
Security versus Power
Consumption

Stian Jahr

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2006

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Security versus Power Consumption

Abstract

In many cases there are trade-offs between security and user-friendliness, or security versus
speed. Our society is moving towards a more wireless community. This thesis will cover an
aspect of security versus user-friendliness in the form of how do the security implementa-
tions in battery-powered devices affect the battery life. Do we need to charge the batteries
more often when we implement security? Other authors has found the power consumptions
of several security implementations. Previous work presents their results in joule, however,
the user-friendliness cannot be measured in joule. A better unit for measuring the decreased
charge interval. This thesis presents a theoretical model to find the decrement of the charge
interval when security is implemented.
The model is used in a case study to find how much the charge interval is decreased when we
implement a PGP inspired encryption of SMSes. The results shows that the charge interval
is reduced by 42% (from 202 hour to 117 hours) with an RSA key of 2048 bits and we send
20 encrypted SMSes each day. The main reason for the decreased charge interval is the use
of the resource demanding RSA algorithm, however it is shown that the sending of extra
bits due to the expansion of the message when PGP is applied played an important role in
the decrement.

Sammendrag

I mange sammenhenger må man ta avveininger mellom sikkerhet og brukervennlighet, eller
sikkerhet mot hastighet. Vårt samfunn er på vei til å bli mer og mer trådløst. Denne mas-
teroppgaven dekker et aspekt ved sikkerhet aveiet mot brukervennlighet i form av hvor-
dan sikkerhets implementeringer i batteridrevende enheter påvirker levetiden av batteriet.
Tidligere arbeid har funnet energiforbruket av diverse sikkerhets implementeringer. Resul-
tatene av disse er ofte angitt i joule, men brukervennlighet kan ikke måles i joule. Et bedre
mål for brukervennlighet er antall timer ladningsintervallet synker når vi implementerer
sikkerhet. Denne masteroppgaven beskriver en teoretisk modell for å finne ut hvor mye
levetiden på batteriet senkes når man implementerer sikkerhet.
Modellen er brukt i et case study for å finne hvor mye ladningsintervallet synker når vi im-
plementerer en PGP inspirert kryptering av SMSer. Resultatet viste at ladnings intervallet
sank med 42% (fra 202 til 117 timer) med en RSA nøkkel på 2048 bits og vi sender 20
krypterte meldinger hver dag. Hovedgrunnen til dette er den resurskrevende RSA krypterin-
gen, men det viste seg at å sende ekstra bits på grunn av meldings ekspansjon av en PGP
kryptert melding spilte en viktig rolle i nedgangen av batterilevetid.

iii

Security versus Power Consumption

Acknowledgments

First of all I will like to thank my supervisor, professor Einar Snekkenes, for valuable
guidance through this master thesis. Einar is a man of many thoughts and ideas that
was helpful during the dissertation. I will also like to thank my thesis opponent, Vidar
Evensrud Seberg, for fabulous feedbacks to my thesis.

My next thanks are going to Hossein Hayati Karun for introducing me to regular
expressions. Without his help, the time of implementation of my application (EnergyCalc,
presented later in this thesis) was reduced.

I will also like to thank my student friends, written their master thesis on the project
room A-220, for motivation and discussions during the master thesis.

-Stian Jahr

v

Security versus Power Consumption

Contents

Abstract . iii
Sammendrag . iii
Acknowledgments . v
Contents . vii
List of Figures . ix
List of Tables . xi
1 Introduction . 1

1.1 Topic covered by this thesis . 1
1.2 Problem description . 1
1.3 Justification, motivation and benefits . 1
1.4 Research questions . 1

2 Related work . 3
2.1 How to find power consumption of security implementations? 3

2.1.1 Theoretically . 3
2.1.2 Experimental . 5

2.2 What is the power consumption of different security implementations? . . 5
2.3 How do security implementations affect the battery’s charge interval? . . . 9

3 Summary of claimed contributions . 11
4 Method . 13
5 Theory . 15

5.1 Where does the energy go? . 15
5.2 Security implementations . 16

6 Model . 19
6.1 Theoretical power consumption model . 19
6.2 Trade-offs . 23

7 EnergyCalc . 25
7.1 Introduction . 25
7.2 Script language . 25

8 Case study: secure SMS . 27
8.1 Background . 27
8.2 Theory . 27
8.3 Experiment . 32
8.4 Results and discussion . 36

9 General results and discussion . 41
9.1 Impacts on the charge interval . 41

9.1.1 Choice of algorithm . 41
9.1.2 Increased bits to send in communication settings 41
9.1.3 Hardware versus software . 41
9.1.4 Design challenges . 41
9.1.5 New technology . 43

vii

Security versus Power Consumption

10 Conclusions . 45
10.1 Summary . 45
10.2 Equation accuracy . 45

11 Further work . 47
Bibliography . 49
A Tables . 53

A.1 Practical compression test results . 53
A.2 Times of cryptographic calculations . 54

B Formula equations . 59
B.1 Variables . 59
B.2 Equation calculations . 60

C J2ME source code . 63
C.1 Introduction . 63
C.2 Hash algorithms . 64
C.3 Symmetric encryption . 65

D Perl script for practical compression test . 71

viii

Security versus Power Consumption

List of Figures

1 Energy measurement test bed with Compaq iPAQ H3670 PDA 8
2 Encryption scheme in VectorTEL X8 and S3 9
3 Simple circuit . 15
4 CMOS transistor . 15
5 A CMOS inverter . 16
6 Voltage and current of a simulated inverter 16
7 Capacitor in paralell with device . 20
8 Multiple subactivities of an activity example 21
9 Screenshot of EnergyCalc with example script 26
10 PGP encryption . 29
11 PGP signing . 30
12 PGP message . 30
13 Compression test . 31
14 Extra SMSes to send when PGP encryption and signature is applied 32
15 Experiment to find current drawn on a cellular phone 33
16 Time of symmetric encryption on SonyEricsson Z1010 37
17 Linear regression of time of symmetric encryption on SonyEricsson Z1010 37
18 Time of hash algorithms on SonyEricsson Z1010 38
19 Linear regression of time of hash algorithms on SonyEricsson Z1010 . . . 38
20 Time of AES with different key sizes on SonyEricsson Z1010 39
21 Linear regression of time of AES with different key sizes on SonyEricsson

Z1010 . 39
22 Charge interval as a function of sent SMSes each day 39
23 CryptotestME screenshot . 63

ix

Security versus Power Consumption

List of Tables

1 Energy consumed by secure wireless data transmission 7
2 Total energy consumed by IPSec session negotiation protocol in various

modes . 7
3 Energy reduction factor of secure session negotiation with several techniques 8
4 Energy consumption of asymmetric crypto algorithms on iPAQ 9
5 Execution times for different cryptographic algorithms in hardware and

software . 10
6 Decreased charge interval with the WMA DRM 10 format 10
7 Variables of the model . 20
8 Currents and times of the equation example 23
9 Steps involved to calculate 4423mod1053 = 298 28
10 SonyEricsson Z1010 specification . 32
11 Measurement of current in cellular phone 33
12 Time of sending SMS . 33
13 Example case . 35
14 Practical compression test results . 53
15 Ciphers compared in SonyEricsson Z1010 54
16 AES key sizes compared in SonyEricsson Z1010 54
17 Linear regression of times in SonyEricsson Z1010 55
18 Ciphers compared in SonyEricsson P910 56
19 Charge interval as a function of sent SMSes each day 57
20 Variables of the model . 59
21 RSA key components . 69

xi

Security versus Power Consumption

1 Introduction

1.1 Topic covered by this thesis

This thesis presents an aspect of the trade-off between user-friendliness and security. The
thesis’ angle of user-friendliness is how often do we need to re charge the batteries of a
battery powered device. The main question is «Do we need to charge the batteries more
often when we implement security?»
Keywords: Power consumption, usability, availability, information security.

1.2 Problem description

There are often requirements to both security and the battery’s charge interval. When se-
curity is implemented, it is at the sacrifice of battery lifetime. Also when there is a need
to increase the battery lifetime it may be at the sacrifice of the security. The trade-off
between these requirements may be hard to consider. When designing hardware in wire-
less environments, the power consumption of the functions is an important issue. E.g.
when making a device to log acceleration to see if a package has been handled with care
during transportation, and want the log to be stored encrypted in the memory. To select
the encryption algorithm and key size there is a need to know how much power the dif-
ferent encryption algorithms consume of power. In other cases, encryption or not should
be considered. E.g. when using an unsecured wireless network with a battery powered
laptop and need to upload a big file to an FTP server. To consider using encryption or
not, one need to know how much the use of for example an SSH tunnel increases the
power consumption and reduces the charge interval.

Battery lifetime is a part of the user-friendliness. E.g. when implementing secure mes-
saging on a mobile phone we may need to know how much the security decreases the
user-friendliness in the shape of how long the battery last. Can we continue the same
way as we did before the security is implemented, or do we need to charge the battery
more often than before?

1.3 Justification, motivation and benefits

In our wireless society it is necessary to design the hardware devices with low power
consumption. When knowing how much implementation of security decrease the charge
interval, it may be easier to decide the trade-off between security implementations and
charge interval.

The stakeholders of this thesis are those making battery-powered devices and needs to
implement security. This thesis will help us to find out how much more power consuming
the hardware will be when they implement security in the hardware device.

1.4 Research questions

The research questions answered in this thesis are:

1. How to find power consumption of functionality with and without security?

• Theoretically

1

Security versus Power Consumption

• Experimental

2. What is the power consumption of different security implementations?

3. How do security implementations affect the battery’s charge interval?

2

Security versus Power Consumption

2 Related work

This chapter searches the literature for previous work related to the thesis. The chapter
is divided in sections based on the research questions stated in the previous chapter.

2.1 How to find power consumption of security implementations?

2.1.1 Theoretically

In [1], Osmulski et al describes a probabilistic power prediction tool for the Xilinx 4000-
series FPGA1. The tool is a java based application, which based on two input files can
predict the power consumption with typically less than about 5% error. The input files
are:

1. A configuration file associated with an FPGA design

2. A pin file that characterizes the signal activities of the input data pins to the FPGA

Based on the two input files, the tool propagates the probabilistic infor-
mation associated with the pins through a model of the FPGA configuration
and calculates the activity of every internal signal associated with the config-
uration. The activity of an internal signal s, denoted as, is a value between
zero and one and represents the signal’s relative frequency with respect to
the frequency of the system clock, f.Thus, the average frequency of signal s is
given by asf. [...]

The average power dissipation due to a signal s is modeled by

1

2
Cd(s)V

2asf

,where d(s) is the Manhattan distance the signal s spans across the array of
CLBs, Cd(s) is the equivalent capacitance seen by the signal s, and V is the
voltage level of the FPGA device. The overall power consumption of the con-
figured device is the sum of the power dissipated by all signals. [...] Letting
S denote the set of all internal signals for a given configuration, the overall
power consumption of the FPGA is given by:

Pavg =
∑
sεS

1

2
Cd(s)V

2asf

=
1

2
V2f
∑
sεS

Cd(s)as (2.1)

[1].
This approach can only test one specific setting with a specific set of input signals. In

the literature this is referred to as input pattern-dependent. The advantage of this method

1Field Programmable Gate Array (FPGA)is an electronic device that can be programmed with software in a
language called VHSIC(Very-High-Speed Integrated Circuit) Hardware Description Language(VHDL)

3

Security versus Power Consumption

is the platform independence. It can be used to estimate the power of any circuit, regard-
less of technology, design style, functionality, architecture, etc[2].

In Najm’s survey[2], he found that most power estimation techniques have simplified
the problem in three ways:

• The chip’s power supply delivers a stable and non-changing voltage. The power can
now be calculated with the draw current. (P = U · I).

• The circuit is build of logic gates and latches and has a design style of synchronous
sequential circuit.

• The latches are edge-triggered and the circuit draws no steady-state supply current.

With these assumptions the power dissipation is broken down into

1. the power consumed by the latches

2. the power consumed by the combinational logic blocks

The estimation methods Najm presents in [2], are approaches to overcome the strong
pattern-dependence problem. However the techniques presented are weakly pattern-dependent
since the user has to supply typical behavior of the system’s input in form of probabilities
(average fraction of time that the signal is high) and density (average number of frac-
tions per second).

In [3], Jagau presents Simcurrent, a tool to predict the power consumption of com-
plex CMOS circuits. The accuracy of Simcurrent is about 5%. The tool is based on the
fact that the power consumption of a CMOS circuit is present when the logical values are
switched. It combines the necessary logic simulation with results from an analog sim-
ulation. Previous work has shown that the current flow is dependent on the following
parameters[4]:

• Gate size (i.e. resistance of the pull-up and pull-down path)

• The load capacitance (line and gate input capacitance)

• The slope of the input signal

The tool contains an algorithm taking care of these dependencies. Simcurrent uses a set
of permanent data and a set of generated data produced during the circuit analysis. The
permanent dataset is permanent for a given technology or process family and contains
the following data:

• A list of gate names with their respective input capacitances, driver capability (fan-
out), and gate type (inverting or non-inverting)

• Calculated switching capacitances of each gate

• A set of analog signal shapes for two reference gates under representative load con-
ditions (0% ... 100% load)

From the given dataset Simcurrent finds the current consumption by the following algo-
rithm:

1. Search the netlist for all gate inputs with the same signal names

4

Security versus Power Consumption

2. Search the netlist for corresponding cell names

3. Determine the real load (Cload) of each output

4. Analyze of the event table (signal, names and connected gates)

5. Calulate the actual current shapes from the database depending on the gate type and
transition

6. Calculate the resulting current

The tool is validated by comparing the result of the tool to an Extended SPICE2 sim-
ulation.

2.1.2 Experimental

In [5], Bhargava et al present a method to measure the energy consumption in a PDA
based mobile devices as a part of their work. They disconnected the battery from the
PDA and replaced it with a DC power supply. The energy consumption was determined
by measuring the input voltage and current across a test resistance of 1Ω using an oscil-
loscope. The reported result was a average of five independent tests.

In [6] and [7] Tiwari et al found the power consumption of several instructions in
the 486DX2 CPU with a mobile PC evaluation board. The board was designed for current
measurements and thus the power supply connection to the CPU was isolated from the
rest of the system. The current can then be measured by an ammeter3. They also used a
similar technique to measure the power consumption of a Fujitsu DSP, but the DPB board
needed some modification since it was not designed with current measurement in mind.
Tiwari et al found the power consumption of a Fujitsu SPARC lite 934 the processor
chip and an IC tester machine. In their work they focused on techniques to optimize
the power consumption. In [6] they proposed several techniques to optimize the power
consumption: reducing memory access, energy cost driven code generation, instruction
reordering for low power and processor specific optimizations.

2.2 What is the power consumption of different security implemen-
tations?

In [8], Prasithsangaree and Krishnamurthy compare the power consumption of AES
and RC4 encryption algorithms. These algorithms are used in WLANs[8]. RC4 is used
in Wired Equivalent Privacy(WEP)[9] and Wi-Fi Protected Access(WPA)[10], and AES
is proposed used in WPA2[11]. They used a laptop with Pentium III processor with
OpenSSL version 0.9.7a[12]. They tested the following metrics denoted in the respec-
tive results:

Encryption speed. The experiment showed that with small data packets (less than ap-
proximately 90 bytes) the AES algorithm was the most effective in MB/sec. How-
ever, the effectiveness of the RC4 algorithms increased with the increase of the
packet size, while AES hardly changed with increasing packet size.

CPU work load. This metric shows the time of the encryption. The result was similar to
the previous result. With small packets the AES was the most effective algorithm

2Simulation Program with Integrated Circuits Emphasis
3Device to measure current

5

Security versus Power Consumption

and packets larger than approximately 70 bytes were encrypted faster with RC4.

Energy cost. Same result as above. The current drawn while encrypting was assumed
as stable. Since the energy consumed is proportional with the current drawn, this
will lead to similar result.

Key size variation. The energy consumption increased slightly with increased key size
for the AES algorithms. The RC4 algorithm was not affected by the increase of key
size.

In Prasithsangaree’s and Krishnamurthy’s conclusions they suggested a combination of
RC4 and AES to save energy.

In [13], Prasithsangaree and Krishnamurthy study the energy consumption of the dif-
ferent protocols used in WLAN (WPA, WEP and WPA2) with different keysizes. They used
the energy consumption and compared this with the encryption strength. To find the en-
ergy consumption they applied a simulated environment with recorded traffic from both
a campus and a home WLAN. The results of their simulation showed that the WEP-104
and WPA-128 did not consume noticeably more energy than WEP-40. The reason for this
phenomenon is that they all use RC4 encryption, and as described in [8], the RC4 power
consumption does not depend on key size. However, the WPAv2-128 used approximately
three times more energy in a home network and almost doubled energy consumption in
a campus network. This is because of the CBC-MAC.

In [14], Karri and Mishra studied the energy consumption of secure wireless sessions.
Their goal was to find the power consumption as it is today and then try to optimize the
power consumption without decreasing the security. The device they found the power
consumption of was a Symbol PPT2800 TM Pocket PC running Windows CE TM 3.0 op-
erating system. They equipped the pocket PC with an 11 Mbps Spectrum24 TM WLAN
adapter card. To find the power consumption they applied a mobile test bed where they
connected a Tektronix TDS 3054 Oscilloscope with a Tektronix TCP 202 current probe
between the battery package and the pocket PC. The security protocol they used as an
example in their paper was the Wireless Transport Layer Security (WTLS) [15]. In their
work they divided the power consumption in two parts:

• Cryptographic computations

• Message exchange during secure session establishment and data transfers during se-
cure data transactions.

In the experiment they measured the energy consumption of the secure session es-
tablishment to be approximately 1062mJ where 7% was cryptographic calculations and
93% was message exchanges. The secure transmission energy depends on the size of the
data transmitted. When large blocks of data is transmitted the keys need to be refreshed
during the transmission. The energy consumption of transmitting 2560KB and 8KB is
found in Table 1

The approaches to reduce the power consumption consisted of three different tech-
niques:

• Compression

6

Security versus Power Consumption

2560 KB data 8 KB data
SHA-256 MAC 1130 3.53
AES-128-encryption 1372 4.29
Transmission 13480 42.13
Key-refresh 245 -
Idle system 16604 51.87
Total 32831 101.82

Table 1: Energy consumed by secure wireless data transmission

• Optimizing the handshake protocol

• Use hardware to perform the encryption (FPGA)

With these techniques Karri and Mishra reduced the session establishment energy more
than 6.5 times, the transaction energy more than 1.5 times and the reception energy
more than 2.5 times.

In [16] Karri and Mishra further studied the energy consumed by secure wireless ses-
sions and focused on the secure session negotiation protocols in IPSec[17] and WTSL[15].
To find the power consumption of IPSec they used a testbed consisting of an IBM 600E
series ThinkPadTM equipped with 11Mbps Spectrum24TM WLAN card from Symbol Tech
Inc. The processor was a 366MHz Mobile Pentium IITM with 64MB SDRAM, 64KB L1
internal cache and 256KB L2 external cache. The operating system was Windows 98.
The current was measured using a Tektronix TCP202 current probe and a Tektronix TDS
3054 oscilloscope.

In their IPSec experiment they tested the IPSec session negotiation in various modes.
The results are summarized in Table 2

Mode Authentication method Client(mJ) Server (mJ)

Main

Pre-shared key 2936 2927
Public key signature 3717 3708
Public key encryption 3160 3151
Revisited public key encryption 3687 3339

Aggressive

Pre-shared key 2935 2927
Public key signature 3666 3657
Public key encryption 3160 3151
Revisited public key encryption 3687 3339

Table 2: Total energy consumed by IPSec session negotiation protocol in various modes

The WTSL protocol consumed 2100mJ.
As a part of their report they proposed methods to reduce the power consumption.

The energy savings are summarized in Table 3.

In [18], Nachiketh et al studied the power consumption of different cryptographic
algorithms on a Compaq iPAQ H3670 PDA. To measure the power consumption they used
a configuration as in Figure 1. To get an accurate measurement of the power consumption
they applied synchronization between the iPAQ and the computer with LabVIEW using
the serial port.

7

Security versus Power Consumption

Method IPSec WTSL

Compression
Primary SA: 1.58x

2x
IPSec SA: 1.86x

Choice of cryptographic algorithms
Primary SA: 1.44x

1.58x
IPSec SA: 2.1x

Optimized client authentication 1.17x 1.34
Security association refresh and Variant 1: 1.65x 1.3x
energy-efficient secret key generation Variant 2: 22x 12.5x

Variant 3: 16x 9.5x

Table 3: Energy reduction factor of secure session negotiation with several techniques

Figure 1: Energy measurement test bed with Compaq iPAQ H3670 PDA

In their experiment they tested symmetric encryption algorithms (DES, 3DES, IDEA,
CAST, AES, RC2, RC4, RC5 and BLOWFISH). In each algorithm they measured the power
consumed by key setup and encryption/decryption. Further, they tested hash algorithms
(MD2, MD4, MD5, SHA, SHA-1 and HMAC), asymmetric encryption algorithms (RSA-
1024, DSA-1024 and ECDSA-163) in key generation- signing- and verifying modes. They
also tested different key exchange algorithms (DH-1024, ECDH-163 and DH-512). Dif-
ferent operating modes of the symmetric block ciphers was also tested (DES in CBC-,
PCBC-, CFB64-, OFB64- and DESX-CBC mode and AES in ECB-, CBC-, CFB- and OFB
mode). In their experiment they also tested the power consumption of the SSL protocol
with different configurations.

The results showed that the asymmetric cryptographic algorithms were the most
power consuming algorithms. The symmetric algorithms came second and the least
power consuming algorithms were the hash algorithms. In the asymmetric encryption
algorithms the key size was a significant parameter. However, in symmetric encryption
the extension of the key size is not affected. There were a wide variations in the energy
cost of different algorithms in the same group. As examples the 3DES algorithm used
6,04µ J/byte and the RC4 used 3,93µ J/byte. For the asymmetric algorithms there were
some interesting findings. As shown in Table 4 the RSA algorithm is the least power
consuming algorithm in verifying signatures (decryption with private key). However, the
ECDSA is the least power consuming signing algorithm.

The results shows that the selection of cryptographic algorithms are dependent on
the selection of algorithms and the specific cases. In the experiment they tested the

8

Security versus Power Consumption

Algorithm Key size Key generation Sign Verify
bits (mJ) (mJ) (mJ)

RSA 1024 270,13 546.5 15,97
DSA 1024 293,20 313,6 338,02
ECDSA 163 226,65 134,2 196,23

Table 4: Energy consumption of asymmetric crypto algorithms on iPAQ

power consumption of SSL with two different cipher suites: ECC-3DES-SHA and RSA-
RC5-SHA1. The result showed that the ECC-3DES-SHA cipher suite was the less power
consuming suite for small data transaction sizes. However, when the data transaction
size exceed 20.36KB the RSA-RC5-SHA1 was the less power consuming suite. The expla-
nations of this phenomenon are that the RSA is more power consuming that ECC, and
that this algorithm is used in the initial state. However, the RC5 is less power consuming
than 3DES so when the data transaction size increases, the RSA-RC5-SHA1 cipher suite
is the least power consuming suite.

2.3 How do security implementations affect the battery’s charge in-
terval?

Vectro TEL[19] has developed a cellular phone with voice encryption. The key exchange
protocol is Diffie Helman[20] and the encryption algorithm is AES[21]. The encryption
scheme is found in figure 2.

Figure 2: Encryption scheme in VectorTEL X8 and S3

The keys are recalculated each call and deleted directly afterwards.
In the specifications the talk time is different with encrypted and plain conversations.

Without encrypted conversations the talk time is up to 5 hours. However with encrypted
conversations the talk time decreases with an hour (up to four hours)[22]. This means
that the security implemented in this cellular phone consumes ((5 − 4)/5) =) 20%.

In [23] Thull and Sannino analyzed the OMA DRM 2[24] to find out how the DRM
standard affects the mobile terminal’s4 processing performance and battery life. They
also compared the algorithms in software and hardware to find the time savings due to
hardware implementation. Table 5 shows the results from their timing experiment.

Their conclusion say that the hardware acceleration reduces the time of the crypto-
graphic calculations significantly. However, the hardware added to do the cryptographic
calculations also consume power. In this article Thull and Sannino have not analyzed the
extra power consumption due to introduction of more hardware.

In [25] the mp3.com staff have tested several MP3 players to see whether the DRM
protection[24] of music impacts the charge interval. In their experiments they found a

4MP3 players, mobile phone with MP3 players etc

9

Security versus Power Consumption

Algorithm Software (cycles) Hardware (cycles)
AES Encryption 360 + 830/128 bit 10/128 bit
AES Decryption 950 + 830/128 bit 10 + 10/128 bit
SHA-1 400/128 bit 20/128 bit
HMAC SHA-1 1200 + 400/128 bit 240 + 20/128 bit
RSA 1024 Public Key Op 2’160’000/1024 bit 10’000/1024 bit
RSA 1024 Private Key Op 37’740’000/1024 bit 260’000/1024 bit

Table 5: Execution times for different cryptographic algorithms in hardware and software

significant difference of charge interval between DRM protected music and unprotected
MP3 files. Some of their results are presented in Table 6.

Unprotected DRM protected Difference Difference
MP3 player (hours) (hours) (hours) %
Creative Zen Vision:M 16 12 4 25
Archos Gmini 402 11 9 2 18
iRiver U10 32 27 5 16
iPod N/A N/A N/A 8
Creative Nomad Jukebox N/A 4 N/A N/A

Table 6: Decreased charge interval with the WMA DRM 10 format

In their conclusions they claim that the MP3 player specs should include charge inter-
val when playing DRM protected music due to the power consumption of DRM.

10

Security versus Power Consumption

3 Summary of claimed contributions

Literature study has been conducted to find material related to this thesis. Several analy-
sis of power consumption are done. The literature can tell us the energy consumed by
RC4 and AES in a laptop with Pentium III processor, energy consumed in a secure wire-
less session with a Symbol PPT2800TM , the power consumption of several cryptographic
algorithms on a Compaq iPAQ H3670 PDA, etc. But what are the consequences of these
power consumptions?

We want to know how these security implementations affect the user-friendliness.
This cannot be measured in Joule. This thesis describes a method to determine the de-
crease of charge interval when security is implemented. This is a theoretical model based
on input from the battery powered device and the user profile. This method will be ex-
emplified in a cellular phone environment using J2ME[26].

This thesis gives new knowledge by defining a model to find the decreased charge
interval when security is implemented based on a profile of use.

11

Security versus Power Consumption

4 Method

To answer the research questions, research methods must be considered. This chapter
presents the method used in this thesis to attack the problem description.

In almost every cases there exist previous work, work that other authors have done
before. The fist one usually do before the researching, is to review the literature to iden-
tify what is done in this research area, and what is not done.

As a researcher, you should ultimately know the literature about your
topic very, very well[27].

Sources frequently used in this thesis are ACM Portal[28], SpringerLink[29], Science
Direct[30], IEEE Explore[31], CiteSeer[32] and the Gjøvik University College Library.

The most interesting and relevant literature is summarized in chapter 2.
To find the decreased charge interval when security is implemented, a model must be

used. Since other authors have focused on the energy consumed for each secure session
negotiation, or energy consumed for each bit encrypted, such model is not found in
the literature study. We need to develop our own model. This model is described in
chapter 6. The measurement tool of the model can be various with various accuracy.
The requirements to the measurement tools are an accurate measurement tool to find
an average current. In many cases, an ammeter is appropriate, however, to get more
accurate measurements, an oscilloscope with logging can be used.

When the model is described, an experiment will be carried out. This experimental
work takes use of the developed model, and find the decreased charge interval when we
want to implement a PGP inspired encrypted messages in a cellular phone environment.
This experiment is, as much as a case study, an example of use of the model. Many details
are included to preset the way of thinking when finding the decreased charge interval.

At last, an analysis of the experiment is carried out. In this phase, the results of the
case study will be discussed. The results of the experiment will then be compared to
related work and abstracted to a higher level to make general conclusions.

13

Security versus Power Consumption

5 Theory

This chapter introduces a theoretical background for the topic covered by this thesis.

5.1 Where does the energy go?

The energy E, measured in joules, consumed by a circuit is described in the physics as the
equation 5.1, where P is the average power consumed by the circuit, measured in Watt,
and t is the time the power is consumed. The power is calculated by equation 5.2 where
U is the voltage supplied to the circuit, measured in Voltage and I is the current drawn
measured in ampere. By applying Ohm’s law (Equation 5.3) we can rewrite the energy
consumption to equation 5.4 and 5.5 (Resistance in denoted with R and measured in Ω

(Ohms)) . Figure 3 shows an overview of a simple circuit.

E = P · t (5.1)

P = U · I (5.2)

U = R · I (5.3)

E =
U2

R
· t (5.4)

E = I2 · R · t (5.5)

Figure 3: Simple circuit

The previous equations are only valid in a simplified world. In modern microproces-
sors and other CMOS circuits the equations are more complex.

Figure 4: CMOS transistor

A CMOS transistor (figure 4) is like a latch. When the transistor gets a signal on the
«gate» it blocks or open the signal between the source and drain. An N-type transistor
will block signal on a logical ’0’ on the gate and a P-type transistor blocks the signal with
a logical ’1’ on the gate. In CMOS transistors there are almost no static power dissipation

15

Security versus Power Consumption

With these two types of transistor we can easily make an inverter as in figure 5.
When the signal A is logical ’1’ the upper P-type transistor is closed, the lower N-type
transistor is opened and the output-signal Y is logically connected to ground (GND),
logical ’0’. When the input signal is ’0’ the upper transistor is opened and the lower
is closed. The output signal Y is now logically connected to VCC, logical ’1’. In these
states the transistors dissipate no power as mention above. However when the signal A
is changing there will be a moment when the input signal is VCC/2, and both transistors
are half opened. In this moment we have a directly connection from VCC to GND and
the CMOS dissipate power. This phenomenon is illustrated in Figure 6.

Figure 5: A CMOS inverter

Figure 6: Voltage and current of a simulated inverter

5.2 Security implementations

This thesis defines «security implementations» as all extra activities added to implement
security in a battery powered system. The intuitive activity included in this definition
is encryption and hash functionality. However, there are more activities added due to
security implementations. The following list describes some activities that may affect the
battery charge interval:

• Encryption

• Signature generation

• Hashing

16

Security versus Power Consumption

• Initializing a secure session

• Authentication

• Generating, calculating and exchanging encryption keys (Key Agreement Proto-
col)

• Cipher agreement

• Sending extra bits (signature, hash, keys etc)

• Storing extra bits

• User types password

• Digital Rights Management (DRM)

• Certificate validation

• Validating signature

• Checking revocation lists

• Compression (not actually security functionality. However compression is used in
many protocols to reduce amount of bytes to send or store)

This list shows some examples and is not complete. The activities differ from case to
case.

17

Security versus Power Consumption

6 Model

This chapter describes a method to find the decrement of charge interval when secu-
rity is implemented. It describes a mathematical equation to theoretically calculate the
decrement of charge interval and describes how it is used by an example.

6.1 Theoretical power consumption model

In this thesis, we are interested in a model to calculate what happens with the battery’s
charge interval when we include security in a device. To find a theoretical model of the
decrease in battery lifetime when security is implemented we need to do some measure-
ments. The decrement is dependent on the following variables:

Symbol Variable Description
t Battery lifetime/

Charge interval
This is the variable we are interested in. It describes the
time the device can run with the given condition before
it needs to be recharged. The total time is given by the
equation t = ti + te.

C Battery capacity The decrement is dependent of the battery package
specification. We need to know the electrical energy
stored in the battery (E = U · I · t). If we assume the
voltage to be stable, the energy can be denoted as I · t.
Batteries are often denoted with milliamperes per hour
(mAh) so this notation is used. Since the voltage is as-
sumed to be stable and we actually do not use the for-
mula for energy, the energy is from now denoted as C

(As Capacity shorted)
Ii Idle current The current drawn while the device is idle is important

to find the decrement of battery lifetime. This is for ex-
ample the current drawn while a cellular phone do not
run any java application or illuminated the display.

ti Idle time The time the device is idle. This is unknown value and
needs to be calculated in combination with the other
parameters.

Ie Execution current The current drawn while the device is not idle. For
example the current drawn while fetching and storing
data in an accelerator logger. This variable also includes
all activities to make a user-profile of the device. We
need to find all currents drawn in different stages and
activities, including security activities. For example the
current drawn while calculating the MD5 sum, encrypt-
ing with AES or sending extra bits to ensure confiden-
tiality and integrity.

te Execution time The time of all the activities each time the device is exe-
cuting. Each execution current(Ie) needs to be timed to
find how long time the current is drawn.

19

Security versus Power Consumption

Fe Frequency of exe-
cution

The battery lifetime is dependent on the frequency of
execution. For example when implementing fingerprints
of the stored value in an acceleration logger we need
to know how often we log the acceleration. How many
MD5 values do we need to calculate each second? An-
other example: approximately how many secure SMSes
do we send each day.

Table 7: Variables of the model

The battery packages are often denoted in milliampere hours (mAh), which is a num-
ber of how long time the charge interval (in hours) is when the current drawn is 1 mA.
To find the charge interval for a battery powered device with a fixed current and voltage,
we can use the simple formula t = C/I. To find the decrement of the charge interval
when security is implemented we can measure the average current before and after the
security is implemented and use equation 6.1. When measuring these currents we may
use a capacitor in parallel with the device as in Figure 7.

∆t =
C

Ibefore
−

C

Iafter
(6.1)

Figure 7: Capacitor in paralell with device

It gets more complicated when we have multiple sporadically activities. Imagine a
case where the functionality is executed each minute and the device is in low powered
idle mode between the executions. We cannot measure the average power consumption
with a single ammeter due to the long time between the executions. In this case we have
two activities: an «idle activity» and an «execution activity» with its respective currents
(Ii and Ie) and execution times (ti and te). In this case the battery package capacity
must be equal to the sum of the respectively currents and times multiplied:

C =

Idle charge︷ ︸︸ ︷
Ii · ti +

Execution charge︷ ︸︸ ︷
Ie · te (6.2)

What we want to find out is an equation for the battery lifetime(t), which in this
case is ti + te. However, we do not know the values for ti and te directly since they are
dependent of each other.

We need to apply two equations with two unknown variables. To find the other equa-
tion we can use proportion. If we assume that each minute the functionality are executed,
and the execution takes one second, we can denote that as the following equation:

ti = 60 · te (6.3)

With these two equations (6.2 and 6.3) we can calculate ti and te and finally find t =

ti + te. This gives the charge interval of the given battery package with the given setting

20

Security versus Power Consumption

based on the proportions of the times. However, these proportions may get complicated
with many activities. To deal with this we suggest a model based on the frequency of
execution (Fe). We do not know for how long time an activity totally will execute due to
the unknown charge interval (t). However, we may know the frequency of the execution.
E.g. we encrypt sensor data four times each minutes or send 15 PGP encrypted SMSes a
day. We can now state the following equations:

C =

Idle charge︷ ︸︸ ︷
Ii · ti +

Activitycharge︷ ︸︸ ︷
t · Fe︸ ︷︷ ︸

of executions in time t

· (Ie · te)︸ ︷︷ ︸
Charge of one execution

(6.4)

ti = t − te (6.5)

In many cases the functionality are divided into subactivities. as in Figure 8

Figure 8: Multiple subactivities of an activity example

The current consumption of these subactivities may differ. It may be an idea to calcu-
late an average current of the present sub activities. However, in this thesis it is interest-
ing to compare different cryptographic algorithms and key sizes. Therefore, in this model
we keep the currents and times separated. The equations for activities with subactivities
are denoted in Equation 6.6 and 6.7, where the subactivities are labeled from a = 0 to k.

C =

Idle charge︷ ︸︸ ︷
Ii · ti +

Activity charge︷ ︸︸ ︷
Fe · t︸ ︷︷ ︸

#executions in time t

·
k∑

a=0

(Ia · ta)︸ ︷︷ ︸
Sum of the sub−activities charges

(6.6)

ti = t −

Total execution time︷ ︸︸ ︷(
Fe · t ·

k∑
a=0

ta

)
(6.7)

To find an expression of the total battery lifetime we can combine equation 6.6 and
6.7. The two equations combined, solved to allow for t, gives us equation 6.8. (The full
calculations is shown in Appendix B.)

t =
C

Ii + Fe ·
(∑k

a=0 (Ia · ta) − Ii ·
∑k

a=0 ta

) (6.8)

This equation works fine in a case where the security is executed each time the origin
functionality is executed. An example is the accelerator logger in Figure 8. If we have
a battery package of 640mAh and the idle current is measured to be 10mA and the
acceleration is fetched one time a second (3600 times an hour) the decrement of charge
interval can be calculated as follows:

21

Security versus Power Consumption

tun−secure =
640

10 + 3600 ·

 (180·6+120·2+200·10)

3600000︸ ︷︷ ︸
Convert ms to h

− 10 · (6+2+10

3600000︸ ︷︷ ︸
Convert ms to h

)


= 48, 71hours

tsecure =
640

10 + 3600 ·

 (180·6+120·2+130·20+200·10)

3600000︸ ︷︷ ︸
Convert ms to h

− 10 · (6+2+20+10

3600000︸ ︷︷ ︸
Convert ms to h

)


= 41, 18hours

∆t = 48, 71 − 41, 18 = 7, 52hours ≈ 7hours and 31minutes.

In some cases there may be other power consuming activities. To get the charge in-
terval right we need to find the power consumed when the other activities are executed.
To describe multiple power consuming activities with different frequencies we use the
following notation:

• Every activity is numbered from a = 0 to m

• The frequency of activity a is labeled Fa

• The activity’s subactivities are numbered from b = 0 to n

• A parameter (time or current) of activity a’s subactivity b is labeled ta.b or Ia.b,
respectively.

With this notation we can expand Equation 6.8 to Equation 6.9 (See Appendix B for
the derivation).

t =
C

Ii +
∑m

a=0

(
Fa ·
∑n

b=0 (ta.b · (Ia.b − Ii))
) (6.9)

This equation gives the charge interval of a given case with given parameters. To find
the decrease of charge interval (∆t) when security is implemented we need to calculate
the equation two times:

1. tbefore = (equation without security activities)

2. tafter = (equation with security activities)

3. ∆t = tbefore − tafter

To state an example of use we can define the following imaginary case:

• We have a battery-powered device that collects and log data from a sensor 20 times
each minute.

• Every hour the application sends the logged results by unencrypted WLAN.

• We want the device to sign the logged data.

• We want to apply WEP encryption to the WLAN transmission.

The idle current of the device is 10mA, the battery package has a capacity of 1400mAh

22

Security versus Power Consumption

and the currents and times are given by Table 8.

Activity Current Time
Normal activities

Fetch data from sensor (20/m) 30mA 10ms
Establish WLAN connection (1/h) 140mA 3s
Send data unencrypted 130mA 20ms

Security activities
Encrypt and sign (20/m) 25mA 1s
Establish WEP encryption (1/h) 140mA 2s
WEP encryption 130mA 10ms

Table 8: Currents and times of the equation example

Some of the activities consist of several subactivities. E.g. the activity of sending the
logged data by WLAN consists of 1: establish the WLAN connection and 2: the transmis-
sion of data.

Note that it is important to use the same unit, in this example we convert all units to
seconds as follows:

1400mAh = 1400· 3600mAs = 5040000mAs
20/m = 20/60/s = 0.33/s

1/h = 1/3600/s = 2.78e-4/s
10ms = 10/1000s = 0.01s
20ms = 20/1000s = 0.02s

1h = 1· 3600s = 3600s

The parameters without security put into the equation gives us:

tbefore =
1400mAh

10mA +
20

m
· (10ms · (30mA − 10mA))︸ ︷︷ ︸

fetch data from sensors

+
1

h
· ((3s · (140mA − 10mA)) + 20ms · (130mA − 10mA))︸ ︷︷ ︸

Send data

=
5040000

10 + 6.667e−2 + 0.109
= 495299s = 137h 34m 59s

The parameters with security gives us:

tafter =
1400mAh

10mA + 6.667e
−2

+ 0.109︸ ︷︷ ︸
Before

+
20

m
· (1s · (25mA − 10mA))︸ ︷︷ ︸

Enc and sign

+
1

h
· ((2s · (140mA − 10mA)) + 10ms(130mA − 10mA))︸ ︷︷ ︸

WEP establishment and WEPencryption

=
5040000

10 + 6.667e−2 + 0.109 + 5 + 7.256e−2
= 330530s = 91h 48m 50s

∆t = tbefore − tafter = 495299s − 330530s = 164769s = 45h 46m 08s

In this case we see that implementation of security in this case costs 45hour and 46
minutes, but is this the final answer to the question of charge interval decrement of the
given case?

6.2 Trade-offs
Now that we know the decrement of the charge interval, we can make some trade-offs.
Is the decrement acceptable? Is the security acceptable? With smaller keys, the security
decrease, however, the charge interval increase. Can the solution be restructured?

We continue with the case from the previous section. When collecting sensor data
small values may be collected, and signing these small values may cause much padding.
It may be an idea to collect several values and sign a collection of logged values. For

23

Security versus Power Consumption

instance, a signature is created when 10 blocks of sensor data are collected. This de-
creases the frequency of the «Encrypt and sign» activity from 20 times each minute to 2
times each minute. A recalculation increases the tafter to 130 hours, 15 minutes and 14
seconds. Now we get a ∆t of 7 hours, 19 minutes and 44 seconds, a decrement of lost
battery time of approximately 38.5 hours.

24

Security versus Power Consumption

7 EnergyCalc

7.1 Introduction
As shown in the previous chapter Equation 6.9 may be hard to calculate with a simple
calculator or an excel sheet. The problem with an Excel sheet is the complexity of the
equation. It is hard to make a general excel sheet that fits all cases when the cases become
complex. Also when typing the equation into a calculator it is easy to make typing errors.
To make the calculation easier, a java application is created. The application is called
EnergyCalc and can be downloaded from http://www.ztian.org/ec/.

7.2 Script language
EnergyCalc calculates the decrement of battery lifetime using a script language. To ex-
plain the script language we use the case described in Table 8 in the previous chapter.

In the script language we denote a non-security activity with its respective frequency
as:

A<name> <tab> <frequency> <tab> <domain>

Note that the line starts with a capital ’A’ and a following name of the activity. However,
the name is optional, but gives the reader of the script an overview. Then follows a
tabulator to separate the parameters. Further is the frequency followed by a tabulator
and the time-domain of the frequency(per day, per hour, per minute, per second or per
millisecond). The domain can have the following values:

d Days
h Hours
m Minutes
s Seconds
ms Milliseconds

An example is appropriate. «The data is collected 20 times each minutes» is written
in the script language as follows:

Afetch 20 m

When we have defined an activity in the script the following lines are the subactivities
of the activity until a new activity is defined. A sub activity has the following syntax:

<current in mA> <tab> <time> <tab> <domain>

The <domain> may be one of the same domains as the frequency domains above. To
state an example of an activity with its subactivities we describe the WLAN connection
and sending activity with its subactivities. The execution frequency is one time an hour
and consume 140mA in 3 seconds to establish the WLAN connection and 130mA in 20
milliseconds to send the data in plain-text.

Awlan 1 h

140 3 s

130 20 ms

To add an activity, which has to do with the security, we simply switch the capital ’A’
with a capital ’S’.

’#’ starts a comment line.
Our example is written in the script language as the following example:

25

http://www.ztian.org/ec/

Security versus Power Consumption

#Fetching data from sensors

Afetch 20 m

30 10 ms

#Establish a connection and transmit

Asend 1 h

140 3 s

130 20 ms

#Encrypt and sign fetched data

Senc 20 m

25 1 s

#WEP encryption in addition to the sending

Swep 1 h

140 2 s

130 10 ms

When we write this script in EnergyCalc and assign the battery capacity and idle cur-
rent, EnergyCalc calculates the battery lifetime without security to approximately 137.5h,
when security is applied the lifetime is approximately 92h. This gives a decrease of bat-
tery lifetime of 45h and 46m (see figure 9). This is a decrement of approximately 66%.
To verify the application we see that the times EnergyCalc proposed are equal to the
timing calculated in the previous chapter.

Figure 9: Screenshot of EnergyCalc with example script

26

Security versus Power Consumption

8 Case study: secure SMS

This chapter present an example of use of the model presented in previous chapters. This
chapter may contains many details due to try to present the way of thinking when using
the model.

8.1 Background
SMS systems of today are not satisfactorily secured, even though they are encrypted with
the A5 algorithm. If a phone is stolen, the messages can be read by unauthorized persons.
There are also reported weaknesses in the A5 algorithm used in the GSM system[33, 34].
The authentication and integrity is also a concern with the SMS system. Clickatell1 sells
services that makes the customer able to send SMS from a selected sender address (phone
number or a self-defined string). If one writes the telephone number of a person known
to the receivers address book, the name of the fictive sender will appear in the display.
A typing error in the receivers phone number may also have severe consequences when
the SMS contains sensitive information.

8.2 Theory
There are approaches which implement secure SMS. In [35], Hassinen and Markovski
present a secure SMS scheme applying quasigroup encryption and Java SMS API. They
found quasigroup encryption well suited for applications such as SMS encryption due to
the low use of memory and its high speed. One SMS of 160 characters using 16 rounds
of encryption uses about 4 seconds, and the encryption is done while the user types the
receivers phone number.

Pretty Good Privacy (PGP)[36] was developed by Phil Zimmermann in the late 1980s.
Zimmermann’s idea was to take the advantage of several cryptographic techniques to
create a fast and secure framework. The problem solved with PGP is the fact that RSA
is a slow cryptographic algorithm[37]. RSA is a public key cipher that can both be used
for encryption and digital signatures. The problem with public key cryptography is that
the private key is derived by the public key[38]. The strength of RSA is based on the fact
that it is practically impossible or extremely time consuming to factorise a multiple of
two large prime numbers[37, 38].

The key generation of an RSA key pair is done by the following algorithm:

1. Select two large random prime numbers, p and q

2. Compute n = p · q
3. Randomly choose the encryption key e such that e and (p − 1)(q − 1) are relatively

prime.

4. Finally apply the extended Euclidean algorithm to compute the decryption key
d = e−1mod((p − 1)(q − 1))

The encryption and the decryption formula is as the following:
ci = me

i mod n

mi = cd
i mod n

To do these calculations we can use an algorithm for repeated square and multiply
for exponentiation in Zn[39]. The algorithm is described as follows:

Input: a ∈ Zn, and integer 0 ≤ k ≤ n represented binary. (k =
∑t

i=0 ki2
i)

1http://www.clickatell.com/

27

Security versus Power Consumption

Output: ak mod n.

1 Set b← 1. If k = 0 then return(b).

2 Set A← a.

3 If k0 = 1 then set b← a.

4 For i from 1 to t do the following:

4.1 Set A← A2 mod n.
4.2 If ki = 1 then set b← A · b mod n.

5 Return(b).

The bit complexity of this algorithm is O((lg n)3). To give an example we can calculate
4423mod1053 as in table 9

i 0 1 2 3 4 5 6 7 8
ki 1 1 1 0 0 1 0 1 1
A 4 16 256 250 373 133 841 718 607
b 4 64 589 589 589 415 415 1024 298

Table 9: Steps involved to calculate 4423mod1053 = 298

As the algorithm and example shows there are a multiplication for each ’1’ in the
binary representation of k. One can use this fact to speed up the RSA calculation by
selecting a k with few ’1’s in the binary representation. The three most common choices
are 3, 17 and 65537 (216 +1, only two ’1’s in the binary representation so it takes only 17
multiplications to exponentiate.)[38]. X.509 recommends 65537[40], PEM recommends
3[41] and PKCS #1 recommends 3 or 65537[42]. Note that selecting small values of k

does not decrease the security, assuming that we pad messages with random values[38].
With p and q sat to small values, an attacker can find the private key by factoring

n and find the secret decryption key the same way the benign person found his key:
d = e−1mod((p−1)(q−1)). This is why large primes are required. In [39] Menezes et al
describes some of the factorization algorithms that exist. The fastest factoring algorithm
today was invented in 1988 by John Pollard[43, 44]. The algorithm is called Number
Field Sieve[45]. In the RSA Laboratories web site[44] it is announced a challenge in fac-
toring large numbers. The largest key factorized today is a 640bit key. The factorization
was reported on November 2, 2005 by F. Bahr, M. Boehm, J. Frankie and T. Kleinjung
and took approximately 20 2.2GHz-Opteron-CPU years (over five calendar months). In
[43], Lenstra and Verheul suggest using RSA key size of 1191bits in the year 2006 to be
safe.

As mentioned the RSA encryption is quite slow due to the large keys. However, sym-
metric encryption is rather fast according to asymmetric encryption. In comparison the
RSA is about 1000 times slower than DES in hardware, and about 100 times slower in
software[38]. In PGP Zimmermann suggested a combination of symmetric and asymmet-
ric encryption. The idea was to encrypt the message with a generated symmetric session
key, and encrypt the session key with the receivers public key. The symmetric cipher Zim-
mermann proposed in PGP was the IDEA cipher. The encryption protocol is presented in
Figure 10 and in the following protocol:

A→ B : C = EKUb
(Ks) ‖ EKs(M)

B : Ks = EKRb
(EKUb

(Ks))

M = DKs(EKs(M))

The following symbols are used:

28

Security versus Power Consumption

A: Sender

B: Receiver

M: Message

C: Cipher

ks: Symmetric key

Eks: Symmetric encryption

Dks: Symmetric decryption

KUb: Receivers public key

KRb: Receivers private key

KUa: Senders public key

KRa: Senders private key

EKUb
, EKRb

, EKUa , EKRa: Asymmetric encryption with respective key

Figure 10: PGP encryption

Above a protocol to ensure confidentiality is presented. As mentioned above, PGP is
also used to create digital signatures. To achieve digital signature and still maintain ac-
ceptable speed we can apply hashing algorithms. In PGP Zimmermann proposed use of
the 128 bits MD5 hashing algorithm. The signature is created by making a hash of the
message. This hash is subsequently encrypted with the senders private key and concate-
nated with the message. Now only the hash of the message is encrypted with a asym-
metric cipher. This is more effective than encrypting the whole message. The signing is
described in Figure 11 and as the following protocol:

A→ B : M ‖ EKRa(H(M))

B : EKUa(H(M)) = H(M)

Yes : authenticated,No : failed

The schemes above may also be used in combination to achieve confidentiality, in-
tegrity, authentication and non-repudiation. To reduce the size of the message Zimmer-
mann also proposed an optional compression of the message. The compression is per-
formed after the signature and before the encryption. The compression is preferred be-
fore the signature because the uncompressed message and the signature can be directly

29

Security versus Power Consumption

Figure 11: PGP signing

used for future verification[46]. In the encryption case the compression is performed be-
fore the encryption because the compression reduces the redundancy of the message[46].

Some mail systems support ASCII text only. To make PGP compatible with these mail
systems Zimmermann suggested encoding of the encrypted message or the signature
with Radix 64[47, 46]. The Radix 64 encoding divides three 8-bit blocks (24 bits) of raw
data to four 6-bits blocks.Each block is encoded into a readable ASCII value. The cipher
space consist of small letters (a-z), big letters (A-Z), numbers (0-9) and ’+’, ’/’ and ’=’.
This gives us 65 symbols; (26 = 64) plus a symbol used for padding (=). Each of these
6-bits blocks is then presented as 8-bits ASCII code to be compatible to all mail systems.
This encoding leads to an increment of the message by 33%, since three 8-bits blocks are
encoded to four 8-bits blocks.

A signed and encrypted PGP message or file is described in [47] and [46] as in figure
12.

Figure 12: PGP message

As mentioned, compression of the message is optional. Some files are not worth the ef-
fort of compression, e.g. JPEG image files[48]. JPEG files are already compressed. When
it comes to this case, small text strings are also not suited for compression. To examine
the impact of compression in an SMS case we can perform a practical compression test
of strings with the length of concatenated SMSes. To automate the compression test one
can apply the perl script found in Appendix D. The result of the compression test is found
in Table 14 in Appendix A and Figure 13.

The result of the compression test tells us that there is no need to apply compression

30

Security versus Power Consumption

Figure 13: Compression test

if we are going to send short messages. Due to overhead in the gzip algorithm the size
of the message actually increase 7,5% with strings as short as 160 characters. The curve
in figure 13 shows that the effectiveness of the compression algorithm has a logarithmic
increment and stabilize at approximately 24%.

To find the increment of applying a full implementation of PGP as it is implemented in
the mail systems we can do a practical approach. In this experiment we use the following
software:

• Mozilla Thunderbird v1.5.0.2 (20060308) [49]

• GnuPG v1.4.0 [50]

• OpenPGP provided by Enigmail v0.94.0.0 (20060110) [51]

• GNU Privacy Guard Explorer Extension (GPGee) v1.3.1.192 [52]

We want to test the impact of different key types and key sizes as well. The key types
and sizes are respectively RSA vs DSA/ELG and 1024bit vs 2048 bit. In other words, we
need to generate four key pairs. To generate the keys we use the enigmail’s integrated
key management dialog in Thunderbird.

When the keys are made we need to create some test data. To create random SMSes
we create strings with length of multiples of 160 characters as we did in the compression
test. We use the script described in appendix D without the gzip commands.

When the files are created, we use GPGee to encrypt and sign the files with different
keys. We also applied ASCII armor to make the messages applicable by the SMS system
(R64 encoding). The result of this experiment can be plotted as the difference between
PGP encrypted and signed messages and the messages in plain text as a function of
number of concatenated messages. The result is plotted in figure 14

The plot tells us that the amount of extra messages is quite the same with different
key types. The amount of messages to encrypt does either affect the number of extra
messages to send. However, the key size is an important factor. The difference between
1024- and 2048 bits key are about 2,4 messages (382 bytes).

The increment of cipher text when the key length is expanded has its explanation in
how the asymmetric ciphers are calculated. The plain text is divided into blocks with

31

Security versus Power Consumption

Figure 14: Extra SMSes to send when PGP encryption and signature is applied

the same length as the key. The last block is padded to get the required length. In this
case we are encrypting a hash value (160bits, SHA-1) with the senders private key and
a symmetric key (128bits) with the receivers public key (see figure 12). Both less that
1024 bits, and therefore padded to fit the key length.

8.3 Experiment
To find the decrement of battery lifetime by sending encrypted and signed SMSes we
need to find the current drawn by sending an encrypted SMS. The current drawn in this
case may be divided into two parts:

1. the current drawn by the processor during the cryptographic calculations of PGP

2. the current drawn by sending the extra SMSes.

We will try to separate these factors.
To find the current drawn we connected an ammeter between the cellular phone and

its battery as shown in figure 15. In this experiment, we used a SonyEricsson Z1010
cellular phone with the specifications in table 10 [53, 54].

Network UMTS (3G)
Talk time (up to) 3h (UMTS), 4h (GSM)
Standby time 450h
Screen 65k color TFT, 176x220 pixels, illuminated
Batterypack SonyEricsson Standard Battery BST-15. Li-Polymer 3.6V, 1260mAh
Java virtual processor speed 5.9MHz (5.5 - 6.4)
Heap size (RAM) 511KB
Memory read speed 3907 KB/s (3180 - 4102)
Memory write speed 3813 KB/s (3180 - 4040)

Table 10: SonyEricsson Z1010 specification

The current was measured in different cases to find parameters for our equation. The
results of the measurement is described in table 11

To validate these measurements we can compare the measured current with theo-
retically calculated currents. Table 10 describes a battery package of 1260mAh, and a
standby (idle) time of 450 hours. This gives us a theoretically idle current of 1260mAh/450h =

32

Security versus Power Consumption

Figure 15: Experiment to find current drawn on a cellular phone

Description Measured current in mA
Idle. Screen in power-saving mode and no applications
running

2.7

Idle with screen active and enlightened 100
Writing an SMS 130
Sending SMS 380
Calling 380
Running a java application with no activity 80
Running an active java application (running encryption
test)

160

Opening a WAP page with Opera mini wap browser 410
WAP idle with Opera mini wap browser 220

Table 11: Measurement of current in cellular phone

2.8mA, not far from the measured value. Table 10 also mention a talk time of 3h on the
UMTS network. This gives us a theoretically calling current of 1260mAh/3h = 420mA.

The battery-pack is denoted in mAh (milliamperes per hour). To find the decrease of
battery lifetime when sending additional messages instead of one we need to find the
time of sending SMS. This time is difficult to find with the human eye. To measure this
time we can apply video measurement. We can capture the ammeter and the cellular
phone screen while sending SMS with a digital camera and afterwards analyze the video
to find the time it takes to send SMSes. In this case we captured the mobile screen with
a Canon IXUS 400 digital compact camera and analyzed the video in Virtual Dub2. The
results of the video measurement are denoted in table 12.

Nr. of SMSes Time in seconds
1 1.6
2 2.1
3 2.7
5 4.3

10 6.5

Table 12: Time of sending SMS

We expect the time to be a linear function. A linear regression of these measured
times gives the equation tsms(x) = 0, 554x + 1, 112 with a correlation of 0,993. This
means that the connection establishing, initializing and finishing takes 1,112 seconds,
and each concatenated SMS takes 0,554 seconds.

To find the power consumption of the cryptographic calculations we implement the
algorithms in JavaME. In this experiment we use a free cryptographic library for Java
called Bouncy Castle[55]. Bouncy Castle is a widely used API to implement cryptography

2http://www.virtualdub.org/

33

Security versus Power Consumption

in Java and C# applications. A wide specter of ciphers and hash functions are supported.
In PGP the choice of algorithms and key sizes are optional. In this experiment, we

create a test application to time several optional algorithms, modes and key sizes. To
get the time we use the build-in timer in Java (System.currentTimeMillis()). To avoid
noise we run the cryptographic algorithm several times and calculate the average time.
Selected parts of the source code of this application are found in appendix C.

We expect the hash algorithms as the fastest in the test, and the MD5 algorithm as
the fastest of the hash algorithms. We expect the time to increase when the size of the
hash value increase (higher security). Of the symmetric ciphers, we expect RC4 to be the
fastest. This is a stream cipher and is well suited for low memory environment[39]. After
the RC4 cipher we expect the DES cipher as the second fastest cipher. AES and IDEA
ciphers are expected to be approximately the same time and the 3DES as the slowest
symmetric cipher. When it comes to AES BouncyCastle provide a trade-off between speed
an memory. The name of the high speed AES is called AES-FAST and the slower, but less
memory consuming AES version is called AES-LIGHT. The slowest encryption algorithm
is expected to be RSA. We also expect the public encryption to be faster than the private
encryption. This because the exponent of the public key is smaller than the exponent of
the private key (see appendix C).

The result of running the application on the cellular phone is described in table 15 in
appendix A. Remark that the asymmetric encryption is not tested with longer than one
message. This because the asymmetric encryption is applied to encrypt the symmetric key
and sign the hash value. In this approach we run each algorithm 20 times and calculate
the average as described in appendix C. Table 16 in appendix A compares key sizes of
the AES algorithm.

To compare the results the results are plotted in figure 16, 18 and 20. To make the
plots more comparable 17, 19 and 21 shows the linear regression of the plots. These
histograms shows the initialization time and the time of encrypting/hashing one SMS.
This gives us the formula: t = n·time per SMS + initialization.

Some of these results are surprising. We expected all the hash algorithms to be the
fastest algorithms, however, RC4 was surprisingly fast and only beaten by the MD5 hash,
which was expected to be the fastest algorithm of them all. The explanation of the speed
of RC4 is the type of the cipher: Stream cipher. These ciphers are fast and require low
memory. Another surprisingly fast cipher was the AES-FAST cipher. Due to its high use
of memory it is as fast as the SHA-1 hash algorithm in CBC, CFB and OFB and even
faster in ECB mode. The high usage of memory did not seem to be a problem in a J2ME
environment with small data blocks to encrypt/decrypt.

Another remarkable result is the speed of the different sizes of the same hash algo-
rithms. As we can see from the plot the SHA-512 is faster than SHA-256. The same way
are RIPEMD-256 faster than RIPEMD-160. The logical result should be the other way
around. The explanation of this phenomenon is found in the source code of BouncyCas-
tles API. The block size of SHA-256 and SHA-512 are respectively 512bit and 1024bit.

Some of our expectations fitted the results of the test. The 3DES algorithm was the
slowest. The 3DES cipher is actually three rounds of the DES cipher with three differ-
ent keys. This will result in a time of 3DES about three times longer than the DES cipher,
which is the result we got. We also see a increment of time consumption when the ciphers
runs in different modes of operations. The ECB mode was the fastest and CBC, OFB, and
CFB takes approximately the same time. The trade-off between speed and memory (AES-
FAST and AES-LIGHT) had also an impact of the encryption time. In ECB mode and ten
messages there is a difference of 43 milliseconds. This may be a trade-off to consider,
however in this case the choice of cipher does not make a big impact to the decrease of
charge interval due to the long time of RSA encryption/signing. The symmetric encryp-
tion and hash is to small in proportions to RSA encryption (8ms « 14047ms).

34

Security versus Power Consumption

We expected the AES and IDEA to be approximately the same, which we found as a
fact. We expected the DES algorithm to be some faster than the AES and IDEA, however,
this was not true in this case, they all three executed in pretty much the same speed.
This means that the choice between these three ciphers in the BouncyCastle API does not
affect the charge interval.

Since the time of symmetric encryption and hash algorithms are so small in propor-
tions to asymmetric encryption (RSA) we can exclude the symmetric encryption and
hash calculations. In a PGP encryption we encrypt the symmetric key with the public
key and sign the hash of the message with the private key. This gives us a cryptographic
calculation of (14047ms + 4170ms=) 18,2 seconds with 1024bit key and (104354ms
+ 16337ms=) 2minutes with 2048bit key. This may be a long time to wait for the user
anyway.

By combining the results of these experiments, we can define a case to insert into our
equation. We can imagine the following case:

• We have a SonyEricsson Z1010 with the specifications of table 10 and 11

• We make 2 phone calls of 5 minutes each day

• We use 30 seconds to write an SMS

• We want to encrypt our SMSes with PGP encryption

• We want to see how the decrement of charge interval increase with an increasing
amount of SMSes sent each day (A function: ∆t(#SMS)).

• We want to compare 1024bit key with 2048bit key.

In other words, we want to put the following case into our equation:

Description Current (mA) Time
Non-security activities
Call, 2 times each day

Calling 380 5min
Send SMS, 1-20 times each day
User types the SMS 130 30sec
Send SMS 380 1.6sec

Security activities (1024bit)
PGP encryption and sending, 1-20 times each day

PGP encryption 160 18.2sec
Send extra bits (5 extra SMSes) 380 2.77sec*

Security activities (2048bit)
PGP encryption and sending, 1-20 times each day

PGP encryption 160 2min
Send extra bits (7 extra SMSes) 380 3.88sec**
* 5 · 0.554

** 7 · 0.554

Table 13: Example case

From the table we can create the following script to EnergyCalc:

Acall 2 d

380 5 m

Asms 1 d

130 30 s

35

Security versus Power Consumption

380 1.6 s

Spgp1024 1 d

160 18.2 s

380 2.77 s

#Spgp2048 1 d

#160 2 m

#380 3.88 s

We set the battery charge (C) to 1260 and the idle current (Ii) to 2.7. If we use this
script and change the frequency of messages from 1 though 20 and calculate the time of
each value we get the charge intervals plotted in figure 22.

8.4 Results and discussion
In this implementation the problem with the user-friendliness is hardly the decrement of
the charge interval, especially with 2048bit key. The calculations of RSA takes intolera-
ble long time. 18.2 seconds may be an acceptable time to wait, however 2 minutes is a
long time to wait to send a message. In [18] Potlapally et al found the power consump-
tion of RSA-1024 encryption to be 546,5mJ and 15,97mJ with respectively private and
public key. The time of the encryption is not mentioned. However we can calculate our
results to be comparable with equation 5.1. The energy consumed by an RSA encryp-
tion with respectively private and public key are (3, 6V · 160mA · 4, 2s =)2419,2mJ and
(3, 6V · 160mA · 14s =) 8064mJ. The explanation of higher power consumption in our
case is the clock frequency of the processor. The frequency of the SonyEricsson Z1010 is
5,9MHz[54]. The processor in Compaq iPAQ H3670 is 206MHz[56].

To see how our times are affected by a faster processor we ran the application on a
SonyEricsson P910i. This smart-phone has a processor of 54,5MHz[54]. The results are
found in table 18 in appendix A. We see that the RSA calculations is significant faster in
P910i than Z1010.

36

Security versus Power Consumption

Figure 16: Time of symmetric encryption on SonyEricsson Z1010

Figure 17: Linear regression of time of symmetric encryption on SonyEricsson Z1010

37

Security versus Power Consumption

Figure 18: Time of hash algorithms on SonyEricsson Z1010

Figure 19: Linear regression of time of hash algorithms on SonyEricsson Z1010

38

Security versus Power Consumption

Figure 20: Time of AES with different key sizes on SonyEricsson Z1010

Figure 21: Linear regression of time of AES with different key sizes on SonyEricsson Z1010

Figure 22: Charge interval as a function of sent SMSes each day

39

Security versus Power Consumption

9 General results and discussion

There is no definite answer to the question «How does this security implementation affect
on the charge interval?» The impact is dependent of the specific case and how the design.
This chapter will try to summarize and draw general conclusions to the question.

9.1 Impacts on the charge interval

9.1.1 Choice of algorithm
The choice of cipher is important to the power consumption. This is tested in the experi-
ments in this thesis and several articles[57, 58, 59]. As expected, the RSA algorithm was
the most power consuming algorithm. In our secure SMS case, the power-consumption
of RSA was so high that the symmetric encryption and hash algorithm did not play a sig-
nificant part of the power consumption. In other words the choice of symmetric cipher is
more or less irrelevant.

When we do not use asymmetric encryption, we may reduce the decrement of charge
interval by selecting the «right» cipher. In our experiment the encryption of one SMS
takes 50% more time with AES-ECB-128 than RC4. A difference between the modes of
operations is also present. The ECB mode is about a half millisecond faster than the other
modes of operation each SMS. Hardly noticeable with few SMSes, however, if the data
become large there will be significant differences.

9.1.2 Increased bits to send in communication settings
The expansion of the data to send due to security implementation may play a significant
role. Even if the time of the sending is short it may consume much energy[60]. In our
case, the current drawn while encrypting the message was 160mA. The current drawn
while sending the SMSes was 380mA, 2,4 times more than the encrypting current. The
time of encrypting one SMS was 18,2 seconds due to the long time of RSA, and the
extra messages was sent in 2,77 seconds. The charge used of each encrypted SMS of the
respectively encryption and sending is (160mA ∗ 18, 2s/3600 =) 0,81mAh and (380mA ∗
2, 77s/3600 =) 0,29mAh. This gives an encryption charge of only 2,77 times more than
the sending charge. To reduce the power consumption of communication one should
consider a compression of the data before sending[14, 18]. Optimize the handshake
protocol may also be important to the power consumption[14, 18].

9.1.3 Hardware versus software
In dedicated hardware the encryption routines executes faster than in software and con-
sumes less energy[23, 61, 62]. This will help us reduce the decrement of charge interval.
However, the time we will save due to hardware integration is not proportional with the
energy savings. The new hardware also consumes power[23].

9.1.4 Design challenges
Low idle current causes the charge interval more vulnerable to activities. The decre-

ment of charge interval is as mentioned dependent of the specific case. When de-
signing battery powered devices with requirements to both security and lifetime.
We want secure devices that last as long as possible. Making the idle current as
low as possible is important. Today we can buy micro controllers that draw current
down to a few µA in sleep mode[63, 64]. This makes the charge interval vulnerable
for power consuming activities. E.g. in the following case:

• Functionality is executed once a second

41

Security versus Power Consumption

• It takes 130ms to execute

• The encryption takes 130ms

• The working current is 130mA

This makes the following script:

Anormal 1 s

130 130 ms

Senc 1 s

130 130 ms

We set the battery charge (C) to 640mAh. With Iidle sat to 10mA the time without
security is 24h, 59m and 59s. The ∆t is calculated to be 9h, 27m and 57s. The
charge interval is decreased by 38%. If we set the Iidle to 0,1mA we get the time
without security of 37h, 40m and 33s. The charge interval is reduced by 18h, 46m
and 56s. This is 50% decrement.

Even fast encryption may affect the charge interval if frequently executed. If we got
a fast processor that encrypts the data in 1ms we may not be concerned about the
charge interval. 1ms is fast encryption, however it may affect the charge interval
significantly, if it is executed frequently. E.g. 100 times each second as the following
script describes:

Anormal 100 s

130 1 ms

Senc 100 s

130 1 ms

If we set the battery charge to 640mAh and the Iidle to 10mA we get a charge
interval of 29h, 5m and 27s. The charge interval is decreased with 10h, 16h and
2s. This is a decrement of 35,3%.

Accumulation before encryption/communication If we need to encrypt and send small
amount of data each execution, it may be valuable to accumulate collected data be-
fore encryption and/or sending. E.g. the following case:

• Idle current is 10mA

• Working current is 130mA

• Data is collected once a second and takes 1ms

• Encrypt one dataset takes 1ms

• Cipher setup and initialization takes 5 milliseconds

We set the charge interval to 640mAh and the idle current to 3mA. The following
script initializes and encrypts the data each time a data is collected. The encryption
takes (5ms+1ms=) 6ms.

Anormal 1 s

130 1 ms

Senc 1 s

130 6 ms

42

Security versus Power Consumption

Without encryption this device has a charge interval of 204h, 40m and 8s. The
encryption decrease the charge interval by 40h, 6m and 8s. If we collect data in
a minute before encryption we get an encryption time of (5ms+60*1ms=) 65ms.
This gives us the following script.

Anormal 1 s

130 1 ms

Senc 1 m

130 65 ms

The charge interval without encryption is the same. Now the decrement of charge
interval is reduced to 8h, 37m and 32s.

9.1.5 New technology
New technology affects the importance of the design challenges presented above. Faster
processors may draw more current, but the time of the encryption is reduced a lot. Run-
ning the test application described in appendix C on a SonyEricsson P910 with a Java
virtual processor speed of 54.5MHz[54] the RSA-1024 encryption with private key took
1,8 seconds and public key encryption took 0,5 seconds (see table 18 in appendix A).
When the encryption time become that much lower in this case, the most power consum-
ing activity due to the security is to send the message expansion due to PGP.

As the processor becomes faster the communication networks also increase in speed.
The UMTS (also known as 3G) network offers teleservices (like speech or SMS) with a
significant higher speed than the GSM network. The data rate is up to 2048kbits/s[65].
In comparison the GPRS network has a maximum speed of 171,2kbits/s[66].

43

Security versus Power Consumption

10 Conclusions

10.1 Summary
The theoretical equation of the decrement of charge interval is given in chapter 5 as the
following equations:

∆t =
C

Ibefore
−

C

Iafter

t =
C

Ii + Fe ·
(∑k

a=0 (Ie · te) − Ii ·
∑

a=0 kte

)
t =

C

Ii +
∑m

a=0

(
Fa ·
∑n

b=0 (ta.b · (Ia.b − Ii))
)

The two last one gives the charge interval in a given setting, and to find the decrement
of charge interval one needs to do the calculations twice, with security activities and
without, and find the difference.

10.2 Equation accuracy
The equations summarized in the previous section are based on current and time mea-
surements. We have assumed the voltage delivered by the battery to be stable. The cor-
rect model of the voltage shows a decreasing curve over time[67, 68]. Including this
phenomenon makes the equation more complicated.

In the experiments presented in chapter 8 we have measured the currents by using
an ammeter. There are doubts in using a regular ammeter to measure the current. We
cannot create a accurate current profile of the current consumption. A more appropriate
way of finding the current consumption is to use an advanced oscilloscope with logging
or connection to a computer. Some devices used to find an accurate current consumption
might be:

• Mobile PC evaluation board[6, 7]

• Tektronix TDS 3054 Oscilloscope with Tektronix TCP 202 current probe[14]

• SCB-68 I/O connector and computer with LabVIEW[18] from National Instruments[69].

When the current profile is found we can calculate an average current that fits into
our equation.

Another drawback with calculating the charge interval is the complexity of exist-
ing hardware. We may find it difficult to pinpoint all activities that are important to
the charge interval with the correct current. E.g. in communication devices: The signal
strength may affect on the current drawn while sending data over a wireless channel[70].

The specification of the battery may also vary from the real world. Batteries are as-
sumed to provide a stable voltage and are therefore denoted in mAh (milliampere hours)
instead of mwh (milliwatt hours = mAh· voltage). What is denoted in the specification
may differ from the really specification, the maximum battery charge may also vary over
time as the battery gets older. Since the max battery charge is proportional with the
charge interval we may get a bias in the calculated charge interval.

Take these drawbacks in consideration the equation may be a useful tool to make
a trade-off between power consumption and security. Former research (as described in
chapter 2) has focused on measuring power consumption in mJ (P · t). This does not

45

Security versus Power Consumption

give us an image of the consequences of the power consumption. It gives the power
consumption of one activity due to security. In this thesis we have focused on a user-
friendliness aspect. The user-friendliness is not measured in amperes, effect or energy.
The equation presented in this thesis gives the decrement of charge interval, a result
people can deal with and understand the consequences.

There is no concrete answer to the question «Does security decrease the charge inter-
val?». It is dependent of the given case and strength of security. In the case studied in
this thesis, the decreased charge interval when we implement a 1024bit PGP encrypted
SMSes is not significant. However, if the key increase to 2048bit the charge interval is
considerable decreased. The decrement of charge interval is dependent of...

• how long time the security is running each execution,

• the current drawn while the security is executed,

• the frequency of the execution and

• the proportions of the previous parameters in comparison to the normal activity.

According to [1] the power consumption of modern electronics is dependent of how
many switches between ’0’ and ’1’ in the memory needed to execute, and not the time.
This actually means that increasing the clock frequency with result in faster execution
does not affect the power consumption. That is a fact with modifications. As the technol-
ogy evolves, the processors also become more power saving.

46

Security versus Power Consumption

11 Further work

This thesis has presented a theoretically calculation of the decrement of charge interval
when security is implemented. We have also presented some points to consider before
designing the security based on measurements done in chapter 8. The validity of the
equation is not tested. How the result of the equation agree with the reality. This needs
to be tested.

In the feasibility study of this thesis, we planed to test several platforms such as
embedded platforms (micro controllers, FPGA etc) and in a laptops. However, due to
time limit this thesis has focused on mobile phones. It should be interesting to see the
differences in different platforms.

In this thesis we have found the power consumptions of the ciphers as they are imple-
mented in BouncyCastle[55]. We do not know how optimized these ciphers are imple-
mented and it would be interesting to test other implementations of the same algorithm
to see if there is significant differences from the different vendors.

In our case where we have tested how PGP encrypted SMS impact the charge interval.
We have only tested when the encrypting is introduced. However, in PGP there may be
possible to include key and certificate validation by online revocation lists. This involves
more power consuming communication and higher reduction of the charge interval.

The test application for j2ME described in appendix C is tested on two cellular phones:
SonyEricsson Z1010 and SonyEricsson P910i (the results are found in appendix A). To
reduce the risk of destroying the phone we have not measured the current of P910i. It
would have been interesting to test several phones with both times and currents to see
who is the most appropriate to use with security and charge interval in mind.

47

Security versus Power Consumption

Bibliography

[1] Osmulski, T., Muehring, J. T., Veale, B., Li, J. M. W. H., Vanichayobon, S., Ko, S.-H.,
& Dhall, J. K. A. S. K. 2000. A probabilistic power prediction tool for the Xilinx
4000-Series FPGA. Lecture Notes in Computer Science, 1800, 776–783.

[2] Najm, F. N. 1994. A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.

[3] Jagau, U. 1990. Simcurrent-an efficient program for the estimation of the current
flow of complex cmos circuits. Computer-Aided Design, 1990. ICCAD-90. Digest of
Technical Papers., 1990 IEEE International Conference on, 396–399.

[4] Veendrick, H. August 1984. Short-Circuit Dissipation of Static CMOS Circuitry and
Its Impact on the Design of Buffer Circuits. IEEE Jour. of SSC , SC-19(4), 468–477.

[5] Bhargava, R., Kargupta, H., & Powers, M. 2003. Energy consumption in data
analysis for on-board and distributed applications.

[6] Tiwari, V., Malik, S., Wolfe, A., & Lee, M. 1996. Instruction level power analysis
and optimization of software.

[7] Tiwari, V., Malik, S., & Wolfe, A. 1994. Power analysis of embedded software:
a first step towards software powerminimization. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2(4), 437–445.

[8] Prasithsangaree, P. & Krishnamurthy, P. 2003. Analysis of energy consumption of
RC4 and AES algorithms in wireless LANs. In Global Telecommunications Conference,
volume 3, 1445–1449.

[9] IEEE-P802.11-working-group. 1999. IEEE 802.11 Standard Part 11: Wireless LAN
Medium Access Control(MAC) and Physical Layer (PHY) Specifications.

[10] Wi-Fi-Alliance. 2002. Wi-Fi Protected Access (WPA) Standard.

[11] IEEE-P802.11i-working-group. 2002. IEEE 802.11i Draft Supplement to Standard
for Telecommunications and InformationExchange Between Systems- LAN/MAN
Specific Requirements - Part 11: WirelessMedium Access Control (MAC) and phys-
ical layer (PHY) specifications: Specificationfor Enhanced Security.

[12] The OpenSSL project. http://www.openssl.org (Last visited Jan 2006).

[13] Prasithsangaree, P. & Krishnamurthy, P. Sept 2004. Analysis of tradeoffs between
security strength and energy savings in securityprotocols for WLANs. In Vehicular
Technology Conference, volume 7, 5219–5223.

[14] Karri, R. & Mishra, P. April 2003. Optimizing the Energy Consumed by Secure
Wireless Sessions - Wireless Transport Layer Security Case Study. Mobile Networks
and Applications, 8(2), 177–185.

[15] Wireless Application Protocol Forum Ltd. Wireless Transport Layer Security. Version
06-Apr-2001.

49

http://www.openssl.org

Security versus Power Consumption

[16] Karri, R. & Mishra, P. 2003. Analysis of energy consumed by secure session ne-
gotiation protocols in wirelessnetworks. Lecture Notes in Computer Science, 2799,
358–368.

[17] The Internet Engineering Task Force. IP Security Protocol (IPSec). http://www.

ietf.org/html.charters/OLD/ipsec-charter.html (Last visited Mar 2006).
(last visited mar 2006).

[18] Potlapally, N. R., Ravi, S., Raghunathan, A., & Jha, N. K. 2003. Analyzing the
energy consumption of security protocols. 30–35.

[19] VectroTEL. http://www.vectrotel.ch/ (Last visited May 2006).

[20] Diffie, W. & Hellman, M. E. 1976. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6), 644–654.

[21] Federal Information Processing Standards Publication 197. November 2001. An-
nouncing the Advanced Encryption Standard (AES).

[22] Vectrotel. Vectrotel X8 flyer. http://www.vectrotel.ch/files/vectroTEL_S3_

FLYER.pdf (Last visited May 2006).

[23] Thull, D. & Sannino, R. 2005. Performance considerations for an embedded imple-
mentation of oma drm 2. Design, Automation and Test in Europe, 2005. Proceedings,
3, 46–51.

[24] Microsoft. Digital Rights Management (DRM). http://www.microsoft.com/

windows/windowsmedia/forpros/drm/default.mspx (Last visited May 2006).

[25] MP3.com Staff. March 13 2006. MP3 Insider: The truth about your battery life.
http://www.mp3.com/features/stories/3646.html (Last visited May 2006).

[26] Sun Developer Network. Java Platform, Micro Edition (Java ME). http://java.

sun.com/javame/index.jsp (Last visited May 2006).

[27] Leedy, P. D. & Ormrod, J. E. 2005. Practical Research. Planning and design. Pearson
Education, 8th edition.

[28] The ACM Digital Library. ACM Portal. http://portal.acm.org (Last visited Jun
2006).

[29] Springer. SpringerLink. http://www.springerlink.com (Last visited Jun 2006).

[30] Elsevier. Science Direct. http://www.sciencedirect.com/ (Last visited Jun
2006).

[31] IEEE. IEEE Xplore. http://ieeexplore.ieee.org/ (Last visited Jun 2006).

[32] CiteSeer. Scientific Literature Digital Library. http://citeseer.ist.psu.edu/

(Last visited Jun 2006).

[33] Goldberg, I., Wagner, D., & Green, L. 1999. The (real-time) cryptanalysis of a5/2.
In Rump Session of Crypto’99.

[34] Barkan, E., Biham, E., & Keller, N. 2003. Instant Ciphertext-Only Cryptanalysis of
GSM Encrypted Communication. Lecture Notes in Computer Science, 2729, 600–616.

[35] Hassinen, M. & Markovski, S. Secure SMS messaging using Quasigroup encryption
and Java SMS API.

[36] The International PGP Home Page. http://www.pgpi.org/ (Last visited Apr 2006).

50

http://www.ietf.org/html.charters/OLD/ipsec-charter.html
http://www.ietf.org/html.charters/OLD/ipsec-charter.html
http://www.vectrotel.ch/
http://www.vectrotel.ch/files/vectroTEL_S3_FLYER.pdf
http://www.vectrotel.ch/files/vectroTEL_S3_FLYER.pdf
http://www.microsoft.com/windows/windowsmedia/forpros/drm/default.mspx
http://www.microsoft.com/windows/windowsmedia/forpros/drm/default.mspx
http://www.mp3.com/features/stories/3646.html
http://java.sun.com/javame/index.jsp
http://java.sun.com/javame/index.jsp
http://portal.acm.org
http://www.springerlink.com
http://www.sciencedirect.com/
http://ieeexplore.ieee.org/
http://citeseer.ist.psu.edu/
http://www.pgpi.org/

Security versus Power Consumption

[37] Salomon, D. 2003. Data Privacy and Security. Springer professional computing.

[38] Schneier, B. 1996. Applied Cryptography. John Wiley and Sons, Inc.

[39] Menezes, A., van Oorschot, P., & Vanstone, S. 1996. Handbook of Applied Cryptog-
raphy. CRC Press.

[40] CCIT, Recommendation X.509. 1989. The Directory-Authentication Framework.
In Consulantion Committee, International Telephone and Telegraph, International
Telecommunications Union, Geneva.

[41] Balenson, D. Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms,
Modes and Identifiers. RFC 1423.

[42] RSA Laboratories. PKCS #1: RSA Encryption Standard. version 1.5, Nov 1993.

[43] Lenstra, A. K. & Verheul, E. R. 1999. Selecting cryptographic key sizes.

[44] RSA Security. RSA Laboratories home page. http://www.rsasecurity.com/ (Last
visited Apr 2006).

[45] Buhler, J., Lenstra, H., & Pomerance, C. 1994. The development of the number
field sieve. Lecture Notes in Computer Science, 1554.

[46] Rhee, M. Y. 2003. Internet security: cryptographic principles, algorithms and proto-
cols. John Wiley & Sons Ltd.

[47] Stallings, W. 2003. Network security essentials. Pearson Education Inc, 2nd edition
edition.

[48] Wallace, G. Feb 1992. The JPEG still picture compression standard. Consumer
Electronics, IEEE Transactions on, 38(1), xviii–xxxiv.

[49] Mozilla Corporation. Thunderbird. http://www.mozilla.com/thunderbird/

(Last visited May 2006).

[50] The GNU Privacy Guard. GnuPG. http://www.gnupg.org/(en)/download/index.
html (Last visted May 2006).

[51] Mozdev.org. Enigmail. http://enigmail.mozdev.org/download.html (Last vis-
ited May 2006).

[52] Exelica.org. GNU Privacy Guard Explorer Extension. http://gpgee.excelcia.

org/ (Last visited May 2006).

[53] Sony Ericsson Z1010 Specification. http://www.sonyericsson.com/z1010/ (Last
visited Feb 2006).

[54] Le Club-Java. TastePhone Server, list of MIDP Java phones. http://www.

club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp (Last visited Apr 2006).

[55] The Legion of the Bouncy Castle. Bouncycastle homepage. http://www.

bouncycastle.org/ Last visited Jun 2006.

[56] HP. QuickSpecs, Compaq iPAQ Pocket PC H3600 Series. http://h18000.www1.hp.

com/products/quickspecs/10632_na/10632_na.HTML (Last visited May 2006).

[57] Gebotys, C. H. 2004. Low energy security optimization in embedded cryptographic
systems. In CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 224–229, New York,
NY, USA. ACM Press.

51

http://www.rsasecurity.com/
http://www.mozilla.com/thunderbird/
http://www.gnupg.org/(en)/download/index.html
http://www.gnupg.org/(en)/download/index.html
http://enigmail.mozdev.org/download.html
http://gpgee.excelcia.org/
http://gpgee.excelcia.org/
http://www.sonyericsson.com/z1010/
http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp
http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp
http://www.bouncycastle.org/
http://www.bouncycastle.org/
http://h18000.www1.hp.com/products/quickspecs/10632_na/10632_na.HTML
http://h18000.www1.hp.com/products/quickspecs/10632_na/10632_na.HTML

Security versus Power Consumption

[58] Keeratiwintakorn, P. & Krishnamurthy, P. An energy efficient security protocol for
ieee 802.11 wlans. In Press, Corrected Proof, Available online 6 January 2006.

[59] Kiratiwintakorn, P. Energy efficient security framework for wireless local area net-
works. Master’s thesis, University of Kansas, 2000.

[60] Mattisson, S. 1997. Minimizing power dissipation of cellular phones. In ISLPED
’97: Proceedings of the 1997 international symposium on Low power electronics and
design, 42–45, New York, NY, USA. ACM Press.

[61] Karri, R. & Mishra, P. May 2003. Modeling energy efficient secure wireless networks
using network simulation. Communications, 2003. ICC ’03. IEEE International Con-
ference on, 1, 11–15.

[62] Ravi, S., Raghunathan, A., Kocher, P., & Hattangady, S. 2004. Security in embedded
systems: Design challenges. Trans. on Embedded Computing Sys., 3(3), 461–491.

[63] Microchip Technology Inc. PIC18F2455/2550/4455/4550 Data Sheet, 2004.

[64] Microchip Technology Inc. Power Management for PIC18 USB Microcontrollers with
nanoWatt Technology, 2004.

[65] UMTS World. 2002. Overview of The Universal Mobile Telecommunication System.
http://www.umtsworld.com/technology/overview.htm (Last visited May 2006).

[66] GSM World. GPRS Platform. http://www.gsmworld.com/technology/gprs/

index.shtml (Last visited May 2006).

[67] Evaluating Battery Run-down Performance Using the Agilent 66319D or 66321D with
Option #053 14565A Device Characterization Software. Application Note 1427.

[68] Brorein, E. Using battery drain analysis to improve mobile-device operating time.
Technical report, Agilent Technologies, 2002.

[69] National Instruments. LabVIEW. http://www.ni.com/labview/ (Last visited May
2006).

[70] Zhao, Y. & Hsiao, M. 2002. Reducing power consumption by utilizing retransmis-
sion in short range wireless network. Local Computer Networks, 2002. Proceedings.
LCN 2002. 27th Annual IEEE Conference on, 6-8, 527–533.

52

http://www.umtsworld.com/technology/overview.htm
http://www.gsmworld.com/technology/gprs/index.shtml
http://www.gsmworld.com/technology/gprs/index.shtml
http://www.ni.com/labview/

Security versus Power Consumption

A Tables

A.1 Practical compression test results

SMS bytes GZIP normal GZIP best (-9) GZIP fast (-1)
zipped delta % zipped delta % zipped delta %

1 160 172 -12 -7,50 173 -13 -8,13 173 -13 -8,13
2 320 292 28 8,75 294 26 8,13 293 27 8,44
3 480 414 66 13,75 412 68 14,17 412 68 14,17
4 640 533 107 16,72 530 110 17,19 533 107 16,72
5 800 651 149 18,63 651 149 18,63 652 148 18,50
6 960 772 188 19,58 772 188 19,58 773 187 19,48
7 1120 890 230 20,54 890 230 20,54 891 229 20,45
8 1280 1011 269 21,02 1012 268 20,94 1013 267 20,86
9 1440 1132 308 21,39 1130 310 21,53 1131 309 21,46

10 1600 1251 349 21,81 1252 348 21,75 1251 349 21,81
11 1760 1372 388 22,05 1373 387 21,99 1370 390 22,16
12 1920 1491 429 22,34 1489 431 22,45 1491 429 22,34
13 2080 1611 469 22,55 1610 470 22,60 1612 468 22,50
14 2240 1733 507 22,63 1734 506 22,59 1729 511 22,81
15 2400 1852 548 22,83 1853 547 22,79 1853 547 22,79
16 2560 1971 589 23,01 1972 588 22,97 1973 587 22,93
17 2720 2091 629 23,13 2094 626 23,01 2094 626 23,01
18 2880 2213 667 23,16 2213 667 23,16 2212 668 23,19
19 3040 2334 706 23,22 2333 707 23,26 2334 706 23,22
20 3200 2453 747 23,34 2455 745 23,28 2453 747 23,34

Table 14: Practical compression test results

53

Security versus Power Consumption

A.2 Times of cryptographic calculations

Algorithm Time in ms with # concatenated SMSes
1 2 3 4 5 6 7 8 9 10

Hash algorithms
MD5 1 3 4 6 7 8 9 11 12 14
SHA-1 6 10 13 17 19 23 26 30 33 37
SHA-256 9 17 22 30 36 43 49 56 62 70
SHA-512 9 14 18 25 29 33 37 44 48 53
RMD-128 4 8 10 14 16 19 21 25 27 31
RMD-160 6 10 13 18 21 26 29 33 36 41
RMD-256 5 8 10 14 16 19 22 25 27 30

Symmetric encryption in different modes
AES-ECB 8 13 17 25 27 33 37 41 47 51
AES-CBC 10 15 20 27 31 37 42 47 53 60
AES-CFB 9 15 20 27 32 37 43 49 54 59
AES-OFB 9 14 21 28 31 36 42 47 53 58
AES-FAST-ECB 6 8 11 15 16 19 21 24 26 29
AES-FAST-CBC 7 10 14 17 21 24 28 31 34 38
AES-FAST-CFB 7 13 14 18 23 24 28 31 35 38
AES-FAST-OFB 8 10 15 17 21 23 27 30 35 38
AES-LIGHT-ECB 10 17 24 31 38 47 52 60 65 72
AES-LIGHT-CBC 11 19 26 34 41 51 56 64 73 80
AES-LIGHT-CFB 12 19 27 35 42 52 57 65 73 82
AES-LIGHT-OFB 11 19 27 36 42 49 56 64 72 78
DES-ECB 11 16 21 25 30 34 39 44 48 53
DES-CBC 12 18 23 29 34 41 47 53 58 62
DES-CFB 13 18 24 29 35 40 46 52 58 62
DES-OFB 12 18 23 28 34 39 45 50 56 61
3DES-ECB 25 39 53 66 80 96 111 123 135 147
3DES-CBC 27 41 56 71 88 104 120 137 154 160
3DES-CFB 29 41 56 71 87 103 118 132 146 158
3DES-OFB 26 41 56 71 86 102 117 131 145 156
IDEA-ECB 8 12 18 23 27 32 37 42 49 52
IDEA-CBC 9 14 20 27 31 38 43 48 54 59
IDEA-CFB 9 15 21 27 32 38 43 50 55 64
IDEA-OFB 9 15 20 27 31 38 44 51 55 61
RC4-128 5 7 9 9 10 14 13 14 15 17

Asymmetric encryption (private key / public key)
RSA-1024 14047 / 4170
RSA-2048 104354 / 16337

Table 15: Ciphers compared in SonyEricsson Z1010

Time in ms with # concatenated SMSes
Key size 1 2 3 4 5 6 7 8 9 10

128 7 13 20 23 29 34 38 44 49 57
192 9 15 21 27 33 40 45 52 57 63
256 10 17 24 31 38 47 52 62 69 75

Table 16: AES key sizes compared in SonyEricsson Z1010

54

Security versus Power Consumption

Time per Initialization
Cipher SMS (ms) time (ms) Correlation
MD5 1,36 0,00 0,996463296
SHA-1 3,37 2,87 0,999134193
SHA-256 6,65 2,80 0,999582214
SHA-512 4,87 4,20 0,998684563
RMD-128 2,88 1,67 0,997967433
RMD-160 3,85 2,13 0,999098499
RMD-256 2,79 2,27 0,999075009
AES-ECB 4,77 3,67 0,997869171
AES-CBC 5,47 4,13 0,999162807
AES-CFB 5,58 3,80 0,999597056
AES-OFB 5,40 4,20 0,998506905
AES-FAST-ECB 2,54 3,53 0,997661466
AES-FAST-CBC 3,44 3,47 0,999615873
AES-FAST-CFB 3,33 4,80 0,995884878
AES-FAST-OFB 3,35 4,00 0,997274104
AES-LIGHT-ECB 6,95 3,40 0,999164995
AES-LIGHT-CBC 7,67 3,33 0,999450531
AES-LIGHT-CFB 7,72 3,93 0,999391835
AES-LIGHT-OFB 7,43 4,53 0,999383171
DES-ECB 4,62 6,67 0,999787071
DES-CBC 5,70 6,33 0,999102264
DES-CFB 5,56 7,13 0,999617292
DES-OFB 5,44 6,67 0,999846266
3DES-ECB 13,76 11,80 0,999364245
3DES-CBC 15,49 10,60 0,998532884
3DES-CFB 14,75 13,00 0,999469296
3DES-OFB 14,71 12,20 0,999456501
IDEA-ECB 4,98 2,60 0,99890956
IDEA-CBC 5,61 3,47 0,999364813
IDEA-CFB 5,90 2,93 0,998676573
IDEA-OFB 5,82 3,07 0,999223446
RC4-128 1,24 4,47 0,974501478
AES-128 5,28 2,33 0,99779266
AES-192 6,04 3,00 0,999752112
AES-256 7,34 2,13 0,999269819
Table 17: Linear regression of times in SonyEricsson Z1010

55

Security versus Power Consumption

Algorithm Time in ms with # concatenated SMSes
1 2 3 4 5 6 7 8 9 10

Hash algorithms
MD5 0 1 1 0 1 2 1 1 1 2
SHA-1 0 2 1 2 3 3 3 4 4 5
SHA-256 2 3 5 6 4 5 6 7 7 9
SHA-512 1 2 3 3 4 6 6 7 8 8
RMD-128 1 3 6 5 5 6 6 7 7 7
RMD-160 2 3 4 5 7 7 10 10 10 12
RMD-256 1 2 3 3 4 4 7 5 7 7

Symmetric encryption in different modes
AES-ECB 0 1 7 3 4 3 4 3 5 6
AES-CBC 1 2 3 3 4 4 4 5 6 7
AES-CFB 1 2 3 3 3 4 5 6 7 7
AES-OFB 1 3 3 3 4 4 5 6 6 7
AES-FAST-ECB 1 1 1 1 1 2 2 2 3 2
AES-FAST-CBC 2 1 1 2 2 3 3 3 3 3
AES-FAST-CFB 0 1 1 2 2 2 3 3 3 3
AES-FAST-OFB 1 1 1 2 2 2 3 3 3 3
AES-LIGHT-ECB 1 2 3 3 5 7 7 7 7 8
AES-LIGHT-CBC 2 3 3 5 6 7 7 8 8 9
AES-LIGHT-CFB 1 3 3 5 6 7 7 7 8 9
AES-LIGHT-OFB 1 3 3 3 6 7 7 7 8 8
DES-ECB 0 0 1 2 3 3 3 3 4 4
DES-CBC 1 2 1 3 3 3 3 9 4 5
DES-CFB 1 1 2 3 3 3 3 4 5 6
DES-OFB 1 1 2 3 3 3 3 4 5 6
3DES-ECB 3 3 5 6 7 8 9 10 11 12
3DES-CBC 2 3 5 6 7 9 10 11 12 13
3DES-CFB 3 3 5 7 6 8 10 12 13 13
3DES-OFB 3 3 5 6 7 8 9 11 12 13
IDEA-ECB 0 1 1 2 3 3 3 4 5 6
IDEA-CBC 0 3 3 3 3 3 4 6 6 7
IDEA-CFB 0 1 1 3 3 3 5 5 7 7
IDEA-OFB 0 1 2 3 3 3 5 6 7 7
RC4-128 0 0 0 0 1 1 1 0 1 2

Asymmetric encryption (private key / public key)
RSA-1024 2297 / 578
RSA-2048 13422 / 2062

Table 18: Ciphers compared in SonyEricsson P910

56

Security versus Power Consumption

Charge interval in hours
SMSes Without security 1024bit key 1028bit key

1 238 236 228
2 236 232 217
3 234 228 208
4 232 224 198
5 230 221 190
6 227 217 183
7 225 214 176
8 223 210 169
9 221 207 163

10 219 204 157
11 218 201 152
12 216 198 147
13 214 195 143
14 212 192 138
15 210 189 134
16 208 187 130
17 207 184 127
18 205 182 123
19 203 179 120
20 202 177 117

Table 19: Charge interval as a function of sent SMSes each day

57

Security versus Power Consumption

B Formula equations

B.1 Variables
This appendix shows the full calculations of the equation 6.8 in section 6.1. The equations
consist of the following variables:

Symbol Variable Description
t Battery lifetime/

Charge interval
This is the variable we are interested in. It describes the
time the device can run with the given condition before
it needs to be recharged. The total time is given by the
equation t = ti + te.

C Battery capacity The decrement is dependent of the battery package
specification. We need to know the electrical energy
stored in the battery (E = U · I · t). If we assume the
voltage to be stable, the energy can be denoted as I · t.
Batteries are often denoted with milliamperes per hour
(mAh) so this notation is used. Since the voltage is as-
sumed to be stable and we actually do not use the for-
mula for energy, the energy is from now denoted as C

(As Capacity shorted)
Ii Idle current The current drawn while the device is idle is important

to find the decrement of battery lifetime. This is for ex-
ample the current drawn while a cellular phone do not
run any java application or illuminated the display.

ti Idle time The time the device is idle. This is unknown value and
needs to be calculated in combination with the other
parameters.

Ie Execution current The current drawn while the device is not idle. For
example the current drawn while fetching and storing
data in an accelerator logger. This variable also includes
all activities to make a user-profile of the device. We
need to find all currents drawn in different stages and
activities, including security activities. For example the
current drawn while calculating the MD5 sum, encrypt-
ing with AES or sending extra bits to ensure confiden-
tiality and integrity.

te Execution time The time of all the activities each time the device is exe-
cuting. Each execution current(Ie) needs to be timed to
find how long time the current is drawn.

Fe Frequency of exe-
cution

The battery lifetime is dependent on the frequency of
execution. For example when implementing fingerprints
of the stored value in an acceleration logger we need
to know how often we log the acceleration. How many
MD5 values do we need to calculate each second? An-
other example: approximately how many secure SMSes
do we send each day.

Table 20: Variables of the model

59

Security versus Power Consumption

B.2 Equation calculations
The equation is a result of a combination of the two following equation:

C =

Idle charge︷ ︸︸ ︷
Ii · ti +

Activity charge︷ ︸︸ ︷
Fe · t︸ ︷︷ ︸

#executions in time t

·
k∑

a=0

(Ia · ta)︸ ︷︷ ︸
Sum of the sub−activities charges

(B.1)

ti = t −

Total execution time︷ ︸︸ ︷(
Fe · t ·

k∑
a=0

ta

)
(B.2)

Equation B.1 says that the total capacity of the battery package is equals to the energy
consumed when the device is idle (Ii · ti) plus the sum of every activity energy each
execution (

∑
(Ie · te)) multiplied with the number of executions (Fe · t).

Equation B.2 says that the time the device is idle (ti) equals the total battery lifetime
minus the sum of all execution times.

These two equations can be combined to find an expression for t as the following:

C = Ii ·

ti︷ ︸︸ ︷(
t −

(
Fe · t ·

k∑
a=0

ta

))
+Fe · t ·

k∑
a=0

(Ia · ta)

= Ii · t − Ii · Fe · t ·
k∑

a=0

ta + Fe · t ·
k∑

a=0

(Ia · ta)

= t ·

(
Ii + Fe ·

k∑
a=0

(Ia · ta − Ii · ta)

)
(B.3)

t =
C

Ii + Fe ·
∑k

a=0 (Ia · ta − Ii · ta)
(B.4)

This equation works fine in a case where the security is executed each time the origin
functionality is executed. For example in an accelerator logger. However, in some cases
there may be other power consuming activities. For example in a cellular phone situation.
We need to find power consumed when we are calling to make the total battery lifetime
correct. This can be included by the following equation:

C = Ii · ti +

Energy sum of all activities︷ ︸︸ ︷
m∑

a=0


Fa · t︸ ︷︷ ︸

executions of activity a

·
n∑

b=0

(Ia.b · ta.b)︸ ︷︷ ︸
Energy consumed by activity a each execution︸ ︷︷ ︸

Total energy consumption of activity a



ti = t −

m∑
a=0

 Fa · t︸ ︷︷ ︸
of executions of activity a

·
n∑

b=0

ta.b︸ ︷︷ ︸
Sum of all executiontimes in activity a



60

Security versus Power Consumption

These equations can be combined as in equation B.1. The result of this combination
will give us the following equation:

C = Ii ·

ti︷ ︸︸ ︷(
t −

m∑
a=0

(
Fa · t ·

n∑
b=0

ta.b

))
+

m∑
a=0

(
Fa · t ·

n∑
b=0

(Ia.b · ta.b)

)
Multiply Ii with the inserted ti

= Ii · t +

m∑
a=0

(
Fa · t ·

n∑
b=0

(Ia.b · ta.b)

)
− Ii ·

m∑
a=0

(
Fa · t ·

n∑
b=0

ta.b

)
Pulling t out of the addends

= t ·

(
Ii +

m∑
a=0

(
Fa ·

n∑
b=0

(Ia.b · ta.b)

)
− Ii ·

m∑
a=0

(
Fa ·

n∑
b=0

ta.b

))
Applying k ·

∑
(a) + k ·

∑
(b) = k ·

∑
(a + b)

= t ·

(
Ii +

m∑
a=0

(
Fa ·

n∑
b=0

(Ia.b · ta.b) − Ii · Fa ·
n∑

b=0

ta.b

))
Applying k ·

∑
(a) + k ·

∑
(b) = k ·

∑
(a + b)

= t ·

(
Ii +

m∑
a=0

(
Fa ·

n∑
b=0

(Ia.b · ta.b − Ii · ta.b)

))
(B.5)

This equation gives us an equation for C. By reformatting the equation and applying
the fact that a · b + a · c = a · (a + c) we finally get equation B.6

t =
C

Ii +
∑m

a=0

(
Fa ·
∑n

b=0 (ta.b · (Ia.b − Ii))
) (B.6)

61

Security versus Power Consumption

C J2ME source code

C.1 Introduction
This appendix describes selected parts of the application used to find the time of cryp-
tographic algorithms. The application prints the time of the respective cryptographic
algorithm to screen as in figure 23.

Figure 23: CryptotestME screenshot

The time is captured by using the Java integrated clock (System.currentTimeMillis()).
The following attributes and methods are defined to take care of the timing:

private long lstart ;
private long lstop ;

public void startTimer ()
{

lstart = System . currentTimeMillis () ;
}

public void stopTimer ()
{

lstop = System . currentTimeMillis () ;
}

public long getTime ()
{

return lstop − lstart ;
}

To make the time more accurate one can run the cryptographic algorithm several
times and calculate the average time. To make this one can implement the following
methods and attributes:

public long getAvg (long [] longs)
{

long lSum = 0;

for (int i = 0; i< longs . length ; i++)

63

Security versus Power Consumption

{
lSum += longs [i] ;

}

return lSum / longs . length ;
}

There are interesting to see how much the time increase when we want to encrypt
concatenated SMSes. To increase the number of SMSes one can apply the following code
where staIn is a string with a number of how many SMSes we want to encrypt:

try

{
int iIn = Integer . parseInt (staIn) ;
if (iIn < 1) appln ("To low") ;
else {

String oneSMS = input ;
for (int i = 1; i < iIn ; i++) input += oneSMS ;
appln ("Msg: " + staIn) ;

}
}

catch (Exception e)
{

appln ("No number") ;
}

The helping methods we need are now defined. To apply these help methods and find
the average time of the cryptographic algorithms

C.2 Hash algorithms
This section describes the source code to test different hash algorithms with different
security. As mentioned in the previous section the time is calculated by an average of
different tests. The number of tests is variable and is sat by the iNumTest attribute. The
app and appln methods prints the result to the screen. The update method calculates
the digest of a block of bytes, and the doFinal method closes the digest and fills a byte
array with the calculated digest[55].

int iNumTest = 10;
private String input = "This is a message to test the PGP " +

"implementation on a mobile phone. This message should " +
"be 160 chars so I will just write some words, almost " +
"there, finish. Bye!" ;

public void digestTest ()
{

app ("MD5: ") ;
long [] hashTimes = new long [iNumTest] ;
byte [] baIn = input . getBytes () ;

for (int i=0; i< iNumTest ; i++)
{

startTimer () ;
MD5Digest digest = new MD5Digest () ;
digest . update (baIn , 0 , baIn . length) ;
byte [] baOut = new byte [digest . getDigestSize ()] ;
digest . doFinal (baOut , 0) ;
stopTimer () ;

64

Security versus Power Consumption

hashTimes [i] = getTime () ;
}
appln (Long . toString (getAvg (hashTimes))) ;

app ("SHA-1: ") ;
hashTimes = new long [iNumTest] ;

for (int i=0; i< iNumTest ; i++)
{

startTimer () ;
SHA1Digest digest = new SHA1Digest () ;
digest . update (baIn , 0 , baIn . length) ;
byte [] baOut = new byte [digest . getDigestSize ()] ;
digest . doFinal (baOut , 0) ;
stopTimer () ;
hashTimes [i] = getTime () ;

}
appln (Long . toString (getAvg (hashTimes))) ;

[. . .]
}

These two examples of MD5 and SHA-1 continue by replacing the Digest class (MD5Digest
and SHA1Digest respectively) with corresponding class for hash algorithm. The classes
tested in this experiment are the following:

• MD5Digest;

• SHA1Digest;

• SHA256Digest;

• SHA512Digest;

• RIPEMD128Digest;

• RIPEMD160Digest;

• RIPEMD256Digest;

All classes is part of the org.bouncycastle.crypto.digests package of BouncyCastle[55].

C.3 Symmetric encryption
This section describes the methods used to take the time of symmetric encryption. All
cipher but one is block ciphers. These block ciphers are tested in different modes of
operations. The ciphers tested in the experiment are listed below:

• AES

• AES-Fast

• AES-Light

• DES

• 3DES

• IDEA

• RC4 (stream cipher)

These ciphers are all found in the org.bouncycastle.crypto.engines package. As
the list describe there are three implementations of AES in BouncyCastle, fast, light and

65

Security versus Power Consumption

«normal». The difference between these implementations is a trade-off of speed vs mem-
ory.

To use a block cipher one need to pad the message to make the length of the message
divisible by the block size. The message also needs to be divided into blocks of the given
block size. Bouncy Castle contains a class that takes care of both padding and message
splitting called org.bouncycastle.crypto.paddings.PaddedBufferedBlockCipher. This
class pads the message with PKCS7 padding by default.

To apply different modes of operations we use the classes in the org.bouncycastle.crypto.modes
package. The modes tested in this experiment are ECB1, CBC2, CFB3 and OFB4.

The code for the encryption/decryption is implemented as the following:

// Generate key
SecureRandom sr = new SecureRandom () ;
byte [] baKey= new byte [16] ;
sr . nextBytes (baKey) ;
byte [] baOut ;
byte [] baIn = input . getBytes () ;

app ("AES-ECB: ") ;
long [] encTimes = new long [iNumTest] ;
for (int i=0; i< iNumTest ; i++)
{

startTimer () ;
// Create encrypt ion o b j e c t
PaddedBufferedBlockCipher pbcAes =

new PaddedBufferedBlockCipher (new AESEngine ()) ;
// I n i t i a l i z e and s e t the generated key
pbcAes . init (true , new KeyParameter (baKey)) ;
// Create a byte array to put the output
baOut = new byte [baIn . length + 16 − baIn . length%16] ;
// Encrypt the message
int outlen = pbcAes . processBytes (baIn , 0 , baIn . length , baOut , 0) ;
// F i n i s h i n g up
pbcAes . doFinal (baOut , outlen) ;
stopTimer () ;
encTimes [i] = getTime () ;

}
appln (Long . toString (getAvg (encTimes))) ;

app ("AES-CBC: ") ;
encTimes = new long [iNumTest] ;
for (int i=0; i< iNumTest ; i++)
{

startTimer () ;
PaddedBufferedBlockCipher pbcAes =

new PaddedBufferedBlockCipher (
new CBCBlockCipher (new AESEngine ())) ;

pbcAes . init (true , new KeyParameter (baKey)) ;
baOut = new byte [baIn . length + 16 − baIn . length%16] ;
int outlen = pbcAes . processBytes (baIn , 0 , baIn . length , baOut , 0) ;
pbcAes . doFinal (baOut , outlen) ;
stopTimer () ;
encTimes [i] = getTime () ;

}

1Electronic CodeBook
2Cipher Block Chaining
3Cipher FeedBack
4Output FeedBack

66

Security versus Power Consumption

appln (Long . toString (getAvg (encTimes))) ;

[. . .]

This code continues with different block ciphers and modes described above.
RC4 differs from the other symmetric ciphers owing to the fact that it is a stream

cipher. The code to test RC4 is listed below:

// Generate key
SecureRandom sr = new SecureRandom () ;
byte [] baKey= new byte [16] ;
sr . nextBytes (baKey) ;
byte [] baOut ;
byte [] baIn = input . getBytes () ;

app ("RC4: ") ;
long [] rc4encTimes = new long [iNumTest] ;
for (int i=0; i< iNumTest ; i++)
{

startTimer () ;

RC4Engine rc4 = new RC4Engine () ;
rc4 . init (true , new KeyParameter (baKey)) ;
baOut = new byte [baIn . length] ;
rc4 . processBytes (baIn , 0 , baIn . length , baOut , 0) ;
stopTimer () ;
rc4encTimes [i] = getTime () ;

}
appln (Long . toString (getAvg (rc4encTimes))) ;

The asymmetric encryption algorithm tested in this application is the RSA algorithm,
both signing (private key) and encryption (public key). The application also test both
1024- and 2048 bits key. The keys are hardcoded. The source code of the RSA encryption
is listed below. Note that the RSA keys are shortened in this listing. The keys are described
in table 21

app ("RSA-1024(r/u): ") ;

// Signing with p r i v a t e key
startTimer () ;
BufferedAsymmetricBlockCipher asymChipher =

new BufferedAsymmetricBlockCipher (new RSAEngine ()) ;
// I n i t with p r i v a t e key
RSAKeyParameters rsapriv = new RSAKeyParameters (true ,

//1024
new BigInteger ("10103640997585173195 [...continue...] 6677357") ,
new BigInteger ("37500107161497186367 [...continue...] 67627941")
) ;

asymChipher . init (true , rsapriv) ;
asymChipher . processBytes (input . getBytes () ,0 , input . length ()) ;
byte [] baOut = null ;
try{ baOut = asymChipher . doFinal () ; } catch (Exception e)
{appln ("Exeption: " + e . getMessage ()) ; }
stopTimer () ;
app (Long . toString (getTime ())) ;

// Encrypt ion with pub l i c key

67

Security versus Power Consumption

startTimer () ;
RSAKeyParameters rsapub = new RSAKeyParameters (false ,

//1024
new BigInteger ("10103640997585173459 [...continue...] 6677357") ,
new BigInteger ("54398563824747239473 [...continue...] 75734953")
) ;

asymChipher . init (false , rsapub) ;
asymChipher . processBytes (baOut , 0 , baOut . length) ;
byte [] baDec = null ;
try{ baDec = asymChipher . doFinal () ; } catch (Exception e)
{appln ("Exeption: " + e . getMessage ()) ; }
stopTimer () ;
appln ("/" + Long . toString (getTime ())) ;

68

Security versus Power Consumption

1024 bit private key
Modulus 10103640997585173459354181954885537754643917772167928442842878672

31372280679973947926425556159241864134583650365412754447853901015
04374984761623475486888508165714664614744125762664629576989046970
05023244819633836263447582748114723300266225755273361526155721735
4413966972379946778826350507138317230667166677357

Exponent 37500107174099585614971863679082912619825241670654814715540727378
37887489411333359074358914047747852787795805694740251124566727348
96610947606908156455697625517885615708144872356380701333202988142
91890116773033744176496000374536898426168604445271706949426380329
748251414877995281160739996668486656735367627941

1024 bit public key
Modulus 10103640997585173459354181954885537754643917772167928442842878672

31372280679973947926425556159241864134583650365412754447853901015
04374984761623475486888508165714664614744125762664629576989046970
05023244819633836263447582748114723300266225755273361526155721735
4413966972379946778826350507138317230667166677357

Exponent 54398563824747239473583242315368435307439873489753425345534535372
4723947237575734953

2048 bit private key
Modulus 21958957355986203816421592845012462872227401431865614549977041029

54453391192868964517531457797267964105001386488765353794893643808
85154477814474200002994739648263060853848155968420286758840370373
22342266654580094687381362474308259901154285053407058749534509474
29085462559452912629010692056437165521820246095738195040443789216
12353424851938045588952728232701703318388764471314093357082544770
53812503957347566842409125741230513266270470813078957616692511162
04655413661920229811187311271255116690022561940675955710069051095
20466580335398335956844514400186543648604218219541824415378044565
96508244767776375988291553381317

Exponent 72651399238070475385645934046617885155436867617176112224990385006
48525608511949208578195329750756109330265626529002540788600318854
29768074071987069256192212074720895424144312327297700926990133143
47593442609870605002483104490061345017066032171965209275793930754
63381619229418794227273661103170278707139075917262765638130775989
60581204809172795576968949830987005320971915677131363029651640644
25143889737636032167375486981304348445688685344208823629439123513
36126866269232181759368888913448209969419605779767495218858207844
08623058991605290838958137897561917943283558772176476259795805029
0586020958273665711376966718489

2048 bit public key
Modulus 21958957355986203816421592845012462872227401431865614549977041029

54453391192868964517531457797267964105001386488765353794893643808
85154477814474200002994739648263060853848155968420286758840370373
22342266654580094687381362474308259901154285053407058749534509474
29085462559452912629010692056437165521820246095738195040443789216
12353424851938045588952728232701703318388764471314093357082544770
53812503957347566842409125741230513266270470813078957616692511162
04655413661920229811187311271255116690022561940675955710069051095
20466580335398335956844514400186543648604218219541824415378044565
96508244767776375988291553381317

Exponent 54398563824747239473583242315368435307439873489753425345534535372
4723947237575734953

Table 21: RSA key components

69

Security versus Power Consumption

D Perl script for practical compression test

This appendix describes a perl script to make a practical compression test of SMS. The
script creates 20 strings of random characters with lengths of respectively 1 to 20 SMSes
(160, 320, 480, ...). The strings are stored in files and at last zipped by using gzip. The
script generates a ls -l list of the compressed files to view the size of the compressed
SMSes. This output may be used in combination with awk to filter out only the size of
the files (perl smsgzip.pl |awk 'print $6').

#!/ usr / bin / pe r l

###
P r a c t i c a l comression t e s t of SMS
Writ ten by St ian Jahr
Tnx to Guy Malachi h t tp :// guymal . com
22 Apr , 2006
###

This func t ion generates random s t r i n g s of a given length
sub generate_random_string

{
my $length_of_randomstring=shift ;# the length of
the random s t r i n g to generate

my @chars=('a' . . 'z' ,'A' . . 'Z' ,'0' . . '9' , ' ') ;
my $random_string ;
foreach (1 . . $length_of_randomstring)
{
rand @chars w i l l generate a random
number between 0 and s c a l a r @chars
$random_string .=$chars [rand @chars] ;
}
return $random_string ;
}

#Generate the random s t r i n g and save them to f i l e s
my $random_string=&generate_random_string (1∗160);
open OUTPUT , ">01.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (2∗160);
open OUTPUT , ">02.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (3∗160);
open OUTPUT , ">03.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (4∗160);
open OUTPUT , ">04.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (5∗160);
open OUTPUT , ">05.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (6∗160);
open OUTPUT , ">06.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (7∗160);
open OUTPUT , ">07.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (8∗160);
open OUTPUT , ">08.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (9∗160);

71

Security versus Power Consumption

open OUTPUT , ">09.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (10∗160);
open OUTPUT , ">10.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (11∗160);
open OUTPUT , ">11.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (12∗160);
open OUTPUT , ">12.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (13∗160);
open OUTPUT , ">13.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (14∗160);
open OUTPUT , ">14.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (15∗160);
open OUTPUT , ">15.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (16∗160);
open OUTPUT , ">16.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (17∗160);
open OUTPUT , ">17.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (18∗160);
open OUTPUT , ">18.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (19∗160);
open OUTPUT , ">19.txt" ; print OUTPUT $random_string ; close OUTPUT ;
my $random_string=&generate_random_string (20∗160);
open OUTPUT , ">20.txt" ; print OUTPUT $random_string ; close OUTPUT ;

#gzip the f i l e s
‘ gzip −f 01.txt ‘ ;
‘ gzip −f 02.txt ‘ ;
‘ gzip −f 03.txt ‘ ;
‘ gzip −f 04.txt ‘ ;
‘ gzip −f 05.txt ‘ ;
‘ gzip −f 06.txt ‘ ;
‘ gzip −f 07.txt ‘ ;
‘ gzip −f 08.txt ‘ ;
‘ gzip −f 09.txt ‘ ;
‘ gzip −f 10.txt ‘ ;
‘ gzip −f 11.txt ‘ ;
‘ gzip −f 12.txt ‘ ;
‘ gzip −f 13.txt ‘ ;
‘ gzip −f 14.txt ‘ ;
‘ gzip −f 15.txt ‘ ;
‘ gzip −f 16.txt ‘ ;
‘ gzip −f 17.txt ‘ ;
‘ gzip −f 18.txt ‘ ;
‘ gzip −f 19.txt ‘ ;
‘ gzip −f 20.txt ‘ ;

#P r i n t i n g output of l s − l . Use t h i s in combination with awk
#to get the s i z e only (pe r l smsgzip . p l |awk ’{ p r i n t $6 } ’)
open (ZIPSIZE , "ls -l *.gz|") ;
print <ZIPSIZE>;
close (ZIPSIZE) ;

72

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by this thesis
	Problem description
	Justification, motivation and benefits
	Research questions

	Related work
	How to find power consumption of security implementations?
	Theoretically
	Experimental

	What is the power consumption of different security implementations?
	How do security implementations affect the battery's charge interval?

	Summary of claimed contributions
	Method
	Theory
	Where does the energy go?
	Security implementations

	Model
	Theoretical power consumption model
	Trade-offs

	EnergyCalc
	Introduction
	Script language

	Case study: secure SMS
	Background
	Theory
	Experiment
	Results and discussion

	General results and discussion
	Impacts on the charge interval
	Choice of algorithm
	Increased bits to send in communication settings
	Hardware versus software
	Design challenges
	New technology

	Conclusions
	Summary
	Equation accuracy

	Further work
	Bibliography
	Tables
	Practical compression test results
	Times of cryptographic calculations

	Formula equations
	Variables
	Equation calculations

	J2ME source code
	Introduction
	Hash algorithms
	Symmetric encryption

	Perl script for practical compression test

