

BACHELOROPPGAVE:

 Novel interactions for adventure game
Mythophobia

Forfattere: Lars Inge Reinsnos
 Sander Struijk
 Arild Hembre
 Heine Martin Brekken

Dato: 20. mai 2010

Novel interactions for Adventure Game - Mythophobia

Sammendrag av Bacheloroppgaven

Tittel: Novel interactions for adventure game
 Dato: 20.05.2010

Deltakere: Lars Inge Reinsnos
 Sander Struijk
 Arild Hembre
 Heine Martin Brekken
Veiledere: Simon McCallum

Oppdragsgiver: Høgskolen i Gjøvik

Kontaktperson: Øyvind Nordstrand, oyvind.nordstrand@k-h.no, 48178222

Stikkord: Spillmotor, 3D verden, XNA, interaksjoner

Antall sider: 129 Antall vedlegg: 8 Tilgjengelighet: Åpen
Kort beskrivelse av oppgaven:
Produksjon av et PC spill med muligens utvidelse til XBOX 360, i XNA med fokus på utvikling
av et innovativt spill interagerings system. Det inkluderer utviklingen av en spill motor basert på
Microsofts XNA rammeverk, med bruk av spill motorens funksjoner i spillet. Disse funksjonene
inkluderer tegning og oppdatering av 3D omgivelser, bruk av høyde kart (height maps),
kontrollering av en spillbar karakter, administrering av inventaret til karakteren og interagering
med 3D omgivelsene / verden.

i

mailto:oyvind.nordstrand@k-h.no

Novel interactions for Adventure Game - Mythophobia

Summary of Graduate Project

Title: Novel interactions for adventure game
 Date: 20.05.2010

Participants: Lars Inge Reinsnos
 Sander Struijk
 Arild Hembre
 Heine Martin Brekken
Supervisor: Simon McCallum

Employer: Gjøvik University College

Contact person: Øyvind Nordstrand, oyvind.nordstrand@k-h.no, 48178222

Keywords: Game engine, 3D world, XNA, Interaction,

Pages: 129 Appendixes: 8 Availability: Open
Short summary of the main project:
Production of a game for PC and possibly Xbox 360 developed in XNA with focus on
development of novel game interfaces. Includes development of a game engine based on the
Microsoft XNA framework, and the use of the game engine features in the game. These features
include drawing and updating a 3D environment, use of height maps, and control of a playable
character, managing an inventory and interaction with the game world.

ii

mailto:oyvind.nordstrand@k-h.no

Novel interactions for adventure game – Mythophobia

Lars Inge Reinsnos
Sander Struijk
Arild Hembre

Heine Martin Brekken

20.05.2010

Novel interactions for Adventure Game - Mythophobia

Preface
The project was presented at Gjøvik University College, December 2009. There were ten projects
to choose between and every group was to consist of two to four members. The only project which
resembled around a game was the Novel Interaction project, and then became the individual group
member’s natural choice as we all are students of the game programming bachelor degree at
Gjøvik University College.

Before the bachelor projects were presented, students were allowed to apply with their own ideas
for bachelor projects, and Novel Interactions was Lars Inge Reinsnos’ contribution, who acts as
our group leader.

The group work began early January 2010, with two weeks of planning, followed by programming
work. All the group members have worked excessively from start throughout the whole project
working up to 12 hours a day. We have been very dedicated and determined for this project to
participate and get far in the Hamar Game Challenge competition, hopefully winning resulting in
us starting our very own game development company.

Working on this project has been a valuable and great experience for us all, where we have
participated in the development process of a game from the beginning. Now we have a greater
understanding for a big game projects development process and what it means to plan ahead. We
have also gained valuable experience with XNA, C#, graphics programming and other general
programming.

We want to thank Simon McCallum for being a great supervisor to us and at the same time our
Chief executive officer. We would also like to thank Øyvind Nordstrand acting the role as
producer on the behalf of Kunnskapsparken Hedmark and Jayson Mackie for providing additional
feedback and coding support.

Sander Struijk Arild Hembre

Lars Inge Reinsnos Heine Martin Brekken

iv

Novel interactions for Adventure Game - Mythophobia

Table of Content
1 Introduction .. 1

1.1 Report organization .. 2
1.1 Project Description ... 3
1.2 Group structure and organization ... 3

1.2.1 Employer .. 3
1.2.2 Supervisor ... 4

1.3 Target group ... 4
1.3 Purpose ... 4
1.4 Our proficiency and background .. 4
1.5 Frames .. 5
1.6 Development environment ... 5

1.6.1 Documentation.. 5
1.6.2 Code development tools ... 6
1.6.3 3D Modeling ... 6
1.6.4 2D Art and sprite creation ... 6

2 Project requirements .. 7
2.1 Project guidelines ... 8

2.1.1 Demarcation ... 8
2.1.2 Appraisal ... 8

2.2 Project analysis ... 9

3 Design .. 11
3.1 Design Summary .. 12
3.2 Coding preparations ... 13

4 Implementation, code and production .. 15
4.1 Screen manager - Game State Management ... 16
4.2 The game world representation .. 18
4.3 Height map ... 22
4.4 Collision ... 23
4.5 The level editor... 24
4.6 Exportation from the level editor ... 25

4.6.1 Exported files .. 25
4.6.2 Exporting collision points ... 25
4.6.3 Exporting the height maps .. 26

4.7 Inventory screen ... 28
4.8 XNAnimation library ... 31
4.9 Adventure interaction ... 36
4.10 Scripting ... 38
4.11 Camera .. 40

4.11.1 Camera transition ... 40
4.11.2 Camera collision .. 42

4.12 Shaders ... 43
4.12.1 Shader implementations ... 43

v

Novel interactions for Adventure Game - Mythophobia

vi

4.12.2 Wrapping of textures .. 44

5 Testing and quality assurance ... 47
5.1 Planned test-group .. 48
5.2 Testing and debugging.. 49
5.3 Hamar Game Challenge - Preparations & Execution ... 51

6 Installation ... 53
6.1 Execution of the release version ... 54
6.2 Browsing the project solution ... 54

7 Development process .. 55
7.1 Our usage of the scrum development process .. 56
7.2 Work distribution .. 56

8 Discussion of results .. 57
8.1 Discussions / debates .. 58

8.1.1 Results... 58
8.2 Criticism of the thesis ... 59

9 Evaluation of group work .. 61
9.1 - Introduction .. 62
9.2 Routines and rules .. 62
9.3 Work distribution .. 62
9.4 Project as a work form .. 63
9.5 Subjective experience of the bachelor thesis .. 63

10 Conclusion ... 65

Resources .. 67

A Terminology .. 69

B Original Gantt chart ... 71

C Real Gantt chart ... 75

D Status reports .. 79
D.1 Status report 1 - 12.02.2010 ... 79
D.2 Status report 2 – 12.03.2010 .. 80
D.3 Status report 3 – 23.04.2010 .. 81
D.4 Status report 4 – 29.04.2010 .. 82

E Meeting reports ... 83

F Logs .. 89

G Design document ... 109

H DVD content .. 129

Chapter 1: Introduction

1 Introduction

This chapter describes what we want to create, how we will create it, what frames we will work
within, what we want to accomplish by working on this project and which tools we choose to work
with.

We also describe who we are creating this project for, what our reasons are for choosing this
project and specify our objectives. The Introduction defines the style and structure for the rest of
the report.

1

Novel interactions for Adventure Game - Mythophobia

1.1 Report organization

Chapter 1 - Introduction
This chapter describes the project report and its content.

Chapter 2 - Project requirements
This chapter describes the projects requirements, structure

Chapter 3 - Design
This chapter contains the design of the game and describes the pre project preparations

Chapter 5 - Testing and quality assurance
This chapter describes the quality assurance processes and methods we have used

Chapter 6 - Installation
This chapter describes what is needed to be able to run the game and the project solution

Chapter 7 - Development process
This chapter describes what kind of development process we planned for this project and
how we used it.

Chapter 8 - Discussion of results
 This chapter contains discussions regarding project results and choices

Chapter 9 - Evaluation of the group work
 This chapter contains the evaluation of the group work

Chapter 10 - Conclusion
 This chapter contains the projects end conclusion

Appendix / Attachments
 The reports attachments will be in this chapter.

2

Chapter 1: Introduction

1.1 Project Description
For this project we aimed to create a fully functional 3rd person action/adventure game, focused
on action-sequences and logical adventure-game puzzles. We wanted to make the players work
with objects and store the items in their inventory in a realistic way. The game will emphasize
challenges when it comes to strategy and thinking, but also challenging when it comes to action,
such as shooting and fighting.

With interaction in mind, the GUI would be designed to make the interaction between user and
objects at hand as practical as possible and easy to learn.

The graphics has been made in 3D, but the level of detail for the visual aspects of the game are not
of the highest quality, but still fairly decent.

During the development period we realized that much of our work time would be consumed on
making a functional game engine. We had to make the game engine based on the foundations of
the XNA framework, and doing so was a great deal of work. Interesting aspects would be how the
player moves in the world with the use of height maps, switching between camera modes and how
player is able to shoot in one camera mode and able to pick up and interact with objects in another.

The story of the game is still under development, the beginning is determined, but no story has
been included in the development seeing that we used our development time on the functional
game engine and interaction between the player and the game world.

1.2 Group structure and organization
Group Leader – Lars Inge Reinsnos (Substitute if incapacitated: Heine Martin Brekken)

Document manager – Arild Hembre (Substitute if incapacitated: Sander Struijk)

Webmaster – Heine Martin Brekken (Substitute if incapacitated: Lars Inge Reinsnos)

Aside from these specified responsibilities everyone in the group worked as designers and
developers on the project.

The project leader’s role has been to keep track of the main interests in the project, to guide, and
lead the team through any uncertainties. The Webmasters responsibility has been to keep the
website working and add improvements if needed. The document manager’s responsibilities have
been to keep track of, and update all documentation throughout the project. This includes
uploading meeting reports and other information to the website. However everyone has had a
shared responsibility to improve the documentation as needed.

If any of the team members became incapacitated by any means throughout the project, we had
appointed members who would temporarily substitute their respective roles.

1.2.1 Employer
Our employer was Øyvind Nordstand from Kunnskapsparken Hedmark. He was to give feedback
on the project through an idea presentation and an early alpha presentation. He would also gain
insight in the development through the projects’ website.

3

Novel interactions for Adventure Game - Mythophobia

1.2.2 Supervisor
Our supervisor was Simon McCallum, who also is one of our course lecturers. He was to assist the
group to solve issues and problems during the development phase, and give feedback on the
group’s work on a scheduled basis. He was also to help the project management and suggestions
and help when we would need it.

1.3 Target group
The target group for this end project report should have basic programming knowledge. We have
tried to write the report with this in mind and described terminology where needed.

1.3 Purpose
The purpose of this bachelor project has been to practice what we have learned the past three years
as game programming students, by starting to develop a fully playable 3D action adventure game.

The development of a game from start to retail can last up to three years and even more. The
bachelor project does not require us to finish the game, but rather to start the development and get
as far as we can in our time constraints, in the purpose of learning. Learning how larger projects
are directed in terms of responsibility, deadlines, meetings and communication, keeping up with
the schedule, planning ahead and the programming itself.

We think Mythophobia is a good game idea, and by starting to develop this game with the help of
our supervisors at Gjøvik University College, we could get a good start at continuing with the
development of the game after the bachelor thesis, for a future retail release and the creation of a
new game developing company.

1.4 Our proficiency and background
Everyone in our group is attending the same bachelor degree, Game programming, but two of us
had a little experience with programming before starting the degree.

A great deal of the programming experience we have is basic programming, and less experience
with making the different components of a full 3D game.

Three of us worked with XNA as a developing tool for a few months before this project,
where we made a 2D game for a mandatory assignment in one of our courses.
Our last member will therefore have to take up on the basics that the rest already know.
Apart from this we do not have much experience and knowledge about programming a project of
this size, which is much more advanced.

Some of what we must learn is 3D projection and camera space versus world space and local
space. Instead of 2D images drawn on screen we will be using 3D models and primitives, which is
new to us. We will have to find out how this is done in XNA, how we set it up and how we draw it

4

Chapter 1: Introduction

to the screen. We also have to learn shader programming if we want to add custom lightning,
shadows, particle effects and such. The language used for this is HLSL1.

Collision detection in 3D is not something we have done before and it is a lot more advanced than
simple 2D collision, so we need to learn how this works and find out how to do it efficiently.

1.5 Frames
To accomplish the most out of our goals on this project we started the development process by
setting up both a work schedule in form of a Gantt chart and a timetable. Before starting to do any
actual programming, we used a week to prepare ourselves for what programming is required.

We set up a work schedule where each member of the group would work on the bachelor
assignment 5-7 hours each weekday. In addition, we also sat up weekly meetings each Friday to
present and discuss individual progress with the rest of the group.

The project was managed by both the group leader and our supervisor, who were to sit in on every
second weekly meeting. We did not get to follow these scheduled supervised meetings, but had
regular meeting to present and discuss the progress with him as well.

With these preparations in place, we aimed to make the most out of our bachelor project, and get
as far and get the best results as we could in the time we had.

1.6 Development environment
We have been using the following software or programs in the development of the game, and
documentation.

1.6.1 Documentation
At first we were encouraged to write the report with the help of a program called LaTeX2, which is
a way of organizing the layout of the document following a given template. Using LaTeX gives an
easy and automated way to make sure everything in a large document follows the same set of
rules.

LaTeX is a programming based text editing software. This means that to be able to use LaTeX,
one would have to know the syntax of the programming language and learn it properly. Seeing that
learning a whole new programming language at the end of our bachelor would consume a great
deal of time, we chose to rather write this document in Microsoft Word.

1 http://en.wikipedia.org/wiki/High_Level_Shader_Language
2 http://www.latex-project.org

5

Novel interactions for Adventure Game - Mythophobia

6

[26] Using Microsoft Word will require more text editing work, and give very few automated
tasks, in relative to using LaTeX. But, this work amount will not be as comprehensive as learning
how to use LaTeX.

We have also used [28] Doxygen for auto generation of code documentation with class hierarchy

[15] We used Visual Paradigm in the creation of the class diagrams.

1.6.2 Code development tools
We have used [21] Microsoft Visual Studio with the addition of the [5] XNA Game Studio 3.1
development kit, in code development for this project. They can both be found in freeware
versions online at Microsoft’s homepage so they can easily be acquired for any developers who
wish to use XNA as a game development platform.

1.6.3 3D Modeling
We have used [23] 3D studio max in the development of 3D models for the game, and exporting
them to the games usable FBX format, baking in animations and textures into the models where
needed.

1.6.4 2D Art and sprite creation
We have used [24] Photoshop in the process of developing game art and sprites for use in the
game. Photoshop is a well known and excellent picture editing and creation tool.

Chapter 2: Project requirement

2 Project requirements

This chapter describes the guidelines we had, and what we requirements we sat for ourselves when
starting the project.

We also describe an analysis of the project where we describe the game we have developed during
the projects lifespan.

7

Novel interactions for Adventure Game - Mythophobia

2.1 Project guidelines

In this project we focused on the development of novel game interfaces. These interfaces include:

o Camera control (switching between views without losing world orientation)
 3rd person and 1st person
 Moving the camera between different views
 Controlling the camera by scripting

o Combat controls
 Ranged and melee weapons
 Aiming with both crosshair and without
 Different targeting views for different weapons

o Equipment
 Equipment carrying limitations
 Equipment placement on character
 Multiple results from combination of items

o Adventure interaction
 Interacting with items in world and inventory

o Health features
 Getting infected, affecting the character in various ways.
 Dealing with and removing infections.
 Getting exhausted from running, jumping and using heavy weapons
 Exhaustion limiting your actions

This project will implement a prototype for testing the above interaction techniques.

Mythophobia at retail state would be a fully functional 3rd person action/adventure game, focused
on action-sequences and logical adventure-game puzzles, where we want to make the player able
to store items in their inventory on a realistic level and being able to interact with the world
through a familiar adventure game interface.

We aim to make the game challenging in terms of strategically actions, such as saving ammunition
or figuring out a way to pass enemies, either by moving strategically or figuring out an adventure
puzzle to find a way around enemies.

Action sequences will even so be a large part of the game. Fighting your way through some parts
of the game will be required, though with limited resources in terms of ammunition and health.

2.1.1 Demarcation
The main objective for the bachelor project was to develop an innovating novel interaction game.
Meaning we would not focus on graphics and story in the first place, but make the interaction part
work at its best. Interaction is both how you move around in the world and how you interact with
objects in the world through the Graphical User Interface (GUI). We only had a limited amount of
time to finish this project and were four students working on it, so we did not aim to achieve a
complete retail game.

2.1.2 Appraisal
One of the things which are important for this project is to make a playable game. We will
accomplish this is by focusing on the technical issues, instead of the visual effects. The interaction
between the player and the game must be effective and intuitive, and yet innovative. To help us
with this issue, we wish to find a group of people, in the suitable demographic area, who can play

8

Chapter 2: Project requirement

the game and share their opinions with us. This information will provide us with the problems we
could not see ourselves and we can correct the flaws in the game to make it better and have the
game tested again.

2.2 Project analysis
The game developed in this project is based on interesting interaction in 3D and we have spent
most of our time emphasizing this. Our idea is to allow the player interact with objects on a
detailed level as well as using firearms and melee weapons to fend off enemies in the game world.

The player can pick up items, combine them and use them for the player’s benefit. When a player
discovers an object in the game world, the player can switch the camera mode to first person view
and the object will appear with a name over it. Then the player can open his interaction menu and
choose which action he wishes to perform on the object.

Storing items the player finds in the game is done in a realistic way, where every pocket and
logical storage location on the game character becomes an inventory slot. This means that the
player’s inventory is limited to the clothes on the played character or other extra containers he or
she may be carrying, such as a backpack or a purse.

When the player faces an enemy, he can switch the camera mode to aim view and he can shoot or
hit the enemy, depending on the type of weapon he uses. We want the theme of the game to be
dark and scary, so that fighting an enemy would be the last resort. Prioritizing sneaking past
enemies or figuring out other routes past them will be preferred.

9

Novel interactions for Adventure Game - Mythophobia

10

Chapter 3: Design

3 Design

This chapter contains a summary of the design and describes the preparations we have made in
advance before the group began working on the project.

11

Novel interactions for Adventure Game - Mythophobia

3.1 Design Summary
Mythofobia is a 3rd person true action/adventure game, focused on both action-sequences and
logical adventure-game puzzles. Set in a horror-theme with mythological creatures such as
zombies, warewolfes and vampires

The game is played mainly through a 3rd person perspective, using a 1st person adventure
perspective for world interaction, and handling inventory items as well as examination and
combination of these in a “pause” menu.

The player will be able to walk, run, sprint, hit with melee weapons and shoot with guns, as well
as execute a dodge move, where the character dodges danger.

When the player wants to perform an action, such as attack with a weapon, the camera will zoom
in and change to a over-the-shoulder 3rd person view, and give a centered view in front of the
player.

When the player wants to interact with the world, the camera will zoom even further and go into a
1st person view from the character’s point of view. In this view the center of the screen will
function as a cursor to choose objects to interact with. When the player then chooses to interact
with an item, an adventure menu appears, in which the player can choose to interact by Hand,
Foot, Eye or one of the Items currently in hands.

To not complicate each interaction, simple interactions such as opening doors or climbing a ladder
will be available through the 3rd person point of view. This action will choose the most common
action for that specific object, such as open for a door, push for a button, look at for a picture, pick
up for an item on the ground and jump over for a gap.

The inventory screen will feature a 3D model of the character in the top left corner, with the ability
to rotate and zoom on it. This model has a drag and drop ability (by the use of a cursor) of items
the character is currently carrying from any pocket or other itemslot to another. This will give a
limitation of carry capacity to the amount of pockets or containers the character posesses.

Some items will also not be able to store in any chosen item slot. For example a rope or a shotgun
may not be put in a pocket, but must be hanged around a shoulder or held in hand. As well as a
gun may not the put in a chest pocket or around the neck, but in a pocket of the right size, the belt
or in hand.

The game also includes features, such as character exhaustion, making the player exhausted when
running, sprinting and attacking, giving the player melee damage reduction and unsteady aim.
Also the character gets infected when getting bit or attacked by the enemies, and must use an
antidote before the infection is complete.

In addition to including these features the game is a horror game, and naturally, interesting aspects
will include shadows and different kind of light sources in the world.

A complete version of the design document can be found in “Appendix G: Design document”.

12

Chapter 3: Design

3.2 Coding preparations
Before starting development and coding of the game itself, we decided to use one week of our time
to create an overview of the coding needed to complete the game.

The diagram in Figure 3.1 was created using Visual Paradigm3. This allowed us to generate class
files directly from the GUI as well as import classes from files.

During this preparation week, the whole group contributed and discussed classes we needed. We
used blackboard and wrote down classes needed, as well as filled the classes and variables needed
into Visual Paradigm.

This gave us a slight advantage when starting to code, since we already knew and had generated
many of the classes we needed in the game. Although, there were classes and variables which we
realized that was needed and was implemented at a later time in the project time-span.

Fig 3.1 – The project’s class diagram.

We separated the group into sub-groups of 2 when producing code for the project. Each sub-group
was delegated separate programming tasks to do. As seen in “Appendix B: Original Gantt-chart”,
each sub-group got continuous tasks during the project’s lifespan.

We chose to do it this way, so that we could group the weakest and the strongest programmers to
work together and help each other and ensure that each tasks gets done appropriately.

3 http://www.visual-paradigm.com

13

Novel interactions for Adventure Game - Mythophobia

14

Although, during the projects span, e did deviate from the original plan and some tasks were
separated into individual tasks, due limited time near the end of the project. This can be seen in
“Appendix C: Real Gantt-chart”.

w
to

Chapter 4: Implementation, code and production

4 Implementation, code and production

This chapter contains and describes all the technical aspects of the project itself.

Here we describe many of the most important coding and implementation aspects of different
features that we have included in our game, game engine and the game engine’s level editor.

15

Novel interactions for Adventure Game - Mythophobia

4.1 Screen manager - Game State Management

When making a game, one of the first problems to tackle is how to manage the game state.
In most games you will likely spend some time switching between different screens,
like going from the main menu to the single player or multi player-screen.

More importantly going from the game-screen to the pause, option or main menu-screen.
Every screen uses system memory and you do not want to remove the game-screen from the
memory when switching to another screen.

To handle this we make a screen manager to keep track of and handle the different screens in use.
We make base class “Screen” and a “ScreenManager” game component, where the
“ScreenManager” keeps track of the active screens and in which order to draw the screens.
The Screen class defines several methods like Initialize, LoadContent, Update and Draw that the
different screens can use.

The Screen Manager has 2 lists with the different screens and the active screens as shown in figure
4.1.1.

private List<Screen> m_screens;
private List<Screen> m_currentScreens;

Fig 4.1.1 – Lists holding the screens.

When we want to open another screen, we make a new object of the screen we want and add it to
the ScreenManager class. Depending on if we want the original screen to still be active or not, we
can call RemoveScreen() to remove it from the ScreenManager. As shown in figure 4.1.2 we make
the GameScreen in the LoadingScreen and then add it to the ScreenManager, before we remove
the LoadingScreen.

The GameScreen will then become the active screen.

InGameScreen gameScreen = new InGameScreen(m_graphics, m_world,
m_playerOne.Clone(), m_inventory, m_weaponSystem);

screenManager.Add(gameScreen);
gameScreen.LoadContent();
gameScreen.Update(gameTime);
RemoveScreen();

Fig 4.1.2 – Adding a screen to the screen manager.

16

Chapter 4: Implementation, code and production

When drawing the screens the screen manager goes through the list of screens and checks if the
current screen is active. If it is the screen is drawn, otherwise it goes on to the next screen until it
has gone through them all. This is show in the code block in figure 4.1.3

...

foreach (Screen screen in m_currentScreens)
{
 if (screen.ScreenState == ScreenState.Inactive)
 {
 continue;
 }
 else
 {
 screen.Draw(gameTime);
 }
}

...

Fig 4.1.3 – Drawing the screens

Fig 4.1.4 – Screen hierarchy

The different screens have overridden update functions as well as update functions derived
from the abstract class Screen. The hierarchy of the screens are shown in figure 4.1.4.

The functions here are called from the ScreenManager which is added to the game components.
This separates them so that they don’t need to wait for each other if either of them is using more
time than expected.

17

Novel interactions for Adventure Game - Mythophobia

4.2 The game world representation
When it came to the representation of the game world, we first tried out having the whole world
being made in 3D Studio as a whole model. This gave us the ability to create the walls, floors and
roofs of the world correctly aligned to each other in a single step, but it had a few drawbacks as
well.

If we were to use 3D Studio to model the whole level, we would still have issues regarding
collision detection, both collisions against the player and enemies as well as the collisions against
the camera. This would have to be done in 3D, model against model, and would produce a lot of
collision checks.

Therefore we decided that we would build the level out of several models. Initially we had walls,
which were represented by a 1x1 cube model, positioned and scaled so that it would look like a
rectangle wall. Then we could place several of these scaled cubes around in the game world.

Regarding collision detection, we decided, after long discussions that it would be best and less
demanding in terms of processing to perform the collision detection in 2D space. Even though we
have a 3D world, we could take a top-down 2D collision detection approach.

This was done by cutting out the height position value of the player, while keeping the 2 other
axis’, and do the collision as if we saw the player in a top-down view in the world as illustrated in
figure 4.2.1 and 4.2.2.

Fig 4.2.1 and 4.2.2 – Top-down world perspective.

18

Chapter 4: Implementation, code and production

Doing the collision in 2D space resulted in another issue, which were that the player would not be
able to move up and down in the world. We did research this before we decided to use this
approach, and realized that we could use height maps. A height map is a 2 dimensional array of
height values for the world. When the player is standing at a specific location in the world, we read
out of a height map table the height value for the player and set his height to the specified height.
A graphical representation of a typical height map can be seen in figure 4.2.3.

With all this integrated, we had a system where we could do 2D collision detection in a top-down
approach, while still having the player being able to go up and down in the world. A continuous
check against the height map table sets the players height position to the appropriate height value
and collisions against other objects in the world could be done in 2D.

Fig 4.2.3 – Graphic representation of a height map.4

4 Image from; http://en.wikipedia.org/wiki/Heightmap

19

Novel interactions for Adventure Game - Mythophobia

The final issue we had when doing collision in 2D and using height maps was overlapping floors.
If we had levels with overlapping floors, there would be 2 height values for the same position.
There would also be an issue if there were walls above the player, which would result in a collision
below the wall, as illustrated in fig 4.2.4 and 4.2.5. This was the main concern we had when
choosing to do collision in 2D, but landed on a solution where we could still do everything this
way, and still be able to have overlapping floors.

Fig 4.2.4 and 4.2.5 – Top down and side view of false wall collision.

The way we solved this was to have each surface that the player can be standing on, which
represents the height map, store connections to other surfaces. The connection of surfaces is
illustrated in fig 4.2.6. Also, we had the player store which surface that he was currently standing
upon. This way we could limit the wall collision checks to only check against the walls that were
on the surface the player was standing upon, and only use the height map value of that surface.
And when the player moved onto a connected surface, the player’s current surface would be
updated to that surface.

Fig 4.2.6 – Illustration of height map nodes with overlapping height maps.

20

Chapter 4: Implementation, code and production

It was a lot of work to make this world representation work the way we wanted, but we reduced
the demand for processing power a great deal by doing the collision in 2D. The way the world is
represented and the way the player moves in it is still approximately the same that it would be with
3D collision, but with fewer collision checks.

21

Novel interactions for Adventure Game - Mythophobia

4.3 Height map
As mentioned earlier, we have chosen to use a height map to decide how high in the world the
player is to be standing in our game. This is used instead of 3D collision detection with the floor,
which would be much more demanding in terms of processing time.

The use of height map is simple. The height map has a position (X and Y values) in a 2D space,
seen from a top-down perspective, as well as a value for the third axis which represent the height
the player is to be standing on.

Fig 4.3.1 – Sample height map of size 30x30 units.

A floor surface is scaled down in a 1:10 scale, to reduce the size of the height map points and limit
the memory usage for height maps loaded for the level.

A sample surface of size 30x30 will therefore have a height map of size 3x3. This sample surface
is illustrated in figure 4.3.1.

The surface also holds a vector which describes the offset from world origin to where the surface
is located.

When a height map value is to be set for the player, the player’s position is translated to origin by
using this vector and scaled down by 10 (scale of the height map). Then we get a position in the
height map where the player is located and we can set the height of the player to the returned value
from the height map table.

22

Chapter 4: Implementation, code and production

4.4 Collision
Collision points are calculated from finding out which walls are connected to a surface. The
collision points are then stored in a 2D space, like the height map, but can be used in 3D since we
will only have to check the points which are connected to the surface the player is standing upon.

This is done by creating a circle and a rectangle around the players (X, Y) position in 2D space as
illustrated in figure 4.4.1.

Fig. 4.4.1 – Player collision against 2D collision points.

When checking for collision, we check if any of the collision points is within the rectangle.
Thereafter, for the points inside the rectangle, we check if the length vector from the player to the
collision point is less than the radius of the circle. We check if the collision points are within the
rectangle first to reduce the amount of collision points to be measured in length thereafter.

Fig. 4.4.2 – Pushback of player’s position when a collision occurs.

If it is less, this means we have a collision. Then a pushback is done in the opposite direction of
the collision vector. The amount of pushback is equal to the remaining length, which is the length
from the collision point to circle radius. This is illustrated in figure 4.4.2, where the blue arrows
represents no collision, the red arrow represent a collision and the purple arrow represents the
pushback force applied.

23

Novel interactions for Adventure Game - Mythophobia

4.5 The level editor
To both improve the time spent including content to the game, and to learn how to create a
program known as a level editor, we decided it would be profitable to make one for our game.

A level editor is a simple program, shown in figure 4.5.1, where you can edit all the content of the
game which is going to be shown in the actual game, without having to place objects by manually
change values for positions, scale, etc.

In our level editor we are able to place walls and floors in a 3D space to create a level, which can
thereafter be exported to formats that the actual game engine is able to read and create a world
from.

The current version of the level editor is able to place walls and floors. We are yet to implement
placing of other world objects and lights. A finalized version of the level editor would also include
these.

Fig. 4.5.1 – Example screenshot from the level editor.

24

Chapter 4: Implementation, code and production

4.6 Exportation from the level editor
Exporting a level from the level editor creates text files with values readable by the game project
itself. We did not prioritize optimization of the exporting, but rather getting the right values
exported, which makes the export currently very slow. For example, exporting the sample level in
the project took about 30 minutes to export. This is due to calculating the height map, which is a
very comprehensive task.

We also have at the moment a number of limitations to the exportation process, such as walls
having to be connected to a surface for collision points for the wall to be generated. Also surfaces
connecting each other cannot be overlapping each other. Overlapping surfaces will not get stored
as connected, but must rather be placed on the direct edge of each other to become connected.

4.6.1 Exported files
The exported files are plain text files with values separated by the “;” and “|” characters.

For example, walls are defined by the following;
posX;posY;posZ | width;height;depth | textureName | boundingBoxMin(X;Y;Z) |boundingBoxMax(X;Y;Z)

So, a wall, with position in origin, with the length of 500, height of 200 and thickness of 10 would
be defined as such;

0;0;0 | 500;200;10 | Walltexture | 0;0;0 | 500;200;10

4.6.2 Exporting collision points
Collision points will be added with a specific interval from the starting point of a wall to the end of
the wall. This is done to reduce the number of collision checks to be done at a given time. Seeing
that the collision check is done with a circle around the player, we only need enough points, so that
the circle will be unable to pass through 2 following points. This is illustrated in figure 4.6.1.

Fig. 4.6.1 – Collision points just close enough to prevent the player from passing through.

We have used an interval of 10 units, but this could probably be reduced even further, depending
on the size of the player. Seeing that we used a placeholder model for the player, we chose not to
perfect the values for the placeholder model, but rather keep the interval of 10 until we had a
concrete model to work with.

25

Novel interactions for Adventure Game - Mythophobia

When exporting the collision points, we first find the walls that are in connection with the surface
in a 3D view. Thereafter we take these walls and generate the collision points in the form of 2D
position coordinates along the wall.

These collision points are stored in connection with the surface it is in connection with, and will
nly be checked when the player is standing on that specific surface. o

4.6.3 Exporting the height maps
The height maps in the game are represented by 2 connected triangle planes, making up a rectangle
plane.

We have limited the plane to have 90 degree edges, because of calculation issues we ran into when
trying to do the exportation with uneven edges. This does not otherwise affect the use of the height
maps. An example of a surface being edited is shown in figure 4.6.2 and 4.6.3.

Fig 4.6.2 and 4.6.3 – A surface being edited in the level editor.

From this plane, we first calculate all the points which are inside the 2 triangles. This is the task in
the exportation process that takes the longest, but we did not prioritize an optimization of the
process, since it was giving the result we wanted even though it took a while to calculate.

When calculating the points inside the 2 triangles, we take a starting point in the edge of the
triangle and create a unit vector to increase in each direction, and actually calculate the square that
is made by expanding the triangle.

Thereafter we check if each point we receive is actually inside the triangle, which discards the
points created from the whole square. We found this to be the most effective way to calculate the
points inside the triangle.

Figure 4.6.4 shows the code process for calculating the points inside one of the triangles.

This is done with both triangles.

26

Chapter 4: Implementation, code and production

//Get triangle size
Vector3 t1widthVector = pos3point - pos4point;
Vector3 t1heightVector = pos2point - pos4point;

//Triangle size
float t1width = t1widthVector.Length();
float t1height = t1heightVector.Length();

//Unit vector
t1widthVector.Normalize();
t1heightVector.Normalize();

//Calculate and store the points inside the triangle
for (int j = 0; j <= t1height; j++)
{
 for (int k = 0; k <= t1width; k++)
 {
 Vector3 newVector = (t1heightVector * j) + (t1widthVector * k);
 newVector = new Vector3((int)(newVector.X),
 (int)(newVector.Y),
 (int)(newVector.Z));

 newVector = pos4point + newVector;

 Vector3 cpInside = Vector3.Cross((pos2point - pos3point),
 (pos4point - pos3point));
 Vector3 cpCheck = Vector3.Cross((pos2point - pos3point),
 (newVector - pos3point));

 if (Vector3.Dot(cpCheck, cpInside) >= 0)
 {
 trianglePointsList.Add(newVector);
 }
 else
 {
 break;
 }
 }
}

Fig 4.6.4 - Code for calculating the points inside a triangle in 3D space.5

After finding all the points, we generate a height map out of them. But, we did not want to use all
of the points, since these results in a very large height map.

The way we chose to do it was to store every 10th value in the height map. Though, we realized
later that the usual way to do this is to scale the height map, so that it fits into the computer
processor’s registry for fast access.

5 Helping resource in figuring out the calculation method: http://www.blackpawn.com/texts/pointinpoly/default.html

27

Novel interactions for Adventure Game - Mythophobia

4.7 Inventory screen
The inventory screen is where the player is managing all of the items he is carrying with him
around in the game, from new items being picked up to already stored items.

The inventory system is built to be near realistic as to how the items are stored.
The player will have different set amount of slots as to what clothing or extra bags he is wearing at
the time. For instance a shirt can have none, two or more pockets; each classified as a slot where
items can be stored.

Slots have different size or storage capabilities, so large items like a gun cannot be carried in a
chest-pocket but something smaller like pain-pills can. A gun would have to be stored in a holster
around the leg or in the belt around the waist or simply be carried in the hand.

This way you would be looking at a near realistic way of storing items on a human body, in terms
of how much storage room worn clothing could have.

In the inventory screen the player model wearing his clothing and bags are displayed with his
viewable items on him. For instance if he is carrying a gun in his hand you would see him with the
gun in his hand, if he has a shotgun strapped around his shoulder with the help or a rope it would
be displayed like that. (This is a description of how it is meant to be, but is currently not
implemented, few items are displayed on the player model as of now)

Managing the inventory is also done in a very realistic way, if a slot is selected the items in the slot
is displayed in a circle around the player model, were the item in front of the player is the selected
one, scrolling with the mouse wheel will cause you to scroll through the items and select a
different item.
The selected item can then be dragged to a different slot, but only those slots which have storage
room left or are big enough to carry the item.

The slots will be marked differently by a lighting effect depending on if it is the currently selected
slot, if it is empty or full, if it has room for the item you are trying to replace or if the slot is valid
for that item at all. (This is currently not implemented, but will be in retail release)

Selected items have multiple ways of interacting with them, for instance be examined in the
inventory screen, were a description and item statistics will be shown in an info window, or
combined with other items if possible. The game lets the player combine different items in the
game as he likes, for instance if the player has a gun, a flashlight and some tape, he could tape the
flashlight to the gun for more clever usage of both items.

The inventory screen also have four hotkey slots, were items put in these slot can be accessed fast
in game by clicking the assigned hotkeys, instead of entering the inventory screen and manually
put the item in the players hands for usage. This way pain-pills carried in a chest-pocket could
dampen immediate pain by the push of a button. (This is currently not implemented, but will be in
retail release)

Some of the inventory screen features are not working or yet implemented, but the game is still in
the stage of development and the inventory system is a big part of the game. We currently have
placeholders for models, so we lack various items like clothing, bags, guns, melee weapons and
player models, and without some of these features cannot exist.

28

Chapter 4: Implementation, code and production

Development of the inventory screen
The inventory screen is viewed in Orthographic projection representing a three-dimensional object
in two dimensions. Meaning all 3D objects and 2D objects are drawn in 2D space / screen
coordinates, instead of 3D world coordinates. Objects size will this way not be affected by the Z-
axis, only scale.

Sprites (which are 2D) are drawn first on screen to divide the inventory screen into different parts
as content containers. One model background, item stats and info background, hotkey background
and item combination background. The sprites were easy to place at screen coordinates, but the 3D
models are a different story.

On top of these backgrounds, models, different slots and text are placed inside. The 3D models are
placed in 3D space but drawn in 2D space, so to place the models accordingly were more difficult
than with the sprites. The models had to be translated, rotated and scaled correct to each other to
appear the right way.

For instance to make a gun appear in the player model hand, the scaling, rotation and
transformation that is shown in figure 4.7.1, has to be done.

Matrix.CreateScale(itemScale) *
animationController.GetBoneAbsoluteTransform(boneName) *
Matrix.CreateScale(playerScale) *
Matrix.CreateFromQuaternion(playerRotation) *
Matrix.CreateTranslation(playerPosition);

Fig 4.7.1 – Scale, rotation and translation code.

Setting the world matrix to thease matrixes multiplied together will make the gun appear at the
player models “boneName” cordinates.

Making boundingSpheres which is used for collision detection appear at the right places on the
player model were the slots are supposed to be requires even more advanced world matrixes, with
more translation, rotation and scaling. So this was the most difficult part to work out.

29

http://en.wikipedia.org/wiki/Three-dimensional_space
http://en.wikipedia.org/wiki/2D

Novel interactions for Adventure Game - Mythophobia

Fig 4.7.2 – The inventory screen.

Figure 4.7.2 shows a screenshot of the inventory screen, showing the placeholder player model to
the left with a gun in his hand. The spheres on his body is boundingShperes placed at possible slot
positions.

30

Chapter 4: Implementation, code and production

4.8 XNAnimation library
“XNAnimation is a skeletal animation library for XNA. This library allows developers to easily
manipulate, playback, interpolate and blend animations.” 6

Controlling animations can be a difficult and complicated process with allot of things to keep in
mind to make it work perfectly, controlling animations speed, cross fading from one animation to
another ect. So we decided pretty early on in the project to be using the XNAnimation library to
handle the animation part. The library seemed very solid, complete and easy to use, especially
when it came to playing and controlling animations, but unfortunately we struggled a bit with the
baked in shader to perform satisfying.

” XNAnimation main features:

• General
o Easy to use.

 Provides classes to handle skinned models, skeletons, animations clips,
keyframes and poses.

 Provides controllers to handle animation playback.
o High performance.

 Animation interpolation and blending made on the CPU.
 Model skinning made on the GPU.

o Low memory footprint.
 Stores keyframe translation, orientation, and scale decomposed.
 Shares skeletons, animations and meshes resources.

o Supports Windows and Xbox platforms.
• Animation playback

o Plays animations forward and backward.
o Controls animation speed and looping.
o Supports models with up to 80 bones
o Supports linear, cubic and spherical keyframe interpolation.

 Stores keyframe translation, orientation, and scale decomposed
 Interpolates translation, orientation and scale separately for best

interpolation.
• Animation blending

o Supports cross fade between animation clips.
 Allows smooth transitions between animations.

• Material system
o Supports multiple point light sources (up to eight) with light attenuation.
o Supports materials with emissive, diffuse and specular properties.
o Supports Diffuse, Normal and Specular textures.
o Reports vertex and pixel shader profiles used

• XNAnimation Model Processor
o Splits any animation into a new set of animations (based on time or keyframe)
o Transforms the entire scene using rotation or scale” 6

6 http://xnanimation.codeplex.com/

31

Novel interactions for Adventure Game - Mythophobia

In order to use the XNAnimation library it has to be included into the project, this is done by
including a simple *.dll file to the projects properties. To use any of the XNAnimation library
classes in any of the projects own classes the includation lines in figure 4.8.1 has to be included.

using XNAnimation;
using XNAnimation.Controllers;
using XNAnimation.Effects;

Fig 4.8.1 – XNAnimation library includes

Then an animationController has to be initialized to be able to controll and play the animations as
you like, as shown in figure 4.8.2.

private void InitializeXNAnimationSetup()
{
 //Initializes a list of matrixes to hold the boneTransforms
 m_absoluteBoneTransforms = new Matrix[skinnedModel.Model.Bones.Count];

 //Copy the absolute transformation of each node into the
 m_absolutBoneTransform list. A list of how every bone is positioned
 acording to eachother by matrixes.
 skinnedModel.Model.CopyBoneTransformsTo(m_absoluteBoneTransforms);
 //Creates an animation controller. A class which controlles how
 animations are playd
 m_animationController = new
 AnimationController(skinnedModel.SkeletonBones);
 ...

Fig 4.8.2 – XNAnimation initialization code

An interpolation is a method for constructing new data points within a set range of known data
points.

Fig 4.8.3 – Linear interpolation graph

In figure 4.8.3 a linear graph of interpolation between two points (x0,y0) and (x1,y1) is illustrated,
and figure 4.8.4 shows the code required to enable this interpolation.

 ...

 //How translations are interpolated between animation clips.
 m_animationController.TranslationInterpolation =
 InterpolationMode.Linear;

 ...

Fig 4.8.4 – XNAnimation initialization code

32

Chapter 4: Implementation, code and production

Fig 4.8.5 – Spherical interpolation graph

Figure 4.8.5 illustrates a spherical graph of interpolation between two points (x0,y0) and (x1,y1)
and figure 4.8.6 shows the code required to enable this interpolation.

 ...

 //How orientations are interpolated between animation clips
 m_animationController.OrientationInterpolation =
 InterpolationMode.Spherical;

 //How scale are interpolated between animation clips
 m_animationController.ScaleInterpolation =
 InterpolationMode.Linear;

 //Start the first animation stored in the AnimationClips dictionary
 animationController.StartClip(clipNumber); //Idle animation
}

Fig 4.8.6 – XNAnimation initialization code

Now as the animationController is initialized we have to make sure it updates the animations so
we get a good result. This is done by just putting the line of code shown in figure 4.8.7 into the
XNA update loop.

...

m_animationController.Update(gameTime.ElapsedGameTime, Matrix.Identity);

...

Fig 4.8.7 – XNAnimation animationControllers update function

In a game you often want the animated models to use several animations not just one, for different
moves and actions. So some kind of function which controlles what animation you want to play
when what action is executed is very needed. For instance if you are just standing still you want
the idle animation to play but as soon as you start running you want to play the running animation.
And by using the crossFade technice in this library you can interpolate between two animations
very easily so it looks clean and natural.

Figure 2.8.8 shows the code for the cross fading technique.

public void UpdateAnimationState(PlayerAnimationState animationState, int
speed, bool loop)
{
 m_animationController.LoopEnabled = loop;
 if (animationState == PlayerAnimationState.Idle)
 { //Controlls how to go from one animation to another, interpolating from
 the last bone stance to the first in the new one.
 m_animationController.CrossFade(skinnedModel.AnimationClips.Values[
 (int)PlayerAnimationState.Idle], TimeSpan.FromMilliseconds(speed));
 }
 else if (animationState == PlayerAnimationState.WalkingForward)
 { ...

Fig 4.8.8 – XNAnimation update animation state function

33

Novel interactions for Adventure Game - Mythophobia

Figure 4.8.9 shows some code to explain how the library is used to draw animated 3D models.

//The function takes a model of type SkinnedModel and draws it
public void DrawAnimated3DModel(SkinnedModel model, Camera camera)
{
 //A for loop that loops through all the meshes the model has
 foreach (ModelMesh modelMesh in model.Model.Meshes)
 {
 //A for loop that sets effects on every modelMesh
 foreach (SkinnedModelBasicEffect effect in modelMesh.Effects)
 {
 ...

Fig 4.8.9 – XNAnimation draw model code

The SkinnedModelBasicEffect class contains the shader which came with the XNAnimation
library and is used to directly communicate with the shader to set important graphic parameters to
obtain the correct and best result.

First the cameras projection and view matrixes are sent to the shader, then different parameters are
set like the models material, for instance metal often has a high specular reflection so naturally if
we are to draw metal we would like the material to be specular by giving it specular values. But a
specular material would be without meaning if the shader didn’t know about lighting, so it has to
be given information about what sort of light it is, where it is, does it hit the mesh that is about to
be drawn and things like that.

This code is shown in figure 4.8.10.

...

 //Sets the shaders projection and view matrix with the correct
 matrixes from the camera
 effect.Projection = camera.m_projectionMatrix;
 effect.View = camera.m_viewMatrix;

 //Sets the animated bones to the model
 effect.Bones = animationController.SkinnedBoneTransforms;

 //OPTIONAL - Configure material
 effect.Material.DiffuseColor = new Vector3(1.0f);
 effect.Material.SpecularColor = new Vector3(0.1f);
 effect.Material.SpecularPower = 0.1f;

 //OPTIONAL - Configure lights
 effect.AmbientLightColor = new Vector3(0.4f);
 effect.LightEnabled = true;
 effect.SpecularMapEnabled = true;

 effect.EnabledLights = EnabledLights.Two;

 effect.PointLights[0].Color = new Vector3(0.6f);
 effect.PointLights[0].Position = new Vector3(100, 0, 0);
 effect.PointLights[1].Color = new Vector3(0.6f);
 effect.PointLights[1].Position = new Vector3(0, 0, 100);

...

Fig 4.8.10 – XNAnimation draw model code

34

Chapter 4: Implementation, code and production

And at the end the modelMesh is scaled, rotated and transformed to its correct position by setting
the shaders world matrix, before drawing the mesh at the end of the code block as shown in figure
4.8.11.

 ...
 // Setup world transform
 effect.World = m_absoluteBoneTransforms[modelMesh.ParentBone.Index] *
 Matrix.CreateScale(scale) *
 Matrix.CreateFromQuaternion(rotation) *
 Matrix.CreateTranslation(m_position);
 }
 //Draws a model mesh with the set effects on it and the correct world
 transform matrix
 modelMesh.Draw();
 }
}

Fig 4.8.11 – XNAnimation draw model code

35

Novel interactions for Adventure Game - Mythophobia

4.9 Adventure interaction
We wanted to include an adventure popup menu so the player could easily interact with objects in
the game world. The interface we made is shown in figure 4.9.1.

Fig 4.9-1 – The adventure menu.

This is a well known interface for interacting with world objects, and is also used in other popular
games.7

The interaction menu includes the following;

• A hand - For picking up or using the object.
• A head / eye - For examining / looking at the object.
• A foot - For kicking or otherwise use your legs to interact with the object.
• Slots for the items the player is currently holding in his/her hands - For combining the

item with the object.

This interaction menu was made in a separate class with a separate update loop. We chose to let
the game world updating and drawing continue, so that interacting with an item in the game world
would be done while the game still is progressing. The player must therefore be aware of elements
and enemies surrounding him while interacting with objects.

7 Other games using this interface; Condemned 2 (Monolith Productions, 2008),

 Turok (Propaganda Games, 2008).

36

Chapter 4: Implementation, code and production

The menu background itself is drawn in 2D space on the screen, and the 3D objects in the menu
are drawn onto the screen in 2D space. To do this, we had to project a 2D position on the screen
into 3D space, to be able to position the object correctly. The projection process is shown in
figure 4.9.2.

public new Vector2 position
 {
 get { return m_position2d; }
 set
 {
 m_position2d = value;

 Vector3 nearsource = new Vector3(m_position2d.X, m_position2d.Y, 0f);
 Vector3 farsource = new Vector3(m_position2d.X, m_position2d.Y, 1f);

 Vector3 nearPoint = m_graphics.Viewport.Unproject(nearsource,
 m_projectionMatrix, m_viewMatrix, m_world);
 Vector3 farPoint = m_graphics.Viewport.Unproject(farsource,
 m_projectionMatrix, m_viewMatrix, m_world);

 Vector3 direction = farPoint - nearPoint;
 direction.Normalize();

 m_position = direction;
 }
}

Figure 4.9.2 – Projection of a 2D screen space into 3D space.

The projection calculates a 3D position 1 unit in front of the camera. We tried figuring out a way
to calculate a position further from the camera, but had some issues doing this, so we chose to
rather use the function that worked.

The drawback for using this was that a 3D object 1 unit in front of the screen had to be scaled
down into a very small size, since it is placed so close to the camera. We solved this by adding a
interface scale value for each object in the loading.

37

Novel interactions for Adventure Game - Mythophobia

4.10 Scripting
We wanted to add scripted events for the game, both for events happening when a player passes a
specific point in the game and for events starting when the player interacts with objects in the
world.

This could be used for example for flickering lights, or lights that goes out when the player goes
down a hallway, or for enemies appearing when the player turns opens a door or turns on the lights
in a room.

We looked into a deal of possibilities for how to do scripted events during the development. There
were some scripting engines we could have used, but looking through forums and discussions, we
realized that a lot of these were outdated or incompatible with Xbox.

None on the group had any experience with creating a scripting engine, and thus developing a
scripting engine from scratch at the point where we were to implement scripting in the game
would be too time consuming, and we would most probably not get it working in time.

Therefore, we chose to use an approach where we could use the C# language and the game engine
itself to make scripted events. The drawback from doing this was that we would have to recompile
the whole project each time we wanted to change a script.

The way we did this was to create an “Event” class shown in fig 4.10.1, to store the data of the
different events that runs as well as an “Events” singleton class which holds and updates the events
that is currently running.

The “Event” class holds a function pointer to a function to run when the event get initialized and a
function to run for updating the event.

public class Event
{
 public bool running;

 Func<GameTime, InteractiveObject3D, int> m_updateFunction;
 Func<int> m_initiateFunction;

 public InteractiveObject3D m_object;

 ...

Fig 4.10.1 – Event class stores functions to run when the event is initialized.

Adding a scripted event and linking it to a trigger event is done when starting the game. As an
example, shown in fig 4.10.2, an event is made for a machinegun object for the “Hand” adventure
interaction. It is then stored in the object, and is run by the “Events” class as shown in fig 4.10.3
when the interaction is made.

38

Chapter 4: Implementation, code and production

if (m_world.worldObjects[i].objectID == 1)
{
 Event machinegunHandEvt = new Event(MachineGun_Hand_Initiate,
 MachineGun_Hand_Update, m_world.worldObjects[i]);
 m_world.worldObjects[i].handEvent = machinegunHandEvt;
}

Fig 4.10.2 – Linking an event to an object interaction.

if (m_selection == Selected.top) //Hand interaction
{
 if (Events.Instance.StartEvent(m_interactiveObject.handEvent)
 == true)
 m_fadingOut = true;
}

Fig 4.10.3 – Starting an event when choosing hand interaction.

When an event is started, the event is added to a list of running events in the “Events” class, as
shown in figure 4.10.4, and thereafter it updates each of the running events, as shown in figure
4.10.5. When the update-function in the event returns true, it is finished and is removed from the
list of running events.

public bool StartEvent(Event evt)
{
 if (evt != null)
 {
 evt.Initiate();
 m_runningEvents.Add(evt);
 return true;
 }
 else
 {
 return false;
 }
}

Fig 4.10.4 – Start event function.

public void Update(GameTime gameTime)
{
 for(int i=m_runningEvents.Count-1; i >= 0; i--)
 {
 if(m_runningEvents[i].Update(gameTime,
 m_runningEvents[i].m_object) == 1)
 m_runningEvents.RemoveAt(i);
 }
}

Fig 4.10.5 – Update events function.

39

Novel interactions for Adventure Game - Mythophobia

4.11 Camera

4.11.1 Camera transition
When we got to the point of switching between the camera modes, first person, over-the-shoulder
and 3rd person, we needed a function for this operation. We first came up with a function, the
LinearTransition. This function allows the player to switch between the camera modes, but during
the transition from one mode to another it is a bit “jumpy”.

The code for a linear transition is shown in figure 4.11.1.

private void LinearTransition(float delta)
{
 float moveRatio = m_cameraTransitionSpeed;

 //CALCULATE MOVE VECTOR
 Vector3 moveVector = Vector3.Zero;
 Vector3 moveLookAtVector = Vector3.Zero;

 moveVector = m_targetPosition;
 moveLookAtVector = m_targetLookAt;
 moveVector = (moveVector - m_currentPosition) * moveRatio;
 moveLookAtVector = (moveLookAtVector - m_currentLookAt) *
 moveRatio;

 //CALCULATE CAMERA POSITION
 m_currentPosition += moveVector;

 //CALCULATE LOOK AT POSITION
 m_currentLookAt += moveLookAtVector;

 if (moveVector.Length() < 0.1f)
 {
 m_inTransition = false;
 return;
 }
}

Fig 4.11.1 – Linear camera transition

Therefore we searched for other options on how to make the transition smoother.
We found the function called SmoothStep and this provided us with the functionality we wanted.

“The second method is SmoothStep, you invoke it the same way as Lerp, by passing a low, high
and percent (0.0-1.0) value. The difference is in the value it returns. As it's name implies, the value
steps down smoothly from the first value to the second using a cubic function. It's example is the
blue line in the graphic.

 SmoothStep(LowValue,HighValue,Percentage); ”8

8 http://johnnygizmo.blogspot.com/2008/10/xna-sidebar-smoothstep-and-lerp.html

40

Chapter 4: Implementation, code and production

We called the function BezierTransition and is shown in figure 4.11.2.

private void BezierTransition(float delta)
{
 DEBUG.Instance.PrintMsg("BEZIER", "348");
 m_bezierTime += (m_cameraTransitionSpeed * delta);

 if (m_bezierTime > 1.0f)
 {
 m_inTransition = false;
 return;
 }

 //CALCULATE THE NEW POSITION OF THE CAMERA
 m_currentPosition.X = MathHelper.SmoothStep(m_originPosition.X,
 m_targetPosition.X, m_bezierTime);
 m_currentPosition.Y = MathHelper.SmoothStep(m_originPosition.Y,
 m_targetPosition.Y, m_bezierTime);
 m_currentPosition.Z = MathHelper.SmoothStep(m_originPosition.Z,
 m_targetPosition.Z, m_bezierTime);

 //CALCULATE THE NEW LOOK-AT FOR THE CAMERA
 m_currentLookAt.X = MathHelper.SmoothStep(m_originLookAt.X,
 m_targetLookAt.X, m_bezierTime);
 m_currentLookAt.Y = MathHelper.SmoothStep(m_originLookAt.Y,
 m_targetLookAt.Y, m_bezierTime);
 m_currentLookAt.Z = MathHelper.SmoothStep(m_originLookAt.Z,
 m_targetLookAt.Z, m_bezierTime);
}

Fig 4.11.2 – Bezier camera transition

The Bezier transition uses a XNA function called SmoothStep, which provides a much smoother
transition between the different camera modes, and this is the function we chose to use in the final
project. Still we have the opportunity to switch between LinarTransition and SmoothStep for
demonstrating the difference in between the different ways of transition.

Figure 4.11.3 shows an illustration of the increment when using SmoothStep (in blue) and
LinearTransision (in red).

Fig 4.11.3 – A graph which describes smoothstep (blue) and linear (red) transition

41

Novel interactions for Adventure Game - Mythophobia

4.11.2 Camera collision
A camera without collision detection going through walls would not look good and could be
exploited by player’s in-game, we do not want that so making the camera collide with walls and
other objects make sense.

By shooting a ray from the player models head and towards the cameras original position you can
detect if the ray intersects with any objects. If the ray intersects with anything you retrieve the
ray’s length and multiplied it with the ray’s direction to get the new point where the ray is
colliding. Then you set the cameras new position to be that new point on the wall, and there you
have your new camera position.

This is a little simplified description, there is done some smoothing in and out from the original
position to the new position to not make the camera seem “jumpy”, but smooth in and out between
these positions.

Figure 4.11.4 shows a graphic description of the concept.

Fig 4.11.4 – Camera collision.

Currently the camera ray is checking versus every wall in a level, but that will be limited to nearby
the player in retail to minimize checks for optimization. But what it is not doing is checking versus
other in-game objects or the floor, but will of course be implemented when finalized.

42

Chapter 4: Implementation, code and production

4.12 Shaders

4.12.1 Shader implementations
"A shader is a set of software instructions, which is used primarily to calculate rendering effects
on graphics hardware with a high degree of flexibility. Shaders are used to program the graphics
processing unit (GPU) programmable rendering pipeline, which has mostly superseded the fixed-
function pipeline that allowed only common geometry transformation and pixel shading functions;
with shaders, customized effects can be used.” 9

The shader language used with XNA C# is High Level Shader Language (HLSL), developed by
Microsoft for use with their Direct3D API. HLSL programs comes in three forms vertex, geometry
and pixel shaders, for this project we have used vertex and pixel shaders.

“A vertex shader is executed for each vertex that is submitted by the application, and is primarily
responsible for transforming the vertex from object space to view space, generating texture
coordinates, and calculating lighting coefficients such as the vertex's tangent, binormal and
normal vectors. When a group of vertices (normally 3, to form a triangle) come through the vertex
shader, their output position is interpolated to form pixels within its area; this process is known as
rasterization. Each of these pixels comes through the pixel shader, whereby the resultant screen
color is calculated.” 10

For playing and controlling model animations in this project we have used an external
XNAnimation library, with a customized shader. Unfortunately that shader does not perform to our
standards.
So we either have to customize it to better suite our needs or replace it with a new one.

At first we tried to implement new features into that shader like light attenuation which determines
a pointlights loss in intensity as the distance from the light increases, outside the light’s range the
models will be lit by the ambient light. This was more difficult than anticipated to implement, and
we got bad results. Therefore we reverted to the un-customized XNAnimation shader before
presenting the game at Hamar Game Challenge.

We also struggled a bit with using the shader from the XNAnimation library for the rest of the
models.

In retail, the game will have new and improved shaders, giving the game perfect lighting to match
the games dark theme. Also, it will include other new and improved effects, like improved particle
effects and good texture representation.

9 http://en.wikipedia.org/wiki/Shaders
10 http://en.wikipedia.org/wiki/Hlsl

43

http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Rendering_pipeline
http://en.wikipedia.org/wiki/Rasterisation

Novel interactions for Adventure Game - Mythophobia

4.12.2 Wrapping of textures
When we first made a level for the game, we used one model for all the walls with different
scaling. The problem with this is texturing and UV coordinates. With our current importer we
cannot change the UV coordinates of a model after it is imported into the project.

As standard, the surfaces of a model have UV coordinates as shown in figure 4.12.1.

Fig 4.12.1 – UV coordinates

This will set the texture to cover the whole surface, and stretch or squeeze the texture to fit the
surface. If the surface is wider than the texture we will want change the UV coordinates to repeat
the texture across the surface. Example: If the surface is twice the width and half the height of the
texture, the texture coordinates will be as shown in figure 4.12.2.

Fig 4.12.2 – UV coordinates for a scaled surface

With the texture sampler state set to wrap or mirror, the texture will be repeated twice horizontally
and only halfway vertically.

So what we did was to make a “wall” class with a primitive to draw, as well as a bounding box for
collisions. This primitive contains a list of all the vertices for a rectangle, where we could set the
texture coordinates ourselves.

We have the scale of the model in the form of a Vector3.

To get the right UV coordinates, we used the values from the scale vector, and exchanged
m_scale.X with m_scale.Z for the top and bottom surfaces of the box as shown in figure 4.12.3.

Vector2 frontTextureTopLeft =
new Vector2(m_scale.X / m_texture.Width, 0.0f);
Vector2 frontTextureTopRight = new Vector2(0.0f, 0.0f);
Vector2 frontTextureBottomLeft =
new Vector2(m_scale.X / m_texture.Width, m_scale.Y / m_texture.Height);
Vector2 frontTextureBottomRight =
new Vector2(0.0f, m_scale.Y / m_texture.Height);

Fig 4.12.3 – Code for setting the texture coordinates

44

Chapter 4: Implementation, code and production

Figure 4.12.4 shows the world with corrected UV coordinates, while figure 4.12.5 shows the world
with incorrect coordinates.

Fig 4.12.4 – Corrected UV coordinates Fig 4.12.5 – Wrong UV coordinates

45

Novel interactions for Adventure Game - Mythophobia

46

Chapter 5: Testing / Quality assurance

5 Testing and quality assurance

This chapter describes how the group planned on testing the product, how the testing and
debugging actually was executed by the group.

We have also included a summary of how the group prepared for, and the performance and
feedback from attending at Hamar Game Challenge.

47

Novel interactions for Adventure Game - Mythophobia

5.1 Planned test-group
Originally we planned to give a high-school in Gjøvik the possibility to test and give feedback on
the project game, but due to unforeseen delays in production of content, and the fact that we did
not get to finish a fully functional game, we did not get the opportunity to carry this out.

The group did although test the alpha version we developed extensively while developing it, and
we are aware of the issued and bugs we have in the product at the moment. Since we are aware of
the issues and bugs, the use of a test-group to detect them, becomes obsolete.

The projects scope was admittedly larger than anticipated, so the game’s state is behind schedule.
Because the “game” is currently not a game, it has no story or elements of content that would
classify it as a game. It is a game engine, and it is not finished.

The idea behind an engine is that it glues the game content together to act, react and look the way
you want. So in other words as our game engine is not finished and we have no game content to
put into the engine there has not been any point in having beta testers test the game and fill out
surveys.

So the original plan, having beta testers test the game at least three times during the projects
development, and filling out surveys had to drop out.

That aside most of the game engines features are working, but can be polished for optimal
performance and better looks.

48

Chapter 5: Testing / Quality assurance

5.2 Testing and debugging
To improve the way we do debugging in the game, we decided to create an own class for this
purpose.

The debug class includes a console, where we can modify settings used in the game in run-time.
This makes debugging much easier than having to recompile each time we want to change a
setting.

The console is shown in figure 5.2.1.

Fig 5.2.1 – The game console.

49

Novel interactions for Adventure Game - Mythophobia

Also this class is implemented as a singleton class, which gives us the ability to print messages to
the screen from everywhere in the code. This is useful for printing messages for collision, frame
rate or different modes. An example debug message printout command is shown in figure 5.2.2.

DEBUG.Instance.PrintMsg("Position: " + m_position, "PlayerPosition");

Fig 5.2.2 – Example use of the debug class, which prints the player’s position on the screen.

All debug messages added throughout the code is written to the screen as the last draw call, and
then cleared for new debug messages to be added in the next run-through the code. How the
messages get drawn to screen is shown in figure 5.2.3.

Fig 5.2.3 – Debug class example output values.

50

Chapter 5: Testing / Quality assurance

51

5.3 Hamar Game Challenge - Preparations & Execution
An important milestone for the project was the Hamar Game Challenge held on the 27th of April
at Hamar College University. At this competition student projects was presented before a jury of
business contacts, which in the end decided on one project to be supported and advised by
“Kunnskapsparken Hedmark”. They judged the project on the group’s ability to sell the game as
well as the realization chance of the idea, and the chance to actually gain an economic profit of it.

Before this presentation we prepared ourselves with a video of the alpha version of the game, as
well as a presentation of our game idea. We had 10 minutes to pitch the game for the jury,
followed by 5 minutes of questions.

Both video and presentation is included on the project DVD.

Only the top 2 projects were mentioned, and regretfully, we were not among them. We think this is
because we are working on a large-scaled project with very limited resources. The judges also
emphasized founding and economic profit of the project, and since our project requires external
resources to be completed, our project were too demanding financial and time-consuming,
counting the resources we currently have.

This presentation was focused on a realization realistic idea, as well as a good business idea. This
project is on the other hand focused on learning programming, and thus, our project was not the
best and most realistic business idea. We had a large-scaled and good idea, but were too
demanding resource-wise.

Regardless, we are pleased with the presentation at Hamar Game Challenge and had great
feedback from the audience during the intermissions.

Novel interactions for Adventure Game - Mythophobia

52

Chapter 6: Installation and implementation

6 Installation

This chapter describes how the program is installed and executed, as well as requirements for
being able to run the game and use the developed project code.

53

Novel interactions for Adventure Game - Mythophobia

54

6.1 Execution of the release version
The release version of the game can be found on the CD attached to the report, including
everything else needed to run the game.

To execute the release version of the game it is required to have the XNA Framework
Redistributable 3.1 installed on the computer beforehand. When the requirement is fulfilled the
retail version can be started by executing the bachelor.exe file.

6.2 Browsing the project solution
To begin coding or debugging the project it is required to have Microsoft Visual Studio and
 XNA Game Studio 3.1 installed on the computer beforehand.

[27] Guidelines to creating a new project for new users can be found at this
URL: http://creators.xna.com/en-US/create_detail

The projects solution can be found on the CD attached to the report, but not the required programs
to run it. [22] Programs needed to run the solution can be found online at this URL:
http://creators.xna.com/en-US/downloads.

To examine the projects code or start debugging, execute the projects *.sln file which is known as
its solution file. Once Visual Studio has started and opened the project, it can be debugged with
the F5 button on the keyboard or by clicking the play icon on the GUI. Inside the Visual Studio
GUI a file list is shown either on the left or the right side depending on the GUI layout where all of
the projects files can be browsed and edited.

http://creators.xna.com/en-US/create_detail
http://creators.xna.com/en-US/downloads

Chapter 7: Development process

7 Development process

This chapter describes what kind of development process we planned for this project and how we
used it.

55

Novel interactions for Adventure Game - Mythophobia

56

7.1 Our usage of the scrum development process
In the development process of this project we used the SCRUM framework, scrum is an iterative
incremental framework for managing complex work (such as new product development)
commonly used with agile software development.

Every second week period the group has had a SPRINT meeting, were the groups past two weeks
and next two weeks have been discussed and planned for, operating almost as minor project
milestones.

Our supervisor has been closely involved throughout the whole development process, as he has
seen the work in progress almost every day and not just at the sprint meetings. The incremental
prototypes meant to be shown at every sprint meeting blended into the normal work flow as we
always had a working prototype. Our supervisor did not either see it necessary to display an
incremental prototype every sprint meeting.

Scrum enables the creation of self-organizing teams by encouraging co-location of all team
members, and verbal communication across all team members. Scrum relies heavily on verbal
communication so daily scrum meetings have been held the first 15 minutes of every day. At these
daily scrum meetings the previous day’s work is discussed and the current days work is being
planned.

A key principle of Scrum is its recognition that during a project, modules can easily be change for
different purposes, and unpredicted challenges can as well easily be addressed. As such, Scrum
adopts an empirical approach-accepting that problems cannot be fully understood or defined,
focusing instead on maximizing the team’s ability to deliver quickly and respond to emerging
requirements.

There are several implementations of systems for managing the Scrum process, which range from
yellow stickers and whiteboards, to software packages. One of Scrum’s biggest advantages is that
it is very easy to learn and requires little effort to start using.

7.2 Work distribution
Our original Gantt-chart described the work distribution amongst the group members very clean
and nicely. We have tried following the Gantt-chart to the best of our abilities, but it came to our
knowledge at a few of our sprint meetings, that some of our modules / tasks time constraints would
have to be extended or decreased.

Chapter 8: Discussion of results

8 Discussion of results

This chapter concerns the results from the discussions the group had in advance of, and during the
development of the project. The most significant discussions were about XNA, 2D collision
detection and height maps. The chapter also mentions the criticism of the thesis which talks about
what the group should have done different or better.

57

Novel interactions for Adventure Game - Mythophobia

8.1 Discussions / debates

8.1.1 Results

XNA
Reasons for choosing XNA as tool for this project was it is simplicity for creating a game. XNA
has the foundation for creating a game, such as collision, importing models, textures etc.
Since our project was of a much larger scale than previous projects we had done, we knew XNA
would give us much more time focusing creating a good interaction game. As the group
encountered many obstacles throughout the process, we would have to spend the double amount of
time on the same problems without XNA.

With XNA, we also knew when, we were to attend Hamar Game Challenge that our project could
be made into a game which runs on the Xbox 360, as well as a PC. And the Xbox live provides a
simple way of distributing the game for profit, which was an advantage for our group, when
competing at Hamar Game Challenge.

Disadvantages when using XNA is that we do not have a full low-level access to the machine, but
working through a managed API. This would be a problem for developers who are creating a game
of a very large scale and advanced graphics and technology. For our project this will not be a
problem, since we do not need that freedom to create a good interaction game.

2D collision detection
Collision detection between the different objects in the game world we decided that a 2D collision
detection would be proficient for our game. The 2D collision is simpler than 3D collision, it
provides the same visual effect and our project do not require 3D collision. The 2D collision was
used to detect collision between the player and walls or other objects placed in the world, as
described in section 2.3.

Height maps
When we were designing the game world we encountered the issue on how make player aware of
where he/she is vertically in the world.
We could choose if we wanted to create a 3D collision detection or create height maps. Since we
already had decided to use 2D collision in our game and after discussing the usage of height maps
with Simon, we got the idea of how to make height maps and how to use them in the level editor.
Description of the height maps is found under section 2.3 in this document.

58

Chapter 8: Discussion of results

59

8.2 Criticism of the thesis
The projects scope was too large, for a group of four programmer students with no external
resources available to finish in approximately three months.

A commercial game company with 100 employees would most probably use two years to finish a
game like Mythophobia from scratch to retail. They would use a lot of work hours performing
tasks such as designing game characters, modeling, creating environments, writing AI (Artificial
intelligence), scripting game events, creating a new game engine and polish the story.

Since we were four programmers working on this project, which did not have much experience
with large-scaled projects and less experience with 3D modeling, we surely could not finish the
project in three months.

We also underestimated time consumption on various tasks, meaning they took longer time to
finish than anticipated, and therefore pushing other important tasks aside, or to be finished later in
even less time.

8.3 Further work, new bachelor task(s)
The group has discussed the further development of this projected after graduating from Gjøvik
University College. The continuing development would involve making the game portable to
XNA live and thereby playable on a Xbox as well as PC. But more importantly develop a game
based on the game engine we now have. With more time and increasing the number of members in
the group with the same background and goals as the original group, the project could develop
much further. We would then go on to implement all the content we imagined before we started on
the project.

The possibility to found a company after further development exists, but would require external
funding, so finding investors is necessary before taking the development even further.
Unfortunately we did not win Hamar Game Challenge and the chance of being accepted into an
incubator where would receive assistance and funding for founding a company.

The potential of this project is present, but if we were to continue the development we depend on
everyone agreeing on giving up more of their spare time and work even harder and that everyone
willing to maximize their effort and improving their skills to a higher level.

Novel interactions for Adventure Game - Mythophobia

60

Chapter 9: Evaluation of group work

9 Evaluation of group work

This chapter describes our group work with our goals and expectations for the project.
We will talk about us as a group, what routines and rules we put down, how we divided the work
amongst the group members, our experiences on working with group projects and what we think
of our experience with working on a bachelor project.

61

Novel interactions for Adventure Game - Mythophobia

9.1 - Introduction
We are a group of four game programmers taking the game programming degree at the Gjøvik
university collage. In December the end of 2009 we all had to choose a bachelor assignment for
completing our bachelor degree. Between the ten bachelor assignments we could choose from, the
Novel Interaction assignment Mythophobia - were the most appealing one to the four of us.

Myhophobia was also the game idea of our group leader Lars Inge, who had applied it for
validation as a bachelor assignment, and got it approved. Three of the group members had also
worked on a game together using XNA in a previous assignment. So the most of us already had a
pretty good group feeling and work flow going, and decided to continue so with the addition of
one group member. This made us feel more confident and secure that the bachelor assignment
would turn out great.

9.2 Routines and rules
• We all agreed upon having a minimum demand of 35 hours of work each week on the

project. This would equalize 5 hours each day, including weekends, or extended
workdays beyond 5 hours in the weekdays.

• Everyone has committed logs of their work at the end of each day, on the project’s web-
page. Describing what they have been working on and the amount of hours spent working
that given day.

• Since we decided upon using the SCRUM development method, we have had 15minute
SCRUM meetings almost every day at room A112. Were we have gone through each
group member’s work, their progress and documents that would be done next.

This subchapter’s text has been lent from the pre-project report with some editing, to give the
reader an insight into the group’s structure and how the group has organized itself.

9.3 Work distribution
Our group of four was distributed and divided into two small “teams” working two and two
together on separate module/task in cooperation but with relevance to the project. Our work
distribution is shown clearly in our planed gantt-chart, but unfortunately the real gantt-chart
doesn’t always reflect that.

We divided up to cover more modules/tasks at the same time, as working on the same thing
seemed to us like over commitment and bad allocation of resources. The other thing is that SVN
works best if not everybody works on the same thing at the same time, having 4 programmers
editing the same code at the same time always lead to errors.

Each member was given explicit tasks aside from the general programming, as referred to in the
previous structure chapter. Were each member also had to focus and fulfill those tasks at the same
time.

62

Chapter 9: Evaluation of group work

9.4 Project as a work form
We have all worked on many group projects throughout our three years as game programming
students and we are all in the same class, so we have pre experience with working with one
another and group projects.

Working on a big project like this one has been a new and positive experience for all of us,
choosing to go with the SCRUM framework made communication and workflow work very well
for us. We have met almost every day in the meeting room A112 at Gjøvik university collage, had
daily SCRUM meetings, discussed our work and helped each other really well this way by keeping
the group gathered throughout the whole project.

Projects can be very big and feel very inconsistent at times, and we all know that this project is a
small one compared to other major projects big game development companies can have. But still
most of the time we felt that we had our project under control, and we all think it worked out just
great.

9.5 Subjective experience of the bachelor thesis
Up until this project we have only worked on smaller and minor projects compared to this one, but
having a project as a work form was not unfamiliar to us beforehand. Throughout this project we
have all acquired better project management and planning skills, and are now better suited for
bigger projects in the future. Our ability to work in a group and have teamwork has also improved.

We have had a very positive experience with this bachelor project, it has been a very learning and
educating process for us all to be part of a group and work on a big project from the start to end.

All the way from planning ahead, choosing the correct work form, to the actual game
programming and the end bachelor report. We have worked hard and tight in the meeting room
A112 almost every day except weekends and eastern holiday for long work hours, some days up to
12 hours a day, and it still was very fun to us.

We struggled with some tasks we had but most of them we sorted out and finished with hard work
by discussing the problems between us, studying online tutorials, accessing forums asking
questions, and consulting Simon McCallum our teacher and in general being active.

In the beginning of the project we were very optimistic and eager to do a good job and get far, and
possibly win the Hamar Game Challenge contest. But as the projects end drew near we
acknowledged that the projects scope had been a little too optimistic for us to get a game up and
running in our small time constraint, at most we could be looking at a game engine and as work in
progress.

We all think this bachelor project has been a great asset to us all in preparing us for actual
employment out there in the real world.

There has been neither lack of tips and enthusiasm from our teacher and supervisor Simon
McCallum, in helping us with the project. He has also shown us great interest in the project and
encouraged us throughout to always do a good and satisfying job.

63

Novel interactions for Adventure Game - Mythophobia

64

Chapter 10: Conclusion

10 Conclusion

This chapter discusses the end results of the project, the goals which the group succeeded, or failed
to reach and the final product outcome.

65

Novel interactions for Adventure Game - Mythophobia

66

This project was originally Lars Inge’s vision and idea which he came up with three years ago
when he started at Rena University College. He applied this idea as a bachelor project assignment
at Gjøvik University College. We all chose this project to be our bachelor assignment in December
2009. The group was formed and we immediately started developing the project early January
2010.

When we started the development we had a vision about making an entertaining and functional
horror/ survivor novel interaction game, with great effects and technical features found in games
we all have come to like in the past.

The project has come to an end, yet the development of the game can still continue in the future,
and the vision we had for this game was not realized. The outcome of this project is not a game,
because the product does not contain elements which would classify it as an actual game, but
rather a game engine. Although we had a vision of a game and ended up with a game engine, we
can proudly state that we did a good job. The amount of time and resources we had limited our
outcome for this project, with more time, resources and a larger team of game developers the
vision could have been realized.

We learned a lot about our current limit as programmers and now we can know how much effort,
time and resources it requires for creating a five star, A- list game. We as a group feel we got
about as far as four game programming students with our proficiency and background could have
gotten with this project in its time constraints.

We believe the producer and supervisor have more respect and worthy impression of us after
displaying our skill as programmers and that they are pleased with our accomplishments and the
product we have made.

If the time was not an issue we are certain the development of this game would continue and in the
end become the vision we had in mind. Our opinion is that the vision behind this game has a great
potential and we have discussed further development. We would love to implement the elements
that would classify our product as a game, such as enemy AI, improve graphics, the story we have
and evolve it further, create all the characters and npc’s for the game, and have new models. With
the time and a larger team of developers, this vision could become true and having our own game
being sold next to other A-list games. could become true and having our own game being in sold
next to other A-list games.

Resources

Resources
 [1] Riemer’s XNA tutorials, general XNA programming and shader tutorials

http://www.riemers.net/eng/Tutorials/XNA/Csharp/series1.php

[2] XNA Creators Club
 http://creators.xna.com/en-US

[3] XNA Creators Club Forums
 http://forums.xna.com/forums/

[4] XNA Creators Club Education section
 http://creators.xna.com/en-US/education/

[5] XNAnimation library homepage
 http://xnanimation.codeplex.com/

[6] Gamedev homepage, Articles and Resources
 http://www.gamedev.net/reference/

[7] Stackoverflow article
 http://stackoverflow.com/questions/328107/how-can-you-determine-a-point-is-between-

two-other-points-on-a-line-segment

[8] Blackpawn, points in triangle test article
 http://www.blackpawn.com/texts/pointinpoly/default.html

[9] Brage Bibsys, for looking up old bachelor reports for learning purposes
 http://brage.bibsys.no/hig/

[10] Dark Codex Studios, shader tutorials

http://digierr.spaces.live.com/

[11] Wikipedia, HLSL – High Level Shader Language
 http://en.wikipedia.org/wiki/High_Level_Shader_Language

[12] XNA Forum, thread we posted about: World matrix problem
 http://forums.xna.com/forums/t/48514.aspx

[13] XNA Forum, thread we posted about: XNAnimation library question
 http://forums.xna.com/forums/t/47963.aspx

[14] LaTeX Software Homepage
 http://www.latex-project.org

[15] Visual Paradigm Software homepage
 http://www.visual-paradigm.com

[16] Wikipedia, Heightmap
 http://en.wikipedia.org/wiki/Heightmap

[17] XNA Sidebar – Smothstep and Lerp
 http://johnnygizmo.blogspot.com/2008/10/xna-sidebar-smoothstep-and-lerp.html

67

http://www.riemers.net/eng/Tutorials/XNA/Csharp/series1.php
http://creators.xna.com/en-US
http://forums.xna.com/forums/
http://creators.xna.com/en-US/education/
http://xnanimation.codeplex.com/
http://www.gamedev.net/reference/
http://stackoverflow.com/questions/328107/how-can-you-determine-a-point-is-between-two-other-points-on-a-line-segment
http://stackoverflow.com/questions/328107/how-can-you-determine-a-point-is-between-two-other-points-on-a-line-segment
http://www.blackpawn.com/texts/pointinpoly/default.html
http://brage.bibsys.no/hig/
http://digierr.spaces.live.com/
http://en.wikipedia.org/wiki/High_Level_Shader_Language
http://forums.xna.com/forums/t/48514.aspx
http://forums.xna.com/forums/t/47963.aspx
http://www.latex-project.org/
http://www.visual-paradigm.com/
http://en.wikipedia.org/wiki/Heightmap
http://johnnygizmo.blogspot.com/2008/10/xna-sidebar-smoothstep-and-lerp.html

Resources

68

[18] Wikipedia, Shaders
 http://en.wikipedia.org/wiki/Shaders

[19] Gamespot homepage, for game rankings, sale numbers and market research
 http://www.gamespot.com/

[20] Vgchartz homepage, for game rankings, sale numbers and market research
 http://www.vgchartz.com/

[21] Microsoft Visual Studio
 http://msdn.microsoft.com/en-us/vstudio/default.aspx

[22] XNA Game studio downloads
 http://creators.xna.com/en-US/downloads

[23] 3D Studio Max 2009, for model and animation creation and exporting
 http://usa.autodesk.com/

[24] Adobe Photoshop, for image and art creation
 http://www.adobe.com/no/products/photoshop/photoshop/

[25] Adobe After effects, for video editing and creation
 http://www.adobe.com/products/aftereffects/

[26] Microsoft Office, for documentation creation
 http://office.microsoft.com/en-us/default.aspx

[27] XNA Creators Club, creating a new project

http://creators.xna.com/en-US/create_detail

[28] Doxygen, program for autogenerating code documentaion
 http://www.stack.nl/~dimitri/doxygen/

[29] 3D Archives, free 3D models
 http://archive3d.net/

[30] 3D xtras, free 3D models
 http://www.3dxtras.com

[31] Quality 3D models, free 3D models
 http://www.quality3dmodels.com

[32] Free 3D models
 http://gfx‐3d‐model.blogspot.com

http://en.wikipedia.org/wiki/Shaders
http://www.gamespot.com/
http://www.vgchartz.com/
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://creators.xna.com/en-US/downloads
http://usa.autodesk.com/
http://www.adobe.com/no/products/photoshop/photoshop/
http://www.adobe.com/products/aftereffects/
http://office.microsoft.com/en-us/default.aspx
http://creators.xna.com/en-US/create_detail
http://www.stack.nl/%7Edimitri/doxygen/
http://archive3d.net/
http://www.3dxtras.com/
http://www.quality3dmodels.com/
http://gfx-3d-model.blogspot.com/

Appendix A: Terminology

A Terminology

A shader is a set of software instructions, which is used primarily to calculate rendering effects on
graphics hardware with a high degree of flexibility.

UV mapping is the 3D modeling process of making a 2D image representation of a 3D model.

UV coordinates are 2D coordinates that are mapped onto a 3D model.

Direct3D is a 3D API. Direct3D is used to render three dimensional graphics in applications
where performance is important, such as games.

Application Programming Interface (API) is an interface implemented by a software program
which enables it to interact with other software.

OpenGL (Open Graphics Library) is a standard specification defining a cross-language, cross-
platform API for writing applications that produce 2D and 3D computer graphics.

A Bezier curve is a parametric curve frequently used in computer graphics and related fields.

A translation is moving every point a constant distance in a specified direction.

FPS can have two meanings First Person Shooter, and Frames Per Second rendered from the
video card onto the computer screen.

Polygonal modeling - Points in 3D space, called vertices, are connected by line segments to form a
polygonal mesh

A Model consists of one or more meshes.

Scaling is a linear transformation that enlarges or increases or diminishes objects.

A rotation matrix is any matrix that acts as a rotation in 3D space.

Interpolation is a method of constructing new data points within the range of a discrete set of
known data points.

In geometry, a vertex is a special kind of point which describes the corners or intersections of
geometric shapes. Vertices are commonly used in computer graphics to define the corners of
surfaces (typically triangles) in 3D models, where each such point is given as a vector.

In computer graphics, a heightmap or heightfield is a raster image used to store values, such as
surface elevation data, for display in 3D computer graphics.

FBX 3D studio max model exporting format.

A Graphical User Interface (GUI) is a type of user interface item that allows people to interact
with programs in more ways than typing such as computers.

A Ray is part of a line which is finite in one direction, but infinite in the other. It can be defined by
two points, the initial point, A, and one other, B.

69

http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29

Appendix A: Terminology

70

Appendix B: Original Gantt Chart

B Original Gantt chart

71

Appendix B: Original Gantt Chart

72

Appendix B: Original Gantt Chart Appendix B: Original Gantt Chart

73 73

74

Appendix C: Real Gantt Chart

C Real Gantt chart

75

Appendix C: Real Gantt Chart

76

Appendix C: Real Gantt Chart

77

Appendix C: Real Gantt Chart

78

Appendix D: Status reports

D Status reports
The status reports are summaries and describe the total development of the most important tasks of
the last 30 days.

D.1 Status report 1 - 12.02.2010
Camera
We began creating the class for handling the camera in the game. It needs to have
three different modes, 3rd person mode, over-the-shoulder mode and first person mode.

The XNA tutorials was of great help when we started creating the camera, but we also gained
more knowledge about how the camera works in other games, such as zooming etc., by studying
the tutorials. We overestimated the time consumption this class would require and gave us more
time working on the next task on the Gantt-chart.

Currently this class works and we have a camera which follows the player and is able to change
between the different view-modes. In the future, the camera will collide with walls, because at this
stage we do not have collision checking between the camera and the walls in the game world.

Game world
The game world is a more time consuming task than camera and is not scheduled to be finished at
this point, but expected to be at 50% away from completion. Today it is on schedule and is still
estimated to be finished in time. We have a controllable model moving around in a simplistic game
world, this means we have a working model loader and are able to create levels where we can
place models. So far we have not had any significant problems to deal with and the game world is
developing as planned. We are the verge of creating a level editor, instead of creating the game
world manually. The level editor will enable us to create a level in less time and in real time, so we
do not have to for example place a wall, run the level, then see where it is in the world and if
necessary move the wall again to the correct position.

79

Appendix D: Status reports

D.2 Status report 2 – 12.03.2010
Inventory screen
Creating the inventory class is the highest priority of the month. The inventory class manages
where the items the players pick are placed on his model. This task was quite the challenge when it
came to positioning the items with the correct off-set and scale. We wanted the items to be shown
in 3D in a circle around the model in the inventory screen. The player is able to rotate the items
around the model and the item which is in front of the model is the one that is selected. The items
are also dragged from its inventory slot, such as a handgun from a pocket over to the right hand.
We underestimated the time we would need for this task because of unforeseen problems. The
biggest problems were related to math and calculating matrixes. But today the inventory is
working and we can drag items between slots, show items in the slots and rotate the items existing
in the slots around the model. There is room for improvement if we gain some extra time, but until
then we leave it as it is.

Camera collision
In any game there is camera and to this day a camera which is perfect does not exist, but a camera
which follow the walls in the game world is something that our game need and the that we wanted
to create. The camera collision checking we chose to implement was a ray-collision check. This
was done by the least experienced programmer in our group, but was finished in the estimated
time. XNA provides us with the Ray class and what it does is that it fires a ray, a vector, from the
camera to the player. If that ray intercepts a wall, the camera will find the point of interception and
move to that point. This forces the camera to always stay on the right side of the wall. The camera
is now working properly and does not require more time and we can leave the camera as it is.

Level editor
As we mentioned we wanted to create a level editor and today we have a working
level editor, which has allowed us to freely create levels as we wish, yet simple levels, but useful.
In this level editor we can place surfaces and walls as we like, in addition it has the ability to scale
these as small or big as we wish. We are certain this will save us a lot of time and was the right
choice when it came to creating a game world. The level editor is not finished yet, but today it has
the required functionality.

80

Appendix D: Status reports

D.3 Status report 3 – 23.04.2010
Height maps
When creating a game world with multiple levels we had to figure out how to make the player
aware of where he/ she is in the game world vertically. In order to do this we either had to create
3D collision checking, checking what the Y-value the player collides with, thereby place him
above that value or we create height maps. The 3D collision checking is more advanced and time
consuming than creating the height maps, though creating the height maps would not be easy
either. We decided to create the height maps in the level editor on every surface. The surfaces then
tell where the player is standing vertically and therefore we now have a player who can move up to
a higher level by walking up ramps.

Shaders
We have started working on the shaders, but we learned that this was not as easy as we thought
and are still not finished the shaders. For the shaders we used the XNAnimation library and tried to
modify it. We encountered problems when doing this and are still working hard to find solutions
and have this effect finished in time for Hamar Game Challenge.

Particle effects
The shooting is working and therefore we wanted to implement some effects connected to this
action. We have implemented some particle effects to the bullet impacts and broken lights have
sparks jumping out of them. The particle effects are complete and we like to have effects like this
to show off at Hamar Game Challenge.

81

Appendix D: Status reports

82

D.4 Status report 4 – 29.04.2010
Hamar Game Challenge
The group attended Hamar Game Challenge two days ago without claiming victory for us and
Gjøvik University College. The competition was fierce and it was a close call when the winner
was announced. We were disappointed, but we are satisfied with the product we have developed
ourselves. Today we have working collision, camera, inventory, shooting, particle effects,
interaction, level editor, shaders and loading of levels and models. The product is a working game
engine at is unquestionably something to be proud of.

Now we have started working on the bachelor report and will spend the rest of our time on Gjøvik
getting our work and everything we have learned down on paper and present the bachelor project
to Gjøvik University College, and finally we deserve a spring break.

Appendix E: Meeting reports

E Meeting reports

15. January 2010
Meeting Report
Friday 15. January(Full group)
- Started our first sprint.
- All read the examples of pre-project report.
- Assigned the following tasks to each one of us:
 Each write a dedicated part of the pre-project report.
- We agreed to have a draft of the pre-project report finnished by Friday 22. January.
- The group had a look on the website and it's coming along fine and will be finnished by the end
of Monday 18. January.
Tasks for the weekend:
- Everyone have start working on their part of the pre-project report.
- Heine will continue working on the website.
- Lars is going to do some work the design document, making it ready for the presentation, and
keep
filling in the Gantt-chart.

29. January 2010

Sprint Meeting Report
Friday 29. January(Full group)
- Website status: 80% finnished
- Pre-project report status: finnished
- Goals for the next sprint:
 * Finnish XNA tutorials
 * Planning the UML ,class-diagramsa and scripting.
 * Create a draft of the diagrams we need.
 * Begin coding the 2nd half the sprint.

12. February 2010

Sprint Meeting report
Friday 12. February(Full group)
- Camera-class status: 90%
- Gameworld status: 50% and on schedule
- Goals for the next sprint:
 * World representation is going to be finnished by next week.
 * Making animation for the game.

26. February 2010
Meeting report
Friday 26. February(Full group)
- Heine and Sander have worked on the inventory, they have managed to get the items to be
positioned and rotated correctly on the player.
- Lars and Arild have finnished the heightmaps for the game world, so we now have a heightmap
for the player to follow, which is calculated, exported and loaded.

Tasks for next week:
- Finnish the camera collision, which will be done by Arild and Lars.
- Heine and Sander will finnish the inventory.

83

Appendix E: Meeting reports

12. March 2010
Meeting report
Friday 12. March(Full group)
- We had our test in Operating Systems.
- The group met with Simon for an update on the progress.
- We are on track with the project, but the next week will be intensive hard work to reach the
finnishing line for inventory screen.
- We are now very eager to get some content in the game, such as models and textures, and Simon
suggested we could take some pictures of some rooms etc. and try to build them in the game.
Simon also said that we should write a mail to Nils and have him send some mails to his former
students who has experience in 3D modeling.
- Sander sent a mail to Nils and we are now looking forward to having someone who can make
some models and textures for the game.

Tasks for next week.
- Finnish the action- and adventure interaction, if are not finnished with this by then we have start
cutting down on the things we want in the game.

25. March 2010

Meeting report
Thursday 25. March(Full group)
- Preparations for Hamar Game Challenge are being made.
- Sander and Heine worked on lights and shaders to make the game more visually appealing.
- Arild and Lars started researching for more info about the marked around games in our genre.

Tasks for tomorrow:
- The group will continue with the tasks above.

12. April 2010
Meeting report
Monday 12. April(Full group)
- Everyone back from Easter Holiday.
- Started picking up where we left off.
- Sander and Heine worked on the shaders and lights.
- Lars and Arild continued on the presentation, adding the market content they had found.

Tasks for tomorrow:
- Lars and Arild need to work out how to present the game in the best way, as a product which can
produce income.
- Heine and Sander will try and make the shaders work with lights.

23. April 2010
Meeting report
Friday 23. April(Full group)
- Sander and Heine have been working on the shaders, but encountered some problems making
them work.
- Lars and Arild have added more about the game's effects to the power point presentation.

Tasks for next week:
- Heine and Sander will try to finnish the shaders just in time for Hamar Game Challenge.
- Arild and Lars will polish the power point presentation and Lars will practice his speech.

84

Appendix E: Meeting reports

07. May 2010
Meeting report
Friday 7. May(Full group)
- Last sprint meeting!
- We are well on our way to finnish the report.
- Since this is the last sprint meeting there will be no more meeting reports posted.

85

Appendix E: Meeting reports

0

2

4

6

8

10

12
18

.0
1.
20

10

19
.0
1.
20

10

20
.0
1.
20

10

21
.0
1.
20

10

22
.0
1.
20

10

23
.0
1.
20

10

24
.0
1.
20

10

25
.0
1.
20

10

26
.0
1.
20

10

27
.0
1.
20

10

28
.0
1.
20

10

29
.0
1.
20

10

30
.0
1.
20

10

31
.0
1.
20

10

H
ou

rs

Date

January 2010

Heine

Sander

Lars

Arild

Fig. – January 2010

0
2
4
6
8

10
12
14

01
.0
2.
20

10

03
.0
2.
20

10

05
.0
2.
20

10

07
.0
2.
20

10

09
.0
2.
20

10

11
.0
2.
20

10

13
.0
2.
20

10

15
.0
2.
20

10

17
.0
2.
20

10

19
.0
2.
20

10

21
.0
2.
20

10

23
.0
2.
20

10

25
.0
2.
20

10

27
.0
2.
20

10

H
ou

rs

Date

February 2010

Heine

Sander

Lars

Arild

Fig. X.xx – January 2010

86

Appendix E: Meeting reports

0
2
4
6
8

10
12
14

01
.0
3.
20

10

03
.0
3.
20

10

05
.0
3.
20

10

07
.0
3.
20

10

09
.0
3.
20

10

11
.0
3.
20

10

13
.0
3.
20

10

15
.0
3.
20

10

17
.0
3.
20

10

19
.0
3.
20

10

21
.0
3.
20

10

23
.0
3.
20

10

25
.0
3.
20

10

27
.0
3.
20

10

29
.0
3.
20

10

31
.0
3.
20

10

H
ou

rs

Date

March 2010

Heine

Sander

Lars

Arild

Fig. E.3 – January 2010

0
2
4
6
8

10
12

01
.0
4.
20

10

03
.0
4.
20

10

05
.0
4.
20

10

07
.0
4.
20

10

09
.0
4.
20

10

11
.0
4.
20

10

13
.0
4.
20

10

15
.0
4.
20

10

17
.0
4.
20

10

19
.0
4.
20

10

21
.0
4.
20

10

23
.0
4.
20

10

25
.0
4.
20

10

27
.0
4.
20

10

29
.0
4.
20

10

H
ou

rs

Date

April 2010

Heine

Sander

Lars

Arild

Fig. E.4 – January 2010

87

Appendix E: Meeting reports

0
2
4
6
8

10
12

01
.0
5.
20

10

02
.0
5.
20

10

03
.0
5.
20

10

04
.0
5.
20

10

05
.0
5.
20

10

06
.0
5.
20

10

07
.0
5.
20

10

08
.0
5.
20

10

09
.0
5.
20

10

10
.0
5.
20

10

11
.0
5.
20

10

12
.0
5.
20

10

13
.0
5.
20

10

14
.0
5.
20

10

15
.0
5.
20

10

16
.0
5.
20

10

17
.0
5.
20

10

18
.0
5.
20

10

19
.0
5.
20

10

H
ou

rs

Date

May 2010

Heine

Sander

Lars

Arild

Fig. E.5 – January 2010

88

Appendix F: Logs

F Logs
This is a compressed version of the logs, the complete log can be found on the enclosed DVD.

Week: 3 Date: 2010-01-18 - 2010-01-24

Mon Hours What was done
Heine Martin 7 Website
Sander 7 Pre-project report.
Lars Inge 7 Gantt-chart.
Arild 6 Gantt-chart.
Tue Hours What was done
Heine Martin 7 Website.
Sander 7 Pre-project report.
Lars Inge 7 Pre-project report.
Arild 10 Pre-project report.
Wed Hours What was done
Heine Martin 9 Website.
Sander 9 Pre-project report.
Lars Inge 9 Pre-project report and website.
Arild 9 Pre-project report.
Thu Hours What was done
Heine Martin 6 Website.
Sander 5 Worked on the pre-project report
Lars Inge 8 Meeting with Simon and pre-project report.
Arild 5 Pre-project report.
Fri Hours What was done
Heine Martin 5 Website.
Sander 5 Pre-project report.
Lars Inge 5 Meeting with Simon and design document.

Arild 5 Design document.

89

Appendix F: Logs

Week: 4 Date: 2010-01-25 - 2010-01-30

Mon Hours What was done
Heine Martin 5 Website.
Sander 5 Pre-project report and design document.
Lars Inge 5 Power point presentation.
Arild 5 Pre-project report.
Tue Hours What was done
Heine Martin 6 Power point presentation.
Sander 6 Pre-project report and power point presentation.
Lars Inge 6 Power point presentation.
Arild 7 Power point-presentation.
Wed Hours What was done
Heine Martin 8 Presentation.
Sander 8 Presentation.
Lars Inge 8 Presentation.
Arild 9 Presentation.
Thu Hours What was done
Heine Martin 8 Worked on the pre-project report.
Sander 9 Pre-project report.
Lars Inge 8 Gantt-chart.
Arild 3 Pre-project report.
Fri Hours What was done
Heine Martin 5 Website and pre-project report.
Sander 5 Collision and pre-project report.
Lars Inge 5 Pre-project report.
Arild 3 Pre-project report

90

Appendix F: Logs

Week: 5 Date: 2010-01-31 - 2010-02-05

Mon Hours What was done
Heine Martin 9 Worked on the class diagram with the rest of the group.
Sander 9 Class-diagram.
Lars Inge 9 Class-diagram.
Arild 11 Class-diagram.
Tue Hours What was done
Heine Martin 8 Class-diagram.
Sander 8 Class-diagram.
Lars Inge 8 Class-diagram.
Arild 11 Class-diagram.
Wed Hours What was done
Heine Martin 7 Class-diagram.
Sander 7 Continuing with the development of the UML / class diagram.
Lars Inge 7 Class-diagram.
Arild 7 - Worked on the class-diagram with the group the entire day.
Thu Hours What was done
Heine Martin 7 Class-diagram.
Sander 7 AI research.
Lars Inge 7 Class-diagram.
Arild 6 Class-diagram.
Fri Hours What was done
Heine Martin 3 Worked on the class diagram with the rest of the group.
Sander 3 Simon and class-diagram.
Lars Inge 3 Class-diagram.
Arild 3 - I have worked on the class-diagram, like the rest of the group.

91

Appendix F: Logs

Week: 6 Date: 2010-02-06 - 2010-02-11

Mon Hours What was done
Heine
Martin 8 Worked on the world representation, loading and drawing world objects.

Sander 5 Worked on the world representation, loading and drawing world objects.

Lars Inge 12 Code and class-diagram.
Arild 7 Tutorial.
Tue Hours What was done
Heine
Martin 9 Worked on the world representation, loading and drawing world, npc and

interactive objects.
Sander 9 World representation and SVN.
Lars Inge 12 Camera.
Arild 9 Camera.
Wed Hours What was done
Heine
Martin 5 Worked on the world representation and did some modeling in 3ds max.

Sander 3 Modeling
Lars Inge 5 Camera.
Arild 5 - Worked on the camera together with Lars. The camera rotates properly now.
Thu Hours What was done
Heine
Martin 5 Worked on the world representation and modeling.

Sander 7 Tutorials.
Lars Inge 5 Camera.
Arild 5 Worked on the camera and next step is to make the transition smoother.

92

Appendix F: Logs

Week: 7 Date: 2010-02-12 - 2010-02-17

Fri Hours What was done
Heine Martin 5 Spring meeting.
Sander 5 Sprint meeting.
Lars Inge 4 Sprint meeting.
Arild 3 Sprint meeting.
Mon Hours What was done
Heine Martin 11 Started working on the animation
Sander 11 Worked in 3dsmax with animation and modeling.
Lars Inge 11 World representation.
Arild 11 Formated laptop.
Tue Hours What was done
Heine Martin 12 Continued working on the animation.
Sander 12 XNA libraries.
Lars Inge 12 Level editor.
Arild 11 Level editor.
Wed Hours What was done
Heine Martin 6 Animation.
Sander 7 Animation.
Lars Inge 6 Level editor.
Arild 8 - Made a video of the level editor.

93

Appendix F: Logs

Week: 8 Date: 2010-02-18 - 2010-02-23

Thu Hours What was done
Heine
Martin 0 After installing a new keyboard on my laptop, it suddenly became super

slow.
Sander 11 Animation.
Lars Inge 11 Camera.
Arild 5 Camera.
Fri Hours What was done
Heine
Martin 0 Got my computer working again.

Sander 10 Animation.
Lars Inge 6 Debug class.
Arild 6 Collision.
Mon Hours What was done
Heine
Martin 11 Worked on the inventory screen.

Sander 11 Textures.
Lars Inge 12 Collision detection.
Arild 11 Collision detection.
Tue Hours What was done
Heine
Martin 9 Worked with Sander on the inventoryscreen and started on making the

loadingscreen.
Sander 6 Inventory-screen and loading-screen.
Lars Inge 12 Height maps.
Arild 5 Heightmaps.

94

Appendix F: Logs

Week: 9 Date: 2010-02-24 - 2010-03-01

Wed Hours What was done
Heine
Martin 8 Website.

Sander 7 Working to improve the inventory screen
Lars Inge 10 Height maps.
Arild 5 Height maps.
Thu Hours What was done
Heine
Martin 7 Worked on the loading-screen, loading the players inventory.

Sander 7 Inventory-screen.
Lars Inge 7 Worked on calculating the collision points for each surface.

Arild 10 - I worked with Lars on the height maps, working out the loading of it into
the game world.

Fri Hours What was done
Heine
Martin 6 Continued on the loading-screen and inventory-screen.

Sander 8 Working with the inventory screen.
Lars Inge 6 Height maps.
Arild 6 Camera collision.
Mon Hours What was done
Heine
Martin 9 Inventory-screen.

Sander 11 In-game-screen.
Lars Inge 8 Level editor.
Arild 8 Camera collision.

95

Appendix F: Logs

Week: 10 Date: 2010-03-02 - 2010-03-07

Tue Hours What was done
Heine
Martin 9 Implemented rayt-casting for checking collisions on the character slots in the

inventory-screen.
Sander 11 Inventory-screen.
Lars Inge 8 Level editor.

Arild 3 - Looked for any examples or tutorials I could find on the internet, but not
much luck.

Wed Hours What was done
Heine
Martin 8 Sound.

Sander 9 Inventory-screen.
Lars Inge 8 Level editor.
Arild 9 Camera collision.
Thu Hours What was done
Heine
Martin 9 Remade the loading of objects.

Sander 10 Enhanced the inventory-screen.

Lars Inge 6 Level editor.
Arild 10 Camera collision.
Fri Hours What was done
Heine
Martin 10 Worked on the combination of items in the inventory-screen.

Sander 11 Inventory-screen.

Lars Inge 8 Height maps.
Arild 5 Collision detection.

96

Appendix F: Logs

Week: 11 Date: 2010-03-08 - 2010-03-13

Mon Hours What was done
Heine
Martin 6 Worked on the combination system.

Sander 0 I am sick today and have been so the whole weekend.
Lars Inge 6 Had a presentation of our bachelor assignment.
Arild 10 Camera collision.
Tue Hours What was done
Heine
Martin 0 PC trouble.

Sander 9 Camera collision.
Lars Inge 4 Camera.

Arild 5 - Finished the camera collision. Next step will be to make an more advanced
camera collision.

Wed Hours What was done
Heine
Martin 0 PC trouble.

Sander 5 Camera collision.
Lars Inge 0 Test.
Arild 0 Test.
Thu Hours What was done
Heine
Martin 2 Waited for Dell to get back to me about the hard drive. Took a small peek on

shaders.
Sander 0 Test.
Lars Inge 0 Test.
Arild 0 Test.
Fri Hours What was done
Heine
Martin 0 Got an answer from Dell today, and they are sending me a new hard drive.

Sander 6 Sprint meeting.
Lars Inge 5 Sprint meeting.
Arild 2 Sprint meeting.

97

Appendix F: Logs

Week: 12 Date: 2010-03-14 - 2010-03-19

Mon Hours What was done
Heine
Martin 7 Action interaction.

Sander 7 Wireframes.
Lars Inge 6 Reworked Object2D.
Arild 1 Sick.
Tue Hours What was done
Heine
Martin 7 Collision.

Sander 7 Inventory-screen.
Lars Inge 6 GUI interface.

Arild 3 - I still felt sick, but met with the group anyway to try and help Lars as much
as possible.

Wed Hours What was done
Heine
Martin 8 Made a class for the hit zones for the model.

Sander 8 Cleaning up and improving the inventory screen, the code is unclean and hard
to understand as it is now.

Lars Inge 12 Animation.
Arild 0 Stayed at home to recover.
Thu Hours What was done
Heine
Martin 8 Collision.

Sander 8 Inventory class.
Lars Inge 6 Continued working on the adventure menu.
Arild 4 Feeling better and assisted Lars.
Fri Hours What was done
Heine
Martin 10 Added collision checks with NPC-Spheres.

Sander 11 I have AGAIN re-arranged the inventory screen.
Lars Inge 10 Started taking a look at interactive object class.
Arild 3 Started working on the editor to add items in the world.

98

Appendix F: Logs

Week: 13 Date: 2010-03-20 - 2010-03-25

Mon Hours What was done
Heine
Martin 6 Continued on the npc collisions.

Sander 6 Inventory screen
Lars Inge 5 Continued working on the adventure menu.
Arild 7 - Worked on the camera collision.
Tue Hours What was done
Heine
Martin 5 Made a power point presentation.

Sander 5 Still inventory screen....
Lars Inge 6 Continued working on the adventure menu.
Arild 7 Prepared for the presentation with the rest of the group.
Wed Hours What was done
Heine
Martin 5 Pitched the game again for the producer.

Sander 5 Presented the game for the producer.

Lars Inge 5 Had a project pitch for the producer, and got some useful feedback to be taken
into consideration when pitching at Hamar Game Challenge.

Arild 3 Attended the presentation for our producer, Øyvind Nordstrand.
Thu Hours What was done
Heine
Martin 5 Worked on the weaponsystem.

Sander 6 Shaders.

Lars Inge 5
Created a GG Studio logo movie.

Arild 7 Started the research in preperation for Hamar Game Challenge.

99

Appendix F: Logs

Week: 14 Date: 2010-03-26 - 2010-03-31

Fri Hours What was done
Heine
Martin 5 We had a talk with Simon about lightning and shadows. Took a look at some

lightning examples.

Sander 7 Simon "lectured" us about shadows and lights, so now we have a few ideas
and are going to start looking at them.

Lars Inge 5
Had a talk with Simon about lightning and shadows.
Added some more work on the adventure menu. Fixed some bugs and values
to give a better look.

Arild 5 - Continued with the research of the market regarding our game.

Week: 15 Date: 2010-04-01 - 2010-04-06

Tue Hours What was done
Heine
Martin 5 Back from vacation. Had to set myself into what I was working on before the

vacation. Started on making collision checks for the NPC.

Sander 5 First day back to work after eastern holiday.
Finding out where to start with the lighting, how to "attack" the situation.

Lars Inge 5

Back to work after easter holiday.
Started looking at scripting. Researched our possibilities for creating scripted
events on the internet.
Found some possible solutions, but they will be time consuming to include at
this point in the project.
Will research some more tomorrow.

Arild 5 - Back in business after Easter holiday. Picked up where I left off with the
market research.

100

Appendix F: Logs

Week: 16 Date: 2010-04-07 - 2010-04-12

Wed Hours What was done
Heine
Martin 5 Continued on the weapon system.

Sander 6 Looking up the XNAnimation library scource code to find out how its shader is
intergraded into the library.

Lars Inge 5 Continued reaserching the possibilites for scripting.

Arild 5 - Finding it hard to dig up statistics around the market. But have some numbers
regarding copies sold of a few games.

Thu Hours What was done
Heine
Martin 5 Wrote the function that is executed when the player fires a weapon.

Sander 5 Struggeling to understand the shader code in the XNAnimation library scource
code

Lars Inge 5 Started creating scripted events.
Arild 5 Math work in the game.
Fri Hours What was done

Heine
Martin 5

Put the collision tests together in the update function in the weaponsystem
class.
Also went over the collisions in the aim class.

Sander 5 Still working on how to change the baked in shader from the XNAnimation
library

Lars Inge 5 Continued working on the scripted events.
Arild 0 Sick.
Mon Hours What was done
Heine
Martin 6 Finished the aiming and shooting and bugs.

Sander 8 Looking up written shader tutorials and video tutorials about shaders

Lars Inge 6 Continued working on scripting.

Arild 7 - Started on the presentation for Hamar Game Challenge.

101

Appendix F: Logs

Week: 17 Date: 2010-04-13 - 2010-04-18

Tue Hours What was done
Heine
Martin 7 Started looking at some examples of particle effects. Trying to find out how we

want the effects.
Sander 8 Been looking at how to make the XNANIMATION library use attenuation.
Lars Inge 6 Continued working on the scripting..

Arild 7 - Added more content to the power point presentation we are making for Hamar
Game Challenge.

Wed Hours What was done
Heine
Martin 8 Used an particle-system example from Microsoft XNA Community Game

Platform.

Sander 10 Been trying to work out the shader to work with light attenuation the whole day
>_<

Lars Inge 5 Continued working on the scripting system.

Arild 7 - Needed more content for the presentation, did more research and added what I
felt was useful information.

Thu Hours What was done
Heine
Martin 5 Went over the settings for the particle effect, to make it fit for a bullet impact.

Also made an image to use in the particle effect.

Sander 5
Made the lighting attenuation work with the skinned-models shader, the light
shines brightest near the player while it gets dark as you get out of the range of
the light gradually.

Lars Inge 5 Continued working on the scripting.

Arild 5 - Created the power point presentation and inserted the content I had found so
far.

Fri Hours What was done
Heine
Martin 7 Cleaned up some code in the loading-screen, weapon-system and aim class.

Sander 8 Trying to apply the XNAnimation shader to be working with the walls and
floors

Lars Inge 5

Took a look at the inventory screen for adding the pick up object to the
inventory at the end of the script.
Had to set myself into a deal of Sander's code, and figure out how I am able to
do this.

Arild 5 - Worked on the power point presentation.

102

Appendix F: Logs

Week: 18 Date: 2010-04-19 - 2010-04-24

Mon Hours What was done
Heine
Martin 5 Looked at some models to put in the game.

Sander 4 Loadingscreen.
Lars
Inge 6 Took up a bit of issues regarding the inventory screen.

Arild 5 - Worked on the power point presentation, added more about the group.
Tue Hours What was done
Heine
Martin 6 Made a level for the presentation at Hamar Game Challenge.

Sander 6 Struggeling getting the XNAanimation shader to work
Lars
Inge 6 Continued fixing on the inventory screen.

Arild 5 - Added more to the power point presentation
Wed Hours What was done
Heine
Martin 6 Worked with Sander, trying to get some custom shaders for the walls and floor.

Sander 5 Me and heine discussed and exchanged shaders.
Lars
Inge 6 Continued fixing on the inventory screen.

Arild 5 Worked on the power point presentaiton, added more about the innovasion.
Thu Hours What was done

Heine
Martin 9

Continued trying to get the skinnedModelEffect shader to work on the walls, but
came across alot of problems. Thought of other methods to get the textures
wrapped on the wall models.

Sander 10 Started up alot of older projects who uses shaders to try and understand how
they are used, but had no luck.

Lars
Inge 7 Exported and fixed on a level that Heine created to be used in the Hamar Game

Challenge.

Arild 5 - Worked on the power point presentation, designing the structure of the
presentation.

Fri Hours What was done
Heine
Martin 9 Started making a new class for walls, where I use a primitive for the wall instead

of a model.
Sander 11 Finished the Riemers shader tutorial
Lars
Inge 7 Populated the level I exported yesterday with objects and models.

Arild 4 - Added more content about the effects we have in our game.
Sat Hours What was done
Heine
Martin 5 Continued on the wall class, and focused more on getting it to work.

Sander 5 Researching how good action adventure games have been rated over the last
year and their sales numbers

103

Appendix F: Logs

Week: 19 Date: 2010-04-25 - 2010-04-30

Sun Hours What was done

Heine
Martin 5

Fixed some small errors with the wrapping of textures in the wall class, and
implemented wrapping on the floor as well. Started looking at some models to
put in the game.

Lars
Inge 7 Prepared myself for speaking at the Hamar Game Challenge and fixed up the

powerpoint presentation.
Mon Hours What was done
Heine
Martin 7 Polished the game for the showoff video we're making of the game. Added a

couple of models to the world.
Sander 4 Made showof video for hamar game challange
Lars
Inge 7 Prepared myself for speaking at the Hamar Game Challenge.

Arild 10 - Polished the presentation and creating a time table for Lars when he will
present the project at Hamar Game Challenge.

Tue Hours What was done

Heine
Martin 5

Presented our game at Hamar Game Challenge. We were happy about our
presentation, but there were several good groups/games at the event, and
unfortunately we didn't win. We hope we might be back next year with another
game ;)

Sander 5 Attended Hamar Game Challenge.
Lars
Inge 5 Attended and presented our game at Hamar Game Challenge.

Arild 5 - Attended the Hamar Game Challenge, it was a great experience and alot of fun.
Wed Hours What was done
Heine
Martin 0 Everyone took a day of after Hamar Game Challenge, getting ready to start on

the documentation part of the project.

Sander 0 One day off after Hamar Game Challange as a reward for our hard and long days
of works the last few months.

Lars
Inge 0 Took a day off after Hamar Game Challenge.

Thu Hours What was done
Heine
Martin 5 Started on the documentation. Wrote a little about our proficiency and

background, and what we need to learn.
Sander 5 Started on the documentation, about he testing group we were going to have.
Lars
Inge 5 Started writing the final documentation on the Bachelor Report.

Arild 7 - Started on the bachelor report.
Fri Hours What was done
Heine
Martin 5 Wrote about the project description

Sander 3 Started on the documentation
Lars
Inge 5 Continued working on the Bachelor Report.

Arild 7 - Wrote about the project description in the bachelor report.

104

Appendix F: Logs

Week: 20 Date: 2010-05-01 - 2010-05-06

Mon Hours What was done
Heine
Martin 5 Wrote some more on the project description part and tried finding a good

solution for merging word documents.

Sander 4
We are just going to use word, since using MiKTeX requires you to invest very
much time into getting to know how to use it, and we have to little time left to
use time on MiKTeX instead of writing documentation.

Lars
Inge 5 Continued working on the Bachelor Report.

Wrote about implementations, some about level editor and collisions.

Arild 7 - Bachelor report, writing about discussions we have had during the development
of the project.

Tue Hours What was done
Heine
Martin 5 Wrote an introduction to the project report. Added a function on the website to

list all logs for a user for printing.

Sander 4 Wrote about the testing group and quality assurance in the report, but some of it
has been rewriten and lines has been added by Lars Inge.

Lars
Inge 5 Continued working on the Bachelor Report.

Wrote about quality assurance, the planned test group and debugging.
Arild 7 - Bachelor report, wrote about camera collision.
Wed Hours What was done
Heine
Martin 4 Set up some of the layout for the report and wrote a summary.

Sander 3 Setup a document with all the headlines and parts that are meant to be in the
project

Lars
Inge 5 Continued working on the Bachelor Report.

Wrote about hamar game challenge and fixed the whole document's formating.
Arild 7 - Bachelor report, wrote about the structure of the report.
Thu Hours What was done
Heine
Martin 6 Started writing about shaders (wrapping of textures)

Sander 6 Wrote generally about shaders, and the introduction gudelines and demarcation.

Lars
Inge 5

Wrote some on the Bachelor Report.
Mainly used my time commenting code in the project and looked at compiling
code documentation.

Arild 7 - Worked on the bachelor report, edited what I had written earlier and polished
the report in general.

105

Appendix F: Logs

Week: 21 Date: 2010-05-07 - 2010-05-12

Fri Hours What was done
Heine
Martin 6 Finished writing about wrapping of textures.

Sander 8 Wrote about the inventory screen and camera collision before delivering the
document to simon for feedback

Lars
Inge 5

Continued working on the Bachelor Report.
Compiled a first draft with all the content we have up untill now and send it to
Simon for feedback.

Arild 7 - Added more content to what I had written earlier.
Mon Hours What was done
Heine
Martin 5 Working at home this day, catching up on writing logs and commenting code.

Sander 3
Fixing the loggs formating, and filled just a few logg holes
Bouncing around in the documentation trying to read through stuff and fix
sentences that doesnt sound right or make sence.

Lars
Inge 5 Continued working on the final Bachelor report.

Filled in some holes in the logs.
Arild 5 - Got feedback from Simon and started working on the flaws he could point out.
Tue Hours What was done

Heine
Martin 5

Continued writing logs.
Added some changes to the logging on the website. Hours worked are now
logged individually for future statistics.

Sander 5
Working on general documentation.
Target group, The bacchelor projects purpose, And About the reports sowftware
tool used.

Lars
Inge 5 Continued working on the Bachelor Report.

Talked to Simon about his feedback on the first draft on the Report.
Arild 5 - Started writing the appraisal part of the report.
Wed Hours What was done

Heine
Martin 5

Added and corrected some logs. Commented more code in the project, and
installed doxygen for compiling the documentation. We used the same program
for another project we did and XNA and have good experience with it.

Sander 5 Generally just working on the documentation, trying to fill inn holes and
improve allready written text around in the document

Lars
Inge 5

Continued working on the Bachelor Report.
Started working on the final Gantt chart, with changes made during the project's
lifespan. Looked at the members' logs, and created it out of them.
Wrote about the game world representation and rewrote level editor and added
description of the level editor exportation process.

Arild 8 - Removed flaws and did a spellcheck on the report.

106

Appendix F: Logs

Week: 22 Date: 2010-05-13 - 2010-05-18

Thu Hours What was done
Heine
Martin 5 Continued commenting and cleaning up code.

Sander 5 Started writing about the XNAnimation library, how it works and how to use it.

Lars Inge 5
Continued working on the Bachelor Report.
Integrated my documentation into the final document. Revised the report and
fixed typos etc.

Arild 7 - Added some codeblocks in the report and commented some code.
Fri Hours What was done
Heine
Martin 6 Worked on the documentation.

Commented and cleaned up more code.
Sander 6 Finished writing about the XNAnimation library

Lars Inge 6

Continued working on the Bachelor Report.
Fixed styling and general overview of the document. Changed headers to a
professional standard.
Added several illustrations and figures as well as a standard for description of
the figures in the document.
Added information in the introduction part and fixed some typos.
Sendt the latest version of the report to Simon and Jayson for a second
feedback.

Arild 8 - Checked the report for flaws and misspelling before delivering the report to
Lars who sent it by email to Simon and Jason for feedback over the weekend.

Mon Hours What was done

Lars Inge 3 Continued working on the Bachelor Report.
Fixed grammar and added content in the introduction.

Arild 0 - Norwegian national day, icecream and pizza.
Tue Hours What was done
Heine
Martin 5 Fixed the front page and the norwegian and english summary according to the

layout we're supposed to use. Commented more code and fixed some logs.

Sander 5

Filling in a few more logg holes, now the logg should be complete.
Putting some work iv been doing home into the final bachelor report about the
XNAnimation library.
Rewriting some of the sentences in the XNAnimation section and some other
places in the bachelor report

Lars Inge 5
Continued working on the Bachelor Report.
Fixed page numbering of pages and sat up top-texts for the document.
Added alot of figures and figure numbering.

Arild 7 - Wrote more about the report's structure, organzing etc.

107

Appendix F: Logs

108

Week: 23 Date: 2010-05-19 - 2010-05-24

Wed Hours What was done
Heine
Martin 10 Worked on the documentation.

Fixed some charts for the amount of hours we have worked.
Sander 12 Working on many parts of the documentation

Lars Inge 12

Continued working on the Bacherlor Report.
Last day of writing on the report. Fixed up some typos, sentances and grammar
based on the feedback from Simon.
Continued on adding content in Adventure interaction and Scripting.
Fixed page layouts to fit in the final printout for the document and restructured
a bit to better match the template.

Arild 12 - Worked on the report all day. Added more content to the appendix.
Thu Hours What was done

Sander 0 Working on the documentation
from 0000

Lars Inge 12

Continued working on the report from midnight.
Contributed with content, merged content into the document and added
appendixes.
Overall worked on finalizing the document for hand in at noon.

Appendix G: Design document

G Design document

109

Appendix G: Design document

Mythofobia

Design Document
Version 0.1

This document and Mythofobia are © 2008 Lars Inge Reinsnos, all rights reserved.

Table of Contents
I. Overview .. 111

II. Game mechanics .. 113
Overview .. 113
Camera .. 114
Action Mode ... 115
Adventure Mode ... 116
Player Movement and Player Actions... 117
In-Game GUI .. 118
Health ... 119
Infection .. 119
Exhaustion .. 119
Ammunition and reloading ... 120
Inventory ... 121
Examining and combining items .. 122
Using items with objects in the world... 123
Maps ... 123
Flashlights ... 123
Animations ... 124
Control Summary ... 124

Playstation3: ... 124
PC (Mouse + Keyboard): .. 125

Saving ... 125
Storytelling ... 126
Difficulty levels .. 127

Entertaining .. 127
Challenging .. 127
Realistic .. 127

III. Bibliography ... 128
Similar games or games with borrowed elements/features ... 128

Resident Evil 4 ... 128
Cold Fear .. 128
Condemned 2 .. 128

Mythological reading .. 128
Movies .. 128

110

Appendix G: Design document

I. Overview
FOCUS:
Mythofobia is a 3rd person true action/adventure game, focused on both action-sequences and
logical adventure-game puzzles. Set in a horror-themed setting, it tells a rich, fictional, but yet
believeable non-linear story, with multiple solutions and storyline outcomes, dependant on the
players actions and puzzle-solutions. The game features a realistic method to store inventory and
to interact with objects and items in the game world.

Mythofobia is a 3rd person true action/adventure game, focused on both action-sequences and
logical adventure-game puzzles. Set in a horror-theme, it tells a rich, fictional, but yet believeable
non-linear story, with multiple solutions and storyline outcomes, dependant on the players actions
and puzzle-solutions.

Mythofobia tells the story of three people waking up in test-chambers in a underground laboratory
overrun with mythological creatures such as zombies, warewolfes and vampires, created by rogue
scientists on the goverments payroll, as well as the story of a special operations police officer
entering the laboratory complex along with his unit, to make an end to the illegal research taking
place there.

The game is played through the eyes of these three characters, switching back and forth between
them throughout the game, each with his/her own strength and weakness.

The game is a non-linear story driven game, where the players actions will have effect on both the
story and outcome of the game as well as what the other playable characters will have to do and
will be facing. Various scripted events can change the story of a character, dependant on what the
player has done when playing a previous character.

The players main objective in the game is to attemt to escape the underground complex for the test
subjects, while attemting to reach the core of the complex to destroy the entire laboratory for the
special ops officer. All while fighting off hordes of fabricated mythological creatures with
variuous melee weapons and firearms, and solving logical puzzles to reach their goal.

The setting of the game is in a unspecified english-speaking country, in the present. The whole
game will be played out in a sealed off underground laboratory, though this is a large complex
with everything from lab-areas, dining-areas, sleeping quarters and entertainment areas, etc.

The theme of the game is dark and frightening. The lab has been overrun with the creatures, so it
has seen a lot of damage and is now not in top condition, making varous paths in the laboratories
blocked and destruction to be seen everywhere.

The game starts with the first of the characters waking up in a test chamber sealed with glass and
bars on the inside. The chamber suddently gets jumped at by a warewolf outside, though the glass
makes it blured and unrecognizable. The warewolf hits through the glass and rips off the bars from
the inside, but to the side so that some glass still remains. While this is going on a person appears
in the door of the room and the warewolf gets more interested in him, jumping away from the
chamber and towards the door, with the man fleeing for his life. The character then has to get out

111

Appendix G: Design document

of the chamber, only to find himself trapped in a large underground complex with the only goal to
survive and see sunlight again.

Furthermore he finds and saves another test-subject, which is the second playable character, but
they get seperated and will have different paths to survive.

The government has realized that something is wrong in the complex and sends a team of special
ops to deal with it. Not realizing that it was as bad as this, almost the whole team got killed off,
though a small few survives. The player plays one of these survivors which gets seperated with the
rest during the attack where almost the whole team dies. Without any communications to the
outside, he decides to execute the emergency operation, which is planting a bomb in the core of the
laboratory to bring an end to anything left in the laboratory.

112

Appendix G: Design document

II. Game mechanics

Overview
The player will be playing one character at a time, playing the story from 3 characters, and thereby
3 different points of view. Which character the player will be playing will change at spesific
markers in the story. The playtime will overlap each other, making it so that you can see the
character you first played or is going to play later, from another one’s point of view.

The actions you perform while playing one character will effect characters you play later, such as
taking or leaving an item in a area, making it available or not for another character at a later time.
Killing or running from an enemy will decide if the next character visiting the area is going to
have to deal with it or not.

The game is played mainly through a 3rd person perspective, using a 1st person adventure
perspective for world interaction, and handling inventory items as well as examination and
combination of these in a “pause” menu. (Everything is descriped in details under later topics in
this section.)

The player will be able to walk, run, sprint, hit with melee weapons and shoot with guns, as well
as execute a dodge move, where the character dodges danger. Jumping will not be possible except
for scripted events.

113

Appendix G: Design document

Camera
The game will feature 3 different modes of camera, depending on what action the player is going
to perform.

The camera will be generally be placed in a distanced, semi top-down 3rd person view behind the
character, and will follow the character as he/she moves. This will be the default camera position
when exploring and moving in the game world. The camera will also be controllable up/down and
left/right around the front of the character (limited to not go behind him/her or directly down/up).

When the player wants to perform an action, such as attack with a weapon, the camera will zoom
in and change to a over-the-shoulder 3rd person view, and give a centered view in front of the
player.

114

Appendix G: Design document

When the player wants to interact with the world, the camera will zoom even further and go into a
1st person view from the character’s point of view. In this view the center of the screen will
function as a cursor to choose objects to interact with.

Action Mode
The player will enter the action mode (over-the-shoulder 3rd person camera view) when he is to
use attacks with various weapons.

A crossair or laser aim will appear for firearms or other ranged weapons, but not for melee
weapons. Melee weapons will still be moveable through aiming, but must be aimed without a
crossair.

The player will still be able to move the character, as well as move the aim for the weapon in this
mode. (See the Controls section for how)

115

Appendix G: Design document

Adventure Mode
The player will enter the adventure mode (1st person camera view) when he is to interact and use
items or objects in or with the world.

The middle of the screen will function as a crossair, which will notify when it is over and in range
of something to interact with.

When the player then chooses to interact with an item, an adventure menu appears, in which the
player can choose to interact by Hand, Foot, Eye or one of the Items currently in hands. The
interaction method is chosen by moving the analog stick in the direction of the method, and
confirming it with a choose button.

The second item is chosen by flipping the stick to the right twice. If only one item is held in hand,
or a two-handed item is used (like a shotgun), only one item will be shown here.

Example use:

• Hand: Pick up, Use, Open, Push, etc...
• Foot: Kick, Jump over, Step on, etc…
• Eye: Look at / Examine.
• Item: Combine / Use with world item.

The player will still, in the 1st person view be able to move the character and the 1st person view
camera as well. (See the Controls section for how)

116

Appendix G: Design document

Player Movement and Player Actions
Movement:
The player will be able to walk around in the world through controls described under Control
Summary. The player will be able to move forward, backwards and to the sides in all of the 3
different camera/view modes though the same controls. Though in 1st person and Action mode,
walking to the sides will be replaced with strafing and turning by aiming to the sides or moving the
1st person camera around will be needed to turn.

Running:
The player can choose to hold the run button while moving to make the character move faster than
when walking. This will make the character exhausted when used over longer periods.

Sprint:
When the player wants to get away from something or move somewhere really fast, he can hold
the sprint button while moving. The sprint will be the fastest available movement, but will make
the character exhausted really fast. (See Exhaustion section for further details)

Dodge:
By tapping the run or sprint button twice while holding a movement direction, the character will
perform a dodge move, which will be a small jump or toss of body in the movement direction held.
This can be used when the player gets too close or when an enemy is trying to hit or jump at the
character, to dodge the enemy’s attack.

Quick-turn:
By holding move backwards and clicking the run button, the character will perform a “quick-turn”.
This is a 180° turn to face the character in the opposite direction of what he/she was currently
facing.

Adventure-action:
When the player chooses an adventure-action in the adventure menu, and the action will feature
the character doing something, the camera will go back in 3rd person mode, showing an animation
of the character performing this action. This can be everything from opening a door, picking up an
item, pushing a button or moving an object.

Quick-action:
When the player does not have time to open the adventure menu, but is in need for a quick
interaction with a world item, such as opening a door or climbing a ladder, he/she can click the
quick-action button while close to the object in the 3rd person mode. This action will choose the
most common action for that specific object, such as open for a door, push for a button, look at for
a picture, pick up for an item on the ground and jump over for a gap.

Aim and fire/hit:
The player can aim by pressing and holding the aim button, and then move the aim with the
camera control, while moving the character with the movement control. In this “aim-mode”, or
“action-mode”, the player can fire or hit with his weapon by clicking the fire/hit button. Some
attacks will feature exhaustion if exhausting to use, such as melee weapon or a highly powerful
firearm.

Reload:
When the player runs out of bullets in his weapon, he can press the reload button once to reload his

117

Appendix G: Design document

weapon with bullets, shells or other projectiles in a controlled, but average speeded motion.
Reloading can be speeded up by constantly pressing the reload button fast (smashing it), which
will “speed-reload”, but will feature a high percentage chance of dropping bullets or magazine to
the ground.

Hotkeys:
Items can be placed on up to 4 hotkeys, which can be used for the player to change between items
or weapon currently held in hand. Which item or weapon is going to be represented for which
hotkey is customizable in an inventory menu. (Described in details under Inventory section)

In-Game GUI

The only in-game GUI that will be featured is a bloodvein-incapsled heart in the top left corner of
the screen.

Inside this half-circled GUI-object there will be an image of the current ammo-type of the weapon
the player is currently using, and a number indicator showing the number of bullets left in the
weapon.

Also, the heart is the game’s health indicator, and will gradually get a blackish color when taking
damage, and when fully consumed with this color, the player will die. The heart will be featuring a
small beating animation, which will beat faster when the player gets exhausted.

The vein encapsling the heart and ammo-indicator is a infection-status indicator, which when
infected will gradually fill itself with a “infection” color towards the heart. (More on the infection
status under the Infection topic.)

118

Appendix G: Design document

Health
When the player get hit by enemies attacks, such as bit, hit or shot, he will suffer an amount of
damage based on enemy and attack/weapon type.
(See Game Elements – Enemies section for detailed damage calculation)

Though there are ways for the player to replendish health, with various types of healing items
available throughout the play world, which heals completely, partially or temporarily, depending
on the item.
(See Game Elements – Items section for detailed healing items)

Infection
When the player gets bit by an enemy, there is a chance than he gets infected with that type of
infection of the creature that bit him. Its important to difference this from every attack, as the
infections will only happen though biting. The more he get bit, the faster the infection will spread.

There are 3 different infections; zombie, warewolf and vampire, each with a distinct difference in
color featured in the vein. When the player gets bit while not infected, he will be infected by the
type he is bit by. Though while infected by one type of infection, he is immune to both other
infections.

There are healing items and antidote items available for the user to temporarly halt or completely
stop the infection.
(See Game Elements – Items)

Exhaustion
When the character runs, sprints or uses a weapon by exhausting means, he/she will gradually get
exhausted. The exhaustion is kept track of and measured in 0-100%. This is shown to the player
through the heart rate of the animated heart in the in-game GUI. The faster it beats, the more
exhausted the character is.

Running will constantly gradually add exhaustion to the character.
Sprinting will also gradually add exhaustion, but at a much higher rate.
Weapon use will add a static amount of exhaustion at the point of fire/attack only.

The different characters will also have different stamina amounts. For example a small and
physically fit character will be more enduring than a muscular and tall character. Exhaustion will
also be calculated out of the amount of items the character is carrying, making him/her more
exhausted when carrying more.

119

Appendix G: Design document

The rates will have to be balanced in the end result, but the basic consequences will be as follows:

• Run speed gets lower by increased exhaustion.
• Sprint speed gets lower by increased exhaustion.
• Aiming gets more unsteady by increased exhaustion.
• Melee damage gets lower by increased exhaustion.
• 100% exhaustion will feature:

o Only able to walk.
o Almost no damage on melee.
o Extremely unsteady aim.

When walking, and not attacking, the exhaustion will gradually decrease. When standing still, it
will decrease even faster.

Ammunition and reloading
The ammunition indicator will show how many bullets/shells/projectiles remaining in the weapon
the character is currently holding. Total amount of ammunition will only be visible from within the
inventory menu. (see the next topic)

Reloading will be a bit slow, though not as slow as real-life, if the player is to reload with loose
bullets or other projectiles.

This can be speeded up in clip-loaded weapons by having pre-loaded clips. Clips with ammunition
will be prioritized before starting reloading manually.
(See Game Elements – Items section)

The reloading animation can also be speeded up the player constantly pressing the reload button
fast (smashing), which will “speed-reload”, but will feature a high percentage chance of dropping
bullets or magazines to the ground. Bullets will be lost, but magazines will be available to pick up
again.

If the player drops his last magazine, he will start reloading with loose bullets if available. If not,
he will have to pick back up the magazine (can be done by quick-action), and then start reloading
again.

120

Appendix G: Design document

Inventory

The inventory screen will feature a 3D model of the character in the top left corner, with the ability
to rotate and zoom on it. This model has a drag and drop ability (by the use of a cursor) of items
the character is currently carrying from any pocket or other itemslot to another. This will give a
limitation of carry capacity to the amount of pockets or containers the character posesses.

The model will feature a bit of animation, such as blinking, shrugging from time to time and a bit
of occational swinging, to give a non-static inventory screen.

Pockets and other containers will get semi-transparent when hovered over with the cursor, so that
the item can be seen more clearly.

Item slots:

• Pockets (1 for each pocket)
• Belt (1 front, 1 back)
• Shoulders (1 around each shoulder)
• Hands (1 in each hand)
• Neck (1)
• Head (1)
• Extra/addon slots such as; Knifestrap, Fannypack, etc…

To see what items that will be available to each slot, see the Game Elements – Items section of this
document.

Some items will also not be able to store in any chosen item slot. For example a rope or a shotgun
may not be put in a pocket, but must be hanged around a shoulder or held in hand. As well as a
gun may not the put in a chest pocket or around the neck, but in a pocket of the right size, the belt
or in hand.

The availability of an item will depend on the item slot you decide to put it. For example it will
take more time to pull out an item from your leg-pocket than from your front pocket or belt.

121

Appendix G: Design document

Up to 4 items can be hotkeyed to be placed in your hands in a menu on the inventory screen, as
shown in the figure. This hotkey feature will function the same way as if the item would be
dragged into the characters hand, but is for changing items/weapons in hand in-game.

Examining and combining items

By dragging one item over another in the drag and drop 3D model in the inventory menu, and
pressing the combine button, a new window will appear as shown in the figure.

In this window, one of the combination items will be the subject of the screen, with the ability to
rotate and zoom.

The subject will have different parts on it, reacting differently to operations. For example as in the
picture, examining the padlock will not be the same as examining the lid of the box. Using the
brick on the box will not provide any usefulness, but using it on the padlock will break the box
open. Thereafter you can use the lid to open it.

The player can here choose between 3 operations on the subject item, as follows:

• Combination item (The other item)
• Use/Operate
• Look at/Examine

The subject of the screen can also be swapped with the combination item.

By using an item without dragging another item over it, the same window till appear, but without
the combination item, making only use/operate and look at/examine the operations available on the
subject item.

122

Appendix G: Design document

Using items with objects in the world
As explained under Adventure Menu topic, two of the adventure-actions available through the
adventue menu will be either of the items the character is currently holding in his/her hands.

When this interaction is chosen, the player will combine the item he is holding with the item in the
world. This means that to use a item, such as a key on a door, the key has to be put in the
characters hands first, either through hotkey interaction or drag and drop in the inventory meny,
and thereafter used in the adventure-menu.

Maps
The game will have maps available to obtain throughout the game in the form of blueprints, fire-
escape plans, and such. These will be stored just as normal items and weapons are, and are
examined to view.

In addition, if the player obtains a pen, combining the map and the pen will feature free drawing
on the map. This can be used to mark locked doors, make notes or mark items of significance by
the player him/herself.

Also, blank paper found could be used to freely design a map by the player himself, or just simply
make notes in-game.

Flashlights
The game will feature various flashlight items (see Game Elements – Items section for details),
that provides different amounts and ways of lighting up the world around the character.

As the game is set in a horror theme, the general environment lighting will be dark, and the need
for flashlights or other light sources will be present.

The various kinds of flashlights consist of the following:

• Normal flashlights (yellow cone shaped light)
• Powerful flashlights (normal, but lights up further)
• Lantern light (360° light)
• Led light versions (blue, dimmer light)
• Sungun (uv-light for use as weapon against vampires)

123

Appendix G: Design document

Animations
When the character pulls out an item from a given item slot, there will be a different animation for
each item slot, making it appear as he is reaching inside the right pocket and pulling the item out.

This animation can be as small as moving the hand to the chest pocket and pulling out the item,
and as big as pulling a shotgun off the shoulder and into his/her hands.

The main point is a graphical reality of how the item/weapon goes from the itemslot and into the
characters hands.

Control Summary
Playstation3:

Common controls:
D-pad – Hotkeys
Left thumstick – Movement
Cross – Run
Square – Sprint
Cross + Back on left thumbstick – Quick-turn (180°)
Square + Square + Move direction – Dodge
Triangle – Inventory
Right thumbstick – Camera rotation

L1 (hold) – Action mode
L2 (tap) – Adventure mode

Start – Pause menu

Action mode controls:
R1 – Fire / Hit
Right thumbstick – Aim
Sircle – Reload

Adventure mode controls:
R1 or R3 – Open adventure menu / Choose adventure option
R2 or Square – Open adventure menu / Cancel adventure menu
Right thumbstick – 1st person camera / Choose option adventure menu

Inventory controls:
Left thumbstick – Character model rotation
L1 , R1 – Model zoom in / out
Right thumbstick – Cursor
Cross – Pick up / Move item
Sircle – Use / Combine item

124

Appendix G: Design document

PC (Mouse + Keyboard):

Common controls:
1 2 3 4 – Hotkeys
W A S D – Movement
SHIFT – Run
CTRL – Sprint
S + SHIFT – Quick-turn (180°)
E – Quick-action
Q – Dodge
F – Inventory
Mouse XY – Camera rotation

Mousebutton 2 – Action mode
TAB – Adventure mode

ESC – Pause menu

Action mode controls:
Mousebutton 1 – Fire / Hit
Mouse XY – Aim
R – Reload

Adventure mode controls:
Mousebutton 1 – Open adventure menu / Choose adventure option
Mousebutton 2 – Open adventure menu / Cancel adventure menu
Mouse XY – 1st person camera / Choose option adventure menu

Inventory controls:
W A S D – Character model rotation
Mousewheel – Model zoom in / out
Mouse XY – Cursor
Mousebutton 1 – Pick up / Move item
Mousebutton 2 – Use / Combine item

Saving
The game will feature saving at specific locations only. When the player uses specific save-
computers in the game, he/she will be able to save the game at these workstations.

There will be unlimited amounts of saves available, though.

125

Appendix G: Design document

Storytelling
The story of the game will mainly be played out through cut-scenes when reaching a spesific point
in the world, or executing a certain action. These cut-scenes will be pauseable and skippable for
the users own choice.

It is an important focus not to make these cutscenes longer than absolutely neccesarry, but still
captivating in the terms of interesting or excitement, so that the end-user does not get bored while
watching them.

Parts of the story will also be explorable throughout readable books, notes or other documents
found in the game. These will only be text that the player will have to read if he/she wants a more
in-depth explanation of parts of the story. This kind of storytelling will be addition, and will only
be optionable reading. The player will not have to go around reading everything he/she comes
over, unless they really is interested in depth history.

126

Appendix G: Design document

Difficulty levels
The player will be able to choose between the following difficulty levels at the start of a new
game:

Entertaining
(Easy difficulty)

• Enemies: Normal amount, 50% hitpoints.
• Weapons: Normal
• Ammunition: More available
• Healing items: More available
• Maps: Marked automatically with everything discovered.

Challenging
(Normal difficulty)

• Enemies: Normal amount, 100% hitpoints.
• Weapons: Normal
• Ammunition: Normal
• Healing items: Normal
• Maps: Marked automatically with key elements.

Realistic
(Hard difficulty)

• Enemies: Lots, 150% hitpoints.
• Weapons: Rare
• Ammunition: Rare
• Healing items: Rare
• Maps: Not marked automatically at all.

127

Appendix G: Design document

128

III. Bibliography
Resources contributing to understanding the game mechanics, story or description.

Similar games or games with borrowed elements/features
Resident Evil 4
The controls and gameplay is much similar. Camera is similar in control and placement, but
should be placed further away from the character than in this game.

Cold Fear
The camera is very alike in shooting mode. Camera is similar in placement, but should be placed a
bit closer. The camera should be a middlething between RE4 and CF.

Condemned 2
The adventuremenu design is borrowed from the interactionmenu in this game. It is similar, but is
redesigned to get another look.

Mythological reading
How to fight off a zombie invation

Dracula

Warewolf

Movies
Dracula

Silver bullet

Night of the living dead / Day of the dead / Dawn of the dead (Original movies)

Appendix H: DVD content

H DVD content
The following is included on the DVD marked "All content" which is included in the report
(Folder names in bold):

Code
Here all the project code we have developed is stored, both the for game itself and the level editor.

Code Documentation
Here the documentation generated with Doxygen for the project code is stored.

Documentation
Here this written report is stored, with all appendixes.

Presentations
Here some of the presentations we used for pitching the game for producer and at Hamar Game
Challenge is stored.

Release
Here a compiled version of the project is stored, which can be run without having to compile the
code.

Required files for running the release and instructions for this are located directly on the root of the
DVD.

129

	1 Introduction
	1.1 Report organization
	Chapter 1 - Introduction
	Chapter 2 - Project requirements
	Chapter 3 - Design
	Chapter 5 - Testing and quality assurance
	Chapter 6 - Installation
	Chapter 7 - Development process
	Chapter 8 - Discussion of results
	Chapter 9 - Evaluation of the group work
	Chapter 10 - Conclusion

	1.1 Project Description
	1.2 Group structure and organization
	1.2.1 Employer
	1.2.2 Supervisor

	1.3 Target group
	1.3 Purpose
	1.4 Our proficiency and background
	1.5 Frames
	1.6 Development environment
	1.6.1 Documentation
	1.6.2 Code development tools
	1.6.3 3D Modeling
	1.6.4 2D Art and sprite creation

	2 Project requirements
	2.1 Project guidelines
	2.1.1 Demarcation
	2.1.2 Appraisal

	2.2 Project analysis

	3 Design
	3.1 Design Summary
	3.2 Coding preparations

	4 Implementation, code and production
	4.1 Screen manager - Game State Management
	4.2 The game world representation
	4.3 Height map
	4.4 Collision
	4.5 The level editor
	4.6 Exportation from the level editor
	4.6.1 Exported files
	4.6.2 Exporting collision points
	4.6.3 Exporting the height maps

	4.7 Inventory screen
	Development of the inventory screen

	4.8 XNAnimation library
	4.9 Adventure interaction
	4.10 Scripting
	4.11 Camera
	4.11.1 Camera transition
	4.11.2 Camera collision

	4.12 Shaders
	4.12.1 Shader implementations
	4.12.2 Wrapping of textures

	5 Testing and quality assurance
	5.1 Planned test-group
	5.2 Testing and debugging
	5.3 Hamar Game Challenge - Preparations & Execution

	6 Installation
	6.1 Execution of the release version
	6.2 Browsing the project solution

	7 Development process
	7.1 Our usage of the scrum development process
	7.2 Work distribution

	8 Discussion of results
	8.1 Discussions / debates
	8.1.1 Results
	XNA
	2D collision detection
	Height maps

	8.2 Criticism of the thesis

	9 Evaluation of group work
	9.1 - Introduction
	9.3 Work distribution
	9.4 Project as a work form
	9.5 Subjective experience of the bachelor thesis

	10 Conclusion
	Resources
	A Terminology
	B Original Gantt chart
	C Real Gantt chart
	D Status reports
	D.1 Status report 1 - 12.02.2010
	D.2 Status report 2 – 12.03.2010
	D.3 Status report 3 – 23.04.2010
	D.4 Status report 4 – 29.04.2010

	E Meeting reports
	F Logs
	G Design document
	I. Overview
	II. Game mechanics
	Overview
	Camera
	Action Mode
	Adventure Mode
	Player Movement and Player Actions
	In-Game GUI
	Health
	Infection
	Exhaustion
	Ammunition and reloading
	Inventory
	Examining and combining items
	Using items with objects in the world
	Maps
	Flashlights
	Animations
	Control Summary
	Saving
	Storytelling
	Difficulty levels

	III. Bibliography
	Similar games or games with borrowed elements/features
	Mythological reading
	Movies

	H DVD content

