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Brain Wave Based Authentication

Abstract

Authentication has become an essential part of our everyday lives through systems like
passwords, PIN codes, card readers, fingerprint- , retina scanners. All designed with one
purpose; to confirm a person’s identity. Brain wave based authentication is another ad-
dition to the wide range of authentication systems, but with a brand new concept. The
electrical activity in a human brain is used to confirm the identity. Instead of physically
writing a password, one can think simply think about it. The password or ”pass-thought”
can be anything that a human mind may think about, like a color, a feeling, an image,
text or something else.

The benefits over other systems are many. With a standard password someone can
watch or ”shoulder-surf” what others type, but no one can watch thoughts. Cards and
keys can be lost, but the brain is always present. Handicaps can exclude people from
systems like fingerprint- or retina scanners, but the brain still works. This thesis research
the possibilities for a brain wave based authentication system.

We perform an experiment involving twelve participants using a head set with one
sensor designed to record Electroencephalographic (EEG) signals (brain waves). The
participants perform eight different tasks in three sessions. We analyze the recorded
signals to see if there are enough similarities and differences to distinguish tasks and
participants from one another. We look at EEG signals in both the time domain and the
frequency domain and extract features in order to apply an algorithm called Dynamic
Time Warping as well as a feature based distance metric.

The results show that similarities are most evident in the same sessions, meaning
that the equipment have a noticeable impact on the performance because consecutive
recordings are similar. We do end up with a complete authentication system, but based
on what we have seen in related work and what we have been able to do with just one
sensor, we believe that an implementation of a brain wave based authentication system
is just a matter of time.
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Sammendrag

Autentisering har blitt en vesentlig del av vår hverdag gjennom systemer som passord,
PIN koder, kort lesere, fingeravtrykk-, og netthinne skannere. Alle er utviklet med én
hensikt; å bekrefte identiteten til en person. Hjernebølge autentisering er enda en type
autentiseringssystem i tillegg til de mange systemene som allerede finnes, men med et
helt nytt konsept. Den elektriske aktiviteten i hjernen til et menneske blir brukt til å
bekrefte identiteten. Istedet for å skrive passordet fysisk, kan man ganske enkelt tenke
på det. Passordet eller ”pass-tanken” kan være hva som helst en hjerne kan tenke på, for
eksempel en farge, en følelse, et bilde, tekst eller noe annet.

Det er mange fordeler over andre systemer. Ved bruk av standard passord kan noen
se eller ”skulder-surfe” hva andre taster, mens ingen kan se andres tanker. Kort og nøk-
ler kan mistes, mens hjernen alltid er med. Folk med handikap kan bli ekskludert fra
systemer som for eksempel fingeravtrykk- og netthinne skannere, men hjernen fungerer
fortsatt. Denne masteroppgaven forsker på mulighetene til et hjernebølge basert auten-
tiseringssystem. Vi utfører et eksperiment med tolv deltakere med et ”head set” utstyrt
med en sensor for å ta opp Elektroencefalogram (EEG) signaler (hjernebølger). Deltak-
erne utfører åtte forskjellige oppgaver i tre runder. Vi analyserer signalene for å se om
det er nok likheter og forskjeller til å skille oppgaver og deltakere fra hverandre. Vi ser på
signalene både i tids domenet og frekvens domenet og finner egenskaper såslik at vi kan
bruke en algoritme som kalles Dynamic Time Warping (DTW) samt en egenskap-basert
sammenlignings metode (”distance metric”).

Resultatene viser at likheter er mest fremtredene i de samme rundene, noe som betyr
at utstyret har en vesentlig betydning på ytelsen, en følge av at signaler tatt opp rett etter
hverandre er like. Vi ender ikke opp med et ferdig autentiseringssystem, men basert på
hva vi har sett fra tidligere arbeid og hva vi klarer å få til med en sensor, tror vi det bare
er et spørsmål om tid før et hjernebølge basert autentiseringssystem ser dagens lys.
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1 Introduction

1.1 Topic

Authentication has become an essential part of our everyday lives through systems like
passwords, pin codes, card readers, fingerprint- , and retina scanners. All designed with
one purpose; to confirm a person’s identity (Figure 1). Authentication has its use in
several areas, but the main goal is to protect something of value where access is limited
to just one or more individuals or groups. Some examples are airports, computers, homes
or bank accounts. Brain wave based authentication is another addition to the wide range
of authentication systems, but with a brand new concept. The electrical activity in a
human brain is used to confirm the identity. Instead of physically writing a password,
one can think simply think about it. The password or ”pass-thought” can be anything
that a human mind may think about, like a color, a feeling, an image, text or something
else. The whole concept may sound sound a bit like science fiction, but the equipment to
record brain waves is getting better, cheaper and more available as well as the methods
to analyze them.

Figure 1: The principle of authentication; one-to-one matching

An adult brain contains about 100 billion neurons that each generates and leads elec-
trical charges. The sum of all these very small electrical charges contributes to the gen-
eration of an electric field with fluctuating electrical potentials around our scalp. The
fluctuating potentials are typically in the µV range and it is these fluctuations that can
be measured [1]. The potentials are measured between two or more points called elec-
trodes or sensors, which is placed on the scalp at different locations. The measurement
have been named Electroencephalography (EEG) and resembles waves (Figure 2), which
is why the term brain waves is used when referring EEG signals. This thesis research the
possibilities for a brain wave based authentication system. We perform an experiment
involving twelve participants using a head set with one sensor designed to record EEG
signals (brain waves). The participants perform eight different tasks in three sessions.

1
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Figure 2: Example of a 10 second EEG signal captured with one sensor with 128Hz sample fre-
quency

We analyze the recorded signals to see if there are enough similarities and differences to
distinguish tasks and participants from one another.

1.2 Keywords

Security and protection, Authentication, Pattern recognition, Signal processing, Informa-
tion security

1.3 Problem description

There are three basic forms of authentication; something-you-have, something-you-know,
and something-you-are [2]. Something-you-have can be objects like a key or passport and
people have to be very careful not to loose the object or get it stolen. Something-you-
know is based on secret knowledge like passwords or PIN codes and the secret must never
be written down, forgotten, or told to others. A quote from [3] gives a fun explanation
of good password practice:

A password must be impossible to remember, and never written down.

This is a difficult task, especially considering the huge amount of different passwords
and codes we have to remember today. Something-you-are involves person specific fea-
tures like fingerprints, voice, face, and gait. Authentication based on such features is
called biometric authentication. Brain wave based authentication is a combination of
something-you-know and something-you-are when the person involved has to think
about something specific, but it can also be just something-you-are when the brain waves
are used directly as a biometric.

The most important part of any authentication system is that true identities (clients)
are verified and that false identities (impostors) are rejected. In a password system the
password is either right or wrong, but with biometric authentication there is an uncer-
tainty involved because the equipment that measure the biometric feature rarely provide
exactly the same data twice. The reason is that external parameters like finger place-
ment, head rotation, facial hair, location etc are present. The challenge is to overcome
these problems in such a way that even two slightly different sets of data can be verified
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to originate from the same person. There is usually a threshold that decide how different
two different sets of data is allowed to be before they are rejected, and as a consequence
there is a chance that some clients are falsely rejected and some impostors are falsely
verified. Biometric authentication therefore introduce two error rates; False Non-Match
Rate (FNMR), the rate at which clients are falsely rejected by the system, and False Match
Rate (FMR), the rate at which impostors are falsely verified by the system. As such the
main problem in this thesis is two compare two or more EEG signals and decide whether
they are from the same person or not, and get as low FNMR and FMR as possible.

1.4 Justification, motivation and benefits

The basis for why it is reasonable to believe that a brain wave based authentication
system is possible dates back to the 1960’s when Vogel discovered a direct connection
between a person’s EEG signals and his/hers genetic code (DNA) [4]. Monozygotic (iden-
tical) twins were shown to have the same EEG patterns in the same situations and even
changes related to aging were similar. This is supported by [5] where the authors used
EEG directly as a biometric with promising results.

In order to get an efficient biometric authentication system there are seven require-
ments that must be considered [6]:

• Universality: Every individual required to use the system should have the feature.

• Distinctiveness: The feature should be unique between all individuals.

• Permanence: The feature should not change significantly over time.

• Collectability: It should be easy to acquire measurements of the feature.

• Performance: Speed, accuracy and strength of the system used.

• Acceptability: The system and feature to be used has to be accepted by the public.

• Circumvention: How easy is it to evade the system.

A brain wave based authentication system has many benefits with this in mind. Every
human has a brain (universality) so while cards and keys can be lost, the brain is always
present. And while people with physical handicaps like missing limbs, total or partial
paralysis can be excluded from systems like fingerprint- or retina scanners, the brain still
works. With a standard password someone can watch or ”shoulder-surf” what the user is
typing, but no one can watch a users thoughts. It has been demonstrated that fingerprint
systems can be fooled by making fake prints (a simple search on the Internet results in
many sites that actually describe how to do it), but is it possible to fake brain waves? The
complexity of the brain (distinctiveness) implies that it is very hard for an impostor to
mimic another person’s brain (circumvention). So even if the ”pass-thought” is written
down or shared it will be difficult for others to recreate the thought. These are all benefits
that may reduce the increasing amount of ”identity-theft” where people get their identity
”stolen” by impostors that get a hold of other person’s secret and personal information
[7].

New equipment even makes it easy to capture brain waves (collectability) and the
only required operation is to attach a head set on the client and press ”record”. There
might be a problem with age as brain waves may change over time as persons get older
(permanence) [4], so the system would have to adapt to these changes.

3
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Because it is a new kind of technology with little research and no implementations
yet, brain wave authentication may prove to be expensive first and even somewhat non
user-friendly e.g. if it requires clients to wear unfamiliar equipment (acceptability). But
over time, should it prove feasible to implement, every party involved in the authen-
tication process will benefit from this technology. The company that wishes to protect
something will have high security, those who manufacture the technology will have a
huge customer base, and the people using the system will not have to remember the
plethora of passwords that we have to today.

1.5 Research questions

1 Is it possible to authenticate by means of brain waves with only one EEG sensor?

2 What features should be extracted from the signals?

3 Do we have to authenticate based on a client’s thoughts or can we just use a client’s
brain waves directly?

1.6 Contributions

Research directly related to authentication by means of brain waves is rather limited
in terms of the number of published articles and related work, so any research in the
field can be considered a contribution on some level. Our attempt is based on only one
EEG sensor, which is a great challenge as this is the absolute minimum requirement to
record EEG signals. In the analysis we apply an algorithm called Dynamic Time Warping
(DTW) in the signal matching process, which has not yet been done with EEG signals.
In addition to DTW we try a feature extraction approach based on previous work [8]
where the authors did task classification with only two sensors. But instead of feeding
the features into a neural network for task classification we attempt a distance metric
approach aimed at authentication.

4
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2 Related work and theoretical considerations

Brain waves can currently be recorded with sensors placed at locations classified into
three groups:

• Invasive: The device is implanted directly into the ”gray-matter” of the brain.

• Partially-invasive: The device is attached to the inside of the skull, not touching the
”gray-”matter.

• Non-invasive: The device is attached directly to the scalp or at a distance to receive
wireless brain waves.

In authentication it is very important that people accept the system (acceptability). With
this in mind it is safe to say that a non-invasive method of capturing brain wave signals
is the best approach.

An experiment performed in 1977 successfully used a non-invasive method to analyze
electrical activity from the brain [1] by using EEG signals. The test subjects were able to
navigate a symbol through a maze on a CRT display with a system that analyzed EEG
signals in response to the direction of the subject’s gaze, based on external stimuli to
the eye. Brain activity was recorded through EEG signals collected on the human scalp
by placing electrodes on five scalp locations and both ears. The signals appeared to be
confined to low frequencies, especially around 10 Hz alpha frequency, with amplitudes
between 5-50mV. The authors found it difficult to extract any useful information by EEG
signals alone because they generate a continuous electrical activity spatially distributed
over the scalp. Instead they focused on Event Related Potential (ERP) that are microscopic
potentials embedded in the continuous signals of EEG. The ERP potential occur when the
brain responds to external stimuli [9], e.g. a flashlight directed to the eyes).

• Sensory ERPs: Responses that have been elicited by external stimuli. Their presence
is most prominent at short ”latencies” (e.g., within 50 to 150 ms).

• Motor ERPs: Responses found accompanying voluntary movement that may in fact
precede the actual behavioral event.

• ”Long Latency” Potentials: These refer to potential changes taking place some 250 to
450 ms after the initial event. Most prominent in the literature is a positive deflection
occurring around 300 ms, today called P300 potentials.

• Artifacts: Potential fluctuations of non-neural origin are called artifacts. These in-
clude electroocular potentials (EOG) and muscle potentials from neck, scalp and face
(including eye blinks), as well as electrocardiographic signals (ECG).

Even though it was brain activity that decided whether to move the symbol up, down,
left, or right, it required the test subjects to physically move their eyes and react to
external stimuli.

EEG recording through electrodes placed on the scalp is still the preferred way to
measure electric activity in the brain because of its non-invasive nature and excellent
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temporal resolution (of the order of milliseconds) [10]. EEG equipment is also mobile
and inexpensive [11].

There are several companies that have developed modern devices to capture brain ac-
tivity. Brain Products has a number of products for recording EEG signals [12]. Software,
amplifiers, electrode caps, and accessories with a selection of devices in each group.
Emotiv Systems has a product called Project Epoc [13].

Project Epoc is a headset that uses a set of sensors to tune into electric signals natu-
rally produced by the brain to detect player thoughts, feelings and expression. It connects
wirelessly with all game platforms from consoles to PCs.

Another company, NeuroSky, has a similar technology called ThinkGearTM [14]:

Brainwave signals, eye movements, and other bio-signals are captured and amplified via
our patented Dry-Active Sensor technology. Non-Invasive, Small Form Factor, Dry active
sensors that do not use contact gels, Accuracy.

2.1 Brain computer interface
A Brain Computer Interface (BCI) is an interface which allows communication directly
between a human brain and an external device [15, 16] (Figure 3). The external device
can be any device that requires input e.g. a computer game [17], a cellular phone [18],
or a robotic arm [19]. People with physical limitations incapable of interacting normally
with external devices would benefit greatly from such interfaces. Many people are reluc-
tant to the technology because they feel it it is very unnatural, but a quote by Bach-y-Rita
(Biomedical Engineering and Rehabilitation Medicine Professor) says something we tend
to forget:

We don’t see with our eyes, or feel with our hands; we see and feel with our brain

So even though it might seem dangerous for some, the BCI systems are only working
with something that is always present, the electrical activity in our brain.

In 1990 the authors of [21] showed it was possible to distinguish between five mental
tasks, using only EEG with no physical action required. The authors started their research
based on the alpha band asymmetry as explained in [22] were the authors found the
alpha band power (8-13Hz) to be less in the left hemisphere- than the right hemisphere
of the brain for verbal tasks, and vice versa with spatial tasks. Asymmetry was also found
in non-motor tasks by [23] and [24], and such asymmetry suggested it would be possible
to deduct enough information from EEG alone to distinguish between mental tasks. The
different tasks they used was:

1 Baseline measurements: There was no mental task to be performed here. This task
was used as a control and baseline measure.

2 Complex problem solving:The subject was given a nontrivial multiplication problem
to solve without vocalizing or making overt movements.

3 Geometric figure rotation: The subject was instructed to visualize a rotating complex
three dimensional block figure shown beforehand.

4 Mental letter composing: The subject was instructed to mentally compose a letter to
a friend or relative without vocalizing.

5 Visual counting: The subject was asked to imagine a blackboard and to visualize
numbers being written on the board sequentially, with the previous number being
erased before the next number was written.
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Figure 3: The basic design and operation of a BCI system. Signals from a person’s brain is processed
and translated into device commands like typing letters, controlling a wheelchair and grabbing a
soda can. (Figure from [20])

The test results showed they were able to distinguish between the tasks with an average
accuracy of 81.0%, 82.3%, and 84.6% using the Wiener-Khinchine-, Burg Spectrum- and
the Burg AR coefficient methods respectively.

Most of the research in the domain of BCI have been performed with equipment
capable of recording EEG signals with 32 electrodes or more, but this kind of equipment
tend to be very expensive and cannot be bought of the shelf. This triggered a couple of
researches to explore the possibilities of using low-cost equipment with fewer electrodes
for task classification [8] were eight clients participated in two experiments with different
setups. In the first experiment the clients had to keep their eyes closed and perform three
different tasks; Rest (rest in a normal fashion), Mental Arithmetic (multiplication of two
numbers), and Mental Rotation (mentally rotate a 3D object) as proposed in [21]. The
second experiment required the clients to play a computer game with three different
tasks; Rest (rest in a normal fashion), Solo (play the game alone), and Play (play against
an opponent). Each task in both experiments was recorded over 14 seconds with 18
recordings per task. The authors used feature extraction on each recording to get the task
data and used Bayesian Network classifier to classify each task. The average classification
accuracy in the first experiment were 68.3% when they tested all three tasks against
each other, and 84.4% when they tested two and two task against each other. In the
second experiment the average classification accuracy was 78.2% when they tested all
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three tasks against each other, and 90.2% when they tested two and two task against
each other. The best results were achieved when ”rest” were classified against ”solo” and
”play” in the game experiment. In other words the best results were achieved when ”no
activity” was classified against ”some activity”.

Currently there are no official implementations of a system that utilizes brain waves
to authenticate an individual, but an idea called Pass-thoughts was presented in [11]. The
authors believe that recent advances in BCI technology give evidence that an implemen-
tation of a BCI authentication system is possible. The idea is to extract as much entropy
as possible from a client’s brain signals upon ”transmitting” a thought. A thought can be
anything and the size of the pass-thought space is not yet known. The number of neurons
in a typical adult brain is approximately 100 billion. Assuming each neuron could only
store one bit of information, a key space of up to 236 bits could be achieved. To utilize
the pass-thought the client has in mind for authentication, the authors propose to use
P300 potentials. A P300 potential is a positive potential in the signal which is evoked
about 300ms after a surprising or exciting event for the client. For example if clients are
shown the components of their pass-thought (e.g. a sequence of images or letters), P300
potentials is recorded as spikes in the signal. These spikes are stored in a set of P300 po-
tentials that can be used to encrypt a key in a concept as shown in Figure 4. The signals,
S, are processed into signal features, F, and the set of P300 potentials are represented as
Fr. In the enrollment process, cryptography is used to encrypt a key, K, using Fr to create
VFr . In the authentication process, VFr is decrypted to see if it provides the original key
K. The authors do mention some problems though as the accuracy of signal recording
and processing is still unknown and it is also somewhat slow. The current state of BCI
technology using P300-based approaches run with a bit rate of 4.8 characters/minute,
which is a problem that has to be solved for the system to be accepted by the general
public.

It is of course possible to forget the very image or password one is supposed to think
about, but we are likely to remember it when we see it again. This kind of authentication
was proposed in [25] where clients do not have to remember the password or image
until they are presented with it. It did not include measurements of brain waves, but
P300 potentials are generated when we recognize something.

Figure 4: The pass-thought concept (Figure from [11])
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2.2 EEG as identification and authentication

Research on person identification based on EEG were performed with promising results in
[26, 27, 28, 29]. The authors used the Fast Fourier Transform (FFT) to calculate spectral
power [30] and AutoRegressive (AR) parameters to extract features that were fed into
a neural network in order to classify subjects. The authors used different methods to
analyze the data, but research was based on the same recordings. 45 EEG recordings
from 4 subjects (A,B,C,D) were used as training- and testing data in order to identify
A,B,C and D amongst 75 different subjects (X) with one EEG recording each. The subjects
were resting with eyes closed. The training data served as a template to match against
the testing data and classify the subjects as either A,B,C,D or X. Correct classifications
were achieved in over 80% of the cases showing that individuals can be identified based
on brain waves.

Person authentication based on EEG was researched in 2007 with recordings from 9
subjects that were sitting with arms relaxed on their legs in 12 nonfeedback sessions over
3 days [31]. They performed three different mental tasks:

1 Imagination of repetitive self-paced left hand movements

2 Imagination of repetitive self-paced right hand movements

3 Generation of words beginning with the same random letter.

32 electrodes placed on the scalp were used to record EEG signals, with a sample fre-
quency of 512Hz. The results showed that:

• there are some mental tasks that are more appropriate for person authentication than
others

• the performance degrades over days

• using training data over two days increases the performance

• there is a potential for incremental learning

The subject pool was rather small and the authors plan on doing a larger experiment
with more subjects and different mental tasks better suited for authentication.

Considering the high amount of data retrieved from EEG signals and the variations
over time, an algorithm called Dynamic Time Warping (DTW) [32] could be applied.
DTW is a technique that finds the optimal alignment between two time series that may
vary in time. The first time series may be ”warped” non-linearly by stretching or shrinking
it along its time axis to see if it is similar to the second time series. It is a rather slow
algorithm and works best on small data sets, but research on a faster DTW algorithm is
done in [33].

As mentioned in [10], a variety of tools exist to analyze EEG and ERP data. Principal
component analysis (PCA) with The Dien PCA Toolbox [34], independent component
analysis (ICA) and joint time-frequency analysis (TFA) with the Matlab toolbox EEGLAB
[35], data cleaning, statistical extraction and visualization techniques with Net Station
by Electrical Geodesics, Inc [36] that also offers a lot of information about EEG and EEG
research products. Particularly interesting is their analysis environment, which has so-
lutions for EEG/ERP analysis, source analysis, signal processing, and statistical analysis.
Consistent, repeatable, and unique data between individuals are vital to authentication.
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Without it, we cannot accurately verify a certain identity as true. As we could see in
Figure 4, the authentication process would fail if K did not match the original K. Many
BCI systems requires the subjects involved to undergo extensive training before they can
generate fixed EEG patterns that can be accurately captured and given meaning in the
form of external motion or mental state [37]. However, if brain waves should be useful
in authentication, the clients cannot be expected or required to undergo such training.
The system has to be user friendly.

2.3 Are we reading minds?

It is a difficult task to translate (interpret) patterns into their respective commands. In
some cases, the BCI system has to be tweaked to fit individual clients. The idea pro-
posed in [11] suggested that no such translation is needed in the pass-thought system.
The authors said it would in fact reduce the entropy of the person’s brain signals if such
translation would be done. Instead, the signals should undergo feature extraction to filter
out the non-repeatable parts. It actually makes sense to think like this, because authen-
tication is primarily concerned with matching two sets of data rather than identifying
the underlying meaning of the data. Let us say we extract signals from a client, which
thinks about a certain color in the enrollment process. Then we extract the signals in the
authentication process where the client thinks about the same color. The interesting part
is whether the signals in both processes are similar enough to conclude they originate
from the same client, not what the specific color is.

10



Brain Wave Based Authentication

3 Experiment

This chapter explains how we performed the experiment and what we did up to the
point of analysis. The purpose of this experiment is to see if it is possible to distinguish
between clients and tasks based on EEG signals alone. We try two different approaches; A
Dynamic Time Warping (DTW) and feature extraction. Initially we wanted to experiment
with Event Related Potentials (ERP) and the P300 potential as well, but the SDK we use
is too limited and does not include the necessary functions in order to control the events.
We decided to conduct a small scale experiment involving just a few participants at first
in order to learn how to proceed before conducting a larger scale experiment.

3.1 Equipment
We used the ThinkGear head set by Neurosky (Figure 5) with the capability of recording
raw EEG signals from one sensor with sample frequency Fs = 128Hz. This is the absolute
minimum requirement in order to record EEG signals. It runs with a 5V battery and
records 8 bits of data through a serial port on the used computer. The recorded samples
are in the µV range, Figure 6. The way it works were explained to us by a Neurosky
representative:

The relationship between the sensor and the earclips are that the earclips work as ground/ref-
erences. Basically, you are looking at one source (the sensor) that catches both brain
waves, ambient noise and muscle movement. The other source (the ground and reference
ear clips) look for a signal that still has proximity brainwaves and muscle movements,
but is devoid of the direct frontal lobe brainwave readings. By intelligently filtering the
two, the brainwave signal can be extracted. We know that it is an EEG signal through
our comparison testing with medical devices and third party testing.

3.2 Electrode placement

The 10-20 system is used to describe the placement of electrodes on a human scalp
[38]. The scalp is divided into a grid that covers the top of the head relative to physical
landmarks such as the nasion and inion (Figure 7). In our experiment the electrode is
placed in scalp location Fp1 (Frontal Pole). It would be interesting to try other locations
as well, but the design of the headset limits the location to Fp1 to ensure a good signal
with effective recordings.

3.3 Tasks

The brain is a complex organ and tasks like vision, motor movement and emotions are
processed at different locations [39, 40]. This means that some scalp locations and sensor
placements are better suited to record certain thoughts than others. Higher order cogni-
tive tasks like everyday planning, decision making, emotions, social- and moral reasoning
is believed to be located at the frontal pole as explained in [41]. The EEG signals captured
at the Fp1 location are other words related to subconscious thinking and personality. The
authors experimented with tasks that required the subjects to talk about past and future
plans, explaining the meaning of three words, and watching a fixed point for 60 seconds.
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Figure 5: Picture of the ThinkGear head set by Neurosky

These tasks do not suit our experiment as eyes open and talking generate anomalies in
the recorded EEG signals (Figure 8). If we had more sensors we could use Independent
Component Analysis (ICA) to remove artifacts like physical movement [42], but for now
we must try to avoid them manually. Instead we based the task selection on previous
work where sensors were attached to locations O1,O2,P3, and P4, because these tasks
are feasible choices for ”pass-thoughts” as opposed to those located at FP1. This means
that when we analyze the tasks in this experiment, the similarities are not based on the
tasks themselves, but rather the way they are performed due to the subconscious nature
of tasks at FP1. So from an authentication perspective all tasks may be suitable for the
Fp1 location.

The 8 tasks (task1, ..., task8) we use are:

task1 = Relax - client is told to sit comfortably and relax in a normal fashion

task2 = Color - client is told to think about the red color

task3 = Rotate - client is told to mentally rotate a house

task4 = Password - client is told to think about the password ”BrainWaveS”

task5 = Music - client is told to think about a song they know

task6 = Words - client is told to generate random words in their native language
starting with the letter ”M”.

task7 = Count - client is told to count upwards in their native language, fast and
starting with 1.

task8 = Read - client is told to read from a provided random text.

They tasks are easy to perform, but difficult enough to ensure that the client has to
concentrate in order to perform them. Relax, rotate, words and count was selected based
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Figure 6: 20 seconds of an unfiltered EEG signal with sample frequency Fs = 128Hz equals 2560
samples

on those used in [21] (although count were performed with eyes open in [21]). Password
was selected based on the idea in [11] while color and music were selected out of our
curiosity. Read was included to see that there actually is a difference between eyes open
and eyes closed.

3.4 Location

We used the master lab at the university college in Gjøvik as the location for the exper-
iment. The equipment is very sensitive to facial movement and we could often see that
subjects reacted to abrupt sounds by involuntary eye movement that showed as peaks
and drops in the signals. Therefore it was important to keep the location as quiet as pos-

Figure 7: The international 10-20 Electrode Placement System (Figure from [8])

13



Brain Wave Based Authentication

Figure 8: Example of anomalies in the EEG signal related to physical movement. Samples 750 -
1050 show six peaks related to six eye twinkles from the client. Samples 1250-1400 show both
negative and positive peaks caused by the client head shaking.

sible, so we recorded only early in the morning and late evenings. Only two people were
at the location; one researcher and one client.

3.5 Clients

Twelve clients (client1, ..., client12) were selected amongst friends, fellow students and
supervisors who had time and interest to participate. All clients had to sign a participant
agreement form (Appendix A). Age was not important as it does not change the EEG
signal on a short-term basis (6 months in this case) [4]. Since we are dealing with signal
matching rather than classification, we included both right and left handed participants
even though the left side of the brain is dominant for right handed persons and vice versa
[40]. The age ranged from 20-45 years including both right and left handed participants
(1 female, 11 males).

3.6 Session

The client was told to sit in a relaxed position with eyes closed and arms resting in
his/her lap. The headset was attached with aid from the researcher. The clients were
presented with the 8 different tasks, one at a time. The tasks were not presented all
at once to prevent the clients from drifting of and start doing the wrong tasks. Each
task was recorded 3 times lasting 20 seconds with short breaks between each recording.
All clients participated for three sessions (session1, ..., session3) that lasted about 40
minutes total.

3.7 Samples

We used the NeuroView application (Figure 9) included with the MindKit SDK to record
signals consisting of N samples. The application records raw data and performs filtering,
spectrum analysis and calculates meditation, anxiety and attention values. In this exper-
iment we only use the raw data X = (x1, ..., xN) because it contains all the information,
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but we stored the other data as well in case they could be valuable in further work. The
raw data is stored in a text file containing two columns separated with a semicolon. The
first column is the timestamps in seconds while the second column is the recorded EEG
sample values in µV (Figure 10).

Figure 9: Screen capture of the NeuroView application

We did not store the timestamps because they are easy to calculate when we know
the sample frequency. e.g. sample 705 was recorded at time 1s

128Hz × 705 = 5.5078s.
We named the files on the form <clientId>_<task>_<session>_<recordingNr>.<type>

e.g. 3_Relax_1_2.raw. The NeuroView application did not include a parameter to set
recording time so we had to manually time each recording to 20 seconds. In signal pro-
cessing this was reduced to be exactly 20 seconds and 2561 samples (128Hz times 20
seconds). Each task was recorded 3 times rec1, ..., rec3 for 20 seconds in each session
resulting in 72 recordings (3 recordings x 8 tasks x 3 sessions) for each client. After all
session were complete we had 864 signals (signal1, ..., signal720) (72 recordings x 12
clients).
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Figure 10: Screen capture of the lines in a text file containing timestamps and EEG sample values
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4 Signal processing

When clients are told to perform a task and the recording starts, it takes a few seconds
before the client is focused. For this reason we removed the first 4 seconds of each record-
ing leaving the remaining 16 seconds and 2048 samples intact. The equipment produced
a lot of noise the first minute of recording that affects the Relax task the most. After one
minute the signal stabilized and gradually improved during the remaining session (Fig-
ure 11). This problem becomes very evident when comparing signals in the time domain
with DTW (Section 6.4), which is why we perform feature extraction (Section 5) as well.

Figure 11: Equipment initialization period. Example of how signals look during the 1st, 4th and
21st recording

4.0.1 Frequency bands and the Discrete Fourier Transform

An EEG signal have a lot of information in the frequency domain as well as the time
domain. The brain operates at low frequencies that range from 1-50Hz, which is usually
divided into six frequency bands as explained in [8, 43] :

Delta: 1Hz - 4Hz
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Theta: 4Hz - 8Hz

Alpha: 8Hz - 12Hz

Beta-Low: 12Hz - 20Hz

Beta-High: 20Hz - 30Hz

Gamma: 30Hz - 50Hz

The Discrete Fourier Transform (DFT) can be used to transform a signal with N sam-
ples from the time domain to the frequency domain (Figure 12). DFT is defined as

Hk =

N−1∑
n=0

Xn`
− 2πiN knwherek = 0, ...,N− 1 (4.1)

H0 is the DC power (0Hz content) of the signal. H is symmetric around N/2 so H1 = HN

and H2 = HN−1 and so on. According to Kotelnikov’s theorem the sample frequency
have to be at least twice the value of the highest frequency we are interested in (50Hz
in our case). Our sample frequency Fs = 128Hz so we can get frequency information up
Fs
2 = 64Hz. The fast fourier transform (FFT) in Matlab performs this computation and

provides the complex numbers of the DFT transform by running H = fft(X). The result
is an array H with size N that contains complex numbers H = (h1, ..., hN). The indexing
in Matlab starts at 1 so H(1) is the DC power and the array is symmetric around N/2+1.
H(2:(N/2)+1) is the frequency content up to 64Hz. The absolute value of each complex
number represents the signal power in dB at that specific frequency.

The frequency resolution df describes the frequency range of Hk and is defined as

df =
Fs

N
(4.2)

In our case we have df = 128Hz
2048 = 0.0625Hz, which mean that the number of frequencies

between 0Hz and 1Hz is 1Hz/df = 16. Since Matlab starts indexing at 1 the frequency
information of 1Hz start at H(1Hz / df + 1) = H(17). So if we want the values of the
delta band (1Hz - 4Hz) we use H((1/df+1):(4/df+1)) = H(17:65), the theta band (4Hz
- 8Hz) is H((4/df+1):(8/df+1)) = H(65:129) and so on.

4.0.2 Filtering

Most of our computations are based on the unfiltered samples X, but we store some fil-
tered versions as well in order to test the DTW algorithm. We decided to do our own
filtering instead of using the filtered signals by the NeuroView application to have com-
plete control over the computations. Our filtering is based on the Inverse Fast Fourier
transform (IFFT) that can be applied on H. Frequency information up to 50Hz is found
in H(2:(50/df)+1) = H(2:801) and because of the symmetry around N/2+1 the same
information is found at H((2048-(50/df)+1):2048) = H(1249:2048). In order to filter
H such that frequency information above 50Hz is removed we set all the values between
H(801) and H(1248) to 0 and apply IFFT to the result.
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Figure 12: Representation of an EEG signal in the time domain and the frequency domain. Taken
from the 4th recording in session 3 of client 4

We do the filtering in Matlab like this:

H = fft(X);
H(802:1248) = 0;
fX = ifft(H);

fX now contains the 1Hz-50Hz filtered version of X (Figure 13).The same principle can
be applied if we want to filter a signal to contain information from each band only (Fig-
ure 14). For details on how we implemented the filtering in Matlab, the code is listed in
Appendix B function fourierFilter().
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Figure 13: Signal filtering. 1 second of an unfiltered signal and the filtered version of the same
signal
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Figure 14: 2 seconds of a band filtered signal
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5 Feature extraction

It is very difficult visually analyze what is going on in an EEG signal except for facial
movement that may show as peaks. The information about thoughts is hidden within the
signal and has to be extracted, so in addition to information in the time domain a lot of
information can be found in the frequency domain. There are no limitations in feature
extraction and the possibilities are endless.

We base our feature extraction on that described in [8] because the authors are able
to do task classification with only two sensors, but we exclude the features that requires
two sensors because we are limited to those that work with just one. We have N = 2048

number of samples and sample values X = (x1, ..., xN).

Mean sample value (MSV)

The mean of all sample values

MSV =
1

N
×

N∑
n=1

xn (5.1)

Matlab:

MSV = mean(X).

Zero crossing rate (ZCR)

The rate at which values cross zero. If the product of two adjacent values is negative,
they have opposite signs and a zero crossing has occurred. The rate is found by dividing
the number of zero crossings by the number of samples

ZCR =
1

N
×
N−1∑
n=1

1 if(xn × xn+1 < 0), else 0 (5.2)

Matlab:

for n=1:N-1
if (X(n)*X(n+1) < 0)

ZCR = ZCR + 1;
end

end

ZCR = ZCR/N;

Values above zero (VAZ)
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The number of values above zero

VAZ =

N−1∑
n=1

1 if(xn > 0), else 0 (5.3)

Matlab:

for n=1:N-1
if (X(n) > 0)

VAZ = VAZ + 1;
end

end

Mean phase angle (MPA)

The mean phase angle in the 1Hz - 50Hz frequency range. Complex numbers can be
written as Hn = a+ bi or Hn = An 6 θn where A is the length and θ is the phase angle.
The mean phase angle is then:

MPA =
1

N

N∑
n=1

θn. (5.4)

Matlab:

MPA = mean(angle(H(17 : 801))).

MPA is now in radians so we multiply MPA× 180
π to get it in degrees.

Signal power in the six frequency bands (Pdelta,...,Pgamma)

Signal power P in a sampled signal is found by dividing the signal energy E by the number
of samples N

E =

N∑
n=1

|xn|
2 (5.5)

P =
1

N
× E (5.6)

Signal power in the frequency domain is computed the same way. If we want to find the
signal power in a specific frequency band, we simply provide the range as parameters in
the function. As explained in Section 4.0.1 the delta band range is H(17:65). To compute
the signal power in that range we can use

Pdelta =
1

65− 17

65∑
n=17

|hn|
2 (5.7)

Matlab:

Pdelta = mean(abs(H(17 : 65)).2).

24



Brain Wave Based Authentication

This is done for all the frequency bands; delta, theta, alpha, betaLow, betaHigh, and
gamma.

Peak frequency magnitude (PFM,PFMdelta,...,PFMgamma)

We compute the power of all frequencies in each frequency band, as well as between
0Hz - 50Hz in H and store the highest values.

Matlab:

PFM = max(abs(H(2:800)))

This is also done for all the frequency bands; delta, theta, alpha, betaLow, betaHigh,
and gamma.

Peak frequency (PF,PFdelta,...,PFgamma)

The frequency where the highest magnitude in each band as well as between 0Hz -
50Hz is located.

Matlab:

PFM, PF = max(abs(H(2:800)));
PF = PF * df + 1;

This is done for all the frequency bands; delta, theta, alpha, betaLow, betaHigh, and
gamma.

Mean spectral power (MSP)

The mean power of the six frequency bands.

Matlab:

MSP = mean(Pdelta + Ptheta + Palpha + Pbeta−low + Pbeta−high + Pgamma)

5.1 Feature summary

Now we have 25 features (feature1, ..., feature25) each signal:

feature1 = MSV - Mean sample value

feature2 = ZCR - Zero Crossing rate

feature3 = VAZ - Values above zero

feature4 = PF - Peak Frequency
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feature5 = PFM - Peak Frequency Magnitude

feature6 = MSP - Mean spectral power

feature7 = MPA - Mean phase angle

feature8 = Pdelta - Delta band power

feature9 = PFdelta - Delta band peak frequency

feature10 = PFMdelta - Delta band peak frequency magnitude

feature11 = Ptheta - Theta band power

feature12 = PFtheta - Theta band peak frequency

feature13 = PFMtheta - Theta band peak frequency magnitude

feature14 = Palpha - Alpha band power

feature15 = PFalpha - Alpha band peak frequency

feature16 = PFMalpha - Alpha band peak frequency magnitude

feature17 = PbetaLow - BetaLow band power

feature18 = PFbetaLow - BetaLow band peak frequency

feature19 = PFMbetaLow - BetaLow band peak frequency magnitude

feature20 = PbetaHigh - BetaHigh band power

feature21 = PFbetaHigh - BetaHigh band peak frequency

feature22 = PFMbetaHigh - BetaHigh band peak frequency magnitude

feature23 = Pgamma - Gamma band power

feature24 = PFgamma - Gamma band peak frequency

feature25 = PFMgamma - Gamma band peak frequency magnitude

5.2 Signal representation

For the rest of this thesis we use i,j,k,m, n, and o to refer to a signal consisting of client,
task, session, recording, and features respectively:

signali = (clientj, taskk, sessionm, recn, featureo)

We store signals in Matlab by struct (code is listed in Appendix B). We have a struct called
signals with fields Clientj.Taskk.Sessionm.Recordingn to represent one recording.
The struct containes the fileName, unfiltered samples X, filtered samples fX to fGamma,
and each featureo (Figure 15). To get the X values we can write X = signals.Client1.Session1.Recording1.X.
To get a feature we can write Pdelta = signals.Client1.Session1Recording1.feature.Pdelta.
If we refer to a specific feature we use the name e.g. signal.DC while any feature is
referred to as si.featureo. The filtered samples are referred to by name e.g. si.fX or
si.fGamma.
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Figure 15: Matlab signal representation. The header show how the previous fields in the struct
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6 Analysis

At this point we have many of signals and features that we have to compare against each
other. The first step is to check the statistics of each feature by calculating their minimum,
maximum, mean (Equation 6.1), and standard deviation (Equation 6.2) values.

x̄ =
1

n

n∑
i=1

xi (6.1)

σx =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (6.2)

We also calculate the percentage difference between the standard deviation and mean:

% deviation =
σx

x̄
∗ 100 (6.3)

E.g. Mean Sample Value (MSV) has σx = 0.025 and x̄ = 0.179 such that % deviation =
0.025
0.179 ∗ 100 = 14% The average % deviation per client is calculated the same way, but
calculated based on each client separately. A good feature will have values that are close
together for the same client, but far apart for different clients. From Table 1 we can see
that the average % deviation per client of Peak Frequency in the gamma band (PFgamma)
is only 2%, which is good, but the % deviation is only 3% meaning that the values of
PFgamma is very similar even for different clients. The most interesting feature appears
to be PbetaHigh as the difference between % deviation and average % deviation per
client is high (654% − 112% = 542%). The worst feature is Mean Phase Angle (MPA)
because it deviates more for each client on average than it does between clients. It is also
worth noting that Pdelta have the highest mean power (497.70) followed by Pgamma
(97.37) meaning that the EEG signal activity is strongest in the delta- and gamma band.

6.1 Chi-square goodness-of-fit test

We investigate whether our samples, filtered samples and features follow a normal dis-
tribution or not. We apply a chi-square goodness-of-fit test as explained in [44] (Matlab
code in Appendix C). The requirement is that we have a sequence of values X of size
n where the probability distribution is unknown. The n observations are arranged in a
frequency histogram with k bins or intervals. Oi is the observed frequency of the ith
interval. A normal distribution have equal probabilities for each interval, so pi = 1

k . Ex-
pected frequency in each interval is then Ei = n×pi. With these values we can calculate
the chi-square statistic

X20 =

k∑
i=1

(Oi − Ei)
2

Ei
(6.4)

The boundaries a0, a1, ..., ak of each interval (a0, a1)1, ..., [ak−1, ak)k must be selected
such that all probabilities pi are equal according to
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Table 1: Feature statistics for all signals
Feature Min Max x̄ σx % deviation Average % deviation per client
MSV -0.012 0.423 0.179 0.025 14% 12%
ZCR 0 0.773 0.108 0.173 160% 130%
VAZ 968 2048 1794 255 14% 11%
PF 0.06 49.56 9.98 19.20 192% 184%
PFM 14 1710.6 127.12 146.68 115% 78%
MSP 6.21 2368 109.57 193.60 177% 127%
MPA -47.13 72.65 0.48 13.98 2928 18920%
Pdelta 16.03 11804 497.70 882.84 177% 130%
Ptheta 4.83 1926.3 40.02 98.89 247% 151%
Palpha 2.08 385.33 13.79 20.05 145% 85%
PbetaLow 1.15 90.76 5.03 6.01 119% 70%
PbetaHigh 0.65 615.99 3.50 22.94 654% 112%
Pgamma 0.39 11456 97.37 595.71 612% 181%
PFdelta 1 3.44 1.25 0.29 23% 21%
PFtheta 4 8 4.91 0.98 20% 18%
PFalpha 8 11.94 9.40 1.05 11% 10%
PFbetaLow 12 19.81 15.76 1.15 7% 6%
PFbetaHigh 20 30 23.66 3.15 13% 12%
PFgamma 31.13 49.94 48.90 1.54 3% 2%
PFMdelta 9.45 344.19 61.35 52.86 86% 66%
PFMtheta 4.31 88.18 12.88 8.86 69% 54%
PFMalpha 2.88 50.28 8.24 3.88 47% 35%
PFMbetaLow 2.36 32.62 7.93 2.32 29% 25%
PFMbetaHigh 1.70 109.74 4.00 4.79 120% 40%
PFMgamma 1.77 1710.6 57.81 125.25 217% 85%

pi = P(ai−1 ≤ x ≤ ai) =
∫ai
ai−1

f(x)dx, where pi−1 = pi

In our case we select k = 10 intervals so pi = 1
10 = 0.1. Using the cumulative stan-

dard normal distribution table from [44] we find k intervals with probability 0.1 for a
normal distribution to be

(−∞,−1.29)1, [−1.29,−0.85)2, [−0.85,−0.53)3, [−0.53,−0.26)4, [−0.26, 0)5,
[0, 0.26)6, [0.26, 0.53)7, [0.53, 0.85)8, [0.85, 1.29)9, [1.29,∞)10

To find the intervals for X we need to calculate x̄ and σx to get the boundaries of the
k intervals

(x̄+ a0 × σx, x̄+ a1 × σx)1, ..., [x̄+ ai−1 × σx, x̄+ ai × σx)k

Our hypothesis is

H0: X has normal distribution

H1: X does not have normal distribution

We have k − p − 1 = 10 − 2 − 1 = 7 degrees of freedom v select confidence interval
α = 0.05. Using the chi-squared distribution table from [44] we find that X2α,v = X20.05,7
is 14.07 meaning that H0 is rejected if X20 > 14.07. If X20 <= 14.07 we cannot reject H0
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and X might have a normal distribution. We apply the X20 test on the filtered samples
and each feature and count the number of non-rejects of H0. From the Table 2 we can

Table 2: Chi-square goodness of fit test results
X Probable normal distributions
si.X 71
si.fX 175
si.fDelta 29
si.fTheta 343
si.fAlpha 436
si.fBetaLow 597
si.fBetaHigh 555
si.fGamma 121
s1.featureo, ..., s72.featureo per client 35
s1.featureo, ..., s864.featureo 0

see that the samples in fBetaLow have the highest count of probable normal distributions
because theH0 hypothesis could not be rejected in 597 out of 864 signals. It is interesting
to see that normal distributions are most common in the theta, alpha, betaLow and
betaHigh band as opposed to delta and gamma that have noticeably fewer probable
normal distributions. This indicates that the signals are more stable in the mid range
frequency bands, but this is not necessarily better in terms of authentication because
what we want is similar values for the same client but different values for different
clients. Finally we can see that when we test each feature for each client separately
only 35 feature tests out of 300 (25 features times 12 clients) had a probable normal
distribution. When features are tested across all signals there are 0 out of 25 tests (25
features) with a probable normal distribution. The ideal result would be that all features
followed a normal distribution per client, but not across all signals, because then we
would know something about what values to expect per client. But until this is tested on
30 clients or more we do not conclude with anything. The results are only considered as
preliminary and used as a guide.

6.2 Correlation

We compute the correlation between features in order to see how they relate to each
other. If two or more features have a high correlation, a combination of them can be
utilized when creating a distance metric. To find the correlation between two sequences
X = (x1, ..., xn) and Y = (y1, ..., ym) we need the mean (equation 6.1), standard devia-
tion (equation 6.2), and covariance (equation 6.5)

σxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (6.5)

The correlation between X and Y is then defined as

ρxy =
σxy

σxσy
(6.6)

Correlation ρxy have values in the range [−1, 1]. The further away from 0 the stronger
the correlation. Positive correlation implies that when X increase Y increase, and when X
decrese Y decrease. Negative correlation implies that when X increases Y decreases, and
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when X decreases Y increases. We set the correlation threshold to ≥ |0.6| such that only
features with a high correlation are found. Table 3 show the average correlation between
two features per client, and the number of clients with high correlation between the two
features (we only those with 5 clients or more to reduce the size of the table). We can see

Table 3: Correlation between features per client
X Y Number of clients Average ρxy
ZCR Pgamma 10 0.81
ZCR PFMgamma 10 0.82
VAZ PFM 12 -0.79
VAZ PFMdelta 6 -0.72
PFM MSP 6 0.79
PFM PFMdelta 7 0.73
MSP Pdelta 11 0.99
MSP PFMdelta 11 0.78
MSP Ptheta 9 0.83
MSP PFMtheta 9 0.77
MSP PbetaLow 6 0.83
Pdelta PFMdelta 12 0.81
Pdelta Ptheta 9 0.79
Pdelta PFMTheta 9 0.76
Ptheta PFMtheta 12 0.89
Ptheta Palpha 10 0.85
Ptheta PbetaLow 7 0.84
PFMtheta PbetaLow 7 0.70
Palpha PFMalpha 11 0.85
PbetaLow PbetaHigh 12 0.78
PbetaLow PFMbetaHigh 6 0.72
PbetaHigh PFMbetaHigh 12 0.82
Pgamma PFMgamma 12 0.94
Ptheta PFMalpha 6 0.79
PFMtheta Palpha 8 0.79
PFMtheta PFMalpha 6 0.75
Palpha PbetaLow 7 0.81

that Zero Crossing Rate (ZCR) is closely related to the signal power in the gamma band
(Pgamma), which implies that activity in the gamma band tend to produce an increase in
negative values. ZCR is also connected to the peak frequency magnitude in the delta band
(PFMgamma), but this is only a natural effect due PFMgamma’s computation based on
Pgamma. Values Above Zero (VAZ) is decreasing as the peak frequency magnitude (PFM)
is increasing, which indicates that peaks are higher with more samples below zero. The
high correlation between the Mean Sample Power(MSP) and the power in the delta band
(Pdelta) is telling us that most clients have highest activity in the delta band, followed by
the activity in the theta band. The most interesting result is the high correlation between
the power in the betaLow band (PbetaLow) and the betaHigh band (PbetaHigh) for all
12 clients. Maybe these two features are tied to the activity of specific clients.

We have not mentioned correlations like Pdelta and PFMdelta, or Ptheta and PFM-
theta because these correlations are also natural because the way they are computed.
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6.3 Distance metric

The main problem in this thesis is to compare two EEG signals and determine how sim-
ilar they are. A distance metric is a common method in authentication to compute the
distance between two sequences X = (x1, ..., xp) and Y = (y1, ..., yq) and must have the
following properties:

d(X,Y) ≥ 0), distance must be positive

d(X,Y) = 0 if X = Y, equal sequences give the best result

d(X,Y) = d(Y,X), order independent symmetry

d(X,Z) ≤ d(X,Y) + d(Y,Z), triangle inequality

There are no limitations other than the properties above when designing a distance met-
ric. The possibilities are endless and there is no ”best way” to create a distance metric
that provide the best results. Usually a template is created for each client which contain
features values that best describe that client. All signals recorded from the same client
should then contain feature values in the same range as those in the template within a
certain threshold th. Ideally d(s1, s2) < th indicate that the two signals originate from
the same client while d(s1, s2) ≥ th indicates different clients. A good template is de-
pendent on the distance metric and vice versa.

In our experiment, we have to consider that signals are recorded from different clients
in addition to different tasks. This means that the distance d(s1, s2) fall into one of four
categories:

• A: Signals are from the same client doing the same task;
d((clientj, taskk, sessionm, recn), (clientj, task1, sessionm, recn+1)).
Distances in category A are referred to as Aa where a = 1, ..., 8 (Table 4).

• B: Signals are from the same client doing two different tasks;
d((clientj, taskk, sessionm, recn), (clientj, taskk+1, sessionm, recn)).
Distances in category B are referred to as Bb where b = 1, ..., 28 (Table 4).

• C: Signals are from different clients doing the same task;
d((clientj, taskk, sessionm, recn), (clientj+1, taskk, sessionm, recn)).
Distances in category C are referred to as Cc where c = 1, ..., 8 (Table 5).

• D: Signals are from different clients doing different tasks;
d((clientj, taskk, sessionm, recn), (clientj+1, taskk+1, sessionm, recn)).
Distances in category D are referred to as Dd where d = 1, ..., 56 (Table 5).

A set of distances that should be verified as originating from the same client is called
genuine attempts while a set of distances that should be rejected because they originate
from different clients is called fraudulent attempts. Hence the number of genuine at-
tempts is always lower than fraudulent attempts.

Let us say that we use A1 as genuine attempts and C1 as fraudulent attempts for
client1 and client2. All clients have 3 recordings of each task in each session so if we
compute the distances per session A1 consists of (3×3−3)

2 = 3 genuine attempts per client
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Table 4: Category A and B distances for clientj

clientj
Relax Color Rotate Password Music Words Count Read

clientj

Relax A1 B1 B2 B3 B4 B5 B6 B7
Color B1 A2 B8 B9 B10 B11 B12 B13
Rotate B2 B8 A3 B14 B15 B16 B17 B18
Password B3 B9 B14 A4 B19 B20 B21 B22
Music B4 B10 B15 B19 A5 B23 B24 B25
Words B5 B11 B16 B20 B23 A6 B26 B27
Count B6 B12 B17 B21 B24 B26 A7 B28
Read B7 B13 B18 B22 B25 B27 B28 A8

Table 5: Category C and D distances for clientj and clientj+1

clientj+1
Relax Color Rotate Password Music Words Count Read

clientj

Relax C1 D29 D30 D32 D35 D39 D44 D50
Color D1 C2 D31 D33 D36 D40 D45 D51
Rotate D2 D8 C3 D34 D37 D41 D46 D52
Password D3 D9 D14 C4 D38 D42 D47 D53
Music D4 D10 D15 D19 C5 D43 D48 D54
Words D5 D11 D16 D20 D23 C6 D49 D55
Count D6 D12 D17 D21 D24 D26 C7 D56
Read D7 D13 D18 D22 D25 D27 D28 C8

while C1 consists of 3×3 = 9 fraudulent attempts per client. If we compute the distances
across all sessions A1 consists of (9×9−9)

2 = 36 genuine attempts per client, while C1
consists of 9 × 9 = 81 fraudulent attempts per client. The total number of genuine and
fraudulent attempts computed for two clients is then 6 and 18 per session, and 72 and
162 across all sessions respectively.

A false match has occurred if a distance is accepted (below th) even though it should
be rejected. A false non-match has occurred if a distance is rejected (above th) even
though it should be accepted. As a measurement of how well a distance metric perform
we use False Match Rate (FMR), False Non-Match Rate (FNMR) and Equal Error Rate
(EER) for several th.

FMR =
number of false matches

number of fraudulent attempts
(6.7)

FNMR =
number of false non−matches

number of genuine attempts
(6.8)

EER = The rate where FMR = FNMR (6.9)

The FMR and FNMR for different thresholds th can be plotted in a Detection Error Trade-
Off Curve (DET-Curve) (e.g. Figure 16) that show how they relate to each other (Matlab
code in Appendix E).

6.4 Dynamic time warping based distance metric

Dynamic time warping (DTW) is a technique that simulates the human ability to match
patterns by stretching the two time series in time, called warping. It is a very useful
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technique that has been applied in several fields like gesture and speech recognition.
The downside is that DTW has a quadratic time and space complexity making DTW
algorithms slow as the size of the time series increase. This is especially noticeable when
we have a lot of time series to compare. We tried the FastDTW algorithm as found in [33],
which has linear complexity in time and space. Unfortunately the time series input had
to be read from file, which made it cumbersome and slow to use with Matlab. Instead
we used a DTW algorithm written in Java by a fellow student (Kjetil Holien) and his
supervisor (Patric Bours). The input to the algorithm is the two time series we want to
compare and the output is the distance. We apply DTW on X, fX, fDelta, fTheta, fAlpha,
fBetaLow, fBetaHigh, and fGamma e.g:

d(s1, s2) = DTW(s1.fAlpha, s2.fAlpha) (6.10)

6.4.1 Results

DTW would take a long time to run if we were to calculate the distance between all
signals. Instead we calculate the distances in what we call a ”best-case-scenario”. This
is based on selecting the task with the best performance in each session per client by
taking the distance between the three recordings of each task and select the one with
the best average, in other words the category Aa with the best average for each client.
This task is used as genuine attempts, while other client’s read task category D50, ..., D56
(depending on Aa) is used as fraudulent attempts. This is a very unrealistic case that are
based on few values, but by doing this we actually design a case where the EER should
be low if DTW has any potential at all.

The results are shown in Table 6 and we can see that EER is generally very high,
but the samples in fGamma stands out (22.2%, 22.2%, and 14.7% EER) so we decided
to test DTW on fGamma across all sessions. We call this distance metric DTW fGamma
and Table 7 show the category Aa task with the best average distance for each client,
and we can see that the DTW fGamma fails to detect the same task in each session. For
testing purposes we use the best session 1 Aa as genuine attempts across all sessions,
andD50, ..., D56 from all sessions as fraudulent attempts. The result was an EER of 34.30
(Figure 16 which is to high for authentication purposes, and the EER is even calculated
based on an unrealistic ”best-scenario-case”.

Table 6: EER in each session using DTW as a distance metric on the filtered samples
Samples Session 1 Session 2 Session 3

X 42.8% 46.4% 54.5%
fX 38.9% 48.3% 50.0%

fDelta 44.4% 42.9% 62.9%
fTheta 49.9% 67.6% 62.2%
fAlpha 40.4% 47.2% 42.6%

fBetaLow 39.9% 43.1% 42.4%
fBetaHigh 29.7% 37.0% 38.0%
fGamma 22.2% 22.2% 14.7%
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Table 7: Best performing Aa tasks with DTW fGamma as distance metric in each session
Client Session 1 Session 2 Session 3
1 Rotate Music Count
2 Rotate Password Color
3 Words Music Relax
4 Rotate Password Relax
5 Relax Color Words
6 Words Music Count
7 Rotate Music Music
8 Password Rotate Relax
9 Relax Relax Color
10 Rotate Rotate Words
11 Relax Relax Color
12 Count Password Password

Figure 16: DET-Curve with DTW fGamma as distance metric across all sessions
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6.5 Feature based distance metric

After the poor results with DTW we move on to the features and create our own dis-
tance metric. We have 25 features to work with and the distance metric can utilize a
combination of all or just some of them. Our challenge is to find the best one.

6.5.1 Feature to task relation

The first step is to compute how each the feature relate to the same task across all sessions
per client. A distance metric based on the Manhatten distance of each feature is used

d(s1, s2) = |s1.featureo − s2.featureo| (6.11)

This way we find can the feature with the best relation to each task. We compute the
average category Aa distance per client across all sessions using each feature in the
distance metric. The results in Table 8 show that the values in two different rows vary
allot because of the inherent differences in feature values (Table 1), so it makes no sense
to compare two rows and the table should be read row by row only. The general trend is
that distances decrease from relax to count and then rise again with read. This is probably
due to the initialization period and implies that the equipment actually does have an
impact on the performance. The PbetaHigh and Pgamma features gets a noticeable drop
in average distance from the Relax task to the Color task (16.90 to 1.69 and 426.44 to
99.25 respectively), which means that a lot of the noise in the first minute of recording is
originating from the betaHigh band and gamma band. All in all there is no real evidence
that some features relate to specific tasks.

6.5.2 Feature performance

The next step is to test the performance of each feature without considering specific tasks
by doing an ”all vs all” approach instead, excluding the read task as this is only a refer-
ence task. We use the manhatten distance (Equation 6.11) and category A1, ..., A7 and
B1, ..., B26 as genuine attempts and C1, ..., C7 and D1, ..., D49 as fraudulent attempts.
The results in Table 9 show that EER is generally very high, but that each session has
lower EER than when all sessions are included. E.g. the EER when using ZCR in the dis-
tance metric is e.g 33.07%, 33.87%, and 31.26% when session 1, 2, and 3 are computed
separately while the EER is 42.74% when computed across all sessions. In fact, there
are no features that provide an EER lower than 39.36% (PbetaHigh) when computing
distances across all sessions. Therefore we have to create a distance metric that utilize a
combination of the features to reach an EER lower than 39.36%
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Table 8: The average Aa distance across all sessions
Task

Feature Relax Color Rotate Password Music Words Count Read
MSV 0.0225 0.0115 0.0110 0.0159 0.0210 0.0144 0.0167 0.0362
ZCR 0.12 0.08 0.08 0.07 0.06 0.07 0.07 0.08
VAZ 210.19 150.48 173.00 170.60 187.41 180.06 190.26 200.15
PF 14.51 13.45 12.45 8.84 10.46 6.70 5.95 6.92
PFM 139.99 68.77 76.30 72.33 82.74 73.34 74.63 119.41
MSP 202.29 109.70 71.59 74.76 74.19 92.23 74.34 112.19
MPA 13.06 12.71 14.56 15.74 14.58 13.82 14.04 17.64
Pdelta 730.88 534.29 381.03 386.96 402.55 511.02 408.82 617.93
PFdelta 0.36 0.28 0.23 0.19 0.23 0.26 0.18 0.21
PFMdelta 39.81 32.67 37.52 42.09 40.36 50.13 47.50 47.23
Ptheta 69.59 54.80 16.24 17.47 14.44 16.12 13.00 61.30
PFtheta 0.83 0.95 1.02 1.01 1.01 0.81 1.14 0.78
PFMtheta 7.69 6.06 4.51 4.70 3.81 4.38 3.95 8.69
Palpha 16.03 12.34 4.21 4.80 4.51 3.89 4.21 9.49
PFalpha 1.05 1.19 1.09 1.09 1.06 1.06 0.97 0.90
PFMalpha 3.62 2.67 2.13 2.18 2.14 1.97 2.23 2.59
PbetaLow 6.50 3.21 1.45 1.54 1.20 1.30 1.21 2.03
PFbetaLow 1.11 0.76 0.64 0.69 0.54 0.86 0.59 0.97
PFMbetaLow 2.63 2.44 1.84 1.65 1.89 1.75 1.67 1.67
PbetaHigh 16.90 1.69 1.13 1.14 0.91 0.86 0.77 1.18
PFbetaHigh 2.98 3.11 2.95 3.09 2.74 3.14 3.03 3.31
PFMbetaHigh 4.24 1.35 1.16 1.10 1.02 0.86 0.79 1.07
Pgamma 426.44 99.26 82.4881 61.12 47.35 42.78 41.98 52.22
PFgamma 0.31 0.43 1.02 0.52 0.66 0.53 0.77 1.25
PFMgamma 94.02 46.47 40.20 35.67 28.43 27.17 25.38 35.24
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Table 9: EER in each session for each feature in a manhatten distance metric
Feature Session 1 Session 2 Session 3 All

MSV 46.40% 46.83% 41.32% 47.90%
ZCR 33.07% 33.87% 31.26% 42.74%
VAZ 32.07% 33.29% 33.14% 40.55%
PF 36.42% 40.15% 35.76% 42.95%

PFM 33.70% 36.02% 38.50% 44.14%
MSP 34.03% 38.81% 37.36% 42.92%
MPA 46.51% 49.23% 50.02% 49.06%

Pdelta 35.01% 38.92% 39.89% 44.32%
PFdelta 41.08% 40.00% 45.75% 47.45%

PFMdelta 33.71% 37.78% 40.02% 45.37%
Ptheta 37.34% 40.33% 41.52% 43.66%
PFtheta 47.43% 48.58% 47.62% 48.64%

PFMtheta 36.34% 41.70% 43.02% 44.50%
Palpha 41.14% 37.75% 38.79% 41.51%
PFalpha 44.64% 43.40% 44.00% 45.16%

PFMalpha 41.49% 40.08% 40.13% 42.51%
PbetaLow 41.38% 37.62% 37.01% 42.65%
PFbetaLow 49.53% 49.52% 44.85% 49.19%

PFMbetaLow 49.20% 49.87% 35.03% 48.01%
PbetaHigh 35.26% 34.52% 36.82% 39.36%
PFbetaHigh 46.85% 47.44% 41.54% 46.04%

PFMbetaHigh 40.59% 38.31% 37.92% 41.88%
Pgamma 38.47% 34.36% 36.57% 42.46%
PFgamma 35.88% 31.48% 39.59% 41.86%

PFMgamma 39.99% 32.01% 34.97% 42.15%
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6.5.3 Results

We have tried lots of different feature combinations in our distance metric with lots of
unsatisfactory results. So far the best one is based on the correlation between PbetaLow
and PbetaHigh, and Ptheta and Palpha as we discovered in Table 3. We call it feature
based distance metric and it looks like this (Matlab code in Appendix D):

d1 = |(X.PbetaLow/X.PbetaHigh− Y.PbetaLow/Y.PbetaHigh)|

d2 = |(X.PbetaLow/Y.PbetaLow− Y.PbetaLow/X.PbetaLow)|

d3 = |(X.PbetaHigh/Y.PbetaHigh− Y.PbetaHigh/X.PbetaHigh)|

d4 = |(X.Ptheta/X.Palpha− Y.Ptheta/Y.Palpha)|

d5 = |(X.Ptheta/Y.Ptheta− Y.Ptheta/X.Ptheta)|

d6 = |(X.Palpha/Y.Palpha− Y.Palpha/X.Palpha)|

d(s1, s2) = d1 + d2 + d3 + d4 + d5 + d6

To show that the feature based distance metric perform better than DTW fGamma, we
try the same ”best-case-scenario” as we did with DTW fGamma. As we can see from Table
10 the feature based distance metric also fails to detect the same task in each session, but
the overall result is a lot better with the feature based distance metric (Table 11). It is
important to note that the ”best-case-scenario” is based on too few values (432 genuine
attempts and 10692 fraudulent attempts) to be conclusive, it is just a case to show that
the feature based distance metric has better performance than DTW fGamma.

Table 10: Best performing category A task with feature based distance metric
Client Session 1 Session 2 Session 3
1 Count Words Words
2 Count Color Password
3 Color Count Password
4 Music Color Music
5 Rotate Password Words
6 Count Words Words
7 Music Music Music
8 Rotate Words Count
9 Rotate Color Words
10 Rotate Music Music
11 Relax Color Rotate
12 Music Color Count

Table 11: Comparison between DTW fGamma and feature based distance metric in the ”best-case-
scenario”

Distance metric Session 1 Session 2 Session 3 All
DTW fGamma 22.2% 22.2% 14.7% 34.30%
feature based 5.51% 7.55% 9.0488% 21.42%

In order to really test the feature based distance metric, we have to include more
genuine- and fraudulent attempts. We try an ”all-vs-all’ computation (excluding the read
task) where we use category A1, ..., A7 and B1, ..., B26 as genuine attempts and C1, ..., C7
and D1, ..., D49 as fraudulent attempts. This resulted in an EER of 25.34%, 28.03%, and
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28.38% in session 1, 2 and 3 respectivetly, which means that a combination of features is
clearly an improvement over using just one of the features as we did in Table 9. The EER
calculated across all sessions (Figure 17) based on 23436 genuine attempts and 261954
fraudulent attempts is 4.95% better than using PbetaHigh alone (39.36 % - 34.41%).

Figure 17: DET-Curve with feature based distance metric across all sessions

We have seen that DTW alone has poor performance on EEG signals, but maybe it can
work in combination with the feature based distance metric. Our final attempt is based
on a combination of both:

d1 = |(X.PbetaLow/X.PbetaHigh− Y.PbetaLow/Y.PbetaHigh)|

d2 = |(X.PbetaLow/Y.PbetaLow− Y.PbetaLow/X.PbetaLow)|

d3 = |(X.PbetaHigh/Y.PbetaHigh− Y.PbetaHigh/X.PbetaHigh)|

d4 = |(X.Ptheta/X.Palpha− Y.Ptheta/Y.Palpha)|

d5 = |(X.Ptheta/Y.Ptheta− Y.Ptheta/X.Ptheta)|

d6 = |(X.Palpha/Y.Palpha− Y.Palpha/X.Palpha)|

d7 = DTW(X.fGamma, Y.fGamma)

d(s1, s2) = d1 + d2 + d3 + d4 + d5 + d6 + d7

With this distance metric we achieved an EER based of 34.40%, which only 0.01% better
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than without DTW and may just be due to chance. And while the computation based on
the feature based distance metric alone use 35 seconds to complete, the distance metric
including DTW takes about 35 hours to complete.
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7 Conclusion

We found the EEG signal activity of our clients to be strongest in the delta band (1Hz -
4Hz) and the gamma band (4Hz - 8Hz) with the ThinkGear head set by Neurosky. The
equipment suffered from an initialization period where the signal gradually improved
during a client’s recording session, which made it difficult to analyze the signal in the
time domain. As a consequence our attempt to apply Dynamic Time Warping (DTW) on
filtered versions of the time domain signal did not produce good results. With DTW we
only achieved an EER of 34.30% in an unrealistic ”best-case-scenario” with few values
were we selected the best performing tasks for each client, a case that should get a low
EER for DTW to have any potential. To overcome this problem we transferred the signal
into the frequency domain and extracted features from both domains. Initially we wanted
to be able to distinguish between tasks as well as clients, but we have not been able to do
this as we did not find any relation between a specific task and feature. By utilizing the
correlations we found between the power in the betaLow- and betaHigh band as well as
the theta- and alpha band in what we called a feature based distance metric, we managed
to get an EER of 21.42% in the ”best-case-scenario”, a clear improvement over DTW.
When we applied the feature based distance metric in an ”all-vs-all” computation we got
an EER of 34.41%, which is the best result so far.

In our final attempt we combined the feature based distance metric with DTW in
the same ”all-vs-all” computation and got an EER of 34.40%, which is such a marginal
improvement that we cannot justify it. In the end it looks like DTW does not perform
well on EEG signals.

We have to ask ourselves, why do we get an EER lower than 50% (the worst case)?
Is it because we actually detect client specific similarities and differences, or is it in fact
session based such that two consequtive signals are similar because of the equipment?
The results strongly suggests that the similarities are session based. The reason is that
one sensor with only 128Hz sample frequency fails to extract enough client specific in-
formation in order to extract features with high entropy. The only reliable information
we can extract with one sensor is the power in each frequency band, which is not enough
to distinguish between clients or tasks.

Finally we have to say that based on what we have seen in related work and what we
have been able to do with just one sensor, we believe that an implementation of a brain
wave based authentication system is just a matter of time.
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8 Further work

Considering the infinite possibilities in a distance metric creation there is probably a
feature combination that may perform even better than the one we ended up with. The
challenge is to find it, and we have been analyzing our data to the very end of this thesis,
trying to improve the results. The next step would be to learn about Autoregressive (AR)
parameters and neural networks like in [8] and their performance on authentication
with one EEG sensor. One possibility is to use WEKA, a collection of machine learning
algorithms for data mining tasks [45].

We could also try different tasks that are more suitable for the FP1 location as well
as different sensor placements, but overall we do not believe that tasks has such a huge
impact in authentication. What we really want to find is the EEG to DNA relation as Vogel
discovered in the 1960’s [4].

The most evident improvement that can be done in further work is to get better
equipment that has more sensors and a higher sample frequency. There has been lots
of improvements to EEG equipment during the writing of this thesis and it has become
cheap enough for the public to buy. Emotiv [13] recently announced their new head set:

Based on the latest developments in neuro-technology, Emotiv has developed a new per-
sonal interface for human computer interaction.

The Emotiv EPOC uses a set of sensors to tune into electric signals naturally produced
by the brain to detect player thoughts, feelings and expression and connects wirelessly to
most PCs.

The Emotiv neuroheadset now makes it possible for games to be controlled and influenced
by the player’s mind.

It would be very exciting to test this head set in terms of authentication. Even having
two sensors is a great improvement over just one as it allows analysis on the relation
between the sensors. Other possibilities include those we mentioned in the related work
chapter, Princippal Component analysis (PCA) with The Dien PCA Toolbox [34], indepen-
dent component analysis (ICA) and joint time-frequency analysis (TFA) with the Matlab
toolbox EEGLAB [35], data cleaning, statistical extraction and visualization techniques
with Net Station [36].
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A Participant Agreement Form

The Participation Agreement Form is in its original form on the next page.
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Participant Agreement Form 

Purpose and explanation:  

In this experiment you will wear a headset with the capability of recording a signal that emits from 
your brain (EEG signal), captured on your forehead by a sensor attached to the headset. There will be 
no signals sent into your brain. With the aid from a researcher you will be required to think about 
different thoughts with your eyes closed and arms resting in your lap. The purpose of the experiment 
is to research similarities and differences between thoughts and how they can be separated from 
one another. One session consists of 24 recordings that lasts 20 seconds each to a total of 8 minutes. 
Breaks will be given when needed. We hope you will participate for 3 sessions separated with a few 
days. 

Participation in acquisition of EEG data: 

I am participating in the acquisition of EEG data on a voluntarily basis. The purpose of this 
experiment is described above. 

The only data related to me that will be stored on a computer is the raw EEG signal recorded by the 
headset and an identification number that will be provided by the researcher. My name and 
signature will exist on this paper only. 

With my signature I confirm the following: 

1) I have been informed in oral and written form about the purpose of the experiment. 
2) I allow the researcher use the headset to collect EEG data from me 
3) The data may be used in future research, i.e. other master thesis experiments. 
4) I am allowed to reject to sign the agreement. 
5) I can request to receive insight in the collected data and get further explanation of its 

purpose. 
6) I can withdraw my participation at anytime without giving any explanation and all collected 

data from me will be permanently deleted. 

 

 

Full name: _____________________ 

 

 

Gjøvik, date: ____________________signature: _____________________ 
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B Matlab signal processing code

1 % readS igna l s ( f o l d e r )
2 %
3 % Author : Kennet Fladby
4 %
5 % parameter : f o l d e r − read a l l the s i g n a l f i l e s in the s p e c i f i e d f o l d e r .
6 % This f o l d e r must conta in raw s i g n a l f i l e s only and no sub fo lde r s .
7 %
8 % re tu rns : s i g n a l s − a s t r u c t conta in ing samples and f e a t u r e s of each c l i e n t ’ s r ecord ings
9 func t ion [ s i g n a l s ] = readS igna l s ( f o l d e r )

10

11 Fs = 128; % Sample ra t e
12 t = 20; % Recording durat ion in seconds
13 cut = 4; % Used to remove the f i r s t s p e c i f i e d seconds
14 N = ( t−cut ) ∗ Fs ; % Number of samples
15 df = Fs /N; % The r e s o l u t i o n of the f o u r i e r transform
16

17 % Six frequency bands and t h e i r l o c a t i o n in the f f t t ransform .
18 % E . g . frequency 4 i s loca ted at 4/df , but because matlab s t o r e s the
19 % DC value at index 1 so the c o r r e c t l o c a t i o n i s 4/ df + 1.
20 deltaBand = [1/ df +1,4/ df +1]; %1−4Hz
21 thetaBand = [4/ df +1,8/ df +1]; %4−8Hz
22 alphaBand = [8/ df +1,12/ df +1]; %8−12Hz
23 betaLowBand = [12/ df +1,20/ df +1]; %12−20Hz
24 betaHighBand = [20/ df +1,30/ df +1]; %20−30Hz
25 gammaBand = [30/ df +1,50/ df +1]; %30−50Hz
26

27 %Ret r i eve a l l the f i l enames in the s p e c i f i e d f o l d e r
28 f i l e s = d i r ( f o l d e r ) ;
29

30 f i l e s (1 :2) = [ ] ;
31

32 s i g n a l s = s t r u c t ;
33

34 %Loop through a l l the s i g n a l f i l e s
35 f o r i =1:numel ( f i l e s )
36

37 %Get s i g n a l name informat ion
38 [ s t a r t _ i d x , end_idx , extents , matches , tokens ] = regexp ( f i l e s ( i ) . name , ’ ( \ d+)\_ (.+)\ _ (\d+)\_ (\d +)\ . ( .+) ’ ) ;
39 c l i e n t = [ ’ C l i en t ’ , tokens {1}{1}];
40 t a sk = tokens {1}{2};
41 s e s s i o n = [ ’ Sess ion ’ , tokens {1}{3}];
42 record ing = [ ’ Recording ’ , tokens {1}{4}];
43

44 %Opens a s i g n a l f i l e
45 f i leName = [ fo lder , f i l e s ( i ) . name ] ;
46 f i d = fopen ( fileName , ’ r ’ ) ;
47

48 %Ignore the f i r s t l i n e which i s j u s t t e x t
49 t ex t s can ( f id , ’%∗ s %∗s ’ , 1 ) ;
50

51 %Ignore the f i r s t s p e c i f i e d number of samples
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52 t ex t s can ( f id , ’%n %n ’ , cut ∗Fs , ’ de l im i t e r ’ , ’ ; ’ ) ;
53

54 %Store the remaining s p e c i f i e d number of samples
55 v = tex t s can ( f id , ’%n %n ’ , N, ’ de l im i t e r ’ , ’ ; ’ ) ;
56 X = double ( v {2}) ;
57 f c l o s e ( f i d ) ;
58

59 %Loop through a l l samples to f ind va lues above zero .
60 VAZ = 0;
61

62 f o r n=1:N
63 i f (X(n) > 0)
64 VAZ = VAZ + 1;
65 end
66 end
67

68 %Loop through a l l samples to f ind zero c r o s s i n g ra t e
69 ZCR = 0;
70

71 f o r n=1:N−1
72

73 %I f the product of two ad jacent samples are negat ive ,
74 %a zero−c r o s s i n g has occured .
75 i f (X(n)∗X(n+1) < 0)
76 ZCR = ZCR + 1;
77 end
78

79 end
80

81 ZCR = ZCR/N;
82

83 % Transform the samples to the frequency domain
84 H = f f t (X ) ;
85

86 %F i l t e r s the s i g n a l to only inc lude band f r equenc i e s
87 fX = f o u r i e r F i l t e r (H, 2 , gammaBand( 2 ) ) ;
88 fDe l t a = f o u r i e r F i l t e r (H, deltaBand (1) , deltaBand ( 2 ) ) ;
89 fTheta = f o u r i e r F i l t e r (H, thetaBand (1) , thetaBand ( 2 ) ) ;
90 fAlpha = f o u r i e r F i l t e r (H, alphaBand (1) , alphaBand ( 2 ) ) ;
91 fBetaLow = f o u r i e r F i l t e r (H, betaLowBand (1) , betaLowBand ( 2 ) ) ;
92 fBetaHigh = f o u r i e r F i l t e r (H, betaHighBand (1) , betaHighBand ( 2 ) ) ;
93 fGamma = f o u r i e r F i l t e r (H, gammaBand(1) , gammaBand( 2 ) ) ;
94

95 % Mean phase angle
96 MPA = mean( angle (H(2:gammaBand(2))))∗180/ p i ;
97

98 % Signa l power in each of the s i x frequency bands .
99 Pde l ta = mean( abs (H( deltaBand (1) : deltaBand (2))) .^2);

100 Ptheta = mean( abs (H( thetaBand (1) : thetaBand (2))) .^2);
101 Palpha = mean( abs (H( alphaBand (1) : alphaBand (2))) .^2);
102 PbetaLow = mean( abs (H( betaLowBand (1) : betaLowBand (2))) .^2);
103 PbetaHigh = mean( abs (H( betaHighBand (1) : betaHighBand (2))) .^2);
104 Pgamma = mean( abs (H(gammaBand(1) :gammaBand(2))) .^2);
105

106 % Mean s p e c t r a l power
107 MSP = ( Pde l ta+Ptheta+Palpha+PbetaLow+PbetaHigh+Pgamma) / 6;
108

109 % Find peak frequency and peak frequency magnitude in the de l t a
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110 % to gamma range 1−50Hz .
111 [PFM, maxLoc] = max( abs (H(2:gammaBand ( 2 ) ) ) ) ;
112 PF = maxLoc ∗ df ;
113

114 % Find peak frequency and peak frequency magnitude in a l l bands
115 [ PFMdelta , maxLoc] = max( abs (H( deltaBand (1) : deltaBand ( 2 ) ) ) ) ;
116 [ PFdel ta ] = ( deltaBand (1) + maxLoc − 2) ∗ df ;
117

118 [ PFMtheta , maxLoc] = max( abs (H( thetaBand (1) : thetaBand ( 2 ) ) ) ) ;
119 [ PFtheta ] = ( thetaBand (1) + maxLoc − 2) ∗ df ;
120

121 [PFMalpha , maxLoc] = max( abs (H( alphaBand (1) : alphaBand ( 2 ) ) ) ) ;
122 [ PFalpha ] = ( alphaBand (1) + maxLoc − 2) ∗ df ;
123

124 [PFMbetaLow , maxLoc] = max( abs (H( betaLowBand (1) : betaLowBand ( 2 ) ) ) ) ;
125 [ PFbetaLow ] = ( betaLowBand (1) + maxLoc − 2) ∗ df ;
126

127 [ PFMbetaHigh , maxLoc] = max( abs (H( betaHighBand (1) : betaHighBand ( 2 ) ) ) ) ;
128 [ PFbetaHigh ] = ( betaHighBand (1) + maxLoc − 2) ∗ df ;
129

130 [PFMgamma, maxLoc] = max( abs (H(gammaBand(1) :gammaBand ( 2 ) ) ) ) ;
131 [PFgamma] = (gammaBand(1) + maxLoc − 2) ∗ df ;
132

133 %Store s i g n a l in format ion sor ted by c l i e n t , ses s ion , ta sk and
134 %record ing .
135 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . f i leName = f i l e s ( i ) . name ;
136 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . X = X ;
137 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fX = fX ;
138 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fDe l t a = fDe l t a ;
139 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fTheta = fTheta ;
140 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fAlpha = fAlpha ;
141 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fBetaLow = fBetaLow ;
142 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fBetaHigh = fBetaHigh ;
143 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . fGamma = fGamma;
144 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) .MSV = H(1)/N;
145 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . ZCR = ZCR;
146 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . VAZ = VAZ;
147 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PF = PF ;
148 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) .PFM = PFM;
149 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) .MSP = MSP;
150 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) .MPA = MPA;
151 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . Pde l ta = Pde l ta ;
152 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFdel ta = PFdel ta ;
153 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFMdelta = PFMdelta ;
154 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . Ptheta = Ptheta ;
155 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFtheta = PFtheta ;
156 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFMtheta = PFMtheta ;
157 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . Palpha = Palpha ;
158 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFalpha = PFalpha ;
159 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFMalpha = PFMalpha ;
160 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PbetaLow = PbetaLow ;
161 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFbetaLow = PFbetaLow ;
162 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFMbetaLow = PFMbetaLow ;
163 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PbetaHigh = PbetaHigh ;
164 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFbetaHigh = PFbetaHigh ;
165 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFMbetaHigh = PFMbetaHigh ;
166 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . Pgamma = Pgamma;
167 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) . PFgamma = PFgamma;
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168 s i g n a l s . ( c l i e n t ) . ( ta sk ) . ( s e s s i o n ) . ( record ing ) .PFMgamma = PFMgamma;
169

170 end
171

172 end
173

174 % F i l t e r s a f a s t f o u r i e r transformed sequence to inc lude only f r equenc i e s
175 % in the range : lowerFreq , . . . , upperFreq .
176 func t ion [ f i l t e r e d X ] = f o u r i e r F i l t e r (H, lowerFreq , upperFreq )
177

178 N = numel (H) ;
179

180 i f ( lowerFreq > 2)
181 H(2 : ( lowerFreq −1)) = 0;
182 H((N − lowerFreq +3):N) = 0;
183 end
184

185 H(( upperFreq +1):(N−upperFreq+1)) = 0;
186

187 f i l t e r e d X = i f f t (H) ;
188

189 end
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C Matlab Chi-square goodness-of-fit test

1 % chisquare (X)
2 %
3 % Author : Kennet Fladby
4 %
5 % Appl ie s a goodness of f i t t e s t with conf idence i n t e r v a l 0.05 to t e s t
6 % whether X fo l l ows a normal d i s t r i b u t i o n or not . X should conta in at l e a s t
7 % 30 values as the s i g n i f i c a n c e of the r e s u l t s i n c r ea se with l a r g e r X .
8 %
9 % Parameters : X − an array conta in ing the samples to t e s t

10 %
11 % Returns : isNormal − [ t rue ] i f X have a normal d i s t r i b u t i o n
12 % [ f a l s e ] i f X does not have a normal d i s t r i b u t i o n
13 %
14 func t ion [ isNormal ] = chi square (X)
15

16 k = 10;
17 p = 1/k ;
18 E = numel (X) ∗ p ;
19 r e j e c tTh = 14.07;
20

21 meanX = mean(X ) ;
22 stdX = std (X ) ;
23

24 %Found from a t a b l e
25 c h i C e l l = [− in f , −1.29; −1.29 ,−0.85; −0.85 ,−0.53; −0.53 , −0.26; −0.26 ,0; 0 ,0 .26; 0 .26 ,0 .53 ; 0 .53 ,0 .85 ;0 .85 ,1 .29 ;1 .29 , i n f ] ;
26

27 %C a l c u l a t e s the lower and upper range of the k b ins
28 b ins = meanX + c h i C e l l .∗ stdX ;
29

30 %Counts the number of samples in each bin
31 O = zeros (k , 1 ) ;
32

33 % Put the va lues in X in t h e i r r e s p e c t i v e b ins
34 f o r n=1:numel (X)
35

36 f o r i =1:k
37

38 i f (X(n) >= bins ( i , 1 ) && X(n) < bins ( i , 2 ) )
39 O( i ) = O( i ) + 1;
40 end
41 end
42

43 end
44

45 X2 = 0;
46

47 %Cal cu la t e the X2 value
48 f o r i =1:k
49

50 X2 = X2 + ((O( i ) − E)^2)/E ;
51
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52 end
53

54 %Decide whether X has a normal d i s t r i b u t i o n or not
55 i f (X2 >= re j e c tTh )
56 isNormal = f a l s e ;
57 e l s e
58 isNormal = true ;
59 end
60

61 end
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D Matlab feature based distance metric

1 % getDi s tance (X , Y)
2 %
3 % Author : Kennet Fladby
4 %
5 % Parameters : X , Y − C a l c u l a t e s the d i s t ance between X and Y using t h i s d i s t ance metr ic
6 %
7 % Returns : d − the d i s t ance
8 func t ion [d] = getD i s tance (X , Y)
9

10 d1 = abs (X . PbetaLow/X . PbetaHigh − Y . PbetaLow/Y . PbetaHigh ) ;
11 d2 = abs (X . PbetaLow/Y . PbetaLow − Y . PbetaLow/X . PbetaLow ) ;
12 d3 = abs (X . PbetaHigh /Y . PbetaHigh − Y . PbetaHigh /X . PbetaHigh ) ;
13 d4 = abs (X . Ptheta /X . Palpha − Y . Ptheta /Y . Palpha ) ;
14 d5 = abs (X . Ptheta /Y . Ptheta − Y . Ptheta /X . Ptheta ) ;
15 d6 = abs (X . Palpha /Y . Palpha − Y . Palpha /X . Palpha ) ;
16 d i s t 2 = d1+d2+d3+d4+d5+d6 ;
17

18 d = d i s t 2 ;
19

20 end
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E Matlab DET-Curve and EER computation

1 % calculateDET ( in t raVa lues , i n t e r V a l u e s )
2 %
3 % Author : Kennet Fladby
4 %
5 % C a l c u l a t e s FMR, FNMR and EER
6 %
7 % Returns : DET − Contains a matr ix with FMR, FNMR and thresho ld va lues
8 % EER − The c a l c u l a t e d EER
9 func t ion [DET , EER] = calculateDET ( in t raVa lues , i n t e r V a l u e s )

10

11 %Count the number of genuine and f raudu len t at tempts
12 i n t raAt tempts = numel ( in t r aVa lue s ) ;
13 i n te rA t tempt s = numel ( i n t e r V a l u e s ) ;
14

15 lastFMR = 0;
16 lastFNMR = 0;
17

18 findEER = true ;
19

20 intraMax = max( in t r aVa lue s ) ;
21 interMax = max( i n t e r Va l u e s ) ;
22 intraMin = min( in t r aVa lue s ) ;
23 in terMin = min( i n t e r Va l u e s ) ;
24

25 %Find the thresho ld range
26 i f ( intraMax >= interMax )
27 tMax = double ( intraMax ) ;
28 e l s e
29 tMax = double ( interMax ) ;
30 end
31

32 i f ( intraMin <= interMin )
33 tMin = double ( intraMin ) ;
34 e l s e
35 tMin = double ( interMin ) ;
36 end
37

38 tS tep = ( tMin + tMax)/10000;
39

40 %Adjust the thresho ld range to inc lude the edges
41 tMax = tMax + tStep ;
42

43 tS tep = ( tMin + tMax)/10000;
44

45 count = 1;
46 DET = zeros (10000 ,3);
47

48 %Cal cu la t e FMR and FNMR
49 f o r t=tMin : tS tep : tMax
50

51 FMCount = 0;
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52 FNMCount = in t raAt tempts ;
53

54 % Counts the number of f a l s e matches ( i n t e r va lues below
55 % the thresho ld )
56 f o r k=1: in te rA t tempt s
57 i f ( i n t e rV a l u e s (k) < t )
58 FMCount = FMCount + 1;
59 end
60 end
61

62 % Counts the number of f a l s e non−matches ( i n t r a va lues above
63 % the thresho ld )
64 f o r k=1: in t raAt tempts
65

66 i f ( i n t r aVa lue s (k) < t )
67 FNMCount = FNMCount − 1;
68 end
69 end
70

71 % Compute the r a t e s
72 FMR = (FMCount/ in te rA t tempts )∗100;
73 FNMR = (FNMCount/ in t raAt tempts )∗100;
74

75 %Store the r e s u l t
76 DET( count ,1 ) = FMR;
77 DET( count ,2 ) = FNMR;
78 DET( count ,3 ) = t ;
79

80 count = count + 1;
81

82 % Find the EER .
83 i f ( findEER )
84

85 i f ( (FMR == FNMR) || ((FMR > FNMR) && ( lastFMR < lastFNMR )) || ((FMR < FNMR) && ( lastFMR > lastFNMR )) )
86 EER = (FMR + FNMR + lastFMR + lastFNMR ) / 4;
87 findEER = f a l s e ;
88 end
89

90 lastFMR = FMR;
91 lastFNMR = FNMR;
92

93 end
94

95 end
96

97 end
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