
Finding weaknesses in web applications
through the means of fuzzing

Rune Hammersland

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2008

Avdeling for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

Finding weaknesses in web applications through the
means of fuzzing

Rune Hammersland

2008-06-30

Finding weaknesses in web applications through the means of fuzzing

Abstract

The handling of input in web applications has many times proven to be a hard task, and have
time and time again lead to weaknesses in the applications. In particular, due to the dynamics
of a web application, the generation of test data for each new version of the application must be
cheap and simple. Furthermore, it is infeasible to carry out an exhaustive test of possible inputs
to the application. Thus, a certain subspace of all possible tests must be selected. Leaving test
data selection to the programmers may be unwise, as programmers may only test the input they
know they can expect.

In this thesis, we describe a method and tool for (semi) automatic generation of pseudo
random test data (also known as “fuzzing”). Our test method and toolkit have been applied to
several popular open source products, and our study shows that from the perspective of the
human tester, our approach to testing is quick, easy and effective. Using our method and tool we
have discovered problems and bugs with several of the applications tested.

An article version of the thesis is included in Appendix C.
Keywords: D.2.5.k Testing strategies, D.2.5.o Test execution, D.2.5.r Testing tools.

iii

Finding weaknesses in web applications through the means of fuzzing

Sammendrag

Håndtering av brukerinput i web-applikasjoner har ved flere anledninger vist seg å være en
vanskelig oppgave. Gang på gang har vi sett sårbarheter i slike applikasjoner på grunn av måten
input benyttes uten å sikres først. På grunn av web-applikasjoners dynamiske natur er det også
vanskelig å automatisere slike tester, da brukergrensesnittet er i stadig endring. En test-metode
må derfor ta hensyn til dette. Videre er det urimelig å teste alle mulige verdier en bruker kan
taste inn, og et subsett av mulige verdier må velges. Å overlate ansvaret for å finne dette utvalget
til programmereren kan vise seg å være uklokt, ettersom han ofte kun tester de verdiene han vet
er sannssynlige.

I denne oppgaven beskriver vi en metode og et verktøy for (semi)automatisk generering av
tilsynelatende tilfeldig test data (også kjent som «fuzzing»). Testmetoden og verktøyet vårt har
blitt anvendt på flere populære frie web-applikasjoner, og eksperimentet vårt viser at fra testerens
perspektiv er metoden rask, enkel og effektiv. Ved å benytte metoden og verktøyet klarte vi å
avdekke problemer i flere av applikasjonene vi testet.

En artikkel-versjon av oppgaven finnes i Appendix C.
Nøkkelord: D.2.5.k Testing strategies, D.2.5.o Test execution, D.2.5.r Testing tools.

v

Finding weaknesses in web applications through the means of fuzzing

Acknowledgements

Writing a master thesis is a lot of work, and even though there is only one author, there are
people behind the author who deserves thanks. First of all, my supervisor, Einar Snekkenes, who
has provided me with advice on how to conduct the experiment, how to find more related work
and how to best lay out the thesis. Snekkenes was also the one who encouraged me to write the
article version found in Appendix C and submit it to a conference.

Other people have also helped this thesis become what it is, and I’m even more grateful
they chose to help me, as they don’t necessarily have the background knowledge my supervisor
has, but they took some time to help me in their own ways. Trond Viggo Håpnes provided me
with books on software testing and what he calls “balcony beers” in sunny afternoons. Yngve
Solberg helped me with some proof reading and gave some pointers on typographic mistakes
and inconsistencies. I would also like to thank my opponents, Terje Risa and Tron Ingebrigtsen,
for their valuable feedback on the thesis and extensive list of possible improvements.

Trine Sundstad deserves thanks for accepting my long hours at school, as well as helping to
take my mind off the thesis in the afternoons. My father, Morten Hammersland, along with my
mother, Inger-Elisabeth Hammersland, encouraged me to keep going when my motivation was
low. My father also took some time to read through both the thesis and the article, and gave some
good tips on what needed improving, as well as possible angles to difficult problems I faced.
I appreciate the support greatly, and I’m looking forward to celebrating their silver wedding
anniversary this summer.

Last, but not least, I’d like to thank my classmates for making our time in the master lab
enjoyable — and caffeinated. Together we have solved problems with LATEX, exchanged hints on
experiments and layout of thesis and presentation, participated in each others experiments, and
of course done some high quality procrastination involving baked potatoes, ice cream and various
short snippets of video found on the Internet. I will no doubt remember this last semester, and
the fun we had together on the lab, for a long time.

To everyone who has helped me with the process of writing this thesis: I am forever thankful.

Rune Hammersland, 2008-06-30

vii

Finding weaknesses in web applications through the means of fuzzing

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
List of Tables . xi
List of Figures . xiii
Code Examples . xv
1 Introduction . 1

1.1 Topic Covered by the Thesis . 1
1.2 Keywords . 2
1.3 Problem Description . 2
1.4 Justification, Motivation and Benefits . 3
1.5 Research Questions . 3
1.6 Research Method . 4
1.7 Summary of Contributions . 4

2 Related Work . 5
2.1 Testing . 5

2.1.1 Techniques Suitable for Dynamic Testing 7
2.2 Fuzzing . 8

2.2.1 Command Line Applications . 9
2.2.2 GUI Applications . 10
2.2.3 Programming Libraries . 11
2.2.4 Network Protocols and the Web . 11
2.2.5 Wireless Drivers . 12
2.2.6 Existing Tools Suitable for Fuzzing Web Applications 13

3 The Anatomy of a Web Application . 15
3.1 A Collection of Pages . 15
3.2 Getting a Page . 15
3.3 Sending Input to the Application . 17
3.4 HTTP Status Codes . 17

3.4.1 A Side Note on Redirection . 18
4 Method for Fuzzing Web Applications . 21
5 Building a Fuzzer . 23

5.1 Creating Attack Scripts for Webapp Fuzzing . 23
5.2 Random Number Generator . 26
5.3 HTTP Client . 26

ix

Finding weaknesses in web applications through the means of fuzzing

5.4 The Fuzzer — Tying it all Together . 27
6 Using the Fuzzer . 29

6.1 Set up Target . 29
6.2 Creating the Attack Script . 29
6.3 Running the Fuzzer . 30
6.4 Aftermath: Analyzing the Results . 31

7 Experiment . 33
7.1 Environment . 33
7.2 Applications Tested . 34
7.3 Outcome . 35

7.3.1 No Server Side Validation of Input . 35
7.3.2 Incorrect Use of HTTP Status Codes . 36
7.3.3 Failure to Handle Exceptions . 37
7.3.4 Resource Exhaustion . 39

8 Contributions . 41
8.1 Method for Fuzzing . 41
8.2 Toolchain for Fuzzing Web Applications . 41
8.3 Types of Bugs Found . 41

9 Discussion . 43
9.1 Completeness of our Method . 43
9.2 Comparability of Results . 43
9.3 Programming Practices . 44
9.4 Comparison . 45

10 Future Work . 47
11 Conclusions . 49
Bibliography . 51
A More Information About the Webapps Tested . 55

A.1 Source Lines of Code . 56
B Bug Reports . 59

B.1 Wordpress . 59
B.2 Request Tracker . 60
B.3 Mephisto . 63

C Article Version of the Thesis . 65

x

Finding weaknesses in web applications through the means of fuzzing

List of Tables

1 Overview of results from studies on client software. 9
2 Different fuzzing tools . 12
3 The computers we used in the experiment . 33
4 Results from applying our fuzzer. 35
5 Comparison of fuzzing tools . 45
6 Overview of the applications tested . 55

xi

Finding weaknesses in web applications through the means of fuzzing

List of Figures

1 A testing hierarchy . 6
2 Hierarchy of a website . 16
3 Webpages as a graph . 16
4 A simple HTTP request/response. 17
5 Different fuzzing phases . 21
6 An overview of the main components in the fuzzer 24
7 Number of HTTP status codes returned while fuzzing Wordpress. 37
8 Number of HTTP status codes returned while fuzzing RT. 39
9 Number of HTTP status codes returned while fuzzing RT, using different seed. . . 40

xiii

Finding weaknesses in web applications through the means of fuzzing

Code Examples

1 An example of an attack script . 25
2 Scraping a form . 25
3 Evaluating FuzzTokens in a list of method; path and query. 28
4 Example HTML form. 29
5 Example output from crawler after parsing form in Listing 4. 30
6 Example of manually tweaked attack script from Listing 5. 30
7 Mephisto’s method for converting user input to a date. 35
8 Creating a date through a hash of integers. 36
9 Passing input to the Markdown filter. 38
10 Apache’s error.log . 39

xv

Finding weaknesses in web applications through the means of fuzzing

1 Introduction

This chapter starts off with an introduction to the topic covered by the thesis, and a description
of the problem we are trying to solve. We will look into the motivation behind this work, and
our research questions are listed. We will also describe the research method used, and give an
overview of the contributions this thesis provides.

After this chapter, the thesis will follow this outline:

Chapter 2 Contains an introduction to software testing and related work on fuzz testing.

Chapter 3 Contains an introduction to how web applications are composited and how input
flows from the user to the application and back again.

Chapter 4 Explains the method we use to fuzz test web applications, building upon previous
approaches.

Chapter 5 Explains how we created a prototype for fuzzing web applications, based on the
previous method.

Chapter 6 Gives details on how to use the fuzzer built in the previous chapter.

Chapter 7 Details surrounding the project we conducted to test the method: set up of environ-
ment, list of tested applications, and details about the outcome of the experiment.

Chapter 8 Lists the contributions made in this thesis.

Chapter 9 Provides a discussion on the findings.

Chapter 10 Contains a list of possible improvements, and suggestions for future research.

Chapter 11 Conclusions for this thesis.

1.1 Topic Covered by the Thesis

This thesis is about testing how web applications handle user input. We evaluate how well a
method called “fuzzing” applies to this problem by outlining a way to apply this test technique
to web applications, a way to implement this proposed method, and finally by an experiment
against popular open source web applications, as well as a couple of new applications.

Fuzzing is a testing technique developed by Barton P. Miller at the University of Wisconsin in
USA. As they state in their first paper on the subject [1], “it started on a dark and stormy night”
when one of the authors experienced line noise on his connection to the university. They state
that the “line noise was not surprising; but we were surprised that these spurious characters were
causing programs to crash.” Using the experience from this night, they created an experiment
where they fed random input to various programs to see what happened. In later studies [2, 3, 4],
they also tested GUI (Graphical User Interface) programs for several systems by sending random
key presses and random mouse events.

1

Finding weaknesses in web applications through the means of fuzzing

Using this technique, they discovered that several programs didn’t handle random input too
well, many of them crashing. Where source code were available, they studied the “core dump”1

and source code to find out where the problem occurred. Many of the problems were due to
simple mistakes as neglecting to check the return value of functions before using the result. For
a short introduction to fuzzing, you could read Sprundel’s article from the 22nd Chaos Commu-
nication Congress [5].

Little or no research has been done on using fuzz testing to test web applications. There are
some tools available: Paros2, SPIKE3 and RFuzz4 to mention some. The first two work by acting
as an HTTP proxy which allows you to modify POST or GET values passed to a web site. The
last one is more like a framework for fuzzing which enables a programmer to programatically
fuzz web sites and, optionally, generate statistics through the generated CSV files. We have also
looked at The Burp Suite, Peach Fuzzing Platform and the Sulley Fuzzing Framework.

1.2 Keywords

These are the keywords covered by this thesis:

D.2.5.k Testing strategies.

D.2.5.o Test execution.

D.2.5.r Testing tools.

1.3 Problem Description

As evidenced by Miller et al., many applications are not robust enough against random input.
While they have researched how fuzzing affects command line and GUI applications, little, or
no research has been done on how it affects web applications. Tools do exist, but to the writer’s
knowledge, no reports have been published on how web applications stand against fuzzing. With
the ubiquitous blogs and user contributed websites that exists in this Web 2.0 world, it would
be interesting to find out how robust some of the popular applications are. When handling large
amounts of user input, it is important that there is no way that input can put the web application
in an undefined state, in other words: crashing it. Many programmers choose to use a web
framework to avoid having to handle these problems themselves, and others make their own
frameworks to simplify things. In both cases erroneous user input might affect their application,
as nothing will prevent you from doing “stupid” things as evaluating the user input as code (e.g.
if you’re using the eval function in dynamic languages like Perl). Articles have been written on
how a programmer can evaluate untrusted code “safely” (e.g. through sandboxing), however,
that is outside the scope of this thesis.

Fuzzing has already proven to be successful for many fields. This thesis looks at how to
implement a fuzzer suitable for fuzzing web applications, and how well this testing technique
fits with web based applications.

1Most systems can be configured to leave a core dump when a program crash. The core dump contains information
about what the program had loaded in memory and registers at the time of the crash.

2http://www.parosproxy.org/
3http://www.immunitysec.com/resources-freesoftware.shtml
4http://rfuzz.rubyforge.org/

2

Finding weaknesses in web applications through the means of fuzzing

1.4 Justification, Motivation and Benefits

Because so many web sites gives users the possibility to collaborate and contribute to the site,
they are also vulnerable to erroneous input and / or users with bad intents. By typing in random
data in the fields provided, either by accident, or by intent, the users may put the web application
in an undefined state, where it will no longer respond to new requests. Using random testing,
malicious users might also be able to discover other weaknesses in the application, like unsafe
handling of input leading to a command injection vulnerability or a way to manipulate data
stored in a database, or changing the pricing of an item they buy on an e-commerce site.

Through fuzz testing, we can find out how well the web applications handle random input,
and not the input the programmer expected (whether legitimate or illegitimate input was ex-
pected). By discovering where the applications fail to handle the fuzz data (random input) in a
controlled manner, we can find out which programming practices resulted in the bad code, and
possibly correct the mistakes made.

A good reason for looking into fuzzing for web applications is that producing a simple web
application has a relative low cost. Web programming is also associated with a learning curve that
starts out low: beginning programming for the web is easy, as is creating minor programs, but the
bigger the program, the harder it gets (especially with regard to security). As web programming
is considered “cheap” and easily accessible, so should testing techniques. A company that invests
a small amount of effort in creating a simple application (e.g. for internal use), shouldn’t need
to invest a great amount of effort in testing it. Fuzz testing is considered easy to automate and
easy to use, so it should fit the bill nicely.

1.5 Research Questions

The main questions we are looking to answer is: To what extent is fuzzing suitable for testing
web applications? We will try to find this out by answering the following questions:

• How much work does it take to implement the fuzzer?

• How effective is it? To answer this, we will look at:

• Automation — is it possible to automate, and to what extent?

• Finding bugs — by setting up a test environment, will we be able to find bugs using this
testing method?

• If we find bugs, what kind of bugs are they?

As stated earlier, research has been done on how well command line and GUI applications
handle fuzz data. Some research has also been done on fuzzing for network protocols, but to our
knowledge, similar tests have not been done on web applications.

3

Finding weaknesses in web applications through the means of fuzzing

1.6 Research Method

We started our work with looking for related work. The later papers by Miller et al. had some
pointers to other places we could look. In addition they provided us with a good set of keywords
to use when searching for articles. While looking for related work, we quickly found that some
work on the area had been done, but mostly outside academia, so few papers were produced.
What we found gave us a starting point for attacking our problem.

After reviewing related work, we used some of the ideas found in the studies by Miller et al.
and refined them to fit better with testing web applications. The method we came up with for
testing was then prototyped, and the resulting prototype was used in an experiment. Again the
related work gave pointers on how this should be conducted. Most of the studies by Miller et al.
has been quantitive studies, but they also contain a small element of a qualitative study. They
achieve this by testing a large amount of programs (the quantitative part), and when the testing
is done, they dive into some of the faults to discover what triggered them (the qualitative part).
We felt that this was a good approach, but setting up an amount of web applications matching
the amount of pre installed command line utilities tested by Miller et al. is very time consuming,
so we settled for a smaller amount of test subjects.

1.7 Summary of Contributions

In this thesis we propose a method for creating a fuzzer suitable for fuzzing web applications.
We have implemented a tool chain that uses this method, and have applied these tools to several
popular web applications available for installation on a computer to see how they handle fuzz
data as input (we have not been looking at how fuzz testing affects hosted solutions, such as
YouTube, as testing other peoples production systems is considered unethical).

We present a listing of flaws found in the web applications tested in Section 7.3, and where
possible we include information on why the application failed, and how to fix the mistake, sim-
ilarly as what Miller et al. did in [4]. We also considered checking how these applications stand
against SQL injection attacks and cross site scripting attacks, but we found that this was not
directly related to the random testing technique we know as “fuzzing”, as more directed attacks,
with a specific payload, would be necessary.

4

Finding weaknesses in web applications through the means of fuzzing

2 Related Work

This chapter gives a short introduction to software testing and an overview of the related work on
fuzzing. Section 2.1 gives an example of how testing techniques can be organized in a hierarchy
as well as an introduction to some common testing terms. Section 2.1.1 introduces a number of
dynamic testing techniques, and tries to establish where fuzzing fits.

Section 2.2 introduces fuzzing, and Sections 2.2.1 through 2.2.5 explains how fuzzing has
been used to discover weaknesses in command line applications, GUI applications, programming
libraries and WiFi drivers respectively. At last, Section 2.2.6 lists a couple of existing tools for
web application vulnerability discovery which includes a fuzzer.

2.1 Testing

Testing techniques can be divided in a hierarchy like shown in Figure 1. This makes it easier
for us to define the scope of our thesis, by explaining where fuzz testing belongs, and which
techniques are irrelevant for this kind of testing. While the terms in Figure 1 can apply both to
hardware and software testing, our emphasis is on testing software.

The first division is done between static and dynamic testing. Static testing requires no exe-
cution of the software, and is done on the code base. According to Ryber [6] this is often done by
hand, and techniques include inspection, walkthrough and different kinds of reviews. One form
of review is when newly written code has to be approved by one or more coworkers before being
applied to the code base. Compiling code might also be considered a static testing technique, as
the compiler parses the code in order to make machine code. Compilers can point to errors by
analyzing the code before it is being run.

Dynamic testing is when we are testing running software. This can be done in a number of
ways, one of which is widely known under the term “debugging”. Debugging is done by attaching
a program known as a “debugger” to the running software. Using the debugger, the programmer
can halt execution of code, inspect the memory of the application, alter the program flow and
step through the code one step at a time. Other dynamic methods include code coverage and
unit testing.

We see from the figure that dynamic testing can be subdivided in two groups: black box
testing and white box testing. Sometimes the terms “behaviour based testing” and “structural
testing” are used, but we will use the former terms. Black box testing is when we consider the
software as a black box: we know nothing of what it contains, but we know what input it can
take, and we know what output we might expect. White box testing is the opposite: here we
have access to the source code, and in addition to knowing the inputs and possible outputs, we
also know how the “box” converts the input to the output. Debugging usually falls into the white
box category, while unit testing can be placed under both, depending on how it is used.

At last, both black box testing and white box testing can be divided in “functional tests” and
“non-functional tests”, where the latter also is called testing “quality requirements”. Functional

5

Finding weaknesses in web applications through the means of fuzzing

Test techniques

Static Dynamic

Black Box / Behaviour-based White Box / Structural

Functional Non-functional / Quality Requirements

Figure 1: Division of testing techniques into a hierarchy. Figure taken from [6]

tests are tests which are aimed at testing specific functionality provided by the software, while
non-functional tests are aimed at testing other qualities like the ones defined by ISO 9126 [7]
(emphasized):

1. Functionality — A set of attributes that bear on the existence of a set of functions and their
specified properties. The functions are those that satisfy stated or implied needs. Ryber’s inter-
pretation: “are the desired functions present?”

2. Reliability — A set of attributes that bear on the capability of software to maintain its level of
performance under stated conditions for a stated period of time. Ryber’s interpretation: “Is the
system robust, and does it work in different situations?”

3. Usability — A set of attributes that bear on the effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users. Ryber’s interpretation: “Is the system
intuitive, comprehensible and simple to use?”

4. Efficiency — A set of attributes that bear on the relationship between the level of performance of
the software and the amount of resources used, under stated conditions. Ryber’s interpretation:
“Does the system use resources well?”

5. Maintainability — A set of attributes that bear on the effort needed to make specified modifica-
tions. Ryber’s interpretation: “Can the workforce, developers and users upgrade the system
when needed?”

6. Portability — A set of attributes that bear on the ability of software to be transferred from one
environment to another. Ryber’s interpretation: “Can the system work on different platforms,
with different databases, etc.?”

Ryber [6] notes that non-functional testing is often best to leave to the people with the domain
knowledge. Usability testing should preferably be done by experts in usability and testing of

6

Finding weaknesses in web applications through the means of fuzzing

reliability and efficiency might be smart to leave to the developers, as they have the tools needed.
We also note that efficiency testing is best done as white box testing, since this makes it easier to
find the bottlenecks in the source code, and which functions that pays off to optimize.

2.1.1 Techniques Suitable for Dynamic Testing

In this section, we’ll quickly describe some testing techniques that are relevant for dynamic
testing. These techniques will work with both black box testing and white box testing.

Equivalence partitioning This method divides the possible inputs into groups, and works under
the assumption that testing two kinds of input from the same group yields similar results.
I.e. by defining a group of allowed input values and a group of disallowed values, trying
two inputs from the group of allowed values should both yield a success, and consequently,
trying two values from the group of disallowed values should yield a failure in both cases.
Note that there might be several groups of disallowed input defined as two disjoint sets. An
example could be a grading scale {A, B, . . . , F}. Allowed values would be the given set, and
examples of disallowed values could be: i ∈ N, j ∈ R, {G, H, . . . , Z} and an empty string.

Boundary value analysis This method looks at the allowed input values, and tries the values
found on the boundaries between allowed and disallowed values. If a function for reserving
tickets to a movie has an allowed maximum of 6 tickets, and a minimum of 1, we see that
the range {1, 2, . . . , 6} is the allowed values, and all other integers are disallowed. So-called
“off-by-one errors” are common in programming, and boundary value analysis tests these
cases. The boundaries in the function mentioned will be values around the start and end of
the allowed range, i.e. 0, 1, 6, 7. In these cases, we will often test negative values as well as
real numbers. This method is most used in white box testing — with access to the source
code, we know which values are allowed and which are not. It applies to black box testing
when we can derive the allowed values, or when they are stated in the specification or
somewhere else.

Combinatorial analysis This method works best if there is a limitation on the possible inputs,
and is based on trying all possible inputs. If a function has several inputs, this can quickly
lead to what is called a “combinatorial explosion.” The testing method can however be
used on functions with a small input space, and is possibly best suited for black box testing
of a function where the input limitations are not clear.

Experience based testing People experienced in testing software systems might lean on their
experience in identifying possible weaknesses. By having tested similar functions or soft-
ware earlier, they might know which values and boundary cases that are likely to yield an
error. Reliance on earlier experience is also a part of “exploratory testing” [8, 9].

Random testing This method, briefly mentioned as “ape testing” on page 87 in [6], is based on
sending random input to the software or function, in the hope of discovering errors. The
technique doesn’t seem to make much sense for white box testing, and is most commonly
used under black box testing. It can, however, be a quick and easy supplement to other
white box testing techniques. This method is the basis for our thesis.

7

Finding weaknesses in web applications through the means of fuzzing

2.2 Fuzzing
“Our testing, called fuzz testing, uses simple black-box random input; no knowledge of the
application is used in generating the random input.” — Forrester and Miller [3]

As Miller et al. [1, 2, 4] and Forrester and Miller [3] already have stated, many applications
are vulnerable to buffer overflows and similar attacks because of bad programming practices.
Many of these flaws are hard for the programmer to spot, as they often make the assumption that
a function cannot fail and hence they do not check the returned value. Fuzzers can assist in these
cases, as backed up by Oehlert [10], a software engineer at Microsoft who found several flaws in
Microsoft’s HyperTerm after using a fuzzer to provide semi-valid input to the program. Microsoft’s
“Trustworthy Computing Security Development Lifecycle” [11] even states that “heavy emphasis
on fuzz testing is a relatively recent addition to the SDL [Security Development Lifecycle], but
results to date are very encouraging.”

While many papers have been written on fuzzing, they have mainly focused on client software
on the computer, and in some cases, like Xiao et al. [12], on network protocols. What seems to
be missing is research on how web applications can be tested randomly using fuzzing, and which
flaws might appear. Several papers, like [13], have suggested that user input is a huge problem
for web based applications, and especially regarding command injection attacks. Many injection
attacks are based on buffer overflows, which fuzz testing seems to be good at discovering.

Enumeration attacks (similar to combinatorial analysis) might be a better approach for dis-
covering vulnerabilities in web applications, but should not be confused with fuzzing. While
Dafydd Stuttard and Marcus Pinto writes about fuzzers in their book about “hacking” web appli-
cations [14], they seem to mistake the primary idea behind a fuzzer — at least according to the
definition by Miller. They mainly use the fuzzer as a means for enumerating attacks. A true fuzzer
should try strictly random input, or a combination of valid and random input. If you are send-
ing input based on a list of “possibly malicious input” or based on incrementing values, you are
doing an enumeration attack and not a fuzz attack. Stuttard and Pinto also states that analyzing
results from web application vulnerability discovery is hard, and manual work is often required.
Using the HTTP status code is one way of automating this task, but it might not be clear if an
error in the status code indicates an actual error — and on the other hand, an application doesn’t
need to fail in order to be vulnerable (i.e. cross site scripting attacks, path traversal attacks and
command injection attacks).

The rest of this chapter looks at different targets for fuzz testing, and what research has been
done on the subject. Bear in mind that while fuzzing has existed since the early nineties, it is
still a rather new tool and has only lately been getting more attention. Many of the people who
employ fuzzing as a means of security testing are not working in the academic field, so some
of the references are bound to be of a somewhat lower quality than usually expected from a
research standpoint. This certainly doesn’t mean they are bad articles (e.g. the articles by Miller
et al. [15, 16] are well written and contains lots of technical details). It only means that some of
them are not published in academic publications and may not follow the same style of writing
which seems to be expected from academic work.

8

Finding weaknesses in web applications through the means of fuzzing

[1] [2] [3] [4] [17] [18]
C

lie
nt

ru
nn

in
g

un
de

r: UNIX CLI 24-33% 43% 11-29%
GNU/Linux CLI 9% 4% ,9%
X11 26%, 58%
Windows GUI 45-97%
Windows CLI 23%
Mac OS X CLI 7%
Mac OS X GUI 73%

Table 1: Overview of results from studies on client software. Where only one number (or a range) is listed,
this indicates how many programs crashed or hung. Where two numbers are separated by a comma, the
first number represents crashes and the second hangs.

2.2.1 Command Line Applications

In [1], Miller et al. tested command line programs on seven different versions of UNIX (between
49 and 85 programs, depending on the system, usually between 70 and 80), and managed to
make 24-33% of the programs hang or crash (depending on which version of UNIX they tested).
The lowest (24.5%) was on an IBM machine running AIX 1.1, and the highest (33.3%) on a
HP machine running 4.3BSD. When they redid the study in 1995 [2], only 9% of the programs
crashed or hung on the Linux machine (running Slackware 2.1.0), and on the other end 43%
of the programs had problems on the NeXT machine (running NEXTSTEP 3.2). In this study
between 47 and 80 programs were tested on each platform (usually between 70 and 80). Results
on fuzz testing X applications (38 applications) were published in the same study, showing that
26% of the X applications crashed when tested with random legal input (events), and 58%
crashed when given totally random input (events).

Bowers, Lie and Smethells redid the studies Miller et al. did on UNIX command line programs
in their study from 2001 [17]. To accommodate for the fact that some of the programs originally
tested had since become abandoned, they changed some of the programs for newer alternatives,
(e.g. replacing vim for vi). Bowers et al. also noted that the fuzz program Miller et al. created
itself contained a bug that might have been found using fuzz testing. This shows that these kinds
of mistakes are very easy to make, even though you are aware of the problem. The study did by
Bowers et al. shows that the open source community had taken notice of Miller’s study [19], and
had improved the stability of many of the affected programs. Bowers et al. also notes that many
UNIXes have added warnings to the man-pages of dangerous functions after the Miller study, an
example being man 3 gets on e.g. GNU/Linux and Mac OS X:

BUGS
Never use gets(). Because it is impossible to tell without knowing
the data in advance how many characters gets() will read, and because
gets() will continue to store characters past the end of the buffer,
it is extremely dangerous to use. It has been used to break computer
security. Use fgets() instead.

9

Finding weaknesses in web applications through the means of fuzzing

2.2.2 GUI Applications

In Forrester and Miller’s study on Windows [3] 33 GUI programs were tested on Windows NT 4.0,
and 14 GUI programs were tested on Windows 2000. In this study three methods were used in
order to send input (events) to the applications: the SendMessage and PostMessage API calls, as
well as “random valid events”. The study showed that using the API to send random messages to
the running programs caused more errors than sending valid random events. Using SendMessage
they achieved an error rate of 81.7% on NT 4.0 and 85.7% on 2000. Using PostMessage the error
rates were 96.9% and 71.4%, and using “random valid event” they got 45.4% and 64.3% error
rates. They explain that the API calls contains messages with pointers as parameters:

“[...] which the applications apparently de-reference blindly.”i — Forrester and Miller [3]

The “random valid events” are also a better measure of the reliability, as the messages sent
through SendMessage and PostMessage usually comes from the kernel. Ghosh et al. also looked
at the robustness of Windows NT software using fuzzing [18]. They only tested 8 different pro-
grams, but had a lot of different test cases where they found that 23.51% of the tests resulted in
a program exiting abnormally and 1.55% of the tests resulted in a program hanging.

The last study from Miller et al., conducted on Mac OS X [4], shows similar results to the
best results from [2] when it comes to command line programs. In this study, 135 command line
programs were tested (over 1.5 times as many). The results: only 7% of the programs crashed
or hung. In other words this means that command line programs have become very good at
handling bad user input. This comes as no surprise, as most of the command line programs in
Mac OS X are GNU programs1, or programs who also have been developed in an open source
fashion. There are only a few programs (10 of 135) that Apple has created themselves. The GUI
applications on Mac OS X had a worse fate. Of 30 tested programs, 22 crashed or hung, yielding
a 73% failure rate; the worst in our overview (Table 1).

A similar technique to fuzzing was used during the development of the Macintosh 128k which
was released in 1984, but looking at the results from Miller’s study, similar tools are probably
not used today. The developer team on the Macintosh 128k created a program they called “The
Monkey” [20] which used some APIs to send random events to the operating system

“[...] so the Macintosh seemed to be operated by an incredibly fast, somewhat angry monkey,
banging away at the mouse and keyboard, generating clicks and drags at random positions
with wild abandon.” — Hertzfeld [20]

This program was a great help in the quest for bugs. Similarly there exists a program for
modern UNIXes called crashme which has been of great help for developers of GNU/Linux in
identifying rare cases where the system would crash due to erroneous input. [21] implies that
many commercial UNIX versions fail quickly after starting crashme, while GNU/Linux are re-
silient against the kind of attacks used. In a whitepaper submitted to the “Black Hat USA 2007
Briefings and Training” conference [16], Miller and Honoroff outlines several useful utilities and
tips for fuzzing software on Mac OS X. They also note that OS X comes with several useful tools
to aid this kind of testing.

1See e.g. bash, grep or gzip at http://directory.fsf.org/GNU/

10

http://directory.fsf.org/GNU/

Finding weaknesses in web applications through the means of fuzzing

2.2.3 Programming Libraries

Random testing has also been applied to programming libraries. Claessen and Hughes have
developed a tool for the Haskell language called QuickCheck [22] which uses a specification for
how a function works (called properties of the function), and proceeds to test the function with
a large number of automatically generated test cases. A property can be that a list xs, reversed
two times, should equal the original list of xs. The property also states the type used, for example
each x ∈ xs is an integer. QuickCheck will then test this property for a long range of random lists
of integers to see if the property holds. Similar tools to QuickCheck exists for other programming
languages like Common Lisp, Erlang, ML, Python, Ruby and Scheme.

In [23], Kropp et al. conducted a fuzz experiment on a long range of POSIX functions by
abstracting different datatypes. Using that approach they could generate semi-valid input for
the functions and test how well they handled random integers, strings without the termination
character, open filehandles and more. That paper also showed that using a good enough fuzzer,
you can expect about the same results as when you are writing exhaustive tests. Since the random
number generator was seeded with the name of the function they were testing, the same random
sequence was used every time they tested the same function.

Schmid and Hill have also looked at semi-valid input versus random input for testing of API
functions [24]. While Kropp et al. looked at POSIX functions, Schmid and Hill looked at the
WIN32 API functions and some command line tools. This study shows, contrary to Kropp et al.,
that semi-valid input yielded more failures, and hence was a better way to test.

2.2.4 Network Protocols and the Web

Banks et al. [25] points out that while many fuzzers exists for fuzzing network traffic, like
SPIKE [26] and PROTOS [27], they don’t handle stateful protocols very well, and making them
do so might require more work than writing a new framework altogether. Their creation —
SNOOZE — parses XML documents containing possible states of an application (represented
as nodes in a graph), and the available transitions between the states (represented as edges in
the graph), along with an XML document explaining the possible messages, along with default
values. Using these components they can write a script that creates fuzz values for some of the
messages, and thus they can control which point in the protocol state machine they wish to at-
tack. If they had been using a more standard fuzzing approach, they would rarely have gotten
past the initial state, but using their own approach they were able to find bugs in SIP (Session Ini-
tiation Protocol) implementations that were “hidden deep in the implementation of [the] stateful
protocol.”

Fuzzing has also proven effective in discovering vulnerabilities in web browsers, and through
this a means of exploiting the Apple iPhone [15]. As the authors of the whitepaper state: “Such
fuzzing can be performed against applications such as MobileSafari or against the WiFi or Blue-
Tooth stack. The vulnerability we discovered and exploited was found in MobileSafari using
fuzzing.” The infamous “Month of Browser Bugs” article series (which has since been removed)
also utilized fuzz testing in order to discover vulnerabilities in the most commonly used web
browsers [28]. The project was criticized for what some saw as an “irresponsible disclosure of

11

Finding weaknesses in web applications through the means of fuzzing

vulnerabilities”2, but the author (who is also the author of the Metasploit project) insists that all
vendors were made aware of the vulnerabilities before he disclosed them3.

2.2.5 Wireless Drivers

Many wireless drivers are unfortunately closed source, as the vendors creating the cards believes
they are letting go of their “intellectual property” by disclosing the source code. The result of this
is that the only way for “ordinary people” to test these drivers is through black box testing (or
indeed reverse engineering — discovering the workings of a device through analysis — which
has a lot in common with black box testing). This is especially true for closed devices like PDAs.
Testing of wireless drivers is very interesting these days, as wireless connectivity is becoming
the standard for many people. It is made even more interesting by the fact that wireless drivers
runs in kernel mode (at least on operating systems in common use), and thus an exploit can get
full access to the computer, with the attacker only in proximity of the victim. Butti and Tinnès
stresses this fact in their paper on discovering and exploiting wireless drivers [29], as well as the
fact that the wireless networks are weakening the security perimeter.

Mendonça and Neves has done some preliminary testing of the wireless drivers in an HP iPAQ
running the Windows Mobile operating system [30]. Without having the source code available,
they started writing a fuzzing framework targeting the wireless drivers on the device. By running
a monitor program on the device they have been able to find some weaknesses while fuzz testing
the driver. Whether the weaknesses are exploitable had not been discovered by the time the ar-
ticle was published. However, Butti and Tinnès were successful in discovering and exploiting the
madwifi driver running in the GNU/Linux kernel, as well as finding several denial of service vul-
nerabilities in different wireless access points. Some of the findings were included in the Month
of Kernel Bugs (http://projects.info-pull.com/mokb/) project and included as modules in
the Metasploit project (http://metasploit.com/). The exploit targeted at the madwifi driver is
a remote exploit giving the attacker a shell with the privileges of the user performing a scan of
available access points (root or normal user through the iwlist command, or the user running
wpa_supplicant — usually root). The article contains information on how they managed to ex-
ploit the driver, and how they made sure that the wireless stack would still be functioning after
the attack.

Program Target URL
AppScan Web apps http://www.watchfire.com/products/appscan/
Burp Suite Protocols / Web apps http://portswigger.net/suite/
Peach Protocols http://peachfuzz.sourceforge.net/
Sulley Protocols http://fuzzing.org/sulley
WebScarab Web apps http://www.owasp.org/

Table 2: Different fuzzing tools

2See e.g. http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=
9001610

3http://blog.metasploit.com/2006/07/month-of-browser-bugs.html

12

http://projects.info-pull.com/mokb/
http://metasploit.com/
http://www.watchfire.com/products/appscan/
http://portswigger.net/suite/
http://peachfuzz.sourceforge.net/
http://fuzzing.org/sulley
http://www.owasp.org/
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9001610
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9001610
http://blog.metasploit.com/2006/07/month-of-browser-bugs.html

Finding weaknesses in web applications through the means of fuzzing

2.2.6 Existing Tools Suitable for Fuzzing Web Applications

We have looked at existing tools for fuzzing web applications. Some of the applications we found
were mainly focused on protocol level fuzzing, but there exists some multipurpose fuzzers which
also aims at finding vulnerabilities in web applications. The fuzzers we looked at were Burp
Suite4, the Peach Fuzzing Platform5, the Sulley Fuzzing Framework6 and WebScarab7.

The Burp Suite (introduced in the book by Stuttard and Pinto [14]) implements a web proxy
which you can configure your browser to use. Every request made from the browser will then
be displayed in an application. From there you can pick the requests you want to use as entry
points for fuzzing or other attacks. The Burp Suite implements a bigger range of attacks, and is
not strictly a fuzzing tool. Due to this, the interface is rather crowded with buttons and tabs, so
getting started might not be easy. One of the most useful components, the Burp Intruder, is only
distributed in a limited version unless you pay for the program.

Peach also looked promising, and is being developed in an open source fashion. This frame-
work emphasize reusability, and writing components for use in one project will likely yield useful
components for other projects. It is mentioned in the book by Sutton et al. [31] as having a rather
steep learning curve, and the author of the framework seems to agree with this. Lately the fo-
cus has been on improving the ease of use and making the framework available to people who
doesn’t know how to write code. This framework focuses on fuzzing network protocols, and
building a custom fuzzer for one web application would amount to a great deal of work. The
realistic scenario would be to first implement components to ease the task of creating fuzzers for
web applications.

The Sulley Fuzzing Framework [31] also seems to be aimed primarily at fuzzing network
protocols and could be suitable for fuzzing web applications by targeting the protocol layer.
However, in our short review of the feasibility of this framework, it seemed like it depended
heavily on process monitoring in order to achieve great results. The example given in the book
(and documentation) shows that a process monitor is reporting information about the target of
the attack, and is able to restart it if it has failed. This seems great if we were fuzzing applications
with a web interface, and not web applications invoked by a web server like e.g. Apache.

WebScarab uses the same approach as the Burp Suite. You connect your browser to a cus-
tom proxy which intercepts requests and responses. As with Burp Suite, WebScarab implements
several attack techniques, and amongst them — a fuzzer. When inspecting the fuzzer, we found
that you need to provide it with sources for data. Sources can be defined as a file containing
one entry per line (e.g. the system dictionary file), or as a regular expression. When supplying
a file, the “fuzzer” seems to iterate through the file, until all the entries are used. To get better
randomness, we tried supplying the random device (/dev/random) as the file, but the program
tried to read in the “entire” file in order to display the values. This caused the program to raise
an exception, and the device could not be used. As the fuzzer in WebScarab is not working more
like an enumerator than a generator of true random input, we discarded it.

4http://portswigger.net/suite/
5http://peachfuzz.sourceforge.net/
6http://fuzzing.org/sulley
7http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

13

http://portswigger.net/suite/
http://peachfuzz.sourceforge.net/
http://fuzzing.org/sulley
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Finding weaknesses in web applications through the means of fuzzing

Late in the process of writing this thesis, we received a tip for a product named AppScan8.
This is a commercial vulnerability discovery tool created by the IBM-owned company Watchfire.
The product pages mentions that fuzzing is possible through the “pyscan” extension, but it seems
like the main method used is scanning pages for known vulnerabilities. However, since the price
of the product is rather steep9, we decided to not evaluate this program. We could have gone
for the trial version, but this is restricted to testing a predefined website which is outside our
control.

8http://www.watchfire.com/products/appscan/
9IBM’s pages states USD $4000 for “Enterprise Edition” and USD $6000 for “Tester Edition.” See e.g.

https://www-112.ibm.com/software/howtobuy/buyingtools/paexpress/Express?part_number=D61V2LL,
D61V3LL,D61UYLL,D61V0LL,&country=USA

14

http://www.watchfire.com/products/appscan/
https://www-112.ibm.com/software/howtobuy/buyingtools/paexpress/Express?part_number=D61V2LL,D61V3LL,D61UYLL,D61V0LL,&country=USA
https://www-112.ibm.com/software/howtobuy/buyingtools/paexpress/Express?part_number=D61V2LL,D61V3LL,D61UYLL,D61V0LL,&country=USA

Finding weaknesses in web applications through the means of fuzzing

3 The Anatomy of a Web Application

This chapter will give a brief overview of what a web application is, and how it works. Section 3.1
gives an introduction to how pages are identified and how they are linked together. Section 3.2
explains how a browser works to get a page from a web server, by giving a short introduction to
HTTP and HTML. Section 3.3 explains how a user can give input to a web application, and how
the result is communicated back to the user. Section 3.4 will go a bit deeper into the concept of
HTTP status codes, as these will be important to us when analyzing the results later.

3.1 A Collection of Pages

One way to look at the application is as a collection of webpages that work together to achieve
the goal of the application. Each page is identified by a unique URL (Uniform Resource Locator)
which acts as a pointer to the page. By separating the URLs by the forward slash, we see that
the pages of many applications are located in a tree structure which is reflected in the URL.
We have given an example in Figure 2. In this figure, the red edges labelled “auth” represents
a subtree that is restricted to authorized users. Historically the URL gave a pointer to where in
the file system the page was located, but with a technique known as URL rewriting, this is not
necessarily the case anymore.

The pages can contain links to other pages in the application. If we regard the pages as nodes
and the links as edges, we can create a graph illustrating the possible connections between pages
in the web application, as seen in Figure 3. When we later talk about crawling a page, the graph
model is a convenient way to visualize how the crawler must work and which constraints it
can bump into. Looking at the figure, we see that the root of the web application has a link to
what seems like an administrative interface. Since we need to be logged in to access the page, a
crawler might be able to see that the page is there (through the link from the application root),
but it might not be able to access the page, and other pages that might be hidden behind it. The
dashed edges indicates links that exists but is impossible to find unless logged in; similarly the
dashed node indicates a page that unauthorized users have no knowledge of.

3.2 Getting a Page

By issuing a HTTP GET request on one of the URLs, your browser will ask the web server to
retrieve the page associated with the URL. The web server will respond by sending an HTTP
response with some HTTP headers, and a message body, as specified by the HTTP 1.1 RFC [32].
For a web application, most message bodies will be formatted in the hypertext markup language
(HTML [33]), and this will be reflected in a HTTP header called “Content-Type”. A simple exam-
ple of the HTTP request/response model can be given as follows:

GET /webapp/post/1 HTTP/1.1
User-Agent: HTTPClient/1.0

15

Finding weaknesses in web applications through the means of fuzzing

/webapp/

/webapp/post/ /webapp/admin/

auth

/webapp/post/1 /webapp/post/2 /webapp/admin/new

auth

Figure 2: The hierarchy of a website as defined by the
different URLs.

/webapp/

/webapp/post/

/webapp/admin/

auth

/webapp/post/1 /webapp/post/2

/webapp/admin/new

authauth

Figure 3: The resulting graph by crawling a website:
the nodes are webpages and the edges are links be-
tween webpages.

Here, the browser has requested the resource associated by /webapp/post/1 from the web
server. A response could be received as follows:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 187
Date: Fri, 3 Apr 2008 23:59:59 GMT

<html>
<head>

<title>Webapp - Post #1</title>
</head>
<body>

<h1>Some spectacular title!</h1>

<p>This post will contain sensational news ... soon</p>
</body>

</html>

We see that the headers and the message body is separated by a double newline and that the
Content-Type header correctly specifies that the message body is of the mime type text/html. The

16

Finding weaknesses in web applications through the means of fuzzing

200 OK

GET /webapp/?query=news

Figure 4: A simple HTTP request/response: A user has entered the value “news” in the field named “query”
in a form that uses GET as the method. The application handles it without an error, and returns the status
code 200 OK (as well as more headers and a response body).

browser will then use it’s rendering engine to render the HTML document into what we usually
associate with a web page.

3.3 Sending Input to the Application

The page might contain HTML markup for a form allowing the user to input some values. The
form contains information on how to submit the contents — which HTTP method to use, and
which URL the input should be sent to. By submitting the contents of that form, the user provides
input to the application. The page identified by the form as the receiver of the input will usually
use some server side script/program to handle the input, and display the result (or redirect to a
page which does). Server side programming languages used in our experiment include PHP, Perl
and Ruby. As an example, consider the following HTML form:

<form action=" /webapp/ " method=" get ">
<input type=" t e x t " name=" query " />
<input type=" submit " />

</form>

This tells us that the contents of this form should be sent using the HTTP GET method to the
URL /webapp/. There are one field the user can fill in: a textbox for a query. There will usually
be some explanatory text around the field as well, but this is omitted here. There is also a button
to submit the contents of the form. Filling in the word “news” in the textbox and clicking the
submit button will cause the browser to issue the request illustrated in Figure 4. In the figure,
the response from the server indicates that the request went well, and the message body will
likely contain some dynamic part which is dependent on the value submitted for the query field.

3.4 HTTP Status Codes

By looking at Section 10.4 of RFC 2616 [32], we see that the status codes in the 400 range are
reserved for client errors which indicate that the fault is that of the client (usually the user or
browser). Its Section 10.5 tells us that status codes in the 500 range are reserved for server errors,
and “indicate cases in which the server is aware that it has erred or is incapable of performing
the request.” Looking at other sections we can also see that a status code 200 means success and
that status codes in the 300 range is used for redirection.

The information given to us in the status code is useful for many purposes. A web browser

17

Finding weaknesses in web applications through the means of fuzzing

can use it to transparently redirect the user to a new location if a web page has been moved
(provided the old location has a redirect to the new), or to ask the user for credentials if the
status code indicates that authentication is needed. An RSS reader will typically send a HEAD
request to a page including a header called “Modified-Since” with the date it last checked for
news. If the response has the status 304, it means the resource has not been modified since the
last visit, and the reader does not need to issue a full GET request (easing the traffic load on the
server). A status of 503 will tell us that the server understands the request, but is unable to give
a response at this time (e.g. because of temporary overload).

The most important ranges for us will be the 200-, 400- and 500 range. This should tell us
if our tests resulted in a success or failure, and if the server considered the failure to be on the
client side or on the server side.

3.4.1 A Side Note on Redirection

Frameworks for writing applications for the web that supports the REST [34] philosophy that
each resource should have a unique URL often uses redirection in the following way:

1. A user enters data into a form on the page with the intent of creating a new resource.

2. By clicking the submit button, the form data is sent to another location on the server using a
POST method.

3. After handling the request (by e.g. inserting the data into a database), the application issues
a redirect to a newly created location on the server, where the created resource is made
available.

An example could be a user adding a new post to a weblog. First he fills in the fields title
and body with the values “Title of Blog-post” and “This is the body of the post” respectively. Lastly
he clicks submit to create the post. The browser then issues a POST request:

POST /webapp/admin/new/ HTTP/1.1
User-Agent: HTTPClient/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 58

title=Title+of+Blog-post&body=This+is+the+body+of+the+post

After creating the post (e.g. by inserting the values of title and body to a database), the
application makes it available through another URL, and uses HTTP redirection to direct the
user to the post:

HTTP/1.1 302 Moved Temporarily
Location: /webapp/post/3
Content-Type: text/html
Content-Length: 54
Date: Fri, 3 Apr 2008 23:59:59 GMT

You are being redirected.

18

Finding weaknesses in web applications through the means of fuzzing

At last, the user’s browser issues a GET request to this new location:

GET /app/post/3 HTTP/1.1
User-Agent: HTTPClient/1.0

The application will then return the page containing the post created by the user. Typically,
the information will be laid out according to a template. The application can also contain logic
that e.g. presents the reader with links to other posts with similar content or a list of the most
requested posts.

19

Finding weaknesses in web applications through the means of fuzzing

4 Method for Fuzzing Web Applications

The method we are using for fuzzing web applications resembles the one described in [1, 2, 3, 4,
31]. First we identify a number of web applications to test using fuzz testing (step 1 in Figure 5).
The list of applications we have tested are given in Section 7.2.

User input (step 2 in Figure 5) in these web apps are mostly form based: a user fills in input
elements in an HTML form and uses some method to send the input using (mainly) the HTTP
GET or POST requests. We say “some method” because this might vary. Most of the times the user
will submit the form using a submit button, but sometimes the page includes some JavaScript
that sends the form contents on certain events. We will mainly focus on form based input through
submits (no AJAXy sending). Testing AJAX components could also be done in a similar way, as
these also rely on the web browser to send (mainly) HTTP GET and POST requests, and returns
a regular HTTP response (with response codes and everything) containing either plain text or
some XML.

Having identified how to send input to the applications, we can begin building a fuzzer that
makes random input (step 3 in Figure 5) and, in turn, sends that input to the application (step
4 in Figure 5). How this was done in this project will be described in greater detail in Chapter 5.
After building the fuzzer, we generate attack scripts which tells the fuzzer which host, port and
paths to attack, and additionally which HTTP method should be used, along with possible query
arguments, headers and cookies. The attack scripts we have developed allows the attacker to
define global options like the hostname and port, but also cookies and headers that should be
sent each time. Further it lets the attacker define a request that should precede each attack (say,
if you need to log in before accessing a form). Finally the attacker can define attack points (paths
with query options). Each attack can be launched either once, or many times, many being a
configurable amount of repetitions.

Determine Exploitability

Monitor for Exceptions

Execute Fuzzed Data

Generate Fuzzed Data

Identify Inputs

Identify Target 1

2

3

4

5

6

Figure 5: Different fuzzing phases, as defined by Sutton et al. in [31].

21

Finding weaknesses in web applications through the means of fuzzing

When an attack script is run, it logs all requests it sends, before awaiting the response from
the web server. According to the HTTP 1.1 RFC [32], Section 6, the web server should supply
a status line, along with headers and the message body. The different status codes used in the
status line is given in Section 6.1.1 of the RFC, and explained further in Section 10 of the RFC.
Having received the response, we log the entire response data for later analysis (a modified
version of step 5 in Figure 5). We also log some statistics about how long the requests took,
which are then totalled, in order to give us the sum, squared sum, number of requests, mean
time per request, standard deviation, minimum and maximum request time. Using the logged
responses we are also able to determine how many of the requests were handled correctly (step
6 in Figure 5).

By using a pseudorandom number generator to provide fuzz data, the scripts are possible to
replay to achieve the same results. Details of the experiment are given in Chapter 7, and details
surrounding the findings are given in Section 7.3.

22

Finding weaknesses in web applications through the means of fuzzing

5 Building a Fuzzer

In this chapter we propose a method to build a fuzzer suitable for fuzzing web applications. This
method is based on the RFuzz library for the Ruby programming language, but we will point out
where we are using existing code and how it can be implemented from scratch. An overview of
how the parts are interconnected is presented in Figure 6.

For those who have never heard of the Ruby programming language1, it is a multi paradigm
scripting language with dynamic typing, not unlike Python. Ruby originates from Japan, and
while everything in Ruby is an object, writing object oriented code is optional. The programmer
is free to write procedural or functional programs, as well as object oriented ones. The language
is inspired by features from languages like Perl, Smalltalk [35], Eiffel, Ada, and Lisp [36]. The
main reason for using Ruby is the author’s preference.

5.1 Creating Attack Scripts for Webapp Fuzzing

In order to specify how the applications should be attacked, we have created a way of writing
attack scripts for fuzzing web applications. These attack scripts are rather standard Ruby scripts
in which we can use some convenience methods for setting up a standard hostname and port
for the web application, along with standard options like cookies and headers. Further down we
specify “attack points” at the target site. These are mainly different web pages containing forms
for user input. In the attack points the script writer can specify which path should be attacked
and which method should be used (the standard HTTP methods are GET, POST, PUT, DELETE and
HEAD, but we mainly use the two first) and which query options should be sent. See Listing 1 for
an example of how this looks. In the listing, the variables word and fix are objects that yields
different values each time their to_s (to string) method is called, the method str(number) yields
a similar object, but bounded by the number. The word token will give different words, the fix
token will give different “Fixnum”s (a 30-bit signed integer), and str(50) gives different strings
with a length of 50 characters.

When the fuzzer is fed this script, the body is evaluated inside a new Target object. The Target
object first sets up some default values for some of the variables, like “localhost” for hostname,
and 80 for port. When the attack script sets a value for @host, it overrides the default value set
by the initialization of the Target object (@host references an instance variable in the object).
The attack method is defined to take a name and a block of code as a parameter. The code
block is evaluated, and calls to once results in the following request getting queued once in the
request queue. Calls to many results in the following request getting queued @repetitions times
in the request queue. The number of repetitions is initially set to 50, but can be changed through
the script. There is also a method called before, which takes a block of code (not unlike the
attack method). If this method is used in the attack script, the attack method will add prepend

1http://ruby-lang.org

23

http://ruby-lang.org

Finding weaknesses in web applications through the means of fuzzing

Attack script:
setup("Appname") do
 @host = "localhost"
 @port = 80

...
end

Fuzz program HTTP
Client

Request

Response

Logs

Output

Input

Figure 6: An overview of the main components in the fuzzer and how they interact. An attack script semi-
generated by a crawler is fed to the fuzzer which in turn translates the attacks to HTTP requests which is
sent to the target of the attack. The requests and their responses are then logged for manual inspection.

the before-block to each attack block. Thus providing functionality like the “fixture setup” found
in unit tests. Using the before block, you can ensure that some requests will be made before each
attack block, like say, logging in to the admin interface, or similar.

Creating these attack scripts by hand is easy, but tedious work. In order to automate this
boring task, we also created small scripts for scraping web pages and generating an attack script.
In their work on a vulnerability scanner looking for SQL-injection and XSS attacks, Huang et
al. created a crawler based on Internet Explorer and a DOM (Document Object Model) parser
to identify forms on webpages [37]. We use a simpler approach: the Hawler library2 for Ruby
combined with the Hpricot library3. Hawler is a simple web crawler, which scrapes all links on
a page, and then does a breadth-first traversal. Every time it reads a page, it sends the URL,
referrer URL and HTTP Response to a callback method. HPricot is a HTML parser which lets you
traverse the DOM tree using XPath or CSS selectors.

We made two form-scraping scripts: The first script takes a complete URL as an argument,
reads the web page it identifies and uses HPricot to find the forms, and filter out the interesting
fields. Using the input fields, and attributes from the form, we can create the attack part of
the attack script. See Listing 2 for an example of how we can scrape values from a form. The
first script only parses one page. The second script reuses much of the same code, but as a
callback method for the Hawler library. Each page the crawler reads is parsed by the callback in
order to filter out forms. When the crawler starts, it outputs some generic information about the
target (the setup-part), and the callback generates attack blocks. Finally, when the whole site
is traversed, it outputs the end section. By calling this script and redirecting the output to a file,
you get a good start for writing an attack script.

We did have some problems with the crawler. While you can pass headers which it uses in each

2http://spoofed.org/files/hawler/
3http://code.whytheluckystiff.net/hpricot/

24

Finding weaknesses in web applications through the means of fuzzing

setup " Webapp " do
@host = " l o c a l h o s t "
@port = 80
@headers = "HTTP_ACCEPT_CHARSET" => " ut f −8,∗ "

a t t a ck " log in−page " do
many : get , " / l og in . php " ,

: query => {: user => word , : pass => word}
many : get , " / l og in . php " ,

: cook ies => { " admin i s t r a to r " => " t rue " ,
" username " => " admin " } ,

: query => {: user => f i x , : pass => f i x }
end

a t t a ck " post−page " do
once : get , " / l og in . php " ,

: query => {: user => : admin , : pass => : admin}
many : post , " / post . php " ,

: query => {: t i t l e => s t r (50) , : body => base64}
end

end

Listing 1: An example of an attack script

form ho ld s a form in the document .
u r i ho ld s the u r i o f the document .
i f omit ted , g e t i s the d e f a u l t method
i f omit ted , the path i s t h i s document .
method = form [’ method ’] || " get "
ac t i on = form [’ ac t i on ’] || u r i . path

f i l t e r input f i e l d s and r e tu rn an array with v a l u e s :
query = input (form) . merge (s e l e c t (form)) . merge(t ex t a r ea (form))
return [method . downcase , act ion , query]

input method added f o r the example ’ s sake
def input (form)

i t e r a t e over a l l input and but ton e l emen t s with a hash
(form / ’ input | button ’) . i n j e c t ({}) do |hash , item |

update the hash with t h i s i tem ’ s name as key ,
and t h i s i tem ’ s va lue as va lue
hash . merge ({ item [’name ’] => item [’ value ’]})

end
end

Listing 2: Scraping a form

25

Finding weaknesses in web applications through the means of fuzzing

request, it is not straight forward to define pages it should abandon. This results in a problem
when you add a cookie to the headers in order to “log in” to the admin panel and scrape these
pages. The first couple of pages are usually parsed OK, but when it reaches the link that logs out
of the admin panel, the rest of the URLs pointing within that password protected space will no
longer be available. Since Ruby let you modify code dynamic, we could modify a method of the
crawler to help prevent this effect. However we felt we got enough forms to test before it logged
out. This should be dealt with later though.

5.2 Random Number Generator

We are using an ArcFour (RC4) random number generator which is provided by the RFuzz library.
It is implemented as a C extension to Ruby, so it is pretty fast, and yields the same sequence of
output given the same seed, making replay attacks possible. ArcFour is described in greater detail
in [38] which also includes an example implementation in C. RC4 is usually used as a stream
cipher by seeding the number generator with a secret key and XORing the plaintext with the
output from the number generator, but we are using it as a “normal” random generator. As a
stream cipher RC4 has proven to have weaknesses. Fluhrer et al. lists several weaknesses in
the key scheduling algorithm [39], and how these affects protocols like WEP. Harris proposed
methods of using the cipher in SSH (secure shell) that mitigates the weaknesses in the key
scheduling algorithm to an acceptable level [40].

Utilizing the random number generator, we have provided convenience objects for usage
in the attack scripts. By building a set of FuzzTokens, we provide building blocks to the script
writer. Each FuzzToken subclass implements primarily one method, called fuzz. In this method it
uses the random number generator supplied through it’s superclass to generate random entities.
The superclass also implements a to_s method which calls the fuzz method and returns the
string representation of the result. The Target class supplies the attack script with a range of
FuzzTokens, and as the fuzz method is only really called through the to_s method, they are
evaluated every time the HTTP client creates a request (as the request path and parameters
ultimately needs to be in string format).

We have not provided a method to fuzz file uploads, as few of the web applications tested do
anything significant (like processing them) with files. Most of the applications with file uploading
lets users upload images in order to display on a page, or files which can later be linked for
downloading on a page. We believe most of the file uploads are not actually processed by the
application, so creating bogus files would only affect the web server or the browser of a visitor.
Fuzzing of file uploads might certainly be an area to look into, but we have not done so, as this
generally requires writing a separate fuzzer to create the files.

5.3 HTTP Client

A web application takes most user input through a form, and when the user submits the contents
of that form, the web browser issues a HTTP GET or POST request with the form contents as
parameters. Thus in order to supply fuzz data as input to an application, we need to include
a simple HTTP client. This client will be used to send input to the application, and return the
resultant response to our fuzz program. Our program can then process the response in order to

26

Finding weaknesses in web applications through the means of fuzzing

find out if it is erroneous.
We have identified the bare minimum that a client must support in order to make fuzzing web

applications feasible. A client that implements this functionality is a good start — picking a more
full featured client might be better, but make sure the client is easy to program or automate. As
an example, we could have based our work on making our fuzzer invoke the curl program on
the command line, or better: using the libcurl library4. For convenience, we decided to go with
the RFuzz HTTP client, as we are already using this library for other parts of the fuzzer.

The functionality we need from an HTTP client is the following:

1. Easy interface for creating GET and POST requests (without this, it could hardly be called an
HTTP client).

2. Possibility to read headers in the response (the easier to access, the better).

3. Possibility to add or modify headers in the request. This is useful to set headers that might
be needed to get the request processed correctly. If the client is missing cookie handling (see
below) this could be implemented by reading response headers and modifying subsequent
request headers. The easier it is to access to the headers, the better for the programmer
implementing the fuzzer.

4. Handling of cookies. This isn’t strictly necessary, as it might be implemented on through
access to headers, but if the client provides it the programmer saves some tedious work.
Cookie support through some means is absolutely necessary in order to fuzz pages “hidden”
behind a login page.

5.4 The Fuzzer — Tying it all Together

In our application, we have a class called Fuzzer, which is responsible for tying the components
together in order to mount the attack. When initialized with a Target (which is created from
the attack script), it creates the directory containing the log files, and instantiates a logger for
the current session. The logger is used for logging events to a log file as we go, and could be
configured to provide logging to the console if necessary. Before starting, we walk through the
list L found in the Target, where each element in L consists of a list with method, path and
query. Going through L, we evaluate the fuzz tokens found in path and query. This way we get
less overhead (even though it is probably small enough) when the actual fuzzing is happening.
Recall from Section 5.2 that in order to evaluate the token, all we have to do is call the to string
method, as this will in turn call the fuzz method which yields the result. Thus the mapping
L 7→ L ′ can be achieved simply by calling to_s on the path and the query, like shown in Listing 3.

After evaluating the tokens, the fuzzer starts firing requests based on the information in L ′.
First it logs the request which it is about to make through the logging facility, then it checks which
HTTP method to use. If the method is POST, it takes care to add a header specifying a content
type of application/x-www-form-urlencoded and puts an urlencoded version of the query in
the request body as per Section 17.13.4.1 of the HTML 4.01 specification [33]. If the method is
GET, the query is passed as a part of the URL. Note that the RFuzz library urlencodes the query,

4Stenberg, D.: cURL and libcurl, http://curl.haxx.se/

27

http://curl.haxx.se/

Finding weaknesses in web applications through the means of fuzzing

def e v a l u a t e _ f u z z t o k e n s _ i n _ l i s t (l i s t)
l i s t .map do |method , path , query|

c a l l t o _ s on path
path = path . to_s
query = query . i n j e c t ({}) do |h , (k , v)|

va l = v . k ind_of ?(Array) ? v . rand : v
c a l l t o _ s on key and va lue in query
h . merge ({ k . to_s => va l . to_s })

end
[method , path , query]

end
end

Listing 3: Evaluating FuzzTokens in a list of method; path and query.

but not the request body (as this can be sent with other encodings). For more on urlencoding,
please refer to RFC 1738 [41], and the newer RFC 3986 [42].

Having prepared the request, it uses the HTTP client to send it to the host specified in the
Target (through the attack script). When the response is received, it logs the status code through
the logging facility, records the status code and request timings, and logs a serialized version
of the request and response to a YAML5 file. When all requests have been made, it creates one
CSV file containing the recorded number of different status codes, and one CSV file containing
statistics on the request timings.

5YAML Ain’t Markup Language — http://www.yaml.org/

28

http://www.yaml.org/

Finding weaknesses in web applications through the means of fuzzing

6 Using the Fuzzer

This chapter describes how to use the fuzzer we implemented in the previous chapter. After
giving a short intro to how you set up a web application, Section 6.2 will explain how we use
the crawler to identify inputs to the application, and how we adjust the outputted scripts to do
something more useful. Section 6.3 explains how to invoke the fuzzer with an attack script, and
what output to expect. Lastly, Section 6.4 gives examples on how you might analyze the resulting
output.

6.1 Set up Target

First, you need to set up the target you will be fuzz testing. This involves installing a web applica-
tion on a test server, and will in many cases be a trivial job. Most open source applications come
with a file called INSTALL which gives detailed install instructions. Many PHP applications also
feature a web-based installer, which takes notice if it hasn’t been set up properly and guides you
through the steps to making it work (like e.g. Wordpress). If the application uses a database (as
most do these days), a good tip will be to back up that database through mysqldump or a similar
program. This way you can easily restore the initial state of the application if that is necessary in
order to replay the test case.

6.2 Creating the Attack Script

After setting up the application, you need to tell the fuzzer where it can send it’s requests, and
which parameters it can send. This can be done in many ways, but here we will describe the
actions taken in this study. We did this in two steps.

First we used our crawler to crawl the web pages of the target application. Every page it came
across was then fed to a callback function which parsed the HTML and ferreted out the forms.
Each form was then used to create a possible HTTP request which was written to the screen. The
output from the crawler was redirected to a file which we later was to feed to the fuzzer.

Having crawled the site, the attack script had to be manually adjusted. Since the crawler
didn’t keep a cache of forms it had previously seen, some of the forms had been duplicated
(often the case for search fields). The arguments to the request also had to be filled in properly,
as the crawler only passed the values which were suggested on the web page. As an example,
consider the following: the crawler encounters a web page with the form found in Listing 4.

<form action=" / search " method=" post ">
<input type=" t e x t " name=" q " value=" " />
<input type=" submit " />

</form>

Listing 4: Example HTML form.

29

Finding weaknesses in web applications through the means of fuzzing

The entire document is passed to the form scraping function, but only the form is relevant
here. The crawler would then output a section looking like Listing 5.

a t t a ck (" /Welcome_to_Junebug ") do
many : post , " / search " , { " q " => " " }

end

Listing 5: Example output from crawler after parsing form in Listing 4.

From the output we can see that on the page with URI /Welcome_to_Junebug, the crawler
found a form that submits to the URI /search and which has a single input field with the name
of q and an empty default value. Going through the output of the crawler later on, we might
change it to something looking like Listing 6.

a t t a ck (" Search box ") do
many : post , " / search " , { : q => s t r (100) }
many : post , " / search " , { : q => byte (100) }
many : post , " / search " , { : q => big }

end

Listing 6: Example of manually tweaked attack script from Listing 5.

When we now choose to run the fuzzer, it will attack the search box in the following way:

1. Send “many” HTTP POST requests to /search, with the parameter q set to a random string
of length 100.

2. Send “many” HTTP POST requests to /search, with the parameter q set to a random byte
sequence of length 100.

3. Send “many” HTTP POST requests to /search, with the parameter q set to a random big
number.

While the manual labour might sound tedious and boring (and it is), we deemed it sufficient
for our initial testing. We have proposed ways to improve this part in Chapter 10.

6.3 Running the Fuzzer

Having created and tweaked the attack script, running the fuzzer is as easy as starting the appli-
cation with the script as the argument: ruby fuzz.rb targets/my_attack_script.rb. While
the fuzzer runs it will only output some information on the progress to the screen. However if
you run tail -f on the log file, you can see a more verbose transcript of what’s happening. The
log file is created in output/TARGET-NAME/, where TARGET-NAME is the name specified after
setup (see Listing 1 for an example). The log file is named with the timestamp of the invocation
of the fuzzer.

When the fuzzer is done, the log directory will contain four files:

timestamp-counts.csv A comma separated file containing the counts of various HTTP status
codes (and exceptions thrown).

30

Finding weaknesses in web applications through the means of fuzzing

timestamp-runs.csv A comma separated file containing statistics about the timings. Average,
max, min times of the requests etc.

timestamp.log The log of events.

timestamp.yaml A serialized version of the requests and responses. The requests are logged as a
full string, while the response is logged as a hash of headers along with a string containing
the request body (if it exists).

6.4 Aftermath: Analyzing the Results

Analyzing the results is hard to automate, since there are various ways to look at the data to
determine what can be considered an erroneous response. However, we recommend starting by
looking at the responses where the status code is in the 500 range. Recall from Section 3.4 that
a status in the 400 range indicates an error on our part, and a status in the 500 range indicates
an error on the server. Knowing that our requests mainly consists of “garbage”, the fault should
likely be on our part, so in an ideal world, we should thus be certain that if a fuzzed request
resulted in a status code in the 500 range, we discovered a flaw in the application or web server
(we will later see that this isn’t necessarily the case).

We wrote a simple GUI to help filtering responses and show us the headers and response
body to make this task even easier. Some of the applications will throw a stack trace at the user
(maybe depending on running it in development or production mode) while others will state
that an error has occurred and that more is to be found in the server logs. Combining the stack
trace with the source code often provides what you need to find the wrong assumptions made by
the developers. It might also be worthwhile to check the responses with a status code of 200. As
200 means OK, and you are mostly throwing random “garbage” at the application, some errors
might also exist within these responses.

By looking at the counts.csv file, you should also be able to see if exceptions are raised. As
an example, seeing ErrnoECONNREFUSED means that a connection to the web server could not
be made. If this occurs after a seemingly OK request, it might mean that one of the previous
requests managed to halt the web server. In that case you should check the log to find out which
requests have no response. The log contains lines looking like this:

I , [2008−02−27 14:28:05#20566] INFO −− : c l i e n t => get / r t / Search / Simple .
↪→html { " q"=>"142370278"}

I , [2008−02−27 14:28:21#20566] INFO −− : c l i e n t <= HTTP STATUS: 200

First a request is sent from the client, with the value of q being 142370278. The server then
sends a response to the client (where only the status code is logged in this file, see the YAML
file for more info). If there are two or more subsequent requests (two or more lines matching:
“client => ”), this means that a response was not received properly.

Using counts.csv you can also graph the status codes the requests generated, and using
runs.csv you can plot the request timings of the runs.

31

Finding weaknesses in web applications through the means of fuzzing

7 Experiment

This chapter explains how we conducted our experiment. Section 7.1 describes the environment
in which the project took place, and gives a list of computers and software used. Section 7.2
gives a brief overview of the applications we tested, while more information can be found in
Chapter A in the appendix. Finally, Section 7.3 contains information about the results we got
during the experiment.

7.1 Environment

The tests have been conducted on two machines, one web server and one attack machine (see
Table 3). The web server is borrowed from the IT department at Gjøvik University College, while
the attack machine is the author’s laptop. The following software has been used on the server
(the version numbers match the ones in Debian 4.0 at the time of writing):

• Apache 2.2.3

• PHP 5.2.0-8+etch10

• MySQL 5.0.32

• Ruby 1.8.5

• Perl 5.8.8

On the attack machine the following software has been used:

• Ruby 1.8.6 — The standard version in Mac OS X 10.5

• RFuzz 0.9

• Hawler 0.1

• Hpricot 0.6

Web server Attack Machine
Brand Cinet Smartstation 200 Apple iBook G4
CPU Pentium III @ 870 MHz PowerPC G4 @ 1.33 GHz
RAM 377 MB 1.5 GB
Operating System Debian GNU/Linux 4.0 Mac OS X 10.5

Table 3: The computers we used in the experiment

33

Finding weaknesses in web applications through the means of fuzzing

While testing, the machines were connected through a network cable, using an ad-hoc net-
work with only the attacker and the server present. This way we remove the possibility of other
computers interfering with our test environment, without having to set up a dedicated test lab.
The server had a monitor and keyboard connected, so by running the tail command on the log
files, we could inspect what was going on on the server while running the attack script on the
attack machine.

7.2 Applications Tested

The following is a list of the applications we have tested during the writing of this thesis. De-
scriptions are taken from the project pages of the respective applications.

Chyrp “a blogging engine designed to be very lightweight while retaining functionality. It is
driven by PHP and MySQL (with some AJAX thrown in), and has a pimpin’ theme and
module engine, so you can personalize it however you want.” We are using version 1.0.3.

eZ Publish “an Enterprise Content Management platform with an easy to use out of the box
Web Content Management System. It is available as a free Open Source distribution and
serves as the foundation for the rest of the eZ Publish Product Family.” We are using version
4.0.0-gpl.

Junebug “a minimalist wiki, running on Camping.” We are using version 0.0.37 with Camping
1.5.

Mephisto “a kick ass web publishing system. It’s a blog engine with some simple CMS-ish
concepts (sections, pages), a very flexible templating system, and an aggressive caching
scheme that takes advantage of your web server’s best traits.” We are using version 0.7.3
with Rails 1.2.3.

ozimodo “a Ruby on Rails powered tumblelog. It’s like a blog, but different.” We are using
version 1.2.1 with Rails 1.1.4.

Request Tracker “an enterprise-grade ticketing system which enables a group of people to in-
telligently and efficiently manage tasks, issues, and requests submitted by a community of
users.” We are using version 3.6 (the one included in Debian 4.0).

Sciret “an advanced knowledge based system. In the further development, Sciret will be ex-
tended to a full helpdesk system which will also include a trouble ticket system, document
management, bookmark management and more.” We are using version 1.2.0-SVN-Release-
554.

Wordpress “a state-of-the-art semantic personal publishing platform with a focus on aesthetics,
web standards, and usability.” We are using version 2.3.2.

Amongst these applications we find two applications in use at Gjøvik University College,
namely eZ Publish and Request Tracker. eZ Publish is the CMS system used to manage the school’s
main web site, and Request Tracker is the system used by the IT department to track support
requests from students and employees.

34

Finding weaknesses in web applications through the means of fuzzing

Chyrp eZ Junebug Mephisto Ozimodo RT Sciret Wordpress
√ √

? ⊗ ? ⊗
√

⊗

Table 4: Results from applying our fuzzer.
Legend:

√
: OK. ⊗: Found bug. ?: 500 errors.

7.3 Outcome

This section outlines the results we found after having applied the fuzzer as per instructions in
Chapter 6. A brief overview is given in Table 4. We will not go into details about Ozimodo and
Junebug. In stead, we give a short explanation here. The errors reported on Ozimodo is caused
by a failure to log in by the fuzzer, and hence many of the requests resulted in a status code of
302 (for redirection to the login page), 400 (for a user error), but some resulted in 500 (server
error), because of a mistake in the redirection layer. We did not investigate this further, as we
rather spent time fixing the cookie handling in our fuzzer. The errors reported for Junebug were
interesting, but few and hard to track down.

7.3.1 No Server Side Validation of Input

When receiving input from the user, it is important to check this input before letting it propagate
through the code. In a web context these checks can be done both on the client side, and on the
server side.

Here is a (admittedly) bad example from Mephisto. When creating a new article, the input
form contains several dropdown boxes allowing you to pick a date for the article. These drop-
down boxes are named article[published_at(di)] where d ∈ {1, 2, . . . , 5}. When the user
submits the form, the Rails application receives a hash (a keyed collection) with the user input,
available through params in the code. By naming the dropdown boxes with brackets, the data
becomes available in a hash. params[:article] will yield a new hash:

{:published_at(1i) => "2008", :published_at(2i) => "03", ...}

Mephisto contains the following code to convert the information submitted into a date object
(Listing 7):

def conver t_ t imes_ to_utc
wi th_s i te_ t imezone do

date = Time . pa r s e_ f rom_a t t r i bu t e s (params [: a r t i c l e] ,
: publ i shed_at , : l o c a l)

next unless date
params [: a r t i c l e] . d e l e t e _ i f { |k , v|

k . to_s =~ /̂ #{: p u b l i s h e d _ a t }/
}
params [: a r t i c l e] [: pub l i shed_at] = l o c a l _ t o _ u t c (date)

end
end

Listing 7: Mephisto’s method for converting user input to a date.

35

Finding weaknesses in web applications through the means of fuzzing

This code forwards all the input parameters with a name like article[name] (in the HTML
file), along with two symbols (:published_at and :local) to Time.parse_from_attributes,
which is defined as follows (Listing 8):

c lass Time
c lass << s e l f

def pa r se_ f rom_a t t r i bu t e s (a t t r s , f i e l d , method=:gm)
a t t r s = a t t r s . keys . s o r t . grep(/^#{ f i e l d . t o _ s }\(.+\)$ /) .

map { |k| a t t r s [k] }
a t t r s . any? ? Time . send (method , ∗ a t t r s) : n i l

end
end

Listing 8: Creating a date through a hash of integers.

This method will first sort the keys in the attrs hash, and select only those matching the
argument given in the field parameter. Then it will use those keys to look up the values found at
those keys in the hash. Finally, it will use the method given as a parameter, and invoke it on the
Time class, using the values filtered out as arguments. It might not be apparent immediately, but
there are several problems here:

1. The code in Time.send(method, *attrs) might raise an exception. This is the case we dis-
covered through our fuzz testing, and the exception is not caught anywhere in the application,
as it assumes no user would bother altering the input values in the dropdown boxes. By pass-
ing a value of zero for all the published_at fields, the code will try to create a new date
object as follows:
Time.send(:local, *[0, 0, 0, 0, 0])
Time.local expects it’s first argument list to contain (in the following order) year, month,
day, hour, minutes, seconds and microseconds (note that everything but the year is optional).
This will raise an ArgumentError exception, as the second and third fields does not contain
valid values for a month and day.

2. An attacker could also send more arguments than intended through the code. Since the code
only filters out the input values matching the regular expression /ˆ#{field.to_s}.+$/, we
could easily submit fields named “published_atSOMETHING”, as this still would match the
expression. In this example, we don’t gain anything by sending other fields, as they will be
passed to Time.local, and the greatest harm we can do is to create an erroneous time for
the article, or raise an exception. However, if this coding practice is used without care other
places, the consequences could be greater.

7.3.2 Incorrect Use of HTTP Status Codes

Our testing showed that some applications used the HTTP status codes in an incorrect way. While
testing the comment forms in Wordpress, we noticed that several of our requests resulted in a
status code in the 500 range, namely “500 Internal Server Error” (see Figure 7). Inspecting the
message body of the response, we found that Wordpress was complaining about the email field
not containing a valid email address. In other words, the application had correctly found an error

36

Finding weaknesses in web applications through the means of fuzzing

200

302

500

0 500 1000 1500 2000

370

5

1125

200

302

500

0 500 1000 1500 2000

1816

25

289

200

302

0 500 1000 1500 2000

125

1767

Figure 7: Number of HTTP status codes returned while fuzzing Wordpress.

in the user supplied input, but used a status code indicating that the error was on the server’s
side. A similar situation appeared if we omitted the email or author field for the comment form.

Also, while fuzzing the login page, all requests were greeted by a response with an 500 status
code. However this still didn’t mean that the application failed in any other way than using the
status code in a semantically correct way. The message body stated that a wrong username or
password was used. This means that the application did a successful lookup in the database,
but no rows were returned. If the authors of the application had thought this situation through,
they should probably have issued the same message body, but with a 401 or 403 status code.
Which code should be used is however not entirely clear. The 401 status code can only be given
with a WWW-Authenticate header, which indicates that HTTP authentication should be used.
Most web applications use their own authentication mechanism, and not the one provided by
the HTTP protocol, so the 401 code is probably not the right code to use. The 403 status code
indicates that “authorization will not help and the request SHOULD NOT be repeated”, but if we
interpret this to mean HTTP authentication, and not the authentication mechanism used by the
web application, it might be the right response to use.

We filed a bug with the Wordpress developers about this issue which can be tracked at http:
//trac.wordpress.org/ticket/6076. See also Section B.1 in the appendix.

7.3.3 Failure to Handle Exceptions

A concern we also noted in Section 7.3.1, is the failure to handle raised exceptions. In that
section, we inspected the code handling the creation date of new articles and found that the
Time class might throw an exception. That exception could easily be avoided by performing
simple checks on the user input. If such an error occurs through the use of a form where the
user have other fields where longer text can be entered — like a textentry or an input field
— the consequence could be that the user loses his work. Consider a user writing a long article
in the web interface, only to find out that after submitting it he gets an exception thrown in his
face. The article is not saved on the server because an error occurred, and if the user is using
a browser that does not store the input entered, navigating back to the previous page will not
work. The author of this thesis has lost an article or two this way himself, and knows the pain
associated with having to write it one more time. While the error in Section 7.3.1 is somewhat
constructed, we found a similar result in a textarea on the same page.

Many CMS systems uses a “WYSIWYG”1 editor implemented in JavaScript, but while this lets

1What You See Is What You Get

37

http://trac.wordpress.org/ticket/6076
http://trac.wordpress.org/ticket/6076

Finding weaknesses in web applications through the means of fuzzing

users write formatted articles without knowing HTML, the resulting HTML is quite often more
complex than necessary not to mention that it might not work properly in all web browsers. For
writing articles, Mephisto tries to make formatting easier by letting the user choose an input filter
in stead of a WYSIWYG editor. The input to the textarea where we discovered the bug ended up
being sent to such a filter. These filters parse simpler markup to HTML and only requires the user
to know a small set of formatting rules. This also gives the document much less “noise” than
plain HTML, and since the markup is minimal, it is easy to generate semantically correct HTML.
Examples of this are Textile2 and Markdown3. The Ruby library used for handling Markdown
formatted text — BlueCloth — is explained further in a book by Berube [43].

As with the date input in the previous section, the text for the article is sent directly to the
filter the user has chosen, and while this filter can raise an exception, Mephisto does nothing to
handle this case. The text is passed straight to MarkdownFilter.filter, which looks something
like this (Listing 9):

c lass MarkdownFilter < Base
def s e l f . f i l t e r (t e x t)

i f Object . cons t_de f ined ?(" BlueCloth ")
BlueCloth . new(t e x t . gsub(%r{</? n o t e x t i l e >}, ’ ’)) . to_html

else
t e x t

end
end

end

Listing 9: Passing input to the Markdown filter.

A problem with passing the text more or less unchecked to a filter is that an attacker can target
a vulnerability in the filter in stead of the webapp itself. If there was an exploitable vulnerability
in the BlueCloth library, or in one of the other filters, the attack surface is increased. This of
course, is a problem that is hard to manage (and a particular issue mentioned on BlueCloth’s
bugtracker4 seems very hard to avoid). As we can see in Listing 9, Mephisto does some checking
before passing the input along, and as long as the filter does not allow code execution in any
form, that problem is avoided.

We see that the code passing input to the filter removes the <notextile> tag, along with
it’s closing tag. This ensures that a user cannot enter plain HTML, as all brackets are automat-
ically converted to their respectable HTML entities. This combats insertion of annoying HTML,
as well as potentially malicious JavaScript code. The problem is that the calling code does not
catch any exceptions which might be raised, like the BlueCloth::FormatError which is raised
when the source text contains invalid markup, like unmatched quotes. The possible outcome of
this — losing entered text — is explained above. This issue is mostly an annoyance, but we be-
lieve this should be fixed, so we informed the developers: http://groups.google.com/group/
MephistoBlog/t/d1204a0ad9dd36eb. See also Section B.3 in the appendix.

2http://textism.com/tools/textile/
3http://daringfireball.net/projects/markdown/
4http://www.deveiate.org/projects/BlueCloth/ticket/15

38

http://groups.google.com/group/MephistoBlog/t/d1204a0ad9dd36eb
http://groups.google.com/group/MephistoBlog/t/d1204a0ad9dd36eb
http://textism.com/tools/textile/
http://daringfireball.net/projects/markdown/
http://www.deveiate.org/projects/BlueCloth/ticket/15

Finding weaknesses in web applications through the means of fuzzing

Stack :
[/ usr / share / request−t r a cke r3 .6/ l i b /RT/ Tickets_Overlay_SQL .pm:240]
[/ usr / share / request−t r a cke r3 .6/ l i b /RT/ Tickets_Overlay_SQL .pm:485]
[/ usr / share / request−t r a cke r3 .6/ html/ Elements / T i c k e t L i s t :126]
[/ usr / share / request−t r a cke r3 .6/ html/ Search / Resu l t s . html :56]
[/ usr / share / request−t r a cke r3 .6/ html/ Search / Bui ld . html :797]
[/ usr / share / request−t r a cke r3 .6/ html/ autohandler :279] (/ usr / share / request−

↪→ t r a cke r3 .6/ l i b /RT/ Tickets_Overlay_SQL .pm:487)

Listing 10: Apache’s error.log

200

302

500

0 500 1000 1500 2000

370

5

1125

200

302

500

0 500 1000 1500 2000

1816

25

289

200

302

0 500 1000 1500 2000

125

1767

Figure 8: Number of HTTP status codes returned while fuzzing RT.

7.3.4 Resource Exhaustion

One particularly bad bug which we discovered during our fuzz testing was a bug in RT where
the application was trying to validate the input. The input was intended to be used for mak-
ing a query into the ticketing system in order to find tickets matching a search term. To com-
bat attempts at SQL injection or remote code execution, the RT developers have created a
parser to ensure the validity of the input before actually using it in the search query. The
parser consists of some regular expressions to match the input against known keywords, and
a simple state machine specifying which transitions are allowed (see the _parser subroutine in
Tickets_Overlay_SQL.pm5). Somewhere in the parser, we triggered what seems like an infinite
recursion.

The bug was triggered early, and we noticed the fuzzer was waiting a long time for a response
that never seemed to come. Checking the terminal on the web server, we discovered that the
system was running under high load, and performing simple tasks like logging in on a second
console took several minutes. Using the top program, we could see that Apache was using most
of the CPU time, and memory consumption was steadily increasing. Checking the Apache error
log, we found a stack trace from RT (Listing 10), which indicated that something indeed had
gone wrong. We decided to let the process run in order to see what happened.

After running for about an hour, the operating system kernel stepped in and killed the MySQL
process, as all the memory was consumed. Shortly after, a process called mysqld_safe restarted
MySQL. This two step routine continued several times, until the mysqld_safe process failed
to start a new MySQL process due to a failure in the pthread library (no new thread could
be created, this about three hours after the first stack trace). At last the kernel killed one of the
Apache processes, but as Apache is running five child processes to dispatch incoming connections

5svn://svn.bestpractical.com/rt/branches/3.6-RELEASE/lib/RT/Tickets_Overlay_SQL.pm

39

svn://svn.bestpractical.com/rt/branches/3.6-RELEASE/lib/RT/Tickets_Overlay_SQL.pm

Finding weaknesses in web applications through the means of fuzzing

200

302

500

0 500 1000 1500 2000

370

5

1125

200

302

500

0 500 1000 1500 2000

1816

25

289

200

302

0 500 1000 1500 2000

125

1767

Figure 9: Number of HTTP status codes returned while fuzzing RT, using different seed.

to, and the kernel picked the wrong process, the connection with the fuzzer was still open, so
we decided to restart Apache. At this point we were not aware that the MySQL process wasn’t
running, so the rest of the requests from the fuzzer resulted in a long range of HTTP 500 status
codes, as RT could not connect to the database (see Figure 8).

Later we ran the test again, using a different seed (in order to obtain different values for
the fuzz tokens), and the resulting status codes were changed dramatically, as we can see from
Figure 9.

Since we are not too familiar with Perl, and the bug seemed to be hard to pinpoint, we
didn’t look further into it. Instead we submitted a bug report to the RT bug tracker. The e-mail
correspondence can be seen in Section B.2 in the appendix.

40

Finding weaknesses in web applications through the means of fuzzing

8 Contributions

In this chapter we will present the contributions from this master thesis. We have identified
different kinds of contributions: a method for fuzzing web applications, a toolchain implementing
this method and findings from the fuzz testing. We also present an overview of how well our
method seems to work. Each kind of contribution is presented in it’s own section below.

8.1 Method for Fuzzing

The method for fuzzing applications has already been established by Miller et al. This method of
testing assumes that programmers makes wrong assumptions about user input, and application
of fuzzing against command line and GUI applications has proven to yield results. In the com-
mand line example they were able to discover several possible buffer overflow vulnerabilities,
and since they had the source code at their disposal they were able to determine the reasons for
this.

This project contributes little to the main idea about how to conduct these tests — it is more
an evaluation of how well it applies to testing of web applications. Creating a fuzzer has given us
a clearer picture about what features it needs to have in order to be efficient to use. For instance,
being able to handle cookies is a must in order to fuzz stateful web applications, and providing
a means for the fuzzer to “log in” to a website is the key to fuzz the administrative part of the
application (or the part of the application available to a privileged user) as well.

8.2 Toolchain for Fuzzing Web Applications

Through this project we have built a toolchain for fuzzing web applications. We have had some
building blocks to work with, namely the RFuzz library, the Hawler library and the Ruby program-
ming language. RFuzz was initially created for the task of fuzz testing the Mongrel web server,
commonly used by Ruby on Rails applications. The details about this toolchain is described in
Chapter 5.

The toolchain we have implemented has some minor similarities to unit testing. You can
specify some global state, like hostname and port to use, and specify a “fixture setup” to be
executed before each test case — requests from the before block being added before requests
from the attack blocks in our case. As with unit tests, the scripts can be written manually or
generated in a (semi) automatic way. Unlike unit testing, we have not added a way of asserting
results from the requests, so analyzing results will have to be done manually.

8.3 Types of Bugs Found

This section contains an overview of the discoveries we made during the fuzz testing. Details are
in Section 7.3.

41

Finding weaknesses in web applications through the means of fuzzing

No server side validation of input (Section 7.3.1) It is our belief that user data should be san-
itized before being allowed to propagate through the code. You can never trust a user to
enter legitimate values, even if the possible values are “limited” by a dropdown box. As
we have seen it is easy to bypass these restrictions. Similarly, using JavaScript to validate
user input should only be considered a convenience for the user — not a security measure.
Knowing how easy it is to disable JavaScript support in a web browser, we should always
enforce the same checks server side as we hope to achieve at the client side. The example
provided in Section 7.3.1 might not be a good one, but it still shows that the developers
assumptions not always are correct.

Incorrect use of HTTP status codes (Section 7.3.2) While this is not really a security related
bug, it is a violation of the semantics described in the HTTP protocol (RFC 2616 [32]). The
biggest problem for us is that it makes automating the analysis harder, as we cannot rely
on HTTP status codes to tell us how the web server and/or application perceives the error.
As we stated in Section 6.4, we should, by the semantics of HTTP 1.1, be able to assert that
a status code in the 500 range indicates problems on the server. Not, as was the case with
Wordpress, that the application has correctly identified that the problem originates from
the user.

Failure to handle exceptions (Section 7.3.3) We saw that Mephisto failed to handle an excep-
tion that was raised in a third part library, which in the earlier days of web browsers could
mean that all text the user typed in was lost. Most browsers today save the contents of
forms in the history (at least for the current session), but a simple formatting error should
be caught by the application and not result in showing the user a stack trace they usu-
ally don’t understand. The programming language used, Ruby, is a dynamic language, and
doesn’t enforce the programmer to catch an exception or explicitly state that the exception
could be thrown as in, say, Java. This might be the reason why these mistakes are easier to
make in dynamic languages that enables rapid prototyping.

Resource exhaustion (Section 7.3.4) This type of bug usually manifests itself by causing in-
creased response times and possibly no response at all. This can be caused e.g. by non-
terminating recursion and infinite loops. In RT, we discovered what seems to be a non-
terminating recursion, resulting in high cpu consumption and a memory leak, followed by
a forced process termination. Improper use of recursion can easily lead to this condition,
as each time the function is called, return address and new local variables are put on the
stack. Failing to terminate the recursion will thus lead to exhaustion of memory.

42

Finding weaknesses in web applications through the means of fuzzing

9 Discussion

This chapter provides a discussion of the discoveries we made during the fuzz testing. We start
off by discussing the completeness of our method, and how this could be improved. Section 9.2
discusses how the results from the different applications compare to each other and Section 9.3
tries to look at how programming practices — or the lack of them — affects the applications
we have tested. At last, Section 9.4 tries to compare our approach to the tools mentioned in
Section 2.2.6.

9.1 Completeness of our Method

While this method has potential for use in discovering vulnerabilities in web applications, there
are some problems with regards to the completeness of the method. As noted in Section 5.1, our
crawler did not contain logic to prevent it from logging out from the administrator interfaces
of the web applications it was crawling. This resulted in a varying degree of completeness with
regards to testing of the applications. Since the crawler is using a breadth-first approach, and
most admin interfaces have a logout link on every page, the degree of completeness depends on
how many links there are on the initial page behind the login page, and where in the document
the logout link is placed. If there are few links on the page, or if the logout link comes early, the
coverage of the application will be bad. We propose a solution to this problem in Chapter 10.

Since this thesis mainly has been an evaluation of fuzzing for web applications, we have
not tested the applications as thoroughly as one should do when testing applications before
putting them in production use. We are mainly concerned with finding out if the method can be
applied to web applications, and finding some errors are sufficient for us. For a real evaluation
of a product, more comprehensive tests should be done. This can be achieved by writing more
complete attack scripts, improving the crawler, trying the same attack script with different seeds,
and of course increasing the amount of repetitions done. Section 7.3.4 is evidence that short tests
not necessarily yields results. The first run we did was using the word “CHANGEME” as seed and
revealed a severe bug, while running the same script with the intended seed: “RT” yields no
results.

9.2 Comparability of Results

The most serious bugs were found among the applications with the highest lines of code count
(see Appendix A for details). Mephisto and RT are placed at second and fifth accordingly. Word-
press, in which we found a semantical flaw, but not a bug per se, is placed at fourth. This could
indicate that bigger applications are more likely to contain bugs which might be found using
fuzz testing. However, for the reason mentioned in Section 9.1 this is hard to prove. According
to that theory, we should for instance have found bugs in the other big applications. eZPublish
has a code base of approximately three times the size of Mephisto (again, see Appendix A), and
should — in theory — contain bugs as well, but no bugs were found. One of the reasons for this

43

Finding weaknesses in web applications through the means of fuzzing

could be the lack of completeness in our method (Section 9.1). We had several tests directed
at the user interface in eZ, but none at the administrative interface. The same holds for Sciret
(which is placed third in application size). In order to draw better conclusions about application
size and probability of finding bugs, the method needs to be more complete.

As the bugs we found in Mephisto were discovered in the administrative interface, one might
argue that they are less significant than the ones found in the user interface. This is of course
true to a certain extent. As Mephisto is a CMS system, chances are that some sites deploy this
system with a large amount of users. Only one account needs to be compromised to get access to
the administrative interface, and while some CMS systems enforce user levels, the attack surface
will still be increased by compromising an account.

9.3 Programming Practices

Many people claim that good programming practices and “safe coding guidelines” should be
used in order to make programs more secure. While this might work, it is human to err and all
too easy to make mistakes even though you in your heart know how it should be done. A good
example of this is when Bowers et al. [17] discovered a bug in the original fuzzer from Miller et
al. Buffer overflows are still a big problems with C programs, even though the problem has been
known for a long time, and several guidelines on how to avoid these problems exists. The best
way to avoid buffer overflows is to use an environment where they do not exist, as mentioned
in [44] (see e.g. it’s Section 3.3.4). This article also mentions other ways to defend against buffer
overflows.

Fuzz testing will give an indication of how well the developers validate the user supplied
data. While some programming languages can provide “tainting” of input, and requires that
this input must be validated in some way before being allowed to propagate through the code
(Perl and Ruby has this functionality), it doesn’t seem to be used in the web frameworks. We have
previously stated that every application that returns a HTTP status code 500, could be considered
as an application that doesn’t validate or handle user supplied data in a correct way, as all fuzz
data we deliver is user supplied data, and that the error clearly is on the user side.

There is a fifty-fifty split between applications who relies on a web framework, and applica-
tions that “rolls their own.” Mephisto and Ozimodo is using Rails1, Junebug is using Camping2

and Request Tracker uses Mason3 for HTML layout. The others (Chyrp, eZ Publish, Sciret and
Wordpress) are written in plain PHP, and while some of them uses a Model-View-Controller
pattern (first introduced by Reenskaug [45, 46]), it is implemented by the developers of the
application, and not provided by a generic framework.

Lately, some emphasis has been put on testing software using unit tests, but even though
the Rails applications have a large amount of unit tests (as did the Camping application), these
are not sufficient for avoiding bugs. We discovered bugs in Mephisto, and some minor bugs in
Junebug which we have not discussed, as we are not entirely sure what went wrong. The Ruby
applications seems to be the only applications among the tested which makes use of unit tests.

1http://rubyonrails.org
2http://code.whytheluckystiff.net/camping
3http://www.masonhq.com/

44

http://rubyonrails.org
http://code.whytheluckystiff.net/camping
http://www.masonhq.com/

Finding weaknesses in web applications through the means of fuzzing

Program Automatability Documentation Ease of use Feasibility for web apps
Burp Suite Poor Good OK Good
fuzz.rb Good N/A Good Good
Peach Good Poor Poor OK
Sulley Good Good Good OK

Table 5: Comparison of fuzzing tools

9.4 Comparison

Here we will present a short description on how our fuzzer and the alternatives presented in
Section 2.2.6 compares to each other, and how they differ in use. A summary is shown in Table 5.
Please note that this section is based on our own judgement.

We believe the Burp Suite is harder to automate than the alternatives, as it requires manual
intervention at many phases. The analyzer provided is OK though, and at this stage in fuzz testing
manual intervention is usually required anyway. The Burp Suite might be a good alternative if
you’re looking to do more than just fuzzing (like e.g. enumeration attacks) from the same tool.

Looking at the Peach Fuzzing Platform, we found that the provided tools are “not quite there
yet”, and the documentation was also lacking a bit. The realistic way to create a fuzzer for web
applications, would be to first implement components to ease the task of creating these fuzzers
— not unlike what we have done with RFuzz. We could probably have based our work on the
Python API, but having more experience with Ruby, RFuzz was a better choice for getting a
prototype going, even though Peach has more features.

Sulley seems very promising, but for fuzzing web applications, we believe our own approach
is better. As with Peach, we could have used Sulley as a framework for building our fuzzer.
Writing attack scripts for Sulley seemed straightforward enough, but we believe this framework is
better suited for fuzzing applications which provide some sort of communication over a network
protocol, rather than web applications.

We wrote a simple script to fuzz a web page in order to compare the results with our own
fuzzer. Sulley performs many repetitions, so fuzzing a single entry point took quite some time.
This is of course a good thing when you are using the fuzzer for evaluating your software, as you
want a good coverage of test cases. However, after having run the fuzzer, we found it hard to
analyze the results, as no debugger or process monitor had been attached. The only thing logged
was a malformed PCAP file4, so we got no indication to what had happened during the session.
Logging the package stream is OK when you are fuzzing protocols, but might be a bit crude when
you are fuzzing a web application.

What makes our approach different from the other tools mentioned, is that Peach and Sulley
mainly are frameworks for building different kinds of fuzzers (even though they focus on network
based fuzzers), while ours is a fuzzer meant specifically for web applications. While the Burp
Suite also contains a fuzzer and is aimed at web applications, this is a more general purpose
vulnerability discovery tool, while our tool only does one job. We believe that our fuzzer is easier
to use for ad-hoc projects and for getting started quick. The biggest problems with our fuzzer is

4a file containing a packet dump of the network traffic generated and received by Sulley. Produced by libpcap: http:
//www.tcpdump.org/

45

http://www.tcpdump.org/
http://www.tcpdump.org/

Finding weaknesses in web applications through the means of fuzzing

the lack of documentation and the level of completeness (see e.g. Chapter 10).

46

Finding weaknesses in web applications through the means of fuzzing

10 Future Work

This chapter contains proposals for future work — both for improvements of this fuzzer, and for
other possible uses for this approach to web application fuzzing.

• We can imagine a similar approach to be effective in fuzzing web services. By parsing a WSDL
(Web Service Description Language) file, one might be able to automate attack script creation
and / or direct fuzzing of the provided WSDL ports. Along with the new focus on providing
web services for integration between web based systems, a focus on testing these services
should follow. For RESTful web services, an attack script might have to be written by hand,
as these services seldom are described by a unified description language.

• Crawler: Possibility to “blacklist” a page to avoid logging out from administrative pages.

• Crawler: Store method, path and query options for forms in order to avoid the same form
appearing several times. For instance: a form used to search for articles in a CMS system will
typically appear on multiple pages. We should be able to identify that we have encountered
the same form before as the method (GET or POST), path and query options used will be the
same. We only need to fuzz this entry point one time.

• To simplify writing attack scripts we could make the fuzzer pick a random fuzz token for all
fields with a value of “nil”, and let this be the standard value generated by the crawler. This
way we only need to fill in the fields where we know we want a random integer or a random
string, and let the fuzzer pick something even more random for the other cases. This is a
similar approach to the one taken in [29].

• A slightly different approach to entry point discovery and fuzzing could be taken: we could
combine the crawler and fuzzer in order to “fuzz as we go”. We could develop this as a one-
pass or two-pass system. The one-pass system would crawl a page and store links to other
pages, and before traversing them, fuzz all entry points on the current page. The two-pass
system would crawl the entire application looking for entry points, and yield control to the
fuzzer after visiting all pages. In both cases we need to set the seed used for the random
number generator. This could be done either through an option to the program — passed
on the command line — or by using a combination of the hostname, initial path or other
variables we expect to remain static through the testing period, assuring repeatable results.

• In our system, the attack command takes an optional argument attack("name") (e.g. line
1 in Listing 6). This argument is not actually used, but we could perhaps make use of it to
generate better logs or something else.

47

Finding weaknesses in web applications through the means of fuzzing

• We are not fuzzing file uploads. This might be an area worth looking into. Some applications
lets admin users upload templates for web pages or serialized content to be added to the site.
This will probably require writing of a file fuzzer.

48

Finding weaknesses in web applications through the means of fuzzing

11 Conclusions

We will now give an answer to our research questions based on the work that has been presented
in the thesis. Regarding how much work it is to implement the fuzzer, our prototype was devel-
oped by one person over about two months (not full time). Producing the fuzzer is only needed
once, as it is flexible enough to use against several web applications. Writing an attack script for
an application can take about a day, but as we noted in e.g. Chapter 10, there is potential for im-
provements here. When it comes to effectiveness, automation of running the fuzzer is easy once
the attack script has been written, but automation of analysis is, as stated in Section 6.4, harder.
Bugs we have found has been listed and classified in Section 7.3 and summarized in Section 8.3.
The number of applications we found bugs in was briefly illustrated in Table 4 (page 35).

The tests we have been running are not comprehensive enough to give us a basis for making
bold statements about the quality of the applications we have tested. However, we believe the
results we found is a good indication that fuzz testing indeed can be used in combination with
web applications. By running relatively few tests we managed to discover several bugs, and some
potential bugs which were not investigated fully (mentioned briefly in Section 9.3). As we noted
in Section 9.1, more thorough tests are necessary for testing software to be put in production.
Bigger test suites with a greater number of repetitions will likely yield more results. The biggest
hurdle is to find a good way of analyzing the results. For our purposes, checking the responses
with status 500 was good enough, but for bigger result sets, other techniques might be more
appropriate, like checking for certain strings in the response body (as e.g. Stuttard and Pinto
does [14]).

Our work shows that some web applications indeed are vulnerable to fuzzing. Not only new
and fragile applications, but also “tested and true” applications, as well as applications which has
been developed with a focus on unit testing.

49

Finding weaknesses in web applications through the means of fuzzing

Bibliography

[1] Miller, B. P., Fredriksen, L., & So, B. December 1990. An empirical study of the reliability
of unix utilities. Communications of the ACM, 33(12), 22.

[2] Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R., Natarjan, A., & Steidl, J. April
1995. Fuzz revisited: A re-examination of the reliability of unix utilities and services. Com-
puter Sciences Technical Report, 1268, 23.

[3] Forrester, J. E. & Miller, B. P. August 2000. An empirical study of the robustness of windows
nt applications using random testing. Proceedings of the 4th conference on USENIX Windows
Systems Symposium - Volume 4 WSS’00, 10.

[4] Miller, B. P., Cooksey, G., & Moore, F. July 2006. An empirical study of the robustness of
macos applications using random testing. Proceedings of the 1st international workshop on
Random testing RT ’06, 9.

[5] van Sprundel, I. 2005. Fuzzing: Breaking software in an automated fashion. 22nd
Chaos Communication Congress (http://events.ccc.de/congress/2005/fahrplan/
attachments/582-paper_fuzzing.pdf). (Visited May 2008).

[6] Ryber, T. Essential Software Test Design, chapter Test Design Techniques: An Overview.
Unique Publishing Ltd, 2007.

[7] ISO/IEC 9126-1. 2001. Software engineering – product quality – part 1: Quality
model. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=22749.

[8] Black, R. Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional,
chapter Reactive Testing, 270–271. John Wiley & Sons, Inc., New York, NY, USA, 2007.

[9] Bach, J. apr 2003. Exploratory testing explained. http://www.satisfice.com/articles/
et-article.pdf. (Visited June 2005).

[10] Oehlert, P. 2005. Violating assumptions with fuzzing. Security & Privacy Magazine, IEEE,
3(2), 58–62.

[11] Lipner, S. 2004. The trustworthy computing security development lifecycle. In ACSAC
’04: Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04),
2–13, Washington, DC, USA. IEEE Computer Society.

[12] Xiao, S., Deng, L., Li, S., & Wang, X. 2003. Integrated tcp/ip protocol software testing for
vulnerability detection. Computer Networks and Mobile Computing, 2003. ICCNMC 2003.
2003 International Conference on, 311–319.

51

http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/articles/et-article.pdf

Finding weaknesses in web applications through the means of fuzzing

[13] Su, Z. & Wassermann, G. 2006. The essence of command injection attacks in web appli-
cations. In POPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 372–382, New York, NY, USA. ACM Press.

[14] Stuttard, D. & Pinto, M. 2007. The Web Application Hacker’s Handbook: Discovering and
Exploiting Security Flaws. Wiley.

[15] Miller, C., Honoroff, J., & Mason, J. 2007. Security evaluation of apple’s iphone. http:
//securityevaluators.com/iphone/exploitingiphone.pdf. (Visited May 2008).

[16] Miller, C. & Honoroff, J. jun 2007. Hacking leopard: Tools and techniques for attacking
the newest mac os x. https://www.blackhat.com/presentations/bh-usa-07/Miller/
Whitepaper/bh-usa-07-miller-WP.pdf. (Visited May 2008).

[17] Bowers, B. L., Lie, K., & Smethells, G. J. An inquiry into the stability and reliability of unix
utilities. http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf. (Visited May 2008).

[18] Ghosh, A. K., Shah, V., & Schmid, M. 1998. An approach for analyzing the robustness
of windows NT software. In Proc. 21st NIST-NCSC National Information Systems Security
Conference, 383–391.

[19] nov 1998. The bulletproof penguin. http://pages.cs.wisc.edu/~blbowers/fuzz-2001.
pdf. (Visited May 2008).

[20] Hertzfeld, A. Revolution in The Valley: The Insanely Great Story of How the Mac Was Made,
184–186. O’Reilly Media Inc., 1 edition, dec 2004.

[21] Johnson, M. K. 1996. Stop the presses. Linux Journal, 1996(27es), 12.

[22] Claessen, K. & Hughes, J. 2000. Quickcheck: a lightweight tool for random testing of
haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, 268–279, New York, NY, USA. ACM Press.

[23] Kropp, N. P., Koopman, P. J., & Siewiorek, D. P. 1998. Automated robustness testing
of off-the-shelf software components. In FTCS ’98: Proceedings of the The Twenty-Eighth
Annual International Symposium on Fault-Tolerant Computing, 230, Washington, DC, USA.
IEEE Computer Society.

[24] Schmid, M. & Hill, F. 1999. Data generation techniques for automated software robustness
testing. Sixteenth International Conference on Testing Computer Software (ICTCS’99).

[25] Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kemmerer, R., & Vigna, G. 2006. Snooze:
Toward a stateful network protocol fuzzer. Information Security, 343–358.

[26] Aitel, D. The advantages of block-based protocol analysis for security testing. Technical
report, Immunity Inc., 2003.

[27] Kaksonen, R. 2001. Software security assessment through specification mutations and fault
injection. Communications and Multimedia Security Issues of the New Century.

52

http://securityevaluators.com/iphone/exploitingiphone.pdf
http://securityevaluators.com/iphone/exploitingiphone.pdf
https://www.blackhat.com/presentations/bh-usa-07/Miller/Whitepaper/bh-usa-07-miller-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Miller/Whitepaper/bh-usa-07-miller-WP.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf

Finding weaknesses in web applications through the means of fuzzing

[28] Granneman, S. jul 2006. A month of browser bugs. http://www.securityfocus.com/
columnists/411. (Visited May 2008).

[29] Butti, L. & Tinnès, J. 2007. Discovering and exploiting 802.11 wireless driver vulnerabili-
ties. Journal in Computer Virology.

[30] Mendonça, M. & Neves, N. F. 14-16 Nov. 2007. Fuzzing wi-fi drivers to locate security
vulnerabilities. High Assurance Systems Engineering Symposium, 2007. HASE ’07. 10th IEEE,
379–380.

[31] Sutton, M., Greene, A., & Amini, P. jul 2007. Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional, 1 edition.

[32] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.
jun 1999. Rfc 2616: Hypertext transfer protocol – http/1.1. http://www.ietf.org/rfc/
rfc2616.txt. (Visited May 2008).

[33] Raggett, D., Hors, A. L., & Jacobs, I. dec 1999. Html 4.01 specification. http://www.w3.
org/TR/REC-html40/. (Visited May 2008).

[34] Fielding, R. T. & Taylor, R. N. may 2002. Principled design of the modern web architecture.
ACM Transactions on Internet Technology, 2(2), 115–150.

[35] Goldberg, A. & Robson, D. 1983. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[36] McCarthy, J. 1960. Recursive functions of symbolic expressions and their computation by
machine, part i. Communications of the ACM, 3(4), 184–195.

[37] Huang, Y.-W., Huang, S.-K., Lin, T.-P., & Tsai, C.-H. 2003. Web application security as-
sessment by fault injection and behavior monitoring. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, 148–159, New York, NY, USA. ACM.

[38] Kaukonen, K. & Thayer, R. jul 1999. A stream cipher encryption algorithm “arcfour”. IETF
Draft.

[39] Fluhrer, S. R., Mantin, I., & Shamir, A. 2001. Weaknesses in the key scheduling algorithm
of rc4. In SAC ’01: Revised Papers from the 8th Annual International Workshop on Selected
Areas in Cryptography, 1–24, London, UK. Springer-Verlag.

[40] Harris, B. jan 2006. Improved arcfour modes for the secure shell (ssh) transport layer
protocol. RFC 4345.

[41] Berners-Lee, T., Masinter, L., & McCahill, M. dec 1994. Rfc 1738: Uniform resource locators
(url). http://www.ietf.org/rfc/rfc1738.txt. (Visited May 2008).

[42] Berners-Lee, T., Fielding, R., & Masinter, L. feb 2005. Rfc 3986: Uniform resource identifier
(uri): Generic syntax. http://www.ietf.org/rfc/rfc3986.txt. (Visited May 2008).

53

http://www.securityfocus.com/columnists/411
http://www.securityfocus.com/columnists/411
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt

Finding weaknesses in web applications through the means of fuzzing

[43] Berube, D. Practical Ruby Gems, chapter Easy Text Markup with the BlueCloth Gem, 45–51.
Apress, 2007.

[44] Cowan, C., Wagle, P., Pu, C., Beattie, S., & Walpole, J. 2003. Buffer overflows: attacks
and defenses for the vulnerability of the decade. Foundations of Intrusion Tolerant Systems,
2003 [Organically Assured and Survivable Information Systems], 227–237.

[45] Reenskaug, T. may 1979. Thing-model-view-editor an example from a planningsys-
tem. http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf. (Visited May
2008).

[46] Reenskaug, T. dec 1979. Models - views - controllers. http://heim.ifi.uio.no/
~trygver/1979/mvc-2/1979-12-MVC.pdf. (Visited May 2008).

54

http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

Finding weaknesses in web applications through the means of fuzzing

A More Information About the Webapps Tested

An overview of the different properties of the web applications tested is given in Table 6. We also
present an explanation of the terms used in the table.

Language The primary programming language used to build the application. As you can see
from Section A.1, all applications are written in several languages and – being web appli-
cations – most of them use HTML, CSS and JavaScript. Due to the size of the JavaScript
libraries included in Sciret, it seems it is primarily written in JavaScript, even though the
main programming language used for the application logic is PHP.

KLOC Kilo Lines Of Code. Number of lines in the source code for the application divided by
1000. The KLOC counts for the applications are obtained using Ohcount1. See complete
reports below.

Weblog A web application that eases the task of keeping an online journal. In a weblog, the
entries are usually presented in reverse chronological order, i.e. the newest first.

CMS Content Management System. A web application that aims to help the user manage an
entire website – usually without requiring the user to know HTML. Often used to manage
sites on a company’s intraweb as well as on the internet.

Wiki A lightweight CMS, with a focus on easing the process of creating new pages and linking
of pages within the system. The word “wiki” is Hawaiian and means “fast”. Wikipedia is
the most commonly known wiki.

Ticketing system A system for managing support requests. Requests can be assigned a user, the
progress can be tracked, and previous support requests can be referenced. A ticketing sys-
tem is quite similar to bug tracking systems and issue tracking systems. A clear distinction
can be hard to make.

1http://labs.ohloh.net/ohcount

Application Purpose Language KLOC Release date
Chyrp Weblog PHP 8.6 2007-12-18
eZ Publish CMS PHP 668.9 2000-11
Junebug Wiki Ruby 9.8 2006-10-22
Mephisto CMS Ruby 218.5 2006-08-10
Ozimodo Weblog Ruby 20.8 2005-09-22
Request Tracker Ticketing system Perl 66.6 1998-01-31
Sciret Knowledge base PHP 159.7 2006-11-05
Wordpress Weblog PHP 90.5 2003-06

Table 6: Overview of the applications tested

55

http://labs.ohloh.net/ohcount

Finding weaknesses in web applications through the means of fuzzing

Knowledge base A system for tracking answers to questions. The goal of a knowledge base
system is to collect answers to known problems, and is often used to ease the burden of the
customer consultants in a company. Knowledge base systems may be created from scratch,
or wiki-like systems could be used.

A.1 Source Lines of Code

Chyrp
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
php 77 4723 118 2.4% 431 5272
css 17 1608 130 7.5% 119 1857
html 55 1280 0 0.0% 35 1315
javascript 4 88 59 40.1% 12 159
-------------- ----- --------- --------- --------- --------- ---------
Total 90 7699 307 3.8% 597 8603

eZ Publish
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
php 1378 376261 78149 17.2% 46233 500643
html 1659 63242 379 0.6% 12553 76174
css 97 24912 1215 4.7% 6537 32664
javascript 103 18326 10115 35.6% 4352 32793
xml 37 15287 0 0.0% 0 15287
sql 21 5239 6 0.1% 3568 8813
cncpp 10 1653 380 18.7% 220 2253
perl 4 157 14 8.2% 41 212
shell 4 82 11 11.8% 24 117
-------------- ----- --------- --------- --------- --------- ---------
Total 3188 505159 90269 15.2% 73528 668956

Junebug
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
ruby 23 4673 555 10.6% 918 6146
javascript 1 2909 286 9.0% 168 3363
css 1 237 37 13.5% 55 329
-------------- ----- --------- --------- --------- --------- ---------
Total 25 7819 878 10.1% 1141 9838

Mephisto
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
ruby 1978 148377 21965 12.9% 24274 194616
javascript 25 13517 588 4.2% 2191 16296
sql 41 2700 24 0.9% 358 3082
css 10 2188 164 7.0% 407 2759
html 123 1403 74 5.0% 288 1765
shell 1 5 1 16.7% 2 8
-------------- ----- --------- --------- --------- --------- ---------
Total 2077 168190 22816 11.9% 27520 218526

Ozimodo
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
ruby 107 7777 1167 13.0% 1507 10451

56

Finding weaknesses in web applications through the means of fuzzing

javascript 27 4615 222 4.6% 717 5554
html 56 2939 107 3.5% 792 3838
css 8 869 15 1.7% 151 1035
-------------- ----- --------- --------- --------- --------- ---------
Total 152 16200 1511 8.5% 3167 20878

Request Tracker
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
perl 144 29353 8938 23.3% 13812 52103
html 90 9876 83 0.8% 1157 11116
css 27 2223 19 0.8% 208 2450
javascript 7 862 21 2.4% 68 951
-------------- ----- --------- --------- --------- --------- ---------
Total 268 42314 9061 17.6% 15245 66620

Sciret
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
javascript 291 49142 9318 15.9% 8061 66521
html 138 28903 2032 6.6% 3330 34265
php 186 20875 5260 20.1% 2900 29035
cncpp 21 13915 2014 12.6% 2190 18119
css 45 5407 455 7.8% 1046 6908
perl 13 1984 275 12.2% 286 2545
shell 15 689 425 38.2% 198 1312
xml 5 468 75 13.8% 21 564
sql 4 300 47 13.5% 57 404
bat 1 8 1 11.1% 2 11
-------------- ----- --------- --------- --------- --------- ---------
Total 635 121691 19902 14.1% 18091 159684

Wordpress
Language Files Code Comment Comment % Blank Total
-------------- ----- --------- --------- --------- --------- ---------
php 210 39683 4390 10.0% 8346 52419
javascript 91 22671 2010 8.1% 4739 29420
css 38 3821 172 4.3% 788 4781
html 109 2955 51 1.7% 839 3845
xml 1 36 0 0.0% 7 43
-------------- ----- --------- --------- --------- --------- ---------
Total 313 69166 6623 8.7% 14719 90508

57

Finding weaknesses in web applications through the means of fuzzing

B Bug Reports

B.1 Wordpress
Ticket #6076 - Incorrect use of HTTP status code 500

Reported by: runeh
Description:

When trying to log in using a wrong username or password, Wordpress
issues an HTTP 500 status code, and the request body states that wrong
credentials has been supplied. As I am sure you know, 500 means Internal
Server Error. A more suitable status code to use would be 403
(Forbidden).

The 500 status code is also issued when submitting an empty username or
password. I think 400 (Bad Request) would be a better fit. Both of these
errors are made by the user, not the server, so it stands to reason that
the status codes should be in the 400 range.

I also noted that a 500 status code is issued if a user is commenting to
quickly (as an anti-spam measure). I’m not convinced that 500 is the
correct status to use, however I’m unsure about which status fits best.

Fixing these issues will make Wordpress behave more semantically correct
with regards to the HTTP protocol.

Changelog:

03/07/08 22:52:42 changed by westi:
* keywords set to needs-patch.
* owner changed from anonymous to westi.
* status changed from new to assigned.

05/06/08 02:51:12 changed by guillep2k:
* cc set to guillep2k.

Personally, I don’t think any status codes different from 200 would be
correct, since at HTTP level you’re actually delivering the requested
page (i.e., the results of the user providing login credentials). 4xx
error codes are (again according to my opinion) for HTTP errors (e.g.,
400/Bad Request is for a malformed HTTP request, like invalid usage of
headers) and not for application level errors. Using HTTP (transport)
error codes to reflect application statuses seems to me like mixing
design layers. Proxies and user agents act upon these errors and may
choose not to show the user your provided HTTP response body but
replace it for a body of their own.

59

Finding weaknesses in web applications through the means of fuzzing

Nevertheless, 500 is obviously wrong. 403 is meant to reflect the fact
that access is forbidden, despite any credentials you may provide (so,
403 is semantically incorrect). The correct code should be 401, but
that’s for the HTTP protocol, not the Wordpress application. You know
what happens if you send back a 401 status: the user agent (browser)
will ask for credentials and attempt basic authentication. This is my
point as why I think we’re mixing layers if we pretend to use HTTP
codes different from 200.

In my opinion, Wordpress shouldn’t return anything except: 200 (pages
served), 404 (custom page not found page) and 303 (to redirect to a
permalink). See a good article about these codes at Wikipedia
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

B.2 Request Tracker

The initial bug report to the RT bug tracker:

From: Rune Hammersland <rune.hammersland@hig.no>
Subject: Query error causing RT to hang
Date: 1. april 2008 15:41:38 GMT+02:00
To: rt-bugs@bestpractical.com

I was doing some fuzz testing on RT, and managed to generate a request
that unveiled a bug. After sending the request, the load on the server
steadily went up. After running for a while (some hours admittedly), all
the memory on the server was consumed. syslog has several references to
"Deep recursion on subroutine", so the memory leak is not surprising.

After digging around in the RT code base, I figured the error lies in
the query parser which is used to find out if the query is well formed.
Sadly I’m not very good with Perl, so that’s how far I got.

The offending request was a POST request to /rt/Search/Build.html, with
the POST body given in the attached postbody.txt (correctly encoded as
application/x-www-form-urlencoded), but given as key-value pairs here).

Attached is also an excerpt from syslog and error.log from Apache.

The version of RT used is 3.6.1-4, from Debian 4.0, served by Apache 2.

Steps to reproduce:

* Log in to RT.
* Send POST request to /rtpath/Search/Build.html with the key/value
pairs from postbody.txt encoded as x-www-form-urlencoded.

--
Best regards
Rune Hammersland

The response from Jesse Vincent, asking for a more convenient way to reproduce the bug:

60

Finding weaknesses in web applications through the means of fuzzing

From: Jesse Vincent via RT <rt-bugs@bestpractical.com>
Subject: Re: [fsck.com #9122] Query error causing RT to hang
Date: 9. april 2008 18:43:50 GMT+02:00
To: rune.hammersland@hig.no

Rune, I’m sorry for the delay in my reply. I greatly appreciate the
digging at this. Do you have a convenient wget/curl/whatever
invocation to post this stuff encoded correctly?

Also, is the fuzz tester you use opensource? It sounds useful and I’d
love to add it to my toolkit

Best,
Jesse

The reponse to Jesse’s mail, containing a shell script with curl commands to reproduce the
problem:

Subject: Re: [fsck.com #9122] Query error causing RT to hang
From: Rune Hammersland <rune.hammersland@hig.no>
Date: 11. april 2008 14:54:28 GMT+02:00
To: rt-bugs@bestpractical.com

On 9. april. 2008, at 18:43, Jesse Vincent via RT wrote:
> Rune, I’m sorry for the delay in my reply. I greatly appreciate the
> digging at this. Do you have a convenient wget/curl/whatever
> invocation to post this stuff encoded correctly?

See the attached shell script which uses curl. Edit the USER and PASS
variables to enable it to log into your application. You might want to
delete the cookie file after running it (as it hangs on the second curl
command).

> Also, is the fuzz tester you use opensource? It sounds useful and I’d
> love to add it to my toolkit

I’m writing a master thesis about fuzz testing web applications, and
wrote my own fuzzer based on the RFuzz library, in the hopes of making
it easier to apply to webapps than other fuzzers are (as they are often
generalized for protocols or filetypes). My intentions were to release
it when done, but the code is getting pretty awful, and I have some
enhancement ideas which probably should be implemented.

I can send you a copy of the code if you like, but I don’t think it’s
very useful for others than myself at this point. :P

--
Best regards
Rune Hammersland

<ticket9122.sh>

Acknowledgement of the bug:

61

Finding weaknesses in web applications through the means of fuzzing

From: Jesse Vincent via RT <rt-bugs@bestpractical.com>
Subject: Re: [fsck.com #9122] Query error causing RT to hang
Date: 11. april 2008 15:13:35 GMT+02:00
To: rune.hammersland@hig.no

On Apr 11, 2008, at 8:54 AM, rune.hammersland@hig.no via RT wrote:
> On 9. april. 2008, at 18:43, Jesse Vincent via RT wrote:
> > Rune, I’m sorry for the delay in my reply. I greatly appreciate the
> > digging at this. Do you have a convenient wget/curl/whatever
> > invocation to post this stuff encoded correctly?
>
> See the attached shell script which uses curl. Edit the USER and PASS
> variables to enable it to log into your application. You might want
> to delete the cookie file after running it (as it hangs on the second
> curl command).

Perfect. Just almost took down my workstation with it ;)

> > Also, is the fuzz tester you use opensource? It sounds useful and
> > I’d love to add it to my toolkit
>
> I can send you a copy of the code if you like, but I don’t think it’s
> very useful for others than myself at this point. :P

I’m happy to wait, but consider me the first of an army of folks
demanding that you release it at the end, no matter the code quality ;)

The bug is not triggered in later versions of RT:

From: Ruslan U. Zakirov via RT <rt-bugs@bestpractical.com>
Subject: [fsck.com #9122] Query error causing RT to hang
Date: 10. june 2008 14:43:08 GMT+02:00
To: rune.hammersland@hig.no

On Fri Apr 11 09:13:34 2008, jesse wrote:
> On Apr 11, 2008, at 8:54 AM, rune.hammersland@hig.no via RT wrote:
>>
>> <URL: http://rt3.fsck.com//Ticket/Display.html?id=9122 >
>>
>> On 9. april. 2008, at 18:43, Jesse Vincent via RT wrote:
>>> Rune, I’m sorry for the delay in my reply. I greatly appreciate the
>>> digging at this. Do you have a convenient wget/curl/whatever
>>> invocation to post this stuff encoded correctly?
>>
>> See the attached shell script which uses curl. Edit the USER and PASS
>> variables to enable it to log into your application. You might want
>> to delete the cookie file after running it (as it hangs on the second
>> curl command).
>
> Perfect. Just almost took down my workstation with it ;)

On the latest 3.8 worked for me without big recursions, just showed an
error. Can you, guys, try to reproduce?

62

Finding weaknesses in web applications through the means of fuzzing

--
Regards, Ruslan.

But that doesn’t necessarily mean it’s fixed:

From: Alex Vandiver via RT <rt-bugs@bestpractical.com>
Subject: [fsck.com #9122] Query error causing RT to hang
Date: 12. juni 2008 21:59:16 GMT+02:00
To: rune.hammersland@hig.no

On Tue Jun 10 08:43:03 2008, ruz wrote:
> On the latest 3.8 worked for me without big recursions, just showed an
> error. Can you, guys, try to reproduce?

It’s still reproducable under 3.6 HEAD, but the same script doesn’t
cause 3.8 to explode. I suspect this is because some parameters got
renamed, and not because the underlying problem has been fixed.
- Alex

Finally, the bug is tracked down:

From: Alex Vandiver via RT <rt-bugs@bestpractical.com>
Subject: [fsck.com #9122] Query error causing RT to hang
Date: 12. juni 2008 23:34:58 GMT+02:00
To: rune.hammersland@hig.no

This bug is triggered by any code path that causes perl to die() when
the query parameters contain invalid UTF-8 bytes sequences. When the
die() happens, RT attempts to build a stack track using
Devel::StackTrace. Devel::StackTrace tries to inspect the arguments to
every subroutine call, which triggers rt.perl.org #41530. This, in
turn, throws an exception, which generates a stack trace, and so on.

One solution is for Mason to disable its error handler when it is
running, which will at least prevent reentrant loops like this one from
happening. I am unclear on the correct solution to the underlying
encoding bug.
- Alex

B.3 Mephisto
From: Rune Hammersland <rune.hammersland@gmail.com>
Date: Tue, 15 Apr 2008 06:08:59 -0700 (PDT)
Subject: FormatError in BlueCloth library

I don’t know if this is of any concern, but here goes:

Creating a badly formatted post with the markdown filter obviously
raises an exception. The problem is that it isn’t caught, and results
in an ugly stack trace the user shouldn’t need to see. Would it be
possible to catch this exception at some point and handle it
gracefully? Maybe returning to the edit page with a flash message
containing the message in the exception?

63

Finding weaknesses in web applications through the means of fuzzing

Most web browsers stores the content you typed into a form, so for
many users hitting the back button would suffice to get their text
back (or they could indeed get it from the parameters hash at the
bottom of the trace), but I remember the time when that was not the
case.

A simple example of input that will result in a BlueCloth::FormatError
is the following:

This is some ‘code

The exception message in this case would be:

Bad markdown format near "code": No "‘" found before end

PS: This was under Mephisto 0.7.3, but it seems the filters are
handled the same way in trunk (without having confirmed it).

--
Regards
Rune Hammersland

64

Fuzz testing of web applications
Rune Hammersland and Einar Snekkenes

Faculty of Computer Science and Media Technology
Gjøvik University College, Norway

email: firstname.lastnamehig.no

Abstract—The handling of input in web applications has many
times proven to be a hard task, and have time and time again
lead to weaknesses in the applications. In particular, due to the
dynamics of a web application, the generation of test data for
each new version of the application must be cheap and simple.
Furthermore, it is infeasible to carry out an exhaustive test of
possible inputs to the application. Thus, a certain subspace of
all possible tests must be selected. Leaving test data selection to
the programmers may be unwise, as programmers may only test
the input they know they can expect. In this paper, we describe
a method and tool for (semi) automatic generation of pseudo
random test data (fuzzing). Our test method and toolkit have
been applied to several popular open source products, and our
study shows that from the perspective of the human tester, our
approach to testing is quick, easy and effective. Using our method
and tool we have discovered problems and bugs with several of
the applications tested.

I. INTRODUCTION

Fuzzing is a technique developed by Barton P. Miller at
the University of Wisconsin in USA. He and his colleagues
have successfully used fuzzing to discover flaws in command
line tools for UNIX-like systems [1], command line tools and
GUI programs running under the X11 Window System [2],
as well as command line tools and GUI programs running on
Microsoft Windows [3] and Apple Mac OS X [4]. Using this
technique, they discovered that several programs didn’t handle
random key presses too well, many of them crashing. Many
of the problems were due to simple mistakes as neglecting
to check the return value of functions before using the result.
For a short introduction to fuzzing, you could read Sprundel’s
article from the 22nd Chaos Communication Congress [5].

While many papers have been written on fuzzing, they have
mainly focused on client software on the computer, and in
some cases, like Xiao et al. [6], on network protocols. What
seems to be missing is research on how web applications
can be tested randomly using fuzzing, and which flaws might
appear. Several papers, like [7], have suggested that user input
is a huge problem for web based applications, and especially
with regard to command injection attacks. There are some
tools available: Paros1, SPIKE2 and RFuzz3 to mention some.
The first two work by acting as an HTTP proxy which allows
you to modify POST or GET values passed to a web site. The
last one is more like a framework for fuzzing which enables
a programmer to programatically fuzz web sites.

1http://www.parosproxy.org/
2http://www.immunitysec.com/resources-freesoftware.shtml
3http://rfuzz.rubyforge.org/

With the ubiquitous blogs and user contributed websites that
exists in this Web 2.0 world, it would be interesting to find
out how robust the most used applications are. When handling
great amounts of user input, it is important that there is no way
that input can put the web application in an undefined state,
in other words: crashing it. Many programmers choose to use
a web framework to avoid having to handle these problems
themselves, and others make their own frameworks to simplify
things.

A. Contributions

We have looked at several high profile web applications
available for installation (we have not looked at hosted solu-
tions, such as YouTube, as testing other people’s production
systems would be unethical), and how they handle fuzz data
as input. We present a listing of flaws found in the web
applications tested in Section VI, and where possible we
include information on why the application failed, and how to
fix the mistake, similarly as what Miller et al. did in [4]. We
considered checking how these applications stand against SQL
injection attacks and cross site scripting attacks, but considered
this not directly related to the random testing technique we
know as “fuzzing”.

II. RELATED WORK

As Miller et al. [1], [2], [4] and Forrester and Miller [3]
already have stated, many applications are vulnerable to buffer
overflows and similar attacks. Many of these flaws are hard
for the programmer to spot, as they make the assumption
that a function cannot fail and hence they do not check the
returned value. Fuzzers can assist in these cases, as backed
up by Oehlert [8], who found several flaws in Microsoft’s
HyperTerm after using a fuzzer to provide semi-valid input
to the program. Microsoft’s “Trustworthy Computing Security
Development Lifecycle” [9] even states that “heavy emphasis
on fuzz testing is a relatively recent addition to the SDL, but
results to date are very encouraging.”

While writing about fuzzers in [10], Stuttard and Pinto
seems to expand the term fuzzer, by including other attack
methods like enumeration attacks. A true fuzzer should try
strictly random input, or a combination of valid and random
input. Enumeration attacks might be a better approach for
discovering vulnerabilities in web applications, but should not
be confused with fuzzing. Stuttard and Pinto also states that
analyzing results from web application vulnerability discovery
is hard, and manual work is often required.

A. Client Applications

Miller et al. tested command line programs on seven differ-
ent versions of UNIX [1], and managed to make upto a third
of the programs hang or crash (depending on which version
of UNIX they tested). When they redid the study in 1995 [2],
only 9% of the programs crashed or hung on a GNU/Linux
machine, while 43% of the programs had problems on a
NeXT machine. Results on fuzz testing X applications (38
applications) were published in the same study, showing that
26% of the X applications crashed when tested with random
legal input, and 58% crashed when given totally random input.

Bowers, Lie and Smethells redid the studies Miller et al.
did on UNIX command line programs in their study from
2001 [11]. To accomodate for the fact that some of the
programs originally tested had since become abandoned, they
changed some of the programs for newer alternatives, i.e.
replacing vim for vi. The study shows that the open source
community had taken notice of Miller’s study, and had indeed
improved the stability of many of the affected programs.

In Forrester and Miller’s study on Windows [3], 33 GUI
programs were tested on Windows NT 4.0, and 14 GUI
programs were tested on Windows 2000. In this study they
used the API to send random messages and “random valid
events”. Sending random messages to the running programs
caused more errors than sending valid random events. Ghosh
et al. also looked at the robustness of Windows NT software
using fuzzing [12]. They only tested 8 different programs,
but had a lot of different test cases where they found that
23.51% of the tests resulted in a program exiting abnormally
and 1.55% of the tests resulted in a program hanging.

The last study from Miller et al., conducted on Mac OS
[4], shows similar results to the best results from [2] when it
comes to command line programs. This comes as no surprise,
as many of the command line programs in Mac OS X are GNU
programs. The GUI applications on Mac OS had a worse fate.
Of 30 tested programs, 22 crashed or hung, yielding a 73%
failure rate.

A similar technique to fuzzing was used during the de-
velopment of the Macintosh 128k which was released in
1984. The developer team created a program they called The
Monkey [13] which used some APIs to send random events
to the operating system. This program was a great help in the
quest for bugs. Similarly there exists a program for modern
UNIXes called crashme which has been of great help for
developers of GNU/Linux in identifying rare cases where the
system would crash due to erroneous input. In a whitepaper
submitted to the “Black Hat USA 2007 Briefings and Training”
conference [14], Miller and Honoroff outlines several useful
utilities and tips for fuzzing software on Mac OS X.

B. Network Protocols and the Web

Banks et al. [15] points out that while many fuzzers exists
for fuzzing network traffic, like SPIKE [16] and PROTOS [17],
they don’t handle stateful protocols very well, and making
them do so might require more work than writing a new
framework altogether. Their creation — SNOOZE — lets the

Attack script:
setup("Appname") do
 @host = "localhost"
 @port = 80

...
end

Fuzz program HTTP
Client

Request

Response

Logs

Output

Input

Figure 1. An overview of the main components in the fuzzer and how they
interact. An attack script semi-generated by a crawler is fed to the fuzzer
which in turn translates the attacks to HTTP requests which is sent to the
target of the attack. The requests and their responses are then logged for
manual inspection.

user specify states and transitions for a protocol with default
values for the transitions. Using this information they can write
a script that creates fuzz values for some of the messages, and
thus they can control which point in the protocol state machine
they wish to attack, allowing them to discover bugs “hidden
deep in the implementation of [the] stateful protocol.”

Fuzzing has also proven effective in discovering vulnerabil-
ities in web browsers, and through this a means of exploiting
the Apple iPhone [18]. The infamous “Month of browser bugs”
article series also utilized fuzz testing in order to discover
vulnerabilities in the most commonly used web browsers [19].

C. Wireless Drivers

Testing of wireless drivers are very interesting in these days,
as wireless connectivity is becoming the standard for many
people. It is made even more important by the fact that wireless
drivers runs in kernel mode (at least on operating systems in
common use), and thus an exploit can get full access to the
computer, with the attacker only in proximity of the victim.
Butti and Tinnès stresses this fact in their paper on discovering
and exploiting wireless drivers [20], as well as the fact that
the wireless networks are weakening the security perimeter.

Mendonça and Neves has done some preliminary testing
of the wireless drivers in an HP iPAQ running the Windows
Mobile operating system [21]. Without having the source code
available, they started writing a fuzzing framework targeting
the wireless drivers on the device. By running a monitor
program on the device they have been able to find some
weaknesses while fuzz testing the driver. Butti and Tinnès
were successfull in discovering and exploiting the madwifi
driver running in the GNU/Linux kernel, as well as finding
several denial of service vulnerabilities in different wireless
access points. Some of the findings were included in the
Month of Kernel Bugs4 project and included as modules in
the Metasploit project5.

III. BUILDING A FUZZER

In this section we propose a method to build a fuzzer
suitable for fuzzing web applications. Our implementation

4http://projects.info-pull.com/mokb/
5http://metasploit.com/

is based on the RFuzz library for the Ruby programming
language, but could just as well have been based on Peach
or Sulley. An overview of how the parts are interconnected is
presented in Figure 1.

In order to specify how the applications should be attacked,
we have created a way of writing attack scripts for fuzzing
web applications. We specify global variables for the target,
like hostname and port, headers and cookies, and then we
specify “attack points” for the target. The attack points in a
web application are mainly web pages containing form(s) for
user input.

Utilizing a random number generator, we provide conve-
nience objects for usage in the attack scripts in the form of a
“fuzz token”. Each FuzzToken subclass implements a method
called fuzz. In this method it uses the random number
generator to generate random entities. The superclass also
implements a to_s method which calls the fuzz method
and returns the string representation of the result. Hence, the
tokens are evaluated every time the HTTP client creates a
request (as the request path and parameters ultimately needs
to be in string format).

In the attack points we specify which path should be
attacked, which (HTTP) method should be used (mainly GET
and POST) and which query options should be sent. The fuzz
tokens provided can be inserted as values for i.e. query options.
The following listing gives an example of an attack script.
The variables word and fix are fuzz tokens, and will yield a
different value each time their “to string” method is called. The
word token will give different words, the fix token will give
different “Fixnum”s (a 30-bit signed integer), and str(50)
gives different strings with a length of 50 characters.

setup "Webapp" do
@host = "10.0.0.2"
@port = 3000
@headers = "HTTP_ACCEPT_CHARSET" => "utf-8,*"

attack "search-box" do
many :get, "/search.php",

:query => {:q => str(50)}
many :get, "/search.php",

:query => {:q => fix}
end

attack "post-page" do
once :get, "/login.php", :query =>

{:user => :admin, :pass => :admin}
many :post, "/post.php", :query =>

{:title => word, :body => byte(50)}
end

end

When the fuzzer is fed this script, it creates a Target
object based on the contents. When the attack script sets a
value for @host, it overrides the default value set by the
initialization of the Target object. The attack method is
defined to take a name and a block of code as a parameter.
The code block is evaluated, and calls to once results in the
following request getting queued once in the request queue.
Calls to many results in the following request getting queued
@repetitions times in the request queue. The number of

repetitions is initially set to 50, but can be changed through
the script.

Creating these attack scripts by hand is easy, but tedious
work. We created a crawler based on Hawler6 which outputs
some generic information about the target (the setup-part)
when it starts. Then it starts traversing the site breadth-first
from the starting URI (which is given on the command line),
and calls a callback function we created based on the Hpricot7

library. The callback identifies the forms in the response, and
filters out the interesting fields, creating one attack block
per form. Finally, when the whole site is traversed, the crawler
outputs the end section. By calling this script and redirecting
the output to a file, we get a good starting point for writing
an attack script.

We did have some problems with the crawler. While you
can pass headers which it uses in each request, it is not straight
forward to define pages it should abandon. This results in a
problem when you add a cookie to the headers in order to
“log in” to the admin panel and scrape these pages. The first
couple of pages are usually parsed OK, but when it reaches
the link that logs out of the admin panel, the rest of the URIs
pointing within that password protected space will no longer
be available.

In order to supply fuzz data as input to an application, we
need to include a simple HTTP client. This client will be
used to send input to the application, and return the resultant
response to our fuzz program. The functionality we need from
an HTTP client is the following:

1) Easy interface for creating GET and POST requests.
2) Possibility to read headers in the response.
3) Possibility to add or modify headers in the request.
4) Handling of cookies. This isn’t strictly necessary, as it

could be implemented through access to headers.

Lastly we have a class called Fuzzer, which is responsible
for tying the components together in order to mount the attack.
The Fuzzer is initialized with a Target, and creates a directory
for logfiles along with a logger for the current session. Before
starting the attack, the fuzz tokens found in the request queue
of the target is evaluated. Recall that all we need to do to
evaluate the tokens is to ask for a string representation, so
mapping the to s method on all elements in the request queue
does the trick.

After evaluating the tokens, the fuzzer starts firing requests
based on the information in the request queue. Using the
logger, it logs requests about to be made, and the responses
when they arrive. If the method used for the current request
is POST, it adds the correct content type header, and puts an
urlencoded version of the query in the request body, as per
Section 17.13.4.1 of the HTML 4.01 specification [22]. If the
method is GET, the query is passed as a part of the URI. For
more on urlencoding, please refer to RFC 1738 [23], and the
newer RFC 3986 [24].

6http://spoofed.org/files/hawler/
7http://code.whytheluckystiff.net/hpricot/

Having prepared the request, it uses the HTTP client to send
it to the host. When the response is received, it records the
status code and request timings, and logs a serialized version of
the request and response. When all requests have been made,
it creates one CSV file containing the recorded number of
different status codes, and one CSV file containing statistics
on the request timings.

IV. USING THE FUZZER

This section describes how to use the fuzzer as it stands at
this point.

A. Set up Target

First, you need to set up the target you will be testing. This
involves installing a web application on a test server, and will
in many cases be a trivial job. Most open source applications
come with a file called INSTALL which gives detailed install
instructions. Many PHP applications also feature a web-based
installer, which takes notice if it hasn’t been set up properly
and guides you through the steps to making it work (like i.e.
Wordpress).

B. Creating the Attack Script

After setting up the application, you need to tell the fuzzer
where it can send it’s requests, and which parameters it can
send. This can be done in many ways, but here we will
describe the actions taken in this study. We did this in two
steps.

First we used our crawler to crawl the web pages of
the target application. The details of this has already been
explained in Section III. Having crawled the site, the attack
script had to be manually adjusted. The arguments to the
request had to be filled in properly, as the crawler only passed
the values which were suggested on the web page. As an
example, consider the following: the crawler encounters a web
page with a form looking like this:

<form action="/search" method="post">
<input type="text" name="q" value="Search"/>
<input type="submit" />

</form>

The entire document is passed to the form scraping function,
but only the form is relevant here. The crawler would then
output a section looking like this:

attack("/Welcome_to_Junebug") do
many :post, "/search", {"q" => "Search"}

end

From the output we can see that on the page with URI
/Welcome_to_Junebug, the crawler found a form that
submits to the URI /search and which has a single input
field with the name of q and a default value of “Search”.
Going through the output of the crawler later on, we might
change it to something looking like this:

attack("Search box") do
many :post, "/search", {:q => str(100)}
many :post, "/search", {:q => byte(100)}
many :post, "/search", {:q => big}

end

When we now choose to run the fuzzer, it will attack the
search box in the following way:

1) Send “many” HTTP POST requests to /search, with
the parameter q set to a random string of length 100.

2) Send “many” HTTP POST requests to /search, with
the parameter q set to a random byte sequence of length
100.

3) Send “many” HTTP POST requests to /search, with
the parameter q set to a random big number.

While the manual labour might sound tedious and boring
(and it is), we deemed it sufficient for our initial testing. We
have proposed ways to improve this part in Section VII.

C. Running the Fuzzer

Having created and tweaked the attack script, run-
ning the fuzzer is as easy as starting the applica-
tion with the script as the argument: ruby fuzz.rb
targets/my_attack_script.rb. While the fuzzer
runs it will only output some information on the progress to
the screen. However if you run tail -f on the log file, you
can see a more verbose transcript of what’s happening. The log
file is created in output/TARGET-NAME/, where TARGET-
NAME is the name specified after setup. The log file is
named with the timestamp of the invocation of the fuzzer.

When the fuzzer is done, the log directory will contain the
following files: A comma separated file containing the counts
of various HTTP status codes (and exceptions thrown); A
comma separated file containing statistics about the timings.
Average, max, min times of the requests etc.; A file contain-
ing the event log; A serialized version of the requests and
responses.

D. Analyzing the Results

Analyzing the results is hard to automate, since there are
various ways to look at the data to determine what can be
considered an erroneous response. However, we recommend
starting by looking at the responses where the status code is in
the 500 range. By looking at Section 10.4 of RFC 2616 [25],
we see that the status codes in the 400 range are reserved for
client errors which indicate that the fault is that of the client
(usually the user or browser). Its Section 10.5 tells us that
status codes in the 500 range are reserved for server errors, and
“indicate cases in which the server is aware that it has erred
or is incapable of performing the request.” This is also one
of the methods Stuttard and Pinto suggests using [10]. In an
ideal world, we should thus be certain that if a fuzzed request
resulted in a status code in the 500 range, we discovered a flaw
in the application or web server. Looking at other sections we
can also see that a status code 200 means success and that
status codes in the 300 range is used for redirection.

We wrote a simple GUI to help filtering responses and show
us the headers and response body to make this task even easier.
Some of the applications will throw a stack trace at the user
(maybe depending on running it in development or production

Table I
THE COMPUTERS

Web server Attack Machine
Brand Cinet Smartstation 200 Apple iBook G4
CPU Pentium III, 870 MHz PPC G4, 1.33 GHz
RAM 377 MB 1.5 GB
Operating System Debian GNU/Linux 4.0 Mac OS X 10.5

mode) while others will state that an error has occurred and
that more is to be found in the server logs. Combining the stack
trace with the source code often provides what you need to
find the wrong assumptions made by the developers.

By looking at the CSV file containing counts of status
codes, you should also be able to see if exceptions are raised.
As an example, seeing ErrnoECONNREFUSED means that
a connection to the web server could not be made. If this
occurs after a seemingly OK request, it might mean that one
of the previous requests managed to halt the web server. In
that case you should check the log to find out which requests
have no response. Using the CSV file you can also graph the
status codes the requests generated, and using the CSV file
containing timings you can plot the request timings of the
runs.

V. EXPERIMENT

This section explains how we conducted our experiment.
Section V-A describes the environment in which the project
took place, and gives a list of computers and software used,
and Section V-B gives a brief overview of the applications we
tested.

A. Environment

The tests have been conducted on two machines, one web
server and one attack machine (see Table I). The following
software has been used on the server (the version numbers
match the ones in Debian 4.0 at the time of writing): Apache
2.2.3, PHP 5.2.0-8+etch10, MySQL 5.0.32, Ruby 1.8.5 and
Perl 5.8.8. On the attack machine the following software has
been used: Ruby 1.8.6, RFuzz 0.9, Hawler 0.1 and Hpricot
0.6.

While testing, the machines were connected through a
network cable, using an ad-hoc network with only the attacker
and the server present. This way we remove the possibility of
other computers interfering with our test environment, without
having to set up a dedicated test lab. The server had a monitor
and keyboard connected, so by running the tail command
on the log files, we could inspect what was going on on the
server while running the attack script on the attack machine.

B. Applications tested

The following is a list of the applications we have tested
during the writing of this thesis. Descriptions are taken from
the project pages of the respective application.

• Chyrp 1.0.3 – “a [lightweight] blogging engine, [. . .]
driven by PHP and MySQL.”

• eZ Publish 4.0.0-gpl “an Enterprise Content Management
platform” using PHP and MySQL.

• Junebug 0.0.37 – “a minimalist wiki, running on Camp-
ing.”

• Mephisto 0.7.3 – “a [. . .] web publishing system [using
Ruby on Rails].”

• ozimodo 1.2.1 – “a Ruby on Rails powered tumblelog.”
• Request Tracker 3.6 – “an enterprise-grade ticketing

system” written in Perl.
• Sciret 1.2.0-SVN-554 – “an advanced knowledge based

system” using PHP and MySQL.
• Wordpress 2.3.2 – “a state-of-the-art semantic personal

publishing platform” using PHP and MySQL.

VI. FINDINGS

This section contains an overview of the discoveries we
made during validation of our fuzzing tool.

a) Failure to check return values: We saw that Mephisto
failed to handle an exception that was raised in a third part
library used for formatting the user input, which in the earlier
days of web browsers could mean that all text the user typed in
was lost. A simple formatting error should be caught by the
application and not result in showing the user a stack trace
they usually don’t understand. The programming language
used, Ruby, is a dynamic language, and doesn’t enforce the
programmer to catch an exception or explicitly state that the
exception could be thrown as in, say, Java. This might be
the reason why these mistakes are easier to make in dynamic
languages that enables rapid prototyping.

b) No server side validation of input: It is our belief
that user data should be sanitized before being allowed to
propagate through the code. You can never trust a user to enter
legitimate values, even if the possible values are “limited” by
a dropdown box. As we have seen it is easy to bypass these
restrictions. Similarly, using JavaScript to validate user input
should only be considered a convenience for the user — not a
security measure. Knowing how easy it is to disable JavaScript
support in a web browser, we should always enforce the same
checks server side as we hope to achieve at the client side.

We found an example where Mephisto assumed that the
user would not enter other values than the ones provided by a
dropdown box. Failure to do so would result in an uncaught
exception. While this is a bad example, it still shows that
assumptions not always are correct. Also: a problem with
passing user input more or less unchecked to a filter (as was
done in the example mentioned earlier), is that an attacker can
target a vulnerability in the third party filter in stead of the
webapp itself, leading to an extended attack surface.

c) Incorrect use of HTTP status codes: While this is not
really a security related bug, it is a violation of the semantics
described in the HTTP protocol (RFC 2616 [25]). The biggest
problem for us is that it makes automating the analysis harder,
as we cannot rely on HTTP status codes to tell us how the
web server and/or application perceives the error. As we stated
in Section IV-D, we should, by the semantics of HTTP 1.1,
be able to assert that a status code in the 500 range indicates

problems on the server. Not, as was the case with Wordpress,
that the application has correctly identified that the problem
originates from the user.

d) Resource exhaustion: This type of bug usually mani-
fests itself by causing increased response times a nd possibly
no response at all. This can be caused e.g. by non-terminating
recursion and infinite loops. In RT, we discovered what seems
to be a non-terminating recursion, resulting in high c pu
consumption and a memory leak, followed by a forced process
termination.

VII. CONCLUSION AND FUTURE WORK

The tests we have been running are not comprehensive
enough to give us a basis for making bold statements about the
quality of the applications we have tested. However, we believe
the results we found is a good indication that fuzz testing
indeed can be used in combination with web applications. By
running relatively few tests we managed to discover several
bugs, and some potential bugs which were not investigated
fully.

The biggest hurdle with fuzzing web applications is to find a
good way of analyzing the results. For our purposes, checking
the responses with status 500 was good enough, but for bigger
result sets, other techniques might be more appropriate, like
checking for certain strings in the response body (as i.e.
Stuttard and Pinto does [10]).

Our work shows that some web applications indeed are
vulnerable to fuzzing. Not only new and fragile applications,
but also “tested and true” applications, as well as applications
which has been developed with a focus on unit testing.

Proposals for future work includes:
• Using a similar approach for fuzzing web services. By

parsing a WSDL file, you could automate attack script
creation.

• Add “blacklisting” of pages to the crawler to avoid
logging out from administrative pages.

• Make the fuzzer pick a random fuzz token for all fields
with a value of “nil”, and let this be the standard value
generated by the crawler. This approach is similar to [20].

• Combine the crawler and fuzzer. This could make fuzzing
a one-pass or two-pass job: Either crawl a page and store
links, fuzz entry points on the current page, and move
on; or crawl the application, log entry points and invoke
the fuzzer when done crawling.

• Fuzzing file uploads might be an area worth looking into.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
p. 22, Dec. 1990.

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarjan,
and J. Steidl, “Fuzz revisited: A re-examination of the reliability of unix
utilities and services,” Computer Sciences Technical Report, vol. 1268,
p. 23, Apr. 1995.

[3] J. E. Forrester and B. P. Miller, “An empirical study of the robustness
of windows nt applications using random testing,” Proceedings of the
4th conference on USENIX Windows Systems Symposium - Volume 4
WSS’00, p. 10, Aug. 2000.

[4] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the
robustness of macos applications using random testing,” Proceedings of
the 1st international workshop on Random testing RT ’06, p. 9, Jul.
2006.

[5] I. van Sprundel, “Fuzzing: Breaking software in an automated fashion,”
22nd Chaos Communication Congress (http://events.ccc.de/congress/
2005/fahrplan/attachments/582-paper fuzzing.pdf), 2005.

[6] S. Xiao, L. Deng, S. Li, and X. Wang, “Integrated tcp/ip protocol soft-
ware testing for vulnerability detection,” Computer Networks and Mobile
Computing, 2003. ICCNMC 2003. 2003 International Conference on,
pp. 311–319, 2003.

[7] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
New York, NY, USA: ACM Press, 2006, pp. 372–382.

[8] P. Oehlert, “Violating assumptions with fuzzing,” Security & Privacy
Magazine, IEEE, vol. 3, no. 2, pp. 58–62, 2005.

[9] S. Lipner, “The trustworthy computing security development lifecycle,”
in ACSAC ’04: Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 2–13.

[10] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws. Wiley, 2007.

[11] B. L. Bowers, K. Lie, and G. J. Smethells, “An inquiry into
the stability and reliability of unix utilities,” http://pages.cs.wisc.
edu/∼blbowers/fuzz-2001.pdf, visited 2007-10-05. [Online]. Available:
http://pages.cs.wisc.edu/∼blbowers/fuzz-2001.pdf

[12] A. K. Ghosh, V. Shah, and M. Schmid, “An approach for analyzing
the robustness of windows NT software,” in Proc. 21st NIST-NCSC
National Information Systems Security Conference, 1998, pp. 383–391.
[Online]. Available: citeseer.ist.psu.edu/ghosh98approach.html

[13] A. Hertzfeld, Revolution in The Valley: The Insanely Great Story of
How the Mac Was Made, 1st ed. O’Reilly Media Inc., dec 2004, pp.
184–186. [Online]. Available: http://folklore.org/StoryView.py?project=
Macintosh&story=Monkey Lives.txt

[14] C. Miller and J. Honoroff, “Hacking leopard: Tools and techniques for
attacking the newest mac os x,” https://www.blackhat.com/presentations/
bh-usa-07/Miller/Whitepaper/bh-usa-07-miller-WP.pdf, jun 2007.

[15] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “Snooze: Toward a stateful network protocol fuzzer,” Infor-
mation Security, pp. 343–358, 2006.

[16] D. Aitel, “The advantages of block-based protocol analysis for security
testing,” Immunity Inc., Tech. Rep., 2003.

[17] R. Kaksonen, “Software security assessment through specification mu-
tations and fault injection,” Communications and Multimedia Security
Issues of the New Century, 2001.

[18] C. Miller, J. Honoroff, and J. Mason, “Security evaluation of ap-
ple’s iphone,” http://securityevaluators.com/iphone/exploitingiphone.pdf,
2007.

[19] S. Granneman, “A month of browser bugs,” http://www.securityfocus.
com/columnists/411, jul 2006.

[20] L. Butti and J. Tinnès, “Discovering and exploiting 802.11 wireless
driver vulnerabilities,” Journal in Computer Virology, 2007. [Online].
Available: http://dx.doi.org/10.1007/s11416-007-0065-x

[21] M. Mendonça and N. F. Neves, “Fuzzing wi-fi drivers to locate security
vulnerabilities,” High Assurance Systems Engineering Symposium, 2007.
HASE ’07. 10th IEEE, pp. 379–380, 14-16 Nov. 2007.

[22] D. Raggett, A. L. Hors, and I. Jacobs, “Html 4.01 specification,” http:
//www.w3.org/TR/REC-html40/, dec 1999.

[23] T. Berners-Lee, L. Masinter, and M. McCahill, “Rfc 1738: Uniform
resource locators (url),” http://www.ietf.org/rfc/rfc1738.txt, dec 1994.

[24] T. Berners-Lee, R. Fielding, and L. Masinter, “Rfc 3986: Uniform re-
source identifier (uri): Generic syntax,” http://www.ietf.org/rfc/rfc3986.
txt, feb 2005.

[25] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616: Hypertext transfer protocol – http/1.1,”
http://www.ietf.org/rfc/rfc2616.txt, jun 1999.

[26] D. Berube, Practical Ruby Gems. Apress, 2007, ch. Easy Text Markup
with the BlueCloth Gem, pp. 45–51.

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Code Examples
	Introduction
	Topic Covered by the Thesis
	Keywords
	Problem Description
	Justification, Motivation and Benefits
	Research Questions
	Research Method
	Summary of Contributions

	Related Work
	Testing
	Techniques Suitable for Dynamic Testing

	Fuzzing
	Command Line Applications
	GUI Applications
	Programming Libraries
	Network Protocols and the Web
	Wireless Drivers
	Existing Tools Suitable for Fuzzing Web Applications

	The Anatomy of a Web Application
	A Collection of Pages
	Getting a Page
	Sending Input to the Application
	HTTP Status Codes
	A Side Note on Redirection

	Method for Fuzzing Web Applications
	Building a Fuzzer
	Creating Attack Scripts for Webapp Fuzzing
	Random Number Generator
	HTTP Client
	The Fuzzer --- Tying it all Together

	Using the Fuzzer
	Set up Target
	Creating the Attack Script
	Running the Fuzzer
	Aftermath: Analyzing the Results

	Experiment
	Environment
	Applications Tested
	Outcome
	No Server Side Validation of Input
	Incorrect Use of HTTP Status Codes
	Failure to Handle Exceptions
	Resource Exhaustion

	Contributions
	Method for Fuzzing
	Toolchain for Fuzzing Web Applications
	Types of Bugs Found

	Discussion
	Completeness of our Method
	Comparability of Results
	Programming Practices
	Comparison

	Future Work
	Conclusions
	Bibliography
	More Information About the Webapps Tested
	Source Lines of Code

	Bug Reports
	Wordpress
	Request Tracker
	Mephisto

	Article Version of the Thesis

