Remote Assessment of
Client Trustworthiness

Yngve Kristiansen

Master’s Thesis
Master of Science in Information Security
30 ECTS
Department of Computer Science and Media Technology
Gjavik University College, 2005

The MSc programme in Information Security
is run in cooperation with the Royal Institute
of Technology (KTH) in Stockholm.

Institutt for

informatikk og medieteknikk
Hggskolen i Gjgvik

Postboks 191

2802 Gjegvik

Department of Computer Science
and Media Technology

Gjgvik University College

Box 191

N-2802 Gjevik

Norway

Remote Assessment of Client Trustworthiness

ABSTRACT

When two parties communicate over the Internet the server side has little knowledge
about the client environment. Despite this situation the server has to trust the data it
receives for further processing and that the data it sends to the client is handled in a
proper way.

One way to possible reduce this insecurity is to analyze the client environment prior to
communicating sensitive data. The client’s trustworthiness can be determined in
advance and the server can take this into consideration at further communications.

How can we do such a security analysis? There exist applications today that scan
systems and give back vulnerability reports. The validity of this report is high when
everybody plays by the rules. What happens if an adversary or a Trojan tries to alter
the scan results?

In this report we will analyze the different aspects when doing a security analysis of
the remote client. Our main focus is how to protect the data and the application
performing the security analysis. We define a framework that we apply to our
proposed systems in a case study. We believe such a system is feasible, but practical
issues will be the biggest challenges.

il

Remote Assessment of Client Trustworthiness

SAMMENDRAG

Nar to parter kommuniserer over Internett har server siden liten kjennskap til
klientmiljoet. Til tross for dette ma serversiden ha tillit til de data den mottar for
videre prosessering og at de data den sender fra seg blir behandlet pa en korrekt mate.

En mate som mulig reduserer denne usikkerheten er a analysere klientmiljget for
sensitive data blir kommunisert. Klientens palitelighet kan fastslds pa forhand og
serveren kan ta dette med i betraktning ved videre kommunikasjon.

Hvordan kan vi utfere en slik sikkerhetsanalyse? Det finnes applikasjoner i dag som
skanner systemer og gir tilbake sarbarhetsrapporter. Gyldigheten til disse rapportene
er hoy sé lenge alle folger spillereglene. Hva skjer dersom brukeren eller en Trojansk
hest forsgker & endre resultatene?

I denne rapporten vill vi analysere de forskjellige aspektene ved gjennomfering av en
sikkerhetsanalyse av den eksterne klienten. Vart hovedfokus er hvordan beskytte data
og applikasjonen som utforer sikkerhetsanalysen. Vi definerer et rammeverk som
anvendes pa vare foreslatte system i en case studie. Vi mener et slikt system er
gjennomferbart, men praktiske hensyn vil veere den storste utfordringen.

Remote Assessment of Client Trustworthiness

TABLE OF CONTENTS

ADSEITACE wveevveiniteriieeieete sttt ettt s e st e st e et e e e e st e st e st e e be s aeesseensbe et essseensa e baenaaesareens iii
SAMIMEINIATAZ ...eevveeereeiieeieriieeitterteet e st eeteerteesteesteesteessesssesbesssaesseesseesssessessesssesnseenseennes v
Table Of CONTENTSevviriiiiiirieeteeieee ettt ettt st st e et e e s e e satesbeesaesaesanenes vii
LISt Of FIGUTES. c.cverveteteieieeteet ettt ettt ettt ettt sttt ettt e s s seneen ix
T) 1 o) (=TT xi
1 551 (e 6 L1 o150 o WU SRS 1
1.1 Problem desCriptioncc.ceveeeerierierieieeee ettt 1
1.2 Claimed cONtribULIONS.eccverierieereereerte et sae e veesaeesreeseeens 2
1.3 Motivation and justification.........ccccceeveeeveeriieerenseereereesre e 2
1.4 ReSEArch qUESTIONS.ceriiiiiiiiiiierie ettt ettt be et e saeesanens 2

2 Choice Of METNOAS ..cc.viiiieeieeieeteeceee ettt be e e e saaeese e e ensaens 5
3 REIATEA WOTK ...ttt ceette e eee e eeeaae e e eeaaseeeeeaseeeeensnseeesennnnees 7
3.1 INELOAUCTION ..uveetieieeieeettee ettt cae e re e e e s e e et eesaesnreeseessaessaesnnaens 7
3.2 Environment analysiscccccceeeueeeieineenienieeieeieeseesee e e ee e see e see e ees 7
3.2.1 Data CAtEZOTIES.c.uvieiiieiriieieiteete ettt ettt se et ae e baeeanes 7
3.2.2 Protective applications and t00IS........cccceeveerierrieriiersieenierteneeereeseesaeenne 8
3.2.3 WiIndows SeCUTrity CENTETccevverieerieeieiniienieeteeteesteeseeeseesreesseessessaeenns 9

3.3 Executing environment...........cccveeveereeeiieerieeseeneenressie e esveesseeseessaesneennees 10
3.3.1 Malicious host attACKSccvvviieeiriieieeieiee e e 10
3.3.2 Threat model CateZOTIES ...ccevvuerueriirieierieieree ettt 11

3.4 SOftWAre PrOtECHION .. .euvieiieieciteieieete ettt st et ettt ees 12
3.4.1 Code ODFUSCAION ...cvveeeeeieeieciieceee ettt ee e ve e e e e erneens 12
3.4.2 Software tamper resiStanceecvveeveeceeesieeceereereeree e eseesee e e eeeeens 14
3.4.3 SOMtWATE AIVETSILY ..eeveeereeieeieeiiereeeie e et e e e e ee e e e e s eeesae e anesrnenns 15

3.5 Hardware SOIUIONScccuiieeiieeeie ettt et eeree e e e e e re e e e eaee e reeenneas 16
3.5.1 Integrity Chain.....ccoociieiiiieiieceeeet e 16

3.5.2 EXecute-only MemOTYccccvveiriieiienienientteieene et et eee e sseeesieeseesaeees 16

3.5.3 Generic trusted hardware platform (TCG and NGSCB)ccccccecververeene 16

4 ClENt QNALYZET.....eouieieiieieieee ettt ettt sttt sttt s e e e b sae e 19
4.1 ODJECHIVES ..veuvieurenrieiieiesieetest et et et et e bt s te st st et esbesatestessesst e sesaeestensesseenee 19
4.2 Architecture and data flOW........cc.ecevieeeieeeiieeceeeeee e e e 19
4.3 DAt SOUICES oeiieeeeiiiiiiiieieeeeteeeeeerirreeeeee e e e s e e s saararraeaeeeseesessssssssnsnaaeeeesassans 20
4.4 USAZE SCENMATIO..veeeuureeerrerrreerrreenireersiseessteessseesssseesssseessseessssesssssesssseessssessnns 21
4.5 The StakeholderS........coccuiieeiiieieeeieeecte et rre e eeeaeeas 22
4.5.1 The ENA USET ...uvviiieeiiieeeeeeeeee ettt eeereeeeeettreeeeeetraeeeeeraeeeeeesnnneseeennnnees 22
4.5.2 The Service PrOVIAETccoovuveeieeiiieeeeeiieeeeeeiieeeeeeetreeeeeeereeeeeeennreeeeennnnees 23

4.6 Practical cOnSIAErationscccccueeeueerieriieeieeeireesreeereeseeereeseesseesseesseesseessees 23
4.7 CRAIIENEZES ..vveeereneeiieierieetetesie ettt ettt ettt sbe st e s e st e s e e saeesesaeens 24

5 FLamEWOTKeoeieceiieiieieeeeeee ettt ettt te st e e e e ae e s se e aesaeeseenseensaesaesnnanns 27
5.1 INErOAUCTION ..evviiiieeieeeee ettt ee et eeetre e et e e ebee e seeeenee e asaeeannas 27
5.2 Documenting the threatscccceeeveeeierieriieeiereeseee e 27
5.3 RESUILS ..uiiiiiei ettt e eeee e bee e rbe e e taeesbae e sesesnee e nseennnes 29

6 CASE SEUAY e evreereeiieeiieie et erte et e e teete et et e st e saee e e e e sessaesseeseesseesssasssesssessseenseans 33
6.1 SyStem dESCIIPLIONS ...eevvieruierieeieeitertenteete et st et e ste e e sebeesbeesaeesaeesenesanes 33

Remote Assessment of Client Trustworthiness

6.1.1 Client ANALYZET A....oooviiieeiieeeeeieeeeete et et esteste e sveeeeesae e s e e saesaeeenseenaas 33

6.1.2 Client ANALYZET B.....cocoiviiiiiienienieeieeieert ettt sttt st s 34

6.1.3 Technical COMPATISONccueruiiieriirierienteteierte ettt 34

6.2 Applying the frameworK.........ccovueeveiriiniiinienieeececeee e 35
6.3 Validating the frameworK.........ccoeveeviereriieniineniieeeeee et 36

7 CONCIUSIONS ..uvveeevrieeiieeeiireeetreeeeteeeeiteeeereeeetaeeesseeessseeesseesssaessseessseeessaeessssesnsseennns 39
8 FULUTE WOTK .eveieeieece ettt et ctte et e e re e e ete e e e ae e e aaeeeasaeesnsae e ssaennnes 41
REFEIEIICES ...veiieeiieiieeeiie et ettt e eetae e e ctee e e beeeetbe e e baeeesseeeesseeessesenssesssseessseesnsseesssannnes 43

viii

Remote Assessment of Client Trustworthiness

LIST OF FIGURES
Figure 1: Overview of the system being studied (Client/server model)..........ccccceevueuene. 1
Figure 2: Client side in more detail of the system being studied..........cccceceevuererrienuenncn. 2
Figure 3: Choice of MEthOAS ..ccueeeuiieieeieciieeeeete et sae e s ens 5
Figure 4: Interlocking Trust OVEIrVIEW [17]ccveecveererreenieeieecieeteeseeseeeee e evee e e 15
Figure 5: TCG Application architecture [36]......cccceeverrierieriieniieiiiereenteeie e eeeeeeaes 16
Figure 6: Overview of client analyzer in CONtEXtcccevverveerriersierrieerieniienieneeeeeeeeaes 19
Figure 7: Flowchart of data about client environment............ceceveveevieeneeneenseenseensennne 20
Figure 8: Sequence chart of client analyzer in USeccceevevvevverieirerenenieineeeseienes 22
Figure 9: Data flow diagram of the client analyzercccccevererererennrnenenenenennenn 27
Figure 10: Client Analyzer A in CONTEXTccvuereerveeeierereereesteeeeeeeeeeeseesreeseeseeesaeenns 33
Figure 11: Client Analyzer B in CONTEXT......ccovvervierrierrieireerieenieeieeceeeieeseeseeeseeseessaeenne 34

X

Remote Assessment of Client Trustworthiness

LIST OF TABLES
Table 1: Data Categories and Types of Data to collect (adapted list from CERT [35])... 8
Table 2: Possible attacks on running applications [1]......cccceeveeveerveenieenienieeneenieeneenns 11
Table 3: Summary data sources on client eNVIroNMeNt........c.cceeeveervverieerruerseeeneerieenieenns 21
TADIE 41 ASSEES..uviiuiiiieeieeeteeeee ettt et ettt e st e e aeete e re e s e e s aaeeteease e seesseeesteenaeenreeneanreans 28
Table 5: Threat #1 Modify data about client environmentccccceeeveeveecieeceeceennenn. 29
Table 6: Threat #2 Bypass environment analysisc.cccceeeeveenenernieneniennieseneeneennens 29
Table 7: Framework - Basis of COMPATriSONc.cccueeciierveeeieeieeieeceeseeeee e eee e 30
Table 8: RAtING SCALEcueieuiieieeiieieeceeceerteeteete et eseeesteeaessaeeseeesseesseeessesssaesseessaesseanes 31
Table 9: Technical comparison - Client Analyzer A & Bcocceevverienveeniennieeneeneeeeens 35
Table 10: Framework applied to Client Analyzer A & B.......coceevieeiiinieniieniieenieneeneene 36

Xi

Remote Assessment of Client Trustworthiness

1 INTRODUCTION

The following chapters will state the problem description, contributions, motivation
and justification, and research questions.

1.1 Problem description

Most of the systems today where the general public is the user, web applications are
the most common. We see this in online bookstores, internet banking, online
newspapers etc. More and more use online services, and at the same time there is an
increase in malicious applications and other threats.

To illustrate the problem we cite two examples. In the first example, spyware monitors
the communication between the customer and the internet banking operator [39]. To
detect if a client is infected and the spyware is present is often impossible. In this case
the spyware is visible because it also interferes in the communication when
downloading. The bank blocks the user if the spyware is detected. The second example
is when malicious software on the client machine hijacks the communication and
redirects to another website as described in the article [40]. A business has been
forced to close because hijacking has resulted in a lack of customers.

Figure 1 shows an overview of the system we are studying. Here, the server is the
trusted home and the client is the unknown executing environment.

Intarmat

Figure 1: Overview of the system being studied (Client/server model)

When communicating over the Internet as described above, the server side has little
knowledge about the client environment. Despite this situation the server has to trust
the data it receives for further processing and that the data it sends to the client is
handled in a proper way. It is difficult to know how trustworthy the information is
when we do not know how the information was generated. If the client belongs to
another party than the server, this insecurity increases even further. The server has to
assume that the client in basis is trustless.

One way to possible reduce this insecurity is to analyze the client environment prior to
communicating sensitive data. The client’s trustworthiness can be determined in
advance and the server can take this into consideration at further communications.
How can we do such a security analysis? There exist applications today that scan

Remote Assessment of Client Trustworthiness

systems and give back vulnerability reports. The validity of this report is high when
everybody plays by the rules, what happens if the user or a Trojan tries to alter the
scan results?

Figure 2 shows in more detail the situation on the client side. The red arrows symbol
the client environment attacking the application.

—1 ﬁ.

‘ Application -

ESQUrces

O O

Figure 2: Client side in more detail of the system being studied

In this study we will go into how a security analysis of the remote client environment
can be done and the different challenges.

1.2 Claimed contributions

We will illustrate and add knowledge to the different aspects and challenges when
analyzing a remote client environment. It is difficult to achieve a one hundred percent
security analysis. Based on challenges found in related theory we define a framework
and compare two systems and seek what characterizes a better system.

1.3 Motivation and justification

Service providers and end users wish for confidentiality when it comes to business
related and sensitive data. Security is a complex area and many users have not the
knowledge or the interest. The service providers do an effort in sufficient
authentication of the user. When the PC becomes a threat, similar to man-in-the-
middle attacks, we need methods to ensure the trustworthiness of the whole client
side.

1.4 Research questions

In the context of our proposed system:

Remote Assessment of Client Trustworthiness

How can we analyze the robustness of a client environment to malicious
activities?

Given a hostile environment; how can we prevent the gathered data from
being modified by an attacking party?

Remote Assessment of Client Trustworthiness

2 CHOICE OF METHODS

In this study we analyze systems that do remote assessment of the client
trustworthiness. This means checking for protective measures active on the client
prior to communicating business related and sensitive data.

We choose a qualitative approach as described in [41]. We seek to describe the remote
assessment process more in depth. In quantitative studies, often experiments and
surveys, one can generalize the results. Based on measuring different variables and the
outcome, one can accept or reject proposed hypotheses. In our study we seek to find
characteristics in systems by following the strategy shown in Figure 3.

~a
\-

Figure 3: Choice of methods

A literature study is necessary to get an overview of protective measures available for a
client environment and how to detect if they are present. We need to understand the
threats an application running in an unknown environment is exposed to and how to
mitigate these threats with the use of different protection techniques. Our sources for
the literature study have been mainly the Internet, online article databases and the
library at Gjevik University College. Based on the literature study we define a
framework for comparing different systems. The defined framework is then applied to
two constructed systems in the case study. Implementing a demo
application/prototype of the system we found to be too time-consuming - so we have
decided to only construct two possible models.

Remote Assessment of Client Trustworthiness

3 RELATED WORK

In this chapter we look at related work and results that are relevant for this study. We
begin by giving an overview and how the main subject areas relate to the listed
research questions in chapter 1.4.

3.1 Introduction

We have identified three main subject areas relevant for this study:

e Protective applications and checklists — This will give us knowledge about
what and how to search for protective measures running on the client. This is
related to research question no. 1 and is covered in chapter 3.2.

e Mobile Agent Systems — From this area we will find the threats related to the
application that runs on the client and performs the analysis of the client
environment. This is related to research question no. 2 and is covered in
chapter 3.3.

e Software protection — This is the contrast to the previous area. Techniques for
protecting our software will help us say something about what level of trust we
can have to the data received from the analysis. This subject is also related to
research question no. 2 and is covered in chapters 3.4 and 3.5.

3.2 Environment analysis

In the following chapters we describe, and how to search for, protective measures
present in the client environment.

3.2.1 Data categories

In order to analyze and say anything about an environment, we need data describing
it. There are many items one can check when doing an environment analysis and we
have to in advance know and decide what to look for.

In CERT’s guide [35], we find items to analyze when determining how robust our own
system is to withstand attacks and to detect malicious acts. When attempting to
analyze a remote environment many of the same items are relevant. These are listed in
Table 1.

Remote Assessment of Client Trustworthiness

Data Category

Types of data to collect

Process
performance

system and user processes
services executing at any given time

Other process
data

user executing the process

process start-up time, arguments, file names

process exit status, time, duration, resources consumed
the means by which each process is normally initiated
(administrator, other users, other programs or processes),
with what authorization and privileges

devices used by specific processes

files currently open by specific processes

Files and

directories

list of files, directories, attributes

cryptographic checksums for all files and directories
accesses (open, create, modify, execute, delete), time, date
changes to sizes, contents, protections, types, locations
changes to access control lists on system tools

additions and deletions of files and directories

results of virus scanning

Log files

results of scanning, filtering, and reducing log file contents
checks for log file consistency (increasing file size over
time, use of consecutive, increasing time stamps with no

gaps)

Vulnerabilities

results of vulnerability scanners (presence of known
vulnerabilities)
vulnerability patch logging

Table 1: Data Categories and Types of Data to collect (adapted list from CERT [35])

3.2.2 Protective applications and tools

Several tools exist for doing a security analysis of an environment. Looking at what
data and how these tools scan the environment will give us further knowledge of what
is relevant in checking. Below are some examples of tools that analyze client
environments for insecure configurations, lack of service packs and hot fixes etc. We
summarize what items the tools look for, and what methods they use.

e Microsoft Baseline Security Analyzer 2.0 (MBSA) [28] - This tool determine
the security state in accordance with Microsoft security recommendations.
MBSA detect common security misconfigurations and missing security

updates.

e Windows OneCare Live (Beta) [29] - This is an “all-in-one” protection and
maintenance tool. It contains anti-virus, firewall and anti-spyware. In addition
the tool does a monthly tune-up of the computer.

Remote Assessment of Client Trustworthiness

e Windows AntiSpyware (Beta) [30] - Helps protect users from spyware and
other potentially unwanted software. It is guarding more than 50 ways
spyware can enter the system.

e WinTasks Professional [31] - WinTasks provides a detailed description of each
process that is running.

e Lavasoft Ad-Aware [32] - Provides protection from spyware and other
threats; known data-mining, aggressive advertising, parasites, scumware,
Trojans, dialers, malware, browser hijackers, and tracking components.

e Spybot — Search and Destroy [33] - Detects and remove spyware of different
kinds from the system.

e Trend Micro PC-cillin Internet Security [34] - Detects and removes viruses,
worms, Trojans, and spyware. In additions it includes a firewall, spam
filtering, and vulnerability assessment among other things.

The different kinds of services that the applications and tools mentioned above
perform can be categorized in:

e Malware (anti-virus, anti-spyware etc.)

e Scan current patch-level

e Security configuration settings

¢ Analyze running applications/processes

There are different ways to search for and detect vulnerabilities. By looking at the tools
listed above, we get the following list:

e Analyze running processes and process modules

e Search for and analyze registry keys

e Search for files and folders

e Analyze data streams

e Analyze memory

3.2.3 Windows Security Center
Service Pack 2 for Microsoft Windows XP introduces the Windows Security Center
[42]. Here, status about firewall, virus protection and Automatic Updates are collected
and monitored in one place. The interesting part is how the Windows Security Center
gathers data about products. The manual approach is to search for registry keys and
files that the different products install. The automatic is by using the Windows
Management Instrumentation (WMI) [38]. WMI is a component in the Windows
operating system that provides access to information about different objects. WMI can
be used to query and set information on applications, networks, and other
components. In this way third-part applications can report their status to the Windows
Security Center through WMI. The Windows Security Center tries to determine the
following:

e Whether an antivirus program is present

Remote Assessment of Client Trustworthiness

e Ifthe antivirus signatures are up-to-date

e Real-time scanning or on-access scanning is turned on for antivirus programs
e Whether a firewall is installed and whether the firewall is turned on or not

e Status of Automatic Updates

In our system we want a similar way of collecting data about protective measures and
report the status back to the server.

3.3 Executing environment

In the following chapters we describe the potential threat that the executing
environment is to the running application.

3.3.1 Malicious host attacks

One area where protection of the application is crucial is Mobile Agent Systems [1, 2,
3]. The main components of Mobile Agent Systems are agents and hosts. Hosts offer
the runtime environment and agents are entities that consists of code, data and control
information. In these systems agents move between hosts autonomously. A lot of
research has been done in this area; threats against mobile agents and mobile code.
When looking at threats against our system, we base it on work from this area.

Mobile Agent Systems are exposed to the problem of malicious hosts. Hohl [1]
explains malicious host as:

“A party that is able to execute an agent that belongs to another party and that tries to
attack that agent in some way.”

We have to assume that the agents, or more generally any application, will be exposed
to white-box attacks. The application is subject to attacks originating from the
operating system, other software, the hardware etc. This pessimistic threat model is
discussed in both [14] and [15].

To illustrate the problem of malicious hosts we include an example with a Mobile
Travel Agent [2]:

“A Mobile Travel Agent is sent out by a user to visit several airlines, find the best offer and
book and pay the best flight [...]. A malicious host might spy out the price limits set by the
user and the offers by competitors. It might tamper the agent to make the agent falsely
believe that the host has the best offer. It might steal the mobile agent’s electronic money,
credit card number or cryptographic keys.”

Security issues for the agents in Mobile Agent Systems described in [1, 4, 5] will be a
good basis for the studying of our problem. Table 2 lists possible attacks in Mobil
Agent Systems as identified by Hohl [1].

10

Remote Assessment of Client Trustworthiness

Attack Description

Spying out code The code of the application has to be readable by the host in
order to execute it. Knowing the code leads to knowledge
about the execution strategy of the application.

Spying out data This is reading the private data of the application.

Spying out control flow | By knowing the entire code of the application and its data,

the host can determine the next executing step at any time.

Spying out interaction
with other agents

The host watches the interaction between two agents
(applications).

Manipulation of code

A host can normally modify the program of an application
since it has access to the code memory.

Manipulation of data

The host modifies data in memory.

Manipulation of
control flow

The host can conduct the behavior of the application by
manipulating the control flow.

Incorrect execution of
code

A host alters the way it executes code resulting in the same
effects as above.

Returning wrong
results of system calls

For example returning wrong IP address from a system call
that returns the host’s current IP address.

Manipulation of | The host manipulates the interaction between two
interaction with other | applications.

agents

Masquerade The host spoofs its identity.

Denial of execution

The host does not execute the application.

Table 2: Possible attacks on running applications [1]

This shows that in worst-case, we have no control with the host that runs our
application. The platform can be maintained by adversaries and built for tampering
and analyzing running applications.

3.3.2 Threat model categories

Aucsmith [17] defines three threat model categories.

e Category 1 - This is the normal “hacker attack”. The adversary is on the
outside of the PC, and has to attack via the communication protocols and
access controls in use.

e Category 2 - Malicious code running on the platform, e.g. virus and Trojan
horse attacks, belongs in this category.

e Category 3 - In this category the adversary has complete control of the system.
Software and hardware may be substituted at wish. Technical expertise and
financial resources are the only limitations for the adversary.

Category 3 is further divided in three subcategories.

11

Remote Assessment of Client Trustworthiness

a) No special analysis tools required
b) Specialized software analysis tools required
¢) Specialized hardware analysis tools required

Available resources are a main factor when securing and attacking a system. These
categories help us state our threat model. We will use these categories in connection
with the framework.

3.4 Software protection

In the following chapters we look at software protection techniques and methods.

3.4.1 Code obfuscation

Reverse engineering [6] is the process of decompiling the executable back to readable
source code. Given enough time an resources, a professional attacker will always be
able to reverse engineer and analyze any application. With the introduction if
intermediate languages like the Java byte code [7] and the Microsoft .NET
Intermediate Language (MSIL) [8], more information about the application is
distributed with the executable or compiled files. This way the reverse engineering
process has become easier for an attacker. Reverse engineering is typically the first
step in an attack where knowledge about the inner workings of an application is
helpful in performing further attacks.

Collberg et al says in [9] that code obfuscation is the most viable method for
preventing reverse engineering. That was written in 1997, but today code obfuscations
are still the best way of raising the bar for reverse engineering.

“A definition is given as [9]: Let P — P’ be a transformation of a source program P into
a target program P’. P — P’ is an obfuscating transformation, if P and P’ have the same
observable behavior. More precisely, in order for P — P’ to be a legal obfuscating
transformation the following conditions must hold:

e If P fails to terminate or terminates with an error condition, then P’ may or may

not terminate
e Otherwise, P’ must terminate and produce the same output as P”
In [10] we find an explanation of code obfuscations:
“Semantics-preserving code transformations used to protect a program from reverse
engineering.”

There are different ways of performing code transformations. In [9, 11] we find a four-
way classification:

e Layout Obfuscations

e Data Obfuscations

¢ Control Obfuscations

e Preventive Transformations.

This classification is based on what kind of information the code transformation is
targeting and how it affects the target.

12

Remote Assessment of Client Trustworthiness

Layout obfuscations alter information that is not needed for the application to execute
correctly. This includes
e Scramble identifiers. Names on e.g. variables are useful for an attacker to
understand the program. By changing ‘_toatalAmount’ to ‘abc’, the bar is
raised.
e Change formatting. This is removing source code formatting information.
e Remove comments. Comments and debugging information are useful for an
attacker, but not for the application to execute properly.

Data obfuscation focuses on data and data structures in the application.

e Storage and encoding.

o Split variables. Split a variable x into two other variables y and z.

o Promote scalars to objects. For example promote an integer value to
an integer object.

o Convert static data to procedure. For example a static string can be
converted into a program that produces that string.

o Change encoding. An integer variable x can be replaced by X’ =y * x +
z, where y and z are constants.

o Change variable lifetime. For example a local variable can be changed
to be a global variable.

e Aggregation.

o Merge scalar variables. Two 32-bit integers could be merged into on
64-bit integer.

o Modify inheritance relations. For example create a parent class for
two other classes that has some methods and instance variables from
both.

o Split, fold or merge arrays. For example change the number of
dimensions in an array.

e Ordering. Programmers structure their code for maximizing the readability.
By reordering items, two items that logically belongs to each other is now
scattered around.

o Reorder instance variables.

o Reorder methods.

o Reorder arrays.

With control obfuscation the goal is to disguise the flow of the program. This can be
done in several ways:
e Aggregation. Related code is often put together when programming. The
objective here is to break this logic.
o Inline method. Replace method calls with the actual code.
o Outline statements. Make parts of code a separate method.
o Clone methods. Clone methods, but each time with small differences
and let the calling method arbitrarily choose one of the copies.
o Loop transformations. Loop blocking, unrolling and fission.

13

Remote Assessment of Client Trustworthiness

e Ordering. When programming, related code is often placed together to
simplify reading and maintaining the code. This can be obfuscated by:

o Reorder statements.

o Reorder loops.

o Reorder expressions.

e Computations. Here we modify the real control flow of the program. We can
do this by:

o Insert dead or irrelevant code.

o Reducible to non-reducible flow graphs. Utilize that e.g. the assembly
language is more extended than the higher-level language. In this way
there is no high-level code mapping directly to the native instruction.

o Extend loop condition. Make the termination condition more
complex.

o Table interpretation. Build a simplified virtual machine and let the
real code be interpreted by this.

Preventive transformation exploits weaknesses in de-compilers and de-obfuscators,
not the reverse engineering itself.

e Targeted. Utilize weaknesses in current tools.

e Inherent. Explore inherent problems with known de-obfuscation techniques.

An example of code obfuscation and Microsoft .NET Framework can be found in [12].
A more theoretical publication is Wroblewski’s [13].

3.4.2 Software tamper resistance

The goal with software tamper resistance is to detect integrity violations of original
software [14]. Different approaches have been proposed [17-20]. We look at some key
factors from these later.

To prevent modification of our software, we can add tamper-proofing code to our
application. This code should be stealth, redundant, and [16]:

a) Detect if the application is modified, and

b) Cause the application to fail and stop executing if modifications are detected

There are three principal ways to detect tampering [16]:
¢ Examine the executable program itself to see if it is identical to the original
one.
e Result (program) checking, i.e. examine the validity of intermediate results
produced by the application.
e Generate the executable on the fly. Minor changes to the generating program
will hopefully produce code that cannot be executed.

Aucsmith [17] presents architecture for tamper resistance by introducing Integrity
Verification Kernels (IVK). The IVKs communicate with each other to create an
Interlocking Trust Model. The architecture assumes a System Integrity Program
running on the computer that is available to all programs. The IVKs are responsible for

14

Remote Assessment of Client Trustworthiness

the integrity of the application which it is embedded. Since all IVKs are dependent on
each other, tampering with one program means having to compromise all programs.
This is illustrated in Figure 4.

Program 1 Program 2

IVK IVK
AN

vy

o
\‘ elVK IVK

System Integrity Program

Figure 4: Interlocking Trust Overview [17]

The System Integrity Program has a special IVK called the Entry Integrity Verification
Kernel (eIVK). The eIVK has a published, external interface that can be called by any
other IVK using the Integrity Verification Protocol. The eIVK has a known entry point
and a known public key.

A similar approach, with the use of guards, is proposed in [18]. The insertion of the
protective code is made automated which is important when it comes to extended use
of tamper resistance techniques.

In [19] the execution trace of the code is hashed and compared to a fingerprint. The
technique is denoted Oblivious Hashing. The execution trace contains information
about machine instructions and memory references. This technique can also be used
for remote code authentication.

3.4.3 Software diversity

The idea with software diversity can be compared to genetic diversity [14]. Because of
genetic diversity, no single virus or disease wipes out an entire species. Small
differences make an attack on one item not possible or with reduced effect on another.

Today, the trend within software is towards homogeneity. There is a very small
number in different browsers, operating systems, office applications etc, so the value
of software diversity reduces. By introducing software (code) obfuscation, it is possible
to a higher degree to utilize the diversity. Instead of making one new application which
is equivalent to the original, make several copies instead. Diversity is discussed in [37].

15

Remote Assessment of Client Trustworthiness

This doesn’t raise the degree of difficulty for tampering with one instance, but an
automated tool is more difficult to make because of the small differences between all
instances.

3.5 Hardware solutions

Because of issues such as the hostile environment, white-box attacks and so on,
software-only security solutions have its limitations. The proposed solutions are based
on trusted hardware.

3.5.1 Integrity chain

Arbaugh [21] describes the integrity “chain”. Systems are organized as layers. Higher
layers assume the integrity of lower layers. Since hardware is the lowest layer, the
integrity “chain” initially is based on trusted hardware. Transitions to a higher layer
occur only after integrity checks are complete and checked on the lower layer.

3.5.2 Execute-only memory

Another possibility for hardware-supported security against tamper-resistance is
execute-only memory (XOM) as studied by Lie et al [22]. XOM allows instructions
stored in memory to be executed, but not otherwise manipulated.

3.5.3 Generic trusted hardware platform (TCG and NGSCB)

Trusted Computing Group (TCG) [23] and Next-Generation Secure Computing Base
(NGSCB) from Microsoft [24] are two initiatives in enhancing system security based
on a generic trusted hardware platform. Even though the two initiatives are separate,
the functionality is similar.

The Trusted Platform Module (TPM) is the trusted root of the system. Figure 5 shows
how applications interact with the TPM [36].

Application 1 Application 2 Application 3
A A A/ A
v v / v
MSCAPI or PKCS TCG-enabled
middleware
Software CSP TCG-enabled CSP 7y
A
v v v
TCG Software Stack (TSS)

A
A 4

Trusted Platform Module (TPM)

Figure 5: TCG Application architecture [36]

16

Remote Assessment of Client Trustworthiness

TCG Software Stack (TSS) is the software interface to the TPM. There are different
ways that applications can utilize the TPM functionality. Applications can call the
TCG-enabled Cryptographic Service Provider (CSP) through an interface confirming to
the Microsoft Crypto Application Library (MSCAPI) or the Public Key Cryptography
Standard (PKCS). Other options are to interact with the TSS directly, or via TCG-
enabled middleware. Such middleware may be software development kits provided by
third-parties. Different services are available with the different options.

The most important services of the TCG specifications are [25]:
e Hardware storage for cryptographic keys
e Secure booting
e (Remote) Platform Attestation
e Sealing

In our case the remote attestation is the most interesting feature.

“Attestation aims to allow 'unauthorized' changes to software to be detected [25].”

This allows for mutual authentication of platforms or applications and the possibility
of convincing a third party that you are running some specific configuration, and
nothing else. This can even be done remotely, called ‘remote attestation’.

17

Remote Assessment of Client Trustworthiness

4 CLIENT ANALYZER

In this chapter we give an overview of the system. Our intentions are not to develop a
new type of analysis tool. We will base our analysis on already existing tools and other
protective applications. Our client analyzer will gather data from the client
environment, and based on these data say something about what protective measures
are active on the client. These results will be used to assess the level of robustness.

4.1 Objectives

The purpose with the system is to analyze the client environment prior to
communicating business related and sensitive data. The objective with the analysis is
to say something about how secure or trustworthy the client environment is. It is not
intended to solve the problem with insecure computers, meaning installing any
software or do any reconfiguration of the client system. This must be handled in other
ways. The service operator has to define a set of requirements that the client
environment has to fulfill before the business process begins. The system will collect
the data and based on these accept or reject further communications.

4.2 Architecture and data flow

The overview of the system is shown in Figure 6. The grey box indicates the client
analyzer and the red arrows symbol the host environment attacking the application.

Client Trusted
server

Data sources | »
-file system

-registry

Figure 6: Overview of client analyzer in context
Figure 7 shows a flowchart for the relevant data in the system. The client analyzer

collects data from the client resources, and then the data collected are sent back to the
trusted server.

19

Remote Assessment of Client Trustworthiness

Data sources
-file system
-registry Collec

Client Analyzer
Send

Server

Figure 7: Flowchart of data about client environment

The ultimate goal for the attacking party is to alter the data in some way, so that the
server assumes a robust and friendly environment when in reality the client
environment is, for instance, infected by malicious applications. The attack can be
directed to any of the components and communication channels of the system.

4.3 Data sources

Here we will look at the different resources on the client environment that we will use
for gathering data in the environment analysis. We have limited our data sources to:

¢ File system

e Registry

¢ Running processes

File system - Different versions of products have different files installed. The files have
different name, timestamp and version number. By knowing which files we can search
the file system and check if they exist or not. This will indicate if the products are
installed, but less whether they are running and configured correctly. We may also
look for known signature-files used by e.g. anti-virus applications or log files that keep
information about status of the tests that the applications perform.

Registry - As with the file system, we can search the registry for known registry keys
added by the different products.

20

Remote Assessment of Client Trustworthiness

Running processes - Some protective applications run constantly, e.g. anti-virus
applications. By searching the process list we can search for running protective
applications.

Table 3 shows a summary of the data sources.

Data source Method Information
File system Search for known files. e Indicate if product is
installed.
o Iflatest files are in use.
Registry Search for known registry keys. e Indicate if product is
installed.
Running System call to get list of running e Which applications are
processes processes running

Table 3: Summary data sources on client environment

4.4 Usage scenario

Here we describe the steps when a user logs on and wish to use the services provided.

9.

The business application sends on behalf of the user an initiating request to
the server. This can be the web-browser requesting the login page of the
service.

The server checks if the client has recently been analyzed and the results.

If the test pass, the communication will proceed as normal and the execution
will jump to step 12.

If the test fails, the server will return to the business application that a
validation is required.

The business application will launch the client analyzer.

Based on the demands and requirements from the server, the client analyzer
gathers data from the client environment.

The client analyzer wraps up the gathered data, encrypts and signs the
message, and sends the message back to the server.

The client analyzer notifies the business application that the analysis is done.

The business application makes a second request.

10. If the test passes, the execution will jump to step 12.

21

Remote Assessment of Client Trustworthiness

11. If the test fails, the server will reject further communication within a fixed
timeframe. The user is displayed with a message indicating what is wrong and
how to correct it.

12. The start page for the service is displayed to the user.

Figure 8 shows a sequence chart of the steps when validation is required and the test
passes.

| l : Il :l
I 1. Init request |
L i 3
| | |
[|
lf : D 2. Server chacks if client OK
L 4. Validation required !
B i
| | |
| | |
I 5 Launch | |
L | |
| | |
| |
Il I &, Gather data :
| | |
[| |
| | 7 Result |
[| |
I I |
| | |
| | |
L 8. Dona i |
| | |
[| |
| 9. Request |
L 1 5
| | |
[| |

i
L 12. Start page of the senvice :
N I
| |
I |

|
|
|
Figure 8: Sequence chart of client analyzer in use

4.5 The Stakeholders

Here we describe the stakeholders of the system — the provider and the end user.
These two are known from the business model.

4.5.1 The End User

From the end users perspective, ease of use and low cost are the most important when
rating if a service is practical or bothersome. If no one uses your services, you will go
out of business. When designing a system one should strive for making it as user
friendly as possible. Technical requirements should be kept to a minimum. If you
deliver services to the business market, you have the chance of setting more
requirements. For instance, you can limit your banking application to run on one
specific operating system. If the public are your customers, the system must be based

22

Remote Assessment of Client Trustworthiness

on what is normal of both hardware and software. If the system requires any special
modules, you as the provider have to make them easily available.

Privacy is just as important as requirements on software, hardware and others. There
are two ways of doing the analyses as prepared for in this system. We can gather all
data needed, do the analyses, and send the result back to the server. In this case little
data about the client environment leaves the client. In the second case we can gather
and send all the data back to the server. Then it is up to the server to do the analyses
and get the result. In the latter the server side gets a lot of information about the
software and hardware configuration on the client side. This might not be widely
accepted by end users.

4.5.2 The Service Provider

The service provider’s focus is, as any other business, on profits. In the long run you
need trust and a positive reputation in the market to achieve good results. For
instance, incidents such as information disclosures are unwanted. For security critical
systems, the provider sets requirements for the client environment. In our case, where
we want the general public as our end users, such requirements can not be too strict.

In the online newspaper article [40] we read how malicious software on the client
machine hijacks the communication and redirects to another site than first intended.
Such acts might be done by competitors. If end users are unsure of the state of their
system or how to perform the necessary tasks to get full control, examples like in the
article might lead to acceptance by end users of an analysis performed by the service
provider. This way the end user helps the service provider by accepting the analysis.

4.6 Practical considerations

We have identified three practical issues:
e Response time
e Size
e Accessrights

Response time is probably the most important issue when it comes to user
friendliness. If the analysis process takes ages to perform, the system will not be
accepted by the users. The size of the application might also play a role regarding
response time. On a slow connection, e.g. 9.6kbps through a cellular phone, even
checking for new mail takes to long. Introducing an application that is slow to
download, but necessary for getting access to the internet banking services, will not be
very welcome.

When doing an environment analysis full access to the system is probably needed.
Because of viruses and other malicious code, runtimes limits to a minimum what an
outside application can do. In addition, users are requested to use a normal user
account, and not full administrator privileges when not needed. A system like the
client analyzer might be seen as a risk to the client environment.

23

Remote Assessment of Client Trustworthiness

4.7 Challenges

There are several challenges when analyzing a client environment where we do not
have full control. The first, and most obvious challenge, is that the only place data
about the environment is available, is on the client itself. How can we trust the data
collected from the environment? We need methods for assessing the level of
trustworthiness of our collected data. Below we list other challenges when analyzing a
client environment. Some of the challenges go a bit wider than just the system we are
studying. We do this to take into account a real life implementation.

Platform - The client environment can be of different platforms. Windows, UNIX, the
different Linux alternatives are just a few examples. How we analyze an environment
will vary with which platform the client is running. Different levels of security are built
into different platforms, and different analyzer applications must be developed for the
different platforms. In addition, there is a variation in the malicious activity against
different devices and platforms. Another thing is; with stationary clients on internal
networks we may assume more control with the environment. Security policies are
defined and applied, physical security is increased, among other factors. With home
computers and laptops not necessarily all these things are in place.

Ownership - It's impossible to say if a client environment is secure if we haven’t
defined secure in advance. If we own the client environment, i.e. the machine is on our
internal network or a corporate laptop; we know how the client environment is
configured etc. This way we know what to look for in a security analysis. If the client is
unknown, the complexity of this task increases. All we know is that somewhere on the
internet, someone has downloaded our client software and now wants to communicate
with our server. This can be e.g. in a shopping scenario or Internet bank. We have no
knowledge about the user or the machine.

Environment - When doing a security analysis of a client environment, we can in
reality only do this on a technical level. Since security is not only technical, but also
non-technical procedures, the users’ attitude and behavior etc., we only get one part of
the truth. A client environment analysis says nothing about the surroundings of the
environment. The biggest threat to systems today, is not platforms or applications, but
its users. When doing a technical security analysis, we don’t get any data or
information on the users controlling the mouse and keyboard.

Up-to-date scanning - Anti-virus, anti-spy ware etc. all uses input or definition files so
that the scanning engine has the most recent data about the threats it’s trying to
detect. This is a necessity for getting the most correct security analysis. New security
breaches are discovered continuously and one successful attack is all it takes to do the
worst damage to the system. This leads to frequent changes in protective applications
and measures running on the client. When scanning a client environment for
protective measures in use, the scanning application has to be aware of all these
changes so that the results reflect the situation on the client as accurate as possible.

24

Remote Assessment of Client Trustworthiness

Configuration - Does the anti-virus software scan the environment with the latest
definition files? Does the anti-virus run at all? By installing an anti-virus application,
the possibility for virus infections decreases, but the behavior of the users are just as
important. We can find protective applications installed, but they could be de-
activated, run with old configuration and/or signature files etc. Most applications can
only detect known threats to a system. If a malicious application rapidly changes it will
be harder to detect. We need a way to communicate with applications similar to the
way described in chapter 3.2.3 with Windows Management Instrumentation and
Windows Security Center. This makes it more complex and involving a collaboration
of lots of vendors.

“The other way around” — There are two ways of performing a remote security
analysis. The first is to let the client do a security analysis of its own environment and
then send the results back to the server. The second way is to let the server do the
analysis on the basis of raw data the client sends back. In this way the server gets
information about installed software, how software is configured, what security
measures are in place etc. Now the roles are turned, and the security scan from the
server has become a threat to the client. This is a possible way for rogue servers to
collect information about client environments in connection with a bigger attack.

Runtime - When designing a new runtime environment or new application platform, a
lot of resources are spent on implementing security measures that will protect the host
running the application. Two examples of such platforms are the before mentioned
NET from Microsoft and Java from Sun. These platforms include security measures
like the sandboxing-technique, code access security, code evidence or software signing
etc. These help the user on the host to verify the authenticity of the application and
have more control with what the application can do. These techniques make it more
difficult to do a remote analysis, since this requires wide access to the system. The
thought of having an application from a service provider you partially trust scanning
the system may not be widely accepted.

Host vs. network — A firewall can be placed both on the host and as a network firewall.
If we cannot find a firewall on the host, the host might be on a corporate network with
a network firewall installed. This and similar scenarios will cause a challenge for the
security analysis. The outcome of the analysis of the client environment will be
negative, even if the protective measure is present to some extent.

25

Remote Assessment of Client Trustworthiness

5 FRAMEWORK

In this chapter we describe the framework.

5.1 Introduction

The purpose of the framework is to be able to compare two systems in regards to the
threats against the client analyzer and the process of analyzing the client environment.
To document the threats we use threat modeling. The threat modeling process will be
based on the technique presented by Howard and LeBlanc [27].

5.2 Documenting the threats

The main goal for an attacker is to be able to alter the result to an “All security checks
passed” when this is not true. The attacker could be either a user with physical access
to the client system, or it could be a malicious application running alongside. The
malicious application’s interests could be the business or other sensitive data,
attempting a denial-of-service attack and so on. If the malicious application were
detected; we can choose to reject further communication, or the client analyzer could
warn the user, among other things.

We begin by decomposing our abstract system from chapter 4. Figure 9 shows a data

flow diagram of the system. The dotted lines indicate the boundary for the client
analyzer application.

RBEL‘IUI'CES -

ifilasystam, Erviranment data E“"'im;"'ﬁ“t
registry,...} foi
Collected emvirorgent data

uest data

Environmeni
dala

Request

handler EW

Env. ipfo request
Erv. info respbnse

Server

Figure 9: Data flow diagram of the client analyzer

27

Remote Assessment of Client Trustworthiness

We have separated the client analyzer application in two processes; the environment
reader and the request handler. We do this to better make visible the storage of
environment data in memory.

An asset is a resource of value. This is typical data or a process. The decomposition
gives us the following assets listed in Table 4.

Asset Description

Environment data This is data collected from the client environment, e.g. file
system information, data from the registry etc.

Request handler This process handles the communication with the server and
other parts of the client analyzer.

Environment reader | This is the part of the client analyzer that collects data from the
client environment.

Environment info | This is the communication back to the server.
response

Table 4: Assets

Our main asset in this system is “data about the client environment”. This includes its
correctness and quality. By correctness we mean whether the data is modified to affect
the analysis results, i.e. its integrity. Quality can be compared to validity; “How well
does the collected data describe reality?” Our main challenge with this data is that it is
not under our control, but still we have to base our analysis on it. We described this
challenge in chapter 4.7. Protecting data in process requires typically protecting the
software processing it.

A threat is a potential occurrence that might damage or compromise the assets. There
are two things interesting for an adversary to attack:

1. The results from the analysis, and

2. How the application did the analysis.

With knowledge of the analysis results and how these are stored, the adversary has a
greater chance of modifying them if desirable. The results are stored within the trust
boundary of the client analyzer application. Since the client analyzer application is
analyzing the surrounding environment, it has to communicate with the environment
in some way. By knowing what external modules or components the application is
communicating with, it will give the adversary knowledge about the entry points for
the application.

We use the list of malicious host attacks presented in 3.3.1 as attack techniques when
identifying threats to the client analyzer. The threats are shown in Table 5 and Table 6.

28

Remote Assessment of Client Trustworthiness

Title Modify data about client environment

Description | The adversary or malicious application can modify the data about the
environment and in this way affect the result of the analysis.

Asset Environment data

Attack tree | 1. Modify environment data
1.1. Modify data outside application boundary
1.1.1. Access for modifying resources on client environment
(AND)
1.1.2. Knowledge about what data to modify
1.2. Modify data inside application boundary
1.2.1. Access for modifying storage area in memory (AND)
1.2.2. Knowledge about where in memory data is stored
1.3. Wrong results from system calls
1.3.1. Modify runtime/execution environment

Table 5: Threat #1 Modify data about client environment

Title Bypass environment analysis

Description | The adversary can patch around the procedure that does the
environment analysis.

Asset Environment reader/request handler

Attack tree | 1. Patch around environment analysis
1.1. Modify executable
1.1.1. Knowledge about where to modify (AND)
1.1.2. Knowledge about how to modify
1.2. Modify code in-memory
1.2.1. Knowledge about where in memory to modify (AND)
1.2.2. Knowledge about how to modify
1.3. Incorrect execution
1.3.1. Modify runtime/execution environment

Table 6: Threat #2 Bypass environment analysis

We have chosen to leave out the communication between the client and the server in
this version of the framework. The communication part is in no way less important,
but because of time limitations and security in communication being a big research
area, we have made this choice. The fourth asset Environment info response will
therefore not be included.

5.3 Results

In Table 7 we arrange the described threats from the previous chapter in a tabular
form making the basis of comparison for our case study.

29

Remote Assessment of Client Trustworthiness

Attack

Assessing level of robustness

Modify data outside application
boundary

Access for modifying resources
on client environment

Degree of difficulty for accessing and modifying the
resources where the client analyzer gathers data.

Knowledge about what data to
modify

Degree of difficulty for obtaining information about
what to modify of client resources to fool the tests.

Modify data inside application
boundary

Access for modifying storage
area in memory

Degree of difficulty for accessing and modifying the
memory where the client analyzer stores data.

Knowledge about where in
memory data is stored

Degree of difficulty to find out where the client
analyzer stores data in memory

Modify executable
Knowledge about where to Degree of difficulty to find out where in the
modify executable to modify code to bypass the

environment analysis.

Knowledge about how to modify

Degree of difficulty for modifying the executable to
bypass the environment analysis.

Modify code in-memory

Knowledge about where in
memory to modify

Degree of difficulty to find out where the code
instructions for the client analyzer are stored in
memory.

Knowledge about how to modify

Degree of difficulty for accessing and modifying the
code instructions stored in memory for the client
analyzer.

Incorrect execution/wrong
results system calls

Modify runtime/execution
environment

Degree of difficulty for modifying the runtime for
the client analyzer.

Table 7: Framework - Basis of comparison

When assessing the level of robustness for each attack we propose the rating scale

shown in Table 8.

30

Remote Assessment of Client Trustworthiness

Rating | Degree of difficulty

Low The attack can be performed by a novice adversary or a tool may be
developed to automate the attack.

Medium | The attack requires a skilled adversary, but no special tools.

High To perform the attack requires in-depth knowledge and specialized tools.

Table 8: Rating scale

31

Remote Assessment of Client Trustworthiness

6 CASE STUDY

In this chapter we describe the two system models and apply the framework from the
previous chapter.

6.1 System descriptions

In the following chapters we specify the two system models. We denote the two
systems Client Analyzer A and Client Analyzer B. The models differ in architecture,
but solve the same task. The greatest difference is the protection technique in use. The
first system model will have software only protection techniques implemented, the
second will be based on trusted hardware. Software only protection is inexpensive and
easy to use. Many development environments have software protection tools
incorporated. Hardware is relative to this costly and deployment of the system gets a
bit more extensive. In addition to the software, a hardware device must be distributed
to every user, or all users require having a general purpose trusted hardware installed.

6.1.1 Client Analyzer A

We begin with the system model of Client Analyzer A. This system is meant to reflect a
standard hardware and software configuration available today. The architecture on the
client side of the system is shown in Figure 10.

Client analyzer

Applications Scan engine

NET Framework/CL Runtime

Windows XP

Hardware

Figure 10: Client Analyzer A in context

The system has a standard hardware configuration with no special requirements. The
operating system in client analyzer A is Microsoft Windows XP. The runtime for our
application is the .NET Framework. Our client analyzer is build as a .NET application.
The client analyzer behaves and interacts as described in chapter 4.4 “Usage scenario”.

33

Remote Assessment of Client Trustworthiness

We assume the use of code obfuscation as software protection technique for the client
analyzer. Code obfuscation is available as standard in the .NET Framework
development environment [26].

6.1.2 Client Analyzer B

In the system model for Client Analyzer B we have in addition to the standard
hardware configuration a trusted hardware device. The architecture of system B is
shown in Figure 11. Client Analyzer B is based on the description and references in
chapter 3.5.3.

Client analyzer
Applications Scan engine
Runtime TCG -
Middleware
Platform/OS TSS
Hardware TPM

Figure 11: Client Analyzer B in context

The platform of system B is a TPM enabled architecture. We assume that algorithms
implemented in the hardware are correct. Otherwise, this would be a vulnerability
introduced to the system. The client analyzer communicates with the trusted platform
module through the TCG-enabled middleware and the TCG Software Stack (TSS).

6.1.3 Technical comparison

Here we give a technical comparison of the two Client Analyzer systems on hardware,
platform and the Client Analyzer application.

34

Remote Assessment of Client Trustworthiness

Client Analyzer A Client Analyzer B
Hardware e Standard hardware e TPM enabled
configuration architecture
¢ No special requirements
Platform/ ¢ Microsoft Windows XP e TPM enabled
operating system e NET Framework operating system
e TCG-enabled
middleware
Client Analyzer e C(Client analyzer is build as a e TPM-enabled
application .NET application application
¢ Code obfuscation

Table 9: Technical comparison - Client Analyzer A & B

6.2 Applying the framework

In this chapter we will compare the two systems based on the defined framework. The

result is shown in Table 10.

Client Analyzer A Client
Analyzer
B
Modify data outside
application boundary
Access for modifying -Low- NN
resources on client Client resources will always be accessible for
environment the administrator of the client system.
Knowledge about what -Low- NN
data to modify By auditing the environment while the client
analyzer is run, a list of data to modify can
be easily obtained. This can be posted on the
Internet and we have to assume easy
available.
Modify data inside
application boundary
Access for modifying -High- NN

storage area in memory

Here we assume encrypted data. The
timeframe to attack between plain text and
encrypted text should be too small for being
an easy attack point.

1 See chapter 6.3 for why not completed.

35

Remote Assessment of Client Trustworthiness

Knowledge about where | -Medium- NN
in memory data is stored | This requires searching the memory and
appropriate tools.
Modify executable
Knowledge about where | -Medium- NN
to modify We rely on code obfuscation to prevent
reverse engineering. The level depends on
the complexity of the code obfuscation
process.
Knowledge about how to | -Low- NN
modify With some effort a novice programmer can
patch around the test if the source code is
available in a readable and understandable
format.
Modify code in-memory
Knowledge about where | -High- NN
in memory to modify This requires in-depth knowledge and tools.
Knowledge about how to | -High- NN
modify This requires in-depth knowledge and tools.
Incorrect
execution/wrong results
system calls
Modify -High- NN
runtime/execution This requires in-depth knowledge of the
environment whole runtime and the interaction between

runtime and the platform.

Table 10: Framework applied to Client Analyzer A & B

6.3 Validating the framework

When applying the framework to our two system models, we came across different

issues and challenges. In this chapter we review our approach.

The framework was developed based on an abstract design of a traditional application
running in an unknown environment, very similar to Client Analyzer A. With the low-
level details in the framework, this makes it difficult to generalize and use on two
fundamental different systems as in our case study. Systems with security enforced in
hardware needs its own framework for comparison or the framework must be at a
more general level. Therefore we find this framework not suitable for Client Analyzer
B. In a real life implementation the business application itself will be TPM-enabled

and utilizing the advantages of a trusted hardware module.

36

Remote Assessment of Client Trustworthiness

If we assume a threat model with no specialized software or hardware tools for
analyzing and modifying the application code or data, we get the impression that the
system is ‘waterproof’, i.e. it can not be tampered with. Only the environment data
outside the application boundary is subject for attack. We think this is a weakness with
the framework. A reason for this we believe is the vagueness and subjectivity when
assessing the robustness and level for each attack. The framework needs a more
detailed scale for each entry where there is no doubt about where on the scale a certain
system with specified characteristics belongs.

We see that the framework lacks much of the assessment of the client’s robustness
against outside threats, e.g. virus, spyware etc., that one would anticipate would bee
included. Our focus has mainly been on the process of gathering data and securing the

software running in the unknown client environment.

We will suggest these changes in future work.

37

Remote Assessment of Client Trustworthiness

7 CONCLUSIONS

Implementing a client analyzer that does the environment analysis transparent to the
user will be difficult. This mainly because it will be a third party application to the
environment and will be large and complex to handle every type of client side
configuration. In addition, the application will reuse results from other protective
applications running in the client environment without standardized way of
communicating. A remote and adapted version of the Windows Security Center would
be our suggested solution in a homogeneous environment. This would not work in an
internet banking scenario where the clients can be of different platforms.

In this study our focus has been on protection techniques. A malicious application will
have difficulties in modifying the client analyzer on-the-fly. Protection techniques are
more directed towards adversaries with physical access to the client environment that
wants to tamper with the client analyzer. We think that it is feasible to implement a
version of the client analyzer with sufficient security, but that the practical issues will
the big challenge.

Because of the challenges when applying the framework to the two system models we
did not get the desired results from the case study, i.e. what characterizes a more
robust client analyzer. This is because our framework was too detailed and specific. If
attempting to apply the framework to Client Analyzer B and assess the level of
robustness, the subjectivity in the process would lead to the level High on every item.

The theory related to TPM-enabled architectures suggests that the business

application itself is implemented as TPM-enabled. This way the application directly
utilizes the security available and enforced in the TPM-enabled architecture.

39

Remote Assessment of Client Trustworthiness

8 FUTURE WORK

We propose the following for future work.

Implement a prototype of the client analyzer and analyze what we have
suggested in theory.

A method for assessing the level of trust we can have to data gathered from the
client environment.

Extend the framework to include the client’s robustness to outside attacks, e.g.
virus, spyware etc.

Incorporate into the framework the communication between the client and the
server. Spoofing, man-in-the middle attacks and replay-attacks are key
factors.

Make the framework more general and objective. Define a more detailed scale

for assessing the level of robustness for each attack against the running
application.

41

Remote Assessment of Client Trustworthiness

10.

11.

12.

REFERENCES

Hohl, F. 1998. Time Limited Blackbox Security: Protecting Mobile
Agents from Malicious Hosts. In Lecture Notes in Computer Science,
1419

Saeb, M., Hamza, M. and Soliman, A. 2003. Protecting Mobile Agents
against Malicious Host Attacks Using Attacks Threat Diagnostic
AND/OR Tree. In Proceedings of Smart Objects Conference.

Bierman, E. and Cloete, E. 2002. Classification of Malicious Host
Threats in Mobil Agent Computing. Proceedings of SAICSIT, 141-148.

Hohl. F. 1998. An Approach to Solve the Problem of Malicious Hosts.
Presented at the 4" ECOOP Workshop on Mobility: Secure Internet
Mobile Computations.

Farmer, W. M., Guttman, J. D. and Swarup, V. 1996. Security for
Mobile Agents: Issues and Requirements. In Proceedings of the 19t
National Information Systems Security Conference, Baltimore, 591-

597.

Sommerville, I. 2001. Software Engineering 6t Ed. FORLAG.

Java Technology. Sun’s Website.
[URL: http://java.sun.com/]

NET Framework Developer Center. Microsoft’s Website.
[URL: http://msdn.microsoft.com/netframework/]

Collberg, C., Thomborson, C., Low, D. 1997. A Taxonomy of
Obfuscating Transformations. Technical Report 148, Department of
Computer Science, University of Auckland.

Heffner, K., Collberg, C. 2004. The Obfuscation Executive. In Lectures
Notes in Computer Science, 3225, 428-440.

Low, D. Protecting Java Code via Code Obfuscation.

[URL:
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow
/obfuscation.htm]

Masood, A. 2004. Intellectual Property Protection and Code

Obfuscation.
[URL: http://www.15seconds.com/issue/040310.htm]

43

Remote Assessment of Client Trustworthiness

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Wroblewski, G. 2002. General Method of Program Code Obfuscation.
PhD thesis, Wroclaw University.

Oorschot, P. C. van. 2003. Revisiting Software Protection. In Lecture
Notes in Computer Science, 2851, 1-13.

Main, A. and Oorschot P. C. van. 2003. Software Protection and
Application Security: Understanding the Battleground. In Lecture
Notes in Computer Science, (to appear).

Collberg, C. and Thomorson, C. 2002. Watermarking, Tamper-
Proofing, and Obfuscation — Tools for Software Protection. (IEEE)
Transactions on Software Engineering, vol. 28, no. 8, 735-746.

Aucsmith, D. 1997. Tamper Resistant Software: An Implementation,
Proc. 1st International Information Hiding Workshop (IHW),
Cambridge, U.K. 1996, Springer LNCS 1174, 317-333

Chang, H. and Atallah, M. 2002. Protecting Software Code by Guards,
Proc. 1st ACM Workshop on Digital Rights Management (DRM 2001),
Springer LNCS 2320, 160—-175.

Chen, Y. et al. 2002. Oblivious Hashing: A Stealthy Software Integrity
Verification Primitive, Proc. 5th Information Hiding Workshop
(IHW), Netherlands (October 2002), Springer LNCS 2578, 400—414.

Horne, B., Matheson, L., Sheehan, C. and Tarjan, R. 2002. Dynamic
Self-Checking Techniques for Improved Tamper Resistance, Proc. 1st
ACM Workshop on Digital Rights Management (DRM 2001), Springer
LNCS 2320, 141-159.

Arbaugh, W. A., Farber, D. J. and Smith, J. M. 1997. A Secure and
Reliable Bootstrap Architecture, Proc. 1997 IEEE Symp. Security and
Privacy, 65—71.

Lie, D. et al. 2000. Architectural Support for Copy and Tamper
Resistant Software, Proc. gth International Conf. Architectural
Support for Programming Languages and Operating Systems (Nov.
2000).

Trusted Computing Group.

[URL: http://www.trustedcomputinggroup.org/home]

44

Remote Assessment of Client Trustworthiness

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34-

35-

Next-Generation Secure Computing Base (formerly Palladium),
Microsoft web site.
[URL: http://www.microsoft.com/resources/ngscb/default.mspx].

Weiss, R. et al. 2004. TCG 1.2 — fair play with the ‘Fritz’ chip.
Presented at the 4th International System Administration and
Network Engineering Conference (2004)

PreEmptive Solutions. Dotfuscator.
[URL: http://www.preemptive.com/products/dotfuscator/index.html]

Howard, M and LeBlanc, D. 2003. Writing Secure Code 21d Ed.
Microsoft Press.

Microsoft Baseline Security Analyzer.
[URL:
http://www.microsoft.com/technet/Security/tools/mbsahome.mspx]

Windows OneCare Live (Beta).
[URL: http://beta.windowsonecare.com]

Windows AntiSpyware (Beta).

[URL:
http://www.microsoft.com/athome/security/spyware/software/defaul
t.mspx]

WinTasks Professional
[URL: http://www.liutilities.com/products/wintaskspro/]

Lavasoft Ad-Aware
[URL: http://www.lavasoftusa.com/software/adaware/]

Spybot — Search and Destroy
[URL: http://www.safer-networking.org/en/index.html]

Trend Micro PC-cillin Internet Security
[URL: http://www.trendmicro.com/en/products/desktop/pc-

cillin/evaluate/overview.htm]

Allen, J. 2001. The CERT Guide to System and Network Security
Practices. Addison-Wesley.

45

Remote Assessment of Client Trustworthiness

36.

37

38.

39-

40.

41.

42.

Werhan, C. 2005. Steps for writing trusted applications.
Computerworld.

[URL:
http://www.computerworld.com/printthis/2005/0,4814,100216,00.ht
ml]

Forrest, S., Somayaji, A., Ackley, D. H. 1997. Building Diverse
Computer Systems. Proc. 6th Workshop on Hot Topics in Operating
Systems, IEEE Computer, Society Press, pp. 67—72

Microsoft. Windows Management Instrumentation.

[URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/anch_wmi.asp]

digi.no. 18.3.2005. Nettbanken sier nei til kunder med spyware.

[URL: http://www.digi.no/php/art.php?id=210977]

digi.no. 23.9.2005. Kriminell adware utrydder e-butikker.

[URL: http://www.digi.no/php/art.php?id=274179]
Creswell, J.W. 2003. Research Design 2" Ed. Sage.

Microsoft. Knowledge Base article 883792.
[URL: http://support.microsoft.com/kb/883792/en-us]

46

