k/m

⌋
It is advantageous for the modular exponentiation because many reductions are per-

formed with a single modulus. The precomputation takes a fixed amount of work, which
is negligible in comparison to modular exponentiation cost. Typically, the radix b is cho-
sen to be close to the word-size of the processor. However, Barrett Reduction can only
reduce numbers that are, at most, twice as long as the modulus.

All divisions performed in Barrett modular reduction algorithm are simple right-shifts
of the base b representation. In addition, all modular reduction in this algorithm can be
performed with a smart method because the modulus is bk+1. For example:

x = (234235)b , b = 10 , k = 3⌊
x/bk−1

⌋
= b234235/100c = 2342. (right shifts)

x mod bk+1 = 234235 mod 10000 = 4235. (last k+1 digits of x are the result)

Barrett reduction, when used to reduce a single number, is slower than a normal di-
vide algorithm. However, by precomputing some values, one can easily far exceed the
speed of normal modular reductions. Barrett reduction can be used to reduce various
numbers modulo a single number many times, for example, when doing modular expo-
nentiation. Barrett reduction is not particularly useful when used with small numbers
(32 or 64 bits); its benefits occur when using numbers that are implemented by multiple
precision arithmetic libraries, such as when implementing the RSA cryptosystem, which
uses modular exponentiation with large numbers, to encrypt and decrypt.

2.6 Montgomery’s algorithms

It is very inefficient that the computation performed in the naive modular multiplication
algorithm for the reason that it may require 2n-1 subtractions, 2n comparisons and an

14

Implementation of public key algorithms in CUDA

Algorithm: Montgomery modular multiplication
Input: integers m = (mn−1 · · ·m1m0)b, x = (xn−1 · · · x1x0)b, y = (yn−1 · · ·y1y0)b
with 0 ≤ x, y ≤ m, R = bn with gcd(m,b)=1, and m ′ = −m−1 mod b.
Output: xyR−1 mod m.
1. A = 0. (Notation: A = (anan−1 · · ·a1a0)b.)
2. For i from 0 to (n-1) do the following:

2.1. ui = (a0 + xiy0)m
′ mod b.

2.2. A = (A+ xiy+ uim)/b.
3. If A ≥ m then A = A−m.
4. Return (A).

Table 15: Montgomery modular multiplication.

extra addition. The Montgomery’s algorithm [31] is one of the widely used algorithms
for efficient modular multiplication. This algorithm computes the product of two integers
modulo a third one without performing division by the modulus m.

The Montgomery modular multiplication algorithm shown in Table 15 is the most ef-
ficient modular multiplication algorithm available. The Montgomery multiplication me-
thods constitute the core of the modular exponentiation operation which is the most
popular method used in public-key cryptography for encrypting and signing digital data.

The RSA algorithm and the Diffie-Hellman key exchange scheme require the computa-
tion of modular exponentiation, which is broken into a series of modular multiplications
by the application of the binary or k-ary methods.

The Montgomery modular multiplication algorithm computes

Mont(x, y,m) = x · y · R−1 mod m.

given x, y < m and R such that gcd(m,R) = 1. Even though the algorithm works for
any R which is relatively prime to m, it is more useful when R is taken to be a power
of the radix. In this case, the Montgomery modular multiplication algorithm performs
divisions by a power of the radix, which is an intrinsically fast operation of right shifts
as mentioned early. This leads to a simpler implementation than ordinary modular mul-
tiplication.

As shown in Table 15, multiplication modulo the base b and division by b are both
intrinsically fast operations as mentioned in previous section, since b is a power of base.
Thus the Montgomery modular multiplication algorithm is potentially faster and simpler
than ordinary computation of xy mod m, which involves division by m.

However, it is not a good idea to use the Montgomery modular multiplication al-
gorithm when a single modular multiplication is to be performed, because it is time-
consuming to convert the final output xyR−1 modm into the desired result xymodm. It
is more suitable when several modular multiplications with respect to the same modulus
are needed. Such is the case when one needs to compute modular exponentiation.

Using the binary methods for computing the powers as shown in Table 16, Montgo-
mery modular exponentiation algorithm replace the exponentiation operation by a series
of square and multiplication operations modulo m.

Montgomery modular exponentiation algorithm computes xemodm. The definition
of m ′ requires that gcd(m,R) = 1. For integers u and v where 0 ≤ u, v ≤ m, define
Mont(u, v,m) to be uvR−1 mod m as computed by Montgomery modular multiplication
algorithm shown in Table 15.

15

Implementation of public key algorithms in CUDA

Algorithm: Montgomery modular exponentiation
Input: m = (ml−1 · · ·m1m0)b, R = bl, x = (xn−1 · · · x1x0)b, m ′ = −m−1 mod b,
with et = 1,and 1 ≤ x ≤ m,
Output: xe mod m.
1. x =Mont(x, R2 mod m, m), A = R mod m.
2. For i from t to 0 do the following:

2.1. A =Mont(A,A,m).
2.2. If ei = 1 then A =Mont(A, x,m).

3. A =Mont(A, 1,m).
4. Return (A).

Table 16: Montgomery modular exponentiation.

Montgomery modular multiplication algorithm can’t be directly applied to modular
exponentiation due to the extra factor R, and two extra processes are needed to operate
modular exponentiation. One is mapping to convert input plaintext x into xR mod m
shown in step 1 of Table 16, and the other is re-mapping to remove the extra factor R
from the output of modular exponentiation shown in step 3. Finally, the last output result
is in the desired form.

2.7 Cryptography in CUDA

The encryption activity is computationally intensive, and shows a significant feature of
parallelism. On the other hand, cheap multicore processors are readily available on gra-
phics hardware, and toolchains for development of general purpose programs are being
released by the vendors.

With the emergence of CUDA architecture and tools, many fields are significant spee-
dup such as creating breakthrough applications in areas such as image recognition, real-
time HD video playback and encoding, and cryptography computation.

Figure 4: MD5-RC4 encryption performance comparison on different data sizes of each data object
[1].

In 2009, [1] presents an efficient implementation for MD5-RC4 encryption using NVI-
DIA GPU with CUDA programming framework. The MD5-RC4 encryption algorithm was
implemented on NVIDIA GeForce 9800GTX GPU. The performance of its solution is com-

16

Implementation of public key algorithms in CUDA

pared with the implementation running on an AMD Sempron Processor LE-1200 CPU.
The results show that the GPU-based implementation exhibits a performance gain of
about 3-5 times speedup for the MD5-RC4 encryption algorithm.

Figure 4 taken from [1] shows the encryption throughputs comparison on different
data sizes of each data object. From this figure, it is obviously that the encryption through-
puts increased with the increase of the data size in each data object. When the data size
is 32 bytes, the throughput of GPU-based implementation is 70MBps, which is 5 times
greater than the CPU-based one. Moreover, on each given input data size of the data ob-
ject, the CUDA-based implementation gained a much greater throughput in comparison
to the CPU-based implementation.

Figure 5: AES performance comparison among the GPUs and four common CPUs: Throughput
[Mbps] [2].

On the other hand, [2] investigated the possibility of using the GPU supported by
CUDA as a co-processor to ease the CPU load when encrypting or decrypting data streams
in web server applications. This research has shown how to effectively implement the AES
block cipher using the CUDA and its programming model, extracting as much parallelism
as possible from the algorithm with both coarse and fine grained approaches. It provi-
ded an extensive quantitative evaluation on a range of NVIDIA GPUs based on the G80
architecture and scaling from 16 to 112 cores. These experiments show the AES block
cipher and similar algorithms are possible to efficiently use the GPU as a co-processor. In
addition, this solution is cost effective when compared to the assembly level optimized
CPU-based implementations of the AES built in the OpenSSL library. The Figure 5 taken
from [2] shows the performance comparison among the GPUs and other four common
CPUs. On the whole, [2] reports throughput improvements of up to 14 times over the
CPU implementations chosen as baseline, as well as the comparison of the performance
and cost that is about 73 Mbps per dollar for the NVIDIA 8800 GT against the 4 Mbps
per dollar of the Intel Core 2 Duo.

All those researches do not focus on the public-key algorithm, but they make us be-
lieve that it is possible to implement public-key algorithm efficiently by using the GPU
with CUDA technology.

17

Implementation of public key algorithms in CUDA

3 CUDA

Because of the insatiable market demand for real-time, high-definition 3D graphics, the
programmable Graphic Processor Unit (GPU) has evolved into a highly parallel, mul-
tithreaded, many-core processor with tremendous computational horsepower and very
high memory bandwidth, as illustrated by Figure 6 which is taken from [3].

CUDA is a general-purpose programming system for NVIDIA GPUs and was first pu-
blicly released in the end of 2007. By using CUDA, the CUDA-enabled GPU (so-called
device) is exposed to the CPU (so-called host) as a co-processor. This means that each
GPU is considered to have its own memory and processing elements that are separate
from the host computer. To perform useful work, data must be transferred between the
memory space of the host computer and CUDA device(s). For this reason, performance
results must include input and output (IO) time to be informative.

At the heart of CUDA is the ability for programmers to keep thousands of threads
busy. The current generation of NVIDIA GPUs can efficiently support a very large number
of threads, and as a result they can deliver one to two orders of magnitude performance
increase in application performance.

3.1 Kernel

A kernel [3] is a function callable from the host and executed on the CUDA device si-
multaneously by many threads in parallel. In fact CUDA executes a function in the Single
Program Multiple Data (SPMD) model, which means that a user-configured number of
threads run the same program on different data. Each thread will execute the same ker-
nel function and will operate upon only a single data element. Each thread is distingui-
shed from all the others by block and thread indices that can be used to determine the
data element the thread will access. CUDA organizes a parallel computation using the
abstractions of threads, blocks and grids, and the simple definitions [3] [32] as follows:

• Thread is just an execution of a kernel with a given index. Each thread uses its index
to access data elements such that the collection of all threads cooperatively processes
the entire data set.

• Block is a group of threads. Threads within a block can execute concurrently or se-
rially and in no particular order. They can be coordinated using the synchronization
function that makes a thread stop at a certain point in the kernel until all the other
threads in its block reach the same point.

• Grid is a group of blocks. There’s no synchronization at all between the blocks.

These multiple blocks are organized into a one-dimensional or two-dimensional grid
of thread blocks as illustrated by Figure 7 [3]. On the other hand, the computation of
threads, blocks and grids are distributed as follows:

19

Implementation of public key algorithms in CUDA

Figure 6: Floating-Point Operations per Second and Memory Bandwidth for the CPU and GPU [3].

20

Implementation of public key algorithms in CUDA

Figure 7: Grid of Thread Blocks [3].

21

Implementation of public key algorithms in CUDA

• Grid → GPU: An entire grid is handled by a single GPU chip.

• Block → MP: The GPU chip is organized as a collection of multiprocessors (MPs), with
each multiprocessor responsible for handling one or more blocks in a grid. A block is
never divided across multiple MPs.

• Thread → SP: Each MP is further divided into a number of stream processors (SPs),
with each SP handling one or more threads in a block.

From the host’s point of view, kernel invocations are asynchronous function calls.
Synchronization is done explicitly by calling a synchronization function, or implicitly
when the host tries to access memory on the device. In both cases, synchronization takes
the form of a barrier that blocks the calling host thread until all previously called kernels
have been finished.

When the CUDA device is idle, the kernel immediately starts running based on the
execution configuration and according to the function arguments. Meanwhile, the host
continues to the next line of code after the kernel launch. At this point, both the CUDA
device and host are simultaneously running their separate programs. If another kernel is
called by the host immediately, it waits until all threads have finished on the device.

Each active block is split into SIMD (Single Instruction Multiple Data) groups of
threads called warps. Each warp contains the same number of threads, called the warp
size, which are executed by the multiprocessor in a SIMD fashion. This means each thread
within a warp is broadcast the same instruction from the instruction store, which directs
the thread to perform some operation and manipulation of local or global memory.

Active warps are time-sliced. The thread scheduler periodically switches from one
warp to another to maximize the use of the multiprocessor’s computational resources.
The order of execution of the warps within a block and of blocks themselves is undefined,
which means they can occur in any order.

By using the GPU tens of thousands or even more threads can be processed at the same
time. It uses this massive parallelism to hide the costs of memory accesses by efficient
thread scheduling, i.e., threads are removed from a processor while waiting for a read
from memory to complete. The memory at the device is called global memory and can
be accessed by both the host and all processors of the device.

Figure 8 taken from [4] shows some basic features of parallel programming with
CUDA for computing y = a · x + y. It contains straightforward implementations, both
sequential and parallel. Given vectors x and y containing n floating-point numbers, it
performs the update y = a · x + y. The serial implementation is a simple loop that
computes one element of y in each iteration. The parallel kernel effectively executes
each of these independent iterations in parallel, assigning a separate thread to compute
each element of y. The __global__ modifier indicates that the procedure is a kernel entry
point, and the extended function call syntax saxpy <<< B, T >>> (...) is used to launch
the kernel saxpy() in parallel across B blocks of T threads each. Each thread of the
kernel determines which element it should process from its integer thread block index
(blockIdx.x), its index within its block (threadIdx.x), and the total number of threads
per block (blockDim.x). This example demonstrates a common parallelization pattern,
where a serial loop with independent iterations can be executed in parallel across many
threads.

22

Implementation of public key algorithms in CUDA

Figure 8: Parallel programming with CUDA: serial (a) and parallel (b) kernels for computing y =

a · x + y [4].

3.2 Memory hierarchy

In combination with the hierarchy of processing units, the CUDA-enabled GPU provides
a memory hierarchy [3] [32]:

• Global memory: This memory is built from a bank of SDRAM chips connected to the
GPU chip. Any thread in any MP can read or write to any location in the global me-
mory. Sometimes this is called device memory. Potentially 150x slower than register
or shared memory.

• Texture cache: This is a memory within each MP that can be filled with data from
the global memory so it acts like a cache. Threads running in the MP are restricted to
read-only access of this memory.

• Constant cache: This is a read-only memory within each MP.

• Shared memory: This is a small memory within each MP that can be read/written by
any thread in a block assigned to that MP. Can be as fast as a register when there are
no bank conflicts or when reading from the same address.

• Registers: Each MP has a number of registers that are shared between its SPs. The
fastest form of memory on the multi-processor.

• Local memory: It implies "local in the scope of each thread". It is a memory abs-
traction, not an actual hardware component of the multi-processor. In actuality, local
memory gets allocated in global memory by the compiler and delivers the same per-
formance as any other global memory region. Local memory is basically used by the
compiler to keep anything the programmer considers local to the thread but does not
fit in faster memory for some reason.

Figure 9 schematically illustrates a thread that executes on the device has access to
global memory and the on-chip memory through the memory types [3].

23

Implementation of public key algorithms in CUDA

Figure 9: Memory Hierarchy [3].

24

Implementation of public key algorithms in CUDA

Obviously, higher performance applications must reuse data in some fashion, which is
the function of shared and register memory. It is important to note that threads within a
block can communicate with each other through local multi-processor resources because
the CUDA execution model specifies that a block can only be processed on a single multi-
processor. In other words, data written to shared memory within a block is accessible to
all other threads within that block, but it is not accessible to a thread from any other
block. Shared memory with these characteristics can be implemented very efficiently in
hardware which translates to fast memory accesses for CUDA developers.

3.3 Program in CUDA

With the CUDA architecture and tools, developers are achieving dramatic speedups in
fields such as medical imaging and natural resource exploration, and cryptography. One
of the major benefits of CUDA as compared to other GPU programming systems is its
use of a C dialect, such that an original C function for the CPU can often be transformed
into a CUDA kernel with only slight modifications. CUDA provides to developers C libra-
ries that expose all device functionalities needed to integrate CUDA into a C program.
Furthermore CUDA enables this unprecedented performance via standard APIs such as
OpenCL and DirectX Compute, and high level programming languages such as C/C++,
Fortran, Java, Python, and the Microsoft .NET Framework.

The programmer, in order to write a CUDA program, normally begins from a sequen-
tial version and proceeds through the following steps [33]:

1. Identify a kernel, and package it as a separate function.

2. Specify the grid of GPU threads that executes it, and partition the kernel computation
among these threads, by using blockIdx and threadIdx inside the kernel function.

3. Manage data transfer between the host memory and the GPU memories (global,
constant and texture), before and after the kernel invocation. This includes redirec-
ting variable accesses in the kernel to the corresponding copies allocated in the GPU
memories.

4. Perform memory optimizations in the kernel, such as utilizing the shared memory
and coalescing accesses to the global memory .

5. Perform other optimizations in the kernel in order to achieve an optimal balance
between single-thread performance and the level of parallelism.

In addition a CUDA program may include multiple kernels, thus the above procedure
needs to be applied to each of them.

In order to give the experience to developers who don’t have a CUDA-enabled GPU
board on the PC but still want to try running CUDA program, the emuDebug configura-
tion is available. This configuration uses a software emulation of a CUDA device instead
of the actual hardware found on the graphics card. This will link-in a CUDA device emu-
lator that runs on the host. The emulator becomes the target for all the CUDA API calls
and executes the kernel. The program will run just like a CUDA device is there, except
slower.

25

Implementation of public key algorithms in CUDA

3.4 Optimization in CUDA

In order to achieve an excellent performance of parallel computation, optimizations have
to be considered and performed in kernel.

The warp size is the number of threads running concurrently on an MP. The homo-
geneity of the threads in a warp has a big effect on the computational throughput. If all
the threads are executing the same instruction, then all the SPs in an MP can execute the
same instruction in parallel. But if one or more threads in a warp is executing a different
instruction from the others, then the warp has to be partitioned into groups of threads
based on the instructions being executed, after which the groups are executed one af-
ter the other. This serialization reduces the throughput as the threads become more and
more divergent and split into smaller and smaller groups. So it pays to keep the threads
as homogenous as possible.

Optimizing the performance of CUDA applications most often involves optimizing
data accesses which includes the appropriate use of the various CUDA memory spaces.
Appropriate use of these memory spaces can have significant performance implications
for CUDA applications.

On the other hand, how the threads access global memory also affects the throughput.
Computations run much faster if the GPU can coalesce several global addresses into a
single burst access over the wide data bus that goes to the external SDRAM. Conversely,
reading/writing separated memory addresses requires multiple accesses to the SDRAM
which slows the performance down. To help the GPU combine multiple accesses, the
addresses generated by the threads in a warp must be sequential with respect to the
thread indices.

26

Implementation of public key algorithms in CUDA

4 Experimental methods

This project focuses on how to make a more efficient and faster implementation of public-
key algorithms. Two experiments implementing a public key algorithm are performed on
different hardware platforms. One is to implement the selected algorithms normally on
a CPU with different data sizes, and then record the execution time and other related
data. Another is to execute designed parallel algorithms on a CUDA-enabled GPU, and
record related data as well. Finally the performance comparison is performed between
those experiments.

The parallelization of public key algorithms is mainly performed in the part of mo-
dular multiplication and modular exponentiation. Therefore, this project implements a
representative public-key algorithm RSA respectively on the CPU and the CUDA-enabled
GPU, and compares their performances to find out whether the public-key algorithm
could be implemented faster and more efficient on a GPU. Theoretically, the performance
that RSA implemented on a GPU should be better than that on the CPU since paralleli-
zation of RSA is performed on the CUDA-enabled GPU with massive parallel processors.
In addition, there are still other related issue concerned in this project, such as time
consumption in data transfer between host and device.

The CUDA driver API and C runtime for CUDA are two of the programming interfaces
to CUDA [32]. The C runtime for CUDA handles kernel loading and kernels’ setting
before they are launched. The implicit code initialization, CUDA context management,
CUDA module management (cubin and function mapping), kernel configuration, and
parameter passing are all performed by the C runtime for CUDA. In addition, CUDA
supports C++ code and can be compiled with any C++ compiler. However, the current
version of CUDA does not support all features of C++. Therefore, all functions in this
project are mostly performed in C.

4.1 Experimental equipments

The machine used for this project needed to have a CUDA enabled graphics card from
NVIDIA. Table 17 shows some basic specifications of the computer which is adopted in
the project. Table 18 shows some basic specifications for the NVIDIA GeForce GT 130M
graphic card.

Processor: Intel Core2 Duo P8700 processor 2.53 GHz
RAM: 4GB 1100Mhz
Hard Drive: Western Digital WD3200BEVT 320GB
Graphics card: NVIDIA GeForce GT 130M
Operating System: Windows Vista Home Premium

Table 17: Basic specifications of test computer.

Table 19 shows the property of CUDA-enabled GPU used in this project. It shows the
limits on the sizes of blocks and grids. A block is one-, two- or three-dimensional with
the maximum sizes of the x, y and z dimensions being 512, 512 and 64, respectively, and

27

Implementation of public key algorithms in CUDA

GPU Engine and Memory Specs Description
Processor Cores: 32

Gigaflops: 144
Processor Clock (MHz): 1500
Memory Clock (MHz): 800 (GDDR3)

Standard Memory Config: 512 MB
Memory Interface Width: 128-bit

Memory Bandwidth (GB/sec): 25 (GDDR3)

Table 18: Basic specifications of NVIDIA GeForce GT 130M.

CUDA property Description
Number of multiprocessors 4

Number of cores 32
Total amount of global memory 512M bytes

Total amount of constant memory 65536 bytes
Total amount of shared memory per block 16384 bytes

Total amount of registers available per block 8192
Warp size 32

Maximum number of threads per block 512
Maximum sizes of each dimension of a block 512 × 512 × 64
Maximum sizes of each dimension of a grid 65535 × 65535 × 1

Clock rate 1.50 GHz
Concurrent copy and execution Yes

Table 19: CUDA property of NVIDIA GeForce GT 130M.

such that x×y×z ≤ 512, which is the maximum number of threads per block. Blocks are
organized into one- or two-dimensional grids of up to 65,535 blocks in each dimension.
The primary limitation here is the maximum of 512 threads per block, primarily imposed
by the small number of registers that can be allocated across all the threads running in
all the blocks assigned to an MP. The thread limit constrains the amount of cooperation
between threads because only threads within the same block can synchronize with each
other and exchange data through the fast shared memory in an MP. The warp size is the
number of threads running concurrently on an MP.

4.2 RSA

The RSA public-key cryptosystem was developed by R.L. Rivest, A. Shamir, and L. Adle-
man in 1978 [7]. The RSA algorithm is simply the modular exponentiation. The modulus
n is the product of two large primes: n = pq. Euler’s totient function of n is given by

φ(n) = (p− 1)(q− 1).

Now, select a number 1 < e < φ(n) such that

gcd(e,φ(n)) = 1,

and compute d with

d = e−1modφ(n).

28

Implementation of public key algorithms in CUDA

Where e is the public exponent and d is the private exponent. A small public exponent
is usually selected as e. The modulus n and the public exponent e are published. The
value of d and prime numbers p and q are kept secret.

The encryption operation is performed using the public key e, as follows:

C ≡Me(modn)

Where M is the plaintext such that 0 ≤M < N, and C is the ciphertext which can be
decrypted using the secret key d, as follows:

M ≡ Cd(modn)

The correctness of RSA algorithm follows from Euler’s theorem: Let n and a be posi-
tive, relatively prime integers. Then

aφ(n) = 1 (mod n).

Since we have ed = 1 mod φ(n), i.e., ed = 1 + Kφ(n) for some integer K, we can
write

Cd = (Me)d (mod n)
= Med (mod n)
= M1+Kφ(n) (mod n)
= M · (Mφ(n))K (mod n)
= M · 1 (mod n)

Provided that gcd(M,n) = 1. The exception gcd(M,n) > 1 can be dealt as follows.
According to Carmichael’s theorem

Mλ(n) = 1 (mod n)

Where λ(n) is Carmichael’s function which takes a simple form for n = pq, namely,

λ(pq) = (p−1)(q−1)
gcd(p−1,q−1)

Note that λ(n) is always a proper divisor of φ(n) when n is the product of distinct
odd primes; in this case λ(n) is smaller than φ(n). Now, the relationship between e and
d is given by

Med = M (mod n) if ed = 1 (mod λ(n))

Provided that n is a product of distinct primes, the above holds for allM, thus dealing
with the above-mentioned exception gcd(M,n) > 1 in Euler’s theorem.

In this project, modular multiplication and modular exponentiation with large num-
bers are the key points of RSA. Barrett modular reduction [28] [29] [30] and Mont-
gomery modular multiplication [31] are mainly considered. In these algorithms, the
operation of addition, subtraction, right shift, multiplication and exponentiation can be
implemented in parallel and described in the following sections.

29

Implementation of public key algorithms in CUDA

4.3 Methods

4.3.1 Storage structure for large number

When the computation for large numbers is regarded, how to construct storage structure
for the large number must be considered first. There are several methods mentioned in
Chapter 2.

A modified large number storage method based on the classic method [11] is used
in this project because each digit of a large number must be accessed directly in order
to perform the parallel computation on CUDA. The storage structure of large numbers is
illustrated by Table 20.

struct SLargeNumber
{

int digits[DIGITS_MAX_LEN];
int sign;
int header;
int length;
int base;

}

Table 20: The storage structure of large numbers.

SLargeNumber type of objects are used to store large numbers. The structure SLar-
geNumber has five data members: "digits" to store the digits making a large number,
"sign" to hold the sign of the large number, "header" to hold the address of the first digit,
"length" to hold the number of digits used, and "base" hold the radix of the large number.

For example, a large number -979238938 base 10 can be represented in the SLarge-
Number structure by the Table 21.

i 0 1 2 3 4 5 6 7 8
digits[i] 8 3 9 8 3 2 9 7 9

sign -1 header 0 length 9 base 10

Table 21: SLargeNumber structure representation for the large number -979238938.

In this storage structure, each digit of a large number can be accessed directly by each
thread when the parallel computation is performed. Based on this storage structure, the
corresponding function can be constructed to perform operations for large numbers. In
the following sections, three elements "digits", "length", and "base" are used to describe
the structure of large numbers. Other elements are not so important to illustrate experi-
mental methods.

4.3.2 Parallel addition and subtraction

Parallel addition and subtraction are performed as shown in Figure 10. When computing
Z = X ± Y, where X = (Xn Xn−1 Xn−2 · · · X4 X3 X2 X1 X0)b, Y = (Yn Yn−1 Yn−2 · · ·
Y4 Y3 Y2 Y1 Y0)b, Z = (Zn Zn−1 Zn−2 · · · Z4 Z3 Z2 Z1 Z0)b, and b is the base of large
numbers, each thread Ti (0 ≤ i ≤ n) is in charge of computing a pair of digits Xi and Yi.
For all threads Ti do the following in parallel:

30

Implementation of public key algorithms in CUDA

Zi = Xi ± Yi (0 ≤ i ≤ n)

Zi (0 ≤ i ≤ n) are temporary variables which are large enough to store the results
computed by threads. When all Zi are available, a update function is called to compute
the carry of Z. However, this update function is not implemented in parallel but in se-
quential, because the carry of Zi will influence the value and carry of Zi+1. The source
code of parallel subtraction implemented in CUDA can be found in the Appendix A.

Figure 10: Parallel addition and subtraction.

4.3.3 Parallel right shifts

When computing Z = X/b where b is the base of large numbers, right shift in parallel
can be performed to compute it as shown in Figure 11. Each thread copies Xi (0 < i ≤ n)
to Zi−1. The source code of parallel right shifts implemented in CUDA can be found in
the Appendix B.

Figure 11: Parallel right shift.

4.3.4 Parallel multiplication

When computing Z = XY, all available threads are divided into two groups: Group R
and Group C. The Figure 12 shows an example that all intermediate values are stored
in a matrix. An intermediate value in a cell of the matrix is generated by a single thread
in Group R. In the case of Figure 12, 25 calling threads calculate intermediate results
XiYj (0 ≤ i, j ≤ 4) in parallel. The source code of parallel multiplication implemented in
CUDA can be found in the Appendix C

Then the values in each column of the matrix are added together to generate Zi. In
this process, the addition performed for each column is handled in parallel by threads in
Group C. When just one column is considered, the addition can be computed as shown
in Figure 13.

On the other hand, a lookup table of X as shown in Figure 14 can be used to pre-
compute all possible intermediate values in the matrix. It is obvious that X and Y are

31

Implementation of public key algorithms in CUDA

Figure 12: Multiplication and intermediate values stored in a matrix.

Figure 13: Add sub results in a column in parallel.

32

Implementation of public key algorithms in CUDA

large numbers, and many intermediate values are computed repeatedly.

Figure 14: A lookup table of X.

In Figure 14, b is the base of large numbers. All values in the lookup table can be
generated in parallel. By using the lookup table of X, the intermediate values of matrix
can be located based on the value of Yi. So it is unnecessary to compute all intermediate
values when implementing parallel multiplication.

Because threads of different blocks cannot be synchronized, the Parallel Multiplication
is divided into three kernels:

• To construct a lookup table of X;

• To calculate intermediate results, and get Z without updating the carry;

• To compute and update the carry and length of Z.

4.3.5 Parallel modular exponentiation

The parallel modular exponentiation method is based on the observation of binary mo-
dular exponentiation method. The exponent e is converted into binary representation.
The computation of modular exponentiation is the product as the formula:

g(etet−1···e1e0)2 mod m =
∏
g2

i

mod m, for each i where ei = 1.

For example, using modular exponentiation to compute g45 mod m, the exponent 45
is first converted into binary form e= (45)10 = (101101)2. The exponent e is represented
by 6 bits. Then, pre-computing the powers g2

i

mod m, i = 0,. . ., 5 as shown in Figure
15.

Figure 15: Pre-computing the powers g2
i

mod m, i = 0,. . ., 5.

33

Implementation of public key algorithms in CUDA

Figure 16: The procedure of computing g45 mod m by means of the parallel modular exponentia-
tion.

The pre-computing results labeled with ∗, whose corresponding coefficients in the
binary representation of the exponent 45 are non-zero, are used for computing the final
result as follow:

g45 mod m = (g1 mod m)(g4 mod m)(g8 mod m)(g32 mod m)
= g(1+4+8+32) mod m = g45 mod m

In this example, 5 times of modular square and 3 modular multiplications are re-
quired if the initialization of data (when i = 0) is not considered. This method can be
parallelized and used in the parallel computation. Two Groups of threads α and β are
employed to compute the modular exponentiation in parallel. The Group α is to calculate
g2

i

mod m for each i by using repeated square and modular reduction, another Group β
is to multiple each intermediate result used for computing the final result as soon as the
group α generates a new intermediate result.

The Figure 16 shows the procedure of computing g45 modm by means of the parallel
modular exponentiation. Still, the first initialization of data is not considered because it
multiplies g by 1 without modular reduction. Group α performs 5 modular squares, and
Group β executes 3 modular multiplications. However, Groups α and β implement their
tasks in parallel. Thus the processing time for the whole parallel program is more or less
equal to the implementing time of Group α with the addition of once modular multipli-
cation, if the number of processors is enough for the parallel modular exponentiation.

34

Implementation of public key algorithms in CUDA

5 Results

This chapter contains the results for the performance of modular multiplication, mo-
dular exponentiation, and RSA. The programs have been tested with different sizes of
input large numbers, and execution times of GPU implementation and CPU implementa-
tion have been compared against each other. Execution times of modular multiplication
recorded are in milliseconds (ms), other times are in seconds (s).

5.1 Modular multiplication

Barrett modular reduction and Montgomery modular multiplication are mainly conside-
red in this project. However, Montgomery modular multiplication implemented in CUDA
is slower than modular multiplication by using Barrett modular reduction. Because, in
each iteration of Montgomery modular multiplication, the synchronization of threads
must to be employed after the step 2.2 of Table 15. If the digit-length of m is n, the
synchronization will be called at least n times. That makes the implementation of Mont-
gomery modular multiplication show. Appendix E shows the execution time of modular
multiplication and exponentiation by using Montgomery’s algorithm.

Bit-length TimeGPU (ms) TimeCPU (ms) R1 (TimeCPU/TimeGPU)
1024 3.104 2.280 0.734
2048 4.812 8.953 1.861
3072 6.466 19.478 3.012
4096 9.550 34.081 3.569
8192 21.653 132.981 6.141

Table 22: Execution time of modular multiplication between CPU implementation and GPU imple-
mentation.

Thus Barrett modular reduction is adopted for GPU implementation, and Montgomery
modular multiplication is used for CPU implementation (See the Appendix D). Table
22 and Figure 17 show the execution time and performance comparison of modular
multiplication between GPU implementation and CPU implementation.

In Table 22, the total time of GPU implementation is the run time of modular multi-
plication kernel with the addition of memory copy time. The bit-length has no significant
influence on memory copy time. The reason would be the memory used for large num-
bers are not too large compared to the capability of memory copy between host and
CUDA’s device.

The ratio R1 in the Table 22 shows the ratio between run time of CPU implementation
and run time of GPU implementation. It has increased with the growth of bit-length.

At 1024 bits, the GPU program is slightly slower than the CPU program. From 2048
bits to 8192 bits, the GPU run time is significantly lower than the CPU run time. The GPU
implementation is 6.141 times faster than the CPU implementation when large numbers
are 8192 bit-length.

35

Implementation of public key algorithms in CUDA

Figure 17: Performance comparison of modular multiplication between CPU implementation and
GPU implementation.

5.2 Modular exponentiation

Table 23 and Table 24 show the execution time of modular exponentiation implemented
on the GPU and the CPU respectively. The number of bit ’1’ contained in the exponent
influences the execution time of modular exponentiation. In order to have a fair compa-
rison, times shown in Table 23 and Table 24 are execution times with 100 groups input
data which are generated randomly.

Bit-length Timemin (s) Timemax (s) Average Time (s)
1024 3.338 5.228 4.102
2048 12.710 16.231 14.004
3072 26.515 31.473 28.538
4096 48.207 55.633 50.987
8192 237.288 275.802 252.358

Table 23: Execution time of modular exponentiation on GPU.

Bit-length Timemin (s) Timemax (s) Average Time (s)
1024 3.459 4.431 3.624
2048 26.412 31.392 27.750
3072 88.652 101.004 94.429
4096 211.038 256.377 224.456
8192 1,622.980 1,914.893 1,722.923

Table 24: Execution time of modular exponentiation on CPU.

The Table 25 shows the ratios of execution time between CPU implementation and
GPU implementation for minimal, maximal, and average time. Figure 18 shows average
times comparison of modular exponentiation between GPU implementation and CPU
implementation.

36

Implementation of public key algorithms in CUDA

Timemin Timemax Average Time
Bit-length CPU/GPU CPU/GPU CPU/GPU (R2)

1024 1.04 0.85 0.883
2048 2.08 1.93 1.982
3072 3.34 3.21 3.389
4096 4.38 4.61 4.402
8192 6.84 6.94 6.827

Table 25: The ratios of execution time of modular exponentiation between CPU implementation
and GPU implementation.

Figure 18: Performance comparison of modular exponentiation between CPU implementation and
GPU implementation.

37

Implementation of public key algorithms in CUDA

5.3 RSA

Table 26 and Table 27 describe the minimal, maximal, and average execution time of
RSA implemented respectively on the GPU and the CPU with 200 groups RSA’s data. In
Table 26, execution time of GPU implementation includes memory copy time which is
around 1.2 ms for all cases.

Bit-length Timemin (s) Timemax (s) Average Time (s)
1024 3.458 5.931 4.338
2048 12.655 17.286 15.423
3072 26.713 31.758 29.408
4096 47.236 62.730 51.967
8192 233.466 290.189 250.962

Table 26: Execution time of RSA on GPU.

Bit-length Timemin (s) Timemax (s) Average Time (s)
1024 3.285 5.094 3.592
2048 25.451 38.629 27.655
3072 85.409 106.617 90.199
4096 205.003 275.373 215.727
8192 1,648.426 1,947.808 1,735.480

Table 27: Execution time of RSA on CPU.

For all cases of bit-length, the average execution times shown in Table 26 and Table
27 are close to the execution times shown in Table 23 and Table 24. The Table 28 shows
the ratios of execution time between CPU implementation and GPU implementation for
minimal, maximal, and average time. Figure 19 shows average times comparison of RSA
between GPU implementation and CPU implementation.

Timemin Timemax Average Time
Bit-length CPU/GPU CPU/GPU CPU/GPU (R3)

1024 0.95 0.867 0.81
2048 2.01 2.23 1.79
3072 3.10 3.36 3.07
4096 4.34 4.39 4.15
8192 7.06 6.71 6.92

Table 28: The ratios of RSA’s execution time between CPU implementation and GPU implementa-
tion.

5.4 Result summary

The experimental results show public key algorithms can be implemented fast on a
CUDA-enabled GPU by using the massive parallel processing properties.

Comparing R1 shown in Table 22 with R2 shown in Table 25 and R3 shown in Table
28, it is obvious that the parallel modular exponentiation has not significantly improved
the speed of RSA implemented on the GPU as shown in Figure 20. The reason would
be that the amount of available processors is far less than the number of processors
needed for the parallel modular exponentiation. In the GPU implementation of modular

38

Implementation of public key algorithms in CUDA

Figure 19: Performance comparison of RSA between CPU implementation and GPU implementa-
tion.

Figure 20: Ratios comparison.

39

Implementation of public key algorithms in CUDA

exponentiation, the performances are only improved in the kernels that do not use many
processors for computation.

In the CPU implementation, if the number of bits for RSA is doubled, the n-by-n
multiplies will take four times as long. Further the exponent is doubled. So the execution
time of RSA will take 8 times as long. On the other hand, in the GPU implementation,
the execution time will take 4-5 times as long if the bit-length is doubled. For this reason,
the ratios Ri(1 ≤ i ≤ 3) have increased with the growth of bit-length.

40

Implementation of public key algorithms in CUDA

6 Conclusion and future work

6.1 Discussion

The GPU used in this experiment has 32 processing cores working at 1.5 GHz, and
the CPU working at 2.53GHz. In theory, the GPU implementation can achieve up to
32×1.5÷2.53≈18.97 times faster than the CPU implementation. However, the experi-
mental results show the GPU implementation of RSA has reached up to 6.9 times faster
than the CPU version. Several factors influence the performance of CUDA’s program.

First of all, some computational methods are still implemented in sequential. For
example, the carry update of large numbers after parallel methods including parallel
addition, parallel subtraction, and parallel multiplication.

The most important is that the access speeds of various memories are different. The
global memory of GPU is very slow. In order to achieve better performance, the data
stored in the global memory must be transferred to the shared memory of GPU if this
data will be used more than once. In addition, the shared memory can be only shared
by threads in a block. It means the temporary result calculated by those threads of a
block has to be transferred back to global memory, if this temporary result will be used
by threads of other blocks in the future. Compared to the performance of program by
using global memory only, the program adopted shared memory has better performance.
However, the procedure of data transfer between global memory and shared memory
takes extra run time.

Moreover, in the GPU implementation, the number of threads needed for a kernel is
far more than available processors. So threads are time-sliced on a round-robin basis,
which causes extra run time as well. On the other hand, the CPU implementation does
not have the problem of sliced time.

In the parallel computation, some threads would be completed a subtask before
others, so the synchronization of threads is essential. In this case, the thread that fi-
nished its subtask will be idle, and waiting for all threads completed their subtask. The
idle thread takes some run time.

6.2 Conclusion

This project studied and analyzed the majority of algorithms related to public key algo-
rithms, and then designed and made an implementation of a public key algorithm RSA
in CUDA. From the performance comparison between the GPU implementation and the
CPU implementation, it looked into the possibility of improving the performance of pu-
blic key algorithms by using CUDA-enabled GPU with the massive parallel processing
properties .

The understanding of CUDA’s architecture and how threads are organized in CUDA
are very important for this project to have an efficient implementation of public key
algorithms.

The experimental results show public key algorithms can be implemented fast on
a CUDA-enabled GPU. With the massive parallel processing properties, the public key

41

Implementation of public key algorithms in CUDA

algorithm implemented on the GPU is more efficient than on the CPU.

6.3 Future work

The programs realized in this project are only implemented in a single experimental
environment. They could be performed on different platforms to test and compare their
performances in the following research.

Moreover, the parallelization of public key algorithms is mainly performed in the part
of modular multiplication and modular exponentiation. Barrett modular reduction and
Montgomery modular multiplication are mainly considered. However, some methods are
not discussed in this project, such as the factor method and the power three method given
by Knuth [26] for modular exponentiation, canonical recoding algorithm [34] [35] [36]
for cryptographic algorithm, and fast decryption using the CRT [37] [36] [26] [38].

Also some improved Barrett modular reduction and Montgomery algorithms are va-
luable to be discussed in the future. The parallelization of these methods could give us to
look into the possibility of improving the performance of public key algorithms by using
CUDA from other angles.

42

Implementation of public key algorithms in CUDA

Bibliography

[1] Li, C., Wu, H., Chen, S., Li, X., & Guo, D. Aug. 2009. Efficient implementation
for md5-rc4 encryption using gpu with cuda. In Anti-counterfeiting, Security, and
Identification in Communication, 2009. ASID 2009. 3rd International Conference on,
167–170.

[2] Di Biagio, A., Barenghi, A., Agosta, G., & Pelosi, G. May 2009. Design of a parallel
aes for graphics hardware using the cuda framework. In Parallel and Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, 1–8.

[3] Cuda programming guide. http://developer.download.nvidia.com.

[4] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phil-
lips, E., Zhang, Y., & Volkov, V. July-Aug. 2008. Parallel computing experiences
with cuda. Micro, IEEE, 28(4), 13–27.

[5] Smid, M. & Branstad, D. May 1988. Data encryption standard: past and future.
Proceedings of the IEEE, 76(5), 550–559.

[6] Xiao, Y., Guizani, S., Sun, B., Chen, H.-H., & Wang, R. 27 2006-Dec. 1 2006.
Nis05-1: Performance analysis of advanced encryption standard (aes). In Global
Telecommunications Conference, 2006. GLOBECOM ’06. IEEE, 1–5.

[7] Rivest, R. L., Shamir, A., & Adleman, L. 1978. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 26(1), 96–99.

[8] Miller, V. S. 1986. Use of elliptic curves in cryptography. In Lecture notes in computer
sciences; 218 on Advances in cryptology—CRYPTO 85, 417–426, New York, NY, USA.
Springer-Verlag New York, Inc.

[9] Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. 1997. Handbook of applied
cryptography. CRC Press.

[10] Mohapatra, P. K. 2000. Public key cryptography. Crossroads, 7(1), 14–22.

[11] Fu, C. & Zhu, Z.-L. Oct. 2008. An efficient implementation of rsa digital signature
algorithm. In Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM ’08. 4th International Conference on, 1–4.

[12] Cramer, R. & Shoup, V. 2000. Signature schemes based on the strong rsa assump-
tion. ACM Trans. Inf. Syst. Secur., 3(3), 161–185.

[13] Gennaro, R., Jarecki, S., Krawczyk, H., & Rabin, T. 1996. Robust and efficient
sharing of rsa functions.

[14] Boneh, D. & Franklin, M. 2001. Efficient generation of shared rsa keys. J. ACM,
48(4), 702–722.

43

Implementation of public key algorithms in CUDA

[15] Chandra, S. S. & Chandra, K. 2005. Cbigint class: an implementation of big integers
in c++. J. Comput. Small Coll., 20(4), 77–83.

[16] Aboud, S., Al-Fayoumi, M., Al-Fayoumi, M., & Jabbar, H. April 2008. An efficient rsa
public key encryption scheme. In Information Technology: New Generations, 2008.
ITNG 2008. Fifth International Conference on, 127–130.

[17] Wang, Y., Maskell, D., Leiwo, J., & Srikanthan, T. Dec. 2006. Unified signed-digit
number adder for rsa and ecc public-key cryptosystems. In Circuits and Systems,
2006. APCCAS 2006. IEEE Asia Pacific Conference on, 1655–1658.

[18] Diffie, W. & Hellman, M. Nov 1976. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6), 644–654.

[19] Koblitz, N. 1987. Elliptic curve cryptosystems. In Mathematics of Computation,
203–209. American Mathematical Society.

[20] Rabin, M. O. Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report, Cambridge, MA, USA, 1979.

[21] Shimada, M. Nov. 1992. Another practical public-key cryptosystem. Electronics
Letters, 28(23), 2146–2147.

[22] Okamotol, U. & Uchiyamal, S. July. 1998. A new public-key cryptosystem as secure
as factoring. Advances in Cryptology — EUROCRYPT’98, 1403/1998, 308–318.

[23] Pointcheval, D. July. 1999. New public key cryptosystems based on the dependent-
rsa problems. Advances in Cryptology — EUROCRYPT ’99, 1403/1999, 239–254.

[24] Padhye, S. October. 2006. On drsa public key cryptosystem. the International Arab
Journal of Information Technology,, 3, 334–336.

[25] Menezes, A. J., Vanstone, S. A., & Oorschot, P. C. V. 1996. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA.

[26] Knuth, D. 1981. The art of computer programming:seminumerical algorithms,.
seminumerical algorithms, 2.

[27] Booth, A. 1951. A signed binary multiplication technique. Quarterly Journal of
Mechanics and Applied Mathematics, 236–240.

[28] Barrett, P. 1986. Implementating the rivest, shamir and aldham public-key en-
cryption algorithm on standard digital signal processor. Proceedings of CRYPTO’86,
Lecture Notes in Computer Science, 311–323.

[29] Bewick, G. 1994. Fast multiplication algorithms and implementation.

[30] Dhem, J. May 1998. Design of an efficient public-key cryptographic library for
risc-based smart cards.

[31] Montgomery, P. L. Apr 1985. Modular multiplication without trial division. Mathe-
matics of Computation, Vol. 44, No. 170, 519–521.

44

Implementation of public key algorithms in CUDA

[32] Nvidia cuda c programming best practices guide. http://developer. download. nvi-
dia. com.

[33] Han, T. D. & Abdelrahman, T. S. 2009. hicuda: a high-level directive-based lan-
guage for gpu programming. In GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, 52–61, New York, NY, USA. ACM.

[34] G.W.Reitwiesner. 1960. Binary arithmetic. Advances in Computers, 231–308.

[35] Gosling, J. august 1979. Book review: Computer arithmetic: Principles, architec-
ture, and design. Computers and Digital Techniques, IEE Journal on, 2(4), 183.

[36] Koren, I. 1993. Computer arithmetic algorithms. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[37] H.L.Garner. June 1959. The residue number systems. IRE Transactions on Electronic
Computers, (8(6)), 140–147.

[38] Lipson, J. D. 1981. Elements of Algebra and Algebraic Computing. MA: Addison-
Wesley.

45

Implementation of public key algorithms in CUDA

A Subtraction in CUDA

This appendix contains the source code of parallel subtraction implemented in CUDA.

1 __g loba l__ void cuda_Sub_SameLength (SLargeNum ∗ r1 ,
2 SLargeNum ∗ r2 , SLargeNum ∗ r)
3 {
4 // r = r1 − r2
5 // r1 and r2 must be g r e a t e r than 0
6 // and assume the l e n g t h o f r1 and r2 are the same
7

8 in t idx = blockIdx . x∗blockDim . x + threadIdx . x ;
9 in t l ength_r1 = r1−>length ;

10

11 for (in t i = length_r1 −1; i >=0; i−−)
12 {
13 i f (r1−>d i g i t s [i] < r2−>d i g i t s [i])
14 { // r1 < r2
15 SLargeNum ∗temp = r1 ;
16 r1 = r2 ;
17 r2 = temp ;
18 r−>sign = NEGATIVE ;
19 break ;
20 }
21 else i f (r1−>d i g i t s [i] > r2−>d i g i t s [i])
22 { // r1 > r2
23 r−>sign = POSITIVE ;
24 break ;
25 }
26 }
27

28 i f (idx < length_r1)
29 {
30 r−>d i g i t s [idx] =
31 r1−>d i g i t s [idx] − r2−>d i g i t s [idx] ;
32 }
33 else i f (idx == length_r1)
34 {
35 r−>length = length_r1 ;
36 r−>base = BASE ;
37 r−>header = 0;
38 r−>sign = POSITIVE ;
39 }
40 }

1 __g loba l__ void cuda_Sub_SameLength_Update (SLargeNum ∗ r
2 , in t o f f s e t)
3 {
4 // update r a f t e r s u b t r a c t i o n
5 in t idx = blockIdx . x∗blockDim . x + threadIdx . x ;

47

Implementation of public key algorithms in CUDA

6

7 i f (idx == 0)
8 {
9 in t len = r−>length ;

10 in t ca r ry = 0;
11 in t temp = 0;
12 in t i =0;
13 for (; i<len ; i++)
14 { // udpate
15 temp = r−>d i g i t s [i] + car ry ;
16 i f (temp >= 0)
17 {
18 ca r ry = 0;
19 r−>d i g i t s [i] = temp % BASE ;
20 }
21 else
22 {
23 ca r ry = −1;
24 r−>d i g i t s [i] = temp + 10;
25 }
26 }
27

28 i f (ca r ry == −1)
29 {
30 // s e t the s i g n o f r
31 r−>sign = NEGATIVE ;
32 }
33

34 for (in t l=len −1; l >=0; l−−)
35 {
36 // check the l e n g t h o f r
37 i f (r−>d i g i t s [l] != 0)
38 {
39 r−>length = l +1;
40 break ;
41 }
42 }
43 }
44 }

48

Implementation of public key algorithms in CUDA

B Right shifts in CUDA

This appendix contains the source code of parallel right shifts with k bits implemented
in CUDA.

1 __g loba l__ void cuda_R igh tSh i f t s (SLargeNum ∗ tempResult
2 , SLargeNum ∗Result , in t k)
3 {
4 // Right s h i f t s with k b i t s
5 in t idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
6

7 in t length_tempResul t = tempResult−>length ;
8 i f (idx < length_tempResul t)
9 {

10 // The t a r g e t p o s i t i o n o f R e s u l t
11 in t t a r g e t = idx − k ;
12 i f (t a r g e t >= 0)
13 {
14 Result−>d i g i t s [t a r g e t] =
15 tempResult−>d i g i t s [idx] ;
16 }
17 }
18 else i f (idx == length_tempResul t)
19 {
20 Result−>header = 0;
21 Result−>length = length_tempResul t − k ;
22 Result−>sign = POSITIVE ;
23 Result−>base = BASE ;
24 }
25 }

49

Implementation of public key algorithms in CUDA

C Multiplication in CUDA

This appendix contains the source code of parallel multiplication implemented in CUDA.

1 __g loba l__ void M u l t i p l i c a t i o n (SLargeNum ∗ f i r s t ,
2 SLargeNum ∗ second ,
3 SLargeNum ∗ tempResult)
4 {
5 // M u l t i p l i c a t i o n in CUDA
6 // tempResu l t = f i r s t ∗ second ;
7

8 in t idx = blockIdx . x∗blockDim . x + threadIdx . x ;
9 in t l e n g t h _ f i r s t = f i r s t −>length ;

10 in t length_second = second−>length ;
11

12 // copy the f i r s t and second to shared memory
13 __shared__ unsigned char s h _ f i r s t [DIGITS_MAX_LEN /2] ;
14 __shared__ unsigned char sh_second [DIGITS_MAX_LEN /2] ;
15

16 for (in t td = threadIdx . x ; td < l e n g t h _ f i r s t ;
17 td = td + blockDim . x)
18 {
19 s h _ f i r s t [td] = f i r s t −>d i g i t s [td] ;
20 }
21

22 for (in t td = threadIdx . x ; td < length_second ;
23 td = td + blockDim . x)
24 {
25 sh_second [td] = second−>d i g i t s [td] ;
26 }
27 __syncthreads () ;
28

29 // C a l c u l a t e a l l v a l u e s f o r each column
30 i f (idx < l e n g t h _ f i r s t)
31 {
32 in t m = 0; //row o f i n t e r m e d i a t e r e s u l t s
33 in t n = idx ; // column o f i n t e r m e i d a t e r e s u l t s
34 in t temp = 0;
35

36 while (n >= 0 && m < length_second)
37 {
38 temp = temp + sh_second [m]∗ s h _ f i r s t [n] ;
39 m++;
40 n−−;
41 }
42 tempResult−>d i g i t s [idx] = temp ;
43 }
44 else i f (idx < ((l e n g t h _ f i r s t + length_second)−1))
45 {
46 in t n = l e n g t h _ f i r s t − 1;

51

Implementation of public key algorithms in CUDA

47 in t m = idx − n ;
48 in t temp = 0 ;
49

50 while (m < length_second && n>=0)
51 {
52 temp = temp + sh_second [m]∗ s h _ f i r s t [n] ;
53 m++;
54 n−−;
55 }
56 tempResult−>d i g i t s [idx] = temp ;
57 }
58

59 i f (idx == 0)
60 {
61 tempResult−>length =
62 l e n g t h _ f i r s t + length_second − 1;
63 }
64

65 }

1 __g loba l__ void cuda_Carry_Update (SLargeNum ∗ tempResult)
2 {
3 in t idx = blockIdx . x∗blockDim . x + threadIdx . x ;
4 i f (idx == 0)
5 {
6 in t len = tempResult−>length ;
7 in t ca r ry = 0;
8 in t temp = 0;
9 in t i =0;

10 for (; i<len ; i++)
11 {
12 temp = tempResult−>d i g i t s [i] + car ry ;
13 ca r ry = temp / BASE ;
14 tempResult−>d i g i t s [i] = temp % BASE ;
15 }
16

17 i f (ca r ry != 0)
18 {
19 tempResult−>d i g i t s [i] = car ry ;
20 tempResult−>length = i +1;
21 }
22 }
23 }

52

Implementation of public key algorithms in CUDA

D Montgomery modular multiplication

This appendix contains the source code of Montgomery modular multiplication imple-
mented on CPU.

1

2 void MonMul(SLargeNum ∗x , SLargeNum ∗y , SLargeNum ∗m, in t mp,
3 SLargeNum ∗w, SLargeNum ∗ xiy , SLargeNum ∗uim ,
4 SLargeNum ∗temp1 , SLargeNum ∗temp2)
5 {
6 // Montgomery M u l t i p l i c a t i o n
7 // w = xyR^(−1) mod m wherer R=bas ê n
8 // and n i s the l e n g t h o f m;
9

10

11 for (in t i =0; i<=m−>length ; i++)
12 {
13 w−>d i g i t s [i] = 0;
14 }
15

16 w−>length = m−>length +1;
17 w−>header = 0;
18 w−>sign = x−>sign ∗ y−>sign ;
19 w−>base = x−>base ;
20

21 for (in t i =0; i<m−>length ; i++)
22 {
23 in t x i ;
24 i f (i < x−>length)
25 {
26 x i = x−>d i g i t s [i] ;
27 }
28 else
29 {
30 x i = 0;
31 }
32 in t ui = ((w−>d i g i t s [0]
33 + xi ∗ y−>d i g i t s [0]) ∗ mp) % BASE ;
34

35 // x i y = x i ∗ y
36 Mul_LN_Int (y , xi , x i y) ;
37

38 //uim = ui ∗ m
39 Mul_LN_Int (m, ui , uim) ;
40

41 // temp1 = x i y + uim
42 Addition_2LargeNum (xiy , uim , temp1) ;
43

44 // temp2 = temp1 + w

53

Implementation of public key algorithms in CUDA

45 Addition_2LargeNum (temp1 , w, temp2) ;
46

47 // w = temp2 / base us ing r i g h t s h i f t once
48 for (in t j =1; j<temp2−>length ; j++)
49 {
50 w−>d i g i t s [j −1] = temp2−>d i g i t s [j] ;
51 }
52 w−>length = temp2−>length − 1;
53 }
54

55 i f (Compare_2LN(w,m))
56 {
57 Sub_2LN(w,m, temp1) ;
58 w = temp1 ;
59 }
60

61 }

54

Implementation of public key algorithms in CUDA

E Execution time of Montgomery’s programs in CUDA

This appendix contains the execution time of modular multiplication and exponentiation
by using Montgomery’s algorithm in CUDA.

Bit-length TimeGPU (ms)
1024 43.203
2048 81.653
3072 125.405
4096 162.710
8192 325.522

Table 29: Execution time of Montgomery modular multiplication in CUDA.

Bit-length TimeGPU (s)
1024 54.625
2048 221.758
3072 491.339
4096 971.857
8192 3699.907

Table 30: Execution time of Montgomery modular exponentiation in CUDA.

55

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	State of the art
	Storage structure for large number
	Public-key cryptography
	Modular exponentiation
	Modular arithmetic
	Naive modular exponentiation
	Repeated square-and-multiply methods
	Sliding-window exponentiation

	Modular multiplication
	Naive interleaving multiplication and reduction
	Karatsuba-Ofman Method

	Modular reduction
	Naive modular reduction
	Barrett modular reduction

	Montgomery's algorithms
	Cryptography in CUDA

	CUDA
	Kernel
	Memory hierarchy
	Program in CUDA
	Optimization in CUDA

	Experimental methods
	Experimental equipments
	RSA
	Methods
	Storage structure for large number
	Parallel addition and subtraction
	Parallel right shifts
	Parallel multiplication
	Parallel modular exponentiation

	Results
	Modular multiplication
	Modular exponentiation
	RSA
	Result summary

	Conclusion and future work
	Discussion
	Conclusion
	Future work

	Bibliography
	Subtraction in CUDA
	Right shifts in CUDA
	Multiplication in CUDA
	Montgomery modular multiplication
	Execution time of Montgomery's programs in CUDA

