
The use of d-truncated Gröbner bases in
cryptanalysis of symmetric ciphers

Jens-Are Amundsen

Masteroppgave
Master i informasjonssikkerhet

30 ECTS
Avdeling for informatikk og medieteknikk

Høgskolen i Gjøvik, 2010

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

The use of d-truncated Gröbner bases in cryptanalysis
of symmetric ciphers

Jens-Are Amundsen

2010/05/30

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Abstract

Solving systems of multivariate polynomial equations is hard, even NP-hard in the general case.
The method of Göbner bases can be used to solve such systems, and thus has a running time com-
plexity at least that of solving systems of polynomial equations. The running time complexity is
often expressed as exponential in D, where D is the largest degree of a polynomial during com-
putation. Even though the method of Gröbner bases belongs to the complexity class PSPACE
for zero-dimensional ideals, it still implies a need for huge amounts of computer memory. Com-
putational algebra systems utilizing Gröbner bases algorithms are well known to crash during
computation due to a lack of computer memory.

In this thesis we investigate the use of d-truncated Gröbner bases over a Boolean ring, ap-
plied to systems of equations induced from symmetric ciphers. A Gröbner basis algorithm based
on Buchbergers Homogeneous Algorithm is implemented, and we apply this algorithm on sys-
tems of equations induced from the ciphers LILI-128 and KASUMI. We show that we can solve a
system of equations, induced from 3 rounds KASUMI, in over 9000 unknowns using 3-truncated
Gröbner bases in both reasonable time and reasonable amounts of computer memory. For sys-
tems of equations induced from LILI-128, using 4-truncated Gröbner bases, we experienced an
exponential increase in the number of output bits needed for finding a solution.

iii

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Sammendrag

Å løse systemer av ikke-lineære polynomer i flere variable er et vanskelig problem, og det gene-
relle problemet tilhører klassen av NP-komplette problemer. Gröbner baser kan benyttes for å
løse slike ligningssystemer, og har dermed minst like høy tids kompleksitet. Tids kompleksiteten
for konstruksjon av Gröbner baser er ofte gitt som eksponentiell i D, der D er graden til det største
polynomet under eksekvering. Selv om konstruksjon av Gröbner baser tilhører kompleksitetsklas-
sen PSPACE for 0-dimensjonale ideal, betyr det allikevel at det vil være behov for store mengder
dataminne. Systemer for symbolsk beregning av algebraiske problemer som bruker Gröbner base
metoder er kjent for å krasje på grunn av minne problemer.

I dette prosjektet undersøker vi bruk av d-begrensede Gröbner baser over boolske ringer, og
anvender det på systemer av ikke-lineære polynomligninger som beskriver symmetriske krypto
algoritmer. En Gröbner base algoritme, basert på Buchbergers Homogene algoritme, er imple-
mentert og vi anvender denne på systemer av ligninger fra krypto algoritmene LILI-128 og KA-
SUMI. Vi viser at det er mulig å løse ligningssystemer fra 3 runder KASUMI med over 9000
variable på overkommelig tid og overkommelig bruk av dataminne. For ligningssystemer fra
LILI-128, der 4-begrensede Gröbner baser er benyttet, fant vi en eksponentiell økning i antallet
ut bits som behøves for å løse ligningssystemene.

v

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Preface

Being a part time student, it has been hard to balance studies, daytime job and family, but I have
enjoyed every second of it.

I would like to extend my sincerest gratitude to the inventors of strong coffee. Without Your
help, my extracurricular activities would be non-existent and my life would be mundane and
dull. I would also like to thank A.J.M. Segers [1] for setting the bar for master’s theses, and
Gregory V. Bard [2] for actually answering my emails. Last, but not least, I would like to thank
my thesis supervisor Prof. Slobodan Petrovic for his patience and help, and especially for giving
me this exiting project. I am sad to see it end.

Jens-Are Amundsen, 2010/05/30

vii

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
List of Figures . xi
List of Tables . xiii
List of Algorithms . xv
1 Introduction . 1

1.1 Topic . 1
1.2 Problem Description . 2
1.3 Justification, Motivation and Benefits . 3
1.4 Research Questions . 3
1.5 Method . 3
1.6 Outline of Chapters . 3

2 Mathematical Preliminaries . 5
2.1 Abstract Algebra Essentials . 5
2.2 Monomial ordering and multivariate division . 9
2.3 Hilbert Basis Theorem . 12
2.4 Gröbner bases . 15

2.4.1 Truncated Gröbner bases . 20
2.5 On the complexity of solving polynomial equations 22

3 Methods of Algebraic Cryptanalysis . 25
3.1 Linearization methods . 25

3.1.1 Plain linearization . 25
3.1.2 Relinearization . 26
3.1.3 XL . 27
3.1.4 XSL . 27
3.1.5 MutantXL . 28

3.2 SAT solving . 28
3.3 Fast Algebraic Attack . 30
3.4 Gröbner bases techniques . 32

4 Implementation . 33
4.1 Polynomial model . 33
4.2 Main algorithm . 36
4.3 Division algorithm . 39
4.4 On parallel execution and caching . 41

ix

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

4.5 Testing the software . 42
5 Cryptanalysis . 43

5.1 The ciphers . 43
5.1.1 KASUMI . 43
5.1.2 LILI-128 . 45

5.2 Miscellaneous . 46
5.3 Generating polynomials . 50

5.3.1 LILI-128 . 50
5.3.2 KASUMI . 54

6 Results . 57
6.1 LILI-128 . 57

6.1.1 Degree reduction . 58
6.1.2 Running time results . 61

6.2 KASUMI . 66
6.2.1 One round KASUMI . 68
6.2.2 Two round KASUMI . 69
6.2.3 Three round KASUMI . 70
6.2.4 Four round KASUMI . 70

7 Conclusion . 71
Bibliography . 73
A KASUMI . 77

A.1 KASUMI key schedule . 77
A.2 KASUMI Subfunctions . 78
A.3 KASUMI S-boxes . 79

A.3.1 S7 . 79
A.3.2 S9 . 79

B LILI-128 . 81
B.1 LILI-128 output function . 81
B.2 LILI-128 degree-reductor and annihilator polynomials 82

x

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

List of Figures

1 KASUMI . 43
2 FO and FI functions . 44
3 FL function . 44
4 LILI-128 . 45
5 LILI-128 polynomials . 59
6 LILI-128:Dump of current base . 60
7 LILI-128:Degree reduction . 62
8 LILI-128:Degree reduction with relinearization 63
9 Exponential results for LILI-128 . 65
10 Running time for two round KASUMI . 66
11 KASUMI:System of equations . 67
12 Timeline for one round, 88 unknown key bits . 68
13 Timeline for two rounds, 88 unknown key bits . 69
14 Timeline for three rounds, 48 unknown key bits 70

xi

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

List of Tables

1 LILI-128 running time results . 64
2 LILI-128 output bits used . 64
3 KASUMI:Solved system of equations for one round 68
4 KASUMI:Solved system of equations for two rounds 69
5 KASUMI:Solved system of equations for three rounds 70
6 KASUMI Roundkeys . 77
7 KASUMI Constants . 78
8 KASUMI S-box S7 represented as multivariate polynomials 79
9 KASUMI S-box S7 . 79
10 KASUMI S-box S9 represented as multivariate polynomials 80
11 KASUMI S-box S9 . 80
12 LILI-128 boolean output function . 81
13 LILI-128 non-linear filter polynomial . 82
14 LILI-128 degree-reductor polynomials 1-4 . 82
15 LILI-128 degree-reductor polynomials 6-11 . 83
16 LILI-128 degree-reductor polynomials 12-14 . 84
17 LILI-128 degree-reductor polynomials 15-17 . 85
18 LILI-128 annihilator polynomials 1-5 . 86
19 LILI-128 annihilator polynomials 6-9 . 87
20 LILI-128 annihilator polynomials 10-11 . 88
21 LILI-128 annihilator polynomials 12-13 . 89
22 LILI-128 annihilator polynomials 14-15 . 90

xiii

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

List of Algorithms

2.1 General multivariate division algorithm . 10
2.2 Homogeneous Buchberger Algorithm . 21
4.1 Main algorithm . 37
4.2 Truncated Division Algorithm . 40
A.1 KASUMI subfunction FL . 78
A.2 KASUMI subfunction FI . 78
A.3 KASUMI subfunction FO . 79

xv

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

1 Introduction

1.1 Topic

Cryptology, from the Greek words kryptos - κρυπτóσ meaning "hidden" and logia - λóγια mea-
ning "speech", in its various forms goes back thousand of years. It is not difficult to imagine
early man leaving obfuscated instructions for finding good hunting sites or fishing sites. And it is
equally easy to imagine the early cryptanalyst wanting to find these hunting sites by decoding the
instructions. The Greeks and Spartans most probably had cryptographic protocols, and the Ro-
mans certainly had them. A well known example of the latter is the Caesar cipher, a substitution
cipher known to have been used by Julius Caesar himself.

Cryptanalysis, a term coined by a US army cryptographer William F. Friedman in the 1920’s,
is the study of methods for reading encrypted information without the knowledge of the secret
information normally required for doing so. The history of cryptanalysis is more or less dual to
the history of cryptology simply because it is very human to want to read other peoples secrets.
Certainly the birth of advanced warfare must have triggered the need for passing on encrypted
secret information, and thus the need for the opposing party to break the encryption. The earliest
known treatise on cryptanalysis, by the Arabian genius Al-kindi, goes back to 9-th century BC.
The treatise includes a description of a method, now called frequency analysis, used to break
most classical ciphers.

In the age of computers, cryptographic methods have become vastly more complex than the
old pen-and-paper systems, and cryptanalysis has invented an array of tools and methods to
combat these. Most attack methods are statistical in nature. Statistical attacks use large amounts
of known - even chosen - plaintext/ciphertext pairs to look for correlations which can reveal
the whole or parts of the encryption key. The amount of plaintext and ciphertext used in these
attacks are often completely unrealistic. The two most widely used attacks of this type is Linear
cryptanalysis [3] and Differential cryptanalysis [4].

In this thesis we concern ourselves with a different, non-probabilistic type of attack called
Algebraic cryptanalysis. It is well known that a map f : Kn → Km, where K is a finite field, is
polynomial, i.e. there exists polynomials p1, . . . , pm ∈ K[x1, . . . , xn] such that

f(a1, . . . , an) = (p1(a1, . . . , an), . . . , pm(a1, . . . , an)) , for all a1, . . . , an ∈ K.

Since most modern ciphers can be expressed as such a map, we can find multivariate polynomial
equations linking plaintext to ciphertext for these ciphers. If the variables x1, . . . , xn are a repre-
sentation of the unknown encryption key, as the case usually is, finding a simultaneous solution
to these equations is synonymous with finding the encryption key itself. So in simple terms, al-
gebraic cryptanalysis is the study of methods for representing cipher algorithms as a system of
algebraic equations, and finding a solution for these. This sounds simple, but algebraic crypta-
nalysis is certainly not a panacea since the general problem of solving multivariate polynomial
equations is NP-complete (see e.g. [5]).

1

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Algebraic cryptanalysis is a relatively new field, but the idea is not new. Already in 1949,
Claude E. Shannon - the father of information theory - remarked in a landmark paper [6] "that
solving a certain system requires at least as much work as solving a system of simultaneous equations
in a large number of unknowns, of a complex type". The reason for the late blooming of this field
is most probably due to the intrinsic need for efficient computer resources. This has changed
dramatically in the last decades, and algebraic cryptanalysis is now an established field and
an active area of research. The big success stories are far apart. But there have been reported
complete breaks, for instance the stream cipher Hitaq2 (see [7]) and the block cipher KeeLoq
[8]. Algebraic cryptanalysis has also discovered a range of new weaknesses in ciphers which thus
adds to the list of secure design rules to be followed when constructing cipher algorithms.

The resent developments in algebraic cryptanalysis seems to be an integration of earlier types
of attacks with algebraic attacks. This includes combinations of algebraic and slide attack [8],
differential cryptanalysis [9] and side-channel attacks [10]. Since the underlying problem, i.e.
solving equations systems, is NP-complete and thus have no general efficient solution method,
combining attack vectors feels like the natural way for algebraic cryptanalysis to evolve.

The notion and theory of Gröbner bases was developed by Bruno Buchberger in his PhD thesis
from 1965 [11], and for a light introduction to the topic we recommend [12] and [13]. Gröbner
bases has many applications in ideal theory, e.g. the ideal membership problem, but in algebraic
cryptanalysis this technique is used because, when properly implemented [14] [15], it is one of
the most efficient ways of finding simultaneous solutions to polynomial equations.

In this thesis we study and implement attacks on both the stream cipher LILI-128 [16] and
the block cipher KASUMI [17] using d-truncated Gröbner bases over Boolean rings. The reason
for attacking two classes of cipher algorithms is to highlight the differences in approach. Material
regarding d-truncated Gröbner bases, or bases restricted by polynomial degree, is hard to find in
the scientific literature. Most Gröbner bases implementations will increase polynomial degree
until a solution is found - but this also means that shortage of computer memory will be a big
problem. Our interpretation of using d-truncated bases is to restrict computations of degree to
an upper limit, and use other techniques than increasing the degree to find a solution.

Keywords: Algebraic cryptanalysis, multivariate polynomial equation over F2, relinearization, XL,
XSL, MutantXL, SAT, KASUMI, LILI-128, d-truncated Gröbner bases, Buchbergers Homogeneous al-
gorithm

1.2 Problem Description

The construction of Gröbner bases has high complexity, and a seemingly benign looking system
of polynomials in three or four variables of degree three or four may fail to terminate in a
reasonable time [12]. It can be shown (see [18]) that "most" ideals generated by s polynomials
in n variables of degree bounded by d are such that their Gröbner bases have degree bounded by
(n + 1)d − n. Polynomials of this kind will have a huge number of monomials. Since the worst
case complexity of the running time for a Gröbner run is often expressed in terms of the largest
degree D of a polynomial during the computation, i.e. O(2D), we see that this implies a running
time of complexity O(2nd) at worst. To paraphrase Gregory V. Bard ([2]): submit your problem

2

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

to several Gröbner basis implementations, and wait for the program to either crash due to a lack
of memory, or output a result. This motivates investigations into the construction of d-truncated
Gröbner bases and possible benefits in form of reduced memory consumption and/or reduced
running time.

1.3 Justification, Motivation and Benefits

The construction of Gröbner bases for systems of polynomial equations, is a fundamental tool for
many complex problems. Finding new- or improving old algorithms for efficiently constructing
Gröbner bases are of great interest to many scientific disciplines. Regarding the field of alge-
braic cryptanalysis, knowledge in the use and construction of low-degree Gröbner bases may be
highly beneficial. Direct benefits to the field may be the construction of stronger cryptographic
algorithms which are more resistant to this type of attack.

1.4 Research Questions

The problem description thus leads to the following research questions:

1. Can we build a Gröbner basis algorithm that is less memory intensive using d-truncated
Gröbner bases over a Boolean ring?

2. How will it perform on real life systems of equations?

3. What compromises must be made for achieving this?

1.5 Method

Due to the nature of the research problems, a mixed research approach was chosen. This means
combining both quantitative and and qualitative methods. Existing literature has been studied,
and we have focused on trying to solve systems of equations induced from two cipher algorithms.
Since we where interested in overseeing all aspects of computation - speed, memory consump-
tion and utilization of the processor - and in seeing how a potential d-truncated Gröbner basis
evolves during computation, it was decided to implement a Gröbner bases algorithm. Since we
where willing to trade speed over control, agility and visibility over the inner workings, all imple-
mentations where written in the fast-prototyping language python 1. Due to the time consuming
nature of the problem, the quantitative part is limited to simple statistics.

1.6 Outline of Chapters

This thesis is organized as follows: in Chapter 2 we give a relatively short run-through of mathe-
matical topics leading up to Gröbner bases and Buchberger’s algorithms. We have also included
a section on NP-completeness of solving general systems of polynomial equations. In Chapter
3 we give an overview of well known methods in algebraic cryptanalysis. Chapter 4 deals with
technical and practical aspects of our Gröbner basis implementation. In Chapter 5 we introduce
the ciphers LILI-128 and KASUMI. We introduce some trivia regarding polynomials and systems
of polynomial equations. Here we also explain how we generated polynomial systems for the
two ciphers. In Chapter 6 we try to give an account of our experiences during these attacks, and

1http://www.python.org

3

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

finally, in Chapter 7 we answer the research questions.

4

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

2 Mathematical Preliminaries

To fully understand what a Gröbner basis is, we need to have a grasp of the underlying theory.
In this chapter we introduce the basic theory of multivariate polynomials and polynomial ideals.
This will lead us to the famous Hilbert’s basis theorem which is fundamental for the theory of
Gröbner bases. We touch upon Buchberger’s algorithms which is a basic building block in any
Gröbner basis algorithm. We also state the Shape Lemma which shows why we use Gröbner
bases for solving systems of multivariate polynomial equations, and we end this chapter with
showing the NP-completeness of solving multivariate polynomial equations.

2.1 Abstract Algebra Essentials

Abstract algebra deals with algebraic structures such as groups, rings and fields. We start off by
defining these structures.

Definition 2.1 (Monoid). A monoid (S,×) is a set S, with an associative binary operation × :

S × S → S. There exist an identity element 1S, such that 1S × s = s, ∀s ∈ S. A monoid is called
abelian, or commutative, if for all s, s

′ ∈ S we have that s× s ′
= s

′ × s.

Definition 2.2 (Group). A group (G,×) is a monoid in which every element is invertible, i.e ∀g ∈
G, ∃g ′ ∈ G such that g× g ′

= g
′ × g = 1G.

Definition 2.3 (Ring). A ring (R,+, ·) is a set R with two associative operations + : R × R → R,
· : R × R → R. (R,+) is an abelian group with identity element 0R and (R \ {0R} , ·) is an abelian
monoid with identity element 1R. The operation · must distribute over the operation +.

Definition 2.4 (Field). A field (K,+, ·) is a ring such that (K \ {0K} , ·) is a group.

Apart from rings and fields, the basic element we work mostly with is the polynomial. First
we mention that a mathematical variable has two meanings depending on context: a variable
may be able to "vary" as in a function context, or it is an "unknown quantity" as in an equation
context. In the following, we mean "unknown quantity" when we refer to variables.

Definition 2.5 (Monomials, terms and total degree). A monomial m in the
variables x1, x2, . . . , xn is a product of the form

m = xα1

1 · xα2

2 · . . . · xαn
n , αi ∈ N

The number |α| = α1 + α2 + . . .+ αn is called the monomial total degree, or simply degree, and is
denoted deg(m). A monomial with coefficient in a field K is called a term and has a short notation
cαX

α, cα ∈ K.

Definition 2.6. A polynomial p in the variables x1, x2, . . . , xn, with coefficients in a field K is a

5

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

finite linear combination of terms

p =
∑
α

cαx
α, cα ∈ K

The set of all monomials of p, called the support of p, is denoted T(p). The total degree of p, denoted
deg(p), is the number max(deg(m), ∀ m ∈ T(p)). The set of all polynomials in the variables
x1, x2, . . . , xn, with coefficients in the field K forms a ring, i.e. a polynomial ring and is denoted
K[x1, x2, . . . , xn]

A polynomial p ∈ K[x1, x2, . . . , xn] can also be seen as a map p : Kn → K if we allow the
variables to take values in K. Assigning values (a1, a2, . . . , an) to the variables x1, x2, . . . , xn in
p is called evaluating p at (a1, a2, . . . , an).

A tuple (a1, a2, . . . , an) ∈ Kn which evaluates p(x1, x2, . . . , xn) to zero is called a solution to
the polynomial equation

p(x1, x2, . . . , xn) = 0, x1, x2, . . . , xn ∈ Kn.

Assume we are given an equation system of multivariate polynomials over K[x1, x2, . . . , xn].

p1(x1, x2, . . . , xn) = 0

p2(x1, x2, . . . , xn) = 0

. . .

ps(x1, x2, . . . , xn) = 0

If solutions exist, a solution that evaluates all polynomials to zero is called a simultaneous
solution. The collection of all simultaneous solutions for a given system of polynomial equations
is another algebraic structure called a variety.

Definition 2.7 (Affine variety). Let K be a field, and let p1, p2, . . . , pm be polynomials
in K[x1, x2, . . . , xn]. Further, let Kn be the affine space (a1, a2, . . . , an) : ai ∈ K. The affine variety
defined by p1, p2, . . . , pm is the set

V(p1, p2, . . . , pm) = {(a1, a2, . . . , an) ∈ Kn : pi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ m } .

So finding simultaneous solutions to a system of polynomial equations p1 = 0, p2 = 0, . . . , ps =
0 is synonymous to finding the affine variety defined by p1, p2, . . . , ps.

Another fundamental algebraic structure is the ideal:

Definition 2.8 (Ideal). Let I be a subset of a ring (R,+, ·). I is an ideal if it satisfies the following:

(i) 0 ∈ I

(ii) If p, q ∈ I then p+ q ∈ I

(iii) If p ∈ I and h ∈ (R,+, ·), then hp ∈ I.

6

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

From a collection of polynomials p1, p2, . . . , pn we can construct new polynomials. We can
multiply with terms, add them together and so on. Let’s consider all possible manipulations of
polynomials from a collection:

Definition 2.9. Let p1, p2, . . . , ps ∈ K[x1, . . . , xn]. We denote the set of all linear combinations of
p1, . . . , ps with coefficients in K[x1, . . . , xn] as:

〈p1, p2, . . . , ps〉 =
{

s∑
i

hipi : h1, . . . , hs ∈ K[x1, . . . xn]
}

We say that 〈p1, p2, . . . , ps〉 is spanned by p1, . . . , ps or that p1, . . . , ps is a basis of 〈p1, p2, . . . , ps〉.

The space consisting of all possible polynomials constructible from a given collection is of
course an ideal.

Lemma 2.1.1. Let p1, p2, . . . , ps ∈ K[x1, . . . , xn]. Then 〈p1, p2, . . . , ps〉 is an ideal ⊂ K[x1, . . . , xn]

Proof. We have that 0 ∈ 〈p1, p2, . . . , ps〉 since 0 =
∑s
i 0 · fi.

Now, let h, vi, wi ∈ K[x, . . . , xn] for all 1 ≤ i ≤ s, and suppose that p =
∑s
i=1 vipi

and q =
∑s
i=1wipi , so p, q ∈ 〈p1, p2, . . . , ps〉. Then we have that

p+ q =

s∑
i=1

(vi +wi)pi ∈ 〈p1, p2, . . . , ps〉

and

hp =

s∑
i=1

hpi ∈ 〈p1, p2, . . . , ps〉

Which proves that 〈p1, p2, . . . , ps〉 is an ideal of K[x1, . . . , xn]

So starting from a system of polynomial equations

p1(x1, . . . , xn) = 0

p2(x1, . . . , xn) = 0

...

ps(x1, . . . , xn) = 0

we can consider the left hand side of these as elements of the ideal 〈p1, p2, . . . , ps〉 , and we
say that p1, p2, . . . , ps is a basis of, or generates the ideal 〈p1, p2, . . . , ps〉. From the basis, new
equations can be created

h1p1 + h2p2 + . . .+ hsps = 0, hi ∈ K[x1, . . . , xn]

by performing the appropriate multiplications and additions. The left hand side is still a member
of the ideal 〈p1, p2, . . . , ps〉.

7

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Assuming there exist simultaneous solutions to the original system of polynomial equations,
we have a corresponding affine variety, i.e. V(p1, p2, . . . , ps). If the set of simultaneous solu-
tions is finite, e.g. the affine variety is a finite set, the corresponding ideal is said to be zero-
dimensional.

It is easy to see that if p1, . . . , ps is a basis to an ideal I, so is p1+ps, p2+ps, . . . , ps−1+ps, ps.
So an ideal can have several bases, but is the variety the same?

Proposition 2.1.2. Let p1, p2, . . . , ps and q1, q2, . . . , qt be bases of the same ideal
I ∈ K[x1, x2, . . . , xn], i.e. we have that 〈p1, p2, . . . , ps〉 =〈q1, q2, . . . , qt〉.
Then V(p1, p2, . . . , ps)=V(q1, q2, . . . , qt)

Proof. Let Vp be the affine variety defined by p1, . . . ps, and Vq be the affine variety defined by
q1, . . . , qt. Since 〈p1, p2, . . . , ps〉=〈q1, q2, . . . , qt〉 we have that qj ∈ 〈p1, p2, . . . , ps〉 for 0 ≤ j ≤
t. Thus every qj, 0 ≤ j ≤ t can be written as:

qj =

s∑
i=1

hjipi, where hji ∈ K[x1, x2, . . . , xn] for 0 ≤ i ≤ s, 0 ≤ j ≤ t

We see that qj, 0 ≤ j ≤ t vanishes for every point in Vp so Vp ⊆ Vq.
We also have that pi ∈ 〈q1, q2, . . . , qt〉 for 0 ≤ i ≤ s and pi can be written as

pi =

t∑
j=1

fijqj, where fij ∈ K[x1, x2, . . . , xn] for 0 ≤ i ≤ s, 0 ≤ j ≤ t

We see that pi, 0 ≤ i ≤ s vanishes for every point in Vq so Vq ⊆ Vp.
Since Vp ⊆ Vq and Vq ⊆ Vp, we must have that Vq = Vp

We see that there is potential to transform our initial, maybe cumbersome, system of po-
lynomial equations into another system with nicer solvability properties. Put another way, by
changing the basis for the initial ideal, we have the potential to determine the corresponding
variety in an easier way.

Given a variety V defined by p1, p2, . . . , ps, we know that pi, 0 ≤ i ≤ s vanishes on V. But
what can we say about all polynomials that vanish on a given affine variety?

Lemma 2.1.3. Let V ∈ Kn be an affine variety. The set of all polynomials p ∈ K[x1, x2, . . . , xn] that
vanish on V generates an ideal.

Proof. Let the set S ⊂ K[x1, x2, . . . , xn] contain all polynomials in K[x1, x2, . . . , xn] that vanish on
V. Since the zero polynomial vanishes everywhere, we have that 0 ∈ S
Assume that p, q ∈ S. Then obviously p+ q vanishes on V, and for every non-zero
h ∈ K[x1, x2, . . . , xn] we have that h · p = h · 0 = 0. It follows that S is an ideal.

Later we prove Hilbert’s basis theorem that says that every ideal has a finite basis, but first we
must take a closer look at multivariate polynomials and monomial ideals.

8

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

2.2 Monomial ordering and multivariate division

In the world of univariate polynomials, i.e. polynomials in one variable, things are fairly intuitive.
Division algorithms must take into account that e.g. X4 > X2. And in linear equation systems in
several variables, we order variables in some natural way, say x > y > z > All of this is easy
to accept. In the world of non-linear multivariate polynomials things are a little bit different.
There is no natural, or obvious way of ordering multivariate monomials. For instance, which is
the larger of x5yz3 and xz8? For a division algorithm to work with multivariate polynomials we
need a consistent way of ordering multivariate monomials.

First we choose a variable ordering, say xi > xj if i > j, i, j ∈ N0, and all variables in a
monomial follow this ordering.

Definition 2.10. A monomial ordering on K[x1, x2, . . . , xn] is any relation ">" on the set of mo-
nomials Xα, α ∈ Nn0 satisfying:

(i) ">" is a total ordering on Nn0

(ii) If α > β and γ ∈ Nn0 , then α+ γ > β+ γ

(iii) ">" is a well-ordering on Nn0

There are of course several ways we can do this, and some well known examples are given
below:

Definition 2.11 (Lexicographic Order or Lex Order). Let α = (α1, α2, . . . , αn) and β =

(β1, β2, . . . , βn) ∈ Nn0 . We say xα >lex xβ, if the leftmost nonzero entry in the vector difference
α− β ∈ Nn0 is positive.

Definition 2.12 (Graded Lex Order). Let α,β ∈ Nn0 . We say xα >grlex xβ, if

|α| =

n∑
i=1

αi > |β| =

n∑
i=1

βi, or

|α| = |β| and α >lex β

Definition 2.13 (Graded Reverse Lex Order). Let α,β ∈ Nn0 . We say xα >grevlex xβ, if

|α| =

n∑
i=1

αi > |β| =

n∑
i=1

βi, or

|α| = |β| and the rightmost nonzero entry of α− β ∈ Nn0 is negative

Computationally, Graded Reverse Lex Order has a reputation of producing a smaller Gröbner
basis compared with the other orderings. To illustrate the different monomial orderings:

Example 2.1. Consider the monomials X3Y4Z5, X5Z7, X6 ∈ K[X, Y, Z].
• X6 >lex X

5Z7 >lex X
3Y4Z5 since the leftmost nonzero entries in (6 − 5, 0 − 0, 0 − 7) and

(5− 3, 0− 4, 7− 5) are positive.

• X5Z7 >grlex X
3Y4Z5 >grlex X

6 since |5+ 7| = |3+ 4+ 5| > |6| and X5Z7 >lex X3Y4Z5.

9

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

• X3Y4Z5 >grevlex X
5Z7 >grevlex X

6 since |5 + 7| = |3 + 4 + 5| > |6| and the rightmost nonzero
entry in (3− 5, 4− 0, 5− 7) is negative

We need the following common definitions regarding term-ordering in multivariate polyno-
mials

Definition 2.14. Let p =
∑n
α aαx

α be a polynomial in K[x1, x2, . . . , xn], and let > be a monomial
ordering. We say that:

(i) The multidegree of p is multideg(p) = max>(α ∈ Nn0 : aα 6= 0)
(ii) The totaldegree of p is totaldeg(p) = |multideg(p)|

(iii) The leading coefficient of p is LC(p) = amultideg(p) ∈ K
(iv) The leading monomial of p is LM(p) = xmultideg(p)

(v) The leading term of p is LT(p) = LC(p) · LM(p)

We can now state the general form of the multivariate division algorithm.

Algorithm 2.1 General multivariate division algorithm

Input: f, p1, p2, . . . , ps
Output: a1, a2, . . . , as, r
a1 := a2 := . . . := as := r := 0
p := f
while p 6= 0 do

i := 1
divisionoccured := False
while i < s AND divisionoccured = False do

if LT(pi) divides LT(p) then
ai := ai +

LT(p)
LT(pi)

p := p− (LT(p)
LT(pi)

) · pi
divisionoccured := True

else
i := i+ 1

end if
end while
if divisionoccured = False then

r := r+ LT(p)
p := p− LT(p)

end if
end while
return a1, a2, . . . , as, r

In [19] the correctness of the general multivariate division algorithm is proven, and we just
state the theorem here.

Theorem 2.2.1 (Multivariate Division Algorithm in K[x1, x2, . . . , xn]). Given a monomial order
> on Nn0 , and let S = (p1, p2, . . . , ps) be an ordered> s-tuple of polynomials in K[x1, x2, . . . , xn]

10

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Then every p ∈ K[x1, x2, . . . , xn] can be expressed as

p = a1p1 + a2p2 + . . .+ asps + r,

where ai, r ∈ K[x1, x2, . . . , xn], and either r = 0 or r is a linear combination, with coefficients in K,
of monomials, none of which is divisible by any of LT(p1), . . . , LT(ps). We call r a remainder of p
on division by S. Furthermore, if aipi 6= 0, then we have

multideg(p) ≥ multideg(aipi), 1 ≤ i ≤ s.

Proof. See [19]

But there are important things to notice here. There is nothing that states that the ai’s and r
are unique. This is best illustrated by an example:

Example 2.2. We want to find the remainder of p = X2Y + XY2 + Y2 − 3 after division by S =

(p1, p2) where p1 = XY − 1 and p2 = Y2 − 1), and we use graded lex order.
On run (1) we see that LT(p1) = XY divides LT(p) = X2Y, and LT(p)

LT(p1)
= X so

a1 := X

p := XY2 + Y2 + X− 3

On run (2) we see that LT(p1) = XY divides LT(p) = XY2, and LT(p)
LT(p1)

= Y so

a1 := X+ Y

p := Y2 + X+ Y − 3

Now we see that LT(p1) = XY does not divide LT(p) = Y2, so we try the next polynomial in S and
LT(p2) = Y

2 divides LT(p) = Y2, and LT(p)
LT(p1)

= 1 so

a2 := 1

p := X+ Y − 2

None of the remaining terms in p is divisible by any of the leading terms in S, which gives

a1 := X+ Y

a2 := 1

r := X+ Y − 2

and we are finished.
But here is the important point: if we go back to run (2) we see that LT(p) = XY2 is also divisible

by LT(p2) = Y2. If we perform the reduction with p2 from run (2) we get

a1 := X

a2 := X+ 1

r := 2X− 2

11

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

We end up with two different remainders depending on the polynomials used when reducing. Both
are valid of course, but if this where operations involved in solving the equation system p = 0, p1 =

0, p2 = 0 then r = X+ Y − 2 is just another multivariate polynomial - albeit linear, but r = 2X− 2

is a univariate polynomial and thus a solution for the variable X, i.e. X = 1.

We see that the result, or remainder, is not unique and the order in which we choose po-
lynomials from the s-tuple matters. We also see that monomials and leading terms play a very
important role in polynomial division and we must investigate this further.

2.3 Hilbert Basis Theorem

In this section we show that every polynomial ideal has a finite basis. First we establish important
results concerning monomial ideals.

Definition 2.15. An ideal I ⊂∈ K[x1, x2, . . . , xn] is a monomial ideal if there is a subset A ⊂ Nn0
(possibly infinite) such that I = 〈xα : α ∈ A〉 consists of all polynomials of the form

p =
∑
α∈A

hαx
α, hα ∈ K[x1, x2, . . . , xn].

We denote this as I = 〈xα : α ∈ A〉

That is, a monomial ideal is an ideal where the basis consists of, possibly infinite, monomials.
A monomial ideal is of course also a polynomial ideal.

Lemma 2.3.1. Let I = 〈xα : α ∈ A〉 be a monomial ideal and p ∈ K[x1, x2, . . . , xn] be a polynomial.
Then the following are true:

(i) A monomial xβ lies in I if and only if xβ is divisible by xα for some α ∈ A.

(ii) p ∈ I if and only if p is a K-linear combination of monomials in I.

(iii) Two monomial ideals are the same if and only if they contain the same monomials.

Proof. For the part (i), if xβ is a multiple of some xα ∈ I where α ∈ A then xβ ∈ I by the
definition of ideal. Conversely, if xβ ∈ I then

xβ =

s∑
i=1

hix
αi where hi ∈ K[x1, . . . , xn] and αi ∈ A.

Now, expand each hi as a K-linear combination of monomials. Considering each variable and
variable-degree xβi

i in xβ, to maintain equality each term on the right must have the same
variable-degree. Terms differing in variable-degree must cancel out. So xβ must have the form

xβ = Ks1 · xhs1
+α1 + Ks2 · xhs2

+α2 + . . .+ KsT · xhsT
+αs

where each term’s multidegree must satisfy hsj + αj = β. This proves that xβ is divisible by at
least some xαj ∈ I.
For the part (ii) we see that if each term of p is divisible by some xα ∈ I, then p can be written
as p =

∑s
i=1 hix

αi , and by the definition of ideal, p ∈ I. On the other hand, if p ∈ I then

12

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

p =
∑s
i=1 hix

αi . Expanding each hi as a K-linear combination of monomials in K[x1, . . . , xn],
turns p into a K-linear combination of monomials where each monomial is divisible by some
monomial ∈ I. This proves part (ii).
Part (iii) is a consequence of part (ii). Let I, J be monomial ideals and let xβ ∈ I be a monomial.
If xβ /∈ J then there exists an xα ∈ I with α ∈ A, which is missing in J, thus I 6= J. If I, J contain
the same monomials then every polynomial p ∈ I is also an element of J, thus I = J. This proves
(iii).

The next important, and well known theorem states that every monomial ideal is finitely
generated, i.e. it has a finite monomial basis, even though it might consist of countably infinite
monomials. We omit the proof here.

Theorem 2.3.2 (Dickson’s Lemma). Let I = 〈xα : α ∈ A〈 be a monomial ideal. Then I can be
written in the form I =

〈
xα(1), . . . , xα(s) : α(i) ∈ A for 1 ≤ i ≤ s

〉
. In particular, I has a finite basis.

Proof. See [19]

A little shorthand: if I ⊂ K[x1, x2, . . . , xn] is an ideal different from 0, then we denote the set
of leading terms from elements in I as

LT(I) = {axα : there exists p ∈ I with LT(p) = axα}

The ideal generated from the elements of LT(I) is denoted 〈LT(I)〉. But note that if we are
given a finite generating set, thus I = 〈p1, p2, . . . , ps〉, the two monomial ideals 〈LT(I)〉 and
〈LT(p1), LT(p2), . . . , LT(ps)〉 is not necessarily the same ideal.

We need the following result for monomial ideals, saying that for any polynomial ideal I there
exist polynomials belonging to the ideal whose leading terms generate LT(I).

Lemma 2.3.3. Let I ⊂ K[x1, x2, . . . , xn] be an ideal.

(i) 〈LT(I)〉 is a monomial ideal.

(ii) There are g1, g2, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LT(g1), LT(g2), . . . , LT(gt)〉

Proof. For the part (i). Let g be any non-zero element of I. Then 〈LM(g) : g ∈ I〉 is a mono-
mial ideal. Since LM(g) and LT(g) differ by a nonzero constant, the ideal 〈LT(g) : g ∈ I〉 equals
〈LM(g) : g ∈ I〉. Thus 〈LT(g) : g ∈ I〉 is a monomial ideal.
For the part (ii). Dickson’s Lemma states that 〈LT(I)〉 = 〈LM(g1), . . . , LM(gt)〉 for finitely many
g1, . . . , gt ∈ I. Since LM(gj) and LT(gj) differ by a nonzero constant it follows that 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉. This completes the proof.

We now have enough to establish the famous Hilbert Basis Theorem.

Theorem 2.3.4 (Hilbert Basis Theorem). Every ideal I ⊂ K[x1, x2, . . . , xn] has a finite genera-
ting set, i.e. for every ideal I, there are g1, g2, . . . , gt ∈ I such that I = 〈g1, g2, . . . , gt〉

Proof. If I = {0} we can take the finite generating set to be {0}. Now, let I contain some nonzero
elements. According to Lemma 2.3.3 there are g1, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LM(g1), . . . , LM(gt)〉.

13

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Consider the polynomial ideal 〈g1, . . . , gt〉. It is clear that 〈g1, . . . , gt〉 ⊂ I since each gi ∈ I.
Let p ∈ I be arbitrary. Choosing an admissible monomial ordering, and dividing p by 〈g1, . . . , gt〉
we get, according to Theorem 2.2.1, an expression of the form

p = a1g1 + a2g2 + . . .+ atgt + r

where no term of r is divisible by any LT(gi). Since p ∈ I we have that r ∈ I because

r = p− a1g1 + a2g2 + . . .+ atgt.

If r 6= 0, then LT(r) ∈ 〈LT(I)〉 = 〈LM(g1), . . . , LM(gt)〉. But as shown earlier, this means that
LT(r) is divisible by some LT(gi). This contradiction shows that r = 0. Thus

p = a1g1 + a2g2 + . . .+ atgt

Since the choice of p was arbitrary, this shows that I ⊂ 〈g1, . . . , gt〉. Since 〈g1, . . . , gt〉 ⊂ I and
I ⊂ 〈g1, . . . , gt〉 we must have that I = 〈g1, . . . , gt〉. This proves that there exists a finite basis for
any polynomial ideal I.

Knowing that any polynomial ideal has a finite basis is neat in itself. But we can also use this
theorem to establish other important results.

The following theorem is a consequence of Hilbert Basis Theorem, and it shows what happens
to an initial ideal when we keep adding polynomials to the base.

First, an ascending chain of ideals in K[x1, . . . , xn] is a nested increasing sequence of ideals
and can be extended by adding generators, or basis elements.

I1 ⊂ I2 ⊂ I3 ⊂ . . .

The important point is that the sequence stabilizes after a finite number of steps.

Theorem 2.3.5 (Ascending Chain Condition). Let

I1 ⊂ I2 ⊂ I3 ⊂ . . .

be an ascending chain of ideals in K[x1, x2, . . . , xn]. Then there exists an N ≥ 1 such that

IN = IN+1 = IN+2 = . . .

Proof. Consider the set I =
⋃∞
i=1 Ii, where I1 ⊂ I2 ⊂ . . . is an ascending chain of ideals in

K[x1, . . . , xn]. We must show that I is also an ideal. Now 0 ∈ I since 0 ∈ Ii, ∀ i. Let p, q ∈ I, and
assume p ∈ Ii and q ∈ Ij, j > i. The ideals form an ascending chain, and we must have that
both p and q are elements in Ij. Also, since Ij is an ideal then p + q ∈ Ij, and thus p + q ∈ I. If
p ∈ Ii and h ∈ K[x1, . . . , xn] then h · p ∈ Ij and is thus also an element of I. This shows that I is
an ideal.

According to the Hilbert Basis Theorem 2.3.4, the ideal Imust have a finite basis I = 〈g1, g2, . . . , gs〉.
But each of the basis elements is contained in some Ii and all subsequent ideals in the chain. Let
IN be the first ideal in the chain, which contains all of (g1, . . . gs). Then

I = 〈g1, g2, . . . , gs〉 ⊂ IN ⊂ IN+1 ⊂ . . . ⊂ I

We see that the ascending chain stabilizes with IN, and all subsequent ideals are equal.

14

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Assume we have a large, or infinite system of polynomial equations, where each polynomial
∈ K[x1, . . . , xn]. Also assume we have an algorithm that uses the division algorithm, and we
keep feeding the algorithm polynomials from the initial system of polynomial equations. The
Ascending Chain Condition says we will reach a final ideal after a finite number of steps.

The next result is also a consequence of Hilbert Basis Theorem, and tells us that the affine
variety of an ideal is the same as the affine variety of the basis.

Proposition 2.3.6. V(I) is an affine variety. In particular, if I = 〈p1, p2, . . . , ps〉 then V(I) =

V(p1, p2, . . . , ps).

Proof. By the Hilbert Basis Theorem,I = 〈p1, . . . , ps〉 for some finite generating set. Since pi ∈ I
and if p(a) = 0, a ∈ Kn for all p ∈ I then pi(a) = 0, thus V(I) ⊂ V(f1, . . . , fs). On the other
hand, let a ∈ V(p1, . . . , ps), and let p ∈ I, where I = 〈p1, . . . , ps〉. Then we can write

p =

s∑
i=1

hipi, for some hi ∈ K[x1, . . . , xn]

But then p(a) = 0 since all pi(a) = 0. Thus V(p1, . . . , ps) ⊂ V(I) Since we have that V(I) ⊂
V(p1, . . . , ps) and V(p1, . . . , ps) ⊂ V(I) we must have that V(p1, . . . , ps) = V(I).

We see that we have a nice correspondence between varieties and ideals in polynomial rings.
The Hilbert Basis Theorem gives us the existence of a finite basis for any polynomial ideal, but
the basis are in no way unique. Given a set of polynomial equations and our goal being to find
a simultaneous solution for the set, we now know that the initial set of polynomial equations
generates an ideal. The ideal has many generating sets or bases, and the variety of the ideal is
the same as the variety of each such basis. This implies that if we can find some basis for the
ideal which makes it easier to determine the affine variety, we have found a solution or solutions
to the initial set of polynomial equations.

Now, let’s take a look at a special kind of bases, namely Gröbner bases.

2.4 Gröbner bases

A Gröbner basis is a particular kind of generating set for an ideal in a polynomial ring. The theory
was developed by Bruno Buchberger in his doctoral thesis [11] in 1965, and he named this spe-
cial kind of basis after his thesis advisor Wolfgang Gröbner. In his doctoral thesis, Buchberger
developed an algorithm for the construction of this type of basis, now called Buchberger’s algo-
rithm, and proved the correctness and the termination of the algorithm. He applied the theory
on the Ideal Membership Problem, i.e. how to decide if a polynomial p in a polynomial ring
K[x1, . . . , xn] is a member of an ideal I ⊂ K[x1, . . . , xn]. The theory of Gröbner bases is a major
tool for solving a great variety of problems in computational algebra.

So what is a Gröbner basis? A Gröbner basis for an ideal I is the generating set for the
monomial ideal 〈LT(I)〉, and the formal definition is

Definition 2.16 (Gröbner basis). Let a monomial ordering be given.
A finite subset G = {g1, g2, . . . , gs} of an ideal I is called a Gröbner basis if

〈LT(I)〉 = 〈LT(g1), LT(g2), . . . , LT(gs)〉 .

15

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

More clearly, a set {g1, . . . , gs} ∈ I is a Gröbner basis of I if and only if for any p ∈ I, LT(p) is
divisible by one of the LT(gi).

Corollary 2.4.1. Let a monomial ordering be given. Then every ideal I ⊂ K[x1, x2, . . . , xn] other
than {0} has a Gröbner basis. Furthermore, any Gröbner basis of I is a basis of I.

Proof. This follows from the Hilbert Basis Theorem. The basis constructed in 2.3.4 is a Gröbner
basis by definition. It is also shown in 2.3.4 that the basis generates I.

We denote by pS the remainder on division of p by the ordered s-tuple S = (p1, p2, . . . , ps).
As shown earlier, a reordering of the s-tuple S may produce a different remainder. Gröbner
bases have a well of favorable properties, and one important property is that it eliminates this
undesirable effect. This is shown in the following proposition:

Proposition 2.4.2. Let G = {g1, g2, . . . , gs} be a Gröbner basis for an ideal I ⊂ K[x1, x2, . . . , xn]
and p ∈ K[x1, x2, . . . , xn]. Let r = pG ∈ K[x1, x2, . . . , xn] be the remainder on division of p by G.

(i) No term of r is divisible by any of LT(g1), . . . , LT(gt)

(ii) There exists g ∈ I such that p = g+ r

(iii) The remainder r of p on division by G is unique regardless of the order of the elements of G.

(iv) p ∈ I if and only if remainder r on division of p by G is zero.

Proof. (i) This is proven in 2.2.1.

(ii) Also proven in in 2.2.1 by setting g = a1p1 + a2p2 + . . .+ asps ∈ I.
(iii) To prove uniqueness, suppose that p = g + r = g + r satisfy (i) and (ii). Assume r 6= r,

then g− g = r− r ∈ I. Then LT(r− r) ∈ LT(I) is divisible by some LT(gi) by the definition of
Gröbner basis. But this contradicts (i). Thus r− r must be zero and uniqueness is proved.

(iv) If the remainder r is zero, then the question of membership of p in I is answered by
definition. Conversely, given p ∈ I, then p = p+ 0 satisfies (i),(ii) and (iii) so 0 is the unique
remainder of p on division by G.

Before we state Buchberger’s algorithm, we need an element called the S-polynomial. The
S-polynomial is constructed such that it, in a sense, cancel leading terms.

Definition 2.17 (S-polynomial). Let p, q ∈ K[x1, x2, . . . , xn] be non-zero polynomials.
(i) Ifmultideg(p) = α andmultideg(q) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi).
We call xγ the least common multiple of LM(p) and LM(q).
(ii) The S-polynomial of p and q is the combination

S(p, q) =
xγ

LC(p)−1 · LM(p)
· p −

xγ

LC(q)−1 · LM(q)
· q

(p, q) is called a critical pair.

Then we are ready to state Buchberger’s Algorithm in it’s most simplistic form.

16

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Theorem 2.4.3 (Buchberger’s Algorithm). Let I = 〈p1, p2, . . . , ps〉 be a polynomial ideal. Then
a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm:

Input: P = (p1, p2, . . . , ps)

Output: a Gröbner basis G = (g1, g2, . . . , gt) for I, with P ⊂ G
G := F
repeat

G’:=G
for each pair {p, q} , p 6= q in G’ do

S := S(p, q)
G ′

if S 6= 0 then
G := G ∪ {S}

end if
end for

until G = G ′

return G

Proof. See [19]

As seen, we start with a set of polynomials P. For each polynomial p, q ∈ P we form the
corresponding S-polynomial. Note that if two polynomials have identical leading terms then an
ordinary subtraction is performed. The non-zero remainders are added to the set of polynomials.
We keep on creating S-polynomials from the set of polynomials until all remainders from division
by the set of polynomials are zero. The algorithm then terminates. It is quite natural to terminate
the algorithm at this point, because we have depleted all options for creating new leading terms
from the current set of polynomials not divisible by existing leading terms. Buchberger’s Criterion
tells us that the polynomials in the current set is a Gröbner basis for the ideal generated by the
initial set of polynomials. The proof is omitted here.

Theorem 2.4.4 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis
G = (g1, g2, . . . , gt) for I is a Gröbner basis for I if and only if for all pairs i 6= j, the remainder on
division of S(gi, gj) by G (in some order) is zero.

Proof. See [19]

It is easy to see that we may be dealing with a large number of polynomials, since every
polynomial in the current set is combined with all the others to create S-polynomials. So it is
wise to use every possible technique to reduce the number of polynomials we have to work on.
The following lemma tells us that we can eliminate unnecessary generators. Also note that a
Gröbner basis for an ideal is not unique. The result is dependent on the monomial ordering, as
well as the order in which we process the initial polynomials.

Lemma 2.4.5. Let G be a Gröbner basis for a polynomial ideal I. Let g ∈ G be a polynomial such
that LT(g) ∈ 〈LT(G \ {g})〉. Then G \ p is also a Gröbner basis for I.

17

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Proof. By definition, we know that 〈LT(G)〉 = 〈LT(I)〉. Then if for some p ∈ G we have that
LT(p) ∈ 〈LT(G \ {g})〉, we still have that 〈LT(G \ {g})〉 = 〈LT(I)〉. By definition it follows that
G \ p is also a Gröbner basis for I.

Gröbner bases come in different flavors. By eliminating unnecessary generators and adjusting
all leading coefficients to 1 we have what is called a minimal Gröbner basis.

Definition 2.18 (Minimal Gröbner basis). A minimal Gröbner basis for a polynomial ideal I is
a Gröbner basis G for I such that:
(i) LC(g) = 1 for all g ∈ G
(ii) For all g ∈ G, LT(g) /∈ 〈LT(G− g)〉.

An ideal may have many minimal Gröbner bases. But if we increase our constraints on the
minimal Gröbner basis, we get a reduced Gröbner basis.

Definition 2.19 (Reduced Gröbner basis). A reduced Gröbner basis for a polynomial ideal I is
a Gröbner basis G for I such that:
(i) LC(g) = 1 for all g ∈ G
(ii) For all g ∈ G, no monomial of g lies in 〈LT(G \ g)〉.

For a given a monomial ordering the reduced Gröbner basis for an ideal is unique. The proof
for this is omitted.

Definition 2.20. Let I ⊂ K[x1, x2, . . . , xn] be an ideal. We denote by V(I) the set

V(I) = {(a1, a2, . . . , an) ∈ Kn : p(a1, a2, . . . , an) = 0 for all p ∈ I}

But since we deal with algebraic cryptanalysis, our main goal is to solve systems of multiva-
riate polynomial equations. How can constructing Gröbner bases help? The Shape Lemma gives
an answer to this question, but we need to introduce some terminology and do some work before
we state the lemma.

Let L be a field. If K ⊂ L, and K is a field in itself, we say that L is an extension field of K, and
we call L/K a field extension. If every element of L is a root of some non-zero polynomial with
coefficients in K, we call L/K an algebraic field extension. A field is said to be algebraically closed
if every polynomial with coefficients in the field also has a root in the field. An algebraic field
extension of K which is algebraically closed is called the algebraic closure of K, and is denoted K.
A good example of the above are the two fields R - the field of real numbers - and C - the field of
complex numbers -, where C is the algebraic closure of R.

In algebraic cryptanalysis, we want our polynomial ideals to have finitely many solutions
of course. Such ideals are called zero-dimensional, and for completeness we state the Finiteness
Criterion for zero-dimensional field but omit the proof.

Proposition 2.4.6 (Finiteness Criterion). Let T(x1, x2, . . . , xn) be the set of monomials on
K[x1, x2, . . . , xn] and let > be a monomial ordering on this set. Further, let I = 〈p1, p2, . . . , ps〉 be
an ideal. The following are equivalent

(i) The system p1, p2, . . . , ps has finitely many solutions

18

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

(ii) For i = 1, . . . , n we have that I ∩ K[xi] 6= ∅
(iii) The K-vector space K[x1, x2, . . . , xn]/I is finite.

(iv) The set T(x1, . . . , xn)\LT>(I) is finite.

Proof. See [20]

We also need the following definitions:

Definition 2.21. A field K is called a perfect-field if either its characteristic is 0 or its characteristic
is p>0 and we have K = Kp, i.e. every element in K has a pth-root in K.

Definition 2.22. Let I ⊂ K[x1, x2, . . . , xn] be an ideal. The radical of I, denoted
√
I is the set

{f : fm ∈ I for some integer m ≥ 1}

If I =
√
I then I is called a radical ideal.

Definition 2.23. Suppose that I is a zero-dimensional ideal in K[x1, x2, . . . , xn], and let i =

1, . . . , n. We say that I is in normal xi-position if any two zeros (a1, . . . , an), (b1, . . . , bn) ∈ K
n

of I satisfy ai 6= bi.

What we want with this is to reduce the problem of solving a system of polynomial equations
p1 = p2 = . . . , pn = 0 to the case when I = 〈p1, p2, . . . , pn〉 is a zero-dimensional radical ideal
in normal xn position over a perfect field K. The reason is that the Shape Lemma ensures that
we can find univariate polynomials in the base. Seidenberg’s Lemma provides one key for this:

Proposition 2.4.7 (Seidenberg’s Lemma). Let K be a field, and let I ⊂ K[x1, x2, . . . , xn] be
a zero-dimensional ideal. Suppose that, for i = 1, . . . , n, there exists a non-zero polynomial gi ∈
I∩K[xi], such that the greatest common divisor of gi and its derivative equals 1. Then I is a radical
ideal.

Proof. See [20]

The next for us to do is to add field equations to the initial system of polynomial equations.
These are relatively prime to their derivatives. Due to Seidenberg’s Lemma, the ideal is a radical
ideal and the Finiteness Criterion ensures that the ideal is zero-dimensional. Since we have
complete factorization of the field equations over K, the variety of simultaneous solutions to the
extended system of polynomial equations does not contain points in K\K. The last thing we need
is the notion of an elimination ideal:

Definition 2.24. Let I ⊂ K[x1, x2, . . . , xn] be an ideal. The l-th elimination ideal Il, is the ideal of
K[xl+1, xl+2, . . . , xn] defined by

Il = I ∩ K[xl+1, xl+2, . . . , xn]

Now we can state the Shape Lemma.

19

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Theorem 2.4.8 (The Shape Lemma). Let K be a perfect field, and let I ⊂ K[x1, x2, . . . , xn] be a
zero-dimensional radical ideal in normal xn position. Let gn ∈ K[xn] be the monic generator of the
elimination ideal I ∩ K[xn], and let d be the degree of gn.
(i) The reduced Gröbner basis of I with respect to the lexicographic ordering 2.11 is of the form

{x1 − g1, . . . , xn−1 − gn−1, gn} where g1, . . . , gn ∈ K[xn]

(ii) The polynomial gn has d distinct zeros a1, . . . , ad ∈ K
n

, and the set of zeros of I is

Z(I) = {(g1(ai), g2(ai), . . . , gn−1(ai), ai)|i = 1, . . . , d}

Proof. See [20]

As we can see in (i) in the Shape Lemma, the reduced Gröbner basis of such a restricted ideal
has a very special shape, thereof the name. It also contains a univariate element gn which we
can solve for instance with numerical methods to find values for xn. And from (ii) we see how
the rest of the solution looks like.

2.4.1 Truncated Gröbner bases

In this section we look at the homogeneous case. The Homogeneous Buchberger Algorithm is an
important framework for many advanced algorithms, since it enables computation of bases up to
a certain total degree. For instance, if we somehow happen to know beforehand the maximum
degree of elements in a homogeneous Gröbner basis, we could save computational time. But this
is rarely the case. The importance of controlling the degree of polynomials during a Gröbner
computation stems from fact that the running time complexity is often expressed as O(2D),
where D is the largest degree of a polynomial during a computation. In [18] the following
theorem is stated:

Theorem 2.4.9. "Most" of the ideals generated by s polynomials in n variables of degree bounded
by d are such that their Gröbner bases have degree bounded by (n+ 1)d− n.

This regards polynomials with random coefficients and "most" means all except a set of mea-
sure zero. The implication is that in worst case, the running time of a Gröbner computation has
complexity O(2nd). In short: degree matters.

Definition 2.25. A polynomial p ∈ K[x1, . . . , xn] is called homogeneous of total degree d if every
term appearing in p has total degree d. For general p ∈ K[x1, . . . , xn], the homogeneous component
of degree d of p is the set of terms having total degree d.

As an example, X2YZ2 +XY4 +Z5 is a homogeneous polynomial of total degree 5. If we start
out with a non-homogeneous polynomial, say X2YZ2 + XY2 + Z, we can homogenize the poly-
nomial by introducing additional variables, say W, to create a homogeneous one, i.e. X2YZ2 +
XY2W2 + ZW4. We can of course reconstruct our initial polynomial by setting W = 1.

20

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Theorem 2.4.10 (Homogeneous Buchberger Algorithm). Let {p1, ..., pm} be a set of homoge-
neous polynomials generating the ideal I. Then a homogeneous Gröbner Basis for I can be constructed
in a finite number of steps by the Homogeneous Buchberger Algorithm 2.2.

Proof. See [21]

Algorithm 2.2 Homogeneous Buchberger Algorithm

Input: P = (p1, p2, . . . , ps)
Output: Gröbner basis G = (g1, g2, . . . , gt) of I, the elements of which satisfy

totaldeg(g1) ≤ . . . ≤ totaldeg(gt)

B := {}

G = ()
s := 0
repeat

d1 := min {(totladeg(p) : ∀p ∈ P}
d2 := min {(totladeg(LCM(LT(pi), LT(pj)) : (i, j) ∈ B}
d := min {d1, d2}
Bd := {(i, j) ∈ B : (totladeg(LCM(LT(pi), LT(pj))) = d}
B := B\Bd
Pd := {p ∈ P : totaldeg(p) = d}
P := P\Pd
repeat

MARK
if Bd = {} then

choose p ∈ Pd and delete it from Pd
else

choose a pair (i, j) ∈ Bd and delete it from Bd
p = S(gi, gj)

end if
if ∩pG = 0 then

GOTO:MARK
else

s = s+ 1
gs = ∩pG, add gs to G
Add pairs (1, s), (2, s), . . . , (s− 1, s) to B

end if
until Bd = {} AND Pd = {}

until B = {} AND P = {}

return G

We see that for S-polynomial computation, the algorithm picks polynomials from the set with
the smallest total degree. This gives us the opportunity to interrupt the algorithm when a certain
total degree is finished, which Kreuzer and Robbiano ([21]) call Calculus Interruptus. What we
are left with then is called a truncated Gröbner Basis.

21

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Definition 2.26. Let G = g1, . . . , gn be a result from the Homogeneous Buchberger Algorithm for
an ideal I generated by a set of homogeneous polynomials. Elements from G with total degree less
than d form a d-truncated Gröbner Basis for the ideal I, and will be denoted G≤d.

If we start out with an ideal generated by a set of non-homogeneous polynomials, the Homo-
geneous Buchberger Algorithm will produce a correct Gröbner Basis. In that case, a d-truncated
Gröbner Basis G≤d is characterized by the following: ∀(f, g) ∈ G≤d such that the S-polynomial
S(f, g) has total degree ≤ d, the S-polynomial reduces to zero by G≤d. I.e. if we have a d-
truncated Gröbner Basis, we know that if a polynomial reduces to degree d, then the polynomial
will eventually be reduced to zero and we can skip the rest of the computation.

2.5 On the complexity of solving polynomial equations

Solving multivariate polynomial equations is hard. Even the simplest case of non-linear multi-
variate polynomial equations, i.e. multivariate quadratic, is hard in the sense that it does not
exist, and probably will never exist, an efficient algorithm that solves all systems of multivariate
quadratic polynomial systems. This sounds harsh, but there is not much hope to find such an
algorithm.

In complexity theory, the class P is the set of problems that can be solved efficiently, or
are tractable in practice. Efficient, or tractable, here means that the problems can be solved in
polynomial time. But there are problems beyond this.

Definition 2.27 (NP). NP is the set of all decision problems, i.e. having "yes/no" answers, that if
the answer to the decision problem is "yes" there exists evidence, or a certificate, such that the "yes"
answer can be verified in polynomial time.

NP thus contains all problems that can be verified deterministically in polynomial time,
given the evidence. Formally, this means that NP contains all decision problems solvable by a
non-deterministic Turing machine.

Definition 2.28 (NP-complete). A decision problem P is in NP-complete, if every decision pro-
blem in NP can be reduced, or transformed to P in polynomial time.

This means that NP-complete contains all the really difficult problems where no efficient
algorithm is known. It also means that if you can solve one such problem, call it P, in polynomial
time you can solve everyNP-complete problem in polynomial time by reducing them to P. There
is a famous conjecture, the P 6= NP conjecture meaning that there exist problems where efficient
algorithms will never be found.

The problem of solving the general (with emphasis on general), system of multivariate qua-
dratic polynomial equations is called theMQ problem. The sad part is thatMQ isNP-complete.
To show this [5], we must first show thatMQ is solvable in Non-deterministic Polynomial-time,
or in NP-time. Let a system of multivariate quadratic polynomial equations over F2 be given

q1(x1, x2, . . . , xn) = q2(x1, x2, . . . , xn) = . . . = qs(x1, x2, . . . , xn) = 0

The following NP-time algorithm solves the given system of equations:

22

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

1. Guess an assignment A for (x1, x2, . . . , xn).

2. Check that all s equations are satisfied by A.

3. Output true if step 2. is true, else go to step 1.

Now, each equation has at most

1+

(
n

1

)
+

(
n

2

)
= 1+

n(n+ 3)

2

terms. There are s equations, so step (2) requires at most polynomial time. If step(2) is successful,
the algorithm terminates. We can not determine when step 2. will be true. SoMQ is solvable in
NP-time.

Next we show that we can reduce an NP-complete problem toMQ. SAT, or satisfiability, is
the problem of determining if a given Boolean formula can be evaluated to TRUE by assigning
values to the variables in the formula. The formalism of complexity and the proof of the NP-
completeness of SAT was done by Cook (see [22]) in 1971. SAT can be reduced to 3-SAT in
polynomial time thus 3-SAT is also in NP-complete.

Definition 2.29 (3-SAT). Let B = (b1, b2, . . . , bn) be a set of Boolean variables.
Let L = (b1, b1, . . . , bn, bn) be the corresponding literals, and let ci ∈ (L ∪ L2 ∪ L3) be clauses of
at most 3 literals, and let C = (c1, c2, . . . , ct) be a set of these clauses. The corresponding 3-SAT
problem is to determine if there exists an assignment A ∈ {0, 1}

n for B, such that all ci are true and
hence C is satisfied.

Theorem 2.5.1. MQ-F2 is NP-complete.

Proof. We need to transform our 3-SAT syntax to a F2 formulation, where li, lj, lk ∈ L, bi ∈ B ,
∨ is logical OR and + is addition modulo 2. Let X = (x1, x2, . . . xn) be variables over F2.

(i) Replace (li ∨ lj ∨ lk) with (li + lj + lk + li · lk + li · lj + lj · lk + li · lj · lk) in all clauses

(ii) Replace (li ∨ lj) with (li + lj + li · lj) in all clauses

(iii) For each boolean variable bi, set bi = xi and bi = xi + 1.

(iv) For each transformed clause c
′

i, construct an equation ei = 1.

Now, each equation ei has at most degree 3. Introduce
(
n
2

)
new variables yi,j, 1 ≤ i < j ≤ n.

Introduce
(
n
2

)
new equations ei,j = yi,j + xi · xj = 0, 1 ≤ i < j ≤ n. Substitute yi,j for every

instance of xi · xj in all equations ei. Now since every xi · xj · xk has the form yi,j · xk (or e.g.
xi · yi,j depending on the order of substitution), all equations have at most degree 2. We now
have m +

(
n
2

)
equations in n +

(
n
2

)
=
(
n+1
2

)
variables, and if there is a simultaneous solution

for this new set of equations, we have a solution for the original 3-SAT problem. Since each step
involved only requires polynomial time and space, we have reduced the 3-SAT problem to an
MQ-F2 problem in polynomial time, i.e. 3-SAT ≤poly MQ-F2 which implies that MQ-F2 is
NP-complete.

23

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

At first glance, this seems to be the death of trying to solve large systems of polynomial
equations in general, and algebraic cryptanalysis in particular. But the formalism above regards
the general case, i.e. all cases. This is equivalent to the unsolvability of the quintic by radicals;
there is no general formula for the general quintic over the rationals in terms of radicals. But we
know there exist quintics that are easily solvable this way. In the same way, there are systems of
polynomial equations that can be solved in polynomial time.

For instance, there are hugely overdefined systems of multivariate quadratic polynomial equa-
tions that can always be solved in polynomial time: and that is the case when we can substitute
all quadratic monomials with new variables in such a way that the new system has full rank.
This system can be solved with Gaussian elimination which has complexity O(N3), where N is
the total number of variables.

In this thesis we show that we encounter both sides of this. LILI-128 produces seemingly
random polynomials, and shows exponential complexity. With only 40 unknowns, this becomes
very hard to solve in a reasonable time. KASUMI on the other hand, produces a highly structured
equation system and we can find solutions for the unknown key bits in a system of equations of
near 10000 variables.

In general, estimating complexity for solving overdefined systems of polynomial equations
over F2 is difficult. There are upper bounds when we approximate the problem to systems of
"random" equations. The worst case is polynomial in 2n , i.e. exponential in n and we refer to
[23] for a discussion of this.

24

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

3 Methods of Algebraic Cryptanalysis

In this chapter we do a short survey of cryptanalytic techniques and variants. The list is not meant
to be complete, but shows different and quite general ways of attacking systems of multivariate
polynomial equations.

3.1 Linearization methods

Cryptanalytic linearization does not necessarily mean linearization in the strong sense. One may
use linearization methods just to lower the polynomial degree.

3.1.1 Plain linearization

A method for solving non-linear multivariate polynomial equations is linearization. In it’s sim-
plest form we just introduce new variables for all non-linear terms, and solve it by Gauss elimina-
tion. This means we need an overdefined system of equations. Consider a system of polynomial
equations in n variables over F2 of degree d. As a worst case, we have T =

∑d
i=2

(
n
i

)
monomials

of degree ≥ 2, and will need to introduce T new variables. As an upper bound we will need
T + n linearly independent equations to be able to solve it using Gauss-elimination, i.e. hugely
overdefined.

Example 3.1 (Simple linearization). Consider the problem of finding a solution to the following
system of polynomial equations of degree 2 over F∈.

xy+ z+ 1 = 0
xy+ xz+ y = 0
yz+ x+ 1 = 0

Simple linearization will not work, because we have three different monomials of degree two. By
introducing three new variables we will end up with an equation system not of full rank. We need
three more linearly independent equations. So assume we can get our hands on such.

xy+ z+ 1 = 0
xy+ xz+ y = 0
yz+ x+ 1 = 0

xz+ x+ y+ z = 0
xy+ yz+ x+ y+ 1 = 0
xz+ yz+ y+ 1 = 0

Now, set

t = xy

u = xz

v = yz

and we end up with the following system

25

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

t + z + 1 = 0
t + u + y = 0

v + x + 1 = 0
u + x + y + z = 0

t + v + x + y + 1 = 0
u + v + y + 1 = 0

Solving this system in the usual way returns the consistent solution

t = 1, u = 0, v = 0, x = 1, y = 1, z = 0

3.1.2 Relinearization

Relinearization was first presented in [24] and applied to cryptanalysis of HFE public key crypto
system. Relinearization is a technique for lowering the amount of equations needed. Basically
the trick is to note that xy and xz are linearly independent but they are still algebraically related
by the variable x, and we use this to generate new equations.

Example 3.2 (Relinearization). Consider the same problem as above, of finding a solution to the
following system of polynomial equations of degree two over F2

xy+ z+ 1 = 0
xy+ xz+ y = 0
yz+ x+ 1 = 0

Now, set

t = xy

u = xz

v = yz

and simplify. We end up with the following system, where t, u and v are parametrized by x, y and z.

t = z+ 1

u = y+ z+ 1

v = x+ 1

But in the definition of t, u and v above we see that

tu = tv

tv = uv

zt = yu

zt = xv

This gives us four more equations in x, y, z, t, u and v. We have now seven equations in six variables,
but they are not algebraically independent. Substituting the parametric solution into these equations
gives

26

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

0 = tu+ tv = (z+ 1)(y+ z+ 1) + (z+ 1)(x+ 1) = u+ v+ x+ y

0 = tv+ uv = (z+ 1)(x+ 1) + (x+ 1)(y+ z+ 1) = t+ y

0 = zt+ yu = z(z+ 1) + y(y+ z+ 1) = v

0 = zt+ xv = 0 ,algebraically dependent

We now have six linear equations in six variables.

t+ z+ 1 = 0

u+ y+ z+ 1 = 0

v+ x+ 1 = 0

u+ v+ x+ y = 0

t+ y = 0

v = 0

And solving this system in the usual way returns the consistent solution

t = 1, u = 0, v = 0, x = 1, y = 1, z = 0

3.1.3 XL

The XL, or eXtended Linearization (see [25]), is a method based on Relinearization for solving
systems of quadratic equations. In short: consider a system of quadratic equations

p1(x1, . . . , xn) = p2(x1, . . . , xn) = . . . , pm(x1, . . . , xn) = 0

We multiply each of these equations with all monomials mi up to a prescribed degree D-2, and
try to solve the resulting system of equations of type

mi · pj(x1, . . . , xn) = 0

by linearization. Hopefully this new system returns univariate polynomials, which can then be
eliminated from the original system, and the process is repeated.

3.1.4 XSL

The XSL algorithm (see [26], [27]), is a linearization algorithm custom made to take advantage
of structure and sparsity of equations from block ciphers of a particular kind. To be effective, the
system of equations must have a special form, such as equations from S-boxes with overdefined
system of equations, equations from repeated linear diffusion layers and so on.

Both XL and XSL are termed redundant versions of Gröbner algorithms (see [28], [29]), but
they have the advantage over computer algebra systems that they do not need "true polynomials"
when implementing the algorithms.

27

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

3.1.5 MutantXL

MutantXL [30] is an algorithm that takes advantage of low degree polynomials in the system.
Let

p1(x1, . . . , xn) = p2(x1, . . . , xn) = . . . , pm(x1, . . . , xn) = 0

generate the ideal I ∈ K[x1, . . . , xn]. A polynomial g ∈ I can then be represented as

g = h1p1 + h2p2 + . . .+ hmpm

The level of this representation is defined as max {deg(hipi) : all terms hipi in g} The level of
g is defined to be the minimum level of all representations of g. The polynomial g is called a
mutant with respect to (p1, . . . , pm) if the degree of g is less than the level of g. We see that g
can not be represented as a linear combination of mipi where mi ∈ K[x1, . . . , xn] is a monomial
and deg(mipi) ≤ deg(g) as is done in the XL algorithm. The MutantXL algorithm is defined as
follows:

Definition 3.1 (MutantXL algorithm). Let F = (p1, p2, . . . , pm)

1. Interreduce F. Set d = e = min {deg(pi) : pi ∈ F}, and set G=F.

2. Linearize G and reduce to row echelon form.

3. If univariate polynomials are found, solve and eliminate solved variables in F. If this solves the
entire system we are finished, else go to step 1.

4. Form the set of mutants with respect to F: M = {deg(p̃i) < e : for all p̃i ∈ G}
5. If M 6= ∅, for each gi ∈M create the set

Mgi
= {mjgi : all monomials mj where deg(mj) = d− deg(gi)}. For each gi ∈M, replace gi

in G with the elements in Mgi
. Set e = min {deg(gi) : gi ∈M}+ 1 and go to step 2.

6. For each gi ∈M create the set Mgi
= {xjgi : 1 ≤ j ≤ n}. For each gi ∈M, replace gi in G with

the elements in Mgi
. Set e = d = d+ 1 and go to step 2.

Some versions of MutantXL algorithms seems to be comparable in speed to advanced Gröbner
basis algorithms and is thus an important addition. An application of mutant strategies, or similar
strategies, may possibly improve on Gröbner basis computations.

3.2 SAT solving

We have previously mentioned the Satisfiability problem. This is the problem of deciding whether
a given Boolean formula can be evaluated to TRUE. Problem such as graph coloring or scheduling
problems can easily be encoded as a satisfiability problem. In complexity theory, the Boolean
Satisfiability Problem, or SAT, is a decision problem where the boolean expression to be evaluated
is in Conjunctive Normal Form (CNF), i.e. a Boolean expression using only logical AND, OR, NOT,
variables and parentheses.

Is φ = (xi ∨ xj ∨ . . .∨ xk)∧ . . .∧ (xv ∨ xw ∨ . . .∨ xz) SAT?

SAT is known to have exponential running time. SAT solvers comes in different flavors, e.g.
conflict-driven or look-ahead, but basically they guess values and look for inconsistencies in the

28

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

systems of clauses. If inconsistencies are found, they do a backtrack, i.e. take a few steps back to
resolve the inconsistency, then continue on another path. An interesting "Gluing and Agreeing"
approach is found in [31]. This works roughly as follows: Given a system of equations

f1(X) = 0

f2(X) = 0

...

fl(X) = 0

we encode this as sets, or symbols
Si(Xi, Vi)

where Xi are the variables contained in the expression fi and Vi is the satisfying vector, i.e.
values for which fi is SAT.

Example 3.3. Let an equation be

fi(x1, x2, x3) = x1 · x2 + x3

The corresponding symbol would then be

Si x1 x2 x3
a1 0 0 0
a2 0 1 0
a3 1 0 0
a4 1 1 1

Agreeing is for two or more symbols to agree on their satisfying vectors, deleting those vectors
which lead to contradictions.

Example 3.4 (Agreeing). Given two symbols Si and Sj

Si x1 x2 x3
a1 0 0 0
a2 0 1 0
a3 1 0 0
a4 1 1 1

Sj x3 x4 x5
b1 1 0 0
b2 1 0 1
b3 1 1 1

All vectors leading to contradictions are deleted, resulting in

Si x1 x2 x3
a4 1 1 1

Sj x3 x4 x5
b1 1 0 0
b2 1 0 1
b3 1 1 1

29

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Gluing means to create new symbols from earlier symbols, i.e. S3 = S1 ◦ S2. So the Gluing-
Agreeing algorithm is the following: glue intermediate symbols with other symbol and agree on
the intermediate equation system.

Example 3.5 (Gluing). Given two symbols Si and Sj as above, the new symbol Si ◦ Sj will be

Si ◦ Sj x1 x2 x3 x4 x5
c1 1 1 1 0 0
c2 1 1 1 0 1
c3 1 1 1 1 1

In [31] another step in combination with the guessing strategy, called Agreeing2 reduces the
steps in the previous Agreeing step in that it marks groups of common projections. Storing the
assignment vectors as tuples, it is more efficient when looking for contradictions.

Example 3.6 (Agreeing). Given two symbols Si and Sj
Si x1 x2 x3
a1 0 0 0
a2 0 1 0
a3 1 0 0
a4 1 1 1

Sj x3 x4 x5
b1 0 0 0
b2 1 0 0
b3 1 0 1
b4 1 1 1

The corresponding assignment vectors are stored as tuples

Si : (a1, a2, a3;b1)

Sj : (a4;b2, b3, b4)

Now, marking a1, a2 and a4 also marks b2, b3 and b4.
We see that information is propagated through tuples, and this leaves us with

Si x1 x2 x3
a3 1 0 0

Sj x3 x4 x5
b1 0 0 0

3.3 Fast Algebraic Attack

Fast algebraic attack (see [32], [33]) is a technique used on certain streamciphers. Let K be the
initial state of the Linear Feedback Shift Registers (LFSRs) and let Kt = Lt(K) be the state after
t regularly clocked shifts, and let zt be the corresponding output. We need two conditions: 1:we
can build a system of equations from one function F.

F(Kt1 , Kt1+1, . . . , Kt1+r, zt1 , zt1+1, . . . , zt1+r) =0

F(Kt2 , Kt2+1, . . . , Kt2+r, zt2 , zt2+1, . . . , zt2+r) =0

...

F(KtN , KtN+1, . . . , KtN+r, ztN , ztN+1, . . . , ztN+r) =0

30

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

and 2: F can be split

F(X, z)︸ ︷︷ ︸
deg(F)=d

= G(X)︸ ︷︷ ︸
deg(G)=d

+ H(X, z)︸ ︷︷ ︸
deg(H)<d

where G is independent of z. This means we can write the above as

Ft1(X, zt1 , . . . , zt1+r) = Gt1(X) +Ht1(X, zt1 , . . . , zt1+r) = 0

Ft2(X, zt2 , . . . , zt2+r) = Gt2(X) +Ht2(X, zt2 , . . . , zt2+r) = 0

...

FtN(X, ztN , . . . , ztN+r) = GtN(X) +HtN(X, ztN , . . . , ztN+r) = 0

The following proposition is needed

Proposition 3.3.1. There exists an integer T ≥ 1 and coefficients α0, . . . , αT ∈ F2, such that

T∑
i=0

αi ·Gt+i(X) ≡ 0, ∀t ≥ 0

Proof. Gj(X) are Boolean multivariate polynomials of degree d in n variables. The number of
possible different monomials of degree≤ d in n variables have an upper bound of T =

∑d
i=0

(
n
d

)
.

Then if Gi 6= Gj when i 6= j the polynomials G0, G1, . . . , GT are linearly dependent, and there
exist numbers α0, . . . αT ∈ F2 such that

T∑
i=0

αi ·Gi(X) ≡ 0

where T ≤ T . Let t be arbitrary. Substituting Xt = Lt(X) for X in the above we get

T∑
i=0

αi ·Gi(Xt) =
T∑
i=0

αi ·Gi(Lt(X)) =
T∑
i=0

αi ·Gt+i(X)

Since t was arbitrary it holds for all t.

Having found such a sequence of αi’s, we can write our system of polynomials as

T∑
i=0

αi · Ft+i(X, z) =
T∑
i=0

αi ·Gt+i(X) +
T∑
i=0

αi ·Ht+i(X, z) = 0

31

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Since this holds for all t, we now have a new set of equations

T∑
i=0

αi ·Ht1+i(X, z) = 0

T∑
i=0

αi ·Ht2+i(X, z) = 0

...
T∑
i=0

αi ·HtN+i(X, z) = 0

with lower degree than the original.

3.4 Gröbner bases techniques

Since the birth of Göbner bases in 1965, there have been many proposals for improvements of
the Buchberger algorithms. Some of these are implemented in well known computational alge-
bra systems as Magma, Singular, Maple etc. The most efficient implementations are known as F4
and F5 (see [14] [15]), both due to Jean-Charles Faugère. F4 and F5 where both used to crack
the HFE challenge [34]. A specialization to Gröbner bases over F2 is implemented in Polybori
1 [35] and has shown improvements in certain types of problems. SAGE 2 is an open-source
mathematics system with computational algebra functionality and comes with the Polybori fra-
mework. SAGE does not seem to have implemented the newest achievements regarding Gröbner
bases construction, but open-source means that researchers, and all other interested, have full
access to source code which can be a great asset.

1http://polybori.sourceforge.net/
2http://www.sagemath.org

32

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

4 Implementation

To get a deeper insight into algebraic cryptanalysis with Gröbner bases and computational alge-
bra, it was decided to start the implementation from scratch. Python 1 was chosen as the pro-
gramming language because of its usefulness in rapid prototyping. Since the literature concer-
ning implementation issues was sparse , we adopted an evolutionary prototyping approach to the
work at hand, i.e. we would rapidly implement a model, refine it until we reached the model’s
limitation, then change the model and so on. Developing a computational model for multivariate
polynomials suitable for our needs was a difficult task. Most mathematical libraries for program-
ming languages come with polynomial models, but few are designed for this particular use. We
needed a polynomial implementation that supports computation in a Boolean ring, which has a
small memory footprint, must support fast addition and multiplication and is easily written to,
and read from, files. We ended up with a computational model that works surprisingly well. It
also takes care of false solutions, i.e. solutions lying in the closure F2, since reduction by field
equations is implicit. To speed up the computations, psyco2 was used. Psyco is a kind of JIT (just-
in-time) compiler for python, and the improvements in speed was considerable. We also used the
python module PP (or Parallel Python) 3 for efficient use of processors with multiple cores. This
also required rewriting parts of the code so it could be run in parallel.

4.1 Polynomial model

We went through a large array of polynomial models, but we do not elaborate on this since they
all performed poorly when considering memory footprint, computational speed or both. They
were much too slow on even the simpler problems. A polynomial is an array of monomials, so
the most important mission is to develop a computationally efficient monomial model. A mo-
nomial contains quite a lot of information: first we have the variables, which are present in the
monomial or not, and all variables have degrees. The monomial must also support a monomial
ordering rule. Putting all of this together we end up with quite a lot of numbers, flags etc., to
handle. A multivariate polynomial in thousands of variables may have tens of thousands of mono-
mials, and it is easy to see that shortage of memory will be a major problem. The other important
thing is computational speed. Two operations that will be happening frequently are monomial
comparison and monomial multiplication. If our monomial model consists of arrays of numbers
representing variables and degrees, we see that there is a lot to consider when doing these two
operations. Besides memory footprint and computational speed, the third cumbersome part was
adding field equations. Field equations must be added to the system of polynomial equations to
avoid false solutions. Having a large number of variables, means we must add the same amount
of field equations to the system thus slowing down polynomial division. For a long time this

1http://www.python.org
2http://psyco.sourceforge.net
3http://www.parallelpython.com

33

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

problem would not go away. After many unsuccessful attempts, one polynomial model clearly
stood out both in speed and memory footprint. The model is very simple and solves (relatively
speaking) our three computational problems. If we model a monomial as a binary number, where
a binary 1 in place n represents the variable Xn, and a binary 0 represents a missing variable
we have captured almost all the monomial information in a Boolean ring - after reduction by
field equations (remember that Xs = X, for s > 0 in a Boolean ring). This is probably a very
old idea, but literature is sparse on this issue. Modeling monomials as binary numbers, we can
perform monomial multiplication as bitwise operations, and this is what the processor is good
at. The memory imprint will be minimal since we can model any 32 variable monomial with just
a 32-bit integer. Python comes with multiprecission integers, so monomials with any amount of
variables are easily constructed. Doing it this way, Lex order (see 2.11) is now just an integer
comparison, and monomial total degree is the number of binary 1s in the integer representation
of the monomial. Counting 1s can be performed quite effectively by an efficient little algorithm
found in [36], and it is reproduced below for aesthetic reasons.

unsigned in t v ; // count the number o f b i t s s e t in v
unsigned in t c ; // c accumulate s the t o t a l b i t s s e t in v
for (c = 0; v ; c++)
{

v &= v − 1; // c l e a r the l e a s t s i g n i f i c a n t b i t s e t
}

Listing 4.1: Counting bits set the Brian Kernighan’s[36] way

In the following examples, we will be working in F2[x1, x2, x3, x4, x5], i.e. a polynomial ring
with only 5 variables.

Example 4.1 (Monomial as binary numbers). Since our ring contain only five variables, we can
think of all monomial integers as 5-bit integers. Then a monomial, for instance x1x2x5, can be
written as

11001 = 25,

i.e. a 1 in places 1,2 and 5 from left to right, zero in all other places. It has degree 3 since there are 3
1s in the binary representation of 25. The monomial 1, is represented by a zero. It is easy to see that
this scheme follows simple Lexicographic Ordering, since

x1 = 100002 > x2 = 010002 > . . . > x5 = 000012 > 1 = 000002.

If we also know the number of "ones" in the monomial representation, we have Graded Lexicographic
Ordering.

Example 4.2 (Monomial multiplication). Monomial multiplication is bitwise OR. Let X2X3X5
be a monomial. We know that

X2 · X2X3X5 = X2X3X5 because of the field equation X22 + X2 = 0.

34

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Since

X2 → 010002 = 810 and

X2X3X5 → 011012 = 1310

we have that

010002

OR 011012

= 011012 → X2X3X5.

In the same way we have that

X1 · X2X3X5 = X1X2X3X5,

and in the binary case

100002 → X1

OR 011012 → X2X3X5

= 111012 → X1X2X3X5

Example 4.3 (Monomial division). Let m1,m2 be non-zero monomials modeled as binary num-
bers. Then m2 divides m1 if and only if

(m1 AND m2) XOR m1 = 0 , or equivalently

m1 AND m2 = m2.

To see this, let e.g. m1 = x2x3x5 and m2 = x2x5. We see that m2 divides m1 because m2 does
not contain other variables that are contained in m1. In the binary case we see that the number
(m1 AND m2) has 1s only in places that are common to m1 and m2. So if this number equals
m2 then no other "ones" have been lost in the bitwise AND. If we know that m2 divides m1, then
(m1 XOR m2) is the result from division, since (m1 XOR m2) are the 1s left in m1 after removing
the corresponding 1s in m2.

We do not want to count one-bits too often, so we group together all monomials with the same
one-count, i.e. degree. To help keep track of monomial degrees, we modeled the polynomial
as a dictionary, more commonly referred to as a hash-map or a key-value mapping in other
programming languages. The key is an integer representing degree and the value is a list of
ordered integers representing the monomials with this degree. So an n-key (n > 0) points to a
list of monomials with degree n, and the zero-key is used for telling the polynomial multidegree,
i.e. pointing to the key where we can find the leading term (LT). An example of representing an
n-degree polynomial is given below.

35

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Binary_Polynomial={ [0]: n // monomial MAX_DEGREE
[1]: [X1, X2, . . .] // LINEAR MONOMIALS
[2]: [X1X2, X1X3, . . .] // QUADRATIC MONOMIALS
. .
. .
. .
[n]: [. . .] // DEGREE n MONOMIALS }

Example 4.4. Let p = X1X3X5+X2X4X5+X1X2+X2X4+X4X5+X2+X3+X5+1 be a polynomial.
As a first step, this will be represented as:

Binary_Polynomial={ [0]: 3 // monomial MAX_DEGREE
[1]: [X2, X3, X5, 1] // LINEAR MONOMIALS
[2]: [X1X2, X2X4, X4X5] // QUADRATIC MONOMIALS
[3]: [X1X3X5, X2X4X5] // DEGREE n MONOMIALS }

and as a data structure with integers, it will be represented as:

Binary_Polynomial={ [0]: 3 // monomial MAX_DEGREE
[1]: [8, 4, 1, 0] // LINEAR MONOMIALS
[2]: [24, 10, 3] // QUADRATIC MONOMIALS
[3]: [21, 11] // DEGREE n MONOMIALS }

We see that the leading term is the first entry in the list which key is pointed to by the zero-key
value.

Each list of monomials in the dictionary uses binary search methods for finding, adding or
deleting monomials in the list.

4.2 Main algorithm

Solving polynomial equations is a balancing act, and since processing power and memory are
scarce resources it is important to do the right things at the right time, and just enough of them.
Both our algebraic attacks are known-plaintext attacks, i.e. we know the input and the output
- only the key is unknown. Due to hardware constraints we assume to know part of the key
and treat the unknown key-bits as binary variables. The algorithm halts if it has found all the
unknown key-bits, so we need to tell the algorithm which variables we seek solutions for because
intermediate variables may be introduced to lower the polynomial degrees. In the algorithm, KB
is the set of variables we are seeking a solution for. F is the current set of polynomials to process.
G is our current Gröbner base, GLIN is all linear polynomials in the current base and GSOL is all
univariate polynomials, i.e. solutions.

36

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Algorithm 4.1 Main algorithm

1: KB = {xm, xm+1, . . . , xn}, unknown key-bits
2: F = ∅, set of work-polynomials
3: G = ∅, current base
4: GLIN = ∅, current linear base
5: GSOL = ∅, solved variables
6: B = ∅, critical pairs
7: Psource 6= ∅, initial polynomial source
8: repeat
9: F = {f1, f2, . . . , fl} = read_polynomials(Psource)

10: F =
{
f1, f2, . . . , ft

}
= pre_elimination(GLIN, GSOL, F)

11: repeat
12: {g1, g2, . . . , gs} = reduce_mod_G(F,G)
13: for all gi do
14: if LT(gi) divides LT(gi) for some gi ∈ G then
15: Remove gi from G
16: Add gi to F
17: end if
18: G = {gi} ∪G
19: Find critical pairs involving gi, add to B
20: if deg(gi) = 1 then
21: GLIN = {gi} ∪GLIN
22: Gauss_Jordan_eliminate(GLIN)
23: GSOL = {p : p = xi or p = xi + 1 , ∀p ∈ GLIN}
24: pre_elimination(GLIN, GSOL, G ∩GLIN)
25: end if
26: end for
27: until F = ∅ or KB ⊆ GSOL
28: until Run out of polynomials or KB ⊆ GSOL
29: return GSOL

37

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

The algorithm starts with the sub-function read_polynomials(). It feeds the algorithm with
polynomials from some source. These sources may take several forms, e.g. they compute poly-
nomials on the fly taking into account the results so far, they compute S-polynomials from the
current Gröbner base based on the d-truncation limit, or they simply reads from a file of pre-
computed polynomials. It is important to feed the algorithm in a balanced way, such that we can
take near realtime advantage of current states.

The pre_elimination() sub-function eliminates variables in polynomials received from
read_polynomials(). In the case where all input-polynomials are pre-computed and read from
file, we get polynomials in variables we may already have a simple linear expression for. Ins-
tead of eliminating these variables in the division algorithm, we handle the following three cases
more efficiently in pre_elimination(), namely variables with solution ONE (Xs + 1 = 0), va-
riables with solution ZERO (Xs = 0) and linear polynomials in two variable, i.e. Xs + Xk = 0.
We construct three binary numbers: ZERO_SUPER_MONOMIAL, ONE_SUPER_MONOMIAL and
TWO_SUPER_MONOMIAL with a supporting substitution dictionary(or hash-map). If the algo-
rithm reduces a polynomial to one of these three cases, say a polynomial is reduced to Xs+1 = 0,
we multiply, or bitwise-or, ONE_SUPER_MONOMIAL with the binary expression for Xs. In this
way, ZERO_SUPER_MONOMIAL consist of all variables with solution 0, ONE_SUPER_MONOMIAL
consists of all variables with solution 1 and TWO_SUPER_MONOMIAL consists of all variables
which can be substituted by another variable. The TWO_SUPER_MONOMIAL is backed by a
dictionary (or hash-map) which tells which variable is to be substituted by what. During the
pre_elimination() of an input-polynomial, each monomial mi is checked and handled accor-
ding to the following rules:

1. If mi bitwise-AND ZERO_SUPER_MONOMIAL > 0, then the monomial contains a variable
with solution ZERO, and the monomial can thus be removed from the polynomial.

2. If mi bitwise-AND ONE_SUPER_MONOMIAL > 0, then the monomial contains at least
one variable with solution ONE. The variable(s) can thus be removed from the monomial
by doing mi = (mi bitwise-AND ONE_SUPER_MONOMIAL) bitwise-XOR mi. We need to
count ONE-bits since there may be more than one variable in the mi that has solution ONE.

3. If MON bitwise-AND TWO_SUPER_MONOMIAL > 0, then the monomial contains a va-
riable, which is to be substituted by another. If variable Xs is to be substituted by Xt, found
in the substitution dictionary then we do MON =MON bitwise-XOR Xs bitwise-OR Xt. The
monomial degree is unchanged.

The reduce_mod_G() sub-function is the division algorithm which we take a closer look at
below. It reduces a set of polynomials using multivariate polynomial division. Since this is a
resource intensive operation, it is done in parallel whenever we can save computation time.
When performing parallel division we have to take into consideration that results may not be
orthogonal, i.e. results from different instances of the division algorithm they may be pairwise
divisible.

The Gauss_Jordan_eliminate sub-function is just a plain Gauss-Jordan elimination, which
tries to reduce the linear polynomials to reduced row echelon form.

The eliminate_base sub-function reduces the current Gröbner basis. If an input-polynomial,

38

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

say P, reduces to a degree less than the current maximum degree, we loop through the cur-
rent Gröbner basis to see if P will reduce any base-polynomials, i.e. if any leading term in the
current Gröbner basis is divisible by the leading term of P. If such a leading term is found, the
corresponding polynomial is removed from the current Gröbner basis and treated as an input
polynomial.

The algorithm halts when we have found solutions for all variables in KB or we run out of
polynomials from the source/feed.

4.3 Division algorithm

We have two variants of the division algorithm. The common multivariate division algorithm
(see 2.1) for binary rings takes input (p, P), where p is a polynomial to be reduced, and P is a
set of polynomials. It loops through all monomials in p to see if any monomial m is divisible
by any leading terms of polynomials in P. If a monomial m is divisible by a leading term LT(g)

of a polynomial g in P, it multiplies g with a suitable monomial h such that LT(g) ∗ h equals
m, and then adds h ∗ g to p. The drawback with this approach is that it potentially ruins the
sparsity and structure of the current Gröbner basis because large and dense polynomials may be
repeatedly added to all other polynomials. Our other version of division algorithm 4.2 returns
when it encounters a monomial not divisible by any leading terms. Cryptanalysis of ciphers,
which produce a sparse and structured set of polynomials, like KASUMI, run much faster with
this type of division algorithm. Any Gröbner basis algorithm will spend most of it’s time executing
a division algorithm and it is thus the most important sub-function to optimize. A lot of effort
was invested in optimizing the function as much as possible. The function is very CPU time
consuming needy and is run in parallel (wherever practical), taking advantage of as much
computing resources as possible.

We avoid doing costly polynomial operations, so we just keep track of monomials by a list
of indices and assemble the resulting polynomial from these indices. The following example
explains the inner workings:

Example 4.5. Let p = x1x2 + x1x3 + x1x4 + x1 + x4 ∈ F2[x1, x2, x3, x4] be a polynomial to be
reduced and let

g1 : x2x4 + x3

g2 : x1 + x2 + x4

g3 : x3 + x4

be the current base. The bar shows which monomial the polynomial index is pointing to, and we
mark with bold the leading term for the polynomial last added to the list. We start with the poly-
nomial p, and move the index from x1x2 to x1x3. Current monomial to be eliminated is thus x1x2,
and we set Cm = x1x2. The base contains no polynomial with x1x2 as leading term, but x1x2 is
divisible by the leading term of g2. We multiply g2 with x2, move indexes, and add it to the list.

p : x1x2 + x1x3 + x1x4 + x1 + x4
x2 · g2 : x1x2 + x2x4 + x2

Comparing the monomials for all the current indices, we see that x1x3 is the largest. We do not

39

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Algorithm 4.2 Truncated Division Algorithm

1: Input: p ∈ K[x1, x2, . . . , xn]
2: Input: G = (g1, g2, . . . , gt) # current polynomial base
3: Output: p mod G
4: Cm := LT(p) # current monomial
5: Pind := {(p, 0)} # set of pairs of polynomial and polynomial index
6: halt = FALSE
7: repeat
8: repeat
9: #p[i] is the i’th monomial according to monomial ordering

10: Cm = max>(p[i] : ∀ (p, i) ∈ Pind)
11: l = | {p[i] : ∀ (p, i) ∈ Pind where p[i] = Cm} |

12: for all (p, i) ∈ Pind where p[i] = Cm do
13: if p[i+ 1] valid then
14: i = i+ 1 # increase index
15: else
16: Remove (p, i) from Pind
17: end if
18: end for
19: until l is odd, or Pind = {} # if l even - they cancel
20: if Cm = LT(gi) for some gi ∈ (LT(g1), LT(g2), . . . , LT(gt)) then
21: Add (gi, 1) to Pind
22: else if LT(gi) divides Cm for some gi ∈ G then
23: Find h ∈ K[x1, x2, . . . , xn] such that h · LT(gi) = Cm
24: Add (h · gi, 1) to Pind
25: else
26: halt = TRUE # Found irreducible monomial
27: end if
28: until halt = TRUE or Pind = ∅
29: pnew = 0 # empty polynomial
30: If needed, adjust indices so we do not lose monomials
31: for all (p, i) ∈ Pind do
32: while p[i] valid do
33: pnew = pnew + p[i]
34: end while
35: end for
36: return pnew

40

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

have a leading term in the base-polynomials with this value, but we can make one. We see that x1x3
is divisible by the leading term of g3. So by multiplying g3 with x1 we get a new polynomial with
leading term x1x3, and we add it to the list and move the indices for p and x1 · g3.

p : x1x2 + x1x3 + x1x4 + x1 + x4
x2 · g2 : x1x2 + x2x4 + x2
x1 · g3 : x1x3 + x1x4

Comparing the monomials for all the current indices, we see that x1x4 is the largest but there
are an even number of polynomials with x1x4 as leading term, and an even number equals zero in
F2. We thus move the indices for these polynomials. x1 · g3 will now have an invalid index, and we
can remove it form the list.

p : x1x2 + x1x3 + x1x4 + x1 + x4
x2 · g2 : x1x2 + x2x4 + x2

Comparing the monomials for all the current indices, we see that x2x4 is the largest, so we add
g1 to the list and move indices.

p : x1x2 + x1x3 + x1x4 + x1 + x4
x2 · g2 : x1x2 + x2x4 + x2
g1 : + x2x4 + x3

We see that there are an even number of polynomials, which have an index equal to the largest
current monomial. We move the indices for these polynomials, and get x1 as the largest. We now add
g2 to the list.

p : x1x2 + x1x3 + x1x4 + x1 + x4
x2 · g2 : x1x2 + x2x4 + x2
g1 : + x2x4 + x3
g2 : x1 x2 + x4

Again we see that there are an even number of polynomials, which have an index equal to the
largest current monomial, namely x2. Moving the indexes we see that x2 · g2 now has an invalid
index and can be removed. Then x3 is the current largest monomial, and we add g3 to the list.
p : x1x2 + x1x3 + x1x4 + x1 + x4
g1 : + x2x4 + x3
g2 : x1 x2 + x4
g3 : x3 + x4

We have now reached a halting condition, i.e. we do not have a base-polynomial with x4 as lea-
ding term (or that divides x4). If we assemble a new polynomial by taking all monomials from the
current polynomial indices of all polynomials, we get the polynomial pred = x4. This means we have
found a solution, x4 = 0. Next step will then be to eliminate x4 from the base.

4.4 On parallel execution and caching

Python is not well suited for utilizing multiple processors or cores. The GIL (global interpreter
lock) prevents a python process to utilize several CPU’s or cores, thus threading will not increase
computational speed. The solution to parallelism in python is to start multiple processes, each
running in different CPU’s or cores. As mentioned earlier, PP is a free add-on to python that helps
single out functions that we want to run in parallel on separate cores or CPU’s. The computer we
used for computations had a single Intel Core2 Quad processor. Computationally we can think of

41

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

this as 4 separate processors, and PP can start a python process on each of those. So naíve logic
tells us we should get our work done 4 times faster, but things are not that simple unfortunately.
To parallelize the division algorithm by running it on separate processes, we have to copy all the
data each process needs. The division algorithm needs the total current base to perform correctly,
and the current base can be quite large seen from a memory perspective. So we obviously have
to consider an ad-hoc cost-benefit approach to this. When there is too much data to copy, parallel
computing the PP way will slow things down.
When we have enough computer memory it can be useful to store all reusable results, e.g. the
results from polynomial multiplications. Having a cache of polynomials - all created from inter-
mediate polynomial multiplications during a division job - we can do a look-up job in the cache
the same way as we would do a look-up in the current base - instead of doing the same multipli-
cation over and over. It obviously save computational time - but it hogs up much memory. When
caching is used it renders parallelism almost useless, there is just too much data to be copied to
each process. A solution could be to use inter-process communication or other shared-memory
techniques, but we have not investigated this to the fullest as it was not our goal to create the
optimal implementation but rather to investigate aspects of it.
As an empirical rule, because of lack of shared-memory between processes, we decided to either
use parallelism or caching - not both.

4.5 Testing the software

To test this kind of software we need systems of equations with a given solution, which are hard
to come by in general. Nicolas T. Courtois published 4 (public domain) a program that generates
systems of equations for CTC2 which we used extensively. CTC2 [37] [38] is a tweakable toyci-
pher made for trying out algebraic attack techniques, and it has an optional number of rounds,
optional number of S-boxes, optional number of plaintext/ciphertext pairs etc., thus perfect for
generating test data.

4http://www.cryptosystem.net/aes/toyciphers.html

42

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

5 Cryptanalysis

For this project we chose two well known ciphers, a representative of a stream cipher and a
representative of a block cipher. We chose these ciphers since there are differences in how one
organizes algebraic attack for these two cipher categories. The stream cipher, LILI-128, is well
known in the area of cryptanalysis since it was shown to have an exploitable weakness, and we
use this weakness to lower the polynomial degree in our attack. The block-cipher, KASUMI, is
very much in use today and we are not aware of any published algebraic weaknesses.

5.1 The ciphers

5.1.1 KASUMI

KASUMI is a blockcipher used in the security architecture of 3GPP systems [17]. Both the confi-
dentiality function (f8) and integrity function (f9) in UMTS are based on KASUMI. In GSM,
KASUMI is used in the A5/3 key stream generator, and in GPRS it is used in the GEA3 key
stream generator. KASUMI is a Feistel network, it operates on 64 bit input to produce 64 bit out-
put under a 128 bit key. We take a closer on the inner functioning when we generate polynomial
equations for KASUMI (see 5.3.2).

FOi FLi

FOi+1 FLi+1

FOi+2 FLi+2

Li−1
Ri−1

Li
Ri

Li+1
Ri+1

Ri+2
Li+2

KLiKOi, KIi

KLi+1

KLi+2

KOi+1, KIi+1

KOi+2, KIi+2

32 32

64

Figure 1: KASUMI.

In Figure 1 we see three rounds of KASUMI. Input to each round i is 64 bit, which is split in

43

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

FIi1

FIi3

FIi2

KOi,1

KIi,1

KOi,2

KIi.2

KOi,3

KIi,3

16 16
32

(a) FO function

S9

S9

S7

S7

KIi,j,1KIi,j,2

zero-extended

zero-extended

truncated

truncated

9 7
16

(b) FI function

Figure 2: FO and FI functions.

Bitwise AND operation

Bitwise OR operation

One bit left rotation

16 16
32

KLi,1

KLi,2

AND

OR

AND

OR

Figure 3: FL function.

44

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

half such that Li−1 and Ri−1 is 32 bit. From the start, a 64 bit plaintext is split in half:

Plaintext = L0 || R0

Then for each round i, 1 ≤ i ≤ 8;

Li =Ri ⊗ fi(Li−1, RKi)
Ri =Li

where KOi, KLi and KIi are the i’th round keys. See Appendix A for the construction of round
keys. The function fi for rounds 1 ≤ i ≤ 8 is composed of subfunctions FL, FO and FI (see
Appendix A.2) as follows:

fi(I, RKi) =

{
FL(FO(I, KOi, KIi), KLi) if n is even
FO(FL(I, KLi), KOi, KIi) if n is odd

The non-linear parts of KASUMI are the S-boxes and the FL function.

5.1.2 LILI-128

LILI-128 [16] keystream generator is an LFSR based synchronous stream cipher with a very
simple structure, and uses a 128 bit key. Two binary LFSRs (linear feedback shift register) and
two functions are used to generate a pseudo random binary keystream sequence. It consists
of two subsystems, the clock control subsystem and the data generation subsystem. The data
generation subsystem uses an integer sequence from the clock control subsystem to control the
clocking. LILI-128 was broken completely in [39].

CLOCK CONTROL

LFSRd

fc fdc(t) z(t)

LFSRc

DATA GENERATION

. . . k n . . .

Figure 4: LILI-128

The clock control subsystem consist of a 39 bit register, initialized by the first 39 bits of the
key and is regularly clocked. The feedback polynomial of LFSRc is the primitive polynomial

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

45

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

which gives a maximum-length sequence of period Pc = 239−1. To produce the non-zero integer
sequence c(t) ∈ {1, 2, 3, 4} it uses the function

fc(x12, x20) = 2 · x12 + x20 + 1

which operates on k = 2 stages.
The data generation subsystem consists of an 89 bit register, initialized with the last 89 bits

of the 128 bit key. The feedback polynomial of LFSRd is the primitive polynomial

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1

which gives a maximum-length sequence of period Pd = 289 − 1. The non-linear Boolean output
function fd takes n = 10 stages as input (see Appendix B). Written as a polynomial, fd is a
degree 6 polynomial in ten variables (see Appendix B). If the data generation subsystem was
regularly clocked, it would be a non-linear filter generator. With the irregular clocking of LFSRd,
the output z(t) can be viewed as a decimated sequence from a regularly clocked non-linear filter
generator.

5.2 Miscellaneous

As explained earlier, we implemented monomials and polynomials in such a way that reduction
by field equations is implicit. Even though X ·Y2 ·Z3 and X ·Y ·Z are distinct monomials they will
evaluate to the same on all possible inputs in F2. Thus to be formally correct, we are working
in F2[x1, x2, . . . , xn]/(x21 + x1, x22 + x2, . . . , x2n + xn). Automatic reduction by field equations will
simplify things a lot.

It will reduce memory impact since our polynomial ideal will be smaller by the fact that the
field equations x2i + xi = 0∀xi ∈ F2[x1, x2, . . . , xn] are already elements in the ideal. We can see
this by considering two monomials, for instance Xa1 ·X2 ·Xb3 and Xa+11 ·X22 ·Xb3 . These two classes
of monomials are not divisible and may potentially be the leading terms of base polynomials.
When reduction by field equations is implicit, these leading terms are the same and only one
instance will exist in the base.

On the other hand we cannot take advantage of algorithmic and algebraic tricks concerning
homogeneous polynomials since variable degree is no longer an issue.

From a practical point of view, we do not need to consider any existence of solution issues. The
simple fact is that all polynomials come from a cipher-algorithm, and every output bit is a binary
combination of plain-text bits, key-bits and constants so we can safely assume uniqueness, i.e.
given plaintext and key produce unique ciphertext. The primary question is how to solve these
equations using Gröbner Bases techniques in the most efficient way.

Let us start with some basic facts concerning binary polynomials.

Definition 5.1. (i) The maximum number of different monomials of degree d in n variables is :

Md
max =

(
n

d

)
.

46

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

(ii) The maximum number of terms in a polynomial of total degree d in n is:

Tdmax =

d∑
i=0

Mi
max =

d∑
i=0

(
n

d

)
Polynomial division algorithm deals with monomials one by one, so the number of monomials

per polynomial is obviously important. From the above we can estimate that:

(1) Keeping the number of variables constant, and increasing the degree d by one will increase
the maximum number of monomials by a factor of ≈ n

d+1

(2) Keeping the degree constant, and increasing the number of variables n by one will increase
the maximum number of monomials by a factor of ≈ 1

So the polynomial total degree is computationally much more important than the number of
variables. Another thing to worry about is reduction to zero, i.e. polynomials that are reduced to
nothing. This consumes a lot of resources and gives us no new information about the solution. So
reduction to zero must be avoided if possible. The art of solving polynomial systems is an active
research field and there are much more to solving polynomial equations. A very good book on
these issues is [2].

Let us investigate the dynamics of our algorithm. Since we are constructing a d-truncated
basis, we are not interested in anything with a degree > d. Thus we restrict S-polynomials
to a maximum degree also. If we feed the algorithm polynomials from a list of precomputed
polynomials, it is useful to order the precomputed list by degree, then by leading terms. Seen
from the algorithm’s perspective: the only visible part of a polynomial is the leading term, thus
a polynomial is defined by its leading term only. So internally we only have to keep track of all
leading terms of the current base. We do this by having d ordered lists of leading terms, one for
each degree. The list over leading terms of degree w , or w-list, needs room for

(
n
w

)
monomials.

So assume an input-polynomial p of degree d, i.e. the maximum degree. Then we just check
the d-list whether the place for LT(p) is vacant. If it is, we occupy it. If it isn’t, we know that we
can reduce p since a polynomial with the same leading term exists in the current base. Reducing p
gives us a new polynomial p̃ with a smaller, in the monomial ordering sense, leading term LT(p̃),
and we check if this leading term exists in the list, and so on. When we know that LT(p̃) is not in
the d-list, we must check if we have leading terms in a list for degrees < d which divides LT(p̃). If
this is the case, we can further reduce LT(p̃). Now assume that the degree of m = LT(p) initially
was w < d, or that p was reduced until the degree of m = LT(p̃) is w < d. Since we require that
all leading terms are mutually prime, i.e. no leading term is divisible by another leading term,
we must check ifm divides any leading term in the current base with degree > w. Ifm of degree
w divides the leading term LT(q) for some polynomial q in the current base of degree t > w, we
can reduce q. This means that the place for LT(q) in the t-list is permanently vacant, and by the
same argument all places for leading terms divisible by m are rendered permanently vacant.

Proposition 5.2.1. Let l < d where l, d ∈ N, and let Md
n be monomials in F2[x1, x2, . . . , xn] of

degree d. Let G be a base of a polynomial ideal I ⊆ F2[x1, x2, . . . , xn]. A polynomial with a leading
term of degree l < d will render

(
n−l
d−l

)
permanently vacant places in the d-list.

47

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Proof. Given a leading term m of degree l < d. Since there are l variables in a leading term of
degree l, we can multiply m with d − l variables, not in m, to create m̃ of degree d. Thus d − l

variables can be chosen out of n − l variables. The number of different combinations of d − l

variables out of n− l variables is
(
n−l
d−l

)
. Each of these monomials can be a leading term and they

are all divisible by m.

Corollary 5.2.2. Let l, d ∈ N and p ∈ F2[x1, x2, . . . , xn] be a polynomial of degree l < d, and let
Ld be the set of all t-lists, where l < t ≤ d. p renders a total number of

d∑
i=l

(
n− l

i− l

)
permanently vacant places in the lists in Ld.

Proof. This follows from 5.2.1 when we consider all t-lists, l < t ≤ d.

An interesting question to ask is: how many base-polynomials of a certain degree do we need
to reduce all input polynomials of larger degree? It is easy to construct a 2-list that will reduce
all polynomials of degree > 2, to polynomials of degree ≤ 2.

Example 5.1 (Full degree 2 list). Assume we are given a set of N different variables. Split the
set in half. If N is even we have two sets containing N

2
variables, and if N is odd we have two

set containing N+1
2

and N−1
2

variables. To form a monomial in 3 variables or more, i.e. degree 3
or more, we need to pick at least two variables from the same set. We now fill the 2-list with all
possible monomials of degree 2 constructed from the variables in the same set. Since any degree ≥ 3
monomial M must be constructed by picking at least two variables from the same set, we know that
there exists a monomial in our 2-list that divides M. For N even, this gives

2 ·
(
N
2

2

)
=
N(N− 2)

4
monomials

in the 2-list. If N is odd, this gives(
N+1
2

2

)
+

(
N−1
2

2

)
=

(N− 1)2

4
monomials

in the 2-list. Since the total number of possible monomials of degree 2 is
(
N
2

)
, and

N(N−2)
4(
N
2

) =
1

2
−

1

2(N− 1)

(N−1)2

4(
N
2

) =
1

2
−

1

2N

we see that we need under 50 % of the total number of possible degree 2 monomials to assure that
our base stays at degree 2. Further, assuming we already have NL < N linear polynomials in our
base, we can substitute (N−NL) for N in the above calculations.

48

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Intuition, and the Shape Lemma tells us that given enough polynomials we will eventually fill
up every non-permanently vacant place in the leading term lists, which eventually will reduce
every new polynomial to a linear polynomial.

A little about S-polynomials. Creating S-polynomials is a clever way of "lifting out" new lea-
ding terms hidden behind old ones. But there are three undesirable consequences with creating
S-polynomials: S-polynomials have increased total degree, they are very often reduced to zero
and they have the uncanny ability to result in dense polynomials with a large number of mo-
nomials. These dense polynomials soon "infect" part of the current base by being involved in
reductions, and thus ruins any structure and/or sparsity the current base possibly had. Given
enough input-polynomials, S-polynomials should be avoided. It is important to recognize that
constructing S-polynomials from a linear polynomial will always reduce to zero. Since this is not
entirely trivial we will present it as a lemma.

Lemma 5.2.3. S-polynomials constructed from a linear polynomial will reduce to zero.

Proof. We construct an S-polynomial of degree d from polynomials P1 and P2 where we are using
monomial ordering >GRLEX and

P1 =

S∑
i=0

Xi ,non-zero variables Xi

P2 =

T∑
i=0

Mi ,of degree d− 1 where the Mi’s are non-zero monomials

where M0 not divisible by X0. Then the S-polynomial will have the form

Spol = X0

S∑
i=1

Mi +M0

T∑
i=1

Xi ,of degree d

Assume that X0 ·Mi >GRLEX X1 ·M0 for 0 < i < k. Then we can reduce repeatedly byMi ·P1, 0 <
i < k since the leading term contains X0. Then

Sredpol = X0

S∑
i=k

Mi + (M0 + . . .+Mk−1)

T∑
i=1

Xi

Now we must have thatM0 ·X1 >GRLEX X0 ·Mk. ThenM0 ·Xi >GRLEX X0 ·Mk for 0 < i < T−1.
Since the leading term of the S-polynomial contains M0 we can reduce repeatedly by Xi · P2 for
0 < i < T − 1. We now get that

Sredpol = (X0 + . . .+ XT−1)

S∑
i=k

Mi + (M0 + . . .+Mk−1) · XT

49

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

If M0 ·XT >GRLEX X0 ·Mk (we may have that XT ≡ 1) then we can reduce further by XT · P2
and we end up with

Sredpol = (X0 + . . .+ XT)

S∑
i=k

Mi = P1 ·
S∑
i=k

Mi

We see that the leading term contains X0, and it will reduce to zero by repeatedly reducing by
Mi · P1 for k ≤ i ≤ S.

If X0 ·Mk >GRLEX M0 · XT we must have that XT ≡ 1 and

Sredpol = (X0 + . . .+ XT−1)

S∑
i=k

Mi + (M0 + . . .+Mk−1)

Assume that X0 ·Mi >GRLEX M0 for k ≤ i < l. Then we can reduce repeatedly by Mi · P1 for
k ≤ i < l and we get

Sredpol = (X0 + . . .+ XT−1)

S∑
i=l

Mi + (M0 + . . .+Ml−1)

Now M0 is the leading term and we can reduce by P2 and get

Sredpol = (X0 + . . .+ XT−1 + 1)

S∑
i=l

Mi = P1 ·
S∑
i=l

Mi

As before, this clearly results in reduction to zero by repeatedly reducing using Mi · P1 for
l ≤ i ≤ S, and this proves the lemma.

5.3 Generating polynomials

How to generate a system of equations which reflects all aspects of the cipher? In our case, this
means taking the original cipher algorithm, which operates on bits and sequences of bits, and
rewrite it such that it operates on polynomials instead. Thus every bit, during every stage in the
cipher algorithm is considered a polynomial. And the only unknown bits are the key bits, and
those will be the variables. We assume to know, or to have guessed correctly, part of the key.

5.3.1 LILI-128

We only consider the data-generation subsystem of LILI-128, thus we assume to know at least
the first 39 bits of the key. For a strategy for guessing the clocking sequence in LILI-128 see [40].

For the data-generation subsystem we have irregular clocking from the clocking-subsystem
and an 89-bit register with the feedback polynomial:

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1

50

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

This means that if the integer value from the clocking-subsystem is t then values in the stages
move t places, i.e. the value in register x moves to register x− t mod 89. The last register, stage
89, is controlled by the feedback polynomial, or as a recurrence equation

u [89+ t] = u [88+ t]⊕u [50+ t]⊕u [47+ t]⊕u [36+ t]⊕u [34+ t]⊕u [9+ t]⊕u [6+ t]⊕u [t]

After all the bits in the registers have shifted, we take the values in the stages
0,1,3,7,12,20,30,44,65 and 80 and create a 1024 bit number from them, and pass it through
the output function (see Appendix 12). A Boolean function can be transformed to an algebraic
normal form - or polynomial - via it’s truth table and the Möbius transform, and the polynomial
in 10 variables corresponding to the output function fd is seen in Appendix 13.

Considering the initial state of the registers as unknown variables, we see that stage 89 is a
linear combination of 8 earlier stages. So the stages can be modeled as linear polynomials. The
clocking will be an integer in the set (1, 2, 3, 4), and the shift procedure is done just as many
times.

The function fc in the clocking subsystem takes the value from two stages:

fc(x12, x20) = 2 · x12 + x20 + 1

The different outcomes, i.e. 1,2,3 or 4, from fc are determined by quadratic equations in x12 and
x20. If we were to consider the first 39 bits as unknowns we would have to multiply the stage
polynomials with these quadratic equations for each shift.

If we look at fc we see that to shift only once, then (x12, x20) = (0, 0). A polynomial modeling
this is f00 = x12 · x20 + x12 + x20 + 1, which is 1 when (x12, x20) = (0, 0) and zero otherwise.
For the stages to shift twice, the current (x12, x20) = (0, 1), and a polynomial to model this is
f01 = x12 · x20 + x20, and so on. So at time t, the value of stage x (< 89) is

u[x] = f00 · u[x+ 1] + f01 · u[x+ 2] + f10 · u[x+ 3] + f11 · u[x+ 4]

We see that for each clocking the stages are multiplied by a quadratic polynomial and will soon
grow beyond any hope of dealing with them computationally. So this is clearly not the way to
go. We refer again to [40] for an idea how to find the clocking bits of the key. We will from here
on assume to know the clocking key bits.

If we know the clocking bits of the key, it is easy to model the internal state of the data-
generation subsystem. Each stage is a linear polynomial, and is initialized with the last 89 bits of
the key. If the last n < 89 bits of the key are unknown then the key will be:

(bit0, bit1, . . . , bitn−1, p1, p1, . . . , pn)

where bitj ∈ {0, 1} is known and each linear polynomial pi is modeled as in Section 4.1. Under
these conditions, each shift is done the usual way and the feedback stage is just addition of linear
polynomials.

The output polynomial (see Appendix 13) is a degree 6 polynomial in 10 variables. As we
have seen earlier, a degree 6 polynomial gives us in worst case a polynomial with

∑6
i=0

(
n
i

)
monomials. With e.g. 40 unknown bits this will take ≈ 30 Mb of storage per polynomial - and
we are going to need a lot of polynomials.

51

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Thus we need to lower the degree of the polynomials, and there exist some techniques for
this.

Definition 5.2 (Annihilator). Let f ∈ K[x1, . . . , xn] be a polynomial of degree d > 1. A non-zero
polynomial g ∈ K[x1, . . . , xn] is called an Annihilator if

f · g = 0

We need low degree annihilators.

Definition 5.3 (Degree-Reductor). Let f ∈ K[x1, . . . , xn] be a polynomial of degree d > 1. A
non-zero polynomial q ∈ K[x1, . . . , xn] we have called a Degree-Reductor if

f · q = h, and deg(h) < deg(f)

Example 5.2. Let us look at the polynomial of degree 3

f(x1, x2, x3) = x1x2x3 + x1x2 + x2x3 + x1 + x2

Now, x1andx3 are a degree-reductor since

x1 · 0(x1x2x3 + x1x2 + x2x3 + x1 + x2) = x1x2x3 + x1x2 + x1x2x3 + x1 + x1x2 = x1

and

x3 · (x1x2x3 + x1x2 + x2x3 + x1 + x2) = x1x2x3 + x1x2x3 + x2x3 + x1x3 + x2x3 = x1x3

And g = x1x3 + x1 is clearly an annihilator.

How can we take advantage of this?
Since we perform a known-plaintext attack, this is equivalent to a known keystream sequence
since plaintext is XOR’ed with the keystream to produce the ciphertext. The output function of
LILI-128 produces one bit at each clocking t, i.e.

fd(Y(t)) = fd(y0(t), y1(t), y3(t), y7(t), y12(t), y20(t), y30(t), y44(t), y65(t), y80(t)) ∈ {0, 1}

where yi(t) is the value in stage i at clocking t.
If the cipher outputs a 1 at clocking t, i.e. fd(Y(t)) = 1 and we have an annihilator polynomial

g, such that fd(X) ·g(X) = 0 ∀X, then we must have that g(Y(t)) = 0 for this to be satisfied. In the
same way, if the cipher outputs a 0 at clocking t, i.e. fd(Y(t)) = 0 and we have a degree-reductor
polynomial q such that fd(X) · q(X) = h(X) ∀X, then we must have that h(Y(t)) = 0. If we can
find annihilators and degree-reductors, we can work with polynomials with degree < 6 instead,
and this is a huge advantage.

How to find annihilators polynomials? There are many ways of attacking this problem (see
e.g. [41]), but since LILI-128’s combiner polynomial only consists of 10 variables, we can easily
brute-force it.

If we try to generate all possible degree 4 polynomials the naíve way, we soon run into trouble.
Since we have 10 variables there are

∑4
i=0

(
10
i

)
= 386 different monomials of degree 4 or less.

52

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

This gives us 2386 ≈ 10116 different polynomials. The number of elementary particles in the
universe is estimated to ≈ 1080 so we see that this is not the right approach.

What we do is to multiply fd(X) with a general degree 4 polynomials with 386 binary para-
meters:

Pgen = a0 + a1 · x1 + . . .+ a1,2 · x1x2 + . . .+ a6,8,9,10 · x6x8x9x10 + a7,8,9,10 · x7x8x9x10
and we compute all values which can be assigned to the binary parameters to ensure that fd(X)∗
Pgen(X) = 0. This can be done quite fast by generating a large binary table, where columns are
labeled with all possible monomials up to degree 10, and rows are labeled with fd(X) multiplied
with all possible monomials up to degree 4 corresponding to a binary parameter. Since each
column represents a monomial in the the product Pgen ∗ fd(X), we must have that the sum of all
parameters in each column is zero. This gives us one linear equation in 386 parameters for each
possible monomial. See below for an example:

x1 x2 . . . mi mi+1 . . . x1x2x3x4x5x6x7x8x9x10
1 · fd a0 a0 . . . 0 a0 . . . 0
x1 · fd a1 0 . . . a1 0 . . . 0
x2 · fd 0 a2 . . . 0 0 . . . 0

. .
x10 · fd 0 0 . . . a10 a10 . . . 0
x1x2 · fd 0 0 . . . a[1,2] 0 . . . 0
x1x3 · fd 0 0 . . . 0 a[1,3] . . . 0

. .
x6x8x9x10 · fd 0 0 . . . a[6,8,9,10] a[6,8,9,10] . . . 0
x7x8x9x10 · fd 0 0 . . . 0 a[7,8,9,10] . . . a[7,8,9,10]

Now we sum all parameters in each column

x1 a0 + a1 = 0
x2 a0 + a2 = 0

.
mi a10 + a[1,2] + . . . = 0

mi+1 a10 + a[1,3] + . . . = 0
.

This system of equations turns out to be underdefined with 14 free variables due to identical
equations. Generating all possible polynomials using values for the free variables gives 16383
annihilator polynomials (14 free variables, thus 214 − 1 possible choices). All these polynomials
are not linearly independent of course. Now, if gi, i ∈ N are annihilators for fd, so are all com-
binations gs =

∑
i ai · gi, ai ∈ K[x1, . . . , xn]. Thus we can process this system of equations with

our Gröbner bases implementation. The 4-truncated basis for this system turned out to consist
of 16 annihilator polynomials of degree 4 (see Appendix B).
For the degree-reductor polynomials we do a similar thing. The only difference is that we allow
the sum of all parameters in each column to be non-zero. As before we get a system with a certain
number of free variables, and run the system of equations through our Gröbner bases implemen-
tation and pick the polynomials that are reduced to a lesser degree. We found 17 degree-reductor

53

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

polynomials (see Appendix B).
Since each cipher-internal bit is represented by a polynomial, the 10 stages that are input to the
combiner function are polynomials. The new combiner function is represented by 15 polyno-
mials if the output bit is a 1 and 17 polynomials if the output bit is a 0. So instead of producing
one degree 6 polynomial for each output bit, we now produce 15, or 17, degree 4 polynomials
depending on the output bit.

5.3.2 KASUMI

As in LILI-128, we represent the unknown key-bits as linear polynomials in one variable. After
the key schedule, the round keys are represented by linear polynomials in the unknown key-bits.
The input to the sub-functions for each round are now polynomials representing the partly en-
crypted plaintext, and linear polynomials representing the round-keys. The only non-linear parts
in KASUMI algorithm are the S-boxes and the Boolean AND and OR parts in the FL subfunction.

As presented in Appendix A.3, the S-boxes of KASUMI can be represented as a system of
polynomials. The polynomial system for S7 contains degree 3 polynomials and the polynomial
system of S9 consists of degree 2 polynomials. The sub-function FL produces quadratic polyno-
mials, and sub-function FI passes polynomials repeatedly through non-linear S-boxes. It is easy
to see that the degree of the resulting polynomials soon get very large. To mitigate this we must
introduce intermediate variables. For each polynomial p(x1, x2, . . . , xs), where s is the total num-
ber of variables so far, we check the degree before we send it through the S-box. If deg(p) > 1
we introduce a new intermediate variable xs+1 and generate the equation

xs+1 + p(x1, x2, . . . , xs) = 0

We see that xs+1 "absorb" the value of p(x1, x2, . . . , xs), and can be seen as an alias for p. The
equation is considered as part of the final system of equations.

Then we send xs+1 through the S-box instead, forcing linear input to the S-boxes. For each
call to subfunction FI we have 4 calls to S-boxes, i.e. 32 bits are input to S-boxes thus potentially
producing 32 new variables. FO calls FI three times, i.e. potentially producing 96 new variables
per round, FLmay produce 32 variables per round, and it all sum to potentially 128 new variables
per round.

If all key-bits are unknown, and let nr be the number of rounds and npc be the number of
plaintext-ciphertext pairs, we will produce

npc · nr · 128+ 128 variables

and
npc · nr · 128+ npc · 64 equations

At the end of the last round we get 64 polynomials representing the 64-bit ciphertext ci, 1 ≤
i ≤ 64. To get valid equations we must add the ciphertext bits to the polynomials, i.e. if pi(X)
represents the polynomial output for ciphertext bit ci, then pi(X)+ ci = 0 is the equation for the
i’th ciphertext bit.
We can also consider decrypting the ciphertext with the unknown key and collect equations.
Decryption with all rounds will produce an abundance of variables, which is not desirable. But

54

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

we can analyze the internal states of KASUMI when decrypting and compare them with the
internal states when encrypting. An internal state is some sequence of bits, somewhere in the
cipher during operation. During decryption we stop when we reach a point where intermediate
variables must be introduced, since we want more information (or equations) not more variables.
If we have N rounds of encryption, then we compare internal states from encryption round i and
decryption round N− i. If we are at the same place in the same sub-function we have equivalent
states. If we take a polynomial from the encryption state and a polynomial from the decryption
state, the sum must equal zero since the internal state represents the same bit.

55

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

6 Results

As we soon found out, generating S-polynomials is not the way to proceed. For LILI-128, gene-
rating S-polynomials up to degree 4 meant that most will reduce to zero - which is a total waste
of time. For KASUMI it meant producing enormous polynomials since we have an abundance of
intermediate variables, thus destroying sparseness and structure. We can compensate to a certain
degree by increasing the number of plaintext/ciphertext pairs.

6.1 LILI-128

As described above, the degree 6 combiner polynomial was "split" into 15 annihilator polyno-
mials for a 1 bit output and 17 degree-reductor polynomials for a 0 bit output. One annihilator
polynomial was discarded due to it’s size, and all test runs showed that the 16’th polynomial
increased the running time. In the beginning of this project, the procedure was to generate a
huge amount of polynomials and write them to a file. Then the Gröbner basis algorithm repea-
tedly read a fixed number of polynomials from the file and processed them. When reviewing
the logs we noticed that during the first few seconds the algorithm produced a small number of
linear polynomials - and less important, a small number of degree 2 and degree 3 polynomials.
This number depended on the key: the more zero bits in the known part of the key, the more
linear polynomials are produced. The explanation is that the zero bits cancel out a lot of mono-
mials in the beginning before the registers are properly mixed. After these few seconds, LILI-128
produces only degree 4 polynomials, with a very high probability. Solving systems of equations
with degree 4 polynomials is hard, so generating S-polynomials beyond degree 4 is not even an
option. So we must limit our polynomial base to degree 4, or a 4-truncated basis. To be sure we
are not running out of polynomials during a Gröbner basis algorithm run, a lot of polynomials
must be generated, and that takes a lot of time - the more variables involved, the more time it
takes to generate a polynomial. To take advantage of the linear polynomials produced during
the first seconds, the LILI-128 algorithm was incorporated into the Gröbner basis algorithm such
that we could eliminate variables, (or leading terms) directly in the LILI-128 registers. Then we
could generate polynomials, without the leading terms from the linear polynomials, on the fly.
Generating polynomials was done using parallel computation. This "feedback" technique saved a
lot of time, and also secured us from running out of polynomials during a run. In most instances
we had a 700% reduction in running time by doing it this way.

In Figure 5 we can see a graphical representation of 813 LILI-128 polynomials in 40 variables
(representing unknown key bits) from 60 output bits. There is one dot for each monomial, and
one row represents one polynomial with the leading term to the right, and the last generated
polynomial on the bottom. Blue dots represent monomials containing unknown key bits and red
dots are monomials containing only intermediate variables. Since we are not using intermediate
variables here, the only red dots represent a binary 1. There are five columns: the first is a graph
over the total number of monomials in the polynomials, and the next four are the monomial

57

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

degrees. As we can see, in the first row there are monomials only in the degree 1 column,
and near the bottom we have dense polynomials with over 35000 monomials. So instead of 60
degree 6 polynomials we have 813 polynomials of degree 4 or less. It is impossible to overstate
the importance of this, and it is clear that LILI-128 has a real weakness when it comes to the
combiner polynomial. Because of this LILI-128 was upgraded to LILI-II which has a combiner
polynomial of degree 10 in 12 variables.

Since LILI-128 produces degree 4 polynomials with a huge number of monomials, we used
the parallel division algorithm. Because of the pseudo random nature of the polynomials and
the amount of degree 4 monomials possible, we are reducing polynomials to a degree less than
4 with very low probability. Thus the algorithm will spend almost all the time in the division
algorithm, and it is slowly filling up the list of leading terms, i.e. the 4-list. In Figure 6 we have
a representation of the entire current base near the end of a run with 40 unknown keybits. We
see that almost all polynomials are of degree 4. There are large vertical gaps in the monomials
and we can identify the same gaps in all degree columns. As previously mentioned, this is due
to the fact that in the first few seconds of the run we produce a number of linear polynomials
where the corresponding leading terms are eliminated from the LILI-128 registers. This leaves
permanent vacancies in the lists of leading terms and a large number of possible monomials will
not be generated.

In this particular run we had 40 unknown keybits. In the first few seconds, and for this
particular key, 18 degree 1 polynomials, 9 degree 2 polynomials and 19 degree 3 polynomials
were generated. Since we have 18 variables eliminated from the registers, corresponding to the
leading terms of the degree 1 polynomials, we have in effect reduced our problem to 22 unknown
variables. Now, the possible number of degree 4 polynomials in 22 variables is

(
22
4

)
= 7315. The

9 degree 2 polynomials leave between 85 and 1254 permanent vacancies, and the 19 degree 3
polynomials leave between 171 and 190. The total number of permanent vacancies created by
the collective effect of the degree 2 and degree 3 polynomials depends on the leading terms, but
we can safely assume that the number of polynomials in the current base, i.e. 5710, is near the
highest possible number of degree 4 polynomials we can get. The next thing we will expect is that
each new input polynomial is reduced to a polynomial of degree 3 or less. Each of these degree
3 polynomials will produce permanent vacancies in the 4-list, and the corresponding degree 4
base polynomials are removed from the base and are themselves reduced to degree 3 or less.
This avalanche effect continues until we have a solution to the system of equations.

6.1.1 Degree reduction

Degree 4 polynomials are hard to solve, so it is tempting to try degree reduction by introducing
intermediate variables. A simple way is to try the trick from Example 5.1. We split our set of
variables representing the unknown key bits into two sets, and from each set we generate all
possible degree 2 monomials. From these degree 2 monomials we assemble polynomial equations
by introducing intermediate variables.

58

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Fi
gu

re
5:

LI
LI

-1
28

po
ly

no
m

ia
ls

fr
om

60
ou

tp
ut

bi
ts

.

59

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Figure
6:D

um
p

ofthe
current

base
during

a
run.

60

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Example 6.1 (Elimination polynomials). Let one set contain X0, X1, . . . , XN. The we create(
N+1
2

)
new elimination equations by introducing the same number of intermediate variables as:

X1X0 +W10 = 0

X2X0 +W20 = 0

X1X0 +W10 = 0

. . .

XmXn +Wmn = 0

Xm+1Xn +W(m+1)n = 0

. . .

XNXN−1 +WN(N−1) = 0

This way, without introducing too many new variables, each degree 3 monomial is reduced to
a degree 2 monomial, and each degree 4 is at least reduced to a degree 3 monomial. In fact we
get a 7 to 1 ratio of degree 4 polynomials being reduced to degree 2 rather than three. We add
these equations to our current base from the start, such that each new input polynomial to the
algorithm with reduced degree. Degree reduction should of course be implemented in the parts
of the algorithm that generate polynomials so we do not have to do the same "substitutions" over
and over again. But it was done this way just to see the effect on the current base. As we can see
in Figure 7 it is not a good idea. We have polynomials with a huge number of monomials, and
we know that the division algorithm will have a really hard time. Even the simpler problems, like
32 unknown key bits, are much slower to solve than without degree reduction.

By using relinearization techniques, we get better results (see Figure 8 for a current base
with relinearization). As in relinearization (see Section 3.1.2) we find additional dependen-
cies between unknown keybits and intermediate variables, i.e. having XAXB +WAB = 0 and
XAXC +WAC = 0, we know that XCWAB + XBWAC = 0 also holds. By running the elimination
polynomials from Example 6.1, through the Gröbner algorithm with certain restrictions on the
generation of S-polynomials, we can create these dependencies.

6.1.2 Running time results

LILI-128 is very sensitive to the key used for the first output bits. A lot of binary zeros in the key
results in many cancellations of monomials, and it thus produces small polynomials for the first
few output bits. A key of just zeros will produce zero-polynomials forever. So the real metric for
performance is not the number of unknown key bits but the adjusted value, i.e. unknown key
bits minus the number of variables (leading terms) in the linear polynomials being created in the
first few bits. The use of adjusted values gives us very consistent results, independent on the key.

61

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Figure
7:D

um
p

ofthe
current

base
w

ith
degree

reduction.

62

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Fi
gu

re
8:

D
um

p
of

th
e

cu
rr

en
t

ba
se

w
it

h
re

lin
ea

ri
ze

d
de

gr
ee

re
du

ct
io

n.

63

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

The running time (see Table 1) is exponential, as theory predicts, and it closely follows the
graph of

1.38 · 10−3 · 21.15n , n is adjusted key bits

See Figure 9a for a comparison. The above results are from a computer with a four core processor,
and the constants in the expression above are of course considered platform dependent. When
run on a computer with a two core processor, the results followed (equally close) the graph of:

3.8 · 10−3 · 21.28n , n is adjusted key bits

Unknown key bits 34 35 36 37 38 39 40

Adjusted key bits 12 14 16 18 19 21 22

Running time (s) 18.8 97.0 565.7 2690.1 5958.0 24618.5 56827.6

Table 1: LILI-128 running time results

The amount of polynomials needed, or equivalently the amount of output bits, is also expo-
nential. See Table 2, and Figure 9b. The number of output bits needed closely follows the graph
of

2.5 · 20.34n , n is adjusted keybits

Adjusted keybits 12 14 16 18 19 21 22

Output bits used 45 66 101 162 217 347 438

Table 2: LILI-128 output bits used

Assuming the complexity estimates are good, this means that trying to solve a system of
equations for 64 unknown key bits will take 255 seconds, or around 1 billion years using 220

output bits. This is not realistic.

64

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

(a) Exponential running time results.

(b) Exponential output bits used.

Figure 9: Exponential results for LILI-128

65

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

6.2 KASUMI

The polynomial system for KASUMI was not generated by the "feedback" technique, but poly-
nomials were pre-computed with randomly generated plaintext and written to file. Before being
written to file, the polynomials were sorted according to increasing degree and increasing lea-
ding terms. The sorting had a big impact on running time. During a run, the algorithm reads
a fixed number of polynomials in each "loop" from that file. So for each run we had to decide
upon the number of plaintext/ciphertext pairs to use. The total number of variables (unknown
key bits and intermediate variables) in the system of equations is directly proportional to the
number of plaintext/ciphertext pairs. As opposed to LILI-128, KASUMI does not show the consis-
tency in running time results. The running time results are not directly dependent on the number
of unknown key bits or plaintext/ciphertext pairs. In fact, it is quite confusing and no general
conclusions could be drawn regarding for instance the optimal amount of plaintext/ciphertext
pairs for a given number of rounds and/or unknown key bits (see Table 10).

We had two modes when generating polynomials: with, and without decryption comparisons.
With decryption comparisons we compare internal states from encryption with equivalent states
from decryption. In such a way, we generate more equations without introducing new interme-
diate variables. This improved the running time for systems of equations for three rounds only.

10 12 14 16 18 20 22 24 26 28 30
0
5
10
15
20
25

Plaintext

r r
r

r r r
r

r
r r

r
r

Figure 10: Running time for two round KASUMI, 32 unknown key bits, with varying number of
plaintext/ciphertext pairs

The total number of variables depends on the number of rounds and the number of unknown
key bits. The goal was to find the spot where the number of plaintext/ciphertext pairs matches
the unknown key bits in an optimal way. We did not find a consistent procedure for this.

In Figure 11 we see a typical equations system for KASUMI. The system of equations is highly
structured and very sparse.

66

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Fi
gu

re
11

:S
ys

te
m

of
eq

ua
ti

on
s

fo
r

tw
o

ro
un

d
KA

SU
M

I
w

it
h

32
un

kn
ow

n
ke

y
bi

ts
an

d
12

pl
ai

nt
ex

t/
ci

ph
er

te
xt

pa
ir

s.

67

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

6.2.1 One round KASUMI

Since KASUMI only processes 32 bits of input per round we thus have equations for only half the
plaintext.

With more unknown keybits we will have more and more keybits in each round-key, so the
system of equations changes. We could not solve 88 bits in a reasonable time, but as we see in
Figure 12 we do not have to. The figure represents a timeline for the number of key bits found.
The dots are time-coordinates for when the algorithm finds the value of an unknown key bit, and
the number above the dots are key bits left to find. As we can see, we have 39 key bits left after
750 seconds, and we must wait until 1400 seconds before we have 32 key bits left. But we know
from Table 3 that we can solve a system of equations in 39 unknown key bits in 28 seconds, so
the logical thing to do is to terminate the 88 bit run when we have 39 key bits left, then generate
a system of equations for 39 unknown key bits and solve that. Thus we can solve 88 unknown
keybits in 750 + 28 seconds + the time it takes to create a system of equations for 39 unknown
keybit, and this is definitely faster than solving the whole 88 bit system of equations. Above 88
unknown key bits we where unsuccessful.

Unknown key bits Pairs Variables Equations used Time

39 20 679 950 28 seconds

64 40 1984 2200 1 minute 50 seconds

72 50 2472 2750 3 minutes 40 seconds

Table 3: Solved system of equations for one round

0 150 300 450 600 750 900 1050 1200 1350 1500

88 bit
39 32

Seconds

rr r rrrrr rr rrr rr r r r rr

Figure 12: Timeline for one round, 88 unknown key bits

68

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

6.2.2 Two round KASUMI

As we can see in Table 4, we have hit the spot for 72 unknown key bits. All unknown key bits are
found after just 17 minutes, which is much faster than solving a 64 unknown key bit system of
equations. It also uses fewer equations than we have variables, 3600 respective 5832. We have
a very similar situation for 88 unknown key bits for two rounds as in one round KASUMI, see
the timeline in Figure 13. In the two round case, the 88 unknown key bit run terminated with
a memory error, but we can still recover the 88 unknown key bits by generating a system of
equations for the 39 key bits not found and solve it.

Unknown key bits Pairs Variables Equations used Time

32 20 1632 1150 1 minute 34 seconds

48 35 4528 2850 16 minute 4 seconds

64 40 5824 3700 46 minutes 2 seconds

72 40 5832 3600 17 minutes 13 seconds

Table 4: Solved system of equations for two rounds

0 150 300 450 600 750 900 1050 1200 1350 1500

88 bit
39

Seconds

rrr rrrrrrr rrrr rrrrrrrrrrr

Figure 13: Timeline for two rounds, 88 unknown key bits. This run eventually failed with memory
errors.

69

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

6.2.3 Three round KASUMI

Now things are getting tougher. The systems of equations are huge; the system of equations for
48 unknown key bits and 40 plaintext/ciphertext pairs have 9008 variables (see Table 5). As we
see in the timeline in Figure 14 we have 36 unknown key bits left after 5 hours. After 11 hours
there are still 30 key bits left to find. Since we know we can solve an equations system in 40
unknown key bits in under two hours we have just wasted time.

Unknown key bits Pairs Variables Equations used Time

32 20 3552 2950 5 minutes 38 seconds

40 30 6760 5500 1 hour 19 minutes

48 40 9008 8000 17 hours 21 minutes

Table 5: Solved system of equations for three rounds

0 2 4 6 8 10 12 14 16 18 20

48 bit
36 30

Hours

rr rr rr r r rr rr r rr r rr

Figure 14: Timeline for three rounds, 48 unknown key bits

6.2.4 Four round KASUMI

Four round KASUMI is a whole new ballgame. We could only solve a system of equations
for 3 unknown key bits and 2 plaintext/ciphertext pairs, and that was with generation of S-
polynomials. All other variants failed to produce the value of a single unknown key bit. Even
increasing to a 4-truncated basis using S-polynomials and letting it crunch for two days did not
help.

70

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

7 Conclusion

Solving systems of multivariate polynomial equations in an efficient way is important to Algebraic
Cryptanalysis. The general problem of finding solutions for systems of polynomial equations
belongs to the class of NP-complete problems. Regardless - some large problems, especially
sparse and overdefined systems of equations, can be attacked quite efficiently. The method of
Gröbner Bases is one of the most efficient ways of attacking such problems, but "On most problems
of even intermediate size, Gröbner Bases oriented methods, [computational algebra systems] like
Magma and Singular, crash due to a lack of sufficient memory."’ [42]. The excessive use of memory
when computing Gröbner bases, is mostly due to dense polynomials with high degree. In this
thesis we have investigated the use of d-truncated Gröbner bases over a Boolean ring, to mitigate
the need for excessive amounts of memory. A Gröbner basis algorithm was developed for this
purpose, and the algorithm was applied to systems of equations induced from the symmetric
ciphers LILI-128 and KASUMI.

Below, we summarize the main results and try to answer the research questions posed in
Section 1.4.

1. Can we build a Gröbner basis algorithm that is less memory intensive, using d-truncated Gröbner
bases over a Boolean ring?
In section 4 we presented our implementation of such an algorithm. The algorithm was built
from the bottom up, based on Buchberger’s Homogeneous Algorithm. Care was taken to mini-
mize memory consumption and a polynomial model based on binary numbers was developed
for this purpose.

2. How will it perform on real life systems of equations?
On some levels it performed remarkably well. For systems of equations induced from KA-
SUMI, we where able to solve - in the sense of identifying unknown key bits - a system of
equations in over 9000 variables in 17 hours and without memory problems. This particular
result was from 3 round KASUMI with 48 unknown keybits and 40 plaintext/ciphertext pairs.
As shown in Section 6.2.3, we could have solved this particular system in less time by termi-
nating the algorithm before full time, and used keybits identified so far to generate a new set
of equations. The low memory consumption is mostly due to the highly structured and sparse
systems of equations. S-polynomials where not computed since we wanted to conserve both
structure and sparsity. We did experience computations where the algorithm crashed due to a
memory error, but this seemed to be a software issue - probably with python’s interpreter or
with the JIT compiler (psyco). We where totally unsuccessful above 3 rounds. Even though
the systems of equations representing 4 rounds KASUMI are structured and sparse, it seems
that the shear number of intermediate variables is too large compared to the number of equa-
tions. This implies that the problem cannot be solved by a 3-truncated Gröbner basis.

71

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

For seemingly random systems of equations, like those induced from LILI-128, we observed
exponential running time - as theory predicts. Even though we used parallel computation
for these problems, and as mentioned in Chapter 4 this had memory implications due to the
nature of the programming language python, we did not experience problems due to a lack
of memory. Large problems did not finish in a reasonable time, and were terminated before
memory problems could occur. We dear to propose that the algorithm performed well even
in these circumstances.
Performance is a relative notion, and it is difficult to compare results. For instance, MAGMA
is a highly optimized system written partly in assembler, while our implementation is done
in python. Python is an interpreted language and is thus much slower. But we have a com-
parison from Gregory V. Bards excellent book [2]. Here he mentions an attack on Keeloq
using SINGULAR, a modern computer algebra system. Bard reports that SINGULAR required
70 seconds to solve an equation system induced from 64 rounds Keeloq with 4 plaintext/ci-
phertext pairs and 10 key bits guessed. Our implementation required 5 seconds. Even though
Bard used a less powerful computer, this indicates that our implementation is fairly efficient.

3. What compromises must be made for achieving this?
The compromise for using 4-truncated Gröbner bases on systems of equations induced from
LILI-128, is an increase in the number of output bits used that is exponential in the number
of unknown key bits.
The running time results for KASUMI where not consistent enough for identifying areas for
nontrivial compromises. In some instances we could solve a large system of equations faster
than a smaller one. We found no consistent behavior as a result of varying the number of
plaintext/ciphertext pairs.

72

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Bibliography

[1] Segers, A. J. M. Algebraic attacks from a Gröbner basis perspective. Master’s thesis, TECH-
NISCHE UNIVERSITEIT EINDHOVEN, October 2004.

[2] Bard, G. V. 2009. Algebraic Cyptanalysis. Springer.

[3] Matsui, M. & Yamagishi, A. 1992. A new method for known plaintext attack of FEAL cipher.
In EUROCRYPT, 81–91.

[4] Biham, E. & Shamir, A. 1991. Differential cryptanalysis of DES-like cryptosystems. In
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference on Advances
in Cryptology, 2–21, London, UK. Springer-Verlag.

[5] Wolf, C. 2005. Multivariate quadratic polynomials in public key cryptography. Cryptology
ePrint Archive, Report 2005/393. http://eprint.iacr.org/.

[6] Shannon, C. E. 1949. Communication Theory of Secrecy Systems. Bell Systems Technical
Journal, 28, 656–715.

[7] Courtois, N., O’Neil, S., & Quisquater, J.-J. 2009. Practical algebraic attacks on the Hitag2
stream cipher. In ISC, 167–176.

[8] Courtois, N. T., Bard, G. V., & Wagner, D. 2008. Algebraic and slide attacks on KeeLoq.
Fast Software Encryption: 15th International Workshop, FSE 2008, Lausanne, Switzerland,
February 10-13, 2008, Revised Selected Papers, 97–115.

[9] Renauld, M. & Standaert, F.-X. 5 2009. Combining Algebraic and Side-Channel Cryptana-
lysis against Block Ciphers. In 30-th Symposium on Information Theory in the Benelux.

[10] Renauld, M. & Standaert, F.-X. 2009. Algebraic side-channel attacks. Cryptology ePrint
Archive, Report 2009/279. http://eprint.iacr.org/.

[11] Buchberger, B. Bruno Buchbergeŕs PhD thesis 1965: An algorithm for finding the basis ele-
ments of the residue class ring of a zero dimensional polynomial ideal. PhD thesis, Johannes
Kepler University of Linz, 1965. English translation by Michael P. Abramson.

[12] Buchberger, B. January 2001. Gröbner bases:a short introduction for systems theorists.
Computer Aided Systems Theory - EUROCAST 2001, 2178, 1–19.

[13] Buchberger, B. July 2001. Gröbner bases and systems theory. Multidimensional Systems
and Signal Processing, 12(3-4).

[14] Faugère, J.-C. August 1999. A new effcient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139, 61–88.

73

http://eprint.iacr.org/
http://eprint.iacr.org/

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

[15] Faugère, J.-C. July 2002. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). International Symposium on Symbolic and Algebraic Computation–
ISSAC 2002, 75–83.

[16] Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., & Simpson, L. 2000. The LILI-128
keystream generator. NESSIE submission, in the proceedings of the First Open NESSIE
Workshop (Leuven, November 2000). http://www.cryptonessie.org.

[17] 3rd Generation Partnership Project (3GPP), E. 2007. Specification of the 3GPP confiden-
tiality and integrity algorithms. 3GPP TS 35.202 version 7.0.0 Release 7.

[18] Barkee, B., Can, D. C., Ecks, J., Moriarty, T., & Ree, R. F. 1994. Why you cannot even hope
to use Gröbner bases in public key cryptography: an open letter to a scientist who failed
and a challenge to those who have not yet failed. Journal of Symbolic Computations, 18(6),
497–501.

[19] Cox, D., Little, J., & O‘Shea, D. 2007. Ideals, Varieties, and Algorithms. Third Edition.
Springer New York.

[20] Kreutzer, M. & Robbiano, L. 2000. Computational Commutative Algebra 1. Springer-Verlag.

[21] Kreutzer, M. & Robbiano, L. 2005. Computational Commutative Algebra 2. Springer-Verlag.

[22] Cook, S. A. 1971. The complexity of theorem-proving procedures. In STOC ’71: Proceedings
of the third annual ACM symposium on Theory of computing, 151–158, New York, NY, USA.
ACM.

[23] Bardet, M., Faugère, J.-C., & Salvy, B. Complexity of Gröbner basis computation for Semi-
regular Overdetermined sequences over F2 with solutions in F2. Research Report RR-5049,
INRIA, 2003.

[24] Kipnis, A. & Shamir, A. 1999. Cryptanalysis of the HFE public key cryptosystem. In
Proceedings of Crypto’99. Springer.

[25] Courtois, N., Klimov, E., Patarin, J., & Shamir, A. 2000. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In In Advances in Cryptology,
Eurocrypt’2000, LNCS 1807, 392–407. Springer-Verlag.

[26] Courtois, N. & Pieprzyk, J. 2002. Cryptanalysis of block ciphers with overdefined systems
of equations. Cryptology ePrint Archive, Report 2002/044. http://eprint.iacr.org/.

[27] Cid, C. & Leurent, G. a. 2005. An analysis of the XSL Algorithm. Lecture Notes in Computer
Science : Advances in Cryptology - ASIACRYPT 2005, 333–352.

[28] Ars, G. a. a., Faugere, J.-C., Imai, H., Kawazoe, M., & Sugita, M. 2004. Comparison between
XL and Groebner basis algorithms. : Advances in Cryptology - ASIACRYPT 2004, 338–353.

[29] Sugita, M., Kawazoe, M., & Imai, H. 2006. Relation between the XL Algorithm and Gröbner
basis algorithms. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E89-A(1), 11–18.

74

http://www.cryptonessie.org
http://eprint.iacr.org/

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

[30] Ding, J., Buchmann, J., Mohamed, M. S. E., Mohamed, W. S. A. E., & Weinmann, R.-P.
2008. MutantXL. In SCC 2008.

[31] Schilling, T. May 2009. Solving non-linear random sparse equations over finite fields.

[32] Courtois, N. 2003. Fast algebraic attacks on stream ciphers with linear feedback. Advances
in Cryptology - CRYPTO 2003, 2729/2003, 176–194.

[33] Armknecht, F. ALGEBRAIC ATTACKS ON CERTAIN STREAM CIPHERS. PhD thesis, University
of Mannheim, 2006.

[34] Faugère, J.-C. & Joux, A. October 2003. Algebraic cryptanalysis of Hidden Field Equation
(HFE) cryptosystems using Gröbner bases. Advances in Cryptology - CRYPTO 2003, 2729(1-
3), 44–60.

[35] Brickenstein, M. & Dreyer, A. November 2007. PolyBoRi: A Gröbner basis framework for
Boolean polynomials. Reports of Fraunhofer ITWM, No. 122, 15(3-4), 267–278.

[36] Kernighan, B. W. & Ritchie, D. 1988. C Programming Language 2nd Editon. Prentice Hall.

[37] Courtois, N. T. 2007. CTC2 and fast algebraic attacks on block ciphers revisited. Cryptology
ePrint Archive, Report 2007/152. http://eprint.iacr.org/.

[38] Courtois, N. T. 2007. How fast can be algebraic attacks on block ciphers. In In online
proceedings of Dagstuhl Seminar 07021, Symmetric Cryptography, 07–12.

[39] Huang, X., Huang, W., Liu, X., Wang, C., jing Wang, Z., & Wang, T. 2007. Reconstruc-
ting the nonlinear filter function of LILI-128 stream cipher based on complexity. CoRR,
abs/cs/0702128.

[40] Al-Hinai, S. Z., Dawson, E., Henricksen, M., & Simpson, L. 2007. On the security of the
LILI family of stream ciphers against algebraic attacks. Information Security and Privacy,
11–28.

[41] Armknecht, F. 2004. On the existence of low-degree equations for algebraic attacks. Cryp-
tology ePrint Archive, Report 2004/185. http://eprint.iacr.org/.

[42] Bard, G. V., Courtois, N. T., & Jefferson, C. 2007. Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-
solvers. http://eprint.iacr.org/2007/024.

75

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2007/024

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

A KASUMI

A.1 KASUMI key schedule

KASUMI uses a 128 bit key. First the key K is split into eight 16 bit values

K = K1||K2|| . . . ||K8

Then a second set of values is derived from K

Ki = Ki ⊗ Ci

where Ci are the constant numbers from Table 7. Now the subroundkeys are created as below 6.
Roundkeys are denoted

RKi =(KLi, KOi, KIi)

KLi =(KLi,1, KLi,2) 32bit

KOi =(KOi,1, KOi,2, KOi,3) 48bit

KLi =(KIi,1, KIi,2, KIi,3) 48bit

1 2 3 4 5 6 7 8
KLi,1 K1 ≪ 1 K2 ≪ 1 K3 ≪ 1 K4 ≪ 1 K5 ≪ 1 K6 ≪ 1 K7 ≪ 1 K8 ≪ 1

KLi,2 K3 K4 K5 K6 K7 K8 K1 K2

KOi,1 K2 ≪ 5 K3 ≪ 5 K4 ≪ 5 K5 ≪ 5 K6 ≪ 5 K7 ≪ 5 K8 ≪ 5 K1 ≪ 5
KOi,2 K6 ≪ 8 K7 ≪ 8 K8 ≪ 8 K1 ≪ 8 K2 ≪ 8 K3 ≪ 8 K4 ≪ 8 K5 ≪ 8
KOi,3 K2 ≪ 13 K3 ≪ 13 K4 ≪ 13 K5 ≪ 13 K6 ≪ 13 K7 ≪ 13 K8 ≪ 13 K1 ≪ 13

KIi,1 K5 K6 K7 K8 K1 K2 K3 K4
KIi,2 K4 K5 K6 K7 K8 K1 K2 K3
KIi,3 K8 K1 K2 K3 K4 K5 K6 K7

Table 6: KASUMI Roundkeys.

77

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

C1 0x0123
C2 0x4567
C3 0x89AB
C4 0xCDEF
C5 0xFEDC
C6 0xBA98
C7 0x7654
C8 0x3210

Table 7: KASUMI Constants.

A.2 KASUMI Subfunctions

The three subfunctions of KASUMI, called FL, FI and FO, are defined below. We first need to
define three "helper" functions

ROL(X) = left circular rotation by one bit

ZE(X) = creates a 9 bit value from a 7 bit by appending zeros to the most significant end

TR(X) = creates a 7 bit value from a 9 bit by discarding 2 bits from the most significant end

Algorithm A.1 KASUMI subfunction FL

Input: KLi = KLi,1||KLi,2, 32 bit key
Input: I = L||R, 32 bit value
R = R⊗ ROL(L AND KLi,1)
L = L⊗ ROL(R OR KLi,2)
return L||R , 32 bit

Except for the OR part of the function FL, the non-linear parts of KASUMI is offered by the
function FI. See A.3 for the S-boxes S7 and S9.

Algorithm A.2 KASUMI subfunction FI

Input: KIi,j, 16 bit key split in K7||K9, 7 and 9 bit each
Input: I, 16 bit value

L1 = R0 R1 = S9[L0]⊗ ZE(R0)
L2 = R1 ⊗ K9 R2 = S7[L1]⊗ TR(R1)⊗ K7
L3 = R2 R3 = S9[L2]⊗ ZE(R2)
L4 = S7[L3]⊗ TR(R3) R4 = R3

return L4||R4 , 16 bit

78

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

Algorithm A.3 KASUMI subfunction FO

Input: KOi = KOi,1||KOi,2||KOi,3, 48 bit key
Input: KIi = KIi,1||KIi,2||KIi,3, 48 bit key
Input: I = L0||R0, 32 bit value
for j = 1 to 3 do

Rj = FI(Lj−1 ⊗ KOi,j, KIi,j)
Lj = Rj−1)

end for
return L3||R3 , 32 bit

A.3 KASUMI S-boxes

KASUMI has two S-boxes, called S7 and S9. Below is a description of both.

A.3.1 S7

y0 = x0x1x4 + x1x5x6 + x2x4x6 + x3x4x5 + x4x5x6 + x0x6 + x1x3 + x1x6 + x2x5 + x3x6 + x4 + x5 + x6

y1 = x0x2x6 + x0x3x5 + x1x2x5 + x4x5x6 + x0x1 + x0x4 + x2x4 + x3x6 + x5 + x6+ 1

y2 = x0x1x6 + x0x2x5 + x0x3x4 + x1x2x4 + x0x3 + x0x6 + x1x5 + x2x3 + x2x6 + x4x6 + x0 + 1

y3 = x0x1x5 + x0x1x2 + x1x3x6 + x1x4x5 + x2x3x5 + x0x5 + x1x4 + x2x6 + x3x4 + x1

y4 = x0x1x4 + x0x3x6 + x0x4x5 + x1x3x5 + x2x3x4 + x0x2 + x0x5 + x1x3 + x1x6 + x1x4 + x3x6 + x5x6 + x3 + 1

y5 = x0x3x6 + x0x2x4 + x1x2x3 + x1x2x6 + x2x5x6 + x3x4x6 + x0x2 + x0x3 + x0x5 + x1x6 + x2x5 + x4x5 + x2 + 1

y6 = x0x1x3 + x0x1x6 + x0x5x6 + x1x4x6 + x2x3x6 + x0x4 + x1x2 + x1x5 + x3x5 + x6

Table 8: KASUMI S-box S7 represented as multivariate polynomials.

54 50 62 56 22 34 94 96 38 6 63 93 2 18 123 33
55 113 39 114 21 67 65 12 47 73 46 27 25 111 124 81
53 9 121 79 52 60 58 48 101 127 40 120 104 70 71 43
20 122 72 61 23 109 13 100 77 1 16 7 82 10 105 98
117 116 76 11 89 106 0 125 118 99 86 69 30 57 126 87
112 51 17 5 95 14 90 84 91 8 35 103 32 97 28 66
102 31 26 45 75 4 85 92 37 74 80 49 68 29 115 44
64 107 108 24 110 83 36 78 42 19 15 41 88 119 59 3

Table 9: KASUMI S-box S7.

A.3.2 S9

79

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

y0 = x0x2 + x0x7 + x1x7 + x2x5 + x2x7 + x4x8 + x5x6 + x5x8 + x7x8 + x3 + 1

y1 = x0x1 + x0x4 + x0x5 + x1x4 + x1x7 + x2x3 + x2x7 + x3x5 + x5x8 + x1 + x6 + 1

y2 = x0x3 + x0x5 + x0x8 + x2x6 + x3x4 + x3x6 + x4x7 + x5x6 + x5x7 + x6x7 + x1 + x8 + 1

y3 = x0x3 + x0x6 + x0x8 + x1x2 + x1x6 + x1x8 + x2x4 + x4x7 + x7x8 + x0 + x5

y4 = x0x1 + x0x5 + x0x7 + x1x3 + x1x8 + x2x8 + x3x6 + x3x8 + x6x7 + x4

y5 = x0x6 + x1x4 + x1x6 + x3x7 + x4x5 + x4x7 + x5x8 + x6x7 + x6x8 + x7x8 + x2 + 1

y6 = x1x5 + x1x8 + x2x3 + x2x5 + x3x6 + x3x8 + x4x5 + x4x6 + x5x6 + x5x8 + x7x8 + x0 + x7

y7 = x0x1 + x0x2 + x0x3 + x1x2 + x2x3 + x2x6 + x2x7 + x3x6 + x4x5 + x5x7 + x8 + x3 + 1

y8 = x0x1 + x1x2 + x1x5 + x1x6 + x2x5 + x2x8 + x3x4 + x4x6 + x3x8 + x2 + x7

Table 10: KASUMI S-box S9 represented as multivariate polynomials.

167 239 161 379 391 334 9 338 38 226 48 358 452 385 90 397
183 253 147 331 415 340 51 362 306 500 262 82 216 159 356 177
175 241 489 37 206 17 0 333 44 254 378 58 143 220 81 400
95 3 315 245 54 235 218 405 472 264 172 494 371 290 399 76
165 197 395 121 257 480 423 212 240 28 462 176 406 507 288 223
501 407 249 265 89 186 221 428 164 74 440 196 458 421 350 163
232 158 134 354 13 250 491 142 191 69 193 425 152 227 366 135
344 300 276 242 437 320 113 278 11 243 87 317 36 93 496 27
487 446 482 41 68 156 457 131 326 403 339 20 39 115 442 124
475 384 508 53 112 170 479 151 126 169 73 268 279 321 168 364
363 292 46 499 393 327 324 24 456 267 157 460 488 426 309 229
439 506 208 271 349 401 434 236 16 209 359 52 56 120 199 277
465 416 252 287 246 6 83 305 420 345 153 502 65 61 244 282
173 222 418 67 386 368 261 101 476 291 195 430 49 79 166 330
280 383 373 128 382 408 155 495 367 388 274 107 459 417 62 454
132 225 203 316 234 14 301 91 503 286 424 211 347 307 140 374
35 103 125 427 19 214 453 146 498 314 444 230 256 329 198 285
50 116 78 410 10 205 510 171 231 45 139 467 29 86 505 32
72 26 342 150 313 490 431 238 411 325 149 473 40 119 174 355
185 233 389 71 448 273 372 55 110 178 322 12 469 392 369 190
1 109 375 137 181 88 75 308 260 484 98 272 370 275 412 111
336 318 4 504 492 259 304 77 337 435 21 357 303 332 483 18
47 85 25 497 474 289 100 269 296 478 270 106 31 104 433 84
414 486 394 96 99 154 511 148 413 361 409 255 162 215 302 201
266 351 343 144 441 365 108 298 251 34 182 509 138 210 335 133
311 352 328 141 396 346 123 319 450 281 429 228 443 481 92 404
485 422 248 297 23 213 130 466 22 217 283 70 294 360 419 127
312 377 7 468 194 2 117 295 463 258 224 447 247 187 80 398
284 353 105 390 299 471 470 184 57 200 348 63 204 188 33 451
97 30 310 219 94 160 129 493 64 179 263 102 189 207 114 402
438 477 387 122 192 42 381 5 145 118 180 449 293 323 136 380
43 66 60 455 341 445 202 432 8 237 15 376 436 464 59 461

Table 11: KASUMI S-box S9.

80

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

B LILI-128

B.1 LILI-128 output function

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0

0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1

1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0

1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1

1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0

1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1

1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1

0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0

0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0

1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0

Table 12: LILI-128 boolean output function.

81

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

fd = X3X5X6X7X8X9 + X4X5X6X7X8X9 + X2X6X7X8X9 + X3X5X6X7X8 + X3X5X6X8X9 + X3X6X7X8X9 + X4X5X6X7X8+

X4X5X6X8X9 + X0X7X8X9 + X1X6X7X8 + X1X6X8X9 + X2X6X7X9 + X2X7X8X9 + X3X5X6X8 + X3X6X7X8+

X3X6X8X9 + X3X7X8X9 + X4X5X6X8 + X4X6X7X9 + X5X6X8X9 + X5X7X8X9 + X1X8X9 + X2X6X8 + X2X7X8+

X2X7X9 + X2X8X9 + X3X6X8 + X3X6X9 + X3X7X9 + X3X8X9 + X4X6X9 + X4X8X9 + X5X6X8 + X5X6X9 + X5X7X8+

X0X7 + X0X8 + X1X7 + X2X8 + X3X9 + X5X6 + X5X9 + X1 + X2 + X3 + X4

Table 13: LILI-128 non-linear filter polynomial.

B.2 LILI-128 degree-reductor and annihilator polynomials

red1 =Y7Y3Y2Y1 + Y7Y2Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y4Y3Y2Y1+

Y4Y3Y1Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y1 + Y9Y1Y0 + Y8Y3Y2 + Y8Y2Y1 + Y8Y1Y0 + Y7Y3Y1+

Y7Y2Y1 + Y6Y1Y0 + Y5Y3Y0 + Y5Y1Y0 + Y4Y3Y1 + Y4Y2Y1 + Y9Y1 + Y8Y3 + Y8Y1 + Y7Y3+

Y6Y3 + Y6Y1 + Y5Y3 + Y5Y1 + Y4Y3

red2 =Y8Y2Y1Y0 + Y7Y3Y2Y0 + Y6Y3Y2Y0 + Y5Y2Y1Y0 + Y9Y2Y0 + Y6Y2Y0 + Y5Y2Y0 + Y4Y2Y0

red3 =Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y3Y2Y0 + Y6Y2Y1Y0 + Y5Y3Y1Y0+

Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y1Y0 + Y8Y3Y2 + Y8Y3Y1 + Y8Y2Y1 + Y7Y3Y2+

Y7Y3Y1 + Y7Y2Y1 + Y7Y1Y0 + Y6Y3Y2 + Y6Y3Y1 + Y6Y3Y0 + Y6Y2Y1 + Y6Y2Y0 + Y5Y3Y2 + Y5Y3Y1+

Y5Y2Y1 + Y4Y3Y0 + Y4Y2Y0 + Y8Y3 + Y8Y2 + Y8Y1 + Y7Y3 + Y7Y2 + Y7Y1 + Y6Y3+

Y6Y2 + Y6Y1 + Y6Y0 + Y5Y3 + Y5Y2 + Y5Y1 + Y4Y0 + Y8 + Y7 + Y6 + Y5

red4 =Y8Y3Y2Y0 + Y8Y2Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y1+

Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y1Y0 + Y8Y3Y0+

Y7Y3Y0 + Y7Y2Y1 + Y7Y1Y0 + Y6Y3Y0 + Y6Y2Y1 + Y6Y1Y0 + Y5Y2Y1 + Y4Y3Y0 + Y4Y2Y1 + Y4Y1Y0

Table 14: LILI-128 degree-reductor polynomials 1-4.

82

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

red5 =Y8Y3Y2Y1 + Y8Y2Y1Y0 + Y7Y3Y2Y1 + Y7Y2Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y4Y3Y2Y0 + Y4Y3Y1Y0+

Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y0 + Y9Y1Y0 + Y8Y3Y1 + Y8Y2Y1 + Y8Y1Y0 + Y7Y3Y2 + Y7Y2Y1 + Y7Y2Y0+

Y6Y3Y2 + Y6Y3Y1 + Y6Y2Y0 + Y6Y1Y0 + Y5Y3Y2 + Y5Y3Y1 + Y5Y2Y0 + Y5Y1Y0 + Y9Y2 + Y9Y1+

Y8Y1 + Y7Y2 + Y6Y2 + Y6Y1 + Y5Y2 + Y5Y1

red6 =Y8Y3Y2Y1 + Y8Y3Y2Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y5Y3Y2Y1 + Y5Y3Y2Y0+

Y5Y2Y1Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y2Y1 + Y9Y2Y0 + Y9Y1Y0 + Y8Y3Y2 + Y8Y3Y1+

Y8Y3Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0 + Y7Y2Y1 + Y7Y2Y0 + Y7Y1Y0 + Y6Y3Y2 + Y6Y3Y1 + Y6Y3Y0+

Y6Y2Y1 + Y6Y2Y0 + Y6Y1Y0 + Y5Y3Y2 + Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y4Y3Y1 + Y4Y3Y0+

Y4Y1Y0 + Y9Y2 + Y8Y3 + Y7Y3 + Y7Y2 + Y6Y3 + Y6Y2 + Y5Y3 + Y5Y2 + Y4Y3

red7 =Y9Y2Y1Y0 + Y7Y3Y2Y0 + Y6Y3Y2Y0 + Y5Y2Y1Y0 + Y4Y3Y1Y0 + Y9Y2Y1 + Y8Y2Y1 + Y8Y2Y0 + Y8Y1Y0+

Y7Y1Y0 + Y6Y2Y0 + Y6Y1Y0 + Y5Y2Y0 + Y5Y1Y0 + Y4Y3Y1 + Y4Y3Y0 + Y4Y2Y0 + Y9Y2 + Y8Y2+

Y8Y1 + Y8Y0 + Y7Y1 + Y7Y0 + Y6Y1 + Y6Y0 + Y5Y1 + Y5Y0 + Y4Y3 + Y8 + Y7 + Y6 + Y5

red8 =Y9Y2Y1Y0 + Y8Y3Y2Y1 + Y8Y3Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y5Y3Y2Y0+

Y5Y2Y1Y0 + Y4Y2Y1Y0 + Y9Y2Y0 + Y9Y1Y0 + Y8Y2Y0 + Y8Y1Y0 + Y7Y2Y1 + Y7Y2Y0 + Y6Y3Y0+

Y6Y2Y1 + Y6Y2Y0 + Y6Y1Y0 + Y5Y3Y0 + Y5Y2Y1 + Y5Y1Y0 + Y4Y2Y1 + Y8Y0 + Y7Y0 + Y5Y0 + Y4Y0

red9 =Y9Y3Y1Y0 + Y9Y2Y1Y0 + Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y3Y2Y0 + Y7Y2Y1Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0+

Y5Y3Y2Y0 + Y4Y3Y1Y0 + Y9Y2Y0 + Y8Y2Y0 + Y8Y1Y0 + Y7Y2Y0 + Y7Y1Y0 + Y6Y3Y0 + Y6Y2Y0+

Y5Y3Y0 + Y5Y1Y0 + Y4Y1Y0 + Y8Y0 + Y7Y0 + Y5Y0 + Y4Y0

red10 =Y9Y3Y2Y0 + Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y3Y2Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y3Y1Y0 + Y5Y3Y2Y0+

Y5Y3Y1Y0 + Y4Y3Y2Y0 + Y9Y1Y0 + Y7Y1Y0 + Y6Y1Y0 + Y4Y1Y0

red11 =Y9Y3Y2Y1 + Y7Y2Y1Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y2Y1+

Y4Y3Y2Y0 + Y4Y2Y1Y0 + Y9Y3Y2 + Y9Y2Y1 + Y9Y2Y0 + Y8Y2Y0 + Y8Y1Y0 + Y7Y3Y2 + Y7Y1Y0+

Y6Y3Y2 + Y6Y3Y0 + Y6Y2Y0 + Y5Y3Y2 + Y5Y3Y0 + Y5Y1Y0 + Y4Y2Y1 + Y4Y2Y0 + Y4Y1Y0+

Y9Y2 + Y8Y0 + Y7Y2 + Y7Y0 + Y6Y2 + Y5Y2 + Y5Y0 + Y4Y0

Table 15: LILI-128 degree-reductor polynomials 6-11.

83

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

red12 =Y9Y3Y2Y1 + Y8Y3Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y7Y3Y1Y0 + Y6Y3Y1Y0 + Y5Y3Y2Y0 + Y4Y3Y1Y0+

Y9Y3Y2 + Y9Y2Y1 + Y9Y1Y0 + Y8Y3Y2 + Y8Y3Y1 + Y8Y2Y1 + Y8Y2Y0 + Y8Y1Y0 + Y7Y3Y1 + Y7Y2Y1+

Y6Y3Y1 + Y6Y2Y1 + Y6Y2Y0 + Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y5Y1Y0 + Y4Y3Y0 + Y4Y2Y1+

Y4Y2Y0 + Y4Y1Y0 + Y9Y2 + Y8Y3 + Y8Y2 + Y8Y1 + Y8Y0 + Y7Y3 + Y7Y1 + Y7Y0+

Y6Y3 + Y6Y1 + Y6Y0 + Y5Y3 + Y5Y1 + Y5Y0 + Y8 + Y7 + Y6 + Y5

red13 =Y9Y7Y1Y0 + Y9Y6Y3Y0 + Y9Y6Y2Y0 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y2Y0 + Y9Y4Y3Y1 + Y9Y4Y3Y0+

Y9Y4Y2Y0 + Y9Y4Y1Y0 + Y9Y3Y2Y1 + Y9Y3Y2Y0 + Y9Y3Y1Y0 + Y8Y7Y3Y2 + Y8Y7Y3Y1 + Y8Y7Y3Y0+

Y8Y7Y2Y1 + Y8Y7Y2Y0 + Y8Y6Y3Y0 + Y8Y6Y2Y1 + Y8Y6Y2Y0 + Y8Y5Y3Y2 + Y8Y5Y3Y1 + Y8Y5Y2Y1+

Y8Y5Y1Y0 + Y8Y4Y3Y1 + Y8Y4Y3Y0 + Y8Y4Y2Y1 + Y8Y4Y2Y0 + Y8Y3Y2Y1 + Y8Y3Y2Y0 + Y7Y6Y3Y2+

Y7Y6Y2Y1 + Y7Y6Y2Y0 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1 + Y7Y5Y2Y0 + Y7Y5Y1Y0 + Y7Y4Y2Y0+

Y7Y4Y1Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y5Y3Y2 + Y6Y5Y3Y0 + Y6Y5Y2Y0 + Y6Y5Y1Y0 + Y6Y4Y3Y2+

Y6Y4Y3Y1 + Y6Y4Y2Y1 + Y6Y4Y2Y0 + Y6Y4Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0 + Y5Y4Y3Y2+

Y5Y4Y3Y0 + Y5Y4Y2Y0 + Y5Y3Y2Y0 + Y4Y3Y1Y0 + Y9Y8Y1 + Y9Y7Y1 + Y9Y6Y2 + Y9Y6Y0 + Y9Y4Y3+

Y9Y4Y0 + Y9Y3Y1 + Y9Y2Y1 + Y9Y1Y0 + Y8Y7Y3 + Y8Y7Y2 + Y8Y6Y0 + Y8Y5Y3 + Y8Y4Y3 + Y8Y4Y2+

Y8Y4Y1 + Y8Y3Y1 + Y8Y3Y0 + Y8Y1Y0 + Y7Y6Y3 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y2 + Y7Y5Y1 + Y7Y4Y2+

Y7Y4Y1 + Y7Y3Y2 + Y7Y3Y1 + Y7Y2Y1 + Y7Y2Y0 + Y7Y1Y0 + Y6Y5Y3 + Y6Y5Y2 + Y6Y4Y2 + Y6Y4Y1+

Y6Y4Y0 + Y6Y3Y0 + Y5Y4Y3 + Y5Y4Y2 + Y5Y4Y1 + Y5Y4Y0 + Y5Y3Y2 + Y5Y3Y0 + Y5Y2Y0 + Y4Y3Y1+

Y9Y8 + Y9Y7 + Y9Y6 + Y9Y5 + Y9Y1 + Y8Y6 + Y8Y5 + Y8Y4 + Y8Y2 + Y7Y6 + Y7Y5 + Y7Y4+

Y7Y3 + Y7Y1 + Y6Y4 + Y5Y4 + Y5Y3 + Y5Y2 + Y4Y3 + Y8 + Y7

red14 =Y9Y8Y2Y1 + Y9Y7Y3Y2 + Y9Y7Y3Y1 + Y9Y6Y3Y1 + Y9Y6Y3Y0 + Y9Y6Y2Y0 + Y9Y5Y3Y1 + Y9Y5Y2Y1+

Y9Y5Y1Y0 + Y9Y4Y3Y2 + Y9Y4Y2Y1 + Y9Y4Y1Y0 + Y9Y3Y2Y0 + Y9Y3Y1Y0 + Y9Y2Y1Y0 + Y8Y7Y3Y1+

Y8Y7Y3Y0 + Y8Y6Y3Y2 + Y8Y6Y3Y1 + Y8Y5Y3Y2 + Y8Y5Y3Y1 + Y8Y5Y2Y1 + Y8Y4Y2Y0 + Y8Y4Y1Y0+

Y7Y6Y3Y1 + Y7Y6Y3Y0 + Y7Y6Y2Y1 + Y7Y6Y2Y0 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1 + Y7Y5Y1Y0+

Y7Y4Y3Y2 + Y7Y4Y3Y0 + Y7Y4Y2Y1 + Y7Y4Y2Y0 + Y7Y3Y2Y0 + Y6Y5Y3Y0 + Y6Y5Y2Y0 + Y6Y5Y1Y0+

Y6Y4Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y5Y4Y3Y1 + Y5Y4Y2Y0 + Y5Y3Y2Y1 + Y5Y3Y2Y0 + Y4Y3Y2Y1+

Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y8Y3 + Y9Y8Y1 + Y9Y8Y0 + Y9Y7Y3 + Y9Y7Y2 + Y9Y7Y0 + Y9Y6Y3+

Y9Y6Y2 + Y9Y5Y3 + Y9Y5Y0 + Y9Y4Y3 + Y9Y4Y2 + Y9Y4Y1 + Y9Y4Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y0+

Y9Y1Y0 + Y8Y7Y3 + Y8Y6Y2 + Y8Y6Y0 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y3 + Y8Y4Y2 + Y8Y3Y2 + Y8Y3Y1+

Y8Y2Y0 + Y7Y6Y3 + Y7Y6Y2 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y3 + Y7Y5Y2 + Y7Y5Y0 + Y7Y4Y1 + Y7Y3Y2+

Y7Y3Y1 + Y7Y3Y0 + Y7Y1Y0 + Y6Y5Y1 + Y6Y5Y0 + Y6Y4Y0 + Y6Y3Y2 + Y6Y3Y1 + Y6Y2Y1 + Y6Y1Y0+

Y5Y4Y3 + Y5Y4Y0 + Y5Y3Y2 + Y5Y2Y1 + Y4Y2Y1 + Y4Y1Y0 + Y8Y6 + Y8Y4 + Y8Y3 + Y8Y2+

Y8Y0 + Y7Y6 + Y7Y4 + Y7Y1 + Y7Y0 + Y6Y5 + Y6Y4 + Y6Y3 + Y6Y2 + Y5Y4 + Y5Y3 + Y5Y2+

Y5Y1 + Y4Y0 + Y8 + Y7 + Y5

Table 16: LILI-128 degree-reductor polynomials 12-14.

84

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

red15 =Y9Y8Y3Y0 + Y9Y8Y1Y0 + Y9Y7Y3Y2 + Y9Y7Y3Y0 + Y9Y6Y3Y2 + Y9Y6Y1Y0 + Y9Y5Y3Y1 + Y9Y5Y3Y0+

Y9Y5Y1Y0 + Y9Y4Y3Y1 + Y9Y4Y3Y0 + Y9Y4Y1Y0 + Y9Y3Y2Y1 + Y8Y7Y3Y2 + Y8Y7Y3Y1 + Y8Y7Y2Y1+

Y8Y6Y3Y0 + Y8Y6Y1Y0 + Y8Y5Y3Y1 + Y8Y5Y3Y0 + Y8Y5Y2Y1 + Y8Y4Y3Y2 + Y8Y4Y3Y0 + Y8Y3Y2Y1+

Y8Y3Y2Y0 + Y8Y2Y1Y0 + Y7Y6Y3Y2 + Y7Y6Y3Y1 + Y7Y6Y2Y1 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1+

Y7Y4Y3Y2 + Y7Y4Y3Y1 + Y7Y4Y2Y1 + Y7Y3Y2Y0 + Y7Y2Y1Y0 + Y6Y5Y3Y2 + Y6Y5Y3Y1 + Y6Y5Y3Y0+

Y6Y5Y2Y1 + Y6Y5Y1Y0 + Y6Y4Y3Y2 + Y6Y4Y1Y0 + Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y5Y4Y3Y2 + Y5Y4Y2Y1+

Y5Y3Y2Y1 + Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y2Y0 + Y4Y2Y1Y0 + Y9Y8Y0 + Y9Y7Y2 + Y9Y7Y0+

Y9Y6Y2 + Y9Y5Y1 + Y9Y5Y0 + Y9Y4Y1 + Y9Y4Y0 + Y9Y3Y1 + Y9Y1Y0 + Y8Y7Y3 + Y8Y7Y2 + Y8Y7Y1+

Y8Y6Y0 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y3 + Y8Y4Y2 + Y8Y4Y0 + Y8Y3Y2 + Y8Y3Y0 + Y8Y2Y1 + Y8Y2Y0+

Y7Y6Y3 + Y7Y6Y2 + Y7Y6Y1 + Y7Y5Y3 + Y7Y5Y1 + Y7Y5Y0 + Y7Y4Y3 + Y7Y4Y2 + Y7Y4Y1 + Y7Y3Y2+

Y7Y3Y0 + Y7Y2Y0 + Y6Y5Y2 + Y6Y5Y1 + Y6Y5Y0 + Y6Y4Y3 + Y6Y4Y2 + Y5Y4Y3 + Y5Y4Y2 + Y5Y3Y2+

Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y4Y3Y1 + Y4Y3Y0 + Y4Y2Y1 + Y4Y2Y0 + Y9Y2 + Y9Y1+

Y8Y7 + Y8Y4 + Y8Y3 + Y8Y1 + Y8Y0 + Y7Y6 + Y7Y5 + Y7Y4 + Y7Y2 + Y7Y1 + Y7Y0 + Y6Y4+

Y6Y3 + Y6Y1 + Y5Y4 + Y5Y3 + Y5Y2 + Y4Y3 + Y4Y0 + Y7

red16 =Y9Y8Y3Y1 + Y9Y8Y2Y1 + Y9Y8Y2Y0 + Y9Y7Y3Y2 + Y9Y7Y3Y1 + Y9Y6Y3Y1 + Y9Y6Y3Y0 + Y9Y6Y2Y1+

Y9Y6Y2Y0 + Y9Y6Y1Y0 + Y9Y5Y3Y1 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y2Y0 + Y9Y5Y1Y0 + Y9Y4Y3Y2+

Y9Y4Y2Y1 + Y9Y4Y2Y0 + Y9Y3Y2Y1 + Y9Y3Y2Y0 + Y9Y3Y1Y0 + Y9Y2Y1Y0 + Y8Y7Y3Y1 + Y8Y7Y2Y0+

Y8Y6Y2Y1 + Y8Y6Y2Y0 + Y8Y6Y1Y0 + Y8Y5Y2Y1 + Y8Y4Y2Y1 + Y8Y4Y2Y0 + Y8Y4Y1Y0 + Y8Y3Y2Y1+

Y8Y3Y2Y0 + Y7Y6Y3Y2 + Y7Y6Y3Y1 + Y7Y6Y3Y0 + Y7Y5Y3Y2 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y1Y0+

Y7Y4Y3Y2 + Y7Y4Y2Y0 + Y7Y4Y1Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y5Y3Y0 + Y6Y4Y3Y2 + Y6Y4Y3Y0+

Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y5Y4Y3Y2 + Y5Y4Y3Y0 + Y5Y4Y2Y0 + Y5Y3Y2Y1 + Y5Y3Y1Y0 + Y5Y2Y1Y0+

Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y8Y1 + Y9Y8Y0 + Y9Y7Y2 + Y9Y7Y1 + Y9Y7Y0+

Y9Y6Y1 + Y9Y5Y1 + Y9Y5Y0 + Y9Y4Y2 + Y9Y4Y0 + Y9Y3Y1 + Y9Y2Y1 + Y9Y1Y0 + Y8Y7Y1 + Y8Y7Y0+

Y8Y6Y0 + Y8Y4Y0 + Y8Y3Y0 + Y7Y6Y2 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y2 + Y7Y5Y1 + Y7Y5Y0 + Y7Y4Y2+

Y7Y3Y2 + Y7Y3Y0 + Y7Y1Y0 + Y6Y5Y0 + Y6Y4Y2 + Y6Y4Y0 + Y6Y2Y1 + Y6Y2Y0 + Y5Y4Y2 + Y5Y4Y0+

Y5Y2Y1 + Y4Y3Y0 + Y9Y1 + Y7Y2 + Y7Y0 + Y4Y0

red17 =Y9Y8Y3Y2 + Y9Y8Y1Y0 + Y9Y7Y3Y2 + Y9Y7Y3Y1 + Y9Y7Y1Y0 + Y9Y6Y3Y2 + Y9Y6Y3Y1 + Y9Y6Y2Y0+

Y9Y6Y1Y0 + Y9Y5Y3Y2 + Y9Y5Y3Y1 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y2Y0 + Y9Y4Y2Y0 + Y9Y4Y1Y0+

Y9Y3Y2Y1 + Y9Y3Y2Y0 + Y9Y2Y1Y0 + Y8Y7Y3Y2 + Y8Y7Y3Y1 + Y8Y7Y3Y0 + Y8Y7Y2Y0 + Y8Y6Y3Y1+

Y8Y6Y3Y0 + Y8Y6Y2Y1 + Y8Y6Y2Y0 + Y8Y6Y1Y0 + Y8Y5Y3Y2 + Y8Y5Y2Y1 + Y8Y5Y2Y0 + Y8Y5Y1Y0+

Y8Y4Y3Y2 + Y8Y4Y3Y1 + Y8Y4Y3Y0 + Y8Y3Y1Y0 + Y7Y6Y3Y2 + Y7Y6Y2Y0 + Y7Y5Y3Y1 + Y7Y5Y3Y0+

Y7Y4Y3Y2 + Y7Y4Y3Y1 + Y7Y4Y2Y1 + Y7Y3Y2Y0 + Y7Y3Y1Y0 + Y6Y5Y3Y2 + Y6Y5Y1Y0 + Y6Y4Y3Y1+

Y6Y4Y1Y0 + Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y5Y4Y2Y1 + Y5Y4Y1Y0 + Y5Y3Y2Y1 + Y5Y3Y1Y0+

Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y9Y8Y3 + Y9Y8Y2 + Y9Y8Y1 + Y9Y7Y3+

Y9Y7Y2 + Y9Y6Y3 + Y9Y6Y1 + Y9Y5Y3 + Y9Y5Y2 + Y9Y5Y1 + Y9Y4Y3 + Y9Y4Y1 + Y9Y3Y1 + Y9Y2Y0+

Y8Y7Y3 + Y8Y7Y2 + Y8Y6Y1 + Y8Y6Y0 + Y8Y5Y3 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y1 + Y8Y4Y0 + Y8Y2Y0+

Y8Y1Y0 + Y7Y6Y3 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y2 + Y7Y5Y1 + Y7Y5Y0 + Y7Y4Y3 + Y7Y4Y0 + Y7Y3Y2+

Y7Y3Y1 + Y7Y3Y0 + Y7Y2Y1 + Y7Y2Y0 + Y7Y1Y0 + Y6Y5Y3 + Y6Y5Y2 + Y6Y4Y3 + Y6Y4Y1 + Y6Y2Y1+

Y6Y2Y0 + Y5Y4Y1 + Y5Y4Y0 + Y5Y3Y2 + Y5Y2Y1 + Y4Y3Y0 + Y4Y2Y0 + Y4Y1Y0 + Y9Y2 + Y9Y1+

Y8Y6 + Y8Y5 + Y8Y0 + Y7Y6 + Y7Y5 + Y7Y3 + Y7Y0 + Y6Y1 + Y6Y0 + Y5Y3 + Y5Y2 + Y5Y1+

Y6 + Y5

Table 17: LILI-128 degree-reductor polynomials 15-17.

85

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

ann1 =Y7Y3Y2Y1 + Y7Y2Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y4Y3Y2Y1+

Y4Y3Y1Y0 + Y3Y2Y1Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y1 + Y9Y1Y0 + Y8Y3Y2 + Y8Y2Y1 + Y8Y1Y0+

Y7Y3Y1 + Y7Y2Y1 + Y6Y3Y2 + Y6Y3Y1 + Y6Y2Y1 + Y6Y2Y0 + Y5Y3Y2 + Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y0+

Y4Y1Y0 + Y3Y2Y1 + Y9Y2 + Y9Y1 + Y8Y3 + Y8Y2 + Y7Y3 + Y7Y1 + Y6Y3 + Y6Y2 + Y6Y1+

Y5Y2 + Y5Y1 + Y5Y0 + Y4Y3 + Y1Y0 + Y8 + Y7 + Y6 + Y4 + Y3 + 1

ann2 =Y8Y2Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y7Y2Y1Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0+

Y5Y2Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y1Y0 + Y3Y2Y1Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y1 + Y9Y2Y0+

Y9Y1Y0 + Y8Y3Y2 + Y8Y1Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y2Y1 + Y7Y2Y0 + Y6Y3Y1 + Y6Y2Y1 + Y6Y2Y0+

Y5Y3Y2 + Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y1 + Y4Y2Y0 + Y4Y1Y0 + Y3Y2Y1 + Y9Y1 + Y8Y3 + Y8Y2+

Y7Y3 + Y7Y2 + Y7Y1 + Y6Y3 + Y6Y2 + Y6Y1 + Y5Y1 + Y5Y0 + Y4Y3 + Y4Y2 + Y2Y0 + Y1Y0+

Y8 + Y7 + Y6 + Y4 + Y3 + Y2 + 1

ann3 =Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y3Y1Y0 + Y6Y3Y1Y0 + Y5Y3Y2Y0 + Y4Y3Y2Y0 + Y4Y2Y1Y0 + Y9Y3Y2+

Y9Y3Y1 + Y9Y2Y1 + Y8Y2Y1 + Y7Y3Y2 + Y7Y3Y1 + Y6Y3Y2 + Y6Y3Y0 + Y6Y2Y1 + Y6Y2Y0 + Y5Y3Y1+

Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y5Y1Y0 + Y4Y3Y2 + Y4Y3Y1 + Y4Y3Y0 + Y2Y1Y0 + Y9Y2 + Y8Y2+

Y8Y1 + Y7Y1 + Y6Y3 + Y6Y2 + Y6Y1 + Y5Y3 + Y5Y2 + Y5Y0 + Y4Y1 + Y3Y2 + Y3Y1 + Y8+

Y7 + Y6 + Y4 + Y1 + 1

ann4 =Y8Y3Y2Y0 + Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y1Y0 + Y6Y3Y2Y1 + Y6Y3Y1Y0 + Y6Y2Y1Y0+

Y5Y3Y2Y1 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y1Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y1+

Y9Y2Y0 + Y9Y1Y0 + Y8Y3Y2 + Y8Y3Y0 + Y8Y2Y1 + Y8Y2Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0 + Y7Y1Y0+

Y6Y3Y2 + Y6Y1Y0 + Y5Y3Y0 + Y5Y2Y1 + Y4Y2Y1 + Y3Y2Y1 + Y3Y2Y0 + Y3Y1Y0 + Y9Y1 + Y8Y3+

Y8Y1 + Y8Y0 + Y7Y3 + Y7Y0 + Y6Y0 + Y5Y3 + Y5Y1 + Y5Y0 + Y4Y3 + Y4Y1 + Y4Y0 + Y3Y0+

Y2Y1 + Y3 + Y1 + Y0

ann5 =Y8Y3Y2Y1 + Y8Y3Y2Y0 + Y8Y3Y1Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y3Y2Y1 + Y6Y3Y2Y0 + Y6Y2Y1Y0+

Y5Y3Y2Y1 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y9Y2Y1 + Y8Y3Y2 + Y8Y3Y1+

Y8Y3Y0 + Y8Y2Y0 + Y8Y1Y0 + Y7Y3Y1 + Y7Y3Y0 + Y7Y2Y1 + Y7Y2Y0 + Y7Y1Y0 + Y6Y3Y2 + Y6Y1Y0+

Y5Y3Y2 + Y5Y3Y1 + Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y5Y1Y0 + Y4Y3Y2 + Y4Y3Y1 + Y4Y2Y1 + Y4Y2Y0+

Y4Y1Y0 + Y3Y2Y1 + Y3Y2Y0 + Y3Y1Y0 + Y9Y2 + Y8Y3 + Y8Y0 + Y7Y3 + Y7Y2 + Y7Y0 + Y6Y0+

Y5Y3 + Y5Y2 + Y5Y0 + Y4Y3 + Y4Y2 + Y4Y0 + Y3Y2 + Y3Y1 + Y3Y0 + Y2Y1 + Y2Y0 + Y1Y0+

Y3 + Y2 + Y0

Table 18: LILI-128 annihilator polynomials 1-5.

86

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

ann6 =Y9Y2Y1Y0 + Y8Y3Y2Y1 + Y8Y2Y1Y0 + Y7Y3Y2Y0 + Y6Y3Y2Y0 + Y6Y2Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0+

Y5Y2Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y3Y2Y1Y0 + Y9Y2Y1 + Y9Y2Y0 + Y8Y3Y2+

Y8Y3Y1 + Y8Y2Y1 + Y8Y2Y0 + Y8Y1Y0 + Y7Y3Y1 + Y7Y1Y0 + Y6Y3Y1 + Y6Y2Y1 + Y6Y2Y0 + Y6Y1Y0+

Y5Y3Y0 + Y5Y2Y1 + Y5Y2Y0 + Y4Y3Y2 + Y4Y3Y1 + Y4Y3Y0 + Y4Y1Y0 + Y3Y2Y1 + Y9Y2 + Y8Y3+

Y8Y2 + Y8Y1 + Y8Y0 + Y7Y3 + Y7Y1 + Y7Y0 + Y6Y3 + Y6Y2 + Y6Y1 + Y6Y0 + Y5Y2 + Y4Y3+

Y4Y1 + Y4Y0 + Y3Y2 + Y3Y1 + Y1Y0 + Y8 + Y7 + Y6 + Y4 + Y3 + Y1 + Y0 + 1

ann7 =Y9Y3Y1Y0 + Y9Y2Y1Y0 + Y8Y3Y2Y1 + Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y2Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0+

Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y3Y2Y1Y0 + Y9Y3Y1 + Y9Y2Y0+

Y9Y1Y0 + Y8Y3Y2 + Y8Y2Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y2Y1 + Y7Y1Y0 + Y6Y3Y0 + Y6Y1Y0 + Y5Y3Y2+

Y5Y2Y1 + Y4Y3Y2 + Y3Y2Y1 + Y3Y1Y0 + Y9Y1 + Y8Y3 + Y8Y1 + Y8Y0 + Y7Y3 + Y7Y0+

Y6Y0 + Y5Y3 + Y5Y1 + Y5Y0 + Y4Y3 + Y4Y1 + Y4Y0 + Y3Y2 + Y3 + Y1 + Y0

ann8 =Y9Y3Y2Y0 + Y9Y2Y1Y0 + Y8Y3Y2Y0 + Y6Y3Y2Y1 + Y6Y3Y1Y0 + Y5Y3Y2Y1 + Y5Y3Y2Y0 + Y5Y3Y1Y0+

Y5Y2Y1Y0 + Y4Y3Y2Y0 + Y4Y3Y1Y0 + Y3Y2Y1Y0 + Y9Y3Y2 + Y9Y1Y0 + Y8Y3Y1 + Y8Y3Y0+

Y8Y1Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0 + Y6Y3Y2 + Y6Y2Y1 + Y6Y2Y0 + Y5Y2Y0 + Y4Y3Y2 + Y4Y3Y0+

Y4Y2Y1 + Y4Y1Y0 + Y3Y1Y0 + Y9Y2 + Y9Y1 + Y8Y2 + Y7Y1 + Y6Y3 + Y6Y2 + Y6Y1 + Y5Y3+

Y5Y2 + Y5Y1 + Y5Y0 + Y3Y2 + Y3Y0 + Y2Y1 + Y1Y0 + Y8 + Y7 + Y6 + Y4 + 1

ann9 =Y9Y3Y2Y1 + Y9Y3Y2Y0 + Y9Y3Y1Y0 + Y8Y3Y2Y0 + Y7Y3Y2Y0 + Y7Y3Y1Y0 + Y6Y3Y2Y1 + Y5Y3Y2Y1+

Y4Y3Y2Y1 + Y4Y3Y2Y0 + Y9Y3Y1 + Y9Y2Y1 + Y9Y2Y0 + Y9Y1Y0 + Y8Y3Y2 + Y8Y3Y0+

Y8Y2Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0 + Y7Y2Y0 + Y7Y1Y0 + Y6Y3Y2 + Y6Y3Y0 + Y6Y2Y1 + Y5Y3Y2+

Y5Y3Y0 + Y5Y2Y1 + Y4Y2Y1 + Y4Y2Y0 + Y3Y2Y1 + Y9Y1 + Y8Y3 + Y8Y2 + Y8Y0 + Y7Y3+

Y7Y2 + Y7Y1 + Y7Y0 + Y6Y3 + Y6Y2 + Y6Y0 + Y5Y3 + Y5Y2 + Y5Y0 + Y3Y2 + Y3Y0 + Y2Y1+

Y8 + Y7 + Y6 + Y5 + Y3 + Y2 + Y0 + 1

Table 19: LILI-128 annihilator polynomials 6-9.

87

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

ann10 =Y9Y7Y1Y0 + Y9Y6Y3Y0 + Y9Y6Y2Y0 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y2Y0 + Y9Y4Y3Y1 + Y9Y4Y3Y0+

Y9Y4Y2Y0 + Y9Y4Y1Y0 + Y9Y3Y2Y1 + Y9Y2Y1Y0 + Y8Y7Y3Y2 + Y8Y7Y3Y1 + Y8Y7Y3Y0 + Y8Y7Y2Y1+

Y8Y7Y2Y0 + Y8Y6Y3Y0 + Y8Y6Y2Y1 + Y8Y6Y2Y0 + Y8Y5Y3Y2 + Y8Y5Y3Y1 + Y8Y5Y2Y1 + Y8Y5Y1Y0+

Y8Y4Y3Y1 + Y8Y4Y3Y0 + Y8Y4Y2Y1 + Y8Y4Y2Y0 + Y8Y3Y2Y1 + Y8Y3Y2Y0 + Y8Y3Y1Y0 + Y8Y2Y1Y0+

Y7Y6Y3Y2 + Y7Y6Y2Y1 + Y7Y6Y2Y0 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1 + Y7Y5Y2Y0 + Y7Y5Y1Y0+

Y7Y4Y2Y0 + Y7Y4Y1Y0 + Y7Y3Y2Y1 + Y7Y2Y1Y0 + Y6Y5Y3Y2 + Y6Y5Y3Y0 + Y6Y5Y2Y0 + Y6Y5Y1Y0+

Y6Y4Y3Y2 + Y6Y4Y3Y1 + Y6Y4Y2Y1 + Y6Y4Y2Y0 + Y6Y4Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0 + Y6Y2Y1Y0+

Y5Y4Y3Y2 + Y5Y4Y3Y0 + Y5Y4Y2Y0 + Y5Y3Y2Y1 + Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y1Y0 + Y3Y2Y1Y0+

Y9Y8Y1 + Y9Y7Y1 + Y9Y6Y2 + Y9Y6Y0 + Y9Y4Y3 + Y9Y4Y0 + Y9Y3Y2 + Y9Y2Y0 + Y8Y7Y3+

Y8Y7Y2 + Y8Y6Y0 + Y8Y5Y3 + Y8Y4Y3 + Y8Y4Y2 + Y8Y4Y1 + Y8Y3Y0 + Y8Y2Y0 + Y8Y1Y0 + Y7Y6Y3+

Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y2 + Y7Y5Y1 + Y7Y4Y2 + Y7Y4Y1 + Y7Y3Y2 + Y7Y3Y0 + Y7Y2Y1 + Y7Y2Y0+

Y7Y1Y0 + Y6Y5Y3 + Y6Y5Y2 + Y6Y4Y2 + Y6Y4Y1 + Y6Y4Y0 + Y6Y3Y2 + Y6Y3Y1 + Y6Y3Y0 + Y6Y2Y1+

Y6Y1Y0 + Y5Y4Y3 + Y5Y4Y2 + Y5Y4Y1 + Y5Y4Y0 + Y5Y3Y2 + Y5Y2Y1 + Y4Y3Y0 + Y4Y2Y0 + Y4Y1Y0+

Y3Y2Y1 + Y3Y2Y0 + Y3Y1Y0 + Y2Y1Y0 + Y9Y8 + Y9Y7 + Y9Y6 + Y9Y5 + Y9Y1 + Y8Y6 + Y8Y5+

Y8Y4 + Y8Y1 + Y8Y0 + Y7Y6 + Y7Y5 + Y7Y4 + Y7Y1 + Y7Y0 + Y6Y4 + Y6Y1 + Y6Y0 + Y5Y4+

Y5Y1 + Y5Y0 + Y4Y2 + Y4Y1 + Y4Y0 + Y3Y2 + Y3Y0 + Y2Y1 + Y1Y0 + Y9 + Y8 + Y7+

Y6 + Y5 + Y4 + Y1 + Y0 + 1

ann11 =Y9Y8Y2Y1 + Y9Y7Y3Y2 + Y9Y7Y3Y1 + Y9Y6Y3Y1 + Y9Y6Y3Y0 + Y9Y6Y2Y0 + Y9Y5Y3Y1 + Y9Y5Y2Y1+

Y9Y5Y1Y0 + Y9Y4Y3Y2 + Y9Y4Y2Y1 + Y9Y4Y1Y0 + Y9Y3Y2Y0 + Y9Y2Y1Y0 + Y8Y7Y3Y1 + Y8Y7Y3Y0+

Y8Y6Y3Y2 + Y8Y6Y3Y1 + Y8Y5Y3Y2 + Y8Y5Y3Y1 + Y8Y5Y2Y1 + Y8Y4Y2Y0 + Y8Y4Y1Y0 + Y8Y3Y2Y0+

Y8Y2Y1Y0 + Y7Y6Y3Y1 + Y7Y6Y3Y0 + Y7Y6Y2Y1 + Y7Y6Y2Y0 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1+

Y7Y5Y1Y0 + Y7Y4Y3Y2 + Y7Y4Y3Y0 + Y7Y4Y2Y1 + Y7Y4Y2Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y7Y2Y1Y0+

Y6Y5Y3Y0 + Y6Y5Y2Y0 + Y6Y5Y1Y0 + Y6Y4Y1Y0 + Y6Y3Y1Y0 + Y5Y4Y3Y1 + Y5Y4Y2Y0 + Y5Y3Y2Y1+

Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y3Y2Y1Y0 + Y9Y8Y3 + Y9Y8Y1+

Y9Y8Y0 + Y9Y7Y3 + Y9Y7Y2 + Y9Y7Y0 + Y9Y6Y3 + Y9Y6Y2 + Y9Y5Y3 + Y9Y5Y0 + Y9Y4Y3 + Y9Y4Y2+

Y9Y4Y1 + Y9Y4Y0 + Y9Y3Y1 + Y9Y1Y0 + Y8Y7Y3 + Y8Y6Y2 + Y8Y6Y0 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y3+

Y8Y4Y2 + Y8Y3Y2 + Y8Y3Y0 + Y8Y2Y1 + Y7Y6Y3 + Y7Y6Y2 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y3 + Y7Y5Y2+

Y7Y5Y0 + Y7Y4Y1 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0 + Y7Y2Y1 + Y7Y2Y0 + Y6Y5Y1 + Y6Y5Y0 + Y6Y4Y0+

Y6Y3Y2 + Y6Y3Y1 + Y6Y2Y0 + Y5Y4Y3 + Y5Y4Y0 + Y5Y3Y2 + Y4Y3Y2 + Y3Y2Y1 + Y3Y1Y0 + Y2Y1Y0+

Y9Y3 + Y9Y1 + Y9Y0 + Y8Y6 + Y8Y4 + Y8Y1 + Y8Y0 + Y7Y6 + Y7Y4 + Y7Y0 + Y6Y5 + Y6Y4+

Y6Y1 + Y5Y4 + Y5Y1 + Y5Y0 + Y4Y3 + Y3Y2 + Y3Y0 + Y1Y0 + Y4 + Y1 + Y0

Table 20: LILI-128 annihilator polynomials 10-11.

88

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

ann12 =Y9Y8Y3Y0 + Y9Y8Y1Y0 + Y9Y7Y3Y2 + Y9Y7Y3Y0 + Y9Y6Y3Y2 + Y9Y6Y1Y0 + Y9Y5Y3Y1 + Y9Y5Y3Y0+

Y9Y5Y1Y0 + Y9Y4Y3Y1 + Y9Y4Y3Y0 + Y9Y4Y1Y0 + Y9Y3Y2Y0 + Y8Y7Y3Y2 + Y8Y7Y3Y1 + Y8Y7Y2Y1+

Y8Y6Y3Y0 + Y8Y6Y1Y0 + Y8Y5Y3Y1 + Y8Y5Y3Y0 + Y8Y5Y2Y1 + Y8Y4Y3Y2 + Y8Y4Y3Y0 + Y8Y3Y2Y0+

Y8Y2Y1Y0 + Y7Y6Y3Y2 + Y7Y6Y3Y1 + Y7Y6Y2Y1 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y2Y1 + Y7Y4Y3Y2+

Y7Y4Y3Y1 + Y7Y4Y2Y1 + Y7Y3Y1Y0 + Y6Y5Y3Y2 + Y6Y5Y3Y1 + Y6Y5Y3Y0 + Y6Y5Y2Y1 + Y6Y5Y1Y0+

Y6Y4Y3Y2 + Y6Y4Y1Y0 + Y6Y3Y2Y0 + Y6Y2Y1Y0 + Y5Y4Y3Y2 + Y5Y4Y2Y1 + Y5Y3Y2Y0 + Y9Y8Y0+

Y9Y7Y2 + Y9Y7Y0 + Y9Y6Y2 + Y9Y5Y1 + Y9Y5Y0 + Y9Y4Y1 + Y9Y4Y0 + Y9Y3Y1 + Y9Y3Y0 + Y9Y2Y1+

Y9Y1Y0 + Y8Y7Y3 + Y8Y7Y2 + Y8Y7Y1 + Y8Y6Y0 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y3 + Y8Y4Y2 + Y8Y4Y0+

Y8Y3Y2 + Y8Y2Y1 + Y8Y2Y0 + Y8Y1Y0 + Y7Y6Y3 + Y7Y6Y2 + Y7Y6Y1 + Y7Y5Y3 + Y7Y5Y1 + Y7Y5Y0+

Y7Y4Y3 + Y7Y4Y2 + Y7Y4Y1 + Y7Y3Y2 + Y7Y3Y1 + Y7Y2Y1 + Y7Y2Y0 + Y7Y1Y0 + Y6Y5Y2 + Y6Y5Y1+

Y6Y5Y0 + Y6Y4Y3 + Y6Y4Y2 + Y6Y3Y2 + Y6Y3Y0 + Y6Y1Y0 + Y5Y4Y3 + Y5Y4Y2 + Y5Y3Y2 + Y5Y3Y0+

Y5Y2Y0 + Y4Y3Y2 + Y4Y3Y1 + Y4Y3Y0 + Y4Y2Y0 + Y4Y1Y0 + Y3Y1Y0 + Y9Y2 + Y9Y1 + Y9Y0+

Y8Y7 + Y8Y4 + Y8Y3 + Y8Y1 + Y7Y6 + Y7Y5 + Y7Y4 + Y7Y3 + Y7Y2 + Y6Y4 + Y6Y3 + Y6Y2+

Y6Y1 + Y6Y0 + Y5Y4 + Y5Y3 + Y5Y2 + Y5Y1 + Y4Y2 + Y4Y0 + Y3Y2 + Y2Y0 + Y4 + Y3+

Y2 + Y1

ann13 =Y9Y8Y3Y1 + Y9Y8Y2Y1 + Y9Y8Y2Y0 + Y9Y7Y3Y2 + Y9Y7Y3Y1 + Y9Y6Y3Y1 + Y9Y6Y3Y0 + Y9Y6Y2Y1+

Y9Y6Y2Y0 + Y9Y6Y1Y0 + Y9Y5Y3Y1 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y2Y0 + Y9Y5Y1Y0 + Y9Y4Y3Y2+

Y9Y4Y2Y1 + Y9Y4Y2Y0 + Y9Y3Y2Y1 + Y9Y3Y2Y0 + Y8Y7Y3Y1 + Y8Y7Y2Y0 + Y8Y6Y2Y1 + Y8Y6Y2Y0+

Y8Y6Y1Y0 + Y8Y5Y2Y1 + Y8Y4Y2Y1 + Y8Y4Y2Y0 + Y8Y4Y1Y0 + Y8Y3Y2Y1 + Y8Y3Y1Y0 + Y8Y2Y1Y0+

Y7Y6Y3Y2 + Y7Y6Y3Y1 + Y7Y6Y3Y0 + Y7Y5Y3Y2 + Y7Y5Y3Y1 + Y7Y5Y3Y0 + Y7Y5Y1Y0 + Y7Y4Y3Y2+

Y7Y4Y2Y0 + Y7Y4Y1Y0 + Y7Y3Y1Y0 + Y7Y2Y1Y0 + Y6Y5Y3Y0 + Y6Y4Y3Y2 + Y6Y4Y3Y0 + Y5Y4Y3Y2+

Y5Y4Y3Y0 + Y5Y4Y2Y0 + Y5Y3Y2Y0 + Y9Y8Y1 + Y9Y8Y0 + Y9Y7Y2 + Y9Y7Y1 + Y9Y7Y0+

Y9Y6Y1 + Y9Y5Y1 + Y9Y5Y0 + Y9Y4Y2 + Y9Y4Y0 + Y9Y3Y2 + Y9Y3Y1 + Y9Y2Y0 + Y9Y1Y0 + Y8Y7Y1+

Y8Y7Y0 + Y8Y6Y0 + Y8Y4Y0 + Y8Y3Y2 + Y8Y2Y1 + Y8Y1Y0 + Y7Y6Y2 + Y7Y6Y1 + Y7Y6Y0 + Y7Y5Y2+

Y7Y5Y1 + Y7Y5Y0 + Y7Y4Y2 + Y7Y2Y0 + Y6Y5Y0 + Y6Y4Y2 + Y6Y4Y0 + Y5Y4Y2 + Y5Y4Y0 + Y4Y3Y2+

Y4Y3Y0 + Y4Y2Y0 + Y3Y2Y0 + Y9Y2 + Y9Y1 + Y9Y0 + Y8Y3 + Y8Y2 + Y7Y3 + Y6Y3 + Y5Y3+

Y4Y2 + Y4Y0 + Y8 + Y7 + Y6 + Y5 + Y3 + 1

Table 21: LILI-128 annihilator polynomials 12-13.

89

The use of d-truncated Gröbner bases in cryptanalysis of symmetric ciphers

ann14 =Y9Y8Y3Y2 + Y9Y8Y3Y1 + Y9Y8Y3Y0 + Y9Y8Y2Y0 + Y9Y7Y3Y1 + Y9Y7Y3Y0 + Y9Y7Y1Y0 + Y9Y6Y3Y1+

Y9Y6Y2Y1 + Y9Y6Y2Y0 + Y9Y6Y1Y0 + Y9Y5Y3Y2 + Y9Y5Y3Y0 + Y9Y5Y2Y1 + Y9Y5Y1Y0 + Y9Y4Y3Y1+

Y9Y4Y3Y0 + Y9Y4Y1Y0 + Y9Y3Y1Y0 + Y9Y2Y1Y0 + Y8Y7Y2Y1 + Y8Y6Y3Y2 + Y8Y6Y1Y0 + Y8Y5Y3Y0+

Y8Y5Y2Y0 + Y8Y5Y1Y0 + Y8Y4Y3Y1 + Y8Y4Y2Y1 + Y8Y3Y1Y0 + Y8Y2Y1Y0 + Y7Y6Y3Y2 + Y7Y6Y3Y1+

Y7Y5Y3Y2 + Y7Y4Y3Y0 + Y7Y4Y2Y1 + Y7Y4Y1Y0 + Y7Y3Y2Y1 + Y7Y3Y2Y0 + Y6Y5Y3Y1 + Y6Y5Y3Y0+

Y6Y5Y2Y1 + Y6Y5Y2Y0 + Y6Y5Y1Y0 + Y6Y4Y3Y1 + Y6Y4Y3Y0 + Y6Y4Y1Y0 + Y6Y3Y2Y0 + Y6Y3Y1Y0+

Y5Y4Y3Y1 + Y5Y4Y3Y0 + Y5Y4Y1Y0 + Y5Y3Y2Y0 + Y5Y3Y1Y0 + Y5Y2Y1Y0 + Y4Y3Y2Y1 + Y4Y3Y2Y0+

Y4Y3Y1Y0 + Y4Y2Y1Y0 + Y3Y2Y1Y0 + Y9Y8Y2 + Y9Y8Y1 + Y9Y8Y0 + Y9Y7Y1 + Y9Y7Y0+

Y9Y5Y2 + Y9Y5Y1 + Y9Y5Y0 + Y9Y4Y1 + Y9Y4Y0 + Y9Y3Y1 + Y9Y3Y0 + Y9Y1Y0 + Y8Y7Y3 + Y8Y7Y0+

Y8Y6Y2 + Y8Y6Y1 + Y8Y5Y3 + Y8Y5Y1 + Y8Y5Y0 + Y8Y4Y1 + Y8Y4Y0 + Y8Y3Y0 + Y8Y2Y1 + Y8Y2Y0+

Y8Y1Y0 + Y7Y6Y3 + Y7Y6Y2 + Y7Y6Y0 + Y7Y5Y2 + Y7Y5Y1 + Y7Y4Y0 + Y7Y3Y2 + Y7Y3Y1 + Y7Y3Y0+

Y7Y2Y1 + Y7Y2Y0 + Y6Y5Y3 + Y6Y5Y0 + Y6Y4Y1 + Y6Y3Y2 + Y6Y2Y0 + Y5Y4Y1 + Y5Y4Y0 + Y5Y3Y2+

Y4Y3Y0 + Y4Y2Y0 + Y3Y1Y0 + Y2Y1Y0 + Y9Y2 + Y9Y0 + Y8Y7 + Y8Y5 + Y8Y3 + Y8Y2+

Y8Y0 + Y7Y6 + Y7Y3 + Y7Y2 + Y7Y1 + Y7Y0 + Y6Y5 + Y6Y3 + Y6Y2 + Y5Y3 + Y5Y2 + Y5Y0+

Y4Y3 + Y4Y1 + Y4Y0 + Y3Y2 + Y3Y0 + Y1Y0 + Y3 + Y2 + Y0

ann15 =Y8Y2Y1Y0 + Y7Y3Y2Y0 + Y6Y3Y2Y0 + Y5Y2Y1Y0 + Y9Y2Y0 + Y8Y2Y1 + Y7Y3Y2 + Y7Y2Y0+

Y6Y3Y2 + Y5Y2Y1 + Y5Y2Y0 + Y4Y2Y0 + Y9Y2 + Y7Y2 + Y5Y2 + Y4Y2 + Y2Y0 + Y2

Table 22: LILI-128 annihilator polynomials 14-15.

90

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Topic
	Problem Description
	Justification, Motivation and Benefits
	Research Questions
	Method
	Outline of Chapters

	Mathematical Preliminaries
	Abstract Algebra Essentials
	Monomial ordering and multivariate division
	Hilbert Basis Theorem
	Gröbner bases
	Truncated Gröbner bases

	On the complexity of solving polynomial equations

	Methods of Algebraic Cryptanalysis
	Linearization methods
	Plain linearization
	Relinearization
	XL
	XSL
	MutantXL

	SAT solving
	Fast Algebraic Attack
	Gröbner bases techniques

	Implementation
	Polynomial model
	Main algorithm
	Division algorithm
	On parallel execution and caching
	Testing the software

	Cryptanalysis
	The ciphers
	KASUMI
	LILI-128

	Miscellaneous
	Generating polynomials
	LILI-128
	KASUMI

	Results
	LILI-128
	Degree reduction
	Running time results

	KASUMI
	One round KASUMI
	Two round KASUMI
	Three round KASUMI
	Four round KASUMI

	Conclusion
	Bibliography
	KASUMI
	KASUMI key schedule
	KASUMI Subfunctions
	KASUMI S-boxes
	S7
	S9

	LILI-128
	LILI-128 output function
	LILI-128 degree-reductor and annihilator polynomials

