
The use of Levenshtein
distance in computer

forensics

Bjarne Mangnes

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology

Gjøvik University College, 2005

Institutt for
informatikk og medieteknikk
Høgskolen i Gjøvik
Postboks 191
2802 Gjøvik

Department of Computer Science
and Media Technology
Gjøvik University College
Box 191
N-2802 Gjøvik
Norway

The MSc programme in Information Security
is run in cooperation with the Royal Institute
of Technology (KTH) in Stockholm.

MSc thesis - The use of Levenshtein distance in computer forensics

Abstract

Computer technology is gaining widespread use, and is becoming an increasingly impor-
tant factor in our everyday lives. This technology opens up new possibilities, but may
also be used as a tool of crime. To counter this, computer forensics professionals analyse
data in memory and hard drives for clues and evidence of such criminal activities. This
work has previously included a significant amount of manual labour, where a computer
forensics investigator manually inspected the data. As technology progresses, however,
these investigators are faced with a steadily increasing amount of data to process, while
available time for investigations remains relatively constant. This may result in less tho-
rough searches, in order to meet a strict deadline, with possible loss of evidence as a
result.

In this thesis a closer look into the problem of handling the increasing data amounts
present in modern computer systems in a computer forensics context has been taken.
We further suggest an alternative way to process large amounts of raw data, with the
use of an approximate search algorithm to help focusing on interesting areas of a digital
media. These areas may then subsequently be searched and inspected by more precise
algorithms in order to pin-point digital evidence more efficiently.

iii

MSc thesis - The use of Levenshtein distance in computer forensics

Sammendrag

Vi benytter oss av datateknologi i stadig størrre grad, og denne teknologien er i ferd med
å bli en viktig del av vår hverdag. Bruk av denne teknologien åpner opp mange nye mu-
ligheter, men kan også misbrukes til å begå kriminelle handlinger. I slike sammenhenger
benyttes dataetterforskere for å undersøke data og aktuelle digitale medier etter spor og
bevis på slike handlinger. Etterforskningsarbeidet har tradisjonelt sett i stor grad vært
basert på en stor grad av manuelle operasjoner der dataetterforskeren selv har inspisert
dataene. Etterhvert som teknologien videreutvikles, møter man imidlertid stadig større
datamengder som må behandles, mens tilgjengelig tid for å etterforske en sak i stor grad
er konstant. Dette kan i sin tur føre til at søkene etter bevis blir mindre grundige, med
mulig tap av bevis som resultat.

I denne oppgaven ses det nærmere på problemet rundt håndtering av de store da-
tamengder som finnes i dagens systemer, sett i en dataetterforsknings-kontekst. Videre
forslås en metode der en omtrentlig søkealgoritme benyttes til å fokusere på interessante
deler av et digitalt medie eller disk. Som et resultat kan disse områdene undersøkes nær-
mere av mer presise algoritmer, og på denne måten lokalisere digitale bevis på en mer
effektiv måte.

v

MSc thesis - The use of Levenshtein distance in computer forensics

Acknowledgements

Several people have made various contributions to the work resulting in this thesis, and I
would like to use this opportunity to thank them all for their help and assistance throug-
hout the process. In particular I would like to thank my supervisor Prof. Slobodan Petro-
vić for providing invaluable comments, ideas, advice and guidance during the creation
of the thesis. I would also like to thank my fellow student Tom Fladsrud for proving
comments and feedback, as well as sharing his Java wizardry in times of need. Further
I also wish to thank Gjøvik University College for providing necessary hardware during
the experiments. Your help has been greatly appreciated.

vii

MSc thesis - The use of Levenshtein distance in computer forensics

Contents

Abstract . iii

Sammendrag . v

Acknowledgements . vii

Contents . ix

List of Figures . xiii

List of Tables . xv

1 Introduction . 1

1.1 Topic covered by this thesis . 1

1.2 Need for the study . 1

1.3 Justification, motivation and benefits . 2

1.4 Research questions . 2

1.5 Summary of claimed contributions . 3

1.6 Choice of methods . 3

2 Existing theory . 5

2.1 The field of computer forensics . 5

2.1.1 Digital evidence in general . 6

2.1.2 Differences between traditional and digital evidence 7

2.1.3 Reliability of digital evidence . 8

2.1.4 How are data stored on a hard drive 9

2.1.5 Residual data . 10

2.1.6 Interpretation and abstraction layers 12

2.1.7 Current problems in computer forensics 13

2.1.8 The quantity problem - handling large data sets 13

2.2 Locating data in large data sets . 15

2.2.1 Data Mining . 15

2.2.2 Classical retrieval taxonomies . 16

2.2.3 Boolean Model . 16

2.2.4 Vector Model . 17

2.2.5 The probabilistic model . 18

2.3 Methods for searching . 19

2.3.1 Indexed search . 19

ix

MSc thesis - The use of Levenshtein distance in computer forensics

2.3.2 Inverted files . 19

2.3.3 Suffix trees . 21

2.3.4 Signature files . 21

2.3.5 Document pre-processing . 22

2.3.6 Lexical analysis . 22

2.3.7 Stemming . 23

2.3.8 Eliminating stopwords . 23

2.3.9 Thesauri . 23

2.3.10 Text pre-processing in computer forensics 24

2.4 On-line searching . 25

2.4.1 Pattern matching algorithms . 25

2.4.2 Approximate pattern matching . 26

2.4.3 Regular expresisons . 27

2.5 Data reduction methods . 28

2.5.1 Known file filtering . 28

2.5.2 Data aggregation . 29

2.6 Commercial solutions . 30

2.7 Applications of Levenshtein distance . 31

3 Levenshtein distance in computer forensics 33

3.0.1 Choice of algorithm . 33

3.1 The Levenshtein distance algorithm . 34

3.1.1 Using Levenshtein in computer forensics searches 35

3.2 Our approach . 37

3.2.1 Choosing abstraction level . 38

3.2.2 Selecting the buffer size . 39

3.2.3 Program Functionality . 39

3.2.4 Search using edit distance . 40

3.2.5 Exhaustive search . 40

3.2.6 Implementation . 41

3.2.7 The use of indexed search . 41

4 Experimental work . 43

4.1 Purpose of the experiment . 43

4.2 Procedure . 43

4.2.1 Method used . 43

4.2.2 Test environment . 45

4.2.3 Data set . 45

x

MSc thesis - The use of Levenshtein distance in computer forensics

4.3 Results . 46

4.3.1 Initial test . 46

4.3.2 Performance effects of buffer lengths 48

4.3.3 Workload effects of search query length 49

4.3.4 Data reduction using short query lengths 51

4.3.5 Approximate search . 53

4.3.6 Performance effect of program options 54

4.3.7 Testing validity and reliability . 56

5 Discussion . 59

5.1 Data reduction capabilities . 59

5.1.1 Buffer length . 59

5.1.2 Query length . 60

5.2 Performance . 61

5.2.1 Approximate search . 62

5.3 Real world feasibility . 62

6 Conclusion . 65

7 Further Work . 67

Bibliography . 69

Appendix A - Main program classes . 75

Appendix B - DFTT validation tests . 77

Appendix C - Edit distance core algorithm . 81

Appendix D - Dataset generation . 83

xi

MSc thesis - The use of Levenshtein distance in computer forensics

List of Figures

1 FAT-file system overview . 9

2 File entry in the file allocation table . 10

3 File Slack . 11

4 Abstraction function . 12

5 Boolean model . 17

6 Document similarity in the vector model 18

7 Inverted files . 20

8 Suffix tree . 21

9 Signature file example . 22

10 Sorted edit distance score . 36

11 Fragment correlation using Levenshtein distance 37

12 Overall system architecture of our approach 38

13 Program overview . 42

14 Design Research overview . 44

15 Edit Distance and Exhaustive search comparison 47

16 Exhaustive search compared to Edit distance combination 47

17 Data reduction rates at different buffer lengths 48

18 Time consumption with varying buffer length 50

19 Data reduction with varying query length 50

20 Time consumption for calculating edit distance with various query lengths 51

21 Time consumption for precise searching with edit distance 52

22 Data reduction using a two byte query . 53

23 Performance with different buffer sizes . 53

24 Digram frequencies in English text . 54

25 Digram data reduction rate . 54

26 Digram search time using Distance and KMP 55

27 Screenshot from the application . 55

28 Resulting table for approximate searching 56

29 Performance with different program options 56

30 Search query time variation . 57

31 Byte distribution in data set . 57

xiii

MSc thesis - The use of Levenshtein distance in computer forensics

List of Tables

1 Levenshtein distance, dynamic programming approach 35

2 Exhaustive search . 48

3 Numeric results from searches with varying buffer sizes 49

4 Time consumption with different buffer sizes 49

5 Performance effect of query reduction . 52

6 Digital Forensics Tool Testing Dataset1, EXT3 77

7 Digital Forensics Tool Testing Dataset1, NTFS 78

8 Digital Forensics Tool Testing Dataset1, FATS 79

xv

MSc thesis - The use of Levenshtein distance in computer forensics

1 Introduction

1.1 Topic covered by this thesis

When investigating crimes in which computers play a role it is of great importance that
any possible evidence located on the digital media involved is found. If the investigation
fails in this respect, the result may be a strengthened case for the person charged with an
offence, even though evidence of the contrary exists. Even if no such evidence exists, the
investigation needs to be able to trust that the forensic tools find what evidence there is
to be found. In this thesis we focus on the set of problems that a computer investigator
faces when searching for specific keywords in a large dataset with raw data in order to
locate digital evidence. We look at a possible way to reduce the overall workload when
searching a raw dataset by using an algorithm called edit-distance or Levenshtein dis-
tance [1], implementing this algorithm in a search tool to see how it performs against an
exhaustive search algorithm. We further exemplify the use of the algorithm, by showing
that it may be used to search for Unicode encoded text in raw data, and study the ap-
proximate string searching capabilities of the algorithm. The main topics covered in this
thesis evolve around computer forensics, search algorithms and the problems associated
with data mining and raw data searches.

Keywords: Computer forensics, edit distance, Levenshtein distance, searching, data mi-
ning.

1.2 Need for the study

In a typical computer investigation, a computer system that contains possible evidence
is bitwise copied to a disk-image set that is to be searched for evidence at a later stage.
Traditionally, the copied disk-image would then be inspected by the investigator by both
manual inspection, looking at and browsing through both existing and deleted files, and
automated searches for specific phrases or key words in order to locate some electronic
record of illegal activities or digital evidence. Such digital evidence could be everything
from a mail indicating embezzlement or industrial espionage, to a deleted document or
chat logs documenting plans for terrorist acts or blackmail. As technology evolves, and
the need for storage space results in ever larger hard drives, the overall size of com-
puter systems increases accordingly. This increased system footprint also results in an
increased workload associated with searching a system for digital evidence. A modern
system often consists of numerous gigabytes of data, with server systems often totalling
in quantities of data whose order of magnitude may be several terabytes. As an illustra-
tion of the enormous data quantities in modern systems, if printed out on A4 paper, a
40 GB data set would result in a stack of paper more than 1300 metres high. With these
amounts of data to process, modern systems far exceed what is possible to inspect by
hand, and investigators have to rely upon investigative tools to do their searches. These
tools vary from simple open source utilities like ’grep’ to large and expensive commercial

1

MSc thesis - The use of Levenshtein distance in computer forensics

software packages like Encase[2] or Forensic Toolkit [3]. With often just a matter of days
or a few weeks to investigate a case, efficient searching is essential. Processing a dataset
may take days or even weeks of searching depending on the size of the dataset, reducing
the available time for further analysis. As a consequence, it has been suggested that full
scale forensic investigations should be dropped, and that the search for evidence should
be halted as soon as evidence is located [4], possibly missing evidence to the contrary.
Reducing the extent of the investigative work may reduce the overall quality of the in-
vestigation, and is not an ideal option. Further, digital evidence are volatile and may exist
in a wide range of forms, including existing and deleted files, data areas marked as free
and as fragments of data blocks. And in order to locate all existing evidence, a full raw
data search is often necessary. As a consequence, finding methods of performing more
efficient searches in order to locate evidence would therefore be of great interest.

1.3 Justification, motivation and benefits

The rise in e-commerce, usage of computers and the number of people connected to the
Internet has led to a large growth in computer related crime. Both at the national and
international level, computer crime has been identified as a major problem and has led
to newly proposed legislation, amongst others by the European Council in Convention on
Cybercrime [5]. To enforce such legislation there is a great need for thorough and accu-
rate computer forensics work and results. Giving the forensics investigators better aids to
locate electronic evidence and perform a more thorough job should in turn contribute to
improving the overall quality and value of their work. By having more efficient tools in
the process of convicting the guilty and acquitting the wrongly accused, it is possible to
create a more effective legislation. By rising the chances for getting caught and convicted
if committing a crime, the stakes will be higher for a perpetrator and thus his willingness
to attack will be reduced, leading to a decrease in cyber crime and security incidents.
The main stakeholders in this project would be the computer forensics investigators, as
they would benefit from better work tools, and it would make them able to put a greater
amount of trust in the foundation of their work. The secondary benefits follow from the
improved effectiveness of law enforcement, which would benefit both prosecutors and
defence counsels, and thereby society as a whole.

1.4 Research questions

In order to survey and suggest improvements of current methods for searching and loca-
ting evidence in a computer forensics investigation, the following questions need to be
answered:

• What are currently the biggest obstacles to performing a thorough computer forensics
investigation?

• What are the deficiencies of current methods used for locating electronic evidence in
large datasets?

• What possible methods exist to reduce the amount of data to be searched, and how

2

MSc thesis - The use of Levenshtein distance in computer forensics

may a method be developed for improving these?

• How may current techniques for locating evidence in raw data be improved?

1.5 Summary of claimed contributions

The primary goal of this thesis is to research the problems dealing with processing and
searching of large amounts of raw data in a computer forensics context, and to suggest
improvements of current search techniques. More precisely our contribution consists of
looking at the suitability of the Levenshtein distance algorithm as a way of reducing
overall workload for raw data searches. This is achieved by focusing the searches to inte-
resting parts of a digital media, based on a search query. The result is an implementation
of the Levenshtein distance algorithm in a search tool that assists in limiting the need for
exact searching to areas of a digital media that contains a match to a search query. As an
example of the usage of this search tool, we further show how this search tool may be
used to locate and recognize Unicode encoded raw data.

1.6 Choice of methods

In order to answer the stated research questions, a research methodology must be establis-
hed. This will provide the necessary structure, and help to produce correct, valid and
repeatable results. In [6] Creswell classifies research methods as being quantitative, qua-
litative or consisting of a mixed method approach.

According to Creswell, a quantitative method makes use of cause and effect thinking
and hypotheses, (postpositivist claims) in order to gain knowledge. The problem is of-
ten reduced to specific variables that may be observed and measured, often resulting
in statistical data. A qualitative approach, is defined by Creswell as the one where the
inquirer often makes use of knowledge claims based on multiple meanings of personal
experiences, or socially and historically constructed (constructivist) perspectives. The in-
tent of this approach is often to develop a theory or pattern. The qualitative method
may also make use of an advocacy or participatory perspective or both. Research using
a qualitative method typically ends up with open-ended, emerging data as a result. Ty-
pical strategies of inquiry for a qualitative research method are the use of narratives,
ethnographies and case studies. A mixed method approach is defined as the one where
the researcher usually bases knowledge claims on more problem-centered, consequence
oriented or pluralistic grounds, collecting data either in parallel or in a sequential order
to get the best understanding of the problem, and collecting both numerical and text
data.

To answer the research questions put forward in this thesis, it is necessary to use ele-
ments of both quantitative and qualitative methods. In order to find out to what extent
the Levenshtein algorithm is appropriate for use as a search algorithm in a forensic raw
data set, an experiment /case study seems to be the most appropriate research method.
By implementing the algorithm and measuring the results, we should be able to say
something about how it performs and to whether the algorithm would be a useful im-
provement of current deficiencies or not. In order to do this, a test set will have to be
established in order to validate the application against a known data, and the time con-

3

MSc thesis - The use of Levenshtein distance in computer forensics

sumption will be measured in order to evaluate the results. A mixed method approach
seems most appropriate for solving this. Any available statistics and numeric data on the
studied subjects will be of great value, as well as written material and whitepapers from
vendors of forensic tools. Computer forensics is constantly evolving, so finding and uti-
lizing up to date sources will be of great value. Using a literature study will contribute
to solve these questions and will give insight to how current solutions work as well as
their deficiencies. Additionally a literature survey should help in providing up to date
information about what problems exist within the field as well and how these problems
are currently handled.

4

MSc thesis - The use of Levenshtein distance in computer forensics

2 Existing theory

In the following sections current knowledge relevant to this study is presented. The
first sections introduce the field of computer forensics and main problems. Subsequent
sections outline different search techniques and techniques for locating data in large
datasets, as well as current solutions.

2.1 The field of computer forensics

As the growing number of computers used in different aspects of our lives steadily
increase, and the use of internet and computer networks interconnects an ever growing
number of people and businesses, so does the number of incidents involving computers
and crime. As pointed out in [7] technology changes constantly, but humans are less
inclined to do so. As a consequence we can conclude that almost every real-life type of
crime has a digital counterpart; fraud, theft, extortion and vandalism to name a few. As
pointed out in [8], the introduction of the new technology as a means of interaction
has made it an extension to normal human behaviour. As a result, people using the new
technology behave no better or worse than they do in other aspects of their lives.

Technology has given criminals new ways of operating, and often accelerated their ef-
fects especially due to the factors of added automation, being able to act from a distance
and the fast propagation of new techniques according to [7]. As one in the pre-Internet
era primarily had to defend ones perimeter and systems against adversaries physically
located nearby, the modern attackers are much less dependent on geographical borders.
The attacks are easier to execute on a large scale. But at the same time, as new te-
chnology increases the potential for criminal activities, the technology introduces new
possibilities for tracing and locating evidence of these criminal acitivities. By using new
digital evidence in the form of system metadata, access-, file- and chat logs, e-mails and
deleted data, the process of finding the perpetrator have as a result become easier.

In order to find and utilize these new forms of evidence however, there is a need
for the skills and methodology similar to a real world crime scene. Traditional forensic
investigators try to freeze a scene and collect available evidence in order to reconstruct
some event. These tasks are more or less the same in the digital counterpart and have
created the field of computer forensics. Computer forensics is defined in [8] as the study
of how people use computers to inflict mischief, hurt and even destruction, or more formally
in [9] as:

The use of scientifically derived and proven methods toward the preserva-
tion, collection, validation, identification, analysis, interpretation, documenta-
tion and presentation of digital evidence derived from digital sources for the
purpose of facilitating or furthering the reconstruction of events found to be cri-
minal, or helping to anticipate unauthorized actions shown to be disruptive to
planned operations.

5

MSc thesis - The use of Levenshtein distance in computer forensics

The field of computer forensics is young compared to traditional forensics, and it was
not until the mid 80s or beginning of the 90s that computer forensics emerged as a dis-
cipline. It is just in the last few years that international organizations have taken steps
to create global frameworks and laws for prevention, detection and punishment of com-
puter crime [8]. As a result, the field has often been recognized with the term art and
science as most of the computer forensic investigators have consisted of practitioners. The
solutions used have often been created out of need and not from the basis of theory and
scientific research. For the same reason, the available global methodologies for computer
forensics have been rather limited. These trends are changing however, amongst other
with the works of [10, 11]. As with computer technology in general, computer forensics
is a field in constant development towards a more mature discipline. The main principle,
however, of any investigation was developed by Bertillion [12] and revolves around fre-
ezing the scene in order to preserve any evidence present. This is especially true when
handling digital evidence, which is often more volatile than traditional forensic evidence.

This thesis focuses on the identification and analysis phases that come after the col-
lection and validation phases. In more practical terms these prior phases involve iden-
tifying a suspect, and acquire data sources for further analysis, often in the form of a
bitwise copy of some digital media. The process of reconstructing a set of events from a
pattern of bits is however complex and involves numerous transformations, introducing
possible sources of error with every step.

2.1.1 Digital evidence in general

A basic legal principle is that in order to convict someone, evidence is needed. In this
respect there are no differences between digital and more traditional types of evidence.
However, digital evidence has some special characteristics that to some degree separate
it from its real-world counterparts. Digital evidence is defined by [13] as:

any data stored or transmitted using a computer that support or refute a theory of how
an offence occurred or that address critical elements of the alibi such as intent or alibi.

With this definition, digital evidence could be found in nearly any computerized system
processing data, counting everything from cash registers, electronic toll plaza systems
and internet-connection logs, to deleted files found on a hard drive. However, according
to [13], digital evidence are still used with little efficiency due to mainly insufficient
skills and knowledge. One characteristics of digital evidence is its volatility. Often, such
evidence is located in log files, swap-files and temporary files like Internet cache folders.
Files in such locations are regularly deleted and overwritten with new data creating a
shorter span from the moment digital evidence is produced until it becomes inacces-
sible. As mentioned by Janes in [14], digital evidence tends to be more before the fact
than its paper based counterpart, and often exists in greater volumes, but the integrity
and continuity of this type of evidence degrades exponentially with continued use of the
computer after the evidence have been created. Log-files may be rotated, and swap-files
and other temporary data may be lost. As a result, it is of great importance to preserve
digital evidence as early as possible, in order to avoid compromising the integrity and re-
ducing value of the evidence. Although the value of evidence often decreases with time

6

MSc thesis - The use of Levenshtein distance in computer forensics

in traditional cases, the effects are more severe with digital evidence due to the reasons
mentioned below.

2.1.2 Differences between traditional and digital evidence

Although the basic principles of collection and preservation of evidence are still valid for
the digital counterpart, there are still differences. In [15] Sommer lists the main diffe-
rences between digital and traditional evidence and summarizes these in the following
points:

• Computer data may change moment by moment within a computer or along a
transmission line. Every time a regular desktop computer is used, a large number of
files are changed, such as file system data, logs and temporary files. As a result it is
common to view e.g. a disk image as a snapshot of a system at a particular moment.
This may again introduce difficulties with authentication as to time of creation and
content.

• Computer data can be easily altered without leaving any obvious trace that such
alteration has taken place. Forgery is nothing new, both forgery of handwritten sig-
natures, and documents in general have been counterfeited for centuries. The diffe-
rence compared to digital evidence, however, is the speed and ease at which copying
or alteration of a document or some data may be undertaken. With a digital media
one effortlessly obtain a perfect copy every time, and alteration of data are often
much harder to detect than a traditional falsified handwritten signature.

• Computer material can be easily changed as a result of the process of collecting
it as evidence. Although contamination of evidence has been and continues to be
an issue in traditional forensics, this problem is considerably more profound when
working with digital evidence. Just by opening a document without the intent to
change anything, the integrity may be damaged and several parameters like the date
of access, number of words in the document and the name of the last author may be
written to the file, creating changes not immediately visible.

• Much immediate computer evidence is not obviously readable by humans. As
discussed in Section 2.1.4, a hard-drive stores information as a magnetic pattern on
a disk. In order to transform these patterns into a form that is suitable for human
interpretation, several layers of transformations are possible. From a binary pattern
the data is transformed into numbers which again have to be transformed further in
order to become intelligible. In this process the data may have several valid repre-
sentations, which is problematic with respect to digital evidence, because there is a
greater risk for inaccurate interpretations, than with traditional types of evidence like
DNA samples.

• Computers create evidence as well as record and produce it. Traditionally, when
creating a document this was done by handwriting at a piece of paper, and later
calculations and versions were also made by hand. In the computer equivalent, it
is often only the original that is entered manually, and subsequent calculations and
documents are automatically created and stored by the computer. Similarly, a perso-
nalized webpage that is printed out may only exist at the very moment it is requested

7

MSc thesis - The use of Levenshtein distance in computer forensics

and assembled from various data sources, and is not stored on a computer in its com-
plete form. This is contrary to the more traditional approach of creating a page or
document, duplicating this and storing the original in its complete form.

2.1.3 Reliability of digital evidence

Although the precise requirements vary, all evidence presented to a court has to meet
certain criteria, and if digital evidence is to be used as part of a trial, there is a need to
establish that it is trustworthy and valid. In order to help assuring the level of reliability,
Sommer [15] has suggested three criteria that digital evidence should meet based on
[16]:

• Authenticity: It should be possible to show that the evidence is specifically linked to
the circumstances and the persons accused.

• Accuracy: The quality of the procedures used to collect, analyse and present the
computer-derived exhibit to the court should be free from reasonable doubt, and
should be produced by someone with sufficient knowledge to explain the evidence
analysis process. When exhibits contain statements of their own, like letters or docu-
ments, the accuracy term should also include accuracy of content, and the author
should generally be available as a witness and provide a testimony if necessary.

• Completeness: The digital evidence presented should within its own terms be suf-
ficiently comprehensive to provide complete information about a particular set of
events.

In real life situations, meeting these criteria is not always trivial. Every aspect of the
work reconstructing events on a computer system has some level of uncertainty and
error attached to it. The timestamps found may be inaccurate, the link between a certain
event and a user identity may be weak, and if one is unable to collect enough data an
investigator may miss “the big picture”, or be served the wrong picture due to falsified
information. To counter this, and to assess the value and reliability of the digital evidence
identified in such an investigation, it is important to consider the possible error rates
and inaccuracy of the collected data. This is of grave importance as the use of digital
evidence may profoundly impact a person’s life. But to quantify reliability may be difficult
having in mind that programs may contain bugs, the complexity of the systems that are
investigated and the size of the data set to investigate. This is pointed out by Casey in
[17], and it is suggested that even if quantifying the reliability of computer evidence is
difficult, or not possible, the courts should make use of experts in order to estimate the
level of certainty held by a certain exhibit.

By applying a scientific methodology for assessing reliability by detecting, quantifying
and compensating for errors and loss in evidence, Casey seeks to reduce the occurrence of
incorrect conclusions based on inaccurate or unreliable data stemming from uncertainty
in digital evidence. [17] further suggests a metric where computer evidence is classified
by its certainty level ranging from C0, which is incorrect to C6 where the evidence is re-
garded tamperproof and unquestionable. The metric has amongst others been applied to

8

MSc thesis - The use of Levenshtein distance in computer forensics

evaluating evidence stemming from network activities. Casey in [17] also points out that
completely reliable sources of digital evidence do not exist, and that mistakes during ana-
lysis and interpretation could be reduced by performing an exhaustive investigation and
make strict use of the scientific method. This would include questioning all assumptions
and developing a theory that explains the facts, as well as exploring possible errors and
alternative interpretation. A computer forensic investigator with complete confidence in
his or her conclusions based on electronic evidence, he claims, is usually missing somet-
hing.

2.1.4 How are data stored on a hard drive

In order to better understand raw data searches, the following section outlines the prin-
ciples regarding how data is stored on a hard drive. At the lowest level, information is
stored as a magnetic pattern on one or more disk platters. Read and write heads are then
used to store or collect data from the unit as a series of electrical signals created by the
fluctuations in the magnetic pattern. In its simplest form this is data converted to a binary
form and stored directly on the disk platter, but modern drives use advanced algorithms
and extra bits for error correction when storing data. Although variations exist, most
modern drives read and write data in units of 512 bytes, often referred to as a sector. In
order to reduce the number of units to be managed by a file system, several sectors are
often grouped together in a cluster, so while the smallest addressable unit for a hard drive
is a sector, the file system equivalent is often the cluster, somewhat depending on the file
system. Clusters are then grouped together to form a file, and files are organized into
folders residing on a partition. A disk may contain one or more partitions with separate
file systems. One of the simplest and most common file systems is the FAT file system.
The main components of the FAT-system are the boot sector, the file allocation tables and
the data area as seen in Figure 1. The boot sector resides at the beginning of a partition

Figure 1: An overview of the main components of the FAT file system [18].

and contains meta-information about the file system itself, such as the start address of
the file allocation tables, the root directory, as well as size and version information and
the number of sectors in a cluster. Each cluster has an entry in the file allocation tables,
marking it as free, or pointing to the next cluster that a specific file occupies. The file
content is stored using clusters in the data area. When accessing a file, the root directory

9

MSc thesis - The use of Levenshtein distance in computer forensics

structure is traversed to find the correct file name, and the first cluster occupied by the
file. If the file consists of more than one cluster, subsequent clusters are located by que-
rying the file allocation tables using the first cluster as an index in the table, and then
traversing the file table similar to a linked list until an end of file marker is found, as
shown in Figure 2. A more thorough explanation of the FAT file system may be found in
[19] and more general information could be found in [20].

Figure 2: Illustrates how the FAT table works. A file occupies clusters 2,3,4 and 5 as seen on the
figure, while another file occupies clusters 7,8 and 9. “E” represents the end-of-file marker [18].

2.1.5 Residual data

When storing a file, the smallest available allocation unit used by the most common file
systems (FAT, NTFS, EXT3 and UFS) are clusters or blocks, constructed from one or more
sectors. The size of a cluster may vary but are usually dependent on overall file system
size. As an example the cluster size of an NTFS volume larger than 2 GB is by default
8 sectors. As a result, storing a small text file with a few bytes of data will result in it
occupying 5 KB of storage space. If a file using all the bytes of a cluster was stored in
this cluster previously, it would still be possible to find data from this file intact in the
remaining parts of the cluster, called the cluster tip area or slack space. These data would
no longer have a valid reference in the file system and are often referred to as unallocated
or “ambient” data.

As mentioned above, the file system keeps track of its allocated files and what clusters
they occupy in a bitmap, a data structure containing a number of bits equal to the number
of clusters in the file system. When a file is allocated to a set of clusters, the corresponding
bits in the bitmap structure are set, marking them as occupied. The rest of the clusters are
marked as available or free, and referred to as unallocated space. Besides as remnants in
an allocated cluster or sector, data from previously allocated files would also exist in this
unallocated space of a digital media. This is due to the fact that when deleting a file in
most file systems, the sectors allocated to the file are not overwritten. Only the references
in the file system are usually removed. The sectors are merely marked as being free for
use, and the previous data will continue to exist until overwritten by new data. The
classic analogy is the one where the table of contents is modified, but the actual pages,
or data remain intact. Whether or not this constitutes good security practice, or should
be considered a security flaw is discussed in [21], but is outside the scope of this thesis.
An illustration of slack space is given in Figure 3.

10

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 3: The concept of slack space; a new file G2.txt written to the same sectors still leaves data
from the previous file G1.txt (cluster 600, 604 and 605) in the slack space [21].

Unallocated or ambient information and data may also be found between existing
partitions on a drive, as this space would not be addressed by file systems present on
the drive. Alternatively such information may also exists in areas outside the addressable
space of a file system, beyond cluster 65536 in a FAT-16 file system is one example of
this [21]. Unallocated data areas could often contain valuable forensic information from
deleted or partially overwritten data, and should be searched for information during
forensic investigations.

However, as the data cannot be accessed through the file system as a set of files or
folders contrary to data in allocated clusters of the media, a raw data search is often
the only option. When performing a raw data search, the sectors of the digital media
are accessed directly reading them sequentially, bypassing the interpretation of the file
system layer as referenced in Section 2.1.6. This reduces the possible sources of error,
as the medium is accessed directly, and the number of transitions and interpretations
of the data are kept at a minimum. On the other hand, as there is no structure telling
which sectors or clusters together form a file, the different sectors that constituted a file
may have been spread over several sectors in different areas of the media due to what is
referred to as fragmentation. Fragmentation occurs when the file system allocates space
to store a given file. The exact procedure may differ between the different file systems,
but a common approach is to search through the free space bitmap finding entries marked
as free, and assign any free entries found to the new file until sufficient storage space
have been allocated. When a file is deleted, the formerly allocated clusters are marked as
free, which may create a short range of continuous available clusters located at different
positions in the file system. When storing a new file, it may for this reason be stored in
separate non-contiguous physical locations on the medium, with the file system entry

11

MSc thesis - The use of Levenshtein distance in computer forensics

pointing to the different locations. As a result, a former file found in unallocated raw
data not stored in consecutive sectors may resemble a puzzle with pieces of the file being
scattered on different physical locations on the medium. The fragmentation of a drive
generally increases as the available space on a media decreases. Further details may be
found in [20].

2.1.6 Interpretation and abstraction layers

When a regular document or spreadsheet is opened, this is done by several steps of trans-
formation and interpretation. First, the magnetic pulses are read from the physical disk
and interpreted by the disk controller. Second the binary pattern is processed by the pro-
cessor converting it to a numeric format. At the next step, this information is interpreted
again by the file system, and information about the file in question is extracted from file
system tables at the operating system level, before the application opening the file has
to interpret the encoding and file format and handle or display the resulting information
in a fashionable manner. Each of these steps may introduce errors. This poses difficulties
when working with digital evidence, as one in general seeks to interpret and manipulate
any evidence as little as possible to reduce potential errors. The different transforma-
tions are named abstraction layers by Carrier in [22], and the problems created by the
fact that acquired data are usually in the lowest form as raw data, is referred to as the
complexity problem. Data at this level are usually not regarded as human readable, as
they typically exist as a series of byte values and the skills required to interpret them
are considerable. To solve this problem, tools are used to translate the data into a more
human readable form. Using forensics tools to interpret file system data is one common
example, as directory structures and file information are very cumbersome and time-
consuming to handle manually. These abstraction layers are necessary to translate larger
amounts of data into a more manageable format, and are described in [22] as a function
with input data and a rule set, with output and some margin of error as a result, as il-
lustrated in Figure 4. These errors may be the results of deliberate manipulation, faulty

Figure 4: Data abstraction layer seen as a function of the previous abstraction layer transformed
by a rule set [22].

image tools or human misinterpretation of the results. As the number of transformations
and abstraction layers increases, so does the number of possible abstraction errors, and
the probabilities for such an error to occur. In order to produce reliable and scientifically
acceptable results, these error rates should therefore be considered and taken into acco-
unt when presenting digital evidence and computer generated exhibits. As a possible
solution [22] suggests the use of a metric of tool implementation error, giving a certain
score to forensic tools based on the number of faults found in a program in recent years
combined with the severity of these errors.

12

MSc thesis - The use of Levenshtein distance in computer forensics

2.1.7 Current problems in computer forensics

As previously mentioned, computer forensics is a rather new discipline, and has traditio-
nally been considered a field of practitioners rather than strongly based on scientific prin-
ciples. As technology steadily progresses, the field of computer forensics is persistently
trying to keep up with the progress, developing new techniques and more scientifically
accepted procedures. This results in several challenges that remain currently unresolved
to a large extent. One of these challenges is the need for universal standards and met-
hodologies. As the field is rapidly progressing, the speed at which the field is moving
sometimes make the use of well-proven peer reviewed standards and procedures dif-
ficult. This is illustrated by the fact that in this field, the tools for forensics analysis were
created out of the imminent needs of the investigators, to solve a practical problem. This
is different from many other disciplines, where scientific theories and methods are deve-
loped first, resulting in subsequent development of new commercial products. However,
in the latter years this situation has improved somewhat and this is further described in
amongst others [10,13,22-25].

In [22], Carrier defined two main problems in the field of computer forensics. The
first is the previously mentioned complexity problem caused by the need to transform and
interpret the acquired data in order to make them human readable. As the captured data
typically exists as a raw data set, it is too difficult to understand by humans. This influen-
ces the reliability and a scientific quality of the evidence produced, and adds uncertainty
to the evidence found. This also adds to the problem of explaining a set of complex tech-
nical details and correlations to an audience of laymen. Similar situations in other fields
have traditionally been solved by using expert witnesses. But the criteria for selecting
and certifying such a specialist, and subsequently deciding how a jury or judge should
settle disputes between experts with different opinions remain somewhat unclear. The
second major problem mentioned is what Carrier refers to as the quantity problem, and
is the problem associated with analyzing increasingly large amounts of data. This thesis
focuses on this problem, how it is currently handled as well as possible solutions to im-
prove the situation. In the experimental chapter we investigate how the use of a string
algorithm called Levenshtein distance algorithm may be used to reduce the amounts of
data that need to be searched in a raw data set.

2.1.8 The quantity problem - handling large data sets

As computer technology continues to evolve and the required size of software and mul-
timedia content steadily increase, storage requirements continue to rise sharply [22].
While a 600 megabyte hard drive was regarded as a large drive in 1995, a common disk
size today (2005) is 300 gigabytes and rising. A terabyte data no longer recognized as
unusual printed on A4 pages would fill about 2.000 file cabinets of 10.000 pages each.
For obvious reasons these data amounts cannot be inspected by hand, and other met-
hods for locating the evidence are necessary. The practical problems of handling such
large data sets are exemplified by Sommer in [23]. Both the initial process of creating
an exact duplicate copy (imaging) of a seized computer system, and the subsequent exa-
mination phase take proportionally more time. Available time however is often a very
limiting factor. According to [24], a limited forensics analysis takes 3-5 days, while more
thorough analyses may take up to 2-3 weeks. Phelan in [24] further characterizes the

13

MSc thesis - The use of Levenshtein distance in computer forensics

field of computer forensics as:

...a high-pressure and labour-intensive endeavour, with significant operational issues
(backlogs, turnaround times, mission creep, etc.) and critical infrastructure problems (lack
of examiners, lack of space, continuous need for updated software and hardware, etc).

During the investigation of the Landslide web portal containing illegal pornography [25],
information about 250.000 individuals who had used their credit cards to buy access
were seized, and in Britain alone, there where more than 7200 suspects. The total num-
ber of available forensics examiners with sufficient skills in the same region where about
400, leaving the involved examiners with a heavy workload. In this case, suspects in
sensitive positions and persons where previous intelligence existed were prioritized, as
time constraints made it impossible to prosecute all the accused, showing the need for
improved ways of handling large data sets.

When digital evidence is located and presented in court, the defence would surely
want to test the exhibits presented against alternative explanations and theories as well
as questioning the prosecutors’ conclusions. This makes it even more important to be
able to absorb large amounts of data in order to get a complete picture of the digital
evidence and data available. It has been suggested that complete searches of seized ma-
terial should be dropped, as they are not feasible with current available technology and
time [4]. Instead, the investigations should follow more of a top-down than a bottom-up
approach, where one investigates high-level items like browser cache, mail and tempo-
rary files as well as logs, avoiding more low-level and time consuming searches checking
amongst others unallocated space cluster tips. This is however, not without its draw-
backs. If one focuses on a smaller set of sources for evidence there is an obvious risk of
missing the evidence. If e.g. raw data searches are skipped in favour of a more superficial
log or e-mail analysis, one will not be able to locate evidence in deleted files or cluster
tip areas, resulting in a possibly erroneous conclusion.

In order to find the truth, both inculpatory evidence, verifying existing data or theo-
ries, as well as exculpatory evidence contradicting the existing theses must be identified.
Reducing the number of possible sources for evidence could impact the likelihood of
finding exculpatory evidence if higher level searches have identified evidence suppor-
ting the prosecuting counsels’ claims, reducing the overall quality of the investigation. In
fact, in multiple cases, [26, 27] people accused of downloading contraband material have
been acquitted when prosecuted in court because they have been able to demonstrate, at
least one of them after a more thorough examinations, that the computer was infected
with trojan software. This software could subsequently be used to remotely control their
computers, and were able to convince the courts that this software was the most probable
explanation for the existence of illegal material [28, 29]. Wrongly accusing persons for
criminal activities may have grave consequences for their personal lives, and these issues
should not be taken lightly. Due to limited resources like time, available personnel and
budget constraints, there is a risk that this will lead to sacrifices regarding the depth and
quality of the investigations, as pointed out by [30].

As we have seen, there are distinct disadvantages of not performing complete analysis
of seized media, but the problem still remains; how to handle increasingly larger sets of
data. In principle, there are two options in order to reduce the time needed to investigate

14

MSc thesis - The use of Levenshtein distance in computer forensics

a large dataset. The first option is to find ways of excluding un-interesting data amounts
that need to be searched in the first place, which we may call the principle of data re-
duction. This method is discussed in Section 2.5. The second option is to improve the
searching methods. Search methods are discussed in Section 2.3.

2.2 Locating data in large data sets

In the following sections we study the existing theory for locating a reduced set of data
from a much larger data set, based on a search query, and to what extent they are appro-
priate for use in computer forensics.

2.2.1 Data Mining

An important part of most computer investigations are searching for key words or certain
phrases. Names, addresses or specific terms like contract or bomb are typical examples.
The dataset is then subsequently searched for occurrences of the keyword and at the end
the results are presented, listing matches and their locations, and letting the investiga-
tor perform further analysis. This could be defined as the problem of finding a specific
item in a large data set, often referred to as data mining, and is quite old. Humans have
collected and organized information for thousands of years. A typical example is the
table of contents found in almost any book and the indexes and structures used to or-
ganize large amounts of information in libraries. With the introduction of Internet and
the World Wide Web, the amounts of available information have exploded and now re-
present sharing knowledge on a scale never seen before. This has renewed the interest
in the field of information retrieval, from a rather narrow field for specialists, to a highly
active research area. This is partly due to the current difficulties of locating the precise
information wanted in a vast dataset containing large numbers of documents or entities
of varying relevance and quality. The problem of locating specific data from a large data-
set is not unique with respect to searching the web, and as technology progresses and the
need for storage space increases, the same set of problems becomes increasingly relevant
for smaller systems as well. One area where similar problems exist is computer forensics.
With storage requirements growing faster than Moore’s law [31], and a growing comple-
xity in computer infrastructure, the data amounts that need to be searched in computer
forensics cases grow rapidly. This problem is pointed out by amongst other [8], where
the need for reducing these large and complex datasets to manageable sizes is mentio-
ned. One possible approach is the use of forensics tools in order to filter out data with
little interest, resulting in a smaller data set that may be searched with more advanced
forensic tools.

Similarly, there is a need for identifying suspicious documents and extracting these
in an automated fashion in order to help the investigator to find a certain set of entities
related to some search query, often referred to as a information need, e.g. all documents
related to blueprint X. Such problems are typically considered within the field of data
mining, and this field may aid in reducing these problems by using techniques such as
text categorization and search queries.

15

MSc thesis - The use of Levenshtein distance in computer forensics

2.2.2 Classical retrieval taxonomies

The problem investigated in this thesis is data reduction in a forensic data set, by focusing
on areas of the data set where matches to a search query exist. In order to achieve this
however, we need a method for locating these search hits.

In [32] Baeza-Yates and Ribeiro-Neto presents three main models or taxonomies for
information retrieval, namely the Boolean, vector as well as the probabilistic model, and
the following sections are based on this source. These main models are not new. Maron
and Kuhns [33] presented probabilistic indexing and relevance in information retrieval
as early as in 1960. As the field has progressed, several variants and alternative models
have also been proposed within each category, e.g. fuzzy and extended Boolean model,
generalized vector, latent semantic indexing and neural networks within the vector mo-
del and inference and belief networks within the probabilistic model [34, 35, 36]. These
three main models are used amongst others in search engines for the World Wide Web,
which handle the challenge of finding a subset of data from a very large dataset based on
a query, which is similar to the problem computer forensic investigators face when using
keyword searches in order to locate evidence in a large data set.

Even though the three models take different approaches in order to solve the problem
of providing relevant data based on some query, they still share some basic concepts. The
basic idea behind them is that each data entity or document is categorized by one or more
keywords, which represent the content of the document or entity, creating an index term.
Logically, some words provide more precise descriptions than others; a word used in a
high percentage of the documents is of little use for differentiating it from the rest of the
data set. As a result, most keywords consist of nouns from a document which is often
better at describing the entity content. In order to separate rather distinct keywords from
more vague ones, the keywords may be given different weights. These weights are often
regarded as mutually independent, but this may be seen as a simplification, since some
words are more likely to attract the occurrence of the other, say pattern and matching.

2.2.3 Boolean Model

The Boolean model is based on the use of Boolean algebra and the set theory mentioned
in Section 2.4.3. The use of Boolean algebra makes the concept easy to understand for
a regular user, and it is relatively easy to formulate simple queries. Most current search
engines for web content support some variant of this technique, but it has disadvantages.
The most obvious one is that documents are characterized as either a match or no match,
and that the searches only consider whether an index term is present in a document or
not. As the operators of Boolean queries consist of AND, OR and NOT, it is not possible to
set a non-binary weight to a document. This makes a particular document either relevant
or irrelevant and any ranking function binary, thus greatly reducing its usefulness. The
queries of a Boolean model search may be formulated as a disjunction of conjunctive
vectors, or disjunctive normal form (DNF). As an example, [32] shows that the query
q = Ka AND (Kb OR NOT Kc) may be written in DNF as ~q DNF = (1,1,1) OR (1,1,0) OR
(1,0,0) where each of the three components is a vector with binary weights representing
the tuple (ka, kb, kc) as illustrated in Figure 5.

The Boolean model is theoretically clean and straightforward, but has no notion of

16

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 5: Boolean model: Illustration of the query q = Ka AND (Kb OR NOT Kc) [32].

partial matches. A document satisfying N+1 terms in the query is not recognized as being
more relevant than a document containing only N, as long as not all terms are met. As
the results are based on exact matching, the returned set of documents may either be too
large or too small, and it is generally accepted that the use of index term weighting may
improve the search performance.

2.2.4 Vector Model

As mentioned above, one of the main disadvantages of the Boolean model is the fact
that it has somewhat lacking capabilities with respect to ranking and evaluating a set
of documents according to similarity and relevance. This is mainly a result of the binary
weight scheme, and to improve this, the vector model introduced a framework capable of
performing partial matching using non-binary weights when evaluating queries and en-
titites in the data set. By using weights with a higher resolution, the vector model is able
to compute a degree of similarity between search queries and documents. The results
are presented in a sorted order with the most similar documents being presented first,
followed by a decreasing list of documents with a lower similarity score. By doing this,
the model achieves taking into account documents that only partially match the search
query, thus creating more precise search results than those produced by the Boolean mo-
del. A central concept in the model is the use of t-dimensional vectors. Given a document
dj, and a user query q consisting of index terms k1..ki, a positive non-binary weight is
associated with a pair (ki,dj). The index terms are further also given a weight, wi,q is
defined as the weight associated with [ki,q] where wi,q ≥ 0. The query vector is then
given as ~q=(w1,q,w2,q....wt,j), where t is the total number of index terms. The vector
for a particular document ~dj may be written as ~dj = (w1,j, w2,j...wt,j). The user query
q and the document ~dj are then represented as t-dimensional vectors. The idea is then
to calculate a measure of similarity between a document and the query by utilizing the
vectors ~q and ~dj [32]. One way of calculating such a score is by using the cosine of the
angle between the two vectors. This function can be written as in Figure 6. The similarity
score varies between 0 and 1, and is a result of the angle between the document and
query vector, expressing the similarity between the two. When processing a query, the
documents with vectors that best matches the query vector are regarded as most similar.

17

MSc thesis - The use of Levenshtein distance in computer forensics

sim(dj, q) =
d

ρ
j • qρ

|d
ρ
j |× |qρ|

(2.1)

Figure 6: The vector model: The vector for a particular document dj may be written as ~dj =

(w1,j, w2,j...wt,j). One way of calculating such a score is by using the cosine of the angle between
the two vectors. This figure illustrates the similarity between document vector ~dj and query vector
~q found by calculating the cosine. The similarity function may be described as shown above.

This allows the results to be sorted according to the similarity instead of just a binary
decision categorizing them as either relevant or not. A threshold may be used so that
documents within a given similarity score are presented, even if they do not match the
complete query.

The main advantages of the vector model are that it is able to present results which
partially match the query by putting weights to index terms and it is able to rank results
according to a similarity score. These are features that would be highly appreciated when
used in a forensic context. The main idea of mapping entities in the data set and queries
to vectors, subsequently comparing their angles are also relatively easy to perform, and
it has produced good results when tested with general collections. Further details may
be found in [32].

2.2.5 The probabilistic model

This model tries to solve the information retrieval problem by using probability theory.
The main idea is based on the theory that with a certain user query, there exists a set
of documents that perfectly match a particular query and no other. If we were able to
get the description of this ideal set of documents, it would be easy to retrieve them, for
this reason the querying process is centred on specifying the ideal document set to be
retrieved. As the index terms used to specify this ideal set are unknown when the initial
query is processed, the model tries to guess what they should be, resulting in the first
set of retrieved documents. In the subsequent sequences, the user looks at the retrieved
documents and decides which of the retrieved documents are relevant, and gives the
system feedback to indicate this. The input from the user is then taken into account, and
a refined document set is returned to the user. As this process is repeated over multiple
iterations, the returned set should evolve and steadily become more similar to the ideal
document set.

The advantages of this model include sorting of the resulting document sets according
to the probability score of each document in descending order, improving over amongst
other the Boolean model. However this model does not take into account the number of
times an index term is present in a document, and the need for specifying or guessing a
probability score before the first result set is returned are not optimal, as well as having

18

MSc thesis - The use of Levenshtein distance in computer forensics

to rely on the assumption that index terms are independent. In a computer forensics con-
text, the option to give feedback to the system would be useful, as irrelevant results may
be reduced. But having to repeatedly give the system feedback would seem somewhat
impractical in a real world scenario. The fact that this method does not take into account
the frequency of an index term in a document, would also reduce its forensic suitability
somewhat.

A text covering probabilistic indexing and information retrieval by Maron and Kuhn
was released as early as 1960, and van Rijsbergen also discussed the probabilistic model
in [37]. These models are designed to handle the problem of locating a search query in
a large set of data, quite similar to a forensic search process. However, a problem with
these models from a forensic point of view, is that they are document-centric. They are
based on the notion of structured documents that may be searched and indexed in a
straightforward way, which is often not the case when processing raw data. This again
reduces their applicability for our purpose.

2.3 Methods for searching

Locating evidence in a disk image may be seen as the problem of locating a pattern P
in a much larger text T given some Alphabet A. In its simplest form such a search may
be carried out simply by matching the pattern against all possible locations in the text
T and recording any matches. However, with increasing data amounts, other methods
for faster searching are needed in order to be usable in a computer forensics context. In
order to reduce the searchable data amounts, a efficient method for locating matches to
a search query in a data set is needed. According to the literature [32, 38], there exist
two main ways of searching a dataset; online and indexed searching. When using an
online search method the dataset or text are traversed once and the results from a search
query are given at the end of this phase, typically consisting of a set of matches and
references to where these may be found in the dataset. When using an indexed search
method however, the search has an additional initial phase where the dataset content is
pre-processed according to some algorithm creating an index. This index consists of some
searchable data structure that represents the content in the dataset, and is optimized in
order to improve the search time for subsequent search queries. Three main indexing
techniques that have been proposed are signature-files, suffix arrays and inverted files.

2.3.1 Indexed search

In the following sections methods for using indexed search are presented, in order to
evaluate their suitability for use as a forensic search method.

2.3.2 Inverted files

The use of inverted files is described amongst others by [34, 32] and referred to as one
of the most common indexing techniques. The main idea behind the technique is the
use of a list or lexicon containing all of the words in the text T. This list is constructed
by searching through T and adding every word found to a trie, a search tree or data
structure capable of storing strings where each leaf represents a word in the text T.
When adding a word, the tree is first searched for existence of the particular word, and

19

MSc thesis - The use of Levenshtein distance in computer forensics

if the word is not found, it is first added to the tree and the positions or occurrence file
are subsequently updated. The positions file, containing the references to where in the
text T the particular word has been found is usually kept in a separate file making the
main components of inverted files the lexicon and the occurrence file (See Figure 7).
The entries in the position file may give a file position reference based on a word or

Lexicon file Occurence file

Figure 7: Inverted files: The main components of the inversted file approach, the lexicon and
occurence file [39].

character level and as a result may take up considerable space given a large text T. In
order to reduce the space required by the pointers, a block addressing scheme may be
used, where the text T is divided into blocks of a given size. This reduction in pointer size
however comes at the price of decreased search resolution, as the results are no longer
based on exact positioning. If precise location is needed, the use of an on-line search
algorithm may be necessary.

When searching using inverted files, the word or words from the query are located
in the lexicon, and the lists of words occurrences are retrieved. In the last step these
occurrences are processed in order to produce a relevant result by taking into account
Boolean expressions, the distance between search words in the document etc. This met-
hod requires that the dataset may be viewed as a set of words. In computer forensics,
and especially in the raw data search context, this is not always the case, as a pattern
of bytes may represent a part of an image, even though it may be seen as i.e. a valid
ASCII-codes sequence.

20

MSc thesis - The use of Levenshtein distance in computer forensics

2.3.3 Suffix trees

The idea of a suffix tree was first introduced by Weiner in [40] and an on-line left-to-
right version has been constructed by Ukkonen in [41]. This method sees the text as a
long string, and may be used to work on both a word and character basis. This makes it
more attractive to raw data pattern matching containing different types of data. A central
concept with suffix trees is, as the name suggests, the use of suffixes. A suffix tree data
structure contains all the suffixes in the text T, with pointers to locations of these suffixes
within the text or data set. To reduce space requirements, the use of arrays instead of a
tree structure may be used as proposed in [42]. As explained by [32] indexing large texts
will result in a text database that will not fit in the main memory. And as a solution it is
suggested to split the text into several parts that will fit in memory and build the suffix
array for each block before merging the suffix arrays constructed for the different text
blocks. An illustration of a suffix tree is given in Figure 8. According to the same source,
however, the performance of the algorithm is still outperformed 5-10 times compared to
the use of inverted indices. This would weaken the case for the use of this algorithm to
search through large raw data sets.

String : xabxac

Figure 8: Suffix tre: A simple suffic tree example. Each leaf contains the offset to the beginning of
the string in the text [43].

2.3.4 Signature files

In [44] Faloutsos presents signature files as an indexing method. This concept is based
on the use of hashing functions, to represent words as bit patterns. By dividing the text
into blocks, calculating a bit pattern for the words in the block and OR’ing these word
signatures, a bit signature for the block is created. When searching for a given word, its
bit-signature is generated, and compared to the block signatures. If the word signature
has corresponding 1’s compared to the block signature a match is indicated. As with other
hash algorithms however, collisions may occur in the bit signatures, and the construction
of the hashing function is subsequently of great importance. In order to verify whether
or not the indicated match actually is a correct match, an on-line search algorithm must
be used on the text, if one cannot accept the possibility of false results referred to as false

21

MSc thesis - The use of Levenshtein distance in computer forensics

drops[32]. The use of division of text into blocks, however, increases the problem when
a match is found on a block border. As a search for a phrase would not match given that
the occurrence of a query word is located on the border of two blocks, searches must
take this into account and overlap the block boundaries with the query length in order
to avoid risk missing a match. The performance of the algorithm has been described by
[32] as quite slow in a comparison given by Zobel et al. in [45] comparing it against the
use of inverted files. However, in [46] Carterette and Fazli show that this is not always
the case.

OR

Example of block signature:

Word		 	 		 	 	 	 Signature
text		 	 	 	 	 	 	 100 101 001 100	 	
code		 	 	 	 	 	 	 111 000 010 101
Block signature	 111 101 011 101

Figure 9: Signature file: Simple generation of a signature file hash.

2.3.5 Document pre-processing

When searching through a large data set, there is an obvious interest in reducing the
storage space and computational resources needed to categorize and index a set of docu-
ments. Additionally, one is generally interested in representing and storing any metadata
structures in such a way that the results from a search query are as accurate as possible.
This is also the case when searching a forensic data set. One way of doing this is referred
to in the literature as document pre-processing. When we have a data set consisting of a
large number of entities, not every word in a document is equally important in order to
represent its content. Common words typically found in a large number of documents,
like the or a are often of little value when categorizing a set of documents. As a result,
nouns are often selected as index terms, or cue words for a document, as they often
represent the document most accurately. The pre-processing phase may also consist of
several other phases, including stemming, compression, the use of a thesaurus and rem-
oval of frequent words with poor categorization qualities, called stopping words. The use
of these techniques reduces the size of the dictionary containing the collection of index
phrases, with improved search performance as the expected result. In the section below
we describe the basic set of different document pre-processing techniques, as presented
in [32], and finally the use of pre-processing techniques in a computer forensic context
are discussed.

2.3.6 Lexical analysis

The main idea with lexical analysis is to change the document from a stream of cha-
racters to words that may subsequently be used as terms of an index. In this process,
it is necessary to handle digits, case of the letters, punctuation marks etc. This might
seem like a very straightforward operation, but it might introduce difficulties. An exam-
ple is hyphens. Breaking them up into separate words might destroy the meaning (i.e.
B-52 split up into B and 52 makes little sense). Numbers are also difficult to categorize

22

MSc thesis - The use of Levenshtein distance in computer forensics

and may not give any meaning without a context. It might be a date, a distance or a
monetary sum, but without any context it is difficult to infer the correct information. In
[32], it is suggested to drop word with sequences of numbers unless specified otherwise.
Punctuation marks are usually removed, and the text is often converted to either lower
or uppercase. There are however situations where this poses some problems, e.g. when
indexing source code or dealing with case sensitive material, and using advanced lexical
analysis might also have a significant effect on retrieval time. This might weaken the
arguments for using lexical analysis altogether.

2.3.7 Stemming

The main idea behind this technique is to remove any affixes from a word reducing it to
a grammatical root called a stem. As an example, the word viewer would be reduced to
view, and should return documents containing viewer, viewing, preview, and review. By
using this technique the overall index-terms is reduced as a result of fewer words, which
should improve search performance in theory. The difficulties in constructing a stemming
function vary with the language in question, but it has been shown that stemming might
improve performance in amongst other Dutch [47], Swedish [48] and the Slovak lan-
guage [49].The use of stemming in the English language however has shown somewhat
more unclear results [50]. A very popular stemming algorithm was presented by Porter
[51]. It is based on the use of a rule set in order to correctly create a stem from a word
based on different affixes.

2.3.8 Eliminating stopwords

As mentioned, there are words that are quite common and that exist in a large number
of documents. These would qualify poorly as candidates for describing the content of
a document, and should therefore be eliminated. Prepositions, articles and conjunctions
are suggested as possible stop words. There are several ways to implement this technique,
the simplest consisting of lists with words that should be ignored as indexing terms. The
use of stop words would also help reducing the size of the structure needed to index the
documents. The use of this technique may, however, lead to problems when searching for
specific phrases e. g. to be or not to be as we risk filtering out every word except be. Very
short words like I are also often dropped, but exceptions lists are often used in order to
find short versions of company names etc [47].

2.3.9 Thesauri

In order to reduce the size of the index associated with a set of documents, [32] suggests
using careful index term selection and thesauruses in order to reduce the overall number
of words stored in an index structure. An approach taken in [52] is to select nounces,
believed to be most appropriate for categorizing document content within a given syn-
tactic distance limit and group them together. This makes sense in English text as more
than one noun is often combined to describe concepts like computer security and account
book. By doing this the number of words stored in the index vocabulary is reduced with
the consequence of reduction in space requirements. If the documents are within some
limited field, like computer science or medicine, [32] further suggests the use of thesauri.
In its most essential form, such a thesaurus consists simply of a precompiled file listing

23

MSc thesis - The use of Levenshtein distance in computer forensics

important words or terms within a given field, and for each of these words a related
set of terms. The index terms are often categorized in hierarchical structures making a
word like jacket a subgroup of garment. This should in theory improve the capabilities of
finding relevant matches to a query, given that the relationship between words or voca-
bulary matches that of the user submitting the query, which may not always be the case.
Using a thesaurus should lead to less noisy search results, as the retrieved documents
may be based on concepts rather than separate words. However, given a more general
set of documents or data, the construction of a thesaurus might prove difficult, as there
might not exist a body of knowledge, given that the dataset is either too large, or changes
too frequently [47].

When using the pre-processing techniques mentioned above, the performance and
precision of the search results should be improved. However, according to [32] the use
of these techniques in practice might not always yield performance and precision advan-
tages, causing several of the search engines used for amongst searching the web to drop
text operations altogether and revert to full text indexing. Complex lexical analysis will
impact retrieval time, eliminating stop words might cripple a search query by removing
a large part of it, and general thesauruses may not be available when handling a docu-
ment set consisting of documents from a general domain. Even though full text indexing
requires higher processing and storage capabilities, it is still a simpler process, which
often provides resulting documents that closer maps to the expectations of the user.

2.3.10 Text pre-processing in computer forensics

In a computer forensic context, the basic problem are more or less the same as the pro-
blems adressed by document pre-processing and indexed searching; searching a large
dataset for some specific queriy. However, the use of these techniques is not always at-
tractive. If we were to formulate e.g. a thesaurus, we have in general a large dataset
with a large amount of general data, ranging from help-files to office documents and
e-mails. It is generally not often that a set of documents from a computer forensics case
consists of enough documents from some narrow field to justify the use of a thesaurus. In
a typical web search, it is desirable to return the best possible set of documents, but it is
usually not essential if one document with relevant information is left out in the resulting
set. However, in a computer forensics case, it would be of great importance that every
document relevant to some search query would be returned. It may be argued that the
error severity is asymmetric. Returning one irrelevant document would be far better than
leaving out a relevant document, with the possible loss of evidence as a result. Further,
both indexing and document pre-processing are to a large extent based on the concept
of documents. Sorting and extracting information on a document basis makes sense in
most contexts such as web information retrieval or database indexing. However, this is
not always the case in computer forensics. This thesis is concentrated around raw data
searches, which may be combined with higher layers searching where document may be
used as the appropriate search unit. But in order to find deleted documents and informa-
tion in slack space and cluster tip areas, there are few alternatives to raw data searching.
This removes more or less the notion of a document all together, as all information is
read as a stream of bytes in typhically 512 byte blocks, removing a large part of the
metadata and the structure of the data. In web searches, it is possible to make use of

24

MSc thesis - The use of Levenshtein distance in computer forensics

structural elements in the documents in order to categorize them. Interpreting tags like
headers of different sizes, tables, bullet lists and linked words, as well as reading docu-
ment encoding improves the possibilities for text pre-processing. When performing raw
data searches in computer forensics, an apparently simple task like finding the end of a
document may pose difficulties, both because of the large number of different possible
formats the data may have, and secondly as a result of file fragmentation, separating file
content over multiple non-contiguous sectors. It may however be argued that it should be
possible to perform some analysis and pre-processing on the raw data and subsequently
make use of features like structural elements. Although possible, this would have an im-
pact on search performance.

2.4 On-line searching

In the following sections the alternative to indexed searching; on-line searching is pre-
sented, including exact and approximate pattern matching, in order to etablish their
suitability in a forensic raw data search.

2.4.1 Pattern matching algorithms

The alternative method for searching without the use of an indexed data structure mainly
involves the use of some pattern matching algorithm. The problem of finding whether
pattern P is a substring of a large text T has been studied for decades, and there exist a
large number of different search algorithms and variations to solve this problem. Some
of the most classical search methods, however, are often referred to as brute force, Boyer-
Moore and the Knuth-Morris-Pratt algorithm. The brute force approach, also referred to
as exhaustive search, is regarded as the most basic of the pattern matching algorithms.
It simply checks all positions in the text T for matches to the pattern P, advancing one
unit at a time. According to [53] the algorithm has a O(nm) running time, however its
average case should be O(n). Although not optimal, this algorithm has been extensively
used, with simplicity as a main feature. In order to improve the search performance,
Boyer and Moore published an improved algorithm that is significantly faster, given that
the alphabet may be fixed and of finite size. Two central ideas in the algorithm are the
use of two heuristic methods, referred to as the Looking-Glass heuristic and Character-
Jump heuristic [38]. The looking-glass heuristic matches from the end of the pattern
and moves towards the start of the pattern, while the Character-Jump heuristic works by
checking whether a mismatched character in text T exists in the pattern P. If it does not,
the pattern is shifted past that characters position in T, as a match between the current
start of P and the mismatched character cannot be found. If the mismatched character
does however exist in the pattern, a shift of the pattern until the mismatched character
and the corresponding character in the pattern is aligned. These techniques often make
the algorithm capable of skipping a large number of comparisons, improving the per-
formance. As pointed out by [53] the algorithms are least effective when dealing with
binary strings and very short patterns, in which case the Knuth-Morris-Pratt algorithm
may be a better choice. This algorithm is based around the idea of reusing information
from previous comparisons between the text and the pattern. A central concept is the
use of a failure function that is computed in order to predict the characters that may be

25

MSc thesis - The use of Levenshtein distance in computer forensics

skipped safely when a mismatch is detected between the pattern and text. This function
is calculated by pre-processing the pattern and calculating the longest prefix of P that is a
suffix of P[i..j]. The running time of the algorithm is O(n+m), where n is the text length,
while m is the pattern length [38].

A problem with using exact pattern matching algorithms to search multiple data
sections or buffers are matches that crosses buffer boundaries. Even with only one byte
of the search query crossing over between buffers will result in a mismatch. You may
either accept this, and risk missing matches in a data set, or implement a solution where
parts of the previous buffer is preserved in order to solve this. When using an appro-
ximate search algorithm discussed below, a search match crossing a buffer border with
say a byte will still recieve a score indicating a close match. In a forensic context, loca-
ting every existing piece of evidence in a data set is important, giving the approximate
algorithms an advantage.

2.4.2 Approximate pattern matching

Although the matching algorithms will locate a pattern P in the text T, allowing errors
in the results is often of great value. Misspelling of words as well as words within a
given semantic proximity are often of interest, including, and perhaps especially in the
field of computer forensics. Searching for evidence and getting evidense in the answer set
may be highly desirable, as is the case when you are searching through a data set for
matches to some search query. This is known as approximate string matching or string
matching allowing errors. The problem may be referred to as finding the longest com-
mon sub-sequence (LCS) problem, contrary to the longest common substring problem
for exact matching algorithms. Although definitions vary, finding the longest common
subsequence is defined in [38] as follows: given a string X = x0, x1, x2...xn−1 , a sub-
sequence of X is a string that has the form xi1, xi2...xik, where ij < ij + 1. Following this
definition, a subsequence must contain all the characters from X in correct order, but not
necessarily in direct sequence. For example, the string tree is a subsequence of totally ran-
dom example, but not a substring as the elements are non-contiguous. Given two strings,
performing a search which includes searching for similar but not necessarily equal string
may be seen as solving the problem of finding the longest common subsequence. One
way to do this is obviously to calculate all possible sub-sequences between strings P and
T and selecting the longest subsequence present in both strings. This is however clearly
a very inefficient strategy as the number of sub sequences may be quite large, yielding
an algorithm running in exponential time. In order to improve this, the use of dynamic
programming has been proposed as a solution. By using this technique, it is possible to
solve given problems that are too demanding for brute-force approaches due to an expo-
nential number of possible solutions. By breaking these problems into smaller subsets
using typically a matrix to store temporary results, it is often possible to get an algorithm
running in polynomial time.

Dynamic programming is usually used in order to perform some optimization of a
problem that may be divided into simpler sub problems, as is the case with the LCS. In
order to be able to use dynamic programming, the optimal solution to the main problem
must further consist of a combination of the optimal sub-problem solutions, and solutions
to unrelated sub-problems may have sub problems in common, as pointed out by [38].

26

MSc thesis - The use of Levenshtein distance in computer forensics

Several algorithms for string matching allowing errors have been proposed, amongst
others [54, 55, 56] and different optimizing techniques have later been released.

A large number of pattern matching algorithms are based on the use of a distance
measure called edit distance or Levenshtein distance. The main idea behind this algo-
rithm is the use of a special distance metric in order to measure the similarity of two
strings with different lengths. By defining the elementary operations of insertion, dele-
tion and substitution, a measure of the minimum number of operations required in order
to transform one string into another is created, referred to as the edit distance. The first
algorithm using this approach and dynamic programming is attributed to [57]. Edit dis-
tance or Levenshtein distance has been used for various purposes ranging from the use
in the Unix command diff to find differences in files, spell checking for guessing a close
match to a word in a dictionary, molecular biology for finding similar strings of DNA as
well as for detecting plagiarism in written works and code.

Alternative solutions for evaluating similarity exist, and Broder in [58] suggests the
use of two metrics for calculating the resemblance (roughly the same) and containment
(roughly contained) within two documents in order to evaluate how well their content
matches. By using a sampling mechanism on a per document basis and obtaining what
is referred to as a sketch of a document, resemblance and containment may be computed
between two documents in linear time. This approach scales well with large data sets,
and may be used in, amongst others, web searches, as a large amount of documents on
the web share similarities.

2.4.3 Regular expresisons

In order to search for approximate matches or data with a special structure, use of re-
gular expressions is frequently used. This technique is well known and has been used in
a variety of systems, one of the most used being in the Unix grep utility. The technique
is not new and was first described by Stephen Kleene [59] more than 30 years ago, and
has been used for a variety of pattern matching purposes since. The main idea behind
the method is to describe or express a search query as a structure more than as a pure
text or a search word. By using regular expressions one may be able to formulate quite
complex queries within a single command. The available operations when constructing
a regular expression, are mainly alteration, quantification and grouping. By creating an
expression like 1024.(512|256|768).2048 a search would match 1024 followed by any
of the possibilities within the parenthesis and 2048. Further refinement may be perfor-
med by specifying the number of times a certain letter or portion of the query may be
present. As an example “lo+se” would match both lose, loose and looose, 06*5 would
match 05, 065, 05 and 0665 etc. The “?” operator defines the character to be present at
most one time so “Th?omas” would match both “Thomas” and “Tomas”. So far a pattern
allowing small arbitrary changes to any character in the expression have not been found,
and would be quite complex to construct. As we see, regular expressions prove useful
as a search tool, but the patterns often become quite complex. In order to check a valid
e-mail address format the following expressions could be used “[

¯
A-Z0-9._%-]+@[A-Z0-

9._%-]+[̇A-Z]2,4’
¯
’. This increases the probability of committing errors when creating

queries, possibly causing evidence to be overlooked, and the expressions are generally
difficult to debug. As this method is not user friendly, further refinements to the search

27

MSc thesis - The use of Levenshtein distance in computer forensics

methods would be welcomed in order to reduce error rates. Further, current solutions
are unable to handle special characters like æøå, and they will have to be represented
by an escape character and a hex value. This further reduces the overall usability of the
tool in a multilingual setting like computer forensics, although this will probably change
in the future, as the use of Unicode increases.

2.5 Data reduction methods

One of the possible ways of processing a data set more efficiently is by using some met-
hod for data reduction. The main idea behind the existing data reduction methods is
basically to eliminate what may be considered as known or unimportant data from furt-
her inspection or searching. In the sections below, the file filtering and data aggregation
techniques are presented.

2.5.1 Known file filtering

This data reduction technique is used successfully in current solutions. The main idea in
this data reduction method is to exclude known static data from searching and further in-
vestigations. A typical software installation on a standard workstation computer consists
of a known operating system with its software package for various tasks, as well as an
office suite and a suitable set of internet applications. As these are largely standardized
applications from a limited set of vendors and often contain a known set of files with
precompiled code, a majority of them should normally not change from one installation
to another. This presents an opportunity for excluding the files if they have not been al-
tered, as it is not likely that they would contain information relevant to an investigation.
A knowledgeable user may of course use this very point to conceal information in what
seems to be standard files like dll-files or executables. In its simplest form, a user may
rename a text file to a standard office file and replace it with his manipulated files, even
though this have been made more difficult with integrity checkers like [60, 61]. In order
to solve this problem, the use of hash libraries have been introduced. By hashing known
files with a hashing algorithm, a checksum is generated and stored in a database. When
investigating a digital media, checksums of known files are calculated and compared to
the files in the hash database. Any changes made to a file would result in different check-
sums, and the file cannot be excluded. By creating such hashing databases of known
programs, the size of the data set to investigate may be reduced by several gigabytes,
depending on the installation. This reduction comes of course, at the cost of the time
needed to generate checksums and compare these against the hash database. This is the
idea behind the national software reference library project [62] started by NIST. Their
work has resulted in a hash database for known file filtering that by December 2004
consisted of more than 10 millions MD5, Sha-1 and CRC32 hash-entries covering a wide
range of well known software. As the case loads increase at a steep rate [63], these hash
libraries are a welcomed aid to reducing the data amounts to be searched, but at the
same time they need constant updating, and cannot be applied to dynamic files where
the content is different with each installation. Further, this method is unsuitable for use
with unallocated data, as it depends on the concept of a file.

28

MSc thesis - The use of Levenshtein distance in computer forensics

2.5.2 Data aggregation

Another method for reducing the total amount of information that needs to be processed
in order to gather eletronic evidence, may be referred to as data aggregation.

The concept of data aggregation is based on the idea of correlating and summarizing
data in order to aggregate a large set of smaller information units to more high-level
entities expressing a broader concept. A typical example of this is log correlation [64,
65]. Every time a user logs into a system a large amount of fine-grained information is
often recorded in log files. Details regarding the authentication of the user, assignment
of IP-addresses, connections established to network drives as well as file accesses are
typical examples. Inspecting these logs by hand may be a tedious job, and is not viable
for large number of users. By correlating the events in the log files into more complex
units, the total investigation workload may be reduced. This could be performed by using
an automated tool for parsing the logs and building time-lines of aggregated data or
event trees. Instead of having to deal with the large number of detailed fine-grained
pieces of information like a specific entry for requesting an IP-address from a server,
the investigator is presented with an event tree simply stating that the user logged in
successfully at a specific time and restored network connections. This method resembles
somewhat the concepts discussed in the abstraction layer section. Technical intricacies
are hidden for the user, by presenting a more abstract but user-friendly environment.
Instead of having a log containing a large number of files accesses and authentication
requests, data aggregation will result in summarized entry stating e.g. that “Peter copied
folder X to the networked server”. Taking this one step further, one may try to create
a timeline for a system with condensed events separated by time stamps, reducing the
number of information to be processed by the investigator.

This method is however, not without its flaws. The same problem as with abstraction
is also valid when using data aggregation. As information on a lower level is condensed
or transformed into higher level data entities, the risk of interpretation errors is present.
Misinterpreting the information itself, as well as errors or bugs present in the data ag-
gregation tools would increase with every step of abstraction. Further, there exist a large
number of different log formats, as well as log options. The log level, or number of events
or details recorded in the logs, vary both on an application level, as well as with different
system policies. A data aggregation tool will have to handle and correctly interpret the
large number of log formats, covering everything from file system details to network logs
and proxy-server usage. Further, such a tool must also handle the event of a corrupted
log file and other erroneous situations.

Although this technique may prove a useful tool for data reduction, and for correla-
ting events on a system, it does not reduce or exclude portions of the actual data to be
searched, but merely aggregates into a more condensed form. It also has its weaknesses
regarding evidence located in raw data. As these methods to a large extent are dependent
on existing logs, events that evade logging will not be recorded. In a system almost eve-
rything may be logged, but such a system would be unusable for most practical purposes,
as there is a distinct performance hit to logging, storing and handling a large amount of
transactions. As a result, the log may record that user X created, accessed, printed and
deleted a file named A.txt, but it will not record that it contained sensitive financial in-
formation or a death threat. In order to do this, the actual data will have to be searched,

29

MSc thesis - The use of Levenshtein distance in computer forensics

by for instance the use of a search algorithm.

2.6 Commercial solutions

As the field of computer forensics and forensic investigations have evolved and the need
for automated tools helping with the process has increased, several commercial software
packages for computer forensics have been created. Although a large number of pro-
grams for different forensic tasks exist, two of the most well known packages are the
Encase package from Guidance Software [2] and Forensic Toolkit from Accessdata [3].

The Encase Enterprise product has grown into a large package with various modules
consisting of IDS integration, networking capabilities for file copying and information as
well as more traditional forensic tools like disk imaging and tools for searching for evi-
dence in a data set. According to the whitepaper [2] the solution is able to handle several
different parameters when searching, such as different text encodings like Unicode and
its sub-encodings as well as left-to-right encoded text, and text in different languages
like the Japanese Kanji or Arabic. Further the software is claimed to include more data
recovery centric file reconstruction modes and searches for special types of files based
on the signature-header of known file formats. In order to specify search queries furt-
her, the software support regular expression-like commands and Boolean operators. The
available whitepapers do not reveal any specifics regarding how the searches are actually
implemented or what search algorithms are used. One might speculate that this might be
due to the fact that this knowledge is seen as a trade secret and therefore not disclosed,
making it difficult to establish how the software searching actually operates. Regarding
the data reduction capabilities, the technique of hash sets of known files are used.

According to the available information about the searching capabilities of the Forensic
Toolkit software, the program has two separate search modes live search and indexed
search. The live search option enables searching without the time-consuming overhead
of creating an index structure. This mode enables searching by using regular expressions
as well as non-alphanumeric characters, and regular key words using an on-line search
method. The support of Unicode characters in the solution is missing, with only the
option to encode an ISO-88591 string into Unicode version UCS-2 little endian. The
indexed search method licences technology from dtSearch [66], a vendor of commercial
search components. This search method uses a full index of the data, and according to
the documentation contains all discrete words or number strings found in the data set.
The method does not however index symbols including characters like “. , : ; ’̈ !̃ # $ % &̂
= + .” reducing the searching capabilities somewhat. The algorithm for selecting what
constitutes text is not known. In this mode however stemming, use of synonyms, fuzzy
searches allowing some mismatch between data and search query and phonic searching
including words that sound similar is included, in order to make broader searches. The
possibilities of Boolean searching as well as giving specific terms higher weights are also
included. The term weighting functionality in the program are calculated automatically
over the word distribution of the data set, but may be manually overridden.

According to the manual [67] the index size of an 8 GB data set would be 2 GB while
the needed working space would be 4 GB. With datasets in excess of 30 GB, the index
size would be 25% of the data size and the program would need a working space of

30

MSc thesis - The use of Levenshtein distance in computer forensics

50% of the data set size. Although the algorithms used are documented as both indexed
and non-indexed, and some capabilities of the search components have been described
no further information about what algorithms have been used in the programs is reve-
aled. Besides the use of known file filtering similar to the Encase solution, what data
reduction techniques are used are unknown to the public. Several elements are refer-
red to as proprietary, making it difficult to assess what searching algorithms and data
reduction techniques are being used.

In addition to large commercial solutions, there are also several open-source utili-
ties in use. These tools vary from more general purpose Linux distributions like Knoppix
[68] and standard Linux file system tools and utilities, to more specialized packages.
One of the most popular of the latter is an open source project named The Sleuthkit
[69]. This is a collection of Unix-based command line utilities, focusing on file-systems.
These utilities support a wide range of file-systems and are used to analyse the content of
hard-drives and other media in order to locate various forensic evidence. Amongst others
these utilities are able to locate deleted files, and display various file-system meta-data
and structures, as well as organise files by type for inspection. In order to improve the
usability of the solution, a graphical user interface called Autopsy has been added. This
additionally provides the search capabilities of the solution, as well as case management
and a timeline feature used to correlate and present events like file manipulations on a
time-line. Search functionality in the application is based on keyword string searching
using the grep utility, utilizing regular expressions. This is similar to the commercial so-
lutions previously mentioned, and there is both an option for direct on-line searching
and the use of indexed search. When building the index a rudimentary search using the
strings utility is used to build a text index. Regarding its data reduction capabilities, the
known file filtering has been used, but according to the documentation [70] this support
has been temporarily removed.

2.7 Applications of Levenshtein distance

The algorithm used in this thesis is the edit distance or Levenshtein distance algorithm to
measure similarity between strings. This algorithm is currently being used for a number
of purposes. In [71] Jiang et al. make use of the edit distance algorithm in a biology set-
ting in order to measure similarity between two RNA sequences with varying arc sequen-
ces. The algorithm is also used to solve the problem of reference resolution, by Strube et.
al. in [72]. By using the minimum edit distance, a significant improvement compared to
the standard approaches was achieved. The resulting model was additionally language
and domain independent, which was not the case with the original approach. Another
area where the algorithm has been applied is in automatic evaluation of a machine trans-
lation system. In [73] an automatic ranking method is suggested, using multiple edit dis-
tances on sentences manually ranked by a human, from which multidimensional vectors
is used to build a decision tree. This decision tree is then used to rank the output of the
machine translating system. In [74] the algorithm is used in order to analyse similarities
in the results obtained from card sort experiments. In these knowledge elicitation expe-
riments, participants are asked to sort a set of items based on their own criteria. By using
edit distance as a similarity metric for different card sorts, common concepts amongst

31

MSc thesis - The use of Levenshtein distance in computer forensics

individuals with different terminology were measured. Levenshtein distance is used for
several other purposes as well, including plagiarism detection, spell checking and file
comparison. Allthough the algorithm has been widely used for different purposes, it has
not been used previosly in a forensic data reduction context.

32

MSc thesis - The use of Levenshtein distance in computer forensics

3 Levenshtein distance in computer forensics

This chapter presents our approach to improving the handling of large data sets in a
computer forensics investigation. The main idea and theory for our later experiment is
presented, as well as the chosen algorithm. In the final section the different requirements
for a forensic search method are discussed.

As previously pointed out, there is a need for improved search techniques and capabili-
ties within the field of computer forensics. The data amounts in computer forensic cases
are increasing, and in order to perform adequately and preserve the quality of a digital
investigation with the given time limits, new methods for searching should be develo-
ped. One way of achieving this is by performing data reduction, which is the approach
taken in this thesis. As pointed out in Section 2.5, there are some existing methods for
data reduction, but they all have their set of deficiencies. The main idea in this thesis is
the use of a fast approximate searching algorithm in order to focus on interesting data
areas of a forensic data set. Our hypothesis is that by locating the approximate position
of some interesting pattern in the data set, the remaining parts of this data set may be
excluded from further searches, effectively achieving data reduction. In our approach we
focus on the use of search queries or keyword searches as the pattern for defining the
data to be regarded as interesting. By storing the position or index of probable matches
to a search query, these recorded dataset positions may be subsequently used for more ri-
gorous searches by more precise search techniques. This should help reducing the overall
time consumption for searching a dataset.

3.0.1 Choice of algorithm

In our approach, the Levenshtein distance has been chosen as the search algorithm, but
other numerous algorithms for searching exist. To categorize, search methods may be
characterized as either being syntactic or semantic. A syntactic search method is used to
locate a sequence of characters in some data set, while a semantic search method tries
to find relevant data based on input from the user. Semantic results are based on some
page ranking method, and the returned documents may not even contain the search
query. This is the approach taken by, amongst others Google [75]. The fact that a page
ranking method will return a set of results based on a query and rank these according
to relevance, would be considered valuable properties when searching a forensic data
set. On the other hand, using an algorithm that returns matches based on some similar
concept, but of which one has no interest, would have its distinct drawbacks. These
systems are also based on indexes, with the incurred overhead that implies as discussed
in Section 3.2.7.

The most common syntactic search method is the string matching algorithm. These
algorithms have been studied for more than three decades, and may be described as the
problem of finding all text locations where a given pattern p = p1, p2..pm with length
m occurs in a text t = t1, t2..tn with length n. p1 and p2 are two strings formed over

33

MSc thesis - The use of Levenshtein distance in computer forensics

the same finite alphabet L such that m < n and tk+i−1 = pi for 1 <= i <= m [76]. As
mentioned, the most common pattern matching algorithm besides exhaustive search, is
probably the Knuth-Morris-Pratt found in [77]. Pattern matching algorithms will find a
pattern or search query in a long string or data set. This would be considered a useful
property when searching for a search query in a forensic data set. However, it may often
be difficult to know the exact search query to use. Spelling errors are common, and spel-
ling variations exist. Searching for “blueprint” with an exact string matching algorithm,
would not result in a data set containing “blue-print” or “blue print”. Further, a search
for “Agathe” would miss any occurrence of “Agate” etc. Due to this, a combination of the
two methods would be preferable. The results should be ranked by relevance, but at the
same time be closely linked to the keyword and without the overhead of creating large
indexes or dictionaries. As previously mentioned, the risk of providing imprecise search
results in computer forensic is asymmetric, making it far worse to miss a relevant search
result, than providing an extra search match with less relevance. As a result, the use of
a search algorithm capable of handling approximate as well as exact results is of great
value. The Levenshtein distance algorithm satisfies these properties, which made this al-
gorithm particularly useful and our choice for use in this thesis.

3.1 The Levenshtein distance algorithm

The Levenshtein distance or edit distance algorithm was first published as early as in
1966 [78]. It is an approximate string matching algorithm, that is used to solve the pro-
blem of finding substrings of a pattern p = p1p2 in a text t = t1t2..tn which have at
most e > 0 differences between pattern and text, and should therefore be suitable for
searching in a forensic data set. The basic principle of the algorithm is to measure the si-
milarity between two strings. This is done by calculating the number of basic operations
or point mutations necessary in order to make the two strings equal [79]. The mutations
in the algorithm may either consist of a substitution, deletion or insertion of a character,
and the Levenshtein distance d(p,t) between two strings is the minimum number of these
edit operations required to make p = t. For example, if p = “moose” and t = “moody” the
Levenshtein distance between p and t would be d(p,t)=2 as the strings could be made
equal by using two substitutions. There are several versions of the algorithm, but the ver-
sion used in this thesis is based on the dynamic programming algorithm for Levenshtein
distance as explained by amongst others Allison in [79]. The dynamic programming solu-
tion breaks the main problem (difference between the strings) into smaller sub-problems
(difference between characters) and finds an optimal solution to the sub-problems. Then
the main problem is solved by calculating a matrix of size p × t and using the distance
scores from the previous sub-problems in order to compute the optimal solution to the
main problem; finding the distance score between the strings. To give an example let us
consider the strings p=“matching” and t =“meaning”. The algorithm can be described in
the following steps [80]:

• Set n to be the length of p, and t to be the length of m. If both are zero, exit

• Create a matrix with m rows and n columns, and initialize the first row and column
to 0..m and 0..n respectively

34

MSc thesis - The use of Levenshtein distance in computer forensics

• Examine each of the characters of p and t from 1 to n and 1 to m.

• If p[i] = t[j], the characters are equal and the transformation cost is 0. If p[i]! = t[i]

the characters are not equal, and the transformation cost is 1.

• The value of cell d[i, j] is set to the minimum of d[i − 1, j] + 1 (the cell above +1),
d[i, j − 1] + 1 (the cell to the left +1), or d[i − 1, j − 1] + cost (the cell diagonally
above and to the left)

• Step 3-5 is repeated until the distance score is found in cell d[n, m]

An example of such a matrix calculation is shown in Table 1, showing the distance score
(4) in the lower rightmost cell. The complexity of the algorithm is O(|s1|∗ |s2|), i.e. O(n2)

m e a n i n g
0 1 2 3 4 5 6 7

m 1 0 1 2 3 4 5 6
a 2 1 1 1 2 3 4 5
t 3 2 2 2 2 3 4 5
c 4 3 3 3 3 3 4 5
h 5 4 4 4 4 4 4 5
i 6 5 5 5 5 4 5 5
n 7 6 6 6 5 5 4 5
g 8 7 7 7 6 6 5 4

Table 1: Calculation of the Levenshtein distance between the strings “matching” and “meaning”
using the dynamic programming approach.

given that the lengths of the two strings s1 and s2 are both n. Space-complexity is also
O(n2) if a complete matrix is kept in order to find an optimal alignment [79]. However,
this may be reduced by allocating only two coloumns in the matrix, and reuse this in
order to reduce the space complexity to O(n) if only the distance score is needed, as in
our case.

3.1.1 Using Levenshtein in computer forensics searches

As previously discussed, a searching algorithm used in computer forensics should be able
to find approximate matches that are close to a search query. Since Levenshtein distance
is an approximate search algorithm, the result list scores would not only contain exact
matches as in exact matching algorithms, but also indicate the similarity between the
search query and a variable portion of the data set. When using the Levenshtein dis-
tance algorithm, a misspelled word like “kontract” or “Tomas” would get a low distance
score when searching for “contract” or “Thomas”, indicating a close match, since the edit
distance between the two strings is only 1. Unrelated strings however, would receive a
high distance score, since they share few or no similar characters or bytes, and could
subsequently be ruled out as a mismatch. Misspelling words on purpose could also be
used as a light way of word obfuscation by a possible perpetrator, trying to avoid being
detected by a search tool. It could be argued, that a more obvious way of hiding the data
would be by using an encryption tool, but the existence of encrypted data or encryption
tools may raise suspicion to a much larger extent than by simply “hiding in the crowd”.
Simply adding spaces between the characters writing “p l a n B” instead of “planB” would

35

MSc thesis - The use of Levenshtein distance in computer forensics

be sufficient to avoid detection by an exact string matching algorithm. By using the Le-
venhstein distance algorithm however, we would still be able to locate this string in the
dataset when searching for “planB”.

A general problem with using keyword searches is that they may produce a large
number of results. For instance, performing a broadly formulated grep search might
result in a vast number of more or less relevant search hits in an unsorted result set.
When using the Levenshtein algorithm, this problem is considerably reduced due to the
fact that each edit distance calculation results in a similarity score. Storing these scores
will result in a ranking function, where the results are sorted according to the similarity
of the search query. In this way exact matches, having an edit distance score of 0 could
be processed first, and subsequent searches could process the results having a distance
score of 1 indicating a close but not exact search match and so on. The most probable
hits may be processed first, increasing the chances considerably for finding the most
interesting data areas in a more efficient manner. As the ranking function is a native
feature of the algorithm, no complex rule set for specifying missing characters etc. will
have to be constructed. A simple illustration of how the results ranking might be done
is presented in Figure 10. The use of the distance scores may also be used as a flexible

Figure 10: Simple illustration of how results from a search query may be sorted by similarity, each
node representing a distance score and every leaf an index to a position in the data set.

way of determining how much deviation from a search term should be allowed. There
is a trade-off between efficiency and preserving the appropriate amount of approximate
results. In order to search a forensic dataset, a certain amount of data is read from the
data set and compared to a search query. By specifying a maximum distance threshold,
irrelevant results or data set chunks may be dropped based on the distance score, in
order to reduce any unnecessary processing of results.

Another area within forensics where the use of the distance scores would be useful is
in the process of correlating information split between multiple sectors of raw data. As
an example, say that the search query “www.badhost.com accessed by uid 6” is stored
within two non-contiguous sectors of data, say a log entry with “www.badhost.com acc”
at the end of one sector and the data “essed by uid 6 21:50” is stored in the beginning

36

MSc thesis - The use of Levenshtein distance in computer forensics

of another. By locating the first sector containing “www.badhost.com acc” with an edit
distance of 14, one would know that in order to find a match, the missing sector would
have a distance score of 19 in order to contain the missing information, as shown in
Figure 11. By using this information, the search is narrowed to focusing on only sectors
with this distance score.

Figure 11: By using the distance score, the process of correlating data in fragmented sectors could
be simplified.

3.2 Our approach

As described in the previous sections, the Levenshtein algorithm has characteristics that
make it suitable for searching a computer forensic dataset. And the following section will
outline our approach and main principles of use of the algorithm.

The main idea in this thesis was to find out to what extent the use of the Levenshtein
algorithm could be used to reduce the needed time for searching through a data set, using
a search query or keyword. The main focus is on the possible data reduction qualities
of the algorithm, when using key word searches in a forensic raw data set. The main
hypothesis is that by dividing the data set into sections or buffers of a given size and
calculating the edit distance between the buffer and a search query, a decision on whether
or not the buffer contains an exact or close match to this search query could be made,
and by focusing on buffers with a match, data reduction is achieved. The decision on
whether a match is found within a buffer or not, is based on the resulting edit distance
score, and the score as well as the position of the buffer in the dataset are stored in
a database. The results from this process will then be used to perform more precise
searches within the stored buffers with a low distance score. By focusing on the buffers
or areas in the forensic data set with a very low distance score, indicating a large degree
of similarity, areas recognized as uninteresting could be ruled out. This should result in a
data reduction effect, as data unrelated to our search query could be skipped. A similarity
threshold for acceptable deviation from the original query could be set, and thus further
reducing the number of buffers that need to be stored.

More technically this could be described as using the search keyword s1 and reading n

bytes from a data set s2, and computing a distance score between the two strings s1 and
s2. The distance scores serve as an indication of whether or not a match for the keyword
is present in the buffer at a given offset p in the data set. In the next step we would
advance n bytes in the dataset and repeat the procedure, storing the intermediate results
until the end of file is reached. At the end of the search a list of results is produced, and by
sorting the resulting list according to the distance scores, the resulting list would present
the closest matches at the top. This would help focusing on buffer positions containing

37

MSc thesis - The use of Levenshtein distance in computer forensics

a match and skipping buffers that are irrelevant to the search. The secondary search
phase may be performed using any chosen search algorithm, and is independent of the
first search phase, increasing the flexibility of the solution. An overview of the approach
taken in this thesis may be found in Figure 12.

Figure 12: Overall system architecture of our approach: Edit distances are used to focus attention
to areas in the data set containing matches to a search query.

3.2.1 Choosing abstraction level

As mentioned in the first part of this thesis, data are normally interpreted by several
layers before they are presented to a user. In our approach we are interested in searching
what is often referred to as ambient data. This is unallocated data, data in slack space,
deleted files and similar. As these data no longer have references in the file system, it
follows that the abstraction level in our approach should be below the file system layer,
handling raw data at the lower byte level. By doing this we access the data directly
on a sector by sector level. A string-level approach was also considered, but the strings
would still have to be interpreted on a byte level. By choosing a byte level approach
the searches are not bound by the representation within a given string. Not all byte
values have printable character equivalent, making it difficult to input searches for these
as a string. As an example, the first 32 ASCII-values are mostly control bytes, value
25 represents “end of media”, 21 represents “device control 1” and value 7 represents
“bell”, or a speaker beep. Further there are a large amount of different characters sets,
although most of them are compatible with standard ASCII. By focusing on the byte level,
it will also be possible to search for data headers and structures as well as strings of text.

38

MSc thesis - The use of Levenshtein distance in computer forensics

Searching for a specific byte structure representing anything from a part of a compiled
program file to a “magic number” identifying a specific file type would be difficult if
working on a string level.

3.2.2 Selecting the buffer size

When implementing the Levenshtein distance algorithm in a search, the size of the input
buffer is an important factor to consider. This buffer is filled with data from the dataset
for each distance score calculation, which to a large extent could influence the speed
and accuracy of the implementation. Selecting a small buffer size, would significantly
increase the number of distance-scores and positions needed to be stored and processed
by the program, as the number of buffers or “resolution” of the search should increase.
However, selecting a small buffer size would at the same time yield the most precise
results. If we select a large buffer size, there is a greater chance that the buffer would
contain a permutation of the search word, creating a lower distance score even though
a correct match could not be found. The probability of this happening is linked with
the length of the search keyword as well as the buffer size. Selecting bigger buffer si-
zes should increase the speed of the implementation to a point, as the total number of
buffers or units to record would be fewer, but on the other hand the size of the distance
matrix that needs to be calculated for each buffer would increase rapidly increasing the
number of calculations being made. The buffer size affects the different parameters like
disk access, CPU-load and memory consumption, so selecting an “optimal”, or as close to
optimal buffer size as possible is important in order to find the balance between the dif-
ferent computational resources. The main point in this experiment is to use Levenshtein
distance to bring the focus to the parts of the data set where a hit is located, for sub-
sequent searches with other algorithms, so in the experiments buffer sizes several times
longer than the length of the string will be used.

Another problem that may be encountered when partitioning a data set into search
buffers is that a search hit may be located at the buffer border. Subsequently, if not hand-
led, this may result in that an actual match with the search query would be split into
separate buffers, and the distance scores would for this reason not reflect a complete
match, since none of the buffers contain a complete search word. A solution to this pro-
blem would be to store x bytes of the previous buffer, x being the length of the search
query length -1 byte. By using an overlapping border buffer in this way, one would be
able to find matches that are located at the buffer border, but this comes with a perfor-
mance penalty. The probability for a border match however is reduced as the buffer size
increases.

3.2.3 Program Functionality

To implement the program as described above, we have chosen to use the Java program-
ming language. The reason for choosing this programming language was that it is cross
platform and not linked to any particular file- or operating system. This seems like a
suitable choice as the application to be written should be considered experimental and it
would be beneficial to keep it as general as possible. One argument that counts against
the use of Java is performance. As it is an interpreted language, the execution speed is
superseded by other programming languages like C++. However, as the performance

39

MSc thesis - The use of Levenshtein distance in computer forensics

testing of the application is done against an alternative search method written in the
same language, the possible reduction in speed should have less effect on the results.
The application has been written to work with raw data images consisting of byte values,
but regular files may also be searched in the same way. A byte level approach was chosen
due to the fact that the experiment focuses on raw data searches, and to avoid having to
interpret any byte value found as a character, as discussed in Section 3.2.1.

The main functionality of the application is separated into two parts with different
search modes. The first part is for searches using Levenshtein distances, or exhaustive
search to find matches to a search query in the data set while a second search mode uses
either edit distance or exhaustive search as the secondary precise search method.

3.2.4 Search using edit distance

When searching with edit distance, the main functionality follows from the discussion
above, the file or data set is selected, and a search query or keyword is entered. This
search query or keyword is converted into a byte array, depending on the string format,
and n bytes are read from the file into an input buffer. In the next step, the Levensh-
tein distance score is calculated over the two byte arrays and stored in a database with
a reference to the position in the data set, and this process is repeated until the com-
plete set has been prosessed. When this process is completed, the results are sorted in a
descending list according to the distance score.

The minimum edit distance for a buffer when compared to a search string, is the
length of the buffer with the subtracted length of the search query, as this would indicate
that the longer buffer contains the complete search string. So given a buffer of size 1000
bytes and the search query “forensics” of length 9, the minimum edit distance would
be 991, given that the string is encoded in ASCII. When the buffer size is significantly
longer than the search query used as in the previous example, the precise position of
a search match is unknown within the buffer. For this reason, a secondary search is
performed, in order to pinpoint the exact location of the match within a buffer. In the
implemented application, this secondary search phase may be carried out using either
exhaustive search, or by using an edit distance search with a buffer size of 2n-1, n being
the length of the search query. By using the distance algorithm one may find approximate
matches within the buffers being searched, which may be of great value. In order to
find variations or search queries using an exact matching algorithm, the search must
be repeated k times, k being the number of substrings in the query. At the end of the
secondary search phase, the results are presented in a tree-list with corresponding byte
offsets in the data set, and the data area surrounding the match is displayed, for easy
manual inspection.

3.2.5 Exhaustive search

The exhaustive search part is implemented for comparing performance against the use
of Levenshtein distance searching, and uses a basic exhaustive search algorithm, also
referred to as brute force string matching [76]. The algorithm takes some search query
of size n and reads n bytes from the input file or dataset. Subsequently a simple matching
between the search query and the buffer is performed. If no match is found, the buffer is
advanced by one byte and a new match between keyword and buffer content is made. If

40

MSc thesis - The use of Levenshtein distance in computer forensics

a match is found, the position is stored in the application, and the procedure continues
until the end of the file. When this process has finished, the results may be browsed in
a list and file content is displayed similar to the search using edit distance. In both cases
time used, the number of results and other program information is recorded, making
comparing the performance between the two possible.

3.2.6 Implementation

As the program searches in raw data using bytes, an option for encoding the search word
in different Unicode [81, 82, 83] flavours have been implemented. In order to match frag-
ments of Unicode text, and not only complete files or strings, the search word is stripped
from any Unicode headers. Another aspect of Unicode worth noticing is the fact that the
byte representation of a character may vary. A standard ASCII-representation of a cha-
racter uses one byte. In Unicode the same character has various byte lengths according
to the encoding. A UTF-8 uses a variable number of bytes to represent a character, while
the UTF-16 and UTF-32 encodings use 2 and 4 bytes respectively to represent the same
character. The implementation of the Unicode-option demonstrates how the application
may be used to search for encoded raw data, and other forms of encoded content may
be searched using a similar approach.

In order to search for a byte structure an option has been added where one may
choose the input query as a file instead of manually entering the query into a text field.
The program then reads the bytes from the input-file instead of the text query field. A log
file with status information from searches performed is also created, recording timings
and hits and documenting the searches performed with the program.

In edit distance mode there are several options for tuning the search. One of these
is the buffer size, and is by default set to 1000 bytes but may be freely modified. In
order to reduce the overall number of results stored during the search phase, improving
performance, an option specifying the maximum distance to be stored has been added.
Storing results with a high distance score results in a large number of hits with imprecise
content, often with limited value. For this reason one may specify that only buffers within
a given limit from the minimum distance are to be stored in the database. Any buffers
with a higher distance score are discarded during the search process. In order to solve
the problem with matches located on buffer borders, a border-check option has been
implemented. When the search phase is completed, one may also choose the highest
distance score that will be displayed, and searched during the second phase. In this way
one may balance the workload against the approximate searching capabilities.

3.2.7 The use of indexed search

In the current implementation we do not currently utilize any data structures like tries,
traditionally associated with indexed searching, and our searching method does not cre-
ate an index as a result. The use of indexed searching requires a pre-processing phase
before searches may be carried out. There are several reasons for not choosing this ap-
proach. Traditionally the use of indexed searching has mainly been used for searching
large sets of documents like html-documents found on the web or the contents of large
text databases or archives. In this setting the use of indexing makes sense. There is a
large collection of structured data which are often static or semi static by nature. These

41

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 13: Overall program windows in the implemented search application

documents may be categorized by indexing based on their structural properties. One
would usually know that a certain document contained text, and make use of meta-data
like headings, sections and bold text. The interpretation of the data would seldom be a
problem as the file-encoding should be known. In a computer forensics raw data search
one does seldom have access to meta data about any file content, and may not even
know whether or not a document is complete. As data are read as a stream of bytes, it is
not always trivial to identify words and semantics like sentences and paragraphs. Furt-
her, the data set will change for every case. Building an index for each new case bears
a considerable cost, regarding both time and space requirements and must be closely
evaluated. A problem often found in search tools using indexed searching is that we are
unable to get results and perform searches before the complete index has been built.
As an example the Forensic Toolkit [3] suggests using an on-line search mode when we
do not have time to wait for the complete index to be built. The use of an index makes
sense when the indexed data changes infrequently or are updated at moderate intervals,
e.g. the file indexing service in Windows operating system, or slocate utility in Linux as
typical examples. When data change too frequently, the usefulness of indexes is reduced.
However, when an index has been built, subsequent searches are without doubt faster
than an on-line search, but this is a result of the resource intensive indexing phase made
prior to the searches.

42

MSc thesis - The use of Levenshtein distance in computer forensics

4 Experimental work

This chapter provides a description of the experiment carried out in this thesis, where
the use of the Levenshtein distance as a method for data reduction in computer forensics
is studied. The method used for conducting the experiment is described, as well as the
test environment and the actual experiments carried out.

4.1 Purpose of the experiment

The purpose of this experiment is to evaluate our hypothesis; that use of the Levenshtein
distance algorithm could be used as a data reduction method when searching a com-
puter forensic data set. To do this, an application capable of searching a forensic data
set consisting of raw data has been developed as discussed in the previous chapter. The
main component of the test application consists of an implementation of the Levenshtein
algorithm as well as exhaustive search for comparison. By testing the application against
a data set containing well known data, the experiment should provide quantitative mea-
surements about suitability and performance, giving valuable input to the discussion and
evaluation of our hypothesis.

4.2 Procedure

As the main applicability of our suggested method is keyword searching in raw data, the
tests in the experiment will be based on locating strings of text or bytes in the data set. By
measuring time consumption and the subset of the data indicating a match by the search
application, the level of data reduction is established. Several parameters are studied,
and the following list summarizes the sections in our experiment:

• Buffer length: Studying different lengths of the buffer containing data from the for-
ensic data set should provide useful information about the performance effects of the
buffer length.

• Query length: In order to get information about the data reduction rate, studying
different query lengths should yield useful information.

• Program options: In order to get a correct impression of the performance of the ap-
plication, testing the effect from different program options should help produce in-
formation to clarify this.

4.2.1 Method used

In order to produce reproducible and scientifically acceptable results, a research method
is needed. In this experiment we follow the design research approach as discussed in
amongst other [84]. In [85] Takeda et al. analyse the reasoning behind a general de-

43

MSc thesis - The use of Levenshtein distance in computer forensics

sign cycle, as presented below. In [86] four outputs of this method are proposed, namely
constructs, models, methods and instantiations. In [87] a fifth output, better theories are
added to the list. A construct is created and refined throughout the design cycle, and
is referred to as the conceptual vocabulary of a problem. A model are propositions that
express relationship between a set of constructs, while methods are know-how or, an al-
gorithm for performing a task. Instantiations refer to operationalization of the previous
types of output; constructs, models and methods. The last output, better theories is defi-
ned as construction of artefacts, similar to experimental natural science [88]. The general
methodology for design research models is illustrated in Figure 14.

Figure 14: Overview: This figure illustrates the main phases in the design research method [88].

In the first phase of design research, awareness of the problem, a specific problem
is discovered, often as a result of knowledge from multiple sources. This results in a
research proposal, and represents in this thesis the problem of handling large forensic
datasets.

The next step is suggestion, in which a proposal for improvement and a tentative
design is developed. This is a creative step where new solutions or new functionality is
proposed, represented by the use of Levenshtein to reduce data amounts in our approach.
In the development phase, the tentative design is implemented. Depending on the type of
problem, this may be in the form of e. g. a formal proof, or as in our case, an implemen-
tation in software. Evaluation is the phase where the artefact is evaluated according to
the criteria defined in the proposal. Deviations, both qualitative and quantitative are dis-
cussed and hypotheses are made in order to explain the results. These results often lead
to new information, and the process may be repeated (hence the arrows in Figure 14).

As depicted, the last phase is conclusion. When the results from the previous phases
are regarded as satisfactory, although deviations in the artefact behaviour probably still
exist, the results are interpreted and consolidated. The resulting knowledge is then either

44

MSc thesis - The use of Levenshtein distance in computer forensics

referred to as “firm‘”, where the new knowledge lead to repeatable results, or “loose”
where the evaluation has resulted in non-repeatable or anomalous behaviour that is not
easily explained, serving as a typical topic for further research. In our experiment, we
evaluate our solution by measuring time consumption and data reduction rates. This
results in performance measures that are further evaluated in order to form a conclusion
giving the results of this thesis.

4.2.2 Test environment

The test environment in the experiments mimics a simple computer forensic environ-
ment, and consists of set of 5 Dell OptiPlex GX260 computers with additional software.
The processing power of the computers is considered to be medium by current stan-
dards (2005), but should be comparable with the hardware found in a small or medium
forensics laboratory at present. The major system components are listed below:

• Intel Pentium 4 1.8 GHz

• 512 MB RAM

• Seagate ST340016A 40 GB 3,5" IDE hard drive running at UltraDMA-5.

• Windows XP Proffesional SP1

• Java Runtime Environment (JRE) version 1.4.1

Besides a virus scanner, the operating system and drivers, no additional software other
than standard system services was running during the tests.

4.2.3 Data set

In order to test the search functionality of the test program implemented, a dataset con-
taining controlled data was needed. In order to get valid and accurate results this set
should have as few unknown parameters as possible. To increase the value of the results,
an open and publicly reputed dataset based on some standard would be preferable. In
order to establish a higher level of assurance for the tools being used by the computer
forensic community, NIST has started a computer forensic tool program [89] to help
testing the validity of the results from computer forensics tools. This project has establis-
hed test procedures for disk imaging and write-block tools, but unfortunately a testing
method or data set for validating computer forensics search tools have not yet been pu-
blished. Another data set used in order to validate information retrieval systems are the
TREC-collections associated with the text retrieval conference sponsored by NIST and
US-DOD [90]. This project publishes test-data sets in order to validate the results from
information retrieval systems containing large number of documents with varying texts.
The problem with the TREC-collections is that the sets are mostly commercial and the-
refore not available for open testing. In addition, they have been designed for document
indexing systems like web search engines and not in particular related to computer for-
ensic and raw data searches. They do not contain file system data, compiled code images
and other non-textual data and are therefore less relevant in this context.

In order to get accurate results it should be of interest to make the test set as equal
to a real-world case as possible. As a result a data set was generated by the author. This
set was constructed by first erasing a hard-drive, setting all elements to zero by using

45

MSc thesis - The use of Levenshtein distance in computer forensics

the UNIX tool dd. After erasing the disk it was partitioned with a partition size of 3 GB
and formatted with a FAT32 file system. The data set had to be of a reasonable size in
order to test the program´s ability to handle larger data sets, and had to be large enough
to fit a typical workstation installation set with operating system, office software and
networking. The reason for not creating a larger set was both of more practical reasons,
and that the 3 GB data image should be sufficient for evaluating the program. The FAT32
file system was chosen as it is still one of the most used file systems, but the choice of
file system should not have any major influence on the results as the raw data search
bypasses any file system information. After formatting the drive, Windows 98 was instal-
led on the drive with default options. Windows 98 was chosen due to licensing issues
as well as the fact that it is still in widespread use. The software installed was chosen
to represent a typical simple workstation installation, mimicking a moderate system in a
forensic investigation. An installation of a Linux desktop was also considered, but as we
needed to create a data set as close to a typical data set as possible, it was discarded as an
option given its current usage percentage in a desktop user environment. Subsequent to
installing the operating system itself, necessary drivers were installed as well as standard
internet and office software. To generate some temporary data, a few web-pages were
browsed and the caches cleared before repeating the process, and some folders were co-
pied and subsequently deleted to create more data in the unallocated data area. Finally,
the dataset was copied to a raw data image by using the dd Linux utility. Details may be
found in Appendix D.

4.3 Results

In the following section the results from the experiments are presented.

4.3.1 Initial test

In order to evaluate the Levenshtein algorithm as a method for searching, the first part
of the experiment consisted of testing whether or not the algorithm was able to locate
a specific string in the data set, and to present a useful result indicating the position of
the search string in the data set. Additionally, the same string was searched by using a
baseline exhaustive search method, in order to compare the search time between the
two approaches. The initial buffer size used was 1000 bytes, in order to test how the
application performed on a larger portion of raw data, and it was tested against the
generated data set. Results from the initial test are presented in Figure 15. Both search
methods found the search string in the data set without problems, and using Levenshtein
distance as the search method in this experiment performed about 7 times faster than
using a standard exhaustive approach. To find the direct data reduction improvement a
test was carried out with an regular exhaustive search, followed by an initial edit distance
search, reducing the data amounts, and a secondary precise search using exhaustive
search. The results are presented in Figure 16. As seen using a single exhaustive search
requires significantly longer time than an edit distance / exhaustive search combination
giving a ratio of about 9/1.

46

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 15: Search time using edit distance and exhaustive search: Time consumption for processing
the created data set, by using exhaustive search and edit distance. As seen from the graph, the
search using edit distance as initial and precise searching algorithm has a significantly shorter
processing time than the exhaustive search method.

Figure 16: Exhaustive search with and without the use of edit distance. The chart shows the effect
of using edit distance to reduce data amounts.

47

MSc thesis - The use of Levenshtein distance in computer forensics

File: bigtest1.img Size: 3.076.416 KB
Search string: 16403173499
Exhaustive search: 10.252.482 ms 167,65 min.

Table 2: Numeric data for exhaustive search. This is the result from the exhaustive search perfor-
med on the same data set and query as in Table 3.

4.3.2 Performance effects of buffer lengths

The initial experiment showed that the method may be used to search a raw data set, and
that it proved faster than exhaustive search. In the next step according to our hypothesis
in Section 3.2, the data reduction capabilities of our approach are studied. To do this,
different buffer and query lengths are tested in order to find out how this affects the sto-
red data amounts and time consumption. The results in Figure 17 are based on a search
performed on the created data set, with a predetermined 11 character string simulating
a bank account number. Border checking was turned off and maximum distance options
were enabled. The same test was repeated with different buffer lengths, and the results
were recorded. In Table 3 a numerical version of the results is presented.“Numbers of

Figure 17: Data reduction rate with various buffer-lengths. The Y-scale represents the percentage of
the original data that remain after the search. As we see a small buffer length results in a profound
data reduction, while a search using a buffer of 4000 bytes reduces the data amounts roughly to
half of its original size.

buffers” refer to the total number of buffers or sections in the dataset that are present
with a given buffer length. The number of database entries refers to the number of buf-
fers with position and distance scores that are stored in the database. This represents the
data amounts considered relevant for further searching.

In Table 4 the variations in time consumption as a result of different buffer lengths are
presented. As shown in Table 3, using a small buffer size reduces the number of database

48

MSc thesis - The use of Levenshtein distance in computer forensics

Buffer size Number of Number of Data in Max. Min. Original
buffers DB entries: DB (MB) distance distance data (%)

100 31.502.500 72 0,01 100 89 0,00
250 12.601.000 2.641 0,63 250 239 0,02
500 6.300.500 8.981 4,28 500 489 0,14
750 4.200.334 15.791 11,29 750 739 0,38
1000 3.150.250 23.512 22,42 1000 989 0,75
2000 1.575.125 139.497 266,07 2000 1989 8,86
4000 787.563 373.034 1 423,01 4000 3989 47,37
8000 393.782 228.785 1 745,49 8000 7989 58,10

Table 3: Summary of the findings from the test using a variable buffer length. A search was carried
out for a 11 character search word in the data set, and the buffer size was adjusted in order to
study the resulting effects. As seen from the table a smaller buffer length results in less data to be
processed further, but using a small buffer size has a negative influence on time consumption.

Initial
searching
time in ms.

Precise search
in ms.

Total search
time in ms

Time red.
comp. to
exhaustive

Total
time in
min.

Buffer
size in
bytes

3.400.347 484 3.400.831 301,51 % 56,68 20
1.132.293 94 1.132.387 905,46 % 18,87 50
1.170.404 2.609 1.173.013 875,98 % 19,55 100
1.095.175 38.703 1.133.878 936,15 % 18,90 250
1.107.892 113.467 1.221.359 925,40 % 20,36 500
1.147.783 188.570 1.336.353 893,24 % 22,27 750
1.122.552 284.970 1.407.522 901,27 % 23,46 1000
1.137.560 1.379.320 2.516.880 901,27 % 41,95 2000
1.168.456 3.954.860 5.123.316 877,44% 85,39 4000

Table 4: Search times for different buffer sizes given the same search query,utilizing the distance
approach for initial and precise search.

entries significantly, but as seen from Table 4 the initial search time increases. As the
buffer lengths decrease the secondary precise search phase will take less time, due to the
small number of buffers stored in the database.

Table 4 shows the time reduction achieved by using the edit distance solution compa-
red to an exhaustive search. Using a very small buffer increases the initial edit distance
search time, and this is also the case when selecting large buffer sizes, above 1000 as
seen in Figure 18. Buffer sizes between 50 and 750 bytes however had quite similar per-
formance, with a buffer size of 50 and 250 performing slightly faster, making an optimal
trade-off between the time used for primary and secondary search.

4.3.3 Workload effects of search query length

In addition to the buffer length, the length of the search query would also be an inte-
resting parameter to study in order to find what effect it has on the workload and data
reduction performance. In order to answer this, a new search test was carried out using
a Unicode variant of the previous search. The query word was 22 bytes represented in
Unicode the UTF-16 encoding. By reducing the query one character each round, effecti-
vely two byte, we wanted to see the effect of the query length on both time consumption
and data reduction rate. The summarized results on data redution are presented in Fi-

49

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 18: Total time consumption for edit distance compared to exhaustive search with buffer size
as a parameter.

gure 19.

Figure 19: Data reduction with varying query length: A data reduction rate of about 50% is achie-
ved using only a 2 byte search query, and the data reduction rate continue to grow as the query
length increases.

50

MSc thesis - The use of Levenshtein distance in computer forensics

As seen from Table 5, about half the data in the dataset may be excluded after per-
forming a search query with a length of two bytes, and stored data amounts continue to
decrease as the length of the search query increases. As we see from Figure 20, the time

Figure 20: Time consumption as a function of the query length when calculating the initial edit
distance scores.

consumption for calculating the edit distance in the dataset effectively doubles when the
search query length is increased from 4 to 9 characters. The effect on time consumption
when using edit distance as a secondary search method is depicted in Figure 21. A short
search query results in a faster primary distance calculation, but the effect when using
the secondary edit distance search is the opposite. This correlates to the increased data-
base size associated with a short query. The numeric data from this test is summarized in
Table 5.

4.3.4 Data reduction using short query lengths

The previous results show that searching with a short query results in faster initial edit
distance calculation than longer queries. In this test we study how different buffer sizes
affect the search performance when using a very short query, two ASCII characters in
this case, in order to see if there exists an optimal buffer size for very short queries. As
shown in Figure 22 a small buffer size increases the data reduction performance, but
at the cost of a more time consuming first search phase. As seen, a search query of 2
bytes reduce the data amounts to about half the size using a buffer of 1000 bytes. To
help ensure that this is a result that it is possible to generalize to a larger set of digrams,
a new test was carried out were several digrams where tested. The selection of digrams
is based on [91], which lists the 15 most frequent digrams in the English language seen
in Figure 24. These digrams, according to the same source, account for 27 % of all

51

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 21: Time consumption for the secondary accurate search using edit distance: As the search
query length increases, the secondary search time is sharply reduced, but again this is a trade-off
between the primary and secondary search time consumption.

Distance
calc.

Prec.
search
in min.

Tot. time
in min.

DB entries Byte
length

Searchstring Data
red. in
%

4,17 83,55 87,72 1.631.802 2 1 51,80
6,77 60,52 67,29 892.800 4 16 28,34
10,89 36,62 47,52 362.456 6 164 11,51
14,45 18,93 33,37 142.486 8 1640 4,52
15,10 10,19 25,29 57.770 10 16403 1,83
19,99 6,87 26,86 30.698 12 164031 0,97
24,11 4,28 28,39 15.526 14 1640317 0,49
28,18 3,12 31,30 9.849 16 16403173 0,31
29,86 2,39 32,25 6.428 18 164031734 0,20
33,25 1,54 34,79 3.564 20 1640317349 0,11
34,76 1,16 35,92 2.275 22 16403173499 0,07

Table 5: Effects on performance when the query length is reduced. The columns in the table re-
presents distance calculation and time used for precise search (distance)in minutes, total time
consumption, the number of stored entries in the database while the last column represents the
data reduction in percent of original data.

digram occurrences. The tests were carried out by using the edit distance search method
to locate all occurrences of the digrams in the data set. The number of stored buffers
was subsequently monitored and the data reduction percentage calculated. The results
in Figure 25 show that the distribution in the data reduction rate amongst measured

52

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 22: A notable increase in stored data amounts is seen as the buffer length is increased. This
follows from the fact that a larger buffer will result in a greater chance for containing the two bytes
(zx), and subsequently being stored as a result.

Figure 23: Search times for calculating edit distance is somewhat similar, with the very small buffer
size of 10 bytes as an notable exception. The time shown in the chart is for the initial edit distance
search phase.

digrams is quite even, resulting in a data size on average of 54,6 % of the original data
amount. In this test the digram calculation time is tested against a fast exact matching
algorithm, the Knuth Morris Pratt. This was done in order to to compare our approach to
a fast exact string matching algorithm. The results presented in Figure 26 and show that
the performance of the two are roughly equal at this query length.

4.3.5 Approximate search

To test the ability of finding a similar but not exact query in the dataset, an e-mail address
was inserted into the data set (user@xyzhost.com) and subsequently searched for using

53

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 24: The 15 most common digrams in English text, the numbers denote the occurence per-
centage of the digrams in a typhical English text [91].

Figure 25: Data reduction rate when using a very short query length of two bytes. As seen from
the chart, the data amounts are roughly reduced to half of the original size.

the edit distance search mode with the query word “user@xyzhost.no”. By selecting a
distance of 1, the .com-address in the data set was located correctly, as depicted in Fi-
gure 27 with corresponding data in Table 28.

4.3.6 Performance effect of program options

In order to handle amongst other hits at the buffer borders and limitations regarding
what distances to store in the databases, different program options have been imple-
mented. In order to evaluate the effect of these options on program performance, a test
was carried out, where the same query word and data set was searched using different
program options. The results from this test is presented in Figure 29. The performance
effect of the border check option was rather small, while the maximum distance option
had a definite performance effect, cutting the search time in this test by 23%.

54

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 26: Initial edit distance calculation compared to Knuth-Morris-Pratt.

Figure 27: Results from the e-mail approximate search test. The results are presented in the right-
most pane containing a tree structure with results sorted by similarity score. By clicking the leaf,
The actual file content surrounding the match is displayed in the center pane for manual inspection

55

MSc thesis - The use of Levenshtein distance in computer forensics

Figure 28: Results from the approximate search as mentioned in Figure 27. By looking at the data
with distance 1, the approximate e-mail address is found in the data.

Figure 29: Resulting performance implications with use of the different program options.

4.3.7 Testing validity and reliability

To test whether or not the implemented search application produced valid and reliable
results, and as there apparently seem to be missing any official test set for computer
forensics tools, a set of key-word test images created by the Digital Forensics Tool Testing
Project [92] was used. These are created as an open source solution to help verifying
the correctness of search tools, using different file systems and testing their abilities to
locate keywords and evidence within a disk image. The search images are especially
crafted to test special cases like raw data search, fragmentation, cluster tip areas and
unallocated space, and using these should contribute to an increased assurance in that
the tool operates as specified. The results from these tests may be found in Appendix B.
The implemented application did find the expected strings located in the data sets using
FAT, NTFS and the EXT3 file system, with the exception of fragmented data, which is a
general problem with raw data searches.

In order to further check the reliability of the application an additional test was car-

56

MSc thesis - The use of Levenshtein distance in computer forensics

ried out, where a keyword search was repeated 50 times using the same query on the
data set. By doing this, frequent anomalies regarding search time and results should be
detected, and the results should give an indication of the developed applications´ level
of reliability. The results are presented in Figure 30.

Figure 30: In order to increase the reliability of the measurements and results in the experiment,
a series of 50 test rounds was carried out to ensure that the results were dependable. As seen, the
values as well as the r-square values indicate relatively consistent measurements.

Figure 31: Distribution of the different byte values in the data set from byte 0x01 to 0xFE.

As seen in Figure 31, the occurrences of byte values from 0x01 to 0x0F in the data set
vary somewhat, but the majority (86%) of the byte values in Figure 31 occur between 6
and 11 million times. The byte values, which occur distincively more often than the other
are 0x00 and 0xFF. In the extended ASCII-table (8-bit), the 0x00 represents the NUL
character, while the 0xff represents a square, so when searching for an ASCII character
at the byte level, these values should not affect distance calculations.

57

MSc thesis - The use of Levenshtein distance in computer forensics

5 Discussion

In this chapter the results from our experiments are discussed. One important note to
make is that the following results are based on test performed on a single data set, due
to time limitations. As a consequence one should be careful when generalizing the effects
found in the experiments. The existing data set should however mimic a typical worksta-
tion installation, and should for this reason serve as a valid test set.

5.1 Data reduction capabilities

The main focus of the thesis has been on data reduction in a forensic data set, and our
suggested approach to achieve this was the use of Levenshtein distance. The results from
the initial experiment show that our approach is a viable method for locating a search
query in a data set, and that it could be significantly faster than an exhaustive search.
As the feasibility of the approach has been established, the data reduction capabilities of
the approach are further evaluated.

5.1.1 Buffer length

As seen in Section 4.3.2, data reduction using this method is possible. There are however
parameters that affect the reduction rate, mainly the query length and the size of the
input buffer.

As seen in Figure 17 the data reduction rate is reduced as the length of the input
buffer is increased. The probable reason for this is that when a match to the search query
is located in the data set, a reference to the input buffer is stored in the database. And as
the buffer size is increased, the amounts of data stored with each search match increase
accordingly. If using a buffer size of 1000 bytes, every match in the data set would require
a 1000 byte reference to be stored in the database. Using a 10 byte buffer size would
similarly result in a 10 byte reference being stored for each search hit, increasing the data
reduction rate. By decreasing the buffer size to 1000 bytes, the needed data amounts to
be stored for the search using edit distance are less than 1% (Table 3). However, the data
amounts that need to be stored will increase if the search term is found frequently in the
dataset. By using a very small buffer size, the resolution of the search increases, as each
buffer represents a smaller, more precise data area. From a data reduction point, use of
small buffer sizes would for this reason be beneficial. This would however, increase the
total amounts of buffers to process, which again may affect the performance as seen in
Figure 23. For this reason a trade-off between data reduction rate and time consumption
must be achieved. Using a buffer size of between 50 and 250 as shown in Figure 22
would still result in a good data reduction rate and require only a moderate increase in
time consumption.

As longer buffers need to be searched by the secondary precise search, the search
time increases. Figure 18 shows that searches using buffer sizes of 50 and 250 yield

59

MSc thesis - The use of Levenshtein distance in computer forensics

approximately the same total search time of about 19 minutes. The differences in time
consumption however, are small when using buffers with a size of 50-1000 bytes. As seen
in Table 4,using a large buffer size of 2000 bytes results in a considerably faster initial
search phase, using only about 1/3 of the time needed when using a 20 byte buffer. A
possible cause for this is increased processing overhead when processing a large number
of small buffers. However in the second precise search phase, using a 20 byte buffer
would result in a very small amount of data being stored in the database, reducing the
time needed in this phase with several orders of magnitude compared to using a buffer
of 2000 bytes. As a result, the total search time is balanced to a certain degree. Even
though small buffers seem to increase the data reduction rate, the results in Figure 17,
show that a high level of data reduction may still be achieved by using larger buffer sizes.
Using a buffer size of 1500 would still reduce the data amounts for subsequent search by
approximately 95%.

5.1.2 Query length

The query length is another important parameter that affects the data reduction rate.
Following the laws of probability, the uniqueness of a search query will increase with the
length of the query. Searching with a very short query and a high maximum distance
would result in a large number of results. Using a longer query e.g. a serial number or
a name of some size like “Jonathan D. Smith‘” or an e-mail address would increase the
uniqueness of the pattern, thus generally resulting in a higher data reduction rate. The
effect of the query length was studied in Section 4.3.3. As demonstrated in Figure 19, the
data reduction rate is exponentially reduced as the query length is decreased. However,
in the experiment, the data reduction rate was only moderately decreased as the query
length was decreased from 22 to 8 bytes (4.52 % of original data). Even when the query
length was reduced to two bytes, about half of the original data were eliminated, as seen
in Figure 22.

A third option that will have an impact on data reduction rate is the maximum dis-
tance setting. During the processing of a data set, the application checks the calculated
distance result against a distance threshold, indicating the maximum deviation from the
minimum distance regarded as acceptable. A buffer with a score within the threshold is
recognized as containing a possible match, and its reference is stored in the database.
Any buffers having higher distance scores than the threshold are simply discarded as a
mismatch, and no references to them are kept. Increasing the maximum distance limit
causes the acceptable number of differences between the search query and the corre-
sponding string in the data set to increase. By doing this one may find a larger number
of approximate matches, but at the expense of the data reduction capability. By increa-
sing the acceptable distance score however, there are additional time costs caused by
larger data amounts to process. The number of results will also again depend on how
unique the search query byte pattern is compared to the data set. When using a very
short query, setting a high distance treshold would make little sense, as almost any buf-
fer would match. Searching for “Johnny Gudbransen” with a maximum distance of 2
would however seem more reasonable, as the resulting search would still match “Jonny
Gudbrandsen” or “Jonny Guldbransen”. As we are searching in raw data with byte va-
lues, an interesting fact to note is that a search string stored in Unicode usually forms a

60

MSc thesis - The use of Levenshtein distance in computer forensics

more unique pattern than the same string stored in ASCII. This stems from the fact that
Unicode uses multiple bytes for encoding a character (UTF-16 uses two and UTF-32 uses
4 bytes), while ASCII uses a single byte encoding, resulting in longer byte patterns for
Unicode strings.

5.2 Performance

In the previous section the data reduction capabilities of our approach were discussed,
and the results from the experiments demonstrate that our approach in fact does reduce
the data amounts when searching a forensic data set, as stated in our hypothesis. The
time consumption is however also a factor that should be considered. The results from the
initial experiment confirmed that our approach was faster than the exhaustive search, but
time consumption is similarly to the data reduction rate affected by several factors. One
important factor is the buffer size, judging from the results. As seen in the experiment
(Figure 18), by utilizing different buffer sizes, the search time increases as the buffer
size is significantly increased. The probable reason for this is that matrix used when
calculating the edit distance has a size which is the product of the buffer length and the
search query. Using a 100 byte buffer size and a 10 byte query would for this reason result
in the calculation of a 100 × 10 matrix for every buffer. If the buffer size is increased to
1000 and the search query to 20 bytes, the distance calculation would require calculation
of a matrix of size 1000 × 20, which would increase the processor load. If however, the
selected buffer size is very small, the time consumption also seems to increase. One
possible explanation for this is that the increased number of buffers results in a greater
program overhead as they need to be processed.

When testing the effect of an increased search query length, the results show that
the initial edit distance search time increases in a close to linear fashion. Increasing the
query length from two to five characters roughly doubles the calculation time, while a
12 byte search query takes about 5 times longer than the two byte query. This effect
should probably be attributed to the size of the distance matrix calculated in the same
way as the increasing buffer length. An increase of the matrix size results in an increased
required processing time. An interesting result from the digram experiment was that the
initial edit distance calculation time remained fairly constant even as the buffer length is
increased. One possible explanation for this is that having a very short query results in a
moderate increase of the matrix as the buffer length increases, with in a modest increase
in needed processing power as a result. By using a fast search for a digram, or a small
part of a search word or query, the data amounts in the data set regarded as relevant are
reduced to about half of the original size. This is a data reduction rate that presents a
good value with respect to the time requirements. By doing this the subsequent searches
for the complete search query need to process far less data.

Regarding the secondary search phase, the use of a short initial search query results
in a significantly higher processing time. This follows naturally from the data reduction
rate. If a short query is used in the initial search, the pattern will statistically occur
more frequently in the data set. This results in a larger amount of data to process in the
secondary precise search phase, as the data reduction rate is decreased. But using a short
initial search is not necessarily a performance costly option as both search phases must be

61

MSc thesis - The use of Levenshtein distance in computer forensics

regarded. The most efficient processing according to the experiment was achieved with
a buffer size of 1000 bytes and a search query length of 10 bytes. These values result in
the minimum total search as depicted in Table 5. This will however vary, depending on
the number of occurrences of the search query in the data set.

As indicated in Figure 29, the different program options influence program perfor-
mance. Turning off the maximum distance limiting option has a distinct influence on
performance, increasing search time by 25%. A performance hit is to be expected, as
every buffer calculation is stored in the database. Enabling the border check option re-
sulted in a small increase in search times in the cases where maximum distance limiting
was disabled as expected.

5.2.1 Approximate search

In order to test the ability to find approximate matches an e-mail address was inser-
ted into the data image ending with a .com-domain as shown in Figure 28. The search
query used consisted of the same address but with a .no domain instead of .com, somet-
hing that must be regarded as a plausible typing error when used as a forensic search
tool. After completing the search, the e-mail address was correctly located at byte offset
2.100.000.050. As we see from Figure 28, the number of buffers stored in the database
was 441 against roughly 23.000 when searching for the simulated bank account number.
This reduction is likely caused by the longer search query, reducing the probability of a
permutation of the string.

The developed application was also tested against the Knuth Morris Pratt exact string
matching algorithm. The results between the processing time of the Levenshtein algo-
rithm and Knuth-Morris-Pratt (KMP) show quite similar time consumption when used
for searching digrams, as seen in Figure 26. With longer queries, the KMP algorithm,
proved to be significantly faster than edit distance (roughly 2-3 times with a 10 byte
query in our tests). This algorithm does not however find approximate matches, which
is one of the main reasons for using the Levenstehin algorithm. The main idea for the
thesis was data reduction, but not at the expense of missing relevant data, strengthening
the need for approximate searching. In order to perform approximate searches, the KMP
algorithm would have to be repeated for every substring of the search query, multiplying
the search time for each pass. For a single, exact search for a longer search query howe-
ver, the KMP algorithm performed faster.

5.3 Real world feasibility

Our approach uses byte level searching in raw data in order to locate a string or search
query. As a result of this, it is often not possible to interpret the type of content found in
a given sector. The byte value 0x41 might represent a ASCII “A”, but may also represent
a pixel value in an image. This interpretation problem is not unique for this application,
but rather a common problem for any processing of raw data at the byte layer. As a
result, one may get a perfectly valid match that instead of a sentence contains a set of
pixel values from an image. The effects of this are not necessarily grave, as it is easy to
establish whether the result is a piece of intelligible text or a similar byte sequence from
some other format. The same effect may be used as an advantage since searching for any

62

MSc thesis - The use of Levenshtein distance in computer forensics

byte structure may be performed in the exactly the same way as searching for text. This
could be useful when searching for e.g. a particular piece of code or a signature for a file
header or similar.

When using the Levenshtein distance algorithm to calculate similarity scores, the
score is as previously discussed based on the number of basic operations needed to trans-
form one string into another. An effect of how this calculation is performed, is that if addi-
tional characters exist in the buffer inserted between the characters forming a match, the
result may still be a low distance score. The distance score for the search word “string”
in a buffer containing “sabctring” would indicate a match. This is however one of the
features that enable the approximate searching capabilities of the algorithm, and these
cases will be removed when performing the secondary precise search.

A challenge when handling raw data is the large number of encoding formats. The
implemented tool mainly searches for ASCII encoded text. There are however a large
number of formats which encode the content differently and store data e.g. in binary
form. As the implemented search tool locates text byte patterns, data encoded in binary
formats or similar will not be found. Current solutions solve this by implementing format
parsers that try to analyse and decode the data found. Unpacking zip-files and decoding
pdf-files are common tasks for a file parser. Due to the limited time available, implemen-
ting a wide range of file parsers in the developed application was not feasible, and would
not provide any contribution to this thesis. However, in order to show that this could be
done using our approach, support for different Unicode Encodings was added, leaving
further format parsers for a future implementation.

Another problem when searching in raw data is, as discussed in chapter 2, is fragmen-
ted data. If the search string is split by the border limit of two non-consecutive sectors, a
full matching score will not be recorded. As the file system information linking the sectors
in a file is unavailable, it is generally not possible to locate the fragmented sectors of a
file, although some attempts have been made by using statistic evaluation of sector con-
tents. The suggested approach does however reduce this problem, as a partial match still
will result in a lower distance score than a mismatch. When one part of the fragmented
search string has been detected, the maximum edit distance score of the missing sector
will be known, reducing the possible candidates to search for a match. The rate of sectors
that may be excluded will again follow from the uniqueness of the remaining pattern,
and the length of the remaining part of the string in the missing sector.

63

MSc thesis - The use of Levenshtein distance in computer forensics

6 Conclusion

As technology evolves an increasing amount of information and data is processed and
stored in computer systems. This presents new challenges regarding searching and ma-
naging the increased data amounts. One area where these problems are imminent is
computer forensics.

In this thesis, the problem of data reduction in computer forensics has been studied.
A new search method has been proposed using the Levenshtein distance algorithm as
a method for data reduction. This method uses an initial approximate search in order
to focus subsequent searches to areas within a forensic data set containing a match. In
order to test our method, an implementation of a search tool based on this method has
been made, and subsequently tested in order to establish the feasibility of the proposed
method.

The results show that the method is capable of reducing the searchable data amounts
in a data set, and the method proved to be significantly faster than an exhaustive search.
The data reduction rate however, varies mainly with number of buffers the data set is
partitioned into, as well as the length of the search query. Using a long search query
will improve the data reduction rate, but increase the total searching time. Using a short
search query will still result in a reasonable data reduction rate. In our tests the data
amount was reduced to about half of original size using a search query of only two bytes.
Used as an exact string matching algorithm, the edit distance solution is outperformed by
other exact matching algorithms like Knuth-Morris-Pratt, but the strength of the solution
is in its ability to handle approximate matches in a native way. When utilising Levenshtein
distances, approximate matches to a query will be found and the results will be ranked,
a definite advantage when searching for evidence in a forensic data set.

This method alone is not the solution to the problem of searching large forensic data
sets. Utilizing raw data searching has its own associated set of problems, naming data
interpretation and data fragmentation as two main challenges. However, combined with
the other methods for data reduction, this method may constitute an additional step in
the right direction. Being able to find methods for handling the increasing data amounts
is of great importance, in order to avoid superficial investigations due to time limitations,
with potentially substantial influence on a person´s life.

65

MSc thesis - The use of Levenshtein distance in computer forensics

7 Further Work

In this thesis we have seen that edit distance may be used to reduce the data amounts in a
computer forensic data set, and contribute to faster search times. However, there are still
several areas where improvements could be made, and in any future work the solution
might be improved in several ways. One area is optimization. As the performance of Java
applications are often superseded by other languages, it would be interesting to see what
performance gains a compiled language would offer. Although we have done our best,
the source code could probably also be optimized. A deficiency in the current solution
is the fact that a permutation of a search query may result in a high distance score. To
remedy this, a future version could make use of the least common substring approach
in order to improve the accuracy of the initial distance search, reducing the number
of unnecessary results stored during a search. As a suggestion for further development,
the additional implementation of an indexed version of the program could also yield
interesting results. Additionally, more complex search query functionality like Boolean
operator searches would also contribute to a more advanced search utility, although the
application is currently able to handle search phrases and approximate matching. In
order to benefit from structures in raw data, the use of file format parsers would also
be of interest. By using signatures found in raw data, the capabilities regarding handling
binary or encoded data formats would be enhanced. In more general terms there are still
several unresolved problems regarding interpreting raw data correctly and correlating
fragmented data which would benefit from further research.

67

MSc thesis - The use of Levenshtein distance in computer forensics

Bibliography

[1] NIST. Dictionary of algorithms and data structures.
http://www.nist.gov/dads/HTML/Levenshtein.html. Visited May 2005.

[2] Guidance software. EnCase Enterprise Edition Detailed Product Description 2004.
Guidance software, 2004. Visited February 2005.

[3] Acessdata. Forensic Toolkit: Product overview. Accessdata Inc., 2004.

[4] M. M. Ferraro and A. Russell. Current issues confronting well-established computer-
assisted child exploitation and computer crime task forces. Digital Investigation,,
Volume 1, Issue 1:pp 7–15., February 2004.

[5] Council of Europe. Convention on cybercrime.
http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm, November 2001.
Visited March 2005.

[6] J. Creswell. Research design, quantitative, qualitative and mixed methods approaches.
Sage publication, 2003.

[7] B. Schneier. Secrets and lies Digital secrets in a networkes world. J. Wiley and Sons,
2000.

[8] G. Mohay, A. Anderson, B. Collie, O. De Vel, and R. Mckemmish. Computer and
intrusion forensics. Artech House, 2003.

[9] G. Palmer. A road map for digital forensic research. Report from the First Digital
Forensic Research Workshop (DFRWS), Technical Report DTR-T0010-01:., November
2001.

[10] Association of Chief Police Officers. Good practice guide for computer based
electronic evidence. National High tech crime unit, 2003.

[11] B. Carrier and E. H. Spafford. Getting physical with the digital investigation pro-
cess. International Journal of Digital Evidence, Volume 2:Issue 2, 2003.

[12] W.J. Chisum and B. Turvey. Evidence dynamics: Locard’s exchange principle &
crime reconstruction. Journal of Behavioral Profiling, Vol. 1:No. 1, 2000. Visited
May 2005.

[13] E. Casey. Digital evidence and computer crime -forensics science, computers and the
internet 2.nd edition. Elsevier academic press, 2004.

[14] S. Janes. The role of technology in computer forensics investigations. Information
Security Technical Report, 5:pp 43–50, 2000 Issue 2.

69

MSc thesis - The use of Levenshtein distance in computer forensics

[15] P. Sommer. Downloads, logs and captures: Evidence from cyberspace. Journal of
Financial Crime pp 138-152, 5JFC2:pp 138–152, 2000. Computer Security Research
Centre, London School of Economics & Political Science.

[16] C Miller. Electronic evidence - can you prove the transaction took place? Computer
Lawyer, Vol 9 No5:pp 21–33, 1992.

[17] E. Casey. Error, uncertainty, and loss in digital evidence. International Journal of
Digital Evidence, Volume 1, issue 2:., 2002.

[18] B. Carrier. An investigator’s guide to file system internals. @stake Inc, 2002.

[19] Microsoft Corporation. Designing hardware for microsoft? operating systems, fat32
file system specification, fat: General overview of on-disk format. Hardware White
Paper, Microsoft Extensible Firmware Initiative, .:., 2000. Visited March 2005.

[20] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts. 6th Edition.
Wiley, 2002.

[21] G. H. Carlton, editor. A Critical Evaluation of the Treatment of Deleted Files in Micro-
soft Windows Operation Systems, Proceedings of the 38th Hawaii International Con-
ference on System Sciences. University of Hawaii, IEEE, 2005.

[22] B. Carrier. Defining digital forensics examination and analysis tools using ab-
straction layers. International Journal of digital evidence, Volume 1:Issue 4, 2003.

[23] P. Sommer. The challenges of large computer evidence cases. Digital Investigation,
1:16–17, 2004.

[24] M. J. Phelan. Computer corner: Digital examination impact. Microgram bulletin,
VOL. XXXVI, NO. 6 DEA Digital Evidence Laboratory Published by the Drug En-
forcement Administration Office of Forensic Sciences, June 2003. Visited March
2005.

[25] J. Coman. Crime scene investigation. http://www.smh.com.au/articles/2003/
02/07/1044579926881.html?oneclick=true, February 7 2003. Visited May 2005.

[26] J. Schwartz. Acquitted man says virus put pornography on computer. New York
Times, August 11 2003. Section C , Page 1.

[27] BBC News UK. Man cleared over porn ’may sue’.
http://news.bbc.co.uk/1/hi/england/devon/3114815.stm, 31 July 2003. Vi-
sited April 2005.

[28] M. Bean. The trojan horse: A viral defense? CNN International, Augusth 12. 2003.
Visited April 2005.

[29] M. Kotadia. Trojan horse found responsible for child porn. ZDnet, August 1. 2003.
Visited April 2005.

[30] K. Kintel. Using hash values to identify fragments of evidence. Master’s thesis,
Gjøvik University College - Nislab, 2004.

70

MSc thesis - The use of Levenshtein distance in computer forensics

[31] G. Moore. Moores law. http://www.intel.com/research/silicon/mooreslaw.htm,
2005. Visited March 2005.

[32] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval. Addison Wesley,
ACM press, 1999.

[33] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and information
retrieval. Association of computer Machinery, 7 (3):pp 216–244, 1960.

[34] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L.A.
Streeter, and K. E. Lochbaum. Information retrieval using a singular value decom-
position model of latent semantic structure. In 11 th annual International ACM
SIGIR Conference on research and development in information retrieval, pages pp
465–480, 1988.

[35] Y. Ogawa, T. Morita, and K. Kobayashi. A fuzzy document retrieval system using the
keyword connection matrix and learning method. Fuzzy sets and systems, 39:163–
179, 1991.

[36] E.A. Salton, G. Fox and H. Wu. Extended boolean information retrieval. Commu-
nications of the ACM, 26 (11):pp 1022–1036, 1983.

[37] C. J. Van Rijsbergen. Information retrieval. Butterworths, 1975.

[38] M. T. Goodrich and R. Tamassia. Data structures and algorithms in java. Wiley,
2001.

[39] I. Cruz. Inverted files. Worcester Polytechnic Institute, 2000.

[40] P. Weiner. Linear pattern matching algorithms. In Proceedings of 14th IEEE Annual
Symp. on Switching and Automata Theory, pages pp1–11„ 1973.

[41] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):pp249–260,
1995.

[42] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
Technical report, Department of Computer Science University of Arizona, 1991
(1989).

[43] M.F. Sagot. Spelling approximate repeated or common motifs using a suffix tree.
Dielenma LLC.

[44] C. Faloutsos and R. Chan. Fast text access methods for optical and large magne-
tic disks: Designs and performance comparison. In Proceedings of the 14th Confe-
rence on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Bancilhon and
DeWitt (eds), Los Angeles, 1988.

[45] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files
for text indexing. ACM Transactions on Database Systems, 23(4):453–490, 1998.

[46] B. Carterette and F. Can. Comparing inverted files and signature files for searching
a large lexicon. Technical report, Computer Science and Systems Analysis Depart-
ment Miami University, Oxford„ 2003.

71

MSc thesis - The use of Levenshtein distance in computer forensics

[47] D. Hiemstra. Using language models for information retrieval. Master’s thesis,
Universiteit Twente, Enschede , Netherlands, 2000.

[48] J. Carlberger, H. Dalianis, M. Hassel, and O. Knutsson. Improving precision in
information retrieval for swedish using stemming. Technical report, NADA-KTH
Royal Institute of Technology, 2001.

[49] M. Popovic and P. Willett. The effectiveness of stemming for natural-language
access to slovene textual data. JASIS, 43(5):384–390, 1992.

[50] D. Harman. How effective is suffixing? Journal of the American Society for Informa-
tion Science, 42(1):pp 7–15, 1991.

[51] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):pp 130–137, 1980.

[52] J. Broglio, J. P. Callan, B. Croft, and D. W. Nachbar. Document retrieval and routing
using the inquery system department of computer science university of massachu-
setts. Technical report, Center for Intelligent Information Retrieval Department of
Computer Science University of Massachusetts, 1995.

[53] R. Sedgewick. Algorithms in C++. Addison Wesley, 1992.

[54] G. Landau and U. Vishkin. Fast string matching with k differences. Journal of
computer systems science, 37:pp 63–78, 1988.

[55] L. Allison and T.I. Dix. A bit-string longest-common-subsequence algorithm. Infor-
mation Processing Letters, 23:pp 305–310., 1986.

[56] M. Lu and H. Lin. Parallel algorithms for the longest common subsequence problem.
Parallel and Distributed Systems, IEEE Transactions on, Volume 5, Issue 8:pp 835–
848, 1994.

[57] P. H. Sellers. On the theory and computation of evolutionary distances. Journal of
algorithms, 1(4):pp 359–373, 1980.

[58] A. Z. Broder. On the resemblance and containment of documents. In SEQS: Sequen-
ces ’91, 1998.

[59] S. C. Kleene. Representations of events in nerve nets and finite automata. Automata
Studies, .:pp 3–41, 1956. Princeton University Press.

[60] Microsoft Corporation. Description of the windows file protection feature.
http://support.microsoft.com/kb/222193/EN-US/, December 15. 2003. Visited
April 2005.

[61] G. H. Kim and E. H. Spafford. The design and implementation of tripwire: A file
system integrity checker. Department of Computer Sciences Purdue University, Fe-
bruary 23, 1995 1995. visited May 2005.

[62] National Institute of Science and Technology. The national software reference li-
brary (nsrl) project. http://www.nsrl.nist.gov/. Visited April 2005.

72

MSc thesis - The use of Levenshtein distance in computer forensics

[63] D. White and M. Ogata. Identification of known files on computer systems. National
Institute for Standards and Technology, February 24 2005. Presented at American
Academy of Forensic Sciences Feb. 2005.Visited March 2005.

[64] J. Beckers and J. P. Ballerini. Advanced analysis of intrusion detection logs. Com-
puter Fraud & Security, Issue 6.:pp 9–12, 6. June 2003.

[65] D. V. Forte. The “art” of log correlation. Proceedings of the Information Security
South Africa (ISSA) 2004 Enabling Tomorrow Conference, July 2004. Visited May
2005.

[66] dtSearch corporation. dtsearch corp. product and corporate information.
www.dtsearch.com, May 2005. Visited June2005.

[67] Accessdata Inc. Forensic Toolkit User Manual. Accessdata, www.accessdata.com,
April 2004. visited May 2005.

[68] K. Knopper. Building a self-contained auto-configuring linux system on an iso9660
filesystem. www.knoppix.org, 2000. Visited May 2005.

[69] B. Carrier. The sleuth kit. www.sleuthkit.org, May 2005. Visited April 2005.

[70] Carrier B. Nsrl removal notes, sleuth kit reference document.
http://www.sleuthkit.org, August 2003. CVS date 2005/01/17.

[71] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between rna structu-
res. Journal of computational biology, Volume 9, Number 2:pp 371–388, 2002.

[72] The Influence of Minimum Edit Distance on Reference Resolution. Proceedings of the
Conference on Empirical Methods in Natural Association for Computational Lingu-
istics. Language Processing, Philadelphia pp. 312-319., July 2002.

[73] Y. Akiba, K. Imamura, and E. Sumita. Using multiple edit distances to automatically
rank machine translation output. ATR Spoken Language Translation Research La-
boratories, 2001.

[74] K. Deibel and R. Anderson. Using edit distance to analyze card sorts. Dept. of
Computer Science and Engr. University of Washington, March 2005.

[75] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):pp 107–117, 1998.

[76] S. Mitra and T. Acharya. Data mining, multimedia, soft computing and bioinfor-
matics. Wiley, 2003.

[77] D. E. Knuth, Morris J. H., and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal of Computing,, 6:pp 323– 350, 1977.

[78] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady 10, 10,1966, 707?710., 1966.

[79] Lloyd A. Dynamic programming algorithm (dpa) for edit-distance.
http://www.csse.monash.edu.au/ lloyd/tildeAlgDS/Dynamic/Edit/, 1999. Vi-
sited April 2005.

73

MSc thesis - The use of Levenshtein distance in computer forensics

[80] M. Gilleland. Levenshtein distance, in three flavors.
http://www.merriampark.com/ld.htm. visited May 2005.

[81] T. Graham. Unicode: What is it and how do we use it? Asia Pacific, 1999.

[82] Unicode Concortium. What is unicode? www.unicode.org/standard/WhatIsUnicode.html,
2005. Visited May 2005.

[83] H. Alvestrand. Ietf policy on character sets and languages uninett. Uninett, 1998.

[84] A.R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information sy-
stems research. MIS Quarterly, 28(1):., 2004. visited May 2005.

[85] Takeda H., Veerkamp P., Tomiyama T., and Yoshikawam H. Modeling design pro-
cesses. AI Magazine, Winter:pp 37–48., 1990.

[86] March S. and Smith G. Design and natural science research on information tech-
nology. Decision Support Systems, 15:251–266, 1995.

[87] IRIS 26. Design Research Workshop: A Proactive Research Approach, August 9-12
2003. Visited May 2005.

[88] V Vaishnavi and B. Kuechler. Design research in information systems.
www.isworld.org/Researchdesign/drisISworld.htm, May 2005. Georgia state Uni-
versity and University of Nevada, Visited June 2005.

[89] NIST. Computer forensics tool testing project,. National Institute of Standards and
Technology http://www.cftt.nist.gov/index.html. Visited March 2005.

[90] NIST. The text retrieval conference. National Institute of Standards and Technology
(NIST) U.S. Department of Defense, 1992. Visited March 2005.

[91] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[92] B. Carrier. Digital forensics tool testing images. http://dftt.sourceforge.net/, 2005.
Visited May 2005.

[93] B. Simpson and F. Toussi. Hsqldb User Guide. The HSQLDB Development Group,
http://hsqldb.sourceforge.net/web/hsqlDocsFrame.html, July 2004. Visited May
2005.

[94] R. Gillam. Unicode Demystified. Addison-Wesley, 2002.

[95] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John
Wiley and Sons, 2003.

[96] Office of Law Enforcement Standards of the NIST. Test results for disk imaging
tools: dd gnu fileutils 4.0.36, provided with red hat linux 7.1. Technical report,
U.S. Department of Justice Office of Justice Programs National Institute of Justice,
August 2002.

74

MSc thesis - The use of Levenshtein distance in computer forensics

Appendix A - Main program classes

In this appendix a short description of the main classes in the implemented search ap-
plication will be given, in order to provide an overview of the search application archi-
tecture. In order to limit the number of pages, the complete source code is not included
in the report. If a copy of these files or further data are needed, feel free to request them
by sending an e-mail to bjarne@mangnes.com.

• Startup
This is the class that includes the main method and is mandatory for starting the
application. It extends the ForensicsSearchGUIclass that provides the Graphical User
Interface for the application, and it further implements the ForensicsSearchMethods
class, which is an interface that must be implemented in every class that will make
use of the ForensicsSearchGUI class.

• AbstractDistance This is a small interface used to change between the Levenshtein
Distance and alternative search methods.

• Constants As the name suggests, this class contains most constants used in the pro-
gram, ranging from buffer sizes and GUI-labels to database connectivity constants

• DatabaseConnection (String db_file_name_prefix, String pw, String user, String for-
name) In order to communicate with the database, this class handles necessary logic
regarding connecting to, creating, storing and reading from the database. This pro-
gram uses the HSQLDB open-source database [93], and the class loads the necessary
jdbc-driver to work with the database.

• Distance This class implements the AbstractDistance interface, and contains the core
Levenshtein distance-algorithm based on [80]. This is used for calculating the mini-
mum number of basic operations needed to make two strings equal. The resulting
distance score between the two byte arrays are returned to the program.

• DistanceSearch To make the Distance class work as a search tool for datasets, several
functions like reading the file, breaking it up into buffers and acting according to
the options specified in the program GUI, performing logging and presenting results.
This class handles these functions and integrates the Distance class into the search
tool environment.

• ExhaustiveSearch The class accepts two byte arrays as input, a search word and a
buffer from the data set, and performs a baseline exhaustive search by byte-wise
comparing the inputs and return a position, and traversing the buffer byte by byte
when a mismatch occurs. If a match is found, the position is returned and added to
the result list.

• ForensicsSearchGUI As mentioned this class performs various functions in order to
make the graphical user interface of the application work. It implements the constants

75

MSc thesis - The use of Levenshtein distance in computer forensics

class, and contains functionality for updating text labels and fields in the application,
and enabling and disabling different GUI-elements and components, as well as hand-
ling the toolbar.

• ForensicsSearchMethods A class interface for the different methods that is required
for other classes integrating with the SearchForensicsGUI class.

• Functions This class contains various functions used throughout the application. This
includes various functions for manipulating bytes, and byte array copy and converting
functions, file and log operations as well as conversion of bytes to different Unicode
conversions. The Unicode conversion functions are based on examples in [94].

• KnuthMorrisPrattSearch Implements constants. This class behaves similar to the exhau-
stive search, but uses the faster Knuth Morris Pratt exact searching algorithm. The
implementation is based on [95]. The class similarly to the other search classes ta-
kes two byte arrays containing the formatted search query and buffer and compares
these, returning a position if a match is found, and iterates this process over the
complete dataset.

• ResultsDisplayGUI This class simply constructs a separate window where a tree is
constructed containing the results from the search.

• TransmittedData A simple class for passing objects like log-files between different
objects.

76

MSc thesis - The use of Levenshtein distance in computer forensics

Appendix B - DFTT validation tests

DFTT validation tests

This appendix presents the results from the reliability testing performed using the Digital
Forensics Tool Testing verification images for search queries.

Search query tests for the EXT3 jounaling file system

String Sector-
Offset

Fragment-
Offset

File Note Exhaustive Distance

1 first 330-
100

165-100 /,/.,/..,
/lost+found

File Name 169060 169060

first 392-
100

196-100 inode #8 Journal en-
try

200804 200804

first 432-
100

216-100 inode #8 Journal en-
try

221284 221284

first 2416-
181

1208-181 /file1 Allocated
file

1237173 1237173

2 second 2419-
509

1209-
1021

/file2 Fragmented
String

No
match,
fragment

No
match,
frag-
ment

3 third 2420-
80

1210-80 /file3 (de-
leted)

Unallocated 1239120 1239120

4 slacker 2417-
179

1208-691 /file1 Slack space
of file1

1237683 1237683

Table 6: The table show the searches that where carried out to strengthen the reliability claim of
the constructed software using edit distance.

77

MSc thesis - The use of Levenshtein distance in computer forensics

Search query tests for the NTFS WindowsXP/NT/2000 file system

String Sector-
Offset

File Note Exhaustive Distance

1 r-alloc 1342-
83

$LogFile Log File Entry 687187 687187

r-alloc 5409-
347

file-r-1.dat Resident alloca-
ted file

2769755 2769755

2 r-unalloc 1350-
92

$LogFile Log File Entry #1 691292 691292

r-unalloc 1915-
156

$LogFile Log File Entry #2 980636 980636

r-unalloc 5423-
380

file-r-2.dat
(deleted)

Resident unal-
located file

2776956 2776956

3 r-fads 1391-
43

$LogFile Log File Entry 712235 712235

r-fads 5414-
331

file-r-
3.dat:here

Resident alter-
nate data stream
in an allocated
file

2772299 2772299

4 r-dads 1528-
258

$LogFile Log File Entry 782594 782594

r-dads 5415-
346

dir-r-
4:there

Resident alter-
nate data stream
in an allocated
directory

2772826 2772826

5 n-alloc 8050-
161

file-n-
1.dat

Non-resident al-
located file

4121761 4121761

6 n-unalloc 8053-
86

file-n-
2.dat
(deleted)

Non-resident
unallocated file

4123222 4123222

7 n-frag 8059-
509

file-n-
3.dat

Crosses fragmen-
ted clusters in
a non-resident
allocated file

Fragment,
no match

Fragment,
no
match

8 n-slack 8062-
485

file-n-
4.dat

Slack space of
a non-resident
allocated file

4128229 4128229

9 n-fads 8067-
370

file-n-
5.dat:here

Non-resident
alternate data
stream in an
allocated file

4130674 4130674

10 n-dads 8068-
314

dir-n-
6:there

Non-resident
alternate data
stream in an al-
located directory

4131130 4131130

Table 7: The table presents the results from the data set tests from the CFTT-project, using an NTFS
file system. As seen the software located every contigous string correctly

78

MSc thesis - The use of Levenshtein distance in computer forensics

Search query tests for the FAT file system

Search
string

Sector-
Offset

Filename Data location Exhaustive Distance

1 first 271-167 file1.dat in file 138919 138919
2 SECOND 272-288 file2.dat in file 122848 122848

SECOND 239-480 N/A in dentry - file
name

139552 139552

3 1cross1 271-508 file1.dat
and
/file2.dat

crosses two al-
located files

139260 139260

4 2cross2 273-508 file3.dat crosses con-
secutive sectors
in a file

140284 140284

5 3cross3 283-508 N/A crosses in unal-
loc

145404 145404

6 1slack1 272-396 file1.dat
and
file1.dat
slack

crosses a file
into slack

139660 139660

7 2slack2 274-508 file3.dat
slack
and
file4.dat

crosses slack
into a file

140796 140796

8 3slack3 277-385 file4.dat
slack

in slack 142209 142209

9 1fragment1 275-507 file4.dat crosses frag-
mented sectors

No match,
fragment

Distance
score
(5)

10 2fragment
sentence2

278-500 file6.dat crosses frag-
mented sectors
on ’ ’

No match,
fragment

No
match,
frag-
ment

11 deleted 276-230 file5.dat
(dele-
ted)

deleted file 141542 141542

12 a?b*̧d$
e#f[gˆ

279-160 file7.dat regexp values 143008 143008

Table 8: The table presents the results from the data set tests from the CFTT-project. This is the FAT
file-system version of the test, and as seen the software located every contigous string correctly.
Although the complete search phrase could not be found in a single string due to fragemtnation,
the program was able to locate the string by searching for the corresponding distance scores. The
first part of the phrase “1frag” was found at byte offset 141307 and the second part of the search
phrase “ment1” was located at byte offset 141820.

79

MSc thesis - The use of Levenshtein distance in computer forensics

Appendix C - Edit distance core algorithm

Below is the code for calculating the edit distance scores, based on [80].

private final int Minimum (int a, int b, int c) {
int mi;

mi = a;
if (b < mi) {

mi = b;
}
if (c < mi) {

mi = c;
}

return mi;

}
public final int getSimilarity (byte s[], byte t[]) {
int d[][]; // matrix
int n; // length of s
int m; // length of t
int i; // iterates through s
int j; // iterates through t
byte s_i; // ith of s
byte t_j; // jth of t
int cost; // cost

n = s.length;
m = t.length;
if (n == 0) {

return m;
}
if (m == 0) {

return n;
}
d = new int[n+1][m+1];

for (i = 0; i <= n; i++) {
d[i][0] = i;

}

81

MSc thesis - The use of Levenshtein distance in computer forensics

for (j = 0; j <= m; j++) {
d[0][j] = j;

}

for (i = 1; i <= n; i++) {

s_i = s[i - 1]; //index in searchword

for (j = 1; j <= m; j++) {

t_j = t[j - 1]; //byte at index in file

if (s_i == t_j) {
cost = 0;

}
else { //Cost function

cost = 1;
}

d[i][j] = Minimum (d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1] + cost);
}

}

return d[n][m];
}

}

82

MSc thesis - The use of Levenshtein distance in computer forensics

Appendix D - Dataset generation

This appendix gives a brief description of the procedure used when creating the dataset.

Initialization

In the initial phase, the hard drive used during creation of the data set was wiped for any
existing data. This was done in order to have complete knowledge about what data that
would be included in the set, both allocated an unallocated. In order to wipe the disk, it
was booted in a Suse Linux 9.1 environment and the disk content was wiped using the
Unix dd tool with the following parameters:

dd if=/dev/zero of=/dev/hdc bs=512 count=20525137920

The tool has been tested for suitability in computer forensic investigations by NIST, and
results are available in [96]. In the next step, the drive was partitioned with a 3 GB pri-
mary FAT32 partition using the fdisk tool after booting on a Windows98 start-up disk. The
system was subsequently rebooted and the partition was formatted using the format c:
command under DOS with no additional parameters.

Installation

The first step in this procedure was booting the system in DOS, and subsequently copying
the installation set to c:\windows\options\cabs and starting the installation program.
The installation program was followed using default options with networking. After com-
pleting the Windows98 installation procedure, the following was installed:

• Drivers. Network drivers were copied to the drive and installed. After installing
and configuring the computer for networking, video, audio and system drivers were
downloaded and installed.

• Software. Regular Internet software including Firefox, and the Opera products was
downloaded and installed, as well as Flash. The OpenOffice software package, a com-
plete set of IETF RFC documents, an iso image, Acrobat reader as well as Winzip were
further downloaded and installed.

Data generation

To generate additional data, a selection of Internet sites was browsed, a set of shareware
utilities downloaded, and a random selection of documents were viewed. The cache and
history was cleared and the process repeated with other additional Internet sites. A few
folders where moved, and installation folders was deleted, in order to further create
temporary data in swap files, temporary files and unallocated space.

83

MSc thesis - The use of Levenshtein distance in computer forensics

• Image creation. To create the raw data image, the drive was mounted read only
in the Suse Linux environment, and the following command were used to create a
sector-by-sector raw data copy to a image-file:

dd if=/dev/hdc1 of=/dev/hda/data/bigtest1.img bs=512

• Data insertion. The subsequent data was inserted by using a hex editor and manually
inserting strings at known file offsets. Files where inserted by mounting the file system
and carefully copy selected files to the destination folder, noting the byte offset in the
data set.

84

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic covered by this thesis
	Need for the study
	Justification, motivation and benefits
	Research questions
	Summary of claimed contributions
	Choice of methods

	Existing theory
	The field of computer forensics
	Digital evidence in general
	Differences between traditional and digital evidence
	Reliability of digital evidence
	How are data stored on a hard drive
	Residual data
	Interpretation and abstraction layers
	Current problems in computer forensics
	The quantity problem - handling large data sets

	Locating data in large data sets
	Data Mining
	Classical retrieval taxonomies
	Boolean Model
	Vector Model
	The probabilistic model

	Methods for searching
	Indexed search
	Inverted files
	Suffix trees
	Signature files
	Document pre-processing
	Lexical analysis
	Stemming
	Eliminating stopwords
	Thesauri
	Text pre-processing in computer forensics

	On-line searching
	Pattern matching algorithms
	Approximate pattern matching
	Regular expresisons

	Data reduction methods
	Known file filtering
	Data aggregation

	Commercial solutions
	Applications of Levenshtein distance

	Levenshtein distance in computer forensics
	Choice of algorithm
	The Levenshtein distance algorithm
	Using Levenshtein in computer forensics searches

	Our approach
	Choosing abstraction level
	Selecting the buffer size
	Program Functionality
	Search using edit distance
	Exhaustive search
	Implementation
	The use of indexed search

	Experimental work
	Purpose of the experiment
	Procedure
	Method used
	Test environment
	Data set

	Results
	Initial test
	Performance effects of buffer lengths
	Workload effects of search query length
	Data reduction using short query lengths
	Approximate search
	Performance effect of program options
	Testing validity and reliability

	Discussion
	Data reduction capabilities
	Buffer length
	Query length

	Performance
	Approximate search

	Real world feasibility

	Conclusion
	Further Work
	Bibliography
	Appendix A - Main program classes
	Appendix B - DFTT validation tests
	Appendix C - Edit distance core algorithm
	Appendix D - Dataset generation

