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Abstract

Intrusion detection systems have in the recent years become an important part of most
defence-in-depth network perimeter security setups. These intrusion detection systems
either apply misuse or anomaly based techniques to detect malicious activities. To detect
malicious activity, misuse based systems search for signatures of previously known ma-
licious activities. Anomaly based systems on the other side, flag behaviour that deviates
from what is expected to be benign activities. Most intrusion detection systems are mis-
use based, but more and more systems now use a combination of both techniques, where
anomaly based techniques are often used to assist the misuse based detection engines.

One method for classifying observed activities in an anomaly based intrusion detec-
tion system is clustering. A major difficulty regarding clustering based systems is to inter-
pret the nature of the obtained clusters and label them as normal or malicious. One la-
belling strategy is to apply clustering quality evaluation techniques to determine whether
or not a massive attack is present in the observed activities. Then, a combination of these
evaluation techniques and cluster parameters can be used to interpret the nature of the
clusters.

This thesis investigates the application of Dunn’s index and C-index in this labelling
strategy. These clustering quality indexes are combined with clustering parameters to
develop algorithms for proper labelling of observed activities. The original definition of
the C-index requires similar cluster sizes for accurate clustering quality evaluations. As
similar cluster sizes are rare in clustering based intrusion detection systems, we propose
two modified C-indexes for use in situations with unequal cluster sizes.

A prototype, simulating a clustering based intrusion detection system, has been devel-
oped to test and measure the performance of clustering quality indexes in this labelling
strategy. The results from these simulations show that the application of both the Dunn’s
index and the modified C-index in this labelling strategy produce accurate labelling of
activity clusters. These results also demonstrate that this labelling strategy outperforms
classical cardinality based labelling strategies in heavily attacked environments where
massive attacks are frequent.

Keywords: Information security, Intrusion detection, Anomaly detection, Clustering,
Clustering quality evaluation, Dunn’s index, C-index, Labelling strategy.
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Sammendrag

Innbruddsdeteksjonssystemer har i de siste årene blitt en viktig komponent i løsninger
for nettverkssikkerhet. Disse systemene bruker enten signaturbaserte eller anormalitets-
baserte teknikker for å detektere angrep. Signaturbaserte systemer bruker signaturer av
tidligere kjente angrep for å detektere ondsinnet aktivitet. Anormalitetsbaserte systemer
derimot, etablerer en grunnlinje med forventet normal aktivitet og genererer en alarm
hvis observert aktivitet avviker fra denne grunnlinjen. De fleste systemer er i dag sig-
naturbaserte, men trenden er at anormalitetsbaserte systemer ofte blir brukt i kombi-
nasjon med signaturbaserte systemer.

En metode for å klassifisere aktivitet i et anormalitetsbasert system er clustering, dvs.
dannelse av såkalte klynger. Et problem som må løses for å bruke clustering i innbrudds-
deteksjonssystemer er å tolke hvorvidt en klynge består av normal aktivitet eller angrep,
såkalt merking av klynger. En strategi for å løse dette problemet, er å bruke teknikker som
undersøker kvaliteten på klyngen for å kontrollere hvorvidt det finnes et massivt angrep
i de observerte aktivitetene. Det er da mulig å kombinere disse teknikkene med andre
fysiske egenskaper til klyngene for å lage algoritmer som tolker innholdet i klyngene.

I denne masteroppgaven har vi undersøkt bruken av Dunn’s index og C-index i en slik
strategi for merking av klynger. Disse teknikkene, som evaluerer kvaliteten til klyngene,
er brukt i kombinasjon med andre fysiske egenskaper for å utvikle algoritmer for merking
av observert aktivitet. C-index krever i sin originale definisjon klynger av lik størrelse for
å gi riktig evaluering av kvaliteten på klyngen. Ettersom lik størrelse på klyngene er svært
uvanlig i clusteringbaserte innbruddsdeteksjonssystemer, presenterer vi en modifisert C-
index som håndterer situasjoner med ulike klyngestørrelser.

En prototype, som simulerer et clustering basert innbruddsdeteksjonssystem, har blitt
utviklet for å teste og evaluere ytelsen til de to evalueringsteknikkene i den nevnte strate-
gien for merking av aktivitet. Resultatene fra disse simuleringene viser at bruken av både
Dunn’s index og C-index gir nøyaktig merking i denne strategien. Resultatene viser også
at strategien, sammenliknet med tradisjonelle strategier for merking, er bedre egnet for
merking av aktivitet i situasjoner hvor massive angrep er vanlig.
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1 Introduction

1.1 Topic

This thesis considers the application of clustering quality indexes in a strategy to handle
problems associated with activity labelling in clustering based intrusion detection sys-
tems (IDS). IDSs have in the recent years rightfully become an important part of most
defence-in-depth network perimeter security setups. There are, in general, two different
approaches to interpret and classify activity in an IDS; misuse and anomaly detection.
Misuse based systems detect malicious activity by searching for distinct patterns, i.e. sig-
natures, of known malicious activities. Anomaly based systems, on the other hand, flag
activities that deviate from what is considered normal in the observed system.

Traditional approaches for anomaly based intrusion detection often use statistical
methods based on the models proposed by Denning [10]. The problem with these ap-
proaches is that they assume that the observed activities follow a Gaussian distribution.
This is not always the case when monitoring computer networks or systems, and causes
high error rates. Another problem is that these systems must learn from cleansed data
sets to establish a baseline of normal benign activity. This process of supervised learning
is very expensive and prone for errors.

To handle these problems, clustering has been proposed as an approach to classify
observed data in anomaly based IDSs. Clustering is the art of grouping data together
into clusters. The aim is to find clusters where the instances within the same cluster are
very similar, while different clusters are very distant from each other. The underlying
assumption in intrusion detection is that malicious activities are significantly different
from benign activities. It is therefore possible to group benign and malicious activity
into separate clusters by means of clustering techniques, which is the aim of an anomaly
based intrusion detection engine.

Clustering based techniques for intrusion detection are often referred to as unsuper-
vised intrusion detection, because the differences in characteristics of the observed activi-
ties are used directly to classify the activities without any initial learning process. These
systems do not require any prior knowledge about attack signatures or labelled training
data to classify activity. Clustering based systems are therefore highly capable of correctly
classifying previously unknown malicious activities, and less vulnerable for errors caused
by small changes in user behaviour over time.

1.2 Research problem

A major problem in anomaly detection systems based on clustering, is to determine the
nature of the obtained clusters, so-called labelling. The clustering algorithms merely clas-
sify observed activities into clusters and do not perform any interpretation of the content
of these clusters. We therefore need a strategy to interpret and label the obtained clusters.

A classical labelling strategy is to measure the cardinality of the clusters, and label
some percentage of the smallest clusters as malicious. This approach does, however, have
some limitations, and does not detect massive attacks properly, e.g. Denial-of-Service
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attacks.
Another approach for labelling clusters, which solves the limited capability of detect-

ing massive attacks, is proposed by Petrovic et al. [50, 51, 52]. In their approach, different
cluster properties and parameters are measured in order to interpret the nature of the
obtained clusters. The underlying assumption is that clustering quality evaluations may
indicate the presence of a massive attack in the observed data. Then, by combining these
techniques with cluster parameters, e.g. the cluster diameters, it becomes possible to in-
terpret the nature of the clusters. In this thesis, we extend the research from [50, 51, 52],
by investigating the application of two well known clustering quality evaluation indexes,
Dunn’s index and C-index, in such a labelling strategy.

1.3 Justification and motivation

Accuracy and efficiency are two very important performance measures for an IDS. High
accuracy is necessary to provide valuable information to the human IDS analyst monitor-
ing the computer system or network. Too high false positive rates will leave the human
IDS analyst frustrated, and may cause that important alarms are ignored. In addition to
this, it is important for an IDS to work in real-time, or as close to real-time as possible.
Real-time operation is e.g. necessary for the human IDS analyst to be able to take coun-
termeasures against attacks in progress, before they can do much harm to the protected
systems.

The Silhouette index and the Davies-Bouldin index have already been applied to pro-
vide labelling of the clusters produced in a clustering based IDS implemented at GUC1

[50, 51, 52]. It has been shown that clustering quality indexes can be used to detect mali-
cious activity, but the two indexes performed quite differently [50]. The Silhouette index
proved to be slightly more accurate than the Davies-Bouldin index. However, the Silhou-
ette index showed some performance penalties compared to the Davies-Bouldin index,
which is much less computationally complex. It is therefore interesting to investigate the
performance of other clustering quality indexes applied in this labelling strategy.

1.4 Research questions

The research questions, which we will try to answer in the course of this work, are the
following:

1. Can Dunn’s index and C-index be applied in a labelling strategy for clustering based
intrusion detection systems?

2. Which combinations of the clustering quality indexes and clustering properties yield
the best accuracy of the labelling strategy?

3. What clustering quality index is best suited for labelling activity clusters, regarding
accuracy and efficiency?

1.5 Summary of claimed contributions

Our aim for this thesis is to apply Dunn’s index and C-index in a labelling strategy for
clustering based IDSs. In this labelling strategy, we identify clustering properties and pa-
rameters that can be used to interpret the observed activities. This involves the identifi-
cation of what combination of clustering quality indexes and clustering properties yields

1Gjøvik University College (Høgskolen i Gjøvik), http://www.hig.no
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the best labelling performance. The performance of the labelling strategy is compared
to the performance of the application of other clustering quality indexes and classical
cardinality based labelling strategies.

The C-index requires, in its original form, clusters of similar size for proper evalua-
tion of the clustering quality. As similar cluster sizes are a rare occurrence in clustering
based IDSs, we propose a modified C-index appropriate for clustering quality evaluations
regardless of the cluster sizes.

1.6 Research methodology

The methods, which have been used to solve the research questions, are of a quantitative
nature. Our choice of methods involves literature study of related work, theoretical re-
search concerning the use of cluster quality indexes for labelling, and experimental work
to confirm the output from the theoretical research and measure the system performance.

According to Leedy et al. [38], who give a thorough survey of the research process,
it is common to perform a literature study at an early stage in quantitative research
projects. A review of previous work related to the research topic is necessary to gain the
required background knowledge to solve our research questions. In the course of this
review, it was important to identify issues such as problems, theories, results, answered
questions, etc. presented by other researchers on related topics.

Based on the knowledge gained from the literature study, we engaged on the theo-
retical research. An important issue during this phase was to study the behaviour of the
cluster quality indexes and the clustering properties in the presence of different kinds of
observed activities. The prototype was an important tool during this phase of the project,
as it was used to gather information about the behaviour of the clustering quality indexes
and the clustering properties. Our findings from this theoretical research were then ap-
plied in the same prototype for testing and verification.

Most of the development of the prototype was performed in parallel with the litera-
ture study, because it was necessary to use the prototype in the theoretical research. This
prototype is based on the base system developed by Petrovic et al. [50, 51, 52], which
performs the actual clustering of the data. The clustering quality indexes, their respective
labelling algorithms, and functions used in the theoretical research were implemented
on top of this base system. There was no need for a formal methodology for this devel-
opment phase. It was, however, an informal cycle between design, implementation and
testing. Samples of the prototype source code are given in Appendix A.

In our experimental work, comprehensive simulations with the prototype were per-
formed to evaluate and analyse the application of the two clustering quality indexes.
As emphasized by Leedy et al. [38], it is important that the experimental work is per-
formed under as controlled conditions as possible, e.g. to avoid biased results from third
variables etc. To achieve this, automated scripts were used to perform the experiments;
where only a single parameter of the experimental setup was adjusted at the time. All
experiments were followed by thorough evaluations and analysis, some of which lead to
new experiments and investigations.

3
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1.7 Terms and definitions

• Intrusion / attack - an action that aims to violate the security policy for a given
computer network or system. Heady et al. [24] define intrusion as “any set of actions
that attempt to compromise the integrity, confidentiality, or availability of a resource”.

• Intrusion detection - defined by Bace et al. [2] as “the process of monitoring the
events occurring in a computer system or network and analyzing them for signs of
intrusions”.

• Intrusion detection system (IDS) - the automation of the intrusion detection pro-
cess. Bace [3] lists three components an IDS must consist of in its simplest form:

• An audit preprocessor responsible of providing the system with a stream of ob-
served activities, e.g. network activities or system audit logs.

• A detection engine responsible of interpreting and classifying the observed ac-
tivities. In general, these detection engines are based on two types of detection
models: misuse and anomaly detection.

• A decision component responsible of responding to the outcome of the detection
engine, e.g. generating alarms or reports to the human IDS analyst.

• Misuse detection - the detection engine uses signatures of known malicious activities
to detect malicious activity. This is defined by Bishop [6] as determining whether “a
sequence of instructions being executed is known to violate the site security policy”.

• Anomaly detection - the detection engine flags behaviour that deviates from an ex-
pected norm. According to Bishop [6], “Anomaly detection analyzes a set of charac-
teristics of the system and compares their behavior with a set of expected values”

• True positive (TP) - alert raised on malicious activity

• False positive (FP) - alert raised on normal activity

• True negative (TN) - no alert raised on normal activity

• False negative (FN) - no alert raised on malicious activity

• Base rate - the probability of attacks in the observed data.

P(I) =
TP + FN

N

where I - intrusion, N - observed data

• Detection rate (True Positive Rate, TPR) - the probability of an alert being raised
when malicious activity is observed.

TPR =
TP

TP + FN
= P(A | I)

where (TP + FN) is the total number of intrusions, A - alert and I - intrusion

4
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• False alarm rate (False Positive Rate, FPR) - the probability of an alert being raised
when normal activity is observed.

FPR =
FP

FP + TN
= P(A | ¬I)

where (FP + TN) is the total number of normal activities, A - alert and I - intrusion

• Distance metric - a measure of the distance between two measurable objects. Let Ω

be a data set. A function d(x,y) must satisfy the following conditions to be defined as
a distance metric for all x, y, z ∈ Ω [33]:
• d(x, y) ≥ 0, the output distances must be positive.
• d(x, y) = d(y, x), independent of the order of operands.
• d(x, z) < d(x, y) + d(y, z), the triangle inequality holds.

• A clustering - the output of the clustering algorithm, which consists of two or more
clusters, where a cluster is a group of instances from the observed data.

• Cluster cardinality - the number of elements a cluster consists of. Another term,
which is often used to describe the cluster cardinality in literature, is “the cluster
size”.

• Inter-cluster distance - a measure of the distance between different clusters

• Intra-cluster distance - a measure of the distances between the instances within the
same cluster. This measure therefore represents how scattered the instances within
the cluster are in the cluster space.

• Cluster centroid - the computed average instance of all instances within a cluster.
The cluster centroid represents the center of a cluster.

• Massive attack - occurs when the number of malicious connections within a range
or time frame outnumbers the number of normal benign connections. This is the case
during e.g. a SYN-flood Denial-of-Service attack against a resource.

• Standalone attack - malicious activities that are only related to a very few or none
of the other activities in the observed range or time frame. An example is a buffer
overflow exploit observed together with only normal benign activities.

1.8 Outline

The outline of this document closely resembles the different phases of our chosen re-
search methods. Chapter 2 presents a review of topics related to this thesis. This involves
topics such as the art of cluster analysis, clustering quality evaluation techniques, ap-
proaches to unsupervised intrusion detection and issues concerning performance testing
of IDSs. The theoretical research is presented in Chapter 3. Here we present the assump-
tions behind our labelling strategy, the modified C-index and the labelling algorithms.
Chapter 4 presents our experimental work and we discuss the results obtained from our
experiments. The conclusions from our work are given in Chapter 5 and we discuss some
issues that may be interesting for further research in Chapter 6.
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2 Related work

It is important to study the state of the art of several related topics before we can begin
answering the research questions. Important topics we need to investigate and gain in-
depth knowledge about, are the concepts behind finding clusters in data, how to evaluate
the quality of the obtained clustering and how clustering has been used for intrusion
detection. There are also issues concerning the evaluation of IDS performance that must
be studied in order to answer our research questions.

The following provides a short summary of our review of the state of the art. Effi-
ciency is important for IDSs. For this reason, partitional clustering algorithms are often
chosen for clustering based IDSs, despite the decreased clustering accuracy. Traditional
labelling strategies in clustering based intrusion detection use different techniques and
methods to measure the cardinality of the clusters to predict the nature of the observed
activities. As this strategy has some limitations, other strategies are based on using cluster
characteristics for labelling. One alternative strategy is to use clustering quality indexes
to predict the presence of massive attacks, and then interpret the nature of the clusters
with the use of clustering parameters, e.g. the cluster diameters. Besides the efficiency,
is the labelling accuracy an important issue that must be taken into consideration when
choosing which clustering quality index is best suited for use in an IDS. The detection
rate and the false alarm rate are two of the most important measurements to measure
this labelling accuracy. ROC curves are well suited to measure the trade-off between
these two performance measurements.

2.1 Cluster analysis

Cluster analysis is defined by Kaufman and Rousseeuw as “the art of finding groups in
data” [30]. The goal of clustering is to find groups in data, where the instances within
the same group are very similar, while different groups are very distant from each other.
A good comprehensive survey on the art of cluster analysis is given by Jain et al. [27]. At
the top level, clustering algorithms can be divided into two categories; hierarchical and
partitional.

To find clusters, hierarchical algorithms initially create many small clusters of similar
data. The most similar clusters are then merged together, based on inter-cluster dis-
tances, until the desired cluster size is obtained. Variants of the single- and complete-
linkage algorithms are the most popular hierarchical algorithms. The difference between
single-linkage and complete-linkage algorithms is the way the inter-cluster distances are
computed. Single-linkage algorithms use the shortest distance between any pair of in-
stances in different clusters, while the maximum distance is used by complete-linkage
algorithms. Hierarchical clustering algorithms produce very accurate clusterings, but the
drawback is that they are often very computationally complex [8].

Partitional clustering algorithms obtain “a single partition of the data instead of a
clustering structure” [27]. The advantage is that finding this partition is much less com-
putationally complex than constructing the cluster structures. Partitional algorithms are
therefore better suited for handling large data sets [5, 27, 63], which is the situation in
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network based IDSs. A simple and very popular partitional clustering algorithm is the K-
means algorithm [41]. A simple overview of the steps in the K-means algorithm is given
by Guan et al. [20]:

1. Initialization: Randomly choose k instances from the data set and make them initial
cluster centers of the clustering space.

2. Assignment: Assign each instance to its closest center.

3. Updating: Replace each center with the mean of its members.

4. Iteration: Repeat Steps 2 and 3 until there is no more updating.

Step 4 can also be stopped after a given number of passes. A drawback with the
K-means algorithm is that the number of clusters must be known in advance. As a conse-
quence, an additional algorithm should be used in most cases to find the optimal number
of clusters. This is a problem associated with most partitional algorithms. Another prob-
lem that must be handled is that the result of the partitioning depends on the choice of
initial cluster centers. It is therefore more difficult to achieve good clustering accuracy
with partitional algorithms, than with hierarchical algorithms.

A distance measure must be defined before any clustering algorithm is applied, and
the clustering accuracy depends on this measure. If the vectors to be clustered are of
equal length and their coordinates take continuous values, the Minkowski distance metric
is well suited. The Minkowski distance is defined by the following:

for two vectors (x1, x1...xn) and (y1, y1...yn)

d(x, y) =

(
n∑

i=1

| xi − yi |p

) 1
p

(2.1)

where n is the number of coordinates. For p = 1 the Minkowski metric is the Manhattan
(city block) distance, and for p = 2 we get the well known Euclidean distance.

2.2 Clustering quality indexes

Clustering quality indexes have been used so far to tell us how well the data has been
grouped into clusters, e.g. in algorithms used to find the optimal number of clusters for
partitional clustering algorithms. There are several quality indexes available, for example
the Davies-Bouldin index [7, 9], the Silhouette index [7, 54], Dunn’s index [7, 11] and
the C index [22, 26]. In this section we give a brief summary of how these indexes are
computed, and which cluster parameters are used to evaluate the clustering quality.

The Davies-Bouldin index is defined by the following formula [7]:

DB =
1

M

m∑
i=1

max
j=1,...,M;j 6=i

(Dij) , whereDij =
σi + σj

d(ci, cj)
(2.2)

Parameters used in the Davies-Bouldin index, to evaluate the quality of the clustering,
are the total of the average intra-cluster distances and the average inter-cluster distances.
In the formula, M is the number of clusters, σ is the average distance between the entities
within the cluster and the cluster center c, and d(..) is the distance between the clusters.
The output from the Davies-Bouldin formula is a value between 0 and ∞. We have good
clustering when a cluster is compact and the different clusters are distant from each
other. In such cases the value of the Davies-Bouldin index is low.
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The Silhouette index, uses the Silhouette width of each entity in a cluster to evaluate
the clustering quality. This width is the confidence indicator of the entities’ membership
of a cluster. To compute this width, the minimum average distance to entities in other
clusters is used, as well as the average distance to all other entities in the same cluster.
To normalize this result, the maximum of the two distances is used. Computation of the
Silhouette width yields a value between -1 and 1. A value near 1 indicates that the entity
is within the correct cluster, a value near 0 means that the entity could also be a part of
another cluster, while a value near -1 indicates that the entity has been placed in a wrong
cluster. The Silhouette width of a cluster is the average sum of the silhouette widths of
the entities within the cluster, and the Silhouette index of the entire clustering is the
average sum of all cluster Silhouette widths.

The following formulas are used to compute the Silhouette index [52]:

s
j
i =

b
j
i − a

j
i

max{a
j
i, b

j
i}

(2.3)

where a
j
i is the average distance between entity i and the other entities in the cluster,

and b
j
i is the minimum average distance to entities in other clusters. We can then find

the silhouette width for a cluster by:

Sj =
1

mj

mj∑
i=1

s
j
i (2.4)

where m is the number of entities. The global silhouette index of the whole clustering is
then:

S =
1

c

c∑
j=1

Sj (2.5)

where c is the number of clusters.

Dunn’s index only measures two parameters and the index is defined by the following
formula [7]:

D = min
1≤i≤c

(
min

1≤j≤c
j6=i

( d(ci, cj)
max

1≤k≤cσk

))
(2.6)

The parameters used to evaluate the clustering with Dunn’s index are the minimum
inter-cluster distance and the maximum intra-cluster distance. In this formula, c is the
number of clusters, σ is the average distance between the entities within the cluster and
the cluster center c, and d(..) is the distance between the clusters. Because the index
only measures two parameters, it may not yield stable results in some situations, e.g.
when there are so-called outliers in the clustered data set. On the other hand, it can
be computed quite fast, which is important for the efficiency of our labelling strategy.
The two parameters used to compute this index are the minimum inter-cluster distance
between clusters and the maximum intra-cluster distance. This is better illustrated by the
simplified formula for Dunn’s index, given by Gunter et al. [22]:

D =
dmin

dmax
(2.7)
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In this formula, dmin is the minimum inter-cluster distance and dmax in the maxi-
mum intra-cluster distance. Good clustering means that the inter-cluster distance is high
and the intra-cluster distance is low. Higher values of the Dunn’s index therefore indicate
good clustering quality.

The C-index uses the distance between all pairs of entities within a single cluster, and
the smallest and largest distances between pairs in the whole clustering to compute the
clustering quality. This is defined by the following formula for the computation of the
C-index [22]:

C =
S − Smin

Smax − Smin
(2.8)

We must first choose a reference cluster to compute S in the formula from. S is then
the total distance between all pairs within the reference cluster. Let l be the number of
pairs within that cluster. Then, Smin is the sum of the l smallest distances between pairs
in the whole clustering, while Smax is the sum of the l largest distances between pairs in
the whole clustering. Good clustering quality requires small intra-cluster distances. The
nominator is small in such situations, and low values of the C-index are therefore an
indication of good clustering quality. The denominator is used to normalize the formula,
and the computation of the C index will produce an index value between 0 and 1.

The C-index is, in its original form, only appropriate when the clusters have similar
cardinality. When the clusters have similar cardinality it is arbitrary what cluster we
choose as reference cluster to compute S from. This is, however, not the case when
we evaluate clusterings with different cluster cardinalities. Determining what cluster to
compute S from is therefore an issue that must be handled when C-index is used in
situations with unequal cluster cardinalities, e.g. in our labelling strategy. Another issue
that must be answered in this thesis, is that the high time complexity might make it
unsuitable for intrusion detection in real time.

2.3 Unsupervised anomaly intrusion detection

To detect intrusion attempts, anomaly based detection systems define a baseline of nor-
mal activity, and observed activity deviating from this baseline is assumed malicious.
There are in general two approaches to create this baseline, supervised learning and un-
supervised learning. The traditional approach has been supervised learning with the use
of cleansed training data, where known attacks have been removed or labelled [53, 63].
Obtaining this training data is very difficult and costly, and there are several problems
associated with obtaining a good training data set. One problem is that it is not possi-
ble to be certain that all the attacks in the training data set have been identified and/or
removed, which may lead to inaccurate measurement of detection success. Other prob-
lems involve that “(...) it may be impossible to unambiguously assign a label to a data
instance” [36], and it is very difficult to create a training data set that fully reflects the
activity of the monitored system.

Unsupervised intrusion detection techniques are used to overcome the problems with
supervised learning. Because systems using unsupervised techniques do not rely on knowl-
edge learnt from training data, they are better suited than supervised techniques for
detecting new unknown attacks. According to Zhong et al. [63], “(...) the purpose of
unsupervised intrusion detection is to discover new attacks in a new dataset”. Unsuper-
vised techniques are also, for the same reason, better suited for tracking changes in user
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behaviour and activity over time.
Laskov et al. analyse both approaches in [36], and conclude that supervised tech-

niques outperform unsupervised techniques if the observed activity only contains known
attacks. However, this is not the case in real world environments. When unknown at-
tacks are present in the observed data set, Laskov et al. [36] show that the performance
of supervised techniques deteriorates while the performance of unsupervised techniques
remains unaffected.

Clustering is unsupervised classification of data [27], and many research projects have
focused on clustering techniques for intrusion detection in the recent years. In the re-
mainder of this section, we describe important research on intrusion detection by means
of clustering, with special attention on the labelling strategies.

In [53], Portnoy et al. present a clustering based approach for intrusion detection to
solve the problems with supervised learning. Based on their proposed approach, they
introduce the term unsupervised anomaly detection; an IDS that operates on unlabeled
data. An earlier approach to unsupervised anomaly detection, by Eskin et al. [14], used
probabilistic models to indicate abnormal activity. In this new approach, Portnoy et al.
[53] state that “(...) we drop the requirement of a probabilistic model and instead use
inter-point distances to motivate our algorithm”. This approach, which we describe in
detail below, has been used as the basis for many clustering based IDSs.

The system proposed by Portnoy et al. [53] extracts and normalizes features from
the activity data, and uses these features to cluster the activities. These features must be
normalized because the extracted features have different scales and types. Some features
may then dominate the output from the distance metric, which leads to incorrect clus-
tering. To normalize the data, the value of each feature in the activity data is set to the
number of standard deviations it differs from the average value of that feature.

The main idea behind their approach is to use distances between activity features
to classify the activities. A solid distance metric is therefore necessary to measure the
distances between the entities to be clustered. Portnoy et al. [53] tested several distance
metrics, and different metrics were tried for different features. Based on these tests they
chose to use the well known Euclidean distance metric. Weighting the different features
only showed slightly increased performance, so equally weighted features were used.

A simple variant of the single linkage algorithm [55] is used for clustering, despite
that hierarchical clustering techniques are generally not very efficient. The clustering is
performed by a single pass over the data set, beginning with an empty set of clusters. The
distances between an instance of observed activity and the centers of existing clusters
are measured. Then this instance is placed into the cluster to which it has the smallest
distance, if this distance is within a predefined cluster width. If the distance is larger than
the cluster width, a new cluster with the observed activity as its center is created.

Portnoy et al [53] base their approach on two assumptions; the number of normal
activities vastly outnumbers the number of malicious activities, and benign and malicious
activities are qualitatively different. These two assumptions are noticeable when we look
at how the system labels the nature of the obtained clusters. In [53], it is assumed that
if the cluster width is properly set, then different kinds of activity are placed in different
clusters. Then, from the assumption that normal activities vastly outnumber malicious
activity, they use the cardinality of the clusters for labelling. To achieve this they first sort
the clusters by their cardinality, and then label N percentage of the clusters with largest
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cardinality as normal.
To detect malicious activity, the system first learns from an unlabelled training set

and creates clusters based on this training set. These clusters are then sorted by their
cardinality and labelled. When new observed activity is observed, the activity is measured
against the centers of the clusters obtained from the training set and given the label
associated with the cluster to which it has the smallest distance.

Portnoy et al. use in [53] a hierarchical single linkage algorithm for clustering, which
has some performance drawbacks regarding its efficiency. Partitioning based clustering
techniques, like the k-means algorithm, may be better suited for intrusion detection be-
cause of its efficiency. Guan et al. [20, 21] propose Y-means, a new clustering algorithm
for use in a clustering based IDS. This algorithm is an improvement of the K-means algo-
rithm, and overcomes two of K-means’ shortcomings; number of cluster dependency and
degeneracy. The authors also aimed to develop an algorithm where there is no need to
manually set a fixed cluster width, which must be done in the system proposed in [53].

The Y-means algorithm begins by clustering the data into k clusters. The next step is to
search for empty clusters. If there are empty clusters, new clusters are created to replace
the empty clusters and the instances are reassigned to the new clusters. This process is
repeated until there are no empty clusters. It then uses outliers in the clustering to create
new clusters. When no new clusters can be found, the next step is to merge overlapping
clusters together until the optimal number of clusters is obtained. The last step of the
Y-means algorithm is to label the obtained clusters. Like in [53], the assumption behind
the labelling strategy is that normal activity vastly outnumbers abnormal activity and
clusters with cardinality below a given threshold is labelled as abnormal.

A geometric framework for mapping network traffic and system call traces into a
feature space, is presented by Eskin et al. [15]. Based on this framework the authors
present three algorithms for detecting outliers in the obtained feature space, as the au-
thors expect that malicious activities will appear as outliers. The algorithms presented
are; an algorithm very similar to the algorithm presented in [53], a K-nearest neighbours
algorithm and a Support Vector Machine. The assumption that normal behaviour vastly
outnumbers malicious activity is used to label the smallest clusters as malicious, since
these clusters will consist of the outliers.

Oldmeadow et al. [47] focus on the importance of coping with changing traffic condi-
tions in their clustering based approach to intrusion detection. Their aim for the proposed
approach, which is based on the work presented in [15], is to develop a time varying clus-
tering algorithm where the clusters are updated during real-time operation. This makes
the approach capable of handling changes in traffic conditions over time, and indepen-
dent of the activity seen in the training set. To prevent an update from causing too large
impact on a small cluster and small impact on a large cluster, an influence factor is used
to regulate the effect an update should have on the affected cluster.

Another topic covered by the authors of [47] is feature weighting, and they demon-
strate a performance enhancement in accuracy with the use of feature weighing. This
contradicts the authors of [53], who did not find a significant advantage of using feature
weighting in their algorithm. The authors conclude that “Although our feature weighting
was based on a manual analysis (...), our results provide a clear motivation for further
research into automated approaches for feature weighting” [47].

The approaches described above use training data sets to obtain clusters, and then use
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these clusters to classify new observed activity. Zhong et al. [63] propose an approach
that does not use any historical training data, which only use the observed activities to
obtain the clusters. The authors investigate four clustering techniques for use in intrusion
detection. Their results show that clustering is suitable for intrusion detection, and that
the performance of clustering based IDSs is comparable with traditional approaches.
They also show that combining traditional techniques with clustering techniques can
increase the performance of an IDS. The results also confirm the authors’ hypothesis
that clustering is better suited for detecting previously unknown attacks than traditional
approaches.

For labelling, Zhong et al. [63] propose a heuristic labelling algorithm, which is based
on an assumption that resembles the assumption used by Portnoy et al. [53]. However,
they do not assume “(...) the strict hypothetical requirement that the percentage of at-
tacks has to be less than a certain threshold” [63]. Instead they use inter- and intra-cluster
distances for labelling. The largest cluster is assumed to be normal, and then other clus-
ters are sorted by the distance from that clusters’ centroid to the centroid of the largest
cluster. The entities within each cluster are sorted in the same way, by their distance to
the centroid of the largest cluster. A given or estimated number of those entities, with
the shortest distance to the centroid, are then labelled normal and the remaining entities
are labelled as attacks.

Zhang et al. present an agent based distributed IDS based on clustering in [62]. They
propose a method that performs clustering twice to detect malicious activity. Agent IDSs
are deployed on the monitored system or network. These agents use a clustering tech-
nique similar to the one presented in [53], but differs slightly in how to measure dis-
tances and how to choose anomalies. The agents send potential malicious activity to a
central IDS where the reported activities are scrutinized closer. The central IDS uses a
variant of the single linkage algorithm to create clusters from the activity reported by
the agents. This algorithm is very accurate and it is efficient enough for this purpose.
Efficiency is not the most important issue in this setting, because the number of reported
activities is assumed to be rather low in the central IDS. From the obtained clusters,
the algorithm creates an attack cluster based on the cardinality of these clusters and the
inter-cluster distances between them. The activities in the attack cluster are considered
as true attacks and reported to the human IDS analyst.

The systems described so far base their labelling strategy on the assumption that nor-
mal activity vastly outnumbers abnormal activity. This assumption holds for most situa-
tions, but there are limitations with basing a labelling strategy solely on this assumption.
One limitation is that benign traffic rarely seen on the network will produce small clusters
that would be labelled as malicious. Another limitation is that the assumption is wrong in
the presence of a massive Denial-of-Service attack [15, 53]. In [39], where Leung et al.
present a grid and density based clustering algorithm for intrusion detection, the authors
point out that this assumption may cause the performance of the detection algorithms to
deteriorate in the presence of a massive Denial-of-Service attack. This limitation is also
emphasised by Zhong et al. [63] who state that “(...) we have seen in our experiments
many relatively large attack clusters as well as small normal clusters”.

As a solution to the limitations described above, Petrovic et al. [50, 52] present a new
strategy for labelling obtained clusters. Instead of using the cardinality of the clusters,
other characteristics of the clusters are used to predict the nature of the cluster contents.
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The assumption behind the new labelling strategy is that the attack clusters will be very
compact in the presence of a massive attack, because the attack vectors in such attacks
are very similar, if not identical. In most cases, where a massive attack is not present,
the assumption is that the attack clusters will be less compact than normal clusters. The
reason for this is that different standalone attacks are very different from each other.

Based on these assumptions, the use of clustering evaluation techniques is proposed
for proper labelling of the clusters. Good clustering may be used as an indication of the
presence of a massive attack and clustering evaluation techniques, like clustering quality
indexes, are well suited for controlling the quality of the clustering. Clustering quality
indexes are therefore used to investigate the clustering for the existence of a massive
attack. The result from the clustering quality index can then be used in combination with
cluster diameters to predict the nature of the obtained clusters.

In [50, 52] it is demonstrated that the Davies-Bouldin index and the Silhouette index
may be used for proper labelling of obtained activity clusters. A comparison of the two
systems is given in [51]. The results show that the Silhouette index yields more accurate
labelling of the clusters than the Davies-Bouldin index. However, the time complexity of
the Silhouette index is much higher than the complexity of the Davies-Bouldin index.
This makes the Davies-Bouldin index better suited for labelling clusters in a clustering
based IDS.

Another approach for labelling is presented by Gomez et al. in [17, 18, 19], where
a set of simple fuzzy rules (fuzzy classifiers) is used to detect abnormal activity. These
fuzzy rules are based on fuzzy logic, and are according to the authors well suited for
detecting abnormalities. The idea behind this approach is; “As the difference between
the normal and the abnormal activities are (...) rather fuzzy, fuzzy logic can reduce the
false signal rate” [17]. When using fuzzy classifiers, observed activity does not have to
belong entirely to a group, but can partially belong to several groups. This concept is
well suited for intrusion detection, since it is very difficult to define boundaries between
normal and abnormal activity.

Most proposed clustering based approaches use the Euclidean distance metric for
measuring similarity when activity are placed into clusters. Wang et al. [59] propose a
new clustering algorithm, FCC, for intrusion detection. This clustering algorithm uses
fuzzy connectedness for measuring similarity. The fuzzy connectedness metric uses both
the Euclidean distance and statistical properties of the clusters, and the results show that
this metric is very robust. Since the algorithm can be used to find clusters regardless
of the shape of the clusters, it handles a limitation of the K-means algorithm, which
only finds clusters with spherical shape. However, a drawback of the proposed clustering
algorithm is that it needs some prior knowledge, from e.g. labelled data, to initiate the
clustering process.

Clustering based approaches to intrusion detection are not limited to monitor net-
work traffic. Last et al. [37] present clustering as a method for content based anomaly
detection on the web, where clustering is used to find abnormal content in web pages.
Oh et al. [46] present a clustering method for detection of system abnormality. In this
approach, clustering is not used in its traditional way to group similar data into clusters.
According to the authors, clustering “(...) can be employed to extract the common knowl-
edge i.e. properties of similar data objects commonly appearing in a set of transactions.”
[46]. They therefore propose a clustering method for modelling profiles of normal user
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activity. From these profiles, internal and external differences, i.e. intra- and inter-cluster
distances, are used to detect abnormal behaviour in user transactions.

In [45], this method is improved by Oh et al. to continuously model a data stream.
This makes the system capable of tracking changes in user behaviour over time, without
storing large amounts of historical data. To detect abnormal behaviour, two abnormal-
ity levels, green and red, are defined to determine the nature of the observed activity.
Each feature of a profile is represented by a cluster center and the standard deviation.
Features with too long distance to the profile are considered suspicious. If the number of
suspicious features from the observed activity is above a certain threshold, the activity is
considered abnormal and labelled as red.

Clustering based intrusion detection techniques are generally applied for anomaly
detection. However, an example where clustering is used for signature recognition is
proposed by Ye et al. [61].

2.4 Testing intrusion detection systems

Mell et al. [44] provide a comprehensive study of issues concerning the testing of IDSs.
Intrusion detection systems have become a very important part of any defence-in-depth
perimeter security setup, but “(...) no comprehensive and scientifically rigorous method-
ology to test the effectiveness of these systems” [44] are currently available.

Several measurements regarding the performance of an IDSs are discussed in [44].
Examples of these measurements are the coverage, the probability of false alarms, the
probability of detection, the ability to detect unknown attacks and capacity verification
of network IDSs. Two very important measurements that a metric measuring the perfor-
mance of an IDS must take into consideration, are the probability of false alarms, i.e.
the false positive rate (FPR), and the probability of detection, i.e. the true positive rate
(TPR).

A ROC (Receiver Operating Characteristic) curve [12] is a performance measure that
considers both the FPR and the TPR. ROC curves have been widely used for analysing
cost/benefit relationships, e.g. in biometric systems. By using ROC curves to analyse IDS
performance, the relationship between FPR and TPR is measured and plotted in a graph.
According to Mell et al. [44], these performance measures are two of the most important
IDS characteristics, and ROC curves have therefore become an important measurement in
the IDS testing community. ROC curves for measuring IDS performance have been met
with some criticism, since a measure of the relationship between FPR and TPR would
result in a single point rather than a curve. However, by varying a parameter in the IDS,
e.g. a threshold, we can obtain a curve. This curve may then be used to find the IDS
configuration that yields the optimal performance. Another problem concerning the ROC
curves is that they are senseless for small values of the probability of false alarms.

2.4.1 The KDD Cup 99 data set

To test the performance of the prototype we need a test data set. A problem with ob-
taining such data sets is that very few are publicly available. One publicly available la-
belled test data set, widely used in academic communities, is the KDD Cup ’99 data set
[13, 40, 58]. The KDD Cup ’99 has seen some criticism in the literature, see e.g. [43].
This criticism is mainly based on the fact that the KDD Cup ’99 is an artificial data set
that originates from simulated traffic from a military environment. The data set is also
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quite old, and contains some obsolete attacks. However, it is still widely used for IDS
benchmarking and all network based systems described in Section 2.3 use the KDD Cup
’99 in their performance evaluations. And most important, the KDD Cup ’99 test data
set provides us with sequences of massive Denial-of-Service attacks, which our proposed
labelling strategy should be capable of detecting.

KDD Cup ’99 is a result of 9 weeks of raw tcpdump data from a simulation of a
military air-base data network. The data set consists of nearly 5 million data instances,
i.e. vectors containing extracted features from connection records. These features, 41 in
total, were extracted to describe the properties of the connections in the data set. Kayacik
et al. [31] provide a comprehensive study on these features and what features are usable
for intrusion detection. These features can be grouped into three categories:

• Basic features from individual TCP connections, sorted by destination host, e.g. pro-
tocol and flags set.

• Features extracted from the content of a connection. These features look for suspi-
cious content, e.g. failed login attempts.

• Traffic based features computed over a two second time window or the last 100 con-
nections, e.g. the number of connections to the “same host” or “same service”.

KDD Cup ’99 is divided into 2 parts, one intended for the training phase and one
intended for performance testing. The training data set consists of 24 attacks, while 12
additional attacks are included in the test data set. These attacks can be placed in four
categories:

• DoS: denial of service, e.g. SYN flood.

• R2L: unauthorized access from a remote machine, e.g. password guessing.

• U2R: unauthorized access to superuser or root functions, e.g. various “buffer over-
flow” attacks.

• Probing: surveillance and other probing for vulnerabilities, e.g. port scanning.

A comprehensive overview of the attacks included in the data set is given by Kendall
[32]. The data set we have chosen to use for our performance tests is a reduced version
(10 %) of the KDD Cup ’99 test data set. This data set consists of 490000 connection
records and typical attack records in this data set are:

• Neptune attack
The Neptune attack is a SYN-flood attack [4], which is a Denial-of-Service attack that
exploits a weakness of the TCP protocol. The first step of the three-way handshake
used to set up a TCP connection, is to send a packet with the SYN flag set [57].
During a Neptune attack, massive amounts of such connection requests are sent to
the targeted machine. Each of these requests creates a half-open TCP connection
on the targeted machine, and information about this half-open connection is stored
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in memory until a connection timeout occurs. The attacker’s aim is to exhaust the
memory available to store this information. If the attacker succeeds, the result is that
the system may crash or otherwise become unavailable for legitimate users.

• Smurf attack
The Smurf attack utilizes the ICMP protocol and the internet infrastructure to cause
a Denial-of-Service attack [56]. ICMP echo request packets are sent to the broad-
cast address of different subnets, with the spoofed source address of the targeted
machine/network. By sending ICMP echo requests to the broadcast address, the re-
quests are amplified with the number of active host on the subnets. Each host on these
subnets will then issue an ICMP echo reply to the targeted machine. In worst case,
this means that a single ICMP echo request will cause that 255 ICMP echo replies are
sent to the targeted machine/network. If the attacker sends a stream of ICMP echo
request to various subnets, the amount of replies may exhaust the resources of the
targeted machine/network and render it unavailable for legitimate users.

• Teardrop
The teardrop attack targets a flaw in old implementations of the TCP/IP stack. This
flaw resides in the IP fragmentation re-assembly code, which does not handle overlap-
ping IP fragments properly and causes the targeted host to crash or reboot [32]. Oper-
ating systems utilizing older implementations of the TCP/IP stack, often GNU/Linux
distributions, are therefore vulnerable for this Denial-of-Service attack.

• Buffer overflow exloit
A common security problem is services or commands with poor boundary and syntax
checking of the input buffer. Buffer overflow attacks utilize this problem to achieve
elevated user privileges [16]. By overflowing the input buffer with specially crafted
data, the attacker tries to overwrite the memory pointers on the system stack. This
technique may then be used to execute malicious code, i.e. run commands with ele-
vated privileges that open a remote shell connection.

• Root kit
A Root kit is a collection of programs installed on a compromised system by the
attacker, in order to maintain access to the system and hide the presence of malicious
activities. Root kits typically consist of sniffers and other advanced tools for attacking
computer systems [35]. Altered versions of common system commands and services
are used to hide malicious activities and set up backdoors to provide system access
to the attacker. Once a Root kit has been installed on the system, the attacker has
complete control over the system without the knowledge of the system owner.

• Ipsweep
Ipsweep is a surveillance probe that sweeps through host addresses and ports on the
targeted network. The aim is to identify open ports on hosts that can be used to attack
the network [29].
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3 Application of Dunn’s index and C-index for labelling
clusters

In this chapter, we present our approach for labelling activity clusters in an anomaly
based IDS that use clustering for classification. This labelling strategy uses a combination
of clustering quality evaluation techniques and clustering properties to handle some lim-
itations associated with classical cardinality based labelling strategies. Here we describe
the theory and assumptions behind our labelling strategy. We also present the application
of two well known clustering quality indexes, the Dunn’s index and the C-index, in this
strategy for proper labelling of activity clusters.

We limit ourselves to only study the two-cluster case in our work. In this case, the
clustering of the activity data only consists of two clusters, where one cluster corresponds
to normal activities and one cluster corresponds to the malicious activities. The reason is
that the aim of a labelling strategy is, regardless of the number of clusters used to classify
the observed activities, to find two “superclusters”, where one cluster consist of normal
activities and the other cluster consists of malicious activities.

Classical labelling strategies based on cluster cardinality have some limitations, as
emphasized in Section 2.3. A major limitation is the limited capability of detecting mas-
sive attacks, e.g. Denial-of-Service attacks. The main idea behind our labelling approach
is that the physical properties of the clustering are better suited to determine the nature
of the clusters than the cluster cardinalities. These properties depend on the nature of the
observed activity and may therefore be used to interpret the nature of the clusters. The
aim of this thesis is therefore to handle the limitation of detecting massive attacks with
the use of a labelling strategy that takes these clustering properties into consideration.

It is important to identify the clustering properties that can be used to interpret the
nature of the clusters and how these properties are affected by different types of activity.
The following examples, from the KDD Cup ’99 data set, describe how different types
of activity can be distinguished from each other. These examples also demonstrate the
effect different activities have on the physical properties of the clustering and how this
information can be utilized for intrusion detection.

The goal of clustering is to group data into clusters, where the instances within the
cluster are very similar and different clusters are distant from each other. An underlying
assumption behind the use of clustering to classify activity, is that normal and malicious
activities are placed into separate clusters as a result of their dissimilarities. This dissim-
ilarity is illustrated in Table 1, which shows the features of a benign HTTP connection
and a buffer overflow exploit over the telnet service. Many of these features have very
different values, and a distance metric will therefore yield a large distance between these
two records. The consequence is that we can expect that normal and malicious activities
are clustered into separate clusters.

We can also expect that similar activities are placed into the same cluster, because
their features are quite similar to each other and distant from other activities. This is
illustrated in Table 2, which describes the features of three normal connections. If we
compare the records in Table 1 with the records in Table 2, we see that the normal
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KDD Cup feature

Record number
1 82523

Activity type Normal HTTP Buffer overflow
duration 0 158
service 80 23
flag 10 10
src_bytes 239 1567
dst_bytes 486 3095
hot 0 3
logged_in 1 1
num_compromised 0 4
root_shell 0 1
num_file_creations 0 1
num_shells 0 2
count 8 1
srv_count 8 1
same_srv_rate 100 100
dst_host_count 19 2
dst_host_srv_count 19 2
dst_host_same_srv_rate 100 100

Table 1: The difference between a normal vector and an attack vector when no massive attack is
present, from the 10 % reduced KDD Cup ’99 data set. The rest of the 41 features are equal to 0

activities are rather similar to each other, compared to the malicious activity in Table 1.
We see that the Euclidean distance, which we consider appropriate for use in this setting,
between the features of the normal connections is rather small. The distance is, on the
other hand, large between normal and malicious records. Table 2 also show that there are
some differences between the normal activities. Clusters that consist of normal activities
will therefore not be very compact. This is also expected, as there is a very wide range of
different normal activities.

KDD Cup feature

Record number
1 205 206

Activity type Normal HTTP Normal HTTP Normal SMTP
service 80 80 25
flag 10 10 10
src_bytes 239 195 3366
dst_bytes 486 24572 329
logged_in 1 1 1
count 8 2 1
src_count 8 2 1
same_srv_rate 100 100 100
dst_host_count 19 255 8
dst_host_srv_count 19 255 7
dst_host_same_srv_rate 100 100 100

Table 2: The difference between three normal vectors, from the 10 % reduced KDD Cup ’99 data
set. The rest of the 41 features are equal to 0

Malicious activities that are part of a massive attack and standalone malicious activi-
ties have very different effect on the physical properties of a clustering. Table 3 describes
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two attack vectors that are part of a massive Neptune attack, and shows that the two vec-
tors are very similar. Another example of a massive attack is the Smurf attack, where the
difference between the attack vectors may be as little as the source IP-addresses. Clus-
ters containing activity vectors from a massive attack will consequently be very compact,
because of the very short distance between the activity vectors.

Because the malicious activities are very similar, if not identical, we may end up with
situations where all the observed activities are clustered into the same cluster, when a
massive attack is present. In these situations, we get one very compact cluster that con-
sists of the massive attack, while the normal cluster is empty. We may also in other situa-
tions observe clusterings where the malicious cluster is empty, because we only observe
normal activities. This normal cluster will, on the other hand, not be very compact.

KDD Cup feature

Record number
71143 71144

Activity type Neptune attack Neptune attack
service 49152 49152
flag 6 6
count 188 198
srv_count 1 18
serror_rate 100 100
srv_serror_rate 100 100
dst_host_count 255 255
dst_host_srv_count 1 18
dst_host_serror_rate 100 100
dst_host_srv_serror_rate 100 100

Table 3: The difference between two attack vectors within a massive attack, from the 10 % reduced
KDD Cup ’99 data set. The rest of the 41 features are equal to 0

Standalone attack vectors are on the other hand very different from each other. Table
4 consists of the features from two standalone malicious activities, a Root kit and a
buffer overflow exploit over the telnet service. These features show that there are many
differences between these two activities, which will lead to very scattered clusters if
these activities are clustered together. We expect that standalone malicious activities and
normal activities are clustered into separate clusters. The reason is that these standalone
attacks are very distant from the many normal activities, as can be seen by comparing
the records in Table 2 and 4. In the two-cluster case, this means that the standalone
malicious activities will be clustered together into a scattered cluster, while the other
cluster consists of the normal activities.

We can now draw some generalizations about the effect different types of activity
have on the clustering properties, which are the cornerstones of our labelling strategy.
Malicious activities that correspond to a massive attack form very compact clusters, much
more compact than clusters that consist of normal activity. The situation is the opposite
when no massive attack is present in the observed activity. Then, the differences between
the standalone attack(s) will result in clusters that are more scattered than clusters that
consist of normal activity. The compactness of the clusters can therefore be used to deter-
mine the nature of the clusters, assumed that we can determine whether or not a massive
attack is present.

A hallmark of good clustering is small intra-cluster distances and large inter-cluster
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KDD Cup feature

Record number
141511 82523

Activity type Rootkit Buffer overflow
duration 60 158
service 23 23
flag 10 10
src_bytes 90 1567
dst_bytes 233 3095
hot 0 3
logged_in 0 1
num_compromised 0 4
root_shell 0 1
num_file_creations 0 1
count 1 1
srv_count 1 1
same_srv_rate 100 100
dst_host_count 255 2
dst_host_srv_count 2 2
dst_host_same_srv_rate 0 100
dst_host_same_src_port_rate 100 0
dst_host_rerror_rate 100 0

Table 4: The difference between two standalone attack vectors when no massive attack is present,
from the 10 % reduced KDD Cup ’99 data set. The rest of the 41 features are equal to 0

distances. This is, as we have seen above, the situation when a massive attack is present
in the observed activities. The similar activities within a massive attack will form very
compact clusters, which are distant from clusters of normal activity. Clustering quality
indexes take both intra-cluster and inter-cluster distances into consideration, and are
well suited to measure the clustering quality. We can therefore measure the quality of the
clustering to determine whether or not a massive attack is present. Proper labelling of the
clusters can then be achieved by measuring the clustering quality and the compactness
of the clusters.

3.1 Dunn’s index

Dunn’s index, described in Section 2.2, uses intra-cluster and inter-cluster distances to
evaluate the quality of the clustering. Several intra-cluster and inter-cluster distances are
appropriate for use with the Dunn’s index, see e.g. Bolshakova et al. [7]. We have chosen
to use the centroid diameter and the centroid linkage measures as intra- and inter-cluster
distances for compatibility with the clustering algorithm. We use K-means to cluster the
observed activity and these centroid based measures are compatible with the K-means
algorithm, which computes the cluster centroids at each iteration.

Let Xτ = (X1, . . . , XN) be the data set from which we obtain K clusters C = (C1, . . . , CK).
The inter-cluster distance, i.e. the centroid linkage, between clusters is then computed
with the following formula [7]:

δ(Ci, Cj) = d(sci
, scj

) (3.1)

where sci
and scj

denotes the cluster centroids and d() is the Euclidean distance
between the cluster centroids. The cluster centroids are computed with the following

22



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

formulas:

sci
=

1

|Ci|

∑
Xk∈Ci

Xk and scj
=

1

|Cj|

∑
Xk∈Cj

Xk (3.2)

The intra-cluster distance, i.e. the centroid diameter, of a cluster is computed with the
following formula:

∆(Ci) = 2


∑

Xk∈Ci

d(Xk, sCi
)

|Ci|

 (3.3)

where the average cluster radius is used to find the average centroid diameter. The
centroid is computed with the same formula as for the inter-cluster distance:

sCi
=

1

|Ci|

∑
Xk∈Ci

Xk (3.4)

3.1.1 Time complexity

The computation of the Dunn’s index involves the computation of the cluster centroids,
and the computation of the inter- and intra-cluster distances. This means that the time
complexity of the Dunn’s index is linear in the number of observed activities, n. In the
two-cluster case we study, the number of computations used to find the distances consid-
ered in the formula is 2n + 2.

3.2 C-index

The C-index is quite different from Dunn’s index in its approach to evaluate the cluster-
ing quality. While the latter is computed using inter- and intra-distances from e.g. the
centroids of each cluster, the former is computed by measuring the distance between
all elements in the clustering. We can expect very good evaluation accuracy when us-
ing the C-index, because it considers many distances, but this comes at the cost of high
computation time. The consequence is that the time complexity of the C-index is much
higher than e.g. the Dunn’ index, which may be a major disadvantage when it is used for
intrusion detection.

A problem that must be handled before the C-index can be used for intrusion detec-
tion is to determine how to evaluate a clustering that consists of clusters of different
cardinalities. The C-index is only appropriate when the clusters have similar cardinality,
which is expected to be rare when observing network activity. When clusters have sim-
ilar cardinalities, the choice of which cluster to evaluate the clustering from does not
have any major effect on the result from the C-index. However, when the clusters have
unequal cardinalities, the result from the C-index evaluation depends on what cluster
we choose to evaluate the clustering from. The C-index is defined by the formula (2.8)
presented in Section 2.2. When we use the term “evaluate the clustering from a cluster”,
we refer to the cluster that is used to compute S in that formula.

S can be interpreted as the total sum of intra-cluster distances within the cluster,
which indicates that the value of S depends on the cluster size. Smax and Smin also
depend on the size of the cluster we choose to evaluate from, because the number of
distances used to compute these variables, l, is directly related to the cluster size. We
can therefore expect the result of the clustering quality evaluation to depend heavily on
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the choice of cluster to evaluate from, when the clusters in the clustering have arbitrary
sizes. Based on this, and because we study a two cluster case, we choose to compute the
C-index from both clusters. We refer to these indexes as partial indexes in this modifica-
tion of the C-index. These partial indexes can then be used separately or combined in
our labelling algorithm. This may also provide additional information about the cluster-
ing, which may be taken into consideration by the labelling algorithm and improve the
labelling accuracy.

3.2.1 Modified C-index

It is preferable to have a single value that describes the clustering quality when the
C-index is used in our labelling algorithm. Then, the number of thresholds that needs
configuration and maintenance is kept at a minimum, and the system remains manage-
able. We therefore need to either combine the partial indexes or determine what partial
index to use. Two alternatives for this modified C-index are C-mean and C-small.

C-mean is, as the name indicates, the mean of the partial indexes. An advantage is
that all distances are at least considered once and we can be sure that both intra-cluster
and inter-cluster distances are considered in the evaluation. A possible drawback is that
the average value of the two partial indexes may mask the existence of irregular values
of the partial indexes, which can be useful information for the labelling algorithm.

C-small is the partial index when evaluating the clustering from the smallest cluster,
i.e. the cluster with fewest elements. When the clustering quality is evaluated from the
smallest cluster, we can expect that Smax mainly consists of inter-cluster distances, and
that Smin mainly consists of intra-cluster distances. Then both the intra-cluster and inter-
cluster distances are more equally considered in the evaluation formula and we should
achieve good evaluation of the clustering quality. A drawback is that we may get inaccu-
rate evaluations when the smallest cluster only consists of very few elements, since only
a few distances are considered in those situations. Another drawback is that so-called
outliers in the clustering may cause unstable results, which we describe closer in Section
3.2.2.

3.2.2 Outliers in the clustering

The presence of so-called outliers in the clustering may cause unstable C-small eval-
uations. Outliers are points very distant from the majority of the other points in the
clustering, and often cause bad clustering quality. Because malicious activities are often
very distant from normal activity, they may appear as outliers in the clustering when no
massive attack is present. In these situations, it may be insufficient to only measure the
quality of the clustering from a single cluster, because the outliers may have too much
influence on the partial index. The instability of the partial indexes is a result of the use
of the cluster cardinality to find the number of distances necessary to compute Smin and
Smax. Both intra- and inter-cluster distances must be considered for a proper evaluation
of the clustering quality, and the C-small index may perform incorrectly in situations
where only a few distances are used to evaluate the clustering quality.

Outliers often form small clusters with large inter-cluster distances to the other cluster.
The result is that only a few distances are used to compute Smin and Smax, when we use
C-small. It is then a risk that Smax only consists of inter-cluster distances and that Smin

only consists of intra-cluster distances from the cluster with normal activity. This may
result in a very large Smax and a small Smin. If the observed outliers are quite similar,
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e.g. two similar buffer overflow exploits, then the intra-cluster distances are rather small
and we get a small S value. The result from the C-small index may then be incorrectly
small and indicate good clustering quality.

We could use the partial index from the largest cluster when we have indications of
outliers in the clustering. Then both intra-cluster and inter-cluster distances are included
in Smin and Smax, and we would achieve improved accuracy of the clustering quality
evaluation. However, it is not a good solution to evaluate the clustering quality from
the largest cluster when we have several distant outliers in the clustering, e.g. a buffer
overflow exploit and a Root kit exploit. These outliers are placed in the same cluster
in a two cluster clustering, because of the large distances to the other elements in the
clustering. This results in a clustering with large intra-cluster and inter-cluster distances.
The consequence is that these distances may lead to a very high value of Smax, while S

remains rather small since the largest cluster consists of normal activities. Evaluating the
clustering quality from the largest cluster may then lead to an incorrectly small partial
index, which indicates good clustering quality. In this case, we achieve the correct quality
evaluation by evaluating the clustering from the small cluster, because the large intra-
cluster distances equalize the high Smax value.

As described above, we cannot be certain of what cluster to evaluate the clustering
quality from when outliers are present. However, the partial indexes are in opposition
to each other when outliers are present. This difference between the partial indexes can
be used to describe the clustering quality in these situations. We therefore assume that
the clustering quality is bad when the difference between the partial indexes is above a
defined threshold.

The following two examples from the 10 % reduced KDD Cup ’99 data set illustrates
how outliers cause C-small to indicate incorrect clustering quality. We use the centroid
diameter and the centroid linkage in the examples to provide a single measure that
illustrates the intra-cluster and inter-cluster distances in the clustering.

Records A Ci 1 Ci 2 CD 1 CD 2 CL Card 1 Card 2
452001-
453000

88 0.03 0.92 84718 23172 1519435 5 995

41001-
42000

5 0.66 0.00001 2252490 7281 78179 4 996

Table 5: Partial indexes and clustering parameters from two clusterings from the KDD Cup ’99
data set.

A: Number of attacks in the observed records
Ci 1 & 2: Partial index when evaluating the clustering quality from cluster 1 & 2
CD 1 & 2: Centroid diameter of cluster 1 & 2
CL: Centroid linkage
Card 1 & 2: Cardinality of cluster 1 & 2

The clustering of the connection records from 452001 to 453000 is illustrated in Fig-
ure 1, where red points represent malicious activities and green points represent normal
activities. This clustering consists of 88 malicious connections, where 82 connections
originate from Neptune attacks, four connections are Buffer overflow exploits and two
connections are Root kit exploits. In this case the outliers also cause the clustering algo-
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rithm to produce an incorrect clustering, a problem we discuss closer in Chapter 4. We see
from Figure 1 that the Neptune attacks are clustered together with the normal activities,
but the Buffer overflow and Root kit exploits in cluster 1 provide a good demonstration
of the outlier problem.

Figure 1: Illustration of the clustering of records 452000-453000

Table 5 shows that cluster 1 has both large intra-cluster and inter-cluster distances,
which results in a very large Smax. The interesting part is that cluster 1 consists of four
very similar buffer overflow exploits. We see that the distances between these four con-
nections are very small, which results in a small S value in the C-index formula. The
consequence is that the partial index when evaluating from the smallest cluster incor-
rectly indicates good clustering quality. We see in Table 5 that the evaluation from the
largest cluster correctly indicates poor clustering quality in this situation.

Figure 2: Illustration of the clustering of records 41000-42000

The clustering of the connection records from 41001 to 42000 consists of several dis-
tant outliers. From a total of five malicious connections we have two Ftp write exploits1,
two Satan probes2 and one Buffer overflow exploit. This results in a cluster with very
large intra-cluster distances, which can be seen in both Table 5 and Figure 2. In this
situation the correct clustering quality is achieved by evaluating the clustering from the
smallest cluster, while the evaluation from the largest cluster is incorrect. The reason

1privilege escalation through a poorly configured anonymous FTP server [32]
2early version of the SAINT probing utility [32]
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is that the large intra-cluster distance yields a large S in the C-index formula, which
neutralizes the large Smax value.

The difference between the two partial indexes is very large in both examples and
exemplify that we can use the opposing partial indexes to determine the quality of the
clustering.

3.2.3 Time complexity

It is computationally complex to compute the C-index. There are two main reasons for
this; first computing distances between all pairs and then sorting these distances. Let n1

and n2 be the number of elements in the two clusters. The time complexity for computing
the distance between all pairs in the clustering is then:

O

((
n1

2

)
+

(
n2

2

))
The other contributor to the high complexity is the sorting algorithm. We need to sort an

array that consists of n(n−1)
2 distances, and this requires an efficient sorting algorithm.

The time complexity of the C-index computation therefore depends on the complexity
of the sorting algorithm. Martin et al. [42] provides a thorough discussion on sorting
techniques, where several sorting algorithms are explained. The author also presents
mathematical and experimental analysis of the algorithms.

We used the Merge-sort [34] technique in our application of C-index. Merge-sort is
an efficient “divide and conquer” sorting algorithm that operates with O(N log N) time
complexity. Among its advantages, compared to e.g. Quicksort [25], is that it is very
stable both in complexity and implementation. The complexity only increases with O(N)

in the worst case scenarios [49], while Quicksort’s time complexity is near O(N2) in such
scenarios.

The total time complexity for the computation of the modified C-index is then near
quadratic in the number of instances in the clustering:

O

((
n1

2

)
+

(
n2

2

))
+ O ((n1 + n2) log(n1 + n2))

3.3 Labelling algorithms

The study of the clustering properties gives us the following algorithms for labelling
activity clusters, with the use of the two clustering quality indexes and the cluster diam-
eters. Algorithm 1 describes the labelling algorithm with the application of Dunn’s index
and the application of the modified C-index is described in Algorithm 2.

The algorithms initially assume that C1 consists of normal activities. C1 is therefore
initially labelled as normal, while C2 is assumed to be the malicious cluster. If any of
the conditions in the algorithms are met, indicating that this initial labelling is incorrect,
the clusters are relabelled. By relabelling we mean that the label of the two clusters are
interchanged.
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Input:
• Clustering C of N activities into clusters C1 and C2, where C1 initially is labelled
as normal.
• The Dunn’s index threshold, ∆D.
• The centroid diameters difference parameters, ∆CD1

and ∆CD2
.

Output:
• Relabelled clustering if relabelling conditions are met.
begin

D = DunnsIndex(C) ;
cd1 = CentroidDiameter(C1) ;
cd2 = CentroidDiameter(C2) ;

if (D = 0) and (IsEmpty(C2)) then
Relabel(C) ; /*Condition 1*/

else if (D < ∆D) and (cd1 > cd2 + ∆CD1
) then

Relabel(C) ; /*Condition 2*/
else if (D > ∆D) and (cd1 + ∆CD2

< cd2) then
Relabel(C) ; /*Condition 3*/

end

Algorithm 1: Labelling algorithm with Dunn’s index

Input:
• Clustering C of N activities into clusters C1 and C2, where C1 initially is labelled
as normal.
• The modified C-index threshold, ∆C.
• The centroid diameters difference parameters, ∆CD1

and ∆CD2
.

• The partial index difference threshold, ∆Diff.
Output:
• Relabelled clustering if relabelling conditions are met.
begin

Ci = C-mean or C-small ;
Cdiff = Abs(partial index1 − partial index2) ;
cd1 = CentroidDiameter(C1) ;
cd2 = CentroidDiameter(C2) ;

if Cdiff > ∆Diff then
Ci = 1 /*Condition 4*/

if (Ci = 0) and (IsEmpty(C2)) then
Relabel(C) ; /*Condition 1*/

else if (Ci > ∆C) and (cd1 > cd2 + ∆CD1
) then

Relabel(C) ; /*Condition 2*/
else if (Ci < ∆C) and (cd1 + ∆CD2

< cd2) then
Relabel(C) ; /*Condition 3*/

end

Algorithm 2: Labelling algorithm with the modified C-index
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The formula for the centroid diameter (3.3), presented in Section 3.1, is used to com-
pute the cluster diameter used by the labelling algorithms. The two diameter parameters,
∆CD1

and ∆CD2
, are used to optimize the precision of the algorithms, because the dif-

ference between the cluster diameters will vary with the data set or network we analyse.
Proper adjustment of these parameters is important to achieve good accuracy, especially
when there is a very small difference in the diameter size between normal and malicious
clusters. The main reason for using two separate parameters is that we expect the op-
timal value of the difference parameter depends on whether or not a massive attack is
present in the observed data.

The first three conditions are exactly the same for both Algorithm 1 and 2, while the
fourth condition is only applied when we use C-small.

Condition 1

A condition that must be treated in a special way occurs when the output from the
clustering algorithm yields one empty cluster. Dunn’s index for a clustering with an empty
cluster is zero, because there is no inter-cluster distance to measure. C-index is, for the
same reason, equal to zero when one cluster is empty. S, Smax and Smin are then always
equal, because all elements in the clustering are used to compute all three variables.

If the non-empty cluster is extremely compact, the natural conclusion is that this is
the attack cluster, e.g. that all N observed activities are malicious. We therefore relabel
the clusters if the clustering quality index is zero and cluster C2 is empty.

Condition 2

Poor clustering quality indicates that there is no massive attack present in the observed
activities. Small values of the Dunn’s index indicate poor clustering quality, and we as-
sume that no massive attack is present if Dunn’s index is below the ∆D threshold. High
values of the modified C-index indicate poor clustering quality, and if the modified C-
index is above the ∆C threshold, we assume that no massive attack is present.

When no massive attack is present the large difference between malicious activities
will cause the malicious cluster to be very scattered. We therefore relabel the clusters
if the clustering quality index indicates poor clustering quality and C1 is less compact
than C2, because this indicates that C1 is the malicious cluster. The cluster diameter
difference parameter (∆CD1

) is used to optimize the precision of the algorithm, e.g.
that the diameter of cluster 1 must be ∆CD1

larger than cluster 2 before we relabel the
clusters.

Condition 3

Good clustering quality indicates that a massive attack is present in the observed activ-
ities. High values of the Dunn’s index indicate good clustering quality and if the Dunn’s
index is above the ∆D threshold, we assume that there is a massive attack present. Small
values of the C-index indicate good clustering quality, and if the modified C-index is
below the ∆C threshold, we assume that a massive attack is present.

Malicious activities that are part of a massive attack form very compact clusters. We
therefore relabel the clusters if the clustering quality indexes indicate good clustering
quality and C1 is more compact than C2, because this indicates that C1 is the malicious
cluster. The difference parameter ∆CD2

is used in the same way as ∆CD1
above.
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Condition 4

Condition 4 is only applied when we use the C-small alternative as the modified C-
index. We have seen that a large difference between the two partial indexes indicates
poor clustering quality. The C-means alternative always indicates poor clustering quality
when there is a large difference between the partial indexes, because C-mean is the
average of these two partial indexes. However, we need to adjust the quality index in
these situations when we use the C-small alternative. We therefore set the modified C-
index equal to 1 if this difference is larger than the ∆Diff threshold. This condition is
therefore not directly a relabelling condition, but an adjustment of the clustering quality
evaluation.
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4 Experimental work

The purpose of our experimental work is to investigate and measure the performance
of our labelling strategy, which combines clustering quality evaluation techniques with
cluster properties to achieve proper labelling of activity clusters. As presented in Chapter
3, the focus of our work is the application of Dunn’s index and C-index in this labelling
strategy. Our aim for the experimental work is therefore to gain knowledge about and
evaluate the performance of the labelling strategy with the use of these two clustering
quality indexes. Through the experimental work, the performance of the two clustering
quality indexes can be compared with each other and with other clustering quality in-
dexes previously applied for labelling activity clusters. It also enables us to compare the
performance of this labelling strategy with classical cardinality based labelling strategies.
This is necessary to answer our research questions and to determine whether or not our
labelling strategy solves the limited capability of cardinality based strategies to detect
massive attacks.

To measure the performance of our labelling strategy we must consider both the effi-
ciency and the accuracy of the system. After the theoretical research, presented in Chap-
ter 3, we assumed the following expectations associated with the application of Dunn’s
index and C-index for labelling activity clusters:

1. The modified C-indexes yield more accurate measurements of the clustering quality
than Dunn’s index, and should therefore yield better labelling accuracy.

2. The computation of the modified C-indexes is much slower than the computation of
Dunn’s index.

An important issue of the experimental work is therefore to evaluate whether or not
these expectations hold. While the efficiency can be evaluated with time complexity anal-
ysis of the clustering quality indexes, we need to perform experiments on test data to
measure the accuracy of the labelling strategy. For this purpose, a prototype that applies
the labelling strategy on obtained activity clusters was developed. This prototype was
also used to gather the data needed for the theoretical research, leading to the labelling
algorithms presented in Chapter 3.

In the following, the prototype is presented in Section 4.1. The experimental setup is
described in Section 4.2 and our expectations for the experiments are presented in Sec-
tion 4.3. A short description of these experiments is given in Section 4.4 and Section 4.5
presents the results from these experiments. Then, a discussion and summary concerning
these results are given in Section 4.6.

4.1 The prototype

This section presents the prototype that performs the clustering of activity data, and we
describe how the two clustering quality indexes are applied in this prototype. The base
system in the prototype was developed by Petrovic et al. [50, 51, 52]. This system has the
design of a multiple classifier IDS, as illustrated in Figure 3, and consists of the following
components:
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1. Sensors that observe the same data set in parallel. These sensors merely classify the
observed data by means of clustering, without performing any interpretation of the
obtained clusters. The output from the sensors is K clusters, which are passed on to
the assessors.

2. Assessors that are responsible to interpret and label the clusters obtained by the sen-
sors. A criterion function, based on clustering quality indexes and cluster parameters,
is used in the assessors to compute a value for every sensor on the data set. This value
is then measured against a threshold to determine the nature of the obtained clusters.

3. The manager part of the system is where the parameters of the sensors and assessors
can be adjusted to achieve optimized performance. This is also where the results
from the assessors are presented to the human IDS analyst. The manager part of the
prototype is outside the topic of this thesis, and is not described closer.

Figure 3: The design of the multiple classifier prototype. Derived from [50]

The prototype simulates the sensor-assessor structure of this multiple classifier IDS. In
this prototype, a sensor is merely a clustering algorithm that clusters observed network
activity, where the activity data is read from an offline database. The database of network
activity is a reduced (10%) version of the KDD Cup ’99 data set, which is described in
Section 2.4.1. A short discussion on the choice of this data set is given in Section 4.2.

The prototype uses the well known K-means algorithm for clustering of the network
activity, an algorithm we described in Section 2.1. A problem associated with the K-means
algorithm, is choosing the optimal number of clusters. However, because the purpose of
the prototype is to develop and analyse algorithms for labelling activity clusters, the
prototype is limited to create only two clusters.

In this two-cluster setup, we assume that one cluster corresponds to normal activity
and that the other cluster corresponds to malicious activity. The reason is that we expect
that malicious and normal activities are clustered into separate clusters, as described in
Chapter 3. It is then appropriate to use only two clusters, because the aim of a labelling
strategy is to determine whether activities are malicious or benign. It also becomes easy
to compare the performance of our labelling algorithms with other labelling algorithms.

32



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

We have seen in the literature that the K-means algorithm is used often in clustering
based IDSs, see e.g. Zhong et al. [63]. These approaches indicate that it is very difficult
to find the optimized number of clusters, and that this is very important for the accuracy
of the clustering. We must therefore expect that we get a quite high error rate due to the
clustering algorithm itself, when we choose to create only two clusters.

The prototype clusters 1000 elements of observed network connections from the KDD
Cup ’99 data set into two clusters at each iteration. To cluster these connections the K-
means algorithm must compute the distance between observed activities and the cluster
centroids. This distance is the Euclidean distance between the 41 features describing a
connection in the KDD Cup ’99 data set, and the 41 features defining a cluster centroid,
which is the average of the 41 features of all instances within a cluster. We can then place
the observed activity in the cluster to which it is closest to, by means of this distance. By
using the Euclidean distance, the 41 features are reduced into one single measure, similar
to what is done in e.g. the NIDES [28] system. The advantage with this feature reduction
is that it is very simple to compare activities with the use of a single measure, but the
disadvantage is that there is a risk of decreased accuracy. It is possible that, e.g. a low
value of one feature may mask high values of other features etc.

When the clustering of observed activities has been performed by the sensors, the re-
sulting clusters are sent to the assessors. There the quality of this clustering is computed
with the chosen clustering quality index. Sections 4.1.1 and 4.1.2 describe the steps used
to compute Dunn’s index and C-index in these assessors. Together with the cluster diam-
eters, this clustering quality evaluation is used to label the clusters with the algorithm of
the respective clustering quality index, as presented in Section 3.3.

Several functions for the computation of cluster parameters were used to perform the
theoretical research, which lead to the findings presented in Chapter 3. Most of these
functions are primarily implemented in the prototype for the computation of the cluster-
ing quality indexes, e.g. the centroid diameter for the computation of Dunn’s index. These
functions provide good description of the physical properties of the clustering, and were
therefore a good source of information for the theoretical research. In addition, functions
that compute other cluster parameters, e.g. the maximum centroid distance, were imple-
mented to investigate different cluster properties when different types of activity were
observed. Another example of such a function is to find the maximum distance between
two instances within the same cluster.

4.1.1 Computation of Dunn’s index

The computation of Dunn’s index is based on measuring the intra-cluster and inter-
cluster distances from the cluster centroids. These operations are not very complex and
the computation of the index is rather fast. The following steps are used to compute
Dunn’s index:

1. Compute the inter-cluster distances between clusters, by using the formula (3.1) to
find the centroid linkage between the clusters.

2. Compute the intra-cluster distances of the clusters, by using the formula (3.3) to find
the centroid diameters.

3. Compute Dunn’s index according to the formula (2.7) presented in Section 2.2: Select
the smallest intra-cluster distance in the clustering and divide this distance by the
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largest inter-cluster distance. In the two-cluster case, there is only one single inter-
cluster distance. This inter-cluster distance is therefore used directly in the formula.

4.1.2 Computation of the modified C-index

Dunn’s index and the C-index take two distinct approaches to evaluate the quality of the
clustering, which can be seen in the way the indexes are computed. While the former
is computed using intra-cluster and inter-cluster distances from the centroids of each
cluster, the latter is computed by measuring the distance between all elements in the
clustering. It is easy to see that the computation of the C-index is much more computa-
tionally complex than Dunn’s index. The following steps are used to compute the partial
indexes, which are used to assemble the modified C-index (the two-cluster case):

1. If there are no empty clusters, we begin by computing the distance between all pairs
in the clustering. The array of these distances is then sorted from small to large. If
there is one empty cluster; set the C-index to zero and skip the remaining steps.

2. Choose a cluster that the partial index has not previously been evaluated from.

3. Compute the distance between pairs within the chosen cluster, S.

4. Find the number of pairs, l, necessary to compute Smax and Smin, with the formula
c(c−1)

2 , where c is the cardinality of the chosen cluster.

5. Compute Smax by adding up the l largest distances between all pairs in the clustering.

6. Compute Smin by adding up the l shortest distances between all pairs in the cluster-
ing.

7. Compute the formula (2.8), presented in Chapter 2.2, to compute the partial index.

8. Repeat Step 2-7 if we have not computed the partial index from both clusters.

When the partial indexes are computed, we can assemble the modified C-index, as
proposed in Section 3.2.1. If we choose to use the C-mean alternative of this modified C-
index, we compute the average of the two partial indexes. To find the other alternative, C-
small, we measure the cluster cardinalities and choose the partial index from the smallest
cluster to represent the modified C-index.

4.2 Experimental setup

Comprehensive simulations were carried out to study the behaviour of the labelling strat-
egy when applied on activity data. Because we used the base system of the prototype
developed by Petrovic et al. [50, 52], it was natural to base our experimental setup on
their setup, with some modifications to satisfy our needs, assumptions and expectations.
The following setup of the prototype was used to study the labelling strategy:

1. In the sensor we applied the K-means clustering algorithm, with K = 2, on 1000
instances of activity vectors at each iteration.

2. Our labelling strategy and a cardinality based labelling strategy were applied in four
different assessors:

2.1 The assessor applies the cluster cardinalities for labelling of activity clusters.
This assessor is mainly used as a reference point to compare our labelling strategy
with cardinality based strategies. A minimum difference threshold was used to
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configure the assessor for optimal performance.

2.2 The assessor applies Dunn’s index for labelling of activity clusters, according to
Algorithm 1. This algorithm has the following parameters that need configuration
to achieve optimal performance: the Dunn’s index threshold ∆D, and the cluster
diameter parameters ∆CD1

and ∆CD2
.

2.3 The assessor applies the C-mean alternative of the modified C-index for labelling
of activity clusters, according to Algorithm 2. This algorithm has the following
parameters that need configuration to achieve optimal performance: the C-mean
index threshold ∆C, and the cluster diameter parameters ∆CD1

and ∆CD2
.

2.4 The assessor applies the C-small alternative of the modified C-index for labelling
of activity clusters, according to Algorithm 2. This algorithm has the following
parameters that need configuration to achieve optimal performance: the C-small
index threshold ∆C, and the cluster diameter parameters ∆CD1

and ∆CD2
. The

assessor was tested with and without condition 4 in Algorithm 2. When condition
4 is applied, the parameter ∆Diff also needs configuration.

We chose the KDD Cup ’99 test data set as traffic source in our simulations of the
labelling strategy. The selection of such test data sets is, according to Mell et al. [44], one
of the challenges of testing IDSs. The main problem is regarding the use of background
traffic in the test data. Four approaches are defined in [44] to handle this problem. Each
of these approaches has advantages and disadvantages, and it is not clear what approach
is the most efficient for testing IDSs:

1. Test data without background traffic:
These data sets only consist of malicious data and can only be used to determine
the detection rate of the system. Such data sets are therefore only appropriate for
reference testing, where the aim is to prove the capability of detecting certain types
of attacks. The assumption behind these data sets is that the detection rate is not af-
fected by the background traffic surrounding the attacks. This assumption often fails
at high levels of background traffic, i.e. when normal traffic vastly outnumbers mali-
cious traffic, which is the situation in most networks. This is emphasized by Axelsson
[1] who presents the base-rate fallacy, which shows that the performance of an IDS
deteriorates at high traffic intensities.

2. Test data derived from real traffic logs:
These data sets consist of injected attack vectors in a real data stream. The advan-
tage of using real data is that it consists of all characteristics and anomalies of a
real network. A drawback it that we cannot be sure that all attack vectors in the test
data set have been identified. The consequence is that it is very difficult to measure
the false positive rates correctly. Another drawback is that there are some legal is-
sues concerned with the use of real data, because the data may consist of sensitive
information that cannot be distributed.

3. Sanitized test data from real traffic logs:
Sanitized data sets solve the legal issues concerned with the use of real data. How-
ever, it can never be guaranteed that 100% of the sensitive information have been
identified and removed from a large data set. The problem with unidentified attacks
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remains present.

4. Artificial simulated test data:
Simulations of a network infrastructure are used to generate the test data sets. Both
attack vectors and background traffic are generated and inserted into the simulated
data sets. This ensures that we can achieve a correct measure of both the false positive
rate and the true positive rate. The drawback is that it is difficult to create a simulation
setup that yields high quality data sets that correctly reflect real networks.

KDD Cup ’99 is an artificial data set, well known and often used in academic commu-
nities. This data set consists of several sequences of massive Denial-of-Service attacks,
because such attacks are typical for the simulated environment it originates from. For
our purpose this is a preferable characteristic of a data set; since the aim of our labelling
strategy is to handle the limited capability of cardinality based labelling strategies to de-
tect massive attacks. We therefore chose this test data set, in spite of the criticism the
quality of the KDD Cup ’99 data set has seen, as discussed in Section 2.4.1.

Receiver operating characteristic (ROC) curves are used to measure the accuracy of
the system. These curves have become an important tool for measuring the performance
in the IDS testing community, because a ROC curve “summarizes the relationship be-
tween two of the most important IDS characteristics: false positive and detection prob-
ability1” [44]. To achieve curves, and not just a single point, we tested different con-
figurations of the parameters used in the labelling algorithms presented in section 3.3.
Since more than one parameter is used in these algorithms, we created automated pro-
cedures/scripts to test all combinations of these parameters within reasonable ranges.

Testing all possible combinations of these parameters is too cumbersome and time
consuming, as these parameters have large ranges of values. However, the two cluster
diameter parameters, which are used in both labelling algorithms, primarily depend on
the observed data used in the simulations. We can therefore find the optimal configu-
ration of these two parameters first. When we have found this configuration, the ROC
curve, describing the system accuracy, is obtained by adjusting the clustering quality in-
dex threshold. Both negative and positive values of the two cluster diameter parameters
must be tested to obtain the optimal configuration. The reason for including negative
values is that peculiar characteristics of the data set may cause the diameter of normal
and malicious clusters to be very similar. It may then be necessary with small negative
values of these parameters in order to separate the activities.

4.3 Expectations

Our “performance expectations” are reflected by the expectations presented in the begin-
ning of this chapter. In addition to this, we expect that the similarity between the Dunn’s
index and the Davies-Bouldin index, proposed and used for labelling clusters by Petrovic
et al. [51], will result in similar detection accuracy. We also expect that the assessor that
applies cardinality based labelling will fail completely because of the high amount of
massive Denial-of-Service attacks present in the data set.

An underlying expectation is that normal and malicious activities are placed in sepa-
rate clusters because of their differences. However, since we apply a “2-means” variant of
the K-means algorithm to perform the clustering in the prototype, this is not always the

1false and true positive rate
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case. The quality of the obtained clustering from the K-means algorithm depends, among
other things, on finding the optimal number of clusters, and the optimal number of clus-
ters is rarely 2. We must therefore expect errors in the resulting clustering, where a few
instances of malicious activities may be present in the cluster that corresponds to normal
activity, and vice versa. The consequence is that we cannot achieve 100% detection rate
and or 0% false alarm rate, even if the labelling algorithm is perfect.

We can measure this error rate by measuring the Hamming distance between the ob-
tained clustering from the “2-means” algorithm and the correct clustering. This measure
shows that the best possible true positive rate that can be achieved is 94%, while the best
possible false positive rate is 7.1% when “2-means” is applied on the KDD Cup ’99 data
set2. Table 6 shows the number of attack vectors incorrectly classified as normal (false
negatives) and the number of normal vectors incorrectly classified as malicious (false
positives), from the clustering of the first 8000 connections in the data set. We see that
a few normal vectors are misplaced in most iterations and that some malicious activities
are incorrectly classified as normal, e.g. the two attack vectors in the clustering of con-
nections 3001 to 4000. In total, the clustering errors produce four false negatives and
316 false positives from these 8000 connections.

Record no. Number of attacks FN Total number of FN FP Total number of FP
1-1000 0 0 0 43 43
1001-2000 0 0 0 66 109
2001-3000 0 0 0 63 172
3001-4000 2 2 2 11 183
4001-5000 0 0 2 18 201
5001-6000 0 0 2 107 308
6001-7000 0 0 2 8 316
7001-8000 376 2 4 0 316

Table 6: Clustering errors due to the use of “2-means”

A consequence of the problem explained above is that these clustering errors may
have an unfavourable effect on the cluster diameters. This may lead to decreased accu-
racy of the labelling algorithm, because these diameters are used directly to determine
the nature of the clusters. One example is a normal vector misplaced into the malicious
cluster in the presence of a massive attack. This misplacement may result in an incor-
rectly large cluster diameter of this cluster. In the worst case, this may cause the labelling
strategy to fail, since this misplaced activity may have “tainted” the cluster diameters.

4.4 Experiments

A total of five experiments were performed to gather the information necessary to anal-
yse the performance of the labelling strategy. In this section, we provide a description
of the procedure used to carry out these experiments. Testing all combinations of all
parameters and thresholds is a time consuming and cumbersome task, highly prone for
errors. Initial experiments were therefore carried out to find the optimal configuration of
the two cluster diameter parameters used in experiments 2 – 5. With this configuration
found, the clustering quality threshold was adjusted separately to obtain the ROC curve.
Both the diameter difference parameters, ∆CD1

and ∆CD2
, were tested in the range from

2The calculation of the best possible TPR and FPR is described in Appendix B
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-1000 to 1000, initially with large intervals and later with very small intervals around
the assumed optimal configuration based on the initial experiments. The optimal config-
uration was achieved with ∆CD1

= 500 and ∆CD2
= −25.

To control that the results were not biased by our procedures for finding the optimal
configuration, we performed control tests after completing the experiments (2 – 5). In
these control tests, we tested all possible combinations of all parameters within a smaller
range around the optimal configuration of all parameters. The control tests showed that
the optimal configuration of the labelling algorithm was obtained by this procedure in
all cases, and confirm that our procedure for finding the optimal configuration is appro-
priate.

4.4.1 Exp. 1: Labelling clusters by means of cluster cardinality

We performed a simple experiment with the use of a cardinality based labelling strategy,
where we adjusted a minimum difference threshold to obtain a ROC curve. This experi-
ment was primarily performed in order to reproduce the results presented by Petrovic et
al. [51, 52], which show that a cardinality based labelling strategy fails completely in the
presence of massive attacks. It also enables us to compare the accuracy of the different
strategies in such environments.

4.4.2 Exp. 2: Labelling clusters by means of Dunn’s index

This experiment was performed to investigate the application of Algorithm 1 in the as-
sessor, where Dunn’s index is used in combination with cluster diameters to label the
obtained clusters. The theoretical research indicated that the range between 1 and 4 is a
reasonable range for adjusting the Dunn’s index threshold (∆D). We therefore adjusted
∆D with small intervals within this range, and with larger intervals outside it. The total
range, for which ∆D was tested, is from 0 to 10.

4.4.3 Exp.3: Labelling clusters by means of modified C-index, C-mean

This experiment was performed to investigate the application of Algorithm 2 in the as-
sessor, where the C-mean alternative of the modified C-index is used in combination with
cluster centroid diameters to label the obtained clusters. The theoretical research indi-
cated that the range between 0 and 0.2 is a reasonable range for adjusting the C-mean
index threshold (∆C). We therefore adjusted ∆C with small intervals within this range,
and with larger intervals outside this range. The total range, for which ∆C was tested, is
from 0 to 1.

4.4.4 Exp. 4 and 5: Labelling clusters by means of modified C-index, C-small

These experiments were performed to investigate the application of Algorithm 2 in the
assessors. In these experiments, the modified C- indexes presented in Section 3.2.1 were
applied in combination with cluster diameters to interpret the nature of the obtained
clusters. We described in Section 3.2.2 that a large difference between the partial indexes
used to assemble the C-small index could indicate poor clustering quality. Two separate
experiments were therefore performed with this assessor. The first experiment (4), where
this finding is ignored, was performed exactly like the experiments 2 and 3. In the other
experiment (5), this condition was considered. It was then also necessary to find the
optimal difference parameter (∆Diff) before we could adjust the C-small index threshold
(∆C) to obtain the ROC curve. The optimal configuration was achieved with ∆Diff = 0.5.

The theoretical research indicated that the range between 0 and 0.2 is a reasonable
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range for adjusting the ∆C threshold. We therefore adjusted ∆C with small intervals
within this range, and with larger intervals outside it. The total range, for which ∆C was
tested, is from 0 to 1.

4.5 Results

The results from the experiments described in Section 4.4 are used to investigate and
evaluate the accuracy of our labelling strategy. In this section we present the accuracy
of the labelling strategy by means of ROC curves. This is followed by analyses of the
labelling algorithms, when applied on the test data set with optimal configuration. A
discussion and summary regarding these results are given in Section 4.6 and Figure 9.

To describe the general application of the labelling algorithms, we use the first 16
iterations performed by the prototype to label the KDD Cup ’99 data set, where the
first 16000 connections are clustered and labelled. We use these iterations because we
observe all conditions that the labelling algorithms must take into consideration, when
investigating the resulting clusterings of these connections; i.e. normal activities, a few
standalone attacks and a massive Denial-of-Service (Smurf) attack.

4.5.1 Labelling clusters by means of cluster cardinality

Figure 4: ROC curve describing the system accuracy, when a cardinality based labelling algorithm
is applied in the assessor

Experiment 1 was performed to reproduce the results presented by Petrovic et al.
[51, 52], which showed that cardinality based labelling fails completely in the presence
of many massive attacks. The accuracy of the cardinality based labelling strategy is pre-
sented by the ROC curve in Figure 4 and confirms the results presented in [51, 52]. By
studying this ROC curve, we observe that the true positive rate is very poor (below 20%)
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for most configurations. This confirms our expectation that cardinality based labelling
is not well suited to detect massive attacks. The false positive rate is rather good (be-
low 10%) for the best configurations of the system and indicates that cardinality based
labelling strategies are well suited for labelling when no massive attacks are present.
This is in accordance with results presented in various approaches for clustering based
intrusion detection, e.g. by Portnoy et al. in [53].

4.5.2 Labelling clusters by means of Dunn’s index

Experiment 2 was performed to evaluate the performance of the system when Dunn’s
index is applied for labelling activity clusters. By following the procedure for adjusting
the parameters of Algorithm 1 described in Section 4.4, the ROC curve illustrated in
Figure 5 was obtained. The optimal configuration of Algorithm 1 is achieved with ∆D =

2.2, ∆CD1
= 500 and ∆CD2

= −25. With this configuration, the true positive rate is
85.9% and the false positive rate is 15.3%.

Figure 5: ROC curve describing the system accuracy, when Dunn’s index is applied in the assessor
to label activity clusters. This curve was obtained with the following configuration of Algorithm 1:
varying ∆D 0-10, ∆CD1 = 500 and ∆CD2 = −25.

The results presented in Figure 5 are, as expected, similar to the results achieved by
Petrovic et al. in [51], where the Davies-Bouldin index is applied for labelling clusters.
This similarity can be explained with the fact that the two indexes utilize the same clus-
tering properties to compute the clustering quality, although they are used quite differ-
ently. Compared to the results from the cardinality based labelling presented in Section
4.5.1, we see that our labelling strategy yields much better detection rate. This supports
our expectation that our labelling strategy is better suited for detection of massive attacks
than cardinality based strategies.
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Table 7 shows the application of Algorithm 1 on the first 16000 connections in the
KDD Cup ’99 data set. In addition to describing the number of attacks present in the
observed connections, each column in this table shows the values of the parameters used
by the labelling algorithm and what relabelling condition was applied on the clustering.
If the relabelling condition is 0, this means that the initial labelling is correct. The appli-
cation of Algorithm 1 does not produce any labelling errors on the clusterings described
in Table 7.

Record no. Attacks Dunn’s index CD1 CD2 Relabel
1–1000 0 1.08 32759 7109 2
1001–2000 0 1.40 17273 5216 2
2001–3000 0 1.47 16234 4772 2
3001–4000 2 1.42 50254 6980 2
4001–5000 0 0.75 76358 7274 2
5001–6000 0 1.35 4345 14159 0
6001–7000 0 1.47 7488 85019 0
7001–8000 376 7.05 70 7096 3
8001–9000 1000 0 25 - 1
9001–10000 1000 0 11 - 1
10001–11000 1000 0 0 - 1
11001–12000 321 6.85 190 7303 3
12001–13000 0 0.99 33783 5844 2
13001–14000 0 1.21 5064 22257 0
14001–15000 0 1.06 243757 8973 2
15001–16000 21 1.12 18071 8786 2

Table 7: Labelling of the first 16000 records from the KDD Cup ’99, with the use of Algorithm 1. This
labelling is achieved with the following configuration: ∆D = 2.2, ∆CD1 = 500 and ∆CD2 = −25.
CD1 and CD2 are the centroid diameters of the two clusters.

The clustering of connections 7001 to 8000 is a good example of the application of
Algorithm 1 on the test data set. In this clustering, cluster 1 consists of connections from
a Smurf attack and cluster 2 consists of various normal activities. Cluster 1 is initially
assumed to correspond to normal activities and it is therefore necessary to relabel the
clusters. The clustering quality evaluation yields a value well above the threshold (∆D),
which indicates that a massive attack is present. From our theoretical research, we recall
that the cluster with the most compact cluster, i.e. the smallest cluster diameter, probably
is the malicious cluster in the presence of a massive attack. In Table 7, we see that
cluster 1 has a much smaller cluster diameter than cluster 2. This indicates that the
initial labelling is incorrect, and we relabel the clusters with condition 3 of Algorithm 1.

Another example is the following clustering of connections 8001–9000, where we
have one empty cluster. In this case Dunn’s index is zero, because there is no inter-
cluster distance to measure. The system applies relabelling condition 1 on this clustering,
because cluster 2 is empty and the cluster diameter of the non-empty cluster is very small,
which indicates that the cluster consists of malicious activities.

It is reported in literature, see e.g. [22, 23], that Dunn’s index may be vulnerable for
noise, e.g. outliers, in the data set and produces unstable results in such situations. We
have only seen some few examples of this, e.g. in the clustering of connections 346001–
347000. In this clustering we have a total of 181 malicious connections. These con-
nections are mainly connections of Ipsweep and Teardrop attacks, but we also find one
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Portsweep attack, one “Ping of Death” attack3 and one Buffer overflow exploit. The three
latter appears as outliers in the vector space, which causes the Dunn’s index to pro-
duce an incorrectly low value. This indicates that no massive attack is present and the
algorithm therefore incorrectly labels the cluster with the smallest cluster diameter as
normal. The result is that we get 181 false negatives and 819 false positives from these
1000 connections. By adjusting the clustering quality threshold or the cluster diameter
parameters we can detect most of these attacks, but this will result in other errors.

4.5.3 Labelling clusters by means of modified C-index index, C-mean

Experiment 3 was performed to evaluate the performance of the system when the modi-
fied C-index, C-mean, is applied for labelling activity clusters. By following the procedure
for adjusting the parameters of Algorithm 2 described in Section 4.4, the ROC curve il-
lustrated in Figure 6 was obtained. The optimal configuration of Algorithm 1 is achieved
with ∆C = 0.07, ∆CD1

= 500 and ∆CD2
= −25. With this configuration, the true positive

rate is 84.7% and the false positive rate is 22.8%.

Figure 6: ROC curve describing the system accuracy, when the modified C-index (C-mean) is ap-
plied in the assessor to label activity clusters. This curve was obtained with the following configu-
ration of Algorithm 2: varying ∆C 0-1, ∆CD1 = 500 and ∆CD2 = −25.

We expected that the application of the modified C-index should yield better accuracy
than Dunn’s index, and the accuracy of the labelling is therefore below the expectations.
The slightly decreased true positive rate compared to Dunn’s index is acceptable, as it is
more important to reduce the number of false positives than increasing the true positive
rate. However, as illustrated in Figure 6, we see that the false positive rate is very poor
(well above 20%) for configurations that yield acceptable true positive rates.

3oversized ping packet causing the targeted host to malfunction [32]
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The application of Algorithm 2, with the use of the C-mean index, on the first 16000
connections in the data set is described in Table 8. Even though the total performance
of the system proved to be rather poor, the application of C-mean did not produce any
labelling errors on these clusterings. This suggests that the use of the C-mean index
produces proper labelling when the clusters do not consist of any irregularities.

Record no. Attacks C-mean CD1 CD2 Relabel
1–1000 0 0.20 32759 7109 2
1001–2000 0 0.15 17273 5216 2
2001–3000 0 0.10 16234 4772 2
3001–4000 2 0.17 50254 6980 2
4001–5000 0 0.23 76358 7274 2
5001–6000 0 0.11 4345 14159 0
6001–7000 0 0.13 7488 85019 0
7001–8000 376 0.04 70 7096 3
8001–9000 1000 0 25 - 1
9001–10000 1000 0 11 - 1
10001–11000 1000 0 0 - 1
11001–12000 321 0.04 190 7303 3
12001–13000 0 0.13 33783 5844 2
13001–14000 0 0.11 5064 22257 0
14001–15000 0 0.19 243757 8973 2
15001–16000 21 0.31 18071 8786 2

Table 8: Labelling of the first 16000 records from the KDD Cup ’99, with the use of Algorithm
2 (without condition 4) and C-mean. This labelling is achieved with the following configuration:
∆C = 0.07, ∆CD1 = 500 and ∆CD2 = −25

The main cause for the poor accuracy originates from the problem described in Sec-
tion 3.2. When we have clusters of very different cardinality, there is a risk that irregu-
larities in the data set may cause incorrect clustering quality evaluations. The problem is
that the inter- and intra-cluster distances are not equally considered in the partial indexes
in these situations. Another problem is that a few distances may dominate the other dis-
tances in the evaluations. Most clusterings of the KDD Cup ’99 data set consist of clusters
with different cardinalities, and irregularities within these clusterings may then result in
an incorrect partial index. An error in one of these partial indexes will therefore influ-
ence the output of C-mean, since the average of the partial indexes is used to compute
the index. The result is many inaccurate clustering quality evaluations, which is the main
contributor to the poor performance.

Outliers are a common cause of errors in the computation of the partial indexes, as
discussed in section 3.2.2. The KDD Cup ’99 data set consists of many standalone attacks,
some of which will appear as outliers in the clustering space and lead to incorrect cluster-
ing quality evaluations. One example is the clustering of connections 76001–77000. The
malicious connections in this clustering mainly consist of scanning attacks, but they also
consist of a few Imap4 and Land attacks5. These latter attacks appear as outliers in the
clustering space, and causes C-mean to produce an incorrect evaluation of the clustering
quality. As we discussed in section 3.2.2, the outliers may cause very different effect on
the evaluations in different situations. The consequence is that C-means yields unstable

4Buffer overflow attack on the Imap service [32]
5Denial-of-Service attack with spoofed source IP address equal to the destination address [32]
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results in these situations. It is also very difficult, if possible, to find configurations that
yield proper labelling accuracy in such situations. By studying the ROC curves in Figure
6–8, we see this instability and the effect this has on the labelling accuracy; as the fluctu-
ations in the ROC curve in Figure 6 are much larger than what is seen in the ROC curves
in Figure 7 and 8. This indicates that using the average of the two partial indexes does
not handle the outlier problem well.

4.5.4 Labelling clusters by means of modified C-index index, C-small

Experiment 4 was performed to evaluate the performance of the system when the modi-
fied C-index, C-small, is applied for labelling activity clusters. By following the procedure
for adjusting the parameters of Algorithm 2 described in Section 4.4, the ROC curve il-
lustrated in Figure 7 was obtained. The optimal configuration of Algorithm 2 is achieved
with ∆C = 0.095, ∆CD1

= 500 and ∆CD2
= −25. With this configuration, the true posi-

tive rate is 84.5% and the false positive rate is 16.1%.

Figure 7: ROC curve describing the system accuracy, when the modified C-index (C-small) is ap-
plied in the assessor to label activity clusters. This curve was obtained without considering con-
dition 4 in Algorithm 2 and with the following configuration: varying ∆C 0-1, ∆CD1 = 500 and
∆CD2 = −25.

Compared to C-mean, C-small yields good improvement of the evaluation accuracy.
Even so, the application of the modified C-index is still slightly less accurate than the
application of Dunn’s index, which is in opposition to our expectations regarding the
labelling accuracy. These results do, however, show that the C-small alternative for the
modified C-index provides proper evaluations of the clustering quality. They also confirm
our assumption that both intra-cluster and inter-cluster distances are more equally con-
sidered with the C-small alternative. In addition, we expect that the labelling accuracy
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will improve when condition 4 in Algorithm 2 is considered in experiment 5.
Before we present the results from experiment 5, where condition 4 is considered,

we describe the application of Algorithm 2 on the first 16000 connections in the KDD
Cup ’99 data set. Since condition 4 does not apply to any of the clusterings in Table
9, this also describes the application of Algorithm 2 in experiment 5. By studying the
values of C-mean and C-small in Table 8 and 9, we see that the evaluations with C-
small yields values further away from the clustering quality threshold than C-mean. This
indicates, what is also shown in Figure 6 and 7, that C-small yields improved evaluation
accuracy. An example is the clustering of connections 7001-8000, where C-mean yields
a value quite close to the optimal threshold, while C-small produces a value that clearly
indicates that a massive attack is present.

Record no. Attacks C-small CD1 CD2 Relabel
1–1000 0 0.17 32759 7109 2
1001–2000 0 0.17 17273 5216 2
2001–3000 0 0.19 16234 4772 2
3001–4000 2 0.30 50254 6980 2
4001–5000 0 0.23 76358 7274 2
5001–6000 0 0.19 4345 14159 0
6001–7000 0 0.26 7488 85019 0
7001–8000 376 0.00 70 7096 3
8001–9000 1000 0 25 - 1
9001–10000 1000 0 11 - 1
10001–11000 1000 0 0 - 1
11001–12000 321 0.00 190 7303 3
12001–13000 0 0.12 33783 5844 2
13001–14000 0 0.19 5064 22257 0
14001–15000 0 0.39 243757 8973 2
15001–16000 21 0.13 18071 8786 2

Table 9: Labelling of the first 16000 records from the KDD Cup ’99, with the use of Algorithm
2 with C-small. This labelling is achieved with the following configuration: ∆CD1 = 500 and
∆CD2 = −25. For experiment 4 : ∆C = 0.07 and for experiment 5: ∆C = 0.095

The clustering of connections 15001–16000 in Table 9 is a good example of the appli-
cation of Algorithm 2 with the use of C-small, and demonstrates the detection of attacks
when there is no massive attack present in the observed activities. This clustering con-
sists of 21 malicious connections, 20 Buffer overflow attacks on the Imap service and one
password guessing attempt, which are initially clustered into cluster 1 and assumed to be
normal activity. C-small correctly indicates that there is no massive attack present in this
clustering, and the cluster with the smallest cluster diameter is probably the normal clus-
ter. According to relabelling condition 2, this means that the initial labelling is incorrect
and the labelling of the clusters is changed.

In sections 3.2.1 and 3.2.2 we claimed that the presence of outliers could cause C-
small to produce inaccurate evaluations. This is also a common source of errors when
C-small is applied for labelling through Algorithm 2. We reuse the first example given
in Section 3.2.2 to demonstrate these errors. In the clustering of connections 452001–
453000, four Buffer overflow attacks and one Root kit exploits are clustered together
into a small cluster. As discussed in Section 3.2.2, the outliers in this clustering causes C-
small to incorrectly indicate good clustering quality. The consequence of this error in the
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quality evaluation is incorrect labelling by the labelling algorithm. Because of the incor-
rect evaluation, the relabelling algorithm incorrectly concludes that the initial labelling
is correct. In Section 3.2.2, we proposed to use the opposing partial indexes in these
situations to determine the clustering quality, which lead to condition 4 in Algorithm 2.

Condition 4 is considered in Experiment 5, where C-small is applied through Algo-
rithm 2 for labelling the obtained clusters. By following the procedure for adjusting the
parameters of Algorithm 2 described in Section 4.4, the ROC curve illustrated in Figure
8 was obtained. The optimal configuration of Algorithm 2 is achieved with ∆C = 0.095,
∆CD1

= 500, ∆CD2
= −25 and ∆Diff = 0.5. With this configuration, the true positive

rate is 84.6% and the false positive rate is 12.9%. The ROC curve confirms our claim
that the difference between the partial indexes, used to assemble C-small, can be used
to determine the clustering quality. For most configurations the application of condition
4 decreases the false positive rate by 2.5–3.5%, while maintaining the same or in some
situations also improving the true positive rate.

Figure 8: ROC curve describing the system accuracy, when the modified C-index (C-small) is ap-
plied in the assessor to label activity clusters. This curve was obtained by considering condition 4
in Algorithm 2 and using the following configuration: varying ∆C 0-1, ∆CD1 = 500 , ∆CD2 = −25

and ∆Diff = 0.5.

We continue to use the clustering of connections 452001–453000 to describe the
application of condition 4 and demonstrate the effect this condition has on the labelling
accuracy. The partial indexes computed from this clustering is shown in Table 5, and show
that the difference between the partial indexes is approximately 0.89. This is well above
the difference threshold ∆Diff. According to condition 4, the labelling algorithm should
then adjust the clustering quality index to indicate poor clustering quality. Because the
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C-small index now indicates poor clustering quality, the most compact cluster is probably
the normal cluster. Algorithm 2 therefore detects that the initial labelling is incorrect,
and correctly relabels the clusters when condition 4 is considered.

Our investigation of Algorithm 2 did not find any typical labelling situations that lead
to errors when the C-small is applied and condition 4 is considered. The errors we did
find are all related to the adjustment of the system parameters or the errors described in
the following section.

4.5.5 Clustering errors

Many of the errors produced by the system are not caused by the labelling algorithm
itself, but by the clustering algorithm used in the prototype and subsequent errors related
to this algorithm. In this section, we describe typical errors produced by the system,
independent of the applied labelling algorithms or clustering quality indexes.

Application of Algorithm 1 and 2 on the first 16000 connections does not produce
any incorrect labelling of the clusters. We do, however, have some false positives and a
few false negatives, even though the algorithms produce proper labelling. The reason is
the clustering errors caused by the use of “2-means”, as discussed in Section 4.3. These
clustering errors cause that we e.g. seldom obtain an empty malicious cluster in cases
where there are only normal connections in the observed data. The first column of Table
7 – 9 is an example of this, which describes the clustering of the first 1000 connections
in the data set. In this clustering, there are 43 benign connections that, according to
“2-means”, are so different from the rest of the connections that they must be placed in
a separate cluster. The labelling algorithm must therefore assume that these misplaced
activities are of a different nature than the connections in the other cluster, which leads to
false positives. To solve this, we could apply a more sophisticated and accurate clustering
algorithm, e.g. one of those mentioned in Chapter 2. The problem with the use of such
algorithms is high time complexity, which we discuss further in Section 4.6.

We observe several series of massive Neptune attacks in the KDD Cup ’99 data set,
where all observed connections are attacks. About half of the clustering of these connec-
tions does not produce a clustering with one empty cluster, even though the observed
Neptune attacks are very similar. In most of these situations we obtain clusterings where
one cluster consists of approximately 950 connections, and the other of approximately
50 connections. The problem is that since both clusters have very small cluster diame-
ters, it becomes impossible to determine which cluster to label as normal and malicious.
This clustering error provides a good demonstration of the subsequent problems we have
observed due to the clustering errors. Even though there are only approximately 50 mis-
placed connections in the clustering, the clustering error may become the direct cause of
950 incorrectly labelled connections. We have also observed a few instances where the
same clustering error is produced when Smurf attacks are observed. In this situation the
cluster sizes are approximately 650 and 350. Because the KDD Cup ’99 consists of many
series of these two attack types, this error is the main contributor to the reduced true
positive rate in the system.

Another typical situation that may cause the labelling algorithms to fail is the pres-
ence of two or more different massive attacks in the observed activities. This is the case in
the clustering of e.g. connections 91001–92000, which consists of two different scanning
attacks; Ipsweep and Satan. These two different scanning techniques are very different
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from the normal traffic and are therefore placed together in a separate cluster. The prob-
lem is that they are also very different from each other, which leads to a malicious cluster
that consists of two compact groups distant from each other. The cluster diameter of the
malicious cluster is therefore larger than the normal cluster. When the clustering quality
indexes correctly indicate that a massive attack is present, the labelling algorithm incor-
rectly labels the most compact cluster as malicious. The problem is related to the use of
“2-means” for clustering. A solution to this specific problem, is to use K-means with e.g.
K = 3, which will find two compact (malicious) clusters and one relatively wide (nor-
mal) cluster from these connections. However, even though the same principles behind
our labelling strategy still hold, this will require a more complex labelling algorithm.

In one situation the K-means algorithm fails completely. Connections 42001–43000
consist of 127 Ipsweep connections and 873 connections of various benign activities.
Even though the resulting cluster has an enormous cluster diameter, the algorithm places
all connections into the same cluster. The reason behind this error has not been inves-
tigated further, but we register that this error produces parameters that may cause the
algorithm to incorrectly label the clustering.

4.6 Discussion

In this section, we summarize and discuss the results and analyses presented in section
4.5. The ROC curves obtained in our experiments are all displayed in Figure 9, and
illustrate the difference in accuracy between the applied indexes and strategies.

Figure 9: ROC curves from experiment 1-5, displaying the accuracy of the different algorithms and
clustering quality indexes. C-small 1 corresponds to experiment 4 and C-small 2 to experiment 5.
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The curves in Figure 9 show that the best true positive rate was achieved with the
application of Dunn’s index in Algorithm 1. We do, however, claim that the application of
C-small yields the best overall system accuracy, when condition 4 in Algorithm 2 is con-
sidered (C-small 2 in Figure 9). The reason is that the false positive rate is considerably
improved compared to the other indexes, while a good true positive rate is maintained.
This is in accordance with our expectations regarding the system accuracy when the mod-
ified C-indexes are applied. However, the ROC curves also show that this expectation fails
when the C-mean alternative for the modified C-index is applied.

The ROC curves also show that the application of all indexes in our labelling strategy
outperforms the detection rate of the cardinality based labelling strategy on the KDD Cup
’99 data set. This data set consists of a very high number of massive attacks. Time and
resource constraints have limited us from testing the prototype on other data sets, which
might provide more realistic environments than the KDD Cup ’99. However, we have
manually inspected the application of our labelling strategy in sections of the data set
that do not consist of massive attacks. These inspections show that our labelling strategy
produces almost exactly the same true and false positive rates as the cardinality based
strategy in these sections. This is also reported by Petrovic et al. in [51, 52], where this
labelling strategy, with the use of two other clustering quality indexes, is applied on
data sets where the massive attacks are filtered out. These results therefore give a strong
indication that our labelling strategy solves the problem of detecting massive attacks with
cardinality based strategies.

We described our performance expectations for the system efficiency at the beginning
of this chapter, and we assumed that the computation of the modified C-indexes is rather
slow. The time complexity of the two indexes is analysed in Chapter 3. We do, however,
mention the computation time of the two indexes in our experiments here to illustrate the
difference in efficiency between the two indexes. The clustering and labelling of 490000
connections take approximately 20 minutes when the modified C-indexes are computed
on a standard workstation PC. When Dunn’s index is applied the computation time is, on
the other hand, approximately 3.5 minutes on the same workstation. In both cases, ap-
proximately 2 minutes of the computation time is used to cluster the data. Even though
the implementations of the clustering quality indexes are not by any means optimized,
this shows that the modified C-indexes have much longer computation time than Dunn’s
index. It can be argued that a reduction of the number of observed connections at each
iteration may improve the computation time, but probably at the cost of reduced detec-
tion accuracy. This is a trade-off the system administrator must take into consideration
for the specific situation.

In Section 4.5.3, we observed that the application of C-mean produces more fluctua-
tions in the ROC curve than the other indexes. The reason is the outliers that are present
in the output from the clustering of the KDD Cup ’99 data set. We also observe that the
C-small alternative produces some fluctuations in the ROC curves. There are two reasons
for this. The first reason, which also contributes to the fluctuations seen with C-mean,
is that the C-index is very sensitive. This is because the modified C-indexes consider
many distances between instances in the clustering, which is also the main reason for
the improved accuracy our experiments have demonstrated. The other reason is that the
smallest cluster only consists of a very few elements in some of the obtained cluster-
ings. In these situations, the C-small index considers too few distances to achieve good
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evaluations. This instability, which is only seen a few times, contributes to the problem
of adjusting the system parameters, an issue we discuss closer below. However, we did
not observe this problem to cause incorrect labelling of the KDD Cup ’99 data set, when
C-small was applied with the optimal configuration.

As mentioned in Section 4.5.2, it is reported that Dunn’s index is vulnerable for noise,
e.g. outliers, in the data set. We therefore expected that this instability would cause un-
stable evaluations, which would lead to unstable labelling and fluctuations in the ROC
curves. According to Gunter et al. [22], the reason is that only two distances are con-
sidered, i.e. the minimum inter-cluster distance and the maximum intra-cluster distance.
However, as we reported in Section 4.5.2, we have only seen a few examples of this. The
reason is that the index does not produce unstable evaluations in the two-cluster case. In
this situation there are only two intra-cluster distances and one inter-cluster distance to
consider, and Dunn’s index therefore provides stable clustering quality evaluations.

In our experimental work, we have observed that most of the errors produced by
the system are caused by the clustering algorithm, regardless of the applied labelling
algorithm. These errors can often be solved by the implementation of a more sophisti-
cated and accurate clustering algorithm. The drawback is that a more sophisticated and
accurate clustering algorithm often comes with the cost of high time complexity [27]. Ac-
cording to Xu et al. [60], there will always be a trade-off between the speed and accuracy
of a clustering algorithm. It is therefore difficult to determine what clustering algorithm
is best suited for the specific purpose.

For an IDS, the efficiency is as important as the accuracy, and this must be consid-
ered when the clustering algorithm is chosen. Real-time operation is necessary for an
IDS analyst to act, i.e. perform countermeasures, upon observed attacks on the protected
system. Poor IDS efficiency may lead to situations where the IDS must discard observed
activities to achieve real-time operation. The danger is that these discarded activities are
malicious. Because these activities are never investigated by the IDS, they must be con-
sidered as false negatives and this renders the IDS unreliable. We did see in our review
of related work, see Section 2.3, that improvements of the K-means algorithm have been
proposed for intrusion detection, which may provide the desired accuracy without too
high efficiency penalty. These algorithms will, however, not always produce a two-cluster
output, and more complex labelling algorithms must therefore be implemented to label
these clusterings. On the other hand, the use of two clusters is only applied in our proto-
type to prove the concept and principles behind our labelling strategy, and this strategy
is not limited to the two-cluster case.

We may expect that Dunn’s index’ vulnerability for noise increases by the number of
clusters in the clustering, and that the application of Dunn’s index will produce more
unstable evaluations in a system that outputs an arbitrary number of clusters. This is,
however, not the case, according to Halkidi et al. [23]. Another issue is that more so-
phisticated clustering algorithms handle noise much better than K-means with K = 2,
and will, among other things, place outliers in separate clusters. This reduces the prob-
lem with noise in the clusterings and thereby the probability of unstable evaluations
with Dunn’s index. We therefore expect that the application of Dunn’s index should yield
proper evaluation of the clustering quality in these situations as well. The use of our
proposed modified C-indexes for quality evaluations in such situations requires further
research. Our expectations are, however, that the accuracy of C-small should remain
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rather unaffected when the smallest clusters are of reasonable sizes, and that C-mean
should achieve improved accuracy because of the improved noise handling.

Most of the few labelling errors caused directly by the labelling algorithms in our ex-
periments can be corrected by adjusting one or more of the parameters in the algorithms.
Finding the optimal configuration of these parameters is, however, very difficult. There
is always a trade-off between the number of true and false positives, when these system
parameters are configured. The reason is that by adjusting the parameters in order to
detect one kind of attack, we may, and in most situations do, end up with a configuration
that fails to detect other attacks. This is demonstrated with the ROC curves we have used
to measure the system accuracy, which illustrates the relationship between the true and
false positive rate at different configurations. In these curves, we see that by adjusting
the system parameters we can achieve a higher detection rate, but at the expense of a
higher false positive rate and vice versa.

The optimal configuration of an IDS is also very dependant on the observed data, and
the environment surrounding the protected system therefore contributes to the problem
of tuning the system parameters. The consequence is that a configuration that yields good
accuracy in one environment may produce poor accuracy in another. Factors that must
be taken into consideration when configuring the IDS involve issues such as: what assets
must be protected, what kinds of attacks must be detected to protect these assets, which
threats do these assets face, vulnerability analysis etc. In the end it is up to the system
administrators to find the optimal IDS configuration for the given environment. The art of
finding this configuration is then based on factors such as: system requirements, system
knowledge and experience, and in many situations also the system administrator’s gut
feeling.
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5 Conclusions

A major challenge in clustering based intrusion detection systems is to interpret and
label the observed activities, especially the proper labelling of massive attacks. This the-
sis has investigated the application of Dunn’s index and C-index in a labelling strategy
for clustering based intrusion detection systems that handles this challenge. In this la-
belling strategy, Dunn’s index and C-index are applied to control the observed activities
for the presence of massive attacks. When the clustering quality indexes have established
whether or not a massive attack is present, the labelling strategy uses the cluster diame-
ters to interpret the nature of the observed activities.

In order to test and evaluate the application of these two cluster quality indexes, a
prototype was developed to simulate a clustering based IDS on the KDD Cup ’99 data set.
This data set has seen some criticism regarding its quality, but it was chosen because it is
a good source of massive attacks. Through the simulations, it has been demonstrated ex-
perimentally that this labelling strategy outperforms classical cardinality based labelling
strategies in the presence of several massive attacks. The results presented in Chapter 4
are achieved with the parameters of the labelling algorithms fine tuned to fit the KDD
Cup ’99 data set. This may have lead to overestimated results, because of the character-
istics of this data set. However, through manual inspection of the sections of the data set
that do not consist of massive attacks, we have seen that the labelling accuracy of our
labelling strategy is similar to cardinality based strategies in situations without massive
attacks. The parameters in the labelling algorithm may also be used to tune the intru-
sion detection system to adapt to the specific characteristics of a given environment. We
therefore conclude that our labelling strategy handles the limitation of the cardinality
based labelling strategies regarding the detection of massive attacks.

In Section 1.4 we presented three research questions we aimed to answer in the
course of this work. Here we summarize the answers to these questions, based on the
analyses and discussions presented in Chapters 3 and 4:

1. Can Dunn’s index and C-index be applied in a labelling strategy for clustering based
intrusion detection systems?

Our concern regarding the application of Dunn’s index was that it has been reported
in literature that the evaluation index is vulnerable to noise in the data set to be
clustered. It has been shown through our experimental work that it is not a major
problem in the two-cluster case. Dunn’s index produces good and stable evaluations
of the clustering quality in this situation, and is therefore suitable for our labelling
strategy.

The C-index cannot in its original form be applied in the labelling strategy, because
it requires equal cluster sizes to produce stable evaluations. We have proposed two
modifications of the C-index to handle this limitation: C-mean and C-small. Through
our experimental work, it has been shown that the C-mean alternative only produces
proper clustering quality evaluations at very low levels of noise in the clustered data.
The application of the C-mean index is therefore not suitable, as noise, which is often
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outliers caused by standalone attacks, must be expected in clustering based intru-
sion detection systems. C-small, on the other hand, handles noise much better and
produced stable and accurate results in our simulations. The C-small alternative may
therefore be successfully applied in our labelling strategy.

2. Which combinations of the clustering quality indexes and clustering properties yield the
best accuracy of the labelling strategy?

It is shown in Chapter 3 that the compactness of the obtained clusters depends on
the nature of the observed activities and whether or not a massive attack is present
in these activities. The cluster diameters can therefore be used to interpret the nature
of the clusters. Our investigations show that the combination of a clustering quality
index, which controls the clustering for the presence of a massive attack, and the
cluster diameters yields the best labelling accuracy.

In our theoretical research we discovered that the presence of so-called outliers in the
clustering space could have a negative influence on the clustering quality evaluations
when the C-small index is applied. As a solution to this problem, we have proposed
to use the difference between the two partial indexes, used to assemble the modified
C-index, to correctly evaluate the clustering in such cases. Our simulations show that
the consideration of this clustering property increases the labelling accuracy when
C-small is applied.

3. What clustering quality index is best suited for labelling activity clusters, regarding ac-
curacy and efficiency?

There is no unambiguous answer to this question. The application of C-small in the
labelling strategy yields better accuracy than the applications of the other clustering
quality indexes. However, this high accuracy comes at the cost of high time complex-
ity. For this reason, the application of the C-small index is only best suited in situations
where real-time operation is not necessary, e.g. forensic investigations of historical
data. Real-time operation is important for most intrusion detection systems. The best
overall performance, regarding both efficiency and accuracy, is then achieved with
the application of Dunn’s index.

Compared to the Davies-Bouldin and Silhouette indexes, applied in the same labelling
strategy by Petrovic et al. [50, 51, 52], the application of Dunn’s index yields simi-
lar labelling accuracy as the Davies-Bouldin index. Both indexes have linear time
complexity in the number of observed activities, which makes them evenly suited
for intrusion detection. Both the modified C-index and the Silhouette index yields
improved labelling accuracy, but at the cost of too high time complexity.
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6 Further work

This thesis has studied the application of Dunn’s index and C-index in a labelling strategy
for clustering based IDSs. Time and resource constraints have limited our area of focus
for this thesis. This section describes some interesting topics regarding the application of
the clustering quality indexes that we feel deserve further research.

As mentioned on several occasions, the KDD Cup ’99 data set consists of many massive
attacks. Such a heavily attacked environment is not realistic for most networks other
than military installations, from which the data set originates from. It would therefore
be interesting to study the application of the labelling strategy on data sets that provide
more realistic simulations. The problem is that very few labelled test data sets have been
made publicly available. A solution is to filter out most of the massive attacks in the
KDD Cup ’99, but this filtration may again produce an unrealistic data set and this attack
filtration must be performed with care.

In our experimental work, we emphasised that most labelling errors were caused
by clustering errors from the K-means algorithm. It would therefore be very interesting
to study the labelling algorithm when these errors are reduced to a minimum, e.g. by
means of a more sophisticated and accurate clustering algorithm. The consequence is
that the improved accuracy comes at the cost of increased time complexity. However, as
the accuracy may be considerably increased, this may be a desirable trade-off.

A subsequent problem associated with the use of more sophisticated clustering al-
gorithms is that these algorithms will output more than two clusters. Further research
is therefore necessary to evolve the labelling strategy presented in this thesis to handle
arbitrary numbers of clusters. Possible approaches involve merging of clusters into the
two-cluster case or a few clusters, or more complex labelling algorithms for labelling
an array of clusters. Another issue that requires further research is the application of
our proposed modified C-indexes in other situations than the two-cluster case. As these
indexes have been developed with the two-cluster situation in mind, they may show
different behaviour in other situations.

There are also several topics regarding the application of the clustering quality in-
dexes that may be interesting to study further. As discussed in Chapter 4, Dunn’s index
is vulnerable to noise in the clustering space. Pal et al. [48] have proposed three indexes
based on Dunn’s index that are more robust against noise. These indexes do not add
considerable time complexity to the application of the index and it would therefore be
interesting to investigate the application of these indexes in the labelling strategy. The
major problem concerning the use of the proposed C-small index is the high time com-
plexity. This may be solved by reducing the number of observed activities at the time, at
the expense of decreased accuracy. It would, however, be more interesting to see whether
it is possible to reduce the number of distances considered by the C-index, while remain-
ing the good evaluation accuracy.

55





Labelling clusters in an anomaly based IDS by means of clustering quality indexes

Bibliography

[1] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. Infor-
mation and System Security, 3(3):186–205, 2000.

[2] R. Bace and P. Mell. Intrusion Detection Systems. National Institute of Standards
and Technology (NIST), Special Publication 800-31, 2001.

[3] R. G. Bace. Intrusion detection. Macmillan Publishing Co., Inc., Indianapolis, IN,
USA, 2000.

[4] E. L. Barse and E. Jonsson. Extracting attack manifestations to determine log data
requirements for intrusion detection. In ACSAC ’04: Proceedings of the 20th Annual
Computer Security Applications Conference, pages 158–167, Washington, DC, USA,
2004. IEEE Computer Society.

[5] P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue
Software, San Jose, CA, 2002.

[6] Matt Bishop. Computer Security – Art and Science. Addison Wesley, 2003.

[7] N. Bolshakova and F. Azuaje. Cluster validation techniques for genome expression
data, 2003.

[8] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis. A methodology for clustering
xml documents by structure. Inf. Syst., 31(3):187–228, 2006.

[9] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Trans. Pattern
Analysis and Machine Intelligence, 1(2):224–227, 1979.

[10] D. E. Denning. An Intrusion-Detection Model. IEEE Trans. Software Eng.,
13(2):222–232, 1987.

[11] J.C. Dunn. Well separated clusters and optimal fuzzy partitions. J. Cybernetics,
1974.

[12] J. P. Egan. Signal Detection Theory and ROC Analysis. Academic Press, San Diego,
CA, 1975.

[13] C. Elkan. Results of the kdd’99 classifier learning. SIGKDD Explor. Newsl., 1(2):63–
64, 2000.

[14] E. Eskin. Anomaly detection over noisy data using learned probability distribu-
tions. In Proc. 17th International Conf. on Machine Learning, pages 255–262. Mor-
gan Kaufmann, San Francisco, CA, 2000.

[15] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework
for unsupervised anomaly detection: Detecting intrusions in unlabeled data, 2002.

57



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

[16] Dieter Gollmann. Computer security. John Wiley & Sons, Inc., New York, NY, USA,
1999.

[17] J. Gomez and D. Dasgupta. Evolving fuzzy rules for intrusion detection. In Proceed-
ings of the Third Annual IEEE Information Assurance Workshop 2002, New Jersey.

[18] J. Gomez, F. Gonzalez, and D. Dagupta. An immuno-fuzzy approach to anomaly
detection. In Proceedings of The IEEE International Conference on Fuzzy Systems, St.
Louis, 2003.

[19] F. Gonzalez and D. Dasgupta. An imunogenetic technique to detect anomalies in
network traffic. In Gecco 2002: proceedings of the genetic and evolutionary computa-
tion conference, pages 1081–1088, New York, 2002. Morgan Kaufmann Publishers.

[20] Y. Guan, A. Ghorbani, and N. Belacel. An unsupervised clustering algorithm for
intrusion detection: Advances in artificial intelligence. In 16th Conference of the
Canadian Society for Computational Studies of Intelligence, pages 616–117, Ontario,
Canada, 2003. Halifax, Springer-Verlag.

[21] Y. Guan, A. Ghorbani, and N. Belacel. Y-means: A clustering method for intrusion
detection. In Canadian Conference on Electrical and Computer Engineering, Mon-
treal, Quebec, Canada, 2003.

[22] S. Gunter and H. Bunke. Validation indices for graph clustering. Pattern Recogn.
Lett., 24(8):1107–1113, 2003.

[23] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques.
Journal of Intelligent Information Systems, 17(2-3):107–145, 2001.

[24] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of a Network
Level Intrusion Detection System. Technical Report CS90–20, University of New
Mexico, Agosto 1990.

[25] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961.

[26] L. Hubert and J. Schultz. Quadratic assignment as a general data analysis strategy.
British Journal of Mathematical and Statistical Psychology, 29:190–241, 1976.

[27] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, September 1999.

[28] H. S. Javits and A. Valdes. The NIDES statistical component: Description and justi-
fication. Technical report, SRI International, March 1993.

[29] V. R. Vemuri K. Labib. Anomaly detection using s language framework: Clustering
and visualization of intrusive attacks on computer systems. In Fourth Conference on
Security and Network Architectures, SAR’05, Batz sur Mer, France, June 2005.

[30] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, 1990.

[31] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood. Selecting features for
intrusion detection: A feature relevance analysis on kdd 99. In PST, 2005.

58



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

[32] K. Kendall. A database of computer attacks for the evaluation of intrusion detection
systems. Master’s thesis, MIT Department of Electrical Engineering and Computer
Science, June 1999.

[33] N. Keshava. Distance metrics and band selection in hyperspectral processing with
applications to material identification and spectral libraries, july 2004.

[34] D. Knuth. The Art of Computer Programming, chapter 5.2.4: Sorting by Merging.
Addison-Wesley, 1998.

[35] W. E. Kuhnhauser. Root kits: an operating systems viewpoint. SIGOPS Oper. Syst.
Rev., 38(1):12–23, 2004.

[36] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck. Learning intrusion detection: Super-
vised or unsupervised?. In ICIAP, pages 50–57, 2005.

[37] M. Last, B. Shapira, Y. Elovici, O. Zaafrany, and A. Kandel. Content-based method-
ology for anomaly detection on the web. In AWIC, pages 113–123, 2003.

[38] P. D. Leedy and J. E. Ormrod. Practical Research: Planning and Design 8th edition.
Pearson, 2004.

[39] K. Leung and C. Leckie. Unsupervised anomaly detection in network intrusion
detection using clusters. In Proc. 28th Australasian CS Conf., volume 38 of CRPITV,
2005.

[40] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. Analysis and Results of
the 1999 DARPA Off-Line Intrusion Detection Evaluation. 2000.

[41] J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297. University of California Press, 1967.

[42] W. A. Martin. Sorting. ACM Comput. Surv., 3(4):147–174, 1971.

[43] J. Mchugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000.

[44] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman. An overview of issues in
testing intrusion detection systems, 2003.

[45] S. H. Oh, J. S. Kang, Y. C. Byun, G. L. Park, and S. Y. Byun. Intrusion detection
based on clustering a data stream. In SERA ’05: Proceedings of the Third ACIS Int’l
Conference on Software Engineering Research, Management and Applications, pages
220–227, Washington, DC, USA, 2005. IEEE Computer Society.

[46] S. H. Oh and W. S. Lee. Optimized clustering for anomaly intrusion detection. In
PAKDD, pages 576–581, 2003.

[47] J. Oldmeadow, S. Ravinutala, and C. Leckie. Adaptive clustering for network intru-
sion detection. In PAKDD, pages 255–259, 2004.

59



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

[48] N. R. Pal and J. Biswas. Cluster validation using graph theoretic concepts. Pattern
Recognition, 30(6):847–857, 1997.

[49] W. Panny and Helmut Prodinger. Bottom-up mergesort-a detailed analysis. Algo-
rithmica, 14(4):340–354, 1995.

[50] S. Petrovic. A comparison between the silhouette index and the davies-bouldin
index in labelling ids clusters. In Proceedings of the 11th Nordic Workshop of Secure
IT Systems, pages 53–64, 2006.

[51] S. Petrovic, G. Alvarez, A. Orfila, and J. Carbo. Labelling clusters in an intrusion de-
tection system using a combination of clustering evaluation techniques. In Proceed-
ings of the 39th Hawaii International Conference on System Sciences, IEEE Computer
Society Press, page CDROM(8 pages). IEEE Computer Society Press, 2006.

[52] S. Petrovic, G. Alvarez, A. Orfila, and J. Carbo. Labelling ids clusters by means of
the silhouette index. In Proceedings of the IX Spanish Conference on Cryptography
and Information Security, Barcelona, Spain, pages pp. 760–772, 2006.

[53] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using
clustering, 2001.

[54] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math., 20(1):53–65, 1987.

[55] P. Sneath and R. Sokal. Numerical taxonomy. Freeman, London, UK, 1973.

[56] S. Specht and R. Lee. Distributed denial of service: taxonomies of attacks, tools
and countermeasures. In Proceedings of the 2004 PDCS, San Francisco, September
2004.

[57] W. R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, 2000.

[58] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Kdd cup data
set from the knowledge discovery and data mining tools competition. Avail-
able at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [Visited Jan-
uary 2007].

[59] Q. Wang and V. Megalooikonomou. A clustering algorithm for intrusion detection.

[60] R Xu and D. Wunsch II. Survey of clustering algorithms. Neural Networks, IEEE
Transactions on, 16(3):645–678, 2005.

[61] N. Ye and X. Li. A scalable clustering technique for intrusion signature recognition.
In Preceedings of the 2001 IEEE Man Systems and Cybernetics Information Assurance
Workshop, United States Military Academy, West Point, NY, 2001.

[62] Y.-F. Zhang, Z.-Y. Xiong, and X.-Q. Wang. Distributed intrusion detection based on
clustering. volume 4, pages 2379–2383 Vol. 4, 2005.

[63] S. Zhong, T. M. Khoshgoftaar, and N. Seliya. Clustering-based network intrusion
detection. In International Journal of Reliability, Quality, and Safety Engineering,
2005.

60



Labelling clusters in an anomaly based IDS by means of clustering quality indexes

A Samples of the prototype source code

Here we list samples of the source code used in the implementation of Dunn’s index
and C-index in the prototype. Appendix A.1 lists the implementation of Dunn’s index,
Appendix A.2 lists the implementation of the modified C-index and the relabelling algo-
rithms are listed in Appendixes A.3 and A.4. The prototype is written in managed C++

and we give a short description of the functions listed.
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A.1 Implementation of Dunn’s index

/∗
DunnsIndex () computes and r e t u r n s the Dunn ’ s index o f the c l u s t e r i n g
∗/
Double C lu s t e r i ngEva lua to r : : DunnsIndex (){

Double dunnsIndex , min ;
Int32 numClust = c l u s t e r i n g −>GetNumClusters () ;
Int32 i , j ;

for ( i =1; i<=numClust ; i++){
min = 9999999999999999999.0 ;
for ( j =1; j<=numClust ; j++){
i f ( i != j ){

Int32 ni = c l u s t e r i n g −>GetC lus te r ( i )−>GetCard ina l i t y () ;
Int32 n j = c l u s t e r i n g −>GetC lus te r ( j )−>GetCard ina l i t y () ;
Double q , p , o ;
i f (( n i !=0)&&( nj !=0)){

q = this−>CentroidLinkage ( i , j ) ;
p = c l u s t e r i n g −>GetC lus te r ( i )−>CentroidDiameter () ;
o = c l u s t e r i n g −>GetC lus te r ( j )−>CentroidDiameter () ;
i f (p > o){

q /= p ;
} else {

q /= o ;
}

} else
q = 0.0 ;

i f (q<min)
min = q ;

}
}

}
dunnsIndex = min ;
return dunnsIndex ;

}

The DunnsIndex() function in the ClusteringEvaluator class is called from the re-
labelling function. It first checks whether there are empty clusters. If there are empty
clusters, then there is no inter-cluster distance to measure in the two-cluster case and
Dunn’s index is set to zero. If there are two clusters with elements, then we divide the
inter-cluster distance with the largest intra-cluster distance to compute the Dunn’s index.
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A.2 Implementation of the modified C-index

/∗
C l u s t e r i n g E v a l u a t o r : : CIndex () computes the p a r t i a l C−i n d e x e s
from the c l u s t e r s in the c l u s t e r i n g
∗/
void Clu s t e r i ngEva lua to r : : CIndex (){
Double S , Smin , Smax ;
Int32 numClust = c l u s t e r i n g −>GetNumClusters () ;
Int32 i , j ;
Int32 card [] = new Int32 [ numClust+1] ;
CIndexes = new Double [ numClust+1] ;
S = 0.0 ;
Smin = 0.0 ;
Smax = 0.0 ;

for ( i =1; i<=numClust ; i++){
card [ i ] = c l u s t e r i n g −>GetC lus te r ( i )−>GetCard ina l i t y () ;
CIndexes [ i ] = 0.0 ;

}

i f ( ! EmptyCluster (1) && ! EmptyCluster (2))
c l u s t e r i n g −>G e t C l u s t e r A l l ()−>CreateArray (1000) ;

for ( i =1; i<=numClust ; i++){
i f ( ! EmptyCluster ( i ) )

c l u s t e r i n g −>GetC lus te r ( i )−>CreateArray ( card [ i ]) ;
S = c l u s t e r i n g −>GetC lus te r ( i )−>GetSum() ;
Smax = c l u s t e r i n g −>G e t C l u s t e r A l l ()−>GetMaxSum( card [ i ]) ;
Smin = c l u s t e r i n g −>G e t C l u s t e r A l l ()−>GetMinSum( card [ i ]) ;

CIndexes [ i ] = S − Smin ;
Double temp = Smax − Smin ;
CIndexes [ i ] /= temp ;

}
}

}

The CIndex() function in the ClusteringEvaluator class computes the partial indexes
from both clusters in our two-cluster case. If there are empty clusters in the clustering
the C-index is always zero, and we skip the computations. When both clusters consist
of elements, the we first create a sorted array that consist of the 1000(1000−1)

2 distances
between all pairs in the whole clustering. This is done with the use of the GetClusterAll()
function that returns a temporary cluster that consist of all elements in the whole clus-
tering. We then use the CreateArray() function, which computes the distances between
all elements in the cluster it is called from, to compute the distances between all pairs
in the clustering. This array is later used to compute Smax and Smin. S is computed by
calling the CreateArray() function from the cluster we compute the partial index from
and adding up the distances between pairs within that cluster. The last step is to com-
pute the C-index formula. We describe the CreateArray(), GetSum(), GetMaxSum() and
GetMinSum() functions closer in the following:
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/∗
C l u s t e r : : Crea teArray () C r e a t e s a s o r t e d array o f the d i s t a n c e s
between a l l p a i r s in the c l u s t e r i t i s c a l l e d from
∗/
void C lu s t e r : : CreateArray ( in t c ){

in t s i z e = ( c ∗( c −1))/2 ;
a = new Double [ s i z e +1] ;
in t i , j , counter ;
counter = 0 ;
for ( i =1; i<=c ; i++){

for ( j =( i +1); j<=c ; j++){
counter++ ;
a[ counter ] = vec to r s [ i ]−>Euc l idD i s tance ( v ec to r s [ j ] ) ;

}
}
mergeSort (0 , counter −1) ;

}

a[] is the array stored in the cluster object.

/∗
C l u s t e r : : GetSum () Returns the sum o f d i s t a n c e s between
a l l p a i r s in the c l u s t e r i t i s c a l l e d from .
∗/
Double C lu s t e r : : GetSum(){

Double sum = 0.0 ;
for ( in t i =1; i <=(card ∗( card −1)/2); i++)

sum += a[ i ] ;
return sum ;

}

/∗
C l u s t e r : : GetMaxSum () r e t u r n s the l ( l = c ∗( c −1)/2) l a r g e s t d i s t a n c e s
between p a i r s in the c l u s t e r i t i s c a l l e d from .
∗/
Double C lu s t e r : : GetMaxSum( in t c ){

Double max = 0.0 ;
for ( in t i = (( card ∗( card −1)/2)−(c ∗( c −1)/2)); i <= ( card ∗( card −1)/2); i++)

max += a[ i ] ;
return max ;

}

/∗
C l u s t e r : : GetminSum () r e t u r n s the l ( l =c ∗( c −1)/2) s m a l l e s t d i s t a n c e s
between p a i r s in the c l u s t e r i t i s c a l l e d from .
∗/
Double C lu s t e r : : GetMinSum( in t c ){

Double min = 0 .0 ;
for ( in t i = 1; i < ( c ∗( c −1)/2); i++)

min += a[ i ] ;
return min ;

}
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A.3 Relabelling algorithm for Dunn’s index

/∗
LabelDunn () r e l a b e l s the c l u s t e r i n g a c co rd ing to Algor i thm 1
∗/
Int32 C lu s t e r i n g : : LabelDunn ( Double deltaD , Double deltaCD1 , Double deltaCD2 ){

Int32 r e l a b e l = 0 ;
C lu s t e r i ngEva lua to r ∗ ce = new Clu s t e r i ngEva lua to r ( th i s ) ;
Double dunn = ce−>DunnsIndex () ;
Double cd1 = this−>GetC lus te r (1)−>CentroidDiameter () ;
Double cd2 = this−>GetC lus te r (2)−>CentroidDiameter () ;

i f (( dunn==0.0)&&(IsEmpty (2))){
r e l a b e l = 1 ;
this−>ExchangeClusters (1 ,2) ;

}
else i f (( dunn<deltaD)&&(cd1>(cd2+deltaCD1 )) ){

r e l a b e l = 2 ;
this−>ExchangeClusters (1 ,2) ;

}
else i f (( dunn>deltaD )&&((cd1+deltaCD2)<cd2 )){

r e l a b e l = 3 ;
this−>ExchangeClusters (1 ,2) ;

}

return r e l a b e l ;
}

The LabelDunn() function in the Clustering class creates a new ClusteringEvaluator
object, which is used to compute Dunn’s as described in A.1. The relabelling procedure
is explained in Section 3.3.
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A.4 Relabelling algorithm for the modified C-index

/∗
Labe lC Index () r e l a b e l s the c l u s t e r i n g a c co rd ing to Algor i thm 2
∗/
Int32 C lu s t e r i n g : : LabelCIndex ( Double deltaC , Double deltaCD1 , Double deltaCD2 ,

Double d e l t a D i f f ){
in t r e l a b e l = 0;
Double CIndex , CIndex1 , CIndex2 ;
C lu s t e r i ngEva lua to r ∗ ce = new Clu s t e r i ngEva lua to r ( th i s ) ;
ce−>CIndex ( ) ;

CIndex1 = ce−>GetCIndex (1) ;
CIndex2 = ce−>GetCIndex (2) ;
CIndex = CIndex1 + CIndex2 ;
Double Cmean = CIndex /2;
Double C d i f f = abs (( CIndex1−CIndex2 ) ) ;
Double cd1 = this−>GetC lus te r (1)−>CentroidDiameter () ;
Double cd2 = this−>GetC lus te r (2)−>CentroidDiameter () ;

// Double C = Cmean ; // I f C−mean i s a p p l i e d

Double C = CIndex1 ; // I f C−smal l i s a p p l i e d
i f ( this−>GetC lus te r (1)−>GetCard ina l i t y () >

this−>GetC lus te r (2)−>GetCard ina l i t y ( ) )
C = CIndex2 ;

i f ( C d i f f > d e l t a D i f f ) // I f C−smal l and c o n d i t i o n 4 i s used
C = 1;

i f (C == 0.0 && IsEmpty (2)){
r e l a b e l = 1;
this−>ExchangeClusters (1 ,2 ) ;

} else i f ((C > del taC ) && (cd1>(cd2+deltaCD1 )) ){
r e l a b e l = 2;
this−>ExchangeClusters (1 ,2 ) ;

} else i f ((C < del taC ) && (( cd1+deltaCD2)<cd2 )){
r e l a b e l = 3;
this−>ExchangeClusters (1 ,2 ) ;

}
return r e l a b e l ;

}

The LabelCIndex() function in the Clustering class creates a new ClusteringEvaluator
object, which is used to compute Dunn’s as described in A.1. Then the two proposed
alternatives for the modified C-index are computed. The rest of the relabelling procedure
is explained in Section 3.3.
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B Optimal system accuracy

The K-means algorithm produces a rather high error rate when K = 2. We cannot for
that reason obtain perfect detection and false alarm rates. Since the KDD Cup ’99 data
set is labelled, it is rather easy to measure the optimal system accuracy with the use of
this clustering algorithm.

To find the best possible false positive rate and true positive rate, we must check
the output from the algorithm against the correct clustering. We can do this by finding
the labelling that yields the minimum Hamming distance from the correct clustering,
regardless of the labelling done by our algorithms. When we have found this optimal
labelling, we count the number of false positives and false negatives, i.e. the number
of normal activities misplaced in the malicious cluster and vice versa. Following this
procedure for the entire data set we find 6704 false positives and 23608 false negatives,
which give 395779 – 23608 = 372171 true positives. For the reduced (10 %) KDD Cup
’99 database we have the following statistics:

Number of normal activities (FP+TN) 94221
Number of malicious activities (TP+FN) 395779
Number of activities 490000

Table 10: KDD Cup ’99 (10% reduced) statistics

Using the definition of the false positive rate and true positive rate presented in Sec-
tion 1.7, we get the best possible accuracy the system can obtain with the use of K-means:

FPR =
FP

FP + TN
=

6704

94221
= 7.12%

TPR =
TP

TP + FN
=

372171

395779
= 94.04%

67


	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Topic
	Research problem
	Justification and motivation
	Research questions
	Summary of claimed contributions
	Research methodology
	Terms and definitions
	Outline

	Related work
	Cluster analysis
	Clustering quality indexes
	Unsupervised anomaly intrusion detection
	Testing intrusion detection systems
	The KDD Cup 99 data set


	Application of Dunn's index and C-index for labelling clusters
	Dunn's index
	Time complexity

	C-index
	Modified C-index
	Outliers in the clustering
	Time complexity

	Labelling algorithms

	Experimental work
	The prototype
	Computation of Dunn's index
	Computation of the modified C-index

	Experimental setup
	Expectations
	Experiments
	Exp. 1: Labelling clusters by means of cluster cardinality
	Exp. 2: Labelling clusters by means of Dunn's index 
	Exp.3: Labelling clusters by means of modified C-index, C-mean
	Exp. 4 and 5: Labelling clusters by means of modified C-index, C-small

	Results
	Labelling clusters by means of cluster cardinality
	Labelling clusters by means of Dunn's index
	Labelling clusters by means of modified C-index index, C-mean
	Labelling clusters by means of modified C-index index, C-small
	Clustering errors

	Discussion

	Conclusions
	Further work
	Bibliography
	Samples of the prototype source code
	Implementation of Dunn's index
	Implementation of the modified C-index
	Relabelling algorithm for Dunn's index
	Relabelling algorithm for the modified C-index

	Optimal system accuracy

