
Certificateless Authenticated
Two-Party Key

Agreement Protocols

Tarjei K. Mandt

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2006

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Certificateless Authenticated Two-Party Key Agreement Protocols

Abstract

Certificateless public key cryptography (CL-PKC) was proposed to overcome the weak-
nesses of the public key infrastructure (PKI) and identity-based cryptography (ID-PKC).
In PKI, certificates are used to provide the authenticity of public keys. However, a PKI
faces many challenges in practice, such as the scalability of the infrastructure and certifi-
cate management (distribution, revocation, storage, and validation costs). ID-PKC does
not use certificates, but employs a key generation center (KGC) that will know every
user’s private key. Hence, the KGC will also be able to trace each user transaction and
may cause loss of privacy if it’s not trusted. In CL-PKC, on the other hand, the KGC does
not have this information. Thus, CL-PKC is often considered a cross between PKI and
ID-PKC.

In their seminal paper on CL-PKC, Al-Riyami and Paterson (AP) proposed a certifi-
cateless authenticated key agreement protocol. Key agreement protocols are one of the
fundamental primitives of cryptography, and allow two or more parties to establish se-
cret keys securely in the presence of an eavesdropping adversary. AP’s protocol, the only
certificateless key agreement protocol proposed so far, essentially requires each party to
compute four bilinear pairings. Such pairings can be computationally intensive to com-
pute, and should therefore be used moderately in protocols.

In this thesis, we propose a new certificateless authenticated two-party key agreement
protocol that only requires each party to compute two pairings. We perform a security
analysis and heuristically argue that the protocol obtains the desired security attributes.
We also show that our protocol can be used to establish keys between members of distinct
domains (under different KGCs). Finally, we compare the protocol’s efficiency to current
identity-based and certificateless protocols.

iii

Certificateless Authenticated Two-Party Key Agreement Protocols

Sammendrag

Utfordringen i dag ved å utvikle sikre systemer basert på offentlig-nøkkel kryptografi
er ikke det å velge tilstrekkelig sikre algoritmer og implementere disse, men heller å
utvikle en infrastruktur som forsikrer brukere om tilhørigheten av offentlige nøkler. I
tradisjonell offentlig-nøkkel infrastruktur (PKI) løses dette ved bruk av sertifikater, hvor
en tiltrodd tredjepart (Certificate Authority) signerer den offentlige nøkkelen. Det finnes
imidlertid en rekke problemer ved bruk av sertifikater, deriblant tilbaketrekking, lagring,
distribusjon og valideringskostnader. Identitetsbasert kryptografi (ID-PKC) benytter seg
ikke av sertifikater, men er avhengig av en tiltrodd tredjepart (Private Key Generator)
som til enhver tid kjenner til alle brukeres private nøkler. En PKG kan derfor forfalske
signaturer og utgi seg for å være hvilken som helst bruker i systemet.

Sertifikatløs offentlig-nøkkel kryptografi (CL-PKC) er et relativt nytt konsept som
forsøker å løse problemene ved PKI og identitetsbasert kryptografi. I likhet med ID-PKC
benytter det seg ikke av sertifikater, men den tiltrodde tredjeparten (Key Generation Cen-
ter) kjenner ikke til hver enkelt brukers private nøkkel. Derfor er man ikke lenger nødt
til å ha like stor tillit til den tiltrodde tredjeparten som i ID-PKC.

I dette prosjektet har vi utviklet en sertifikatløs nøkkelutvekslingsprotokoll. En nøkke-
lutvekslingsprotokoll tillater to eller flere brukere å bli enige om en felles nøkkel over et
åpent nett. Vi argumenterer for at protokollen er sikker og har bedre ytelse enn den
som ble utviklet av Al-Riyami og Paterson [1]. Vi viser dessuten hvordan protokollen kan
fungere i et miljø der brukere er underlagt forskjellige tiltrodde tredjeparter (KGCer).

v

Certificateless Authenticated Two-Party Key Agreement Protocols

Aknowledgements

I would like to thank my supervisor Dr. Chik How Tan, who provided excellent guidance
and offered me many hours every month of his precious time. Without the many interest-
ing discussions and his help, I can honestly say that this thesis would not have been the
same. I would also like to thank my opponent, Sjur Ringheim Lid, for providing valuable
feedback on the preliminary draft of the thesis.

Moreover, I would like to thank my family and friends for being supportive throughout
the course of the thesis. I would also like to thank my girlfriend Hilde for being patient
with me during the rather hectic project period.

Tarjei K. Mandt, June 30, 2006

vii

Certificateless Authenticated Two-Party Key Agreement Protocols

Contents

Abstract . iii
Sammendrag . v
Aknowledgements . vii
Contents . ix
List of Figures . xi
List of Tables . xi
1 Introduction . 1

1.1 Topic . 1
1.2 Problem Description . 1
1.3 Justification, Motivation, and Benefits . 2
1.4 Research Questions . 2
1.5 Method . 2
1.6 Summary of Claimed Contributions . 2
1.7 Outline of Chapters . 3

2 Definitions . 5
2.1 Abstract Algebra . 5

2.1.1 Groups . 5
2.1.2 Finite Fields . 5

2.2 Elliptic Curves . 6
2.3 Bilinear Maps on Elliptic Curve Groups . 8
2.4 Bilinear Diffie-Hellman and Related Problems 8

2.4.1 The Classic Diffie-Hellman Problems 9
2.4.2 The Bilinear Diffie-Hellman Problems 9
2.4.3 Implications of Bilinear Maps . 10

2.5 Cryptographic Primitives . 10
2.5.1 Hash Functions . 10
2.5.2 Message Authentication Codes . 11

2.6 Other Notation . 11
3 Preliminary Topics . 13

3.1 Public Key Cryptography . 13
3.1.1 Public Key Infrastructure (PKI) . 13
3.1.2 Identity-Based Cryptography . 14
3.1.3 Certificateless Public Key Cryptography 15
3.1.4 Trust Model . 16

3.2 Cryptographic Key Agreement Protocols 16
3.2.1 Goals of Key Agreement . 17
3.2.2 The Diffie-Hellman Key Exchange 18
3.2.3 Protocol Attacks . 19
3.2.4 Security Attributes and Considerations 20
3.2.5 Key Confirmation . 21

ix

Certificateless Authenticated Two-Party Key Agreement Protocols

3.3 Provable Security . 22
4 Related Work . 25

4.1 Pairing-Based Cryptography . 25
4.2 Identity-Based Authenticated Key Agreement 25

4.2.1 Smart’s Protocol . 26
4.2.2 Chen and Kudla’s Protocol . 26
4.2.3 Shim’s Protocol (modified by Yuan and Li) 27
4.2.4 Choie et al’s Protocol . 27

4.3 Certificateless Authenticated Key Agreement 28
4.3.1 Al-Riyami and Paterson’s Protocol 28

5 Certificateless Authenticated Key Agreement 31
5.1 A Certificatelss Authenticated Key Agreement Protocol 31
5.2 Certificateless Key Agreement Using Separate TAs 32
5.3 Certificateless Key Agreement Using Key Confirmation 32
5.4 Security Analysis . 33

5.4.1 Defining the Adversary . 33
5.4.2 CL-AKA Security Model . 34
5.4.3 Session Key Reveal Attack . 38
5.4.4 Reduction to Forging Attack . 39
5.4.5 Session Key Forgery . 39
5.4.6 Security Attributes . 40
5.4.7 Other Security Considerations . 42
5.4.8 Converting to Identity-Based Cryptography 42

5.5 Efficiency Analysis . 42
5.5.1 Communication and Storage Complexity 43
5.5.2 Computational Complexity . 43

6 Future Work . 45
7 Conclusion . 47

7.1 Answering the Research Questions . 47
Bibliography . 49
A Certificateless PKE Schemes . 55

A.1 The Basic CL-PKE Scheme . 55
A.2 The FullCL-PKE Scheme . 56
A.3 The improved FullCL-PKE Scheme (FullCL-PKE*) 56

x

Certificateless Authenticated Two-Party Key Agreement Protocols

List of Figures

1 An Elliptic Curve over a Finite Field [51] 6
2 Point Addition on Elliptic Curves [51] 7
3 Smart’s Protocol (modified by Chen and Kudla) 26
4 Chen and Kudla’s Protocol (without escrow) 26
5 Shim’s Protocol (modified by Yuan and Li) 27
6 Choie et al’s Protocol II . 27
7 Al-Riyami and Paterson’s Protocol 28
8 Proposed AK Protocol . 31
9 Proposed AK Protocol Using Separate TAs 32
10 Proposed AK Protocol with Key Confirmation 33

List of Tables

1 Security attributes comparison 40
2 Message and session key comparison 43
3 Computation comparison 44

xi

Certificateless Authenticated Two-Party Key Agreement Protocols

1 Introduction

1.1 Topic

The challenge today in developing secure systems based on public key cryptography is
not choosing appropriately secure algorithms and implementing these, but rather devel-
oping an infrastructure to support the authenticity of a user’s public key. In the traditional
public key infrastructure (PKI), certificates are used to provide an assurance of the rela-
tionship between public keys and the identities that hold the corresponding private keys.
However, a PKI faces many challenges in practice, such as the scalability of the infras-
tructure and certificate management. To address the shortcomings of PKI and to simplify
key management, Shamir [54] proposed the notion of identity-based public key cryptog-
raphy (ID-PKC) in which the public keys are derived from the users’ identities, such as a
username or an e-mail address. Private keys are generated by a trusted third party called
a Private Key Generator (PKG), and thus ID-PKC eliminates the need for certificates.

Unfortunately, ID-PKC is not without problems. The dependence on a PKG that uses a
system-wide master key to generate private keys introduces problems such as key escrow
and trust. For instance, the PKG can decrypt any ciphertext from any user to which it
has issued a key. Moreover, the PKG can forge any signature and masquarade as any user
in the identity-based setting. In [1], Al-Riyami and Paterson proposed the concept of
certificateless public key cryptography (CL-PKC) to address the key escrow limitation of
ID-PKC. Yet, CL-PKC does not require the use of certificates and can thus be considered
a cross between ID-PKC and PKI.

This thesis focuses on certificateless authenticated two-party key agreement proto-
cols. Key agreement protocols are one of the fundamental primitives of cryptography,
and allow two or more parties to establish secret keys securely in the presence of an
eavesdropping adversary. A key agreement protocol is said to be authenticated if it offers
the assurance that only the participating parties of the protocol can compute the agreed
key.

1.2 Problem Description

There is always a need to improve the efficiency or security of a key agreement proto-
col. It is important to undertand that protocols are never perfect. Many times, proposed
protocols are found to lack certain desirable properties or to be inefficient in some way.
Over time, authors will always find new and clever ways to improve the efficiency or the
security of protocols.

In their seminal paper on CL-PKC, Al-Riyami and Paterson (AP) proposed a certifi-
cateless authenticated key agreement protocol. Their protocol essentially requires each
party to compute four bilinear pairings. Such pairings can be computationally intensive
to compute (for instance, in low-power devices), and should therefore be used moder-
ately in protocols. Moreover, their protocol also requires users to exchange public keys
comprising two group elements. Ideally, public keys should only comprise one group
element as in identity-based cryptography.

1

Certificateless Authenticated Two-Party Key Agreement Protocols

Due to these apparent shortcomings, it would be desirable to propose a new certifi-
cateless key agreement protocol that offers essentially the same security as AP’s protocol,
but with improved efficiency.

1.3 Justification, Motivation, and Benefits

The advantage and benefits of using a key agreement protocol based on CL-PKC is that
there is no PKI and will therefore save communication costs. The solution may therefore
be ideal in a wireless environment or in low-power devices where resources are limited.
Moreover, a certificateless key agreement protocol does not have the property of key
escrow inherent of ID-PKC. Thus, it may be more suited in a distributed environment
(in which privacy is a requirement), whereas ID-based protocols seems more suited for
smaller networks and closed groups.

1.4 Research Questions

In order to design a certificateless authenticated two-party key agreement protocol, cer-
tificateless public key cryptography and existing ID-based key agreement protocols must
be carefully studied. It is furthermore needed to study the vulnerabilites of a number
of key agreement protocols, including the Diffie-Hellman key exchange, and assess the
attacks possible. Finally, known vulnerabilites such as man-in-the-middle attacks, can
be prevented by using proper authentication methods. We will look at how this can be
achieved in key agreement.

Ultimately, this leads us to the following research questions:

1. How are key agreement protocols designed in certificateless public key cryptography,
and can existing identity-based schemes be adopted?

2. What are the possible attacks on a certificateless authenticated two-party key agree-
ment protocol?

3. How is proper authentication achieved in certificateless key agreement protocols?

4. How does the efficiency and security of certificateless key agreement measure up
against identity-based key agreement?

1.5 Method

In order to solve the research questions, we have used a qualitive approach in which
existing literature has been studied. We have studied the concept of certificateless public
key cryptography, as well as existing key agreement schemes (both identity-based and
certificateless) and security models.

1.6 Summary of Claimed Contributions

The contributions of this thesis are as follows:

• A new certificateless authenticated key agreement protocol that is more efficient than
the protocol of [1].

• A certificateless authenticated key agreement protocol that allows users of distinct
domains (under different KGCs) to establish a shared secret.

2

Certificateless Authenticated Two-Party Key Agreement Protocols

• An assessment of security properties in certificateless key agreement and a suggestion
for a certificateless key agreement security model.

1.7 Outline of Chapters

Chapter 2 provides an introduction to the algebra and definitions used throughout the
thesis. Chapter 3 provides an introduction to modern cryptography, the use for certifi-
cateless public key crypgraphy, and key agreement protocols. In Chapter 4 we examine
similar pairing-based key agreement protocols that relate to protocol proposed in this
thesis. In Chapter 5 we propose a new certificateless authenticated two-party key agree-
ment protocol and discuss its properties. Chapter 6 suggests further work and Chapter 7
gives a conclusion of the thesis.

3

Certificateless Authenticated Two-Party Key Agreement Protocols

2 Definitions

This chapter defines the mathematical basis and provides an introduction to elliptic curve
theory and pairings and their properties. It also defines the cryptographic primitives used
throughout this thesis.

2.1 Abstract Algebra

This section provides a basic introduction to groups and finite fields.

2.1.1 Groups

Definition 2.1.1. A binary operation ∗ on a set G is a function that assigns to each pair
of elements a and b in G a unique a ∗ b in G. Binary operators may be of the form
∗, ·,+, ◦,⊕,⊗. An operation a ∗ b is said to be written in the multiplicative notation. A
brinary operation written in the additive notation is denoted by a +.

Definition 2.1.2. A group (G, ∗) is a non-empty set G and a binary operation ∗ of which
G1 ∗G1 = G2 satisfies the following axioms.

• Associativity: ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

• Neutral element: There is an element e in G such that ∀a ∈ G, e ∗ a = a ∗ e = a

• Inverse element: For each a ∈ G, there is an inverse element a−1 such that a ∗ a−1 = e

• Commutativity: If G is an Abelian group, then ∀a, b ∈ G, a ∗ b = b ∗ a.

The order of a group G, usually denoted by |G|, is the number of elements in the set G. If G
is a finite set, it is called a finite group.

Definition 2.1.3. A group G is cyclic if there is an element α ∈ G such that for each b ∈ G
there is an integer i with b = αi. If α generates all elements of the group (G, ∗), then α is a
generator of G. The order of α equals to the order of the group it generates.

Example 2.1.4. G7 = {1, 2, 3, 4, 5, 6}. It can then be shown that 3 is a generator of G7 by
〈3〉 = {30, 31, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = G7. The group G7 is therefore cyclic.

The groups used in this thesis are represented by Zn, G1, and G2. The group Zn

denotes a set of integers {0, 1, ..., n − 1} with modulo-n addition such that n represents
the number of elements in the group. A group donated by Z∗

n is a set of all elements in
Zn that have a multiplicative inverse such that Z∗

n = {x ∈ Zn : gcd(x, n) = 1} (containing
only non-identity elements). The additive group G1 and the multiplicative group G2 are
cyclic groups of a large prime order related to elliptic curves over finite fields.

2.1.2 Finite Fields

A finite field (F,+,×) is a finite set of elements F and two binary operations with integer
addition and multiplication. It has been proven by Galois that the size of the finite field
(the number of elements it contains) must be a power m of a prime number q. There is
exactly one finite field for any given size qm, and this field is denoted by Fqm .

5

Certificateless Authenticated Two-Party Key Agreement Protocols

If p = qm where q is a prime and m ∈ Zn, then q is called the characteristic of Fq

and m is called the extension degree of Fq. Most schemes restrict the order of the field
to be of an odd prime (q = p) or a power of 2 (p = 2m).

Definition 2.1.5. Let Fq be a finite field with a prime q. The field Fqm with an integer
m > 1 is known as an extension field of the subfield Fq.

Elements of an extension field are polynomials of degree less than m over Fq. Fqm

is represented by a polynomial am−1xm−1 + ... + a1x + a0 where a0, a1, ..., am−1 are
elements of the finite field Fq.

2.2 Elliptic Curves

Many key agreement schemes and other cryptographic primitives build on pairings of
elliptic curve groups. This section explains briefly the concept of elliptic curves and their
properties. Most of the results come from [51].

An elliptic curve is traditionally defined as

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (2.1)

The equation above generates elliptic curves over real numbers as points in coordi-
nates. Calculations made using real numbers are slow and inaccurate due to the round-
off error, and are therefore unsuited for cryptographic work. By limiting the coefficients
of the curves to the element of finite fields (such as Fp and F2m), one may generate
curves using only integer points (Figure 2).

Figure 1: An Elliptic Curve over a Finite Field [51]

The finite field E(Fp) exists for any prime p. If p > 3 is an odd prime, the short
Weierstrass form may be used

y2 = x3 + ax + b (2.2)

To determine whether the elliptic curve E generates a group over a finite field Fp, one

6

Certificateless Authenticated Two-Party Key Agreement Protocols

verifies that the curve contains no repeated factors or that the discriminant of the curve
is nonzero such that

4a3 + 27b2 (mod p) 6= 0 (2.3)

There are several differences between elliptic curves over real numbers and finite
fields. Obviously, finite fields only contain a finite number of points in contrast to real
elliptic curves that contain an infinite number of points. Moreover, the geometry of ellip-
tic curves using real numbers cannot be applied to curves over finite fields. However, the
algebraic rules for the arithmetic can be adapted for elliptic curves over finitie fields.

Definition 2.2.1. For an extension field K of F, a set {(x, y) ∈ K×K : E(K)} ∪ {O} can be
used to form an elliptic curve group E(K) under some group operation.

The group operation called “point addition” of any two points P ∈ E(K) and Q ∈
E(K), selects either a point in E(K) denoted by P + Q or O (the point at infinity). The
following properties hold:

1. P +O = O + P = P for all P ∈ E(K). Thus, O is the additive identity of the group.

2. Let P = (x, y) and Q = (x,−y). Then Q = −P and P + Q = P − P = O. Thus, the
inverse of P is −P.

3. Let P = (x, y) and Q = (x ′, y ′). The sum of P and Q, denoted −R, is defined as
follows. Let a line pass through P and Q and intersect the curve in the third point R.
P + Q is then the reflection of this point in the x-axis.

4. Let P = (x, y) and Q = (x ′, y ′). If x = x ′, but y 6= y ′, then P + Q = O.

5. Let P = (x, y). Then, the point doubling of P results in a point −R, defined as follows.
Draw P’s tangent and let it intersect the curve in a point R. The double of P then
becomes R reflected in the x-axis, denoted by −R.

6. E(K) is commutative because (P + Q) + R = P + (Q + R) and associative because
P + Q = Q + P.

Figure 2: Point Addition on Elliptic Curves [51]

7

Certificateless Authenticated Two-Party Key Agreement Protocols

Scalar multiplication of a point P is denoted by mP, such that P + ... + P = mP. It
is believed to be computaionally infeasible to reverse the operation (compute m from
mP, P).

The number of points on an elliptic curve E(Fqk) is called the order of the curve over
the field Fqk .

Most work in this thesis makes use of pairings on elliptic curves defined over finite
fields. The preferred finite fields are Ft, F2n , and F3n , where t is a large prime and
n ∈ Z∗.

2.3 Bilinear Maps on Elliptic Curve Groups

Bilinear maps are often called elliptic curve pairings because they associate pairs of el-
ements from G1 with elements in G2. Let G1 = 〈P〉 be an additive group (identity O)
with prime order q and let G2 be a multiplicative group (identity 1) of the same order.
A bilinear map on (G1, G2) is then a function ê : G1 × G1 → G2 that must satisfy the
following properties.

1. Bilinearity: Given any P,Q, R ∈ G1, we have
ê(P,Q + R) = ê(P,Q) · ê(P, R) and ê(P + Q,R) = ê(P, R) · ê(Q,R).
Thus, for any a, b ∈ Zq:
ê(aP, bQ) = ê(P,Q)ab = ê(abP, Q) = ê(P, abQ).

2. Non-degeneracy: ê(P, P) 6= 1. If P is a generator for G1, then ê(P, P) is a generator for
G2.

3. Computability: There is an efficient algorithm to compute ê(P,Q) for all P,Q ∈ G1.

Note that the bilinearity of pairings also implies that ê : G1 ×G1 → G2 is symmetric.
Thus, for any Q,R ∈ G1, the equality ê(Q,R) = ê(R,Q) holds. Both Q,R ∈ G1 can be
represented by some generator P such that Q = aP and R = bP where a, b ∈ Z. Then it’s
followed that ê(Q,R) = ê(aP, bP) = ê(P, P)ab = ê(bP, aP) = ê(R,Q).

The map ê may be computed using a Weil pairing [41] or a Tate pairing [25] on
an elliptic curve over Fq. In principle, the antisymmetry of the Weil pairing forces the
two subgroups to be distinct. However, given a supersingular curve1 one may define a
modified Weil pairing on a single subgroup of order q using distortion maps introduced
by Verheul [59]. Distortion maps (also called endomorphisms) makes it possible to send
points from one subgroup of the l-torsion to another.

Of the two, the Weil pairing has simpler mathematic properties. However, it does not
always reach the optimal value for r. Tate on the other hand, always reaches its optimal
value.

2.4 Bilinear Diffie-Hellman and Related Problems

The computational problems introduced in this section provide the basis of security for
pairing-based key agreement schemes and the proposed protocol. Many cryptographic
primitives are based on number-theoretic problems. Two terms are frequently used in
complexity theory in describing cryptographic problems and assumptions, namely negli-
gible function and polynomial time algorithm.

Definition 2.4.1. A negligible function g : N→ R approaches zero faster than the reciprocal

1A curve is called supersingular if k ≤ 6 in the extension field Fqk .

8

Certificateless Authenticated Two-Party Key Agreement Protocols

of any polynomial. That is, for every k ∈ N there is an integer kc such that g(k) ≤ k−c for
all k ≥ kc.

Cryptographic protocols require the adversary’s advantage to be insignificant in guess-
ing the solution to some problem. For instance, one might say that the adversary’s success
probability in recovering a session key is a negligible function of the security parameter.
The security parameter, denoted by k in many cases, represents the complexity of the
input problem. The value of k is important because it can adjust parameters such as the
size of cryptographic groups and key lengths. The larger k is, the more computation is
required by the algorithm.

Definition 2.4.2. A polynomial time algorithm is an algorithm whose execution time of a
computation m(k) is no more than a polynomial function of the security parameter, k. More
formally, m(k) = O(kc)2 where c is a constant.

A polynomial time algorithm is said to be efficient. If a problem can be solved by an
algorithmA in polynomial time for at least a non-negligible fraction of all possible inputs,
it is said that the problem is tractable. If no such algorithm exists, it is assumed that the
problem is intractable and protocols that base on the problem are computationally secure.

The problems of the following sections are treated as intractable as their true compu-
tational complexities are unknown up to present.

2.4.1 The Classic Diffie-Hellman Problems

When using standard cryptographic groups, the security relies on three assumptions:
the discrete logarithm problem, the computational Diffie-Hellman problem, and the de-
cisional Diffie-Hellman problem. These problems can easily be applied to elliptic curve
cryptography. Thus, the security of elliptic curve cryptosystems base on the intractibility
of the following problems.

Definition 2.4.3 (Discrete Logarithm Problem). Given Q ∈ G1 where P is a generator of
G1, find an element a ∈ Z∗

q such that aP = Q.

Definition 2.4.4 (Computational Diffie-Hellman Problem). Given 〈P, aP, bP〉 in G1 where
a, b ∈ Z∗

q, compute abP.

Definition 2.4.5 (Decisional Diffie-Hellman Problem). Given 〈P, aP, bP, cP〉 in G1 where
a, b, c ∈ Z∗

q, determine if abP = cP.

If there exists a polynomial time algorithm A that can solve the discrete logarithm
problem (DLP), then it can be used to solve the CDHP in polynomial time. The algorithm
first computes a from aP and then computes a(bP) = abP. Moreover, if the algorithm
can solve CDH, it can also solve the DDHP. Given a group element cP, A can determine
whether cP = abP. Thus, the DDHP reduces to the CDHP which again reduces to the
DLP. Hence, the security of a protocol is strongest if it reduces to the discrete logarithm
problem.

2.4.2 The Bilinear Diffie-Hellman Problems

Pairing based cryptography (which may be considered as an extension of elliptic curve
cryptography) introduces a new problem known as the Bilinear Diffie-Hellman Problem
(BDHP), first formalized in [9].

2The big-O notation is used to represent the order of the asymptotic upper bound as the exact running time
of the input algorithm is usually unknown.

9

Certificateless Authenticated Two-Party Key Agreement Protocols

Definition 2.4.6 (Bilinear Diffie-Hellman Problem). Let ê be a bilinear pairing on (G1, G2)

and P be a generator of G1. Given 〈P, aP, bP, cP〉 ∈ G1 with a, b, c ∈ Z∗
q, compute ê(P, P)abc ∈

G2.

Similarily, the BDH assumption states that there exists no algorithm in expected poly-
nomial time that can solve the BDH problem for 〈G1, G2, ê〉 with non-negligible probabil-
ity. It is easy to show that if the CDH problem is easy, then it is just as easy to solve BDHP.
Given aP, bP, cP ∈ G1, the shared key abP may be computed using the CDH algorithm.
It is then possible to compute ê(abP, cP) = ê(P, P)abc which is the solution to the BDH
problem. It is also easy to solve the BDH problem if the CDH problem in G2 is easy. By
first computing g = ê(P, P) followed by gab = ê(aP, bP) and gc = ê(P, cP), the shared
key gabc = ê(P, P)abc may be computed using the CDH algorithm.

Definition 2.4.7 (Decisional Bilinear Diffie-Hellman Problem). Let ê be a bilinear pairing
on (G1, G2) and P be a generator of G1. Given 〈P, aP, bP, cP〉 ∈ G1 with a, b, c ∈ Z∗

q and a
random element Q ∈ G∗

2, determine if Q = e(P, P)abc.

If the BDHP is solved, then the DBDHP can also easily be solved. The solution of the
BDH instance 〈P, aP, bP, cP〉 yields R = ê(P, P)abc, and thus the solution of the DBDHP
can be obtained by checking if R = Q holds.

2.4.3 Implications of Bilinear Maps

The following are consequences of bilinear pairings, as pointed out by [40].

1. The discrete logarithm problem (DLP) in G1 is no harder than in G2. Given P,Q ∈ G1,
find a ∈ [0, n − 1] such that Q = aP. Similarily in G2, find a ∈ [0, n − 1] such that
ê(P,Q) = ê(P, aP) = ê(P, P)a. Thus, the DLP of G1 can be reduced to the DLP of G2.

2. The decisional Diffie-Hellman problem (DDHP) in G1 is easy. Given 〈P, aP, bP, cP〉
in G1, it is possible to decide if c ≡ ab (mod n). If g = ê(P, P), then ê(aP, bP) =

ê(P, P)ab = gab and ê(P, cP) = ê(P, P)c = gc. One may then prove c ≡ ab (mod n)

by verifying gab = gc. The groups where DDH becomes easy while CDH remains
hard are called gap groups.

3. Let Q ∈ G∗
1. Then fQ : G1 → G2 defined by fQ(R) = ê(Q,R) is a group isomorphism.

An algorithm to invert any fQ will make the DDHP in G2 easy.

4. If the DDHP in G2 is hard, then the DLP in G2 may be harder than the DLP in G1.

2.5 Cryptographic Primitives

This section reviews the cryptographic primitives used throughout this thesis.

2.5.1 Hash Functions

One-way functions, or hash functions, are one of the fundamental primitives of cryptog-
raphy. The hash function accepts as input an arbitrary-length message and scrambles the
individual bits to generate a fixed-size output called the hash value. The basic idea of the
hash function is to produce a unique fingerprint for any given input message.

Definition 2.5.1. A hash function is a function h : D → R where the domain D = {0, 1}∗

and the range R = {0, 1}n for some n ≥ 1.

Hash functions are required to be one-way and collision resistant. A hash function H

is said to be one-way if it’s computationally infeasable to recover the message x from a

10

Certificateless Authenticated Two-Party Key Agreement Protocols

hash value H(x). A collision resistant hash function implies that no two messages should
generate the same output.

Definition 2.5.2 ([51]). A secure hash function H has two properties: (1) if z = H(x),
then it is computationally infeasable to find a y 6= x such that z = H(y); (2) collisions are
extremely rare (it is computationally infeasable to find any two arguements x and y that
hash to the same z).

Secure hash functions are commonly used in cryptographic protocols for digital sig-
natures and data integrity. Signing hash values of documents is also more efficient than
signing the document itself. As the flip of a bit in a message x will output a different
hash, it is also easy to verify the integrity.

In key agreement, hash functions are often used as key derivation functions, denoted
KDF, to enhance the security properties of a session key. Hash functions are also used in
converting a user’s indentifying information to a point on the underlying elliptic curve in
identity-based and certificateless cryptography.

2.5.2 Message Authentication Codes

A message authentication code, or MAC, is a short piece of information used to protect a
message’s integrity and authenticity. While anyone can generate a hash of a given value, a
MAC assumes that the generator and the verifier share a common secret. The MAC algo-
rithm accepts as input a secret key and an arbitrary-length message to be authenticated,
and generates a MAC as output.

Definition 2.5.3. A message authentication code (MAC) is a function h : K ×M → R
where the key space K = {0, 1}k, the message space M = {0, 1}∗, and the range R = {0, 1}n

for some n ≥ 1.

To authenticate a message m, an entity with a pre-shared key k ′ computes (m,a) =

MACk(m) where a is the tag (a checksum) on m. To verify (m,a), a different entity
checks that MACk ′(m) does indeed equal (m,a) using the same pre-shared key k ′.

The main idea of the MAC is that an adversary without the knowledge of the key
should be unable to forge a valid tag for a given message that has not yet been authenti-
cated. A MAC must therefore be able to resist adaptive chosen-plaintext attacks in order
to be considered secure. This implies that no two messages m and m ′ should yield the
same MAC under some unknown key.

Message authentication codes share some similarities with conventional encryption,
for instance in the way that communicating parties need a prior established shared key.
However, the key is only used in a one-way function which build on the difficulty of com-
puting certain mathematical primitives. This makes the MAC less vulnerable to attacks
than regular encryption.

For a more comprehensive review of cryptographic MAC algorithms and hash func-
tions, see [48].

2.6 Other Notation

The symbol ‖ is often used to denote the concatenation of two strings. For instance, a
hash function H(k‖m) = H(k,m) gives the hash value of a message m computed under
a key k. Functions denoted {0, 1}∗ → G1 map an arbitrary-length binary message to an
element of the group G1, and is often used by hash functions to represent the mapping

11

Certificateless Authenticated Two-Party Key Agreement Protocols

of a user identity to an elliptic curve integer point. {0, 1}k denotes a binary message that
is k bits in length.

12

Certificateless Authenticated Two-Party Key Agreement Protocols

3 Preliminary Topics

This chapter begins by discussing the properties and shortcomings of the public key in-
frastructure and identity-based cryptography, and moves on to explaining the concept of
certificateless public key cryptography and its advantages. It then provides an introduc-
tion to key agreement protocols, and reviews the primitives used in such protocols today.
Furthermore, the chapter provides a list of security goals for key agreement protocols
and assesses potential vulnerabilities.

3.1 Public Key Cryptography

In modern cryptography, there’s a difference between symmetric and asymmetric cryp-
tosystems. In symmetric cryptography, there is only one secret key used between the
sender and the receiver. Thus, the same key is used for both encryption and decryption.
Symmetric primitives include block ciphers, stream ciphers, cryptographic hash func-
tions, and message authentication codes (MACs). Common to all symmetric cryptosys-
tems is that the parties who wish to communicate need some prior secret established
before distributing keys. This is usually achieved by establishing a secure channel to a
trusted authority (TA) who then issues a common secret key to both parties.

In comparison to symmetric-key cryptosystems, the main idea of asymmetric or public
key cryptosystems is to make key distribution easier. It is asymmetric in the sense that
each party has a key pair, a public key and a private key. Respectively, these are used
for encryption and decryption. Although the keys have some cryptographic relation, the
public key can be widely distributed without compromising the private key. Thus, any
party who wish to communicate with another party can encrypt the message using the
recipient’s public key who then can decrypt it using his or her private key. It is also
possible to sign data, in which the private key is used for signing and the public key
is used for verification. Unlike symmetric-key cryptography, there is no need for having
established a secret prior to interaction.

3.1.1 Public Key Infrastructure (PKI)

The notion of public key cryptography was first introduced by Whitfield Diffie and Mar-
tin Hellman in their 1976 seminal paper [21]. Realizing that the proposed public key
directory had its shortcomings (both in regard to performance and availability), Loren
Kohnfelder introduced the concept of certificates in 1978 [35]. The idea was to allow a
certificate authority (CA) to bind a name to a key through a digital signature and store it
in a repository. A few years later, certificates were incorporated into X.500, a hierarchical
database model for the public key infrastructure (PKI). These certificates (X.509) were
designed to address the access control issues of the X.500 directory.

The original motivation for PKI was to provide mechanisms for issuing, storing, and
distributing public key certificates. Over the years, however, a number of problems [30,
29] with PKI have been discovered. One concerns the identity of the X.509 certificate
and how to properly retrieve the desired key should the repository hold certificates with
identical names (DN). It is possible to disambiguate names by adding uniquely identifi-

13

Certificateless Authenticated Two-Party Key Agreement Protocols

able strings or digits such as a user’s Social Security number to the DN, but this again
makes it trivial to perform name lookups for third parties. The fact that certificates are
based on owner identity also becomes a problem if the owner changes affiliation, e-mail
address, or name. Usually, an owner will have several certificates with the same identity.
X.509 certificates are far less flexible than IDs used in the real world, and need to be
replaced if the slighest change is made.

Another “flaw” of the public key infrastructure is the concept of certificate revocation
lists (CRL), which basically are lists that hold revoked certificates. Unfortunately, the
method of revocation can no longer meet the demands of today’s real-time applications.
Currently, CRLs must be issued by the CA to each underlying party who then is respon-
sible to check if a certificate is revoked. Today, this process does not occur frequently
enough to be effective against a compromised key. Furthermore, distributing CRLs may
become an expensive task as each party must download the updated list, often every
minute in order to provide a timely revocation. In other words, timeliness comes at the
cost of computing resources. It can also be cumbersome if the CRL is very large, which is
often the case for large PKIs. Downloading large CRLs over low-speed links may use ex-
cessive bandwidth and thus can cause network congestion. Checking for CRLs may also
be time-consuming, and a denial-of-service-attack can easily render them ineffective.

Another problem relates to certificate chains and cross-certification. Certificates in the
public key infrastructure are often arranged into a hierarchical trust model. This allows
an end entity to be signed by a single CA depending on the degree of trust or privileges
granted to that specific entity. To check the legitimacy of a certificate, a user obtains the
signer’s public key and verifies that the provided signature is valid. However, in order to
check that a certificate wasn’t simply forged, a user must also check the signer certificate
and in turn all the certificates above up to an implicitly trusted root CA. Thus, we say that
a user creates a certificate chain. The situation complicates when the end entity of a CA
in one hierarchy wishes to authenticate the end entity of a CA in a different hierarchy. For
this to be possible, the CAs cross-certify each other by signing each other’s certificates.
Not only does this lead to multiple paths from leaf to roots, but the semantics of entities
change depending on the chosen path.

Apparently, these are just a few of the problems with PKI that have been brought up
over the years. Fortunately, there are alternatives that may prove to be far more efficient
and flexible than the current standard.

3.1.2 Identity-Based Cryptography

Identity-based cryptography (ID-PKC) was introduced by Shamir [54] in 1984, and en-
ables communicating users to verify signed data without exchanging private or public
keys, without managing certificates, and without having to rely on services provided by
a third party. It assumes the existance of a private key generator (PKG) from which users
are issued their private keys. Once all private keys have been issued, the PKG can be
closed for an indefinite period while the network can continue to function as normal (as
long as no additional users are introduced). This is because the system does not intro-
duce key revocation as in traditional PKI, and therefore always assumes that keys are
valid.

In the identity-based system, public keys are derived from a known identity such
as the username or e-mail address, and thus may be generated by anyone. In order to

14

Certificateless Authenticated Two-Party Key Agreement Protocols

obtain the private key, an entity needs to present itself to a private key generator. The PKG
combines its master key with the identity value of the challenging entity and generates
the private key. It is crucial to the identity-based scheme that the PKG is trusted as it
will know every user’s private key, and thus be able to decrypt any message sent in its
domain. This property is called key escrow and is by many considered a shortcoming of
identity-based cryptography. However, there are also cases in which key escrow may be a
needed property, such as in the health care profession where an audit trail to transactions
may be a legal requirement.

Shamir’s motivation in developing the identity-based cryptosystem was originally to
simplify key management in e-mail systems. Because a user generally knows the e-mail
address of the recipient, it implies that the user also would know the public key. En-
crypting the message using the public key would require the recipient to obtain the
corresponding private key from the PKG. The sender may also sign the message using
the appropriate private key. Upon reciept, the receiver may easily verify a signature only
by knowing the identity of the sender. It is also important to note that public and private
keys are generated independently, unlike in traditional PKI.

Although the notion of identity-based cryptography is quite old and has co-existed
with PKI for many years, it wasn’t until recently when Boneh and Franklin [9] demon-
strated the construction of very efficient and provably secure identity-based primitives
using elliptic curve pairings that ID-PKC truly gained popularity. Since then, a host of
new primitives have been proposed, including encryption schemes, key agreement pro-
tocols [52, 58, 15, 60, 39, 49], and signature schemes [10]. Currently, ID-PKC is a very
active area of research.

Although identity-based cryptography makes certificates obsolete and has many de-
sirable attributes, it has also its weaknesses. The inherent key escrow allows a PKG to
decrypt any message and therefore forces its users to delegate an almost unacceptable
amount of trust. Several schemes [15] have proposed solutions on how to remove the
escrow property, but the methods used are inefficient and usually result in additional
computation and communication overhead. ID-PKC also does not offer non-repudiation
as the PKG may forge any signature. Furthermore, the compromise of the PKG master key
would be disasterous in the identity-based setting. An adversary who is able to attain the
PKG master key is able to masquarade as any entity. As trust is of utmost importance to
ID-PKC, it seems more suited for small groups or closed environments rather than large
infrastructures.

3.1.3 Certificateless Public Key Cryptography

In 2003, Al-Riyami and Paterson proposed the concept of certificateless public key cryp-
tography (CL-PKC) [1]. In a way, CL-PKC combines the best of both worlds by still op-
erating in a certificateless environment like ID-PKC, but using a trust model similar to
that of PKI. Thus, CL-PKC does not inherit the escrow property of ID-PKC, making the
system ideal for networks where privacy or user anonymity is preferred. Furthermore,
the absence of certificates removes the cost incurred by certificate storage, distribution,
and verification which makes CL-PKC far more efficient than traditional PKI.

CL-PKC still makes use of a trusted authority, but in contrast to ID-PKC, the key gen-
eration center (KGC) does not have access to the entities’ private keys. Instead, the KGC
generates a partial private key that the user then combines with a secret value. Together,

15

Certificateless Authenticated Two-Party Key Agreement Protocols

these values make up the actual private key, and thus the KGC cannot recover the shared
secret established between entities. This change to the scheme also makes it impossible
for the KGC to forge any signatures. The public key is generated in a similar way by
letting the user combine its secret value with a public parameter selected by the KGC.
However, since the secret value is only known to a specific user, public keys can no longer
be generated by anyone as in ID-PKC. Thus, the scheme loses the benefit of identity-based
key derivation. Consequently, public keys must be provided in some other way, such as
through a public directory or by attatching them to messages in a protocol run.

Since the introduction of CL-PKC, many new papers have proposed improvements
and fixes to the original scheme. However, most of these concern certificateless public
key encryption (CL-PKE) and thus few new primitives (such as signature schemes and
key agreement protocols) have been proposed. In [2], the original CL-PKE scheme of [1]
was improved both in terms of efficiency and security. Later, [62] discovered an adaptive
chosen ciphertext vulnerability and proposed a countermeasure to overcome the flaw. In
[20], Dent and Kudla argues against a claim that the certificateless schemes cannot be
proven secure in the standard model.

3.1.4 Trust Model

Girault [27] shows that public key cryptosystems essentially can be classified into three
different trust levels depending on the trust assumption of the trusted third party (TTP).

• At trust level 1, the TTP knows the users’ private keys and can therefore impersonate
any user at any time in an undetectable way.

• At trust level 2, the TTP does not know the users’ private keys, but can still imperson-
ate users by generating false public keys.

• At trust level 3, the TTP does not know the users’ private keys, and generating false
public keys will expose the TTP’s actions.

Due to the escrow property, it’s easy to see that the trust level of CL-PKC is greater
than that of ID-PKC. In PKI, whenever a CA tries forge a certificate, it can be identified by
the fact that there are two working certificates for the same user. In CL-PKC, however, the
TTP will still be able to replace public keys without the entities realizing that these are
invalid. To address this and achieve trust level 3, CL-PKC also proposes an alternative key
generation technique that binds a user identifier to a public key. Thus, the corresponding
private key will be bound to the public key, and if the KGC replaces a public key it will
easily be noticed. A minor drawback of this technique is that the public key must be
generated before the private key is issued by the KGC.

3.2 Cryptographic Key Agreement Protocols

A key agreement protocol is a series of steps used by two or more parties in order to se-
curely agree on a shared secret, such as a session key, in an unprotected network. Key
agreement protocols differ from key transport protocols in which the whole key is trans-
mitted over a secure channel from one entity to another. For instance, key transport and
secure channels are used by trusted third parties such as a CA or a KGC in issuing pri-
vate data to users. In key agreement, on the other hand, entities contribute information

16

Certificateless Authenticated Two-Party Key Agreement Protocols

jointly to establish a shared secret.
A protocol that establishes a shared key between two entities is called a two-party key

agreement protocol. Sometimes it’s also useful to consider three parties, and thus the
protocol is called a tripartite key agreement protocol. If a protocol has more than three
participants, it is called a group or conference key agreement protocol. Examples of tripar-
tite and group key agreement protocols can be found in [32] and [22, 55] respectively.

Furthermore, if a key agreement protocol exchanges information between its partic-
ipants, it is said to be interactive. It is also possible for a protocol to be non-interactive,
although more usual in the identity-based setting in which public keys of entities are al-
ways known. Identity-based non-interactive protocols will always suffer from the session
key escrow property and are thus rarely used in practice. For the remainder of this thesis,
only interactive two-party key agreement protocols will be discussed.

3.2.1 Goals of Key Agreement

The fundamental goal of any key agreement protocol is to securely establish a common
secret key by distributing keying data between two entities. Both entities should influence
the outcome of the key, thus preventing an undesired third-party from injecting any weak
keys on the agreeing parties. A key agreement protocol should be able to withstand
both active attacks (in which an adversary injects, deletes, alters, or replays a message)
and passive attacks (in which an adversary simply observes the protocol exchange and
prevents it from acheiving its goals).

In [12], Boyd proposed a classification of design goals divided into intentional and
extensional goals. Intentional goals are generally concerned with ensuring that the pro-
tocols run correctly as specified, while extensional goals are concerned about what a
protocol is designed to achieve for its participants. In key agreement, the following ex-
tensional goals are desired.

• Implicit Key Authentication. A key agreement protocol provides implicit key au-
thentication if an entity can be assured that none other than the intended entities can
obtain the value of the secret key. A protocol in which this assurance is given to all
participants is called an authenticated key agreement protocol (AK).

• Explicit Key Authentication. A protocol that provides explicit key authentication
assures each participating entity that the intended other entities have actually com-
puted the key. Such a protocol is also called an authenticated key agreement with key
confirmation (AKC) protocol.

• Good Key. A good key should be selected uniformly at random from the key space
and must esentially be non-predictable. No adversary should be able to guess the
outcome of the key established by two entities using public information. Ensuring
key freshness and the use of key derivation functions can help achieve the goal of
good key.

Note that implicit authentication is used in key agreement instead of the term entity
authentication. Implicit authentication does not only imply authentication of entities, but
also assures that a key can be efficiently computed by these.

17

Certificateless Authenticated Two-Party Key Agreement Protocols

3.2.2 The Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) key distribution algorithm [21] became the breakthrough of
modern cryptography. Its security rests on the discrete logarithm assumption, which as-
sumes that it’s computationally difficult to solve discrete logarithms modulo very large
primes. An eavesdropper who monitors the key exchange will not be able to predict the
outcome of the shared key. This is also known as the Diffie-Hellman problem and thus
the DH key exchange fulfills the goal of good key.

The algorithm has two public parameters; a prime number p and an integer less than
p known as the generator, g. The generator may generate any element in [1, p − 1] when
multiplied by itself enough times, modulo p. G is the finite cyclic group with prime order
|G| generated by g. If Alice and Bob wish to agree on a secret key, Alice first chooses
a number a (the private key) at random from [1, p − 1] and keeps it secret. She then
computes the public key, Pa.

Pa = ga (mod p)

Bob also chooses a value b in the same fashion and computes Pb.

Pb = gb (mod p)

Alice and Bob now exchange public keys and may then compute the shared secret key
using their private keys.

K = (Pa)b = (Pb)a (mod p)

If an eavesdropper, Eve, is to compute the key using the public values, she must solve
the equation

K = Pa
(log gPb) (mod p)

The above equation refers to what is known as the computational Diffie-Hellman
(CDH) problem which states that it’s hard to compute gab even with the knowledge
of p, g, ga, and gb. However, CDH alone is not sufficient to ensure the security of
Diffie-Hellman. Eve may still be able to predict a large amount of bits of gab with some
confidence. If a shared secret key is to be derived from a block of bits from gab, it is
necessary to assume that Eve cannot predict these bits using the known values ga and
gb. Formally, this is known as the Decisionial Diffie-Hellman problem [8]. No algorithm
should efficiently be able to distinguish between the two distributions

〈
ga, gb, gab

〉
and〈

ga, gb, gc
〉
, in which gc is randomly distributed in G. Today, the most efficient method

for solving the DDH problem is by computing descrete log to test that a triplet 〈x, y, z〉
satisfies the Diffie-Hellman relation.

Shared Key

The shared key generated by the Diffie-Hellman algorithm is rarely used directly for
encryption. The key might not satisfy the amount of bits required for the encryption key
and it’s unclear how secure the bits in the DH key actually are. The most significant bits
are provably secure [11], but it’s unknown to what degree the rest of the bits are. A KDF
may be used to destroy any algebraic relationship between keys. A KDF also prevents the
use of static keys, which have been proven vulnerable to the Burmester triangle attack
[13]. A pseudorandom function such as a secure hash function (i.e. SHA-1) or a MAC
are ideal KDFs.

18

Certificateless Authenticated Two-Party Key Agreement Protocols

Authentication

As the Diffie-Hellman key exchange does not provide any authentication of parties or
the exchanged information, the scheme is vulnerable to a man-in-the-middle attack. An
adversary can thus easily break the protocol by intercepting gx and gy and replacing
them with gx ′

and gy ′
respectively. Alice will then think the key is gy ′x and Bob will

believe the key is gx ′y. Although Alice and Bob now have different keys, both are known
to the attacker. If Alice encrypts a message using her key in a secret-key cryptosystem
and passes it along to Bob, the adversary can then intercept and decryt the message. The
adversary then encrypts it using Bob’s key, and passes it along to Bob. Effectively, the
adversary has managed to break the encryption scheme.

The DH key exchange can be improved to provide implicit authentication by signing
all the communication sent between parties. This is sometimes referred to as Signed
Diffie-Hellman. Although the solution may sound ideal, signatures on DH keys present a
number of problems. Moreover, signatures cause the messages to increase considerably
in size, and are thus in many cases inconvenient.

Public Parameters

It is important that the public parameters (p, g) as well as the respective secret keys x and
y are chosen with care in order to avoid attacks such as the degenerate message attack.
If either gx or gy equals 1 (hence, the shared secret key also becomes 1), the protocol
may be broken. Similarily, if x or y use simple values such as 1, the protocol may also be
broken as gx or gy equals g. Furthermore, if a protocol is designed carelessly, an attacker
may intercept gx and gy and replace them with 1. This will cause the shared secret key to
also be 1. An attacker may also try to fool participants into using weak system parameters
(p, g) if there is no authentication of these.

In order to thwart degenerate messages, protocol participants need to make sure
that their key agreement peer does not send gz = 1. This may be avoided by using an
interval such as [2, p−2]. Primes should also be large enough to render current algorithms
insufficient, such as the Pohlig-Hellman algorithm [45] which may compute the discrete
log of gx if the prime factorization of g’s order consists of small primes. Strong primes
may be acheived by using safe primes1 or the slightly more efficient Lim-Lee primes2. If
the exponent range is limited to a certain interval, for instance to improve efficiency, one
should also be aware of the Pollard Lambda algorithm [46].

3.2.3 Protocol Attacks

In addition to the attacks listed above, a key agreement protocol may be susceptible to a
number of attacks depending on how a session key is constructed and the power of the
adversary. The following attacks have been identified in literature [47, 31].

• Source substitution attack. If the attacker has access to another user’s public key and
manage to obtain a certificate in his or her name for that key, the attacker may then
masquerade as the other user in a number of different situations. This attack may be
prevented by the CA requesting the private key before issuing a signed certificate, but
it’s recommended to avoid exposure to such attacks.

1p = Rq + 1, where R is a small positive value and q is a large prime
2p = 2q1 · ... · qn + 1, where qi are large primes; see [38]

19

Certificateless Authenticated Two-Party Key Agreement Protocols

• Key separation attack. In the key separation attack, entity A may during an authenti-
cation protocol with entity B encrypt a message using the symmetric key K. If A also
uses the same key in communicating with C in a different protocol, it is possible that
C could exploit the lack of key separation to replace messages sent during the first
protocol with messages from the second. This kind of attack may be avoided if the
key K is replaced by a key derived from K, known as a key derivation function.

• Time-memory trade off attack. If the hashed version of a data stream is available, the
attacker can determine the data by comparing the hash with pre-computed values. If
we assume that data K contains k bits, and h(K) has been observed, the attacker pre-
computes and stores 2r values of h(K). During the protocol run, the attacker compares
h(K) with the pre-computed values, in which the probability of success is 2k−r. The
attacker will therefore need to compare equally many values for every capture of K.

• Known key attacks. In a known key attack, old session keys that are compromised will
also compromise future session keys. Should the attacker acquire a session key from
a past session, it may be used to exchange messages in a different session. Known key
attacks come in a few flavors:

• In a key reveal attack [61], the adversary exploits the algebraic relationship be-
tween keys by using the session key of one session to obtain the session key of
another session. Specifically, the attacker has access to a key reveal oracle which
can reveal an old session key that has been previously accepted, and from it, de-
rive something from the other established session key.

• In a key-replication attack, the attacker manages to obtain the key of a session by
finding a different session that generates a key identical to that session. A protocol
may be vulnerable to such an attack even if it uses a collision-free hash function
to derive its keys.

• Forgery attack. It should not be possible for an adversary to forge a session key using
known protocol parameters or information exchanged between entities. Forgery in
DH-based protocols, requires the adversary to solve a computational DH problem
which is believed to be hard.

3.2.4 Security Attributes and Considerations

In order for key agreement protocols to be able to withstand the attacks previously
mentioned, it is desirable that these protocols possess the following security attributes
[7, 6, 17].

1. Known session key security. Each run of the key agreement protocol should result in a
unique secret session key. An adversary who learns a session key should not be able
to recover data from past or future sessions.

2. Forward secrecy. If long-term private keys of one or more entities are compromised,
the secrecy of previously established session keys should not be affected. There’s a
difference between partial forward secrecy in which one or more parties’ private keys
are compromised and perfect forward secrecy in which all participating parties’ pri-

20

Certificateless Authenticated Two-Party Key Agreement Protocols

vate keys are compromised. Sometimes it’s also relevant to include TA forward secrecy
in which a compromised TA master key does not reveal past session keys. In [36],
Krawczyk shows that no 2-pass AK protocol can achieve perfect forward secrecy un-
less the adversary is not actively involved in the choice of ephemeral keys in a session.
Thus, we say that a protocol achieves weak perfect forward secrecy (wPFS).

3. Key-compromise impersonation. If A’s long-term private key is compromised, the ad-
versary can imporsonate A, but should not enable the adversary to impersonate other
entities to A. A typical example of KCI can be found in the identity-based key agree-
ment scheme of [49], as pointed out by [61], in which the symmetry of ê(QA,QB)s

allows an attacker to use either SA or SB to carry out the impersonation.

4. Unknown key-share. Entity A should not be coerced into sharing a key with entity C
when in fact A thinks she is sharing a key with entity B.

5. Key control. Neither party should be able to influence the outcome of the key more
than the other. While this is an ideal attribute for key agreement schemes, it is very
difficult to design a method which has perfect key control. This is because it’s necessary
for one party to choose its input key first, thus granting the other the possibility of
estimating a certain number of bits by trying different input combinations.

6. Known session-specific temporary information security. Many protocols use some ran-
domized private input to produce a unique session key in each run of the protocol.
The compromise of this private temporary information should not compromise the
secrecy of the generated session key. Although overlooked in many security analyses,
exposure of such information can occur in practical implementations if ephemeral
keys are precomputed or stored insecurely. It is sometimes also necessary to define
weak known session-specific temporary information security, which assumes that a
TA cannot obtain any short-term keys. Identity-based protocols can only achieve this
weaker form of security.

Other desirable attributes include using a minimal number of passes (i.e., 2 for AK
and 3 for AKC) and ensuring low communication overhead by limiting the amount of bits
sent in each message. It is also desirable to limit the number of arithmetical operations
required, thus ensuring low computation overhead. This is not only important to promote
efficiency, but also to avoid the use of costly operations that may be targeted in a denial-
of-service attack. Implementations should therefore avoid the use of costly functions in
the first pass of a protocol. For this reason, it would also be preferable with the possi-
bility of precomputation in order to reduce the computational overhead during on-line
interaction.

3.2.5 Key Confirmation

In authenticated protocols (AK), A will merely get the assurance of that B is the only
party that is able the compute the shared key. However, in many cases it is also desirable
to know if B has actually computed the shared key. Similarily, B would also want the
assurance of that A has computed the shared key. This can be achieved by implementing
key confirmation methods.

Key confirmation ensures explicit authentication of messages. Krawczyk identified in
[36] a generic attack against forward secrecy on any interactive two-party key agreement
protocol that only implicitly authenticates messages. In the attack, the adversary first

21

Certificateless Authenticated Two-Party Key Agreement Protocols

masquerades as A and sends the inital message TA to B. B then replies with TB and
completes the session with some key K. Once the session key expires at B, the adversary
corrupts A, obtains the private key SA, and finally computes the agreed session key.

In AKC protocols, key confirmation is usally provided by adding an extra pass and
adding the MAC of the flow number, identities, and the ephemeral public keys. The MACs
are computed under a shared key k ′, which is different from the session key k. If the same
key was used in both cases, a passive adversary would be able to learn some information
about k. The adversary could then distinguish k from a key selected uniformly at random
from the key space.

[6] presents a provable secure AKC scheme (unified model) which many AK schemes
[44, 42, 15, 58] has adopted. In this scheme, message authentication codes (MAC) are
used in the Diffie-Hellman scheme to provide key confirmation. MACs are computation-
ally efficient and very easy to employ in protocols.

Protocol (Unified Model with key confirmation)

Let A and B be two entities that wish to establish a shared secret key. A first selects
a ∈ Z∗

q uniformly at random and sends ga to B. On reciept, B verifies that ga ∈ [2, p − 1]

and (ga)q = 1, and then in the same way selects b ∈ Z∗
q and computes gb. B then

computes the MAC key κ ′ = H1(gab) and uses κ ′ to compute MACκ ′(2, B, A, gb, ga),
and sends the authenticated message to A. On reciept, A checks the validity of gb,
computes κ ′ and verifies the authenticated message. If the MAC is ok, A sends back
MACκ ′(3,A, B, ga, gb) to B, who then checks and verifies the message. Both parties
now compute the agreed session key using a different hash function, κ = H2(gab).

A
ga

−−−→ B

A
gb,MACκ ′(2,B,A,gb,ga)←−−−−−−−−−−−−−−−−−−− B

A
MACκ ′(3,A,B,ga,gb)

−−−−−−−−−−−−−−−−→ B

UNIFIED MODEL

Alternatively, k and k ′ may be computed under both the ephemeral and long-term
keys, such that κ ′ = H1(gab‖gsasb) and κ = H2(gab‖gsasb). Should any of these values
be compromised, the effect would then be less clear. Note, however, that compromise of
long-term secret keys (such as gsasb) could reveal information about κ, and thus need
to be guarded carefully.

3.3 Provable Security

Provable security was invented in the 1980’s by Goldwasser and Micali [28], and origi-
nally applied to encryption schemes and signature schemes. A scheme is provable secure
if there is a polynomial reduction proof from a known hard computational problem (such
as those of Section 2.4) to an attack against the security of the scheme. Thus, if there is
a polynomially bounded adversary that breaks the scheme, then the problem assumed to
be hard can be solved in polynomial time. Provided that the assumption regarding the
hardness of the problem is true, then no such adversary exists.

The process in proving security comes in four stages [3],

1. Provide a formal definition of the goals of the protocol;

22

Certificateless Authenticated Two-Party Key Agreement Protocols

2. Provide a formal adversarial model (define the capabilities of the adversary);

3. Define what it means by the protocol being secure (define attacks it should with-
stand);

4. Provide a security proof of the protocol by reducing a known hard computational
problem to an attack on the protocol.

The security proofs of many authenticated key agreement protocols require that the
hash functions used are modelled by random oracles. This approach, commonly referred
to as the random oracle model, was first formulated by Bellare and Rogaway [5] and
further streamlined by Blake-Wilson et al. [6]. In this model, ideal hash functions were
introduced in which any arbitrary input generates an output selected uniformly at ran-
dom. When queried with the same input more than once, the oracle is defined to respond
with the output responded with previously (as a hash function would in the real world).
Essentially, in the random oracle model, no adversary can make use of the underlying
structure of the hash function.

Although this model allows for simple and efficient protocols to be proven secure,
critics argue that no good implementation exists for a random oracle hash function. A
model where no such random oracles exist is known as the standard model.

23

Certificateless Authenticated Two-Party Key Agreement Protocols

4 Related Work

This chapter provides an overview of the literature relating to this thesis. This includes an
introduction to pairing-based cryptography and its use in cryptographic key agreement
protocols. Furthermore, it surveys some widely discussed identity-based key agreement
protocols, as well as the certificateless scheme of [1]. These protocols are featured in the
security and efficiency analysis of the proposed protocol.

4.1 Pairing-Based Cryptography

Bilinear pairings of algebraic curves were originally used as cryptographic tools for re-
ducing the discrete logarithm problem in weak elliptic curves [41, 24]. In 2000, however,
Joux [32] showed that pairings also could have a positive use in cryptography by con-
structing a tripartite Diffie-Hellman key agreement protocol based on the Weil pairing.
The message flows of the protocol are identical to the elliptic curve-based Diffie-Hellman
protocol, but use the Weil pairing in computing the session key. As there is no way of
efficiently computing discrete logarithms on elliptic curves, it is possible to maintain a
high level of security while using short keys.

Boneh and Franklin [9] extended the idea by Joux and constructed an identity-based
encryption scheme based on the properties of bilinear pairings on elliptic curves. The
scheme was the first fully functional, efficient and provably secure identity-based encryp-
tion scheme, and was shortly followed by the BLS short signature scheme [10]. Since the
introduction of these two important applications of pairings, many new pairing-based
cryptographic protocols have been designed and analyzed (see [23] for a survey).

A lot of the work concerning pairing-based cryptography is on the realization and effi-
cient implementation of pairings. Such implementations may, for instance, be done using
the Weil pairing or the Tate pairing. Although both involve fairly complex mathematics,
they can be dealt with abstractly. Most key agreement protocols use a modified pairing in
order to avoid sending two points per participant. For more detailed information about
pairings and their use in cryptographic protocols, see [33, 26].

4.2 Identity-Based Authenticated Key Agreement

Identity-based public key cryptography has been criticized by many for its lack of privacy
in that a PKG knows every user’s private key. For instance, armed with the PKG master
key, it is possible to masquarade as any entity and forge its signature. In fact, this was
the main motivation for the development of certificateless public key cryptography. Al-
though many identity-based schemes have managed to defeat the inherent key escrow,
they still offer very limited security against an adversary armed with the master key. On
the other hand, identity-based schemes can be very efficient as no long-term public keys
need to be exchanged. We will in the following sections survey a selection of escrowless
identity-based authenticated key agreement protocols proposed in literature. These will
be included in the security and efficiency analysis of the proposed protocol in order to
properly assess the value of certificateless key agreement protocols.

25

Certificateless Authenticated Two-Party Key Agreement Protocols

In the following protocols, it is assumed that the PKG has chosen and distributed the
tuple (P, P0) in which P is a public generator and P0 = sP is the PKG public key (s is the
PKG master key). The public key for a user with identity ID is given by QID = H(ID)

where H : {0, 1}∗ → G1 is a hash function that maps the identity to a group element. The
corresponding private key is issued by the PKG, denoted by SID = sQID.

4.2.1 Smart’s Protocol

Smart’s pairing-based scheme [58] combines the ideas of Boneh and Franklin [9] and
Joux’s tripartite Diffie-Hellman protocol [32]. If A and B wish to agree on a session key,
they each select a private ephemeral key a, b ∈ Z∗

q and generate the corresponding public
ephemeral key aP, bP ∈ G1 respectively. A then sends TA = aP to B, who sends TB = bP

back to A. User A then computes kA = ê(aQB, P0) ·ê(SA, TB) and user B computes kB =

ê(bQA, P0) · ê(SB, TA). The scheme is consistent because kA = kB = ê(aQB + bQA, P0).

A B
a ∈ Z∗

q TA
−−−−−→ b ∈ Z∗

q

kA = ê(aQB, P0) · ê(SA, TB) TB←−−−−−
kB = ê(bQA, P0) · ê(SB, TA)

K = kA = kB = ê(aQB + bQA, P0)

FK = H1(K‖abP)

Figure 3: Smart’s Protocol (modified by Chen and Kudla)

Originally, Smart’s protocol did not offer perfect forward secrecy. [15] addressed this
by changing the agreed session key to FK = H1(K‖abP) where H1 : G2 × G1 → {0, 1}k.
Another variant of Smart’s protocol that also achieves perfect forward secrecy was pro-
posed by Choie et al. [19], discussed in Section 4.2.4.

4.2.2 Chen and Kudla’s Protocol

In [15], Chen and Kudla proposed an authenticated identity-based key agreement pro-
tocol. If users A and B want to establish a shared secret, they proceed as follows. A

selects a random and uniformly distributed ephemeral private key a ∈ Z∗
q and sends

WA = aQA ∈ G1 to B. When B receives the message, he also selects a random ephemeral
private key b ∈ Z∗

q and sends WB = bQB ∈ G1 back to A. User A then computes the
shared key KAB = ê(SA,WB + aQB) and user B computes KBA = ê(WA + bQA, SB).
If both users follow the protocol correctly, they will share the same secret K = KAB =

KBA = ê(QA,QB)s(a+b).

A B
a ∈ Z∗

q WA, TA
−−−−−−−−−→ b ∈ Z∗

q

KAB = ê(SA, WB + aQB) WB, TB←−−−−−−−−−
KBA = ê(WA + bQA, SB)

K = KAB = KBA = ê(QA, QB)s(a+b)

FK = H1(K‖abP)

Figure 4: Chen and Kudla’s Protocol (without escrow)

In an escrowless variant of the scheme, A and B also exchange TA = aP and TB = bP

respectively, such that the final key becomes FK = H1(K‖abP) where H1 : G2 × G1 →
{0, 1}k. Thus, the protocol achieves perfect forward secrecy and TA forward secrecy. The
protocol also achieves known session-specific temporary information security, as compro-

26

Certificateless Authenticated Two-Party Key Agreement Protocols

mising both short-term keys does not lead to the recovery of the established session key.
However, this is only under the assumption that no such keys are recovered by the PKG.

4.2.3 Shim’s Protocol (modified by Yuan and Li)

In [57], Shim proposed an efficient identity-based key agreement protocol. The protocol
was later broken by Yuan and Li [61], who demonstrated a man-in-the-middle attack on
the protocol. However, Yuan and Li also proposed a modified variant of Shim’s protocol
which was proven secure in [14].

A B
a ∈ Z∗

q TA
−−−−−→ b ∈ Z∗

q

KAB = ê(aP0 + SA, TB + QB) TB←−−−−−
KBA = ê(bP0 + SB, TA + QA)

K = KAB = KBA = ê(P, P)abs · ê(P, QB)as · ê(QA, P)bs · ê(QA, QB)s

FK = H1(A, B, abP, K)

Figure 5: Shim’s Protocol (modified by Yuan and Li)

If A and B wish to establish a shared secret key, they randomly select a, b ∈ Z∗
q

and generate the corresponding public ephemeral key aP, bP ∈ G1 respectively. A then
sends TA = aP to B, who sends TB = bP back to A. Entity A then computes KAB =

ê(aP0 + SA, TB + QB), and similarily, entity B computes KBA = ê(bP0 + SB, TA + QA).
If both entities have followed the protocol correctly, they share the same secret K =

KAB = KBA = ê(P, P)abs · ê(P,QB)as · ê(QA, P)bs · ê(QA,QB)s. The session key is then
FK = H1(A,B, abP, K) where H1 : {0, 1}∗ × {0, 1}∗ ×G1 ×G2 → {0, 1}k.

The protocol achieves security attributes such as known session key security, perfect
forward secrecy, key-compromise impersonation, and unknown key share. The protocol
also achieves weak known session-specific temporary information security, as compro-
mise of short-term keys by any (non-PKG) adversary does not reveal the established
session key.

4.2.4 Choie et al’s Protocol

Choie et al. [19] proposed two identity-based authenticated key agreement protocols,
one of which adopts a signature scheme to provide authentication. This protocol, known
as Protocol I, was later shown insecure against signature forgery attacks in [56]. Protocol
II, on the other hand, is a modified variant of Smart’s scheme which adds perfect forward
secrecy as well as KGC forward secrecy.

A B
a ∈ Z∗

q TA
−−−−−→ b ∈ Z∗

q

h = H2(aTB) TB←−−−−−
h = H2(bTA)

kA = ê(haQB, P0) · ê(SA, hTB) kB = ê(hbQA, P0) · ê(SB, hTA)

K = kA = kB = ê(SB, TA)h · ê(SA, TB)h

FK = H1(K, QA, QB)

Figure 6: Choie et al’s Protocol II

Let A and B be two entities that engage in a protocol run to establish a common key.
Both entities each randomly select their short-term key pair to be used in the session.
Thus, A has an ephemeral private key a ∈ Z∗

q and a corresponding ephemeral public

27

Certificateless Authenticated Two-Party Key Agreement Protocols

key aP ∈ G1. Similarily, B has an ephemeral private/public key pair (b, bP). A initiates
the protocol by sending TA = aP to B, who responds by sending TB = bP back to A.
Entity A then computes h = H2(aTB) and kA = ê(haQB, P0) · ê(SA, hTB) where H2

is a cryptographic hash function H2 : G1 → Z∗
q. In the same way, entity B computes

h = H2(bTA) and kB = ê(hbQA, P0) · ê(SB, hTA). Finally, both entities compute the
session key FK = H1(K,QA,QB) where K = kA = kB and H1 : G2 ×G1 ×G1 → {0, 1}k.

The protocol achieves most of the well-known security attributes, but does not achieve
known session-specific temporary information security. Thus, an adversary who compro-
mises both short-term keys of a session will be able to recover the established session
key.

4.3 Certificateless Authenticated Key Agreement

Certificateless public key cryptography shares many properties with identity-based cryp-
tography. Both assume the existance of a trusted third party which holds a master key
and do not use certificates as in traditional PKI. Moreover, CL-PKC, as ID-PKC, can use
pairings to devise very efficient schemes with desirable properties. However, in the cer-
tificateless setting, the KGC does not know the users’ private keys. Thus, certificateless
cryptography offers better security over ID-PKC in many situations.

4.3.1 Al-Riyami and Paterson’s Protocol

Al-Riyami and Paterson [1] introduced in their paper on certificateless public key cryp-
tography a simple certificateless authenticated two-party key agreement protocol. The
initialization of the protocol is formally specified using the algorithms of certificateless
public key cryptography [1]. These include Setup, Partial-Private-Key-Extract,
Set-Secret-Value, Set-Private-Key, and Set-Public Key. These algorithms are ex-
plained in detail in Appendix A.1.

Assume that entities A and B wish to agree on a secret key. They first each choose the
random ephemeral values a, b ∈ Z∗

q as usual, and create the corresponding ephemeral
public keys aP, bP ∈ G1 respectively. A then sends the ephemeral key TA = aP and A’s
public key PA = 〈XA, YA〉 to B, who then in the same fashion responds with TB = bP

and PB = 〈XB, YB〉 to A. Here, Xi = xiP and Yi = xiP0 = xisP, where xi is an entity’s
long-term secret value and s is the KGC master key.

A B
a ∈ Z∗

q TA, 〈XA, YA〉
−−−−−−−−−−−−−→ b ∈ Z∗

q

ê(XB, P0)? = ê(YB, P) TB, 〈XB, YB〉←−−−−−−−−−−−−−
ê(XA, P0)? = ê(YA, P)

KA = ê(QB, YB)a · ê(SA, TB) KB = ê(QA, YA)b · ê(SB, TA)

K = KA = KB = ê(SB, TA) · ê(SA, TB)

FK = H(K‖abP)

Figure 7: Al-Riyami and Paterson’s Protocol

Once the messages are exchanged, both users verify that the same KGC master key
has been used in each other’s public keys. A checks if ê(XB, P0) = ê(YB, P) and B checks
if ê(XA, P0) = ê(YA, P). See that ê(xiP, sP) = ê(xisP, P) = ê(xiP, P)s. A then computes
KA = ê(QB, YB)a · ê(SA, TB) and B computes KB = ê(QA, YA)b · ê(SB, TA), such that
K = KA = KB becomes the shared key between A and B. Both entities then compute the

28

Certificateless Authenticated Two-Party Key Agreement Protocols

session key FK = H1(K‖abP) where H1 : G2 ×G1 → {0, 1}k.
As pointed out by the authors, the protocol is vulnerable to a man-in-the-middle attack

if the KGC replaces both the short-term and long-term public keys exchanged in a proto-
col run. The reason only a KGC can mount such an attack is because the corresponding
(partial) private key must be obtained in order to compute K. However, such an attack
can be mounted on all certificateless schemes, and therefore it must be assumed that the
KGC is trusted not to replace public keys. Note that the protocol may be weak against
denial-of-service attacks as an adversary with no attachment to the KGC, may efficiently
compute valid public keys simply by knowing (P, P0) and repeatedly query the victim to
compute keys. For each key received, the victim will need to compute four pairings, and
thus the computational load could be considerable if many requests are made.

Note also that if both ephemeral private keys are disclosed, the protocol breaks: K =

ê(QB, YB)a · ê(QA, YA)b. The key derivation function also does not resist this attack as
abP is computed easily knowing both a and b. Thus, the protocol fails to achieve the
property of known session-specific temporary information security.

29

Certificateless Authenticated Two-Party Key Agreement Protocols

5 Certificateless Authenticated Key Agreement

This chapter proposes a new certificateless authenticated two-party key agreement pro-
tocol and shows how it can be adapted to a multi-TA (trusted authority) setting. It also
demonstrates how key confirmation can be implemented to ensure explicit authentica-
tion of messages between protocol participants. Futhermore, the chapter examines the
security and the efficiency of the proposed protocol and compares it to existing certifi-
cateless and identity-based schemes.

5.1 A Certificatelss Authenticated Key Agreement Protocol

The protocol involves three entities, the communicating users A and B and the key gen-
eration center (KGC) from which the protocol participants are issued their respective
partial private keys. When entity A enters the domain of the KGC, the KGC issues the
partial private key DA = sQA where QA = H1(IDA) ∈ G1, H1 is a hash function
H : {0, 1}∗ → G1, IDA is a unique identifier of entity A, and s is the KGC master key.
A then combines the partial private key with a secret value xA ∈ Z∗

q unknown to the
KGC and generates the complete private key SA = 〈DA, xA〉. A’s public key is then
PA = XA = xAP ∈ G1 where P is a public generator of G1. In the following protocol, A’s
secret key S ′

A is constructed from SA such that S ′
A = DA + xAQA = (s + xA)QA.

If entities A and B want to jointly establish a session key, they first choose the ephemeral
random values a, b ∈ Z∗

q and compute TA = aP and TB = bP respectively. Thus, each en-
tity holds a long-term and a short-term (session-specific) key pair. A then sends 〈TA, PA〉
to B, who responds by sending 〈TB, PB〉 back to A. Both entities then validate each other’s
public keys by testing the group membership PA, PB ∈ G∗

1. This step is essential to avoid
the small sub-group attack observed by Lim and Lee [38]. Entities A and B then compute
KA = ê(QB, P0 +PB)a ·ê(S ′

A, TB) and KB = ê(S ′
B, TA) ·ê(QA, P0 +PA)b respectively. Note

that the scheme is consistent because KA = KB = ê(QB, P)a(s+xB) · ê(QA, P)b(s+xA).

A B
a ∈ Z∗

q TA, PA
−−−−−−−−→ b ∈ Z∗

q

KA = ê(QB, P0 + PB)a · ê(S ′
A, TB) TB, PB←−−−−−−−−

KB = ê(S ′
B, TA) · ê(QA, P0 + PA)b

K = KA = KB = ê(QB, P)a(s+xB) · ê(QA, P)b(s+xA)

FK = H2(K‖abP‖xAxBP)

Figure 8: Proposed AK Protocol

In order to ensure that an attacker cannot gain any information from the session
key, A and B use a key derivation function on K. The shared session key is then FK =

H2(K‖abP‖xAxBP) where H2 : G2 × G1 × G1 → {0, 1}k. Thus, the protocol achieves
forward secrecy as well as known session-specific temporary information security. These
properties and other security attributes are discussed in Section 5.4.6.

Observe that the protocol initialization slightly differs from the algorithms used in Al-
Riyami and Paterson’s protocol [1], formally specificied in BasicCL-PKE (see Appendix

31

Certificateless Authenticated Two-Party Key Agreement Protocols

A.1). Specifically, the public key PA only comprise one element of G1 and no longer binds
an entity to a specific KGC, thus allowing protocol participants under different trusted
authorities to establish keys. Also see that SA separates DA from xA such that these
values can be used independently (in [1], SA = xADA). Both these changes conform to
the initialization algorithms of the improved certificateless public key encryption scheme
of [2] (later fixed by [62] to address an adaptive chosen chiphertext attack vulnerability),
and the protocol may thus be implemented in a setting where public and private keys are
constructed accordingly.

5.2 Certificateless Key Agreement Using Separate TAs

It may in some situations be desirable for users of distinct domains (under different
KGCs) to exchange session keys. For example, in order for encrypted VoIP to be able
to operate globally, key agreement and compatibility between networks becomes a nec-
essary requirement. By introducing a slight modification to the above scheme we can
acheive a multi-TA protocol without increasing computational nor communication over-
head. In order for this to be possible, two trusted authorities, say KGC1 and KGC2 each
have to generate a pair (s1P ∈ G1, s1 ∈ Z∗

q) and (s2P ∈ G1, s2 ∈ Z∗
q) where P and G1

are globally agreed.
Suppose that A’s private key is generated by KGC1 with master key s1 and that B’s

private key is generated by KGC2 with master key s2. If A and B then wish to establish
a common secret key, they must run the protocol using each other’s KGC master public
key. Thus, A uses s2P in computing the shared key, while B, on the other hand, uses s1P.
After both parties have chosen the ephemeral keys a, b ∈ Z∗

q respectively and exchanged
the corresponding public keys, entity A computes the key KA = ê(QB, s2P+PB)a ·ê((s1+

xA)QA, TB), while entity B computes the key KB = ê((s2+xB)QB, TA)·ê(QA, s1P+PA)b.

A B
SA = 〈s1QA, xA〉 SB = 〈s2QB, xB〉

a ∈ Z∗
q TA, PA

−−−−−−−−→ b ∈ Z∗
q

KA = ê(QB, s2P + PB)a· TB, PB←−−−−−−−−
KB = ê((s2 + xB)QB, TA)·

ê((s1 + xA)QA, TB) ê(QA, s1P + PA)b

K = KA = KB = ê(QB, P)a(s2+xB) · ê(QA, P)b(s1+xA)

FK = H2(K‖abP‖xAxBP)

Figure 9: Proposed AK Protocol Using Separate TAs

The scheme is consistent as KA = KB = ê(QB, P)a(s2+xB) · ê(QA, P)b(s1+xA). To
achieve the desired security attributes, a KDF is used to generate the session key such
that FK = H2(K‖abP‖xAxBP). Also note that a foreign master public key cannot be
obtained unless a user registers under the desired KGC, or it is transmitted by someone
who is in possession of it. As the former defeats the purpose of the protocol, such keys
must be exchanged by the participants in an authenticated manner.

5.3 Certificateless Key Agreement Using Key Confirmation

Although authenticated key agreement (AK) provides the assurance that nobody except
the intended party can compute the session key, it may in sometimes be desirable to
have some kind of confirmation as to whether the key has been successfully created or

32

Certificateless Authenticated Two-Party Key Agreement Protocols

not. An AKC protocol can be derived from an AK protocol by adding the MACs of the
flow number, identities, and the ephemeral keys. This section describes an AKC variant
of the proposed AK protocol and uses a method identical to that of Blake-Wilson et al in
[6] which has been proven secure in the random oracle model. In turn, other schemes
[15, 58] have also adopted this method in providing explicit authentication of messages.

In the following protocol, MACs are used for providing key confirmation and are
computed under the key FK ′ = H3(K‖abP‖xAxBP) where H3 is a key derivation function
independent1 from H2.

A B
a ∈ Z∗

q TA, PA
−−−−−−−−→ b ∈ Z∗

q

TB, PB, MACFK ′(2, IDB, IDA, TB, TA, PB, PA)←−−

MACFK ′(3, IDA, IDB, TA, TB, PA, PB)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

K = KA = KB = ê(QB, P)a(s+xB) · ê(QA, P)b(s+xA)

FK = H2(K‖abP‖xAxBP)

Figure 10: Proposed AK Protocol with Key Confirmation

A starts the protocol in the usual way by sending TA, PA ∈ G1 to B. After having re-
ceived the message, B returns TB, PB and a MAC computed under the key FK ′ containing
the flow number, identities, ephemeral keys, and the public keys. Both long-term and
short-term public keys must be included as they can be replaced by an adversary. The
MAC is computed under a key known only to A and B in order to maintain key indistin-
guishability. A then computes the MAC value as B would and checks that it is identical to
the one provided in the message. If the MAC values match, A confirms to B by creating
a new MAC, also computed under FK ′.

Although key confirmation introduces one additional flow, the MACs can be computed
efficiently and thus the AKC protocols have essentially the same computational overhead
as the AK protocols. Assuming that the ephemeral keys are different in each run, one
may heuristically argue that the desired key confirmation is obtained.

5.4 Security Analysis

A security analysis is intended to provide some assurance about the security properties
of a protocol and to facilitate its design in a way that subtle flaws may be avoided. In
evaluating the security of our key agreement protocol, we show that (in a best case
scenario) an adversary cannot recover a session key unless the bilinear Diffie-Hellman
problem is solved. We also show in the random oracle model that the lack of a KDF may
allow an adaptive attacker to distinguish a true session key from a random bit string.

5.4.1 Defining the Adversary

As the public keys are not derived directly from a user identity as in ID-PKC, and not
authenticated in the form of a certificate as in traditional PKI, it has to be assumed that
an adversary can replace these. However, an adversary will not gain anything useful un-
less the corresponding private key for the replaced public key is obtained, which requires

1When a hash function is modeled by a random oracle, H2(·) = H(2, ·) and H3(·) = H(3, ·) are independent
random oracles.

33

Certificateless Authenticated Two-Party Key Agreement Protocols

cooperation with the KGC. An adversary with this capability may mount a man-in-the-
middle attack on the key exchange in an undetectable way. For instance, if entities A

and B engage in a key agreement, the adversary may replace 〈aP, xAP〉 sent by A with
〈a ′P, x ′

AP〉, and similarily substitute 〈bP, xBP〉 sent by B with 〈b ′P, x ′
BP〉. Thus, the ad-

versary will have established a key KB ′A = ê(QA, sP + xAP)b ′ · ê((s + x ′
B)QB, aP) with

A and a key KA ′B = ê(QB, sP + xBP)a ′ · ê((s + x ′
A)QA, bP) with B. By obtaining the

corresponding (partial) private key for both replaced public keys, the session keys can be
computed efficiently.

The man-in-the-middle attack can only be mounted by the KGC or an adversary who
has obtained the KGC master key. This observation can further help us define the adver-
saries for certificateless authenticated key agreement (CL-AKA) and aid in constructing
a proper security model. Essentially, an adversary should not replace public keys while
at the same time holding the KGC master key. Similarily, an adversary who has replaced
a public key should not be able to obtain the partial private key for the replaced key.
Consequently, the KGC must be trusted not to replace entities’ public keys.

If keys are generated using the alternative key generation technique suggested in
[1], then a KGC will leave evidence if it tries to replace public keys. In this technique,
the public key of A is bound to the identifier, such that QA = H1(IDA‖PA). The partial
private key issued to A by the KGC is still of the form DA = sQA, but is also bound to A’s
public key. Thus, A can only hold one single public key and one private key. Consequently,
if a cheating KGC tries to replace A’s public key, there will be two working public keys
for A, for which each has a corresponding partial private key. Only the KGC is able to
create partial private keys, and thus the public key replacement is apparent.

In the next section, we will present a security and adversary model for CL-AKA that
formally captures the findings presented here.

5.4.2 CL-AKA Security Model

Many key agreement protocols provide proof that adopt the extended formulation by
Blake-Wilson [6] of the Bellare-Rogaway model [5]. Such a model may be able to test
the security strength of a protocol, but may in some situations be insufficient depending
on the power of the adversary. An adaptive adversary may for instance be able to obtain
the shared secret between two entities if the session key is not constructed properly (for
instance, see Section 5.4.3).

It is also desirable to evaluate the security of a protocol in the event that ephemeral
keys can be compromised. Most models completely disregard this possibility and thus
fail to achieve known session-specific temporary information security [17]. Such security
can be particularily troublesome to achieve in an identity-based setting where the PKG al-
ready knows all entities’ private keys. If any of the session-specific keys are compromised,
the session key can easily be recovered by the PKG. Moreover, identity-based key agree-
ment schemes that are intended to be escrowless completely relies on the session-specific
information being kept secret. It would be unreasonable to think that an adversary has no
means of obtaining such values if they are precomputed and possibly stored insecurely.
In the certificateless setting, on the other hand, each entity has two secrets. Compromis-
ing any one of these secrets should not affect the security of the protocol. In order to
properly capture compromise of session-specific temporary information and to formulate
a security model for CL-AKA, we adopt the asymmetric key agreement model of [17].

34

Certificateless Authenticated Two-Party Key Agreement Protocols

In the BR model [5], each party involved in a session (run) of a protocol is treated as
an oracle. An adversary can access the oracle by issuing the allowed queries. An oracle
Πs

i,j denotes an instance s of a party i that wants to establish a key with a party j. The
instance of j is Πt

j,i for some t. Given an input message, the oracle Πs
i,j runs the protocol

Π and generates the output by Π(1k, i, j, SPi, Pj, convs
i,j, r

s
i,j, x) = (m, δs

i,j, σ
s
i,j) where

x is the input message; m is the output message; 1k is the security paramter; SPi is
the private and public key pair of party i; Pj is the public key of j; rs

i,j is the random
coin flips (ephemeral key) of sender i; δs

i,j is the decision of the oracle, and σs
i,j is the

generated session key. Upon completion, Π updates the conversation transcript convs
i,j

as convs
i,j.x.m. Here, x.m denotes the concatenation of two strings, x and m.

A general adversary can access an oracle by issuing any of the following queries:

• Send(Πs
i,j, x). Πs

i,j executes Π(1k, i, j, SPi, Pj, convs
i,j, r

s
i,j, x) and responds with m

and δs
i,j. If the oracle Πs

i,j does not exist, it will be created. The Send query allows an
adversary to send a message to any oracle Πs

i,j, such that i believes the message has
been sent from j. The adversary may initiate protocol runs using such queries.

• Reveal(Πs
i,j). Πs

i,j reveals the private output σs
i,j of the session if the oracle accepts.

The Reveal query allows an adversary to ask an oracle Πs
i,j to reveal the session key

it currently holds.

• Corrupt(i, K). The party i responds with the private key Si and updates SPi (if K 6=
λ). The Corrupt query allows an adversary to ask a party to reveal its long-term
private key or to replace the key pair with any key of the adversary’s choice.

• Partial(i). The party i responds with the partial private key Di. This is a query in-
troduced by us such that an adversary may request partial private keys for any entity.
Note that the partial private key is fixed to the identity, and thus cannot be replaced
by an adversary. An entity issued the Partial query is not corrupted. Partial queries
essentially simulate an eavesdropping KGC’s advantage against an outside attacker.

• Replace(Πs
i,j, P). The oracle Πs

i,j updates Pj = P when i 6= j. The Replace query
allows an adversary to force i to replace the public key for j. As entities in certificate-
less schemes must exchange public keys, it is natural to assume that an adversary can
replace these. Allowing this query addresses the source substitution attack.

• Coin(Πs
i,j, r). The oracle Πs

i,j replies with the random coin flips rs
i,j of the sender i in

a session s with a partner j. If r is defined, the oracle will use r as the random flips
rs
i,j. The Coin query was introduced in [17] and allows an adversary to control any

input of a protocol algorithm such as the session-specific temporary information. Also
note that Coin queries can be issued to oracles without corrupting a party. Moreover,
Coin queries can indicate whether disclosing the ephemeral private keys reveals the
session key or not.

• Test(Πs
i,j). Allows an adversary to query an oracle Πs

i,j to output σs
i,j, which is either

a true session key or a randomly generated key. The adversary then must guess if the
key is real or not.

An oracle can exist in a number of different states. In the accepted state, the oracle
has generated a session key after having received properly formulated messages. In the
rejected state, the oracle has not established a session key, and thus rejects holding one.

35

Certificateless Authenticated Two-Party Key Agreement Protocols

An oracle that is in the *-state, has not decided whether to accept or reject. An opened
oracle has responded to a reveal query and has thus revealed its session key. An oracle
that has been corrupted, has responded to a corrupt query and revealed or replaced its
private key. An oracle Πs

i,j is also corrupted if its public key is replaced in Πt
j,i (using the

Replace query). An oracle Πs
i,j is controlled if it has responded to a Coin query.

Each party in a protocol has its own session transcript2. If two oracles Πs
i,j and Πt

j,i

have, via the adversary, received properly formatted messages and established a shared
session secret, then these oracles have had a matching conversation (see [5] for a for-
mal definition). The relation between the oracles’ transcripts define whether a matching
conversation has taken place.

An adversary’s main goal in the standard definition for security for a key agreement
protocol is to be able to distinguish a session key established by two arbitrary entities
from a string of random bits. In the first phase, the adversary E can issue any number
of queries to a set of oracles. When it has decided it has collected enough information,
E ends the first phase. In the second phase, E issues a Test query to a fresh oracle Πs

i,j,
defined as follows.

Definition 5.4.1 (fresh oracle). An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted (it knows
the partner j); (2) Πs

i,j is unopened (has not been issued the Reveal query); (3) party i is not
both controlled and corrupted; (4) party j 6= i is not corrupted; (5) there is an unopened
oracle Πt

j,i which has had a matching conversation to Πs
i,j.

Note that this definition allows the party i to be corrupted, and thus can be used to ad-
dress the key-compromise impersonation property (discussed in Section 5.4.6). A party
should not both be corrupted and controlled as it would enable an adversary to recover
the session key. It is possible to further extend the definition to address forward secrecy
by allowing both entities to be corrupted, as long as both oracles remain unopened and
uncontrolled. The definition can also be used to address known session-specific tempo-
rary information security in which both entities are controlled only (have been issued the
Coin query).

After E has issued the Test query, oracle Πs
i,j, as a challenger, randomly chooses b ∈

{0, 1} and responds with the session key σs
i,j if b = 0. Otherwise, it returns a random

sample generated according to the distribution of the session secret σs
i,j. The adversary

must guess the value of b by issuing a prediction bit b ′, and thus the advantage is defined
to be

AdvantageE(k) = max{0, Pr[b ′ = b] −
1

2
}

Essentially, an entity involved in a session has two secrets, a short-term (session-
specific temporary key) and a long-term (universal private key). Compromising any one
of these secrets should not enable the adversary to obtain the secret session key. Thus, we
allow an adversary to obtain any pair of secrets from any session as long as it does not
have knowledge of more than one secret from each entity involved. Note, however, that
allowing an adversary to be actively involved in the choice of session-specific temporary
information makes perfect forward secrecy (PFS) impossible. For instance, an adversary

2A session transcript is used to uniquely identify a session by the involved parties, and can be the concate-
nation of messages exchanged, otherwise known as a session ID.

36

Certificateless Authenticated Two-Party Key Agreement Protocols

can obtain a party’s short-term secret for a given session, and in some other subsequent
session, corrupt the party and obtain its private key. Thus, the adversary can compute
all the session keys for which it previously has learned the session-specific information.
Similarily, if an adversary has previously obtained the private key for some entity, it can
compute the session keys of subsequent sessions for which it learns the session-specific
information. For this reason, the model uses a weaker form of PFS [36], which only
guarantees perfect forward secrecy in the face of adversaries that is not actively involved
in the choice of session-specific temporary information.

We will now present two distinct types of adversaries for CL-AKA. These are also
similar to those used in the CL-PKE scheme of [1]. A Type-I adversary may replace public
keys at will, but does not know the KGC master key. In order to model security against
an eavesdropping KGC, we also want to consider a Type-II adversary which knows the
KGC master key, but does not replace public keys.

CL-AKA Type-I Adversary An adversary AI does not have access to the KGC master key.
However, AI may replace public keys, request (partial) private and session-specific
temporary keys, and issue reveal queries for all entities of its choice. A Type-I ad-
versary has the following restrictions:

1. AI cannot request the private key for any identity if the corresponding public
key has already been replaced.

2. AI cannot both replace the public key for an entity involved in a Test session
and request the partial private key for that entity in some other phase.

3. In phase 2, AI cannot reveal the key of a session currently being tested.

The first restriction comes naturally as it would be unreasonable to assume that
the challenger is able to respond to a Corrupt query if the public key has been re-
placed. However, an adversary can still query for the partial private key and mount
a standard man-in-the-middle attack. Thus, we introduce the second restriction.
Obviously, no adversary should be able to issue a Reveal query on the test session
as it would allow it to distinguish the session key from a randomly generated one.

CL-AKA Type-II Adversary An adversary AII has access to the KGC master key, but can-
not replace public keys of entities. An adversary AII can compute partial private
keys itself (using the master key), query for private and session-specific temporary
keys, and issue reveal queries. A Type-II adversary has the following restrictions:

1. AII cannot replace any public keys.

2. In phase 2, AII cannot reveal the key of a session currently being tested.

An adversary can be adaptive if it’s allowed to continue performing queries after hav-
ing issued the Test query, but before guessing the value of b. However, the oracle Πs

i,j

being tested should still remain fresh (see definition). Adaptive adversaries are consid-
ered more powerful than non-adaptive adversaries as they may use the values obtained
in the test session to derive the session key (or some other sensitive information) using a
different session. Section 5.4.3 shows that such an attack easily can be mounted on any
protocol (including ours), if the session key is not constructed properly.

37

Certificateless Authenticated Two-Party Key Agreement Protocols

Sometimes it is also useful to define a friendly adversary that does not tamper with
the messages between oracles, but only passively monitors the protocol.

Definition 5.4.2 (benign adversary). An adversary is called a benign adversary if it faith-
fully conveys messages between two oracles Πs

i,j and Πt
j,i.

In the face of a benign adversary, a secure authenticated key agreement protocol [6]
is defined as follows:

Definition 5.4.3. A protocol Π is a secure AK if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i, both oracles always accept
holding the same session key σ, and this key is distributed uniformly at random on
{0, 1}k; and for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are uncor-
rupted, then both accept and hold the same session key σ;

3. AdvantageE(k) is negligible.

Similarily, a secure authenticated key agreement protocol with key confirmation is
defined as follows:

Definition 5.4.4. A protocol Π is a secure AKC if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i, both oracles always accept
holding the same session key σ, and this key is distributed uniformly at random on
{0, 1}k; and for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are uncor-
rupted, then both accept and hold the same session key σ;

3. The probability of no-matching3 event is negligible;

4. AdvantageE(k) is negligible.

5.4.3 Session Key Reveal Attack

In the proposed protocol, the key derivation function modelled as a random oracle hash
function not only ensures forward secrecy, but also avoids a number of attacks which
otherwise may exploit the properties of underlying mathematical structures (such as the
bilinear pairing). We will now show that given a powerful adaptive adversary in the
security model of our scheme, the session key between any two parties can be recovered
in the absence of a KDF.

The adversary E begins by issuing a number of queries to a set of oracles. Essentially,
these queries should not make E’s probability in distinguishing a true session key from a
randomly generated one non-negligible. When E decides it has collected enough infor-
mation, it issues a Test query on a fresh oracle Πs

i,j. The oracle Πs
i,j answers with σs

i,j

which is either the session key computed from TA and TB or a random one. The outcome
of σs

i,j depends on a value b ∈ {0, 1} selected at random by Πs
i,j, and thus the adversary

must guess the value of b.
Unlike a general adversary, the adaptive adversary is allowed to continue making

queries after having issued the Test query for some oracle Πs
i,j. However, the oracle

3We use no-matching to describe an oracle who has reached the accepted state (generated a session key),
but there’s no party who’ve engaged in a matching conversation.

38

Certificateless Authenticated Two-Party Key Agreement Protocols

currently being tested must still remain fresh. Thus, before making its guess, E establishes
a different session using the ephemeral public keys uTA and uTB where u ∈ Z∗

q. The
adversary then issues a Reveal query to the oracle which responds with the session key
K ′. The adversary can then recover the session key for Πs

i,j by computing K = K ′u−1

. E

will then be able to guess b correctly (checks if σs
i,j = K) and wins the game. A similar

attack can also be mounted on Al-Riyami and Paterson’s [1] protocol .

5.4.4 Reduction to Forging Attack

If a KDF such as a hash function is used in computing the final session key, then the
above attack is not possible since the Reveal query will return a hash value4. The value
H(σ) is unique for every signature σ (in our case denoted by K‖abP‖xAxBP for entities
A and B) input to the hash function H, and thus the attacker is left with two options
in distinguishing the output key from a random string. One is to find a signature which
hashes to the same value as the key of the Test session. The other is to compute the
signature using the known public values and parameters. Respectively, these are known
as a key-replication attack and a forging attack.

We will now show that the security reduces to a forging attack by demonstrating that
a key-replication attack is impossible, given that the hash function is a random oracle.
In the key-replication attack, an adversary must obtain a signature σ from an arbitrary
session that matches the signature σT of a Test session. Assume that a session between
two entities A and B, who exchange the keys aP, bP respectively, is chosen as a Test
session (where K = ê(QA, P)b(s+xA) · ê(QB, P)a(s+xB)). Assume further that the same
session-specific temporary information is used in a session between two entities C and
D. Due to the bilinearity of K, it is possible to exchange QA,QB with QC,QD if the
corresponding long-term private keys are changed accordingly. Specifically, K of the two
sessions will remain the same if α(s + xA) = γ(s + xC) where α 6= γ for H(IDA) = αP

and H(IDC) = γP, and if β(s + xB) = δ(s + xD) where β 6= δ for H(IDB) = βP

and H(IDD) = δP. However, in obtaining any signature that matches σT , it is also a
requirement that xAxBP = xCxDP holds. Thus, the participants of the two sessions must
be the same (and consequently also the sessions themselves must be identical), and
therefore an attack of this type cannot be mounted.

We would also like to point out that if xAxBP for a key agreement between entities
A and B had not been included in the KDF, an adversary would still have no means of
checking that K of σT matches K of some other signature σ, unless the DLP problem is
solved (such that for instance α in H(IDA) = αP is known). Naturally, if an adversary
solves the DLP, then the above scheme is easily broken.

5.4.5 Session Key Forgery

In this section we will heuristically argue that in order for any adversary A to compute
a signature σ that gives the same hashed key as the Test session, the bilinear Diffie-
Hellman (BDH) problem or the computational Diffie-Hellman (CDH) problem must be
solved. Which problem that needs to be solved depends on the information available to
the adversary. If the adversary may obtain any one of two secrets from each participating
entity in a session, then the BDH problem must be solved at best. An adversary who
is armed with nothing except the public information exchanged between the protocol
participants, on the other hand, must solve the CDH problem.

4We assume that the Reveal query only returns the final session key FK.

39

Certificateless Authenticated Two-Party Key Agreement Protocols

Protocol KnSK FwS KCI UKS KContl KnSSTI
Smart[58, 15] X X X X X x

Chen-Kudla[15] #2’ X X X X X weak
Shim[57, 61] X X X X X weak

Choie-Yeong-Lee[19] #2 X X X X X x

Al-Riyami-Paterson[1] X X X X X x

Proposed protocol X X X X X X

Table 1: Security attributes comparison

Reduction to the BDH/CDH problem

The shared secret between entities A and B is given by FK = H(K‖abP‖xAxBP). Assume
that A has managed to obtain the short-term private key a (from A) and the long-term
private key SB (from B). It is easy to see that the adversary is able to compute a·TB = abP

and xBPA = xAxBP. However, K cannot be computed as the attacker only knows the
private keys for one pairing. Thus, the adversary requires access to a BDH oracle in order
to compute both pairings of K. Specifically, A must query the oracle with the instance
(QA, bP, (s + xA)P) to obtain the solution ê(P, P)αb(s+xA) where QA = αP. The session
key FK between A and B can then be computed efficiently.

Note that “as best” is used to point out that if any other combination of keys is ob-
tained (as long as only one is retrieved from each party), then the presumably harder
CDH problem must be solved. For instance, if two ephemeral keys are compromised in
a session, then the adversary can compute K and abP, but must solve the CDH problem
(from xAP and xBP) in order to retrieve xAxBP. Similarily, if both long-term private keys
are compromised, then the CDH problem (from aP and bP) must be solved in order to
obtain abP. Naturally, if no such keys are compromised, then the adversary also must
solve the CDH problem.

5.4.6 Security Attributes

In this section we will heuristically argue that the protocol satisfies the following security
properties. Table 1 summarizes the security attributes of a selection of identity-based and
certificateless authenticated key agreement protocols.

1. Known session key security (KnSK): As ephemeral values are used in generating
session keys, a compromised session key does not compromise past or future sessions.
All protocol runs, even when its participants remains the same, produce a different
session key. An adversary’s inability to perform the key-replication attack as demon-
strated in Section 5.4.3 also shows that the protocol provides known-key security.

2. Forward secrecy (FwS): We let this property constitute two separate parts; both to
capture the forward secrecy against an outside adversary and against an adversary
who posesses the KGC master key (or a cheating KGC).

1. Weak perfect forward secrecy: If the long-term private keys of entities A and B are
compromised, previously established session keys will still remain unknown to an
adversary due to the key derivation function H(K‖abP‖xAxBP). As the adversary
does not know any of the ephermeral values used in a session, she must compute
abP from aP and bP which is the CDH problem. Here, we assume that the ad-
versary has not been actively involved in the choice of temporary information of

40

Certificateless Authenticated Two-Party Key Agreement Protocols

past sessions, and thus obtain the property of weak perfect forward secrecy [36].
If a KDF had not been used, an attacker could easily recover the shared key by
computing K = ê(S ′

B, TA) · ê(S ′
A, TB).

2. KGC forward secrecy: Compromise of the KGC master key s does not enable one
to reveal previously established session keys. Actually, a KGC does not gain any
advantage over an outside attacker in obtaining the session key between two ar-
bitrary entities. This is one of the key advantages of certificateless schemes over
identity-based cryptography. In the session key K = ê(QB, P)a(s+xB)·ê(QA, P)b(s+xA),
an outside attacker does not know s nor the pair 〈xA, xB〉. Therefore, solving
(s + xA) can be reduced to solving a single variable xA. Thus, an outside attacker
must solve ê(QB, P)axB ·(QA, P)bxA in order to obtain the session key. An attacker
with access to the KGC master key s, on the other hand, may solve parts of the
session key K. To demonstrate, the session key may alternatively be written as
K = ê(QB, P)as · ê(QB, P)axA · ê(QA, P)bs · ê(QA, P)bxB . We see that this adver-
sary can easily solve ê(QB, P)as and ê(QA, P)bs. Thus, the adversary must solve
ê(QB, P)axA ·ê(QA, P)bxB , and we see that problem is essentially the same as that
of an outside attacker.

3. Key-compromise impersonation (KCI): The proposed AK protocol is resistant to
key-compromise impersonation because the key is computed using asymmetric infor-
mation. Assume that the adversary E knows A’s private key SA = 〈DA, xA〉. If E then
intercepts TB from B during a protocol run and attempts to pass on TB ′ to A, then E

will have to compute KB ′A = ê(QB, xBP + sP)a · ê(DA + xAQA, TB ′). E cannot com-
pute KB ′A because she does not know the ephemeral value a. If E was to compute
KAB ′ , she would have to know SB. Note also that the fresh oracle definition addresses
the KCI property as it allows a party participating in a session to be issued the Corrupt
query.

4. Unknown key share (UKS): An entity A cannot be coerced into sharing a key with
C when in fact A thinks she is sharing a key with B. If A wants to share a key with
B, A uses B ′s public key PB and identifier QB in computing the session key. Thus,
C must obtain the corresponding private key in order to compute the key. Note that
incorporating parties’ identities in the computation of a session key generally avoids
the unknown key share (UKS) attack (for instance, see [37]).

5. Key control (KContl): Neither party can control the outcome of the session key. Note,
however, that if A sends her ephemeral key first, B may be able to predict some bits
of the final key by trying different ephemeral keys before sending the key back to
A. Precisely, in computing the shared session key f(a, b) where a is known, B may
compute 2s variants of b and thus select approximately s bits of the joint key. This
deficiency exists in all interactive key distribution protocols as pointed out by [43].
An implementation of the protocol can address this to some extent by limiting the
time available to the responder in sending his or her value back to the initiator.

6. Known session-specific temporary information security (KnSSTI): Compromising
the ephemeral private keys of a session does not enable an attacker to compute the
session key. Specifically, obtaining the keys a and b in any session between entities
A and B, allows the adversary to compute K = ê(QB, PB + P0)a · ê(QA, PA + P0)b

41

Certificateless Authenticated Two-Party Key Agreement Protocols

and a · TB = b · TA = abP. However, in order to compute xAxBP, the adversary must
also know at least one private long-term key. Thus, the protocol achieves KnSSTI
even in the presence of a cheating KGC who has obtained the short-term keys of a
session. Note that the compromise of session-specific keys is not an unlikely scenario
as these values may be precomputed and possibly stored insecurely. Many schemes
fail to obtain this security attribute (for instance [1, 58, 16, 37]), and thus break in
the face of an adversary who can obtain such information. Compromise of session-
specific temporary information is discussed further in [17].

5.4.7 Other Security Considerations

Even if the security properties of the previous section are obtained, additional considera-
tions must be made to ensure secure implementations. For instance, in order to withstand
denial of service attacks, it’s important that the first flow in the protocol does not put the
responder at a serious disadvantage if many key agreement requests are made. Since
public keys are public by definition, an adversary may easily be able to issue bogus re-
quests, and thus force the victim to compute one session key per request. Although the
effect is not as dramatic as in [1] where four pairings are computed, it still can become
a computational burden to the responder.

One method to address the problem is to force the connection initiators to compute
solutions to cryptographic puzzles [34]. The responder may for instance request that the
initiator computes the value of the hash H(x, y) in which y and the resulting hash value
are known. The initator will then need to perform an exhaustive search on the remaining
bits in order to find the value of x. Upon receiving the value x, the responder verifies its
corectness and thus proceeds to carry out the key agreement.

5.4.8 Converting to Identity-Based Cryptography

This section will demonstrate that the proposed protocol cannot achieve all the security
attributes of Section 5.4.6 if brought to an identity-based setting.

In identity-based cryptography, the public key is directly derived from the identity,
such that an entity A’s public key becomes H1(IDA) = QA. We let A’s partial private
key be its full private key such that SA = DA = sQA. If A wants to establish a session
key with B, they exchange ephemeral public keys as usual, but do not exchange public
keys as these already are known in the identity-based setting. A then computes KAB =

ê(QB, sP)a · ê(sQA, bP). Similarily, B computes KBA = ê(QA, sP)b · ê(sQB, aP). Using
a KDF, the final session key then becomes FK = H(K‖abP) where H is a suitable hash
function. Notice that this protocol is identical to Smart’s protocol [58, 15].

This protocol does not acheive known session-specific temporary information security
as shown in Table 1. Thus, if an adversary obtains the short-term private keys, the session
key can be efficiently computed. Moreover, in our security model, an adversary armed
with the KGC master key can no longer query for session-specific private information as
it will reveal the established session key.

5.5 Efficiency Analysis

To ensure fast response times and low power consumption, a key agreement protocol
should have low communication and computational overhead. Communication overhead
refers to the number of bits transmitted by each entity in a protocol run, while computa-
tional overhead refers to the cost of all arithmetic computations each entity must perform

42

Certificateless Authenticated Two-Party Key Agreement Protocols

Protocol message session key
Smart[58, 15] TA H(ê(SA, TB)· ê(SB, TA)‖abP)

Chen-Kudla[15] #2’ WA, TA H(ê(QA,QB)s(a+b)‖abP)
Shim[57, 61] TA H(A‖B‖abP‖ê(TA + QA, TB + QB)s)

Choie-Yeong-Lee[19] #2 TA H(ê(SA, TB)h· ê(SB, TA)h,QA,QB)

Al-Riyami-Paterson[1] TA, 〈XA, YA〉 H(ê(SA, TB) · ê(SB, TA)‖abP)
Proposed protocol TA, XA H(ê(S ′

A, TB)· ê(S’B, TA)‖abP‖xAxBP)

Table 2: Message and session key comparison

in order to carry out the key agreement. In the following sections, we evaluate the effi-
ciency by looking at the communication and computational complexity of the proposed
protocol, and compare it to existing certificateless and identity-based schemes.

5.5.1 Communication and Storage Complexity

The participants of the proposed protocol exchange short-term (session-specific) and
long-term public keys. Each key is modelled by an integer element of an elliptic curve
group, and are much smaller in size than keys used in traditional public key cryptosys-
tems (i.e. RSA). For instance, in providing the security equivalent of a 1024-bit RSA key,
only a 160-bit elliptic curve key is needed.

The long-term public keys only comprise one group element (PA = XA = xAP for
entity A), whereas each public key in Al-Riyami and Paterson’s [1] (AP) certificateless
key agreement protocol consist of two group elements (PA = 〈XA, YA〉 = 〈xAP, xAsP〉 for
entity A). Not only does this reduce the overall bandwidth, but it also reduces the space
required by each user in storing public keys by one half5. In these respects, the proposed
protocol can be considered more efficient than AP’s protocol. Moreover, if many keys are
agreed or the protocol is used in a client/server setting (in which the server public key
is known), only fresh short-term keys need to be exchanged in each protocol run. Thus,
the protocol can be considered just as efficient as identity-based schemes where public
keys are always known.

Table 2 provides an overview of the exchanged messages and the established session
key in certificateless and identity-based protocols. Ideally, we want to compare the cer-
tificateless schemes to escrowless identity-based schemes in order to prove their benefit
in this area. Note that the only real difference between identity-based and certificateless
schemes here is that public keys are exchanged in the certificateless setting.

5.5.2 Computational Complexity

In evaluating the computational complexity, we look at the number of passes and the
number of computations each party has to perform in order to carry out the key agree-
ment. In the proposed protocol, each party is required to perform three scalar point
multiplications (m), evaluate two bilinear pairings (p), and make one pairing exponen-
tiation (e). Generally, point multiplications and pairing exponentiations are much faster
to compute than pairings. Thus, the efficiency of pairing-based protocols is essentially
measured by the number of pairings each party has to compute.

Many of the operations used in a protocol can be performed outside a protocol run.
Such operations may include the hash of a peer identity or generating a short-term key

5This factor is just an estimate as implementations may also store other elements such as the iden-
tity/identifier of the public key owner.

43

Certificateless Authenticated Two-Party Key Agreement Protocols

Protocol type no precomputation precomputation
Smart[58, 15] ID 2p + 2m + 1e 1p + 1m

Chen-Kudla[15] #2’ ID 1p + 4m 1p + 1m

Shim[57, 61] ID 1p + 3m 1p + 1m

Choie-Yeong-Lee[19] #2 ID 2p + 4m 1p + 2m + 1e

Al-Riyami-Paterson[1] CL 4p + 2m + 1e 4p + 1m

Proposed protocol CL 2p + 3m + 1e 2p + 2m

Table 3: Computation comparison

pair to be used in some future session. Hence, when talking about efficiency, we often
differ between precomputation and no precomputation. Protocols that allow precomputa-
tion keep the operations required during on-line interaction to a minimum, and can thus
significantly improve the response time. However, one drawback of using precomputa-
tion is that precomputed values can be compromised by an adversary if they are stored
insecurely.

Table 3 shows the computation required by a selection of certificateless and identity-
based key agreement protocols. In comparing the computation used in each protocol,
only heavy operations are considered. In the proposed protocol, it is possible to pre-
compute the short-term key pair as well as the pairing exponentiation. However, as the
public keys are not known before a first-time protocol run between two entities, opera-
tions requiring the knowledge of these cannot be precomputed. On the other hand, once
public keys have been exchanged, the computation required by each entity can be re-
duced to only one pairing and one scalar point mulitiplication. Thus, the performance of
certificateless protocols can be competitive to that of identity-based protocols. Note from
Table 3 that our protocol only needs to compute two pairings, whereas AP’s protocol re-
quires each entity to compute four pairings. This is because AP’s protocol includes steps
to verify the integrity of public keys, and thus restricts the scheme to having private keys
generated by the same KGC. We also want to point out that our protocol requires par-
ties to perform one additional point mulitiplication over AP’s protocol. This is because it
addresses known session-specific temporary information security. AP’s protocol can also
achieve this property by adopting the method used in our protocol.

It has been believed by many that bilinear pairings introduce a significant computa-
tional load to protocols. For instance, [63, 18] propose pairing-less identity-based key
agreement protocols under the assumption that pairings could be too expensive to im-
plement in low-power devices. A certificateless public key encryption scheme that does
not rely on pairings was also proposed in [4]. However, the implementation of pairings
is a very active area of research and much work has been done to improve the efficiency
of pairings. As a result, Scott et al. [53] showed that pairings can be computed just as
efficiently as classic cryptographic primitives on low-power devices such as smart cards.
Moreover, Chen et al. [14] consider the efficiency of identity-based key agreement pro-
tocols using different types of pairings.

44

Certificateless Authenticated Two-Party Key Agreement Protocols

6 Future Work

Certificateless public key cryptography was only proposed in 2003, and thus many prob-
lems remain to be solved. One is to formalize a security model for certificateless authen-
ticated two-party key agreement and establish a security proof for the proposed protocol.
Note that the model presented in this thesis is not a complete model, but meant to be
used as a basis for developing a fully functional security model for certificateless key
agreement.

Participants of certificateless schemes, unlike identity-based schemes, must exchange
public keys. Unfortunately, there are still some open problems about public keys in CL-
PKC. For instance, as public keys are not directly linked to the identity of their owners, it
is hard to tell a real public key from a fake public key. Thus, public keys can be replaced
by an adversary in a certificateless scheme without the parties arising any suspicion.

In terms of efficiency, it would be desirable to use as few bilinear pairings as possible
in a protocol. Some identity-based key agreement schemes only require each entity to
compute one pairing, while in the proposed certificateless protocol, each entity must
compute two pairings. Thus, it would be interesting to see if certificateless key agreement
protocols using only one pairing can be constructed (for instance, by adopting existing
identity-based schemes where only one pairing is used).

Another point of note, in regards to efficiency, is the use of Map-To-Point functions. In
identity-based and certificateless cryptography, these functions are used to convert a hash
value of an entity identifier (such as an e-mail address) to a point on an elliptic curve
(over some finite field). Apparently, Map-To-Point operations are relatively expensive,
and performance could be improved if the function mapped to an element h of the cyclic
group Z∗

q instead. This idea was first presented by Sakai and Kasahara [50] in the SK key
construction. McCullagh and Berreto [39] proposed an identity-based key agreement
scheme that adopts the idea, but the security of the scheme is somewhat troublesome
[16]. Still, it would be interesting to see if secure certificateless key agreement protocols
could adopt this idea.

45

Certificateless Authenticated Two-Party Key Agreement Protocols

7 Conclusion

This thesis has proposed a certificateless authenticated two-party key agreement protocol
that does not use certificates nor suffer from the key escrow property of identity-based
cryptography. Each entity involved in the protocol is only required to compute two bilin-
ear pairings, and thus it can be considered more efficient than the protocol proposed by
Al-Riyami and Paterson [1]. Moreover, the public keys of the scheme no longer comprise
the KGC master key and thus the protocol can be used to establish keys between users of
distinct domains (under different KGCs). The protocol is also bandwidth efficient in the
respect that public keys only include one group element.

The proposed protocol has been shown to obtain a set of security attributes that
are generally believed to be necessary for authenticated key agreement. This includes
considering the compromise of session-specific temporary information (ephemeral keys)
that can occur in practical implementations if such information is precomputed or stored
insecurely. Certificateless key agreement can obtain such security through simple mea-
sures, demonstrated by the proposed protocol. The protocol also obtains other security
attributes such as known session key security, perfect forward secrecy, key-compromise
impersonation, unknown key share, and key control.

As public keys need to be exchanged in certificateless public key cryptography, it
should be assumed that an adversary can replace these. We have defined a security model
for certificateless authenticated key agreement in which an adversary cannot both replace
the public key of a user and obtain its partial private key. Allowing this action will enable
the adversary to compute the established session key. Note that this is not a protocol flaw,
but rather a deficiency of CL-PKC.

7.1 Answering the Research Questions

In Section 1.4, four research questions were defined. These questions will now be an-
swered, based on the conclusions drawn and the information provided in the thesis.

1. How are key agreement protocols designed in certificateless public key cryptography, and
can existing identity-based schemes be adopted?
Certificateless key agreement protocols can look very much similar in structure to
identity-based key agreement protocols. However, there are a few differences. For
instance, in certificateless cryptography, public keys need to be exchanged as they
are no longer derived directly from a user’s identity. Each user also has a secret value
incorporated into its private key such that the (un)trusted authority cannot obtain pri-
vate keys using the master key. In designing certificateless key agreement protocols, it
is to some extent possible to adopt existing identity-based schemes. For instance, Al-
Riyami and Paterson’s [1] certificateless authenticated key agreement protocol adopts
Smart’s [58] identity-based scheme (Table 2 indicates that the session key construc-
tion is essentially the same). The proposed protocol can also be considered a variant
of Smart’s.

2. What are the possible attacks on a certificateless authenticated two-party key agreement

47

Certificateless Authenticated Two-Party Key Agreement Protocols

protocol?
A key agreement protocol may be susceptible to a number of different attacks. Many
of these have been identified in Section 3.2.3 which can be addressed by ensuring that
a protocol obtains a set of security attributes, such as those of Section 5.4.6. However,
such attributes do not cover all possible attacks. For instance, [57] was believed to at-
tain all desirable security attributes, but was later found flawed by [61] who mounted
a man-in-the-middle attack on the protocol. The security of key agreement protocols
depend also on the security model used and the power of the adversary. All protocols
can be proven secure in some model given some assumptions. In the certificateless
setting, it is required that an adversary cannot both replace public keys and obtain
the corresponding private keys.

3. How is proper authentication achieved in certificateless key agreement protocols?
Authentication in certificateless key agreement can be achieved in the same way as
in identity-based key agreement. As the identity of an entity is unique and incorpo-
rated into the private/public key pair, any entity can be assured that the owner of
a public key is who he or she claims to be. The desired authentication can thus be
obtained by requiring the owner of the public key to use its corresponding private key
in generating the shared secret. This is true as long as a public key is not replaced,
which can occur in the certificateless setting. However, replacing a public key will not
provide the attacker with anything useful unless the corresponding (partial) private
key is obtained.

4. How does the efficiency and security of certificateless key agreement measure up against
identity-based key agreement?
Certificateless key agreement can be considered more secure than identity-based key
agreement as the KGC does not know every user’s private key. Although identity-
based schemes can be made escrowless, meaning that the trusted authority cannot
obtain the estblished session key between two entitites, they still offer limited security
against an adversary armed with the master key. On the other hand, identity-based
schemes can be considered more efficient than their certificateless counterparts as
they do not have to exchange or store public keys. However, once public keys have
been exchanged in certificateless protocols, the computational overhead in the two
models can essentially be the same.

48

Certificateless Authenticated Two-Party Key Agreement Protocols

Bibliography

[1] S.S. Al-Riyami and K. Paterson. Certificateless Public Key Cryptography. In C. S.
Laih, editor, Advances in Cryptology - Asiacrypt 2003, volume 2894 of Lecture Notes
in Computer Science, pages 452-473. Springer-Verlag, 2003.

[2] S.S. Al-Riyami and K. Paterson. CBE from CL-PKE: A Generic Construction and
Efficient Schemes. In S. Vaudenay, editor, PKC 2005, volume 3386 of Lecture Notes
in Computer Science, pages 398-415. Springer-Verlag, Berlin 2005.

[3] S.S. Al-Riyami. Cryptographic Schemes based on Elliptic Curve Pairings. Ph.D. The-
sis, Royal Holloway, University of London, 2004.

[4] J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless Public Key Encryption With-
out Pairing. In Proc. of the 8th Information Security Conference (ISC 2005), volume
3650 of Lecture Notes in Computer Science, pages 134-148. Springer-Verlag, 2005.

[5] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proceed-
ings of Advances in Cryptology - Crypto ’93, volume 773 of Lecture Notes in Computer
Science, pages 232-249. Springer-Verlag, 1993.

[6] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In Proceedings of the sixth IMA International Conference on Cryptog-
raphy and Coding, volume 1355 of Lecture Notes in Computer Science, pages 30-45.
Springer-Verlag, 1997.

[7] S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman Key Agreement Pro-
tocols. In Proc. of the 5th Annual Workshop on Selected Areas in Cryptography (SAC
’98), volume 1556 of Lecture Notes in Computer Science, pages 339-361. Springer-
Verlag, 1998.

[8] D. Boneh. The Decision Diffie-Hellman Problem. In Proceedings of the Third Inter-
national Symposium on Algorithmic Number Theory, volume 1423 of Lecture Notes
in Computer Science, pages 48-63. Springer-Verlag, 1998.

[9] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. Ad-
vances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213-229. Springer-Verlag, 2001.

[10] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In
Proceedings of Asiacrypt 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514-32. Springer-Verlag, 2001.

[11] D. Boneh and R. Venkatesan. Hardness of Computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Schemes. In N. Koblitz, editor, Advances
in Cryptology - CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
126-142. Springer-Verlag, 1996.

49

Certificateless Authenticated Two-Party Key Agreement Protocols

[12] C. Boyd. Towards extensional goals in authentication protocols. In Proceedings of
the 1997 DIMACS Workshop on Design and Formal Verification of Security Protocols.
1997.

[13] M. Burmester. On the risk of opening distributed keys. In Y. Desmedt, editor, Ad-
vances in Cryptology - CRYPTO’94, volume 839 of Lecture Notes in Computer Science,
pages 308-317. Springer-Verlag, 1994.

[14] L. Chen, Z. Cheng, and N.P. Smart. Identity-based Key Agreement Protocols From
Pairings. Cryptology ePrint Archive, Report 2006/199.

[15] L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols from
Pairings. In Proc. 16th IEEE Security Foundations Workshop, pages 219-233. IEEE
Computer Society Press, 2003.

[16] Z. Cheng and L. Chen. On Security Proof of McCullagh-Barreto’s Key Agreement
Protocol and its Variants. Cryptology ePrint Archive. Report 2005/201.

[17] Z. Cheng, M. Nistazakis, R. Comley, and L. Vasiu. On The Indistinguishability-Based
Security Model of Key Agreement Protocols - Simple Cases. In Proc. of ACNS 04,
June 2004.

[18] K.Y. Choi, J.Y. Hwang, D.H. Lee, and I.S. Seo. ID-based Authenticated Key Agree-
ment for Low-Power Mobile Devices. In Proceedings of the 10th Australasian Con-
ference on Information Security and Privacy - ACISP 2005, volume 3574 of Lecture
Notes in Computer Science, pages 494 - 505. Springer-Verlag, 2005.

[19] Y. Choie, E. Jeong, and E. Lee. Efficient identity-based authenticated key agreement
protocol from pairings. Applied Mathematics and Computation, 162:179-188, 2005.

[20] A.W. Dent and C. Kudla. On Proofs of Security for Certificateless Cryptosystems.
Cryptology ePrint Archive, Report 2005/426.

[21] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE TIT, vol. 22,
(1976), pages 644-654.

[22] X. Du, Y. Wang, J. Ge, and Y. Wang. An Improved ID-based Authenticated Group
Key Agreement Scheme. Cryptology ePrint Archive, Report 2003/260.

[23] R. Dutta, R. Barua, and P. Sarkar. Pairing-Based Cryptographic Protocols: A Survery.
Cryptology ePring Archive, Report 2004/064.

[24] G. Frey and H. Rück. A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Mathematics of Computation, 62:865-874, 1994.

[25] G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,
45(5):1717-1719, 1999.

[26] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for Cryptographers. Cryptol-
ogy ePrint Archive, Report 2006/165.

50

Certificateless Authenticated Two-Party Key Agreement Protocols

[27] M. Girault. Self-certified public keys. In Advances in Cryptology - EUROCRYPT ’91,
volume 547 of Lecture Notes in Computer Science, pages 490-497. Springer-Verlag,
1992.

[28] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and Sys-
tem Sciences, 28(2):270-299, 1984.

[29] P. Gutmann. Everything you Never Wanted to Know about
PKI but were Forced to Find Out. University of Auckland. See
http://www.govis.org.nz/insecurity/p-gutmann.pdf. Last visited 30th
June 2006.

[30] P. Gutmann. PKI: It’s Not Dead, Just Resting. IEEE Computer, 35(8), pages 41-49,
2002.

[31] G. Horn, K.M. Martin, and C.J. Mitchell. Authentication Protocols for Mobile Net-
work Environment Value-added Services. IEEE Transactions on Vehicular Technology,
51:383-392, 2002.

[32] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In W. Bosma, edi-
tor, Proceddings of the 4th Algorithmic Number Theory Symposium, volume 1838 of
Lecture Notes in Computer Science, pages 385-394. Springer, 2000.

[33] A. Joux. The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems.
In C. Fieker and D. R. Kohel, editors, Proc. Algorithmic Number Theory, 5th Inter-
national Symposium (ANTS-V), volume 2369 of Lecture Notes in Computer Science,
pages 20-32. Springer-Verlag, 2002.

[34] A. Jules and J. Brainard. Client puzzles: A cryptographic defense against connection
depletion attacks. In Proceedings of the 1999 ISOC Network and Distributed System
Security Symposium, pages 151-165, 1999.

[35] L. Kohnfelder. Toward a Practical Public-Key Cryptosystem. Bachelor’s thesis, EECS
Dept., Massachusetts Institute of Technology, May, 1978.

[36] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In Ad-
vances in Cryptology - CRYPTO’05, volume 3621 of Lecture Notes in Computer Sci-
ence, pages 546-566. Springer-Verlag, 2005.

[37] K. Lauther and A. Mityagin. Security Analysis of KEA Authenticated Key Exchange
Protocol. PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 378-
394. Springer-Verlag, 2006.

[38] C.H. Lim and P.J. Lee. A key recovery attack on discrete log-based schemes using
a prime order subgroup. In B.S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
1997, volume 1294 of Lecture Notes in Computer Science, pages 249-263. Springer-
Verlag, 1997.

[39] N. McCullagh and P.S.L.M. Barreto. A new two-party identity-based authenticated
key agreement. In A.J. Menezes, editor, Cryptographers’ Track at RSA Conference -
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 262-274.
Springer-Verlag, 2005.

51

Certificateless Authenticated Two-Party Key Agreement Protocols

[40] A. Menezes. Cryptography Using Bilinear Maps. University of Waterloo. 2003.

[41] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on Information Theory, 39:1639-1646,
1993.

[42] A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols providing
mutual implicit authentication. In Proceedings of the Second Workshop on Selected
Areas in Cryptography (SAC ’95), pages 22-32. 1995.

[43] C.J. Mitchell, M. Ward, and P. Wilson. Key control in key agreement protocols.
Electronics Letters, 34:980-981, 1998.

[44] NIST. SKIPJACK and KEA Algorithm Specification. See
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf. Last visited 30th June
2006.

[45] S. Pohlig and M. Hellman. An improved algorithm for computing discrete loga-
rithms over GF(p) and its cryptographic significance. IEEE Transactions on Informa-
tion Theory, 24:106-110, 1978.

[46] J. M. Pollard. Monte Carlo methods for index computation (modp). Mathematics of
Computation, 32(143):918-924, July 1978.

[47] J. Raymond and A. Stiglic. Security Issues in the Diffie-Hellman Key Agreement
Protocol. 2000.

[48] B. van Rompay. Analysis and Design of Cryptographic Hash Functions, MAC Algo-
rithms and Block Ciphers. Ph.D. thesis. Katholieke Universiteit Leuven.

[49] E. Ryu, E. Yoon, and K. Yoo, An Efficient ID-Based Authenticated Key Agreement
Protocol. Networking 2004, volume 3042 of Lecture Notes in Computer Science,
pages 1458-1463. Springer-Verlag, 2004.

[50] R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve.
In 2003 Symposium on Cryptography and Information Security - SCIS’2003, Hama-
matsu, Japan, 2003.

[51] D. Salomon. Data privacy and security. Springer-Verlag New York, 2003.

[52] M Scott. Authenticated ID-based key exchange and remote log-in with insecure
token and PIN number. Cryptology ePrint Archive, Report 2002/164.

[53] M. Scott, N. Costigan, and W. Abdulwahab. Implementing Cryptographic Pairings
on Smartcards. Cryptology ePrint Archive, Report 2006/144.

[54] A. Shamir. Identity-based cryptosystems and signature schemes, In G. R. Blakley
and D. Chaum, editors, Advances in Cryptology - CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 47-53. Springer-Verlag, 1985.

[55] Y. Shi, G. Chen, and J. Li. ID-Based One Round Authenticated Group Key Agreement
Protocol with Bilinear Pairings. ITCC (1) 2005, pages 757-761. 2005.

52

Certificateless Authenticated Two-Party Key Agreement Protocols

[56] K. Shim. Cryptanalysis of Two ID-based Authenticated Key Agreement Protocols
from Pairings. Cryptology ePrint Archive, Report 2005/357.

[57] K. Shim. Efficient ID-based authenticated key agreement protocol based on the Weil
pairing. Electronics Letters, 39(8):653-654, 2003.

[58] N.P. Smart. An identity based authenticated key agreement protocol based on the
Weil pairing. Electronics Letters, 38:630-632, 2002.

[59] E. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems. In B. Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, vol-
ume 2045 of Lecture Notes in Computer Science, pages 195-210. Springer-Verlag,
2001.

[60] G. Xie. An ID-based key agreement scheme from pairing. Cryptology ePrint Archive,
Report 2005/093.

[61] Q. Yuan and S. Li. A New Efficient ID-Based Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/309.

[62] Z. Zhang and D. Feng. On the Security of a Certificateless Public-Key Encryption.
Cryptology ePrint Archive, Report 2005/426.

[63] R.W. Zhu, G. Yang, and D.S. Wong. An Efficient Identity-based Key Exchange Pro-
tocol with KGS Forward Secrecy for Low-power Devices. In Proceedings of the 1st
Workshop on Internet and Network Economics (WINE 2005), volume 3828 of Lecture
Notes in Computer Science, pages 500-509. Springer-Verlag, 2005.

53

Certificateless Authenticated Two-Party Key Agreement Protocols

A Certificateless PKE Schemes

A.1 The Basic CL-PKE Scheme

Seven algorithms constitute what is formally specified as the BasicCL-PKE scheme [1].
Setup runs as follows:

1. Run IG on input k to genereate output 〈G1, G2, e〉 where G1 and G2 are groups of
some prime order q and e : G1 ×G1 → G2 is a pairing.

2. Choose an arbitrary generator P ∈ G1.

3. Select a master-key s uniformly at random from Z∗
q and set P0 = sP.

4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗
1 and H2 : G2 → {0, 1}n, where

n will be the bit-length of plaintexts.

The system parameters are params = 〈G1, G2, e, n, P, P0, H1, H2〉 and the master-key
is s ∈ Z∗

q. The message space is M = 0, 1n and the ciphertext space is C = G1 × 0, 1n.
Partial-Private-Key-Extract takes as input an identifier IDA ∈ 0, 1n and outputs

the partial private key DA for entity A. The key is constructed by first computing QA =

H1(IDA) ∈ G∗
1 and then computing DA = sQA ∈ G∗

1. A can verify the correctness of the
algorithm by checking ê(DA, P) = ê(QA, P0).

Set-Secret-Value takes params and an entity A’s identifier IDA as input and outputs
A’s secret value xA ∈ Z∗

q.
Set-Private-Key takes params, an entity A’s partial private key DA, and A’s se-

cret value xA ∈ Z∗
q as input, and returns the (full) private key SA by computing SA =

xADA = xAsQA ∈ G∗
1.

Set-Public-Key takes params and entity A’s secret value xA ∈ Z∗
q as input and

constructs A’s public key PA = 〈XA, YA〉, where XA = xAP and YA = xAP0 = xAsP.
Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a public

key PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G∗
1 and that ê(XA, P0) = ê(YA, P). If not, output ⊥ and abort

the encryption.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random value r ∈ Z∗
q.

4. Compute and output the ciphertext:

C = 〈rP,M⊕H2(e(QA, YA)r)〉

Decrypt: Suppose C = 〈U, V〉 ∈ C. To decrypt the ciphertext using the private key
SA = xADA, compute and output:

V ⊕H2(e(SA, U))

55

Certificateless Authenticated Two-Party Key Agreement Protocols

If 〈U = rP, V〉 is the encryption of M for entity A with public key PA = 〈XA, YA〉, then
the decryption is the inverse of encryption

V ⊕H2(e(SA, U)) = V ⊕H2(e(xAsQA, rP))

= V ⊕H2(e(QA, xAsP)r)

= V ⊕H2(e(QA, YA)r)

= M

A.2 The FullCL-PKE Scheme

FullCL-PKE is in many ways similar to BasicCL-PKE, but adds chosen ciphertext security
by adapting the Fujisaki-Okamoto padding technique.

Setup: Identical to BasicCL-PKE, but adds two additional cryptographic hash func-
tions H3 : {0, 1}n × {0, 1}n → Z∗

q and H4 : {0, 1}n → {0, 1}n.
The system parameters are params = 〈G1, G2, e, n, P, P0, H1, H2, H3, H4〉. The master-key

and the message space is identical to BasicCL-PKE. The ciphertext space is C = G1 ×
0, 12n.

Partial-Private-Key-Exract: Identical to BasicCK-PKE.
Set-Secret-Value: Identical to BasicCK-PKE.
Set-Private-Key: Identical to BasicCK-PKE.
Set-Public-Key: Identical to BasicCK-PKE.
Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and public key

PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G∗
1 and that ê(XA, P0) = ê(YA, P). If not, output ⊥ and abort

the encryption.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random σ ∈ {0, 1}n.

4. Set r = H3(σ, M).

5. Compute and output the ciphertext:

C = 〈rP, σ⊕H2(e(QA, YA)r),M⊕H4(σ)〉

Decrypt: Suppose C = 〈U, V,W〉 ∈ C. Do decrypt the ciphertext using the private key
SA = xADA, perform the following steps:

1. Compute V ⊕H2(ê(SA, U)) = σ ′.

2. Compute W ⊕H4(σ ′) = M ′.

3. Set r ′ = H3(σ ′,M ′) and test if U = r ′P. If not, output ⊥ and reject the cipertext.

4. Output M ′ as the decryption of C.

A.3 The improved FullCL-PKE Scheme (FullCL-PKE*)

In [2], the certificateless public key encryption (CL-PKE) scheme of [1] was improved
in two ways. Firstly, it is more efficient than the scheme in [1] as the public key now
only constitute one group element. Secondly, the security of the scheme rests on the

56

Certificateless Authenticated Two-Party Key Agreement Protocols

hardness of the well studied Bilinear Diffie-Hellman Problem (BDHP), rather than the
non-standard generalized BDHP.

Setup takes security parameter k as input and returns the system parameters params =

〈G1, G2, ê, n, P, P0, H1, H2, H3, H4, H5〉 and the master-key is s ∈ Z∗
q. The message space

is M = 0, 1n and the ciphertext space is C = G1 × 0, 12n.
Partial-Private-Key-Extract takes as input an identifier IDA ∈ 0, 1n and outputs

the partial private key DA for entity A. The key is constructed by first computing QA =

H1(IDA) ∈ G∗
1 and then computing DA = sQA ∈ G∗

1. A can verify the correctness of the
algorithm by checking ê(DA, P) = ê(QA, P0).

Set-Secret-Value takes params and an entity A’s identifier IDA as input and outputs
A’s secret value xA ∈ Z∗

q.
Set-Private-Key takes params, entity A’s partial private key DA, and A’s secret

value xA ∈ Z∗
q as input, and outputs A’s secret key pair SA = 〈DA, xA〉.

Set-Public-Key takes params and entity A’s secret value xA ∈ Z∗
q as input and

constructs A’s public key PA = xAP.
Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a public

key PA = xAP, perform the following steps:

1. Verify that PA ∈ G∗
1, or output ⊥.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random σ ∈ {0, 1}n.

4. Set r = H3(σ, M).

5. Compute and output the ciphertext:

C = 〈rP, σ⊕H2(ê(QA, P0)r)⊕H5(rPA),M⊕H4(σ)〉

Decrypt: Suppose C = 〈U, V, W〉 ∈ C. To decrypt the ciphertext using the private key
SA = 〈DA, xA〉, perform the following steps:

1. Compute V ⊕H2(ê(DA, U))⊕H5(xAU) = σ.

2. Compute W ⊕H4(σ ′) = M ′.

3. Set r ′ = H3(σ ′,M ′) and test if U = r ′P. If not, output ⊥ and reject the ciphertext.
Otherwise, output M ′ as the decryption of C.

57

	Abstract
	Sammendrag
	Aknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic
	Problem Description
	Justification, Motivation, and Benefits
	Research Questions
	Method
	Summary of Claimed Contributions
	Outline of Chapters

	Definitions
	Abstract Algebra
	Groups
	Finite Fields

	Elliptic Curves
	Bilinear Maps on Elliptic Curve Groups
	Bilinear Diffie-Hellman and Related Problems
	The Classic Diffie-Hellman Problems
	The Bilinear Diffie-Hellman Problems
	Implications of Bilinear Maps

	Cryptographic Primitives
	Hash Functions
	Message Authentication Codes

	Other Notation

	Preliminary Topics
	Public Key Cryptography
	Public Key Infrastructure (PKI)
	Identity-Based Cryptography
	Certificateless Public Key Cryptography
	Trust Model

	Cryptographic Key Agreement Protocols
	Goals of Key Agreement
	The Diffie-Hellman Key Exchange
	Protocol Attacks
	Security Attributes and Considerations
	Key Confirmation

	Provable Security

	Related Work
	Pairing-Based Cryptography
	Identity-Based Authenticated Key Agreement
	Smart's Protocol
	Chen and Kudla's Protocol
	Shim's Protocol (modified by Yuan and Li)
	Choie et al's Protocol

	Certificateless Authenticated Key Agreement
	Al-Riyami and Paterson's Protocol

	Certificateless Authenticated Key Agreement
	A Certificatelss Authenticated Key Agreement Protocol
	Certificateless Key Agreement Using Separate TAs
	Certificateless Key Agreement Using Key Confirmation
	Security Analysis
	Defining the Adversary
	CL-AKA Security Model
	Session Key Reveal Attack
	Reduction to Forging Attack
	Session Key Forgery
	Security Attributes
	Other Security Considerations
	Converting to Identity-Based Cryptography

	Efficiency Analysis
	Communication and Storage Complexity
	Computational Complexity

	Future Work
	Conclusion
	Answering the Research Questions

	Bibliography
	Certificateless PKE Schemes
	The Basic CL-PKE Scheme
	The FullCL-PKE Scheme
	The improved FullCL-PKE Scheme (FullCL-PKE*)

