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Abstract

The developments in health care lead to longer life expectancy in developed countries. The

growth of the number of seniors put new challenges to health care services, caregivers and

family members. One of the major challenges is how to prevent elderly people from falling down.

Especially, if the person lives alone, falling can be quite dangerous for his / her health. Falling

down can cause serious consequences like broken bones or lost consciousness for elderly people.

Therefore, it is of key importance to be able to provide help as soon as possible, or, even try to

prevent the incident. Combining video-based surveillance and computer vision techniques could

bring us towards intelligent systems that could help to monitor the elderly and raise an alarm in

case of unusual and dangerous events.

The main question is how to automate fall detection using only video information (like ca-

mera network) with application in public health and health services (i.e., elderly houses, hos-

pitals). Generally, when talking about video surveillance systems, there are some elements that

would remain the same in every system irrespective of the application. These are: tracking, data

association in context of camera network and post-processing based on extracted information

(like activity recognition). So, this thesis addresses each of these questions and tries to find a

generalized framework that could integrate all the methods in one system.

One of the main criterion of the project was to avoid camera calibration - that is, corres-

pondence between views should be based on some confidence or probability function between

camera views. Therefore, it was decided to adopt a Bayesian framework for multi-target multi-

camera tracking [1] that fulfills our requirements. When considering a single view from one

camera, the system allows to represent each target as a set of samples (or particles) that have

probabilistic measures (weights) proportional to the likelihood of the target being at that po-

sition. For multi-camera system, one needs to associate corresponding targets among camera

views. Gale-Shapley algorithm for finding stable matching between two classes (in our case -

cameras) was modified for this purpose. For fall detection part, silhouette- and velocity-based set

of features were extracted and passed through Support Vector Machine (SVM) to separate fall

events from other activities.

A set of test videos were recorded using two cameras to test stability of the tracking frame-

work and the reliability of fall detection algorithm. The initial results are encouraging. Further

integration of additional features may improve the performance of the system.

Keywords: surveillance, multiple camera tracking, multiple person tracking; recursive Baye-

sian estimation, Sequential Monte-Carlo Methods, particle filtering; camera network, data asso-

ciation, stable marriage problem; fall detection, activity recognition, support vector machine.
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1 Introduction

1.1 Motivation

Nowadays we witness an increase senior numbers and population aging in many counties. Accor-

ding to [2] in 2006, 37 million people over the age of 65 in US made up 12% of the total popula-

tion. Over the 20th century, the older population grew from 3 to 37 million; and as to oldest-old

population (those age 85 and over) made it from 100, 000 in 1900 to 5.3 million in 2006. The

same situation is happening now in the western countries - Europe and Norway as well. The

phenomenon affects many aspects of our society, challenging policymakers, families, business,

health-care providers to meet the needs of aging individuals. And one of the main questions we

consider here is how to provide safety to elderly allowing them to live longer independently.

It was stated that each year, an estimated one third of older adults fall; and the probability to

fall down increases with advancing age [3]. Statistics shows that in 2005, a total of 15, 802 per-

sons aged ≥ 65 years died as a result of injuries from falls in US. However, this does not include

the number of elderly who fell and were not injured or who experienced minor or moderate

injuries.

Now we clearly can see the problem: fall represents a great danger for elderly people, espe-

cially if the person can not get up afterwards by him- or herself and has to spend hours lying

down, in pain or unconsciousness. Due to increasing number of elderly, it is not possible to take

care for them personally, therefore, there must be other way to detect a fall and even try to

prevent it.

Thanks to today’s technologies, several solutions already exist that help to address the pro-

blem. Small electronic devices called wearable buttons and wearable sensors are supposed to

be worn by a person (e.g., on the hip) can rise an alarm in case of fall. However, both of the

mentioned devices have disadvantages. Wearable button can be useless in case if person loses

consciousness and does not press the button. As to wearable device, the person can forget to

wear it, or simply feel uncomfortable using them.

To overcome this drawback, another solution must be considered; something that does not

include the direct interaction with the person. Commonly used video-based approach could be of

greater use, since it is contact-less and is already used for many different security applications.

1.2 Problem Statement

Considering all the said above, this Master thesis addresses the question of how to build a robust

video-based system, the main purpose of which is monitoring and analysis of people’s actions.

To be more specific, the system must be supplied with multi-target multi-camera tracking algo-

rithm, which will feed data to for the next high-level activity analysis. Therefore, we define the

requirements for our system:

• track multiple targets and maintain their identities over multiple cameras

1
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Figure 1: General block-diagram of the system.

• cope with background clutter, illumination changes, shadows, etc.

• handle mutual occlusions that can occur from other targets and also from furniture, in the

room

The general workflow of the desired system is shown on the figure 1. Each of the shown

blocks will be expanded and explained later in section 3.2.

1.3 Research questions

The objective of this thesis is to develop a system that can detect falling down events of people

based on video analysis using multiple cameras. Figure 2 represents typical situation, where we

may have people occluding each other and there is also a chance that somebody can fall.

When working with multiple cameras, it’s necessary to think how the data fusion will be

performed. For this project it was decided to exclude calibration procedure, since it has its own

disadvantages like it is not so easy to conduct if cameras are located quite far from each other;

and also it needs re-calibration in case if camera locations were suddenly changed.

The research questions we proposed for consideration:

1. Questions related to multiple target tracking:

• how to perform target detection (initialization)?

• how to provide target tracking over period of time and over multiple cameras?

• how to solve problems of mutual occlusions when dealing with multi-target tracking? how

2
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Figure 2: A typical scenario of multi-target tracking with two camera system.

to take into consideration the impact of environment (i.e., furniture) that also creates

occlusions?

2. Questions related to data fusion among cameras:

• how to avoid camera calibration or any other initial configuration?

• how to perform association between the data from different cameras without calibration

information?

3. Question related to fall detection:

• how to distinguish falling down from other everyday people activities?

1.4 Methodology

The next methodology was proposed to find answers on the raised research questions:

1. Literature review: a lot of work can be found in the field. Literature survey was conducted in

order to find an appropriate theoretical strategy.

2. Design of the algorithm: when thinking about this project globally, it can be divided into three

main parts: people tracking, data fusion and fall recognition. Each of the tasks was treated in

steps. First, a general probabilistic framework was adopted for the tracking; second, we tried

to find a way how to improve system performance by using information from other cameras;

3
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and third, fall detection was embedded.

3. Implementation: it was decided to use Visual C++.

4. Setup the experiment: several videos with two and more interacting people were recorded by

using two USB cameras.

5. Analysis and results: must include how good tracking is performed, how often the track can

be lost and also false and positive alarms of fall detections.

1.5 Thesis outline

The remainder of the thesis is organized as follows. The next chapter contains a review of the

literature on modern tracking systems, also previous work on object tracking and data associa-

tion when dealing with multi-camera system. Then an overview of existing particle filter based

systems and algorithms is presented. Chapter 3 gives details about the chosen method and im-

plementation issues. In chapter 4 experimental setup is described, as well as system output is

provided. Finally, chapter 5 concludes the thesis results with future extension included as well.

4
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2 Literature Review

2.1 Fall detection systems

This section provides a brief overview of fall detection systems and the advantages of the video-

based ones.

Nowadays many contributions are made to address the problem fall detection due to the big

demand and social values of such products and technologies. Work made during recent years

produced a series of devices helping to lift the quality of elderly’s life. Depending on how fall is

detected, solutions can be divided into three main approaches based on [4]:

• wearable devices

• ambient devices

• cameras (vision-based) approach

Though, we have different approaches and methods to detect falls, all the existing systems

follow one general framework, shown in figure 3. The differences are only in the principles

of working of each device or sensor, for example, a setting of specific threshold can be already

an indicator of a fall; at the same time, the fall can be induced from more complicated image

processing algorithm.

So, there are wearable devices which are supposed to be worn by a person. Such devices help

to detect the posture and motion of the body; later classifier helps to identify the specific events

that may include falls [5], [6], [7].

In general the goal of such systems is to generate a warning to caregivers or an alarm to

monitoring authorities. It means that no human interaction is needed as opposed to manual

systems [8]: where the output of the device / system is operated by a human and does not

automatically detect a fall. The person who wears it, can simply push a button in case if he / she

needs assistance. However, it will not be so effective in case of losing consciousness, for example.

Considering the above fact, we can conclude that, probably, wearable devices are not the best

option for fall detection; also because there is a big chance that the senior can simply forget to

Figure 3: General framework of fall detection [4].

5
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wear it or feel uncomfortable. This was the main reason why should look towards the camera-

based systems. Furthermore, in most elderly homes / nursing homes there are video surveillance

systems that may be used to include additional functionality such as fall detection.

2.2 Existing fall detection video-based systems

In this section a brief overview of video-based fall detection systems will be given.

Among all fall detection algorithms, a first major subdivision is based on clear immediate

visual cues, for example, sudden change in dimensions [8]:

• aspect ratio of the bounding box [9], [10]: it is a simple technique to detect a fall. The

bounding box is represented by a rectangle which can be drawn around the moving object

and which indicates its location on the image; the aspect ratio is the ratio between the two

dimensions in x and y directions of the bounding box. When a person falls, the bounding box

is supposed to change drastically in both x and y directions, therefore, the aspect ratio will

change too [11].

• horizontal and vertical gradient [12]: during the fall, a horizontal gradient will be less than

the horizontal one

• fall angle [13]: defined as an angle between the ground and the person from where it is

certain that the person will fall

• centroid of the person [14]: it changes significantly and rapidly when the person is falling

down

Another class of algorithms that needs some sort of learning phase such as Hidden Markov

Models (HMM’s) based approaches. Usually, they require learning phase over the data that must

include sequences with falling person. One of the examples, where HMM is applied, is described

in [15]: first wavelet transform of aspect ratio is computed, and then this value serves as an input

for HMM-based classification. Later, this information is used to classify the motion of the person

into walking or falling. Another example can be seen from [13] where authors suggest to use

Layered Hidden Markov Model for motion modeling in conjunction with Fuzzy logic for posture

classification.

When talking about fall detection, other different information like surroundings and personal

data might be of use. For example, [10] suggests to incorporate an individual knowledge of

a person (i.e., current health condition status) into fall detection procedure. [16] Shows how

learned models of spatial context are used in conjunction with a tracker. The method enables

inactivity outside usual zones of inactivity (e.g. chairs, beds) to be detected. Combined with

body pose and motion information, this provides a cue for fall detection. Another example is

[17] which presents incorporation of such personal information as height, weight and electronic

health history. Based on this knowledge, the detection sensibility can vary - to reduce unnecessary

alarms and improve the system’s performance in detecting falls.

Some literature suggests broadening the problem to human activity recognition and conside-

ring falling down a particular case. In [18] and [19] Fuzzy logic serves for modeling the human

activity; and to define a fall, thus one should determine a specific set of rules. The system descri-
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bed in [16] generalizes an ’after fall’ to ’unusual inactivity’ and is defined in terms of location and

posture of an actor on the scene. In [20] the authors describe a machine learning approach to

activity recognition where the attributes characterizing the user’s behavior and a machine lear-

ning algorithm must be selected. The attributes are the locations of body parts and the angles

between adjacent body parts. After testing eight machine learning algorithms, it was stated that

Support Vector Machines gives the most reliable result. In [21] authors use behavioral maps to

represent the probability of moving in a particular direction; deviation from learned behavior

helps to detect abnormal and atypical motions.

2.3 Target tracking

To narrow down the task, it’s better to refer to what was done in the field of object tracking,

because the chosen model will determine the fall detection procedure accordingly.

Object tracking is a very active research area in the field of computer vision due to availability

of inexpensive cameras, constantly increasing computation power in modern computers and the

need for automated video monitoring. All these factors raised a great interest in the topic and

numerous algorithms and approaches were proposed.

The main task of the tracker is maintaining a consistent labeling of the tracked targets in

different frames of a video. Depending on the application, the tracker can also provide another

types of information about the target, like its orientation, shape, speed, etc.

Approaches to the object tracking can differ from each other by the way they consider the

following issues:

• object representation

• used image features

• modeling of motion, appearance and shape of the target

Depending on the context and end use, these questions can be treated differently. A large

number of tracking methods exist which attempt to define a model for the according scenario

[22].

2.3.1 Object representation

An object can be anything that we are interested in recognizing and / or tracking: people,

vehicles, animals, etc. These objects can be represented by different feature descriptors, for

example, shape and appearance. Here, the main shape descriptors will be considered:

• Primitive geometric shapes. Object shape can be represented by a rectangle or ellipse. Though,

this kind of representation is more suitable for rigid targets, it is commonly used in the lite-

rature for non-rigid objects as well. For example, [23] suggests using rectangle object repre-

sentation, [24] uses an elliptic one. Example of rectangle shape descriptor is shown on the

figure 4.

• Object silhouette and contour. A contour representation defines the boundary of an object

and the region inside the contour is called the silhouette of the object. This descriptor is more

suitable for non-rigid objects. i.e., [25] uses curve representation for describing a contour. An

7
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Figure 4: Rectangle can simply describe a human body location [27]

Figure 5: A curve serves for representation of a human head [25]

example is represented on figure 5.

• Articulated shape models. It helps to decompose an articulated objects into parts that are held

together, i.e., when we deal with human body, we have many articulated parts: arms, legs,

torso, head. The relationships between these parts are described by kinematic motion models

like joint angle. [26] proposes to use three elliptic cylinders for one person representation -

first cylinder plays role of head, second - torso and third one stands for legs (see figure 6)

Figure 6: Human body is represented by elliptical cylinders [26]

8
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2.3.2 Feature selection for tracking

Different features can be used for this task, but it’s obvious that their selection plays a critical

role for reliable tracking. The most desirable property of a visual feature is its uniqueness so that

the objects can be easily distinguished from each other in the feature space. Feature selection is

closely related to the object representation. For example, color is used as a feature for histogram-

based appearance representations, while for contour-based representation, object edges are of

use [22]. Most of the tracking algorithms do a combination of several features - they are fused so

that in case if one fails, another one will provide desired output. The very commonly used visual

features are:

• Color. A variety of color spaces has been used for color description of an object. On one

side, an image processing gives us RGB (red-green-blue) representation; however, it is not

perceptually uniform (difference between the colors in RGB does not correspond to color

differences perceived by humans). On the other side, color spaces such as L∗a∗b∗ and L∗u∗v∗

are perceptually uniform and HSV (hue-saturation-value) is also approaching uniformity; but

at the same time they are quite sensitive to the noise. In the literature, HSV color space can

be met more frequently, i.e., in [28] color information is represented as GMM in H−S space.

In [29] the authors offer to use HSV color space for model representation. But still, there is

no standard or obvious answer to which color space is better to use.

• Edges. Numerous edge detectors exist to identify strong changes in image intensities. One

important property of edges is that it is less sensitive to the illumination changes than color

descriptors. Edge features are usually used with algorithms that track boundary of the objects

[22].

• Optical flow. It is defines by a set of vectors that show displacements of the each pixel in a

region. Using of optical flow as a motion-based feature is common technique among segmen-

tation and tracking applications. As an example, AVITRACK project described in [30], the

main purpose of which is activities recognition around a parked aircraft in an airport area.

The Kanade-Lucas feature tracking algorithm [31] is used for tracking objects - this combines

a local feature selection criterion with feature-based matching in adjacent frames.

• Texture. It is a property of a material which measures regularity and smoothness. As the edge

descriptors, it is not so sensitive to illumination changes as color.

The choice of features is usually done manually and depends on the application. Generally,

color is the most widely used feature for tracking and it is represented by calculation of color

histogram. Although, as it was said before, different kinds of features can be combined to provide

more reliable tracking.

2.3.3 Tracking algorithms

The goal of the target tracker is finding the trajectory of an object over the time by specifying

its position in every frame of the video. At the same time it also can provide an information

about the complete region in the image that is occupied by the target. When we want to detect

a target and establish correspondence between the target’s instances across the frames, these

two actions can be done either separately or jointly. In the former class of approaches, possible

9
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Figure 7: Tracking approaches: (a) multipoint correspondence, (b) parametric transformation of a rectan-

gular patch, (c, d) examples of countour evolutions [22]

target regions in each frame are obtained by an target detection algorithm, and then tracker sets

correspondences between targets across the frames. The latter assumes that the target region

and its correspondences are jointly estimated by iteratively updating object location and region

information obtained from previous frames. A brief classification of some tracking categories is

given below.

Kernel tracking

Kernel can be both object shape and appearance, it can be a rectangular template or an elliptical

one with its associated color histogram. Object tracking is performed by computing the motion

of the kernel in the consecutive frames. The motion can be described by a parametric transfor-

mation like translation, rotation and affine transformations or optical flow computed based on

two consecutive frames as illustrated in figure 7, (b).

Example of using Kernel tracking can be found in [32] - it is achieved by applying the mean-

shift algorithm to an image where pixel values represent likelihood of belonging to the tracked

person. In [27] the tracking algorithm is performed by augmenting CAMSHIFT algorithm with

motion information so that it allows tracking people in the case of occlusions.

Silhouette tracking

When it gets difficult to track complex shapes like hands, head by just using simple geometric

shapes, silhouette-based methods provide much more accurate shape descriptors. The main goal

of the methods is finding target region in each frame based on a target model which was genera-

ted using the previous frames. The model itself can have different forms - color histogram, edge

histogram or object contour. When the model is given, the silhouettes can be tracked by either

shape matching or contour evolution - see schematic examples on the represented figure 7, (c)

and (d).

An example, using of silhouette-based tracking can be found in [18].

Point tracking

Here, the targets are represented by points and the method allows to associate these points across

the frames based on the previous target’s state which can include position and motion. The object

correspondence example is shown on the figure 7 - (a). Furthermore, the point correspondence

methods can be divided into two broad categories: deterministic methods and statistical me-

thods.

The former uses qualitative motion heuristic to constrain the correspondence problem [22].

As to the latter, they take into account both object measurements and uncertainties to establish

10
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correspondence. [33] describes a non-linear / non-Gaussian tracking problem and how Bayesian

approach is used for approximating the solution: different strategies are considered, including

Kalman and Particle filtering.

Since the main focus of the project will be based on the statistical methods, deeper overview

of the related work will be presented here. Considering the problem of the tracking, we should

keep in mind that most of the models encountered in visual tracking are nonlinear, non-Gaussian,

multi-modal or any combination of these [34]. The object motion can easily undergo random

perturbations and especially when the object moves in maneuvering way. Therefore, our main

focus is given to the overview of Monte-Carlo methods (also known as particle filter tracking)

and its use for object tracking.

Particle filtering, that is also known as the Condensation algorithm [25] or bootstrap filter

[35], or Sequential Monte-Carlo algorithm [24] as proven to be a strong and reliable method for

estimating the states of nonlinear and non-Gaussian systems [33]. Particle filtering techniques

are also commonly used because of their quality to be able to fuse different sensor data, to take

into account different uncertainties, to withstand with data association problem for not only

multiple targets, but also for multi sensors. Their main idea is to keep track based on sample-

based representation of probability density functions [34]. All the samples make a contribution

to the state evaluation, and the state evolution is described by a system state dynamics. The

relationship between measurements and states are given by observational dynamics.

A modeling of those two probabilities plays critical role in system performance. Below a brief

overview is given how they can be modeled:

1. Observation probability.

Reliability of the particle filter is very dependent on the chosen method for obtaining object

measurements. Some of the papers rely on a single cue that can be chosen accordingly to the

application context, for example, [29] integrates the color distribution into particle filtering;

and later this distribution can be updated to account for the illumination or target’s localiza-

tion changes. However, using only color cue can fail, if, for example, the region is cluttered;

so using of multiple cues can help to avoid this situation. In [34] authors present a consistent

histogram-based framework for analysis of color, edge and texture cues. [36] uses edge-based

likelihood function as the only cue, but at the same time second-order dynamical model is

applied for better prediction step. Color histogram cue combined with a shape metric was

proposed in [37], called Spatially Weighted Oriented Hausdorff Measure.

2. State dynamics.

It was found that better importance density function may make particles more efficient [38].

Conventional particle filtering offers quite simple model - random sampling [25]. To provide

better performance, [39] includes motion-based proposal; while [40] introduces boosted par-

ticle filter by constructing the proposal distribution using an information from the dynamic

models of each target and the detection hypotheses generated by Adaboost. In [41] the au-

thors propose to use unscented particle filter that integrates current observation to generate

sophisticated proposal distribution.

Various techniques had been proposed to extend particle filters to multi-object tracking (MOT).
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The most common approach that can be found in the literature is by exploiting a join state space

representation (joint probability data association - JPDA), the main idea of which is linking all the

objects’ states to form a large meta data [24]. The joint data association problem is inferred from

characterization of possible associations between objects and observations [42]. The obvious di-

sadvantage of such approach is tremendous computational cost due to the high dimensionality

of the joint space state.

More recent works tried to relax this method by applying different models and approxima-

tions. For example, [24] uses magnetic-inertia potential model to handle the ’error merge’ and

’labeling’ problems. Specifically, they propose to model the interactions by a ’gravitation’ and ’ma-

gnetic’ repulsion schemes, that is representing the cumulative effect of virtual physical forces that

objects undergo while interacting with others. Another work [43] proposes to use a ’Data Driven

Markov Chain Monte-Carlo’ approach to sample the solution space efficiently. The sampling is

driven by an informed proposal scheme controlled by a joint probability model combining mo-

tion and appearance. In [44] the data association posterior is represented in an information form

where the ’proximity’ of objects and tracks are expressed by numerical links. Updating these links

requires linear time, compared to exponential time required for computing the exact posterior

probabilities. In [45] a full polynomial randomized approximation scheme for JPDA is propo-

sed that by presenting a single-scan version of Markov chain Monte Carlo data association. The

proposed approach in [46] integrates Markov Random Field (MRF) motion prior to the model

interactions and substitutes traditional importance sampling step by Markov Chain Monte-Carlo

(MCMC) sampling step that allows to get rid from exponential complexity in the number of

tracked targets.

2.4 Multi-camera systems and data fusion

When considering the tracking of a number of people in indoor environment, multiple-camera

system will be of greater help. In this case multiple-camera tracking (MCT) not only serves for

maintaining consistency of identity labels in the different camera views, but also allows to expand

the Field of View (FOV). Therefore, the main baseline will consist of:

1. matching objects in consecutive frames in single camera (tracking itself), and

2. matching objects across fields of view of the multiple cameras so that to maintain identities

when a moving object moves from one field of view of one camera to another (correspon-

dence between views)

Multi-camera systems are used for interpreting the dynamics of objects moving in wide areas

or for observing objects from different viewpoints to achieve 3D interpretation [47]. For wide-

area monitoring. Cameras with non-overlapping or partially overlapping fields of view are used;

cameras with overlapping fields of view are used to disambiguate occlusions. In both cases, de-

termination of the relative location and orientation of the cameras is often essential for effective

use of a multi-camera system.

For setting correspondence between camera views, methods can be generally divided into

three categories [48]:

1. geometry-based

12
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2. color-based

3. hybrid approaches

The first class can include both calibrated and uncalibrated methods. For calibrated ap-

proaches most of the literature uses a popular method called homography. Where a matrix that

describes a transformation between any two images of the same planar surface in a space. The

most commonly-used strategy for MCT [49]:

• detect people in each camera

• calculate the correspondence between cameras (homography)

• provide a feedback from ground-plane tracker to each camera tracker

In [32] authors use homography for restoring 3D world coordinates of each target combined

with CAMSHIFT tracking algorithm for each single camera. Another example is work done in

[28] where homography is used only when occlusion occurs to check the location of targets in

world coordinates and particle filter is used for tracking of each target individually.

An example of uncalibrated approach can be seen from [50] where computation of so-called

’Edges of FOV’ (the lines delimiting the FOV of each camera) is performed, and, thus, defining

the overlapped regions. It is done through a learning procedure where a single target moves from

one view to another, and an automatic procedure computes those edges that are later applied to

keep consistent labels on the objects when they pass from one camera to adjacent.

Regarding color-based approaches, the matching is essentially based on the color information

of the tracks as in [51], where appearance features for matching between views are calculated by

reducing color texture information and, therefore, getting centroids of homogeneously colored

body segments.

Hybrid approaches mix information from calibration and geometry with visual appearance.

Like [52] uses Sequential Belief Propagation as a tool for information fusion and particle filter is

used for tracking.
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3 Proposed Framework

3.1 System overview

The block diagram of the proposed framework is shown on figure 8. The process it describes can

be split into four main steps: Initialization, Sequential Monte-Carlo tracking, data association

and fusion, and fall detection. Each of these steps will be explained further in the following

sections.

3.2 Multi-target tracking

The chosen models and algorithms are described in this section. Since Bayesian filtering was

chosen as a basic skeleton of the tracking system, its theory will be first reviewed, also its applica-

tion in tracking. Thr main notations will be presented and a Bayesian framework for multi-target

multi-camera tracking will be proposed.

3.2.1 Bayesian sequential estimation

When we think about tracking process, a target movements can be considered as a state transition

process, where one state is represented by a vector that can include [53]:

• coordinates of the target

• its scale

• velocity

• shape or any other parameters that are able to depict characteristics of the target.

Usually, the state variables are denoted as xt ∈ Rnx , t ∈ N defines the current time step

and nx is a dimension of the state variable. For our application the main task is to estimate the

current state of the target through given output data (named observations). That is why state

variables are also called ’hidden’ variables, because they are not directly available, but must be

induced from the observable variables.

The observations of the hidden variables are usually denoted as zt ∈ Rnz , where nz is the

corresponding dimension for observed variable. For most of applications it’s not necessary that

xt ∈ Rnx and zt ∈ Rnz are in the same space, therefore, nx 6= nz usually.

The conventional tool that helps to represent a relationship between the two variables is

graphical model [54] as is shown on the figure 9, where hidden state is denoted by a rectangle

and observable one - by a circle. The direct link from a target’s state to its observation explains

that the latter only depends on the former; and the edge characterizes the local observation

likelihood and is denoted as p(zt|xt).

The Hidden Markov Model (HMM) serves quite well for describing the sequential data (in

our case - tracking data). It makes links not only between states and observations, but also bet-

ween consecutive time steps (consecutive frames); this can be represented by a node structure,

15



Probabilistic framework for multi-target tracking using multi-camera: applied to fall detection

Figure 8: System block-diagram (SMC stands for Sequential Monte-Carlo).
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Figure 9: Graphical model representation of the relationship between an observable variable zt and hidden

one xt.

Figure 10: Graphical model representation of the HMM.

example of which is shown on the figure 10. The subscript 0 stands for defining the initial state of

the system, the direct link between consecutive states represents a state dynamics, or transition

probability which is described by M×M matrix for M possible values and denoted as p(xt|xt−1).

The Bayesian sequential estimation helps to estimate a posterior distribution noted as p(x0:t|z1:t)

or its marginal p(xt|z1:t), where x0:t includes a set of all states up to time t and z1:t - set of all

the observations up to time t accordingly. The evolution of the state sequences {xt, t ∈ N} of a

target is given by equation 3.1; and the observation model is given by equation 3.2:

xt = ft(xt−1, vt−1), (3.1)

zt = ht(xt, ut), (3.2)

where ft : Rnx × Rnv → Rnx and ht : Rnx × Rnu → Rnz can be both linear or nonlinear, and

vt and ut are sequences of i.d.d. process noise and measurement noise respectively; at the same

time nv and nu are their dimensions. So, the main goal is to find a filtered estimate of xt based

on the set of all available measurements z1:t = {zi, i = 1, ..., t} up to time t.

In Bayesian context, the tracking problem can be considered as recursive calculation of some

belief degree in the state xt at time step t, given the data observation z1:t. That is, we need to

construct a pdf p(xt|z1:t). It is assumed that initial state

p(x0|z0) ≡ p(x0) (3.3)

of the system (also called prior) is given. Then, the posterior distribution p(xt|z1:t) will be cal-

culated by following next two steps given in equations 3.4 and 3.5 (we can apply the recursion
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only based on the Markov assumptions 1):

1. prediction involves using the system model defined in 3.1 to get the prior pdf of the state at

time t:

p(xt|z1:t−1) =

∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (3.4)

where the recursion is initialized by the prior distribution in equation 3.3 and dynamic model

described in equation 3.1;

2. update is performed after measurement zt becomes available; later it will be used to update

the prior through Bayes’ rule:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
=

p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1)dxt

, (3.5)

where the denominator is normalization constant and it depends on the likelihood function

p(zt|xt) - as described by equation 3.2.

In this case, the optimal Bayesian solution will be formed from the two mentioned relations in

equations 3.4 and 3.5, however the presented recursive propagation is just a conceptual solution

and can not be applied in practice. Because of this, several approximate solutions were proposed,

to help obtain optimal Bayesian solution. The section 3.2.3 will give appropriate explanations of

the sequential Monte-Carlo implementation.

3.2.2 Bayesian framework for multiple target tracking

The idea to build such a framework was adopted [1]. Here the main concept will be presented

and later in section 3.2.4 each of the system elements will be expanded and discusses.

For multiple targets, one tracker per target was used in each camera. The main notations used

in the algorithm are as follows:

xA,i
t - one state in camera A at the time t of the ith target;

zA,i
t - image observation of the state xA,i

t ;

xA,i
0:t - set of all states up to time t with xA,i

0 - initialization prior;

zA,i
1:t - set of all observations up to time t.

Similarly, notations for the corresponding targets in a camera B will be denoted:

xB,i
t - ’counterpart’ of xA,i

t in the camera B;

z
A,Ji

t

t - to denote all the neighboring observations of zA,i
t which are in the interaction with

zA,i
t at time t;

Jit = {jl1 , jl2 , ...} - is set of indexes of the targets whose observations are interacting with zA,i
t

for the current moment t;

z
A,Ji

1:t

1:t - collection of neighboring observation sets up to time t.

Graphical modeling

As it was said before, we can use graphical model to represent and analyze complex dynamic

systems. Such a model of two consecutive frames for multi-targets and for two cameras is shown

1First order Markov chain is defined by independency assumptions: xt⊥z0:t−1|xt−1 and zt⊥z0:t−1 |xt, which mean
that the current state is independent from the past observations given the previous state; and the current observation
depends only on the current hidden state.
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Figure 11: The dynamic graphical model for multi-person multi-camera tracking [1].

on the figure 11. Similarly to figure 9, circled notes represent hidden layer and rectangles stand

for observable layer; link between consecutive states of the same target in one camera is state

dynamics p(xt|xt−1); direct link between targets’ states and their observations denote local ob-

servation likelihood p(zt|xt); the indirect (double line) link in each camera between neighboring

observations means that they are interacting at the current moment of time (determined by

spatial locations of the observations); the direct curve link between the corresponding states in

different camera views represents a camera collaboration. According to [1], this collaboration

is activated between any possible collection of cameras only for targets which need help to im-

prove their tracking robustness - when, for example, they are occluding each other or are in close

proximity in a camera view. The direction of the link shows how this help is organized - which

target’s data is used for improving other targets’ data. The scheme is supposed to be activated

only when an occlusion issues occur, therefore, a lot of computational costs would be saved.

Bayesian tracking for one target

This subsection will present a general Bayesian conditional density propagation framework for

each of the targets in one camera. The main goal is to provide a generic statistical framework to

model interactions among targets and, possibly, cameras. For one target, one tracker will be used;

also we want to take into account observations coming from both the target and its neighborhood

for the current camera view, and also data gotten from other camera views - that is the desirable

19



Probabilistic framework for multi-target tracking using multi-camera: applied to fall detection

posterior p(xA,i
0:t |z

A,i
1:t , z

A,Ji
1:t

1:t , zB,i
1:t ) for one tracker and for one camera. Based on equations 3.4,

3.5 and Markov properties rules derived in [1], a recursive conditional density updating rule for

multi-person multi-camera environment [1]:

p(xA,i
0:t |z

A,i
1:t , z

A,Ji
1:t

1:t , zB,i
1:t ) = kt p(z

A,i
t |xA,i

t ) p(xA,i
t |xA,i

0:t−1)

× p(z
A,Ji

t

t |xA,i
t , zA,i

t ) p(zB,i
t |xA,i

t )

× p(xA,i
0:t−1|z

A,i
1:t−1, z

A,Ji
1:t−1

1:t−1 , zB,i
1:t−1),

(3.6)

where

kt =
1

p(zA,i
t , z

A,Ji
t

t , zB,i
t |p(zA,i

1:t−1, z
A,Ji

1:t−1

1:t−1 , zB,i
1:t−1)

(3.7)

is a normalization constant. In equation 3.6 we have four main probabilities:

• p(zA,i
t |xA,i

t ) is local observation likelihood for target i in a camera A

• p(xA,i
t |xA,i

0:t−1) stands for state dynamics

• p(z
A,Ji

t

t |xA,i
t , zA,i

t ) defines a target interaction function for one camera view

• p(zB,i
t |xA,i

t ) is for defining a collaboration function between the same target states in different

camera views

Of course, it is of key importance to know how to model each of the probabilities. Though,

we follow the same framework as in [1], probability models will be different for our project.

Section 3.2.4 presents the local likelihood model; section 3.2.4 gives more details about state

dynamics probability; target interaction function is discussed in section 3.2.4; and since we can

not model the camera collaboration in the same way as in [1] (discussed in section 3.2.4), data

fusion procedure is suggested instead in section 3.3.

3.2.3 Sequential Monte-Carlo implementataion

Sequential Monte-Carlo (SMC) methods are a general class of techniques which provides weigh-

ted samples from a sequence of distributions using sampling and re-sampling mechanisms [55].

Among different applications of SMC are: terrain navigation, mobile robot localization, neural

networks, Bayesian networks, jump diffusions, stochastic volatility, maneuvering target tracking,

etc [56]. In this project we employ a particle set to represent the posterior of the Bayesian for-

mulation. The following subsections contain the basic theory concerning SMC. For the sake of

simplicity it is provided for single target without considering neighboring targets or camera views

information.

Monte-Carlo simulation

The main idea of Monte-Carlo sampling method is to represent the posterior distribution in a

form of a set of random samples with appropriate weights. It means that our posterior described

by equation 3.5 will be approximated as in [33]:

p(xt|z0:t) ≈
1

Ns

Ns∑

n=1

δ(xt − x
(n)
t ), (3.8)
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where Ns is the number of samples, {x
(n)
t ,ω

(n)
t }Ns

n=1 is a particle set drawn from the posterior

distribution and their corresponding weights. Initially, the weights of all particles are equal to
1
Ns

to provide normalized weights. δ(·) stands for Dirac delta function

δ(x) =

{
1 if x = 0

0 otherwise
(3.9)

Therefore, any integral can be approximated by a discreet form using Monte-Carlo simulation:

E(f(xt)) =

∫

f(xt)p(xt|z0:t)dxt ≈
1

Ns

Ns∑

n=1

f(x
(n)
t ). (3.10)

From this formulation we can see that when the number of samples approaches infinity, the

approximation will be approaching the true distribution. Similarly, any query estimation that is

sampled and weighted will be close to the optimal Bayesian sequential estimate.

Sequential importance sampling

Usually, it is not possible to sample directly from the proposal distribution, so the particles are

sampled from so-called Importance density q(xt|z1:t) instead. In this case, equation 3.8 will be

transformed into

p(xt|z0:t) ≈

Ns∑

n=1

ω
(n)
t δ(xt − x

(n)
t ), (3.11)

where

ω
(n)
t ∝

p(x
(n)
t |z0:t)

q(x
(n)
t |z0:t)

, (3.12)

and
Ns∑

n=1

ω
(n)
t = 1. (3.13)

This technique is called "Importance Sampling" and corresponding weights are "Importance

Weights". From equation 3.12 it can be seen that if the proposal function is the same as posterior,

then weights will look the same way as in equation 3.8.

Using importance sampling technique, equations 3.4 and 3.5 for optimal Bayesian solution

can be re-written in the discreet form:

1. predict:

p(xt|z0:t−1) ≈

Ns∑

n=1

p(xt|x
(n)

t−1)ω
(n)

t−1, (3.14)

2. update:

p(xt|z0:t) ≈

Ns∑

n=1

ω
(n)
t δ(xt − x

(n)
t ), (3.15)

where

ω
(n)
t ∝

p(zt|x
(n)
t )p(x

(n)
t |x

(n)

t−1)

q(x
(n)
t |x

(n)

t−1, z0:t)
ω

(n)

t−1. (3.16)
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[{x
(n)
t ,ω

(n)
t }Ns

n=1] = SIS[{x
(n)

t−1,ω
(n)

t−1}
Ns

n=1, zt]

• FOR n = 1 : Ns

- Draw x
(n)
t ∼ q(xt|x

(n)

t−1, zt)

- Assign the particle a weight, ω
(n)
t , according to equation 3.16

• END FOR

Table 1: SIS particle filter algorithm [33].

Normalization constant
∫
p(zt|xt)p(xt|z0:t−1dxt) was not shown here just for convenience.

The evolution of the states’ estimation happens by sequentially updating the weights for each

supporting particle; in the literature this method has a conventional name - Sequential Impor-

tance Sampling (SIS). A pseudo-code description of this algorithm is provided in table 1.

SIS for the Bayesian framework

Based on [1], an obtained Bayesian formulation can now be written using SIS method for the

Bayesian framework (which was presented in section 3.2.2). Based on the derived sequential

iteration in equation 3.6 for the framework, SIS approximations in equations 3.14, 3.15 and

3.16; and having the representation posterior as a particle set

p(xA,i
0:t |z

A,i
1:t , z

A,Ji
1:t

1:t , zB,i
1:t ) ∼ {x

A,i,(n)

0:t ,ω
A,i,(n)
t }Ns

n=1, (3.17)

where {x
A,i,(n)

0:t , n = 1, · · · , Ns} are samples with the associated weights {ω
A,i,(n)
t , n = 1, · · ·Ns},

and if the particles x
A,i,(n)

0:t are sampled from the importance density

q(xA,i
t |x

A,i,(n)

0:t−1 , zA,i
1:t , z

A,Ji
1:t

1:t , zB,i
1:t ) = p(xA,i

t |x
A,i,(n)

0:t ), (3.18)

then corresponding weights are defined by

ω
i,(n)
t ∝ ω

i,(n)

t−1 p(zA,i
t |x

A,i,(n)
t ) p(z

A,Ji
t

t |x
A,i,(n)
t , zA,i

t ) p(zB,i
t |x

A,i,(n)
t ). (3.19)

Re-sampling

Degeneracy phenomenon is one of the common problems with SIS, which means that after se-

veral interactions most of the particles will have very low weights due to the very far locations

from the target observation, and, therefore, most of the computational effort is wasted on those

particles with negligible weights. It was proven that it happens because the variance of the impor-

tance weights increase over time [33], so it is impossible to avoid the degeneracy phenomenon

without treating it. Therefore, the main idea is to update the particles whose contribution to the

approximation to p(xt|z1:t) is almost zero and concentrate an attention on the more promising

particles . The equation 3.20 helps to define the threshold of generacy [33]:

Neff =
Ns

1+ Var(ω
∗(n)
t )

, (3.20)
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where ω
∗(n)
t =

p(x
(n)
t

|z1:t)

q(x
(n)

t
|x

(n)

t−1
,zt)

stands for the ’true’ weight. It can not be calculated exactly, so

another estimate is obtained N̂eff instead of Neff:

N̂eff =
1

Ns∑

n=1

(ω
(n)
t )2

, (3.21)

where ω
(n)
t is the normalized weight from equation 3.16. Neff is always smaller or equal to

Ns, and small value of Neff indicates a severe degeneracy. Of course, it’s always better try to

avoid degeneracy phenomenon, and, theoretically, it can be achieved by increasing the number

of samples (works like brute force approach), but it can not be realized in practice due to high

computational costs. Therefore, other tricks can be applied: for example, using a re-sampling

scheme.

The basic idea of the re-sampling is generation of a new set {x̃
(n)
t , N−1

s }Ns

n=1 by re-sampling

with replacement Ns times from an approximate discreet representation of p(xt|z0:t), that is

given by equation 3.11, so that Pr(x̃
(n)
t = x

(m)
t ) = ω

(m)
t . Since the resulting sample will be an

i.d.d. sample from the density defined by equation 3.11, it means that weights must be reset to

ω
(n)
t = 1

Ns
(we denote it N−1

s ). As a result we will have more replicates of particles that had

higher weights before, and most of the particles with lower weights will be eliminated.

The whole process of the Bayesian estimation (or particle filtering) including re-sampling

is shown on figure 12. The SIR process starts at t − 1 with a set of equally weighted particles

{x̃
(n)

t−1, N
−1}Nn=1, which represent the distribution p(xt−1|z0:t−2). Importance weights are updated

by using measurements obtained at time t− 1 to represent p(xt−1|z0:t−1) with {x̃
(n)

t−1, ω̃
(n)

t−1}
N
n=1.

Re-sampling is performed to make it an equally weighted particle set {x
(n)

t−1, N
−1}Nn=1: particles

with lower weights are re-sampled around the particles with higher weights. Finally, particles

are propagated to {x̃
(n)
t , N−1}Nn=1 at time t by the proposal distribution to represent p(xt|y0:t−1)

and iterations repeat forward [41].

There are several types of re-sampling scheme implementations exist in the literature, and

for this project we decided to apply a systematic one [57]: it takes O(Ns) time and minimizes

MC variation [33]; although, this parameter can easily be changed inside the program, to test

other techniques. A pseudo-code of systematic re-sampling is provided in table 2, where U[a, b]

is the Uniform distribution on the interval [a, b]. There, for each re-sampled particle x̃
(m)
t , the

information about the index of its its parent, denoted by n(m), is also stored. Then, a pseudo-code

of generic particle filtering is described by table 3.

State estimate

Until this point, there was no explicit state estimation maintained - whatever we have, it is just

a cloud of particles that represents the posterior probability distribution of optimal Bayesian

solution. At every time step, it’s necessary to know a current estimate since it will give us all

the information about target location, scale, shape, etc. The mean state (’mean’ particle, ’mean’

shape or weighted sum of particles) is commonly used for this purpose

ε[Xt] =

Ns∑

n=1

ω
(n)
t x

(n)
t (3.22)
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Figure 12: Graphical illustration of particle filtering including re-sampling step
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[{x̃
(m)
t ,ω

(m)
t , nm}Ns

n=1] = RESAMPLE[{x
(n)
t ,ω

(n)
t }Ns

n=1]

• Initialize the CDF: c1 = 0

• FOR n = 2 : Ns

- Construct CDF: c(n) = c(n−1) +ω
(n)
t

• END FOR

• Start at the bottom of CDF: n = 1

• Draw a starting point: u1 ∼ U[0,N−1
s ]

• FOR m = 1 : Ns

- Move along the CDF: u(m) = u1 +N−1
s (m− 1)

- WHILE u(m) > c(n)

n = n+ 1

• END WHILE

• Assign sample: x̃
(m)
t = x

(n)
t

• Assign weight: ω
(m)
t = N−1

s

• Assign parent: i(m) = (n)

• END FOR

Table 2: Resampling algorithm [33], CDF stands for cumulative density function.
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[{x
(n)
t ,ω

(n)
t }Ns

n=1] = PF[{x
(n)

t−1,ω
(n)

t−1}
Ns

n=1, zt]

• FOR n = 1 : Ns

- Draw x
(n)
t ∼ q(xt|x

(n)

t−1, zt)

- Assign the particle a weight, ω
(n)
t , according to formula 3.16

• END FOR

• Calculate total weight k = SUM[{ω
(i)
t }Ns

n=1]

• FOR n = 1 : Ns

- Normalize: ω
(n)
t = k−1ω

(n)
t

• END FOR

• Calculate N̂eff using equation 3.21

• IF N̂eff < Nthresh

• Re-sample using algorithm table 2: [{x
(n)
t ,ω

(n)
t ,−}Ns

n=1] = RESAMPLE[{x
(n)
t ,ω

(n)
t }Ns

n=1]

• END IF

Table 3: Generic particle filter algorithm [33].

Figure 13 shows an illustration of sample-set representation and its mean state estimation.

3.2.4 Modeling of densities

Modeling the densities in equations 3.19 and 3.18 is not an easy task, but at the same time plays

critical role in the system performance. Since we do not use the same models as the reference

[1], the following subsections will cover the construction of each of the densities.

Target representation

First, it is necessary to define what the state vector will be. As it was shown before, a target

can have different representation - from 3D object models [26] to dynamic contour model [25].

Though, the targets have non-rigid nature in the project (moving people), it was decided to

use simple 5D parametric ellipse model in order to decrease computational costs, and at the

same time, it can be sufficient to represent the tracking results. Figure 14 illustrates state space

representation for our system.

Therefore, one state xA,i
t is defined by

xA,i
t = (cxA,i

t , cy
A,y
t , aA,i

t , bA,i
t , ρA,i

t ), (3.23)

where i is target index, t - current time, (cx, xy) - coordinates of the center of ellipse, (a, b) -

major and minor axises, and ρ - orientation angle.
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Figure 13: (a) illustrates sample-set representation: each particle is represented by an ellipse x
(n)
t with

varying position, scale and orientation; the thickness and brightness correspond to the weight ω
(n)
t (larger

weights correspond to thicker and brighter lines). (b) shows the final state estimate, that is, mean of the

sample set.

Figure 14: Ellipse representation for describing a human body.
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Local observation model

As a local likelihood p(zA,i
t |x

A,i,(n)
t ) it was decided to use single cue - color histogram like [29],

but without updating procedure (for simplicity); since the test video sequences are quite short

and even if color distribution changes over time due to illumination, it is not very critical at this

time. Using different cues (i.e., combined with PCA-appearance based model [58]), of course,

could give more robust results, but it was not employed for the current moment leaving it for

future extensions.

State dynamics model

Since for local observation likelihood we used single color histogram model, the prediction step

must be improved by the use of an importance density function. Usually, for conventional particle

filter, simple transition model is used, therefore, many particles can be wasted in low-likelihood

region. For the project, it was decided to include motion information and use it to predict the

next step.

Motion-based proposal [39] adds next two benefits to the system performance:

• efficient allocation of the samples,

• adaptivity to sudden changes in motion directions.

As a motion estimation algorithm we chose Lucas-Kanade (LK) optical flow algorithm [59],

with implementation available in OpenCV [60]. It allows to calculate coordinates of the feature

points on the current video frame given their coordinates in the previous frame. Later, the mean

of optical flow values will be used for better prediction of the center (cxt+1, cyt+1).

If we consider the 5D ellipse representation, a motion vector will be defined by:

∆VA,i
t = (cxA,i

t − cxA,i
t−1, cy

A,i
t − cyA,i

t−1, 0, 0, 0). (3.24)

If we model the computational errors by a zero-mean white Gaussian noise, then sampling

scheme will look like:

xA,i
t = xA,i

t−1 + ∆VA,i
t +ΩA,i

t , (3.25)

where ΩA,i
t ∼ N(0, ΣG), represents the process noise with

ΣG =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ2
x 0 0 0 0

0 σ2
y 0 0 0

0 0 σ2
a 0 0

0 0 0 σ2
b 0

0 0 0 0 σ2
ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.26)

where σ2
x, σ2

y, σ2
a, σ2

b and σ2
ρ are the variances of the motion diffusion in the x-y directions,

scaling (a, b) and rotation ρ respectively. In this case the motion proposal in equation 3.18 can

be described by

q(xt|xt−1, zt) =

N∑

n=1

Nxt
(x

(n)

t−1 + ∆Vt, ΣG), (3.27)

function Nx(µ, Σ) is represented by a Gaussian distribution:

Nx(µ, Σ) ≡
1

2π|Σ|
exp(−

1

2
(x− µ)TΣ−1(x− µ)). (3.28)

28



Probabilistic framework for multi-target tracking using multi-camera: applied to fall detection

The tests showed that motion-based approach gives more useful states’ predictions rather than

random-based model, and, therefore, better results for tracking single target are achieved. For

initialization, simple random-based proposal is applied.

Interaction model

When targets start to interact with each other (i.e., occlusion), we cannot rely on the motion

based proposal anymore (at least, not for the targets that are not located on the front). As it was

mentioned before, some techniques were already proposed to deal with multi target interactions

in particle filtering: MCMC-based method [46] and its modifications [43], JPDA filter [42], etc.

Because in this project we adopted Bayesian framework approach, firstly it was decided to

model interactions the same way as in [1], which assumes that interaction modeling will be part

of the proposed framework and will be performed by re-weighting procedure [24]. The authors

of [24] propose a method of building target interaction probability p(z
A,Ji

t

t |xA,i
t , zA,i

t ) in equation

3.6 by representation of interaction as a magnetic-inertia potential model. Based on the particles’

re-weighting, [24] shows how it’s possible to deal with occlusions by using velocity and targets’

location information. This method was implemented for our system too, however, it did not give

as good results as expected, probably due to the reasons of targets’ non-rigidity or even the use

of little prior information.

Therefore, it was decided to avoid re-weighting procedure and set the mentioned interaction

probability to uniformly distributed; though, it forces to use another technique, outside from

the Bayesian framework, that could help to deal with occlusion problems in a better way. Other

re-weighting models can be tested and added later, if it will be necessary, so they will be part of

the Bayesian framework.

The magnetic-repulsion inertia re-weighting was tested against the behavior of the simple

conventional particle filter, which uses random based proposal (instead of motion based) that is

based on the inertia information (previous motion direction). And since it gave better results, it

was decided to use random based prediction:

xA,i
t = G · xA,i

t−1 +Ωt,

where G defines the deterministic system model and Ωt is a random vector drawn from the noise

distribution of the system [29] (process noise).

As it was said before, using random-based model sometimes does not give good prediction

results, even if inertia information is used; therefore, it will be better if particle set will be more

spread during target interactions, so that particles would cover more space and capture the

target after occlusion is diminished. Increasing the process noise Ωt serves well for this. The

block-diagram of interacting objects is shown in figure 15.

The interaction itself is defined when the distance between the centers of the targets observa-

tions is less than predefined threshold. Although, theoretically, the interaction must be defined

when targets’ observation have intersect, therefore, each time we must check whether the ellipses

have intersection or not - this gives good performance, but, probably, is a little bit complex. So,

for the current project it was decided to use simple thresholding procedure:

thre = α(ak
t + al

t),
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Figure 15: Target interaction scheme: left - no interaction, xt = xt−1 + ∆Vt + Ω−
t ; on the right - when

interact, xt = G · xt−1 +Ω+
t

where α is a constant, ak
t and al

t are minor axises of the two considered ellipse k and ellipse l.

Camera collaboration model

Since one of the main requirements of our system is excluding any calibration etc. information,

we can not apply the technique of camera collaboration likelihood model described in [1], be-

cause it is based on the calculation of epipolar lines which can not be performed without some

prior knowledge about the relative camera locations. It means that we will also discard collabo-

ration likelihood distribution p(zB,i
t |xA,i

t ) from equation 3.6 and set it to uniform distribution.

Again, like for interaction model, we get rid of the re-weighting procedure and replace it by ano-

ther method of data fusion between views. The description of this data fusion procedure is given

in the section 3.3. Although, it’s again quite straightforward to embed any proposed camera

collaboration model into equation 3.6.

3.3 Multi-camera data fusion

The situation when we deal with two cameras is illustrated in figure 16. The main goal there is

how to correctly associate corresponding targets (assign the same identity to each them across

the frames) and how to maintain this association in time, especially, when occlusions occur.

As it was mentioned before, most of the literature suggests using homography, and, therefore,

calibration is required. Although, they give reliable results, we cannot adopt the same strategy.

Therefore, we need to think about another, probabilistic-based method that helps to fuse the

data.

3.3.1 Problem statement

First, it’s necessary to give a problem description - what are the input (what we have) and the

output (what need to know). So, we have two cameras and certain number of targets with their

current states (ellipse parameters) in each camera view. The data fusion procedure must assign

the same identities to each of the targets across the camera views (if they are not set correctly)

based only on the appearance information.

Let’s assume that illumination does not change very drastically from one view to another (that
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Figure 16: The figure reflects the problem: (A) shows that identities are not set correclty (i.e., red target

has different identites in two views), but after association, (B) illustrates that identities are maintained, so

we know that we monitor the same target in different views.
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is, cameras will not have too broad points of view), and also people appearances remain almost

the same on the both views (i.e., color of the T-shirt will not have different colors on the back

and on the front of the person). Another assumption that we need to have is that the number of

targets is the same in each view.

The solution should give an answer to the following question:

1. how to make the association between the targets within the given two cameras based on

appearance information?

2. how to achieve robust labeling of the different targets across the different views?

3.3.2 Stable marriage problem

Stable marriage problem (SMP) is the problem of how to find a stable matching [61]. A matching

is defined as a mapping from some elements (in our case - targets in first camera view) to other

elements (targets in a second view). And it is called stable whenever there is no element A of

the first matched set (first camera view) that prefers an element B (that it is not matched with)

of the second matched set (second camera view); and at the same time B also prefers A over the

one B is matched with. The matching algorithm also bears the name Gale-Shapley algorithm.
According to [62], the SMP is stated as:

Given n men and n women, where each person has ranked all members of the opposite sex

with a unique number between 1 and n in order of preference. Marry the men and women off

such that there are no two people of opposite sex who would both rather have each other than

their current partners. If there are no such people, all the marriages are ’stable’.

And the proposed solution [62]:

The Gale-Shapley algorithm (GSA) involves a number of ’rounds’ (or ’iterations’) where each

unengaged man ’proposes’ to the most-preferred woman to whom he has not yet proposed.

Each woman then considers all her suitors and tells the one she most prefers ’Maybe’ and

all the rest of them ’No’. She is then provisionally ’engaged’. In each subsequent round, each

unengaged man proposes to one woman to whom he has not yet proposed (the woman may

or may not already be engaged), and the women once again reply with one ’maybe’ and reject

the rest. This may mean that already-engaged women can ’trade up’, and already-engaged men

can be ’jilted’.

The GSA generates an optimal solution [61]:

• everyone gets married

• the marriages are stable

It was decided to use the same technique for setting correspondences between the targets’

identities. In the context of data fusion the two sets are represented by two camera views and

targets will play a role of the elements. Figure 17 shows how ranked list for each target is

organized.

Therefore, presence of likelihoods for each target adds some modifications into the statements

of the original SMP:

• preference list for each target contains information about the likelihoods (or weights); and

actually based on these weights, the preference list is sorted.
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Figure 17: Example of how the preference profiles for the targets might be built. Illustration on the top: for

each target in the first camera view, based on the likelihood function, probability is calculated for each of

the targets from second camera view. Tables on the bottom: the obtained probibilities are sorted to form

a preference list for each of the target in each camera view - from the most preferrable target to the least

(descending order of likelihoods)

• the preference list must be built beforehand (that is, the procedure must be performed each

time before the running GSA).

The block-digram describing the algorithm and how it’s intergated into the system is presen-

ted on figure 18. Once the pairings are set based on the GSA, correct identities are assigned to

the targets that belong to the class ’woman’ based on the pairing links.

Gale-Shapley properties

One of the GSA properties that must be considered are proposers-optimality and acceptors-

pessimality [63] (chapter 1). Just assume that there is a matching between proposer A and

acceptor B and it is stable. A proposer-optimal pairing means that every proposer is matched

with its highest ranked acceptor. In the same way, an acceptor-optimal pairing is the one where

each acceptor is paired with its lowest ranked proposer. For our system, it will mean that stable

matching output can be different - depending on how are two classes will be split (which camera

view will be defined as proposers and which one - acceptors). Although, if the assumptions stated

earlier are hold (appearance of the targets is quite different), then the property will not affect

much the output result.

It is worth mentioning that there is no need to apply the GSA for every frame - once it

was initialized, identity information is actually a part of the state vector of a particle system,

therefore, it will be propagated correctly until occlusion occurs. The algorithm must be applied

again after occlusion (when targets do not interact anymore) - to check consistency. And if labels

were suddenly switched during the interaction, GSA will be able to manage it.
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Figure 18: The block-diagram shows how GSA is used for data fusion. The blue block on the top: illustrates

the problem when three targets (different in color within one camera view) have not got the correct identi-

ties; for each of the targets, list of preferences can be built based on the color likelihood; for GSA algorithm

it’s necessary to split the targets into two classes - proposors (’men’) and acceptors (’women’), what is per-

formed based on camera views’ criterion (rectangles denote proposors and cirlces - acceptors). Pink block

on the middle: represents the original GSA. Blue block on the bottom: output of the GSA, identities were

set based on the pairing information.
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Figure 19: General block-diagram for fall detection part.

3.4 Target initialization

It was decided to use a previously done work at HIG [27] which uses CAMSHIFT-based algorithm

for tracking. When the target just appears on the scene, it outputs the initial ellipse parameters,

which are saved and used for initialization of the system.

3.5 Fall detection

The block-diagram for this part is displayed on figure 19 which takes previously estimated state

of the target as input and performs further analysis.

3.5.1 Feature extraction

The aim of the feature vector is to give a good description of the moving objects position. These

features will help to distinguish different activities - in our case, we want to be able to separate

’fall’ activity from ’no fall’ activity (walking, sitting down, lying down, running, etc.). All the

features can be divided into two main groups: silhouette-based and motion-based features.

Silhouette-based features are extracted from still images:

• Aspect ratio - defined by ratio between the height and width of the bounding box.

• Height of the center mass - represented by the distance between the center mass of a person

and the floor lever (bottom edge of the minimum bounding box).

• Height of the bounding box.

• Orientation is actually one of the our 5D ellipse parameters and it gives the overall direction.

More advanced methods may include calculation of edge histogram, i.e., when the person is

lying, most of the edges will have horizontal orientation.

Since the human body was represented by ellipse when the tracking was performed, it’s

straightforward to extract bounding box and center parameters for frame features extraction.
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Motion-based features may also be used, these will be calculated:

• Direction of motion is defined by the direction of movements of the center of mass, can be

calculated based on the current and previous positions on two consecutive frames.

• Speed value is a rate of motion, it measures how fast position changes.

• Motion history image (MHI) helps to detect when a large motion of a person is happening

(when fall occurs, motion will be large). MHI is represented by an image where intensity of

each pixel shows how recent the was motion in an image region [64].

Another class of features that can also be of use is audio-based features. Usually, a person

falling produces high amplitude sounds as opposite to those when the person is sitting down or

bending. At this point, previously done work at HIG [65] can be used, where audio analysis is

based on wavelet domain signal decomposition. The main reason why the author used wavelet

decomposition is that it can easily reveal aperiodic characteristics that are intrinsic to the falling

down event. In [65] two main features were used to discriminate a fall event from different

background sounds (music, speech, etc.):

• Zero-cross rate (ZCR) which shows how often the dominant frequency in the signal crosses

zero level. Higher dominant frequency will produce higher crossing rate. For the falling down

event ZCR values will be decreased.

• Variance - shows how spread the distribution is. When fall occurs, variance will increase

rapidly.

To make use of both ZCR and variance, [65] suggests to use their ratio for optimization, since

they are related (during the fall variance values increase and ZCR goes down).

3.5.2 Classification

The classification algorithm must be able to distinguish falls from other everyday activities. It

takes as an input a feature vector and outputs an alarm if fall was recognized. For the project,

it was decided that Support Vector Machine (SVM) can serve well for this. In [20] author show

that SVM outperforms other seven classification algorithms.

SVM is related to the techniques that require supervised learning, therefore, some rules de-

fining a fall must be known beforehand. If given a set of different human actions (walking,

running, falling down), it’s necessary to mark each as belonging to one of two categories (’fall’

and ’no fall’). Later an SVM training algorithm will build a model that is able to predict - whether

new sample belongs to the first or second class.

Thinking about it intuitively, if each sample is represented by a point in space, then SVM

needs to build an optimal separating hyperplane between categories, what can be done by fo-

cusing on the training samples that are close to the edge of separation. Those training samples

are called support vectors. There is no need to take into consideration other training samples,

therefore, high classification accuracy can be achieved with small training data sets. For one-class

classification (also called novelty detection or OCSVM), we can just define the one class that will

represent the characteristics of all normal data (normal human activities, i.e., walking, sitting

down, running, etc.). Samples that will not fit the same description very well will be considered
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Figure 20: Support vector machine illustration. One-class category that stands for normal data is represen-

ted by green circles and outliers are red circles. A) represents data mapping by OCSVM from input space to

B) output space.

as abnormal data or outliers [66] as illustrated on figure 20. OCSVM constructs a hyperplane to

separate the normal data such that the margin between the hyperplane and outliers is maximi-

zed [67] and [68]. Small sphere and large margin (SSLM) method was introduced recently by

[69], where the normal data is surrounded by optimal hypersphere with a margin which gives

the maximum distance from outliers to the optimal hypersphere.

3.6 Implementation issues

It was decided to use Visual C++ as a main programming language for implementation. Also,

other libraries were used: OpenCV (for image and video processing) [60], Sequential Monte-

Carlo in C++ (SMCTC) [55] (particle filter functions), GNU Scientific Library (random values

generation and error processing).
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4 Experimental Results

4.1 Experimental setup

Two USB Logitec web cameras were used. All the video sequences with people were recorded

from these cameras. For this purpose to make synchronized recordings, software developed by

Nils Fjeldsø at HIG was used for two cameras. To avoid manual initialization of the targets, code

of the previous work at HIG [27] was used, which is based on the CAMSHIFT algorithm.

Several experimental camera set-ups were organized, where people number, their activities

(hand-shaking, simulation of falling down, walking and occluding each other) and also illumi-

nation (daylight, artificial room light) varied. Original videos were recorded with the frame size

of 640 × 480. For our tests it was decided to decrease the frame size to 320 × 240 to lower com-

putational costs needed for processing one frame. For all the sequences, we use 50 particles for

each target. Different color and index is attached to an ellipse for labeling the target.

4.2 Analysis

It is still an open question how we can evaluate performance of multi-target tracking [70]. Some

metrics exist for single-target tracking and for target detection systems [71]. Providing an exact

performance evaluation for multi-target tracking approaches is a challenging problem due to

varying number of targets and the frequent multi-target occlusions [70]. Plus, if we use multi-

cameras, the target identity correspondence across different cameras increases the difficulty of

the problem [1]. If the main goal of the tracking is the correctness of target location and its label,

then we may use the false position rate FRp and the false label rate FRl described by equations

4.1 and 4.2 for quantitative tracking performance [72] - the test can be run for each cameras

separately and then for all the cameras.

FRp =
the number of position failures

the total number of targets in one / all camera(-s)
, (4.1)

FRl =
the number of lables failures

the total number of targets in one / all camera(-s)
, (4.2)

where a position failure happens when the tracker loses its target in a camera, and label failure

takes place when the tracker gives the wrong label to a target. Table 4 represents the statistical

performance for video sequences for two and three targets on the scene. As it can be seen,

our system is able to maintain tracks and identities for two targets. Video sequences with three

targets were more challenging due to more complex interactions that occurred between targets.

One of the main reasons for target loss is color similarities between the target appearance

and background. Figure 21 demonstrates the problem, where the target is lost after interaction

occurs. An example of tracking for three targets is represented on figure 22.
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2 targets 3 targets

FRp 8.3% 48.5%
FRl 0.0% 16.5%

# of particles 50 50

Table 4: Quantative performance.

Figure 21: Video sequences obtained from two camera views. The blue tracker loses track of target in first

camera view due to interaction and close similarity between the target appearance and background (it

seems that color of the door is closer to the color distribution model of the blue tracker).
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Figure 22: Example of our system behaivor for three targets on the scene. The yellow track loses its target in

frames 278-357 and finds it back just because the target appears at the place where tracker failed. Another

problem is ellipse over-expanding (visible on frames 428-466 of the second camera view), the reason of

which is simplicity of modeling of observation likelihood function and target dynamics.
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5 Conclusions and Future Directions

A probabilistic framework was proposed and implemented for multi-camera multi-target tra-

cking. The advantage of this framework is that it does not require any camera calibration or view

correspondence between the different cameras. It adopts a fully probabilistic approach for target

detection, tracking and identification.

To solve multi-camera data fusion, simple technique ’stable marriage’ (probability-based) was

proposed. It does not check the correctness of coordinates of the tracked objects in the image

coordinate system like most of the systems do, but serves for maintaining correct identities of

the targets among the different camera views and gives more reliable results in fall detection

procedure.

The experiments demonstrate quite accurate tracking results for two targets on the scene

under the different visual challenges mentioned in section 1.2. Tests with video sequences with

three or more people were not as successful. The tracker loses its target when an occlusion

occurred. This is due to the similarity between target appearance and background (in terms of

colors in the sequences we have).

Based on the study of the different parts of the system, we can conclude that the proposed

system can be improved by modifying the method of local likelihood calculation. More advanced

color descriptors could also be of more use since they allow to take into account not only color

distribution, but also spatial distribution of the colors [51] for example. Also using multiple cues

will give more reliable results, i.e., edge histogram, shape descriptors [34], SIFT descriptor [73],

etc.

The non-rigid nature of the targets and their rigid representation (ellipse) also adds a need

for improvements. Figure 23 describes the problem, where it is shown that ellipses also capture

undesired background regions that we do not want to consider for target descriptors calculation.

One possible solution is to use different weights for the pixels inside an ellipse when calculating

a descriptor [29]. An intuitive weighting scheme would be to give larger weights to the central

pixels and smaller for the edge-located ones.

Another important point to consider is how to include prediction of a, b and ρ the ellipse

parameters for state dynamics model. Until now it was possible to predict only the center coordi-

nates (cx, cy) of the ellipse based on the LK optical flow calculation (section 3.2.4). At the same

time parameters a, b and ρ propagate according to random-based prediction which is not very

effective sometimes since it can lead to over-expanding or over-squeezing of the ellipse bounds

which is not desirable. It is not possible to apply the same method for a, b and ρ as for cx and

cy prediction, since optical flow calculation does not give shape description (or shape bounds),

but only a direction of motion. The possible solution lies in using a method that helps to get

shape parameters or shape outline - for example, three-frame-differencing can be used [74] to

get a contour which will help to get circumscribed ellipse and, therefore, its scale and rotation

parameters.
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Figure 23: Ellipse representation of a human body is just a rough approximation. Red highlighted regions

inside the ellipse bear background information and should not be considered when calculating target des-

criptor (i.e., color histogram). These regions become larger when walking person is observed from the side,

thus, probability to lose the target is increased, especially when the target is occluded.

As to target interaction function, it also can be improved. Relying only on the random walk

model for interacting targets does not work well for more than two targets. Furthermore, bet-

ter results can be achieved if interaction model will be part of Bayesian framework as in [1].

Magnetic-repulsion inertia model [24] was actually implemented and tested as a part of our

Bayesian framework, but did not provide as good performance as expected. One possible reason

of it may lie in the aim of our application. The primary focus of our project is not only tracking,

but also fall detection, and this fact must be taken into account when building state dynamics

model. We must keep in mind that evolution of person movements can also have vertical direc-

tion (as shown on figure 24). This means that process noise for a, b and ρ ellipse parameters

must be increased to provide larger variances for scale and orientation. In [24] the application

is general and it is not assumed that target can rapidly change orientation or scale, therefore,

only coordinates of the ellipse center cx and cy may change rapidly based on the direction of

target’s movement. Therefore, when applying magnetic-potential inertia model [24] for our sys-

tem, large variance of orientation and scale can influence the re-weighting procedure and, thus,

it does not perform so well. More tests with lower variances and different constant values could

improve the performance.

The definition of targets’ interaction is another issue that could be considered. For our project

simple distance threshold was used. If this threshold is too large (i.e., sum of major semi-axises),

interaction function starts working even when there is no actual interaction between targets

which may lead to slower performance and worse state estimation. Too small threshold (i.e.,

sum of minor semi-axises) cannot describe interaction when one target is much closer to camera

than the other, therefore, such interaction is better defined in terms of sum of major semi-axises
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Figure 24: Fall evolution requires an ellipse parameters to be able to change rapidly so that it could follow

the target while it changes vertical posture to horizontal.

of targets. In this case the tracker will most probably lose the target in the back since the pre-

diction will be made based on the motion information from frontal target. Thus, it would be

more efficient to replace the distance threshold by a test which allows to check whether ellipses

intersect or not. If intersection occurs, it means that targets are interacting.

Though, data fusion procedure was implemented, it was tested only for simulated data. The

procedure is quite simple and based only on similarities of color histograms. Again, like for local

observation likelihood, more advanced cues for comparison could be added here as well. One

question that might be also considered is whether it’s possible to update targets’ coordinates

based on the obtained motion vector direction - i.e., whether it was changed during occlusion or

not (same direction or opposite direction).

Regarding code optimization, the computational speed could be improved a lot by an opti-

mized function for calculating color histogram (or any other descriptor) for elliptic region. For

the project, OpenCV standard function was used that also includes prior ellipse mask extraction.

Both operations make likelihood calculation a very expensive step.

A fall detection step was not implemented for the project, but only described theoretically.

Code from previous work at HIG [65] which extracts features and performs classification based

on KNN-neighborhood could be used for this purpose (but with OCSVM classifier instead of

KNN).
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