
Master Erasmus Mundus in
Color in Informatics and Media Technology (CIMET)

Digital Inpainting for Artwork Restoration: Algorithms
and Evaluation

Master Thesis Report

Presented by

Alexandra Ioana Oncu Feier

and defended at

Gjøvik University College

Academic Supervisor(s): Prof. Jon Yngve Hardeberg
PhD student Ferdinand Deger

Jury Committee: Prof. Alain Trémeau
Prof. Philippe Colantoni





Digital Inpainting for Artwork Restoration:
Algorithms and Evaluation

Alexandra Ioana Oncu Feier

2012/07/15





Digital Inpainting for Artwork Restoration: Algorithms and Evaluation

Abstract

Digital image inpainting refers to a technique used for filling in the missing or corrupted
regions of an image using information from the surrounding area. Inpainting techniques
have found widespread use in applications that include, but are not limited to error recov-
ery, red-eye removal, multimedia editing. This thesis will discuss inpainting techniques
in the context of digital artwork restoration.

Due to an extensive research in the field of digital inpainting and to rapid advances
in technology, new and improved inpainting techniques are continuously proposed. Im-
proved digital image inpainting algorithms could provide substantial support for future
artwork restoration. However, as the latter is characterised by a high demand in qual-
ity, methods for an accurate evaluation of the performance of inpainting algorithms are
needed. A literature review showed however, that currently, there is an acknowledged
lack of quantitative metrics for image inpainting evaluation. In this thesis the perfor-
mance of eight representative inpainting algorithms will first be evaluated by means
of a psychophysical experiment. Based on the obtained perceptual data, a ranking of
the algorithms will be established, that confirms that exemplar based methods generally
outperform Partial Differential Equation based methods.

Two novel inpainting quality metrics, proposed in this thesis, eight general image
quality metrics and four quality metrics specially developed for inpainting assessment
will then be evaluated against human observers. Two types of evaluation will be car-
ried out; one investigates the performance of the metrics over the entire image database
considered, and the other assesses the correlation of the metrics for individual images.
Results show that none of the considered metrics can adequately predict inpainting qual-
ity over the entire image database, and that the performance of the metrics is image-
dependent. The two newly proposed metrics outperform some of the existent inpainting
quality metrics for the first type of evaluation. However, additional work is needed to
find metrics that correlate well with the percept.
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1 Introduction

1.1 Background

Early artistic creation could not have survived over the years if it was not for the image
and art restoration artists, that brought old or damaged paintings back to the original
or a close-to-the-original state. Artwork dating back to the Middle Ages was already
in need of restoration towards the end of this period of European history, as noted by
Emile in [10]. At the beginning of the Renaissance era, the main concern regarding
medieval artwork was to bring it up to date, which many times required reconstructing
missing or deteriorated parts of a canvas, by filling in existent gaps [10] with visually
pleasing content. Thus, it can be said that almost as old as art itself is the practice of
making modifications to paintings, in such a way that if an observer would look at the
modified work of art, without knowing the original, he wouldn’t be able to perceive
any alteration. This practice is traditionally carried out by restoration experts, such as
museum art restorers, and it is commonly known as retouching or inpainting. Its desired
outcome is to make a damaged artwork more discernible, while restoring its unity. An
example of a painting that has been the subject of a manually restoration process, that
involved inpainting, is given in Figure 1.

Advances of technology made possible the transition from traditional manual retouch-
ing methods to digital techniques. In the digital domain, inpainting was initially known
as error concealment and referred to a specialized technique used in the field of telecom-
munications, in order to fill-in image blocks that were lost during data transmission. As
it grew to become a topic of interest in a more general setting than just data transmis-
sion, inpainting came to be known as the process performing image disocclusion. When
considering a damaged image, the affected region, further on referred to as the gap, was
considered to be an occluding object that needed to be removed, and the image under-
neath it, the desired restoration result. Other popular terms, that can be found in the
related literature, as referring to inpainting, comprise image completion and image fill-in.

(a) (b)

Figure 1: Detail of the fresco Cornelia, mother of the Gracchi by J. Suvee (Louvre). (a)
Painting in an advanced state of deterioration. (b) Manually restored painting. Source:
[11]
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(a) (b)

Figure 2: Inpainting performed by professional artists. Example of the "airbrushing" tech-
nique in a photograph. Source: [10]

The term digital inpainting was introduced by Bertalmio et al. [5] only later, in the year
2000 .

In the field of artwork restoration, inpainting algorithms can be employed for digital
restoration purposes, by reversing the damage (i.e. torn canvas, scratches, stains) in a
painting converted to a digital form. Digital inpainting provides the means to restore a
painting without touching it, and by doing so, it removes the threat of doing permanent
changes with potentially damaging consequences for valuable work of art. Moreover,
improved digital inpainting techniques could substitute the time-consuming and costly
process of manual restoration.

Extensive research has been carried out in the field of digital inpainting, such that
currently, a large number and variety of algorithms exist. Depending on the approach
they take towards image completion, digital inpainting algorithms can be grouped into
two main categories. Partial differential equation (PDE) based algorithms, like the ones
proposed in [11], [7], [4], [6], fill in missing regions in an image by extending lines
of equal luminance values, from the source region into the target region, via diffusion.
The main drawback of this type of inpainting algorithms consists of introducing post-
inpainting blur artifacts, that become more visible when larger areas are inpainted. The
second category comprises exemplar-based inpainting algorithms [2] [3] [8]. Methods
in this category try to overcome the drawback exhibited by PDE based techniques, by
reconstructing large missing image regions from sample textures. In addition to the latter
two, another separate category can be considered, consisting of algorithms with high
performance in terms of running time [9] [8],[4]. The latter is an important aspect to
be taken into consideration when developing commercial software that involves user
interaction.

Due to extensive research and rapid technology advancements, new digital image
inpainting methods continuously emerge, trying to achieve better performance in terms
of quality of the resultant images. Consequently, an accurate method for evaluating the
inpainting quality is required, in order to establish if newly developed methods increase
the quality of the inpainted images, and can thus meet the high standards imposed in the
field of artwork restoration.

1.2 Motivation

Notwithstanding the potentially different approaches, the goal of any digital image in-
painting algorithm is to reconstruct the missing or damaged regions in a visually plausible

2
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way. Thus, inpainted images that are significantly different from the original, undamaged
images (i.e. reference images), but exhibit visual pleasantness are approved outcomes of
the inpainting process. Adding to the latter the fact that a reference image might not
always be available for comparison, explains why inpainting quality evaluation is still
considered a challenging task, that has been only narrowly researched in the recent
years.

Qualitative human comparisons are currently and frequently used in order to quantify
the quality of the inpainting. However, despite the accurate results provided, the latter
is a resource and time demanding evaluation method. In an attempt to address this
issue Mahalingam [12] and Ardis et al. [13] propose an objective method for inpainting
quality evaluation by using visual-saliency based metrics. However, these metrics are
not commonly used by researchers to assess the performance of digital image inpainting
techniques.

As opposed to the scarce research in the field of inpainting quality evaluation, a con-
siderable number of metrics for general IQ assessment have been proposed in the related
literature. However, the use of this type of metrics for quantifying the quality of inpainted
images has been researched only to a limited extent. IQ metrics simulating the human
visual system (HVS) and taking into account structural information in an image might
be useful for image inpainting quality evaluation.

1.3 Thesis objective

The goal of this research is to qualitatively evaluate the performance of eight represen-
tative digital inpainting algorithms [11] [7] [4], [6] [2] [3] [8] [9] and to develop, use
and evaluate objective methods for quality assessment in the context of digital inpainting
for artwork.

In the above, develop refers to introducing new quality metrics, based on existent ap-
proaches, so that to achieve a better correlation between calculated quality and perceived
quality. Furthermore, use refers to applying various metrics for measuring the quality of
an inpainted image. Finally, the term evaluate is used to denote the assessment of quality
metrics by validation against perceptual data.

1.4 Research methods

The qualitative evaluation of the eight selected digital inpainting algorithms will be ac-
complished by conducting a psychophysical experiment. The obtained perceptual data
will be statistically analysed and then used as a basis for establishing a ranking of the
algorithms considered.

The evaluation of quality metrics will use quantitative methods for numerical analysis
of data, and will be accomplished by comparing the results of the metrics against the
results obtained from the psychophysical experiment. The correlation between objective
scores and subjective scores will be used as an indicator of the metrics performance.

Thus, the findings of the current research are based on both theoretical (i.e. literature
review) and practical (i.e. psychophysical experiment) work.

1.5 Paper submitted to workshop

Based on the findings of the current research, a paper was submitted to the 1st Workshop
on Computer VISion for ART Analysis (In conjunction with ECCV 2012). The submitted
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paper will be enclosed separately, as an Appendix to this thesis.

1.6 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 provides a detailed literature survey of existent digital image inpainting meth-
ods. Based on the approach they take, three categories of algorithms will be dis-
cussed. The first category refers to PDE based inpainting algorithms, the second
group consists of exemplar based algorithms, while the last category is represented
by fast inpainting algorithms.

Chapter 3 discusses relevant work on evaluating perceptual quality. Metric specifically
designed for inpainting quality evaluation, as well as more general IQ metrics will
be introduced in this Chapter.

Chapter 4 introduces two novel quality metrics for digital image inpainting evaluation.
Based on visual-saliency maps and structural information in an image, these met-
rics try to achieve a better correlation with perceived quality than other existent
inpainting quality metrics.

Chapter 5 explains the methodology for evaluation of quality metrics. The inpainting
algorithms and quality metrics selected for evaluation will be listed along with
their main characteristics and the steps for creating the image database used as
basis for the evaluation will be included in this Chapter.

Chapter 6 discusses the psychophysical experiment for subjective assessment of inpaint-
ing quality. In the first part of this Chapter, the experimental setup will be pre-
sented, including references to the test images used, the experimental method cho-
sen, the viewing conditions during the experiment and finally, instructions given to
the observers. The second part of this Chapter will present the analysis of percep-
tual quality of image inpainting algorithm.

Chapter 7 investigates the performance of quality metrics in predicting perceived qual-
ity. Two types of evaluation are carried out: one that considers all the images in the
database and reports on the overall performance of the metrics, and one that refers
to the evaluation of the metrics for each image in the database, individually.

Chapter 8 summarizes the findings of the current research and points out several lines
of future research.

The bibliography and appendices are given at last.
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2 Digital Inpainting

In this chapter an extensive survey of previous work related to digital inpainting tech-
niques will be presented. The survey includes scientific techniques used mainly in the
research environment, but it also includes inpainting methods that were incorporated in
commercial software (i.e. Adobe Photoshop CS5.1, G’MIC plug-in to the GNU software
GIMP). The decision of including the latter originated from the intent of showing what
can be done by non-expert users that are not familiar with the inpainting concept.

The pioneering works by Mumford et al. [14], Masnou and Morel [15], Caselles et al.
[16] and Bertalmio et al. [17] in the field of digital inpainting were followed by several
different approaches that aimed at achieving the same task, of seamlessly filling in any
missing regions in an image [?]. Despite the significant differences between the existent
techniques, in [5] the authors manage to draw the main directions that each method
must follow. Accordingly, the four steps that make up the underlying methodology [5]of
any inpainting algorithm are given as:

1. "The global picture determines how to fill in the gap, the purpose of inpainting being
to restore the unity of the work;

2. The structure of the area surrounding the hole is continued into the gap, contour lines
are drawn via the prolongation of those arriving at the boundary of the inpainting
domain ;

3. The different regions inside the inpainting domain, as defined by the contour lines,
are filled with color, matching those of the boundary of the region to be inpainted;

4. The small details are painted (e.g. little white spots on an otherwise uniformly blue
sky): in other words,texture is added."

In the related literature, many research papers propose a rough classification of the
inpainting methods, dividing them into two categories: methods that are based on partial
differential equation (PDE) and examplar based methods. However, this is a too general
classification that would not see all the techniques discussed in this thesis properly fit
into a category. Thus, instead of it, the following classification, including three different
categories will be used:

• Partial Differential Equation (PDE) based inpainting algorithms

• Exemplar based inpainting algorithms

• Fast digital inpainting algorithms

Notation
Before proceeding with the inpainting methods review, a note must be made on the

notation that will be used. The omega symbol, Ω, will denote the inpainting domain,
also referred to as the hole in the image, while δΩ will stand for its boundary. The source
region, representing the area not covered by the mask, or the area complementary to
the gap, will be denoted by Φ This notation was first used in [5] and adopted by the
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Figure 3: Unsuccessful inpainting in terms of information propagation direction. (left) Orig-
inal image, with the inpainting domain represented in white. (right) Inpainted image, that
exhibits a wrong direction of propagation. Source: [5]

following works.

2.1 Partial Differential Equation (PDE) Based Inpainting

Before presenting the inpainting methods falling under this category, a short definition of
a Partial Differential Equation (PDE) will be given. A differential equation contains one
or more variables, relating the values of the function itself and its derivatives of various
orders. Consequently, a PDE is a differential equation that uses partial derivatives - that
is a derivative with respect to one variable, with all other variables held constant. An
example of a PDE for the function u(x1. . . xn) is:

F(x1, ..., xn, u,
δu

δx1
, ...,

δu

δxn
,
δ2u

δx1δx1
, ...,

δ2u

δx1δxn
, ...) = 0. (2.1)

2.1.1 Basic PDE based inpainting method

The method that paved the way for modern digital inpainting was a PDE based method,
proposed by Bertalmio et al. in [5]. Inspired by manual inpainting concepts, this method
tries to actually translate the four rules used in manual inpainting and mentioned in the
beginning of this section into a mathematical and algorithmic language. The underlying
idea of this algorithm is to propagate the geometric and photometric information arriv-
ing at the boundary of the occluded area, δΩ, into the area Ω itself. This is achieved by
extending the isophote lines (i.e.contours of equal luminance value in an image, edges,
lines of equal gray values) that try to capture the direction of minimal change. An im-
portant observation is that the angle of arrival of the isophotes at the boundary must be
preserved for a successful inpainting (see Figure 3). Thus, the information propagation
is carried out in the direction of minimal change, and in addition from δΩ inward, in
a smooth way. Essentially an iterative process, the algorithm proposed by Bertalmio et
al. in [5] constructs a set of images I0, I1. . . In, where I0 is the input image, n → ∞
and limn→∞ In = IR. Thus, IR is the output image of the algorithm and thus represents
the inpainting result. Each image in the set is an improvement on the previous image.
The information propagation process just described can thus be given by the following
equation:

In+1(i, j) = In(i, j)∆tInt (i, j), ∀(i, j) ∈ Ω, (2.2)

where the superscript n denotes the inpainting iteration time, (i,j) are the coordinates of
the current pixel, ∆t is the rate of change, or improvement and Int is the update of the
image In. The multiplication of the latter two terms gives the improvement observed in
image In+1 as compared to the previous version of the image, In.

With a user-defined value for ∆t, the only unknown parameter in Eq. 2.2 is now the
update factor, It. Determining the value of the aforementioned parameter represents the
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most important part of the method under discussion, setting the PDE-based nature of
the algorithm. The latter affirmation builds upon the fact that the update factor must
capture both the information that needs to be propagated, and the propagation direction
[?]. Taking into consideration all of the above, in [5] the authors propose the following
equation (the space coordinates (i,j) and the inpainting time n have been omitted for
simplicity ):

It = ∇L · ∇⊥I,whereL = ∆I, (2.3)

where ∇L represents a measure of the change in the propagated information, while the
second part of Eq. 2.3, ∇⊥I gives the isophotes direction. As mentioned earlier, this
algorithm tries to achieve a smooth propagation, thus for expressing the information
being propagated, the authors propose the usage of an image (2D) smoothness estimator,
given as a discrete implementation of the Laplacian: Ln(i, j) := Inxx(i, j) + I

n
yy(i, j). In the

latter equation the subscripts indicate second derivatives. The idea behind the calculation
of the isophotes direction is mainly based on obtaining the gradient vector ∇In(i, j) at
pixel location (i,j). As the latter indicates the direction of the largest spatial change,
a rotation by 90 degrees of the gradient is needed in order to obtain the direction of
least spatial change. For more detailed specifications on the implementation the reader
is referred to [5].

Furthermore, the inpainting process described above alternates with an anisotropic
diffusion process, whose main role is to provide a correct update/evolution of the di-
rectional field used when filling in the hole, during the inpainting process. In order to
achieve such a goal, the image restoration loop is built in such a way that after every
few steps of inpainting, a few iterations of image diffusion are applied. In [5] the au-
thors set as default values the following: 15 steps of inpainting, followed by 2 steps of
diffusion, at an update speed ∆t = 0.1. The total number of steps (both of inpainting
and diffusion) can be pre-set by the user, but there is also the possibility of allowing the
algorithm to stop when In+1 = In (however the authors didn’t provide a specific con-
vergence analysis to sustain the latter ). In addition to the aforementioned steps, that
affect only the information in the inpainting region, an anisotropic diffusion smoothing
is applied to the whole image beforehand, in order to reduce the influence of noise when
initially estimating the isophotes direction.

One of the alleged drawbacks of the inpainting technique proposed by Bertalmio et
al. in [5] is represented by the impossibility of reproducing large textured regions, as the
diffusion process causes blurring. Another potential drawback is that many inpainting
iterations may be needed before the algorithm converges to reach a steady state (In+1 =
In), which can eventually lead to an infinite loop, if the user doesn’t provide a total
number of inpainting and diffusion steps.

2.1.2 Improved PDE based inpainting methods

Navier-Stokes, fluid dynamics and image and video inpainting
A subsequent work of Bertalmio et al. [17] refines the previous approach by resorting to
classical fluid dynamics and the Navier-Stokes equations ( describing the motion of fluid
substances). In this context, the image intensity is the equivalent of the fluid’s stream
function, as the level lines in the image define the stream lines of the flow. Furthermore,
the isophote direction is the equivalent to the fluid’s velocity, while the smoothness of
the image is comparable, in fluid dynamics terms, to the curl of the fluid’s velocity, called
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vorticity. Following this approach, inpainting resumes to solving a vorticity transport
equation, instead of the transport equation given in 2.3. Such an inpainting method,
based on fluid dynamics, has the great benefit that one can exploit the already well-
elaborated history of fluid problems and thus can more easily find solutions to existent
or arising issues [18].

Filling-in by joint interpolation of vector fields and grey levels
Ballester et al. [16] developed a method based on the ideas previously presented by
Bertalmio et al. in [5], addressing the inpainting problem through the use of second
order PDEs. The authors define a formal variational approach (which aims at finding
functions that minimize the value of the quantities depending upon them ) in order to
achieve a simultaneous graylevel and gradient continuation. Consequently, the inpainting
problem is actually split into two coupled variational formulations, one corresponding to
the isophotes direction (i.e. gradient orientations) and the other corresponding to the
gray levels, both of which are solved by using a gradient descent. This technique implies
taking steps that are proportional to the negative of the gradient of a specific function,
at the current point, in order to find that function’s local minimum. Finally, the gradient
descent flows obtained, corresponding to the gray-values and gradient orientations re-
spectively, give two coupled second order PDEs that must be solved in order to finalize
the inpainting process.

Vector-valued image regularization with PDEs
In [4], Tschumperle and Deriche introduce another PDE based method, which is referred
to as vector valued image regularization with PDEs. The regularization of an image is the
process through which that specific image is simplified in such a way that interesting fea-
tures are preserved and unimportant data is removed. In this context, the unimportant
data is considered to be noise. Given the latter definition of regularization, it becomes
obvious that the man application, for which this algorithm was designed, is represented
by image denoising. However, because of their capability to produce simplified represen-
tations of data, techniques based on image regularization are also useful when dealing
with feature (i.e. edges) extraction. Taking advantage of this, in inpainting, the method
proposed by Tschumperle and Deriche [4] successfully fills in the gap, by diffusing the
boundary pixels until completion of the missing region, in a structure preserving way.
The main problem with this approach comes from the fact that being still a PDE-based
method, the inpainted region is subject to blur, which results in unsharp edges. Thus,
it can be inferred that the technique introduced in [4] will fail in reproducing textured
regions, but will successfully fill in small and narrow holes.

The vector-valued image regularization approach proposed by Tschumperle and De-
riche and applied for inpainting, was the first high-quality inpainting method to be in-
corporated in a commercial, interactive image manipulation software [6], as the G’MIC
plug-in to the GNU software GIMP. This plug-in actually comes as a sequel to the GR-
EYCstoration software, which was exclusively dedicated to image denoising and regular-
ization. Thus, the G’MIC plug-in provides all the features of GREYCstoration, to which it
adds the inpainting capability.

An image inpainting technique based on the Fast Marching Method
A notable improvement of PDE based inpainting techniques was brought by Telea, with
the method discussed in [7]. The proposed algorithm is based on the iterative inpaint-
ing method introduced by Bertalmio et al. in [5], but compared to it, Telea’s algorithm
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(a) (b)

Figure 4: Inpainting algorithm principle as adopted by Telea in [7]. Source: [7]

provides a faster, non-iterative (single-pass) solution to the inpainting problem. The im-
provement in speed is due to the fact that the value of each pixel in the gap is modified
(i.e. inpainted) only once, thus excluding the main issue arising when using iterative
techniques - possibly needing many iterations before converging.

The idea behind the algorithm presented in [7] is to fill in the gap in a fixed order,
from the boundary of the missing region inwards, where the value of the pixel to be
inpainted is determined by the values of already inpainted pixels (or other known pixel
values from the source region, in the case of pixels close to the initial gap boundary). The
latter describes an inpainting principle also suggested in [5], [9] and [19]. Letting the
pixel to be inpainted (at a certain moment in time) be denoted by p, the area containing
known image points around p is called the neighbourhood of p and is denoted by B(ε),
where ε is the radius of B(ε), as shown in Figure 4a. The value of ε is set by the user,
and it should be small. Having set a value for ε, and regarding the pixel p, the algorithm
proceeds by considering a first order approximation of the image in point p. Denoting
this approximation by Iq(p), with q being a pixel in the known neighbourhood of p, and
given the pixel value of point q, I(q) and its gradient, denoted by ∇I(q), the following
holds:

Iq(p) = I(q) +∇I(q)(p− q). (2.4)

For a graphical representation of the variables involved in the above equation the reader
is referred to Figure 4b. The next step in the algorithm proposed by Telea in [7] is the
actual inpainting step. The value of the pixel p is obtained by summing the estimates
Iq(p) corresponding to the pixels in Bε, weighted by a function w(p,q). Consequently,
the value of the inpainted pixel p is calculated as:

I(p) =

∑
q∈Bε(p)w(p, q)[I(q) +∇I(q)(p− q)]∑

q∈Bε(p)
w(p, q)

. (2.5)

As noted by Telea in [7], the weighting function w(p,q) is designed so that it allows for
the propagation of sharp image details, as well as smooth regions, into the gap, being
defined as:

w(p, q) = dir(p, q) · dst(p, q) · lev(p, q), (2.6)
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Figure 5: Influence of the weight function proposed by Telea [7] on the inpainting results.
(a) Original image with mask in white. (b) Inpainted image using all three components.
Inpainting result with: (c) only dir component (d) dir and dst components (e) dir and lev
components (f) dir, dst and lev components. Source: [7]

where:

dir(p, q) =
p− q

‖p− q‖ ·N(p)

dst(p, q) =
d20

‖p− q‖

2

lev(p, q) =
T0

1+ |T(p) − T(q)|
.

(2.7)

In Eq. 2.7 above, dir(p,q) denotes the directional component used in order to guarantee a
higher contribution of the pixels situated along, or close to the normal direction N of the
image gradient. Furthermore, dst(p,q) denotes the geometric distance component, and as
its name suggests, sets a higher contribution for the pixels that are geometrically closer
to the pixel p than for the others. Finally, lev(p,q) is the level set distance component,
making sure that the pixels closer to the isophote line through the considered pixel p
have a higher contribution to the final value of p than the rest of the pixels. In [7],Telea
specifies that in practice, the values for the reference distances d0 and T0 are set to be
equal to 1. Also, an important observation made by the author refers to the importance
of the each of the three components, depending on the size of the gap. Accordingly,
for missing regions of up to 6 pixels, the dst and lev components have a weak effect
on the resulting inpainted value, whereas for larger gaps, up to 12 pixels, including
the two terms has proven to provide better results than those obtained by using only
the dir component. The inpainting results obtained with various combinations of the
three components are shown in Figure 5, where the inpainting mask is wider than 30
pixels. This example makes it clear that the best result is the one provided when all three
components are used.

Up until this point, the way a single pixel is inpainted using Telea’s method has been
discussed. In order to fill in the whole missing region, an iterative process is required,
applying the Eq. 2.5 to each of the pixels in the gap. When doing so, the initial boundary
delimiting the gap will advance inside the gap, becoming thus smaller and smaller, until
the whole missing region has been filled in. An important aspect of the inpainting process
is related to the filling order, as it was also mentioned earlier. Establishing an increasing
distance from the boundary δΩ inpainting order guarantees that the closest regions to
the known pixels (contained within the source area) are filled in first, mimicking thus the
technique employed in the process of manual inpainting [5]. In order to implement the
latter, Telea uses the Fast Marching Method (FMM), which ensures that the pixels are filled
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(a) (b)

(c) (d)

Figure 6: Influence of the gap’s geometry on the inpainting results obtained with the method
proposed by Telea [7]. (a) Synthetic digital image with mask in white (b) Inpainting result
for ε = 6px. Note that the straight line is incorrectly reconstructed. (c) The inpainting
order (increasing distance from the boundary) and the geometry of the inpainting domain
determine the way the gap is filled in. The information propagation follows the structure
of the gap’s skeleton, given in red. (d) Same effect as in c, but less blur due to a smaller ε
value. Source: [7]

in in the correct order, based on their distance to the boundary (i.e. pixels situated near
the known region are always filled in first). The FMM is a numerical method typically
used for solving the following Eikonal equation:

|∇T | = 1onΩ,withT = 0onδΩ, (2.8)

where T is the distance map of the pixels belonging to the inpainting domain Ω, to the
boundary δΩ. For more details on how to implement the Fast Marching Method the reader
is referred to [7], which gives the complete pseudocode.

Similarly to the previously presented PDE based inpainting methods, the limitation
of the algorithm introduced by Telea is given by the considerable amount of blur in the
inpainted region, when the gap is wider than 10 pixels, as noted in [20]. Another draw-
back of this method is that the direction of propagation for the inpainting information
is fully determined by the geometry of the gap Ω. The latter statement is exemplified
in Figure 6, where the images on the second row provide a graphical explanation of the
effect observed in Figure 6b.

Summary While there are many PDE based inpainting methods that have been de-
veloped, all of them are, in general, suitable only for filling in small, non-textured areas.
The reason leading to the latter affirmation is that PDE based inpainting techniques make
use only of local information, thus when the gap is large, or when it contains texture,
the linear structure inside the gap can’t be reconnected and blur artifacts can be noticed,
resulting thus in a visual perception of the resultant inpainted region that is generally
bad [21].
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(a) (b)

Figure 7: Filling large gaps in an image by using the method introduced by Criminisi et al.
in [2]. (a) Original image (b) The area corresponding to the person in the foreground has
been removed from the original image and replaced with information from the background.
Source: [2]

2.2 Exemplar Based Inpainting

As it was shown in Section 2.1, PDE based inpainting algorithms are not sufficient for
faithfully reconstructing textured images, nor images with large missing areas. Thus,
when inpainting is done with an image restauration purpose in mind, more complex tech-
niques are required, as paintings are composed of both structures (i.e. primal sketches)
and textures (i.e. regions with homogeneous patterns). Because of this characteristic of
paintings (and natural images, in a more general manner), a technique that is strictly
designed for texture synthesis will not perform well, either. Exemplar-based inpainting
methods can overcome this drawback, being able to provide reasonably good quality
results, even for large gaps, by combining the isophote driven inpainting with texture
synthesis [22].

The idea behind examplar-based image completion refers to the use of a set of image
blocks (or exemplars) that can be extracted either from the actual image that needs
to be inpainted, or from another image that belongs to a set of representative images.
However, it is most common, in the context of inpainting, to fill in the gap with the best
matching parts of the same image [20]. The order in which the gap is filled in has a great
importance, as it may contribute to the minimization of artifacts.

2.2.1 Basic exemplar based inpainting method

One of the algorithms frequently given as a reference when discussing examplar based
inpainting methods is the one proposed by Criminisi et al. in [2], an algorithm that has
been designed for removing large objects from an image, while filling in the gaps with
visually plausible information from the background, as the authors state. An example of
the algorithm’s performance is given in Figure 7.

The method proposed by Criminisi et al. is based on two remarks. The first one states
that exemplar based synthesis is enough for successfully filling in gaps, while preserving
and extending the linear image structure (i.e. isophotes). That is because the very essence
of exemplar based algorithms is to find patches belonging to the complementary area
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(a) (b)

(c) (d)

Figure 8: Visualisation of the exemplar based inpainting process. (a) Original image show-
ing the source and target regions as well as the boundary contour (b) Patch that was given
the highest priority. (c) Candidate patches Ψq ′ and Ψq ′′ (d) The patch Ψp is filled in with
the best matching patch. Source: [2]

of the gap, that contain similar information to the known parts of the patch that is to
be filled. As an example, in Figure 8b the information in the upper right corner of the
patch p will be used for finding similar patches in the rest of the image. The second
remark is that the gap filling order is a critical aspect of the algorithm. The quality of the
inpainted image greatly depends on the order in which patches are filled in. A priority
based mechanism is proposed by the authors, estimating the importance of each of the
pixels situated on the boundary of the inpainted area. According to this mechanism, the
pixels that lie on the path of edges are given a higher priority and are thus filled in sooner
than the rest of the boundary pixels. Figure 8b shows a high priority pixel p, belonging
to a patch Ψp, represented as a square surrounding it and lying on the gap’s boundary
contour δΩ. After finding the pixel with the highest priority, the algorithm searches for
the best matching patch in the source region, φ. This process is exemplified in Figure 8c,
where candidates for filling in the patch determined by the pixel p are shown as well.
Furthermore, the best match patch chosen from the candidates is used to fill in the patch
Psip, as shown in Figure 8d.

Another important aspect that contributes to the overall quality of the inpainting is
the size of the patches. Their size must be carefully chosen, according to the underlying
characteristics of the image that inpainting is applied to [12]. Currently there is no way
to automatically adjust the size of the patches, so the user must do it manually. This is
actually one of the drawbacks of the algorithm discussed here, as too small patches will
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(a)

Figure 9: Example of an image posing challenges for exemplar based inpainting. There are
not enough valid source patches, unless patch size considered for inpainting would be very
small, resulting thus in a repetitive, noticeable pattern. Source: [23]

result in a repeated, noticeable pattern and an increased running time, while patches
that are too large will increase the possibility of choosing a bad patch, that contains
unwanted information [23]. Another disadvantage that is valid for any of the exemplar
based methods is that it will provide bad results in cases when the inpainted region
is spread out along most of the image. The problem in this case is that there are not
enough valid source patches that can be used for determining possible candidates. One
such example is given in Figure 9.

As noted in [12], the algorithm also encounters some difficulties in reconstructing
curved structures. The authors underline another possible drawback, as the bias pro-
duced by selecting incorrect patches when using the priority based filling mechanism.
The incorrect information contained within these patches will be propagated further on,
hijacking the entire inpainting process.

However, for a wide range of images with good texture and structure replication, the
results of obtained with the method proposed by Criminisi et al. [2] proved to be quite
impressive. Unlike PDE based algorithms, that inevitably produce blur in the inpainted
region, the exemplar based method preserves texture and structure information.

2.2.2 Improved exemplar based inpainting methods

Image inpainting based on local optimization
Another exemplar based inpainting algorithm was proposed by Zhou and Kelly in [3],
as an extension of the method by Criminisi et al. [2]. The former uses the same priority
based mechanism as in [2] in order to select the boundary pixel with the highest priority.
However, instead of determining the candidates based on the similarity to the patch that
needs to be filled in, Zhou and Kelly propose a method that aims at preserving the local
consistency of the inpainted region. Given the chosen high priority pixel p, the algorithm
follows the next steps:

1. Search the source region for candidate patches of the patch Ψp (determined by the
boundary pixel p) - it gives a list Xp of candidate patches for p;

2. Search the source region for the best n matching patches of each neighbour of the
pixel p - it gives a list Xxp̄of candidate patches for p’s neighbourhood pixels;

3. Find the optimal patch to use by maximising the joint distribution probability given
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(a) (b)

(c) (d)

Figure 10: Exemplar based inpainting results by Zhou and Kelly. (a) Original image (b)
Original image with overlapped mask (c) Inpainting result with the algorithm by Criminisi
et al. [2] (d) Inpainting result with the algorithm by Zhou and Kelly [3]. Source: [3]

by:
P(Ψp, xp, xp̄) = P(Ψp|xp)P(xp|xp̄), P(xp̄) (2.9)

where Ψp denotes the patch to be filled in (see also Figure 8b), xp is a candidate
patch for Ψp, with xp ∈ Xp, and xp̄ is a candidate patch for the neighbourhood
pixels of p, with xp̄ ∈ Xxp̄ . In the above equation, the term P(Ψp|xp) reflects the
similarity of a candidate patch xp to the patch Ψp, while the second right-sided term
P(xp|xp̄) represents the similarity of a candidate patch for the pixel p to a candidate
of a neighbour pixel of p. Finally, the last term, P(xp̄), establishes the importance
(priority) of the candidate patch for the neighbourhood pixel p̄.

4. Select the patch that gives the maximum probability and use it to fill in the patch Ψp.

The algorithm proposed by Zhou and Kelly in [3] provides, generally, better results
than Criminisi et al.’s method [2], avoiding over-smoothing and thus preserving and
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Figure 11: Exemplar based inpainting using a database of millions of images. (a) Origi-
nal image. (b) Image with mask (c) Nearest semantic matches for the original image (d)
Inpainted image. Source: [24]

extending image detail, textures and structures. A better local image consistency can be
noticed in Figure 10, where the resultant image obtained with the algorithm by Criminisi
et al. is shown next to the results of Zhou and Kelly.

Scene completion using millions of photographs
A different approach to exemplar based inpainting was taken by Hays et al. in [24].
While previous algorithms search for matching patches in the same image that is to be
inpainted. This is based on the assumption that the image contains all the information
that is necessary to fill in the gap. In [24] the authors state that a more natural and
semantically rich completion can be achieved by using a database of millions of images
as possible sources for candidate patches. The method proposed by Hays et al. uses a
Gist image descriptor to characterize each image in the database. Using this information
to search through the entire database, the nearest semantic match is determined for the
input image (the original image, in need of inpainting). After a matching image is found,
the information contained within the area that corresponds to the inpainting mask is
seamlessly blended into the original image.The inpainting process steps are illustrated in
Figure 11, along with the resultant image.

2.3 Fast Digital Inpainting

The size of the gap that needs to be filled in determines, generally, the time required
by an inpainting algorithm to complete. Most of the techniques discussed in the above
subsections can take from minutes to hours until the missing region is fully inpainted.
An exception from the latter are Tschumperle and Deriche method, that has been incor-
porated into the GIMP software, and Telea’s noniterative algorithm [7]. As interactive
user applications require a quite short response time, a new category of fast inpainting
algorithms has emerged.

Oliveira et al. proposed in 2001 a fast, iterative, kernel based inpainting method, be-
ing probably the easiest, currently existing, algorithm to implement. Essentially, nothing
more than a convolution of the gap with a Gaussian kernel, Oliveira et al.’s algorithm
diffuses known image information into the gap, by using one of the following weighted
average kernels, that only consider the contribution of the neighbouring pixels ( the
kernel’s centre has a weight equal to zero):



a b a
b 0 b
a b a





c c c
c 0 c
c c c


 (2.10)

where a = 0.073235, b = 0.176765, c = 0.125. The number of diffusion iterations can
be set by the user, or the algorithm can stop when there are no more pixels whose value
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Figure 12: Bidirectional similarity terms: completeness and coherence. Images source: [25]

changed by more than a certain threshold as a result of the previous iteration.
The whole inpainting process described by Oliveira et al. in [9] was designed to fill

in small regions, as it can’t reproduce structural, nor textural information, resulting in
inpainted areas with blur artifacts. Thus in image restoration it could be used only for
repairing small scratches or small gaps (i.e. stains). Its strength though, is represented by
its simplicity, which makes it very easy to understand and, more importantly, to imple-
ment. Despite its simplicity however, the results provided (given the constraint of small
sized gaps) are not to be disregarded. Moreover, the little time required to complete and
its ability to preserve general color information are also noted as advantages of Oliveira
et al.’s method in [23].

The PatchMatch algorithm presented in [8] was designed with the goal of interactive
performance in mind, as it is incorporated in the image editing Adobe Photoshop CS 5.1.
software. The algorithm presented in [8] can be used for image retargeting, inpainting, as
well as image reshuffling. However, as in this work we are interested only in inpainting,
the general algorithm proposed by Barnes et al. will not be discussed here, but the reader
is referred to [8] for further details. Instead, the specific method employed by the authors
for image completion will be presented next.

Based on the bidirectional similarity synthesis approach initially proposed by Simakov
et al. in [25], the inpainting algorithm denotes the missing region (the gap) by T and
the source region (the rest of the image) as S. Given the two, the algorithm proceeds by
defining the following bidirectional measure:

dBDS(S, T) =
1

NS

∑
s∈S

mint∈TD(s, t) +
1

NT

∑
t∈T

mins∈SD(t, s) (2.11)

where the first term is referred as the completeness term and the second as the coherence
term. While the first "measures the deviation of the target T from ’completeness’ w.r.t. S"
(), the latter "measures the deviation of the target T from ’coherence’ w.r.t. S" [25]. In
equation 2.11, NS and NT denote the number of patches in the source region, S, and
the target region, T, that is to be inpainted. Furthermore, in the same equation, D is a
measure of the distance between two patches, and is chosen to be the sum of squared
differences (SSD) of pixel values corresponding to the patches s and t in the CIE L∗a∗b∗

color space. Thus, for every patch t ∈ T the algorithm searches for the most similar patch
s ∈ S, and once found, it calculates the distance D(,) between the two patches. That gives
the ’coherence’ term. In order to account for ’completeness’, the algorithm takes every
patch s, belonging to the source region S, and searches for best matches in the region
T, corresponding to the gap. These two processes are schematically shown in Figure 12,
where the overlapping resulting from the fact that patches are taken at multiple scales
can also be observed.
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(a)

(b)

Figure 13: Examples of images fulfilling the ’completeness’ and/or ’coherence’ requirements.
Column a shows examples of coherent images with respect to the source image indicated on
the corresponding row, far left, but not complete (all patches within the reproduced image
belong to the source image). Column b shows examples of complete but not coherent images
(all patches in the source image are contained in the reproduced image - at different scales).
Finally, column c shows examples of images that are complete and coherent. For the last
row image the value of the measure computed in equation 2.14, with equal weights, is also
given. Images source: [25]

Considering the following notations:

dcomplete(S, T) =
1

NS

∑
s∈S

mint∈TD(s, t) dcohere(S, T) =
1

NT

∑
t∈T

mins∈SD(t, s)

(2.12)
the equation 2.11 becomes:

d(S, T) = dcomplete(S, T) + dcohere(S, T) (2.13)

In [25] the authors propose weighting the two terms in equation 2.13, so as to be able
to adjust the importance of each of the two, according to the application for which the
bidirectional similarity measure is used for. Consequently, the equation in 2.13 becomes:

d(S, T) = αdcomplete(S, T) + (1− α)dcohere(S, T) (2.14)

For image completion tasks, Simakov et al. set the value of α to be equal to zero
in equation 2.14, ending up to be an image completion algorithm similar to the one
proposed by Wexler et al. in [26] . As the completeness term, dcomplete, is used for
checking if all patches of the source region S (possibly at different scales) have been
preserved in the target region T (see Figure 13 ), it becomes obvious that for inpainting
this term is unnecessary, motivating thus the weight choice. As also shown in Figure
13, the coherence term dcohere, on the other hand, checks if the region T contains any
patches that have not originated from the source region S (i.e. creating visual artifacts),
holding thus a great importance for the goal of inpainting. Hereby, the given weight for
the coherence term is set to one, resulting in the following final version of the inpainting
equation:

d(S, T) = dcohere(S, T) (2.15)

Furthermore, the inpainting problem is solved by filling in the missing region T with
those patches that optimize the similarity measure of equation 2.15 with respect to the
source region S. Thus, the output of the algorithm will be the filled region Toutput,
defined as it follows:

Toutput = argminTd(S, T) (2.16)
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(a) (b) (c)

Figure 14: Patch Match algorithm inpainting result. (a) ’Soria Moria’ painting by Theodor
Kittelsen (b) Original image with mask (c) Inpainted image.

(a) (b) (c)

Figure 15: Patch Match algorithm inpainting result. (a) ’Women portrait’ painting by Misu
Popp - private collection, XIXth century (b) Original image with mask (c) Inpainted image.

Despite the improvement in the running time, the authors of [8] admit that the task of
image completion of large gaps still represents a challenge, as the inpainting of struc-
tured content (i.e. straight line crossing the gap) can lead to inconsistencies even with
the method they propose. The reader is referred to Table .... for a comparison of running
times between different algorithms, showing that the PatchMatch algorithm (time) per-
formance is among the best. Figure 14 shows an example of the inpainting result on an
image with less structure and more texture. It can be observed how well Barnes et al.’s
algorithm performs on this type of images. On the other hand, in Figure 15 the miss-
ing region contains an almost straight line (the women’s shoulder line) that should be
faithfully reconstructed through inpainting. It it obvious, though, from Figure 15c, that
the Patch Match algorithm is incapable of doing so, replacing instead the missing infor-
mation with patches from the source area (thus achieving coherence ) in an undesirable
way.

Bornemann and Marz proposed in [6] a noniterative, fast-marching inpainting algo-
rithm that has proven (see Table .... ) to have a high time performance (translated as
little time required to complete). The authors set as their goal the development of an
inpainting method that matches "the high level of quality of the methods presented by
Bertalmio et al. (2000) and Tschumperle (2006), while being considerably faster" - [6].
In order to achieve this goal, they propose an inpainting algorithm actually based on the
work of Bertalmio in [5] and inspired by the fast, non-iterative inpainting method pro-
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posed by Telea in [7]. Acknowledging the drawbacks of Telea’s algorithm, Bornemann
and Marz try to resolve them, at least partially, by implementing an algorithm that mod-
ifies the weight function used for the method proposed by Telea in [7] (see the ’Partial
Differential Equation (PDE) based inpainting’ section for details), while trying to keep its
fast performance. In doing so, the authors of [6] thrive to obtain the formal stationary
(i.e. not changing over time) state of Bertalmio et al.’s technique.

By writing the Equation 2.3 in its equivalent form given by:

It(x, y) = −∇⊥∆I(x, y) · ∇I(x, y) (2.17)

Bornemann and Marz show that the transport equation proposed by Bertalmio et al. in
[5] is essentially a transport equation for the image value I(x,y) in the direction of the
level lines, and not for the smoothness L of the image I along the isophotes, as it was
claimed. The latter affirmation results from the very simple fact that it’s It and not Lt
that appears on the left hand side of the Equation 2.17, thus being assigned a new value.
The same can be observed from the formal version of equation 2.17, in a stationary state,
which is given as:

~c · ∇I(x, y) = 0, where ~c = ∇⊥∆I(x, y), (2.18)

Once again, from the above equation one can infer that the image values are transported
along the direction given by the continuations of edges arriving at the boundary of the
inpainting domain, inside the gap. As shown previously, when discussing Bertalmio et
al.’s method, their choice of propagating information along the isophote’s direction and
the diffusion process interleaved with the inpainting steps results in blurred regions and
introduces ’peculiar transport patterns’ ([?]), as the one shown in Figure 6b. Therefore,
Bornemann and Marz propose the use of a coherence direction instead of Bertalmio et
al.’s edge-oriented transport direction.

To sum up the above, the fast inpainting method presented in [6] relies on the fol-
lowing two main concepts:

1. Modifying Telea’s weight function (in [7])

2. Replacing the edge-oriented transport direction proposed by Bertalmio et al. in [5]
by the coherence direction.

The new weight function used in [6] is given by:

w(p, q) = (
π

2
)2

µ

|p− q|
exp

(
−
µ2

2ε2
|~c⊥(p) · (p− q)|2

)
(2.19)

In Equation 2.19 p and q denote the pixel that needs to be filled in and a known pixel
belonging to its neighbourhood, respectively. ε gives the radius of the neighbourhood,
and is set by the user, while the vector ~c gives the coherence direction. The latter is
defined as the normalized eigenvector to the minimal eigenvalue of Jρ(∇uσ), where
Jρ is a structure tensor of the image I(x, y). A structure tensor is a symmetric positive
semidefinite 2x2 matrix and is computed as it follows:

Jρ(∇uσ) = Kρ ∗ (∇uσ ⊗∇uσ), uσ = Kσ ∗ u (2.20)

In the above equation K is a Gaussian kernel, its indices σ and ρ denoting its variance. In
other words, the two parameters, set by the user, ρ and σ refer to the scale on which de-
tails influence the calculation of the transport direction. Furthermore, in equation 2.20,
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the ∗ symbol refers to a convolution operation. The only unknown in equation 2.19 is
now the µ parameter, which can be computed as:

µ(x) =


1 ifλ1(p) = λ2(p)

1+ κexp

(
−δ4quant

(λ2(p) − λ1(p))2

)
otherwise

Finally, in equation 2.3 the parameter denoted by κis a sharpness parameter, set by
the user, and λ1 and λ2 are the eigenvalues of Jρ, with 0 ≤ λ1(p) ≤ λ2(p),where p is the
pixel to be inpainted. Denoting by ~w1(p) and ~w2(p) the normalized eigenvectors corre-
sponding to the two eigenvalues λ1 and λ2, and knowing that the coherence direction ~c

is given by the normalized eigenvector to the minimal eigenvalue of Jρ(∇uσ), which is
~w1, it results that:

~c = ~w1 (2.21)

As the weight function is now defined, the algorithm proposed by Bornemann and Marz
proceeds with the inpainting of the pixel p, whose value is modified according to the
expression given in Equation 2.5, where instead of using the weight function given in
equation 2.6, the new weight function in equation 2.19 is used. Except for the change in
the weighting function, the inpainting process is similar to the one described in Telea’s
paper [7].

The image obtained by employing Bornemann and Marz’s inpainting technique, com-
pared to the one obtained after applying Telea’s method is presented in Figure 16. The
differences between the two resulting images are easily noticed, as in Figure 16c the
inpainted area is visibly more blurred than the image in Figure 16d, where virtually no
diffusion can be noticed. The authors of [6] note even that an (nonexpert) observer could
actually consider the image in Figure 16d as being the original one, if not presented with
the one in Figure 16a. Disregarding the visually improved results, Bornemann and Marz’s
algorithm increases the computing time, from 0.08 sec. with Telea’s method, to 0.4 sec.
However, compared to other inpainting algorithms, the method proposed in [6] is still a
fast one (see Table.... for the processing time of other algorithms).
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(a) (b)

(c) (d)

Figure 16: Comparison of inpainting results: Bornemann and Marz vs. Telea methods. (a)
Original image (b) Original image with mask (c) Result of Telea’s inpainting method [7]
(d) Result of Bornemann and Marz inpainting method

22



Digital Inpainting for Artwork Restoration: Algorithms and Evaluation

3 Survey of Quality Metrics

Crosby [27] gives a general definition of quality, that can relate to any field of study,
by saying that quality is the compliance to the imposed requirements. Later on, with the
introduction and expansion of photography and television, a more specialized term came
to be known, and widely used, namely the image quality. Jansen defined image quality
[28], as being the extent to which an image is both natural and useful. In this context,
the naturalness is given by the degree of similarity between the internal representation of
the considered image and the actual (real life) representation of the scene in the image,
while the usefulness is given by the internal representation’s precision. Other similar
definitions have been given in [29], [30], adapting the general definition of quality to
the field of digital imaging.

In order to evaluate the quality of an image, many Image Quality (IQ) metrics have
been proposed, considering various applications (i.e. video, images) and different distor-
tions (i.e. compression, noise). The diversity of the existent image quality metrics can be
explained by the general tendency that tries to obtain a good correlation with perceived
image quality [1]. However, in the specialized field of digital inpainting, research has
been more concentrated around the development of new algorithms, or improvement of
the existent ones, than on the quality evaluation of the inpainted images, as highlighted
by Mahalingam in his work, [12].

This Chapter will discuss methods that have been extensively used for the evaluation
of inpainting quality, as well as more recently proposed methods having the same goal.
An overview of general image quality metrics that could be applied for inpainting quality
evaluation is given in the second part of this Chapter.

3.1 Overview of inpainting quality metrics

Early inpainting algorithms (i.e. Bertalmio et al. [5]) have been specifically designed for
filling in small missing or damaged regions in digital images and later in vintage films.
Their objective was, at that time, to reconstruct the image such that the result would
appear to be as close to the original (undamaged) image as possible. Consequently, many
researchers evaluated the quality of the images inpainted with their newly proposed
method by employing simple objective metrics, such as the Mean Squared Error (MSE) or
the Peak Signal to Noise Ratio (PSNR). One such example is given in [9], where Oliveira
et al., the authors of this fast inpainting technique discussed in Section 2.3, evaluate the
performance of their algorithm by computing the MSE of the inpainted image, in the
RGB color space (compute the MSE separately for each of the three color channels, R, G
and B). However, because the MSE and PSNR are essentially image fidelity metrics, they
do not perform well in characterizing perceptual image quality [12].

As the domain of digital image inpainting spread, to include applications that require
a larger area to be inpainted, the objective of the inpainting process also changed, from
trying to achieve high fidelity with the original, not degraded, image, to making the
inpainted area as visually pleasing as possible. In other words, the modifications brought
to the original image through inpainting should not be discernible by human observers
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[12]. Given this new objective of inpainting, it becomes obvious that evaluation methods
previously used (i.e. MSE, PSNR) could no longer provide a good assessment of the
inpainting quality. Thus, new inpainting evaluation methods were required, methods
that would take into account the subjective nature of the human visual system..

One such method that accommodates the new objective of the inpainting process is
represented by the visual comparison technique, which, as the name suggests, consists of
nothing more than putting two (or more) images together followed by a visual compari-
son made by a single person (i.e. author). As a common practice, one of the considered
images is a reference image, which, most of the times, is an image inpainted by using a
well-known inpainting method (i.e. Criminisi et al. [2], Bertalmio et al. [5]). It is clear
that this evaluation method reflects the personal opinion of the author, being thus a
highly unreliable and subjective evaluation method.

Hays et al [24] were the first to perform a psychophysical experiment, with human
observers, that required the participants to rate the quality of the inpainted images pre-
sented. Based on the perceptual results obtained from the experiment, they conclude that
the method they propose outperforms the exemplar based inpainting method presented
by Criminisi et al. in [2].

As psychophysical experiments are both time and resource demanding, objective meth-
ods that evaluate the quality of inpainting without the involvement of human observers
are usually preferred. With this in mind, Ardis et al. [13] and Mahalingam [12] proposed
visual saliency-based metrics, that will be discussed in the following sections.

3.1.1 ASVS and DN

Ardis et al. [13] acknowledge the lack of research work in the field of inpainting evalu-
ation and propose two metrics that relate the visual saliency map of an image with the
perceived quality of the corresponding image. The saliency maps used for computing the
metric values are generated by using version 3.1 of the iLab Neuromorphic Vision Toolkit
(iNVT), at 1:16 discretization of scale-4 (noiseless) expected visual cortex stimulation
with 0.1 ms observation cutoff, 4 orientation channels, 3 center scales (2 to 4) and 2
center-surround channels (3, 4) [13].

The first metric proposed by Ardis et al. is the Average Squared Visual Salience (ASVS),
computed as:

ASVS(I) = (1/||Ω||)(
∑
Ω

(S ′(p))2). (3.1)

In the above equation I is the image considered for inpainting, p is a pixel belonging to the
inpainted region,Ω, and S’(p) is the saliency value corresponding to it. By computing the
normalized sum of the squared salience values of the inpainted pixels, the ASVS metric
is a no-reference metric, which means that it does not require the use of an original (not
degraded) image. This holds a great importance for artwork restoration, where there
might be cases when there is no information about how a work of art originally looked
like.

The ASVS metric takes into consideration only the inpainted area, as inferred from Eq.
3.1. Thus, this metric accounts for in-region artifacting, a class of observable artifacting
defined by Ardis et al. in [31], which occurs when the pixels in the inpainted region draw
more attention than they are suppose to. As noted in [31] the in-region artifacting is,
most of the times, related to distinct coloration or structure, created after inpainting, that
can not be observed anywhere else in the image. Consequently, this newly introduced
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color or structure will result in high saliency values, and thus higher ASVS score.
Another class of artifacting specific to inpainting applications is represented by the

out-region artifacting. As its name suggests, this class encompasses cases where the in-
painting process modifies the flow of attention outside the inpainting region. The latter
usually happens when an inpainting algorithm can not successfully continue a locally
repeating color or structure, from outside the gap, inside it. The discontinuation thus
introduced indirectly draws the attention towards the inpainted area, by decreasing the
flow of attention drawn by otherwise salient areas and increasing the attention in the
neighbourhood area of the inpainting domain. The out-region artifacting can be com-
puted by using the following equation:

out− region(I) =
1

|Θ|

∑
p∈Θ

(S ′(p) − S(p))2, (3.2)

where I is the image to be inpainted, and S’(p) and S(p)are the saliency map values
corresponding to a pixel p belonging to the inpainting domain in the modified image and
original, unmodified image, respectively.

In order to account for out-region artifacting, Ardis et al. propose another metric,
namely the Degree of Noticeability (DN), which takes into consideration both classes of
artifacting, being calculated as:

DN(I) =
|Ω|

|Ω|+ |Θ|
in− region(I) +

|Ω|

|Ω|+ |Θ|
out− region(I), (3.3)

where in-region(I) = ASVS(I). A s with the Average Squared Visual Salience, higher scores
obtained for DN generally indicate a poor inpainting performance.

In [31] the authors perform an psychophysical experiment for the evaluation of the
proposed metrics and conclude that the two saliency-based metrics "correctly (but im-
perfectly) measure the phenomena that they are intended to (i.e. increased notice of the
inpainted region, significant attention change)" [31]. The authors recommend the use of
the ASVS metric for the evaluation of inpainting when the fidelity of the resultant image
to the original is not a matter of importance. A high value for the ASVS metric can be
interpreted as an indicator of highly visible artifacts. The DN metric, on the other hand,
should be used for evaluating the inpainting quality of images required for applications
that demand that the original flow of attention be kept after inpainting. Higher values
for DN may indicate the presence of artifacts that interfere with this goal.

Although the subjective evaluation against which the two metrics are evaluated shows
a good correlation between perceived and calculated quality, the findings of Ardis et al.’s
study needed to be confirmed by further experiments, as it only considered a total of five
observers.

3.1.2 GDin and GDout

In [12], Mahalingam proposes another two visual saliency-based metrics, resembling the
approach presented earlier by Ardis et al. Mahalingam defines a normalized gaze density
measure that uses the original (not deteriorated) image as a reference, and shows that if
there is any change in the saliency map corresponding to the inpainted image, then this
change is related to the perceptual quality of the inpainting.

As in [13], the evaluation metrics proposed in [12]are also computed separately, for
the region corresponding to the inpainting domain, and outside it respectively, resulting
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in the following two equations:

GDin =
∑
p∈Ω

S ′(p) and GDout =
∑
p∈Θ

S ′(p), (3.4)

where Ω represents the inpainting domain and Θ the complementary region. Further-
more, S ′ is the saliency map corresponding to the inpainted image, which gives S ′(p) as
the saliency map value corresponding to pixel p. In the above equation, the two metrics
compute the gaze density inside and outside the inpainted area of modified images. In
order to be able to compare the values provided by these metrics for different images, a
normalization is required. Consequently, the following two ratios are calculated:

¯GDin =
GDinpin
GDunmodin

and ¯GDout =
GDinpout
GDunmodout

, (3.5)

where GDunmodin and GDunmodout are calculated similarly to Eq. 3.4, by replacing S ′(p)
with S(p), where S is the saliency map of the original, unmodified image. For simplicity,
from this point further, whenever discussing the GDin and GDout inpainting evaluation
metrics, this simple notation will be used, referring to the normalized version of the
metrics. When computing the GDin and GDout scores for an inpainted image, a value
closer to unity generally indicates that the flow of attention after inpainting does not
deviate from normal viewing behaviour.

In his work, Mahalingam performs an eye tracking experiment in order to obtain the
saliency maps for the images considered. However, since inpainting evaluation methods
that are fully automatic are preferred to those that imply the participation of human
observers, in this thesis the SaliencyToolbox version 2.2 [32] is used to generate the
saliency maps. The SaliencyToolbox is a reimplementation of the iNVT toolkit developed
by Laurent Itti’s lab at the USC. This toolbox is more compact, easier to understand and
experiment with.

3.2 Overview of image quality metrics

As mentioned earlier, objective metrics for image quality assessment provide a replace-
ment for the resource-intensive perceptual experiments. It was shown in Section 3.1 that
in the field of inpainting, the focus of research has not been put on the development
of objective metrics, but on the development and improvement of inpainting methods.
Thus, in the remainder of this section a number of objective metrics that have been more
extensively used for general image quality evaluation will be discussed. These metrics
will be further on applied to inpainted images in order to determine whether they can
provide similar, or better results than inpainting-specific objective metrics.

3.2.1 MSE and PSNR

The Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are two
mathematically based metrics that have been widely used due to the fact that they are
easy to implement and thus convenient to use for optimization purposes [1].

The MSE computes the cumulative squared error between two images: one reference
(i.e. original) image and a modified version of it. The equation for calculating the MSE
is given as:

MSE =
1

mn

m−1∑
y=0

n−1∑
x=0

[IO(x, y) − IR(x, y)]
2, (3.6)
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Figure 17: S-CIELAB flowchart
S-CIELAB flowchart. Source: [1]

where IO denotes the original (reference) image and IR its reproduction (modified ver-
sion). x and y indicate a pixel location andm and n give the number of rows and columns
of the input images, respectively. A lower value for the MSE indicates a lower error, thus
better quality of the reproduction.

The PSNR computes the peak signal to noise ratio between two images and gives
a value in decibels as a result. The higher the value obtained for PSNR, the better the
quality of the reproduction. First step in computing the PSNR is to obtain the MSE value
for the two images. Then, the PSNR is calculated as:

PSNR = 10 log10
R2

MSE
, (3.7)

where R is the largest value a pixel can take. For the images considered in this thesis,
stored as 8-bit unsigned integer data type, R = 255.

The MSE and PSNR were computed for color images by converting the images to the
YCbCr color space, which separates the intensity (luma) channel from the color channels.
This choice was made because the human eye is more sensitive to intensity information.
Taken this into consideration, the MSE and PSNR are calculated on the Y channel.

Despite their easy calculation, it has been proven that these two metrics do not cor-
relate well with perceived IQ [33]. However, the MSE and PSNR will be considered for
further comparison, as they have been widely used for inpainting quality assessment
(due to a lack of an effective objective metric).

3.2.2 S-CIELAB

The S-CIELAB metric was proposed by Zhang and Wandell in [34] as a spatial extension
of the CIELAB color formula. Thus, this metric aims to simulate the blurring of the human
visual system by including a spatial filtering step in the quality prediction workflow.
As shown in Figure 17 the spatial filtering step is followed by the basic CIELAB color
difference calculation between the two images.

In the color separation stage, represented in Figure 17, the RGB input images are
converted into the CIE-XYZ color space and then into the opponent color space which
separated the luminance information (O1channel) from the red-green (O2channel)
and blue-yellow information (O3channel) respectively. The spatial filtering is then ap-
plied to each channel, by using a 2D separable spatial kernel. The resultant image is then
converted back to CIE-XYZ color space and from that to the CIELAB color space. The next
step consists of applying the ∆E∗ab formula for calculating the pixel-wise color difference
between the two input images. Finally, the value for the S-CIELAB metric that represents
the overall image difference is given by the average over the pixels color difference. The
lower the value for the S-CIELAB metric, the better the quality of the reproduction.

The S-CIELAB image quality metric has been initially designed for the assessment of
halftone image quality, but as shown in [1], it has also been widely used for computing
the overall IQ for a large number of distortions. Moreover, the S-CIELAB is frequently
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Figure 18: SSIM flowchart for a local window. Source: [36]

considered as a reference metric when evaluating different metrics against each other.

3.2.3 SSIMIPT

The SSIMIPT metric was introduced by Bonnier et al. in [35] and represents the color
version of the Structural Similarity Index (SSIM) proposed by Wang et al. in [36]. The
idea behind this metric is to perform separate comparisons of the luminance, contrast
and structure information between local windows in the reference and distorted images
and then combine the results of these comparisons in order to obtain the value for the
SSIM. Finally, the SSIM value corresponding to the overall quality of the distorted image
is obtained by averaging the previously calculated SSIM values, corresponding to local
windows in the two images. The workflow for the computation of the similarity index
is given in Figure 18, as proposed in [36]. Signalx and Signaly denote local windows
for which the similarity measure is computed. According to Wang et al., the structural
information within an image is given by the attributes that describe the structure of the
objects in that image, independently of the average contrast and luminance.

3.2.4 VSNR

The VSNR denotes a wavelet-based Visual Signal-to-Noise Ratio which was proposed by
Chandler and Hemami in [33], and which aims at quantifying the visual fidelity of dis-
torted images. The metric takes into consideration low level as well as mid-level features
of the HVS. The low level properties such as contrast sensitivity and visual masking are
employed in the wavelet domain and compared to the detection threshold. If detected
distortions are below the threshold, the reproduced image is considered to have perfect
visual fidelity, corresponding to a value for VSNR which would be equal to infinity, and
thus no further analysis is required. However, if above the visual detection threshold, the
distortions are considered as suprathreshold (visible) and the low level HVS feature of
perceived contrast of the distortions and mid-level property represented by the global
precedence are taken into consideration as alternative indicators of structural degrada-
tion. In this context, the global precedence property of the HVS refers to the proportion-
ality of contrast distortions across spatial frequency. According to the above, the value
for the VSNR metric corresponding to two images is given by a combination of perceived
contrast of the distortions and discontinuity of global precedence.
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Figure 19: SHAME and SHAME-II flowchart. Source: [1]

3.2.5 SHAME and SHAME-II

Pedersen and Hardeberg [37] proposed two new IQ metrics that consider regions of
interest in an image and assign assigned different weights to different pixels. The Spatial
Hue Angle MEtric (SHAME) and SHAME-II metrics take into consideration the fact that
when evaluating quality, the human perception depends on the viewing conditions (i.e
the distance an image is viewed from) and thus it tries to simulate the human visual
system (HVS) in order to be able to provide results that are better correlated with the
perceived quality.

The SHAME metrics are both based on the Hue Angle algorithm proposed by Hong
and Luo in [38], but each of them uses a different spatial filtering method. The hue
angle algorithm is essentially a full-reference image difference metric implemented for
color images and using the CIELAB ∆E∗ab color difference formula proposed in [39]. The
four main aspects that the algorithm is based upon are summarized by Hong and Luo as
it follows:

• "Pixels or areas of high significance can be identified, and suitable weights can be
assigned to these.

• Pixels in larger areas of the same color should be given a higher weight than those in
smaller areas.

• Larger color difference between the pixels should get higher weights.

• Hue is an important color perception for discriminating colors within the context."

The two spatial filtering methods included in the SHAME(II) metric computation, as
proposed by Pedersen and Hardeberg [37], refer to a spatial filtering method adopted
from S-CIELAB (for SHAME) and a spatial filtering adopted from Johnson and Fairchild
in [40] (for SHAME-II), respectively. While the idea behind the S-CIELAB spatial filtering
implementation has been previously presented, the second method proposed by Pedersen
and Hardebeerg implements the spatial filters using Contrast Sensitivity Functions in the
frequency domain, as opposed to the spatial domain (i.e. S-CIELAB). In [37] the authors
show that metrics that use spatial filtering in the frequency domain generally outperform
those that are based on spatial filtering in the spatial domain.

In Figure 19 the workflow of the SHAME and SHAME-II metrics is shown, where one
can note that after converting the input images to the opponent color space, a spatial
filtering is applied to the converted input images, and further on, the obtained filtered
images are used as input to the hue angle algorithm. By adding spatial filtering to the hue
angle measure, the SHAME and SHAME-II metrics present the following key features:

• Higher weights are allocated to pixels belonging to large areas of same color.

• Simulates spatial properties of HVS.
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• Distortions that can not be detected are neglected.

• Can be applied to different types of distortions; not restricted to color patches.

• The final result is given as a single, numerical value that can be easily interpreted.

3.2.6 ABF

The Adaptive Bilateral Filter proposed by Wang and Hardeberg in [41] is essentially an
image difference metric. This metric uses an edge preserving bilateral filter, which blurs
the image while preserving the existent edges, providing thus better results than those
obtained when using Contrast Sensitivity Functions (CSFs) - as is the case of S-CIELAB
metric. Before applying the bilateral filter, the images are converted to the CIELAB color
space where the ∆E∗ab formula is applied in order to obtain the color difference. It can
be noticed from these two last steps that the workflow for computing the ABF value is
similar to the one corresponding to S-CIELAB metric, the difference between the two
consisting in the filtering step.

When evaluating the image quality, a lower value for the ABF will indicate a better
quality of the reconstructed image.
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4 Proposed Metrics: BorSal and StructBorSal

As seen in Section 3.1, visual saliency based metrics proposed by Mahalingam [12] and
Ardis et al. [13] attempt to predict inpainting quality by separately considering the re-
gions inside and outside the gap, respectively. Building upon this previous related work,
one full-reference metric, denoted by Border Saliency (BorSal), is proposed in this the-
sis. The novelty here consists of considering only one border region around the gap, that
contains information from both the inpainting domain and its complementary area. The
choice for the region border was inspired by the work of Ardis et al. [13], in which the
authors state that, if existent, out-region artifacting affects the flow of attention outside
the inpainting area, but concentrated around its neighbourhood. Consequently, investi-
gating the saliency map values corresponding to a border region around the gap should
be able to accurately capture this change of attention flow, without the need of examin-
ing the saliency map of the whole image. Furthermore, the BorSal metric is computed as
a normalized gaze density measure, similar to the GDin and GDout metrics proposed
by Mahalingam in [12]:

BorSal(I) =

∑
p∈Border S

′(p)∑
p∈Border S(p)

, (4.1)

where S ′ and S are the saliency maps of the inpainted and reference image, respectively
and p is a pixel in the region corresponding to the Border region. In this thesis and for
further evaluation of the metric, the size of the border region was chosen to be equal to
six pixels, containing information from both outside and inside the gap, and was obtained
by applying morphological operations (i.e. erosion, dilation) to the inpainting domain.

Using the already defined BorSal metric, a second inpainting quality measure is pro-
posed, by combining the BorSal metric with the SSIMIPT measure introduced by [35].
The latter takes into account structural information in the whole image and thus can in-
dicate the presence of artifacting due to poor structure reconstruction, while the BorSal
metric accounts for changes in the flow of attention, post inpainting. The new metric
will be denoted by StructBorSal and its value calculated by adding up the value obtained
according to Equation 4.1 for BorSal, with the SSIMIPT score, calculated for the entire
image.
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5 Evaluation of Inpainting Algorithms and Quality
Metrics

As shown in Chapter 2, a large number and variety of inpainting algorithms currently
exist. To try and cover all these methods would be infeasible. Thus, this thesis only looks
at a selection of algorithms, that take different approaches in their shared goal of filling
in missing parts of an image. The performance evaluation of these algorithms requires
an image database, created according to the instructions given in the following section.
The methodology for evaluation of inpainting algorithms and quality metrics will be
discussed in the last part of this Chapter.

5.1 Inpainting algorithms

Eight inpainting algorithms, from those discussed in Chapter 2, have been selected for
further evaluation. Table 1 lists these algorithms, where Year is the head of the column
containing the year of the publication proposing the algorithm, the column Author(s)
gives the name of the author(s) and Type indicates the category the algorithm belongs
to, depending on the approach it takes. Furthermore, in the Gap size column, the symbols
L, M and S denote the size of the gap for which the algorithm provides the best results.
In the same table, Structure and Texture indicate whether an algorithm is capable of
reproducing structure and texture, respectively, whereas the Blur column indicates the
existence of blurring post-inpainting artifacts.

Table 1: Selected inpainting algorithms

Year Author(s) Type Gap size Structure Texture Blur
2000 Bertalmio et al. [5] PDE based S Yes No Yes
2004 Telea [7] PDE based S - M Yes No Yes
2005 Tschumperle and Deriche [4] PDE based S - M Yes No Yes
2004 Criminisi et al. [2] Exemplar based M - L Yes Yes No
2010 Zhou and Kelly [3] Exemplar based M - L Yes Yes No
2001 Oliveira et al. [9] Fast (convolution) S No No Yes
2007 Bornemann and Marz [6] Fast (PDE based) M - L Yes No Yes
2009 Barnes et al. [8] Fast (Exemplar based) M - L Yes Yes No

Mai and Chen developed the Image Inpainter tool [23] that implements a number
of algorithms, allowing a user to accomplish the task of image inpainting. This tool, is
publicly available for download from [42]. The algorithms implemented as part of the
Image Inpainter tool exhibit different approaches towards digital image inpainting and
have distinct properties, making them suited for different types of image inpainting tasks.
This tool has been used in this thesis for accessing the C++ implementations of the meth-
ods proposed by Bertalmio et al. [5], Telea [7], Criminisi et al. [2], Zhou and Kelly [3]
and Oliveira et al. [9]. The Image Inpainter tool allows the user to tune the parameters
specific to each of the aforementioned inpainting methods, so that to obtain best possible
quality for the inpainted images. However, setting the correct parameters is a subjective
process, highly dependent on the user and on the input image. Currently, there exist no
objective method for choosing the set of parameters providing the best results. Thus,
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researchers in the field of digital inpainting are required to experiment with different
sets of parameters and perform a visual inspection of the inpainted images in order to
establish which parameters determine the best result. The latter has been confirmed by
researcher Aurelie Bugeau ( Associate Professor at Video Analysis and Indexing research
group in Image and Sound Department of LaBRI), as a result of an open discussion on
this topic.

The commercial software Adobe Photoshop CS5.1 provides a content-aware filling
tool, as the implementation of the inpainting method proposed by Barnes et al. in [8].
Optimised for user interaction scenarios, two of its main advantages are represented
by the redundant parameter tuning and the increased performance in terms of running
speed (Table 13).

The inpainting algorithm introduced by Tschumperle and Deriche in [4] has been
implemented in the G’MIC plug-in for GIMP 2.6 and is publicly available for download
from [43]. The Region Inpainting filter allows parameter tuning and completes the task
of reconstructing missing or corrupted content of image regions in a very short amount
of time (see Table 9).

Finally, Bornemann and Marz, the authors of the inpainting algorithm proposed in
[?], provide a Windows executable of the associated code, with its Matlab driver. The
latter is publicly available for academic purposes and can be downloaded from [44]. The
provided implementation allows parameter tuning.

Experiments using the above implementations were performed on a PC with an Intel
Core 2 Duo 2.66 GHz CPU with 3.25 usable RAM.

5.2 Quality metrics

This Section will provide a summary of the 14 metrics that were selected for further eval-
uation in terms of their correlation with the percept. As seen in Chapter 3, these metrics
can be divided into two main groups, one referring to metrics specifically designed for in-
painting quality evaluation, and one that consists of metrics developed for general image
quality evaluation.

Table 2 lists the inpainting-specific metrics whose performance will be assessed as part
of this thesis. In this table, the column Year specifies the year of the publication in which
the metric was proposed, Name gives the abbreviated name of the metric and Author(s)
its authors name. Furthermore, the column Type indicates the type of the metric with
respect to the use of a reference image, while the last column, Affected region, specifies
the region (with respect to the gap) that is considered when calculating the score of the
metric. The Matlab implementation of these metrics followed the specifications given by
the authors of [13] and [12].

Table 2: Selected inpainting-specific quality metrics

Year Name Author(s) Type Affected region
2009 DN Ardis and Singhal [13] Full reference in-region and out-region
2009 ASVS Ardis and Singhal [13] No reference in-region
2010 GDin Mahalingam [12] Full reference in-region
2010 GDout Mahalingam [12] Full reference out-region

Table 3 lists the eight general image quality evaluation metrics. As in the case above,
Year, Name and Author(s) give the year of publication, name of the metric and name
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of the author(s), respectively. The column Type indicates the metric’s type, as given by
its author(s) and HVS contains information on whether the metric simulates the human
visual system (HVS) or not. Finally, Image indicates the type of the images for which the
metric is applied (i.e. color or grayscale). All the metrics in Table 3 are full-reference
metrics.

Table 3: Selected general image quality metrics. Adapted from [1]

Year Name Author Type HVS Image
- MSE - Image difference No Gray
- PSNR - Image difference No Gray

1996 S-CIELAB Zhang and Wandell [34] Image difference Yes Color
2004 SSIMIPT Bonnier et al. [?] Image difference No Color
2007 VSNR Chandler and Hemami [33] Image fidelity Yes Gray
2009 SHAME Pedersen and Hardeberg [37] Image quality Yes Color
2009 SHAME-II Pedersen and Hardeberg [37] Image quality Yes Color
2009 ABF Wang and Hardeberg [41] Image difference Yes Color

In Table 3 the type of the metrics is given as either image quality, image difference or
image fidelity. The former refers to metrics used for predicting image quality, while the
goal of the second type of metrics is to predict the perceived magnitude of differences
between two images (usually original and reproduction) [1]. Finally, image fidelity met-
rics are generally used for predicting the visibility of image reproduction errors. In this
thesis, however, the metrics presented in Table 3 will all be referred to as (general) image
quality metrics.

In addition to the four inpainting-specific metric and the eight general image quality
metrics, the two metrics proposed in this thesis, BorSal and StructBorSal, will be consid-
ered for further evaluation.

5.3 Image database

Generally, when an inpainting algorithm is considered for evaluation, a common practice
in the related literature is to use random images and to simulate occlusions. One such
example is given in Figure 20, where the original image is presented on the right and the
image with a simulated occlusion, in white, is shown on the left. Instead of simulating
the scratches on images, this master thesis proposes the use of images corresponding to
real damaged paintings. This attempt to perform actual digital restoration poses some
issues that will be discussed in the following paragraphs.

The issues that arise derive mainly from the fact that the objective evaluation methods
considered for comparison in this thesis make use of a reference image - that shows how
the painting and its colours looked in their original, unimpaired state ( referring to the
previous example of the simulated occlusion, the reference image would be the one
in Figure 20a). Whereas the common practice of simulating the missing information is
straightforward, giving access to the original, unmodified image which can eventually
serve as a reference image when evaluating the performance of a specific algorithm,
the choice made in this thesis, of using images of real damaged paintings, makes this
comparison to the reference image more difficult, if not impossible. The reason for the
aforementioned is that the images provided by Ruven Pillay at the Centre for Research
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(a) (b)

Figure 20: Simulated occlusions as input to inpainting algorithms. (a) original image (b)
simulated occlusion in white

Figure 21: The Virgin of the Light c.1730 by Gio Nicola Buhagiar (1698-1752) – Detail of
the painting during cleaning.

and Restoration of the Museums of France1 and by restorer Radu Tataru at the Brasov
Art Museum in Romania, correspond mainly to pairs of images before and after the
restoration. While at first sight it may not be obvious why this represents a drawback for
the general purpose of this thesis, the next paragraph will provide more details on this
matter.

The process of bringing a painting to its original state, as when it just came out of the
artist’s studio, or at least to an as-close-as-possible state, is a complex process, involving
a number of treatments that must consider the auxiliary frame (if existent), the canvas
support, the ground layer, the paint layer, the surface and finally, the decorative frame.
From discussions with professional restorer Radu Tataru, resulted that one of the most
important treatments applied to a work of art refers to its cleaning. This sub-specialized
process aims at reversing the chemical and/or physical phenomena like dirt, dust, and
light exposure, that substantially degrade the appearance of a painting over time. Figure
21 emphasises the considerable importance of this step in restoring colours and details
that were previously hidden by a layer of old varnish. In this Figure the opaque area is
the one that is still covered by the varnish layer.

1 the Centre for Research and Restoration of the Museums of France (C2RMF Centre de recherche et de
restauration des musees de France ) is the national research centre in France responsible for the documentation,
conservation and restoration of the items held in the collections of more than 1,200 museums across France.
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(a) (b)

Figure 22: ’Ex-Voto: Madonna and Child with Saints’ painting by Borg [?]. 17th century,
oil on canvas - before and after restoration.

However, it is before applying any treatment to the damaged painting, that the work
of art usually goes through a visual examination under raking light (paintings are illu-
minated from a light source situated at an oblique angle with respect to their surface).
This type of examination is preferred for works of art because the increased illumination
of the raised paint surfaces facing the light source together with the shadows on the
surfaces that face away from the light source reveal the surface texture of a painting.
Thus, by using raking light to evidentiate the effects of impasto2 and any degradations
of the canvas (i.e. craquelure, paint cupping, uneven tension in a canvas), conservators
are able to judge aspects of the condition of a painting. Moreover, photographing the
painting under raking light is an important step in the documentation required before
the actual restoration process begins. Figure 22 presents an instance of the 17th century
’Ex-Voto: Madonna and Child with Saints’ oil painting, under normal light, before and
after the restoration, while Figure 23, below, shows details of the same painting, before
restoration, with various defects exposed under a raking light.

Figure 23 shows details of a painting in need of restoration, but not necessarily in-
painting, as there are no significant missing regions being noticed. These images have
a purely documentary function, as they illustrate in an obvious manner the effects of
raking light on a painting, as well as the change in color determined by the removal of
the old varnish layer. Thus, this images will not be used further in this thesis. On the
other hand, in Figure 24 an image of the self-portrait by Margarete Depner ( XX century
) provided by Radu Tataru and considered as a test image in the experimental setup is
presented, both before and after the restoration process. Details of this painting are pre-
sented in Figure 25 and show the use of the impasto technique for the realization of this
work of art, while putting emphasis on the areas of the painting surface that need to be
inpainted.

After performing inpainting on the image in Figure 24a, the results obained with three
different algorithms (Criminisi’s examplar based inpainting, Local optimization, Photo-

2painting technique, where paint is laid on the canvas very thickly, usually thickly enough for the brush
strokes to be visible
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(a) (b) (c)

Figure 23: Detail of ’Ex-Voto: Madonna and Child with Saints’ painting with defects in the
canvas tension, seam and perforations evidentiated by inspection under raking light.

(a) (b)

Figure 24: Self-portrait by Margarete Depner - before and after manual restoration. Image
courtesy of restorer Radu Tataru at Brasov Art Museum.

(a) (b)

Figure 25: Details of ’Self-portrait’ by Margarete Depner. Inspection under raking light.
Image courtesy of Radu Tataru
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(a) (b) (c)

Figure 26: Digital image inpainting results with different algorithms. (a) Criminisi - ex-
amplar based inpainting (b) Zhou and Kelly - inpainting based on local optimization (c)
Photoshop CS 5.1.

shop CS 5.1) are presented in Figure 26. Having the resultant inpainted images, the next
logical step would include their quality evaluation. However, before proceeding to that,
there is still one requirement to be fulfilled. As stated earlier, the objective inpainting
evaluation methods that are considered in this study make use of a reference image in
order to establish the quality of the result provided by an algorithm. In order to provide
accurate results this reference image should meet one essential condition: relating to the
digitally inpainted image, the reference image should reflect changes (if any) only in the
area corresponding to the region that was selected for inpainting in the deteriorated im-
age. In the case under discussion the reference image is taken to be the image in Figure
24b, as it is the image that was provided together with the degraded image, illustrating
the state of the painting after the restoration. Hypothetically this image should make a
good reference image, as it corresponds to the manually restored self-portrait, and thus
including an inpainting step where the missing areas are filled in. However, when in-
specting the digitally inpainted images in Figure 26 and the reference image in Figure
24b, it becomes clear that the differences between any two images forming a pair refer-
ence - digitally inpainted, go beyond the area selected for inpainting, and this is mainly
because the manually restored version of the painting was subjected to various treat-
ments (i.e. cleaning), not only inpainting. The differences in the lighting conditions used
for the two images and the old varnish layer covering the deteriorated painting affect
the overall appearance of the images, contributing to the fading and discoloration of the
non-restored image when compared to the restored version. Thus, the assumed reference
image in Figure 24b does not meet the previously imposed condition of complete identity
outside the inpainted area.

Another issue that may arise when considering images of real deteriorated paintings
as input to inpainting algorithms is related to the presence of specular reflection under
raking light. Figure 27 illustrates this issue, showing a pair of images corresponding to
the state of a painting before and after the restoration, together with the digitally in-
painted version of the image. The wide spread area of specular reflection is an important

39



Digital Inpainting for Artwork Restoration: Algorithms and Evaluation

(a) (b) (c)

Figure 27: Icon of Tsarevich Dmitry (detail) (a) Original degraded painting (b) Manually
restored version (c) Digitally inpainted version

aspect in this case, as it contributes to how the holes in the image will be reconstructed. In
Figure 27c the red rectangles indicate two areas that have been inpainted using informa-
tion collected from areas with specular reflection. Consequently, instead of eliminating
the specular reflection ( so that to obtain an image that is closer to the reference image
- the manually restored image ), by applying inpainting directly on the image in Figure
27a more regions of specular reflection are created. Except for the propagation of spec-
ularity, as in the previous study case of the self-portrait, differences in color can also be
observed between the reference image and the digitally inpainted one.

For all the above mentioned reasons and in order to be able to accurately evaluate
the inpainting algorithms, a compromise has been done regarding the images used as
input. Instead of completely simulating defects, as done in other works on related topics,
this master thesis proposes the simulation of the steps preceding the inpainting in the
process of manual restoration (i.e. cleaning the dust, old varnish, etc.), so that to bring
the original degraded image to a state that is as close as possible to the state of the
final restored image. The result of this simulation would be an image that replicates
the regions containing missing or corrupted information from the degraded image but
that has identical content with the manually restored image in the region outside the
area to be inpainted. Knowing that inpainting is the last phase of the restoration process
of a painting, the proposed simulation is the equivalent of taking one step back from
reaching the final state in the manual restoration. Figure 28 illustrates an example of
such a simulation, showing the original degraded image and its corresponding restored
version. In Figure 28c an image that was subjected to modifications as the ones proposed
above is presented. It can be noticed that the appearance of this image is similar to the
one in Figure 28b, while it contains the water stain and other defects characteristic to
the degraded image in Figure 28a.

5.4 Test images

For evaluating the performance of the inpainting algorithms presented in Section 5.1, six
different images (Figure 29), varying in size and resolution, as seen in Table 4, have been
considered. These images, labelled as angel, boat, cleopatra, detail, lady and man, respec-
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(a) (b) (c)

Figure 28: Preparing an input image for inpainting. Image courtesy of Ruven Pillay at
C2RMF. (a) Original degraded painting (b) Manually restored version (c) Modified image
containing artefacts from the degraded image while maintaining the appearance of the man-
ually restored image

(a) (b) (c) (d) (e) (f)

Figure 29: Modified digitally acquired paintings corresponding to: (a) Ange by Raphael
(angel ) (b) Vue de Drontheim by Peder Balke (boat) (c) Cleopatra (cleopatra) (d) Detail
of Cleopatra (detail) (e) Self-portrait by Margarete Depner (lady) (f) Invention of painting
by Ariton (man). (a-d) - courtesy of R. Pillay at C2RMF, (e-f) courtesy of R. Tataru at Brasov
Art Museum (Romania)

tively, were obtained using the procedure described in Section 5.3. Figure 30 shows the
six deteriorated images, with the inpainting domain marked in green. As it can be ob-
served, the size of the region to be inpainted differs from image to image, varying from
narrow gaps (i.e. detail) to larger gaps (i.e. boat). Furthermore, the selected images con-
tain regions of missing information that require either structure or texture reconstruction,
or both. An example for the latter is given in Figure 31.

For each of the six deteriorated images, nine reproductions were considered as test
images in a psychophysical experiment. Out of these nine reproductions, eight were dig-
itally inpainted images, obtained as output of the inpainting algorithms presented in
Section 5.1. In addition to the latter eight, the digitally acquired image of the manually
inpainted work of art was also considered as a test image and included in the experiment.
Figure 32 shows an example of a set of 10 images, consisting of one deteriorated version
of a painting (angel) and its nine reproductions (i.e. inpainted images). The whole set
of test images included in the experiment, reproductions of angel, boat, cleopatra,detail,
lady, man, respectively, can be seen in Appendix A. The parameters used in order to
obtain the test images are also included in Appendix A.
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Table 4: Resolution and size of images considered for inpainting algorithms evaluation

Image Resolution(dpi) Size (pixels)

angel 72 580x921
boat 72 800x601

cleopatra 300 550x670
detail 300 341x398
lady 762 550x771
man 180 400x635

(a) (b) (c) (d) (e) (f)

Figure 30: Deteriorated images as input for inpainting algorithms, with overlapped inpaint-
ing masks. (a) angel (b) boat (c) cleopatra (d) detail (e) lady (f) man

Figure 31: Deteriorated image requiring structure and texture reconstruction. Inpainting
mask is shown overlapped, in green
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 32: Image set included in the test images. (a) Modified digitally acquired paintings
corresponding to: Retable de Saint Nicolas de Tolentino, "Ange" by Raphael (’angel’ ) - im-
age courtesy of Ruven Pillay at C2RMF. Inpainted images corresponding to: (b) manually
restored (c) Bertalmio et al. [11] (d) Telea [7] (e) Tschumperle and Deriche [4] (f) Borne-
mann and Marz [6] (g) Criminisi et al. [2] (h) Zhou and Kelly [3] (i) Barnes et al. [8] (j)
Oliveira et al. [9]
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5.5 Evaluation methodology

In order to establish the difference in quality of the resultant inpainted images, in the
field of digital inpainting subjective evaluation is commonly used, as it is a precise way to
quantify quality, but also because of the lack of a reliable quantitative metric. Thus, in an
attempt to establish a ranking of the considered algorithms in terms of perceived quality
of the inpainted images,and considering the database described above, a psychophysical
experiment will be carried out, according to the specifications given in Chapter ??. The
raw perceptual data obtained will be statistically analysed in order to determine the
ranking of the inpainting algorithms.

For the second part of this study, which refers to the evaluation of objective quality
assessment methods, the image database will consist of only digitally inpainted images
(a total of 48 images), thus excluding images corresponding to manual inpainting. For
this set of test images, the values given by quality metrics are computed, resulting, for
each image, in one score that describes its quality. Evaluating the metrics consists then in
comparing the obtained objective results, with the subjective scores given by observers
to the same images. Consequently, the performance of the metrics is quantified by the
correlation between the two. Higher correlation values indicate higher performance of
the metrics. In this thesis two standard correlation measures will be used:

• The Pearson product-moment correlation coefficient (PCC) [45], which finds the lin-
ear relationship between two variables using the formula:

r =

∑N
i=1 (Xi − X̄)(Yi − Ȳ)√∑N

i=1 (Xi − X̄)
2

√∑N
i=1(Yi − Ȳ)

2

, (5.1)

where r ∈ [−1, 1], N denotes the number of samples and X and Y are variables associ-
ated with subjective (i.e. z-scores from observers) and objective (i.e metrics) results
respectively.

• Spearman’s rank correlation coefficient [45] which is defined as the PCC between the
ranked variables. Accordingly, the SCC is calculated as in Equation 5.1, where X and
Y denote the rank of the subjective and objective results, respectively. This formula
allows for tied ranks.

Following the methodology above, the performance of the considered metrics is eval-
uated over the entire image database and then in an image-wise manner, for each of the
six different images.
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6 Psychophysical Experiment for Subjective Quality
Assessment

A psychophysical experiment was performed as part of the work for this thesis and with
the goal of subjective quality assessment of the inpainting results. Moreover, the subjec-
tive evaluation is of great significance for the current work, as the data thus obtained
will be used further on for validating objective methods of quality assessment. The latter
provide the means to ensure the correlation of the metrics with perceived quality. This
Chapter will discuss the experimental setup and the psychophysical results obtained.

6.1 Experimental setup

6.1.1 Test images

For the psychophysical experiment performed as part of this thesis, the image database
described in Section 5.4 was used, counting a total of 54 images. As mentioned earlier,
images corresponding to both, manually and digitally inpainted works of art are included
in this database. The digitally acquired images of manually inpainted paintings have been
included as test images with the aim of verifying the reliability of the observers, as rec-
ommended in Rec. ITU-R BT.500-13 [46]. The latter is done by checking the behaviour
of the participants when degraded/manually-inpainted image pairs are presented.

6.1.2 Experimental method

The experimental method for the subjective quality assessment was chosen to be the
Mean Opinion Score (MOS) [47]. This method was initially designed for audio quality
evaluation, but it has been widely used for image quality evaluation [48]. The MOS
values are based on subjective data obtained from the experiment. Participants were
presented with a pair of two images at a time. The pair consisted of a degraded image
and one of its reproductions (i.e. inpainted version). To each observer pairs were shown
in a different and random order. Given a pair of images, the participants were asked to
judge the overall IQ of the inpainted image using the ITU-R five point quality scale [46],
labelled with the adjectives: Excellent, Good, Fair, Poor, Bad. In order to be able to analyse
the subjective data obtained, each of the five adjectives in the descriptive quality scale
had an equivalent numerical value, or score (not shown to the observers). Accordingly,
Excellent corresponded to a 5 score and Poor to a 1 score. The MOS is then obtained for
each reproduction by computing the arithmetic mean of the individual scores given by
participants:

MOS =
1

n

n∑
i=1

Si. (6.1)

where n denotes the number of observers, and Si the score given by the ithobserver to
the reproduction under consideration.

A common practice when analysing perceptual data is to transform collected data
into interval scale data, by converting MOS values to z-scores. A z-score calculated for an
image represents the distance between its MOS and the mean score of the entire set of
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images, in units of the standard deviation. Accordingly, negative z-scores will be obtained
for MOS values below the mean, and positive when above. The formula for calculating a
z-score is:

X̄ =
x− µ

σ
, (6.2)

where x denotes the MOS value of an image, µ represents the mean of the MOS values
for the entire image set and σ the standard deviation.

MOS values and z-score are usually given with a 95% confidence interval (CI). For
a set of images with a known estimate of the mean MOS or z-score, denoted by µ, and
known standard deviation, σ, the 95% CIs are calculated using the formula [49]:

µ± 1.96 σ√
N
, (6.3)

where N indicates the size of the sample from which µ was obtained. The CI are used
to verify if two estimates µ1 and µ2 are significantly different from each other at the
95% level. The latter is true when the confidence intervals of the two estimates do not
overlap, and false otherwise.

6.1.3 Viewing conditions

The experiment was carried out in an uncontrolled environment, as a web-based experi-
ment. One of the most important factors that was considered when deciding to conduct
this type of experiment was the ease of acquisition of a large number of participants for
achieving high statistical power, making it thus possible to draw meaningful conclusions
from the experiment. Furthermore, experimenting around the clock and the feasibility
of reaching different categories of participants (i.e. experts in image quality, professional
restorers, naive observers) were two other aspects that contributed to the final decision.
Finally, research on this topic has shown that the difference between results obtained
from controlled and uncontrolled experiments is negligible [50], [51].

6.1.4 Instructions given to the observers

The observers were given clear instructions, focused on the overall quality rating of the
inpainted images. Accordingly, before commencing the experiment the observers were
told they will be presented with pairs of two images, as it follows:

• One image that corresponds to the original state of a damaged painting, with visible
artifacts (i.e. alterations, defects)

• One image that corresponds to a restored version of the same painting, after the existent
artifacts have been repaired

Figure 33 shows an example of such a pair presented during the experiment. The left
image shows the degraded image and the right the inpainted image. The instructions also
stated that this positioning of the two images will be kept as such, throughout the entire
experiment. Given a pair of images, as above, observers were instructed to evaluate the
overall quality of the right-sided, inpainted image, using a scale from Excellent to Poor,
where Excellent represented the most pleasing reproduction:

• Excellent

• Good

• Fair
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Figure 33:
Exemple of pair of images presented during the experiment. (left) Damaged painting

(right) Inpainted image, using the algorithm proposed by Oliveira et al. [9]

• Poor

• Bad

Observers were asked to complete the experiment, which consisted of viewing and rat-
ing a total of 54 pairs of images. An estimation of how long the participation in the
experiment will take (around 20 minutes) was also given to the observers.

In order to avoid having multiple submissions from the same observer, before com-
mencing the experiment, observers were asked to pass a step involving collecting user
information (i.e. initials, age, sex, country of residence, professional restorer or not, ex-
pert in image quality or not).

6.2 Psychophysical results

6.2.1 Observers

A total of 91 observers participated in the psychophysical experiment for inpainting qual-
ity rating. Before proceeding with the interpretation of the obtained results and data
analysis, in Rec. ITU-R BT.500-13 [46] a procedure for screening the observers is recom-
mended. This procedure was implemented for this thesis according to the specifications
given in the aforementioned technical report. Following, the mathematical form of the
screening procedure is given, while the reader is referred to [46] for more detailed in-
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Figure 34:
Demographic distribution of observers based on geographical location

formation.

¯ujkr(mean), sjkr(standarddeviation), β2jkr(kurtosiscoefficient)

β2jkr =
m4

(m2)2
, with mx =

∑N
i=1 (uijkr − ¯uijkr)x

N

foreachobserver, i, calculatePiandQi :

if2 ≤ β2jkr ≤ 4then :

ifuijkr ≥ ¯ujkr + 2sjkr thenPi = Pi + 1

ifuijkr ≤ ¯ujkr − 2sjkr thenQi = Qi + 1

else :

ifuijkr ≥ ¯ujkr +
√
20sjkr thenPi = Pi + 1

ifuijkr ≤ ¯ujkr −
√
20sjkr thenQi = Qi + 1

If
Pi +Qi
JKR

> 0.05 and |
Pi −Qi
Pi +Qi

| < 0.3 thenrejectobserveri,

where :

j, k, r = 1, 1, 1toJ, K, R

J : numberoftestconditions(J = 9)

K : numberoftestimages(K = 6)

R : numberofrepetitions(R = 1)

L : numberoftestpresentations;L = JKR(L = 54)

(6.4)

In addition to the screening procedure described above, observers were rejected if failing
to complete the experiment or if their scores indicated Fair, Poor or Bad quality for manu-
ally inpainted images, or if failing to complete the experiment. Consequently, from a total
of 91, results of 22 participants were rejected and only 69 considered for further evalu-
ation. A demographic distribution based on the geographical location of the observers is
shown in Figure 34, while Figure 35 indicates the number of participants belonging to
three different categories, based on the experience in judging or evaluating images.

6.2.2 Perceptual results

This Section will present an analysis of the perceptual results obtained from the psy-
chophysical experiment for inpainting quality evaluation. As stated earlier, three differ-
ent categories of observers participated in this study (i.e. naive, experts in image quality
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Figure 35: Demographic distribution of observers based on expertise and background

and professional restorers). Thus, the evaluation has been divided into four cases, one
for each category of observers and one that refers to the general qualitative evaluation
of inpainting methods and that takes into consideration all 69 participants to the experi-
ment.

As expected, for all the four considered evaluation phases, the manual inpainting
method received the highest scores, indicating the best perceived quality of the results,
among the studied methods. Moreover, the high mean value calculated for it for all four
phases, indicates a large agreement among the participants about the high performance
of this method. This was an expected outcome, as manual inpainting usually is done by
consulting with professional restorers that have access to additional sources of inspira-
tion (i.e. sketches of the original, undamaged painting ) for reconstructing the work of
art. Reconstructing texture and structure in the gaps of a painting is flawlessly done by
following the indications of the additional material or, when not available, based on hu-
man intuition. Obviously, artifacts like blurring of the inpainted area do not appear when
performing manual inpainting. Other artifacts like misalignments of linear structures are
less likely to occur for this type of inpainting.

Case 1: naive observers The ranking of the inpainting methods according to naive
observers is given in Figure 36. The algorithm proposed by Barnes et al. [8] and imple-
mented in the commercial software Adobe Photoshop CS.5.1. received the highest scores
among the digital inpainting methods, indicating perceived quality close to Good. This
method performed significantly better than the rest of the considered algorithms, whose
perceived quality of the results is close to Fair. The following three best algorithms,
that were proposed by Tschumperle and Deriche [4], Zhou and Kelly [3] and Criminisi
et al.[2]), did not prove to have a significantly different performance from each other.
The former uses a vector valued regularization PDE, requiring careful parameter tuning.
However, as it has been implemented in the commercial software GNU The GIMP, the
parameter tuning has been optimized for user interactivity and thus increased perfor-
mance. The method proposed by Zhou and Kelly [3] is an improved version of Criminisi
et al.’s exemplar based method [2]. Allegedly, better results are expected from Zhou and
Kelly’s method, as it aims at preserving local consistency of the inpainted region and
avoids its over-smoothing. In the obtained results, better performance can be observed
for Zhou and Kelly’s method, when compared to Criminisi et al.’s method, but not signifi-
cantly different. Bornemann and Marz’s PDE based method [6] builds on Telea’s [7] and
Bertalmio et al.’s method [5] while trying to minimise the effects of the diffusion pro-
cess, resulting in less visible blur artifacts. The latter is reflected by the obtained results,
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Figure 36:
Averaged MOS based on the results obtained from 57 naive observers, with 95% CI

Figure 37:
Averaged MOS based on the results obtained from 11 expert observers, with 95% CI

as they indicate a significantly better performance for the method in [6] when compared
to methods proposed in [5] and [7]. Oliveira et al.’s inpainting algorithm [9] is rated
by naive observers as the second worse in terms of inpainting quality, being followed by
Bertalmio et al.’s method. This is an expected outcome, as the latter is a basic PDE based
method that produces noticeable blurred areas and fails in reproducing texture, while
Oliveira et al.’s method is able to preserve general color information but can’t reproduce
structure nor texture in the gap.

Case 2: expert observers The ranking of the inpainting methods according to ob-
servers that are experts in image quality evaluation is given in Figure 36. Most of the
observations made for naive observers also hold as true in this phase. Again, the average
MOS value obtained for the method proposed by Barnes et al. [8] indicates the best and
significantly different performance among digital inpainting methods. The performance
of the similar approaches of Criminisi et al. [2] and Zhou and Kelly [3] is not signifi-
cantly different, as also inferred from the previous evaluation case, but their order in
the ranking of the inpainting methods is now interchanged, as compared to the ranking
according to naive observers. The same is valid for the methods proposed by Telea [7]
and Bornemann and Marz [6]. However, in this case, the results obtained indicate that
the quality of the inpainted images for these two methods do not differ in a significant
manner, as inferred by their overlapping CIs in Figure 37.

Case 3: professional restorer The averaged MOS values corresponding to the rat-
ing given by one professional restorer that participated to the psychophysical experiment
are given in Figure 38. In this case, the CIs associated to the obtained results are notice-
able large. That is because the length of a CI is determined, among other factors, by the
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Figure 38:
Averaged MOS (per inpainting method) based on the scores given by a professional

restorer, with 95% CI. Based on this data a clear ranking of the inpainting methods is
impossible

size of the sample used in the estimation procedure. The largest the size, the smallest the
CI. Accordingly, the length of the CIs for data in Figure 38 is determined by the number
of professional restorers taking part in the experiment, which is equal to one, resulting
thus in large CIs. Because of this, the statistical power of the analysed data is very low.
However, few conclusions can be drawn based on this data. The method by Barnes et al.
[8] obtained the highest averaged MOS value, but the CI associated to it indicates that its
performance is only significantly better when compared to methods proposed by Borne-
mann and Marz [6] and Oliveira et al. [9]. Worthy of noticing is that according to the
professional restorer, images inpainted with Zhou and Kelly’s algorithm [3] outperforms
(as given by the mean MOS) Tschumperle and Deriche’s method [4], which has been
ranked as second best among digital inpainting algorithms by observers in the other two
categories.

Case 4: general evaluation As the inspection of the obtained results for each of
the three categories of observers shows no significant difference and in order to obtain
a higher statistical power, when evaluating the performance of quality metrics against
in the following section, objective data will be validated against perceptual data based
on the total number of observers that participated in the experiment. Thus, the scores
shown in Figure 39 are the average scores of the judgements made by the 69 observers.
Based on this data, a ranking of the inpainting methods can be established, indicating
that PDE-based methods are, generally, outperformed by exemplar-based methods. An
exception to the latter statement is the algorithm proposed by Tschumperle and Deriche
[4], which is not significantly different from the exemplar based methods proposed by
Zhou and Kelly [3] and Criminisi et al. [2], as also shown earlier. The overlapping CIs
of these three methods indicate the low visual difference between the inpainted images
obtained by the corresponding algorithms and implies a difficult task for the observers
to judge image quality.
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Figure 39:
Averaged MOS from observers based on 69 observers and 6 images, with 95% CI. The
algorithm proposed by Barnes et al. [8] is rated as the best among digital inpainting

methods

52



Digital Inpainting for Artwork Restoration: Algorithms and Evaluation

7 Objective Quality Evaluation: Results and Discussion

Following the methodology presented in Section 5.5, the performance of a set of quality
metrics will be evaluated in this Chapter. The set includes eight general image quality
metrics and four inpainting quality metrics, discussed in Chapter 3, and the two novel
inpainting quality metrics introduced in Chapter 4.

It will be reminded here that the evaluation methodology refers to statistically analysing
the perceptual data represented by ratings given by 69 observers to 48 digitally inpainted
images (obtained by excluding from the initial database the six manually inpainted im-
ages). Based on raw perceptual data, the Mean Opinion Score (MOS) is calculated for
each image in the database and then converted to a corresponding z-score. For each im-
age and each metric, an objective score will be calculated, describing the quality of the
reproduction. Finally, the Pearson product-moment (PCC) [45] coefficient and Spear-
man’s rank correlation coefficient (SCC) [45] between the z-scores and the objective
scores are calculated in order to evaluate the performance of the metrics considered. The
metric that correlates the best with the human observers will be considered the most
suitable metric.

In order to achieve an extensive evaluation of the metrics, the investigation of their
performance was carried out in two stages. First, the quality of the metrics over the entire
image database is evaluated, followed by an image-wise evaluation, when the selected
metrics are evaluated on individual images in the database.

7.1 Overall performance of the metrics

In order to evaluate the overall performance of a metric, the correlation between the ob-
servers z-scores and the metric raw scores corresponding to the 48 images in the database
is calculated. The obtained results, presented in Table 5, indicate that all the considered
metrics have a low Pearson correlation, and thus, can not accurately predict perceived
image quality. The two novel inpainting quality metrics proposed in this thesis, BorSal
and StructBorSal, have a very low correlation. However, they achieve a better perfor-
mance than the GDin and GDout inpainting quality metrics proposed by Mahalingam
[12]. Furthermore, the structural similarity and border saliency based metric, Struct-
BorSal, outperforms the ASVS metric [13] for the considered image database. The DN
saliency based metric [13], also designed for inpainting quality evaluation, provides the
highest correlation among all metrics, but with a value equal to -0.36 it still indicates a
low performance over the entire image database.

The considered metrics perform similar to the case above in terms of rank order cor-
relation, as indicated by the Spearman Correlation Coefficient given in Table 5.

Figure 40 shows z-scores obtained for the DN metric [13] plotted against z-scores
from the observers. It can be noticed that data points are very spread, explaining thus
the low overall correlation between calculated quality (z-scores for DN) and perceived
quality (z-scores for observers). The red line in Figure 40 is a linear regression line de-
termined by all data points. Additionally, on the same Figure, black linear regression
lines determined by data points corresponding to individual images have been added.
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Table 5: Performance of the metrics over the entire image database. The score for best
performing metric is highlighted in bold font

MSE PSNR DN ASVS GDin GDout S-CIELAB SHAME SHAME-II SSIMIPT ABF VSNR BorSal StructBorSal

PCC -0.13 0.28 -0.36 -0.11 -0.01 -0.01 -0.26 -0.15 -0.25 0.22 -0.32 0.06 0.06 0.12
SCC -0.28 0.28 -0.39 -0.11 0.07 -0.06 -0.19 -0.17 -0.19 0.31 -0.27 -0.02 0.08 0.13

Figure 40:
Observer z-score plotted against DN [13] z-score for all images in the database. PCC =
-0.36. The red linear regression line is determined by all data points; the black linear

regression lines is determined by data points corresponding to individual images

By doing so, it is possible to observe that the DN metric provides a good fit for data
corresponding to individual images.

Figure 41, Figure 42 and Figure 43 depict the relation between z-scores for the GDout,
BorSal and StructBorSal metrics, respectively, and observers z-scores. As in the previous
case, where the performance of the DN metric was studied, data points associated to
the latter three are also widely spread, resulting in low correlation values. This is a trend
observed for all considered metrics and can be explained by the scale differences between
the images in the database.

Thus, it can be concluded that, for the considered image database, the objective evalu-
ation methods selected for this study can not accurately predict perceived overall quality.
Worth noticing is that the best performance was obtained for a saliency based metric, that
was specifically designed for inpainting quality evaluation, and that among these type of
metrics, the second best performance was observed for one of the metrics proposed in
this thesis (StructBorSal).

7.2 Image-wise evaluation

Research in the field of image quality evaluation has shown that the performance of some
metrics can be influenced by characteristics of the images for which they are applied.
Thus, this section will investigate the performance of the selected metrics with respect to
individual images. The correlation between objective and subjective z-scores was again
used as a performance measure. Accordingly, data in Table 6 corresponds to the PCC and
SCC for the 14 metrics considered in this study, applied to the six test images used. For
each image (i.e. boat, clopatra, angel, lady, man, detail) the values listed in the columns of
Table 6 indicate the correlation between objective and subjective z-scores corresponding
to the eight reproductions (i.e. inpainted images inpainted with the eight algorithms).

The obtained results indicate a great variation between the scores obtained for the
14 metrics corresponding to a single image (column data in Table 6), but also between
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Figure 41:
Observer z-score plotted against GDout [13] z-score for all images in the database, with

a linear regression line. PCC = -0.01. The GDout metric shows the lowest correlation
with perceived quality, similar to GDin

Figure 42:
Observer z-score plotted against BorSal z-score for all images in the database, with a

linear regression line. PCC = 0.06. The PCC indicates a poor performance of the BorSal
metric, but higher than GDin and GDout [12]

Figure 43:
Observer z-score plotted against StructBorSal z-score for all images in the database,

with a linear regression line. PCC = 0.12. The StructBorSal metric outperforms the basic
BorSal metric, the saliency based metrics GDin, GDout [12] and the ASVS [13] metric
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Table 6: Comparison of metrics performance image-wise. The score for best performing
metric is highlighted in bold font for each image and each correlation coefficient

Metric boat cleopatra angel lady man detail
PCC SPP PCC SPP PCC SPP PCC SPP PCC SPP PCC SPP

MSE -0.63 -0.31 -0.48 -0.67 -0.37 0.33 0.09 0.17 0.57 0.28 -0.98 -0.93
PSNR 0.62 0.31 0.53 -0.67 0.20 0.33 -0.13 0.17 -0.37 -0.57 0.90 0.98
DN -0.81 -0.66 0.25 0.43 -0.46 0.11 0.39 0.29 -0.54 -0.46 -0.59 -0.77

ASVS -0.77 -0.64 0.51 0.50 -0.48 0.07 0.39 0.29 0.88 0.92 0.27 -0.19
GDin -0.60 -0.64 0.49 0.43 -0.52 -0.02 0.51 0.60 0.89 0.93 0.27 -0.19
GDout -0.48 -0.36 0.53 0.43 0.34 0.55 -0.28 -0.29 0.76 0.71 0.26 -0.14

SCIELAB -0.32 -0.21 -0.62 -0.88 -0.29 0.10 -0.16 -0.12 -0.06 -0.19 -0.90 -1
SHAME -0.43 -0.29 -0.30 -0.40 -0.55 -0.14 -0.14 -0.24 -0.15 -0.31 -0.84 -0.99

SHAME-II -0.35 -0.40 -0.42 -0.69 -0.55 -0.14 -0.15 0 0.09 -0.14 -0.89 -0.79
SSIMIPT -0.19 -0.26 0.58 0.76 -0.60 -0.45 0.03 -0.19 -0.16 -0.19 0.87 0.95

ABF -0.39 -0.43 -0.58 0.76 -0.51 -0.14 -0.22 -0.55 -0.09 -0.19 -0.90 -0.71
VSNR 0.49 0.60 0.20 0.14 0.70 -0.45 0 0.12 -0.66 -0.81 -0.82 -0.93
BorSal 0.09 0.07 0.48 0.64 -0.57 -0.50 0.37 0.29 0.87 0.98 0.27 -0.19

StructBorSal 0.05 0.07 0.54 0.64 -0.77 -0.67 0.40 0.19 0.82 0.95 0.31 -0.19

scores of the same metric for different images (row data in Table 6). However, for four
out of six images (i.e. boat, angel, lady, man) results show that inpainting specific metrics
perform better than general IQ metrics. The DN [13], GDin [12], BorSal and StructBor-
Sal metrics provide good correlation with perceived quality, whereas only the S-CIELAB
[34] and MSE among the IQ metrics indicate a better performance, in the specific cases
of cleopatra and detail images, respectively. S-CIELAB is a metric that accounts for the
significant color differences between the inpainted images and the references.

In the detail image, the inpainted area is narrow, thus, post-inpainting changes in
saliency will not be significant, yielding low correlation values for the inpainting-specific
metrics. The small post-inpainting change in saliency is due to the fact that, if existent,
artifacts will be more difficult to spot in a very narrow area. Moreover, most of the algo-
rithms can successfully fill in small gaps, resulting thus in small perceived differences in
the quality of the reproductions of the detail image. General IQ metrics, based on color
differences (i.e. S-CIELAB, ABF, SHAME, SHAME-II) or contrast thresholds (i.e. VSNR)
can better assess these differences, outperforming inpainting-specific metrics, which rely
on visual saliency maps.

Considering the great variance between metrics and between images, graphically il-
lustrated in Figure 44 and Figure 45, it can be concluded that both inpainting-specific
and general IQ metrics are image-dependent and thus their performance will depend on
the characteristics of the image for which they are applied. One metric can not be used to
predict perceived quality, regardless of the considered image. Several metrics that eval-
uate different aspects and focused on detection of possible post-inpainting artifacts (i.e.
poor structure reconstruction, colour differences, blur, etc.) could be used for the same
image, in order to obtain better correlation between calculated quality and perceived
quality.
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Figure 44: Pearson correlation indicating image-wise performance of the metrics

Figure 45:
Spearman correlation indicating image-wise performance of the metrics in terms of

rank order
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8 Conclusion

The goal of the current research was to qualitatively evaluate the performance of a set of
representative digital inpainting algorithms and to develop, use and evaluate objective
methods for quality assessment in the context of digital inpainting for artwork.

Following a literature review of existing digital image inpainting algorithms, given
in Chapter 2, a set of eight algorithms have been selected for further evaluation. These
algorithms were based on different approaches, and included basic methods, as well as
more recent and improved methods. evaluating perceptual quality.

It was shown that for the evaluation of inpainting algorithms, researchers frequently
resort to human visual comparisons. This method of evaluation gives a precise way to
quantify inpainting quality, but it is time consuming and resource demanding. Thus, ob-
jective methods for quality evaluation are preferred. Chapter 3 included an overview
of existing objective methods for evaluating the performance of inpainting algorithms,
showing that a method that could accurately predict perceived inpainting quality was
missing. Consequently, state of the art metrics from the more extensively researched
field of image quality evaluation were also considered for further inpainting evaluation
and presented in Chapter 3. Furthermore, in an attempt to compensate for the lack of
inpainting-specific quality metrics, two novel metrics were proposed, extending and im-
proving existent metrics.

Chapter 5 introduced the evaluation methodology and a new technique adopted for
creating the image database used as a basis for obtaining test images. The database con-
sisted of modified digitally acquired images of real damaged paintings. The applicability
of digital inpainting for artwork restoration was thus demonstrated.

Following the evaluation methodology in Chapter 5, a psychophysical experiment was
conducted, which asked human observers to judge the quality of the inpainting for a set
of 54 images. The analysis of the obtained perceptual data showed no significant differ-
ences among the three categories of observers considered (i.e. naive, expert, professional
restorer). Based on the ratings given by the observers to inpainted images, a ranking of
the eight inpainting algorithms was established. This ranking showed that, generally,
exemplar based methods outperform PDE based methods. The latter verifies the theo-
retical analysis of digital inpainting methods, as exemplar based inpainting algorithms
are able to reconstruct both texture and structure in an image, as opposed to PDE based
algorithms, which are based on diffusion and produce blur.

In Chapter 7 two novel and four existent inpainting-specific metrics, along with eight
general IQ metrics, previously presented in Chapter 3, were evaluated against exper-
imental data from human observers. To our knowledge, this evaluation is one of the
most extensive carried out in the literature, with respect to inpainting quality. The ob-
tained results showed that none of the considered metrics correlated well with perceived
overall inpainting quality. However, the scores obtained for the two metrics proposed
in this thesis indicate a better performance when compared to some of the other ex-
istent inpainting-specific quality metrics. An image-wise evaluation of the metrics was
also conducted, showing that all metrics are image dependent. Results indicate that
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inpainting-specific metrics outperform image quality metrics when applied for images
with small-sized gaps or for images that don’t require complex structure reconstruction.

In conclusion, the current research has proposed the use of digital image inpaint-
ing for artwork restoration purposes and investigated the performance of a set of rep-
resentative algorithms in order to determine which of them provides the best results.
New metrics have been proposed for the objective evaluation of inpainting quality and
their correlation with perceived quality compared to other existent inpainting-specific
and general IQ metrics.
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9 Future work

In the course of the research carried out for this thesis a number of possible directions
for further research have been identified. Relating to different parts of this thesis, they
can be divided into two separate sections.

9.1 Digital inpainting

Despite the extensive research carried out in the field of digital image inpainting, there
is still room for improvements. Currently, algorithms consider binary masks for the dam-
aged area of an image. However, in the field of artwork restoration, some underlying in-
formation may still exist in the degraded area and should not be completely disregarded,
by using a binary mask. Algorithms able to perform inpainting from partial degradation
would represent an important step towards achieving digitally inpainted images closer
to the manually restored works of art.

In the recent years some attempts have been made to extend the inpainting methodol-
ogy from two dimensions to three dimensions. This would allow developing applications
for restoration of damaged monuments and historical artifacts. However, more research
is needed in this direction before notable results to be observed.

Experimenting with high resolution images should also be considered for further re-
search. The main issue when dealing with high resolution images as input for inpainting
algorithms refers to a significant increase in running time (up to several hours). How-
ever, most of the existent algorithms were not designed for high resolution images. Thus,
developing new algorithms, able to inpaint high resolution images would pottentially
increase the quality of the inpainting.

9.2 Inpainting quality evaluation

Regarding the evaluation of inpainting quality, further work should be focused on find-
ing a metric that does not depend on a reference image and that correlates better with
perceived quality.

Conducting a psychophysical experiment that considers more recently proposed in-
painting algorithms, as well as quality metrics, could also significantly contribute to a
better understanding of the deficiencies of current methods. Identifying these deficien-
cies would make space for further improvements.
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A Parameters Choice and Test Images

Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13 and Table 14, respectively,
list the parameters used in order to obtain the test images included in the pshychophys-
ical experiment for evaluation of digital inpainting algorithms. These parameters were
determined through a manual parameter-tuning process.

Fig. 46, Fig. 47, Fig. 48, Fig. 49, Fig. 50, Fig. 51, Fig. 52 and Fig. 53 illustrate the
results obtained with the selected parameters, for each of the eight inpainting algorithms.

Table 7: Parameters chosen for test images by Criminisi et al. [2]

Image Iterations Patch Size Boundary Radius Running time
angel 1000 9 51 22’01”
boat 1000 9 33 9’12”

cleopatra 1000 9 30 9’41”
lady 1000 5 15 1’30”
man 1000 5 27 13”
detail 1000 9 30 7”

Table 8: Parameters chosen for test images by Zhou and Kelly [3]

Image Iterations Patch Size Boundary Radius Running time
angel 500 9 30 20’
boat 1000 9 54 134’14”

cleopatra 1000 9 30 29’47”
lady 1000 7 33 2’40”
man 1000 5 27 1’25”
detail 1000 9 30 8’29”

Table 9: Parameters chosen for test images obtained with the method proposed by
Tschumperle and Deriche [4]

Image Global Local Gradient Tensor Time step Running time
iterations iterations smoothness smoothness

angel 30 30 7.42 0.11 4.55 1’16”
boat 30 1 14.08 1.26 0.31 34”

cleopatra 30 2 0.18 2.2 15.9 33”
lady 30 1 9.64 2.69 0.72 8”
man 30 16 9.64 2.15 0.72 6”
detail 30 2 0.18 2.2 15.9 9”
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Table 10: Parameters chosen for test images obtained with the method proposed by
Bertalmio et al. [5]

Image Inpainting steps Diffusion steps Climb rate Climb decay Running time
angel 15 4 0.02 0.989 3’01”
boat 50 4 0.02 0.989 1’52”

cleopatra 50 1 0.02 0.989 2’17”
lady 50 2 0.02 0.989 1’20”
man 50 4 0.02 0.989 1’22”
detail 50 1 0.02 0.989 1’57”

Table 11: Parameters chosen for test images obtained with the method proposed by
Bornemann and Marz [6]

Image Averaging Sharpness Standard deviation Standard deviation Running time
radius parameter for pre-smoothing for post-smoothing

angel 10 10 1.4 5 8”
boat 15 25 1.4 5 7”

cleopatra 10 25 1.4 5 4”
lady 15 25 1.8 5 2”
man 15 25 1.8 5 3”
detail 10 25 1.4 5 3”

Table 12: Parameters chosen for test images obtained with the method proposed by Telea
[7]

Image Radius Running time
angel 10 3”
boat 10 3”

cleopatra 2 1”
lady 3 1”
man 5 1”
detail 2 1”

Table 13: Parameters chosen for test images obtained with the method proposed by
Barnes et al. [8]

Image Running time
angel 8”
boat 5”

cleopatra 6”
lady 3”
man 3”
detail 2”

Table 14: Parameters chosen for test images obtained with the method proposed by
Oliveira et al. [9]

Image Kernel Iterations Running time
angel 1 52 1’
boat 1 200 17”

cleopatra 1 200 1’01”
lady 2 24 7”
man 1 200 3”
detail 1 200 2”
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(a) (b)

(c) (d) (e)

(f)

Figure 46: Test images as output of the algorithm introduced by Criminisi et al. [2]. See
Table 7 for associated parameters. (a) angel (b) boat (c) cleopatra (d) lady (e) man (f)
detail
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(a) (b)

(c) (d) (e)

(f)

Figure 47: Test images as output of the algorithm introduced by Zhou and Kelly [3]. See
Table 8 for associated parameters.(a) angel (b) boat (c) cleopatra (d) lady (e) man (f) detail
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(a) (b)

(c) (d) (e)

(f)

Figure 48: Test images as output of the algorithm introduced by Tschumperle and Deriche
[4]. See Table 9 for associated parameters.(a) angel (b) boat (c) cleopatra (d) lady (e) man
(f) detail
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(a) (b)

(c) (d) (e)

(f)

Figure 49: Test images as output of the algorithm introduced by Bertalmio et al. [5]. See
Table 10 for associated parameters.(a) angel (b) boat (c) cleopatra (d) lady (e) man (f)
detail
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(a) (b)

(c) (d) (e)

(f)

Figure 50: Test images as output of the algorithm introduced by Bornemann and Marz [6].
See Table 11 for associated parameters. (a) angel (b) boat (c) cleopatra (d) lady (e) man
(f) detail
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(a) (b)

(c) (d) (e)

(f)

Figure 51: Test images as output of the algorithm introduced by Telea [7]. See Table 12 for
associated parameters.(a) angel (b) boat (c) cleopatra (d) lady (e) man (f) detail
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(a) (b)

(c) (d) (e)

(f)

Figure 52: Test images as output of the algorithm introduced by Barnes et al. [8]. See Table
13 for associated parameters.(a) angel (b) boat (c) cleopatra (d) lady (e) man (f) detail
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(a) (b)

(c) (d) (e)

(f)

Figure 53: Test images as output of the algorithm introduced by Oliveira et al. [9]. See Table
14 for associated parameters. (a) angel (b) boat (c) cleopatra (d) lady (e) man (f) detail
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Evaluation of digital inpainting quality in the
context of artwork restoration

Anonymous ECCV submission

Abstract—Improved digital image inpainting algorithms could
provide substantial support for future artwork restoration. How-
ever, currently, there is an acknowledged lack of quantitative
metrics for image inpainting evaluation. In this paper the
performance of eight inpainting algorithms is first evaluated
by means of a psychophysical experiment. The ranking of the
algorithms thus obtained confirms that exemplar based methods
generally outperform PDE based methods. Two novel inpainting
quality metrics, proposed in this paper, eight general image
quality metrics and four inpainting-specific metrics are then
evaluated by validation against the perceptual data. Results show
that no metric can adequately predict inpainting quality over the
entire image database, and that the performance of the metrics
is image-dependent.

Index Terms—inpainting, psychophysical experiment, inpaint-
ing quality metrics, image quality metrics.

I. INTRODUCTION

D IGITAL inpainting refers to techniques used to recon-
struct areas of missing information in an image, by

filling the gaps with visually plausible content. In the field of
artwork restoration, inpainting algorithms can be employed for
digital restoration, by reversing the damage (i.e. torn canvas,
scratches, stains) in a painting converted to a digital form. Dig-
ital inpainting algorithms can be grouped into two main cat-
egories. Partial differential equation (PDE) based algorithms
[1], [2], [3], [4] fill in gaps by extending isophote lines from
the source region into the target region via diffusion. Their
drawback consist of introducing blur artifacts that become
more visible when inpainting larger areas. Exemplar-based
inpainting algorithms [5], [6],[7] overcome this drawback by
reconstructing large image regions from sample textures. Some
approaches try to achieve better performance in terms of
running time [8],[7],[3].

As the goal of inpainting is to reconstruct the damaged
regions in a visually plausible way and a reference image
might not always be available for comparison, inpainting
quality evaluation is a challenging task, that has been only
narrowly researched. Mahalingam [9] and Ardis et al. [10]
propose the use of visual-saliency based metrics. However,
these metrics are not commonly used by researchers to assess
new inpainting techniques. Instead, qualitative human compar-
isons are currently and frequently used. Other image quality
(IQ) metrics simulating the human visual system (HVS) and
taking into account structural information in an image might
be useful in the field of image inpainting.

This paper will evaluate the performance of eight rep-
resentative inpainting algorithms (1-8) by means of a psy-
chophysical experiment. The obtained perceptual data will

be used to establish a ranking of the inpainting methods,
described in Section 2. Based on the same data, the correlation
between a selection of existing IQ metrics and perceived
quality will be investigated. Furthermore, two novel metrics
will be introduced in this paper and included in the evaluation.

II. PSYCHOPHYSICAL EXPERIMENT FOR SUBJECTIVE
RATING

A. Image Database

A common practice when evaluating the performance of
inpainting algorithms is to use predefined inpainting regions.
In this paper, modified digitally acquired images of real
damaged paintings will be used as test images. In the manual
restoration process there are a number of steps that proceed the
filling in of missing areas. Instead of completely simulating
gaps, this paper proposes the simulation of these steps, using
the original degraded and manually restored versions of a
painting. The resultant image replicates the regions containing
missing or corrupted information from the digitally acquired
image but has identical content with the manually restored
image in the region outside the area to be inpainted. Figure 1
shows an example of a modified digitally acquired painting,
as a result of the simulation process.

Six test images (Figure 2) have been chosen for the psy-
chophysical experiment. For each of them, eight inpainted
images corresponding to the algorithms proposed by Bertalmio
et al. [1], Telea [2], Tschumperle and Deriche [3], Bornemann
and März [4], Criminisi et al. [5], Zhou and Kelly [6], Barnes
et al. [7] and Oliveira et al. [8] have been included in the
database. Additionally, for each of the test images, the digitally
acquired image of the manually restored painting (further on
referred to as manually inpainted image) has been considered.
The manually inpainted images have been included to verify
the reliability of the observers, by checking their behaviour
when degraded/manually inpainted image pairs are presented.
Finally, the image database used for the experiment consisted
of 54 images.

B. Experimental Setup

The experiment was carried out as a web-based experiment.
Observers were presented with a pair of two images at a time
and asked to judge the overall quality of the inpainted image
using the ITU-R five grade quality scale [11] labelled with
the adjectives: Excellent, Good, Fair, Poor, Bad. Figure 3
shows an example of such an image pair presented during
the experiment. On the left the degraded image is shown
and on the right the inpainted image. This positioning was
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(a) (b) (c)

Fig. 1: Preparing an image for inpainting. (a) Original degraded painting (b) Manually restored version (c) Modified image
with artefacts (i.e. water stain) from the degraded image and similar appearance to the manually restored image. (a-b) - image
courtesy of R. Pillay at C2RMF

(a) (b) (c) (d) (e) (f)

Fig. 2: Modified digitally acquired paintings corresponding to: (a) ”Ange” by Raphael (angel) (b) ”Vue de Drontheim” by
Peder Balke (boat) (c) ”Cléopâtre” - anonymous (cleopatra) (d) Detail of ”Cléopâtre” (detail) (e) ”Self-portrait” by Margarete
Depner (lady) (f) ”Invention of painting” by Ariton (man). (a-d) - image courtesy of R. Pillay at C2RMF, (e,f) image courtesy
of R. Tataru at Brasov Art Museum (Romania)

Fig. 3: Exemple of pair of images presented during the
experiment. (left) Damaged painting (right) Inpainted version
with the method proposed by Oliveira et al. [8]

kept throughout the whole experiment. Participants were asked
to complete the experiment, which consisted of viewing and
rating a total of 54 pairs of images. The screening of the
observers was carried out by implementing the procedure
recommended in Rec. ITU-R BT.500-13 [11]. Furthermore,
observers were rejected if their scores indicated Fair, Poor
or Bad quality for manually inpainted images, or if failing
to complete the experiment. Consequently, from a total of 91,
results of 22 participants were rejected and only 69 considered
for further evaluation.

C. Psychophysical Results

Perceptual data obtained from the experiment was converted
to z-scores, indicating the performance of the considered
inpainting methods. Figure 4 gives a graphical representation
of the obtained results. As expected, the manual inpainting
method received the highest score, indicating the best per-
ceived quality among the studied methods. Moreover, the high
z-score value associated to it is an indicator of the large con-
sensus among the participants about the high performance of
this method. Among the analysed digital inpainting methods,
the algorithm proposed by Barnes et al. [7] has the highest
score. Worth noticing is the low visual difference between
the inpainted images obtained by the inpainting algorithms
proposed by Criminisi et al. [5], Zhou and Kelly [6] and
Tschumperle and Deriche [3]. The latter is inferred from the
overlapping confidence intervals corresponding to the three
methods, and implies a difficult task for the observers to judge
IQ.

Based on the obtained perceptual data, a ranking of the
inpainting methods can be established (Figure 4). PDE-
based methods are, generally, outperformed by exemplar-based
methods. An exception is inpainting algorithm by Tschumperle
and Deriche [3], which uses a vector valued regularization
PDE.

III. OBJECTIVE QUALITY EVALUATION

Before discussing methods for objective quality evaluation,
the notation convention must be defined. The area of missing
information in an image will be referred to as the gap and
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Fig. 4: Z-scores from observers based on 69 observers and 6 images, with 95% CI. The algorithm proposed by Barnes et al.
[7] is rated as the best among digital inpainting methods

will be denoted by Ω. Its complementary area, referred to as
the source region, will be denoted by Θ. Furthermore, when
discussing saliency based metrics, the pre-inpainting saliency
map intensity corresponding to a particular pixel, p, will be
denoted by S(p). Similarly, the corresponding post-inpainting
saliency map intensity will be denoted by S′(p).

A. ASVS and DN

Ardis et al. [10] define two types of observable artifacting
in an inpainted image, referred to as in-region and out-region.
The former accounts for artifacts belonging to the gap, Ω,
while the out-region artifacting considers the complementary
area, Θ. In order to quantify the quality of the reproduction
and based on the two artifact classes, Ardis et al. propose
two metrics, the Average Squared Visual Saience (ASVS) and
the Degree of Noticeability (DN), that relate the visual saliency
map of an image with the perceived quality of the same image.

The first metric, ASVS, needs no reference image and
equates to in-region artifacting. Thus, inregion = ASV S,
where ASVS is computed as:

ASV S = (1/||Ω||)(
∑

p∈Ω

(S′(p))2). (1)

In-region artifacting occurs when the inpainted pixels cause
a modification in the flow of attention specific to an image,
by increasing the saliency of the inpainted region. Ardis et
al. [10] relate in-region artifacting to distinct colouration or
structure that is introduced after inpainting, that can not be
observed elsewhere in the image.

Out-region artifacting occurs when an inpainting algorithm
fails to extend a locally repeating colour or structure inside
the gap. The latter causes a decreased flow of attention for
otherwise salient areas and increase of attention in the neigh-
bouring area of the inpainting domain. Out-region artifacting
is computed as outregion = (

∑
p∈Θ (S′(p) − S(p))2)/|Θ|.

Combining in- and out-region artifacting, the Degree of No-
ticeability (DN) metric is computed as:

DN =
|Ω|

|Ω| + |Θ| inregion +
|Θ|

|Ω| + |Θ|outregion. (2)

As suggested by Ardis et al., higher scores for ASVS and DN
can be interpreted as an indicator of highly visible artifacts
and thus a poor inpainting performance. The psychophysical
study conducted by the authors proposing the metrics shows
a good correlation between perceived and calculated quality.
However, their findings required confirmation by further larger
scale experiments, as they use only five observers.

B. GDin and GDout

Mahalingam [9] proposes two visual saliency-based metrics
for quantifying inpainting quality. He shows that if there is any
change in the saliency maps corresponding to the inpainted and
original image, this change is related to the perceptual quality
of the inpainting.

According to Mahalingam [9] the gaze density within and
outside the gap in an inpainted image is computed as:

GDin =
∑

p∈Ω

S′(p), and GDout =
∑

p∈Θ

S′(p). (3)

The gaze density measures given in Equation 3 need to be
normalized before indicating the presence of artifacts:

GDin =

∑
p∈Ω S′(p)∑
p∈Ω S(p)

, and GDout =

∑
p∈Θ S′(p)∑
p∈Θ S(p)

. (4)

For simplicity, further discussion referring to the normalized
metrics will use the notation GDin and GDout.

Mahalingam [9] uses saliency maps generated from an eye
tracking experiment. In this paper the SaliencyToolbox version
2.2 developed by Walther [12] is used to generate the saliency
maps.

C. Proposed Metrics: BorSal and StructBorSal

Previous work by Mahalingam [9] and Ardis et al. [10]
considers separately in- and out-region artifacting. In the latter,
the authors show that out-region artifacting changes the flow of
attention in the area outside the gap, but concentrated around
the gap’s neighbourhood. Hence, the saliency map values cor-
responding to a border region around the gap should be able to
accurately capture the saliency change. This paper introduces
the Border Saliency (BorSal) metric, which accounts for both
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in- and out-region artifacting by considering a Border region
that extends three pixels inside and outside the gap. The BorSal
metric is computed as a normalized gaze density measure,
similarly to the GDin and GDout metrics [9]:

BorSal =

∑
p∈Border S′(p)∑
p∈Border S(p)

. (5)

The second inpainting quality evaluation metric proposed,
denoted by StructBorSal, combines the BorSal metric with the
SSIMIPT measure [13]:

StructBorSal = BorSal + SSIMIPT . (6)

D. Image Quality Metrics

In addition to the inpainting quality evaluation metrics
discussed in the previous Section, eight other metrics from
different categories (i.e. image difference, image fidelity,
image quality) have been selected for evaluation in terms
of correlation with the percept. A brief introduction of the
selected metrics will be given here.

• MSE and PSNR: image difference metrics applied for
grayscale images. Calculate the Mean Squared Difference
and Peak Signal to Noise Ratio. Mathematically based,
easily to implement and previously used for quantifying
inpainting quality.

• S-CIELAB [14]: image difference metric applied for
colour images. Frequently considered a reference when
evaluating IQ metrics, having wide acceptance. Simulates
the HVS.

• SSIM-IPT [13]: IQ metric applied for grayscale images.
Colour version of SSIM, takes structural information in
an image into account and works on local neighbour-
hoods.

• VSNR [15]: image fidelity metric applied for grayscale
images. Based on contrast filtering and simulating the
HVS.

• SHAME and SHAME-II [16]: IQ metrics applied for
colour images. Based on the hue angle algorithm [17]
and the S-CIELABJ [18] metric. They latter differs from
S-CIELAB only in terms of spatial filtering, which makes
also the difference between SHAME and SHAME-II;
Both metrics weight the output based on colour differ-
ences and region-of-interest. Simulate the HVS.

• ABF [19]: image difference metric applied for colour im-
ages. Implementation of bilateral filtering that preserves
edges and simulates the HVS.

IV. EVALUATION OF QUALITY METRICS

The objective quality metrics presented in the previous
section need to be evaluated against the results obtained from
the psychophysical experiment in order to ensure the corre-
spondence with perceived quality. The evaluation methodology
refers to statistically analysing the ratings given by observers
and corresponding to the 48 digitally inpainted images. Based
on raw perceptual data, the Mean Opinion Score (MOS) is
calculated for each image in the database and then converted to
a corresponding z-score. The Pearson product-moment (PCC)

[20] and Spearman’s rank correlation coefficient (SCC) [20]
between the z-scores and the objective scores (i.e. results
from the IQ metrics) are calculated in order to evaluate the
performance of the metrics considered.

A. Overall Performance

The overall evaluation of a metric is done by calculating the
correlation between the observers z-scores and the metric raw
scores over the entire image database. The obtained results,
presented in Table I, indicate that all the considered metrics
have a low correlation with the perceived overall quality.
The two newly proposed metrics, BorSal and StructBorSal
have a very low correlation. However, they achieve a better
performance than the GDin and GDout [9] metrics. The
DN metric [10], designed for inpainting quality evaluation,
provides the highest correlation among all metrics, but with a
value equal to -0.36 it still indicates a low performance over
the entire image database.

A visual inspection of the relation between observer and
metric z-scores depicted in Figure 5 shows very spread data
points, due to scale differences between images, resulting thus
in a low overall correlation. It can be concluded that, for the
considered image database, the objective evaluation methods
can not accurately predict perceived overall IQ. However, it
is worth noticing that the DN metric provides a better fit for
individual images, as shown in Figure 5.

B. Image-wise Evaluation

Hardeberg et al. [21] relate the performance of different
metrics to certain characteristics of an image. This motivates
the choice to evaluate the performance of metrics with respect
to individual images. Table II gives the PCC and SCC for
the 14 metrics considered in this study, applied to the six test
images used.

Data in Table II shows a great variation between the scores
obtained for the 14 metrics corresponding to a single image,
but also between scores of the same metric for different
images. However, for four out of six images (i.e. boat, an-
gel, lady, man) results show that inpainting specific metrics
perform better than IQ metrics. The DN [10], GDin [9],
BorSal and StructBorSal metrics provide good correlation with
perceived quality, whereas only the S-CIELAB [14] and MSE
among the IQ metrics indicate a better performance, in the
specific cases of cleopatra and detail images. Considering the
above, it can be concluded that both the inpainting-specific and
IQ metrics are image-dependent and thus their performance
will depend on the characteristics of the image for which they
are applied. Several metrics that evaluate different aspects (i.e.
structure reconstruction, colour, blur, etc.) could be used for
the same image, for better results.

V. CONCLUSION

In this paper, eight different digital inpainting algorithms
were qualitatively evaluated by conducting a psychophysical
experiment. The obtained subjective data determined a ranking
of the inpainting algorithms, showing that exemplar based



5

TABLE I: Performance of the metrics over the entire image database

MSE PSNR DN ASVS GDin GDout S-CIELAB SHAME SHAME-II SSIMIPT ABF VSNR BorSal StructBorSal

PCC -0.13 0.28 -0.36 -0.11 -0.01 -0.01 -0.26 -0.15 -0.25 0.22 -0.32 0.06 0.06 0.12
SCC -0.28 0.28 -0.39 -0.11 0.07 -0.06 -0.19 -0.17 -0.19 0.31 -0.27 -0.02 0.08 0.13

Fig. 5: Observer z-score plotted against DN [10] z-score for all images in the dataset. PCC = -0.36. The red linear regression
line fits all data points; the black linear regression lines fit data points corresponding to individual images

TABLE II: Comparison of metrics performance image-wise. The score for best performing metric is highlighted in bold font
for each image

Metric boat cleopatra angel lady man detail
PCC SPP PCC SPP PCC SPP PCC SPP PCC SPP PCC SPP

MSE -0.63 -0.31 -0.48 -0.67 -0.37 0.33 0.09 0.17 0.57 0.28 -0.98 -0.93
PSNR 0.62 0.31 0.53 -0.67 0.20 0.33 -0.13 0.17 -0.37 -0.57 0.90 0.98

DN -0.81 -0.66 0.25 0.43 -0.46 0.11 0.39 0.29 -0.54 -0.46 -0.59 -0.77
ASVS -0.77 -0.64 0.51 0.50 -0.48 0.07 0.39 0.29 0.88 0.92 0.27 -0.19
GDin -0.60 -0.64 0.49 0.43 -0.52 -0.02 0.51 0.60 0.89 0.93 0.27 -0.19
GDout -0.48 -0.36 0.53 0.43 0.34 0.55 -0.28 -0.29 0.76 0.71 0.26 -0.14

SCIELAB -0.32 -0.21 -0.62 -0.88 -0.29 0.10 -0.16 -0.12 -0.06 -0.19 -0.90 -1
SHAME -0.43 -0.29 -0.30 -0.40 -0.55 -0.14 -0.14 -0.24 -0.15 -0.31 -0.84 -0.99

SHAME-II -0.35 -0.40 -0.42 -0.69 -0.55 -0.14 -0.15 0 0.09 -0.14 -0.89 -0.79
SSIMIPT -0.19 -0.26 0.58 0.76 -0.60 -0.45 0.03 -0.19 -0.16 -0.19 0.87 0.95

ABF -0.39 -0.43 -0.58 0.76 -0.51 -0.14 -0.22 -0.55 -0.09 -0.19 -0.90 -0.71
VSNR 0.49 0.60 0.20 0.14 0.70 -0.45 0 0.12 -0.66 -0.81 -0.82 -0.93
BorSal 0.09 0.07 0.48 0.64 -0.57 -0.50 0.37 0.29 0.87 0.98 0.27 -0.19

StructBorSal 0.05 0.07 0.54 0.64 -0.77 -0.67 0.40 0.19 0.82 0.95 0.31 -0.19

methods generally outperform PDE based methods. The latter
verifies the theoretical analysis of digital inpainting methods,
as exemplar based inpainting algorithms can reconstruct both
texture and structure in an image, as opposed to PDE based
algorithms.

Furthermore, extending the work of Ardis et al. [10] and
Mahalingam [9], two inpainting-specific quality metrics have
been proposed. Along with four other inpainting-specific and
eight image quality metrics, they were considered for per-
formance assessment, measured as the degree of correlation
with the percept, against a database of 48 images. To our
knowledge, this evaluation is one of the most extensive car-
ried out in the literature, with respect to inpainting quality.
The obtained results show that none of the metrics have a
high performance over the whole image database, but certain
metrics perform well for specific images. Results indicate that

inpainting specific metrics outperform image quality metrics
when applied for images with small-sized gaps (i.e. man,
lady ), or for images that don’t require complex structure
reconstruction (i.e. boat).

Future work will include an expanded psychophysical ex-
periment that will consider more recently proposed inpainting
algorithms and a larger number of inpainted images, in order
to reconfirm initial findings. Extensive research should be con-
ducted with the aim of developing a no-reference inpainting
quality metric.
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[5] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting.” IEEE transactions on
image processing : a publication of the IEEE Signal Processing Society,
vol. 13, no. 9, pp. 1200–12, Sep. 2004.

[6] J. Zhou and A. R. Kelly, “Image inpainting based on local optimization,”
International Conference on Patteren Recongnition (ICPR), 2010.

[7] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
match: a randomized correspondence algorithm for structural image
editing,” ACM Transactions on Graphics (TOG), vol. 28, no. 3, 2009.

[8] M. M. Oliveira, B. Bowen, R. Mckenna, and Y. sung Chang, “Fast
digital image inpainting,” in Proceedings of the International Conference
on Visualization, Imaging and Image Processing (VIIP 2001. ACTA
Press, 2001, pp. 261–266.

[9] V. V. Mahalingam, “Digital inpainting algorithms and evaluation,” Ph.D.
dissertation, University of Kentucky, 2010.

[10] P. Ardis and A. Singhal, “Visual salience metrics for image inpainting,”
in SPIE, no. 7257, 2009.

[11] ITU-R, “Rec. ITU-R BT.500-13. Methodology for the subjective assess-
ment of the quality of television pictures,” 2012.

[12] D. Walther, “Interactions of visual attention and object recognition: com-
putational modeling, algorithms, and psychophysics,” Ph.D. dissertation,
California Institute of Technology, Pasadena, CA,, 2006.

[13] N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial
gamut mapping algorithms,” Color Imaging Conference, pp. 56–61, Nov.
2006.

[14] X. Zhang and B.A.Wandell, “A spatial extension of CIELAB for digital
color image reproduction,” Soc. Inform. Display 96 Digest, pp. 731–734,
1996.

[15] D. M. Chandler and S. S. Hemami, “VSNR: A wavelet-based visual
signal to noise ratio for natural imges,” IEEE Transactions on Image
Processing, no. 16(9):2284-2298, Sep 2007.

[16] M. Pedersen and J. Y. Hardeberg, “A new spatial hue angle metric
for perceptual image difference,” Computational Color Imaging, volume
5646 of Lecture Notes in Computer Science, pp. 81–90, Mar. 2009.

[17] G. Hong and M. R. Luo, “New algorithm for calculating perceived
colour difference of images,” Imaging Science Journal, 54(2):86-91, no.
54(2):86-91, 2006.

[18] G. M. Johnson and M. D. Fairchild, “Darwinism of color image
difference models,” Color Imaging Conference, pp. 108–112, Nov. 2001.

[19] Z. Wang and J. Y. Hardeberg, “An adaptive bilateral filter for predicting
color image difference,” Color Imaging Conference, pp. 27–31, Nov.
2009.

[20] M. G. Kendall, A. Stuart, and J. K. Ord, “Kendall’s Advanced Theory
of Statistics: Classical inference and relationship, volume 2. A Hodder
Arnold Publication, 5 edition,” 1991.

[21] J. Y. Hardeberg, E. Bando, and M. Pedersen, “Evaluating colour image
difference metrics for gamut-mapped images,” Coloration Technology,
124(4):243253, no. 124(4):243-253, Aug 2008.


	Abstract
	Aknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Thesis objective
	Research methods
	Paper submitted to workshop
	Thesis outline

	Digital Inpainting
	Partial Differential Equation (PDE) Based Inpainting
	Basic PDE based inpainting method
	Improved PDE based inpainting methods

	Exemplar Based Inpainting
	Basic exemplar based inpainting method
	Improved exemplar based inpainting methods

	Fast Digital Inpainting

	Survey of Quality Metrics
	Overview of inpainting quality metrics
	ASVS and DN
	GDin and GDout

	Overview of image quality metrics
	MSE and PSNR
	S-CIELAB
	SSIMIPT
	VSNR
	SHAME and SHAME-II
	ABF


	Proposed Metrics: BorSal and StructBorSal
	Evaluation of Inpainting Algorithms and Quality Metrics
	Inpainting algorithms
	Quality metrics
	Image database
	Test images
	Evaluation methodology

	Psychophysical Experiment for Subjective Quality Assessment
	Experimental setup
	Test images
	Experimental method
	Viewing conditions
	Instructions given to the observers

	Psychophysical results
	Observers
	Perceptual results


	Objective Quality Evaluation: Results and Discussion
	Overall performance of the metrics
	Image-wise evaluation

	Conclusion
	Future work
	Digital inpainting
	Inpainting quality evaluation

	Bibliography
	Parameters Choice and Test Images
	Technical Paper

