
BACHELOROPPGAVE:

Behaviour Logging Tool - BeLT

FORFATTERE:

Robin Stenvi

Magnus Øverbø

Lasse Johansen

DATO:
15.05.2013

Behaviour Logging Tool - BeLT

Sammendrag av Bacheloroppgaven

Tittel: Verktøy for logging av brukerinteraksjon Nr: -
Dato: 15.05.2013

Deltakere: Robin Stenvi
Magnus Øverbø
Lasse Johansen

Veiledere: Dr. Hanno Langweg, Associate Professor

Oppdragsgiver: NISlab, Høgskolen i Gjøvik

Kontaktperson: Soumik Mondal, soumik.mondal@hig.no

Stikkord Biometri, Interaksjonslogging, Tastelogging, Personvern, Windows-programmering

Antall sider:
395

Antall vedlegg: 8 Tilgjengelighet: Åpen

Kort beskrivelse av bacheloroppgaven:
BeLT er en applikasjon som logger hvordan en person bruker tastatur, mus og det
grafiske grensesnittet på en PC, i tillegg lagrer BeLT informasjon om hardware og
enheter tilkoblet pcen. Hensikten med programmet er å forenkle innsamling av data fra
flere brukere – når brukerdata er innhentet sender programmet disse sikkert til en server
for lagring. Dette er for å støtte NISlab sitt pågående forskningsprosjekt for å identifisere
unike brukermønstre i hvordan enkeltindivider bruker en datamaskin.

Vårt bidrag er utviklingen av BeLT og dens tilhørende klient-server arkitektur som
muliggjør å samle og analysere data i større skala. Vi har programmert en trans-
misjonskomponent for BeLT som benytter seg av RFC 5424(Syslog-protokollen) og
TLS(Transport Layer Security). Klient-server arkitekturen er skalerbar og serveren er
optimalisert for å ta imot og prosessere data fra BeLT. For å kunne passe inn i dagens
og fremtidens situasjonsbilde har vi gjort det mulig å lagre dataene på serveren i CSV,
XML og relasjonsdatabaser. Med sikkerhet i tankene har vi implementert sertifikater i
løsningen vår, ved å kodesignere applikasjonspakken og ved å ha et serversertifikat som
blir brukt ved transmisjon.

BeLT er forskjellig fra tidligere arbeider fordi det fanger opp interaksjon og bestemmer
når det skjedde i forhold til tidligere interaksjon – dette muliggjør å se på hendelser
som årsak-virkning. Virkninger er ofte endringer i skjermbildet, for å fange opp disse
endingene har vi brukt Microsofts UIA (User Interface Automation). Ved å korrelere
hendelser med hverandre åpner BeLT for nye måter å tolke data på – dynamikken i
hvordan mus og tastatur blir brukt kan kanskje bli belyst på en ny måte når man også
ser det i sammenheng med software?

ii

Behaviour Logging Tool - BeLT

Summary of Graduate Project

Title: Behaviour Logging Tool - BeLT Nr: -
Date: 15.05.2013

Participants: Robin Stenvi
Magnus Øverbø
Lasse Johansen

Supervisor: Dr. Hanno Langweg, Associate Professor

Employer: NISlab, Høgskolen i Gjøvik

Contact person: Soumik Mondal, soumik.mondal@hig.no

Keywords Biometrics, Behavior logging, Keylogging, Privacy, Windows programming

Pages: 395 Appendixes: 8 Availability: Open
Short description of the main project:
BeLT is an application that captures mouse, keyboard and GUI (Graphical User Inter-
face) interaction on a computer, it also provides information about the system state
and hardware peripherals. The purpose of BeLT is to simplify data acquisition – after
capturing data on a client BeLT sends it securely to a central server for storage. The data
is planned to be analysed to develop a new way of finding distinct signatures in a users
interaction with a computer. This development is currently a part of NISlabs research in
biometrics.

Our contribution is the development of BeLT and a client-server architecture that
makes it possible to gather and analyse data sets in a larger scale. We have programmed
a transmission component for BeLT that communicates with a server based on RFC5424
(Syslog protocol) and TLS (Transport Layer Security). The client-server architecture
is scalable and we have optimized the server to handle and efficiently store the data
received from BeLT. In order to meet current and future needs we have made it possible
to store the data in CSV, XML and relational databases. For security purposes we have
implemented certificates to ensure that both the application and the server communica-
tion is secure, by codesigning BeLT and by verifying the server identity before sending
data from BeLT.

BeLT is different from previous research projects because it captures interaction
and correlates it with previous actions – this makes it possible to look at the data in a
cause-effect perspective. Many of the changes on a computer is visible on the display,
we have managed to capture this by using Microsofts UIA (User Interface Automation).
By putting BeLTs captures in relation to one another, we open up for new research
possibilites – analysing keystroke and mouse dynamics correlated with GUI interaction
can possibly uncover currently unknown user patterns.

iii

Preface

BeLT has been developed by three bachelor students from Gjøvik University College in
the spring of 2013. This project has been done to support NISlabs research on biomet-
ric signatures based on human behavior with a computer. We have put an effort into
programming a secure, stable, efficient and correct program. We have also focused on
making a secure client-server architecture.

First and foremost we want to thank Soumik Mondal and his supervisor, Professor
Patrick Bours, for their support and open-mindedness, they listened to our suggestions
and always gave us essential feedback. We want to thank our supervisor, Associate Pro-
fessor dr. Hanno Langweg for pushing our goals and for providing invaluable advice on
how to approach the project.

Other people we want to thank are:

• Dr. Erik Hjelmås for loaning us the virtual server that we used for testing and imple-
menting the server-side of BeLT.

• Professor Rune Hjelsvold for priceless information on how we best could design the
database to handle a continuous and possible large stream of data.

• IT-department at GUC for giving us advice on how to apply for digital certificates.

v

Magnus Øverbø
 Lasse Tjensvold Johansen Robin Stenvi Magnus Øverbø

Magnus Øverbø

Contents

Preface . v
Contents . vii
List of Figures . ix
Code snippets and scripts . ix
List of Tables . x
List of Abbreviations . x
Glossary . xi
1 Introduction . 1

1.1 Background . 1
1.2 Project objective . 3

2 Requirement Specification . 5
2.1 Functional requirements . 5
2.2 Operational requirements . 5
2.3 Graphical design requirements . 6
2.4 External requirements . 7

3 Theory and technology . 9
3.1 Application . 9
3.2 Development . 14

4 Design . 17
4.1 Architectural design . 17
4.2 Implementation view . 17
4.3 Logical view . 19
4.4 GUI design . 24

5 Implementation . 31
5.1 Application . 31
5.2 Server . 35
5.3 Development . 41
5.4 Algorithms . 44

6 Testing and analysis . 51
6.1 Tests on client . 51
6.2 Performance optimization on server . 55
6.3 Server testing . 57

7 Privacy . 71
7.1 Anonymity of the user . 71
7.2 Confidentiality . 72
7.3 User awareness . 72
7.4 Abuse by authorized personnel . 73
7.5 Abuse by un-authorized personnel . 74
7.6 Transparency of logged data . 75
7.7 Storage of data . 75

vii

Behaviour Logging Tool - BeLT

8 Conclusion . 77
8.1 Achievements . 77
8.2 Requirement specification and results . 77
8.3 Future Development . 80
8.4 Alternatives . 81
8.5 Evaluation of group work . 81

Bibliography . 83
A BeLT: System Manual . 87
B BeLT: User Guide . 141
C Windows application certification . 149
D Scripts . 153

D.1 Python script to calculate time statistics 153
D.2 Python script to measure mouse compression on file 153
D.3 Python script to paint mouse movements from file 155
D.4 SQL procedure for inserting data into database 156
D.5 Script to insert data into indexed database 158
D.6 Bash script used to run the servertest . 159
D.7 RAW part of Syslog-NG configuration file 160
D.8 CSV part of Syslog-NG configuration file 160
D.9 XML part of syslog-NG configuration file 161
D.10 Syslog-NG for database storage . 162
D.11 Bash script for inserting data into database 162

E BeLT: Source Code Documentation . 163
F BeLT: EULA example . 371
G Work Log . 373

G.1 Work activity documentation . 373
G.2 Progress log . 374
G.3 Meetings . 376

H Preliminary project . 380

viii

List of Figures

1 Implementation scheme of system architecture 18
2 Logical view of the client application . 20
3 Logical view of the server application . 22
4 Initial system tray design . 25
5 Finished system tray design . 25
6 Initial application GUI design . 26
7 Final window view design . 26
8 BeLT GUI: Settings dialog(Basic/All settings) 27
9 BeLT GUI: Display settings dialog . 28
10 BeLT GUI: Send local file dialog . 28
11 BeLT GUI: About BeLT dialog . 29
12 Mouse compression with 30 % of original dataset 45
13 Mouse compression with 19 % of original dataset 45
14 Mouse compression with 14 % of original dataset 46
15 Mouse compression with 11 % of original dataset 46
16 Depiction of our server test setup . 59
17 Flow chart for how the testing was performed 60
18 Percentage of time spent idle when using raw mode 67
19 Percentage of time spent idle when using CSV 67
20 Percentage of time spent idle when using XML 68
21 Percentage of time spent idle when using database 69
22 ER-model of our database system . 69
23 Percentage of time spent idle when using indexed database 70
1 Graph of summarized work effort . 373

Code snippets and scripts

5.1 Mouse compression algorithm . 45
6.1 C++/pseudocode for time granularity testing 53
6.2 Section 1 of logging program for time granularity testing 53
6.3 Section 2 of logging program for time granularity testing 53
6.4 C++/pseudocode for generating key events on second test 54
6.5 Relevant part of syslog-ng.conf file . 56
6.6 Select all session without a ”stop” event 64
6.7 Select all distinct user ids from sessions without a stop event 64
6.8 Check if anyone are missing multiple sessions 64
6.9 Check if the session without ”stop” event is the last session 64
D.1 Python program to calculate time statistics on input file 153

ix

D.2 Python script to test mouse compression on files 153
D.3 Python script to paint mouse movements on a graph 155
D.4 SQL procedure for inserting data . 156
D.5 Indexed database script . 158
D.6 Script at the server used for testing performance 159
D.7 raw part of the syslog-ng.conf file . 160
D.8 CSV part of the syslog-ng.conf file . 161
D.9 XML part of the syslog-ng.conf file . 161
D.10 Syslog-NG config for databse storage . 162
D.11 Bash script for inserting data to DB . 162

List of Tables

1 List of events retrieved from Windows hooking 10
2 Status indicators for system tray . 25
3 List of application tested with UIA, and our experiences 32
4 List of events gathered with UIA . 33
5 CSV format for BeLT system-messages . 37
6 CSV format for mouse events . 37
7 CSV format for software events . 38
8 CSV format for key events . 40
9 CSV format for hardware messages . 40
10 Table of events and their corresponding relationship 48
11 Summary of our performance test . 51
12 Output from performance test . 57
13 Summary of our test results. 65
14 Number of losses within each hour long test 66
15 Requirements completed or not fully completed 79
1 Summary of Microsoft’s app certification reqs. 151

List of Abbreviations

ACE Access Control Event

ACL Access Control List

API Application Programming Inter-
face

BSD Berkeley Software Distribution

CI Continuous Integration

CIA Confidentiality, Integrity and
Availability

CPU Central processing unit

CSV Comma Separated Values

EULA End User Licence Agreement

FIFO First In First Out

FQDN Fully Qualified Domain Name

GUC Gjøvik University College

GUI Graphical User Interface

x

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Se-
cure

HW Hardware

IDS Intrusion Detection System

IP Internet Protocol

LTS Long Term Support

MD5 Message Digest 5

MITM Man In The Middle

MSAA Microsoft Active Accessibility

NISlab Norwegian Information Security
laboratory

OS Operating System

OSE Open Source Edition

RAM Random-access memory

RFC Request For Comments

SAR System Activity Report

SDK Software Development Kit

SHA Secure Hash Algorithm

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

UAC User Account Control

UDP User Datagram Protocol

UIA User Interface Automation

WiX Windows Installer XML toolset

XML Extended Markup Language

Glossary

childs All elements one level below the current element in the tree 9

descendants Childs and grandchilds of the current element in the tree 9

hierarchical tree A data structure used to represent information by linking together
several nodes 9

infinitesimal Number so small that we can’t measure it 71

parent The element above the current element in a tree 9

siblings All element which is on the same level as the current element. 31

terminal based applications All applications that uses a text based interface, where you
can write commands 33

xi

1 Introduction

Our assignment was to deliver a tool to NISlab (Norwegian Information Security labo-
ratory) , a whole package that could help them capture user data for use in biometric
experiments. We have used an incremental system development model with iterations of
two weeks. In our pre-project we defined goals for each week, with a total slack of one
month at the end. We used the slack time solving unforeseen challenges and to improve
the thesis report.

The audience of this report are those who are going to use or develop BeLT in the
future, because this report serves as a complete documentation of what we have done
and the theory behind it. Some interesting parts of the report is how to capture behavioral
information in Windows, how to build a Windows Installer with WiX and how to securely
implement a logging service.

1.1 Background
In this section we will discuss the background for this project and previous work related
to it.

1.1.1 Project background
Soumik Mondal is working with an algorithm that can recognize unique patterns in how
a user interacts with a computer. This algorithm is part of a research project where the
goal is to continuously authenticate users based on their behavior and interaction with a
computer. This work is part of Soumik Mondal’s PhD project for NISlab.

To create this algorithm it is necessary to analyse a large amount of information about
multiple users regarding how they interact with their computers. This data includes key-
presses, mouse interaction and software interaction. When a user performs a task on a
computer there are multiple ways to do the same task – for example the user can use
keyboard shortcuts instead of clicking on objects on the computer or vice versa. We need
an application that can see the context in how the user acts. When the user does a mouse
click for example, the program should capture what was clicked, where it belonged to
and the effect of this action.

It is important that the information we gather reflects the natural behavior of the users
because we want to differentiate them. If the gathering of data was done in a controlled
environment with only one type of computers, the test users wouldn’t use the computers
completely with their own preferences. There was a decision to make an application that
could log behaviour directly from a personal computer, in the users natural habitat. This
is the main reason why the BeLT is built for Windows, because most users use it. By doing
this we are certain to obtain the most natural type of behavior.

Because the program runs on personal computers, there is a need for a transmission
service to gather the data and this has been an important aspect of our project. Finally,
we should ensure unobtrusiveness – BeLT should be easy to install and should not bother
then user when it’s running.

1

Behaviour Logging Tool - BeLT

1.1.2 Previous work
There has been done substantial amount of previous work to capture mouse events[1, 2,
3], in most cases this is used to identify user activity with the goal of enhancing the user
experience. The previous papers are written with web applications in mind and focus on
visualizing how someone interact with a web application.

Some interesting points in [2], is the way to analyse mouse events, and the theory of
how to infer abstract information from concrete information. They have divided it into
four groups:

Small and concrete: Information you can infer directly from looking at the data.

Small and abstract: Information you can deduce by looking at the logs. Like something
you think the user did because of a series of events.

Large and concrete: Certain information about a group of events.

Large and abstract: General information about the user.

RUI[4] is a program written in C# for Windows and Carbon Framework for Mac OS
X. The program only store keyboard interaction and mouse interaction. It does not store
any interaction with software. One noteworthy piece of information is how much data
they saw on mouse movements. With heavy use of the mouse, it could be around 22
KB/m, but with continuous movements it could be as much as 156 KB/m.

AppMonitor[5] is an application that stores user interaction to find out how the user
interacts with the computer. It uses Windows hooking to capture mouse and keyboard
interaction and it uses Microsoft Active Accessibility to capture how the user interacts
with software. AppMonitor only supports Adobe Reader 7 and Word 2003. This work
is very similar to what we are trying to achieve and it has been a useful resource. The
software was available by contacting the authors, but we didn’t take advantage of this
opportunity, since we had a different approach to the problem and the article gave us a
nice overview of their methodology and experiences. Some experiences they had, which
we think is important to consider is; if the user could, in real-time, see what was logged,
they felt that the program raised few or no privacy concerns. They also reduced privacy
concerns by not logging any regular typing1.

USim[6] is an IDS (Intrusion Detection System), based on detecting anomalies in
human behaviour when interacting with a computer. This tool is specifically targeted
with graphical user interfaces in mind. It specifies several interesting aspects of how to
analyse the data, and what type of information you can deduce from the data.

WIDAM[7] is a monitoring tool implemented with Java and JavaScript, intended to
run in the browser. This tool is similar to our tool, in terms of goal, but it runs in the
browser which is quite different from what we are trying to achieve.

Something that is missing from all these papers are a generic way to capture be-
haviour information in Windows. Most only store mouse and keyboard interaction, App-
Monitor, which stores software interaction, only supports two application. This report
and our application will provide a way to gather information, both from input devices
and from all software.

1Keyboard typing that can be used to reconstruct parts of or the whole text

2

Behaviour Logging Tool - BeLT

1.1.3 Our background
We study at the bachelor in information security programme at Gjøvik University College.
In this program we learn programming, operating systems, database theory and informa-
tion security. The programme is similar to informatics and computer science bachelors,
but it is more focused towards information security.

In our thesis project we applied almost every aspect of what we have learned – we
have programmed an application, designed a database, worked with different operat-
ing systems and also applied security specific theory. The users privacy, anonymity and
integrity was important for us when we programmed BeLT.

1.2 Project objective
Effect objective
It is expected that the finished program should accomplish the following:

• Ease the process of gathering behavioral information.

• Collect more behavioral information, both from more users and in a larger timeframe.

• Collect more accurate information and place it in the correct context so that analysis
will be easier and more effective.

Result objective
The application shall be delivered by 15. May 2013 and should have the following func-
tionality:

• Collect keyboard interaction.

• Collect mouse interaction.

• Collect software interaction.

• Send and store the information on a central server.

• Export the information to a sensible format

Our task is to create an application that collects information about how the user
interacts with a computer. This information should be sent and stored at a central server.
Where it can be retrieved in an easy and understandable format.

Another part of our task is to investigate different methods of gathering information
about how the user interacts with applications. The method used should be generic, in
the sense that we should be able to gather information from unknown programs. This will
also guarantee that we don’t need to update the program when a new version of other
applications are released. If it’s not feasible to make a generic method, the application
should at least capture information from the following programs:

• Microsoft Word, Excel and Outlook.

• One or more PDF-readers

• One or more web-browsers

• Skype

The application should be designed a way that this list can easily be extended later.
The task can be divided into six parts:

3

Behaviour Logging Tool - BeLT

Collect keyboard interaction: Here we first need to investigate what is the best way to
capture this information. It is important that the times are stored with millisecond
accuracy. The method used must be effective and compatible on most Windows
platforms.

Collect mouse interaction: Here we have the same tasks as above, but we also have one
additional challenge. Mouse movements generate large amounts of data. RUI[4]
which was mentioned earlier stores about 22 KB/min just in mouse movements,
this data must be stored and sent across the network, a decrease in this value
would be beneficial.

Collect interaction with software: We need to find a method to detect the changes that
can happen in our software. Especially user actions that can be executed in different
ways should be distinguishable by the logs. This method should be generic and
work on all programs.

Store information: We first have to develop a format for storing the data. Then we need
a solution to transmit and store this data on a central location. This solution must
preserve confidentiality, integrity and anonymity in all phases.

Export information: We have to develop a useful format to present the data, this can
for example be CSV or XML. The format should be human-readable, not in binary-
format.

Risk analysis for use of application: We need to evaluate the possible risk by distribut-
ing this to multiple users, where everyone connects to the same server. We should
also present mitigating measure to handle this risk.

Another important area is the time granularity. When the user does something, the
timestamp of that event need to be as accurate as possible, down to milliseconds ac-
curacy. Clocks on computers are not made to be completely accurate and if you gather
a value that is measured in milliseconds, it doesn’t necessarily mean that it is updated
every millisecond. We also have to take into account differences between systems.

The project should also look into information security – threats and risks to the in-
formation gathered and user confidentiality and anonymity. Legal obligations set by the
Norwegian law should be identified and met.

Out of the project scope
• Analyse of the data captured

• Touchscreen support

4

2 Requirement Specification

2.1 Functional requirements
2.1.1 Data capturing
BeLT must capture when keys are pressed and released. It should also capture system
and specific program hot-keys. In the windows operating system there are some system
level hotkeys that invokes special system behaviour, such as the windows key or Alt+F4.
BeLT must be able to capture these with the exception of the Windows secure attention
sequence.

BeLT must capture at minimum events in form of movement, button press, button
release and interaction with the scroll wheel from the users mouse and touchpad.

Since Windows 8 is built for use with touch interfaces and touch gestures, the pro-
gram must be programmed so that any future development to capture this interaction is
possible.

The application must be able to distinguish between the different hardware(HW)
components(HIDs, devices and screens) connected to the computer. It also must be able
to capture when a change occurs on/with the HW.

Relative to mouse/keyboard capture the program should also capture what programs
that are used, and what buttons/icons that is pressed inside the program. In addition the
software should be able to log the CPU/RAM usage and any inserted/removed external
peripheral equipment.

The system must at a minimum be able to store the captured data in a CSV file format
depicted by the employer to meet his need for a file format.

BeLT must be able to correlate new events with past events and relate them to each
other based on where in the application it occurred and what type of event has occurred.
The relations we must identify is described in section 5.4.2 and in table 10.

BeLT has to capture information about as many applications as possible using a gen-
eral capture mechanism, but BeLT must be at the minimum able to capture information
from the following applications without problems.
• Internet Explorer

• Mozilla Firefox

• Google Chrome

• Adobe PDF Reader

• Microsoft Excel

• Microsoft Word

• Microsoft Outlook

• Skype

2.2 Operational requirements
2.2.1 Stability, accuracy and security
• To measure biometrics the accuracy of the logging is crucial. The program should log

events with millisecond accuracy.

• The system must have the capability to detect lost packets in retrospect.

• Transmissions and communication between the client and server must be secured.
This is to ensure the integrity and confidentiality of the data is maintained during
transmission.

5

Behaviour Logging Tool - BeLT

• BeLT is required to run on Windows 7 and later Windows OS.

• BeLT software should be signed with a code signing certificate issued by a valid cer-
tificate authority.

• There should be implemented mitigative measures to hinder a third party to pose as
another user by providing false input.

2.2.2 Runtime
• The program should run unobtrusive. By this we mean that the program should not

ask for user input when BeLT is not actively being interacted with. When the program
is not in active use it should reside in the system tray.

• BeLT should not crash/freeze at all during runtime in a way which may transmit or
project sensitive information.

• During transmission the loss of logged events can’t be greater than 1% of the total
amount of captured events.

• The system must handle several users, but it will be limited by physical networking
capabilities and server capabilities. There should be an estimation of the total amount
of users that the system are able to handle at the same time.

• The users must be anonymous and their ID must be persistent across sessions

2.3 Graphical design requirements
• Upon start BeLT should be hidden from the user and only be displayed through the

icon in the system tray. BeLTs GUI interface should by default not display any events.

• The user should be able to filter what data to show in the display field within the GUI
through BeLT.

• The user should be able to hide BeLT by clicking the minimize button and through
the menu bar.

• The logging controls for BeLT that should be implemented are ”start”, ”stop”, ”pause”
and ”resume”.

• BeLT must have a menu bar in the main window that holds items with the same
functions as the buttons in BeLT, in addition an ”exit” item, an ”About BeLT” item and
an item for the filter settings dialog.

• There should be a display field that shows the captured events in real time, based on
filters settings set by the user.

• BeLT must incorporate an icon in the system tray area. This icon must display the
current state of BeLT, are able to restore the window and control BeLT.

• The GUI should display some statistics about the users current session. It should
display statistics about the total number of mouse clicks and keyboard presses.

6

Behaviour Logging Tool - BeLT

2.4 External requirements
2.4.1 Legal requirements
The Norwegian law on privacy(Personoplysningsloven)[8] sets restrictions on many as-
pects when it comes to information gathering and processing. Even, though many of
these don’t directly apply to our project it is necessary for us to be aware and work within
the confinements of the law, which can is represented by the following legal paragraphs.

• According to §33 is no consensus from Datatilsynet (The Norwegian Data Protection
Authority) required to be granted if the data is voluntarily submitted to the collectors.
This is achieved by users accepting an EULA(End User Licence Agreement).

• §8 describes the ”Terms for processing personal information”. We are allowed to
gather the information based on it being voluntarily provided by the registered.
”Personopplysninger kan bare behandles dersom den registrerte har samtykket, eller...”
”Personal information can only be processed if the registered has voluntarily agreed to it, or...”

• §9 states one can gather this information if it complies with §8 in addition to one of
the elements in §9. We fall under §9 item a:
”a) den registrerte samtykker i behandlingen”
”a) the registered accepts the processing of sensitive personal information”

• §13, ”Information security”, states that one have to assure that there’s been taken ade-
quate mitigative measures to handle information security in terms of CIA(Confidentiality
Integrity and Availability). This has to be documented and provided to the respected
authority, the Norwegian Data Protection Authority[9](Datatilsynet).

2.4.2 Ethical Requirements
General ethical guidelines

• All attendants must be informed of BeLTs purpose and terms of use. They must also
accept BeLTs EULA before being allowed to use the application

• BeLT should be transparent when it comes to what it is collecting of information and
never hide what it is doing.

7

3 Theory and technology

3.1 Application
3.1.1 Software Interaction
UIA (User Interface Automation) is Microsoft’s API (Application Programming Interface)
to retrieve and send information to application. It is often used to automate tasks involv-
ing the GUI (Graphical User Interface). It is also used to provide accessible interfaces to
people with disabilities. It is supported on Windows XP SP3 and newer[10].

UIA[11] is the technology that has replaced MSAA (Microsoft Active Accessibility).
UIA provides some backward compatibility with MSAA and tries to eliminate the limi-
tation in MSAA. The design and goal of both technologies are the same, provide infor-
mation about the interface to the user and provide an opportunity to interact with the
provider application1.

The UI (User Interface) elements are organized as a hierarchical tree, called the UIA
tree. childs and parent of the three are based on processes, the root element is the desk-
top, its childs are usually applications, their descendants are UI elements in the applica-
tion, like a textbox, button and so on. Here we can gather names, contents and several
other useful bits of information. Another important part of our tool is the ability to sub-
scribe for events, here we have the ability to be notified whenever a button is pressed for
example[12].

When registering for events, there are four different categories[13]:

Focus change Event is raised whenever the user changes which element2 is in focus.

Property change This event is raised when the property of an element in the tree, or the
tree itself changes. Some examples are changing the text on a button or elements
in the three are rearranged. This happens indirectly because of something the user
did, but on small user action can generate a lot of property changes, this makes it
hard to correlate with the user action.

Structure change This event is raised whenever a change happened in the tree struc-
ture. This can be new button, new menu, close menu, anything that changes the
UI.

Other Events This is a large category and can mean many different events, some impor-
tant events are, button press, menu interaction, changes in edit fields and notifica-
tion when new programs are started.

Notification without change

There are some events that may be raised even if the interface has not changed[14], see
the list below:

1Applications that expose their interface are called providers, while application that retrieve and send infor-
mation to the provider are called clients

2An element can be anything the user can see.

9

Behaviour Logging Tool - BeLT

• UIA_AutomationPropertyChangedEventId

• UIA_SelectionItem_ElementSelectedEventId

• UIA_Selection_InvalidatedEventId

• UIA_Text_TextChangedEventId

This is not a big problem for us, but it is important to keep in mind that, even if we
log an event, it isn’t necessarily because of something the user did. We one register for
the last event, so the remaining should not cause any problems.

3.1.2 Keyboard and mouse interaction
From Microsoft’s documentation[15]:

A hook is a point in the system message-handling mechanism where an application can
install a subroutine to monitor the message traffic in the system and process certain
types of messages before they reach the target window procedure.

There are many types of messages we can intercept, but we are especially interested
in key presses and mouse actions.

Both mouse events and key events are divided into two categories, high level and
low level. High level is useful to understand how Windows interpret the message. For
example in high level we will receive a notification if there is a double click, while in low
level we only get two fast clicks, but don’t know whether it is a double click or not.

Information gathered with different Windows hooks
Information High level

key
Low level
key

Low level
mouses

High level
mouse

Timestamp N/A X X N/A
Press up / down X X X X
Scancode X X N/R N/R
Virtual key code X X N/R N/R
Context code X X N/R N/R
Transition state X N/A N/R N/R
Extended key X N/A N/R N/R
Injected X X X X
Number of key presses X N/A N/R N/R
Previous key state X N/A N/R N/R
x, y coordinates N/R N/R X X
Wheel N/R N/R X X
Handle to window N/A N/A N/A X

N/A - Not available, N/R - Not relevant, X - included

Table 1: List of events retrieved from Windows hooking

Table 1[16, 17, 18, 19] shows what kind of information we can get from various
hooks, divided into low level key and mouse hooks and high level key and mouse hooks.
X means available, N/A means not available, and N/R, means not relevant. Since mouse
and key events generate different data, not all information is relevant to both. This ta-
ble is meant as a reference for what interesting information we can get using different
methods, it’s not complete.

10

Behaviour Logging Tool - BeLT

We only get timestamp from low-level events, gathering an accurate timestamp is
crucial for the application, using low level hooks, makes this much easier. See section
6.1.3 for a discussion about time granularity.

Below is a description of each term:

Timestamp: Number of milliseconds since the system was started up.

Press up / down: Key pressed / released, or mouse button pressed / released.

Scancode: Value that says which key was pressed on the keyboard.

Virtual key code: Identifier that Windows uses for identifying keyboard buttons.

Context code: Says whether or not the Alt key is held down.

Transition state: Says whether the key was pressed or released.

Extended key: Says whether it is a function or regular key.

Injected: Says whether the key was computer generated or generated by a human.

Number of keypresses: If the key is held down, this will say how many is sent to the
OS.

Previous key state: States whether the key is up or down when the message is received.

x, y coordinates: Current placement on the screen.

Wheel: Information related to the mouse wheel.

Handle to window: Handle to the window that received the event.

When we use low level key or mouse hooks we need to process the message fast
enough, otherwise our hook will be removed on Windows 7 and later[17, 18]. How many
milliseconds we have to process the message is given in HKEY_CURRENT_USER\Control
Panel\Desktop. On systems earlier than Windows 7, the message is just passed to the next
hook.

3.1.3 Windows Certification Programme
Microsoft has a program for certifying applications and programs, when an application is
certified it is a proof of that it is stable, secure and that it meets the coding standards of
Microsoft. To see the entire document with requirements we refer to Microsoft’s webpage
[20] and to our similar checklist that you can find in Appendix C.

The highlights of this document is that the application should:

• Install and uninstall completely to and from the computer

• Respond to system messages in terms of restarts, system interaction

• Have a valid code signature

• The program should be able to distinguish users

• Be compiled with compiler security settings

11

Behaviour Logging Tool - BeLT

Tools for testing/certification

In the Windows Software Development Kit (SDK) [21] there is a tool called "Windows
app certification kit" [22] that analyses application briefly to see if it meets the minimum
requirements of the windows certification programme. To accomplish the analysis the
tool needs user interaction to install/uninstall the application. Under the analysis the
tool observers and analyses the process and behavior of the application being tested.

3.1.4 Package management
Windows installer

Windows Installer is the native installation and configuration service for the Windows
operating system. The Windows Installer is a relational database that contains all the
information relevant for an installation – where the most relevant information is:

• Program files and where they should be installed

• Registry entries, the WI can edit the Windows Registry

• Shortcuts

• Merge modules, some programs may rely on DLLs providing special functionality.
Merge modules is a DLL package that is compatible with different versions of the
Windows operating system

The extension format for the installer is .msi, this naming convention applies to all ver-
sions of Windows. [23] [24] [25]. Orca is a tool [26] developed by Microsoft to edit and
view MSI-files, by using Orca it is possible to understand and test more specific parts of
the Windows Installer if that is needed.

To create a Windows Installer we used the WiX Toolset (Windows Installer XML), WiX
is described in the WiX section of our manual in appendix A.

Windows installer patch

A Windows Installer Patch is a package that contains the transformation between two
program versions. The extension format for a Windows Installer patch is .msp. The ad-
vantage of patching is that these files are smaller than the Windows Installer files, be-
cause they just contain the bits that are changed in a product. A clear disadvantage is that
patches only can change existing files and cannot introduce new files to the installation.
To introduce new files and other features you need an upgrade package (a Windows In-
staller package that removes previous versions and installs a new version from scratch).

Certificates

Digital certificates today often use RSA signatures. The owner of a certificate uses the
information inside the certificate to create a unique hash that is sent with the signed file.
The signature makes it possible for the receiver to verify that the sender is who he says
he is. As long as the certificate is keep secure, the user can be assured he knows who
created the installer package. [27].

3.1.5 Remote logging
One part of the task is to send the logs to a central server. There was really only one
requirement, it had to be encrypted. A secondary requirement, implied by other require-
ments, is that it has to be relatively fast. This leaves us with a lot of different possibilities,
the simplest might be to send complete files over the network. This will give us small

12

Behaviour Logging Tool - BeLT

overhead, since we can decide ourselves how much data is sent at any given time. It
also provides little functionality, since all the data is either in our own format, or in no
format. To avoid having to design the format ourselves we used a standard protocol for
the transfer, RFC 5424 (Syslog).

Log transport

RFC (Request For Comments) 5424[28] is the new standard for logging, as of March
2009, it obsoletes RFC 3164[29], which is the BSD (Berkeley Software Distribution)
Syslog protocol.

The format for the data is (space inserted for clarity): <PRI>VERSION SP TIMES-
TAMP HOSTNAME SP APP-NAME SP PROCID SP MSGID [SP SD-ID + (STRUCTURED-
DATA*)] [SP MSG]. Each field means the following:

PRI The priority value of the message, can be used set higher priority on some type of
messages. This value should be between 0 and 191.

VERSION The version number of the protocol, we use version 1, which is the only ver-
sion.

TIMESTAMP Date and time of the message, there are several options for accuracy here,
but we include milliseconds, as required. The format is: YYYY-MM-DDTHH:MM:mmmmZ,
where T is a separator between date and time and Z marks the end of the times-
tamp.

HOSTNAME This is usually an IP-address, Fully Qualified Domain Name (FQDN), or
hostname. This is not useful for us, so we use this field for unique ID which we
generate ourselves.

APP-NAME The name of the application that caused the message. This is only filled if it
is a software event, otherwise it is empty.

PROCID Should be the process ID of APP-NAME. Is empty unless it is a software event.

MSGID An ID to identify the message. We use this for session and event counter.

SD-ID This is an just an identifier for the structured data. If we create the ID ourselves,
it must contain ”@” somewhere inside the text.

STRUCTURED-DATA Here we can place data in structured format, each field has the fol-
lowing format: data=”qwerty”. The data field should be in seven bit ASCII, while
the information in quotes should be UTF-8. We can have several of these fields in
one message. Using this to send data, gives us more opportunities on the server,
when it comes to parsing and storing the data in a readable format. In other words,
we are placing the data in context, so any application can read the fields and un-
derstand the data, this also conforms to CEE (Common Event Expression)[30] re-
quirements for log transport.

MSG The format is UTF-8 or ASCII. Here we can write whatever message we want. If
the format is UTF-8, we must start the message with \XEE\XBB\XBF.

SP Space (0x32)

13

Behaviour Logging Tool - BeLT

So an example of a valid message is:

<191>1 2013-05-15T21:22:23.01234Z belt 12 B [b@1 log="start"] Started logging

Transport Layer Security

TLS (Transport Layer Security)[31] is a way to provide confidentiality and integrity to
data transmitted over an insecure network. We use version 1.1, even though version
1.2[32] is the newest version. The reason for this is that 1.2 is not supported in the
libraries we use.

The protocol can be divided into two layers, one is the handshake protocol and the
other is the record protocol. The handshake protocol is based on three properties:

1. Each peer can be authenticated.

2. Secure negotiation of a shared secret.

3. The negotiation cannot be altered without detection.

The record protocol serves as encapsulation of higher level protocols, it has the fol-
lowing properties:

1. The connection is private, where the symmetric keys are generated uniquely each
time.

2. The connection is reliable, the message must include an integrity check.

3.2 Development
3.2.1 Documentation
For all projects documentation is absolute necessary for those involved. We have divided
’those involved’ into three groups:

Developers For developers it is very important to have an in-depth understanding of
the application. Proper documentation will help them a long way acheiving this.
With documentation they can later refer to how the different entities of the appli-
cation works and operates in conjunction with eachother. The documentation for
the developer has to be easily maintained, scalable and easy to understand. For
software development – call graphs, information and comments about variables,
classes, objects and functions is invaluable information.

Users For the end user the information in the documentation should be superficial and
only tell about the end-user application of the system. telling how to use the appli-
cation.

Administrators need documentation that provides information about how the entire
system and is configured, communicates and works in an overall scenario. The
documentation should show all necessary information needed for the administra-
tor to maintain the daily operation of the system, configure it and also enough
information to identify/mitigate any errors that may occur.

The reason for documenting the source code is both for the current development
process and for any future development of the system. Without any documentation about
the system no one will be able to understand it in an efficient and pleasant way.

14

Behaviour Logging Tool - BeLT

When documenting the sourcecode there are applications that can assist us in creating
the document. In Microsoft Visual Studio it is possible to comment in XML[33]. There is
also a tool called Doxygen[34] that use certain keywords to index and gather comments
in a document, this is one of many open source tools.

3.2.2 Continuous Integration
CI(Continuous Integration) is the process of having a project where all participants add
their local edits to the a common storage repository as soon as they’re made. The common
storage repository is usually a version control system like Subversion or Git that provides
version control so the edits can be rolled back if needed.

This process results in a project where all participants have the latest version of the
project available at all times. Combining this centralized storage environment with a
build system provides the possibility to add automated validation checks on new edits
that a participant want to add. This could involve running a series of tests on the applica-
tion, performing a build of the project or another validation check that is necessary. The
result of this check can then be used to decide how to handle the new change. The build
system may then discard it, allow it, return an error, alert a dedicated person, upload it
to a bugtracker, or whatever the build system is configured to do.

The main difference between a version control system and a version control system
with continuous integration is small but very significant. A continuous integration system
should always contain a running version of the project in the repository. This is because
of the build system that will validate each new change to the project before adding it to
the repository.

A very big positive mark for CI is that the build system running in the background can
be used in many ways. One of them is to use it to show the current state of the application
and the result of the tests. This will be able to help with project management, since it
provides feedback on the process and current progress.

Though this is a very good system there is also a drawback, but this is questionable.
The drawback is that a CI system could potentially fail a participants check-in if it is not
compatible with the code that’s already been added. Even if the error is in another part
of the system. The big advantage on the other hand is that the system should always be
in a runnable condition when grabbing it from the the repository. Though it could be
errors in the repository if the build system allows the change.

3.2.3 Code analysis
Code analysis is the task of going through a systems source code in search of errors,
security flaws, design flaws and other errors/flaws that may exists within a system. There
are two main methods of doing this, first is code review, second is static analysis. These
methods have each their own drawbacks and advantages over the other, but both should
be used in every system development project where coding is involved. This will ensure
that the system is more secure, more reliable, has fewer code bugs, and has fewer design
flaws.

Advantages

Manual Code review is the task of manually examining a system’s source code in order
to discover security bugs, design flaws, coding errors and reliability issues. The task of
doing this is complicated and very much error prone when doing it without a systematic

15

Behaviour Logging Tool - BeLT

approach. The best way to handle a code review is to perform a risk analysis of the system
before starting the code review, since the risk analysis will depict in which parts of the
system is most critical to review. Another great advantage of doing code review is the
possibility to find logical flaws in the system, which automated tools are mostly unable
to do.

Static analysis was created since manual code review is a tedious and expensive task to
perform, one has developed automated tools to analyse the source code for errors. This
way of analysing the source code is great significantly reduces the problems that manual
code review has. First of all it reduces the time and labor cost of having an employee
manually going over the code looking for errors. In addition it makes the development
process handle software security issues in a much better capacity, since problems that
would otherwise go unnoticed will now be discovered.

Neither manual code review nor static analysis will do a perfect review of the system,
even together, but it’s necessary to implement both methods in a development process
because it will result in a better end product and less refactoring after the end product is
delivered.

Disadvantages

Manual code review is extremely time consuming and very expensive to perform in a
project. Therefore it should only be done in the key stages of the development process,
and only when using a risk analysis based approach to decide what to review.

The biggest drawback in this case is the person doing the review. Code review relies
entirely on the skills of the person performing the task, since its a manual task. This is
also somewhat true for static analysis, but it refers to the one that has to filter through
the false positives.

Static analysis’ biggest drawback is that it is mostly unable to discover logical errors. I.e.
IF(F>= SMAX) would be hard for a static analysis application to detect that it instead of
”>=” should have been ”==”. Even though it is possible to discover some logical errors,
it is very limited.

Another problem static analysis brings up is the amount of false-positives it yields.
This is a big consideration since there may be reported several hundred errors in a an
application, but only a fraction of these may be actual errors that cause poses a risk or
vulnerability.

The last problem is the ability to correlate the findings within each part of the system
to an overall state of the system to analyze communication between the modules. Some
tools are able to do this, but this is limited.

3.2.4 Bug Tracking
For all development projects where one have one or more testers, it is a great benefit
to use a bug tracking system instead of emails, because emails causes a decentralized
environment.

Bug tracking is in its simplicity a system where product testers can submit the errors
they have found in a product. Bugtracking software is very useful for keeping a record of
how much time that is used for fixing bugs, keeping a record of what needs to be done
and also a record of future work. Bug tracking are often available to everybody so that
everyone can get a current picture of the development.

16

4 Design

4.1 Architectural design
For our architectural design we were set on having a client server architecture from
the start because of our projects description. Our project description required that we
developed a system where a client based application first ran and stored all data locally to
correctly formatted files. Then we would expand this solution to incorporate a centralized
storage system which only our employers would have access to.

Since our application is a client based application which incorporates gathering data
on the local computer meant our final client server architecture was going to be a thick
client which controlled everything, and a server that received and stored the data.

Our application is forced keep the functionality on the local computer since it utilizes
functionality that derived from the client. The server is a thin client which performs data
storage and data management. The only part of our application that is not on the client is
the update service which is partially placed on the server where it keeps the information
about our current releases and previous versions updated and available for the client.

Within the client server relationship model from Gartner Group we can see that our
system utilizes a very client-centric architecture. BeLT is placed in the ”Distributed Data
Management” relation where the server handles data management and the client handles
all of the functionality, logic and presentation. BeLTs server will manage storage and
management of the stored data by converting data between formats. The client will
collect all the information, present an interface and data to the user along with storing,
formatting and correlating events. Because of this is the data management distributed
onto both the client and the server. The servers data management process is to receive
the data and store it securely on a centralized platform. Here we store the files generated
by Syslog-NG into a directory belonging to the client that sent the data. Later on we have
a scheduled task that performs an import of the stored data to the database on the server.

4.2 Implementation view
For our development we used a virtual machine running Ubuntu 12.04 server distri-
bution. Because of GUCs network topology we had some problems when creating our
log server and update server. This is because GUCs(Gjøvik University College) network
topology were blocking standard port numbers, which forced us to use non-standard
ports when implementing our server.

Though this was no problem for most of our services it caused a problem for our
Bugzilla bugtracking system. Because of this wouldn’t sendmail work, to fix this we im-
plemented a perl module that enabled us to use Gmail and a Gmail account to send/re-
ceive mail instead. During our entire development process we used the same virtual
machine for our update server and our logging server, but in future implementations it
should be implemented as two separate hosts to avoid any performance issues.

Since we are collecting and transmitting highly personal and sensitive information
across public and insecure networks we had to implement countermeasures to ensure

17

Behaviour Logging Tool - BeLT

the confidentiality of our data. To do this we generated certificates and applied for our
own server certificates which is trusted by TERENA. With these certificates, based on a
2048b key, we implemented TLS encryption on all traffic between our server and the
clients. We also implemented encryption between the update server and the users using
the HTTPS protocol.

The data transmitted between the client to the log server is a TLS encrypted data
packet. Inside this packet we have formatted our data according to the Syslog protocol
in RFC5424. This way it can safely traverse the Internet without the data being read
by a third party. This communication channel is mainly a one way communication line,
from the user to the logging server. The only communication transmitted back to the user
is standard TCP and TLS communication to maintain the connection. When the server
receives the communication from the client it performs the stages as explained in section
4.2.3.

Figure 1: Implementation scheme of system architecture

4.2.1 Client application
The client application builds on several aspects and functionality. We are capturing mouse
and keyboard interaction by using a Windows hooking functionality. To capture software
events we are using the functionality that resides within UI Automation, see 5.1.1.

Because we want the user to be able to control BeLT we have given our GUI(Graphical
User Interface) the ability to control the application. The GUI will start, stop, pause and
resume the logging functionality and process the data according to its settings configura-
tion. As a part of our application we have implemented TLS encryption on our communi-
cation between the client and server. To add this functionality we have use the OpenSSL
API to create, initiate and maintain our connection to the server.

During our development process we created a start-up sequence of BeLT which would
access a file on our update server which would tell what the newest version number is.
Based on the retrieved information BeLT would either download and update itself or

18

Behaviour Logging Tool - BeLT

skip the update sequence. The update procedure is further described in section 4.2.2,
but since our project won’t be regularly maintained after our projects final release, the
update functionality will be disabled.

4.2.2 Update server
For BeLT to update itself, it has to communicate with a server that maintains information
about which releases that has occurred in the past and what the current version is. Our
update server maintains two separate lists, first is the file containing the version number
for the latest release. The second is a list over all patches that has occurred.

BeLT first reads the current version number from the list, then checks to see if its
own version number matches. If it matches BeLT will continue as normal, but if it has a
version lower that the latest version BeLT will continue by reading the second file. This
list contains the patch history which means that it will have to read the file until it finds
the version it is currently on. When this happens it will download, either the 32-bit or 64-
bit executable and execute the installer, thus initiating the installation process without
any user interaction. During this update the user should not be bothered and it should
happen with as little interaction as possible.

To manage access to these files our server runs a Apache2 webserver where we’ve
added these two files in the root of the belt servers web area.

4.2.3 Logging server
Our logging server is a standard Ubuntu server running Apache2 as the webserver,
MySQL as the database service and Syslog-NG for our logging service, see figure 3 for
the logical view of the server.

First and foremost it runs the Syslog-NG server that receives and stores the data from
the client application. The server receives the encrypted data packets from the clients and
decrypts it using the issued certificates. Then Syslog-NG creates a new file or appends the
data to an existing file using the predefined file format in the Syslog-NG configuration
file.

Then it in addition to the Syslog-NG service it runs a scheduled Cron task which
executes our Data import script which inserts data to the MySQL database at specific
times. Then it also contains the data export script that export data into a CSV formatted
file for our employer. The logical view of the server is explained in in section 4.3.2.

4.3 Logical view
4.3.1 Client
Figure 2 shows a logical view of the client, the yellow boxes indicate components and
arrows indicate information flow.

As you can see from the figure, information flows mostly in one direction, the graph-
ical user interface sends events to data capturing and update service. The update
service runs by itself and update if needed. The data capturing part runs by itself and
sends any data it collects to data processing. Data processing can send data back to
the user interface and to the transmission component. The transmission component is
responsible for sending all the logs to a central server.

19

Behaviour Logging Tool - BeLT

Figure 2: Logical view of the client application

Graphical User Interface

This is the view presented to the user. The program is supposed to run in the background,
with very little user interaction, so the design is very simple. We have configured some
simple option that can be set by the user, but this is not necessary, it is only there so the
user can see what is going on. The user also has the option of storing data locally before
sending it through the server. The user can then decide if the data can be sent to the
server or, if it should be deleted or if certain timeframes should be excluded.

The GUI consist of six sub-components:

System tray: This is meant as the real display for the user. The user shouldn’t have to see
anything more than this icon, unless the user want to. This icon will change colors
when the application is stopped, started, paused or have detected a password field.

Window view: This dialog is hidden by default, but the user can display it to show what
is going on.

BeLT settings: Main settings are what kind of storage to have, can be one of three op-
tions, local CSV files, local network files that can later be sent to server, and send
concurrently to the server.

20

Behaviour Logging Tool - BeLT

Display settings: If the user want to see what is logged, in real time, here he can chose
what to display. Nothing is displayed by default.

Send local file to server: We keep track of all network files that has been stored locally.
In this dialog, the user has the option to delete these files and send them to the
server, optionally filter out certain timeframes.

About BeLT: This dialog provides some minor information about BeLT. It states some
information about BeLTs purpose and functionality and a required text to comply
with our use of OpenSSL.

Both the system tray and the main dialog serves as entry point to the main function-
ality, like start, stop, pause and resume.

Data capturing

This is where we collect all the necessary data. It runs on six separate threads, but can
be divided into four logical components:

Keyboard interaction We use a Windows hook to gather information about how the
user uses the keyboard. See table 8 for information about what type of information
we store.

Mouse interaction We use a Windows hook to gather information about how the user
interact with the mouse. We have also implemented mouse compression in this
part, for a full discussion on the mouse compression, see 5.4.1. For a full overview
over what type of information we store, see table 6.

Software interaction This is where we try to find out what happened when the user
pressed a key, moved the mouse, or something similar. We monitor all the appli-
cations for certain type of events. Whenever we receive an event we send it to
processing. See table 7 for a full overview of what we capture.

Hardware Here we gather some basic information about hardware that helps put the
remaining data in context, like screen size, mouse hardware, keyboard type. We
also gather average CPU and RAM usage. See table 9 for a full overview of what
we store.

Every single event has a timestamp attached to it, but the hardware and software
timestamp are generated by us, and we have not taken any precautions to make them ac-
curate. The timestamps in mouse and key events are given to us in the Windows function
and should have millisecond accuracy. See 6.1.3 for a full discussion on time granularity.

Data processing

Every single event that is registered is immediately sent to the data processing module.
The tasks for this module is to relate events, filter out unnecessary data and format the
data according to the format of the Syslog protocol.

The data processing module will when receiving events filter out unnecessary events.
This is because certain software events can generate several, equal events which we will
receive.

All mouse and keyboard events can be seen as input from the user and software events
can be seen as a consequence of that input. For later analysis it can be useful to know

21

Behaviour Logging Tool - BeLT

which events is connected with another events. Inside the data processing module we try
to find out how these events relate to each other. For a full discussion on how we do this,
see 5.4.2.

The data processing module receives all its data as a structure containing event spe-
cific information. The data processing module is then responsible for correctly format
the data as described by the Syslog protocol(RFC5424). Because of this the data pro-
cessing module has to ensure that the formatted data is valid and understandable by the
receiving Syslog-NG server.

When the data processing module has finished processing an event, it is added to
our list in memory. When that list has reached a predetermined value1, we create a
new thread and send them all to the the transmission module. Each event is still sent
separately, but we are gathering all of the events stored in memory to avoid a delay, on
each event

Transmission

This module has the responsibility to set up an encrypted session between the client and
the server and send all the data to the server.

If we are unable to connect to the server, or we are unable to send an event, we will
keep it in memory. When we have reached a certain number of events, and we still have
not gotten a connection with the server, we will store those events to file, so they can be
sent the next time BeLT is started.

Update service

This module has the responsibility to make sure that the user is always running the
newest version of the application. It checks against the server if this is the newest version,
if not it downloads the new version and installs it. The update server is just a web server
with a CSV file with enough information so we can check if we have the newest version
and download new version if we need to. Since the application will not be in active
development when we finish the project, this part will be disabled.

4.3.2 Server

Figure 3: Logical view of the server application

1In our implementation it was 500 events

22

Behaviour Logging Tool - BeLT

Figure 3 shows the logical view of the server application. It can roughly be divided
into three parts, Syslog-NG, Data Import and Data Export.

Syslog-NG

We use an already existing product to receive, decrypt, parse and store the information
within the events we receive from the client. Our task in this is to find a productive way
to format, structure and store the data. This is to make it possible for our employer to
retrieve the stored information and perform the tasks he needs to perform.

To achieve this the stored data should be understandable the way it is stored, it should
have low overhead and a satisfactory low storage size. Because Syslog-NG implements
the Syslog protocol means we have to abide to their protocol format. This means that all
of our traffic has to follow their specific, and more or less fixed format. As a result we are
unable to retrieve our information correctly formatted directly from Syslog-NG which is
why we have implemented additional methods for processing the stored files to generate
our own correct file formats.

We are able to store the information received from clients to both CSV and XML
formatted files with Syslog-NG itself. The XML formatted files are used as input to the
data export method when importing data into the database using a scheduled task that
imports the data into a database. The CSV formatted files on the other hand is stored
and then parsed using a second export script that reads its information and converts all
of the events timestamps to a integer value displaying the amount of milliseconds since
the start of the users session.

Data Import

Because we wanted different formats we also had to be able to convert the formats into
the format used by our employer. One of the formats we wanted to use since the dataset
will become very large and may become slow to when performing searches. Since a
database is a very fast method of accessing specific data within a large set we decided to
implement this feature for future use, even though it wasn’t a requirement.

To import data it is necessary to store the data as XML. Because of this have we made
the import script perform two tasks dependant on what the user wants.

1. Transform Syslog-NG XML into well formed XML with UTF-8 encoding(See next sec-
tion).

2. Take the well formed XML and insert it into an indexed database.

By importing the data to the database are we making it easier to create and manage
a large data set. This will make it a lot easier to perform statistical information gath-
ering and correlation, i.e find out what a users most typed button is or his most used
application.

More information about the script is described in the ”Database” section of our system
manual, Appendix A.

Data Export

We have created three scripts that export and converts the stored data into a more us-
able format than it’s original. Our first script transforms data from the CSV-format stored
by Syslog-NG into a CSV-formatted file. This is because the files generated by Syslog-
NG contains timestamp values in the format ”2013-05-15T12:00:00.0123+00:00”. The
timestamps has to be changed to a numerical value that represents the time in millisec-

23

Behaviour Logging Tool - BeLT

onds after the the session has started – since it easier to analyse for our employer.
The second script performs the task of converting our information stored in the

database to a CSV formatted file with correct timestamp values. This script will retrieve
the data from the users sessions, either by retrieving all or specifying which users and
sessions to export.

We export to CSV because this is the format that is our employer will use during his
analysis. After some time it might be more efficient to export data from the database
storage – because it can be indexed for faster retrieval of specific elements. See the
system manual(Appendix A), to see how we have used the indexes.

The third script is actually the first sequence of the import script. This script requires
that Syslog-NG have store the data in the XML format. This script will convert the files
generated by Syslog-NG into a new XML file with the same data, but it will convert it to
UTF-8 encoding before trying to escape any unwanted characters like ”&” by replacing it
the escaped character symbol ”&”. This is because an XML file with invalid charac-
ters stored will not be well formed, and by converting the file along with escaping certain
characters we ensure that our files are well formed.

4.4 GUI design
Since our application is running unobtrusively on the computer, meaning it should never
get in the way of the users actual tasks. Because of this our main user interface is the
BeLT icon located in the Windows system tray. This icon provides subtle information
about BeLT’s current state and give the user information about its presence. We also
created a full window interface, because we wanted a user interface that could provide
the user with more option and show in real time, what information is logged. In the
following sections we’ll introduce the initial design and the final GUI of BeLT

Since a single icon is not satisfactory as a UI(User Interface), for the user, we have
extended it by adding an additional view for it. We have implemented a dialog that dis-
plays our ”window view” for BeLT, a larger interface with the ability to display captured
data in real time. It also allows for configuring some of BeLTs functionality.

4.4.1 System tray
Our initial design and final implementation for the system tray is quite similar, but with
a reduced number of items in the menu when right clicking the icon as seen in figure
5 as opposed to 4. We have kept the icons in the system tray unchanged, but removed
several buttons to let the user have an easier experience when using BeLT. In the final
version it has one button than interactively changes according to BeLTs current state.
If the application is stopped the button will read ”Start”, if BeLT is running ”Pause”, if
paused from running it will read ”Resume”. However the ”Stop” button will remain the
same under any scenario because the user must be able to stop logging completely at any
time.

Our menu also contain the ”Restore”/”Hide” item which based on whether BeLT is
currently hidden or shown. It will hide the application from the desktop and only show
BeLT through the icon in the system tray if BeLT is currently shown or restore it to full
view if it was hidden.

Both our initial and final design have four separate indicators that informs the user
about BeLT’s current state, see table 2. The red icon indicates that the capturing is turned

24

Behaviour Logging Tool - BeLT

all the way off, the blue icon indicates that BeLT is currently paused from logging by only
halted and not stopped. Green icon indicates that BeLT is currently running and capturing
events per normal behavior. The final and yellow icon indicates that BeLT has discovered
a password field and will censor all keypresses until the the user has left the password
field.

Icon status indicators
Color Sign Indicates
Green ”B” BeLT runs normally without problems
Blue ”B” BeLT is currently paused
Red ”B”’ BeLT is currently stopped
Yellow ”!” BeLT has discovered a password field

Table 2: Status indicators for system tray

Figure 4: Initial system tray design Figure 5: Finished system tray design

4.4.2 Window view
For our ”Window view” we needed two things; an area to display the captured informa-
tion and control buttons for start, stop, pause and resume the logging. Even though BeLT
is supposed to run hidden, we wanted to have a GUI that would help us with user ac-
ceptance since we are logging very sensitive information. We have illustrated our initial
window view and our final design in the figures below.

The window view was redefined quite a a lot. We started out wanting to list all the
processes logged in a field on the left side, mark 4 in figure 6. This would allow the user
to filter based on processes, but was abandoned because it would take too much time to
implement. We also abandoned it because our employer didn’t think it was necessary. We
instead chose to have one large information field inside the window where BeLT display
the data we’ve captured based on the users preferences. The display field show in the
final view the same as the field as indicated mark 3 of figure 6.

On our initial design we wanted four fields in the bottom of the application, mark 5,
6, 7 and 8. These would display different statistical data about the users actions since the
application was started. In our final version we implemented two fields in the top right
corner of our application which displays number of mouse and keyboard presses.

Since we abandoned our idea of process filtering, we chose to implement a filtering
mechanism that allows the user to select what keyboard and mouse events to display in
the information field. It is similar to the idea we had behind our two buttons(mark 1 and
2) in the initial GUI. The difference between this was that our initial mouse and keyboard
filtering was connected to the process filtering. This means they would filter keyboard

25

Behaviour Logging Tool - BeLT

event from the process chosen and either show or not show keyboard events or mouse
events. What we did in the final version is that the display field only shows keyboard and
mouse events. These events are also possible to filter in more specific manner by using
the ”Display Settings” dialog.

As seen on our initial GUI we had four different control buttons which also here are
implemented as only two which interactively changes its text and functionality. To main-
tain consistency with other Windows applications we’ve added all interactive elements to
our File menu, Settings menu and Help menu where we’ve implemented the interactive
fields and opening of dialogs. These additional dialogs are shown and explained in the
sections below since they weren’t any part of our initial design. They were implemented
out of need and functionality/requirements added throughout the development.

Figure 6: Initial application GUI design Figure 7: Final window view design

4.4.3 Additional dialogs
BeLT settings dialog

During our development process we had to initially store the data on the local machine
which we never removed because it became a necessary feature both for our self, our em-
ployer and the project. This helps us with upholding our need to maintain transparency
of what BeLT is collecting of information from the user. Later in the development process
we implemented the functionality to transmit the collected data to a centralized server.

So to let the user decide how to store their data, and set certain system settings we
created the ”Settings” dialog, figure 8. This dialog is split into two modes, first we have
the basic mode which lets the user chose to start BeLT automatically when the user logs
on. This feature is by default set to on, so the first time the program is run it will try
to create the shortcut. We have implemented this by creating a shortcut to our own
application within the ”Startup” folder within the windows start bar menu. Secondly it
allows the user to chose if BeLT should look for updates on startup by connecting to a
specified server, explained later, which is by default enabled.

The next option is an array of radio buttons which gives the user the ability to chose
how to store the collected information. This is the default method used to store the
collected information. Option number two is to temporary store the files locally until the
user itself chooses to manually transmit the files using the ”Send local file” dialog, see
section 4.4.3.

If option number two is to be chosen a warning will appear below the array of radio
buttons, which informs the user that the chosen storage method will consume a large
amount of storage space.

26

Behaviour Logging Tool - BeLT

The third option is to store the files as CSV formatted files. This option will render the
files unable to be transmitted to the server unless it is manually transmitted. This is the
end of the basic settings, by clicking the ”All settings” button the dialog will automatically
expand and display additional settings.

First of all the settings for the ”Logging server” which consist of the the ”Address” field
which must be either an valid IP-address or a domain name for the server. The ”Port” field
must contain the port number on the server that the Syslog-NG daemon listens to for TCP
communication.

The following three input fields is for the update service. This information specifies
the IP address or domain name of the server update server. In addition it also specifies
both which port numbers the update server utilizes for HTTP and HTTPS communication.

The button ”Reset to default” will reset all fields to their default settings and auto-
matically save the settings, the ”Save” button will save the current configuration and exit
the dialog. The ”Cancel” button however quits the dialog without saving any changes. By
saving the settings we ensure that the users customizations is permanent until changed
again.

Basic settings All settings

Figure 8: BeLT GUI: Settings dialog(Basic/All settings)

Display settings dialog

Because of our implementation of a display field inside the ”window view” interface we
wanted to let the user be able to choose for themselves what type of information BeLT
would display.

The ”Display settings” dialog, figure 9, utilizes an array of checkboxes that is inter-
active in the way that it will automatically checkmark the checkboxes connected to it.
I.e checking the ”All Key Interaction” box will automatically cause the checkboxes ”Key
Released” and ”Key Pressed” to be come checked and uncheck them if the checkmark
was removed. The same is the case with ”All mouse interaction” and ”Mouse Buttons”
which will check or uncheck all of its child elements when interacted with.

In addition one has the option to check or unheck all boxes. Even though we capture
much more information than just keyboard interaction and mouse interaction, we have
chosen to display only these two types of events. This is because the data gathered from
software events with UI Automation is not user friendly to view in any form and is not
easily understood. On the basis of this we have only implemented the methods for view-
ing keyboard and mouse events for the public release version of BeLT, even though we

27

Behaviour Logging Tool - BeLT

have the functionality in place in use for development purposes.

Figure 9: BeLT GUI: Display settings dialog

Send local file dialog

As part of our BeLT settings the user can choose to store their files locally before sending
them to the server manually. This dialog, figure 10, was designed and created to manage
this possibility. First of all, the left field, ”List of files”, displays all locally stored files that
has not yet been sent to the server and displays them by identifying them with the first
and the last timestamp of the session.

Figure 10: BeLT GUI: Send local file dialog

Below the file viewer we have a information field and two buttons, the information
field displays how many events the file contains. The ”Reload” button refreshes the file
viewer and append files that been created since BeLT first was loaded. The ”Delete file”
deletes the marked file in the file viewer from the computer.

The ”From” and ”To” timers on the top right is used to select a specific time interval
that the user can exclude from the locally stored file before sending it. This is very useful
if you i.e, know when you were performing a banking transaction that you wish to avoid
transmitting. Then you can specify the time interval and click the ”Filter timeframe” to
exclude it from the file when sending it. The display field below is automatically updated
when one adds a specific timestamp, and lists all currently excluded timeframes. The
button ”Undo timeframe filter” will remove the currently selected timeframe within the
list of excluded timeframes.

28

Behaviour Logging Tool - BeLT

The final two buttons are the ”Send to server” which takes the currently selected file
in the file list and transmits it to the server and displays the progress with the progress
bare on the bottom left. While this dialog is running and the user is transmitting files the
”Hide” button will hide the entire dialog to allow for the transmission of the file to run
in the background undisturbed.

About BeLT dialog

We implemented the standard ”About” dialog, figure 11, to BeLT in order to comply with
our use of the OpenSSL library. In addition it also gives us the opportunity to inform the
user of what BeLT is and what BeLT does. We’ve implemented a very short description
about BeLT here along with the current version number that is running. In addition
to stating what version is running, we remind the user that BeLT will capture and log
sensitive information about the user and store it on a centralized server.

Figure 11: BeLT GUI: About BeLT dialog

29

5 Implementation

5.1 Application
5.1.1 User Interface Automation
Because of the way this API works, we need to gather a lot of information, typically every
time an event occurs. To make this work fast, Microsoft has implemented caching[35],
with this we can save a lot of data while events occur and then retrieve it immediately.
This is an important part to make the program efficient.

Since we are retrieving events on the entire desktop, including our own application,
we need to make all UIA calls on a separate thread[36]. This thread need to be a non-
UI thread, which means that it should not have any UI elements, in practical terms, it
means that no user will ever interact with it, so we remove the threading issue. If this
is not done, the application can run slowly and in some cases, stop responding. What
complicates this further is that, when removing the event handlers, it need to be done on
the same thread that created it.

Application support

We can only retrieve detailed information from applications that support UI Automation.
But even if the application doesn’t support UIA, we can still retrieve some information.
We get events like pressing a button and opening of menu, regardless. The name will
then be what it says on the button or menu. We get other events also, but they may not
have a name, so we can’t necessary understand what is going on.

But we may be able to correlate, since they have an ID, called the ”AutomationID”[37]
that is unique among it’s siblings. The fact that it is not unique on the entire desktop
it’s not a big problem, since we can check between process, element type and element
tree. This identifier should be the same every time it’s run, but not necessarily the same
between different versions of the program.

The following is a list of applications that support UIA, it is not complete, as we only
check applications that we are interested in and we have available1. The tests are a basic
run-through of what we consider normal usage.

List over applications tested with UIA
Application Status
Microsoft Word, Excel and Outlook
2013

We receive the events we are looking for,
but the names are not always intuitive, espe-
cially when navigating through menu-bars.
Some events like zooming is only received
when using the buttons, most events are re-
ceived, regardless of how it’s accessed.

Visual Studio 2012 Professional Missing some events when using the editor
Continues on the next page

1The version numbers only indicates which versions we tested. We have no reason to believe that earlier or
later version are not supported

31

Behaviour Logging Tool - BeLT

Application Status
Firefox 18 We get all the regular events, but we don’t

any events that happen inside the web-page,
like clicking on a link.

Internet Explorer 10 Same as Firefox
Opera 12.15 We don’t receive events about switching be-

tween tabs, and we are unable to detect
password fields inside web pages.

Google Chrome 26 We get most events, but we are missing
names for most elements, and we don’t de-
tect if there is a password field or not.

Metro applications From our perspective, these application
work like any other applications, we can de-
tect when they are used and how they are
used.

Thunderbird 17 We receive most events, except for menu in-
teraction.

Skype Desktop version 6.3 We get the most basic information about
menu-changes and we can understand when
the person is talking and using Skype. But
we are missing a lot of names for various el-
ements.

Notepad We seem to get everything we where trying
to receive.

PowerShell ISE With regular PowerShell, we get the same
as we do with CMD. The ISE version has
a much more graphical interface, where we
can retrieve elements just like any other ap-
plication.

CMD We can retrieve all elements beside the text
window.

File explorer Some small issues with names, but other
than that we get a pretty complete picture.

Putty Same as with cmd, we get everything beside
the text window.

Adobe Reader XI We receive almost all information, but not
scrolling, except when the page is changed,
we are also missing some names.

Table 3: List of application tested with UIA, and our experiences

The main problem with using UIA is that there is no guarantee that events are raised
when something happens. This can be a problem regardless of whether UIA is supported
or not. This is something that has to be considered in the analysis phase.

Password

We are interested in excluding any sensitive information from our logs, both for privacy
reasons and ethical reasons. In most cases it is hard to see what is sensitive information,
but passwords is one type of information we are able to detect and exclude from our
logs.

All edit fields in UIA has a boolean value[38], that says whether it is a password field
or not. This value also says that keypresses should now be echoed back to the user. If

32

Behaviour Logging Tool - BeLT

we don’t print the keypresses we see inside these boxes, we should be able to exclude
passwords in our logs.

It is important that the user knows when we detect and not detect a password field,
so whenever we detect a password field, we change to a yellow icon. That way the user
knows that we don’t store those keypresses.

It is important to notice that this only apply to GUI edit fields, we are unable to detect
passwords typed in terminal based applications. We don’t expect this to be a big problem
since most users will probably use graphical applications. An example of an application
where this is the case is ”Putty”, when dropping to a terminal, before authenticating.

As table 3 also shows, we are not able to detect password fields in all browsers. This
problem might be solved with polling, and/or looking at the label for each field.

Logged events

Table 4 shows all the software events we gather, their corresponding constant in the
Windows library and our description of when they happen.

List over events gathered with UIA
Name Windows constant Description
Visual change
(VC)

UIA_WindowWindowVisual
StatePropertyId

If the the window is resized. This can be
manually by user, maximize, minimize or re-
stored from minimize.

Focus Change
(FC)

N/A Whenever the element in focus has changed,
this can either be the top window or any el-
ement inside the main window.

Window Opened
(WO)

UIA_Window_Window
OpenedEventId

Whenever the user starts a new program
that opens a new window, this event is
raised.

Element Invoked
(EI)

UIA_Invoke_Invoked
EventId

Typically pressing a button.

Menu Mode
Started (MMS)

UIA_MenuMode
StartEventId

This happens the first time the user clicks on
a menu.

Menu Opened
(MO)

UIA_MenuOpenedEventId This event is raised when moving between
menu items.

Text Changed
(TC)

UIA_Text_Text
ChangedEventId

This event is raised whenever the text is
changed in some user editable element.

Object Change
State (OCS)

EVENT_OBJECT_
STATECHANGE

Part of Microsoft Active Accessibility
(MSAA) and not UIA, but contains some
events we are unable to gather in UIA.
These events are things like changing the
state of an element, like pressing bold in
Word for example.

Table 4: List of events gathered with UIA

MMS and FC will not only indicate what and how the user did something, but it will
also say in what state the user is in. It will for example say if the user is in a document,
an edit field or if the user is navigating a menu. FC alone with key interaction and mouse
interaction, might be enough to draw some abstract conclusions about the user, while
the remaining events can maybe say something more concrete about exactly what the
user is doing.

33

Behaviour Logging Tool - BeLT

Potential problems

Some applications, like Adobe Reader will notice that accessibility application is running.
Adobe Reader will then try to get the user to set up Adobe Reader, so that it can run
better. This is not a major problem, but can cause some nuisance for the user. We have
documented this in our user manual, see appendix B.

5.1.2 Package management
WiX

To create Windows Installer packages we use WiX Toolset (Windows Installer XML toolset)
version 3.7. WiX has the same functionality as the Windows Installer itself, and it also
supports the creation of databases and making rules in the Windows firewall.

WiX configuration is written in XML and it can be built from a commandline en-
vironment. For us the support for commandline tools was very important, because we
wanted to script the whole process from compiling binaries, codesigning these binaries
and building a windows installer. By scripting the whole process we know that our prod-
uct always will be consistent. We know that humans make mistakes and that computers
don’t. The process of creating the scripts took a lot of time, compared to just compile the
different parts on demand. We can justify this choice because we know that without us
doing this, there would be a lot of confusion for those who will continue our project. We
have described how WiX works and how the scripts work in the manual.

At the early stages of our project we used Innosetup [39], it doesn’t support Windows
Installer packaging, but when we started to work in January we didn’t have enough
knowledge about package management to make a good choice on what to go for. We
knew about WiX and Innosetup, and WiX seemed too complicated to use compared to
Innosetup. After two weeks of using Innosetup and reading about the world of installers,
we decided to use WiX instead. The key factors that made us change our mind was that
Innosetup didn’t support Windows Installer format, merge modules and patching. Our
WiX-based installer and the scripts surrounding it was developed throughout the whole
project, but now it supports the necessary functionality.

Patch

We programmed a solution inside the BeLT to download and run patches. The automatic
update retrieves a patch-file from the server (encrypted session), checks the certificate
and applies the patch with a tool msiexec.exe (Microsoft native tool). How we made the
patch-file you can read about in the system manual (Appendix A).

Code signing

Certificates are based on a Public Key Infrastructure with trust. There is a root authority
that verifies publishers, and this way makes a chain. When Windows verifies a certificate,
it does not only check if the instance it got it from is legitimate, but also if everybody
in the chain is legitimate too. We have codesigned our application and binaries with
certificates from TERENA[40]. TERENA is an institution that provides human networking
and collaboration in Europe, and they are also a certificate authority. We have written
more about the practical side of codesigning in the system manual(Appendix A).

5.1.3 Remote logging
We chose the ”Syslog-NG (Next Generation) OSE (Open Source Edition) 3.3 LTS (Long
Term Support)”[41] as the service to accept the logs. Our client application sends the logs

34

Behaviour Logging Tool - BeLT

according to RFC 5424[28]. We use OpenSSL as a wrapper to encrypt our communication[42].

Syslog-NG

As said before, we chose ”Syslog-NG OSE 3.3 LTS”, OSE, is the open source edition of the
premium edition. This supports UDP, TCP and TLS. TLS is a requirement for us, since we
are collecting and processing sensitive data.

The premium edition of ”Syslog-NG” also supports encryption when storing the data,
which is desirable in a production environment. It also provides more opportunities as to
where the server is kept.

OpenSSL

We chose to use OpenSSL instead of Microsoft’s standard libraries for TLS, this was be-
cause we used a Linux server which ran Syslog-NG and we wanted to avoid compatibility
issues. The library imposed very few restrictions on our application. All we had to do was
to place a notification, that stated our code contains software developed by the OpenSSL
Project[43].

It also supports mutual authentication, which is a good security mechanism on the
client. This way we made sure that no one was able to impersonate the server. The server
can also authenticate the client, but that is not important for us, but in a more closed
environment, this can be used to limit who can send data to Syslog-NG.

5.2 Server
As part of the project we had to implement a centralised storage facility. We implemented
this by installing Syslog-NG on a Ubuntu 12.04 server on a virtual machine at GUC(Gjøvik
University College). With Syslog-NG, we could use our server as a centralised storage
facility four our application that can output our data in the following formats.
• RAW2

• CSV

• XML

• Unindexed database

• Indexed database

There are pros and cons to all of these file formats, but some are worse than oth-
ers when it comes to scalability, future implementations and performance. During our
testing, section 6.3, of the file formats we found out that continuously retrieving and
inserting data to an indexed database is by far the worst format to use.

First and foremost we wanted to have a baseline test (RAW format) where we wrote
the received data from the users directly to file without parsing or manipulation of the
received data. This format is not very usable without a lot of extra work and can’t be
used for analysis, or be displayed in a good way. We’ve only used this format for creating
a baseline when testing our server.

CSV formatted files, Comma Separated Values, involves separating each value re-
ceived from the user is separated by a comma. In our file we escape ”,” with ”%2C” (it’s
hexadecimal representation), all other values are written as is. This ensures that there
is no confusion of where each field begins and end. The biggest disadvantage with this
file format is that, you have to understand what each field means to analyse the data.
The big pro of this file format is that it is very easily read, implemented and generated.
It doesn’t require much resources, storage space or any additional software to read or
write it.

2No filtering or manipulation of data, every event is dumped to file.

35

Behaviour Logging Tool - BeLT

XML files biggest drawback is that it requires a lot of padding around its values for it
to be readable. Each value has to encapsulated by a fixed tag inside ”<>” brackets, i.e for
our numeric flag values we have to store them as ”<flag>1</flag”. This generates a need
for storage space which is wasted on padding for the actual values. Another problem with
XML is that there are symbols that is not allowed to use, adding these symbols results in
a corrupted the file format. However, this error is easily fixed by escaping these non-valid
symbols. I.e the ”&” symbol is not allowed in XML, but by replacing it with its escaped
value ”&”, we are able to avoid corrupting the file format.

Though there are a few serious drawbacks with XML, is it still a very user friendly
file format. Because of the padding that contains specific names, we can easily read this
file by querying for the value within a specific tag. Which as opposed to CSV does not
necessarily have to exist and thereby making it easier to read and use later on. A very
powerful and nice feature is that XML files can be processed using XPath expressions and
XMLtransformation. Where XPath expressions finds and selects values within the XML
file while XMLTransformation utilizes a stylesheet to transform the entire document into
another format.

Though the Syslog-NG configuration to generate XML configuration is complex and
long it is no problem and offers no performance issues, just as CSV, when parsing the
received event.

The database formats we used was a MYISAM database, which we chose to use be-
cause we needed to a have a database without any indexes or keys. The unindexed
database inserts the data to the database without having to create an index for each field
that has an index related to it. This file format requires less storage space than an indexed
database since each index creates a relation that requires additional storage space to be
represented. This means that for each event received the database had create several
additional indexes for the event that had to be created and added to existing indexes.

Because of this it requires much more resources to add events to an indexed database,
than an unindexed database. The pros of having an indexed database is that it is much
faster to search through an indexed database than an unindexed. This is because the
indexes are ordered based on their value and has a relation to its corresponding database
field.

The most important drawback with Syslog-NG and databases is that Syslog-NG doesn’t
have an internal method to import data to the database. This then forces one to imple-
ment this file format using external scripts and tools which makes it very time consum-
ing.

5.2.1 CSV file format
In addition to storing our data as XML and in relational databases we have also created a
CSV file format. We’ve done this because it was the preferred file format to our employer.

Since we have several different event types mouse, keyboard, software and hardware
we had a problem with CSV since these events doesn’t contain the same amount of
information.

Because of this we have developed a file format where the first three values are the
same throughout the format and based on these three values one will know which fields
comes next. All events are identified by the following fields:

Event ID is an integer that represents the order of when the event occurred. Here shown

36

Behaviour Logging Tool - BeLT

by n – 1,2,3...n.

Event type is a letter that represents the type of event that occurred. B - BeLT, S - Soft-
ware, K - Keyboard, M - Mouse and H - Hardware

Action is a specific action or type within the Event type. These codes are described in
detail under each table for their event type. This further divide what type of event
that happened.

Other values that are presented in the same way throughout a line is:

Time is the timestamp in milliseconds, written in ISO8601 compatible format, when
written directly from Syslog-NG. If exported to CSV, either from the database or
from CSV. The timestamps from all events, except BeLT messages will be an in-
teger representing milliseconds since the start event (first line). An example for
timestamp in ISO format is: 2013-05-15T12:13:14.0123+00:00. This includes full
date, time with milliseconds and time zone.

Relation Says which event this is related to, points to an Event ID. See section 5.4.2 for
a discussion of relations between events.

In the tables below, all fields that are printed directly, are marked in bold, if the text is
not in bold, it should be replaced by something else, which is described in the list above
or below the table.

BeLT system-events
Event ID Event Type Action Time
n B start T
n B pause T
n B stop T
n B resume T

Table 5: CSV format for BeLT system-messages

BeLT only sends events when the application has been started, paused, resumed and
stopped.

Mouse events
Event
ID

Event
Type

Action Value Time Relation Flag Additional
fields

n M M X Y T Event ID Int
n M U X Y T Event ID Int Rectangle
n M D X Y T Event ID Int Rectangle
n M W Delta T Event ID Int

Table 6: CSV format for mouse events

Action can be:

M Mouse move, the next field is where the mouse is now.

W Mouse Wheel, the next field will indicate the wheel delta.

37

Behaviour Logging Tool - BeLT

U/D Mouse press. Mouse Down / Mouse Up, action will say where it happened.

X Y coordinates separated by colon(:).

Delta: If the event was mouse wheel, value will be the delta value, which says how much
it scrolls. Negative value means scroll downwards, while positive value means scroll
upwards.

Flag Will indicate mouse button on press (1 = left, 2 = middle, 3 = right). The flag will
be 4 on mouse wheel and 0 and mouse move.

Rectangle The last software rectangle we saw. On down events it will likely be wrong,
so you should look at the value given in mouse up events. It still might be wrong.
Format is the same as above in the software events. See 5.4.3 for a discussion of
weaknesses with our correlation here.

Software events
Event
ID

Event
Type

Action Value Time Relation Flag Additional
fields

n S FC Process name T Event ID Element
type

Element desc.,
Element ID,
Rectangle

n S MO Process name T Event ID Element
type

Element desc.,
Element ID

n S MMS Process name T Event ID Element
type

Element desc.,
Element ID

n S TC Process name T Event ID Element
type

Element desc.,
Element ID,
Extra descrip-
tion

n S OCS Process name T Event ID State Element desc.,
Element ID,
Rectangle

n S EI Process name T Event ID Element
type

Element desc.,
Element ID,
Rectangle

n S WO Process name T Event ID Element
type

Element desc.,
Element ID

n S VC Process name T Event ID Element
type

Element desc.,
Element ID,
Flag

Table 7: CSV format for software events

Action can be:

OCS Object Change State, occurs when the state of an element changes, like check-
ing a checkbox, pressing bold in Word and so on. Can also occur in elements
that appear to be buttons.

FC Focus Change, occurs when the user shifts focus to a new element, this can be
a new window, pressing a button, moving to a textbox and so on. Will indicate

38

Behaviour Logging Tool - BeLT

which element receives input on further events.

EI Element Invoked, typically pressing a button.

MO Menu opened, occurs when the user changes which menu he is looking at,
also occurs the first time he starts looking at the menu.

TC Text Changed, occurs when the text in an element changes, like an edit box.

MMS Menu Mode Started, occurs the first time the user starts looking at the menu.

WO Window opened, typically when the user starts a new program or opens a new
window.

VC Visual Change, occurs when minimizing, maximizing or restoring a window.
The extra description will indicate which of the three occurred. Also occurs as
restored when the visual state of the window changes.

Process name This is the name of the process executable.

Flag This is always an integer, it can be:

state Says whether the state of the element is pressed or unpressed. 0 = pressed
and 1 = unpressed.

Element type Says what type of element it is, for a full list see this page http://
msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.
85%29.aspx . We subtract 50.000 from each flag, so the button is actually
number 0. Negative value indicate that something went wrong.

Element description A name that describes what the element is called, this should de-
scribe what is the purpose of the element. UIA_NamePropertyId3 in the documen-
tation for UIA. If the element type is a document or hyperlink, this field will be the
URL, or UIA_ValueValuePropertyId4 in the documentation for UIA.

Element ID This is an identifier for the element, it should be unique among all it’s sib-
lings. It does not tell you what the purpose of the element is, but it should let you
correlate between elements and lets you check if it’s the same element you saw
before. UIA_AutomationIdPropertyId5 in the documentation for UIA.

Extra description For some events this is an extra description to describe what hap-
pened. UIA_ValueValuePropertyId in the documentation for UIA. This field is for-
matted as a string.

Rectangle Describes the area on the screen that the element occupies. Has the following
format: < X coordinate of upper-left corner >,< Y coordinate of upper-left corner ><

X coordinate of lower-right corner >,< Y coordinate of lower-right corner >, Er-
ror is indicated by all negative 1.

Flag2 As of now, only VC gives another flag, the following values are possible:
3http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_

NamePropertyId
4http://msdn.microsoft.com/en-us/library/windows/desktop/ee671200(v=vs.85).aspx#UIA_

ValueValuePropertyId
5http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_

AutomationIdPropertyId

39

http://msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_NamePropertyId
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_NamePropertyId
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671200(v=vs.85).aspx#UIA_ValueValuePropertyId
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671200(v=vs.85).aspx#UIA_ValueValuePropertyId
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_AutomationIdPropertyId
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#UIA_AutomationIdPropertyId

Behaviour Logging Tool - BeLT

1 Restored

2 Maximized

3 Minimized

4 Unknown – Should never happen

Keyboard events
Event
ID

Event
Type

Action Value Time Relation Flag Additional
fields

n K D value T Event ID flag
n K U value T Event ID flag Count if > 1

Table 8: CSV format for key events

Action Indicates what type of key event, can be ”D” or ”U” for key down and key up.

Value Roughly what appears on the keyboard, if it is an UTF-8 value. Other keys we
can get are system-keys and keys that generate whitespace. See the source code
documentation for all possible values.

Flag Will indicate which system keys are active. If a bit is turned on it means the follow-
ing:

1. bit Alt is pressed.

2. bit CTRL is pressed.

3. bit Shift is pressed.

4. bit Windows key is pressed

5. bit Caps lock is active

6. bit Num lock active

7. bit Scroll lock active

Count Indicates how many key presses was sent. Only sent for KU event, but KD is what
is what we mean. The reason for this is that we don’t know how many key down
events that was sent until we get a key up event. Will be omitted if it is 1.

Hardware events
Event
ID

Event
Type

Action Action spe-
cific

values Time

n H KEY Language Type T
n H RES CPU Memory T
n H SCR_Info Resolution ID T
n H SCR ID T
n H DEV action T

Table 9: CSV format for hardware messages

All hardware changes starts with a event ID as before and then the letter ”H”. Actions
can be:

40

Behaviour Logging Tool - BeLT

KEY Indicates that this is information about the keyboard.

Language tells which language and sub-language that is used. 16-bit integer for-
matted according to this link http://msdn.microsoft.com/en-us/library/
windows/desktop/dd318691%28v=vs.85%29.aspx.

Type is an integer determining what type of keyboard it is. Values can be 1 to
7, formatted after this link: http://msdn.microsoft.com/en-us/library/
windows/desktop/ms724336%28v=vs.85%29.aspx. (First table under remarks.)

RES Indicates that this event shows resources used.

CPU average represented by a float value.

Memory shows the current memory usage, formatted as integer.

SCR / SCR_Info Indicates that this event is related to the screen. SCR_Info is used if this
is the first time we have seen this screen.

Resolution If it is the first time we have seen this screen in this session, it will
print out a rectangle, if we have seen it before, it will print out a rectangle
representing the resolution.

ID is an integer identifying which screen we have changed to. This is unique
throughout the rest of the session.

DEV indicates that a device has been inserted or removed.

Action 1 means that a device has been inserted, 2 means that it has been removed.

5.3 Development
5.3.1 Documentation
For our project, documentation is an extremely important task, since we are developing
a prototype application that later on will be developed even further. But before this
happens, our application will be used to collect information from users from a closed
set of up to 50 people so our employer can start the task of correlating the collected
information and develop an algorithm for validating users. So for this part we have to
document our entire system so the system administrator will understand how it works,
and what part of the system performs which task.

We decided that the best solution for documenting would be to write documentation
for each user group.

For the administrators and developers we created a system manual (Appendix A), it
contains the information about how we’ve set up the system, how we configured the
different services and how they work together. In addition to this it describes how to
make a new software release.

For the end users we created a manual (Appendix B), it containins all the information
about how to use the application – what different buttons do, what does the system tray
colors mean etc.

The documentation of the source code needs to be easy to understand, maintain
and scale. At first we thought of using the XML commenting standard for MS Visual
Studio[33], but we found it being too troublesome to work with, also it was no method

41

http://msdn.microsoft.com/en-us/library/windows/desktop/dd318691%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318691%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724336%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724336%28v=vs.85%29.aspx

Behaviour Logging Tool - BeLT

for gathering all of the comments afterwards. Instead we opted for the standard that
Doxygen[34] uses. When you start a comment with a forward slash and two starts and
end it with a star and a forward slash – it will intepret this as a Doxygen comment. See
Appendix E to se the entire Doxygen report. Here is an example of a Doxygen comment:

1 /**
2 * \brief Initializes all the variables needed to start a session
3 * \author Robin Stenvi
4 * \param[in] bufTmp A string containing the current date and time , with the

format %Y-%m-%d %H-%M-%S
5 * \remark This function is not enough to start a new session , to start or

stop a new session , you should
6 * use writeTime with the appropriate parameter.
7 * \returns Returns true on success , false on failure.
8 */
9 bool handleData :: startNewSession(std:: string bufTmp)

Doxygen uses keywords within the comments of the source code. By declaring these
keywords it can understand the information and correlate it to the corresponding func-
tion/class/member in the reference manual. This makes it easy to write into the source
code because all one has to do is write simple one word keywords to add the specified
information. The comments are processed and Doxygen automatically generates a for-
matted reference manual as defined in the configuration file. We configured Doxygen to
use Latex, since we also use Latex in our report.

We have configured Doxygen to perform a recursive search of our source code direc-
tory, and parse only ”.CPP”, and ”.H” files. Because of this we can add any other directory
if we expand our application and still use Doxygen with minimal additional configu-
ration. This also enables any future work to use doxygen without any problems and
conflicts. Since our source code for this project is about 10.000 lines of code, a factor to
consider is that the documentation must be generated quickly, which Doxygen is able to
do.

Doxygen also supports call graphs – call graphs depicts which functions a documented
function is calling during its runtime process. Doxygen cn create many types of graphs,
but the call graph is the most necessary since it gives a very good overview of the flow
within the apllication. To make it easy to understand the source code we have docu-
mented function with the aminimum of a brief description that states what the function
does, we’ved documented all input values, and return values for the functions and where
it is not absolutely elementary what’s happening we’ve implemented a detailed descrip-
tion that describes what the function does. All this is in addition to the name of the
author and normal comments, which is left out by Doxygen.

5.3.2 Software distribution and Continuous integration
To implement CI we had to create a manual system by creating custom scripts that man-
age our need for CI. Since we had to manage CI and code analysis from the client side,
the need for distribution of new software releases is also managed from the client side
with the use of custom scripts.

To implement CI into our development process, without having a build system we
could manage our self, was our option to implement CI using a policy driven solution.
To do this we set up a small policy, that our code had to be compilable, runnable and
reasonably tested before being committed to the repository. To avoid conflicts in the
repository we also had to test our code with the latest version in the repository and check

42

Behaviour Logging Tool - BeLT

with the others if anyone was working on the same part of the system If everything was
in order the addition of new code was allowed.

The tasks we had to automate during a software distribution, was to create a new
version of our software, generate the documentation of our source code and store the
current in case later versions should prove to be more stable or there were some other
need for the source code.

For the distribution we decided that by using psake[44], we could use the ”PSAKE.CMD”
application to execute PowerShell scripts with designated psake tasks. With this we could
easily perform tasks for compiling the application for different platforms without any
problems and on command.

To handle our distribution we created several scripts to automate the process which
we have collected in our System Manual, see ”Software Distribution” in appendix A.

The main script first compiles our documentation using Doxygen. Then based on its
input creates either a x64, x86 or both versions of BeLT with our build script. This stage
is initiated by two commandlets, because we had to use psake to help us with the process
of building our executables. This stage is then followed by creating the installer for BeLT
by running our script for generating the installer using the WiX script, see ”Package
Management” in the System Manual. Finally we had to gather the current source code
before manually updating our update server to accommodate the new version.

To handle our problem of deploying a new version of BeLT inside the repository we
had to do the following with our scripts, and manual labour.

• Create new branch

• Generate documentation

• Gather and store current source code

• Generate executables and binaries

• Generate MSI-installer packages

• Upload to distribution server and update deployment web page

Our deployment script performs all of these tasks, except the task of uploading and
updating the update server. The deployment script requires that the latest version of the
source code is present on the host. The script starts off by creating a new branch for the
new version within the directory ”/Code/branches/”.

Then the script continues by generating the reference manual for the system, by run-
ning DOXYGEN. Doxygen automatically generates a reference manual for the source code
by reading the comments within the source code of the application, as described in
section 5.3.2. The resulting PDF reference manual is then moved to the newly created
branch.

After the reference manual is created we compile BeLT, by running the correspond-
ing tasks in the ”build.ps1” script by using ”Psake”[44]. These will then generate a ”X64”
and/or a ”X86” version of BeLT which are moved, one at a time, to the directory ”/Code/-
belt_main/belt_installer’. This is then followed by running the build script for WiX, see
section 3.1.4. This creates the MSI-installer packages. The WiX script then moves the
MSI-installer packages to a local folder for then later to be manually uploaded to the
server for distribution.

43

Behaviour Logging Tool - BeLT

This is then followed by cleaning the repository, removing all files not pertinent to
the applications source code. Then the source code within ”belt_main”, ”dllhook” and
”belt_update”, together with visual studio solution file are archived into a single ”RAR”
archive with WinRARs6 command line application. Finally the source code archive is
added to the repository.

5.3.3 Code Analysis
As explained before in section 3.2.3, the benefits of using static analysis tools are beyond
doubt. We have used the built in tool in Microsoft Visual Studio for performing code
analysis. This tool goes through the entire projects source code and searches for errors
based on the rule set specified.

The build VS12 tool has several sets of rules[45] which we used to detect errors, we
normally used the ”Mixed Recommended Rules rule set”, but towards the end we ran the
”All Rules rule set” to detect any remaining errors we’ve missed otherwise. The ”Mixed
Recommended Rules rule set”[46] detects common and critical problems within C++
projects, and the ”All Rules rule set”[47] contains all the rule sets of both managed and
native code. See section 6.1.1 to see how our final test went.

5.3.4 Bugtracking
We chose to use Bugzilla[48] for bugtracking because its easy to use and it supports
adding enhancements for future work. In this sense Bugzilla is an enhanced bugtracker,
because it can keep track of both current bugs and future work. Bugzilla is developed by
Mozilla and it’s used extensively in their projects, because of this we knew that we where
implementing a system that was well tested and reliable.

In our implementation we used our virtual server as a host. We installed and config-
ured Apache, MySQL and a range of required perl-modules. In our installation we fol-
lowed and used the official Bugzilla tutorials and configurations, except with the email
service. We encountered an unknown problem with the sendmail configuration and the
result of this was that no email traveled from Bugzilla to its users. We solved this by
installing a separate perl module designed specific for Gmail.

The full set-up, configuration and implementation of BeLT is explained in detail in
our system manual, appendix A.

5.4 Algorithms
5.4.1 Mouse compression
Storing every single mouse move event takes up a lot of space on the server and possibly
the client, the client application also has to send more data to the server. According to
RUI[4], it was 22 KB/m with ”extensive mouse movements”7. On a full workday, this is
about 10MB, just in mouse movements. Since we store a few bytes more on every mouse
movement, this number would likely be higher.

We wanted to limit this number while still managing to recreate the original path with
good accuracy. The algorithm is based on two variables, the difference in length between
two points and the change in degrees between two points8.

6http://www.win-rar.com
7We assume this number is based averages, since they have a separate number for continuous mouse move-

ments.
8We only do this on mouse movements, mouse presses and wheel scrolling events are always logged.

44

http://www.win-rar.com

Behaviour Logging Tool - BeLT

Figure 12: Mouse compression with
30 % of original dataset

Figure 13: Mouse compression with
19 % of original dataset

To calculate the real distance between two points, we subtract the x and y we logged
last with the current x and y values. Both results are squared, and added together9. If
this distance is higher than some predetermined value, we go on to the next test.

The difference in degrees is measured by taking the current x, y coordinates minus the
last x, y coordinates we saw10. We then find the arc tangent for this value, multiply it with
180 and divides it by PI to find the current arc tangent degrees. if the difference between
this value and the arc tangent from our previous log is above some predetermined value,
it have passed the test.

Both of these test have to pass for us to log this event.
Code snippet 5.1 shows our implementation of the compression algorithm. We first

check if we have a previously stored point, if not we need to log it.
After limited testing we saw that having a distance change of 10, and a degree change

of 5 provided decent result, which is what is used in the final program. We think we can
use higher values, but we think it’s best to start with modest values, where we know we
can get enough data and avoid the risk of not getting enough data.

Code 5.1: Mouse compression algorithm
1 REAL_DISTANCE = 10
2 DEGREE_CHANGE = 5
3
4 lastMove.x = -1
5 lastMove.y = -1
6
7 bool procedure difference(b < a)
8 if(b < a) {
9 c = a; a = b; b = c;

10 }
11 if((a + DEGREE_CHANGE) < b)
12 return true;
13 return false;
14
15 bool procedure printThis(POINT now)
16 if lastMove.x == -1 and lastMove.y == -1)
17 return true
18
19 if now.x < 0

9To get the real distance we would have to take the square root of this again, but it is not necessary for us.
10The last x, y coordinate we saw might be different from the last x, y coordinates we logged

45

Behaviour Logging Tool - BeLT

Figure 14: Mouse compression with
14 % of original dataset

Figure 15: Mouse compression with
11 % of original dataset

20 now.x = 0
21 if now.y < 0
22 now.y = 0
23
24 xSquare = square((now.x - lastWritten.x))
25 ySquare = square((now.y - lastWritten.y))
26
27 if (xSquare + ySquare) > REAL_DISTANCE
28 xAbsDistance = abs(now.x - lastMove ->x)
29 yAbsDistance = abs(now.y - lastMove ->y)
30
31 newDegrees = arctangent(yAbsDistance , xAbsDistance) * 180 / PI
32
33 if difference(newDegrees , oldDegrees) > DEG_CHANGE
34 oldDegrees = newDegrees
35 return true
36 return false
37
38 if(printThis(now) == true)
39 lastWritten = now
40 Send event to server
41 lastMove = now

Figure 12, 13, 14 and 15 shows an example of the mouse compression algorithm.
The original path is painted in black, while the path we got from the compressed file is
painted in red.

Figure 12 shows the values we used, the other are here to show what kind of differ-
ences you can get, depending on how much accuracy you need. The complete dataset
contained 440 mouse movements (without any compression). The Python script in ap-
pendix D.2 was used to compress each file. Another Python script in appendix D.3 was
used to draw the graphs.

These graphs were generated from mouse movements done with a touchpad. This
is slightly different from movements done with an external mouse. In our experience,
external mouse gives higher accuracy with fewer stored points. This is most likely be-
cause movements with a touchpad tends to start and stop a lot, while movements with
an external mouse tends to be in a much smoother motion.

Another important thing to mention, is that, there is no guarantee for how effective
the mouse compression will be. We did some limited testing, where we tried to do it as
realistically as possible, on several systems. The only thing that is guaranteed, is that it

46

Behaviour Logging Tool - BeLT

will be as accurate as the boundary values we have set and the mouse events received.
In our experiments, about 35 % of the logs consist of mouse movements, after com-

pression. So if we have a file with 1 MB11 size. Then 350 KB will be mouse move-
ments, when compression is applied. If mouse compression was not applied, the mouse
movements would have a complete size of 1167 KB (350/30 ⇥ 100). Here we assume
that that we store 30 % of the original data. The new files size would be 1.817 MB
((1000- 350) + 1167).

When running the application in debug mode, it will generate log files for all mouse
movements, both without compression and with compression. We did this so it’s easy to
both test the compression algorithm and check new values. Read more about this in the
manual, in appendix A.

5.4.2 Relation between events
When we see an event that is not a hardware event, it belongs to somewhere or is an
extension of another event. If we see a mouse down event for example, this belongs to
a window, if we see a mouse up event, is is a regular extension of the last mouse down
event. The same logic applies to key events. Software events work the other way around,
they are caused by a mouse event or a key event, in other words, the relation points to
what caused the event.

The relation value is a reference to an event ID in a previous event. It will always
point backwards. All the events are placed in one of the following categories.

1. User event tied to window

2. Indirect user event

3. Independent

4. Software event

The first are events that are different depending on which software element they
belong to, they consist of the following events.

• Key down

• Mouse down

• Mouse wheel

The second group is events that are direct cause of an event in the first category, it
consist of the following elements:

• Key up

• Mouse up

One of these events should always happen when there is a key down or mouse down
event.

The third group is just mouse move, since it is independent from other events and
does not necessary belong to any window.

The software category is all the UI Automation events. Whenever we get a software
event we assume it happened because of a user event. 12

11Whenever we talk about MB and KB in this paragraph we mean 106 and 103 bytes, respectively.
12This is not always the case, since the operating system does something at regular intervals, plugging in a

47

Behaviour Logging Tool - BeLT

For all events in the first category, the relation flag will point to the last active window.
For events in the second category, the relation flag will point to it’s counterpart in the first
category. Mouse move will point to zero if we this is the first in a series of mouse moves,
otherwise it will point to the last mouse move we saw. If the a mouse button is held
down, the relation flag will point to it, since it will be a dragging action.

The relation flag on software events will always point to the last event that happened
in category 1, 2 or 3 (all except software events). This is the flag we are most insecure
about, since we have multiple threads and there might be a delay before a new process
starts, or a new window is opened.

Table 10 summarizes what we talked about, whenever we receive a key down event,
it is tied to a software window. When we receive a key up event it is tied to the last key
down event with that specified character. When we receive a mouse down event, it is
tied to a software window, mouse up is tied to the last mouse down event. Mouse wheel
is tied to the last active software window.

Mouse move can be tied to mouse down, if mouse button is still pressed, or the last
mouse move or it is tied to nothing, if user input has happened since last mouse move or
mouse down.

On software events, we take an educated guess at what generated it, so the relation
flag on software events will point to the last user event, which can be mouse moves, all
mouse presses, and all key presses. A guess is all we can do here, there is no sure way,
that we know of, to correlate software events with mouse and key events. After talking
with employer this was satisfactory, because they would have to do the same thing.

Summary of possible relations values
Type Action Relation
Key Down Software
Key Up Key Down
Mouse Wheel Software
Mouse Down Software
Mouse Up Mouse Down
Mouse Move Mouse Down
Mouse Move Mouse Move
Mouse Move 0
Software all Last user event

Table 10: Table of events and their corresponding relationship

5.4.3 Area around a mouseclick
Whenever you get a mouseclick, it belongs to somewhere, typically a button, a checkbox
or something similar. All these elements are rectangles, and whenever you receive a
mouse press, you know that it belongs to one of these rectangles. Some useful properties
to know is whether they clicked in the middle of the rectangle, one the left side and so
on.

Every time we see a mouseclick, we try to find out which area it belongs to, see table
6. To do this, we look at the last rectangle we saw, which came in the form of a software
event. We assume that the mouseclick belongs to that rectangle. This assumption has

USB stick will maybe generate an event and so on. We ignore that here for simplicity.

48

Behaviour Logging Tool - BeLT

some uncertainties:

1. The rectangle on mouse down events will usually point to the wrong place, because
you first get a mouse down, then an event, then a mouse up event13. The rectangle
from mouse down is therefore unreliable and the rectangle from mouse up should
generally be used, but only if there is a software event between them. You could use
the timestamps to increase the likelihood of finding it’s correct or not.

2. Normally we receive a mouse event, then the software event, but because we have
multiple threads, events may not come in order. If for example, a mouse down event
generates a software event; then we would like to see Mouse down – software –
mouse up, if the software event comes after the mouse up event, both mouse events
will reference the wrong rectangle. Events out of order can probably be detected
when analysing, because the timestamps will also be out-of-order.

3. Not all mouseclicks generate an event and if an event is generated, and it happened
because of the mouseclick, it may have done something with a different part of the
screen. If you click an item in the taskbar for example, it will restore a window,
but this happens somewhere else on the screen. In these cases the rectangle will be
wrong, but in most cases, you will be able to detect it as the mouseclick is not inside
the rectangle.

13This is the general case, sometimes the event occur after mouse up

49

6 Testing and analysis

6.1 Tests on client
In addition to using our own test on the application, we also ran our application through
”Windows App Certification Kit”. We passed this test, with some warnings, you can see
the full result in appendix C.

6.1.1 Static analysis
We performed static analysis regularly, so there was no big surprise when analysing the
final application. We also performed a manual code review independently within the
group to find memory leaks and controlling the errors returned from the static analysis.

We found a couple of warnings during the static analysis test. GetTicketCount() was
detected as a warning since it will wrap around after 49,7days, but because we already
had· mitigated this problem we chose to suppress this warning.

In our final version of BeLT we received three warnings when running our static anal-
ysis using Visual Studios code analysis tool, with the ”Microsoft Native· Recommended
ruleset”. The first warning was a memory leak inside a process handle of· CheckUp-
date.cpp, it came up because we didn’t release a process handle before exiting the pro-
gram. The reason why this wasn’t done was because we start a new process which should
exit after the parent process exit. This is not a big problem since Windows will release
memory when the parent exits the application.

The second and third problem was related to a Mutex error where we manually
checked that it was working correctly.

6.1.2 Performance analysis
To measure the performance of BeLT, we did some simple tests. These tests only measure
what we consider normal behaviour, meaning that we do them manually while work-
ing on some tasks like web browsing or writing text. Since the datasets will be biased
with how we work with the computer we will also include what type of events where
generated. We still think this gives a better understanding of BeLTs performance than an
automated test.

BeLT performance test
Test: Avg bytes sent/s RAM used Avg. threads Max threads avg. CPU
1 1779.67 5-6 MB 14 15 2.5
2 4726.47 5-6 MB 13 16 1.4

Table 11: Summary of our results, when performance testing BeLT client application.
Each test lasted for 15 minutes, was done on a Windows 8 x86 VirtualBox Virtual

Machine, with 2GB of physical memory, and 2.4 GHz processor (in total with physical
machine, no max limit for how much it can use). The test used BeLT 32-bit version
0.9.0, and BeLT was started right after performance analysis was started. It was not

exited until performance test exited.

51

Behaviour Logging Tool - BeLT

Table 11 shows a summary of our performance test. The first test we ran, we did 15
minutes of regular writing in Notepad++, while concurrently sending data to the server.
The second test was also 15 minutes long and sending data concurrently to the server,
this time we did web-browsing in Firefox. We used version 0.9.0 in this test, very minor
changes has been done since that.

First test

The dataset generated consisted of 5111 events, where 974 where mouse movements,
554 where other type of mouse events, 3448 where key events, 129 where software
events, 4 hardware events and 2 system messages from BeLT.

On average we sent 1779.67 bytes per second over the network1. Most of the time
we sent no data at all, but when BeLT has collected 500 events, we send all the data to
the server. This can easily be configured to be lower or higher. Network traffic does then
increase in bursts, about every two minutes in this test.

Right from the beginning we started at 5MB of private working set, it increased and
decreases slightly throughout, but was pretty static.

Throughout the session we never had more than 15 threads running, although several
more where created. One is created every time we need to send data to the server, which
is for every 500 events, plus 1 for the remaining data when we stop.

The average CPU time was 2.5 %. In the beginning it was as high as 62 %, the reason
for this is that we have to register all the logging mechanisms. The amount of CPU we use
increases and decreases in bursts, at some points we are as high as 25 %. This is natural,
since BeLT only has work to do, when the user types something, or we are sending data
to the server.

Second test

The dataset consisted of 6283 events, where 4960 where mouse movements, 645 where
other mouse events, 379 where key events, 293 where software events, 4 hardware
events and 2 system messages from BeLT.

This test doesn’t differ that much from the first test, we used a bit less CPU on average
and we see the same spikes as in the previous test. We see a lot data is sent to the server,
but this increase is mostly because the test consisted of web browsing.

6.1.3 Time granularity
Time granularity is very important for behavioral analysis. When looking at timestamps,
we consider two factors:

1. The timestamp is reliable – at some point in time when the algorithm is created
– there is no real way of detecting anomalies, so you need to be able to trust the
timestamps that are generated.

2. High resolution on the timestamp – with high resolution we also mean that the
counter must be updated often. The timestamps we get in our messages has a res-
olution of 1 ms, but the counter is only updated every 16 ms.

Every time we get a mouse event or keyboard event, we also receive a timestamp for
when the event happened. The timestamp we receive, is what is called ”Windows time”
and is the same time that is returned by the following function[49, 50]:

1This might include some data that was not generated by BeLT, but not much

52

Behaviour Logging Tool - BeLT

1 DWORD WINAPI GetTickCount(void);

This function gets the time in millisecond, but the resolution is limited to the system
timer, which according to Microsoft is in the range of 10 to 16 milliseconds. This roughly
coincides with our tests. Our test shows that when using a program to constantly gen-
erate 2000 key events without pause, we get 9 different timestamps, where the smallest
difference in timestamp is 15 milliseconds and the biggest is 16. The biggest difference is
not that important, because it can be greatly influenced by changes in the processor. The
smallest difference and the number of unique timestamps says a lot about the granularity.

To get more fine grained granularity, we can collect our own timestamp, to get an
accurate timestamp, according to Microsoft[51] , we can use the following function:

1 BOOL WINAPI QueryPerformanceCounter(
2 _Out_ LARGE_INTEGER *lpPerformanceCount
3);

The granularity here is also dependent on the system it is running on. We can retrieve
that number by using the following function[52]:

1 BOOL WINAPI QueryPerformanceFrequency(
2 _Out_ LARGE_INTEGER *lpFrequency
3);

This cannot change while the system is running, so if we run this at startup, we can
interpret the remaining numbers we get from the previous function. On our system,
which was Windows 8 running in VirtualBox, the frequency was 2.329.681 counts per
second. This means that the counter will be updated roughly twice every microsecond.
This also shows when using this timer against the same test as before. We get 2000
unique timestamps, so every timestamp has a new value.

To test how accurate timestamps, we run our own simple test. It consisted of gener-
ating 2000 key strokes and sending that to our own logging application that only stored
each timestamp.

Code 6.1 shows how we generated keystrokes, the important part is that we generated
them as fast as possible, without any pause.

Code 6.1: C++/pseudocode for time granularity testing
1 CreateProcess(belt_main.exe)
2
3 for(int i = 0; i < 1000; i++) {
4 keybd_event (0x41 , 0, 0, 0);
5 keybd_event (0x41 , 0, KEYEVENTF_KEYUP , 0);
6 }

Code 6.2 shows how we measured time granularity using the timestamp we get from
each key event. Code 6.3 shows how we retrieved timestamps separately.

Code 6.2: Section 1 of logging program for time granularity testing
1 void writeRegular(KBDLLHOOKSTRUCT hook) {
2 file << hook.time <<"\n";
3 }

Code 6.3: Section 2 of logging program for time granularity testing
1 void writePerformance () {
2 QueryPerformanceCounter (&count);
3 file << count.QuadPart <<"\n";
4 }

53

Behaviour Logging Tool - BeLT

Below you can see how each test went. In the first test, using the timestamp we get
from the key event, we got 10 unique timestamps where the smallest difference is 15
milliseconds. The second test is much more accurate, each timestamp is unique and the
smallest difference is 2. The biggest difference is not that important in either cases as
it can be attributed to scheduling or many other things that happen at the computer
simultaneously.

The first test lasted for about 141 milliseconds, while the second test lasted for about
125 milliseconds.

./print_stat.py keylogRegular.txt
Read 2000 timestamps
10 unique timestamps
Average difference is 15.6666666667
Smallest difference is 15
Biggest difference is 16

./print_stat.py keylogPerformance.txt
Read 2000 timestamps
2000 unique timestamps
Average difference is 146.776888444
Smallest difference is 2
Biggest difference is 4947

The source code for ”print_stat.py” is in the appendix D.1.
This test shows some important differences between the timestamp we receive from

Windows and the timestamps we can generate ourselves. One obviously has higher res-
olution than the other. It seems like the counter on this system is updated every 15 ms,
because: The test lasted for 141 ms, which means that the counter should have been
updated 141/15 = 9.4 times, during that period, which coincides well with our result of
10 unique timestamps.

If the counter is updated every 15 ms, we should be able to generate a key event every
15 ms and receive 2000 unique timestamps, the new test has the following code:

Code 6.4: C++/pseudocode for generating key events on second test
1 CreateProcess(belt_main.exe)
2
3 timeBeginPeriod (1);
4 for(int i = 0; i < MAX_ONE; i++) {
5 keybd_event (0x41 , 0, 0, 0);
6 Sleep (15);
7 keybd_event (0x41 , 0, KEYEVENTF_KEYUP , 0);
8 Sleep (15);
9 }

10 timeEndPeriod (1);

The function to timeBeginPeriod[53] is important to notice as it changes the resolution
of the sleep function from 10-16 ms to 1 ms. Which is the reason we are able to have
high precision intervals.

The results are as expected:

./print_stat.py keylogInter.txt
Read 2000 timestamps

54

Behaviour Logging Tool - BeLT

2000 unique timestamps
Average difference is 16.6333166583
Smallest difference is 15
Biggest difference is 281

This test lasted for 33 seconds and 596 milliseconds, which means we, on average,
spent 16.798 ms on each key event. Since this gave us 2000 different timestamps, we
can conclude that timestamps appear to be reliable and reasonably accurate.

We didn’t run the second test on our other method of generating timestamps. The
reason for this is that it is much harder to test – because we know that we will get all
unique timestamps and that a difference can be influenced by a great number of things,
like scheduling. Therefore we don’t think that test would provide any analysable results.

One problem with the last method of generating timestamps that we haven’t discussed
yet is that we have to generate those timestamps ourselves. To make it accurate we
have to generate it as fast as possible after an event happened. We are hooking into the
messages, these messages are sent in a FIFO (First in first out) queue. The accuracy of
our timestamps is both dependent on when we receive the message and how fast we
are able to process the message. If this delay was the same each time there would be no
problem, but we can’t guarantee that[54].

We might be able to mitigate this problem by keeping two timestamps, one perfor-
mance counter and one ”Windows time”. We know that the ”Windows time” is accurate
up to 16 ms – so if the timestamp from the performance counter shows a later time than
this we know that is not accurate. This has not been done in our application.

Another small problem is complexity. The resolution of performance counters are
system dependent (which can vary), this makes the analysis harder. But this is not a big
problem, since you can reduce the resolution of the timer, to 1 ms.

6.2 Performance optimization on server
The client application generates a large amount of events. This happens more or less
continuously. Therefore we need to make sure the server can handle this amount of data,
and the client must be able to process it without it causing a delay.

We use Syslog-NG as the server component, so one part of dealing with the perfor-
mance on the server is to configure Syslog-NG to good performance, while minimizing
resources it uses and the risk of loosing data. Some inspiration has been gathered from
[55].

6.2.1 Configuration
Some interesting configurations to consider are the following:

flush_lines(): Here we can set the number of lines that come in before the server flushes
the output to file. This offers better performance, but increases latency and might
cause data loss if the server crashes.

flush_timeout(): Here we can guarantee that data is flushed in regular intervals, regard-
less of what our previous value is. This causes a small hit to performance, while it
minimizes latency.

log_fetch_limit(): This sets how many lines Syslog-NG will fetch from a loop. If we read
more lines at a time we gain performance.

55

Behaviour Logging Tool - BeLT

6.2.2 Performance test
This test is only meant as a small scale test before the real simulation in section 6.3. For
this test to be more effective we would need to run it for longer time with several more
options. But it does give us a decent baseline as it stands now. Now we only test one type
of simple output, so we don’t test any databases, any filtering or any of the options we
will use in the future. Code 6.5 shows the relevant parts of our current syslog-ng.conf
file.

Before starting the research project, a larger test should be run. That test should be
on the hardware that will be used in the project and use the final data format. That way
we get as close to the reality as possible.

Code 6.5: Relevant part of syslog-ng.conf file
1 options {
2 chain_hostnames(off);
3
4 # It HAS to be <= log -fetch -limit / max -connections
5 flush_lines (10);
6 use_dns(no);
7 use_fqdn(no);
8 owner ("root"); group("belt"); perm (0640);
9 stats_freq (0);

10 bad_hostname ("^ gconfd$ "); create_dirs(yes); dir_perm (0750);
11 keep_hostname(yes); # Keep unique ID instead of IP
12 frac_digits (4);
13 };
14 ###
15 # Logs from TLS , which is what we use by default
16 source s_tls_remote_no_auth {
17 tcp(
18 ip (0.0.0.0) # All IP addresses are accepted
19 port (1999) # Uses port 1999, 19155 from the outside
20
21 # Messages are structured as RFC5424
22 flags(syslog -protocol)
23 keep -timestamp(yes) # Keep the original timestamps
24 tls(
25 key_file ("/ home/ca/private/belt.key.pem")
26 cert_file ("/ home/ca/certs /01. pem")
27 peer -verify(optional -untrusted)
28)
29 max -connections (1000) # Total number of users
30 log -iw -size (100000) # Is divided by max -connections
31
32 # Max messages fetched from a single loop
33 log -fetch -limit (100)
34);
35 };
36 ###
37 # Simple destination for performance testing
38 destination d_performance_test {
39 file ("/var/log/TEST/performance_test.log");
40 };
41 ###
42 # Log description for TLS communication
43 log {
44 source(s_tls_remote_no_auth);
45 destination(d_performance_test);
46 flags(flow -control); # Never throw away message
47 };

To test the server, we will use a tool called ”loggen” that is shipped with syslog-ng.
This can be used to generate a series of log messages, we will use the following command

56

Behaviour Logging Tool - BeLT

in all our experiments:
1 /usr/bin/loggen -iU -r 10000000 -P -R test_file.log -l -d -I 180 127.0.0.1

1999

Below is a description of what each parameter does.

-iU – send packets using IP and TLS.

-r – number of packets per second, here it is 10 million.

-P – format packets according to the syslog protocol.

-R – use messages from file.

-l – loop over the file as many times as it needs.

-d – print each line in the file regardless of how it is formatted. This makes it easy for use
to use our own file that we know is compatible with our parsing. This is especially
useful if you also want to test this with your own message parsing, which we don’t
do here.

-I – interval, which here is 180 seconds or 3 minutes.

We want to use our own message file to get the most accurate results. The main
difference from this and BeLT, is that ”loggen” will send messages as fast as possible,
which is not the case when BeLT is distributed in the real world. It does however give us
an overview of how many messages it can process per second.

Table 12 shows how the test went. Each test only changes one value. When we move
on to a new setting we use the most successful value from the previous setting.

Output from performance test
Setting Msg/sec Interpretation
Base test 26 817 Base test with default configuration
log-fetch-limit(1) 16 1701 Decreasing the log fetch limit from 10 (default)

also decreases the average rate
log-fetch-limit(100) 27 411 Increasing it to 100, increases the rate slightly
log-fetch-limit(200) 22 093 Increasing it further, decreases the rate
flush-lines(10) 30 324 Increasing the flush lines from 1 (default) to 10,

increases the rate significantly
flush-lines(100) 21 504 Increasing it to much, will decrease the rate

Table 12: Output from performance test

This was a simple performance test to see how different settings would increase and
decrease the performance and also see how many events Syslog-NG could handle with
very basic settings. A more rigorous test would run for longer than 3 minutes, would
change several more settings and use the final format.

6.3 Server testing
As part of our testing scheme we had to perform a stress test on our server for several
reasons. First of all we had to test the different ways of storing the large amount of data
we were going to send. Secondly we had to figure out if our Syslog-NG server would

57

Behaviour Logging Tool - BeLT

be able to handle a hundred users simultaneously without affecting the performance of
the server. Third we had to ascertain how much storage space would be required by the
format. Thereby figuring out what storage format would be the most effective for the
system to handle.

We wanted to test five separate methods of storing our data. First we wanted to per-
form the baseline test which were to try to only output the received data and nothing
more. Basically just printing the raw data. Secondly we wanted to test how a CSV for-
matted file, and a XML formatted file would perform. The last two methods we wanted
to test was the unindexed and indexed database storage systems. All in all we wanted to
figure out which format was best suited for this data.

To do this we needed to measure quantifiable data on the server to depict its perfor-
mance, the data we gathered was CPU, RAM, and I/O statistics. To capture this informa-
tion we installed SAR[56], a tool to monitor and log the system performance at a fixed
interval. With this interval set to 1/sec we would get a dataset consisting of about 3600
data points for each hour long test. The resulting dataset would with this information
contain more than enough data for us to calculate the load the server was exposed to.

Since we had five different storage formats to test we wanted to run the test auto-
matically, which we solved by creating a bash script on the server. On the client side
we created a software application that simulated a fixed amount of users sending data
to the server, which we set to five. This is because simulating more users would reduce
the performance of the computer and thus render the test invalid. We chose to emulate
five user because this was a number that wouldn’t cause any performance issues and the
networking capability wouldn’t be affected either.

6.3.1 Methodology
Our testing methodology was simple. We set up a range of host computers running our
simulation application. Inside the application each simulated user uses data from a fixed
file to generate and send data to the server concurrent with each other until the test is
signalled to be finished. This is done while the SAR program runs in the background,
logging the servers performance statistics once per second.

The drawback of our testing methodology is that it doesn’t take into account for
different amounts of users above the threshold we tested. This is discussed more in the
results and conclusion, section 6.3.5. This is because we performed the test with the
maximal amount of users we could simulate within that environment.

Prior to starting the test on the server, we had to manually initiate the simulation
application on the host computers. Then when all hosts had started listening to our test
controller, a website with a predefined content told the host whether the test was starting.
When the server script initiated the test by changing the content of the website, the hosts
would establish a connection and start sending data by iterating over the same log file
for one hour. Which was then followed by the server having six minutes to settle down.
This would ensure that all users had finished and events was parsed before setting up
and initiating the next test, doing the same until all the test had finished.

The bash script that controlled the server test is shown in appendix D.6.

6.3.2 Test flow
To test the performance limit of our server we wanted to test with at a hundred users
sending data at the same time. Since we could not simulate a hundred users on our own

58

Behaviour Logging Tool - BeLT

Figure 16: Depiction of our server test setup

laptops, our alternative was to acquire a whole computer lab at GUC during a weekend
in February. The lab consisted of 32 desktop computers(hosts), where only 25 hosts were
usable. Our plan was to use all the hosts and simulate 125 concurrent users, but because
of an error we were only able to use the data collected from 22 hosts during the long
term test. This was because three of the hosts went to sleep and didn’t retrieve the
stop message, when we awoke them during our systems check between the first and
second test. This caused them to continue sending data to the server when the test was
over. We then had to terminate the hosts before the second test started. As a result we
continued our tests with 22 hosts before running the first test once more after the others
was finished.

In figure 16, we’ve illustrated the setup of our test. First we had our Syslog-NG server
running as the recipient of all communication from our 22 hosts, simulating five ”users”
each. Upon receiving the data, Syslog-NG would perform the currently, configurated task
in the config file and store it in the corresponding file format. The file formats we wanted
to test was raw output, CSV formatted output, XML formatted output and both indexed
and unindexed MYISAM database.

The raw output, CSV and XML formatted output was all handled by the Syslog-NG
servers configuration files. The database storage functionality was on the other hand
done using a separate script. The reason, this was not done with Syslog-NG is that it
didn’t provide the necessary functionality. Instead we used a pipe within the Syslog-NG
config file. This wrote the data to a FIFO list in ”var/tmp” where the data was read
by a bash script looping and reading from the FIFO file. For each line the bash script
reads, it sends the text as standard input to the MySQL service with the following syntax,
”mysql -u syslog –password=******* < $ line”. Since Syslog-NG automatically formats
the data it receives according to its configuration, we had a configuration which formed
the data into a MySQL procedure call. Therefore by sending the read text as standard
input to the MySQL service we called our custom procedure that inserted the data into
the appropriate fields in the database.

We’ve illustrated the flow of our testing in figure 17. Yellow represent our test control
script running on the server, managing the update of config files and content on the
webserver. The blue webserver is a normal Apache service that contains a file which is
readable from the Internet. This files content is changed to show that the test has either

59

Behaviour Logging Tool - BeLT

Figure 17: Flow chart for how the testing was performed

started or is stopped.
The green fields represent human interaction which is us, when we started the server

test by initiating the server script. It also depicts that we started the 22 hosts running the
simulation application prior to starting the test on the server.

The pink fields illustrates the simulation application running on the test computers.
Which is responsible for creating users and send information to the server during the
different test.

Simulation application

The first stage in running our test was to start each and every computer host running
our simulation application. This had to be done prior to starting the test control script
because it would cause a host to not connect, and therefore never send any data. Which
would cause inconsistencies in our testing.

When the simulation application is started it first creates five ”users” with each of
them their own unique ID. Then the simulation application will check if the test has
begun by connecting to the webserver and retrieve the content of the webpage. If the
content indicates that the test has started it will proceed and start sending data for 60
minutes. This task will run for an hour and send events defined by a previously generated
log file. As long as the timer is below 60 minutes the simulation application will continue
to transmit data to the server, generating new sessions for each complete iteration of the
predefined log file.

Then when the timer reaches 60 minutes it will check whether the last event sent
to the server was a ”stop” event. If not, it will send an additional packet to the server
containing a ”stop” event before returning to check if the next test has been started.

As long as the content retrieved from the web server indicates that the test has not
started, the simulation application will pause for 10 seconds before once again returning
to check whether the next test has begun. Then when the retrieved content indicates that
the next test has started the user will proceed doing the same all over again.

60

Behaviour Logging Tool - BeLT

Test control script

After all the simulation applications where started on the hosts we started the test con-
trol script. The first thing the test control script does is to change the configuration files
for Syslog-NG to ensure that the correct fileformat is generated. After replacing the ex-
isting configuration file it restarts the syslog service . Then the script starts SAR in the
background to log the system performance.

Following this the server replaces the content of the file on the webserver content
that indicates the test has started. The test control script then sleeps for a short period,
to ensure that everybody has connected and has access to the server. When the test script
awakens once more it changes the content of the webpage to the indicate that the test
has ended.

After the test script has set the content of the webpage to indicate test stop, it goes
to sleep for a 60 minutes before awakening and sleep one final time, to make sure that
that all events has been properly parsed and stored. After this the test control script will
return to replacing the current Syslog-NG config file with a new one configured for a
different file format

6.3.3 Running the tests
Prior to the first test on Friday the 22nd of February we wanted to test our system to
ensure that it ran smoothly, without any problems. The tests we ran was five minutes
long for each storage format to ensure it worked properly. This way we improved the
test scripts, simulation application and Syslog-NG before we ran the test on Friday. Since
these tests were done using a single computer, simulating five users for a few minutes,
we were only able to test the basic functionality and flow of our testing methodology.

First test

On Friday we started out with trying to set up our testing environment at the computer
lab, where we had a couple of problems. First we where missing DLLs when just copying
the executable onto the hosts. To fix this we had to install a separate program on the
hosts, but the terms set for our use of the computer lab stated we couldn’t install software
on the computers. So after a few trials we were able to create a software that would
function by copying it onto the host without any need for external software, that we
didn’t include ourselves.

Then after getting the test environment up and running we started the hosts to run
a short test where we ran each storage format for five minute before continuing with
the next format. Right after starting the trial test we lost connection with all except for
ten hosts. We then restarted the five minutes test with the ten remaining hosts, which
worked without a problem.

When the five minutes test was finished running we engaged the hour long test,
where each storage format is running for one hour before sleeping for a little while and
continuing with the next format.

As a result of the short test we ran the hour long test with the ten remaining hosts
that didn’t fail during the first trial. Along with the Syslog-NG and the scripts we also ran
SAR in the background. SAR logged the performance statistics of the server every second
and stored it so we could later on evaluate the results of each storage format and see
how they affected the server.

The results which we analyzed on Saturday gave us the insight that using ten hosts

61

Behaviour Logging Tool - BeLT

to emulate fifty users was a big underestimation of what our server could handle. The
results the test yielded is not published because the system performance was not affected,
thus not yielding any valuable data.

We decided, based on this to run another test on Sunday with all available computers
in the computer lab, after configuring the Syslog-NG server to accept more than ten
connections.

Final test

After our failed tests on Friday we mitigated the error in our Syslog-NG settings to allow
for more connections at the same time. Which meant we could use all of the functioning
computers in the computer lab.

When we had set up our test environment with the 25 functioning hosts wee started
the test with running each storage format for an hour before switching. This ran fine for
the first storage format, but when pausing before starting the next format we discovered
that three hosts had not stopped sending data to the server. We then stopped these host
from sending data before the next test started.

There was also a fourth host that was running an older version of our simulation
software, but it did not cause any problems for our testing purposes, nor for our data
collection. All in all we had to shut down three hosts during our first test, which left us
with 22 hosts to run the test with. The results from the remaining 22 hosts are what
we have based our results on. The tests we ran was in the end, despite some minor
problems, a complete success. There was however a problem that occurred with SAR
because our server were running as a VM on a VM server. The VM server’s scheduling
algorithm would then delegate its resources between the currently running VMs which
caused us to loose a significant amount of from SAR, but we were still able to generate
our graphs and calculate the averages of our servers performance statistics.

The biggest problem however was the test we ran on our indexed database imple-
mentation, where we lost 753 packets from Syslog-NG. The error was caused by us when
we prematurely ended the test to restart our first test, as explained in detail later.

6.3.4 Flaws in our test
First test

On Friday we initiated a small scale test with 20 hosts running our simulation software.
Once we had started the simulation software on the hosts everything seemed okay and
we initiated the server. When we started the server vi instantly lost connection on half
our hosts and were forced to abort the test session.

After a while of error searching we figured out that our server could have a limitation
on the number of simultaneous connections of 10 hosts, and since we were unable to
find the error in our configuration we decided to run the long test using only 10 hosts.
This time the test was run successfully and all the data was collected successfully.

Because of this we decided to take a look at the data, fix the server and decide whether
we needed to run a bigger test. So on Saturday we fixed the error in our Syslog-NG
configuration that hindered more than ten connections at the same time. This opened up
for more connections so we could use all of our hosts. After lifting the connection limit
for TLS-connections on our server we analyzed the data, which showed that the resource
usage on the server was too low to draw any significant conclusions.

62

Behaviour Logging Tool - BeLT

Final test

During our long term test on Sunday, where we let the hosts running the simulation
application, send data to the server for a full hour for each of the storage formats. During
this test we started out with 25 hosts, but when the the first storage format had finished
testing three hosts would not stop sending data to the server. We caught this error prior
to starting the test of the second storage format and shut the hosts down. Because of
this error the hour long test was no longer valid, but all later tests with 22 hosts was
successful and error free. To mitigate the error we ran the test of the first storage format
once more with 22 hosts, after all other formats had finished, thus getting a complete set
of valid and correct data without errors.

What had happened was that we had forgotten to configure these three hosts to never
enter hibernation/sleep mode and never to shut off the screen. After a while they went to
sleep, and when our first test was over we went to check on the hosts. When we awoke
the three hosts they continued to send data even though the test was over. This render
our test for the raw storage format invalid. We then quickly shut the hosts down, before
the second test started, to avoid corrupting our second test. We then ran the first test
again after all other tests was finished to get a complete set of valid tests.

Our problem with a fourth computer was that we were using a an older version of
our simulation application because of a glitch when replacing the previous version. Even
though it didn’t end up causing any problems we had to search through all of our records
and databases to look for whether an error had occurred. After a systematic search of our
databases and files we didn’t find any errors at all that had compromised our results and
data sets, except for a man made error explained below.

Another error during our testing was that SAR lost a significant amount of data, see
table 14, but because the data lost was spread out through the test we could still use it
to generate averages. This happened at regular intervals because the underlying server
would schedule its resources to another VM and therefore cause a gap in the data sets
when we hav no access. Even though we lost about 20% of the data for each test, we
were still able to retrieve the data we needed because it wasn’t a consecutive loss of data.
It was instead small losses throughout the test. The losses that occurred is best explained
by looking at figure 19, of our CSV test. It shows that the amount our CPU spent being
idle drops to zero at regular intervals. The effect of this is that when the server schedules
resources our way again, we’ll have a queue of events waiting to be parsed. This will
cause a drop in our idle time until we have parsed the queue.

As we stated previously the only real error that occurred was when we restarted our
hour long test for the raw data. What happened is that the test finished for our indexed
database and we shut down the server so we could restart the first test. When doing this
we were to quick and shut down the server before the remaining events in the queue was
inserted into the database. We found this out when we later on were gathering data for
our summary table, table 13.

After finding the sessions that had where missing events, we started investigating
what could have caused this. Our theory was based on that we had a total of 753 missing
packets and there was 75 sessions missing their last ”stop” event in the database. Based
on this we believed we had terminated our test prematurely and caused 75 sessions loose
10 events each, since this would correspond to 750 events out of the 753 missing. This
was further investigated and confirmed by the following SQL-queries:

63

Behaviour Logging Tool - BeLT

Code 6.6: Select all session without a ”stop” event
1 SELECT event.SID , event.UID , event.MSG , T2.MSG
2 FROM event LEFT JOIN (
3 SELECT SID ,UID , MSG FROM event WHERE MSG="stop"
4) T2 on event.SID=T2.SID AND event.UID=T2.UID
5 WHERE event.MSG="start" AND T2.MSG IS NULL;

Based on this query we found out we had lost at least the last package for 75 sessions
since it returned 75 rows with a session that did not have a corresponding ”stop” event.

Code 6.7: Select all distinct user ids from sessions without a stop event
1 SELECT DISTINCT event.UID
2 FROM event LEFT JOIN (
3 SELECT SID , UID , MSG FROM event
4 WHERE MSG="stop"
5) T2 ON event.SID=T2.SID AND event.UID=T2.UID
6 WHERE event.MSG="start" AND T2.MSG IS NULL;

Based on this query we discovered that all sessions belonged to a unique user, since it
returned returned 75 rows where the UID is distinct and ”stop” event is missing.

Code 6.8: Check if anyone are missing multiple sessions
1 SELECT COUNT(event.SID) as SIDX , event.UID as UIDX , event.MSG , T2.MSG
2 FROM event LEFT JOIN (
3 SELECT SID , UID , MSG FROM event WHERE MSG="stop"
4) T2 ON event.SID=T2.SID AND event.UID=T2.UID
5 WHERE event.MSG="start" AND T2.MSG IS NULL
6 GROUP BY UIDX HAVING SIDX > 1;

The query shows that no user have multiple sessions that are incomplete, since the query
returned zero rows.

Code 6.9: Check if the session without ”stop” event is the last session
1 SELECT event.SID as SIDX , event.UID as UIDX , event.MSG , T2.MSG
2 FROM event LEFT JOIN (
3 SELECT SID , UID , MSG FROM event WHERE MSG="stop"
4) T2 ON event.SID=T2.SID AND event.UID=T2.UID
5 WHERE event.MSG="start" AND T2.MSG IS NULL
6 HAVING SIDX = (SELECT MAX(SID) FROM event WHERE event.UID=UIDX);

Based on the query we found out that each of the 75 incomplete sessions is the last
session for its user.

Taking all of this into considerations we are certain that the loss of data was caused by
a prematurely shutdown of the test, and not any configuration errors or system failures.
All in all our error caused the server to loose 753 events from 75 unique users from their
last session, as proved by the SQL queries above..

6.3.5 Results and conclusion
As previous stated we reached our max resource usage when using the indexed MYISAM
database. The reason for this is somewhat due to the fact we piped the formatted data
to a FIFO-list which was then read by a bash script that opened and closed a connection
to the MySQL server for each line it read. We would most likely have received better
results if we had used an application that would keep an open connection to the MySQL
server, but database storage would still require the most resources especially when using
an indexed database. For a full summary of our results see table 13. For an explanation of
each storage format, how they were configured and implemented is explained in section
6.3.6.

64

Behaviour Logging Tool - BeLT

Because we used a virtual server, we got some errors in our statistical data which
we wouldn’t have received if we had used a stand-alone server, which would also have
resulted in cleaner graphs when depicting resource use. The best file format to store in
would, based solely on our statistical results, be CSV. This is because there was very little
difference between XML, raw and CSV in the performance statistics. We didn’t loose any
events and the storage size of CSV is by far the lowest.

With the future in mind we can surely state that the data set will grow far beyond
a manageable size with a manual file directory it will be need to implement database
storage. This is more easily done with the XML file format and is by far the best way
to go when it is going to be implemented. This is because the information in the XML
file is more easily identifiable and easier to work with since there are many APIs for any
language that can parse XML files. The drawback with XML is that it requires almost
three times the size of a CSV formatted file, but this is only a small problem with todays
possibilities for storage space.

The raw format is not usable because there is no structure of the events, just pure out-
put from Syslog-NG without any structuring or processing, and is only used to provide
a baseline for the resource usage. The database storage is not usable because it requires
too much resources and would not scale well, but it had the advantage of putting infor-
mation straight into a database which then were ready straight away. Though, even with
a service running an open connection to the database, would not be the best solution
since the processing is much heavier than outputting the processed Syslog-NG formats to
a file.

Instead, importing data to a database for storage should be done by running a sched-
uled task during hours of inactivity on the system, i.e. during the evening, night or week-
ends, see section ”Data Export” and ”Data Import” in section 4.3.2.

Data summary
Test Sent Events/s Lost CPU

avg
CPU
idle

Size
B/event

IO request-
s/sec

Raw 2 593 615 704.7/s 0 4.8 62.30 116.9 8.19
CSV 2 273 460 617.7/s 0 4.8 62.39 55.4 8.44
XML 2 400 220 652.2/s 0 5.1 60.46 150.0 8.59
Unindexed
DB

2 289 575 662.1/s 0 43.3 41.43 126.4 4.28

Indexed
DB

1 645 475 447,1/s 753 48.2 4.29 265.8 37.34

Table 13: Summary of our test results.

Table 13 shows the summary of our test. The ”Sent” column represent how many
events were sent from the simulation application on our 22 hosts. ”Events/s” is how
many events was sent per second during our a bit over one our long test. ”Lost” states
how many events were lost during the test. ”CPU avg.” represents the averaged CPU
use and ”CPU idle” represents the average amount the CPU spent in user mode and
idle/waiting mode, respectively. The ”Size B/event” column represent how much storage
space a single event requires on the server. The ”I/O requests/sec” represents how many
input and output requests was made per second on the server.

65

Behaviour Logging Tool - BeLT

SAR loss statistics
Test Capture time Data points Amount lost Percentage

lost
Raw 05:50:00 – 06:51:26 3680 679 18
CSV 01:34:22 – 02:35:42 3680 800 22
XML 02:35:44 – 03:37:04 3680 823 22
Unindexed
database

03:37:06 – 04:38:26 3680 824 22

Indexed database 04:38:59 – 05:38:56 3680 795 22

Table 14: Number of losses within each hour long test

Though our tests was successful it only shows one real test with 110 users. This makes
us unable to depict how the resource usage will behave when i.e we double the amount
of concurrent users. Because of this we can’t say for sure if the resource usage scales
linearly or exponentially when adding more users, but with 110 users generating an
average CPU user mode load of 4-5% along with the CPU being idle 60% of the time are
we confident that the server could handle at least 400 users for the XML, CSV and raw
output formats. In addition to average I/O wait being 40% for XML we know we have a
lot to go on when it comes to available resources.

The virtual machine which ran our Ubuntu 12.04 server wasn’t the most powerful of
servers. It ran on a single virtual CPU with 1GB of RAM and 10GB of storage space. The
processor on which it ran was an Intel(R) Xeon(R) CPU E7-4830 @ 2.13GHz. All in all
this isn’t a bad setup for running our development project, but in a production environ-
ment we would want to implement a system with multiple log servers to allow for load
balancing. For our case we would have implemented a lightweight load balancing sys-
tem which granted one user a fixed server to log data to, then users would be distributed
equally among the servers to avoid congestion on a single server.

Since we where able to handle 110 users with great ease during our testing we don’t
see any problems with having our development server to be used for the initial data
collection to come.

6.3.6 Explanation of test
Raw output

The raw data output means that Syslog-NG only output a long string to the file corre-
sponding to the sending users session id. With all the data separated, by a comma, as
shown in listing D.7. This is test was run to use as a baseline value since this required the
least amount of parsing of received data.

Figure 18 describes how much percent the processor spent being idle during the test.
The results are conclusive, and shows us that we still had plenty to go on when it comes
to available CPU resources. This means we could run the test with at least as many
users as stated in the previous section 6.3.5 before any severe performance issues would
appear.

CSV-formatted output

Figure 19 describes how much of the processor spent being idle during the test. The
results are conclusive and depicts that we still had a lot to go on when it came to available
CPU resources. This means we could have run this method with a at least the amount
stated in the conclusion, section 6.3.5. This mostly because the file format doesn’t require

66

Behaviour Logging Tool - BeLT

Figure 18: Percentage of time spent idle when using raw mode

much processing, even though it is much larger and more complex than the exportation
for raw output.

Figure 19: Percentage of time spent idle when using CSV

The output to create CSV files means we had to create the files according to a specific
format, described was developed in collaboration with our employer. This file format is
much lighter to store than XML, since XML requires a great deal of extra padding around
the data to create the file format. CSV only needs tho be separated by a fixed separator,
but it also requires us to format the data according to the file format. Since we have a
specific format for each the event types that occurs, and certain differences based on the
different fields that comes up for the event.

67

Behaviour Logging Tool - BeLT

XML-formatted output

Figure 20 describes how much of the processor spent being idle during the test. The
results are conclusive and depicts that we still had plenty to go on when it came to
available resources. This means we could have run this method with many additional
users before causing any severe performance issues on the server.

Figure 20: Percentage of time spent idle when using XML

The code for implementing the XML method in Syslog-NG is listed in code listing D.9.
This code appends for each entry received from a user, a XML-formatted section to the
XML-file for the user. This XML output method had to to take into account any values
that might be missing from the field and parse it according to our fixed file format before
storing into the the folder ”/var/log/belt/[user id]”.

Unindexed database

Figure 21 describes how much of the processor spent being idle during the test. The
results are not conclusive, though it is more idle than the indexed database. We would
for certain be able to add more users, but it would be much smaller increase than with
the CSV, RAW and XML formats. The figure depicts a medium percentage of time spent
idle which indicates that we had approximately 40% to go on before we reached this
methods limit. Even though there’s, 40% left would we not be able to add too many
additional users before it reached its limit.

The unindexed database is created using the MYISAM engine without declaring any
relations or primary keys in the table or constrictions. We have created the database using
the a version of the SQL-script in listing D.5 of appendix D. The unindexed SQL script
differs slightly from our indexed SQL script, 6.3.6. The difference is that the unindexed
script does not declare any indexes at the bottom of the script. These last lines of the
script declares indexes that has to be created for each row in the table. See listing D.5,
in appendix D. The SQL script generates the database shown in figure 22.

We created a SQL procedure common for both the unindexed and indexed databases,
see listing D.4 in appendix D. The procedure takes a fixed amount of parameters which
is written by Syslog-NG to a FIFO file. Then a bash script, see listing D.11, iterates over

68

Behaviour Logging Tool - BeLT

Figure 21: Percentage of time spent idle when using database

Figure 22: ER-model of our database system

the file and for each line it reads it sends the line to the MySQL server. The MySQL server
then runs the procedure and inserts it into the corresponding fields in the tables.

Indexed database

The indexed database, see listing D.5 in appendix D, is exactly like the the unindexed
database with the exception of declaring certain indexes at the end of the script. The
reason we chose the indexes we did, was because these fields were the ones we were
going to use later on when analyzing our database storage. These fields would help us to
correlate the captured data as well as perform quicker searches. We created an index on
all tables on the event counter(ECOUNT), the session counter(SID) and the user id(UID).
With these three indexes throughout the database would we be able to correlate all tables
to identify each row within the table. We also created an index on the timestamp since
this would allow for us to search quicker based on time signatures. For the keyboard
table we created an index on the button value so we could easier search for the value

69

Behaviour Logging Tool - BeLT

based on a buttons value. For the ”automation” table we created an index on the process
name which made us able to more quickly correlate events within an application. We also
created some additional indexes both for us to use them to correlate events, and because
we wanted to to have a worst case scenario which required some additional indexes.

Figure 23 describes how much of the processor spent being idle during the test. The
results are conclusive and depicts that we reached well above the user limit for our server.
The low percentage of time spent being idle clearly indicates this.

Figure 23: Percentage of time spent idle when using indexed database

70

7 Privacy

In this chapter we discuss the different privacy challenges that we have discovered during
the development of BeLT. We also discuss the probable privacy concerns that may occur
during a future implementation of BeLT in a research setting, as well as an application in
a real world implementation.

During our development we discovered a number of privacy concerns which we im-
plemented mitigating actions towards. Our main concerns have been to keep the users
anonymity and to ensure confidentiality and integrity of captured data.

After the algorithm for authenticating users is finished BeLT is planned to run locally
on computers and continuously authenticate users. In this scenario BeLT will never send
the logged data to a server for storage, but rather locally work together with another
application (built for authentication).

7.1 Anonymity of the user
When we are capturing data we are also capturing information that can identify the
person behind the data. To anonymize the real identity of the person behind the data
BeLT generates and gives each user a random, unique ID. This ID is generated in two
different ways – the primary method is to generate the ID by selecting a 128 bit unique
identifier from the OS which is unique for windows OS-es along with the users username
unique to the local computer. This combination ensures that it is a unique value. This
concatenated value is then hashed into a 128 bit value, using the MD5 hashing algorithm.
This is again encoded as base641.

When doing this it is possible that there could occur a hash name collision. The prob-
lems related to this occur when we store information on the server. Identical IDs will
cause information from multiple users to be stored as a single user, append data to an
already existing file or corrupt the existing file. All cases will render the research data
useless for analysis.

To find the likelihood of a collision, we should not calculate based on the number
of possibilities alone. We will get a more realistic likelihood of a crash, if we use the
birthday attack. Here we use an approximation, since calculating the exact value, is very
time consuming and not necessary for us. All calculations have been approximated with
the following function: 1 - e-n2/(2m) where n is the number of hashes and m is the
number of possibilities (2128) Our calculations show that we need to generate about 264

hashes on average before we get a collision. With thousand, or even millions of users,
the chances of a collision are infinitesimal2.

After the ID is generated it is stored in the users profile to keep it persistent. The user
profile file in BeLT is stored in the AppData-folder, all users on Windows has their own
AppData-folder and makes it possible for BeLT to distinguish between different users on
one computer.

1Slightly modified so it’s safe as a filename
2Using Python with 53-bits precision

71

Behaviour Logging Tool - BeLT

If our primary method fails (we don’t get access to the system ID), we generate an ID
by grabbing the current username and append a randomly generated 15 character string
to it. This string is then hashed into a 128-bit value, which is encoded to base64 and
stored in the current users profile. In this case also, there is a very low probability for ID
collisions.

7.2 Confidentiality
Since we are capturing and transmitting sensitive and personal information across pub-
licly open networks we had to ensure the confidentiality of the data, as required by
the Norwegian law on privacy[57]. To ensure the security and confidentiality of the
data when transmitting it to the server we’ve encrypted the communication between the
server and the client.

The system uses the TLS protocol to encrypt the communication lines between the
server and the client. The encryption is based on a TERENA certified certificate generated
from a 2048b long key using OpenSSL. By using encrypted communication we ensure
that an adversary will not be able to read the data during transmission as part of an
eavesdropping attack, unless he has the certificate used to decipher the communication.

Another way we keep the users privacy, is that we give the user a choice to store the
captured data locally before sending it. The user the has the option of manually excluding
timeframes before sending the locally stored file. Even though this is a tedious way of
filtering out unwanted information, it shows the potential of how we can filter out data.

In future development it should be implemented additional methods for removing
data based on what application that’s been used. I.e a user should be able to specify
whether they want to remove the data gathered while writing an e-mail or a browsing
the web. Another method should be to find and remove usernames, passwords, account
numbers and similar sensitive information. I.e one could interface BeLT with password
managers in web browsers and implement the ability of storing unwanted text strings
that should be removed from the capture before transmitting it to the server.

Since we are capturing everything the user is typing, we wanted to minimize the prob-
lem for the user to capture very personal information like passwords. We are mitigating
this by continuously checking whether the user is currently typing in a password field.
When this occurs we disable the logging of keypresses and notify the user by changing
the icon in the system tray. Because of this we help the users by automatically removing
their passwords and therefore securing what is captured from being very easily abused
by a third party. Even though we remove passwords as best as possible we are not able to
remove other personal information like usernames and account numbers automatically.
Because of this we have implemented the possibility of manually pausing and resuming
BeLT upon request by the user and thereby stopping the logger from capturing data.

7.3 User awareness
Before capturing the data, we have to make sure that the user is aware of and accepts
the purpose of and functionality that BeLT provides. To do this the user is informed of
BeLT’s functionality and purpose through the EULA(End User Licence Agreement) we
have implemented an EULA in the MSI installer. The user is then forced to accept our
EULA before they can install BeLT.

The EULA informs the user of what information we are capturing and transmitting,

72

Behaviour Logging Tool - BeLT

how it is stored/transmitted, information about BeLTs functionalities and disclaimers to
avoid some legal and non-legal issues. I.e we have a disclaimer stating that there is no
warranty on the application and that the user is responsible for any use of the application.

In order for a EULA to be as helpful as possible it is important it is easy to read, easy
to understand, but most of all is provided in a format that can be easily accessed and
managed by the user. The EULA should contain a disclaimer and a copy of the programs
licence agreement if its been developed under a specific licence. Any restrictions on the
application must be clearly specified within the disclaimer or heading.

Beside the EULA the distributor of the application should have an easy to navigate
website explaining the application step by stet by step

In order to assist with informing the user of what we are capturing, we have made
a GUI for BeLT. The GUI can be accessed from the system tray icon, and it can display
the information that BeLT is capturing in real time. By default, it displays nothing and
does not show up, because we’ve made BeLT to run unobtrusively on the computer.
The curious user however, might want to take a look and see what information we are
logging, because of this we have made possible to view the data from BeLT.

In addition to the EULA and the GUI we have also created a user manual which
explains BeLT and how to use it, appendix B. This guide explains BeLTs interfaces, indi-
cators and settings. It also provides the user with a list of known problems that can occur
along with what the reason for the error is and how to mitigate it.

So in summary we have implemented several features to raise user awareness about
BeLT and how it functions. In the future it would be a good idea to create a website
for BeLT which is the common information channel for BeLT. Here one could explain
BeLTs functionalities, purpose and use better and in more detail than in the EULA. This
website would also serve as a single point for the public to get information from as well
as contain a system for error reporting.

7.4 Abuse by authorized personnel
The server needs to be administered by someone, some users will be granted legitimate
access on the server with access rights to various degrees. We recommend that abuse by
these users should to be mitigated with both policy and technical solutions.

A policy should be in place to state what is considered legitimate use – who has
access, their level of access, how the data is processed, how it should be transmitted
and projected. The policy also has to state the consequences for when these rules are
disobeyed. As part of handling a violation of the policy there should be a contingency
plan on how to handle at least the following cases – illegal distribution of data, illegal
interaction with data, sabotage of server and manipulation of stored data. The policy
should also describe when manipulation of the stored data is allowed, how it should be
done and whom is allowed to do it.

For the technical solutions we recommend that there is implemented appropriate ac-
cess control list(ACL) on all resources and a system event logging service on the server.
As a general rule, users should be granted the least amount of access necessary to avoid
letting users have access to sensitive resources. By implementing a logging system and
setting the correct access rights, access violations will be easily detectable and possible
to discover since the logging system would store the violations.

The privacy law (Personopplysningsloven[8]) §13 states that one has to provide ade-

73

Behaviour Logging Tool - BeLT

quate integrity of the stored information. To validate the integrity of the stored files, we
recommend that one calculates the hash of a finished session and store it securely. This
way one can later on validate the content of the file by comparing the to hashes and see
whether they’re equal. If they are equal, we now that it has not changed, unless someone
has successfully replaced the file with something that creates the same hash value.

In addition server updates should be tested on a separate system before being imple-
mented on the active system. This will minimize the amount of issues caused when a
new update, feature or configuration is to be implemented.

Since NISlab will use the data stored on the server to develop the authentication
algorithm, there has to be policies in place that describes how the administrator can
handle the data and what data should be transmitted as output. We recommend that any
output from the analysis software shouldn’t contain any actual data, but instead only
displays the result of the analysis. The development of the algorithm should also be done
on the server to avoid moving data from the server to the developers computer.

The most effective mitigative actions is to ensure adequate access control throughout
the system and its files, along with a logging system. This is because adequate access
control ensures that no user has access to privileged information. The logging system
will then work as a monitoring service that detects access violations and can show whom
is violating their access rights. Which will back-up the legality of applying consequences
for policy violations.

7.5 Abuse by un-authorized personnel
In general there are many attack vectors to a system. Our technical countermeasures
to reduce these vectors are – TLS encryption, code signing and physical security of our
server.

The encryption makes it impossible for an adversary to perform a man in the middle
attack(MITM) to gain access to the server or read the data during transmission. It might
be possible to take leverage software bugs to gain elevated privileges on the client, thus
gaining the data before it is being encrypted. On the other hand the server might be
compromised due to software bugs which could grant an attacker access to the server
and its data. Since this is more than a likely scenario it is important to implement good
routines for keeping the server up to date with security patches.

The server itself can pose a risk if it is not properly secured against un-authorized
access, in the physical sense. We recommend the server to stay in a physical safe and
secure location.

Another attack vector is impersonation. An attacker may create a similar software to
impersonate BeLT, but instead transmit the data directly to the attacker. This is however,
not a likely scenario. Even if our adversary has the resources to perform this attack, it
is still to some degree mitigated. It is mitigated because we are signing our code by
using certificates certified and trusted by TERENA[40]. This way our installer is digitally
signed and whenever the UAC dialog appear it states the publisher of the application,
"Høgskolen I Gjøvik". This creates trust between the user and the application that it is
in fact created by the correct persons and trusted by larger corporation. The client also
validates the server with a certificate chain, distributed with BeLT.

Since this system is a potential target it is important that it is implemented technical
solutions to secure the virtual perimeter around the server. This should incorporate a

74

Behaviour Logging Tool - BeLT

secure zone behind a firewall that uses ACLs to control access to the server behind the
firewall. These ACEs should describe both the host and what protocol it is allowing. The
firewall should incorporate a whitelisting that denies all traffic beside specified entities.
These entities should be a range of fixed IP-addresses used by the system administrators
for SSH access to the server, and all users connecting to he port used for receiving data
to the Syslog-NG service.

7.6 Transparency of logged data
When capturing and storing personal information the user may want to see the data
that is captured. We recommend that the user should be completely anonymous, even
to its own data – by doing this we make sure that none of the users can try to acquire
other users data. This might give the user wrong impression because we do not want
any secrecy in what we are doing – rather we want to do everything possible to keep the
users information safe.

We have implemented two things to ensure a transparency of data.

1. A representation of the raw data within the application to see what is captured.

2. Option to locally store and review BeLT sessions before sending them to the server.

The purpose of this is to establish trust between the users, owners and administrators of
the system where the data is stored – keeping the users more satisfied.

To help the user avoid sending unwanted data we have added the option of storing
data locally in a folder on the computer before it’s sent. By doing this the user can view
the locally stored sessions with timestamps and see what information that is stored – and
avoid sending the file before excluding sensitive data from the file.

BeLT should in future versions also have the ability to filter out any event generated as
part of an application – i.e Microsoft Office, Outlook and alike. By doing this, BeLT could
possibly remove all events that corresponds to a personal mail or online banking session.
We believe it should also be possible to remove passwords, bank account numbers and
other information based on filtering rules. If for example the users could add their user-
name, password and bank account number to a rule set in the application and later on
before sending data it would remove those events from the log. This would help the user
in keeping the trust that their passwords and username is not being compromised.

7.7 Storage of data
When storing personal information the privacy law (Personopplysningsloven) [8] has
three paragraphs covering requirements to the storage and safekeeping of the data. §13
states that the implemented security countermeasures must be documented, and that
there must be a satisfactory level of information security in place. These countermeasures
must ensure that confidentiality, integrity and availability is upheld when processing,
collecting and storing personal information. This involves avoiding to corrupt any data
during storage, processing or transmission. It also involves securing the server against
both authorized and unauthorized personnel, see section 7.4 and section 7.5 for our
proposed methods of securing the server against these type of attacks.

All the data should have a fixed lifespan. Since the data is going to be used in a
research project, it is hard for us to determine, how long the data should be stored. But
it should be set before the project is started and the user should be informed about this.

75

8 Conclusion

8.1 Achievements
One of the main objectives we didn’t have a solution for, was how to retrieve information
about how the user interacts with software. Previous work provided little information
for how to do this and we found no generic method to collect this type of information.
We investigated possible solutions and came up with User Interface Automation, which
turned out to be a good solution.

Another challenge for us was to develop a large application that is going to be dis-
tributed to multiple users, and be further developed after we are finished. This is not
something that any of the group members had done before and we needed to take a
more professional approach to system development than we had taken before. We did
this by working in fixed increments with regular meetings with the employer, using bug
tracker to keep a record of progress and bugs. We also set up a complete development
environment in which we could work, and cooperate efficiently.

One unexpected challenge that occurred during development was the transmission
between the client and the server. We had to find a secure way to transmit all the
logs to the server. First we identified Syslog-NG as a potential program we could use
on the server. Syslog-NG relies on the Syslog protocol, which satisfied all our require-
ments for transport. On the client side we didn’t find any reliable implementation that
we could use, therefore we had to program the transmission component ourselves, fol-
lowing RFC5424.

The final application satisfies the requirements quite accurately. Almost all of the
decisions we have made along the way has provided good results. From a functional
standpoint the application gathers and stores the appropriate information. From the user
perspective, the application is unobtrusive and everything can be done without the users
interaction.

8.2 Requirement specification and results

Requirement specification and our results
Requirement Status
Capture when keys are
pressed and released

Completed

Capture mouse interaction Completed

Continues on the next page

77

Behaviour Logging Tool - BeLT

Requirement Status
Distinguish different HW
components used (exter-
nal mouse, touchpad etc.)

The method we first used to detect different hardware
worked in some scenarios, but in other scenarios it pro-
vided completely wrong results in other again it provided
no results. It seems like all mouse hardware is grouped in
as one logical mouse one some systems, which means that
we probably need to create a device driver to accurately
gather this type of information.

Capture peripheral equip-
ment and their status

Completed.

Capture how the user in-
teracts with software

What information is captured and the type of data we
store has been developed throughout the project, until
the amount of information was detailed enough. We also
found a generic way to gather information, so that in-
cludes any applications that was set as a minimum.

Correlate events We have developed some simple rules to decide if two
events are connected or not. See section 5.4.2 for a dis-
cussion of how we do that and possible wrong correla-
tions.

Timestamp with millisec-
ond accuracy

Timestamps with millisecond accuracy ±16ms. After a
talk with the employer, this was satisfactory, see separate
section about time granularity 6.1.3.

Ability to detect lost pack-
ets in retrospect

Each event has a counter and each session has a start and
stop message. If we lose packets in the middle or at the
start, we know how many packets has been lost, if we lose
packets at the end, we only know that packets has been
lost.

Secure transmission of
data

All data is transmitted over SSL/TLS, which provides both
security and integrity.

The application should at
minimum run at Windows
7 and later

Because of libraries used, the user need at least Windows
XP SP 3, which corresponds with the requirement.

Application signed by cer-
tificate authority

The application is now digitally signed with a certificate,
provided by HIG, and the process for doing this has been
detailed, so the employer can sign the code with their own
certificates.

Implement mitigative
measures to hinder a third
party to pose as another
user

All the IDs are generated randomly and hashed with MD5.
Each ID is considered a secret and is only sent encrypted
over the network.

Continues on the next page

78

Behaviour Logging Tool - BeLT

Requirement Status
The program should run
unobtrusively

By default, the program starts and stops everything when
the user power on and power off the computer. The user
has the option to turn this off. The program resides in the
system tray with minimal obstruction to the user, while
still visible.

GUI design There was no hard requirement for how the GUI should
look. After discussions and programming, we came to a
solution that was simple and provided the basic function-
ality and hides all advanced features. For a discussion of
the design and how it progressed, see chapter 4.4. It does
contains all the elements that were given as requirements.

The loss of logged events
can’t be greater than 1%

We have not tested this actively, but have never experi-
enced any loss of events, so we are quite sure we are
within this boundary.

Estimate total amount of
possible users

We have given a moderate estimate based on our limited
test. Since we didn’t saw any problems with a couple hun-
dred users, these estimates are higher than what we ex-
pect to observe in the beginning.

Anonymous, unique and
persistent identifier

Each user gets an ID based on computer properties and
the username. This ID will be the same for that specific
user on that specific computer, but will be different for
another user on the same computer.

Table 15: Which requirements we have fully completed and which we have not fully
completed, for some reason. means completed, and means not completed.

Table 15 shows a summary of which requirements we have fully completed and which
requirements has not been solved for some reason.

The functionality of the application follows closely with the requirement specification.
This also follows from the fact that the requirement specification was not static through-
out the project. Several parts where undefined in the beginning and had to be defined as
we progressed.

The main part of the application is what we store about each user session. There
was no right or wrong way to do this. We had to find a method that we thought would
work and decide with the employer. We found a method that collects information about
any program that the user interacts with, after a discussion with the employer, we agreed
upon this method. Collection of how the user interacts with input devices has been pretty
static since the beginning, but has progressed some under meetings with the employer.

The format for the data, had to be in a CSV file format. Exactly how this format should
be written changed over time, but we all agreed on a final format, which is what is used
in the final application.

79

Behaviour Logging Tool - BeLT

Tasks not in requirement specification
During development we also discovered several features that was not part of the require-
ment specification, but would be useful.

CSV files are easy to read and analyse when you know what the data is like, but for
future work, we came to the conclusion that XML would be a more complete format
for this type of data. We implemented the possibility for both CSV and XML in the final
application.

Storing this type of information in separate files throughout the system can get com-
plicated fast. When you have large amount of information, you also need a fast way to
retrieve certain properties. Databases are excellent for this purpose, therefore we also
implemented a method for inserting all data into a database. Since this couldn’t be done
directly from Syslog-NG (see section 6.3), we created a cron-job which could run every
night (when very few people are using the system).

One of the problems we saw with this type of application, is privacy, and what users
would think about this type of information gathering. We are open and honest with
everything we collect, but some users may still have a problem. Therefore we also im-
plemented a method to store the files locally first, before sending it to the server. The
user also has the options of filtering out certain time frames. The method we used here
is quite limited and provides very little functionality, but it serves as a prototype for what
is possible, in section 8.3 we discuss more ideas about this.

Automatic update is a central part of almost any modern application, we have im-
plemented this functionality, but since the application will not be in active development
after we are finished with the project, it has been turned off.

To test the client-server communication, we used a temporary server. We where sup-
posed to set up and configure the development server before the report was handed in,
but the server was not ready, as of May 15.

8.3 Future Development
This application serves as a prototype to see if it can be used in this type of biometrics.
It was not supposed to be finished now and we hope it will be developed more in the
future. During the development process this has always been considered, so we have
tried to document all the steps we have taken and all the decision we have taken, from
the server, to distribution to the client application.

Since this can be a self-contained program in the future, designed for authentication,
we have also implemented patching functionality.

A device driver can gather more specific information in a couple of cases; detect
different hardware used is one of the problems we think can be solved with a device
driver. More accurate timestamps might be possible with a driver, but you would probably
come into the same problems as we did when analyzed timestamp accuracy, see 6.1.3.

The information we now gather is based on what we think will be useful. It is not
unlikely that this will change in the future when developing the algorithm for authenti-
cating users. We only gather a small subset of all the available information.

Ont thing that should be done in the future is; a more rigorous test to get the best
performance out of the server and to get a better understanding of how many users the
final server will be able to handle.

We have implemented a function for sending locally stored file to the server, the user

80

Behaviour Logging Tool - BeLT

can then filter out certain time frames. It might be difficult for the user to know what the
filter out when you only have time frames to work with, so a way to visualize the data
and filter out everything the user did in a given window would be much more useful.

Another way to filter out data, in a way that more people are willing to participate in
the experiment is to let the user filter out given words or application beforehand.

AppMonitor [5] reduced privacy concerns by not storing key events that could be used
to reveal what text they typed, which is another group of events that could be excluded.

Another part that might make it more fun for the user is to store statistics for much
longer time. We can for example store how far the mouse has travelled or how many
words have been written while the program has been running.

8.4 Alternatives
We made several decisions regarding how the application should work, the most sub-
stantial one was probably the decision to use User Interface Automation (UIA) to gather
information about how the user interacts with software. Another option here was to use
Microsoft Active Accessibility (MSAA), which was the predecessor to UIA. It doesn’t look
like that would have changed much, but we did have to use MSAA for some type of
events. We do think that UIA was the better option, both for compatibility in the future
and maintainability as UIA is easier to navigate.

When choosing a protocol for transmission over the Internet, we had to keep a couple
of things in mind, it had to be secure and fast. One thing we considered early was that
we might be able to use an already existing product on the server, that would both make
our job easier and make our application more flexible. We came to the conclusion that
Syslog-NG would satisfy all the necessary requirements. After this was chosen we had
to use the Syslog protocol for transmission which satisfied our requirements to security.
By doing this the application on the server can easily be substituted to another applica-
tion that support the Syslog protocol. This makes our application more universal. The
main disadvantage with using Syslog as the protocol is that we need to send each event
separately, regardless of size, this causes more overhead.

We quickly chosed to use OpenSSL as our library for TLS communication, this was
because we wanted to avoid compatibility issues with the Linux server we had. This
decision has not caused any problems, the only downside we can see, is that the libraries
has to be distributed by us. This is not desirable, if OpenSSL releases an update, our
application should also be redistributed with the new libraries. The only reason to do
this, is to fix vulnerabilities, since our application only talks to servers controlled by the
development team, it is not a big problem.

When creating the GUI we had to decide which library to use, several are possible,
our final choice was MFC, which we chosed without much discussion. The GUI is a small
part of the application and this application will never be cross-platform because of all
the other libraries used in the application. Therefore we found that MFC will provide a
decent solution to our problem.

8.5 Evaluation of group work
The group has worked well together. All of us has worked on projects together before, so
there where no surprises there. We mostly agreed on decisions, if we didn’t agree it was
easily solvable.

81

Behaviour Logging Tool - BeLT

We had two meetings a week, where we discussed what we had done, any problems
and what each of us was going to do in the next couple of days. The length of these
meetings varied greatly on how much we had to discuss.

8.5.1 Work process
We decided to work in increments of two weeks before we had a product that could be
delivered for testing. This gave us some leeway where we could test out different thing
without having to worry about the next delivery. For us this process worked very well,
especially since there was a lot that was unclear when we started the project and the
requirement specification was further developed along the way.

82

Bibliography

[1] Ernesto Arroyo, Ted Selker, and Willy Wiy. Usability tool for analysis of web designs
using mouse tracks. CHI EA ’06 CHI ’06 Extended Abstracts on Human Factors in
Computing Systems, pages 484–489, 2006. http://dl.acm.org/citation.cfm?
id=1125557.

[2] Richard Atterer, Monika Wnuk, and Albrecht Scmidt. Knowing the user’s every
move: user activity tracking for website usability evaluation and implicit interac-
tion. WWW ’06 Proceedings of the 15th international conference on World Wide Web,
pages 203–212, 2006. http://dl.acm.org/citation.cfm?id=1135811.

[3] Florian Mueller and Andrea Lockerd. Cheese: tracking mouse movement activity
on websites, a tool for user modeling. CHI EA ’01 CHI ’01 Extended Abstracts on
Human Factors in Computing Systems, pages 279–280, 2001. http://dl.acm.org/
citation.cfm?id=634233.

[4] Urmila Kukreja, William E. Stevenson, and Frank Ritter. RUI: Recording user in-
put from interfaces under windows and Mac OS X. Behavior Research Methods,
38:656–659, November 2006. http://link.springer.com/article/10.3758%
2FBF03193898.

[5] Jason Alexander and Andy Cockburn. AppMonitor: A tool for recording user actions
in unmodified windows applications. Behavior Research Methods, 40:413–421, Mai
2008. http://link.springer.com/article/10.3758%2FBRM.40.2.413.

[6] A. Garg, S.Vidyaraman, S. Upadhyaya, and K. Kwiat. USim: A User Behavior Simu-
lation Framework for Training and Testing IDSes in GUI Based Systems. Simulation
Symposium, 39, 2006.

[7] Hugo Gamboa and Vasco Ferreira. Widam - web interaction display and monitoring.
In in 5th International Conference on Enterprise Information Systems, ICEIS’2003,
pages 21–27. INSTICC Press, 2003.

[8] Lovdata. Personopplysningsloven. http://lovdata.no/all/hl-20000414-031.
html. Accessed: 18.03.2013.

[9] The Norwegian Data Protection Authority. http://datatilsynet.no/English/.
Accessed: 15.04.2013.

[10] Microsoft. UI Automation (Windows). http://msdn.microsoft.com/en-us/
library/windows/desktop/ee684009. Accessed: 09.01.2013.

[11] Microsoft. Microsoft Active Accessibility and UI Automation Compared (Windows).
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561918. Ac-
cessed: 09.01.2013.

83

http://dl.acm.org/citation.cfm?id=1125557
http://dl.acm.org/citation.cfm?id=1125557
http://dl.acm.org/citation.cfm?id=1135811
http://dl.acm.org/citation.cfm?id=634233
http://dl.acm.org/citation.cfm?id=634233
http://link.springer.com/article/10.3758%2FBF03193898
http://link.springer.com/article/10.3758%2FBF03193898
http://link.springer.com/article/10.3758%2FBRM.40.2.413
http://lovdata.no/all/hl-20000414-031.html
http://lovdata.no/all/hl-20000414-031.html
http://datatilsynet.no/English/
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684009
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684009
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561918

Behaviour Logging Tool - BeLT

[12] Microsoft. UI Automation Clients Overview (Windows). http://msdn.microsoft.
com/en-us/library/windows/desktop/ff625909. Accessed: 09.01.2013.

[13] Microsoft. Subscribing to UI Automation Events (Windows). http://
msdn.microsoft.com/en-us/library/windows/desktop/ee671220. Accessed:
09.01.2013.

[14] Microsoft. UI Automation Events Overview. http://msdn.microsoft.com/
en-us/library/windows/desktop/ee671221%28v=vs.85%29.aspx. Accessed:
11.04.2013.

[15] Microsoft. Hooks (Windows). http://msdn.microsoft.com/en-us/library/
windows/desktop/ms632589. Accessed: later.

[16] Microsoft. KeyboardProc callback function. http://msdn.microsoft.com/en-us/
library/windows/desktop/ms644984(v=vs.85).aspx. Accessed: 13.04.2013.

[17] Microsoft. LowLevelKeyboardProc callback function. http://msdn.microsoft.
com/en-us/library/windows/desktop/ms644985(v=vs.85).aspx. Accessed:
13.04.2013.

[18] Microsoft. LowLevelMouseProc callback function. http://msdn.microsoft.
com/en-us/library/windows/desktop/ms644986(v=vs.85).aspx. Accessed:
13.04.2013.

[19] Microsoft. MouseProc callback function. http://msdn.microsoft.com/en-us/
library/windows/desktop/ms644988(v=vs.85).aspx. Accessed: 13.04.2013.

[20] Microsoft. Certification requirements for windows 8 desktop apps. http:
//msdn.microsoft.com/en-us/library/windows/desktop/hh749939.aspx. Ac-
cessed: 07.03.2013.

[21] Microsoft. Windows software development kit (sdk) for windows 8. http:
//msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx. Accessed:
08.03.2013.

[22] Microsoft. Testing your app with the windows app certification kit. http://
msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx. Accessed:
07.03.2013.

[23] Erik Fløisbonn. Integrating conduit with windows installer.
http://hdl.handle.net/10852/10089, 2009.

[24] Microsoft. Windows installer package. http://technet.microsoft.com/en-us/
library/cc978328.aspx. Accessed: 13.04.2013.

[25] Microsoft. Windows installer. http://msdn.microsoft.com/en-us/library/
cc185688(VS.85).aspx. Accessed: 13.04.2013.

[26] Microsoft. Orca.exe. http://msdn.microsoft.com/en-us/library/windows/
desktop/aa370557(v=vs.85).aspx. Accessed: 13.04.2013.

84

http://msdn.microsoft.com/en-us/library/windows/desktop/ff625909
http://msdn.microsoft.com/en-us/library/windows/desktop/ff625909
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671220
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671220
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671221%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671221%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644984(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644984(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644985(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644985(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644986(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644986(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644988(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644988(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh749939.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh749939.aspx
http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx
http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
http://technet.microsoft.com/en-us/library/cc978328.aspx
http://technet.microsoft.com/en-us/library/cc978328.aspx
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa370557(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa370557(v=vs.85).aspx

Behaviour Logging Tool - BeLT

[27] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with cod-
ing theory, chapter 9, pages 249–250. Pearson Prentice Hall. ISBN: 0-13-186239-1.

[28] R. Gerhards. The Syslog Protocol. http://tools.ietf.org/html/rfc5424. Ac-
cessed: 04.03.2013.

[29] C. Lonvick. The BSD syslog Protocol. http://www.ietf.org/rfc/rfc3164.txt.
Accessed: 25.04.2013.

[30] Eric Fitzgerald, Anton Chuvakin, Bill Heinbockel, Dominique Karg, and Raf-
fael Marty. COMMON EVENT EXPRESSION (CEE) OVERVIEW. MITRE, 1.0 edi-
tion. http://cee.mitre.org/docs/Common_Event_Expression_Overview.pdf
Accessed: 25.04.2013.

[31] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1.
http://tools.ietf.org/html/rfc4346. Accessed: 15.04.2013.

[32] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
http://tools.ietf.org/html/rfc5246. Accessed: 04.03.2013.

[33] Lisa Feigenbaum. Documenting your code with xml comments. http://msdn.
microsoft.com/en-us/magazine/dd722812.aspx. Accessed: 29.04.2013.

[34] Dimitri van Heesch. Doxygen: Documentation generator. http://www.stack.nl/
~dimitri/doxygen/. Accessed: 23.03.2013.

[35] Microsoft. Caching UI Automation Properties and Control Patterns (Windows).
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684019. Ac-
cessed: 09.01.2013.

[36] Microsoft. Understanding Threading Issues (Windows). http://msdn.microsoft.
com/en-us/library/windows/desktop/ee671692. Accessed: 09.01.2013.

[37] Microsoft. Using UI Automation for Automated Testing (Windows). http:
//msdn.microsoft.com/en-us/library/windows/desktop/ee684083. Accessed:
09.01.2013.

[38] Microsoft. Automation Element Property Identifiers. http://msdn.microsoft.
com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#uia_
ispasswordpropertyid. Accessed: 14.04.2013.

[39] Jordan Russel. Innosetup. http://www.jrsoftware.org/isinfo.php. Accessed:
08.03.2013.

[40] Terena. http://www.terena.org. Accessed: 15.04.2013.

[41] BalaBit IT security. Syslog-NG OSE. http://www.balabit.com/
network-security/syslog-ng/opensource-logging-system/ov. Accessed:
04.03.2013.

[42] OpenSSL. OpenSSL. http://www.openssl.org/. Accessed: 04.03.2013.

[43] OpenSSL. OpenSSL License. http://www.openssl.org/source/license.html.
Accessed: 04.03.2013.

85

http://tools.ietf.org/html/rfc5424
http://www.ietf.org/rfc/rfc3164.txt
http://cee.mitre.org/docs/Common_Event_Expression_Overview.pdf
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://msdn.microsoft.com/en-us/magazine/dd722812.aspx
http://msdn.microsoft.com/en-us/magazine/dd722812.aspx
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684019
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671692
http://msdn.microsoft.com/en-us/library/windows/desktop/ee671692
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684083
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684083
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#uia_ispasswordpropertyid
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#uia_ispasswordpropertyid
http://msdn.microsoft.com/en-us/library/windows/desktop/ee684017(v=vs.85).aspx#uia_ispasswordpropertyid
http://www.jrsoftware.org/isinfo.php
http://www.terena.org
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/ov
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/ov
http://www.openssl.org/
http://www.openssl.org/source/license.html

Behaviour Logging Tool - BeLT

[44] James Kovacs. Psake: build automation tool. https://github.com/JamesKovacs/
psake. Accessed: 24.03.2013.

[45] Microsoft. Overview of rule sets used by visual studio. http://msdn.microsoft.
com/en-us/library/dd264925.aspx. Accessed: 30.04.2013.

[46] Microsoft. Mixed recommended rules rule set. http://msdn.microsoft.com/
en-us/library/hh748337.aspx. Accessed: 30.04.2013.

[47] Microsoft. All rules rule set. http://msdn.microsoft.com/en-us/library/
dd264971.aspx. Accessed: 30.04.2013.

[48] Mozilla Fundation. Bugzilla. http://www.bugzilla.org. Accessed: 04.03.2013.

[49] Microsoft. KBDLLHOOKSTRUCT structure. http://msdn.microsoft.com/en-us/
library/windows/desktop/ms644967(v=vs.85).aspx. Accessed: 10.05.2013.

[50] Microsoft. Windows Time. http://msdn.microsoft.com/en-us/library/
windows/desktop/ms725496(v=vs.85).aspx. Accessed: 13.04.2013.

[51] Microsoft. QueryPerformanceCounter function. http://msdn.microsoft.com/
en-us/library/windows/desktop/ms644904. Accessed: 31.03.2013.

[52] Microsoft. QueryPerformanceFrequency function. http://msdn.microsoft.com/
en-us/library/windows/desktop/ms644905. Accessed: 31.03.2013.

[53] Microsoft. timeBeginPeriod function. http://msdn.microsoft.com/en-us/
library/windows/desktop/dd757624(v=vs.85).aspx. Accessed: 13.05.2013.

[54] Microsoft. About Messages and Message Queues. http://msdn.microsoft.com/
en-us/library/windows/desktop/ms644927. Accessed: 31.03.2013.

[55] Zoltán Pallagi. syslog-ng performance tuning. http://pzolee.blogs.balabit.
com/2011/02/syslog-ng-performance-tuning/. Accessed: 31.03.2013.

[56] Sebastien Godard. System Activity Report(SAR). http://sebastien.godard.
pagesperso-orange.fr/man_sar.html. Accessed: 15.04.2013.

[57] Lovdata. Personopplysningsloven §13. http://lovdata.no/all/
hl-20000414-031.html#13. Accessed: 15.04.2013.

86

https://github.com/JamesKovacs/psake
https://github.com/JamesKovacs/psake
http://msdn.microsoft.com/en-us/library/dd264925.aspx
http://msdn.microsoft.com/en-us/library/dd264925.aspx
http://msdn.microsoft.com/en-us/library/hh748337.aspx
http://msdn.microsoft.com/en-us/library/hh748337.aspx
http://msdn.microsoft.com/en-us/library/dd264971.aspx
http://msdn.microsoft.com/en-us/library/dd264971.aspx
http://www.bugzilla.org
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644967(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644967(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms725496(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms725496(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644905
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644905
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757624(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757624(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644927
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644927
http://pzolee.blogs.balabit.com/2011/02/syslog-ng-performance-tuning/
http://pzolee.blogs.balabit.com/2011/02/syslog-ng-performance-tuning/
http://sebastien.godard.pagesperso-orange.fr/man_sar.html
http://sebastien.godard.pagesperso-orange.fr/man_sar.html
http://lovdata.no/all/hl-20000414-031.html#13
http://lovdata.no/all/hl-20000414-031.html#13

BeLT: Behavior Logging Tool

System manual

Robin Stenvi robin.stenvi@hig.no

Magnus Øverbø magnus.overbo@hig.no

Lasse Tjensvold Johansen lasse.johansen@hig.no

(Behaviour Logging Tool)

(Norwegian Information Securty laboratory)

May 15, 2013

1

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Script overview . 3
1.2 Tools overview . 4

2 Application 6
2.1 Technology overview . 6
2.2 Graphical User Interface . 8
2.3 Message map . 9

3 Server 10
3.1 Server overview . 10
3.2 Syslog-NG . 10
3.3 Syslog protocol . 19
3.4 Database . 20
3.5 Export XML to XML . 33
3.6 Export database to CSV . 33
3.7 Export CSV to CSV . 39
3.8 Bugzilla . 41
3.9 Import and export of Bugzilla databases 43

4 Software Distribution 45
4.1 Deploy.ps1 - main script . 45
4.2 Windows Installer XML toolset(WiX) 45
4.3 Codesigning . 47
4.4 WiX build-script . 48
4.5 WiX configuration file . 50
4.6 WiX patch configuration file . 53

2 BeLT: System Manual

1 INTRODUCTION

1 Introduction

1.1 Script overview

/deploy.ps1 Is the main script for building binaries and new software releases.
We have scripted deploy.ps1 so that it will check if you have all dependen-
cies installed before it begins to execute its actions.
It depends on: psake, signtool, openSSL, subversion and doxygen

Listing 1: Parameter overview

1 ###
2 # Parameter overview
3 ###
4 # -b build type "patch" or empty
5 # -l Specifies wether to deploy to upload documentation and
6 # source code to repo. 0 deploy to repo and 1 to avoid.
7 # -p platform specification "x64" or "x86"
8 # -n The new version number"
9 # -o The old version number (if you make a patch) [x.x.x]

10 # -x The password used for code signing
11 # -s to only compile the executable and generate installer
12 ###

Listing 2: Example of all parameters in use

1 deploy.ps1 -n x.x.x -x password [-b patch -o y.y.y] [-p x86/
x64] [-s true /1] [-l upload /0]

Listing 3: Example of building an upgrade

1 deploy.ps1 -n 1.0.0 -x password

Listing 4: Example of building a patch

1 deploy.ps1 -n 2.0.0 -x password -b patch -o 1.0.0

/Code/belt_main/buildx64.cmd This commandlet provides a command
using the psake commandlet to build BeLT using the build.ps1 PowerShell
script. This commandlet builds the x64 version of BeLT, and doesn’t take
any parameters.

/Code/belt_main/buildx86.cmd This commandlet provides a command
using the psake commandlet to build BeLT using the build.ps1 PowerShell
script. This commandlet builds the x86b version of BeLT, and doesn’t take
any parameters.

/Code/belt_main/build.ps1 This is the build scripts that compiles the
source code using MSBuild.exe to generate the binaries.

3 BeLT: System Manual

1.2 Tools overview 1 INTRODUCTION

/Code/belt_main/belt_installer/wix.ps1 This script builds the MSI or
MSP packages. This script has the same parameters as deploy.ps1, and
it’s called by deploy.ps1. Wix.ps1 is described in detail in its own section.

/Additional_Material/dbCronJob/import.py This script imports data
from Syslog-NG XML files into the database and stores it into the correct
fields using the MySQL addon for python. In addition to importing data
to the dabase, it can convert the Syslog-NG XML files into UTF-8 encoded
XML files with escaped special symbols.

/Additional_Material/dbCronJob/export.py The export.py script grabs
the user IDs and session ID of the chosen users and export their data to
the predefined CSV format, ready to read by our employer. By providing
the ”GETALL” parameter the script will automatically retrieve all sessions
from all users and export them into the correctly file formatted CSV.

/Additional_Material/dbCronJob/DATABASE.sql This SQL script gen-
erates the entire database with fields and indexes on the different tables.

/Additional_Material/Code/csv2csv.py This python script conversts Syslog-
NG stored CSV files with ISO timestams to CSV files with correct times-
tamp formatting.

1.2 Tools overview

Overview of tools
Name Description
Psake Tool to define tasks in a PowerShell script and run

them from a command shell and from inside Visual
Studio

Microsoft Visual Studio
2012

Microsoft’s standard IDE for programming appli-
cations. Visual Studio Express has limited or no
support for MFC, so you need the professional or
premium edition.

Doxygen Software for automatically scanning source code for
predefined comments, and generating a documenta-
tion in HTML, Latex or RTF format

WiX toolset 3.7 Set of tools for generating MSI installer packages
WinRaR Tool for archiving the source code
PowerShell Command line utility in Windows to run our script-

ing tasks
Latex Text processing software, that reads latex files and
PDFLatex Generates a PDF document from a formatted Latex

file.
MSBuild.exe Compiler for Microsoft Windows.

continues on next page..

4 BeLT: System Manual

1.2 Tools overview 1 INTRODUCTION

Name Description
SignTool.exe Application for signing source code and executables
Windows App Cert Kit Application for testing whether an executable passes

the Windows application certification requirements.
Microsoft Project Man-
ager 2013

Microsoft tool to manage our projects development
process in the form of a GANTT schema.

System Activity Re-
port(SAR)

Collect statistical information about a hosts system
information. Used to test the performance on the
server. See separate section in the report.

AccEvent.exe See what type of events we can get from UI Au-
tomation and MS Active Accessibility.

UISpy.exe See what type of event we can get from UI Automa-
tion.

VisualSVN Integrate Subversion into Visual Studio.
Orca.exe Investigate how the MSI files are structured.
Apache2 Used to run our webserver services on the server.
MySQL Used to store our data from the BeLT logger and

Bugzilla
MySQLdump Used to dump all of our data from a database when

migrating to a new server
Bugzilla Bugtracking system which we’ve been running on

our server
Syslog-NG Server application that can accepts the logs the

client generates
python-mysqldb MySQL database addon for python. Used by the

import/export script on the server for database con-
nection

5 BeLT: System Manual

2 APPLICATION

2 Application

2.1 Technology overview

BeLT relies on 6 technologies:

General Windows programming in C++ : Here are some of the concepts
in the Windows API that should be understood:

Hooking: We use hooking to capture key presses and mouse interaction.
We don’t use a lot of this, so it is relatively simple to learn.

Messages: A lot the communication between different parts of the pro-
gram happens with messages. An understanding of how this works
is necessary.

Callback functions: We use callback functions extensively throughout
the application, a brief understanding of how they work is necessary.

User Interface Automation: We use this to gather information about how
the user interacts with software. This has a higher learning curve, mostly
because of the amount of information.

Microsoft Active Accessibility: Some information we are unable to get from
the UIA is retrieved here. Used very little in this application and you can
probably leave it as it is.

MFC: Used to create the GUI, see 2.2. You probably want to look in to this,
regardless of what you want to change. It is needed to understand how
the application is structured.

TLS encrypted traffic: We use OpenSSL to send traffic to the server. This
is used on the update mechanism and the logging mechanism, you can
probably leave this as is. The client will not create a connection with the
server, if the certificates don’t match the certificate chain that is supplied.

Syslog protocol: We use the Syslog protocol to send data to the server. If
you need to change what is logged, you have to understand this protocol.
Since we have implemented the protocol ourselves, you need to understand
in detail how data is sent.

To get a full grasp of the application, you need to understand all these
technologies.

We will also try to go through some likely scenarios of small things that you
might want to change, here you don’t need the whole picture.

Server address: All the server configuration is gathered from the file set-
tings.ini. You can change this without knowing anything about the ap-
plication, but then the application has to redistributed. You also need
the correct certificate key-chain, which currently is CA-chain.pem and

6 BeLT: System Manual

2.1 Technology overview 2 APPLICATION

is placed in %programData%\NISLab\belt. This file is also dis-
tributed with the application. The server address should be based on
a domain name, which is static, then you avoid all this trouble. The
CA-chain.pem was generated with the following command: openssl s_
client -connect server:port -showcerts Here you will get a certificate
chain, everything between —–BEGIN CERTIFICATE—– and —–
END CERTIFICATE—– need to be included, in the order you see it
there, currently there are four items in the chain. This should be called
on the port for HTTPS. All this can be done with the update mechanism,
if that is enabled.

Default settings: This is settings for how the application should react on first
startup. This is stored in the same configuration file as server settings, so
you have to do the same process.

Change the format of data: If you only want to change how data is struc-
tured, you need to change the source code. To change how data is sent
to the server, you need to change the appropriate getFormat*() func-
tions in handleData. Remember to also change it on the server. If you
need to change the format of the local CSV file, you need to change the
appropriate getCsv*() functions in handleData.

Change what is captured: Data capture consist of 4 main parts:

Mouse: setLLEvent() in Mouse determines what is gathered. If you
need more information that we get from the low level hook, you need
to make more significant changes. For a discussion of high and low
level hooks, see the report.

Keyboard: setLLEvent() in Keylogger determines what is gathered
from our low level hook. High level hook also exist.

Software: This part consist of 4 subparts: registerEventHandler()
and HandleFocusChangedEvent() in focusEventHandler, reg-
isterEventHandler() and HandleAutomationEvent() in even-
tHandler, registerEventHandler() and HandlePropertyChangedE-
vent() in propertyEventHandler, registerwinEvent() and Win-
EventProc() in myWinEvent. Both functions in each class have
to be changed. To know what to change, you need an understanding
of UI Automation and maybe Microsoft Active Accessibility, if you
need to change myWinEvent. If you store new information you also
need to add a function in Events and call it from fillEventInfo()
in Events.

Hardware: This part consist of 5 separate subparts:
Input devices: The functions manageRawInput() and OnRaw-

Input() in Cbelt_mainDlg has been diabled for now.
Resource usage: To change how we monitor resource usage you

need to change monitorHWUsage() in Cbelt_mainDlg and
the HWMonitor class.

7 BeLT: System Manual

2.2 Graphical User Interface 2 APPLICATION

Device change: To change how we handle device insertion and re-
moval, you need to change OnDeviceChange in Cbelt_mainDlg.

Keyboard: To change what kind of information we gather about the
physical keyboard, you need to change sendKeyboardInfo() in
Cbelt_mainDlg.

Screen information: To change how we handle information about
the physical screen, you need to look at: MyInfoEnumProc(),
checkScreen(), and HandleFocusChangedEvent() in focu-
sEventHandler.c.

You also need to follow this throughout the application, change the ap-
propriate structures, the write*() functions in handleData and so on.

Implement automatic update: For this you only need to call check() in
checkUpdate. You should also test how it works and make sure that
it is correct. The files on the server have the following format: up-
dateIP,updatePort,updatePortSSL,thisFile,currentVersion, listOf-
PatchesFile,LoggingServer,LoggingPort. IP-addresses can also be
domain names. The files are files on the server and should contain an
absolute path, saying how to reach it from the outside. The list of patches
consist of several lines, where each line says the version you need to down-
load this patch and the link to both x64 and x86 patches, like this: ver-
sion,x86PatchFile,x64PatchFile. You need a full path to the files.

Test / change mouse compression: If you run the debug version of the ap-
plication,it will generate two log files. One contains all the mouse move-
ments we saw, the other contains the events we actually logged. If you
plot these into our Python script for painting graphs, you can get a gen-
eral overview of how the algorithm works. You can also use the other
script to test new compression values. Since one of the files contain all the
movements, you can also use it to test new compression techniques.

2.2 Graphical User Interface

By using the MFC library we have access to a vast amount of elements to
implement in our application. Buttons, text fields, progress bars, dialogs, and
so on. With Visual Studio one can also easily create the GUI. First by creating a
new MFC project, which provides the basis of the dialog interface with a couple
of buttons and the menu bar.

The initial GUI layouts of buttons, fields, dialogs, menues and alike are
defined in the ”.rc” file which specifies all initial GUI elements. These are then
rendered on start and creates the initial GUI layout. Further GUI development
can either be done by adding buttons in the source code or by using the visual
editor in visual studio to add and edit the elements in the ”.rc” file.

use the DoDataExchange(CDataExchange* pDX) function in the class to
assign the declared MFC object a unique ID from the resource file. What this
does is that it will now link the MFC object and the information in the resource

8 BeLT: System Manual

2.3 Message map 2 APPLICATION

file together, which enables you to dynamically change the information of the
object. This is done by inside the DoDataExchange(..) declaring the following:

DDX_Control(pDX, id_of_resource_object, MFC_object);

2.3 Message map

When a ”Message” is generated and sent by the system/application the message
map declared in the application will receive the message. Then the application
will act direct the message according to the declared ”message map”.

An example of declaring a message map is as follows:

BEGIN_MESSAGE_MAP(Cbelt_mainDlg, CDialogEx)
ON_MESSAGE(MESSAGE_MACRO, afx_msg function)
ON_BN_CLICKED(BUTTON_ID, afx_msg function)

END_MESSAGE_MAP()

The first line states the local class for the message map, followed by the local
classes base class. The second line declares what function to run when receiving
a message, with a message macro. The third line is to run the function in
parameter two when the button referenced as parameter one is clicked. Finally
the last line will declare the end of the message map.

The message map is declared in the main source code, while the message
map is declared in the header file, by adding the ”DECLARE_MESSAGE_
MAP” at the end of the header. The functions that’s part of the message maps
must be declared as with the ”afx_msg” prefix because of a remnant from the
early stages of the MFC library development.

9 BeLT: System Manual

3 SERVER

3 Server

3.1 Server overview

The server is set up with several services and are running the following.

Apache: hosts our bugtracker site and deployment site

MySQL: contains the data from our bugtracker and captured data from BeLT

Syslog-NG: receives data BeLT and stores it. The version used is OSE 3.3
LTS. If you change how the client send logs, you also need to change
the Syslog-NG config file which is located in /etc/syslog-ng/syslog-
ng.conf.

System Activity Report(SAR): collects statistical data about the servers
performance under testing (not a continuous service)

Bugzilla: is the bugtracking software, it has its own database and runs as an
entity under /var/www/

3.2 Syslog-NG

Syslog-NG is used as the server that accepts the logs from the client. It uses
the Syslog protocol and it supports UDP, TCP and TLS. We use TLS for all
communication.

To install Syslog-NG at an Ubuntu server, all you need to do is:
1 apt -get -install syslog -ng

All the logs are stored in XML format, int the folder /var/log/-

belt/$USERNAME. Each file has the following name: Username_session,
The filename holds the unique ID and which session is stored, so that informa-
tion is not included in the file.

Code 5 shows our current configuration, we started out with a default file,
and then added our code. Where our code starts and end is showed in the file.
The important parts are the global options, XML template, CSV template and
source statement for TLS communication. The rest is just here for full reference.

To change between XML and CSV format, you have to comment and un-
comment the appropriate line in the first log statement for TLS communication.

To make more advanced changes you have to know the basic of how the
config file is structured. Syslog-NG uses the same certificate as the webserver,
but it can only handle unencrypted certificates, which means that you need to
remove the encryption on the certificate, you can do that with the following
command: openssl rsa -in /root/server_cert/key_encrypted.key -out
/root/server_cert/key_unencrypted.key. This example assume that you
use RSA and that the key certificates are in the same place as in our configura-
tion.

The behaviour of an incoming log event is based on six configuration:

10 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

Global options You might want to tweak the global options for performance,
see the full Syslog-NG manual1 for a complete reference of what you can
change. Some options should not be set as global, but rather as source
specific, you set those in the source statements.

Source Here you can say who is allowed to send logs, the format of logs, pro-
tocol and tweak some options. You might want to tweak some options,
but the rest you probably want to leave as is. You might have to change
the path to the certificates.

Parsers Sometimes you want to get part of a field, then you can create a parser,
as is done to get the session number and event number.

Templates This tells how to write the input to file, you have basic if-else
statements to determine what to write. Everything in the event can be
addressed as a variable. We have XML and CSV output for now. You
need to change this if you change what is sent to the server or if you want
a different format.

Destination This just tells what template to use, and filename.

Log This is where you tie it all together. You don’t have to change anything
here, unless you change something with the above configurations.

We only use TLS for communication, but TCP, and UDP is also possible,
but not recommended as this is highly sensitive data. All traffic happens in
according to RFC 5424 (Syslog).

Listing 5: syslog-ng.conf file
1 @version: 3.3
2 @include "scl.conf"
3

4 # Syslog -ng configuration file , compatible with default Debian
syslogd

5 # installation.
6

7 # First , set some global options.
8 # We should try to set this for performance
9 options { chain_hostnames(off);

10

11 # This can greatly increase performance
12 # if we use a high value , but we might
13 # loose events in case of a crash
14 # It HAS to be <= log -fetch -limit / max -connections
15 flush_lines (10);
16

17 use_dns(no); use_fqdn(no);
18 owner("root"); group("belt"); perm (0640); stats_freq (0);
19 bad_hostname("^gconfd$"); create_dirs(yes); dir_perm (0750);
20

1http://www.balabit.com/support/documentation/syslog-ng-ose-3.3-guides/en/
syslog-ng-ose-v3.3-guide-admin-en/pdf/syslog-ng-ose-v3.3-guide-admin-en.pdf

11 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

21 # Neded to keep unique ID instead of IP address
22 keep_hostname(yes);
23

24 frac_digits (4);
25 };
26

27 ########################
28 # Sources
29 ########################
30 # This is the default behavior of sysklogd package
31 # Logs may come from unix stream , but not from another machine.
32 #
33 source s_src {
34 system ();
35 internal ();
36 };
37

38

39 ##################################
40 ## User defined sources
41 ##################################
42

43 # Logs from normal TCP connections , we don ’t use it
44 source s_remote_tcp {
45 tcp(
46 ip (0.0.0.0)
47 port (514)
48 log -fetch -limit (100)
49);
50 };
51

52 # Logs from UDP , which we don ’t use
53 source s_remote_udp {
54 udp();
55 };
56

57 # Logs from TLS , which is what we use by default
58 source s_tls_remote_no_auth {
59 tcp(
60 # All IP addresses are accepted , you can use this
61 # to only accept a set of given IP-adresses
62 ip (0.0.0.0)
63

64 # Uses port 1999, 19155 from the outside
65 port (1999)
66

67 # Messages are structured as RFC5424
68 flags(syslog -protocol)
69 flags(validate -utf8)
70

71 # Keep the original timestamps as they are most accurate
72 keep -timestamp(yes)
73

74 tls(
75 key_file("/root/server_cert/key_unencrypted.key")
76 cert_file("/root/server_cert/server_certificate.crt")
77 peer -verify(optional -untrusted)

12 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

78)
79 # Total number of possible different connections
80 max -connections (1000)
81

82 # Is divided by max -connections , is now 100 for each connection
83 log -iw -size (100000)
84

85 # Maximum number of messages fetched from a single loop , from
each source

86 log -fetch -limit (100)
87 # encoding(UTF -8)
88);
89 };
90

91 #####################################
92 ## User defined parsers
93 #####################################
94

95 # Spilts the msg id into session and an event number
96 parser msgid_segment {
97 csv -parser(columns("MSGID.SESSION", "MSGID.NUM")
98 delimiters("_")
99 flags(escape -none)

100 template("${MSGID}")
101);
102 };
103

104 # Splits timestamp into ISODATE and milliseconds , with this you can
easier insert into a database

105 parser time_segment {
106 csv -parser(columns("TIME.DATE", "TIME.MS")
107 delimiters(".")
108 flags(escape -none)
109 template("${ISODATE}")
110);
111 };
112

113 ######################################
114 ## User defined templates
115 ######################################
116

117 # Prints out all data , but does not parse any of it
118 template raw_output {
119 template("\"$ISODATE\",\"$MSGID\",\"$PROGRAM\",\"$PID\" ,\"$SDATA\

",\"$MSGONLY\"\n");
120 };
121

122 template xml_final {
123 template("$(if (\"${.SDATA.belt@1.action }\" != \"start\") \"\" <

events >)<event ><num >${MSGID.NUM}</num ><date >$ISODATE </date ><type >
${.SDATA.belt@1.eventID}</type ><action >${.SDATA.belt@1.action}</
action >$(if (\"${.SDATA.belt@1.eventID }\" == \"B\") \"\" $(if (\"
${.SDATA.belt@1.eventID }\" == \"H\") \"\" <relation >${. SDATA.
belt@1.relation}</relation ><flag >${.SDATA.belt@1.flag}</flag >)$(
if (\"${.SDATA.belt@1.eventID }\" == \"M\") $(if (\"${. SDATA.
belt@1.action }\" == \"W\") <delta >${.SDATA.belt@1.delta}</delta >
<X>${.SDATA.belt@1.X}</X><Y>${.SDATA.belt@1.Y}</Y>$(if (\"${.

13 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

SDATA.belt@1.action }\" == \"M\") \"\" <rectangle ><bottomY >${.
SDATA.belt@1.bottY}</bottomY ><topY >${.SDATA.belt@1.topY}</topY ><
leftX >${.SDATA.belt@1.leftX}</leftX ><rightX >${.SDATA.belt@1.
rightX}</rightX ></rectangle >)) $(if (\"${.SDATA.belt@1.eventID }\"
== \"K\") <value >${.SDATA.belt@1.value}</value ><count >${.SDATA.

belt@1.count}</count > $(if (\"${. SDATA.belt@1.eventID }\" == \"S\"
) <pid >$PID </pid ><program >$PROGRAM </program ><elemDescription >${.
SDATA.belt@1.elemDescription }</elemDescription >$(if (\"${.SDATA.
belt@1.desc}\" != \"\") <description >${. SDATA.belt@1.desc}</
description > $(if (\"${.SDATA.belt@1.value }\" != \"\") <value >${.
SDATA.belt@1.value}</value > $(if (\"${. SDATA.belt@1.bottY }\" == \
"\") \"\" <rectangle ><bottomY >${.SDATA.belt@1.bottY}</bottomY ><
topY >${. SDATA.belt@1.topY}</topY ><leftX >${.SDATA.belt@1.leftX}</
leftX ><rightX >${. SDATA.belt@1.rightX}</rightX ></rectangle >))) $(
if (\"${.SDATA.belt@1.eventID }\" == \"H\") $(if (\"${. SDATA.
belt@1.action }\" == \"KEY\") <type >${.SDATA.belt@1.type}</type ><
language >${. SDATA.belt@1.lang}</language > $(if (\"${.SDATA.belt@1
.action }\" == \"RES\") <cpu >${.SDATA.belt@1.cpu}</cpu ><memory >${.
SDATA.belt@1.mem}</memory > $(if (\"${. SDATA.belt@1.action }\" == \
"DEV\") <description >${. SDATA.belt@1.desc}</description > $(if (\"
${.SDATA.belt@1.action }\" == \"SCR\") <id >${.SDATA.belt@1.num}</
id > $(if (\"${.SDATA.belt@1.action }\" == \"SCR_Info\") <id>${.
SDATA.belt@1.num}</id ><rectangle ><bottomY >${.SDATA.belt@1.bottY
}</bottomY ><topY >${. SDATA.belt@1.topY}</topY ><leftX >${.SDATA.
belt@1.leftX}</leftX ><rightX >${.SDATA.belt@1.rightX}</rightX ></
rectangle > $(if (\"${.SDATA.belt@1.action }\" == \"HID\") <id >${.
SDATA.belt@1.num}</id >$(if (\"${.SDATA.belt@1.change }\" == \"
false\") <name >${. SDATA.belt@1.name}</name ><type >${.SDATA.belt@1.
type}</type > <change >${. SDATA.belt@1.change}</change >) <error/>))
)))) <belt/>)))))</event >$(if (\"${. SDATA.belt@1.action }\" != \"
stop\") \"\" </events >)\n");

124 };
125

126 # The final CSV format
127 template csv_final {
128 template("${MSGID.NUM},${. SDATA.belt@1.eventID},${. SDATA.belt@1.

action}$(if (\"${.SDATA.belt@1.eventID }\" == \"M\") $(if (\"${.
SDATA.belt@1.action }\" != \"W\") ,${.SDATA.belt@1.X}:${.SDATA.
belt@1.Y} ,${.SDATA.belt@1.delta }) $(if (\"${.SDATA.belt@1.
eventID }\" == \"K\") ,${.SDATA.belt@1.value} $(if (\"${.SDATA.
belt@1.eventID }\" == \"S\") ,$PROGRAM $(if (\"${.SDATA.belt@1.
eventID }\" == \"H\") $(if (\"${.SDATA.belt@1.action }\" == \"RES\"
) ,${.SDATA.belt@1.cpu},${.SDATA.belt@1.mem} $(if (\"${. SDATA.
belt@1.action }\" == \"HID\") ,${.SDATA.belt@1.num},${.SDATA.
belt@1.change}$(if (\"${. SDATA.belt@1.change }\" == \"true\") \"\"
,${. SDATA.belt@1.name},${.SDATA.belt@1.type}) $(if (\"${.SDATA.

belt@1.action }\" == \"SCR_Info\") ,${.SDATA.belt@1.leftX},${.
SDATA.belt@1.topY},${.SDATA.belt@1.rightX},${.SDATA.belt@1.bottY
},${. SDATA.belt@1.num} $(if (\"${.SDATA.belt@1.action }\" == \"SCR
\") ,${. SDATA.belt@1.num} $(if (\"${.SDATA.belt@1.action }\" == \"
DEV\") ,${. SDATA.belt@1.desc} $(if (\"${.SDATA.belt@1.action }\"
== \"KEY\") ,${.SDATA.belt@1.lang},${.SDATA.belt@1.type} error)))
))) $(if (\"${.SDATA.belt@1.eventID }\" == \"B\") \"\" error2)))))
,${ISODATE}$(if (\"${.SDATA.belt@1.eventID }\" == \"H\") \"\" $(if
(\"${.SDATA.belt@1.eventID }\" == \"B\") \"\" ,${.SDATA.belt@1.

relation},${.SDATA.belt@1.flag}$(if (\"${. SDATA.belt@1.
elemDescription }\" == \"\") \"\" ,${. SDATA.belt@1.elemDescription

14 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

},${PID})$(if (\"${. SDATA.belt@1.bottY}\" == \"\") \"\" ,${.SDATA
.belt@1.leftX},${.SDATA.belt@1.topY},${.SDATA.belt@1.rightX},${.
SDATA.belt@1.bottY })$(if (\"${. SDATA.belt@1.eventID }\" != \"S\")
$(if (\"${.SDATA.belt@1.count}\" == \"\") \"\" ,${. SDATA.belt@1.
count}) $(if (\"${.SDATA.belt@1.desc}\" == \"\") \"\" ,${.SDATA.
belt@1.desc})$(if (\"${. SDATA.belt@1.value}\" == \"\") \"\" ,${.
SDATA.belt@1.value }))))\n");

129 };
130

131 #######################################
132 ## User defined destinations
133 #######################################
134

135 # Simple destination for performance testing
136 destination d_performance_test {
137 file("/var/log/TEST/performance_test.log");
138 };
139

140 # Simple destination for udp , is not used
141 destination d_udp_remote {
142 file("/var/log/HOSTSUDP/$HOST");
143 };
144

145 # Simple destination for TCP , is not used
146 destination d_tcp_remote {
147 file ("/var/log/HOSTSTCP/$HOST");
148 };
149

150 # XML file
151 destination d_xml {
152 file("/var/log/XML/${HOST}_${MSGID.SESSION:-nosession}"
153 template(xml_file)
154);
155 };
156

157 # Final XML file
158 destination d_xml_final {
159 file("/var/log/belt/${HOST}/${HOST}_${MSGID.SESSION:-nosession }.

xml"
160 template(xml_final)
161

162);
163 };
164

165 # Final CSV file
166 destination d_csv_final {
167 file("/var/log/belt/${HOST}/${HOST}_${MSGID.SESSION:-nosession }.

csv"
168 template(csv_final)
169);
170 };
171

172 # CSV file
173 destination d_csv {
174 file("/var/log/CSV/${HOST}_${MSGID.SESSION:-nosession}"
175 template(csv_file)
176);

15 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

177 };
178

179 # Plain output
180 destination d_raw {
181 file("/var/log/RAW/${HOST}_${MSGID.SESSION:-nosession}"
182 template(raw_output)
183);
184 };
185

186 #######################################
187 ## User defined log statements
188 #######################################
189

190 # Log description for TLS communication
191 log {
192 source(s_tls_remote_no_auth);
193 parser(msgid_segment); # Need this to parse MSGID
194

195 # Inverse the comment to switch between XML and CSV
196 destination(d_xml_final);
197 # destination(d_csv_final); # CSV output
198

199 # With this we avoid losing messages
200 flags(flow -control);
201 };
202

203 # Log description for UDP communication , is not used
204 log {
205 source(s_remote_udp);
206 destination(d_udp_remote);
207 };
208

209 # Log description for TCP communication , is not used
210 log {
211 source(s_remote_tcp);
212 destination(d_tcp_remote);
213 };
214

215 ##
216 ## End of user defined configuration
217 ##
218

219 # If you wish to get logs from remote machine you should uncomment
220 # this and comment the above source line.
221 #
222 #source s_net { tcp(ip (127.0.0.1) port (1000) authentication(

required) encrypt(allow)); };
223

224 ########################
225 # Destinations
226 ########################
227 # First some standard logfile
228 #
229 destination d_auth { file("/var/log/auth.log"); };
230 destination d_cron { file("/var/log/cron.log"); };
231 destination d_daemon { file("/var/log/daemon.log"); };
232 destination d_kern { file("/var/log/kern.log"); };

16 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

233 destination d_lpr { file("/var/log/lpr.log"); };
234 destination d_mail { file("/var/log/mail.log"); };
235 destination d_syslog { file("/var/log/syslog"); };
236 destination d_user { file("/var/log/user.log"); };
237 destination d_uucp { file("/var/log/uucp.log"); };
238

239 # This files are the log come from the mail subsystem.
240 #
241 destination d_mailinfo { file("/var/log/mail/mail.info"); };
242 destination d_mailwarn { file("/var/log/mail/mail.warn"); };
243 destination d_mailerr { file("/var/log/mail/mail.err"); };
244

245 # Logging for INN news system
246 #
247 destination d_newscrit { file("/var/log/news/news.crit"); };
248 destination d_newserr { file("/var/log/news/news.err"); };
249 destination d_newsnotice { file("/var/log/news/news.notice"); };
250

251 # Some ‘catch -all ’ logfiles.
252 #
253 destination d_debug { file("/var/log/debug"); };
254 destination d_error { file("/var/log/error"); };
255 destination d_messages { file("/var/log/messages"); };
256

257 # The root ’s console.
258 #
259 destination d_console { usertty("root"); };
260

261 # Virtual console.
262 #
263 destination d_console_all { file("/dev/tty10"); };
264

265 # The named pipe /dev/xconsole is for the nsole ’ utility. To use
it ,

266 # you must invoke nsole ’ with the -file ’ option:
267 #
268 # $ xconsole -file /dev/xconsole [...]
269 #
270 destination d_xconsole { pipe("/dev/xconsole"); };
271

272 # Send the messages to an other host
273 #
274 #destination d_net { tcp ("127.0.0.1" port (1000) authentication(on)

encrypt(on) log_fifo_size (1000)); };
275

276 # Debian only
277 destination d_ppp { file("/var/log/ppp.log"); };
278

279 ########################
280 # Filters
281 ########################
282 # Here ’s come the filter options. With this rules , we can set which
283 # message go where.
284

285 filter f_dbg { level(debug); };
286 filter f_info { level(info); };
287 filter f_notice { level(notice); };

17 BeLT: System Manual

3.2 Syslog-NG 3 SERVER

288 filter f_warn { level(warn); };
289 filter f_err { level(err); };
290 filter f_crit { level(crit .. emerg); };
291

292 filter f_debug { level(debug) and not facility(auth , authpriv , news
, mail); };

293 filter f_error { level(err .. emerg) ; };
294 filter f_messages { level(info ,notice ,warn) and
295 not facility(auth ,authpriv ,cron ,daemon ,mail ,

news); };
296

297 filter f_auth { facility(auth , authpriv) and not filter(f_debug);
};

298 filter f_cron { facility(cron) and not filter(f_debug); };
299 filter f_daemon { facility(daemon) and not filter(f_debug); };
300 filter f_kern { facility(kern) and not filter(f_debug); };
301 filter f_lpr { facility(lpr) and not filter(f_debug); };
302 filter f_local { facility(local0 , local1 , local3 , local4 , local5 ,
303 local6 , local7) and not filter(f_debug); };
304 filter f_mail { facility(mail) and not filter(f_debug); };
305 filter f_news { facility(news) and not filter(f_debug); };
306 filter f_syslog3 { not facility(auth , authpriv , mail) and not

filter(f_debug); };
307 filter f_user { facility(user) and not filter(f_debug); };
308 filter f_uucp { facility(uucp) and not filter(f_debug); };
309

310 filter f_cnews { level(notice , err , crit) and facility(news); };
311 filter f_cother { level(debug , info , notice , warn) or facility(

daemon , mail); };
312

313 filter f_ppp { facility(local2) and not filter(f_debug); };
314 filter f_console { level(warn .. emerg); };
315

316 ########################
317 # Log paths
318 ########################
319 log { source(s_src); filter(f_auth); destination(d_auth); };
320 log { source(s_src); filter(f_cron); destination(d_cron); };
321 log { source(s_src); filter(f_daemon); destination(d_daemon); };
322 log { source(s_src); filter(f_kern); destination(d_kern); };
323 log { source(s_src); filter(f_lpr); destination(d_lpr); };
324 log { source(s_src); filter(f_syslog3); destination(d_syslog); };
325 log { source(s_src); filter(f_user); destination(d_user); };
326 log { source(s_src); filter(f_uucp); destination(d_uucp); };
327

328 log { source(s_src); filter(f_mail); destination(d_mail); };
329 #log { source(s_src); filter(f_mail); filter(f_info); destination(

d_mailinfo); };
330 #log { source(s_src); filter(f_mail); filter(f_warn); destination(

d_mailwarn); };
331 #log { source(s_src); filter(f_mail); filter(f_err); destination(

d_mailerr); };
332

333 log { source(s_src); filter(f_news); filter(f_crit); destination(
d_newscrit); };

334 log { source(s_src); filter(f_news); filter(f_err); destination(
d_newserr); };

18 BeLT: System Manual

3.3 Syslog protocol 3 SERVER

335 log { source(s_src); filter(f_news); filter(f_notice); destination(
d_newsnotice); };

336 #log { source(s_src); filter(f_cnews); destination(d_console_all);
};

337 #log { source(s_src); filter(f_cother); destination(d_console_all);
};

338

339 #log { source(s_src); filter(f_ppp); destination(d_ppp); };
340

341 log { source(s_src); filter(f_debug); destination(d_debug); };
342 log { source(s_src); filter(f_error); destination(d_error); };
343 log { source(s_src); filter(f_messages); destination(d_messages);

};
344

345 log { source(s_src); filter(f_console); destination(d_console_all);
346 destination(d_xconsole); };
347 log { source(s_src); filter(f_crit); destination(d_console); };
348

349 # All messages send to a remote site
350 #
351 #log { source(s_src); destination(d_net); };
352

353 ###
354 # Include all config files in /etc/syslog -ng/conf.d/
355 ###
356 @include "/etc/syslog -ng/conf.d/"

3.3 Syslog protocol

The structure of the Syslog protocol is quite simple, for a more detailed discus-
sion of each field, see the report. Here we will look at all the possible events
that can be generated from BeLT.

”TIME” is the full date and time within millisecond accuracy, one example
is: ”2013-05-03T12:59:37.0766Z”, ”ID” is the users unique ID, this is a 128-bit
value printed as Base 64, without padding. The rest is printed verbatim.

<134>1 TIME ID - - 67_1 [belt@1 eventID="B" action="start"]
<134>1 TIME ID - - 67_2 [belt@1 eventID="H" action="KEY" type="7"
lang="1044"]

<134>1 TIME ID - - 3_3 [belt@1 eventID="H" action="SCR" num="1"
bottY="768" topY="0" leftX="0" rightX="1366" change="false"]

<134>1 TIME ID - - 67_8 [belt@1 eventID="H" action="SCR" num="1"
change="true"]

<134>1 TIME ID - - 4_31 [belt@1 eventID="H" action="RES" cpu="2.4696"
mem="57"]

<134>1 TIME ID - - 4_65 [belt@1 eventID="H" action="DEV" desc="1"]
<134>1 TIME ID - - 67_4 [belt@1 eventID="M" action="M" flag="0"
X="485" Y="271" relation="0"]

<134>1 TIME ID - - 67_10 [belt@1 eventID="M" action="U" flag="1"
X="606" Y="422" bottY="546" topY="304" leftX="436" rightX="934"
relation="6"]

19 BeLT: System Manual

3.4 Database 3 SERVER

<134>1 TIME ID - - 67_59 [belt@1 eventID="M" action="W" flag="4"
delta="-7864320" relation="53"]

<134>1 TIME ID - - 67_55 [belt@1 eventID="K" action="U"
value="|LWindows|" count="1" relation="54" flag="0"]

<134>1 TIME ID belt_main.exe 1008 67_9 [belt@1 eventID="S" action="FC"
elemType="4" elemDescription="" relation="6" bottY="546" topY="304"
leftX="436" rightX="934"]

<134>1 TIME ID explorer.exe |unknown| 4_98 [belt@1 eventID="S"
action="VC" elemType="32" elemDescription="File Explorer"
relation="96" value="1"]

This list should be somewhat complete of all the categories we can receive
of events. There are several variations of each event, but this is the general
format. A couple of things worth mentioning is that the order of the elements
in the structured data field is irrelevant, the ID of the structured data is always
belt@1, every field is case-sensitive and the priority and version value is always
134 and 1 respectively.

3.4 Database

To store the data collected from BeLT we have implemented a MySQL database
on the server, see the ER-model in figure 1. This database is regularly updated
with captured data by a cron job that we have set to run at 00:00am every
day. We chose to run it at this time because there will be less users active at
this time. Importing the data into the database in a time of little activity will
avoid causing performance issues with the server since it will take both time
and resources away from processing events from the server. The database is
designed to keep the overhead low, but there is still some overhead, especially
in the software table.

The database stores the information about each session in the ”Session” table
where we register the start and end time of each session. Every event is stored
in the ”Event” table where we store the timestamp, millisecond, type and action
about the event. The timestamp is stored is stored as a standard timestamp
without millisecond information, instead we store the millisecond information
as an integer in a separate field. This is because it makes it easier to search the
database based on time since it doesn’t have to deal with milliseconds as well
as it reduces the possibility of failing if the timestamp format in the database
doesn’t support millisecond in their timestamp format. It also makes it easier
for us to calculate the difference since session start when converting the data to
a CSV formatted file.

We have created the backend for a future implementation of ”HID” events,
but it is removed from the implementation. To implement this feature and the
format remains unchanged, add the commented out table to the database along
with creating an index for it.

It will then input the captured data specific to the events type and action
to the appropriate tables, in the manner shown in the table below.

20 BeLT: System Manual

3.4 Database 3 SERVER

Figure 1: Conceptual model of the database

Overview of table storage
Type Action Main table Additional tables
M M/W Mouse
M D/U Mouse Coordinates
K All Keyboard
S All Software (*Coordinate)
H RES Hardware HW_RES
H KEY Hardware HW_KEY
H SCR Hardware HW_SCR,

(*Coordinate)
H DEV Hardware HW_DEV

Continues on next page...

21 BeLT: System Manual

3.4 Database 3 SERVER

Type Action Main table Additional tables

Table 2: Relations between tables
(*)No required

The database is generated with the script in listing 6. This SQL script sets
up the database with the indexes we know is needed for the database system.
To add more indexes these can be implemented in the bottom of the script along
with the rest of the indexes, but must be created with a unique name and after
the tables it indexes have been created.

The database script will normally overwrite the entire database by calling
the ”DROP DATABASE IF EXISTS belt_syslog;”. This is very important to
remember to avoid deleting data store in the datbase. We have left it like this
because, if one has to add any indexes or change any fields in the database
while it is implemented they should create a completely new script that only
performs the desired tasks. This script should only be run when the database
should installed on a fresh system or completely renewed.

Listing 6: "SQL script for generating the database"
1 ###
2 # Database generation script
3 ###
4

5 ###
6 # Preamble
7 ###
8 DELIMITER ;
9 DROP DATABASE IF EXISTS belt_syslog;

10 CREATE DATABASE belt_syslog;
11 USE belt_syslog;
12

13 ###
14 # Creating HW-tables
15 ###
16 CREATE TABLE IF NOT EXISTS HW_RES(
17 AID INT AUTO_INCREMENT PRIMARY KEY ,
18 CPU FLOAT NULL ,
19 MEMORY INT NULL
20) ENGINE=MYISAM;
21

22 CREATE TABLE IF NOT EXISTS HW_KEY(
23 AID INT AUTO_INCREMENT PRIMARY KEY ,
24 LANG INT NULL ,
25 ID INT NULL
26) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
27

28 CREATE TABLE IF NOT EXISTS HW_SCR(
29 AID INT AUTO_INCREMENT PRIMARY KEY ,
30 ID INT NULL ,
31 TCHANGE VARCHAR (50) NULL ,
32 RECT INT NULL
33) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
34

22 BeLT: System Manual

3.4 Database 3 SERVER

35 CREATE TABLE IF NOT EXISTS HW_DEV(
36 AID INT AUTO_INCREMENT PRIMARY KEY ,
37 ACTION INT NULL
38) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
39

40 #-- Table for HID events which was removed from BeLT , but kept if
needed later

41 #--CREATE TABLE IF NOT EXISTS HW_HID(
42 #--AID INT AUTO_INCREMENT PRIMARY KEY ,
43 #--NAME VARCHAR (128) NULL DEFAULT NULL ,
44 #--ID INT NULL DEFAULT NULL ,
45 #--TTYPE INT NULL DEFAULT NULL
46 #--) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
47

48

49 ###
50 # Creating Coordinate table for rectangles
51 ###
52 CREATE TABLE IF NOT EXISTS Coordinate(
53 AID INT AUTO_INCREMENT PRIMARY KEY ,
54 CTY INT NULL ,
55 CTX INT NULL ,
56 CBY INT NULL ,
57 CBX INT NULL
58) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
59

60

61 ###
62 # Creating main event table
63 ###
64 CREATE TABLE IF NOT EXISTS Event(
65 EID INT NOT NULL ,
66 SID INT NOT NULL ,
67 USERID VARCHAR (35) NOT NULL ,
68 TTIME TIMESTAMP NULL DEFAULT NULL ,
69 MS INT NOT NULL DEFAULT 0,
70 RELATION INT NULL DEFAULT NULL ,
71 TTYPE VARCHAR (5) NULL ,
72 ACTION VARCHAR (15) NULL
73) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
74

75

76 ###
77 # Creating main session table
78 ###
79 CREATE TABLE IF NOT EXISTS Session(
80 SID INT NOT NULL ,
81 USERID VARCHAR (35) NOT NULL ,
82 TSTART TIMESTAMP NULL DEFAULT NULL ,
83 TEND TIMESTAMP NULL DEFAULT NULL
84) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
85

86

87 ###
88 # Creating event type tables
89 ###
90 CREATE TABLE IF NOT EXISTS Software(

23 BeLT: System Manual

3.4 Database 3 SERVER

91 EID INT NOT NULL ,
92 SID INT NOT NULL ,
93 USERID VARCHAR (35) NOT NULL ,
94 PNAME VARCHAR (128) NULL ,
95 FLAG_M INT NULL DEFAULT NULL ,
96 ELDESC_M TEXT NULL DEFAULT NULL ,
97 EPID VARCHAR (250) NULL DEFAULT NULL ,
98 RECT INT NULL DEFAULT NULL ,
99 ELDESC_O TEXT NULL DEFAULT NULL ,

100 FLAG_O INT NULL DEFAULT NULL
101) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
102

103 CREATE TABLE IF NOT EXISTS Mouse(
104 EID INT NOT NULL ,
105 SID INT NOT NULL ,
106 USERID VARCHAR (35) NOT NULL ,
107 COORDX INT NULL DEFAULT 0,
108 COORDY INT NULL DEFAULT 0,
109 WHEEL INT NULL DEFAULT NULL ,
110 FLAG INT NULL DEFAULT NULL ,
111 RECT INT NULL DEFAULT NULL
112) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
113

114 CREATE TABLE IF NOT EXISTS Keyboard(
115 EID INT NOT NULL ,
116 SID INT NOT NULL ,
117 USERID VARCHAR (35) NOT NULL ,
118 BUTTON VARCHAR (30) NULL ,
119 FLAG INT NULL ,
120 BCOUNT INT NULL DEFAULT NULL
121) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
122

123 CREATE TABLE IF NOT EXISTS Hardware(
124 EID INT NOT NULL ,
125 SID INT NOT NULL ,
126 USERID VARCHAR (35) NOT NULL ,
127 TREF INT NULL ,
128 FLAG VARCHAR (10) NULL
129) ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
130

131

132 #--##
133 #--# Index generation
134 #--##
135 ALTER TABLE ‘Session ‘ ADD UNIQUE INDEX (SID , USERID);
136 ALTER TABLE ‘Session ‘ ADD INDEX (SID);
137 ALTER TABLE ‘Session ‘ ADD INDEX (USERID);
138

139 ALTER TABLE Event ADD UNIQUE INDEX (EID , SID , USERID);
140 ALTER TABLE Event ADD INDEX (EID);
141 ALTER TABLE Event ADD INDEX (SID);
142 ALTER TABLE Event ADD INDEX (USERID);
143

144 ALTER TABLE Hardware ADD UNIQUE INDEX (EID , SID , USERID);
145 ALTER TABLE Hardware ADD INDEX (EID);
146 ALTER TABLE Hardware ADD INDEX (SID);
147 ALTER TABLE Hardware ADD INDEX (USERID);

24 BeLT: System Manual

3.4 Database 3 SERVER

148

149 ALTER TABLE Software ADD UNIQUE INDEX (EID , SID , USERID);
150 ALTER TABLE Software ADD INDEX (EID);
151 ALTER TABLE Software ADD INDEX (SID);
152 ALTER TABLE Software ADD INDEX (USERID);
153

154 ALTER TABLE Mouse ADD UNIQUE INDEX (EID , SID , USERID);
155 ALTER TABLE Mouse ADD INDEX (EID);
156 ALTER TABLE Mouse ADD INDEX (SID);
157 ALTER TABLE Mouse ADD INDEX (USERID);
158

159 ALTER TABLE Keyboard ADD UNIQUE INDEX (EID , SID , USERID);
160 ALTER TABLE Keyboard ADD INDEX (EID);
161 ALTER TABLE Keyboard ADD INDEX (SID);
162 ALTER TABLE Keyboard ADD INDEX (USERID);
163

164 ALTER TABLE Coordinate ADD UNIQUE INDEX (AID);
165 ALTER TABLE HW_RES ADD UNIQUE INDEX (AID);
166 ALTER TABLE HW_KEY ADD UNIQUE INDEX (AID);
167 ALTER TABLE HW_SCR ADD UNIQUE INDEX (AID);
168 ALTER TABLE HW_DEV ADD UNIQUE INDEX (AID);
169 #--ALTER TABLE HW_HID ADD UNIQUE INDEX (AID);

Database Import script

The import script(7) is scheduled to run to run by Cron. The script retrieves
the files stored in the ”/var/log/belt_archive” directory, retrieves and inserts
the data into the database to the correct fields. This script is dependant on
the file format of the XML and the database layout. Any changes to either the
XML or database has to be implemented in the import script and tested before
letting it run on the actual server.

In addition it can also perform the task of converting an XML formatted
file into an ”UTF-8” formatted file. Which allows for use of special symbols like
” c�” without corrupting the file format.

This script performs its tasks automatically without any user interaction
and outputs all errors into a log file inside the base directory ”/var/log/belt/”.
The log file will contain information about each test it ran and how long it spent
parsing all the files. All log events are formatted using a common tag before
the description follows on the same line.

The script will first retrieve all XML files in the directory ”/var/log/belt”
and create a list with their absolute pathnames. The script will then start by
running the ”tagRemoval” function which creates a UTF-8 encoded file with
all unwanted symbols replace by a HTML escaped symbol text. When this is
finished we check if the file is well formed by trying to parse it. If it raises an
exception we know it is either corrupt or not finished. if it passes the test we
continue by retrieving all ”<event>” elements and go through them one by one.
This is done systematically based on what event type it is. If an element is
empty we’ll get the text ”None” which we have to take into accordance when
parsing them. If this happens we have to insert a ”NULL” to the database

25 BeLT: System Manual

3.4 Database 3 SERVER

instead. This all happens in the ”getVal” and ”wrap” function which creates the
correct text and format for the database.

After parsing all the files we move the original file, without HTML escaped
characters to the archive ”/var/log/belt_archive”. This way we avoid adding
the same information more than twice thus removing the data which would
otherwise corrupt our dataset.

To change the connection information of the MySQL connection object
change the information in the following line inside the header declaration for
variables and objects.

1 database = MySQLdb.connect(host="localhost", user="root", passwd="
toor",db="belt_syslog")

To change the different paths we are using change the following lines in the
header: ”pBase” is the base directory where the logs are being stored by Syslog-
NG. ”tmpFile” is our temporary file which we are storing the files temporary
while converting and parsing them. The ”logFile” is the path and filename where
we store our log file. Here we add a timestamp to allow for multiple files to be
created inside the same directory. The ”archive” variable holds the absolute
path of our archive folder, where we store our parsed XML files.

1 pBase = "/var/log/belt/"
2 tmpFile = pBase+"tmp.xml"
3 logFile = pBase+"BeLT_import_"+logTime.strftime("%Y%m%d_%H%M%S") +

".log"
4 archive = "/var/log/belt_archive/"

To change what encoding we are converting from an to change the following
two lines in the header. ”sourceEncoding” is the format we are reading the first
time, and ”targetEncoding” is the format we are writing the file to.

1 sourceEncoding = "iso -8859-1"
2 targetEncoding = "utf -8"

Listing 7: "Python script to import data to the database"
1 #!/usr/bin/python
2 # -*- coding: utf -8 -*-
3 # Author: Magnus Øverbø - 05.05.2013 -13.05.2013
4 # To parse from XML to XML run the script with the XML argument
5 # Which will cause theis script to store the parsed xml as
6 # UTF -8 encoded and html escaped XML code
7

8 ###############################
9 # Import libraries

10 ###############################
11 import xml.etree.ElementTree as ET # For main xml process
12 import MySQLdb # For MySQL db
13 import os # For listing/delete
14 import cgi # Parsing unwanted tags
15 import sys # arguments
16 from xml.parsers.expat import ParserCreate , ExpatError , errors #

For well -formed check
17 import codecs
18 import datetime

26 BeLT: System Manual

3.4 Database 3 SERVER

19

20 ###############################
21 # Create a variables/objects
22 ###############################
23 database = MySQLdb.connect(host="localhost", user="root", passwd="

toor",db="belt_syslog")
24 query = database.cursor ()
25 count = 0
26 totCount = 0
27 g_wf = 0
28 logTime = datetime.datetime.now()
29 pBase = "/var/log/belt/"
30 tmpFile = pBase+"tmp.xml"
31 logFile = pBase+"BeLT_import_"+logTime.strftime("%Y%m%d_%H%M%S")+"

.log"
32 archive = "/var/log/belt_archive/"
33 sourceEncoding = "iso -8859 -1"
34 targetEncoding = "utf -8"
35 x2x = False
36 if len(sys.argv) >= 2:
37 if sys.argv [1] == "XML":
38 x2x = True
39

40 ####################################
41 # Grab all xml files from dirs
42 ####################################
43 pFileArr = []
44 for pUsers in os.listdir(pBase): #Find user folders
45 if os.path.isdir(pBase+pUsers): #If it’s a folder
46 for pFile in os.listdir(pBase+pUsers):#Find items inside the

folders
47 if not os.path.isdir(pBase+pUsers+"/"+pFile): # Grab only the

files
48 pFileArr.append(pBase+pUsers+"/"+pFile) # Append to

list
49

50 ####################################
51 # Functions
52 ####################################
53 ## Goes through a string and replaces any special chars
54 def removeTag(s):
55 r=""
56 for c in s:
57 r += cgi.escape(c) #replace special char with encoded symbol
58 return r
59

60 ## Walk through the file , grab special elements
61 ## remove special characters and write it to a tmp file
62 def tagRemoval(fname):
63 #Fields to check for invalid fields in
64 lst = ["value", "pid", "program", "description","elemDescription"

]
65 f = open(fname , "r") # existing file
66 b = open(tmpFile+".utf8.xml", "w") #converted file to UTF8
67 b.write(unicode(f.read(), sourceEncoding).encode(targetEncoding))
68 b.close()
69 f.close()

27 BeLT: System Manual

3.4 Database 3 SERVER

70 b = open(tmpFile+".utf8.xml", "r") # Converted file to UTF8
71 a = open(tmpFile , "w") # Temporary file
72 for l in b: # For each line in file
73 for i in lst: # For each element to check
74 if l.find("<"+i+">") > 0: # If element in list
75 n = l[:l.find("<"+i+">")+2+len(i)] # grab text up to

element
76 n = n + removeTag(l[l.find("<"+i+">")+2+len(i):l.find("</"+

i+">")])
77 # remove special char

from text
78 n = n + l[l.find("</"+i+">"):] # add the rest of the

line back
79 l = n # set the read line like the new one
80 a.write(l)
81 a.close()
82 b.close()
83 try:
84 os.remove(tmpFile+".utf8.xml")
85 except Exception , e:
86 print tmpFile+".utf8.xml couldn ’t be removed"
87

88 ## Checks if the the XML file is well formed
89 def isWF(fname):
90 parser = ParserCreate ()
91 parser.ParseFile(open(fname , "r"))
92

93 ## Insert queries takes the table name , and a list with fields
94 # and list with values to insert
95 def dbSend(table , field , value):
96 stmt = "INSERT INTO "+table+"("+field+") VALUES("+value+");"
97 try:
98 query.execute(stmt)
99 except Exception , e:

100 log.write("SQL_ERROR: " + str(e)+"\n")
101 log.write("SQL_STMT: "+stmt+"\n")
102 print "SQL ERROR: "+ stmt;
103

104 ## Insert a custom querie
105 def dbSpecial(stmt):
106 ret = ""
107 try:
108 query.execute(stmt)
109 ret = query.lastrowid
110 except Exception , e:
111 log.write("SQL_ERROR: " + str(e)+"\n")
112 log.write("SQL_STMT: "+stmt+"\n")
113 ret = None;
114 return str(ret)
115

116 ## Grabs the value with error checking ,
117 ## returns the value or NULL
118 def getVal(el , tag):
119 out = ""
120 tmp = el.find(tag) #Grab element from current event
121 if tmp is None: #If tmp is none(empty or nonexistant)
122 out = "NULL" # Set it to NULL

28 BeLT: System Manual

3.4 Database 3 SERVER

123 else: #If it exists
124 out = unicode(tmp.text)# grab the elements node value as a

string
125 if out == "None": # if it contained nothing "None" is received
126 out = "NULL" # if so set it to NULL
127 return out.encode(’utf -8’) # Return the retreived value
128

129 ## Wraps the string value to avoid problems with space an NULL
130 def wrap(s):
131 if str(s) == ’NULL’:
132 s = ",NULL"
133 else:
134 s = ",’"+str(s)+"’"
135 return s
136

137 ## Creates an entry in the Coordinate table and returns its ID
138 def newRect(e):
139 ty = getVal(event , "rectangle/topY")
140 tx = getVal(event , "rectangle/leftX") # Grab values
141 by = getVal(event , "rectangle/bottomY")
142 bx = getVal(event , "rectangle/rightX")
143 s = "INSERT INTO Coordinate (CTY ,CBY ,CTX ,CBX) VALUES(’"
144 t = dbSpecial(s + ty + "’" + wrap(by) + wrap(tx) + wrap(bx) +");

")
145 return t
146

147 ###
148 # Files loop
149 ###
150 log = open(logFile , "w+")
151 log.write("###\n"

)
152 log.write("Full Start: "+str(datetime.datetime.now())+"\n")
153 log.write("###\n"

)
154 for bfile in pFileArr:
155 log.write("FILE: "+bfile+"\n")
156 bSID = bfile[bfile.rfind("_")+1: bfile.rfind(".")]
157 bUID = bfile[bfile.rfind("/")+1: bfile.rfind("_")]
158 log.write("PARSING_START: "+str(datetime.datetime.now())+"\n")
159 tagRemoval(bfile) #Escape symbols
160 try: #If well formed set global g_wf to 1
161 isWF(tmpFile)
162 g_wf = 1
163 if x2x == True:
164 os.rename(tmpFile , archive+bUID+"_"+bSID+".utf8.xml")
165 log.write("FILE: Archived as UTF -8 encoded XML\n")
166 #os.remove(bfile)
167 else:
168 #os.rename(bfile , archive+bUID+"_"+bSID +".xml")
169 log.write("FILE: Archived as ISO encoded XML\n")
170 except Exception , e: #If exception and not well formed set g_wf

to 0
171 g_wf = 0 #Disable importing this file
172 os.remove(tmpFile) #Remove tmpfile because the session is

ongoing or corrupt
173 log.write("FILE_ERROR: Session is corrupted or an ongoing

29 BeLT: System Manual

3.4 Database 3 SERVER

session\n")
174

175 if g_wf == 1 and x2x == False: ## if XML is well formed
176 count = 0
177 xmltree= ET.parse(tmpFile) # Load the well formed file itno

xmltree
178 root = xmltree.getroot () # Grab the root element <

events >
179 events = root.findall("event") # Grab all <event > elements

into a list
180

181 ###
182 # Event loop
183 ###
184 for event in events: # Iterate over the event

list
185 count += 1 # counts number of

elements parsed
186 bEvent = getVal(event , "num[1]") # Fetch event counter
187 bType = getVal(event , "type [1]") # Fetch type as text
188 bAction = getVal(event , "action [1]") # Fetch action as text
189 bFlag = getVal(event , "flag [1]") # Fetch action as text
190 bRel = getVal(event , "relation") # Fetch action as text
191 bTime = getVal(event , "date") # Fetch time as text
192 bMS = bTime[bTime.find(’.’)+1: bTime.find(’+’)] #grab

milliseconds
193 bTime = bTime[: bTime.find(’T’)] +" " + bTime[bTime.find(’T’

)+1: bTime.find(’.’)]
194 field = "USERID , SID , EID , TTYPE , ACTION , TTIME , MS ,

RELATION"
195 value = "’"+bUID+"’"+wrap(bSID)+wrap(bEvent) + wrap(bType) +

wrap(bAction) + wrap(bTime) + wrap(bMS) + wrap(bRel)
196 dbSend(’Event’, field , value) #Insert event to databse
197

198 ############################
199 # BeLT system event
200 ############################
201 if bType == "B":
202 if bAction == "start": ## if Start event
203 value = "’" + bUID + "’" + wrap(bSID) + wrap(bTime)
204 dbSend(’Session ’, ’USERID , SID , TSTART ’, value)
205 elif bAction == "stop":## if Stop event update row in table
206 stmt = "UPDATE Session SET TEND=’"+bTime+"’ WHERE USERID=’

"+bUID+"’ AND SID=’"+bSID+"’;"
207 dbSpecial(stmt)
208

209 ############################
210 # Keyboard event
211 ############################
212 elif bType == "K":
213 v1 =getVal(event , "value")
214 v2 =getVal(event , "count")
215 field ="USERID , SID , EID , BUTTON , FLAG , BCOUNT"
216 value ="’"+bUID+"’"+wrap(bSID)+wrap(bEvent)+wrap(v1)+wrap(

bFlag)+wrap(v2)
217 dbSend(’Keyboard ’, field , value)
218

30 BeLT: System Manual

3.4 Database 3 SERVER

219 ############################
220 # Mouse event
221 ############################
222 elif bType == ’M’:
223 field = "USERID , SID , EID , FLAG"
224 value = "’"+bUID+"’"+wrap(bSID)+wrap(bEvent)+wrap(bFlag)
225 ## Press/Release of button
226 if bAction == "D" or bAction == "U":
227 tid = newRect(event)
228 v1 = getVal(event , "X")
229 v2 = getVal(event , "Y")
230 field = field + ", RECT , COORDX , COORDY"
231 value = value + wrap(tid) + wrap(v1) + wrap(v2)
232 ## Movement
233 elif bAction == "M":
234 v1 = getVal(event , "X")
235 v2 = getVal(event , "Y")
236 field = field + ", COORDX , COORDY"
237 value = value + wrap(v1) + wrap(v2)
238 ## Wheel action
239 elif bAction == "W":
240 v1 = getVal(event , "delta")
241 field = field + ", WHEEL"
242 value = value + wrap(v1)
243 dbSend(’Mouse’, field , value)
244

245 ############################
246 # Hardware information
247 ############################
248 elif bType == ’H’:
249 ## If Keyboard information
250 if bAction == "KEY":
251 v1 = getVal(event , "language")
252 v2 = getVal(event , "type [2]")
253 s="INSERT INTO HW_KEY(LANG ,ID) VALUES(’"+v1+"’"+wrap(v2)+"

);"
254 ##If Human interface Device information
255 ## NOT IN USE
256 elif bAction == "HID":
257 v1 = getVal(event , "name")
258 v2 = getVal(event , "id")
259 v3 = getVal(event , "type [2]")
260 s="INSERT INTO HW_HID(NAME ,ID,TTYPE) VALUES(’"+v1+"’"+wrap

(v2)+wrap(v3)+");"
261

262 ## if Screen information
263 elif bAction == "SCR_Info":
264 if getVal(event , "rectangle/leftX") != "NULL":
265 tid = newRect(event) #add the coordinates and return

index
266 s="INSERT INTO HW_SCR(ID, RECT) VALUES(’"+getVal(event , "

id")+"’"+wrap(tid)+");"
267

268 ## if Screen change
269 elif bAction == "SCR":
270 s="INSERT INTO HW_SCR(ID) VALUES(’"+getVal(event , "id")+"

’);";

31 BeLT: System Manual

3.4 Database 3 SERVER

271

272 ## If resource information
273 elif bAction == "RES":
274 v1 = getVal(event , "cpu")
275 v2 = getVal(event , "memory")
276 s="INSERT INTO HW_RES(CPU , MEMORY) VALUES(’" +v1+"’"+wrap(

v2)+");"
277 ## if Device information
278 elif bAction == "DEV":
279 v1 = getVal(event , "description")
280 s="INSERT INTO HW_DEV(action) VALUES(’"+ v1 +"’);"
281

282 tid = dbSpecial(s) ## get index for Hardware.TREF
283

284 ## Insert information and the reference to the Hardware
table

285 field = "USERID , SID , EID , TREF , FLAG"
286 value = "’"+bUID+"’"+wrap(bSID)+wrap(bEvent)+wrap(tid)+wrap(

bFlag)
287 dbSend(’Hardware ’, field , value)
288

289 ############################
290 # Software information
291 ############################
292 elif bType == ’S’:
293 field = "USERID , SID , EID , PNAME , FLAG_M , ELDESC_M , EPID"
294 value = "’" + bUID + "’" + wrap(bSID)+wrap(bEvent)+wrap(

getVal(event , "program"))+wrap(bFlag)
295 value = value+wrap(getVal(event , "elemDescription"))+wrap(

getVal(event , "pid"))
296 ## Text Change
297 if bAction == "TC":
298 field = field + ", ELDESC_O"
299 value = value + wrap(getVal(event , "description"))
300 ## Visual Change
301 elif bAction == "VC":
302 field = field + ", FLAG_O"
303 value = value + wrap(getVal(event , "value"))
304 ## if it is a rectangle present
305 if getVal(event , "rectangle/leftX") != "NULL":
306 tid = newRect(event)
307 field = field + ", RECT"
308 value = value + wrap(tid)
309 dbSend("Software", field , value)
310

311 tid = "NULL"
312 field = "NULL"
313 value = "NULL"
314 v1 = "NULL"
315 v2 = "NULL"
316 v3 = "NULL"
317 log.write("PARSING_END: "+str(datetime.datetime.now())+"\n")
318 log.write("STATISTIC: " +str(count)+" events was parsed\n")
319 totCount= totCount + count
320 ##End well formed check
321 ##End file iteration
322 log.write("###\n"

32 BeLT: System Manual

3.5 Export XML to XML 3 SERVER

)
323 log.write("FULL END: "+str(datetime.datetime.now())+"\n")
324 log.write("TIME SPENT: "+str(datetime.datetime.now()-logTime)+"\n")
325 log.write("EVENTS PARSED: "+ str(totCount) +"\n")
326 log.write("###\n"

)
327 log.close()

3.5 Export XML to XML

The import script also has a second function which is to parse an existing XML
file and store it encoded in ”UTF-8”. This done by passing the argument ”XML”
to the script in the following manner ”./import.py XML” this will cause the
importscript to skip the task of inserting data to the database and instead move
the temporary XML file to the archive with the name ”[UID]_[SID].utf8.xml”.

What happens in this run is the following, the script will retrieve the all files
in the folders, then it will convert them to ”UTF-8” format and store them in a
temporary location one by one. This file is then read by the script and for each
field we know could contain invalid characters we take the text string from and
parse it char by char and escaping any invalid signs. I.e the ”&” sign will be
encoded to ”&”. This final file is then stored as a ”UTF-8” formatted file
which is well formatted and contains Unicode characters.

3.6 Export database to CSV

This script(8) is controlled either by a command line interface or an argument.
By specifying the argument ”GETALL” one will automatically extract all ses-
sions from all users in the database and generate CSV formatted files. We have
created this script in Python to make it run as fast as possible. It will retrieve
data using the specified user and password to the database, to change user/pass-
word/database this has to be changed in the start of the script when configuring
the database connection.

Most of the configurations for this script lies in its header under ”Create
a variables/objects”. Here we have the connection to our database, our path
variables, required information and handling of the argument one can provide.

Otherwise to change any data gathering one must change the variables ac-
cording to the database. Pythons library for MySQL connection does not pro-
vide a functionality for retrieving the fields based on names when returning the
fetched values. Because of this we have created a small wrapper that creates a
list with a dictionary containing the mapping of the fields names and their value
for each row returned by the query. To change the connection information of
the MySQL connection object change the information in the following line

1 database = MySQLdb.connect(host="localhost", user="root", passwd="
toor",db="belt_syslog")

For each session it will create a file in the directory specified in the header,
where it will store the CSV formatted files with the filename ”[UID]_[SID].csv”.

33 BeLT: System Manual

3.6 Export database to CSV 3 SERVER

To change this, one must to edit the line at the bottom where one specifies the
filename format.

1 CSV_FILE = open(dirSave+str(uid)+"_"+str(sid)+".csv", "w")

To change the storage folder one has to change the following line in the
header which declares the full path to the base path directory.

1 dirSave = "/home/belt/belt_csv/"

To change the name and directory of the log file change the following line in
the header:

1 logFile = dirSave + "BeLT_CSV_" + str(datetime.strftime(datetime
.now(), "%Y%m%d_%H%M%S")) + ".log"

To change the default value for an empty field. Which occurs when the field
in the database is empty(NULL), change the EMPTY variable in the header

1 EMPTY = "|empty|"

Listing 8: "Python script to generate CSV files from data in the database"
1 #!/usr/bin/python
2 # -*- coding: utf -8 -*-
3 # Magnus Øverbø - 05.05.2013 -12.05.2013
4

5 ################################
6 # Import python libraries
7 ################################
8 import MySQLdb # MySQL connection
9 from datetime import datetime # timestamp conversion

10 import cgi # escape/unescape html formatted text
11 import os # Dir list
12 import sys #
13

14 ################################
15 # Create variables/objects
16 ################################
17 db = MySQLdb.connect(host="localhost", user="root", passwd="

toor", db="belt_syslog")
18 query = db.cursor ()
19 dirSave = "/home/belt/belt_csv/"
20 logFile = dirSave+"BeLT_CSV_"+str(datetime.strftime(datetime.now(),

"%Y%m%d_%H%M%S"))+".log"
21 retMap = {}
22

23 EX_EXTRA= ["H", "B"]
24 CSV_LIST = []
25 TIME_T = None
26 TIME_M = int
27 EMPTY = "|empty|"
28 GETALL = False
29 if len(sys.argv) >= 2:
30 if sys.argv [1] == "GETALL":
31 GETALL = True;
32

33 ################################

34 BeLT: System Manual

3.6 Export database to CSV 3 SERVER

34 # Functions
35 ################################
36 ## Retrive sessions from a UID
37 def getDict(uid , check):
38 global retMap
39 os.system("clear")
40 sids = []
41 query.execute("SELECT DISTINCT SID FROM Session WHERE USERID=’"+

uid+"’ ORDER BY SID ASC;")
42 res=query.fetchall ()
43 if check: ## IF GRAB EVERYTHING
44 for i in range(0,len(res)):
45 sids += [int(res[i][0])]
46 retMap.update ({uid:sids})
47 else:
48 print "\t######################################"
49 print "\t " + uid ##Menue for selecting sesisons from user
50 print "\t######################################"
51 for i in range(0,len(res)):
52 print "\t" + str(res[i][0]),
53 if i%5 == 4:
54 print ""
55 print "\t(A)ll\t- Select all from user"
56 print "\t##"
57 ans = raw_input("\t Your choices: ")
58 ans = ans.split()
59 if ’A’ in ans: ##IF A grab all
60 for i in range(0,len(res)):
61 sids += [int(res[i][0])]
62 retMap.update ({uid:sids})
63 else:
64 retMap.update ({uid:ans}) #add list of sids to the map
65

66 ## Retrieve UIDs and sessions from DB
67 def getMapping ():
68 os.system("clear")
69 uids = []
70 query.execute("SELECT DISTINCT USERID FROM Session ORDER BY

USERID ASC;")
71 res = query.fetchall ()
72 for i in res: ##ad uids to list
73 uids += [i[0]]
74

75 if not GETALL: # if get all , retrieve all UIDs automatically
76 print "\t SELECT USER IDS FROM LIST"
77 print "\t##"
78 for i in range(0, len(uids)): ##Print all uids
79 print "\t " + str(i) + "\t- " + str(uids[i])
80 print "\t(A)ll \t- Select sessions manually from every user"
81 print "\t(G)rab\t- Grab ALL sessions from EVERY user"
82 print "\t##"
83 ans = raw_input("\t Your choices: ")
84 ans = ans.split() ##Split sids into a list
85

86 if "G" in ans: #Grabs all UIDS and SIDS
87 for i in uids:
88 getDict(i, True) ##Fetch all sids from all uid

35 BeLT: System Manual

3.6 Export database to CSV 3 SERVER

89 elif "A" in ans: #If select all uids
90 for i in uids:
91 getDict(i, False) ##Fetch sids manually from all uidk
92 else:
93 for i in range(0, len(ans)):
94 getDict(uids[int(ans[i])], False) ##Choose sids for UID
95 else: #IF GETALL IS TRUE grab all UIDS
96 for i in uids:
97 getDict(i, True) ##Fetch all sids from all uid
98

99 ##Fetch data as a dictionary
100 def fetch(field , table , clause):
101 arr = []
102 stmt = "SELECT "+field+" FROM "+table+" WHERE "+clause+";"
103 field = field.replace(" ", "")#creates a list from fields
104 field = field.split(",") #
105 query.execute(stmt) #queries the server
106 res = query.fetchall () #grab all returned values
107 for i in res: #For all rows returned
108 dic = {} #
109 for j in range(0, len(i)):##correlate fields and values to dict
110 dic.update ({ field[j] : str(i[j]) })
111 arr.append(dic) ##Append dict to list
112 return arr ##return array with dictionary of FIELD:VALUE
113

114 ## Get rectangle
115 def getRect(aid):
116 rect = fetch("CTY , CTX , CBY , CBX", "Coordinate", "AID=’"+str(aid)

+"’")[0]
117 CV(rect[’CTX’]) #top -left
118 CV(rect[’CTY’]) #top -top
119 CV(rect[’CBX’]) #bottom -right
120 CV(rect[’CBY’]) #bottom -bottom
121

122 #Retrieves the value field between ACTION and TIME
123 def getValue(row , uid , sid):
124 global CSV_LIST
125 clause = "USERID=’"+str(uid)+"’ AND SID=’"+str(sid)+"’ AND EID=’"

+str(row[’EID’])+"’"
126 if row[’TTYPE’] == ’K’: #KEYBOARD EVENT
127 x = fetch(’BUTTON ’, ’Keyboard ’, clause)[0]
128 CV(x[’BUTTON ’], True)
129

130 elif row[’TTYPE ’] == ’M’ and row[’TTYPE’] == ’W’:
131 x = fetch(’WHEEL ’, ’Mouse’, clause)[0]
132 CV(x[’WHEEL ’])
133

134 elif row[’TTYPE ’] == ’M’:
135 x = fetch(’COORDX , COORDY ’, ’Mouse ’, clause)[0]
136 CV(x[’COORDX ’]+":"+x[’COORDY ’])
137

138 elif row[’TTYPE ’] == ’S’:
139 x = fetch(’PNAME ’, ’Software ’, clause)[0]
140 CV(x[’PNAME ’], True)
141

142 #Not in use , but left in to be enabled when HID is used
143 elif row[’TTYPE ’]==’H’ and row[’ACTION ’]==’HID’:

36 BeLT: System Manual

3.6 Export database to CSV 3 SERVER

144 aid = fetch("TREF , FLAG", "Hardware", clause)[0]
145 x = fetch(’NAME , ID, TTYPE ’, ’HW_HID ’, "AID=’"+str(aid[’TREF’])

+"’")[0]
146 if x[’NAME’] != ’None’:
147 CV(x[’NAME’])
148 CV(x[’ID’])
149 CV(x[’TTYPE ’])
150

151 elif row[’TTYPE ’]==’H’ and row[’ACTION ’]==’KEY’:
152 aid = fetch("TREF , FLAG", "Hardware", clause)[0]
153 x = fetch("ID, LANG", "HW_KEY", "AID=’"+str(aid[’TREF’])+"’")

[0]
154 CV(x[’LANG’])
155 CV(x[’ID’])
156

157 elif row[’TTYPE ’]==’H’ and row[’ACTION ’]==’RES’:
158 aid = fetch("TREF , FLAG", "Hardware", clause)[0]
159 x = fetch("CPU , MEMORY", "HW_RES", "AID=’"+str(aid[’TREF’])+"’"

)[0]
160 CV(x[’CPU’])
161 CV(x[’MEMORY ’])
162

163 elif row[’TTYPE ’]==’H’ and row[’ACTION ’]==’SCR’:
164 aid = fetch("TREF , FLAG", "Hardware", clause)[0]
165 x = fetch("RECT , ID", "HW_SCR", "AID=’"+str(aid[’TREF’])+"’")

[0]
166 if x[’RECT’] != ’None’:
167 getRect(x[’RECT’])
168 CSV_LIST [2]=’SCR_Info ’
169 CV(x[’ID’])
170

171 elif row[’TTYPE ’]==’H’ and row[’ACTION ’]==’DEV’:
172 aid = fetch("TREF , FLAG", "Hardware", clause)[0]
173 x = fetch("ACTION", "HW_DEV", "AID=’"+str(aid[’TREF’])+"’")[0]
174 CV(x[’ACTION ’])
175

176 ## Get end fields from flag and out
177 def getExtra(row , uid , sid):
178 clause = "USERID=’"+str(uid)+"’ AND SID=’"+str(sid)+"’ AND EID=’"

+str(row[’EID’])+"’"
179 if row[’TTYPE’] == ’K’:
180 x = fetch("FLAG , BCOUNT", "Keyboard", clause)[0]
181 CV(x[’FLAG’])
182 if row[’ACTION ’]=="U" and int(x[’BCOUNT ’]) >= 2:
183 CV(x[’BCOUNT ’])
184

185 elif row[’TTYPE ’] == ’M’:
186 x = fetch("FLAG , RECT", "Mouse", clause)[0]
187 CV(x[’FLAG’])
188 if row[’ACTION ’] in [’U’, ’D’]:
189 if x[’RECT’] != ’None’:
190 getRect(x[’RECT’])
191

192 elif row[’TTYPE ’] == ’S’:
193 x=fetch("FLAG_M ,ELDESC_M ,EPID ,RECT ,ELDESC_O ,FLAG_O", "Software"

, clause)[0]
194 CV(x[’FLAG_M ’])

37 BeLT: System Manual

3.6 Export database to CSV 3 SERVER

195 CV(x[’ELDESC_M ’], True)
196 CV(x[’EPID’], True)
197 if row[’ACTION ’] == "TC":
198 CV(x[’ELDESC_O ’], True)
199 if row[’ACTION ’] == "VC":
200 CV(x[’FLAG_O ’])
201 if x[’RECT’] != ’None’:
202 getRect(x[’RECT’])
203

204 #SET FIELD TO EMPTY
205 def NA(CAP=False): #creates an empty value in the list
206 global CSV_LIST
207 if not CAP:
208 CSV_LIST += [EMPTY]
209 else:
210 CSV_LIST += [’"’+EMPTY+’"’]
211

212 ## Returns the value of the field or N/A
213 def CV(field , CAP=False):
214 global CSV_LIST
215 if field == ’None’:
216 NA(CAP)
217 else:
218 if not CAP:
219 CSV_LIST += [str(field)]
220 else:
221 CSV_LIST += [’"’ + str(field) + ’"’]
222

223 #WRITE CSV FORMAT
224 def WRITE (): ##creates a CSV string
225 global CSV_LIST
226 count = 0
227 CSVString = ""
228 EOL = len(CSV_LIST)
229 for val in CSV_LIST:
230 count += 1
231 if count < EOL:
232 CSVString += val + ","
233 else:
234 CSVString += val
235 return CSVString+"\n"
236

237 ##GENERATE CORRECT TIMESTAMP VALUE
238 def timestamp(T, M, A):
239 global CSV_LIST
240 global TIME_T
241 global TIME_M
242 if str(A) == "start":
243 TIME_T = datetime.strptime(T, "%Y-%m-%d %H:%M:%S")
244 TIME_M = int(M)
245 if TIME_M < 10:
246 M = ".000"+M
247 elif TIME_M < 100:
248 M = ".00"+M
249 elif TIME_M < 1000:
250 M = ".0"+M
251 else:

38 BeLT: System Manual

3.7 Export CSV to CSV 3 SERVER

252 M = "."+M
253 CV(str(T+M))
254 else:
255 if T is None or M is None:
256 NA()
257 else:
258 dt = (datetime.strptime(T, "%Y-%m-%d %H:%M:%S") - TIME_T).

total_seconds ()
259 CV(int((dt *10000) +(int(M)-TIME_M)))
260

261 ################################
262 # Database loop
263 ################################
264 LOG = open(logFile , "w")
265 TSTART = datetime.now()
266 LOG.write("TIME_START_ALL: "+str(TSTART)+"\n")
267 getMapping ()
268 for uid in retMap.keys():
269 for sid in retMap[uid]:
270 ## Fetch all events from Event table
271 TSTARTFILE = datetime.now()
272 LOG.write("TIME_START: "+str(TSTARTFILE)+" "+str(uid)+" "+str(

sid)+"\n")
273 table = "Event"
274 field = "SID , EID , TTIME , MS, RELATION , TTYPE , ACTION"
275 clause = "USERID=’"+str(uid)+"’ AND SID=’"+str(sid)+"’"
276 rows = fetch(field , table , clause)
277 CSV_FILE = open(dirSave+str(uid)+"_"+str(sid)+".csv", "w")
278 for row in rows:
279 CSV_LIST = []
280 CV(row[’EID’])
281 CV(row[’TTYPE’])
282 CV(row[’ACTION ’])
283 getValue(row , uid , sid)
284 timestamp(row[’TTIME’], row[’MS’], row[’ACTION ’])
285 if row[’TTYPE’] not in EX_EXTRA:
286 CV(row[’RELATION ’])
287 getExtra(row , uid , sid)
288 CSV_FILE.write(WRITE())
289 CSV_FILE.close()
290 TENDFILE = datetime.now()
291 LOG.write("TIME_SPENT: "+str((TENDFILE -TSTARTFILE))+"\n")
292 LOG.write("TIME_END: "+str(TENDFILE)+"\n")
293 TEND = datetime.now()
294 LOG.write("TIME_SPENT_TOTAL: "+str((TEND -TSTART))+"\n")
295 LOG.write("TIME_END: "+str(TEND)+"\n")
296 LOG.close()

3.7 Export CSV to CSV

The CSV format we get from Syslog-NG is not exactly like it’s supposed to
be. The timestamps must be transformed to number of milliseconds since the
first event, not full date and time. The system-messages from BeLT are left
untouched, but the remaining messages must be transformed to number of mil-
liseconds since the first ”start” message from BeLT.

39 BeLT: System Manual

3.7 Export CSV to CSV 3 SERVER

To export a file, you call the script, where the first parameter is the file that
should be exported, like this:

1 /var/log/belt/csv2csv.py ID/ID_1.csv

By default the file generated will have the the same filename, except, they
have ”_formatted” before the file extension, which should be ”csv”. The full

Listing 9: csv2csv.py file
1 #!/usr/bin/env python
2 # Transforms all the timestamps in the csv file to milliseconds
3 # since start. All BeLT system messages are left untouched.
4

5 import os, sys , math
6 import re, time
7 import string , random , os
8

9 # We also change the format to UTF -8
10 sourceEncoding = "iso -8859 -1"
11 targetEncoding = "utf -8"
12

13 # Where the position of the time field is
14 TIMEFIELDREG = 4
15 TIMEFIELDSCR = 8
16 TIMEFIELDSCR2 = 4
17 TIMEFIELDKEY = 5
18 TIMEFIELDDEV = 4
19 TIMEFIELDRES = 5
20

21 def id_generator(size=6, chars=string.ascii_uppercase + string.
digits):

22 return ’’.join(random.choice(chars) for x in range(size))
23

24 # Get UNIX epoch time from a ISODATE string
25 def getMsTime(syslogTime):
26 splitDate = syslogTime.split(’.’)
27 seconds1 = time.strptime(splitDate [0], "%Y-%m-%dT%H:%M:%S")
28 seconds = int(time.mktime(seconds1))
29 splitTime = splitDate [1]. split(’+’)
30 ms = seconds * 1000
31 ms = ms + int(splitTime [0])
32 return ms
33

34 if(len(sys.argv) < 2):
35 print "Usage: "+sys.argv [0]+" <CSV file >"
36 exit (1)
37

38 fileExt = "csv"
39 outName = ""
40 outFile = ""
41 filename = sys.argv [1]
42

43 # Check if the user supplied an output name
44 # If not we use (filename - extension) + "_formatted" + extension
45 if(len(sys.argv) > 2):
46 outFile = sys.argv [2]
47 else:

40 BeLT: System Manual

3.8 Bugzilla 3 SERVER

48 outName , fileExt = os.path.splitext(filename)
49 outFile = outName + "_formatted" + fileExt
50

51 # Convert the whole file to UTF -8
52 f = open(filename)
53 tmpFile = id_generator (15)
54 tmpFile += ".utf8.tmp"
55 b = open(tmpFile , "w")
56 b.write(unicode(f.read(), sourceEncoding).encode(targetEncoding))
57 b.close()
58 f.close()
59

60 # Open the file for writing
61 File = open(outFile , ’w’)
62

63 # Read all the lines from our temporary file
64 lines = [line.strip() for line in open(tmpFile)]
65

66 os.remove(tmpFile)
67

68 beginning = 0
69 for line in lines:
70 # Default for everything except BeLT messages and Hardware
71 currTime = TIMEFIELDREG
72 fields = line.split(’,’)
73 if(fields [1] == ’B’): # Event from BeLT
74 if(fields [2] == ’start ’): # Calcucate start time
75 beginning = getMsTime(fields [3])
76 else:
77 if(fields [2] == ’SCR_Info ’):
78 currTime = TIMEFIELDSCR
79 elif(fields [2] == ’SCR’):
80 currTime = TIMEFIELDSCR2
81 elif(fields [2] == ’KEY’):
82 currTime = TIMEFIELDKEY
83 elif(fields [2] == ’RES’):
84 currTime = TIMEFIELDRES
85 elif(fields [2] == ’DEV’):
86 currTime = TIMEFIELDDEV
87 newTime = getMsTime(fields[currTime]) - beginning
88 fields[currTime] = str(newTime)
89 # Write all fields back to the file
90 File.write(",".join(fields))
91 File.write(’\n’)

3.8 Bugzilla

Bugzilla are dependent on Apache, MySQL, Perl and PHP. When visiting their
webpage you see their minimum okay version of dependencies to different version
releases. We use Bugzilla version 4.2.4 on an Ubuntu 12.04 LTS server. This is
the command that install all packages needed to run Bugzilla:

1 apt -get install libapache -mod -perl2 tasksel libyaml -perl gcc make
vim sendmail

41 BeLT: System Manual

3.8 Bugzilla 3 SERVER

To install a LAMP-server (Linux-Apache-MySQL-Perl/PHP/Python) on Ubuntu
you type

1 tasksel install lamp -server

and follow the dialog. The ftp root of all Bugzilla releases are located at ftp:
//ftp.mozilla.org/pub/mozilla.org/webtools/. On the server we would do
the following to to download extract and the untar tarball of Bugzilla.

1 cd /var/www/
2 wget ftp.mozilla.org/pub/mozilla.org/webtools/bugzilla -4.2.4. tar.gz
3 tar -xvzf bugzilla -4.2.4. tar.gz

Then you rename the folder as you want, we chose to call it ’bugs’. Apache
has a separate file to apply additional configuration than the one that is pro-
vided, ’httpd.conf’ located in ’/etc/apache2/’. We added this configuration to
our bugs directory to have apache display the bugtracker:

1 <Directory /var/www/bugs >
2 AddHandler cgi -script .cgi
3 Options +Indexes +ExecCGI
4 DirectoryIndex index.cgi
5 AllowOverride Limit FileInfo Indexes
6 </Directory >

CGI, common gateway interface, is a service on the server that executes the
files to generate web content on the site. The cgi is based on perl in our case.
The code above should set this option to happen. When you have done this
you should also set the option to execute CGI’s in from your root web-directory
in the default file located at ’/etc/apache2/sites-enabled’. It should look very
similar to the code sample, just append ’+ExecCGI’ after ’Options’:

1 ...
2 <Directory /var/www/>
3 Options Indexes +ExecCGI FollowSymLinks MultiViews
4 AllowOverride None
5 Order allow ,deny
6 allow from all
7 </Directory >
8 ...

After you have done this you have all dependencies ready to install Bugzilla,
follow the official guide for your chosen version at http://www.bugzilla.org/
docs/, the documentation for the 4.2-series is found at http://www.bugzilla.
org/docs/4.2/en/html/.

3.8.1 Relevant experiences from our installation on Ubuntu

In our case the virtual server had the following ports changed with NAT:
Protocol Std. port Used port
SSH 22 19150
HTTP 80 19151
HTTPS 443 19152
Syslog-NG 1999 19155

Some experiences we had was:

42 BeLT: System Manual

3.9 Import and export of Bugzilla databases 3 SERVER

• In the local config-file, ’webserver-group’ with default installation of apache
should be changed to ’www-data’.

• Because of the virtual server and the routing of ports we had problems with
the default Sendmail-configuration. We ended up with using a CPAN-
extension.

To fix the problem with sendmail in Bugzilla, we installed a module found at
http://search.cpan.org/~lbrocard/Email-Send-Gmail-0.33/lib/Email/Send/
Gmail.pm. by issuing the following perl commands.

1 perl -MCPAN -e shell
2 cpan[1]> install Email::Send::Gmail
3 cpan[2]> quit

We don’t have a detailed explanation to why this worked, since the bug-
tracker was just a method of complementing our ongoing work. To change mail
configuration you go to the Bugzilla homepage, click ’Preferences’ from the top
and then ’Email preferences’. We’d like to thank the creator of this fix http://
rndm-snippets.blogspot.no/2011/05/bugzilla-issue-tracking-send-mail.
html for the sharing it with the community.

3.9 Import and export of Bugzilla databases

To export the contents of the information from Bugzilla we started out by
wanting just the data, but this would most likely cause massive problems if not
absolutely all the data was gathered. Therefore we decided to export the entire
MySQL database from the bugtracker database, ”bugs”.

To do this one needs access to the servers, have complete access to the
databases, since we need to export the database and then later on import it
again. Then one needs to have a MySQL server on both servers and the tool
”mysqldump” which is used to dump the database to a textual ”sql” file.

Export

Use the root user or another user with the necessary privileges to dump the
database to an SQL formatted file by issuing the command:

1 mysqldump -p -u root dbname > "/path/to/dumpfile.sql"

-p: argument means that the user has to provide a password.

-u: argument means the following word is the name of the user.

root: this is the users username and could be any user with the correct privi-
leges.

dbname: is the name of the database you are exporting to an sql file.

>: means you redirect the output to file where the following word encapsulated
with two " is the absolute or relative path to the file.

43 BeLT: System Manual

3.9 Import and export of Bugzilla databases 3 SERVER

Import:

After moving the stored file to the new server one has to import the new file
into the new database.

1 mysql -p -u root dbname < "path/to/dumpfile.sql"

-p: Means that the user has to provide a password.

-u: specifies the user to log in as in the following word.

root: this is the users username and could be any user with the correct privi-
leges.

dbname: the name of the new database to import into.

<: means the content of the following file will be sent as standard input to the
mysql process.

Creating a user:

After importing the database to the MySQL server one should create a new user
to avoid having the root user manage the database and grant the new user only
access to the bugtracker database.

To create the user for the bugtracker system use the following command:
1 GRANT ALL PRIVILEGES
2 ON dbname .*
3 TO ’username ’@’localhost ’
4 IDENTIFIED BY ’password ’;

GRANT ALL PRIVILEGES: Lets the user have all privileges except the
GRANT option for the database.

ON dbname.*: Specifies which database and tables to grant the user access
to. The database is identified by ’dbname”. The databases tables are
either specified by their name or the asterisk symbol to grant the user
privileges to all the tables in the database.

TO: means the following ”username”@”localhost” gives the user only access lo-
cally on the server.

IDENTIFIED BY: means the user gets assigned the following password within
the apostrophes.

44 BeLT: System Manual

4 SOFTWARE DISTRIBUTION

4 Software Distribution

Here we will describe the scripts that does our software distribution and package
management. We have also provided some extra theory about the package
management because it is very nice to have a place to start learning about this,
knowledge about this is important for being able to deploy software.

4.1 Deploy.ps1 - main script

The deploy.ps1 flowchart is shown in figure 2. It starts with (1) generating the
source code documentation. After this it will (2) call the script that builds
binaries (build.ps1) based on the platform (-p) input parameters ’x64’ and/or
the ’x86’ (it builds both on default). When the binaries are ready it will (3) run
the wix.ps1, the script that controls our package management and code signing
using WiX 4.2. Wix.ps1 packages the files into MSI (installer) or MSP (patch)
files, it also also codesigns the compiled binaries and the following MSI/MSPs
to ensure that they are created by us and nobody else. At last (4) the script
archives the source code with WinRAR.exe and moves the archive to a new
branch based on the version number.

If the local(-l) parameter was set we upload the entire branch to the reposi-
tory so we have a backup of our source code.

Figure 2: Flowchart for our deployment process.

4.2 Windows Installer XML toolset(WiX)

WiX configuration

The XML configuration file has a few elements that has to be included:

• <wix> is the root element in the XML file.

45 BeLT: System Manual

4.2 Windows Installer XML toolset(WiX) 4 SOFTWARE DISTRIBUTION

• <product> defines the product, and also has many attributes that play a
role

• <directory> you have to include a at least one directory, namely the
installdir, where you place the main executables of the program. You can
also provide folders of different locations to put several files. Common
directories are appdir, programdir and programfiles.

• <component> it is like a function, you tell it to to something, the many
varieties for this are found in the manual. We used the component element
to make registry entries, use mergemodules and for creating shortcuts.

• <feature> here you list the components that should be executed by wix,
its like a list saying "do this".

Inside these elements you have to declare at least an ID and a name. Compo-
nents need a unique ID, and to ensure uniqueness we have generated GUID’s. If
you are going to create a hierarchical structure of directories and files, WiX can
do this when you nest the elements, for example declaring a directory within
another. We have commented our configuration files and divided them into
codeblocks so it’s easier to add, edit or remove specific parts of them.

wix.ps1

When releasing software you have two options to choose from, you make a
software upgrade/update or a patch. Microsoft has put clear definitions to this.
Long story short, a patch is the binary difference between two installers (it only
applies the difference made) whereas an upgrade removes the old installation
first and then installs the new one. The most useful aspect of this approach is
in that when your users download these files, a patch will be a lot smaller than
the upgrade, depending on the changes that has happened. A patch has one
weakness, and that is that you can’t introduce new files on your install (you can
only change parts of existing program files).

Upgrades need a new Product ID each time. A patch continues on the last
upgrade, using the same product ID as that version.

When calling the script from PowerShell, you can send with parameters to
choose if you want to build an upgrade or a patch. The current setup works
with WiX 3.7, and until now (05.04.2013) we have no known errors or wrong
behaviour.

The part of building an upgrade is divided into a two stage compilation.

1. candle.exe (part of the WiX Toolset) to make WiX object files.

2. light.exe (part of the WiX Toolset) to interpret these object files and
convert them into the Windows Installer format.

First it parses the XML configuration and binaries to WiX-objects, and then
builds a windows installer package based on these objects. It is really intuitive
when you think about it, first make the candle, and then let it be light!

46 BeLT: System Manual

4.3 Codesigning 4 SOFTWARE DISTRIBUTION

After we finish this part, we move the files into folders based on the version
number, and then perform an administrative install locally. The administrative
installation is a special way of extracting all the contents in the Windows In-
staller package that normally wouldn’t exist after an actual installation. These
files are crucial and important information when you are making the patches
and want to compare two different ones.

You can see that we always make an upgrade in our script. This is because
when we are making patches we need two different versions samples to compare.
Wix.ps1 works in this sequence:

1. Sign files

2. Make upgrade for the newest version

3. Move the installer and all files to a folder

4. Perform Administrative installation

5. Sign newly made files

6. (Make a patch)

Creating a patch is a more complicated operation than creating an upgrade.
We can divide the process of creating a patch into 3 parts:

1. First we use Torch.exe, it creates WiX object files (wixmst) in the differ-
ence between two installs

2. Candle/light, creates a patch baseline from your configuration files (patch.wxs)
–> (wixmsp)

3. pyro.exe, merges/joins the wixmst and wixmsp into a msp-file (Microsoft
patch file)

4.3 Codesigning

We encourage the reader to briefly know what the different file formats contain.
pfx and pem carry the same content, but they have a different structure.

• pfx - Microsoft proprietary format, contains key and certificate

• pem - certificate and the key

• crt - only the certificate

• key - the key

When you want to use the codesign.exe you need to provide a pfx file. Very
often when you apply for certificates, you get a pem file, or a crt and key file.
It is possible to convert between these formats with the OpenSSL utility. We
used the following command in PowerShell:

47 BeLT: System Manual

4.4 WiX build-script 4 SOFTWARE DISTRIBUTION

Listing 10: "Command to sign a file, using signtool.exe"
1 # Convert the pem to pfx
2 > openssl.exe pkcs12 -export ‘
3 -out certificate.pf
4 -inkey .\ code_sign.key ‘
5 -in .\cert -3108 -Høgskolen_i_Gjøvik.pem ‘
6 -certfile .\chain -3108-Høgskolen_i_Gjøvik -3-

AddTrust_External_CA_Root.pem

Listing 11: "Command to sign a file, using signtool.exe"
1 # Sign , f->certificate , p->password ,
2 # t->timestamp .. [file to sign]
3 > signtool.exe sign /f .\ certificate.pfx ‘
4 -p [PASSWORD] ‘
5 /t http :// timestamp.verisign.com/scripts/timstamp.dll ‘
6 /d "BeLT" .\ belt_installer.msi

Script routine

Microsoft needs pxf, that has a different structure. We use openssl to convert it
into this, and then we use Microsoft’s codesigning tool codesign.exe. We need
to provide a key with a timestamp, and then its okay.

4.4 WiX build-script

Listing 12: "Script to generate the MSI package"
1 ##
2 # WiX build script
3 ###
4 # This script controls all package management action
5 # performed by WiX
6 #
7 # Parameters:
8 # -o for the old version
9 # -n for the new version

10 # -p for the platform (x64 or x86), defaults to x64
11 # -b for build options (supports only "patch")
12 ###
13

14 Param(
15 [parameter(Mandatory=$false)]
16 [alias("o")]
17 $oldVersion ,
18

19 [parameter(Mandatory=$true)]
20 [alias("n")]
21 $newVersion ,
22

23 [parameter(Mandatory=$false)]
24 [alias("b")]
25 $build ,
26

48 BeLT: System Manual

4.4 WiX build-script 4 SOFTWARE DISTRIBUTION

27 [parameter(Mandatory=$false)]
28 [alias("p")]
29 $platform="x64",
30

31 [parameter(Mandatory=$true)]
32 [alias("x")]
33 $password ,
34

35 [parameter(Mandatory=$true)]
36 [alias("g")]
37 $guid
38)
39

40

41 # PATH VARIABLES
42 $scriptpath = $MyInvocation.MyCommand.Path
43 $dir = Split -Path $scriptpath
44

45 signtool.exe sign /f .\ certificate.pfx -p $password /t http ://
timestamp.verisign.com/scripts/timstamp.dll /d "BeLT" .\ belt_main
.exe .\ belt_update.exe

46

47 if(!(Test -Path ("$dir\$newVersion\$platform"))) {
48 & candle.exe -dPlatform="$platform" -dVersion="$newVersion" -

dGuid="$guid" $dir\belt_installer.wxs
49 & light.exe -ext WixUIExtension $dir\belt_installer.wixobj
50 }
51 else { write -host "There already made an installer for version

$newVersion on the platform $platform" }
52

53 signtool.exe sign /f .\ certificate.pfx -p $password /t http ://
timestamp.verisign.com/scripts/timstamp.dll /d "BeLT" .\
belt_installer.msi

54

55 if (!(Test -Path ("$dir\$newVersion\$platform"))) {
56 New -Item -Type Directory -Path $newVersion\$platform
57 # New -Item -Type Directory -Path ..\..\ branches\$newVersion\

$platform
58 # cp belt_installer.msi ..\..\ branches \.\ $newVersion\$platform
59 mv belt_installer.wixpdb .\ $newVersion\$platform
60 mv belt_installer.wixobj .\ $newVersion\$platform
61 mv belt_installer.msi .\ $newVersion\$platform
62 mv belt_main.exe .\ $newVersion\$platform
63 mv belt_update.exe .\ $newVersion\$platform
64 #mv dllhook.dll .\ $newVersion\$platform
65

66 # Administrative installation , used for creating patches
67 $endDir="$dir\$newVersion\$platform\admin"
68 $installprop = "TARGETDIR=" + "‘‘‘"" + $endDir + "‘‘‘""
69 Write -Host $installprop
70 invoke -expression "msiexec.exe /a $newVersion\$platform\

belt_installer.msi $installprop"
71 }
72 echo "I am taking a nap for 15 sec , please click away the

installation dialoges"
73 Start -Sleep -s 15
74 if($build -eq "patch") {

49 BeLT: System Manual

4.5 WiX configuration file 4 SOFTWARE DISTRIBUTION

75 Write -host "I will build you the best patch there is"
76 torch.exe -p -ax debug -xo $oldVersion/$platform/admin/

belt_installer.msi $newVersion/$platform/admin/belt_installer.
msi -out patch.wixmst

77 candle.exe patch.wxs -dVersion="$newVersion"
78 light.exe patch.wixobj -out patch.wixmsp
79 pyro.exe patch.wixmsp -out patch.msp -t RTM patch.wixmst
80 signtool.exe sign /f .\ certificate.pfx -p $password /t http ://

timestamp.verisign.com/scripts/timstamp.dll /d "BeLT" .\patch.
msp

81 New -Item -Type Directory -Path $newVersion\$platform\patch
82 mv patch.msp .\ $newVersion\$platform\patch
83 }
84

85

86 # Moving all files to a timestamped directory
87 #$timestamp = Get -Date -f yy.MM.dd_hh.mm.ss #hh.mm.ss_dd.MM.yy
88 #New -Item -Type Directory -Path $timestamp

4.5 WiX configuration file

Listing 13: "WiX XML configuration file"
1 <?xml version="1.0"?>
2

3 <!--
4 NEVER EVER CHANGE PRODUCT UPGRADECODE
5 -CHANGE THE PRODUCT ID WHEN DOING MAJOR UPGRADES
6 -STAR GIVES RANDOM NEW PRODUCT ID
7 -->
8 <?define ProductID = "$(var.Guid)" ?>
9

10 <Wix xmlns="http:// schemas.microsoft.com/wix /2006/ wi">
11

12 <!-- NEVER CHANGE THE UPGRADECODE! -->
13 <?define ProductUpgradeCode = "a54ea86c -863b-4aa5 -8eb2 -

cca7aa240973"?>
14 <!-- PLATFORM DEPENDENT SETTINGS -->
15 <?if $(var.Platform)= x64 ?>
16 <?define win64Flag = "yes" ?>
17 <?else ?>
18 <?define win64Flag = "no" ?>
19 <?endif ?>
20

21 <!-- PATH TO MERGEFILES AND DDL’S -->
22 <?define MergeDir = "C:\Program Files (x86)\Common Files\Merge

Modules" ?>
23 <?define SSL86Dir = "C:\OpenSSL -Win32" ?>
24 <?define SSL64Dir = "C:\OpenSSL -Win64" ?>
25

26 <Product
27 Id="$(var.ProductID)"
28 UpgradeCode ="$(var.ProductUpgradeCode)"
29 Name=" Behavior Logging Tool" Version ="$(var.Version)"

Manufacturer =" NISLab" Language ="1033" >
30 <Package InstallerVersion ="500" Compressed ="yes" Platform ="$(var.

Platform)" Comments =" Windows Installer Package" />

50 BeLT: System Manual

4.5 WiX configuration file 4 SOFTWARE DISTRIBUTION

31 <Media Id="1" Cabinet =" product.cab" EmbedCab ="yes"/>
32 <Icon Id=" ProductIcon" SourceFile =" key_512.ico"/>
33 <Upgrade Id="$(var.ProductUpgradeCode)">
34 <UpgradeVersion Minimum ="$(var.Version)" OnlyDetect ="yes"

Property =" NEWERVERSIONDETECTED "/>
35 <UpgradeVersion Minimum ="0.0.0" Maximum ="$(var.Version)"

IncludeMinimum ="yes" IncludeMaximum ="no"
36 Property =" OLDERVERSIONBEINGUPGRADED "/>
37 </Upgrade >
38 <Condition Message ="A newer version of this software is already

installed.">NOT NEWERVERSIONDETECTED </Condition >
39

40 <!-- Creating product , dedicates files to the main folder and
merge objects

41 Uses if-sentence to determine platform , platform is defined in
config.wxi -->

42 <Directory Id=" TARGETDIR" Name=" SourceDir">
43 <?if $(var.Platform) = x86 ?>
44 <Directory Id=" ProgramFilesFolder">
45 <Directory Id=" INSTALLDIR" Name="belt">
46 <Component Id=" ApplicationFiles" Guid="aca4037f -9ee6 -4b86

-98ec -335 ff383778a">
47 <File Id=" ApplicationFile1" Source =" belt_main.exe"

KeyPath=’yes’/>
48 <!-- <File Id=" ApplicationFile2" Source =" dllhook.dll"/>

-->
49 <File Id=" ApplicationFile3" Source ="$(var.SSL86Dir)\

ssleay32.dll"/>
50 <File Id=" ApplicationFile5" Source ="$(var.SSL86Dir)\

libeay32.dll"/>
51 <File Id=" ApplicationFile6" Source =" belt_update.exe"/>
52 </Component >
53 <Merge Id=" Microsoft_VC110_CRT_x86" SourceFile ="$(var.

MergeDir)\Microsoft_VC110_CRT_x86.msm" Language ="0"
DiskId ="1"/>

54 <Merge Id=" Microsoft_VC110_MFC_x86" SourceFile ="$(var.
MergeDir)\Microsoft_VC110_MFC_x86.msm" Language ="0"
DiskId ="1"/>

55 </Directory >
56 </Directory >
57 <?else ?>
58 <Directory Id=" ProgramFiles64Folder">
59 <Directory Id=" INSTALLDIR" Name="belt">
60 <Component Id=" ApplicationFiles" Guid ="3 c40bf41 -22f5 -4c4d

-9a40 -204 c8992aa69">
61 <File Id=" _64ApplicationFile1" Source =" belt_main.exe"

KeyPath=’yes’ />
62 <!-- <File Id=" _64ApplicationFile2" Source =" dllhook.dll

"/> -->
63 <File Id=" _64ApplicationFile3" Source ="$(var.SSL64Dir)\

ssleay32.dll"/>
64 <File Id=" _64ApplicationFile5" Source =" belt_update.exe

"/>
65 <File Id=" _64ApplicationFile6" Source ="$(var.SSL64Dir)\

libeay32.dll"/>
66 <!-- <File Id=" _64ApplicationFile7" Source =" README.txt

"/> -->

51 BeLT: System Manual

4.5 WiX configuration file 4 SOFTWARE DISTRIBUTION

67 </Component >
68 <Merge Id=" Microsoft_VC110_CRT_x64" SourceFile ="$(var.

MergeDir)\Microsoft_VC110_CRT_x64.msm" Language ="0"
DiskId ="1"/>

69 <Merge Id=" Microsoft_VC110_MFC_x64" SourceFile ="$(var.
MergeDir)\Microsoft_VC110_MFC_x64.msm" Language ="0"
DiskId ="1"/>

70 </Directory >
71 </Directory >
72 <?endif ?>
73

74 <!-- Puts settings.ini inside the programdata , this folder has a
special ACL ,

75 so the user will be unable to alter the settings without
elevated privileges -->

76 <Directory Id=" CommonAppDataFolder">
77 <Directory Id=" BeltAppData" Name=" NISLab">
78 <Directory Id=" BeltAppData2" Name="belt">
79 <Component Id=" BeltConfig" Guid ="751979C2 -F264 -4FA4

-8144 -72 ADF7754B73">
80 <File Id=" ConfigFile" Source ="..\ belt_main\settings.ini

"/>
81 <File Id=" ConfigFile1" Source ="..\..\..\

Additional_Material\CA -chain.pem"/>
82 </Component >
83 </Directory >
84 </Directory >
85 </Directory >
86

87 <!-- Creating the shortcut -->
88 <Directory Id=" ProgramMenuFolder">
89 <!-- <Directory Id=" ProgramMenuSubfolder" Name="BeLT"> -->
90 <Component Id=" ApplicationShortcuts" Guid ="35 efd5ff -cd8b -4ddc

-b827 -1525 ed8f3d51" Win64 ="$(var.win64Flag)">
91 <?if $(var.Platform) = x86 ?>
92 <Shortcut Id=" ApplicationShortcut1" Name="BeLT"

Description ="Belt"
93 Target ="[INSTALLDIR]belt_main.exe" WorkingDirectory ="

INSTALLDIR "/>
94 <?else ?>
95 <Shortcut Id=" ApplicationShortcut2" Name="BeLT"

Description ="Belt"
96 Target ="[INSTALLDIR]belt_main.exe" WorkingDirectory ="

INSTALLDIR "/>
97 <?endif ?>
98 <RegistryValue Root="HKLM" Key=" SOFTWARE\NISLab\belt"
99 Name=" installed" Type=" integer" Value ="1" KeyPath ="yes"

/>
100 <RemoveFolder Id=" ProgramMenuSubfolder" On=" uninstall"/>
101 </Component >
102 <!-- </Directory > -->
103 </Directory >
104 </Directory >
105

106 <DirectoryRef Id=" TARGETDIR">
107 <Component Id=" RegistryEntries" Guid ="2 a381431 -7299 -491e-b3e7 -

bf89a1534163" Win64 ="$(var.win64Flag)">

52 BeLT: System Manual

4.6 WiX patch configuration file 4 SOFTWARE DISTRIBUTION

108 <RegistryKey Root="HKLM" Key=" SOFTWARE\NISLab\belt">
109 <RegistryValue Type=" string" Name=" Version" Value ="$(var.

Version)"/>
110 </RegistryKey >
111 </Component >
112 </DirectoryRef >
113

114 <InstallExecuteSequence >
115 <RemoveExistingProducts After=" InstallValidate "/>
116 </InstallExecuteSequence >
117

118 <!-- Defines the components to be executed -->
119 <Feature Id=" DefaultFeature" Level ="1">
120 <ComponentRef Id=" ApplicationFiles "/>
121 <ComponentRef Id=" ApplicationShortcuts "/>
122 <ComponentRef Id=" BeltConfig" />
123 <ComponentRef Id=" RegistryEntries" />
124 <?if $(var.Platform) = x86 ?>
125 <MergeRef Id=" Microsoft_VC110_CRT_x86 "/>
126 <MergeRef Id=" Microsoft_VC110_MFC_x86 "/>
127 <?else ?>
128 <MergeRef Id=" Microsoft_VC110_CRT_x64 "/>
129 <MergeRef Id=" Microsoft_VC110_MFC_x64 "/>
130 <?endif ?>
131 </Feature >
132

133 <!-- GUI Parameters -->
134 <Property Id=" WIXUI_INSTALLDIR" Value=" INSTALLDIR" />
135 <UIRef Id=" WixUI_InstallDir" />
136 <WixVariable Id=" WixUILicenseRtf" Value=" license.rtf" />
137

138 </Product >
139 </Wix >

4.6 WiX patch configuration file

Listing 14: "WiX patch configuration file"
1 <?xml version="1.0" encoding="UTF -8"?>
2 <Wix xmlns="http:// schemas.microsoft.com/wix /2006/ wi">
3 <Patch Classification="Update" Description="Small Update Patch"
4 DisplayName="Patch to version "
5 MoreInfoURL="http://www.nislab.no" Manufacturer="NISLab"

AllowRemoval="yes">
6 <Media Id="5000" Cabinet="product.cab">
7 <PatchBaseline Id="RTM">
8 <Validate ProductVersionOperator="Equal" ProductVersion="

Update" ProductId="no"></Validate >
9 </PatchBaseline >

10 </Media >
11 <PatchFamilyRef Id="BeltPatch"></PatchFamilyRef >
12 </Patch >
13 <Fragment >
14 <PatchFamily Id="BeltPatch" Supersede="yes" Version="$(var.

Version)"/>
15 </Fragment >
16 </Wix>

53 BeLT: System Manual

BeLT: Behavior Logging Tool

User manual

Patrick Bours patrick.bours@hig.no

Soumik Mondal soumik.mondal@hig.no

(Behaviour Logging Tool)

(Norwegian Information Securty laboratory)

May 15, 2013

1

User manual

If you are running Windows 7 or 8, press the windows key on you keyboard and
type "belt" – you should now see the shortcut for BeLT, click to run. When
BeLT is run for the first time it will go hide in the system tray (lower right
corner of you screen). As you see in this picture, the indicator icon for BeLT is
the B with a green circle around it.

Figure 1: BeLT is logging and running

Right after installation BeLT might not be visible directly in the tray. Like
this:

Figure 2: BeLT is gone

BeLT is actually not gone, it’s just in Windows tray hiding mode. You can
gain BeLT in the tray by clicking ’Customize’ after clicking on the arrow aiming
high:

Figure 3: When you are customizing the taskbar, you can choose what you want
visible or not

Not logging password fields

Belt has the ability to filter out passwords. It is not 100% reliable but it will
filter out passwords from Firefox and Internet Explorer, and also programs in
Windows that sensor passwords. When BeLT chooses to do this, it will indicate
this by turning yellow:

Figure 4: BeLT in password filtering mode

2

You can right click this icon to choose actions for controlling the behaviour of
BeLT. If you try to right click, you can restore, stop, pause and exit the program.
The difference between pause and stop is that pause keeps you session but stop
to log – the stop button quits both your session and logging. Here is an example
where a user has right clicked the BeLT icon, and is ready to restore BeLT.

Figure 5: Restore GUI from tray

The color of the BeLT icon changes according to the logging status of BeLT,
it is yellow if has detected a password and red if it’s stopped. Here is an example
of a stopped BeLT:

Figure 6: BeLT is not logging, but running

3

And this is the BeLT interface after being brought up from the tray.

Figure 7: BeLT interface after restoring

As you can see, there is a big field in the middle – this is the place that
is used to visualize data. If you click the "Display Settings" button, a lot of
checkboxes will appear. Like this:

Figure 8: You can check and uncheck boxes to visualize logging behavior

If you want to change advanced settings of BeLT, click the settings in the
top row. As you see below, a user is about to select the settings settings:

4

Figure 9: In this place you can adjust advanced settings

Figure 10: Advanced settings

If you want to change the core behaviour of BeLT, you just found the place
to do it. Here you can choose to store the logged data locally on your computer,
if you choose to do this, there is a way to send the information to the server
afterwards.

5

If you choose to send the information as local files, you can look through
your data before sending it. This is a tedious way, but it gives you more control
of your data if you like that. This is a user about to use this ability:

Figure 11: This setting enables you to send a local file

This thing does not give you insight of the contents of you file(s), but you
can locate every file inside a folder in your Documents folder, named with your
unique ID (a long string with random numbers and letters).

Figure 12: Choose session file or a timeframe, click send

6

Troubleshooting

Known problems

Application exits on start

One of F-Secure 2011 earlier versions of the DeepGuard system may cause BeLT
not to start. This is not a problem caused by BeLT, but by F-Secures protection
system ”DeepGuard”. DeepGuard will run a more restrictive guard of BeLT since
it is unknown to DeepGuards hash library. This guard may cause an exception
to be thrown when BeLT is connecting to the Internet. The exception will then
cause BeLT to exit prematurely. Since this is a standard Windows function
call to establish a socket we are unable to disable this problem, but F-Secure
recommends to update to a newer version of F-Secure, with a newer version of
DeepGuard.

BeLT may at the time of exit have already created a shortcut inside the
startup-folder for Windows which will cause it to start automatically each time
Windows starts. Which will in return cause BeLT to exit each time the system
is started. To fix this problem, uninstall BeLT before exiting Windows.

If this problem occurs, try downloading a newer version/upgrade your F-
Secure appliance. The problem was discovered on an 2011 version of F-Secure
which incorporated one of the earliest versions of DeepGuard. Visit F-Secures
website, www.f-secure.com/, and forums to get help on-line from their techni-
cal support and community.

BeLT being detected as accessibility application

Some applications, like Adobe Reader will detect BeLT as an accessibility ap-
plication. Adobe Reader will then want you to set up Adobe Reader so that it
is better supported for Accessibility applications. This setup is fast and easy to
go through.

Error reporting

Any problems is to be reported to Prof.Dr. Patrick Bours at patrick.bours@
hig.no or Mr. Soumik Mondal at soumik.mondal@hig.no, project managers
for BeLT, at NISlab1. Please e-mail a detailed description of what you where
doing while the error/problem occurred along with a description of the error.

1
NISlab: Norwegian Information Security laboratory. www.nislab.no

7

C Windows application certification

Checklist for windows app certification requirements
Description Check
1 – Compatibility
- No dependency on compatibility modes

- No dependency on VB6 Runtime

- Must not load arbitrary DLLs to intercept Win32 API calls using ap-
pInit_dlls
2 – Security
http://msdn.microsoft.com/en-us/library/windows/desktop/
aa374872%28v=vs.85%29.aspx - 2.1 ACL to secure Executable files
- 2.2 ACL to secure Directories

- 2.3 ACL to secure Registry keys

- 2.4 ACL to secure Directories that contain objects

- 2.5 Your app must reduce non-administrator access to services that are
vulnerable to tampering
- 2.6 Your app must prevent services with fast restarts from restarting
more than twice every 24 hours
3 – More Security
- 3.1 Your app must not use AllowPartiallyTrustedCallersAttribute
(APTCA) to ensure secure access to strong-named assemblies
- 3.2-4 Compilation flags: SafeSEH, NXCOMPAT and NXCOMPAT

- 3.5 Your app must not Read/Write Shared PE Sections

4 – Restart and behaviour
- 4.1 Your app must handle critical shutdowns appropriately

- 4.2 A GUI app must return TRUE immediately in preparation for a
restart
- 4.3 Your app must return 0 within 30 seconds and shut down

- 4.4 Console apps that receive the CTRL_C_EVENT notification should
shut down immediately
- 4.5 Drivers must not veto a system shutdown event

5 – Apps must support a clean, reversible installation
- 5.1 Your app must properly implement a clean, reversible installation

- 5.2 Your app must never force the user to restart the computer immedi-
ately

Continues on the next page

149

http://msdn.microsoft.com/en-us/library/windows/desktop/aa374872%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374872%28v=vs.85%29.aspx

Behaviour Logging Tool - BeLT

Description Check
- 5.3 Your app must never be dependent on 8.3 short file names(SFN)

- 5.4 Your app must never block silent install/uninstall

- 5.5 Your app installer must create the correct registry entries to allow
successful detection and uninstall 1

6 – Apps must digitally sign files and drivers
- 6.1 All executable files (.exe, .dll, .ocx, .sys, .cpl, .drv, .scr) must be
signed with an Authenticode certificate 2

- 6.2 All kernel mode drivers installed by the app must have a Microsoft
signature obtained through the Windows Hardware Certification pro-
gram. All File System filter drivers must be signed by Microsoft.
- 6.3 Exceptions and Waivers

7 – Apps don’t block installation or app launch based on an operating sys-
tem version check
- 7.1 Your app must not perform version checks for equality

- 7.2 Exceptions and Waivers will be considered for apps meeting the
criteria below:
• Apps that are delivered as one package that also run on Windows

XP, Windows Vista, and Windows 7, and need to check the operating
system version to determine which components to install on a given
operating system.

• Apps that check only the minimum version of the operating system
(during install only, not at runtime) by using only the approved API
calls, and that properly list the minimum version requirement in the
app manifest.

• Security apps (antivirus, firewall, etc.), system utilities (for example,
defrag, backups, and diagnostics tools) that check the operating sys-
tem version by using only the approved API calls.

8 – Apps don’t load services or drivers in safe mode
- 8.1 Exceptions and Waivers

9 – Apps must follow User Account Control guidelines
- 9.1 Your app must have a manifest that defines execution levels and tells
the operating system what privileges the app requires in order to run
- 9.2 Your app’s main process must be run as a standard user (asInvoker).

- 9.3 Exceptions and Waivers

10 – Apps must install to the correct folders by default
- 10.1 Your app must be installed in the Program Files folder by default

3

- 10.2 Your app must avoid starting automatically on startup

Continues on the next page

1Warning: An optional value ’InstallLocation’ is missing or invalid for program Behavior Logging Tool.
2Warning: Files from OpenSSL was not digitally signed
3Warning: Program Behavior Logging Tool fails due to missing install location.

150

Behaviour Logging Tool - BeLT

Description Check
- 10.3 Your app data, which must be shared among users on the computer,
should be stored within ProgramData
- 10.4 Your app’s data that is exclusive to a specific user and that is not to
be shared with other users of the computer, must be stored in Usersuser-
nameAppData
- 10.5 Your app must never write directly to the "Windows" directory and
or subdirectories
- 10.6 Your app must write user data at first run and not during the in-
stallation in “per-machine” installations
- 10.7 Exceptions and Waivers

11 – Apps must support multi-user sessions
- 11.1 Your app must ensure that when running in multiple sessions either
locally or remotely, the normal functionality of the app is not adversely
affected
- 11.2 Your app’s settings and data files must not persist across users

- 11.3 A user’s privacy and preferences must be isolated to the user’s
session
- 11.4 Your app’s instances must be isolated from each other

- 11.5 Apps that are installed for multiple users must store data in the
correct folder(s) and registry locations
- 11.6 User apps must be able to run in multiple user sessions (Fast User
Switching) for both local and remote access 4

- 11.7 Your app must check other terminal service (TS) sessions for exist-
ing instances of the app
12 – Apps must support x64 versions of Windows
- 12.1 Your app must natively support 64-bit or, at a minimum, 32-bit
Windows-based apps must run seamlessly on 64-bit systems to maintain
compatibility with 64-bit versions of Windows
- 12.2 Your app and its installers must not contain any 16-bit code or rely
on any 16-bit component
- 12.3 Your app’s setup must detect and install the proper drivers and
components for the 64-bit architecture
- 12.4 Any shell plug-ins must run on 64-bit versions of Windows

- 12.5 App running under the WoW64 emulator should not attempt to
subvert or bypass Wow64 virtualization mechanisms

Table 1: Summary of Microsoft’s app certification reqs.

4Warning: An error occurred while performing the testing process.

151

D Scripts

D.1 Python script to calculate time statistics

Code D.1: Python program to calculate time statistics on input file
1 #!/usr/bin/env python
2 # print_stat.py
3 # Python script to print difference in time between timestamps
4
5 import math , os, sys
6
7 if(len(sys.argv) < 1):
8 print "Usage: "+sys.argv [0] + " <file >"
9 exit (0)

10
11 # Read all lines
12 infile = open(sys.argv[1], ’rb’)
13 lines = infile.readlines ()
14 infile.close ()
15
16 # Get all lines as integers
17 lines = [int(x) for x in lines]
18
19 avg = 0
20 count_diff = 0
21 count_all = 0
22 all_diff = []
23 last = 0
24
25 for i in lines:
26 if(count_all == 0):
27 last = i
28 count_diff += 1
29 else:
30 if(i > last):
31 count_diff += 1
32 all_diff.append(i-last)
33 avg += (i-last)
34 last = i
35 count_all += 1
36
37 print "Read " + str(count_all) + " timestamps"
38 print str(count_diff) + " unique timestamps"
39 print "Average difference is " + str(float(sum(all_diff)) / len(all_diff))
40 print "Smallest difference is " + str(min(all_diff))
41 print "Biggest difference is " + str(max(all_diff))

D.2 Python script to measure mouse compression on file

Code D.2: Python script to test mouse compression on files
1 #!/usr/bin/env python
2 # Python script to test different values for mouse
3 # compression.
4
5 # Takes a CSV file , with the format: x,y
6
7 # You can also supply the values which determines
8 # the compression rate
9

153

Behaviour Logging Tool - BeLT

10 import csv , math , os, sys
11
12 DIFF_MAX = 5 # Decrease to provide more accuracy
13 LINE_INCREASE = 10 # Decrease to provide more accuracy
14 DIFF_MIN = 1 # Currently not used
15
16 degrees = 0.0
17
18 # Find the difference between two numbers
19 def difference(a, b):
20 c = 0.0
21 if(b < a):
22 c = a
23 a = b
24 b = c
25 if(a+DIFF_MAX < b):
26 return True
27 return False
28
29 def printThis(thisX , thisY , lastX , lastY , lastWX , lastWY , count):
30 global degrees
31 if(count == 0):
32 return True
33
34 x = math.pow(thisX - lastWX , 2)
35 y = math.pow(thisY - lastWY , 2)
36
37 if((x + y) > LINE_INCREASE):
38 xx = math.fabs(thisX - lastX)
39 yy = math.fabs(thisY - lastY)
40
41 if((xx == 0 and yy == 0) or (xx == yy)):
42 return False
43 new_degrees = math.atan2(yy , xx)*180/ math.pi
44 if(difference(new_degrees , degrees) == True):
45 degrees = new_degrees
46 return True
47 return False
48
49
50 if(len(sys.argv) < 2):
51 print "Usage: "+sys.argv [0] + " <csv file > [<line min > <min degrees >]"
52 exit (0)
53
54 if(len(sys.argv) > 2):
55 LINE_INCREASE = int(sys.argv [2])
56 if(len(sys.argv) > 3):
57 DIFF_MAX = float(sys.argv [3])
58
59 filename , fileext = os.path.splitext(sys.argv [1])
60 outfilename = filename + ’C’ + fileext
61
62 infile = open(sys.argv[1], ’rb’)
63 outfile = open(outfilename , ’wb’)
64 reader = csv.reader(infile)
65 writer = csv.writer(outfile , delimiter=’,’, quotechar=’"’,
66 quoting=csv.QUOTE_NONE)
67
68 # Read in all the data and turn them into integers
69 movList = []
70 for row in reader:
71 row = [int(x) for x in row]
72 movList.append(row)
73
74 infile.close ()
75
76 count = 0

154

Behaviour Logging Tool - BeLT

77 written = 0
78 last_writ = []
79 for xy in movList:
80 if(count > 0):
81 if(printThis(xy[0], xy[1], movList[count -1][0] , movList[count -1][1] ,
82 last_writ [0], last_writ [1], count) == True):
83 written += 1
84 writer.writerow(xy)
85 last_writ = xy
86 else:
87 written += 1
88 writer.writerow(xy)
89 last_writ = xy
90 count += 1
91 outfile.close()
92 print float(written)/(count -1)

D.3 Python script to paint mouse movements from file

Code D.3: Python script to paint mouse movements on a graph
1 #!/usr/bin/env python
2 # mouse_paint2.py
3
4 # A small script to paint an image from a series of
5 # coordinates. Used to paint an image of mouse
6 # movements , can be used to test whether the compression
7 # tactic works or not. CSV file need to have x,y in
8 # this ordar as the first two elements
9

10 import csv
11 from numpy import *
12 import pylab as p
13 import os, sys
14
15 if(len(sys.argv) < 3):
16 print "Usage: " + sys.argv [0] + " <original CSV file > <compressed CSV

file >"\
17 + " [X-max Y-max]"
18 exit (0)
19
20 # Get filename without extension
21 # Image get same name as first file
22 filename , fileext = os.path.splitext(sys.argv [1])
23 img_name = filename + ".png"
24
25 maxX = 0
26 maxY = 0
27 if(len(sys.argv) >= 5):
28 maxX = int(sys.argv [3])
29 maxY = int(sys.argv [4])
30
31 picTitle = ""
32
33 if(len(sys.argv) >= 6):
34 picTitle = sys.argv [5]
35
36 # Read the csv file
37 infile = open(sys.argv[1], ’rb’)
38 reader = csv.reader(infile); # Read csv file
39 movList = [] # Empty list
40 for row in reader: # Create array of all lines
41 movList.append(row)
42 infile.close ()
43
44 # Read the seconds csv file
45 infile1 = open(sys.argv[2], ’rb’)
46 reader1 = csv.reader(infile1)

155

Behaviour Logging Tool - BeLT

47 movList1 = []
48 for row in reader1:
49 movList1.append(row)
50 infile1.close()
51
52 # Current array is number of lines lists , we need 2 lists , one for x and

one for
53 # y before we can create an image out of it.
54 tmp = []
55 tmp2 = []
56 for i in movList:
57 tmp.append(int(i[0]))
58 tmp2.append(int(i[1]))
59
60 fig = p.figure ()
61 if(picTitle != ""):
62 fig.suptitle(picTitle)
63
64 # Paint original path
65 p.plot(tmp , tmp2 , color=’black’, lw=2)
66
67 tmp = []
68 tmp2 = []
69 for i in movList1:
70 tmp.append(int(i[0]))
71 tmp2.append(int(i[1]))
72
73 # Paint compressed path
74 p.plot(tmp , tmp2 , color=’red’, lw=2)
75
76 if(maxX != 0 and maxY != 0):
77 p.xlim([0,maxX])
78 p.ylim([0,maxY])
79
80 # Just a hack to get it to work , not very elegant
81 p.yticks ([0, 100, 200, 300, 400, 500, 600, 700, maxY])
82 p.xticks ([0, 200, 400, 600, 800, 1000, 1200, maxX])
83
84
85 p.gca().invert_yaxis () # Screens have 0 in upper left corner
86 fig.savefig(img_name)

D.4 SQL procedure for inserting data into database

Code D.4: SQL procedure for inserting data
1 DROP PROCEDURE if exists log;
2
3 DELIMITER //
4
5 CREATE PROCEDURE log(IN tSIDECO VARCHAR (15), IN tUID CHAR (35), IN tTIME

CHAR (30), IN tPNM TEXT , IN tPID CHAR (15), IN tSDT TEXT , IN tMSG TEXT)
6 BEGIN
7 DECLARE dSID INT (11);
8 DECLARE dECO INT (11);
9 DECLARE dEVID CHAR (11);

10 DECLARE c1 CHAR (10);
11 DECLARE c2 CHAR (10);
12 DECLARE c3 CHAR (10);
13 DECLARE c4 CHAR (10);
14 DECLARE t1 TEXT;
15 DECLARE t2 TEXT;
16 DECLARE t3 TEXT;
17
18 set c1 = SUBSTRING_INDEX(SUBSTRING_INDEX(tTIME , ’.’, -1), ’Z’, 1);
19 SET tTIME = CONCAT_WS(’ ’, SUBSTRING_INDEX(tTIME , ’T’, 1),

SUBSTRING_INDEX(SUBSTRING_INDEX(tTIME , ’T’, -1), ’.’, 1));
20 SET dSID = SUBSTRING_INDEX(tSIDECO , ’_’, 1);

156

Behaviour Logging Tool - BeLT

21 SET dECO = SUBSTRING_INDEX(tSIDECO , ’_’, -1);
22 IF tMSG = "" THEN
23 SET tMSG=NULL;
24 END IF;
25
26 IF tSDT LIKE "%belt@%" THEN
27 SET tMSG = SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’event="’, -1), ’"’,

1);
28 IF tMSG LIKE "start" THEN
29 INSERT INTO session (SID , UID , START , MS) VALUES(dSID , tUID , tTIME ,

c1);
30 ELSE IF tMSG LIKE "stop" THEN
31 UPDATE session SET END=tTIME WHERE UID=tUID AND SID=dSID;
32 END IF;
33 END IF;
34 SET dEVID = "BeLT";
35 ELSE
36 SET dEVID = SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’eventID ="’, -1), ’"’

, 1);
37 END IF;
38
39 INSERT INTO event (eCOUNT , SID , UID , TIME , MS, EVENTID , MSG)
40 VALUES(dECO , dSID , tUID , tTIME , c1, dEVID , tMSG);
41
42 IF tSDT LIKE "%mouse@%" THEN
43 SET c1=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’X="’, -1), ’"’, 1);
44 SET c2=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’Y="’, -1), ’"’, 1);
45 IF INSTR(tSDT , ’delta="’) = 0 THEN
46 SET c3=NULL;
47 ELSE
48 SET c3=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’delta="’, -1), ’"’, 1);
49 END IF;
50 INSERT INTO mouse (eCOUNT ,SID ,UID ,xCoord ,yCoord ,wheelDelta)
51 VALUES(dECO , dSID , tUID , c1, c2, c3);
52 ELSEIF tSDT LIKE "%key@%" THEN
53 SET c1=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT ,’alt="’,-1),’"’ ,1);
54 SET t1=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT ,’event ="’,-1),’"’ ,1);
55 SET c2=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT ,’count ="’,-1),’"’ ,1);
56 INSERT INTO keyboard (eCOUNT , SID , UID , superKey , button , count)
57 VALUES(dECO , dSID , tUID , c1, t1, c2);
58 ELSE
59 IF tSDT LIKE "%belt@%" THEN
60 SET t1=t2=NULL;
61 ELSE
62 SET t1=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’elemType ="’, -1), ’"

’, 1);
63 SET t2=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’elemDescription ="’, -1)

, ’"’, 1);
64 END IF;
65 IF INSTR(tSDT , ’rectBottomY=’) = 0 THEN
66 SET c1=c2=c3=c4=NULL;
67 ELSE
68 SET c1=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’rectBottomY ="’,-1), ’"’

, 1);
69 SET c2=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’rectTopY ="’, -1), ’"’

, 1);
70 SET c3=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’rectLeftX ="’, -1), ’"’

, 1);
71 SET c4=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’rectRightX ="’, -1), ’"’

, 1);
72 END IF;
73
74 IF INSTR(tSDT , ’desc="’) = 0 THEN
75 SET t3 = NULL;
76 ELSE
77 SET t3=SUBSTRING_INDEX(SUBSTRING_INDEX(tSDT , ’desc="’, -1), ’"’, 1);
78 END IF;

157

Behaviour Logging Tool - BeLT

79
80 INSERT INTO automation(ECOUNT , SID , UID , PRCNAME , UIAID , elType , elDesc

, descr , rBY ,rTY ,rLX ,rRX)
81 VALUES(dECO , dSID , tUID , tPNM , tPID , t1, t2, t3, c1 , c2 , c3 , c4);
82 END IF;
83
84 END //
85
86 DELIMITER ;

D.5 Script to insert data into indexed database

Code D.5: Indexed database script
1 DELIMITER ;
2 DROP DATABASE IF EXISTS syslog_indexed;
3
4 CREATE DATABASE syslog_indexed;
5 use syslog_indexed;
6
7 CREATE TABLE session (
8 SID INT (11) NOT NULL ,
9 UID CHAR (35) NOT NULL ,

10 START TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
11 END CHAR (30) NULL
12)ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
13
14 CREATE TABLE event (
15 ECOUNT INT (11) NOT NULL ,
16 SID INT (11) NOT NULL ,
17 UID CHAR (35) NOT NULL ,
18 TIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
19 MS INT (11),
20 EVENTID CHAR (6),
21 MSG TEXT
22)ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
23
24 CREATE TABLE mouse (
25 ECOUNT INT (11),
26 SID INT (11),
27 UID CHAR (35),
28 xCoord INT (11),
29 yCoord INT (11),
30 wheelDelta CHAR (10)
31)ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
32
33 CREATE TABLE keyboard (
34 ECOUNT INT (11),
35 SID INT (11),
36 UID CHAR (35),
37 superKey INT (10),
38 button VARCHAR (128),
39 count INT (11)
40)ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
41
42 CREATE TABLE automation (
43 ECOUNT INT (11),
44 SID INT (11),
45 UID CHAR (35),
46 PRCNAME VARCHAR (261),
47 UIAID TEXT ,
48 elType TEXT ,
49 elDesc TEXT ,
50 descr TEXT ,
51 rBY INT (11),
52 rTY INT (11),
53 rLX INT (11),
54 rRx INT (11)

158

Behaviour Logging Tool - BeLT

55)ENGINE=MYISAM DEFAULT CHARACTER SET utf8;
56
57 CREATE INDEX seUID ON session(UID);
58 CREATE INDEX seSID ON session(SID);
59 CREATE INDEX seStart ON session(START);
60
61 CREATE INDEX evUID ON event(UID);
62 CREATE INDEX evSID ON event(SID);
63 CREATE INDEX evCount ON event(ECOUNT);
64 CREATE INDEX evEVID ON event(EVENTID);
65 CREATE INDEX evTime ON event(TIME);
66
67 CREATE INDEX keUID ON keyboard(UID);
68 CREATE INDEX keSID ON keyboard(SID);
69 CREATE INDEX keCount ON keyboard(ECOUNT);
70 CREATE INDEX keBut ON keyboard(button);
71
72 CREATE INDEX auUID ON automation(UID);
73 CREATE INDEX auSID ON automation(SID);
74 CREATE INDEX auCount ON automation(ECOUNT);
75 CREATE INDEX auPRCNAME ON automation (PRCNAME);
76
77 CREATE INDEX moUID ON mouse(UID);
78 CREATE INDEX moSID ON mouse(SID);
79 CREATE INDEX moCount ON mouse(ECOUNT);

D.6 Bash script used to run the servertest

Code D.6: Script at the server used for testing performance
1 #!/bin/bash
2
3 length =3600 # The length of each test in seconds
4 buffer =60 # Pause in between sessions
5 sarTimeBuffer =10 # Time before and after each session we start sar
6
7 # Total amount of time we run sar each session
8 totalSarTime=$(($length + $sarTimeBuffer + $sarTimeBuffer + $buffer))
9

10 ps aux | grep syslog -mysql | awk ’{print $2}’ |
11 while read line;
12 do
13 kill $line
14 done
15
16
17 echo "Starting server with $length second intervals"
18 echo "Each test is open for $buffer seconds"
19 echo "Starting syslog -ng RAW server"
20 /etc/init.d/syslog -ng stop
21 cp ./raw.conf /etc/syslog -ng/syslog -ng.conf
22 /etc/init.d/syslog -ng start
23 sar -A -o time_raw.bin 1 $totalSarTime > /dev/null &
24 sleep $sarTimeBuffer
25 echo "Opening test for clients"
26 echo "1" > /var/www/belt_start_test.txt # Open test
27 sleep $buffer # Need to make sure everyone has started
28 echo "Closing test for clients , they should all be connected by now"
29 echo "0" > /var/www/belt_start_test.txt # Close test
30
31 sleep $sarTimeBuffer
32 sleep $length
33 echo "Starting syslog -ng CSV server"
34 /etc/init.d/syslog -ng stop
35 cp ./csv.conf /etc/syslog -ng/syslog -ng.conf
36 /etc/init.d/syslog -ng start
37 sar -A -o time_csv.bin 1 $totalSarTime > /dev/null &
38 sleep $sarTimeBuffer

159

Behaviour Logging Tool - BeLT

39 echo "Opening test for clients"
40 echo "1" > /var/www/belt_start_test.txt # Open test
41 sleep $buffer # Need to make sure everyone has started
42 echo "Closing test for clients , they should all be connected by now"
43 echo "0" > /var/www/belt_start_test.txt # Close test
44
45
46 sleep $sarTimeBuffer
47 sleep $length
48 echo "Starting syslog -ng XML server"
49 /etc/init.d/syslog -ng stop
50 cp ./xml.conf /etc/syslog -ng/syslog -ng.conf
51 /etc/init.d/syslog -ng start
52 sar -A -o time_xml.bin 1 $totalSarTime > /dev/null &
53 sleep $sarTimeBuffer
54 echo "Opening test for clients"
55 echo "1" > /var/www/belt_start_test.txt # Open test
56 sleep $buffer # Need to make sure everyone has started
57 echo "Closing test for clients , they should all be connected by now"
58 echo "0" > /var/www/belt_start_test.txt # Close test
59
60
61 sleep $sarTimeBuffer
62 sleep $length
63 /etc/init.d/syslog -ng stop
64 /etc/syslog -ng/syslog -mysql_unindexed.sh &
65 cp ./db.conf /etc/syslog -ng/syslog -ng.conf
66 echo "Starting syslog -ng Database server"
67 /etc/init.d/syslog -ng start
68 sar -A -o time_db.bin 1 $totalSarTime > /dev/null &
69 sleep $sarTimeBuffer
70 echo "Opening test for clients"
71 echo "1" > /var/www/belt_start_test.txt # Open test
72 sleep $buffer # Need to make sure everyone has started
73 echo "Closing test for clients , they should all be connected by now"
74 echo "0" > /var/www/belt_start_test.txt # Close test
75
76 sleep $sarTimeBuffer
77 sleep $length
78 ps aux | grep syslog -mysql | awk ’{print $2}’ |
79 while read line;
80 do
81 kill $line
82 done
83
84 /etc/init.d/syslog -ng stop
85 /etc/syslog -ng/syslog -mysql_indexed.sh &
86 echo "Starting syslog -ng Database server"
87 /etc/init.d/syslog -ng start
88 sar -A -o time_db_i.bin 1 $totalSarTime > /dev/null &
89 sleep $sarTimeBuffer
90 echo "Opening test for clients"
91 echo "1" > /var/www/belt_start_test.txt # Open test
92 sleep $buffer # Need to make sure everyone has started
93 echo "Closing test for clients , they should all be connected by now"
94 echo "0" > /var/www/belt_start_test.txt # Close test

D.7 RAW part of Syslog-NG configuration file

Code D.7: raw part of the syslog-ng.conf file
1 template raw_output {
2 template ("\" $ISODATE \",\" $MSGID \",\" $PROGRAM \",\" $PID \",\" $SDATA \",\"

$MSGONLY \"\n");
3 };

D.8 CSV part of Syslog-NG configuration file

160

Behaviour Logging Tool - BeLT

Code D.8: CSV part of the syslog-ng.conf file
1 template csv_file {
2 template(
3 "${MSGID.NUM},$ISODATE ,
4 $(if (\"${.SDATA.UI@1.eventID }\" == \"\")
5 $(if (\"${.SDATA.key@1.eventID }\" == \"\")
6 $(if (\"${.SDATA.mouse@1.eventID }\" == \"\")
7 \" $MSGONLY \"
8 ${.SDATA.mouse@1.eventID},${. SDATA.mouse@1.X},${. SDATA.mouse@1.Y}
9 $(if (\"${.SDATA.mouse@1.delta }\" == \"\")

10 \"\"
11 ,${. SDATA.mouse@1.delta}
12)
13)
14 ${.SDATA.key@1.eventID},${.SDATA.key@1.alt},${.SDATA.key@1.event},
15 ${.SDATA.key@1.count}
16)
17 ${.SDATA.UI@1.eventID},${. SDATA.UI@1.elemType},$PID ,$PROGRAM ,
18 ’${. SDATA.UI@1.elemDescription}’
19 $(if (\"${.SDATA.UI@1.desc }\" == \"\")
20 $(if (\"${.SDATA.UI@1.newvalue }\" == \"\")
21 $(if (\"${.SDATA.UI@1.rectBottomY }\" == \"\")
22 \"\"
23 ,${. SDATA.UI@1.rectBottomY},${.SDATA.UI@1.rectTopY},
24 ${.SDATA.UI@1.rectLeftX},${.SDATA.UI@1.rectRightX}
25)
26 ,’${. SDATA.UI@1.newvalue}’
27)
28 ,’${. SDATA.UI@1.desc}’
29)
30)
31 $(if (\"${.SDATA.belt@1.event }\" == \"\")
32 \"\"
33 ${.SDATA.belt@1.event})\n");
34 };

D.9 XML part of syslog-NG configuration file

Code D.9: XML part of the syslog-ng.conf file
1 template xml_file {
2 template ("
3 $(if (\"${.SDATA.belt@1.event }\" != \"start \")
4 \"\"
5 <events >
6)
7 <event ><num >${MSGID.NUM}</num >
8 <date >$ISODATE </date >
9 $(if (\"${.SDATA.UI@1.eventID }\" == \"\")

10 $(if (\"${.SDATA.key@1.eventID }\" == \"\")
11 $(if (\"${.SDATA.mouse@1.eventID }\" == \"\")
12 \"\"
13 <id>${.SDATA.mouse@1.eventID}</id >
14 <x>${.SDATA.mouse@1.X}</x><y>${. SDATA.mouse@1.Y}</y>
15 $(if (\"${.SDATA.mouse@1.delta }\" == \"\")
16 \"\"
17 <delta >${.SDATA.mouse@1.delta}</delta >
18)
19)
20 <id>${.SDATA.key@1.eventID}</id>
21 <alt >${. SDATA.key@1.alt}</alt >
22 <key >${. SDATA.key@1.event}</key >
23 <count >${.SDATA.key@1.count}</count >
24)
25 <id>${.SDATA.UI@1.eventID}</id >
26 <type >${.SDATA.UI@1.elemType}</type >
27 <uiid >$PID </uiid >

161

Behaviour Logging Tool - BeLT

28 <program >$PROGRAM </program >
29 <description >${. SDATA.UI@1.elemDescription }</description >
30 $(if (\"${.SDATA.UI@1.desc }\" == \"\")
31 $(if (\"${.SDATA.UI@1.newvalue }\" == \"\")
32 $(if (\"${.SDATA.UI@1.rectBottomY }\" == \"\")
33 \"\"
34 <rectangle ><bottomY >${.SDATA.UI@1.rectBottomY }</bottomY >
35 <topY >${.SDATA.UI@1.rectTopY}</topY >
36 <leftX >${.SDATA.UI@1.rectLeftX}</leftX >
37 <rightX >${.SDATA.UI@1.rectRightX }</rightX ></rectangle >
38)
39 <newValue >${.SDATA.UI@1.newvalue}</newValue
40)
41 <description2 >${.SDATA.UI@1.desc}</description2 >
42)
43)
44 $(if (\"${.SDATA.belt@1.event }\" == \"\")
45 \"\"
46 <belt >${.SDATA.belt@1.event}</belt >
47)
48 </event >
49 $(if (\"${.SDATA.belt@1.event }\" != \"stop \")
50 \"\"
51 </events >)\n"
52);
53 };

D.10 Syslog-NG for database storage

Code D.10: Syslog-NG config for databse storage
1 destination d_sql2 {
2 pipe("/tmp/mysql.syslog -ng.pipe"
3 template("CALL log(’$MSGID ’, ’$HOST ’, ’$ISODATE ’, ’$PROGRAM ’, ’$PID ’, ’

$SDATA ’, ’$MSGONLY ’);\n") template -escape(yes));
4 };

D.11 Bash script for inserting data into database

Code D.11: Bash script for inserting data to DB
1 #!/bin/bash
2 # Takes input from a FIFO list and executes the retrieved statement in the
3 # database. This then runs the decided procedure that inserts the data

into the
4 # databse.
5 # This is retrieved from a tutorial online at;
6 # http :// chaos.untouchable.net/index.php/HOWTO_setup_syslog -

ng_to_log_to_mysql
7 if [-e /tmp/mysql.syslog -ng.pipe]; then
8 while [-e /tmp/mysql.syslog -ng.pipe]; do
9 mysql syslog_indexed -u syslog --password =0 x80sWaT < /tmp/mysql.syslog -

ng.pipe
10 done
11 else
12 mkfifo /tmp/mysql.syslog -ng.pipe
13 fi

162

BeLT: Behavior Logging Tool

Robin Stenvi, Magnus Øverbø
and Lasse T. Johansen

Generated with Doxygen 1.8.3

May 15, 2013

This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)

Contents
1 Module Documentation 1

1.1 List of all classes . 1
1.2 Global variables . 2
1.3 Misc Global Functions . 3
1.4 All enumerations . 5
1.5 Default Error Strings . 6
1.6 Current server status at the client . 7
1.7 Current mode of storage . 8
1.8 Constants for success or failure messages . 9
1.9 Which log event occurred . 10
1.10 Events from user . 11
1.11 Messages used throughout the application . 12
1.12 Different colors used. 13
1.13 Bif flags for active system keys . 14
1.14 Each field in the update file . 15
1.15 Each field in the list of patches . 16
1.16 Diferent software events . 17
1.17 Different colors for icons . 18
1.18 All the global / private structs . 19
1.19 All the key possible key variations . 20
1.20 Global function for string manipulation . 24

2 Class Documentation 34
2.1 AboutDialog Class Reference . 34
2.2 Blacklist Struct Reference . 35
2.3 Cbelt_mainApp Class Reference . 35
2.4 Cbelt_mainDlg Class Reference . 36
2.5 checkUpdate Class Reference . 57
2.6 CTrayNot Class Reference . 64
2.7 deviceInfo Struct Reference . 66
2.8 eventHandler Class Reference . 66
2.9 eventInfoUnion Struct Reference . 72
2.10 Events Class Reference . 73
2.11 sendData::Excluded Struct Reference . 80
2.12 sendData::ExcludeIndex Struct Reference . 80
2.13 sendData::File Struct Reference . 80
2.14 filterSettings Class Reference . 81
2.15 focusEventHandler Class Reference . 87
2.16 formatData Class Reference . 92
2.17 handleData Class Reference . 95
2.18 HIDDevice Struct Reference . 138
2.19 HWMonitor Class Reference . 139
2.20 KeyboardDevice Struct Reference . 141
2.21 KeyInfo Struct Reference . 141
2.22 Keylogger Class Reference . 142
2.23 keyType Struct Reference . 146
2.24 handleData::lastAll Struct Reference . 146
2.25 Mouse Class Reference . 147
2.26 MouseInfo Struct Reference . 150
2.27 myWinEvent Class Reference . 151
2.28 processList Struct Reference . 153
2.29 sendData::progressRange Struct Reference . 154
2.30 propertyEventHandler Class Reference . 154
2.31 Screen Struct Reference . 158
2.32 sendData Class Reference . 159
2.33 SettingDialog Class Reference . 173
2.34 Syslog1 Class Reference . 183

CONTENTS ii

2.35 sysResources Struct Reference . 192
2.36 sendData::Thread Struct Reference . 192
2.37 UIAutomation Class Reference . 193

Index 195

Generated with Doxygen on May 15, 2013

1 Module Documentation 1

1 Module Documentation

1.1 List of all classes

All classes.

Classes

• class AboutDialog
Sets the text and gets the version number from the registry.

• class Cbelt_mainApp
Class that defines the application starting point, does not show a UI.

• class Cbelt_mainDlg
Main dialog window that is displayed to the user.

• class checkUpdate
Class that checks if a new update is available.

• class Events
Retrieves UI properties that we send to the server.

• class eventHandler
Responsible for registering for events and receiving these events.

• class filterSettings
Handles all the user settings for filtering data to screen.

• class focusEventHandler
Handles focus change events.

• class formatData
Retrieves the real time that an event happened at and gives it as a readable string.

• class handleData
In charge of writing all the data to the server, also does some filtering.

• class Keylogger
Collect and organizes keyboard events before they are written to disk.

• class HWMonitor
Class for monitoring Hardware usage.

• class Mouse
Collect and organizes mouse events before they are written to disk.

• class propertyEventHandler
Class that deals with all Property change events.

• class sendData
Dialog that handles everything when user wants to send local file to server.

• class SettingDialog
A class for setting certain config settings of BeLT.

• class Syslog1
Handles all the connection to the server.

• class CTrayNot
A class for creating/maintaining the system tray icon.

• class UIAutomation
Handles the creation and destruction of all the UI Automation elements.

• class myWinEvent
Implements MSAA functionality.

1.1.1 Detailed Description

All classes.

Generated with Doxygen on May 15, 2013

1.2 Global variables 2

1.2 Global variables

All the global variables used throughout the program.

Variables

• sendData ⇤ senddata
Dialog to send previously stored file to server.

• SettingDialog ⇤ settingDlg
creates the setting dialog object to be interacted with

• Keylogger ⇤ keylogger
Responsible for dealing with all keybaord input.

• Mouse ⇤ mouselogger
Responsible for dealing with all the mouse events.

• handleData ⇤ Handledata
Is the place where all events are sent, does some filtering and send it to the server.

• UIAutomation ⇤ MyUiautomation
Handles all Software events.

• Events ⇤ Gevents
Common functions for software events.

• myWinEvent ⇤ winevents
Handles MSAA events.

• HWMonitor ⇤ HW
Handles average system usage (CPU and memory)

• HHOOK keyhook
Handle to our keyboard hook.

• HHOOK mousehook
Handle to our mouse hook.

• Screen screens [MAX_SCREENS]
All the screens we have seen.

• int numScreens = 0
How many screens we have seen so far.

• const int MAX_SCREENS = 20
Max number of screens we can hold.

1.2.1 Detailed Description

All the global variables used throughout the program.

Generated with Doxygen on May 15, 2013

1.3 Misc Global Functions 3

1.3 Misc Global Functions

Function for listening for keyboard events.

Functions

• __declspec (dllexport) LRESULT CALLBACK keyEvent(int code
Callback function that is called anytime a key event occur.

• BOOL CALLBACK MyInfoEnumProc (HMONITOR hMonitor, HDC hdcMonitor, LPRECT lprc-
Monitor, LPARAM dwData)

Callback function to enumerate all available monitors.

1.3.1 Detailed Description

Function for listening for keyboard events.

1. Author Robin Stenvi Function for listening for
mouse events

Robin Stenvi

Miscellaneous global functions

1.3.2 Function Documentation

1.3.2.1 declspec (dllexport)

Callback function that is called anytime a key event occur.

Callback function that is called anytime a mouse event occur.

1. Author Robin Stenvi

Parameters
in code Hook code (Supplied by Windows)
in wParam Metadata about the event (Supplied by Windows)
in lParam KBDLLHOOKSTRUCT⇤ (Supplied by Windows)

Remarks

This should really be in a separate DLL, but we don’t have to, so we don’t do it. If you need a high
level hook, you have to have it in a separate DLL.

1. Author Robin Stenvi

Parameters
in code Hook code (Supplied by Windows)
in wParam Metadata about the event (Supplied by Windows)
in lParam MSLLHOOKSTRUCT⇤ (Supplied by Windows)

Remarks

This should really be in a separate DLL, but we don’t have to, so we don’t do it. If you need a high
level hook, you have to have it in a separate DLL.

Generated with Doxygen on May 15, 2013

1.3 Misc Global Functions 4

1.3.2.2 BOOL CALLBACK MyInfoEnumProc (HMONITOR hMonitor, HDC hdcMonitor, LPRECT lprcMonitor,
LPARAM dwData)

Callback function to enumerate all available monitors.

If we find a new monitor we will add it to the list. This function can be called at any time. If we see a
monitor we have stored before, we will ignore it.

1. Author Robin Stenvi

Parameters
in hMonitor Physical display monitor
in hdcMonitor Device context for monitor
in lprcMonitor Rectangle for the monitor
in dwData Unused application-defined data

Returns

Returns FALSE if we don’t have space for more screens, otherwise it returns TRUE.

Here is the call graph for this function:

MyInfoEnumProc
handleData::writeScreenTo

Server

Generated with Doxygen on May 15, 2013

1.4 All enumerations 5

1.4 All enumerations

All enumerations, both globally defined and private.

Enumerations

• enum Level
Describes the level of the syslog message.

• enum Facility
Describes the facility level of the syslog message.

• enum ERRORS
Enum to describe if something went wrong when trying to update.

• enum unionType
Enum to see wchich union is used in eventInfoUnion.

1.4.1 Detailed Description

All enumerations, both globally defined and private.

1.4.2 Enumeration Type Documentation

1.4.2.1 enum Level

Describes the level of the syslog message.

Can be used to set a priority level, we set all messages to be information

1.4.2.2 enum Facility

Describes the facility level of the syslog message.

Can be used to increase priority level, we set all messages to be Local0

1.4.2.3 enum ERRORS

Enum to describe if something went wrong when trying to update.

The calling function should use this to indicate what went wrong and maybe take action, some will
indicate server error while other indicate that the user aborted, while other again might indicate that
something is wrong in the code.

Generated with Doxygen on May 15, 2013

1.5 Default Error Strings 6

1.5 Default Error Strings

Some standards for error messages that are sent as messages.

Macros

• #define ErrorTime (std::string)"1970-01-01T00:00:00.0000Z"
Timestamp that can be used in a syslog message.

• #define ErrorClock (std::string)"00:00:00"
Just the time without the date, not valid in syslog message.

• #define ErrorDate (std::string)"1970-01-01 00:00:00"
Date and time used as filename.

• #define ErrorSD (std::string)""
Structured data can be empty, server will still print an error message in their file.

• #define ErrorCsv (std::string)"error\n"
Defines the entire CSV line, only contains one element, but is valid CSV.

• #define ErrorCsvRectangle (std::string)"-1,-1,-1,-1"
Used as empty rectangle, or error when creating the string, used in CSV files.

• #define ErrorFormatRectangle (std::string)"bottY=\"-1\" topY=\"-1\" leftX=\"-1\" rightX=\"-1\""
Empty Rectangle or error when creating rectangle, used in syslog string.

• #define ErrorServer (std::string)"<134>1 1970-01-01T00:00:00.0000Z error error error 0_0\n"
Entire syslog message, in a valid format.

• #define ErrorMouseSent (std::string)"Unknown mouse event"
Error message for descriptive mouse sentence to the user.

• #define ErrorKeySent (std::string)"Unknown key event"
Error message for descriptive key event sentence to the user.

• #define replaceInvalid ’X’
What we replace invalid characters with, in the Syslog protocol.

• #define UnknownElem "|unknown|"
Whenever we fail to retreive information about a software element.

• #define TooLongElem (std::string)"|Too long|"
Whenever the text in an element is longer than some value.

• #define EmptyElem (std::string)"|empty|"
If the text we are trying to retrieve is empty.

1.5.1 Detailed Description

Some standards for error messages that are sent as messages. These messages should be safe to
send in a syslog message or printed in a CSV file.

Generated with Doxygen on May 15, 2013

1.6 Current server status at the client 7

1.6 Current server status at the client

This defines the current status, regarding the connection with the server.

Macros

• #define SERVER_STOPPED 0
Server does NOT have an active connection with the server.

• #define SERVER_PAUSED 1
Connection with server is paused, underlying connection is there.

• #define SERVER_RUNNING 2
We have an active connection with the server.

1.6.1 Detailed Description

This defines the current status, regarding the connection with the server. These are all the possible
states and it can only be one of them.

Generated with Doxygen on May 15, 2013

1.7 Current mode of storage 8

1.7 Current mode of storage

This defines the current status, regarding how logs are stored, only one of the modes is possible.

Macros

• #define STORAGE_SERVER 1
We are sending concurrently to the server.

• #define STORAGE_LOCAL 2
We store in local raw files before sending to the server.

• #define STORAGE_CSV 3
We only store CSV files.

1.7.1 Detailed Description

This defines the current status, regarding how logs are stored, only one of the modes is possible.

Generated with Doxygen on May 15, 2013

1.8 Constants for success or failure messages 9

1.8 Constants for success or failure messages

Constants to define messages of success or fail, so the GUI know what has happened.

Macros

• #define SSLFAIL 1
We have failed to initialize SSL/TLS.

• #define SSLSUCCESS 2
We have succeeded to initialize SSL/TLS.

• #define SSLSUCCESSPAUSE 3
We have successfully paused SSL/TLS.

1.8.1 Detailed Description

Constants to define messages of success or fail, so the GUI know what has happened.

Generated with Doxygen on May 15, 2013

1.9 Which log event occurred 10

1.9 Which log event occurred

Defines to define what type of event has happened, each uses one bit, because they are power of two.

Macros

• #define UIEVENT 1
Software event.

• #define KEYEVENT 2
All key events.

• #define MOUSEEVENT 4
All mouse events.

• #define KEYUP 8
Only key released.

• #define KEYDOWN 16
Only key pressed.

• #define MOUSEMOVE 32
All mouse movements.

• #define MOUSEPRESS 64
All mouse up and down buttons.

• #define MOUSEWHEEL 128
Any mouse wheel action.

• #define MOUSEUP 256
All mouse buttons released.

• #define MOUSEDOWN 512
All mouse buttons pressed.

• #define MOUSELEFT 1024
Pressed and released for left mouse button.

• #define MOUSERIGHT 2048
Pressed and released for right mouse button.

• #define MOUSEMIDDLE 4096
Pressed and released for middle mouse button.

• #define MOUSEWHEEL2 8192
Mouse wheel button.

• #define MOUSEMAX 8192
Defines the max bit for mouse events.

1.9.1 Detailed Description

Defines to define what type of event has happened, each uses one bit, because they are power of two.

Generated with Doxygen on May 15, 2013

1.10 Events from user 11

1.10 Events from user

Used to determine the event that happened in handleData.

Macros

• #define LISTENER_START 1
Start new session.

• #define LISTENER_STOP 2
Stop current session.

• #define LISTENER_PAUSE 3
Pause connection.

• #define LISTENER_RESUME 4
Resume from paused state.

1.10.1 Detailed Description

Used to determine the event that happened in handleData.

Generated with Doxygen on May 15, 2013

1.11 Messages used throughout the application 12

1.11 Messages used throughout the application

Our own defined message variables.

Macros

• #define WM_PRINTEVENT (WM_USER + 850)
Event that should be printed to screen.

• #define WM_NOTIFY_PAUSE (WM_USER + 900)
The user has pressed shortcut for pause.

• #define WM_NOTIFY_FAIL (WM_USER + 950)
Something has failed.

• #define WM_NOTIFY_SUCCESS (WM_USER + 951)
Something has succeeded.

• #define WM_KEYSTROKE_MESSAGE (WM_USER + 970)
Not used.

• #define WM_KEYSTROKE_SHUTDOWN_MESSAGE (WM_USER + 971)
Not used.

• #define WM_MOUSE_MESSAGE (WM_USER + 972)
Not used.

• #define WM_MOUSE_SHUTDOWN_MESSAGE (WM_USER + 973)
Not used.

1.11.1 Detailed Description

Our own defined message variables.

Generated with Doxygen on May 15, 2013

1.12 Different colors used. 13

1.12 Different colors used.

Different colors used throughout the program.

Macros

• #define COLOR_BLACK RGB(0,0,0)
Used to print information messages, like start/stop.

• #define COLOR_GREEN RGB(0,255,0)
Used to print success messages.

• #define COLOR_DGREEN RGB(0,128,0)
Keyboard messages.

• #define COLOR_BLUE RGB(0,0,255)
Used to print mouse messages.

• #define COLOR_RED RGB(255,0,0)
Used to print failed messages.

1.12.1 Detailed Description

Different colors used throughout the program.

Generated with Doxygen on May 15, 2013

1.13 Bif flags for active system keys 14

1.13 Bif flags for active system keys

Bit-flags to determine function keys on the keyboard, gives context to key pressed.

Macros

• #define MYALT_PRESSED 1
Left or right alt key.

• #define MYCTRL_PRESSED 2
Left or right ctrl.

• #define MYSHIFT_PRESSED 4
Left or right shift.

• #define MYWINDOWS_PRESSED 8
Left or right Windows key.

• #define CAPS_LOCK_ACTIVE 16
Caps lock is active, not necessarily pressed.

• #define NUM_LOCK_ACTIVE 32
Num lock is active, not necessarily pressed.

• #define SCROLL_LOCK_ACTIVE 64
Scroll lock is active, not necessarily pressed.

1.13.1 Detailed Description

Bit-flags to determine function keys on the keyboard, gives context to key pressed. Several can be set

Generated with Doxygen on May 15, 2013

1.14 Each field in the update file 15

1.14 Each field in the update file

Defines the order of the field in the update configuration and the number of min fields.

Macros

• #define UPDATE_IP 0
IP or URL to server for update files.

• #define UPDATE_PORT 1
The port we should use for update (http)

• #define UPDATE_PORT_TLS 2
The port we should use for TLS communication.

• #define UPDATE_PATH 3
The path at the server for update configuration file.

• #define VERSION_NUM 4
Newest version number.

• #define PATCH_LIST_PATH 5
Full path at the server to file of patch list.

• #define LOG_IP 6
IP or URL to logging server.

• #define LOG_PORT 7
The port we should send to when logging.

• #define MIN_UPDATE_CONFIG 7
The minimum number of fields we need for this to be a valid config file.

1.14.1 Detailed Description

Defines the order of the field in the update configuration and the number of min fields.

Generated with Doxygen on May 15, 2013

1.15 Each field in the list of patches 16

1.15 Each field in the list of patches

Defines the order of the field in the patch list and the number of fields.

Macros

• #define DEP_VERSION 0
Version number needed to use this patch.

• #define PLATFORM_32 1
Patch for 32-bit architecture.

• #define PLATFORM_64 2
Patch for 64-bit architecture.

• #define MIN_PATCH_LIST 3
The minimum number of fields we need for this to be a valid config file.

1.15.1 Detailed Description

Defines the order of the field in the patch list and the number of fields.

Generated with Doxygen on May 15, 2013

1.16 Diferent software events 17

1.16 Diferent software events

List of flags for UI events we gather, used for faster processing later on when we filter the data.

Macros

• #define FC 1
Focus change.

• #define OCS 2
Object change state.

• #define VC 3
Visual change.

• #define WO 4
Window opened.

• #define EI 5
Element invoked.

• #define MO 6
Menu opened.

• #define TC 7
Text changed.

• #define MMS 8
Menu mode started.

1.16.1 Detailed Description

List of flags for UI events we gather, used for faster processing later on when we filter the data.

Generated with Doxygen on May 15, 2013

1.17 Different colors for icons 18

1.17 Different colors for icons

All the possible colors for the icon.

Macros

• #define RED_ICON 0
Red icon used, when logging has stopped.

• #define GREEN_ICON 1
Green icon used, when logging has started.

• #define BLUE_ICON 2
Blue icon used, when logging has paused.

• #define YELLOW_ICON 3
Yellow icon used, when we have detected a password field.

1.17.1 Detailed Description

All the possible colors for the icon.

Generated with Doxygen on May 15, 2013

1.18 All the global / private structs 19

1.18 All the global / private structs

All the global and private structs that are used throughout the program.

Classes

• struct sysResources
Contains information about system resources in use by the system, all values should be in percentage.

• struct deviceInfo
Information about a storage device, only a timestamp and a value that says whether it was inserted or
removed.

• struct HIDDevice
Information about an input device.

• struct KeyboardDevice
Contains information about a keyboard device.

• struct eventInfoUnion
Contains the information we store about each UI event.

• struct processList
A list of processes so we can retrieve that information faster.

• struct Blacklist
Whenever we see a value we are unable to retrive we can use this to maybe save some time.

• struct Screen
Information about a physical screen.

• struct KeyInfo
All variable info we need to write about a key event.

• struct MouseInfo
All variable info we need to write about a mouse event.

• struct handleData::lastAll
Holds all the previous events, is used to find which events correlate to other events.

• struct keyType
Struct to hold the number of key down we recive for some key.

1.18.1 Detailed Description

All the global and private structs that are used throughout the program.

Generated with Doxygen on May 15, 2013

1.19 All the key possible key variations 20

1.19 All the key possible key variations

These are all the possible key values that can be printed, except for those ASCII values that doesn’t
contain whitespace.

Macros

• #define KEYBOARDBACK "|backspace|"
Backspace.

• #define KEYBOARDSPACE "|space|"
Spacebar.

• #define KEYBOARDSPACE "|space|"
Spacebar.

• #define KEYBOARDTAB "|tab|"
Tab.

• #define KEYBOARDCLEAR "|clear|"
Clear or form feed.

• #define KEYBOARDENTER "|enter|"
Enter.

• #define KEYBOARDSHIFT "|shift|"
Any shift, usually they are left or right.

• #define KEYBOARDCTRL "|ctrl|"
Any control key, usually they are right or left.

• #define KEYBOARDALT "|alt|"
Any alt key, usually they are right or left.

• #define KEYBOARDPAUSE "|pause|"
Pause key.

• #define KEYBOARDCAPSLOCK "|capsLock|"
Caps lock key.

• #define KEYBOARDESC "|esc|"
Escape.

• #define KEYBOARDPGUP "|PgUp|"
Page up.

• #define KEYBOARDPGDOWN "|PgDn|"
Page Down.

• #define KEYBOARDEND "|end|"
End.

• #define KEYBOARDHOME "|home|"
Home.

• #define KEYBOARDLEFT "|left|"
Left arrow.

• #define KEYBOARDUP "|up|"
Up arrow.

• #define KEYBOARDRIGHT "|right|"
Right arrow.

• #define KEYBOARDDOWN "|down|"
Down arrow.

• #define KEYBOARDSELECT "|select|"
Select key.

• #define KEYBOARDPRINT "|print|"
Print key, don’t think they exist today.

Generated with Doxygen on May 15, 2013

1.19 All the key possible key variations 21

• #define KEYBOARDEXEC "|exec|"
Execute, don’t think they exist today.

• #define KEYBOARDPRTSC "|PrtSc|"
Print screen.

• #define KEYBOARDINSERT "|insert|"
Insert key.

• #define KEYBOARDDEL "|del|"
Delete.

• #define KEYBOARDHELP "|help|"
Help key.

• #define KEYBOARDLWINDOWS "|LWindows|"
Left Windows.

• #define KEYBOARDRWINDOWS "|RWindows|"
Right Windows.

• #define KEYBOARDAPPKEY "|appKey|"
Application key on some Microsoft keyboard.

• #define KEYBOARDSLEEP "|sleep|"
Computer sleep key.

• #define KEYBOARDNX "NX"
Numbers for num-pad, X is a value between 0 and 9, I don’t think we usually recieve these events, they
just come in as 0-9.

• #define KEYBOARDNTIMES "N⇤"
⇤ on the num-pad (I think)

• #define KEYBOARDNPLUSS "N+"
+ on the num-pad (I think)

• #define KEYBOARDNDECIMAL "N,"
, on the num-pad (I think)

• #define KEYBOARDNSUBTRACT "N-"
– on the num-pad (I think)

• #define KEYBOARDNPERIOD "N."
Period on the num-pad (I think)

• #define KEYBOARDNDIVIDE "N/"
/ on the num-pad (I think)

• #define KEYBOARDFKEY "FX"
All the F keys, X is replaced with a number from 1 to 24.

• #define KEYBOARDNUMLOCK "|NumLK|"
Num lock.

• #define KEYBOARDSCROLLOCK "|ScrLK|"
Scroll lock.

• #define KEYBOARDLSHIFT "|Lshift|"
Left shift.

• #define KEYBOARDRSHIFT "|Rshift|"
Right shift.

• #define KEYBOARDLCTRL "|Lctrl|"
Left control.

• #define KEYBOARDRCTRL "|Rctrl|"
Right control.

• #define KEYBOARDLALT "|Lalt|"
Left alt.

• #define KEYBOARDRALT "|Ralt|"
Right alt.

Generated with Doxygen on May 15, 2013

1.19 All the key possible key variations 22

• #define KEYBOARDBROWSERBACK "|Bback|"
Browser back (special hardware)

• #define KEYBOARDBROWSERFORWARD "|Bforward|"
Browser forward (special hardware)

• #define KEYBOARDBROWSERREFRESH "|Brefresh|"
Browser refresh (special hardware)

• #define KEYBOARDBROWSERSTOP "|Bstop|"
Browser stop (special hardware)

• #define KEYBOARDBROWSERSEARCH "|Bsearch|"
Browser search (special hardware)

• #define KEYBOARDBROWSERFAVORITES "|Bfavorites|"
Browser favorites (special hardware)

• #define KEYBOARDBROWSERHOME "|Bhome|"
Browser home (special hardware)

• #define KEYBOARDVMUTE "|Vmute|"
Volume mute (special hardware)

• #define KEYBOARDVDOWN "|Vdown|"
Volume down (special hardware)

• #define KEYBOARDVUP "|Vup|"
Volume up (special hardware)

• #define KEYBOARDMNEXT "|Mnext|"
Multimedia next (special hardware)

• #define KEYBOARDMPREV "|Mprev|"
Multimedia previous (special hardware)

• #define KEYBOARDMSTOP "|Mstop|"
Multimedia stop (special hardware)

• #define KEYBOARDMPAUSE "|Mpause|"
Multimedia pause / play (special hardware)

• #define KEYBOARDLMAIL "|Lmail|"
Launch mail (special hardware)

• #define KEYBOARDLSELECT "|Lselect|"
Launch media select (special hardware)

• #define KEYBOARDLAPP1 "|Lapp1|"
Launch application 1 (special hardware)

• #define KEYBOARDLAPP2 "|Lapp2|"
Launch application 2 (special hardware)

• #define KEYBOARDOEM1 "|OEM1|"
Vary by region (should not happen)

• #define KEYBOARDOEM2 "|OEM2|"
Vary by region (should not happen)

• #define KEYBOARDOEM3 "|OEM3|"
Vary by region (should not happen)

• #define KEYBOARDOEM4 "|OEM4|"
Vary by region (should not happen)

• #define KEYBOARDOEM5 "|OEM5|"
Vary by region (should not happen)

• #define KEYBOARDOEM6 "|OEM6|"
Vary by region (should not happen)

• #define KEYBOARDOEM7 "|OEM7|"
Vary by region (should not happen)

• #define KEYBOARDOEM8 "|OEM8|"

Generated with Doxygen on May 15, 2013

1.19 All the key possible key variations 23

Vary by region (should not happen)
• #define KEYBOARDOEM102 "|OEM102|"

Vary by region (should not happen)
• #define KEYBOARDUNICODE "|unicode|"

Used to pass unicode characters, don’t think this can happen from keyboard.
• #define KEYBOARDATTN "|attn|"

Attention key (older keyboards)
• #define KEYBOARDCRSEL "|crsel|"

Not sure what it does, but from the past.
• #define KEYBOARDEXSEL "|exsel|"

Not sure what it does, but from the past.
• #define KEYBOARDEROF "|erof|"

Erase end-of-file.
• #define KEYBOARDPLAY "|play|"

Play key.
• #define KEYBOARDZOOM "|zoom|"

Zoom key.
• #define KEYBOARDPA1 "|pa1|"

Attention key.
• #define KEYBOARDCLEAR2 "|clear2|"

Think it’s the same as the first clear.
• #define KEYBOARDPASSWORD "|⇤|"

What is used when we discover a password field.
• #define KEYBOARDUNKNOWN "|unknown|";

What we use if we don’t manage to find the correct key.

1.19.1 Detailed Description

These are all the possible key values that can be printed, except for those ASCII values that doesn’t
contain whitespace. For a full list of all possible key-codes, see http://msdn.microsoft.-

com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx

1.19.2 Macro Definition Documentation

1.19.2.1 #define KEYBOARDNX ”NX”

Numbers for num-pad, X is a value between 0 and 9, I don’t think we usually recieve these events, they
just come in as 0-9.

1.19.2.2 #define KEYBOARDFKEY ”FX”

All the F keys, X is replaced with a number from 1 to 24.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 24

1.20 Global function for string manipulation

Global functions for manipulating strings, both conversions and change / find of the string.

Functions

• std::string replaceLetter (std::string &data, const char ⇤from, const char ⇤to)
Replaces all character sequences in a string with another character sequence.

• bool intToString (int value, std::string &str)
Converts an integer to std::string.

• bool dwordToString (DWORD value, std::string &str)
Converts an unsigned integer to std::string.

• void cstringToString (CString s, std::string &str)
Convert a CString to std::string.

• bool bstrToString (const wchar_t ⇤pstr, long wslen, std::string &str)
Converts a bstr to std::string.

• void fromBstrToCstring (BSTR s, CString &str)
Converts BSTR to CString.

• template<class T >

std::string valueToString (T value, std::string &str)
Takes any value and formats it as std::string.

• bool myAtoi (const std::string str, int &value)
atoi function that checks if all the characters are numbers

• std::string getBetweenChar (const std::string data, const char from, const char to)
Returns the string between two characters.

• void escapeLetter (std::string &data, const char ⇤from, const char ⇤to)
Escape a string or a single letter in a std::string.

• std::vector< std::wstring > explode (const std::wstring &str, const wchar_t &ch)
Takes in an std::wstring and returns a vector where "ch" is the delimiter.

• std::vector< std::string > explode (const std::string &str, const char &ch)
Takes in an std::string and returns a vector where "ch" is the delimiter.

• std::wstring getBetweenWChar (const std::wstring data, const wchar_t from, const wchar_t to, bool
last=false)

Retrieves the all the characters between two characters, excluding those characters.
• SYSTEMTIME getTimeFromString (std::wstring str, const wchar_t dateSep= ’-’, const wchar_-

t sep= ’ ’, const wchar_t timeSep= ’-’)
Converts a string to a SYSTEMTIME structure.

• std::wstring s2ws (const std::string &s)
Converts std::string to std::wstring.

• std::string ws2s (const std::wstring &s)
Converts std::wstring to std::string.

• int getProfileInfoInt (bool user, std::wstring section, std::wstring key)
Wrapper to getProfileInfo that you can use if you need to retrieve an integer.

• DWORD writeProfileInfoInt (bool user, std::wstring section, std::wstring key, int data)
Wrapper to writeProfileInfo that you can use if you need to write an integer.

• std::wstring getProfileInfo (bool user, std::wstring section, std::wstring key)
Returns a variable in one of the applications program files.

• DWORD writeProfileInfo (bool user, std::wstring section, std::wstring key, std::wstring data)
Writes a string in one of the applications program files.

• std::string generateRandomString (std::string alphabet, int length)
Generates a random string.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 25

• bool openFile (GUID dir, std::wstring dir2, std::wstring name, CStdioFile &file, std::wstring &out-
Name, UINT permissions=CFile::modeCreate|CFile::modeWrite|CFile::modeRead)

Opens a file in a given Windows directory.
• std::string printUSASCII (std::string &str)

Make sures that the string is validated, in USASCII, according the the Syslog protocol.
• std::string base64Encode (std::vector< BYTE > inputBuffer)

Converts a string to base 64, without padding.

1.20.1 Detailed Description

Global functions for manipulating strings, both conversions and change / find of the string.

1.20.2 Function Documentation

1.20.2.1 std::string replaceLetter (std::string & data, const char ⇤ from, const char ⇤ to)

Replaces all character sequences in a string with another character sequence.

1. Author Robin Stenvi

Parameters
in,out data The string that should be modified, is modified

in from The sequence that should be explained
in to What from should be replaced with

Returns

Returns the modified string

1.20.2.2 bool intToString (int value, std::string & str)

Converts an integer to std::string.

1. Author Robin Stenvi

Parameters
in value The int that should be converted
out str The string that is returned

Returns

Returns true if we succeed, or false if we fail.

1.20.2.3 bool dwordToString (DWORD value, std::string & str)

Converts an unsigned integer to std::string.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 26

Parameters
in value The unsigned int that should be converted
out str The string that is returned

Returns

Returns true if we succeed, or false if we fail.

1.20.2.4 void cstringToString (CString s, std::string & str)

Convert a CString to std::string.

1. Author Robin Stenvi

Parameters
in s The string that should be converted
out str s converted to std::string

1.20.2.5 bool bstrToString (const wchar t ⇤ pstr, long wslen, std::string & str)

Converts a bstr to std::string.

1. Author Robin Stenvi

Parameters
in pstr The string that should be converted
in wslen The length of the previous array, in characters, alternatively it can be -1

if pstr is NULL-terminated.
out str The output string

Returns

Returns false if we fail or true if we succeed

1.20.2.6 void fromBstrToCstring (BSTR s, CString & str)

Converts BSTR to CString.

1. Author Robin Stenvi

Parameters
in s The string that should be converted
out str The string that is returned

1.20.2.7 template<class T > std::string valueToString (T value, std::string & str)

Takes any value and formats it as std::string.

For a list of supported values see here: http://www.cplusplus.com/reference/ostream/ostream/operator%3-
C%3C/ It does no error checking, so it is up to the caller to check if it was successful. It is very inefficient
so should be avoided when possible. Need to be defined in the header file because it’s a template

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 27

function.

Parameters
in value The value that should be converted.
out str The string that contains the output when we are finished.

Returns

Returns the same as str.

1. Author Robin Stenvi

1.20.2.8 bool myAtoi (const std::string str, int & value)

atoi function that checks if all the characters are numbers

1. Author Robin Stenvi

Parameters
in str The string that should be a number
out value The int, it contains the same as atoi if the return value is false

Returns

Returns false if the string is not a valid number, true if it is.

Remarks

Does not take into account integer overflow

1.20.2.9 std::string getBetweenChar (const std::string data, const char from, const char to)

Returns the string between two characters.

1. Author Robin Stenvi

Parameters
in data The whole string
in from The forst character we are looking for
in to The second character we are looking for

Returns

Returns a string from the character after from and before to

1.20.2.10 void escapeLetter (std::string & data, const char ⇤ from, const char ⇤ to)

Escape a string or a single letter in a std::string.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 28

1. Author Robin Stenvi

Parameters
in,out data The string that should be escaped, is updated.

in from The value to escape
in to What to escape the value with

Returns

The new std::string with escaped characters, this contains the same as data.

1.20.2.11 std::vector<std::wstring> explode (const std::wstring & str, const wchar t & ch)

Takes in an std::wstring and returns a vector where "ch" is the delimiter.

1. Author Robin Stenvi

Parameters
in str The string we want to split.
in ch The delimiter

Returns

A vector that contains all the values.

1.20.2.12 std::vector<std::string> explode (const std::string & str, const char & ch)

Takes in an std::string and returns a vector where "ch" is the delimiter.

1. Author Robin Stenvi

Parameters
in str The string that should be exploded
in ch The delimiter

Returns

Returns a vector with each string

1.20.2.13 std::wstring getBetweenWChar (const std::wstring data, const wchar t from, const wchar t to, bool
last)

Retrieves the all the characters between two characters, excluding those characters.

1. Author Robin Stenvi

Parameters
in data The whole string
in from The character we are going to start at
in to The character we are going to stop at
in last If true, we will look for the last occurence of to and from

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 29

Returns

Returns an std::wstring with all the characters, returns empty string if we fail

1.20.2.14 SYSTEMTIME getTimeFromString (std::wstring str, const wchar t dateSep, const wchar t sep, const
wchar t timeSep)

Converts a string to a SYSTEMTIME structure.

1. Author Robin Stenvi

Parameters
in str The string containing the date and time
in dateSep The character that separates the data numbers
in sep The character that separates the date and the time
in timeSep The character that seperates each time value

Returns

A SYSTEMTIME structure representing the time, the string represent. Returns all 0’s on failure.

Here is the call graph for this function:

getTimeFromString explode

1.20.2.15 std::wstring s2ws (const std::string & s)

Converts std::string to std::wstring.

1. Author Robin Stenvi

Parameters
in s The string that should be converted

Returns

A std::wstring converted, is empty if we fail

1.20.2.16 std::string ws2s (const std::wstring & s)

Converts std::wstring to std::string.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 30

1. Author Robin Stenvi

Parameters
in s The string that should be converted

Returns

A std::string converted

1.20.2.17 int getProfileInfoInt (bool user, std::wstring section, std::wstring key)

Wrapper to getProfileInfo that you can use if you need to retrieve an integer.

1. Author Robin Stenvi

Parameters
in user Says whether we need to get data from the user file or global file
in section Which section we are going to look in
in key What the key name is

Returns

Returns the variable or -1 on failure.

Remarks

Checks if the variable is a proper integer, if not it will return -1.

Here is the call graph for this function:

getProfileInfoInt

getProfileInfo

myAtoi

ws2s

1.20.2.18 DWORD writeProfileInfoInt (bool user, std::wstring section, std::wstring key, int data)

Wrapper to writeProfileInfo that you can use if you need to write an integer.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 31

1. Author Robin Stenvi

Parameters
in user Says whether we need to get data from the user file or global file
in section Which section we are going to look in
in key What the key name is
in data The integer that should be written

Returns

Returns 0 on success, otherwise -1 or GetLastError().

Here is the call graph for this function:

writeProfileInfoInt

intToString

writeProfileInfo

s2ws

1.20.2.19 std::wstring getProfileInfo (bool user, std::wstring section, std::wstring key)

Returns a variable in one of the applications program files.

1. Author Robin Stenvi

Parameters
in user Says whether we need to get data from the user file or global file
in section Which section we are going to look in
in key What the key name is

Returns

Returns the variable or L"" on failure.

Remarks

If the string is longer than MAX_PATH⇤20 it will return an empty string.

1.20.2.20 DWORD writeProfileInfo (bool user, std::wstring section, std::wstring key, std::wstring data)

Writes a string in one of the applications program files.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 32

1. Author Robin Stenvi

Parameters
in user Says whether we need to write the data to the user file or global file
in section Which section we are going to write in
in key What the key name is
in data What we are going to write

Returns

Returns 0 on success, otherwise -1 or GetLastError().

Remarks

Will now fail on system file, because we don’t have privileges.

1.20.2.21 std::string generateRandomString (std::string alphabet, int length)

Generates a random string.

1. Author Robin Stenvi

Parameters
in alphabet Which character set for our random string
in length The length of the random string

Returns

Returns the random string that was generated

Remarks

srand() must have been called before this function.

1.20.2.22 bool openFile (GUID dir, std::wstring dir2, std::wstring name, CStdioFile & file, std::wstring &
outName, UINT permissions)

Opens a file in a given Windows directory.

1. Author Robin Stenvi

Parameters
in dir The constant referring to a Windows path, using the function SHGet-

KnownFolderPath()
in dir2 Any subdirectory that comes after dir, could be empty, should not have

"\" at the end
in name The name of the file.
out file The CFile object that is opened.
out outName The full path to the file that has been opened.
in permissions The permissions for the file, default is CFile::modeCreate | CFile::mode-

Write | CFile::modeRead.

Generated with Doxygen on May 15, 2013

1.20 Global function for string manipulation 33

Returns

Returns true if we succeed, false if we fail.

1.20.2.23 std::string printUSASCII (std::string & str)

Make sures that the string is validated, in USASCII, according the the Syslog protocol.

This characterset is used for hostname, app-name, process id, msg id, SD-ID. This does not handle
size, it should be handled when they are created. If we see a character that don’t fit we replace it with
replaceInvalid.

1. Author Robin Stenvi

Parameters
in,out str The string that should abide by the following rule.

Returns

Returns the new string

1.20.2.24 std::string base64Encode (std::vector< BYTE > inputBuffer)

Converts a string to base 64, without padding.

The algorithm and code is gathered from http://en.wikibooks.org/wiki/Algorithm_-

Implementation/Miscellaneous/Base64. Has been modified slightly to suit our purposes,
most notable is to remove the padding. We also changed the ’/’ character to -, so it’s safe as a filename.

1. Author Robin Stenvi

Parameters
in inputBuffer The byte string that should be converted.

Returns

Returns the base64 string.

Generated with Doxygen on May 15, 2013

2.1 AboutDialog Class Reference 34

2 Class Documentation

2.1 AboutDialog Class Reference

Sets the text and gets the version number from the registry.

Public Member Functions

• AboutDialog (CWnd ⇤pParent=NULL)
Constructor for the dialog.

• virtual ⇠AboutDialog ()
Destructor for the dialog.

• virtual INT_PTR DoModal ()
Makes the dialog modal.

Protected Member Functions

• virtual void DoDataExchange (CDataExchange ⇤pDX)
Initates data exchange for elements.

Private Attributes

• std::wstring text
string for holding the string temporary

• CEdit outText
texfield for outputting text

2.1.1 Detailed Description

Sets the text and gets the version number from the registry.

This class creates, maintains and deletes the about BeLT dialog created when the user clicks the About
BeLT button in the main window. It prints out a small text about the app and its creators before printing
the applications version number retrieved from the registry.

1. Author Magnus Øverbø - 08.03.2013

2.1.2 Constructor & Destructor Documentation

2.1.2.1 AboutDialog::AboutDialog (CWnd ⇤ pParent = NULL)

Constructor for the dialog.

1. Author Magnus Øverbø

Parameters
in pParent Sent to parent.

Generated with Doxygen on May 15, 2013

2.2 Blacklist Struct Reference 35

2.1.2.2 AboutDialog::⇠AboutDialog () [virtual]

Destructor for the dialog.

1. Author Magnus Øverbø

2.1.3 Member Function Documentation

2.1.3.1 void AboutDialog::DoDataExchange (CDataExchange ⇤ pDX) [protected], [virtual]

Initates data exchange for elements.

1. Author Magnus Øverbø

Parameters
in pDX Sent to CDialogEx::DoDataExchange()

2.1.3.2 INT PTR AboutDialog::DoModal () [virtual]

Makes the dialog modal.

1. Author Automatically generated

Returns

Returns CDialog::DoModal()

2.2 Blacklist Struct Reference

Whenever we see a value we are unable to retrive we can use this to maybe save some time.

2.2.1 Detailed Description

Whenever we see a value we are unable to retrive we can use this to maybe save some time.

Not used.

2.3 Cbelt mainApp Class Reference

Class that defines the application starting point, does not show a UI.

Public Member Functions

• Cbelt_mainApp ()
Constructor that is first called.

• virtual BOOL InitInstance ()
Cbelt_mainApp initialization.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 36

Public Attributes

• HICON m_pIconList [4]
Array containing the icons for the system tray.

2.3.1 Detailed Description

Class that defines the application starting point, does not show a UI.

1. Author Automatically Generated

2.3.2 Constructor & Destructor Documentation

2.3.2.1 Cbelt mainApp::Cbelt mainApp ()

Constructor that is first called.

It first checks if there is an available update if there is, it will update automatically. Call the application
with an argument that says "noupdate" to avoid automatic update.

1. Author Automatically Generated Robin Stenvi

2.3.3 Member Function Documentation

2.3.3.1 BOOL Cbelt mainApp::InitInstance () [virtual]

Cbelt_mainApp initialization.

1. Author Automaticaly Generated Magnus Øverbø

Returns

Always returns FALSE.

2.4 Cbelt mainDlg Class Reference

Main dialog window that is displayed to the user.

Public Member Functions

• Cbelt_mainDlg (CWnd ⇤pParent=NULL)
Cbelt_mainDlgs constructor.

• ⇠Cbelt_mainDlg ()
Destructor for Cbelt_mainDlg.

• afx_msg void OnBnClickedButtonSendData ()
Opens the transmission dialog for stored files.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 37

Protected Member Functions

• virtual void DoDataExchange (CDataExchange ⇤pDX)
Creates data exchange for elements.

• void CANCEL ()
Deletes the object in the tray and destroys the window.

• void OnGetMinMaxInfo (MINMAXINFO FAR ⇤lpMMI)
Sets the minimum size of the main window.

• virtual BOOL OnInitDialog ()
Initializes the dialog.

• void AppendLine (CString str, COLORREF color)
Append a line to the screen using the color specified, caller need to supply newline.

• void updateStat (BOOL X)
updateStat edits the mouse or keyboard counter

• void manageRawInput (HWND me)
Register for raw input messages, so we can detect different keyboards or mouses.

• void sendKeyboardInfo ()
Retrives information about the keyboard and send it to the server.

• afx_msg LRESULT printEvent (WPARAM w, LPARAM l)
Prints the string specified if the user has specified it.

• afx_msg LRESULT changePause (WPARAM w, LPARAM l)
Changes the pause state of the app.

• afx_msg void OnSysCommand (UINT nID, LPARAM lParam)
Runs the system commands.

• afx_msg void OnPaint ()
If you add a minimize button to your dialog, you will need the code below to draw the icon.

• afx_msg HCURSOR OnQueryDragIcon ()
The system calls this function to obtain the cursor to display while the user drags the minimized window.

• afx_msg LRESULT OnTrayNotify (WPARAM wParam, LPARAM lParam)
Perform actions based on interaction with the system tray icon.

• afx_msg void OnTrayRestore ()
If hidden restore the window and set it to be shown.

• afx_msg void OnHideapp ()
This function runs the OnHide, and then hides the application.

• afx_msg void OnDestroy ()
Destroys the window by deleting the object and setting it to NULL.

• afx_msg void OnAppExit ()
Upon exit from the tray icon, stop the listener and quit the application, which destroys the window.

• afx_msg void OnSize (UINT nType, int cx, int cy)
Resizing the window along with the RichEditControl field.

• afx_msg LRESULT OnQueryEndSession (WPARAM wParam, LPARAM lParam)
Responds to the OnQuerySessionEnd.

• afx_msg LRESULT OnEndSession (WPARAM wParam, LPARAM lParam)
Exits the application in response to the OnEndSession message.

• afx_msg LRESULT OnPowerState (WPARAM wParam, LPARAM lParam)
Handles when the system is suspended.

• afx_msg LRESULT OnClose (WPARAM w, LPARAM l)
Hide the application when clicking the X in the top right corner.

• afx_msg void OnSetDlg ()
Opens the settings dialog for BeLT.

• afx_msg BOOL OnDeviceChange (UINT nEventType, DWORD_PTR dwData)

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 38

See http://msdn.microsoft.com/en-us/library/windows/desktop/aa363205%28v=vs.-

85%29.aspx for more events.
• afx_msg LRESULT FAIL (WPARAM w, LPARAM l)

When something fails elsewhere in the application, this will notify the users, prints the string in red.
• afx_msg LRESULT SUCCESS (WPARAM w, LPARAM l)

Need to notify the user of something that has succeeded, will print the string in green.
• afx_msg void OnAppAbout ()

Initiates the about dialog described in the resource file.
• afx_msg LRESULT setIcon (WPARAM w, LPARAM l)

Sets the icon if a password fieldd is detected.
• afx_msg void OnRawInput (UINT nInputcode, HRAWINPUT hRawInput)

Called each time we receive raw input, which we have registered for.
• afx_msg void controlListener ()

Changes the start/pause/resume buttons functionality.
• afx_msg void stopListener ()

Stops all listeners, if they are listening, otherwise it does nothing.
• afx_msg void sendToServer ()

When something fails elsewhere in the application, this will notify the user.
• afx_msg void setFilterSettings ()

Opens the filter settings dialog.
• void startListener ()

Starts listener, if it’s not listening or is paused.
• void pauseListener ()

Pauses the listener, if we are listening, otherwise it does nothing.
• void resumeListener ()

Resumes listening after pause, if it was not paused it does nothing.

Static Protected Member Functions

• static DWORD WINAPI monitorHWUsage (void ⇤s)
Function for monitoring the hardware usage for CPU and RAM.

• static UINT startKeylog (LPVOID param)
Starts mouse and keyboard hooking, returns NULL, and unhook if one failed, 1 if we succeed.

Private Attributes

• bool listening
If we running the listener or not.

• int mouseCount
Counter for mouse click and keystrokes.

• AboutDialog ⇤ aboutDlg
Dialog that show about message.

• filterSettings ⇤ filters
Dialog that lets the user choose which events he want to see.

• UINT settings
Current setting for which events to display.

• HIDDevice hidDevices [MAX_HIDS]
An entry for each discovered device.

• int currHids
Number of devices we have seen so far.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 39

• HANDLE lastKey
The last mouse and jey we saw, used to discover changes.

• CTrayNot ⇤ m_pTray
pointer for a object in the system tray

• BOOL m_bHidden
States wether the window is hidden.

• HANDLE HWMonThread
Handles to deal with hardware monitoring thread.

• DWORD HWMonThreadId
Thread ID to deal with hardware monitoring thread.

• HANDLE keyThreadHandle
Handle to deal with keyboard thread.

• HANDLE mouseThreadHandle
Handle to deal with mouse thread.

• HICON m_hIcon
Icon for the application.

• CRichEditCtrl richEdit
Declares the richEditControl.

• CEdit ⇤ countKey
Declares the statistics fields.

• CButton ⇤ ctrlButton
Declares pointer for a button for start/pause/resume.

• CButton serverCheckBox
Button if we want to send to server.

Static Private Attributes

• static const int MAX_HIDS = 100
Max number of possible devices.

2.4.1 Detailed Description

Main dialog window that is displayed to the user.

This class handles almost everything that is displayed to the user, and initiates almost everything:

• Displaying events in a text field

• Controlling start/stop and pause/resume via buttons

• Starting and stopping connection with the server

• Initiate filter settings dialog

• Initiate about dialog

• Handle RAW input for detecting mouse HW changes

• Handle the interval for when we check HW usage

• Send information about the keyboard

• Handling the tray icon

• Recording user statistict regarding input events

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 40

1. Author Automatically generated
Magnus Øverbø

Robin Stenvi

2.4.2 Constructor & Destructor Documentation

2.4.2.1 Cbelt mainDlg::Cbelt mainDlg (CWnd ⇤ pParent = NULL)

Cbelt_mainDlgs constructor.

1. Author Automatically Generated
Robin Stenvi

Magnus Øverbø

Parameters
in pParent Sent to parent.

Here is the call graph for this function:

Cbelt_mainDlg::Cbelt
_mainDlg

filterSettings::retFilter

handleData::setFilter

2.4.2.2 Cbelt mainDlg::⇠Cbelt mainDlg ()

Destructor for Cbelt_mainDlg.

1. Author Automatically Generated
Robin Stenvi

Magnus Øverbø

2.4.3 Member Function Documentation

2.4.3.1 void Cbelt mainDlg::DoDataExchange (CDataExchange ⇤ pDX) [protected], [virtual]

Creates data exchange for elements.

1. Author Automatically Generated Robin Stenvi

Parameters
in pDX Sent to CDialogEx::DoDataExchange().

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 41

Here is the call graph for this function:

Cbelt_mainDlg::DoDataExchange

SettingDialog::retStorage

Cbelt_mainDlg::sendToServer

2.4.3.2 void Cbelt mainDlg::CANCEL () [protected]

Deletes the object in the tray and destroys the window.

1. Author Magnus Øverbø - 14.02.2013

Here is the call graph for this function:

Cbelt_mainDlg::CANCEL Cbelt_mainDlg::stopListener

2.4.3.3 DWORD WINAPI Cbelt mainDlg::monitorHWUsage (void ⇤ s) [static], [protected]

Function for monitoring the hardware usage for CPU and RAM.

1. Author Robin Stenvi

Parameters
in s Not used.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 42

Returns

Always returns 0.

Here is the call graph for this function:

Cbelt_mainDlg::monitorHWUsage

HWMonitor::getCpuLoad

HWMonitor::getMemLoad

handleData::writeHWToServer

HWMonitor::closeCpuLoad

2.4.3.4 UINT Cbelt mainDlg::startKeylog (LPVOID param) [static], [protected]

Starts mouse and keyboard hooking, returns NULL, and unhook if one failed, 1 if we succeed.

1. Author Robin Stenvi

Parameters
in param Unused.

Returns

Returns 0 if we faile, 1 if we succeed.

2.4.3.5 void Cbelt mainDlg::OnGetMinMaxInfo (MINMAXINFO FAR ⇤ lpMMI) [protected]

Sets the minimum size of the main window.

1. Author Robin Stenvi

2.4.3.6 BOOL Cbelt mainDlg::OnInitDialog () [protected], [virtual]

Initializes the dialog.

1. Author Automatically Generated
Robin Stenvi

Magnus Øverbø

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 43

Returns

Always returns TRUE.

Here is the call graph for this function:

Cbelt_mainDlg::OnInitDialog Cbelt_mainDlg::controlListener

2.4.3.7 void Cbelt mainDlg::AppendLine (CString str, COLORREF color) [protected]

Append a line to the screen using the color specified, caller need to supply newline.

1. Author Robin Stenvi

Parameters
in str The string that should be printed, should end in

in color Specified with RGB(x,y,z)

2.4.3.8 void Cbelt mainDlg::updateStat (BOOL X) [protected]

updateStat edits the mouse or keyboard counter

1. Author Magnus Øverbø

Parameters
in X States which of the fields to update

2.4.3.9 void Cbelt mainDlg::manageRawInput (HWND me) [protected]

Register for raw input messages, so we can detect different keyboards or mouses.

1. Author Robin Stenvi

Parameters
in me HWND to the main dialog window.

2.4.3.10 void Cbelt mainDlg::sendKeyboardInfo () [protected]

Retrives information about the keyboard and send it to the server.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724336(v=vs.85).-

aspx http://msdn.microsoft.com/en-us/library/windows/desktop/dd318691(v=vs.-

85).aspx

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 44

1. Author Robin Stenvi

Here is the call graph for this function:

Cbelt_mainDlg::sendKeyboardInfo
handleData::writeKeyboard

ToServer

2.4.3.11 afx msg LRESULT Cbelt mainDlg::printEvent (WPARAM w, LPARAM l) [protected]

Prints the string specified if the user has specified it.

1. Author Robin Stenvi

Parameters
in w CString pointer allocated with new and is the string that should be

printed, should end in newline. This function deletes this value.
in l UINT value specifying what type of event it is.

Returns

Always returns 0.

Here is the call graph for this function:

Cbelt_mainDlg::printEvent

Cbelt_mainDlg::updateStat

Cbelt_mainDlg::AppendLine

2.4.3.12 afx msg LRESULT Cbelt mainDlg::changePause (WPARAM w, LPARAM l) [protected]

Changes the pause state of the app.

1. Author Robin Stenvi

Parameters
in w BOOL value that is FALSE if we should pause, TRUE if we should

resume.
in l Unused.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 45

Here is the call graph for this function:

Cbelt_mainDlg::changePause

Cbelt_mainDlg::pauseListener

Cbelt_mainDlg::resumeListener

2.4.3.13 void Cbelt mainDlg::OnSysCommand (UINT nID, LPARAM lParam) [protected]

Runs the system commands.

1. Author Automatically generated

Parameters
in nID First argument to to CDialogEx::OnSysCommand().
in lParam Second argument to CDialogEx::OnSysCommand().

2.4.3.14 void Cbelt mainDlg::OnPaint () [protected]

If you add a minimize button to your dialog, you will need the code below to draw the icon.

For MFC applications using the document/view model, this is automatically done for you by the frame-
work

1. Author Automatically generated Magnus Øverbø

Here is the call graph for this function:

Cbelt_mainDlg::OnPaint Cbelt_mainDlg::OnHideapp

2.4.3.15 HCURSOR Cbelt mainDlg::OnQueryDragIcon () [protected]

The system calls this function to obtain the cursor to display while the user drags the minimized window.

1. Author Robin Stenvi

Returns

Returns static_cast<HCURSOR>(m_hIcon).

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 46

2.4.3.16 LRESULT Cbelt mainDlg::OnTrayNotify (WPARAM wParam, LPARAM lParam) [protected]

Perform actions based on interaction with the system tray icon.

When interacting with the tray icon create a pop-up menue on right click and put the window to the
foreground and restore it. On double click set the window to the foreground or restore it.

1. Author Magnus Øverbø - 14.02.2013

Parameters
in wParam wParam is not used
in lParam lParam contains what type of click was performed

Returns

Always returns 0.

Here is the call graph for this function:

Cbelt_mainDlg::OnTrayNotify

handleData::retPaused

Cbelt_mainDlg::OnTrayRestore

2.4.3.17 void Cbelt mainDlg::OnTrayRestore () [protected]

If hidden restore the window and set it to be shown.

1. Author Magnus Øverbø - 14.02.2013

2.4.3.18 void Cbelt mainDlg::OnHideapp () [protected]

This function runs the OnHide, and then hides the application.

1. Author Magnus Øverbø - 04.02.2013

Here is the call graph for this function:

Cbelt_mainDlg::OnHideapp Cbelt_mainDlg::OnTrayRestore

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 47

2.4.3.19 void Cbelt mainDlg::OnDestroy () [protected]

Destroys the window by deleting the object and setting it to NULL.

1. Author Magnus Øverbø - 14.02.2013

2.4.3.20 void Cbelt mainDlg::OnAppExit () [protected]

Upon exit from the tray icon, stop the listener and quit the application, which destroys the window.

1. Author Magnus Øverbø - 14.02.2013

Here is the call graph for this function:

Cbelt_mainDlg::OnAppExit Cbelt_mainDlg::stopListener

2.4.3.21 void Cbelt mainDlg::OnSize (UINT nType, int cx, int cy) [protected]

Resizing the window along with the RichEditControl field.

Borrowed from the Ftptree MSDN sample. When clicking the minimize button the application is auto-
matically hidden instead.

1. Author Magnus Øverbø - 14.02.2013 Magnus Øverbø - 25.03.2013

Parameters
in nType which states what type of event has occured
in cx int which states the width of the window
in cy int which states the height of the window

Here is the call graph for this function:

Cbelt_mainDlg::OnSize Cbelt_mainDlg::OnHideapp

2.4.3.22 LRESULT Cbelt mainDlg::OnQueryEndSession (WPARAM wParam, LPARAM lParam) [protected]

Responds to the OnQuerySessionEnd.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 48

1. Author Magnus Øverbø - 14.02.2013

Parameters
in wParam wParam is not used
in lParam lParam contains the type of event that is occuring

Returns

true as defined by the windows api

2.4.3.23 LRESULT Cbelt mainDlg::OnEndSession (WPARAM wParam, LPARAM lParam) [protected]

Exits the application in response to the OnEndSession message.

1. Author Magnus Øverbø - 27.02.2013

Parameters
in wParam wParam is true when the challenge received true
in lParam lParam contains information about the event that occur

Returns

0 as per definition by the windows API

Here is the call graph for this function:

Cbelt_mainDlg::OnEndSession Cbelt_mainDlg::OnAppExit

2.4.3.24 LRESULT Cbelt mainDlg::OnPowerState (WPARAM wParam, LPARAM lParam) [protected]

Handles when the system is suspended.

It receives the WM_POWERBROADCAST message which is relayed to this function that based on the
WPARAM parameter decides what to do. It only responds to the PBT_APMRESUMEAUTOMATIC,
which is sent when coming back from a suspension, and PBT_APMSUSPEND, which is sent when
going into a suspended state.

1. Author Magnus Øverbø - 05.04.2013

Parameters
in wParam WPARAM with the ID of a specific event
in lParam LPARAM with message specificic to the WPARAM event

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 49

Returns

TRUE BOOL value that has to be the response

Here is the call graph for this function:

Cbelt_mainDlg::OnPowerState

Cbelt_mainDlg::controlListener

Cbelt_mainDlg::stopListener

2.4.3.25 LRESULT Cbelt mainDlg::OnClose (WPARAM w, LPARAM l) [protected]

Hide the application when clicking the X in the top right corner.

if we have used the exit function in a menue we close the application using the OnAppexit function. if
we have received a message generated by clicking the exit function in the top right corner(exit button),
we redirect the funciton and call the OnHideapp function to hide the application instead. Usually the
WM_CLOSE contains nothing in its paramaters, so we’ve used the values 3 and 1 just to have a little
buffer zone if microsoft decides to use it.

1. Author Magnus Øverbø - 19.04.2013

Parameters
in w is 3 if we are closing the application, otherwise its not used
in l is 1 if we are closing the application, otherwise its not used

Returns

LRESULT is returned as a 0 as according tho the standard by mdsn

Here is the call graph for this function:

Cbelt_mainDlg::OnClose

Cbelt_mainDlg::OnAppExit

Cbelt_mainDlg::OnHideapp

2.4.3.26 void Cbelt mainDlg::OnSetDlg () [protected]

Opens the settings dialog for BeLT.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 50

1. Author Magnus Øverbø - 25.03.2013

Here is the call graph for this function:

Cbelt_mainDlg::OnSetDlg

SettingDialog::DoModal

SettingDialog::retStorage

2.4.3.27 afx msg BOOL Cbelt mainDlg::OnDeviceChange (UINT nEventType, DWORD PTR dwData)
[protected]

See http://msdn.microsoft.com/en-us/library/windows/desktop/aa363205%28v=vs.-
85%29.aspx for more events.

1. Author Robin Stenvi

Parameters
in nEventType What type of event has happened (supplied by Windows)
in dwData Information about the device.

Returns

Returns CWnd::OnDeviceChange (nEventType, dwData).

Here is the call graph for this function:

Cbelt_mainDlg::OnDeviceChange

handleData::retPaused

handleData::writeDevToServer

2.4.3.28 afx msg LRESULT Cbelt mainDlg::FAIL (WPARAM w, LPARAM l) [protected]

When something fails elsewhere in the application, this will notify the users, prints the string in red.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 51

1. Author Robin Stenvi

Parameters
in w CString pointer allocated with new, this is the line that should be printed

to the user. this function will delete the pointer
in l UINT that can be used to mark additional actions that should be taken,

if no action should be taken, use 0

Returns

Always returns 0.

Remarks

If SSL connection fails, we keep trying, until we get it. The function in handleData will handle delay.

Here is the call graph for this function:

Cbelt_mainDlg::FAIL

Cbelt_mainDlg::AppendLine

handleData::toggleServer
Static

2.4.3.29 afx msg LRESULT Cbelt mainDlg::SUCCESS (WPARAM w, LPARAM l) [protected]

Need to notify the user of something that has succeeded, will print the string in green.

1. Author Robin Stenvi Magnus Øverbø

Parameters
in w CString pointer allocated with new, this is the line that should be printed

to the user. this function will delete the pointer
in l UINT that can be used to mark additional actions that should be taken,

if no action should be taken, use 0

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 52

Returns

Always returns 0.

Here is the call graph for this function:

Cbelt_mainDlg::SUCCESS Cbelt_mainDlg::AppendLine

2.4.3.30 void Cbelt mainDlg::OnAppAbout () [protected]

Initiates the about dialog described in the resource file.

1. Author Magnus Øverbø - 27.02.2013

Here is the call graph for this function:

Cbelt_mainDlg::OnAppAbout AboutDialog::DoModal

2.4.3.31 afx msg LRESULT Cbelt mainDlg::setIcon (WPARAM w, LPARAM l) [protected]

Sets the icon if a password fieldd is detected.

1. Author Robin Stenvi Magnus Øverbø

Parameters
in w BOOL value, where TRUE means that we have paused
in l Unused

Here is the call graph for this function:

Cbelt_mainDlg::setIcon CTrayNot::SetState

Cbelt_mainDlg::stopListener

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 53

2.4.3.32 void Cbelt mainDlg::OnRawInput (UINT nInputcode, HRAWINPUT hRawInput) [protected]

Called each time we receive raw input, which we have registered for.

1. Author Robin Stenvi

Parameters
in nInputcode Determines if the input happened while the application was in the for-

ground or not. RIM_INPUT means it was in the foreground, RIM_INP-
UTSINK means it was not in the foreground

in hRawInput Handle to the RAWINPUT structure

Here is the call graph for this function:

Cbelt_mainDlg::OnRawInput

ws2s

handleData::writeHIDToServer

2.4.3.33 void Cbelt mainDlg::controlListener () [protected]

Changes the start/pause/resume buttons functionality.

At first it is set to "start" then upon starting the loggin it is set to "Pause". After this interaction it is set to
"resume", which again upon interaction is set to "pause". When interacted with it calls its corresponding
function dependant on BeLTs state.

1. Author Magnus Øverbø - 11.03.2013

Here is the call graph for this function:

Cbelt_mainDlg::controlListener handleData::retPaused

Cbelt_mainDlg::pauseListener

Cbelt_mainDlg::resumeListener

Cbelt_mainDlg::startListener

2.4.3.34 void Cbelt mainDlg::stopListener () [protected]

Stops all listeners, if they are listening, otherwise it does nothing.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 54

1. Author Robin Stenvi Magnus Øverbø

Here is the call graph for this function:

Cbelt_mainDlg::stopListener

myWinEvent::unregisterwin
Event

handleData::writeTime

Cbelt_mainDlg::AppendLine

handleData::retPaused

handleData::togglePaused

CTrayNot::SetState

Cbelt_mainDlg::OnAppExit

2.4.3.35 void Cbelt mainDlg::sendToServer () [protected]

When something fails elsewhere in the application, this will notify the user.

1. Author Robin Stenvi

Here is the call graph for this function:

Cbelt_mainDlg::sendToServer
handleData::toggleServer

Static

2.4.3.36 void Cbelt mainDlg::setFilterSettings () [protected]

Opens the filter settings dialog.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 55

1. Author Robin Stenvi

Here is the call graph for this function:

Cbelt_mainDlg::setFilter
Settings

filterSettings::DoModal

filterSettings::retFilter

handleData::setFilter

2.4.3.37 void Cbelt mainDlg::startListener () [protected]

Starts listener, if it’s not listening or is paused.

1. Author Robin Stenvi

Remarks

If anything fails, we just make sure the error doesn’t propogate, but we still continue logging with
whatever we have left. The only exception is if writeTime in handleData fails, then we only count up
the session number.

Generated with Doxygen on May 15, 2013

2.4 Cbelt_mainDlg Class Reference 56

Here is the call graph for this function:

Cbelt_mainDlg::startListener

handleData::updateSID

handleData::writeTime

Cbelt_mainDlg::AppendLine

Cbelt_mainDlg::sendKeyboardInfo

MyInfoEnumProc

UIAutomation::startEvent
Handlers

Keylogger::registerState

Cbelt_mainDlg::startKeylog

myWinEvent::registerwinEvent

Cbelt_mainDlg::monitorHWUsage

Cbelt_mainDlg::updateStat

CTrayNot::SetState

Cbelt_mainDlg::stopListener
handleData::retPaused

handleData::togglePaused

2.4.3.38 void Cbelt mainDlg::pauseListener () [protected]

Pauses the listener, if we are listening, otherwise it does nothing.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 57

Here is the call graph for this function:

Cbelt_mainDlg::pauseListener

handleData::retPaused

handleData::writeTime

Cbelt_mainDlg::AppendLine

CTrayNot::SetState

Cbelt_mainDlg::stopListener

handleData::togglePaused

2.4.3.39 void Cbelt mainDlg::resumeListener () [protected]

Resumes listening after pause, if it was not paused it does nothing.

1. Author Robin Stenvi Magnus Øverbø

Here is the call graph for this function:

Cbelt_mainDlg::resumeListener

handleData::retPaused

handleData::writeTime

Cbelt_mainDlg::AppendLine

CTrayNot::SetState

Cbelt_mainDlg::stopListener

handleData::togglePaused

2.4.3.40 void Cbelt mainDlg::OnBnClickedButtonSendData ()

Opens the transmission dialog for stored files.

1. Author Robin Stenvi

2.5 checkUpdate Class Reference

Class that checks if a new update is available.

Public Member Functions

• checkUpdate ()

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 58

Empty constructor.
• ERRORS check ()

Checks and install new update.

Protected Member Functions

• ERRORS initTLS ()
Initializes the TLS, call this in the beginning.

• ERRORS startTLS ()
Starts all the necessary handlers for TLS connection.

• void closeTLS ()
The opposite of initTLS()

• int newerVersion (std::string current, std::string newVersion)
Returns 1 if the server version is newer.

• std::vector< std::string > explode (const std::string &str, const char &ch)
Takes in an std::string and returns a vector where "ch" is the delimiter.

• ERRORS getVersionNum (std::string &version)
Gets the version number from the registry.

• ERRORS getserverSettings (std::vector< std::string > &settings)
Gets all the necessary data from the server config file and returns it in a vector of std::string.

• ERRORS initiateConnection (std::string ip, int port)
Initiate the necessary sockets for use against the server.

• ERRORS getFile (std::string ip, int port, std::string file, std::string &response)
Parses the file from the server and returns a vector with std::string containing all the necessary data.

• int closeConnection ()
Closes an Internet connection.

• ERRORS writeFile (std::string data, std::string fileName, std::wstring &filePath)
Writes contents to temporary folder.

• bool internetAvailable ()
Checks if Internet is available.

Private Attributes

• WSADATA wsaData
Windows sockets data.

• SOCKET sock
The socket we against the server.

• hostent ⇤ h
Information about the server.

• sockaddr_in serveraddr
Information about the server.

• SSL ⇤ ssl
The SSL object we need to tunnel our traffic over SSL.

• SSL_CTX ⇤ ctx
Framework object to set different options.

• bool useTLS
Whether we use TLS or not.

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 59

2.5.1 Detailed Description

Class that checks if a new update is available.

This is a test.

Only one function is available from the ouside, and that is the actual check for the update "check()". The
remaining functions are just there to help the process.

1. Author Robin Stenvi

2.5.2 Constructor & Destructor Documentation

2.5.2.1 checkUpdate::checkUpdate ()

Empty constructor.

1. Author Robin Stenvi

2.5.3 Member Function Documentation

2.5.3.1 ERRORS checkUpdate::initTLS () [protected]

Initializes the TLS, call this in the beginning.

1. Author Robin Stenvi

Returns

Always returns OK.

2.5.3.2 ERRORS checkUpdate::startTLS () [protected]

Starts all the necessary handlers for TLS connection.

1. Author Robin Stenvi

Returns

Return OK if everythin went well, otherwise it returns an error value.

2.5.3.3 void checkUpdate::closeTLS () [protected]

The opposite of initTLS()

1. Author Robin Stenvi

2.5.3.4 int checkUpdate::newerVersion (std::string current, std::string newVersion) [protected]

Returns 1 if the server version is newer.

Both the parameters need to be of the format X.Y.Z where X, Y, and Z is any integer. There is some
undefined behaviour in atoi, should use a different function.

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 60

1. Author Robin Stenvi

Parameters
in current The current version number for the application
in newVersion What the server says is the newest version

Returns

Returns -1 (the current is a newer version), 0 (the same version) or 1 (newer version available)

2.5.3.5 std::vector< std::string > checkUpdate::explode (const std::string & str, const char & ch)
[protected]

Takes in an std::string and returns a vector where "ch" is the delimiter.

1. Author Robin Stenvi

Parameters
in str The string we want to split.
in ch The delimiter

Returns

A vector that contains all the values.

2.5.3.6 ERRORS checkUpdate::getVersionNum (std::string & version) [protected]

Gets the version number from the registry.

1. Author Robin Stenvi

Parameters
out version Output value which should contain the version number when the func-

tion complete.

Returns

An error value indicating how it went, can be OPEN_REG, QUERY_REG_VALUE or OK.

2.5.3.7 ERRORS checkUpdate::getserverSettings (std::vector< std::string > & settings) [protected]

Gets all the necessary data from the server config file and returns it in a vector of std::string.

1. Author Robin Stenvi

Parameters
out settings Output value containing all the values

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 61

Returns

Returns GET_SETTINGS or OK.

Here is the call graph for this function:

checkUpdate::getserverSettings

getProfileInfo

ws2s

2.5.3.8 ERRORS checkUpdate::initiateConnection (std::string ip, int port) [protected]

Initiate the necessary sockets for use against the server.

1. Author Robin Stenvi

Parameters
in ip IP-address or domain name to the server.
in port Port number to the server.

Returns

Returns INIT_SOCK, INIT_WSA or OK.

Here is the call graph for this function:

checkUpdate::initiateConnection checkUpdate::startTLS

2.5.3.9 ERRORS checkUpdate::getFile (std::string ip, int port, std::string file, std::string & response)
[protected]

Parses the file from the server and returns a vector with std::string containing all the necessary data.

1. Author Robin Stenvi

Parameters
in response The response from the server, after HTTP headers have been removed.

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 62

Returns

A vector of std::string containing all the relevant data that was found. Returns a file from the server
over HTTP

1. Author Robin Stenvi

Parameters
in ip The IP-adress or domain to the server.
in port The port number on the server.
in file where on the server the file is (without domain name, but with leading

/)
out response The file we get from the server, is returned to the caller.

Returns

The function returns a self-defined error message, which can be CONNECT, SEND_DATA or OK.

Here is the call graph for this function:

checkUpdate::getFile checkUpdate::closeConnection

2.5.3.10 int checkUpdate::closeConnection () [protected]

Closes an Internet connection.

1. Author Robin Stenvi

Returns

Returns the value of GetLastError() if something goes wrong, otherwise it returns 0

2.5.3.11 ERRORS checkUpdate::writeFile (std::string data, std::string fileName, std::wstring & filePath)
[protected]

Writes contents to temporary folder.

1. Author Robin Stenvi

Parameters
in data The data that should be written, can be binary or ASCII
in fileName The filename for the file, can have trailing directories, this will be ex-

cluded
out filePath The final path to the file.

Generated with Doxygen on May 15, 2013

2.5 checkUpdate Class Reference 63

Returns

An error if something went wrong, or it returns OK.

2.5.3.12 bool checkUpdate::internetAvailable () [protected]

Checks if Internet is available.

1. Author Robin Stenvi

Returns

Returns true if Internet is available, false if Internet is unavailable or we are unable to check.

2.5.3.13 ERRORS checkUpdate::check ()

Checks and install new update.

First it retrives the current version from the registry. Then it retrieves the server configuration. Then it
checks whether it has a port number for SSL, if not it fall back on regular HTTP Then it gets the newest
server configuration from the server. Then it check whether we have the newest version or not. If we
don’t have the newest version it will run belt_update.exe to get the newest version.

1. Author Robin Stenvi

Returns

Returns an error message, OK or it exits the application for update.

Remarks

{Should change the offset thing before release, if there is no TLS port it should just be zero.}

Generated with Doxygen on May 15, 2013

2.6 CTrayNot Class Reference 64

Here is the call graph for this function:

checkUpdate::check

checkUpdate::internetAvailable

getProfileInfoInt

myAtoi

checkUpdate::initTLS

checkUpdate::getVersionNum

checkUpdate::getserverSettings

checkUpdate::initiateConnection

checkUpdate::getFile

checkUpdate::closeConnection

replaceLetter

checkUpdate::explode

checkUpdate::newerVersion

checkUpdate::writeFile

2.6 CTrayNot Class Reference

A class for creating/maintaining the system tray icon.

Public Member Functions

• CTrayNot (CWnd ⇤pWnd, UINT uCallbackMessage, LPCTSTR szTip, HICON ⇤pList)
Contstructor for the class, creates the initial system tray icon.

• virtual ⇠CTrayNot ()
Destroys the CTrayNot object by sending a NIM_DELETE to the Shell_NotifyIcon function.

• bool SetState (int id=0)
SetState changes the icon in the system tray.

Private Attributes

• BOOL m_bEnabled
Declares if the icon is enabled.

• NOTIFYICONDATA m_tnd
The structure for the system tray icon.

Generated with Doxygen on May 15, 2013

2.6 CTrayNot Class Reference 65

• HICON ⇤ m_pIconList
List of all the icons available.

2.6.1 Detailed Description

A class for creating/maintaining the system tray icon.

This class creates the object which are displayed in the system tray. The class has three variables and
three functions for creating, destroying and changing the state of the object. The class is a modified ver-
sion of the example project at http://www.codeproject.com/Articles/1627/System-Tray--
Icons-Adding-to-your-dialog-applicatio made by Ash Rowe. This class creates a system
tray nofification object, by passing a notification data structure to Shell_NotifyIcon. Then, later on it de-
stroys it by sending a NIM_DELETE to the Shell_NotifyIcon. To update it the SetState function changes
the current icon and sends a NIM_MODIFY to the Shell_NotifyIcon.

1. Author Magnus Øverbø

Date

2013-01-16 - 2012-01-31 (Last modified)

2.6.2 Constructor & Destructor Documentation

2.6.2.1 CTrayNot::CTrayNot (CWnd ⇤ pWnd, UINT uCallbackMessage, LPCTSTR szTip, HICON ⇤ pList)

Contstructor for the class, creates the initial system tray icon.

This function creates a system tray nofification object, by passing a notification data structure to Shell_-
NotifyIcon.

1. Author Magnus Øverbø - 31.01.2013

2.6.2.2 CTrayNot::⇠CTrayNot () [virtual]

Destroys the CTrayNot object by sending a NIM_DELETE to the Shell_NotifyIcon function.

1. Author Magnus Øverbø, 31.01.2013

2.6.3 Member Function Documentation

2.6.3.1 bool CTrayNot::SetState (int id = 0)

SetState changes the icon in the system tray.

The id arguement states which icon to be shown.

1. Author Magnus Øverbø, 31.01.2013 Magnus Øverbø, 09.05.2013

Parameters
in id The icon that should be set, RED_ICON, GREEN_ICON, BLUE_ICON

or YELLOW_ICON.

Generated with Doxygen on May 15, 2013

2.7 deviceInfo Struct Reference 66

Returns

returns true if the icon was changed and false if it failed to change the icon after ten tries

2.7 deviceInfo Struct Reference

Information about a storage device, only a timestamp and a value that says whether it was inserted or
removed.

Public Attributes

• std::string desc
Says whether it was removed or inserted.

• DWORD time
The moment we registered it.

2.7.1 Detailed Description

Information about a storage device, only a timestamp and a value that says whether it was inserted or
removed.

2.8 eventHandler Class Reference

Responsible for registering for events and receiving these events.

Public Member Functions

• eventHandler ()
Initilizes all variables to NULL and says that eventhandler has not been added yet.

• ⇠eventHandler ()
Empty destructor.

• ULONG STDMETHODCALLTYPE AddRef ()
One of the IUnknown methods we need to implement, increments _refCount.

• ULONG STDMETHODCALLTYPE Release ()
One of the IUnknown methods we need to implement, decrements _refCount.

• HRESULT STDMETHODCALLTYPE QueryInterface (REFIID riid, void ⇤⇤ppInterface)
One of the IUnknown methods we need to implement, sets the appropriate interfaces.

• HRESULT STDMETHODCALLTYPE HandleAutomationEvent (IUIAutomationElement ⇤pSender,
EVENTID eventID)

The function that is called whenever we recive an event that the UIAutomation object registered for.
• HRESULT StartEventHandler (HWND hDlg)

Send a message to start eventhandlers.
• void Uninitialize ()

Here we tell the background thread to close down, then we cleanup.

Generated with Doxygen on May 15, 2013

2.8 eventHandler Class Reference 67

Protected Member Functions

• void cleanup ()
Release object that where created on this thread.

• HRESULT registerEventHandler ()
Register for all the event we want to register for.

• void removeEventHandler ()
Removes all event handlers and stops listening.

Static Protected Member Functions

• static DWORD WINAPI listenerThreadProc (LPVOID lpParameter)
This is where the thread runs, listening for messages and take appropriate action.

Private Attributes

• LONG _refCount
Reference count.

• IUIAutomation ⇤ automation
UI Automation object we use the get the element tree.

• IUIAutomationElement ⇤ rootElem
Pointer to the root element in the UIA tree.

• HWND mainHwnd
Pointer to the main window, can be used to send messages back (currently not used)

• HANDLE backThreadHandle
Handle to the worker thread we are creating to listen for events.

• DWORD backThread
ID to the worker thread we are creating to listen for events.

• HANDLE eventListenerReady
Handle to the event object.

• BOOL eventHandlerAdded
If event handlers has been added or not.

• IUIAutomationCacheRequest ⇤ cache
Cache for faster retrival of attributes.

• int _eventCount
Event count.

2.8.1 Detailed Description

Responsible for registering for events and receiving these events.

None, except UIAutomation deals with this class, so unless you need to change what events are captured
or what type of information you store, you don’t have to worry about this class. This class receives the
following events:

• Window Opend (WO)

• Element Invoked (EI)

• Menu Opened (MO)

• Text Changed (TC)

Generated with Doxygen on May 15, 2013

2.8 eventHandler Class Reference 68

• Menu Mode Started (MMS) When the event occurs, this class mostly just sets what type of event
it was, the rest is handled by the Events class. It also saves the following properties in cache:

• Automation ID

• Element type (control type)

• The rectangle of each element

• Element type name (localized control type)

• Name

• Process ID

• Value (Specify)

1. Author Robin Stenvi - 2012-01-21

2.8.2 Constructor & Destructor Documentation

2.8.2.1 eventHandler::eventHandler ()

Initilizes all variables to NULL and says that eventhandler has not been added yet.

1. Author Robin Stenvi

2.8.2.2 eventHandler::⇠eventHandler ()

Empty destructor.

1. Author Robin Stenvi

2.8.3 Member Function Documentation

2.8.3.1 DWORD WINAPI eventHandler::listenerThreadProc (LPVOID lpParameter) [static], [protected]

This is where the thread runs, listening for messages and take appropriate action.

This function should run on a separate thread. When the thread is created this function will set event-
ListenerReady to say that it is ready. This is the thread that should register and remove the event
handlers, otherwise something will fail.

1. Author Robin Stenvi

Parameters
in lpParameter Should point to an object of the current class.

Returns

Return 1 if we fail to initialize COM library, 2 if we fail to say that we are ready and 0 if everything
succeeds.

Remarks

If this function fails, it will just exit, and you will be unable to register for events, but the remaining
code outside this function should still work.

Generated with Doxygen on May 15, 2013

2.8 eventHandler Class Reference 69

Here is the call graph for this function:

eventHandler::listenerThreadProc

eventHandler::registerEvent
Handler

eventHandler::removeEvent
Handler

2.8.3.2 void eventHandler::cleanup () [protected]

Release object that where created on this thread.

Remarks

Should not be called directly, call Uninitialize().

1. Author Robin Stenvi

2.8.3.3 HRESULT eventHandler::registerEventHandler () [protected]

Register for all the event we want to register for.

1. Author Robin Stenvi

Returns

Returns S_OK if we succeed, if anythin else is returned, you should call removeEventHandler().

Remarks

This function does NOT clean up after itself if we fail.

2.8.3.4 void eventHandler::removeEventHandler () [protected]

Removes all event handlers and stops listening.

Remarks

This have to be done on the same thread in which it was created. Should only be called from
listenerThreadProc(). Is safe to call even if events have not been added.

1. Author Robin Stenvi

2.8.3.5 ULONG STDMETHODCALLTYPE eventHandler::AddRef ()

One of the IUnknown methods we need to implement, increments _refCount.

Generated with Doxygen on May 15, 2013

2.8 eventHandler Class Reference 70

1. Author Robin Stenvi

Returns

InterlockedIncrement().

2.8.3.6 ULONG STDMETHODCALLTYPE eventHandler::Release ()

One of the IUnknown methods we need to implement, decrements _refCount.

1. Author Robin Stenvi

Returns

Returns the current refCount, if the refCount is 0, this object has been deleted.

Remarks

This function deletes this object (when refCount == 0), don’t call delete after this function.

2.8.3.7 HRESULT STDMETHODCALLTYPE eventHandler::QueryInterface (REFIID riid, void ⇤⇤ ppInterface)

One of the IUnknown methods we need to implement, sets the appropriate interfaces.

1. Author Robin Stenvi

Returns

Returns E_NOINTERFACE or S_OK.

Here is the call graph for this function:

eventHandler::QueryInterface eventHandler::AddRef

2.8.3.8 HRESULT STDMETHODCALLTYPE eventHandler::HandleAutomationEvent (IUIAutomationElement ⇤
pSender, EVENTID eventID)

The function that is called whenever we recive an event that the UIAutomation object registered for.

Whenever the the class need to handle additional events, this is the function you edit. Is a switch
statement that identifies the events and uses Events class to get more information.

1. Author Robin Stenvi

Parameters
in pSender The element that caused the event.
in eventID Says what type of event occurred.

Generated with Doxygen on May 15, 2013

2.8 eventHandler Class Reference 71

Returns

Always returns S_OK

Here is the call graph for this function:

eventHandler::HandleAutomation
Event

Events::fillEventInfo

escapeLetter

Events::getValueProperty

Events::sendEventUnion

Events::getRectangle

2.8.3.9 HRESULT eventHandler::StartEventHandler (HWND hDlg)

Send a message to start eventhandlers.

This function will start the new thread that starts all the necessary event handlers. The new thread will
again register for the actual events, at this functions commands.

1. Author Robin Stenvi

Parameters
in hDlg Should point to the main dialog window.

Returns

Returns S_OK if we succeed, otherwise it returns the appropriate fail value from the Windows
functions.

Here is the call graph for this function:

eventHandler::StartEvent
Handler

eventHandler::listenerThreadProc

2.8.3.10 void eventHandler::Uninitialize ()

Here we tell the background thread to close down, then we cleanup.

Generated with Doxygen on May 15, 2013

2.9 eventInfoUnion Struct Reference 72

1. Author Robin Stenvi

Remarks

If we are unable to close the background thread, it will wait for 10 seconds, Windows will probably
close it before then, but we avoid waiting infinitely if something fails.

Here is the call graph for this function:

eventHandler::Uninitialize eventHandler::cleanup

2.9 eventInfoUnion Struct Reference

Contains the information we store about each UI event.

Public Attributes

• UINT flag
Flag to indicate event, used for faster processing.

• unionType type
Which union is used.

• std::string description
Description, to say what type of operation.

• std::string elemDescription
Descriptive name of the element.

• std::string procName
Process name.

• int elemType
What type of element, like button.

• std::string elemID
Automation ID of the element.

• DWORD time
Timestamp with millisecond accuracy.

• std::string ⇤ desc
Extra string for description.

• RECT ⇤ rect
Provides a rectangle.

• double value
A double value.

• int iValue
An integer value, this will always operate as the flag.

2.9.1 Detailed Description

Contains the information we store about each UI event.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 73

1. Author Robin Stenvi

2.10 Events Class Reference

Retrieves UI properties that we send to the server.

Public Member Functions

• Events ()
Constrictor to initialize all variables.

• ⇠Events ()
Destructor to delete all variables.

• std::string getProcName (IUIAutomationElement ⇤pSender, DWORD procIdIn=0)
Returns the process executables name, based on UIA element.

• std::string getElemDescription (IUIAutomationElement ⇤pSender)
Gets an elements name.

• std::string ⇤ getValueProperty (IUIAutomationElement ⇤pSender)
Returns the value of an element.

• RECT ⇤ getRectangle (IUIAutomationElement ⇤pSender)
Returns the rectangle of an element.

• int getControlType (IUIAutomationElement ⇤pSender)
Returns what type of element it is, like "button".

• std::string getElemId (IUIAutomationElement ⇤pSender)
Get the automation ID of the element.

• void removeId (IUIAutomationElement ⇤pSender, DWORD procIdIn=0)
Removes a process ID from our list, and sorts afterwards.

• bool sendEventUnion (eventInfoUnion ⇤info)
Send an event to the server.

• bool fillEventInfo (eventInfoUnion ⇤info, IUIAutomationElement ⇤pSender, bool gatherType=true)
Fills all the available after an UI Automation event has happened.

• bool isEdit (IUIAutomationElement ⇤pSender)
Checks if the element is an edit field or not.

• bool isDocument (IUIAutomationElement ⇤pSender)
Checks if the element is a document field or not.

• void deleteEventUnion (eventInfoUnion ⇤info)
Deletes all the elements in an eventInfoUnion.

Private Attributes

• HRESULT hr
Permanent variable we use to check if the function call failed.

• processList list [MAX]
Stores all the processes and IDs for fast retrieval.

• UINT counter
The current place in our array.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 74

Static Private Attributes

• static const int MAX_LEN = 100
The maximum length we allow for text, if we are going to send it to the server.

• static const UINT MAX = 1000
Max size of the array.

2.10.1 Detailed Description

Retrieves UI properties that we send to the server.

1. Author Robin Stenvi

2.10.2 Constructor & Destructor Documentation

2.10.2.1 Events::Events ()

Constrictor to initialize all variables.

1. Author Robin Stenvi

2.10.2.2 Events::⇠Events ()

Destructor to delete all variables.

1. Author Robin Stenvi

2.10.3 Member Function Documentation

2.10.3.1 std::string Events::getProcName (IUIAutomationElement ⇤ pSender, DWORD procIdIn = 0)

Returns the process executables name, based on UIA element.

It first tries to find the element in our list, if it’s not found, it tries to get it. Returns |unknown| if it couldn’t
be found. If it was found, it inserts it in our list, sorts the list, then returns the name. You need either UI
Automation element or prcess ID to use this function.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element
in procIdIn The process ID, if we don’t have an UI Automation element, default

value is 0.

Remarks

Elements are never thrown out of the list. This is not desirable, but not a huge problem, since there
is a limit to how many different programs the user can use. This function does not validate pSender.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 75

Returns

Returns the process name in the form of std::string, or UnknownElem if we are unable to find it.

Here is the call graph for this function:

Events::getProcName

s2ws

ws2s

escapeLetter

2.10.3.2 std::string Events::getElemDescription (IUIAutomationElement ⇤ pSender)

Gets an elements name.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns UnknownElem if it can’t find it, TooLongElem if it is deemed too long, EmptyElem if it’s
empty. Should never return an empty string

Here is the call graph for this function:

Events::getElemDescription ws2s

2.10.3.3 std::string ⇤ Events::getValueProperty (IUIAutomationElement ⇤ pSender)

Returns the value of an element.

This property should be what the user sees, when looking at the element, it returns the name, |Too long|,
or "-" if empty. The last one should be compatible with the syslog protocol. Should never return NULL.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 76

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns the value. TooLongElem if it’s to long, EmptyElem if it’s empty and UnknownElem if we
can’t find the value.

Here is the call graph for this function:

Events::getValueProperty ws2s

2.10.3.4 RECT ⇤ Events::getRectangle (IUIAutomationElement ⇤ pSender)

Returns the rectangle of an element.

Return all -1 if the rectangle could not be found, should never return NULL.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns the rectangle, allocated with new

2.10.3.5 int Events::getControlType (IUIAutomationElement ⇤ pSender)

Returns what type of element it is, like "button".

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 77

Returns

An int value indicating what type of element it is.

2.10.3.6 std::string Events::getElemId (IUIAutomationElement ⇤ pSender)

Get the automation ID of the element.

Returns UnknownElem if it could not be found or it is empty, this is compatible with Syslog. If it returns a
real element, it should be unique among it’s sibling and it should not change the next time the program
starts up. It might change hen a new version of the program comes out.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns the element, returns EmptyElem if it’s empty, UnknownElem if we are unable to find it.

Here is the call graph for this function:

Events::getElemId ws2s

2.10.3.7 void Events::removeId (IUIAutomationElement ⇤ pSender, DWORD procIdIn = 0)

Removes a process ID from our list, and sorts afterwards.

You only need to supply one of the values.

1. Author Robin Stenvi

Parameters
in pSender Element of the process to be removed, use NULL if you use procIdIn

instead
in procIdIn Process ID that should be removed, default is 0

Remarks

This Function does not validate pSender

2.10.3.8 bool Events::sendEventUnion (eventInfoUnion ⇤ info)

Send an event to the server.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 78

1. Author Robin Stenvi

Parameters
in info Information about the event that should be sent to the server.

Returns

Returns the value from handleData::writeEventToServer()

Here is the call graph for this function:

Events::sendEventUnion
handleData::writeEventTo

Server

2.10.3.9 bool Events::fillEventInfo (eventInfoUnion ⇤ info, IUIAutomationElement ⇤ pSender, bool gatherType
= true)

Fills all the available after an UI Automation event has happened.

1. Author Robin Stenvi

Parameters
in,out info The struct that should be filled with information.

in pSender The UI Automation element
in gatherType Default value is true, if false, we should not gather controltype, which

means that is has already been set.

Returns

Returns true if we are successful, otherwise false.

Generated with Doxygen on May 15, 2013

2.10 Events Class Reference 79

Here is the call graph for this function:

Events::fillEventInfo

Events::getControlType

Events::getElemDescription

escapeLetterEvents::getValueProperty

Events::getProcName

Events::getElemId

2.10.3.10 bool Events::isEdit (IUIAutomationElement ⇤ pSender)

Checks if the element is an edit field or not.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns true if this is an edit field, false if it’s not or we are unable to check

2.10.3.11 bool Events::isDocument (IUIAutomationElement ⇤ pSender)

Checks if the element is a document field or not.

1. Author Robin Stenvi

Parameters
in pSender The UI Automation element

Returns

Returns true if it is a document field.

2.10.3.12 void Events::deleteEventUnion (eventInfoUnion ⇤ info)

Deletes all the elements in an eventInfoUnion.

Generated with Doxygen on May 15, 2013

2.11 sendData::Excluded Struct Reference 80

Check every element if it’s NULL. Should always call this function for delete. If you delete indivudally,
you should set that variable to NULL.

1. Author Robin Stenvi

Parameters
in,out info The struct that should be deleted.

2.11 sendData::Excluded Struct Reference

Holds times that are excluded from the user.

2.11.1 Detailed Description

Holds times that are excluded from the user.

2.12 sendData::ExcludeIndex Struct Reference

Which index the timestamps points to.

2.12.1 Detailed Description

Which index the timestamps points to.

2.13 sendData::File Struct Reference

Holds all information we need to know about a file, is filled gradually.

Public Attributes

• std::wstring file
Full path to the file.

• SYSTEMTIME timeStart
When the session started.

• SYSTEMTIME timeStop
When the session ended.

• int length
How many events it contains.

• int currLine
Which line we are going to start at, defulat should be 0.

• std::vector< std::wstring > allLines
All the events.

• std::vector< Excluded > excluded
List of excluded timestamps.

• std::vector< ExcludeIndex > exIndex
List of excluded indexes.

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 81

2.13.1 Detailed Description

Holds all information we need to know about a file, is filled gradually.

2.14 filterSettings Class Reference

Handles all the user settings for filtering data to screen.

Public Member Functions

• filterSettings (CWnd ⇤pParent=NULL)
Constructor, should just set current filter to 0 or saved filter.

• afx_msg void mouseAll ()
Checks or unchecks all mouse events.

• afx_msg void mouseMove ()
Checks or unchecks mouse move.

• afx_msg void mouseWheel ()
Checks or unchecks mouse wheel.

• afx_msg void mousePress ()
Checks or unchecks all mouse presses.

• afx_msg void mousePressUp ()
Checks or unchecks mouse presses up.

• afx_msg void mousePressDown ()
Checks or unchecks mouse releases.

• afx_msg void mousePressLeft ()
Checks or unchecks left mouse button.

• afx_msg void mousePressMiddle ()
Checks or unchecks middle mouse button.

• afx_msg void mousePressRight ()
Checks or unchecks right mouse button.

• afx_msg void keyPressAll ()
Checks or unchecks all key events.

• afx_msg void keyPressUp ()
Checks or unchecks key release events.

• afx_msg void keyPressDown ()
Checks or unchecks key down events.

• virtual INT_PTR DoModal ()
Initiates modal for the dialog.

• void setBoxes ()
Is called immediately when the box appear to set the appropriate boxes, which was last set.

• UINT retFilter ()
Returns the current filter settings.

• afx_msg void clearButton ()
Unchecks all boxes.

• afx_msg void MarkAllButton ()
Checks all boxes.

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 82

Private Attributes

• CButton KPDown
Checkbox for key press down.

• CButton KPUp
Checkbox for key press up.

• CButton MPRight
Checkbox for mouse press right button.

• CButton MPMiddle
Checkbox for mouse press middle button.

• CButton MPLeft
Checkbox for mouse press left button.

• CButton MPDown
Checkbox for mouse press down.

• CButton MPUp
Checkbox for mouse press up.

• CButton MP
Checkbox for mouse press all.

• CButton MW
Checkbox for mouse wheel.

• CButton MV
Checkbox for mouse move.

• CButton MA
Checkbox for mouse all.

• CButton KPA
Checkbox for key press all.

• UINT filter
The current filter settings.

2.14.1 Detailed Description

Handles all the user settings for filtering data to screen.

1. Author Robin Stenvi

2.14.2 Constructor & Destructor Documentation

2.14.2.1 filterSettings::filterSettings (CWnd ⇤ pParent = NULL)

Constructor, should just set current filter to 0 or saved filter.

1. Author Robin Stenvi

Parameters
in pParent Sent to parent.

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 83

Here is the call graph for this function:

filterSettings::filterSettings getProfileInfoInt

2.14.3 Member Function Documentation

2.14.3.1 void filterSettings::mouseAll ()

Checks or unchecks all mouse events.

1. Author Robin Stenvi

2.14.3.2 void filterSettings::mouseMove ()

Checks or unchecks mouse move.

1. Author Robin Stenvi

2.14.3.3 void filterSettings::mouseWheel ()

Checks or unchecks mouse wheel.

1. Author Robin Stenvi

2.14.3.4 void filterSettings::mousePress ()

Checks or unchecks all mouse presses.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 84

Here is the call graph for this function:

filterSettings::mousePress

filterSettings::mousePressUp

filterSettings::mousePressDown

filterSettings::mousePressLeft

filterSettings::mousePress
Middle

filterSettings::mousePress
Right

2.14.3.5 void filterSettings::mousePressUp ()

Checks or unchecks mouse presses up.

1. Author Robin Stenvi

Remarks

This include left/right/middle, but doesn’t mark it.

2.14.3.6 void filterSettings::mousePressDown ()

Checks or unchecks mouse releases.

1. Author Robin Stenvi

Remarks

This include left/right/middle, but doesn’t mark it.

2.14.3.7 void filterSettings::mousePressLeft ()

Checks or unchecks left mouse button.

1. Author Robin Stenvi

Remarks

This include press and release, but doesn’t mark it.

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 85

2.14.3.8 void filterSettings::mousePressMiddle ()

Checks or unchecks middle mouse button.

1. Author Robin Stenvi

Remarks

This include press and release, but doesn’t mark it.

2.14.3.9 void filterSettings::mousePressRight ()

Checks or unchecks right mouse button.

1. Author Robin Stenvi

Remarks

This include press and release, but doesn’t mark it.

2.14.3.10 void filterSettings::keyPressAll ()

Checks or unchecks all key events.

1. Author Robin Stenvi

Here is the call graph for this function:

filterSettings::keyPressAll

filterSettings::keyPressUp

filterSettings::keyPressDown

2.14.3.11 void filterSettings::keyPressUp ()

Checks or unchecks key release events.

1. Author Robin Stenvi

2.14.3.12 void filterSettings::keyPressDown ()

Checks or unchecks key down events.

Generated with Doxygen on May 15, 2013

2.14 filterSettings Class Reference 86

1. Author Robin Stenvi

2.14.3.13 INT PTR filterSettings::DoModal () [virtual]

Initiates modal for the dialog.

1. Author Robin Stenvi

Returns

CDialog::DoModal().

2.14.3.14 void filterSettings::setBoxes ()

Is called immediately when the box appear to set the appropriate boxes, which was last set.

1. Author Robin Stenvi

2.14.3.15 UINT filterSettings::retFilter ()

Returns the current filter settings.

1. Author Robin Stenvi

Returns

Returns the filter.

2.14.3.16 void filterSettings::clearButton ()

Unchecks all boxes.

1. Author Robin Stenvi

Here is the call graph for this function:

filterSettings::clearButton filterSettings::setBoxes

2.14.3.17 void filterSettings::MarkAllButton ()

Checks all boxes.

Generated with Doxygen on May 15, 2013

2.15 focusEventHandler Class Reference 87

1. Author Robin Stenvi

Here is the call graph for this function:

filterSettings::MarkAllButton filterSettings::setBoxes

2.15 focusEventHandler Class Reference

Handles focus change events.

Public Member Functions

• focusEventHandler ()
• ULONG STDMETHODCALLTYPE AddRef ()
• ULONG STDMETHODCALLTYPE Release ()
• HRESULT STDMETHODCALLTYPE QueryInterface (REFIID riid, void ⇤⇤ppInterface)
• HRESULT STDMETHODCALLTYPE HandleFocusChangedEvent (IUIAutomationElement ⇤p-

Sender)
Handles events and set the password field if necessary, also detect screen changes.

• HRESULT StartEventHandler (HWND hDlg)
Start the actual new thread that will see new UI Automation events.

• void Uninitialize ()
Here we tell the background thread to close down.

• void removeEventHandler ()
Removes all event handlers and stops listening.

• bool checkScreen ()
Checks which screen is currently active and send a message to server if it has changed.

Protected Member Functions

• void cleanup ()
Rlease object that where created on this thread.

• HRESULT registerEventHandler ()
Registers which events we are interested in and builds up the cache.

Static Protected Member Functions

• static DWORD WINAPI listenerThreadProc (__in LPVOID lpParameter)
This is where the thread runs, listening for messages and take appropriate action.

Generated with Doxygen on May 15, 2013

2.15 focusEventHandler Class Reference 88

Private Attributes

• LONG _refCount
Reference count.

• IUIAutomation ⇤ automation
UI Automation object we use the get the element tree.

• IUIAutomationElement ⇤ rootElem
Pointer to the root element in the UIA tree.

• HWND mainHwnd
Pointer to the main window, can be used to send messages back (currently not used)

• HANDLE backThreadHandle
Handle to the worker thread we are creating to listen for events.

• DWORD backThread
ID to the worker thread we are creating to listen for events.

• HANDLE eventListenerReady
Handle to the event object.

• BOOL eventHandlerAdded
If event handlers has been added or not.

• BOOL pass
If the current element is a password field or not.

• IUIAutomationCacheRequest ⇤ cache
Cache for faster retrival of attributes.

• HMONITOR last
The last monitor we saw, used to see changes in monitor.

2.15.1 Detailed Description

Handles focus change events.

This class handles focus change events, this is usually when the user changes the foreground window.
In the cache we store the following properties:

• Automation ID

• Element type (control type)

• The rectangle of each element

• If it is a password or not

• Element type name (localized control type)

• Name

• Process ID

1. Author Robin Stenvi - 2012-01-21 - 2012- 01-21 (Last modified)

2.15.2 Constructor & Destructor Documentation

2.15.2.1 focusEventHandler::focusEventHandler ()

Generated with Doxygen on May 15, 2013

2.15 focusEventHandler Class Reference 89

1. Author Robin Stenvi

2.15.3 Member Function Documentation

2.15.3.1 DWORD WINAPI focusEventHandler::listenerThreadProc (in LPVOID lpParameter) [static],
[protected]

This is where the thread runs, listening for messages and take appropriate action.

1. Author Robin Stenvi

Parameters
in lpParameter Should point to an object of the current class.

Here is the call graph for this function:

focusEventHandler::
listenerThreadProc

focusEventHandler::
registerEventHandler

focusEventHandler::
removeEventHandler

2.15.3.2 void focusEventHandler::cleanup () [protected]

Rlease object that where created on this thread.

We must not remove the event handler here, it has to be removed on the same thread that added it.

1. Author Robin Stenvi

2.15.3.3 HRESULT focusEventHandler::registerEventHandler () [protected]

Registers which events we are interested in and builds up the cache.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.15 focusEventHandler Class Reference 90

Here is the call graph for this function:

focusEventHandler::
registerEventHandler

focusEventHandler::
cleanup

2.15.3.4 ULONG STDMETHODCALLTYPE focusEventHandler::AddRef ()

1. Author Robin Stenvi

2.15.3.5 ULONG STDMETHODCALLTYPE focusEventHandler::Release ()

1. Author Robin Stenvi

2.15.3.6 HRESULT STDMETHODCALLTYPE focusEventHandler::QueryInterface (REFIID riid, void ⇤⇤ ppInterface)

1. Author Robin Stenvi

Here is the call graph for this function:

focusEventHandler::
QueryInterface

focusEventHandler::
AddRef

2.15.3.7 HRESULT STDMETHODCALLTYPE focusEventHandler::HandleFocusChangedEvent (
IUIAutomationElement ⇤ pSender)

Handles events and set the password field if necessary, also detect screen changes.

We only check the password field if we see an edit field.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.15 focusEventHandler Class Reference 91

Remarks

Checks change in screen all the time, this might be a bit time-consuming. Might be able to keep a
list of which application are on which screens and then only check for new applications, but then we
have to follow visual change and keep the list at an element basis, since an application can be on
multiple screens.

Here is the call graph for this function:

focusEventHandler::
HandleFocusChangedEvent

Events::getControlType

Keylogger::setPassword

focusEventHandler::
checkScreen

Events::fillEventInfo

Events::getRectangle

Events::sendEventUnion

2.15.3.8 HRESULT focusEventHandler::StartEventHandler (HWND hDlg)

Start the actual new thread that will see new UI Automation events.

1. Author Robin Stenvi

Parameters
in hDlg Should point to the main dialog window

Here is the call graph for this function:

focusEventHandler::
StartEventHandler

focusEventHandler::
listenerThreadProc

2.15.3.9 void focusEventHandler::Uninitialize ()

Here we tell the background thread to close down.

Generated with Doxygen on May 15, 2013

2.16 formatData Class Reference 92

1. Author Robin Stenvi

Here is the call graph for this function:

focusEventHandler::
Uninitialize

focusEventHandler::
cleanup

2.15.3.10 void focusEventHandler::removeEventHandler ()

Removes all event handlers and stops listening.

1. Author Robin Stenvi

Remarks

This have to be done on the same thread in which it was created

2.15.3.11 bool focusEventHandler::checkScreen ()

Checks which screen is currently active and send a message to server if it has changed.

1. Author Robin Stenvi

Here is the call graph for this function:

focusEventHandler::
checkScreen

handleData::writeScreenTo
Server

MyInfoEnumProc

2.16 formatData Class Reference

Retrieves the real time that an event happened at and gives it as a readable string.

Public Member Functions

• formatData ()
Retrives the current status regarding, how long since the system was booted.

• char ⇤ timeNow (DWORD time)
Gives a string with the real date and time given in the parameter.

• std::string timeNowStd (DWORD time)
Retrieves a string with the correct time, in respect to time.

Generated with Doxygen on May 15, 2013

2.16 formatData Class Reference 93

Protected Member Functions

• SYSTEMTIME getRealTime (DWORD ts)
Get the actual time when an event occurred.

Private Attributes

• SYSTEMTIME startUp
Get time when we started the application.

• DWORD millStartUp
Get number of milliseconds in respect to the previous time.

• FILETIME ft
Holds the filetime for the last time we saw.

• DWORDLONG millStartUp64
Number of milliseconds since the system was booted.

• int mult
Specify the amount of 49 days wrap-around we have.

• HANDLE mutex
The mutex that we lock when we are changing data.

2.16.1 Detailed Description

Retrieves the real time that an event happened at and gives it as a readable string.

This class also make sure that we don’t wrap around if the computer has been up for more than 49 days,
which is all that a DWORD can handle.

1. Author Robin Stenvi

2.16.2 Constructor & Destructor Documentation

2.16.2.1 formatData::formatData ()

Retrives the current status regarding, how long since the system was booted.

This information is used later to detect if the system has been up for longer than 49 days.

1. Author Robin Stenvi

2.16.3 Member Function Documentation

2.16.3.1 SYSTEMTIME formatData::getRealTime (DWORD ts) [protected]

Get the actual time when an event occurred.

1. Author Robin Stenvi

Parameters
in ts Milliseconds since the system started, that the event happened

Generated with Doxygen on May 15, 2013

2.16 formatData Class Reference 94

Returns

The real time that the parameter represent.

Remarks

Will use a mutex to verify that no other thread is working on the time objects

2.16.3.2 char ⇤ formatData::timeNow (DWORD time)

Gives a string with the real date and time given in the parameter.

1. Author Robin Stenvi

Parameters
in time Number of milliseconds since the system was started

Returns

Returns a date and time with the format: YYYY-MM-DDTHH:MM:SS.mmmm

Here is the call graph for this function:

formatData::timeNow formatData::getRealTime

2.16.3.3 std::string formatData::timeNowStd (DWORD time)

Retrieves a string with the correct time, in respect to time.

1. Author Robin Stenvi

Parameters
in time Number of milliseconds since boot time that the event happened

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 95

Returns

Returns a string that is compatible with the syslog protocol

Here is the call graph for this function:

formatData::timeNowStd formatData::getRealTime

2.17 handleData Class Reference

In charge of writing all the data to the server, also does some filtering.

Classes

• struct lastAll
Holds all the previous events, is used to find which events correlate to other events.

Public Member Functions

• handleData ()
Initiate all variables and create transmission object.

• ⇠handleData ()
Need to delete everything it has used and flush all remaining output, if any.

• char ⇤ writeTime (const char ⇤sentence, int eventType)
Write time and a message to server, used at pause/resume/stop/start.

• bool writeEventToServer (eventInfoUnion ⇤out)
Takes an UI AUtomation event and writes it to the server, GUI and file if necessary.

• bool writeMouseToServer (MouseInfo out)
Takes a mouse event and writes it to the server, GUI and file if necessary.

• bool writeKeyToServer (KeyInfo out)
Takes a key event and writes it to the server, GUI and file if necessary.

• bool writeHWToServer (sysResources ⇤HW)
Takes a hardware event and writes it to the server, GUI and file if necessary.

• bool writeDevToServer (deviceInfo dev)
Takes a device event and writes it to the server, GUI and file if necessary.

• bool writeScreenToServer (Screen screen)
Takes a screen event and writes it to the server, GUI and file if necessary.

• bool writeHIDToServer (HIDDevice device)
Takes an input device event and writes it to the server, GUI and file if necessary.

• bool writeKeyboardToServer (KeyboardDevice kd)
Writes information about the keyboard to the server.

• bool writeStringToServer (std::string str)
Takes whatever string it gets and write it to the server.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 96

• void togglePaused ()
Toggles the pause value, just set it as the opposite.

• bool retPaused ()
Returns the current value of the pause variable.

• void updateSID ()
Update and set the session number.

• void setLogPort (int port)
Changes the port number we should use.

• void setLogAddr (std::wstring addr)
Changes the server adress that we should use.

• int retIntConnection ()
Returns the current connection status.

• bool initCom ()
Initiate the COM library, useful if you start a new thread on a static function.

• void setFilter (int n)
Change the current filter settings for what to display to the user.

Static Public Member Functions

• static void toggleServerStatic (void ⇤p)
Static helper function, so we can call toggleServer().

• static void sendListToServerStatic (void ⇤p)
Static function you can use when starting a new thread, function sends the list we kept when server
connection was unable.

• static void sendFullListToServerStatic (void ⇤p)
Sends completeList to server, static functions that can be used when starting a new thread.

Protected Member Functions

• char ⇤ getTimestamp (const char ⇤from)
Retrives timestamp from syslog string in a more readable format.

• std::string getTimestamp (std::string from)
Retreives the timestamp from a syslog event string.

• std::string getTimestamp (bool date=false)
Retrieves a timestamp with seconds accuracy.

• std::string getCsvMouse (MouseInfo input, int ev, int rel=0)
Retrives a mouse event in CSV format, can be used if you need to write local storage.

• std::string getCsvUIA (eventInfoUnion input, int ev, int rel=0)
Retrives a software event in CSV format, can be used if you need to write local storage.

• std::string getCsvKey (KeyInfo input, int ev, int rel=0)
Retrives a key event in CSV format, can be used if you need to write local storage.

• std::string getCsvHW (sysResources ⇤HW)
Retrives a system resource event in CSV format, can be used if you need to write local storage.

• std::string getCsvDev (deviceInfo dev)
Retrives a device insert/remove event in CSV format, can be used if you need to write local storage.

• std::string getCsvScreen (Screen screen)
Retrieves CSV format of a pysical screen change event.

• std::string getCsvHID (HIDDevice device)
Retrieves CSV version of a HID change.

• std::string getCsvKeyboard (KeyboardDevice kd)

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 97

Retrieves CSV format with informatio about a physical keyboard.
• std::string getCsvBelt (int evType, DWORD time)

Retreives a string in CSV format for the start/stop/pause/resume messages.
• std::string getCsvRectangle (RECT ⇤rect)

Retrives a rectangle in CSV format, can be used if you need to write local storage.
• std::string getFormatMouse (MouseInfo input, int rel=0)

Retrieves the complete structured data that should be sent in any mouse event.
• std::string getFormatUIA (eventInfoUnion input, int rel=0)

Gets the structured data of a software event.
• std::string getFormatKey (KeyInfo input, int rel=0)

Gets the structured data of a key event.
• std::string getFormatHW (sysResources ⇤HW)

Gets the structured data of a HW average event.
• std::string getFormatKeyboard (KeyboardDevice kd)

Retrieves the structured data with informatio about a physical keyboard.
• std::string getFormatDev (deviceInfo dev)

inline function to get structured data from a device event
• std::string getFormatScreen (Screen screen)

Gets the structured data of a screen event.
• std::string getFormatHID (HIDDevice device)

Gets the structured data of a input device event.
• std::string getFormatRectangle (RECT ⇤rect)

Returns retctangle in the form of structured data that can be sent to the server.
• std::string getEventToServer (eventInfoUnion ⇤out, int backRef, int ev=0)

Retrieves a syslog compatible message corresponding to a software event.
• std::string getMouseToServer (MouseInfo out, int backRef, int ev=0)

Retrieves a syslog compatible message corresponding to a mouse event.
• std::string getKeyToServer (KeyInfo out, int backRef, int ev=0)

Retrieves a syslog compatible message corresponding to a key event.
• std::string getHWToServer (sysResources ⇤HW, int ev=0)

Retrieves a syslog compatible message corresponding to a system resource usage.
• std::string getDevToServer (deviceInfo dev, int ev=0)

Retrieves a syslog compatible message corresponding to a device insert /remove.
• std::string getScreenToServer (Screen screen, int ev=0)

Retrieves a syslog compatible message corresponding to a physical screen change event.
• std::string getHIDToServer (HIDDevice device, int ev=0)

Retrieves a syslog compatible message corresponding to a physical device.
• std::string getKeyboardToServer (KeyboardDevice kd, int ev=0)

Retrieves a syslog compatible message corresponding to information about a keyboard.
• std::string getBeltToServer (int evType, DWORD time)

Get a syslog message corresponding to a start/stop/pause/resume in belt event.
• std::string getDescSentenceMouse (MouseInfo input, std::string finalTime)

Gets a descriptive sentence for mouse events that can be displayed to the user.
• std::string getDescSentenceKey (KeyInfo input, std::string finalTime)

Gets a descriptive sentence for key events that can be displayed to the user.
• void sendToServer (std::string str)

Send a single event to the server, the string should already be formatted correctly.
• void sendListToServer ()

Send all that is stored temporarily and send it to the server.
• void sendData (std::string data, UINT type=0)

Used to send string back to the GUI, it makes the decision whether it should be displayed or not.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 98

• BOOL writeData (std::string data)
Writes whatever data that comes in to file.

• void sendFullListToServer ()
Sends everything we have stored temporarily in a list to the server.

• void writeMissing ()
Should write any files that we didn’t have time to send, for whatever reason, should also mark it in the
profile file.

• void sendMissing ()
Should send any files that we were unable to send the last time we ran the program.

• void writeAll (std::string str)
Writes an event to file or server.

• bool startNewSession (std::string bufTmp)
Initializes all the variables needed to start a session.

• void stopCurrentSession ()
Closes a running session.

• void accessKey (KeyInfo out)
If the access key for pause (|alt|+|pause|) has been hit we tell the GUI that logging should be paused.

• void toggleServer ()
Start or stop the connection to the server, depending on what the current status is.

Static Protected Member Functions

• static void writeMissingStatic (void ⇤p)
Wrapper to sendMissing(), used when calling on a thread, will check if Internet is available every 5 seconds
and start sending as soon as Internet is available.

Private Attributes

• std::vector< std::string > completeList
Here we store all the events before sending them to the server when we have gathers MAX_FULL_LIST
events.

• std::vector< std::string > serverList
All the events we have not sent to the server yet, they are held here temporarily because the connection
to the server is down for whatever reason.

• Syslog1 ⇤ syslog
Object that handles all logs to the server.

• std::wstring fileName
The filename that we are currently writing to.

• CStdioFile file
The file that we are writing to.

• bool fileOpened
If we have an active file or not.

• bool paused
The application has paused and should not send events.

• int serverStarted
If we have a valid connection to the server or not.

• char ⇤ sessionID
Which session we are on.

• int events
Number of events in this session.

• int storageType

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 99

The current method of storage.
• bool running

Has the logging been started or stopped.
• int currFilter

What does the user want to display to the screen.
• lastAll lasts

Record of the last events in certain categories.
• eventInfoUnion ⇤ last

Record of the last Software event sent, used for filtering equal events.
• RECT ⇤ lastRect

Last active area we have seen, used to see where mouse presses went We don’t need to interpret this,
so it would maybe be more efficient to just have a std::string, especially when we don’t write a local copy.

• DWORD dwThreadList
ID for thread that sends serverList to server.

• HANDLE threadListH
Handle for thread that sends serverList to server.

• DWORD firstThreadID
ID to thread that send the previous session events to server.

• HANDLE firstThreadH
Handle to thread that send the previous session events to server.

• DWORD dwThreadSendFull
ID to the thread sending completeList to the server.

• HANDLE dwThreadSendFullH
Handle to the thread sending completeList to the server.

• CStdioFile localStorageFile
The file we use for raw output.

• std::wstring localStorageFileName
The filename for our raw output file.

• bool localFileOpened
If the file is opened.

• std::wstring localFolder
The path to our local file for raw storage.

• HANDLE rawOutputM
Mutex for our file to raw output.

• HANDLE CSVFileM
Mutex for the CSV file.

• HANDLE elemListM
Mutex for list of elements, if we store a certain amount before sending to server.

• HANDLE createThreadM
Mutex so we don’t create multiple threads on same dataset.

• HANDLE lastDataM
Mutex for lastAll struct.

• CWnd ⇤ mainDialog
Handle to the main dialog, used to post messages.

Static Private Attributes

• static const int MAX_KEYS = 10
Max number of last keys we can hold.

• static const int MAX_FULL_LIST = 500
Max number of events we store temporarily before sending it to the server is used to limit the number of
connections that need to be made.

• static const int MAX_STORAGE = 10000
Number of elements we can store locally before sending to server, each event is about 100B.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 100

2.17.1 Detailed Description

In charge of writing all the data to the server, also does some filtering.

This is the single point which all data must pass through to reach the server. All events come in as
structs representing the data, if you need more data in the future, you need to change the struct and
change how this class handles the struct. On some software events it filter equal events, but mostly it
just makes it into a syslog compatible string and send it to the server.This class also handles the pause
possibility, if the program is paused, all action will be sent here, but will not be sent to the server and
will not be stored locally. This class also correlates previous events by keeping a record of what was
the last thing that occured in different categories. It also contains a list of events in case Internet is
down or we are otherwise unable to send data to the server. If you want to send data in bulks instead of
continously, this is the place to implement it. Useful function for other parts of the program is the write⇤()
function, togglePaused(), updateSID(), retPaused(); and toggleServerStatic(). This is the API that this
class provides. The write⇤() functions should handle how the data is transmitted to the server.

1. Author Robin Stenvi - 2012-01-21 Robin Stenvi - 2012-05-04 (Last modified)

2.17.2 Constructor & Destructor Documentation

2.17.2.1 handleData::handleData ()

Initiate all variables and create transmission object.

1. Author Robin Stenvi

Remarks

This is not called between start and stop, so be vary of what is initialized here.

Here is the call graph for this function:

handleData::handleData

SettingDialog::retStorage

s2ws

Syslog1::retID

handleData::writeMissing
Static

2.17.2.2 handleData::⇠handleData ()

Need to delete everything it has used and flush all remaining output, if any.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 101

Here we stop any threads that are still running and if there are events in memory we have not sent yet,
we will write them to local file and send them on next startup.

1. Author Robin Stenvi

Here is the call graph for this function:

handleData::~handleData

handleData::writeMissing

Events::deleteEventUnion

2.17.3 Member Function Documentation

2.17.3.1 char ⇤ handleData::getTimestamp (const char ⇤ from) [protected]

Retrives timestamp from syslog string in a more readable format.

1. Author Robin Stenvi

Parameters
in from The complete syslog string that is sent to the server.

Returns

Returns a string with the time and date only

2.17.3.2 std::string handleData::getTimestamp (std::string from) [protected]

Retreives the timestamp from a syslog event string.

1. Author Robin Stenvi

Parameters
in from The entire syslog event string

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 102

Returns

Returns the timestamp.

Here is the call graph for this function:

handleData::getTimestamp getBetweenChar

2.17.3.3 std::string handleData::getTimestamp (bool date = false) [protected]

Retrieves a timestamp with seconds accuracy.

1. Author Robin Stenvi

Parameters
in date Specify whether you should have date with time or just time.

Returns

Returns an std::string with the format (YYYY-MM-DD) HH:MM:SS. If an error happened, the time
will be ErrorClock or ErrorDate.

2.17.3.4 std::string handleData::getCsvMouse (MouseInfo input, int ev, int rel = 0) [protected]

Retrives a mouse event in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in input Structure containing information about a mouse event
in ev The correct event number
in rel A pointer to which this event is in relation to

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 103

Returns

Returns a mouse event in CSV format.

Here is the call graph for this function:

handleData::getCsvMouse

intToString

dwordToString

handleData::getCsvRectangle

2.17.3.5 std::string handleData::getCsvUIA (eventInfoUnion input, int ev, int rel = 0) [protected]

Retrives a software event in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in input Structure containing information about a software event
in ev The correct event number
in rel A pointer to which this event is in relation to

Returns

Returns a software event in CSV format.

Here is the call graph for this function:

handleData::getCsvUIA

intToString

dwordToString

handleData::getCsvRectangle

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 104

2.17.3.6 std::string handleData::getCsvKey (KeyInfo input, int ev, int rel = 0) [protected]

Retrives a key event in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in input Structure containing information about a key event
in ev The correct event number.
in rel A pointer to which this event is in relation to

Returns

Returns a key event in CSV format.

Here is the call graph for this function:

handleData::getCsvKey

intToString

dwordToString

2.17.3.7 std::string handleData::getCsvHW (sysResources ⇤ HW) [protected]

Retrives a system resource event in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in HW Structure containing information about a system resource event

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 105

Returns

Returns a system resource event in CSV format. Returns ErrorCsv if we fail.

Here is the call graph for this function:

handleData::getCsvHW

intToString

dwordToString

2.17.3.8 std::string handleData::getCsvDev (deviceInfo dev) [protected]

Retrives a device insert/remove event in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in dev Structure containing information about a device insert/remove event

Returns

Returns a system resource event in CSV format.

Here is the call graph for this function:

handleData::getCsvDev

intToString

dwordToString

2.17.3.9 std::string handleData::getCsvScreen (Screen screen) [protected]

Retrieves CSV format of a pysical screen change event.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 106

1. Author Robin Stenvi

Parameters
in screen A structure with information about the screen

Returns

Returns the string in CSV format or ErrorCsv

Here is the call graph for this function:

handleData::getCsvScreen

intToString

handleData::getCsvRectangle

dwordToString

2.17.3.10 std::string handleData::getCsvHID (HIDDevice device) [protected]

Retrieves CSV version of a HID change.

1. Author Robin Stenvi

Parameters
in device Struct containing information about the change.

Returns

Returns the string in CSV format or ErrorCsv

Here is the call graph for this function:

handleData::getCsvHID

intToString

dwordToString

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 107

2.17.3.11 std::string handleData::getCsvKeyboard (KeyboardDevice kd) [protected]

Retrieves CSV format with informatio about a physical keyboard.

1. Author Robin Stenvi

Parameters
in kd Structure containing information about the keyboard

Returns

Returns the string in CSV format or ErrorCsv

Here is the call graph for this function:

handleData::getCsvKeyboard

intToString

dwordToString

2.17.3.12 std::string handleData::getCsvBelt (int evType, DWORD time) [protected]

Retreives a string in CSV format for the start/stop/pause/resume messages.

1. Author Robin Stenvi The line has the follow-
ing format event,start/stop/pause/resume,time

Parameters
in evType Says whether it is start/stop/pause/resume, can be one of the follow-

ing values: LISTENER_START, LISTENER_STOP, LISTENER_PAU-
SE, LISTENER_RESUME, if not it returns ERROR

in time Timestamp for when the event happened.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 108

Returns

Returns a string representing the whole event in CSV format, ends in newline.

Here is the call graph for this function:

handleData::getCsvBelt

intToString

dwordToString

2.17.3.13 std::string handleData::getCsvRectangle (RECT ⇤ rect) [protected]

Retrives a rectangle in CSV format, can be used if you need to write local storage.

1. Author Robin Stenvi

Parameters
in rect The pointer to a rectangle

Returns

Returns a rectangle in CSV format: bottom,right,top,left

2.17.3.14 std::string handleData::getFormatMouse (MouseInfo input, int rel = 0) [protected]

Retrieves the complete structured data that should be sent in any mouse event.

1. Author Robin Stenvi

Parameters
in input A single mouse event
in rel Which event is this correlated with

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 109

Returns

Structured data to be used as part of a message to the server

Here is the call graph for this function:

handleData::getFormatMouse intToString

handleData::getFormatRectangle

2.17.3.15 std::string handleData::getFormatUIA (eventInfoUnion input, int rel = 0) [protected]

Gets the structured data of a software event.

1. Author Robin Stenvi

Parameters
in input A software event
in rel Which event is this correlated with

Returns

Structured data to be used as part of a message to the server

Here is the call graph for this function:

handleData::getFormatUIA intToString

handleData::getFormatRectangle

2.17.3.16 std::string handleData::getFormatKey (KeyInfo input, int rel = 0) [protected]

Gets the structured data of a key event.

1. Author Robin Stenvi

Parameters
in input A key event
in rel Which event is this correlated with

Returns

Structured data to be used as part of a message to the server

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 110

Here is the call graph for this function:

handleData::getFormatKey intToString

2.17.3.17 std::string handleData::getFormatHW (sysResources ⇤ HW) [protected]

Gets the structured data of a HW average event.

1. Author Robin Stenvi

Parameters
in HW A HW average event

Returns

Structured data to be used as part of a message to the server

Here is the call graph for this function:

handleData::getFormatHW intToString

2.17.3.18 std::string handleData::getFormatKeyboard (KeyboardDevice kd) [protected]

Retrieves the structured data with informatio about a physical keyboard.

1. Author Robin Stenvi

Parameters
in kd Structure containing information about the keyboard

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 111

Returns

Returns the string in CSV format or ErrorServer

Here is the call graph for this function:

handleData::getFormatKeyboard intToString

2.17.3.19 std::string handleData::getFormatScreen (Screen screen) [protected]

Gets the structured data of a screen event.

1. Author Robin Stenvi

Parameters
in screen A screen event

Returns

Structured data to be used as part of a message to the server

Here is the call graph for this function:

handleData::getFormatScreen intToString

handleData::getFormatRectangle

2.17.3.20 std::string handleData::getFormatHID (HIDDevice device) [protected]

Gets the structured data of a input device event.

1. Author Robin Stenvi

Parameters
in device A input device event

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 112

Returns

Structured data to be used as part of a message to the server

Here is the call graph for this function:

handleData::getFormatHID intToString

2.17.3.21 std::string handleData::getFormatRectangle (RECT ⇤ rect) [protected]

Returns retctangle in the form of structured data that can be sent to the server.

1. Author Robin Stenvi

Parameters
in rect The rectangle which we are going to make a string out of.

Returns

Returns the actual string in the following format: bottY="a" topY="b" leftX="c" rightX="d", If anythin
fails, ErrorFormatRectangle is returned.

Remarks

Only formats the rectangle part, this is one part of a larger message

Here is the call graph for this function:

handleData::getFormatRectangle intToString

2.17.3.22 std::string handleData::getEventToServer (eventInfoUnion ⇤ out, int backRef, int ev = 0)
[protected]

Retrieves a syslog compatible message corresponding to a software event.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 113

1. Author Robin Stenvi

Parameters
in out The structure representing an event
in backRef An int representing which message this correlates with
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getEventToServer

printUSASCII

handleData::getFormatUIA

intToString

Syslog1::constructMessageStd

2.17.3.23 std::string handleData::getMouseToServer (MouseInfo out, int backRef, int ev = 0)
[protected]

Retrieves a syslog compatible message corresponding to a mouse event.

1. Author Robin Stenvi

Parameters
in out The structure representing an event
in backRef An int representing which message this correlates with
in ev Which event number this is, default is zero, which means the current

event number

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 114

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getMouseToServer

handleData::getFormatMouse

intToString

Syslog1::constructMessageStd

2.17.3.24 std::string handleData::getKeyToServer (KeyInfo out, int backRef, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to a key event.

1. Author Robin Stenvi

Parameters
in out The structure representing an event
in backRef An int representing which message this correlates with
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getKeyToServer

handleData::getFormatKey

intToString

Syslog1::constructMessageStd

2.17.3.25 std::string handleData::getHWToServer (sysResources ⇤ HW, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to a system resource usage.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 115

1. Author Robin Stenvi

Parameters
in HW The structure representing an event
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getHWToServer

handleData::getFormatHW

intToString

Syslog1::constructMessageStd

2.17.3.26 std::string handleData::getDevToServer (deviceInfo dev, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to a device insert /remove.

1. Author Robin Stenvi

Parameters
in dev The structure representing an event
in ev Which event number this is, default is zero, which means the current

event number

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 116

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getDevToServer

handleData::getFormatDev

intToString

Syslog1::constructMessageStd

2.17.3.27 std::string handleData::getScreenToServer (Screen screen, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to a physical screen change event.

1. Author Robin Stenvi

Parameters
in screen The structure representing an event
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getScreenToServer

handleData::getFormatScreen

intToString

Syslog1::constructMessageStd

2.17.3.28 std::string handleData::getHIDToServer (HIDDevice device, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to a physical device.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 117

1. Author Robin Stenvi

Parameters
in device The structure representing an event
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getHIDToServer

intToString

handleData::getFormatHID

Syslog1::constructMessageStd

2.17.3.29 std::string handleData::getKeyboardToServer (KeyboardDevice kd, int ev = 0) [protected]

Retrieves a syslog compatible message corresponding to information about a keyboard.

1. Author Robin Stenvi

Parameters
in kd The structure representing an event
in ev Which event number this is, default is zero, which means the current

event number

Returns

Returns the message on success or a syslog compatible error message on failure.

Here is the call graph for this function:

handleData::getKeyboardTo
Server

handleData::getFormatKeyboard

intToString

Syslog1::constructMessageStd

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 118

2.17.3.30 std::string handleData::getBeltToServer (int evType, DWORD time) [protected]

Get a syslog message corresponding to a start/stop/pause/resume in belt event.

1. Author Robin Stenvi

Parameters
in evType Value between 1 and 4 determining if we start/stop...
in time The tick count when the event happened

Returns

Returns a syslog compatible string.

Here is the call graph for this function:

handleData::getBeltToServer

intToString

Syslog1::constructMessageStd

2.17.3.31 std::string handleData::getDescSentenceMouse (MouseInfo input, std::string finalTime)
[protected]

Gets a descriptive sentence for mouse events that can be displayed to the user.

1. Author Robin Stenvi

Parameters
in input A mouse event
in finalTime The time the event occurred

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 119

Returns

A string that can be printed to the user

Here is the call graph for this function:

handleData::getDescSentence
Mouse

intToString

2.17.3.32 std::string handleData::getDescSentenceKey (KeyInfo input, std::string finalTime) [protected]

Gets a descriptive sentence for key events that can be displayed to the user.

1. Author Robin Stenvi

Parameters
in input A key event
in finalTime The time the event occurred

Returns

{A string that can be printed to the user}

2.17.3.33 void handleData::sendToServer (std::string str) [protected]

Send a single event to the server, the string should already be formatted correctly.

If it is unable to send the event, it will store it temporarily and send it later. If too many events happen
and we are not able to send it to the server, we will delete them, but keep the original event number so
the server know how many events are missing.

1. Author Robin Stenvi

Parameters
in str points to a syslog compatible message that can be sent directly to the

server

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 120

Remarks

Might do local storage to file here, so it can be sent later, the timestamp will contain a date so there
is no problem doing that.

Here is the call graph for this function:

handleData::sendToServer

Syslog1::sendMessage

handleData::writeData

handleData::writeMissing

handleData::sendListToServer
Static

2.17.3.34 void handleData::sendListToServer () [protected]

Send all that is stored temporarily and send it to the server.

1. Author Robin Stenvi

Remarks

Should run this on a separate thread to avoid that the program become unresponsive. Does not
check if messages were successfully sent. This function will clear sendList

Here is the call graph for this function:

handleData::sendListToServer Syslog1::sendMessage

2.17.3.35 void handleData::sendData (std::string data, UINT type = 0) [protected]

Used to send string back to the GUI, it makes the decision whether it should be displayed or not.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 121

1. Author Robin Stenvi

Parameters
in data The string that should be sent.
in type 0 means write it to file, non-zero means display it to the GUI, type then

says what type of event it was.

2.17.3.36 BOOL handleData::writeData (std::string data) [protected]

Writes whatever data that comes in to file.

1. Author Robin Stenvi

Parameters
in data The string that should be written.

Returns

TRUE if we can write to file, FALSE otherwise.

2.17.3.37 void handleData::sendFullListToServer () [protected]

Sends everything we have stored temporarily in a list to the server.

1. Author Robin Stenvi

Remarks

This function can only run on one thread, and that thread need should only do this. It will read and
send 10 events, then it will lock the mutex and delete those 10 events. Since this function is always
working on the first events and other function add to the end, we only need to lock the mutex when
deleting events. If the events happen rapidly enough, this thread will never end.

Here is the call graph for this function:

handleData::sendFullList
ToServer

handleData::sendToServer

2.17.3.38 void handleData::writeMissing () [protected]

Should write any files that we didn’t have time to send, for whatever reason, should also mark it in the
profile file.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 122

1. Author Robin Stenvi

Here is the call graph for this function:

handleData::writeMissing openFile

2.17.3.39 void handleData::sendMissing () [protected]

Should send any files that we were unable to send the last time we ran the program.

1. Author Robin Stenvi

Remarks

Unknown how much time this will take, so it is probably best to call it on a separate thread.

Here is the call graph for this function:

handleData::sendMissing

openFile

handleData::sendToServer

ws2s

2.17.3.40 void handleData::writeAll (std::string str) [protected]

Writes an event to file or server.

Whether it writes it to server or file depends on what the current setting is. Whenever you need to send
an event, you can call this function and it will handle the remaining logic, but the string must be formatted
correctly.

1. Author Robin Stenvi

Parameters
in str The string that should be logged.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 123

Here is the call graph for this function:

handleData::writeAll

handleData::sendFullList
ToServerStatic

handleData::sendToServer

2.17.3.41 void handleData::writeMissingStatic (void ⇤ p) [static], [protected]

Wrapper to sendMissing(), used when calling on a thread, will check if Internet is available every 5
seconds and start sending as soon as Internet is available.

1. Author Robin Stenvi

Parameters
in p Unused

Here is the call graph for this function:

handleData::writeMissing
Static

handleData::retIntConnection

handleData::sendMissing

2.17.3.42 bool handleData::startNewSession (std::string bufTmp) [protected]

Initializes all the variables needed to start a session.

1. Author Robin Stenvi

Parameters
in bufTmp A string containing the current date and time, with the format Y-m-d

H-M-S

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 124

Remarks

This function is not enough to start a new session, to start or stop a new session, you should use
writeTime with the appropriate parameter.

Returns

Returns true on success, false on failure.

Here is the call graph for this function:

handleData::startNewSession

SettingDialog::retStorage

s2ws

Syslog1::retSession

openFile

2.17.3.43 void handleData::stopCurrentSession () [protected]

Closes a running session.

1. Author Robin Stenvi This function will flush
and close any files and start a thread that
sends remaining events to server. This func-

tion will also delete any variables we don’t
need anymore.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 125

Remarks

This function should always be called before exiting the application. The user will not probably do it,
so we have to do it.

Here is the call graph for this function:

handleData::stopCurrentSession

handleData::sendFullList
ToServerStatic

Events::deleteEventUnion

getProfileInfo

writeProfileInfo

2.17.3.44 void handleData::accessKey (KeyInfo out) [protected]

If the access key for pause (|alt|+|pause|) has been hit we tell the GUI that logging should be paused.

1. Author Robin Stenvi

Parameters
in out The key event that occurred.

2.17.3.45 void handleData::toggleServer () [protected]

Start or stop the connection to the server, depending on what the current status is.

Do not call this directly, instead call handleData::toggleServerStatic. If the last time we called this func-
tion it failed, we will wait 10 seconds. That way, this function can be called repeatedly when we fail.

1. Author Robin Stenvi

Here is the call graph for this function:

handleData::toggleServer Syslog1::startTls

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 126

2.17.3.46 char ⇤ handleData::writeTime (const char ⇤ sentence, int eventType)

Write time and a message to server, used at pause/resume/stop/start.

1. Author Robin Stenvi

Parameters
in sentence The string that should be written to the user, does not affect what is

sent to the server
in eventType Says whether the event is sart/stop/pause/resume

Returns

A string containing the sentence that is sent in and a timestamp, saying when the event occurred.

Here is the call graph for this function:

handleData::writeTime

handleData::getTimestamp

handleData::startNewSession

handleData::getCsvBelt

handleData::getBeltToServer

handleData::writeAll

handleData::stopCurrentSession

2.17.3.47 bool handleData::writeEventToServer (eventInfoUnion ⇤ out)

Takes an UI AUtomation event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in out Pointer to the software event, should be allocated with new

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 127

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeEventTo
Server

Events::deleteEventUnion

handleData::getEventToServer

handleData::getCsvUIA

handleData::writeAll

handleData::sendData

2.17.3.48 bool handleData::writeMouseToServer (MouseInfo out)

Takes a mouse event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in out Mouse event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 128

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeMouseTo
Server

handleData::getMouseToServer

handleData::getCsvMouse

handleData::writeAll

handleData::getDescSentence
Mouse

handleData::getTimestamp

handleData::sendData

2.17.3.49 bool handleData::writeKeyToServer (KeyInfo out)

Takes a key event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in out Key event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 129

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeKeyToServer

handleData::accessKey

handleData::getKeyToServer

handleData::getCsvKey

handleData::writeAll

handleData::getDescSentenceKey

handleData::getTimestamp

handleData::sendData

2.17.3.50 bool handleData::writeHWToServer (sysResources ⇤ HW)

Takes a hardware event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in HW Pointer to the hardware event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 130

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeHWToServer

handleData::getHWToServer

handleData::getCsvHW

handleData::writeAll

handleData::sendData

2.17.3.51 bool handleData::writeDevToServer (deviceInfo dev)

Takes a device event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in dev Device event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 131

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeDevToServer

handleData::getDevToServer

handleData::getCsvDev

handleData::writeAll

handleData::sendData

2.17.3.52 bool handleData::writeScreenToServer (Screen screen)

Takes a screen event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in screen Screen event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 132

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeScreenTo
Server

handleData::getScreenToServer

handleData::getCsvScreen

handleData::writeAll

handleData::sendData

2.17.3.53 bool handleData::writeHIDToServer (HIDDevice device)

Takes an input device event and writes it to the server, GUI and file if necessary.

1. Author Robin Stenvi

Parameters
in device Input device event

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 133

Remarks

Need to make sure the above is correct

Here is the call graph for this function:

handleData::writeHIDToServer

getBetweenChar

handleData::getHIDToServer

handleData::getCsvHID

handleData::writeAll

handleData::sendData

2.17.3.54 bool handleData::writeKeyboardToServer (KeyboardDevice kd)

Writes information about the keyboard to the server.

1. Author Robin Stenvi

Parameters
in kd Information about the keyboard

Returns

Returns false if we filtered out the event or it was otherwise not sent, true if we sent the event to all
configured sources.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 134

Here is the call graph for this function:

handleData::writeKeyboard
ToServer

handleData::getKeyboardTo
Server

handleData::getCsvKeyboard

handleData::writeAll

handleData::sendData

2.17.3.55 bool handleData::writeStringToServer (std::string str)

Takes whatever string it gets and write it to the server.

1. Author Robin Stenvi

Parameters
in str The string that should be written

Returns

Returns true of we are successful, false otherwise.

Here is the call graph for this function:

handleData::writeStringTo
Server

Syslog1::sendMessage

2.17.3.56 void handleData::toggleServerStatic (void ⇤ p) [static]

Static helper function, so we can call toggleServer().

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 135

1. Author Robin Stenvi

Parameters
in p An object to handleData

2.17.3.57 void handleData::sendListToServerStatic (void ⇤ p) [static]

Static function you can use when starting a new thread, function sends the list we kept when server
connection was unable.

1. Author Robin Stenvi

Parameters
in p Unused

Remarks

This function initialized the COM library.

Here is the call graph for this function:

handleData::sendListToServer
Static

handleData::initCom

handleData::sendListToServer

2.17.3.58 void handleData::sendFullListToServerStatic (void ⇤ p) [static]

Sends completeList to server, static functions that can be used when starting a new thread.

1. Author Robin Stenvi

Parameters
in p Unused

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 136

Remarks

This function initialized the COM library.

Here is the call graph for this function:

handleData::sendFullList
ToServerStatic

handleData::initCom

handleData::sendFullList
ToServer

2.17.3.59 bool handleData::retPaused ()

Returns the current value of the pause variable.

1. Author Robin Stenvi

Returns

true if paused otherwise falsed, also if it has stopped

2.17.3.60 void handleData::updateSID ()

Update and set the session number.

Updates and sets the session number by calling the syslogs generate SID. If no SID is set it is set to 0.
If the SID is set is is is incremented and the handleDatas SID is set to the new SID.

1. Author Magnus Øverbø - 12.03.2013

Here is the call graph for this function:

handleData::updateSID

Syslog1::generateSID

Syslog1::retSession

2.17.3.61 void handleData::setLogPort (int port)

Changes the port number we should use.

Generated with Doxygen on May 15, 2013

2.17 handleData Class Reference 137

1. Author Robin Stenvi

Parameters
in port The port number that should be used

Here is the call graph for this function:

handleData::setLogPort Syslog1::setIpandPort

2.17.3.62 void handleData::setLogAddr (std::wstring addr)

Changes the server adress that we should use.

1. Author Robin Stenvi

Parameters
in addr The server address

Here is the call graph for this function:

handleData::setLogAddr Syslog1::setIpandPort

2.17.3.63 bool handleData::initCom ()

Initiate the COM library, useful if you start a new thread on a static function.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.18 HIDDevice Struct Reference 138

Returns

Returns true if we are successful, false if we don’t succeed.

Here is the call graph for this function:

handleData::initCom Syslog1::initCom

2.17.4 Member Data Documentation

2.17.4.1 std::vector<std::string> handleData::serverList [private]

All the events we have not sent to the server yet, they are held here temporarily because the connection
to the server is down for whatever reason.

When we reach MAX_STORAGE events we clear it regardless if they are sent or not.

2.17.4.2 const int handleData::MAX STORAGE = 10000 [static], [private]

Number of elements we can store locally before sending to server, each event is about 100B.

Is used if connection is lost, now we store 1MB before removing it all if we still have not gotten a
connection

2.18 HIDDevice Struct Reference

Information about an input device.

Public Attributes

• std::string name
The full name of the device.

• int type
mouse/keyboard = 0/1, directly from RAWINPUTHEADER

• HANDLE ID
Internal identifier for the device.

• DWORD time
The moment we registered it.

• int num
This number in the list.

• bool first
If this is the first time we have seen this.

Generated with Doxygen on May 15, 2013

2.19 HWMonitor Class Reference 139

2.18.1 Detailed Description

Information about an input device.

Contains HANDLE which is used internally to identify which device we are looking at. A name which
is sent to the server and can be used there to identify which input device is used. An int value which
determines whether it is a mouse or a keyboard, and a timestamp, which says when we collected the
information.

2.19 HWMonitor Class Reference

Class for monitoring Hardware usage.

Public Member Functions

• HWMonitor ()
Only need to mark that we haven’t run the CPU measurement before.

• ⇠HWMonitor ()
Empty destructor.

• bool getCpuLoad (double &cpuLoad)
Gets the average CPU load between two measurements, the first measurement will not give a value.

• bool closeCpuLoad ()
Close the CPU load measurements.

• bool getMemLoad (long &memLoad)
Get current memory usage in %.

Private Attributes

• PDH_STATUS statusCpu
Variable for our query.

• PDH_FMT_COUNTERVALUE valueCpu
Return value from our query.

• HQUERY queryCpu
The actual query.

• HCOUNTER counterCpu
The counter for each query.

• DWORD retCpu
The counter type.

• bool firstCpu
If this is the first time we monitor the CPU.

2.19.1 Detailed Description

Class for monitoring Hardware usage.

Can monitor average CPU and memory usage, has to be called in intervals. The intervals can be
irregular but there should be at least 1 second between each call. The memory usage monitor is not an
average, but it doesn’t change often.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.19 HWMonitor Class Reference 140

2.19.2 Constructor & Destructor Documentation

2.19.2.1 HWMonitor::HWMonitor ()

Only need to mark that we haven’t run the CPU measurement before.

1. Author Robin Stenvi

2.19.2.2 HWMonitor::⇠HWMonitor ()

Empty destructor.

1. Author Robin Stenvi

2.19.3 Member Function Documentation

2.19.3.1 bool HWMonitor::getCpuLoad (double & cpuLoad)

Gets the average CPU load between two measurements, the first measurement will not give a value.

1. Author Robin Stenvi

Parameters
out cpuLoad The average CPU laod since last measurement

Returns

false if we were unable to get a real value for whatever reason.

2.19.3.2 bool HWMonitor::closeCpuLoad ()

Close the CPU load measurements.

1. Author Robin Stenvi

Returns

Returns true if we are successful.

2.19.3.3 bool HWMonitor::getMemLoad (long & memLoad)

Get current memory usage in %.

1. Author Robin Stenvi

Parameters
out memLoad Memory laod in percent

Returns

Returns true if we are successful.

Generated with Doxygen on May 15, 2013

2.20 KeyboardDevice Struct Reference 141

2.20 KeyboardDevice Struct Reference

Contains information about a keyboard device.

Public Attributes

• int keyType
Key type (qwerty etc.) can 0 to 7.

• int lang
Language identifier, contains only the lower word.

• DWORD time
The moment we registered it.

• DWORD funcKeys
The number of function keys.

• DWORD keys
The total number of keys.

2.20.1 Detailed Description

Contains information about a keyboard device.

2.20.2 Member Data Documentation

2.20.2.1 int KeyboardDevice::keyType

Key type (qwerty etc.) can 0 to 7.

See http://msdn.microsoft.com/en-us/library/windows/desktop/ms724336%28v=vs.-
85%29.aspx

2.20.2.2 int KeyboardDevice::lang

Language identifier, contains only the lower word.

See http://msdn.microsoft.com/en-us/library/windows/desktop/dd318691%28v=vs.-
85%29.aspx

2.21 KeyInfo Struct Reference

All variable info we need to write about a key event.

Public Attributes

• UINT type
What type of key event.

• DWORD keyCode
The virtual key code representing a key on the keyboard.

• std::string keyevent
Says whether the event is up or down (U/D)

• std::string keydescription
localized name of the keyCode, is ASCII if possible otherwise it is a name enclosed in |

• UINT timestamp

Generated with Doxygen on May 15, 2013

2.22 Keylogger Class Reference 142

Number of milliseconds since the system started, representing when the event happened.
• UINT flags

Determines which function keys are currently held down.
• UINT count

How many characters are sent.

2.21.1 Detailed Description

All variable info we need to write about a key event.

2.22 Keylogger Class Reference

Collect and organizes keyboard events before they are written to disk.

Public Member Functions

• Keylogger ()
Constructor initializes all data.

• ⇠Keylogger ()
Deletes all the data.

• void setLLEvent (WPARAM wParam, KBDLLHOOKSTRUCT kbdll)
Sets keyinfo to contain all the relevant data, sends all previus data if keypress is up.

• void setPassword (BOOL b)
If parameter is true, it will filter text until a false parameter is set.

• void registerState ()
Registers the state of all keys on the keyboard.

Protected Member Functions

• keyType retKeyevent (WPARAM wParam, KeyInfo &keyinfo)
Sets if keyevent is system key and up or down.

• bool setData (DWORD vkCode, keyType type, KeyInfo &keyinfo)
Uses virtual key codes to fins a readable ASCII replacement.

• bool findKeyDown (DWORD vkCode)
Finds if we have seen the key before and it has not been released.

• int getKeyCount (DWORD vkCode)
Gets the number of key down events we saw, before this event.

• bool escapeKey (std::string &fin, unsigned char ch)
Escapes a key into a more readable format.

Private Attributes

• int counter
Our current place in the countInfo array.

• countStruct ⇤ countInfo
Holds how many key down events we have recieved for a given key Can be used to print number of events
sent, instead of printing each on a seperate line.

• keyType last
The last key event we recieved.

Generated with Doxygen on May 15, 2013

2.22 Keylogger Class Reference 143

• BOOL isPassword
Determines if we have detected a password field.

• UINT currFlag
The set of function keys currenlty pressed.

• BYTE allKeys [256]
The current state of all keys on the keyboard.

Static Private Attributes

• static const int MAX_ARRAY = 100
Max number of elements in the countInfo array.

2.22.1 Detailed Description

Collect and organizes keyboard events before they are written to disk.

This class recives key events immediately after they happen, they then organize all the data into the
struct KeyInfo and send the data further to handleData.

1. Author Robin Stenvi - 2012-01-21

2.22.2 Constructor & Destructor Documentation

2.22.2.1 Keylogger::Keylogger ()

Constructor initializes all data.

1. Author Robin Stenvi

2.22.2.2 Keylogger::⇠Keylogger ()

Deletes all the data.

1. Author Robin Stenvi

2.22.3 Member Function Documentation

2.22.3.1 keyType Keylogger::retKeyevent (WPARAM wParam, KeyInfo & keyinfo) [protected]

Sets if keyevent is system key and up or down.

1. Author Robin Stenvi

Parameters
in wParam Indicate the type of key event
out keyinfo Strucure defining a key event

Returns

Returns UP, DOWN or UNKNOWN.

Generated with Doxygen on May 15, 2013

2.22 Keylogger Class Reference 144

2.22.3.2 bool Keylogger::setData (DWORD vkCode, keyType type, KeyInfo & keyinfo) [protected]

Uses virtual key codes to fins a readable ASCII replacement.

This can be used as a fail-safe, if we are unable to find the key with any other method. This function will
also change allKeys if it was one of the meaningful system keys.

1. Author Robin Stenvi

Parameters
in vkCode Virtual key code
in type Wether the key was UP or DOWN.
out keyinfo Sets keydescription to a readable format.

Returns

Returns true if we managed to find a value for the key code

2.22.3.3 bool Keylogger::findKeyDown (DWORD vkCode) [protected]

Finds if we have seen the key before and it has not been released.

Should only be called on key down events. If we have seen that event before we will mark another key
down event for that specific key.

1. Author Robin Stenvi

Parameters
in vkCode The virtual key code.

Returns

Returns true if we have seen that key before.

2.22.3.4 int Keylogger::getKeyCount (DWORD vkCode) [protected]

Gets the number of key down events we saw, before this event.

This function also cleans up in countInfo

1. Author Robin Stenvi

Parameters
in vkCode Cirtual key code

Returns

Returns the number of key down event we saw before we saw a key up event.

2.22.3.5 bool Keylogger::escapeKey (std::string & fin, unsigned char ch) [protected]

Escapes a key into a more readable format.

The ToAscii function sometimes return values that are not readable, but they preserve the context of

Generated with Doxygen on May 15, 2013

2.22 Keylogger Class Reference 145

the keypress, if they exist as an ASCII value it will be returned. This function tries to find a name for all
possible values.

Parameters
out fin where to place the value
in ch The character you received from ToAscii()

1. Author Robin Stenvi

Returns

Returns true if we succeed, false if we fail, if we fail, you need a different way to find what the letter
is, if we return false, nothing has been done with fin.

2.22.3.6 void Keylogger::setLLEvent (WPARAM wParam, KBDLLHOOKSTRUCT kbdll)

Sets keyinfo to contain all the relevant data, sends all previus data if keypress is up.

Sets all the data that we gather from a low level key event, this can be gathered for further storage and
analysis or it can be written directly to file.

1. Author Robin Stenvi

Parameters
in wParam Type of key event
in kbdll Information about the key

Here is the call graph for this function:

Keylogger::setLLEvent

Keylogger::retKeyevent

Keylogger::findKeyDown

Keylogger::escapeKey

Keylogger::setData

Keylogger::getKeyCount

handleData::writeKeyToServer

Generated with Doxygen on May 15, 2013

2.23 keyType Struct Reference 146

2.22.3.7 void Keylogger::setPassword (BOOL b)

If parameter is true, it will filter text until a false parameter is set.

1. Author Robin Stenvi

Parameters
in b If true we have detected a passowrd field.

2.22.3.8 void Keylogger::registerState ()

Registers the state of all keys on the keyboard.

Remarks

This function should be called immediately before we start logging keystrokes.

1. Author Robin Stenvi

2.23 keyType Struct Reference

Struct to hold the number of key down we recive for some key.

2.23.1 Detailed Description

Struct to hold the number of key down we recive for some key.

1. Author Robin Stenvi

2.24 handleData::lastAll Struct Reference

Holds all the previous events, is used to find which events correlate to other events.

Public Attributes

• int lastFC
Last focus change, used to say where the keypress went.

• int lastUIEvent
Last software event we saw.

• int lastKD [MAX_KEYS]
Last key down event number we saw.

• int lastKCount [MAX_KEYS]
Last key down count.

• DWORD lastKC [MAX_KEYS]
Last key code.

• int keyCounter
Where in the array we are.

• int lastInput
Last user input.

• int lastMD

Generated with Doxygen on May 15, 2013

2.25 Mouse Class Reference 147

Last Mouse down.
• int lastMove

Last mouse move.

2.24.1 Detailed Description

Holds all the previous events, is used to find which events correlate to other events.

2.24.2 Member Data Documentation

2.24.2.1 int handleData::lastAll::lastInput

Last user input.

Either KU, MW, MPU, MPD, or (MM?)

2.25 Mouse Class Reference

Collect and organizes mouse events before they are written to disk.

Public Member Functions

• Mouse ()
Constructor initializes all the data.

• ⇠Mouse ()
Destructor deletes all data allocated on heap.

• void setLLEvent (WPARAM wParam, MSLLHOOKSTRUCT msll)
Sets all the appropriate data in a low level event and send it to the server.

Protected Member Functions

• bool printThis (POINT &now)
returns true if the difference between to mousemoves is relevant enough to print it out

• bool difference (double a, double b)
check wether the in degrees between a and b is greater than the fixed limit

• mouseType setmouseEvent (WPARAM wParam)
Sets if event is a press, move or wheel.

• bool setLMRButton (WPARAM wParam)
1 = left, 2 = middle, 3 = right, 4 = wheel, 0 = error

Private Attributes

• MouseInfo mouseinfo
Information about one mouse event.

• POINT ⇤ lastMv
Last mouse move we saw.

• POINT ⇤ lastWrit
Last mouse move we registered and wrote down.

• double oldDegrees
Last degree change we saw, used for mouse compression.

Generated with Doxygen on May 15, 2013

2.25 Mouse Class Reference 148

• double DEGREE_CHANGE
Max degree change we allow before writing down the mouse move.

Static Private Attributes

• static const UINT REAL_DISTANCE = 10
Max distance we can get before registering the mouse move.

2.25.1 Detailed Description

Collect and organizes mouse events before they are written to disk.

This class recives mouse events immediately after they happen, they then organize all the data into the
struct MouseInfo and send the data further to handleData.

1. Author Robin Stenvi - 2012-01-21

2.25.2 Constructor & Destructor Documentation

2.25.2.1 Mouse::Mouse ()

Constructor initializes all the data.

1. Author Robin Stenvi

2.25.2.2 Mouse::⇠Mouse ()

Destructor deletes all data allocated on heap.

1. Author Robin Stenvi

2.25.3 Member Function Documentation

2.25.3.1 bool Mouse::printThis (POINT & now) [protected]

returns true if the difference between to mousemoves is relevant enough to print it out

1. Author Robin Stenvi

Parameters
in,out now The current X, Y coordinates

Generated with Doxygen on May 15, 2013

2.25 Mouse Class Reference 149

Returns

Returns true if we should print this event, false if we should not print it.

Here is the call graph for this function:

Mouse::printThis Mouse::difference

2.25.3.2 bool Mouse::difference (double a, double b) [protected]

check wether the in degrees between a and b is greater than the fixed limit

1. Author Robin Stenvi

Parameters
in a The current number of degrees
in b The last number of degrees

Returns

Returns true if the difference between a and b is larger than DEGREE_CHANGE

2.25.3.3 mouseType Mouse::setmouseEvent (WPARAM wParam) [protected]

Sets if event is a press, move or wheel.

1. Author Robin Stenvi

Parameters
in wParam Says what type of mouse event that happened, foolows from the hook.

Returns

Returns PRESS, WHEEL, MOUSE or MUNKNOWN on failure

2.25.3.4 bool Mouse::setLMRButton (WPARAM wParam) [protected]

1 = left, 2 = middle, 3 = right, 4 = wheel, 0 = error

1. Author Robin Stenvi

Parameters
in wParam Says what type of mouse event that happened, foolows from the hook.

Generated with Doxygen on May 15, 2013

2.26 MouseInfo Struct Reference 150

Returns

Returns true if we succeed, false if we fail, safe to continue regardless.

2.25.3.5 void Mouse::setLLEvent (WPARAM wParam, MSLLHOOKSTRUCT msll)

Sets all the appropriate data in a low level event and send it to the server.

1. Author Robin Stenvi

Parameters
in wParam Metadata about the mouse event (from Windows)
in msll Information about the mouse event (from Windows)

Here is the call graph for this function:

Mouse::setLLEvent

Mouse::setmouseEvent

Mouse::setLMRButton

Mouse::printThis

intToString

handleData::writeMouseTo
Server

2.26 MouseInfo Struct Reference

All variable info we need to write about a mouse event.

Public Attributes

• UINT Mtype
Tells what type of event for filtering.

• std::string type
D/U/M/W.

• std::string delta
U/D or delta value.

• std::string mouseButton

Generated with Doxygen on May 15, 2013

2.27 myWinEvent Class Reference 151

1/2/3/4 = l/R/M/W
• POINT pt

x, y coordinates
• DWORD timestamp

timestamp

2.26.1 Detailed Description

All variable info we need to write about a mouse event.

2.27 myWinEvent Class Reference

Implements MSAA functionality.

Public Member Functions

• myWinEvent ()
Initialize all variables.

• ⇠myWinEvent ()
Empty destructor.

• HRESULT registerwinEvent ()
Registers for all the events we want to receive.

• std::string getProcName (HWND hwnd, DWORD threadId)
Gets a process name based on the thread ID for the process.

• HRESULT unregisterwinEvent ()
Removed what we registered for earlier.

Static Public Member Functions

• static void WinEventProc (HWINEVENTHOOK hook, DWORD event, HWND hwnd1, LONG id-
Object, LONG idChild, DWORD dwEventThread, DWORD dwmsEventTime)

Callback function that is called when the events we registered for occur.

2.27.1 Detailed Description

Implements MSAA functionality.

There are some events we don’t retrieve from UIA, so we use MSAA to get those events.

1. Author Robin Stenvi

2.27.2 Constructor & Destructor Documentation

2.27.2.1 myWinEvent::myWinEvent ()

Initialize all variables.

1. Author Robin Stenvi

2.27.2.2 myWinEvent::⇠myWinEvent ()

Empty destructor.

Generated with Doxygen on May 15, 2013

2.27 myWinEvent Class Reference 152

1. Author Robin Stenvi

2.27.3 Member Function Documentation

2.27.3.1 void myWinEvent::WinEventProc (HWINEVENTHOOK hook, DWORD event, HWND hwnd1, LONG
idObject, LONG idChild, DWORD dwEventThread, DWORD dwmsEventTime) [static]

Callback function that is called when the events we registered for occur.

1. Author Robin Stenvi

Here is the call graph for this function:

myWinEvent::WinEventProc

ws2s

escapeLetter

myWinEvent::getProcName

Events::sendEventUnion

2.27.3.2 HRESULT myWinEvent::registerwinEvent ()

Registers for all the events we want to receive.

1. Author Robin Stenvi

Returns

Returns S_OK or E_FAIL.

Here is the call graph for this function:

myWinEvent::registerwinEvent myWinEvent::WinEventProc

Generated with Doxygen on May 15, 2013

2.28 processList Struct Reference 153

2.27.3.3 std::string myWinEvent::getProcName (HWND hwnd, DWORD threadId)

Gets a process name based on the thread ID for the process.

It will add the process ID and name to the other list if it finds it. The function is also created so that we
can retrieve the name of administrator processes without being administrator.

1. Author Robin Stenvi

Parameters
in hwnd The HWND to the application you want the name to.
in threadId The thread ID of a thread in the process.

Returns

Returns the name in the form of std::wstring.

Here is the call graph for this function:

myWinEvent::getProcName Events::getProcName

2.27.3.4 HRESULT myWinEvent::unregisterwinEvent ()

Removed what we registered for earlier.

1. Author Robin Stenvi

Returns

Returns S_OK if we succeed.

2.28 processList Struct Reference

A list of processes so we can retrieve that information faster.

Public Attributes

• std::string name
The process executable name.

• UINT ID
The process id we use when comparing.

2.28.1 Detailed Description

A list of processes so we can retrieve that information faster.

Generated with Doxygen on May 15, 2013

2.29 sendData::progressRange Struct Reference 154

2.29 sendData::progressRange Struct Reference

Holds the progress range of the progress element.

2.29.1 Detailed Description

Holds the progress range of the progress element.

2.30 propertyEventHandler Class Reference

Class that deals with all Property change events.

Public Member Functions

• propertyEventHandler ()
• ULONG STDMETHODCALLTYPE AddRef ()
• ULONG STDMETHODCALLTYPE Release ()
• HRESULT STDMETHODCALLTYPE QueryInterface (REFIID riid, void ⇤⇤ppInterface)
• HRESULT STDMETHODCALLTYPE HandlePropertyChangedEvent (IUIAutomationElement ⇤p-

Sender, PROPERTYID propertyID, VARIANT newValue)
The function that is called when a property event happens.

• HRESULT StartEventHandler (HWND hDlg)
Start the event handlers, parameter should point to main dialog.

• void Uninitialize ()
Here we tell the background thread to close down.

• void removeEventHandler ()
Removes all event handlers and stops listening.

Protected Member Functions

• void cleanup ()
Rlease object that where created on this thread.

• HRESULT registerEventHandler ()
Registers all the properties in cache and registers the events we are after.

Static Protected Member Functions

• static DWORD WINAPI listenerThreadProc (LPVOID lpParameter)
This is where the thread will run, litening for messages and take appropriate action.

Private Attributes

• LONG _refCount
Reference count.

• IUIAutomation ⇤ automation
UI Automation object we use the get the element tree.

• IUIAutomationElement ⇤ rootElem
Pointer to the root element in the UIA tree.

• HWND mainHwnd

Generated with Doxygen on May 15, 2013

2.30 propertyEventHandler Class Reference 155

Pointer to the main window, can be used to send messages back (currently not used)
• HANDLE backThreadHandle

Handle to the worker thread we are creating to listen for events.
• DWORD backThread

ID to the worker thread we are creating to listen for events.
• HANDLE eventListenerReady

Handle to the event object.
• BOOL eventHandlerAdded

If event handlers has been added or not.
• IUIAutomationCacheRequest ⇤ cache

Cache for faster retrival of attributes.

2.30.1 Detailed Description

Class that deals with all Property change events.

Receives an event if there is a visual change (VC) in the window. The cache has the following properties:

• Automation ID

• Element type (control type)

• The rectangle of each element

• Element type name (localized control type)

• Name

• Process ID

1. Author Robin Stenvi

Date

2012-01-21 - 2012-01-21 (Last modified)

2.30.2 Constructor & Destructor Documentation

2.30.2.1 propertyEventHandler::propertyEventHandler ()

1. Author Robin Stenvi

2.30.3 Member Function Documentation

2.30.3.1 DWORD WINAPI propertyEventHandler::listenerThreadProc (LPVOID lpParameter) [static],
[protected]

This is where the thread will run, litening for messages and take appropriate action.

Message "WM_BELT_UITOEVENTHANDLER_REGISTEREVENTHANDLER" registers the event han-
dler. Message "WM_BELT_BACKTHREAD_CLOSEDOWN2" closes the eventhandlers and shut down
this thread

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.30 propertyEventHandler Class Reference 156

Here is the call graph for this function:

propertyEventHandler
::listenerThreadProc

propertyEventHandler
::registerEventHandler

propertyEventHandler
::removeEventHandler

2.30.3.2 void propertyEventHandler::cleanup () [protected]

Rlease object that where created on this thread.

We must not remove the event handler here, it has to be removed on the same thread that added it.

1. Author Robin Stenvi

2.30.3.3 HRESULT propertyEventHandler::registerEventHandler () [protected]

Registers all the properties in cache and registers the events we are after.

1. Author Robin Stenvi

Returns

Returns S_OK if we succeed, otherwise it returns the HRESULT from the Windows function where
it failed.

Here is the call graph for this function:

propertyEventHandler
::registerEventHandler

propertyEventHandler
::cleanup

2.30.3.4 ULONG STDMETHODCALLTYPE propertyEventHandler::AddRef ()

Generated with Doxygen on May 15, 2013

2.30 propertyEventHandler Class Reference 157

1. Author Robin Stenvi

2.30.3.5 ULONG STDMETHODCALLTYPE propertyEventHandler::Release ()

1. Author Robin Stenvi

2.30.3.6 HRESULT STDMETHODCALLTYPE propertyEventHandler::QueryInterface (REFIID riid, void ⇤⇤
ppInterface)

1. Author Robin Stenvi

Here is the call graph for this function:

propertyEventHandler
::QueryInterface

propertyEventHandler
::AddRef

2.30.3.7 HRESULT STDMETHODCALLTYPE propertyEventHandler::HandlePropertyChangedEvent (
IUIAutomationElement ⇤ pSender, PROPERTYID propertyID, VARIANT newValue)

The function that is called when a property event happens.

1. Author Robin Stenvi

Here is the call graph for this function:

propertyEventHandler
::HandlePropertyChangedEvent

Events::fillEventInfo

Events::sendEventUnion

2.30.3.8 HRESULT propertyEventHandler::StartEventHandler (HWND hDlg)

Start the event handlers, parameter should point to main dialog.

Generated with Doxygen on May 15, 2013

2.31 Screen Struct Reference 158

1. Author Robin Stenvi

Here is the call graph for this function:

propertyEventHandler
::StartEventHandler

propertyEventHandler
::listenerThreadProc

2.30.3.9 void propertyEventHandler::Uninitialize ()

Here we tell the background thread to close down.

1. Author Robin Stenvi

Here is the call graph for this function:

propertyEventHandler
::Uninitialize

propertyEventHandler
::cleanup

2.30.3.10 void propertyEventHandler::removeEventHandler ()

Removes all event handlers and stops listening.

This have to be done on the same thread in which it was created

1. Author Robin Stenvi

2.31 Screen Struct Reference

Information about a physical screen.

Public Attributes

• HMONITOR ID
Internal ID we use to recognize screen.

• DWORD time
The time we detected the screen.

• LPRECT resolution

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 159

The rectangle representing the screen.
• int num

Which number in the list we are at.
• bool first

If ith is the first time we saw this.

2.31.1 Detailed Description

Information about a physical screen.

1. Author Robin Stenvi

2.32 sendData Class Reference

Dialog that handles everything when user wants to send local file to server.

Classes

• struct Excluded
Holds times that are excluded from the user.

• struct ExcludeIndex
Which index the timestamps points to.

• struct File
Holds all information we need to know about a file, is filled gradually.

• struct progressRange
Holds the progress range of the progress element.

• struct Thread
Information about each thread.

Public Member Functions

• sendData (CWnd ⇤pParent=NULL)
Construct that find metadata about all the files, so they are ready to be displayed.

• virtual ⇠sendData ()
Closes down each active thread.

• LRESULT OnGetDefID (WPARAM wp, LPARAM lp)
Stop cancel from being the default button when enter is pressed.

• bool sendFileToServer (int curr=-1)
Sends the selected file to server.

• afx_msg void sendToServerButton ()
Intermediary function that the button calls when the user want to send a session to the server.

• afx_msg void OnLbnSelchangefileList ()
Called when the user changes the file marked.

• afx_msg LRESULT accFileDrop (WPARAM w, LPARAM l)
The user can drag file to be included in the list.

• afx_msg void undoTimeframeExclusion ()
Removes a timeframe that has been added earlier.

• afx_msg void filterTimeframeButon ()
Filters a given timeframe that the user has given.

• afx_msg void deleteFileButton ()

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 160

Wrapper for realDeleteFile, this function supply the number in our index.
• afx_msg void OnBnClickedCancel ()

Overrides cancel button to only hide this window.

Protected Member Functions

• void setProgress (const double value, int stat=0)
Sets progress bar indicating how much is finished.

• virtual void DoDataExchange (CDataExchange ⇤pDX)
Initiatess data exchange between elements.

• void addAllFiles ()
Called each time the dialog is shown, initializes all the UI elements.

• bool readAllFiles ()
Called on initialization, reads in all files to determine metadata we can show to the user.

• bool readFileLines (File &file)
Reads in all the lines in a file and store it in the appropriate vector specified by currSel.

• std::wstring getLastLine (const std::wstring filename, int &length)
Retrieves the last line in a file, and the length of the file in lines.

• void setTotalEvents (const int n)
Sets the total number of events in a file.

• int binarySearch (const std::vector< std::wstring > arr, const SYSTEMTIME time, const bool be-
fore=true)

Modified binary search to find the index before or after our time.
• bool isExcluded (const int n, File file)

Checks if a current number is in the excluded list.
• void setCurrentFilter ()

Resets the excludedListBox and sets the correct content based on currSel.
• void realDeleteFile (File file)

Deletes a file from system and memory.
• void writeProgress (File files, int lines)

Saves our current progress to file.
• void sendPreviousFile ()

If we have unfinished files, this function will send the remaining files.

Static Protected Member Functions

• static void sendFileToServerStatic (void ⇤p)
Static function that should run on it’s own thread.

Private Attributes

• std::vector< File > files
Vector of all the available files.

• int currSel
Which item is currently selected among in fileList, points to an index in files.

• CDateTimeCtrl startDate
Time box so the user can choose what to exclude.

• CDateTimeCtrl stopDate
Time box so the user can choose what to exclude.

• CEdit remainingEvents

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 161

Edit box so we can say to the user how many events are remaining.
• CListBox excludedListBox

Unsorted list box over excluded timestamps, each index correspond to our excluded vector.
• CListBox fileList

Unsorted List of timestamps displayed to the user, each timestamp corresponds to an index in allFiles
which determines where that file is.

• CProgressCtrl serverProgress
Progress bar so we can indicate how much work remains.

• progressRange range
The range of our progress bar.

• int currProgress
If multiple threads are working, this should only be accessed with a mutex.

• CButton cancelButton
Hide button.

• Thread ⇤ threads
Array of all the running threads.

• int currThread
Number of threads that are running.

• HANDLE threadListMutex
Only one thread is allowed to create or destroy threads at a time.

• CEdit filesToServerInfo
Edit field for displaying if we send data to the server or not.

Static Private Attributes

• static const int MAX_THREADS = 20
Max number of allowed threads.

2.32.1 Detailed Description

Dialog that handles everything when user wants to send local file to server.

This is meant as an extra option for the user. If the user don’t want to send events concurrently, but
wants to decide later if the program gathered some sensitive information. The user will here be given
the option to filter out events based on when it happened.

• When the object is allocated we find all the files that has been saved for future logging. We also
read all the files to find out when they end and how many events they contain, but we do not store
all of them as it might require a lot of memory.

• When the user shows the dialog, we add start/stop timestamps for each file so the user can see
when they start and end. This is based on the work already done in the constructor.

• When the user select a file, we display how many events it contains, but we do not read it in.
Because the file might be several MB big and it could take up a lot of RAM if we do this for all the
files.

• If the user chooses to exclude a given timeframe we will just mark the timeframe as being excluded,
but we don’t know how many events that is, because we haven’t read the file yet.

• If the user wants to undo a timeframe exclusion, we just remove the times previously added.

• When the user wants to send something to the server, we first read the entire file into memory. The
we do a binary search on all the given timeframes to find out which indexes we should exclude.
Then we send each included event to the server while maintaining the progress bar. Then the file
is deleted in all places.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 162

• If the user clicks that he wants to delete a file, it is removed from all places.

Remarks

There will be a problem if the user send multiple files, should be able to handle that, have to use
arrays, where each can be the size of the number of files we have. We now this in the contructor so
it is not a problem, just more work. Our use of currSel is now a little dangerous, the user can switch
while the thread is running and then we would have a problem.

2.32.2 work

It might be hard for the user to remember when he did some sensitive work. So this mechanism could be
more clever and filter out everything that was written in a specific email for example. That would require
some redesign and much more work.

1. Author Robin Stenvi

2.32.3 Constructor & Destructor Documentation

2.32.3.1 sendData::sendData (CWnd ⇤ pParent = NULL)

Construct that find metadata about all the files, so they are ready to be displayed.

1. Author Robin Stenvi

Parameters
in pParent Sent to parent.

Here is the call graph for this function:

sendData::sendData sendData::readAllFiles

2.32.3.2 sendData::⇠sendData () [virtual]

Closes down each active thread.

1. Author Robin Stenvi

2.32.4 Member Function Documentation

2.32.4.1 void sendData::setProgress (const double value, int stat = 0) [protected]

Sets progress bar indicating how much is finished.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 163

1. Author Robin Stenvi

Parameters
in value Progress made by the thread, measured in percent, so
in stat if it’s the first time for the thread, 2 if it’s the last time and 0 is default.

Remarks

If stat is different from 0, value, should be 0.
Produces some innaccurate results if we are sending multiple files with different lengths, or if the
file has one or more lines excluded. But it does accomplish it’s objective, which is to inform the user
about the status.

Here is the call graph for this function:

sendData::setProgress s2ws

2.32.4.2 void sendData::DoDataExchange (CDataExchange ⇤ pDX) [protected], [virtual]

Initiatess data exchange between elements.

1. Author Robin Stenvi Automatically generated

Parameters
in pDX Sent to CDialogEx::DoDataExchange().

Here is the call graph for this function:

sendData::DoDataExchange

sendData::addAllFiles

sendData::sendPreviousFile

2.32.4.3 void sendData::addAllFiles () [protected]

Called each time the dialog is shown, initializes all the UI elements.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 164

The object remembers previos sessions, so this function is called to restore everything to the way it was
when the user left the last time. Is also called the first the dialog is shown.

1. Author Robin Stenvi

Here is the call graph for this function:

sendData::addAllFiles

s2ws

sendData::OnLbnSelchangefileList sendData::setTotalEvents

2.32.4.4 bool sendData::readAllFiles () [protected]

Called on initialization, reads in all files to determine metadata we can show to the user.

1. Author Robin Stenvi

Returns

Always returns true.

Here is the call graph for this function:

sendData::readAllFiles

getProfileInfo

explodegetBetweenWChar

getTimeFromString

sendData::getLastLine

writeProfileInfo

2.32.4.5 bool sendData::readFileLines (File & file) [protected]

Reads in all the lines in a file and store it in the appropriate vector specified by currSel.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 165

1. Author Robin Stenvi

Parameters
in,out file Should contain the filename and will contain all the lines afterwards.

Returns

Returns true if we secceed, otherwise false

2.32.4.6 std::wstring sendData::getLastLine (const std::wstring filename, int & length) [protected]

Retrieves the last line in a file, and the length of the file in lines.

1. Author Robin Stenvi

Parameters
in filename The file which should be read
out length The length of the file in lines.

Returns

Returns the last non-empty line of the file.

2.32.4.7 void sendData::setTotalEvents (const int n) [protected]

Sets the total number of events in a file.

1. Author Robin Stenvi

Parameters
in n The number that should be set

Here is the call graph for this function:

sendData::setTotalEvents

intToString

s2ws

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 166

2.32.4.8 int sendData::binarySearch (const std::vector< std::wstring > arr, const SYSTEMTIME time, const bool
before = true) [protected]

Modified binary search to find the index before or after our time.

1. Author Robin Stenvi

Parameters
in arr The vector with all the events.
in time The key you want to compare to
in before Says whether we are looking for the index before or after the time.

Returns

Returns the index to the first/last event that should be sent.

Here is the call graph for this function:

sendData::binarySearch

getBetweenWChar

getTimeFromString

2.32.4.9 bool sendData::isExcluded (const int n, File file) [protected]

Checks if a current number is in the excluded list.

1. Author Robin Stenvi

Parameters
in n The array index
in file The file structure containing all the necessary information

Returns

Returns true if the event should not be written, false otherwise

2.32.4.10 void sendData::setCurrentFilter () [protected]

Resets the excludedListBox and sets the correct content based on currSel.

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 167

Here is the call graph for this function:

sendData::setCurrentFilter s2ws

2.32.4.11 void sendData::sendFileToServerStatic (void ⇤ p) [static], [protected]

Static function that should run on it’s own thread.

1. Author Robin Stenvi

Parameters
in p pointer to an int that says the current index number or NULL to use

default

Here is the call graph for this function:

sendData::sendFileToServer
Static

sendData::sendFileToServer

2.32.4.12 void sendData::realDeleteFile (File file) [protected]

Deletes a file from system and memory.

1. Author Robin Stenvi

Parameters
in file The that should be deleted

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 168

Remarks

We need to use a mutex when deleting anything, because multiple threads might be running. This
function will deal with the mutex, so this function is safe to call directly.

Here is the call graph for this function:

sendData::realDeleteFile

getProfileInfo

explode

writeProfileInfo

2.32.4.13 void sendData::writeProgress (File files, int lines) [protected]

Saves our current progress to file.

openFiles contains all the files we are currently working on but are not finished with. Each file information
is separated by ";". We store three type of information about each file, the current line we are on and all
the indexes we are going to exclude, each separated by ",", the start and stop index are separated by
":". So the file format is "file1,line1,start1:stop1...startN:stopN;file1...;

1. Author Robin Stenvi

Parameters
in files Which file we are talking about
in lines How many lines have been sent

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 169

Here is the call graph for this function:

sendData::writeProgress

getProfileInfo

intToString

s2ws

writeProfileInfo

2.32.4.14 void sendData::sendPreviousFile () [protected]

If we have unfinished files, this function will send the remaining files.

1. Author Robin Stenvi

Here is the call graph for this function:

sendData::sendPreviousFile

getProfileInfo

explode

ws2s

sendData::sendFileToServer
Static

writeProfileInfo

2.32.4.15 LRESULT sendData::OnGetDefID (WPARAM wp, LPARAM lp)

Stop cancel from being the default button when enter is pressed.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 170

1. Author Robin Stenvi

Parameters
in wp Unused.
in lp Unused.

Returns

Returns MAKELONG().

2.32.4.16 bool sendData::sendFileToServer (int curr = -1)

Sends the selected file to server.

This function will first read the entire file. Then it will use the excluded timestamps to find which indexes
it should exclude, using the binarySearch(). It will then send all the events to server while maintaining
the progress bar.

1. Author Robin Stenvi

Parameters
in curr The current index to our File array.

Returns

Returns true if we succeed, false otherwise

Remarks

This function can take a while and therefore it should be called on a separate thread so the user
can do something else until it finishes. If the user wants to exit the application, this function will not
exit. One solution might be to stop sending and only delete what we have sent so far. If we do that
we should also store user configurations on that file and be sent automatically on next start-up.

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 171

Here is the call graph for this function:

sendData::sendFileToServer

sendData::readFileLines

sendData::binarySearch

handleData::retIntConnection

sendData::setProgress

sendData::writeProgress

sendData::isExcluded

handleData::writeStringTo
Server

ws2s

sendData::realDeleteFile

2.32.4.17 void sendData::sendToServerButton ()

Intermediary function that the button calls when the user want to send a session to the server.

1. Author Robin Stenvi

Remarks

This function starts a new thread which again calls the actual function.

Here is the call graph for this function:

sendData::sendToServerButton
sendData::sendFileToServer

Static

Generated with Doxygen on May 15, 2013

2.32 sendData Class Reference 172

2.32.4.18 void sendData::OnLbnSelchangefileList ()

Called when the user changes the file marked.

1. Author Robin Stenvi

Remarks

We should change the timestamps to the start and stop accordingly, we also set number of events
in that file.

Here is the call graph for this function:

sendData::OnLbnSelchangefileList

sendData::setTotalEvents

sendData::setCurrentFilter

2.32.4.19 afx msg LRESULT sendData::accFileDrop (WPARAM w, LPARAM l)

The user can drag file to be included in the list.

1. Author Robin Stenvi

Returns

Always returns 0.

Parameters
in w Unused.
in l Unused.

Remarks

Does not work right now, need to make a separate function that jsut add one file, based on filename.

2.32.4.20 void sendData::undoTimeframeExclusion ()

Removes a timeframe that has been added earlier.

1. Author Robin Stenvi

2.32.4.21 void sendData::filterTimeframeButon ()

Filters a given timeframe that the user has given.

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 173

1. Author Robin Stenvi

Here is the call graph for this function:

sendData::filterTimeframe
Buton

s2ws

2.32.4.22 void sendData::deleteFileButton ()

Wrapper for realDeleteFile, this function supply the number in our index.

1. Author Robin Stenvi

Here is the call graph for this function:

sendData::deleteFileButton

sendData::realDeleteFile

sendData::setTotalEvents

2.32.4.23 void sendData::OnBnClickedCancel ()

Overrides cancel button to only hide this window.

1. Author Robin Stenvi

2.32.5 Member Data Documentation

2.32.5.1 CListBox sendData::fileList [private]

Unsorted List of timestamps displayed to the user, each timestamp corresponds to an index in allFiles
which determines where that file is.

2.33 SettingDialog Class Reference

A class for setting certain config settings of BeLT.

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 174

Public Member Functions

• SettingDialog (CWnd ⇤pParent=NULL)
Constructor for the class.

• virtual ⇠SettingDialog ()
No deletes.

• virtual INT_PTR DoModal ()
Does Modal.

• afx_msg void onSave ()
Handler for the Save button in the dialog.

• afx_msg void onStorage ()
Updates the BOOL variable for automatic transmission of logged data.

• afx_msg void onAutoUpdate ()
Updates the BOOL variable for automatic updates of BeLT.

• afx_msg void onAutoStart ()
Updates the BOOL variable for automatic updates of BeLT.

• afx_msg void advanced ()
Show/hides certain fields based on a boolean variable.

• afx_msg void reset ()
Resets the settings in the dialog to the values in Settings.ini.

• void save ()
saves the set data to the ini file when the save button is clocked

• void retrieveIniFile ()
Retrieves the data from the profile.ini file.

• BOOL linkExists ()
Checks if there is a file called BeLT.lnk in the startup folder.

• BOOL linkDeleted ()
Deletes the shortcut to belt in the startup folder.

• BOOL linkCreated ()
Creates a shortcut to BeLT in the startup folder.

• BOOL retAutoUpdate ()
This returns the BOOL value of autoUpdate.

• BOOL retAutoStart ()
This returns the BOOL value of autoStart.

• std::wstring retUpAddr ()
Returns the wstring with the update servers address.

• std::wstring retLogAddr ()
Returns an std::wstring with the log servers address.

• int retStorage ()
This returns the BOOL value of autoTrans.

• int retUpPort ()
Returns an int with the update servers HTTP port number.

• int retUpPortS ()
Returns an int with the update servers HTTPS port number.

• int retLogPort ()
Returns an int with the log servers port number.

• BOOL setAutoUpdate (BOOL in)
This sets the BOOL value of autoStart.

• BOOL setAutoStart (BOOL in)
This sets the BOOL value of autoStart.

• BOOL setUpAddr (std::wstring in)

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 175

This sets the wstring value of update address.
• BOOL setLogAddr (std::wstring in)

This sets the value of log address.
• BOOL setStorage (int in)

This sets the int value of storage.
• BOOL setUpPort (int in, BOOL SSL)

This sets the BOOL value of update port either the SSL or unencrypted.
• BOOL setLogPort (int in)

This sets the int value of the logging port.

Protected Member Functions

• virtual void DoDataExchange (CDataExchange ⇤pDX)
Sets up data exchange and sets the text for the objects and sets the elements values.

Private Attributes

• std::wstring logAddr
IP-address or domain name for the log server.

• std::wstring upAddr
IP-address or domain name for the update server.

• int logPort
Syslog-NG port number for the log server.

• int upPort
HTTP port number for the update server.

• int upPortS
HTTPS port number for the update server.

• int storage
Wether or not it should send to server, store locally or as CSV.

• BOOL autoStart
Wether or not it should start on boot.

• BOOL autoUpdate
Wether or not it should update automatically.

• bool dlgShow
Wether the dialog shows the advanced settings or normal settings.

• std::wstring warning
Warning text.

• CEdit lAddr
TextEdit field for log server address.

• CEdit lPort
TextEdit field for log server port Syslog-NG.

• CEdit uAddr
TextEdit field for update address.

• CEdit uPort
TextEdit field for update port HTTP.

• CEdit uPortS
TextEdit field for update port HTTPS.

• CEdit CText [7]
texts for the lables

• CEdit lWarning

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 176

Warning text field.
• CButton CButt [2]

button for idok and cancel
• CButton aStore1

Checkbox for controlling automatic sending of data to server.
• CButton aStore2

Checkbox for controlling automatic storing data locally.
• CButton aStore3

Checkbox for controlling automatic storing data as CSV.
• CButton aStart

Checkbox for controlling automatic startup of BeLT.
• CButton aUpdate

Checkbox for controlling automatic update of BeLT.
• CButton aAdvanced

Checkbox for controlling showing advanced settings.
• CButton aDefault

Checkbox for controlling resetting settings.

2.33.1 Detailed Description

A class for setting certain config settings of BeLT.

This class reads data from the profile.ini and stores it in its variables. Otherwise it is set to default
parameters. It handles all the conigurations needed for setting server addresses/ports. It also controls
wether or not BeLT shour log automatically and update automatically

1. Author Magnus Øverbø - 25.03.2013

2.33.2 Constructor & Destructor Documentation

2.33.2.1 SettingDialog::SettingDialog (CWnd ⇤ pParent = NULL)

Constructor for the class.

1. Author Magnus Øverbø - 25.03.2013

Parameters
in pParent Sent to parent.

2.33.2.2 SettingDialog::⇠SettingDialog () [virtual]

No deletes.

1. Author Magnus Øverbø - 25.03.2013

2.33.3 Member Function Documentation

2.33.3.1 void SettingDialog::DoDataExchange (CDataExchange ⇤ pDX) [protected], [virtual]

Sets up data exchange and sets the text for the objects and sets the elements values.

retrives data from the setting files and then sets the collected data to the GUI elements in the dialog

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 177

1. Author Magnus Øverbø - 25.03.2013 Magnus Øverbø - 05.04.2013

Parameters
in pDX Sent to CDialogEx::DoDataExchange().

Here is the call graph for this function:

SettingDialog::DoDataExchange SettingDialog::retrieveIniFile

2.33.3.2 INT PTR SettingDialog::DoModal () [virtual]

Does Modal.

1. Author Magnus Øverbø - 25.03.2013

Returns

Returns CDialog::DoModal()

2.33.3.3 void SettingDialog::onSave ()

Handler for the Save button in the dialog.

1. Author Magnus Øverbø

Here is the call graph for this function:

SettingDialog::onSave SettingDialog::save

2.33.3.4 void SettingDialog::onStorage ()

Updates the BOOL variable for automatic transmission of logged data.

1. Author Magnus Øverbø - 25.03.2013

2.33.3.5 void SettingDialog::onAutoUpdate ()

Updates the BOOL variable for automatic updates of BeLT.

This is run each time the checkbox i clicked

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 178

1. Author Magnus Øverbø - 27.03.2013

2.33.3.6 void SettingDialog::onAutoStart ()

Updates the BOOL variable for automatic updates of BeLT.

This is run each time the checkbox i clicked

1. Author Magnus Øverbø - 27.03.2013

2.33.3.7 void SettingDialog::advanced ()

Show/hides certain fields based on a boolean variable.

1. Author Magnus Øverbø - 06.05.2013

2.33.3.8 void SettingDialog::reset ()

Resets the settings in the dialog to the values in Settings.ini.

It retrieves and stores profile information using the strOperations functions and defaults to -1 if it isn’t
found

1. Author Magnus Øverbø

Here is the call graph for this function:

SettingDialog::reset

getProfileInfoInt

getProfileInfo

SettingDialog::save

2.33.3.9 void SettingDialog::save ()

saves the set data to the ini file when the save button is clocked

It grabs the text from the interactive boxes and textfields. Then it writes them to the private profile
”profile.ini” under the section server. Then it calls the EndDialog to exit the dialog cleanly. Saves the
settings information as the following fields

• serverPort - An int stating which port number to log to

• serverIP - A string stating the Syslog-NG IP/domain address to log to

• updatePort - An int stating which HTTP port number to the update server

• updatePortS - An int stating which HTTPS port number to the update server

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 179

• updateIP - A string stating the IP/domain address to log to

• autoUpdate - 2/1 which indicates OFF/ON

• autoSend - 2/1 which indicates OFF/ON

• autoStart - 2/1 which indicates OFF/ON

1. Author Magnus Øverbø - 25.03.2013 Magnus Øverbø - 19.04.2013

Here is the call graph for this function:

SettingDialog::save

writeProfileInfo

writeProfileInfoInt

handleData::setLogAddr

handleData::setLogPort

SettingDialog::linkExists

SettingDialog::linkCreated

SettingDialog::linkDeleted

2.33.3.10 void SettingDialog::retrieveIniFile ()

Retrieves the data from the profile.ini file.

Retrieves from profile.ini:

• serverPort - An int stating which port number to log to

• serverIP - A string stating the Syslog-NG IP/domain address to log to

• updatePort - An int stating which HTTP port number to the update server

• updatePortS - An int stating which HTTPS port number to the update server

• updateIP - A string stating the IP/domain address to log to

• autoUpdate - 2/1 which indicates OFF/ON

• autoStart - 2/1 which indicates OFF/ON

• storage - 1/2/3 which indicates SERVER/LOCAL/CSV

1. Author Magnus Øverbø - 25.03.2013
Magnus Øverbø - 05.04.2013

Magnus Øverbø - 11.04.2013

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 180

Here is the call graph for this function:

SettingDialog::retrieveIniFile getProfileInfo

getProfileInfoInt

2.33.3.11 BOOL SettingDialog::linkExists ()

Checks if there is a file called BeLT.lnk in the startup folder.

1. Author Magnus Øverbø

Returns

TRUE if it is found and FALSE if the file or folder doesn’t exist

2.33.3.12 BOOL SettingDialog::linkDeleted ()

Deletes the shortcut to belt in the startup folder.

1. Author Magnus Øverbø

Returns

TRUE if the deletion was successfull and FALSE if the deletion failed

2.33.3.13 BOOL SettingDialog::linkCreated ()

Creates a shortcut to BeLT in the startup folder.

1. Author Magnus Øverbø

Returns

TRUE if it creted the file and FALSE if it failed to create it

2.33.3.14 BOOL SettingDialog::retAutoUpdate ()

This returns the BOOL value of autoUpdate.

1. Author Magnus Øverbø - 27.03.2013

2.33.3.15 BOOL SettingDialog::retAutoStart ()

This returns the BOOL value of autoStart.

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 181

1. Author Magnus Øverbø - 27.03.2013

Returns

Returns TRUE if we are set to autostart, otherwise it reurns false.

2.33.3.16 std::wstring SettingDialog::retUpAddr ()

Returns the wstring with the update servers address.

1. Author Magnus Øverbø - 25.03.2013

Returns

Returns the address.

2.33.3.17 std::wstring SettingDialog::retLogAddr ()

Returns an std::wstring with the log servers address.

1. Author Magnus Øverbø - 25.03.2013

Returns

Returns the string with the log address.

2.33.3.18 int SettingDialog::retStorage ()

This returns the BOOL value of autoTrans.

1. Author Magnus Øverbø - 25.03.2013

2.33.3.19 int SettingDialog::retUpPort ()

Returns an int with the update servers HTTP port number.

1. Author Magnus Øverbø - 25.03.2013

Returns

Returns the upgrade port.

2.33.3.20 int SettingDialog::retUpPortS ()

Returns an int with the update servers HTTPS port number.

1. Author Magnus Øverbø - 05.04.2013

Returns

Returns the port number.

2.33.3.21 int SettingDialog::retLogPort ()

Returns an int with the log servers port number.

Generated with Doxygen on May 15, 2013

2.33 SettingDialog Class Reference 182

1. Author Magnus Øverbø - 25.03.2013

Returns

Returns the log port.

2.33.3.22 BOOL SettingDialog::setAutoUpdate (BOOL in)

This sets the BOOL value of autoStart.

1. Author Magnus Øverbø - 19.04.2013

2.33.3.23 BOOL SettingDialog::setAutoStart (BOOL in)

This sets the BOOL value of autoStart.

1. Author Magnus Øverbø - 19.04.2013

2.33.3.24 BOOL SettingDialog::setUpAddr (std::wstring in)

This sets the wstring value of update address.

1. Author Magnus Øverbø - 19.04.2013

Parameters
in in The adress.

Returns

Returns TRUE if we have valid address, otherwise it returns FALSE.

2.33.3.25 BOOL SettingDialog::setLogAddr (std::wstring in)

This sets the value of log address.

1. Author Magnus Øverbø - 19.04.2013

Parameters
in in The log address.

Returns

Returns TRUE if we have valid address, otherwise it returns FALSE.

2.33.3.26 BOOL SettingDialog::setStorage (int in)

This sets the int value of storage.

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 183

1. Author Magnus Øverbø - 19.04.2013

2.33.3.27 BOOL SettingDialog::setUpPort (int in, BOOL SSL = TRUE)

This sets the BOOL value of update port either the SSL or unencrypted.

1. Author Magnus Øverbø - 19.04.2013

2.33.3.28 BOOL SettingDialog::setLogPort (int in)

This sets the int value of the logging port.

1. Author Magnus Øverbø - 19.04.2013
param[in] in The port number

Returns

Returns TRUE if we have valid port number, otherwise it returns FALSE.

2.34 Syslog1 Class Reference

Handles all the connection to the server.

Public Member Functions

• Syslog1 ()
Initiate the TLS protocol, unique identifier and session number.

• ⇠Syslog1 ()
Uninitializes and deletes variables used in the constructor.

• int startTls ()
Initialize all the variables needed for TLS communication, also check if we have Internet connection.

• int sendMessage (const std::string message)
Send one event to the server over TLS.

• void generateID ()
Checks and generates the UID.

• char ⇤ constructMessage (Level level, Facility facility, DWORD TS, std::string appname, std::string
procid, std::string msgid, std::string SD, std::string msg)

Format a message according to the syslog protocol.
• bool check_profile ()

Validates the stored UID in profile.ini.
• std::string retID ()

Returns the unique ID.
• char ⇤ retSession ()

Returns the session number we are at in the form of a char⇤.
• void generateSID ()

Generates and updates the session ID.
• std::string constructMessageStd (Level level, Facility facility, DWORD TS, std::string appname,

std::string procid, std::string msgid, std::string SD, std::string msg)
Format a message according to the syslog protocol.

• void setIpandPort (std::wstring i=L"", int p=0)
Sets the correct IP-address and port number.

• bool initCom ()
Initiates the COM library.

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 184

Protected Member Functions

• std::string getHWID (BSTR query, BSTR strClassProp)
Retrieves properties of the computer, used to generate unique ID.

• std::string getID ()
Retrieves a random value from the computer motherboard, if the value is not random enough we generate
our own.

Private Attributes

• formatData format
Helper class to format timestamps.

• std::string uniqueID
Identificator for the user.

• std::wstring ip
ip or url to the server

• int port
Port number for logging.

• SOCKET sock
The socket to our logging server.

• sockaddr_in sockaddrin
The address to our server.

• char session [22]
The current session number we are at.

• INetworkListManager ⇤ inMan
To check if network is available.

• NLM_CONNECTIVITY conn
Value to indicate current network status.

• bool initValid
If we managed to initialize COM library.

Static Private Attributes

• static const int SYSLOG_BUF_SIZE = 2048
Max size for the syslog protocol.

2.34.1 Detailed Description

Handles all the connection to the server.

Sends all events using the syslog protocol (RFC 5424) over TLS using OpenSSL. Is also responsible for
formatting the messages according to the syslog protocol.

1. Author Robin Stenvi

2.34.2 Constructor & Destructor Documentation

2.34.2.1 Syslog1::Syslog1 ()

Initiate the TLS protocol, unique identifier and session number.

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 185

1. Author Robin Stenvi Magnus Øverbø

Here is the call graph for this function:

Syslog1::Syslog1

Syslog1::setIpandPort

Syslog1::generateID

Syslog1::initCom

2.34.2.2 Syslog1::⇠Syslog1 ()

Uninitializes and deletes variables used in the constructor.

1. Author Robin Stenvi

2.34.3 Member Function Documentation

2.34.3.1 std::string Syslog1::getHWID (BSTR query, BSTR strClassProp) [protected]

Retrieves properties of the computer, used to generate unique ID.

1. Author Robin Stenvi

Parameters
in query The query that shall be executed.
in strClassProp The property you want to retrieve

Returns

Returns an std::string representing the ID.

Here is the call graph for this function:

Syslog1::getHWID bstrToString

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 186

2.34.3.2 std::string Syslog1::getID () [protected]

Retrieves a random value from the computer motherboard, if the value is not random enough we gener-
ate our own.

1. Author Robin Stenvi

Returns

Returns the random ID

Here is the call graph for this function:

Syslog1::getID

Syslog1::getHWID

generateRandomString

2.34.3.3 int Syslog1::startTls ()

Initialize all the variables needed for TLS communication, also check if we have Internet connection.

1. Author Robin Stenvi

Remarks

An Internet connection is the only valid connection, so it will not work on an intranet, even though
you might have access to the server.

Returns

Returns 0 if we succeed, any other value on failure

Here is the call graph for this function:

Syslog1::startTls ws2s

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 187

2.34.3.4 int Syslog1::sendMessage (const std::string message)

Send one event to the server over TLS.

It first checks if Internet is available, if it is it sends the message. If the server is on a local network
and the user don’t have an Internet connection it will not work, even though they technically have a
connection to the server.

Parameters
in message The message that should be sent

1. Author Robin Stenvi

Returns

Returns the number of character sent, should be equal to strlen(message), returns <= 0 on error

Here is the call graph for this function:

Syslog1::sendMessage Syslog1::startTls

2.34.3.5 void Syslog1::generateID ()

Checks and generates the UID.

First checks if the profile.ini content is valid otherwise it will create a new UID based on the logged in
users username, unique to the current computer, and the HW information retrieved from GetID, which is
unique to the world. If it fail to grab the username it will create 15 random chars instead, and if the HW
id fails it is automatically genearted a random ID inside the called function. Finally this is written to the
profile.ini along with the session number 0.

1. Author Magnus Øverbø - 12.03.2013 Magnus Øverbø - 26.04.2013

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 188

Here is the call graph for this function:

Syslog1::generateID

Syslog1::check_profile

generateRandomString

Syslog1::getID

base64Encode

writeProfileInfo

s2ws

writeProfileInfoInt

2.34.3.6 char ⇤ Syslog1::constructMessage (Level level, Facility facility, DWORD TS, std::string appname,
std::string procid, std::string msgid, std::string SD, std::string msg)

Format a message according to the syslog protocol.

1. Author Robin Stenvi

Parameters
in level The level of the message
in facility The facility of the message
in TS The timestamp of when the message occurred, should milliseconds

since the system was started
in appname Application name
in procid Process ID
in msgid Identifier for what type of event occurred
in SD Structured data
in msg An extra message that can be sent

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 189

Returns

Returns a char⇤ array representing a valid syslog message

Here is the call graph for this function:

Syslog1::constructMessage

escapeLetter

formatData::timeNow

2.34.3.7 bool Syslog1::check profile ()

Validates the stored UID in profile.ini.

Tries to create the Nislab/belt directory in appdata% dir. Then it tries to get the user id string from the
file, if it’s not 32char the function returns false. Peviously if either directory doesn’t exist it will return false
also. The checking of returns from CreateDirectory and CreateFile should continue if the file/directory
already exists.

1. Author Magnus Øverbø - 12.03.2013 Magnus Øverbø - 26.04.2013

Returns

true if it finds a 32char long string under user->id and false if anything fails

Here is the call graph for this function:

Syslog1::check_profile

getProfileInfo

ws2s

2.34.3.8 std::string Syslog1::retID ()

Returns the unique ID.

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 190

1. Author Robin Stenvi

Returns

Returns the ID.

2.34.3.9 char ⇤ Syslog1::retSession ()

Returns the session number we are at in the form of a char⇤.

1. Author Robin Stenvi

Returns

Returns the session number.

2.34.3.10 void Syslog1::generateSID ()

Generates and updates the session ID.

Reads the integer in Session from the profile.ini file and increments it and converts it to a string that is
set for syslog class. If it is below or equal to zero the value is set to 1, which takes care of any wrapping
that may occur. Then it writes the updated counter back to profile.ini.

1. Author Magnus Øverbø - 12.03.2013 Magnus Øverbø - 26.04.2013

Here is the call graph for this function:

Syslog1::generateSID

getProfileInfoInt

writeProfileInfoInt

2.34.3.11 std::string Syslog1::constructMessageStd (Level level, Facility facility, DWORD TS, std::string
appname, std::string procid, std::string msgid, std::string SD, std::string msg)

Format a message according to the syslog protocol.

This function should make sure that our message comply with the Syslog protocol: http://tools.-
ietf.org/html/rfc5424

1. Author Robin Stenvi

Generated with Doxygen on May 15, 2013

2.34 Syslog1 Class Reference 191

Parameters
in level The level of the message
in facility The facility of the message
in TS The timestamp of when the message occurred, should milliseconds

since the system was started
in appname Application name
in procid Process ID
in msgid Identifier for what type of event occurred
in SD Structured data
in msg An extra message that can be sent

Returns

Returns an std::string representing a valid syslog message

Remarks

This function assumes that all variables are escaped and formatted properly, this is done to save
time as we don’t have to check all variables, some are generated by us.

Here is the call graph for this function:

Syslog1::constructMessageStd formatData::timeNowStd

2.34.3.12 void Syslog1::setIpandPort (std::wstring i = L"", int p = 0)

Sets the correct IP-address and port number.

1. Author Robin Stenvi

Parameters
in i The IP-address, if the function should retrieve the IP-address dynami-

cally, leave this empty, default value is empty
in p The port number, leave it as 0 (default) if we should find this dynami-

cally.

Generated with Doxygen on May 15, 2013

2.35 sysResources Struct Reference 192

Here is the call graph for this function:

Syslog1::setIpandPort

SettingDialog::retLogAddr

SettingDialog::retLogPort

2.34.3.13 bool Syslog1::initCom ()

Initiates the COM library.

1. Author Robin Stenvi

Returns

Returns true if we succeed, false if we fail.

Remarks

When using multiple threads, this hould be called before sending data.

2.35 sysResources Struct Reference

Contains information about system resources in use by the system, all values should be in percentage.

Public Attributes

• double cpuLoad
CPU load in percent.

• DWORD memLoad
Memory load in percent.

• DWORD time
The moment we did the measurement.

2.35.1 Detailed Description

Contains information about system resources in use by the system, all values should be in percentage.

The time value is when we recorded the information.

2.36 sendData::Thread Struct Reference

Information about each thread.

Generated with Doxygen on May 15, 2013

2.37 UIAutomation Class Reference 193

Public Attributes

• DWORD threadID
The ID for the thread.

• HANDLE threadHandle
The handle for the thread.

• int sel
Which item in our list the thread is working on.

2.36.1 Detailed Description

Information about each thread.

2.37 UIAutomation Class Reference

Handles the creation and destruction of all the UI Automation elements.

Public Member Functions

• UIAutomation ()
Creates variables and initializes them to NULL, does not start UI Automation.

• void cleanup ()
Uninitializes all the data, releases all the eventhandlers.

• bool startEventHandlers (HWND hDlg)
This is the function that main calls to start all events.

Private Attributes

• eventHandler ⇤ events
Class that is responsible for handling several event notifications.

• focusEventHandler ⇤ focusEvents
Class that is responsible for handling several event notifications.

• propertyEventHandler ⇤ propertyEvents
Class that is responsible for handling several event notifications.

2.37.1 Detailed Description

Handles the creation and destruction of all the UI Automation elements.

This is the class that our main function deals with, this class handles all the other Automation objects, it
creates them, initializes them and destroy them when we are finished.

1. Author Robin Stenvi - 2012-01-21 Robin Stenvi - 2012-01-21 (Last modified)

2.37.2 Constructor & Destructor Documentation

2.37.2.1 UIAutomation::UIAutomation ()

Creates variables and initializes them to NULL, does not start UI Automation.

Generated with Doxygen on May 15, 2013

2.37 UIAutomation Class Reference 194

1. Author Robin Stenvi

2.37.3 Member Function Documentation

2.37.3.1 void UIAutomation::cleanup ()

Uninitializes all the data, releases all the eventhandlers.

1. Author Robin Stenvi

Remarks

The objects deletes themselves, they should not be deleted here.

Here is the call graph for this function:

UIAutomation::cleanup

eventHandler::Uninitialize

eventHandler::Release

focusEventHandler::
Uninitialize

focusEventHandler::
Release

propertyEventHandler
::Uninitialize

propertyEventHandler
::Release

2.37.3.2 bool UIAutomation::startEventHandlers (HWND hDlg)

This is the function that main calls to start all events.

1. Author Robin Stenvi

Parameters
in hDlg Handle to the main window

Generated with Doxygen on May 15, 2013

2.37 UIAutomation Class Reference 195

Returns

A boolean value indicating if it failed or not, a false value means that it failed and none of the
functions have started, it is the callers job to decide how it should be handled.

Here is the call graph for this function:

UIAutomation::startEvent
Handlers

eventHandler::StartEvent
Handler

focusEventHandler::
StartEventHandler

propertyEventHandler
::StartEventHandler

2.37.4 Member Data Documentation

2.37.4.1 eventHandler⇤ UIAutomation::events [private]

Class that is responsible for handling several event notifications.

2.37.4.2 focusEventHandler⇤ UIAutomation::focusEvents [private]

Class that is responsible for handling several event notifications.

2.37.4.3 propertyEventHandler⇤ UIAutomation::propertyEvents [private]

Class that is responsible for handling several event notifications.

Generated with Doxygen on May 15, 2013

Index
⇠AboutDialog

AboutDialog, 34
⇠CTrayNot

CTrayNot, 65
⇠Cbelt_mainDlg

Cbelt_mainDlg, 40
⇠Events

Events, 74
⇠HWMonitor

HWMonitor, 140
⇠Keylogger

Keylogger, 143
⇠Mouse

Mouse, 148
⇠SettingDialog

SettingDialog, 176
⇠Syslog1

Syslog1, 185
⇠eventHandler

eventHandler, 68
⇠handleData

handleData, 100
⇠myWinEvent

myWinEvent, 151
⇠sendData

sendData, 162
__declspec

Misc Global Functions, 3

AboutDialog, 34
⇠AboutDialog, 34
AboutDialog, 34
AboutDialog, 34
DoDataExchange, 35
DoModal, 35

accFileDrop
sendData, 172

accessKey
handleData, 125

addAllFiles
sendData, 163

AddRef
eventHandler, 69
focusEventHandler, 90
propertyEventHandler, 156

advanced
SettingDialog, 178

All enumerations, 5
ERRORS, 5
Facility, 5
Level, 5

All the global / private structs, 19
All the key possible key variations, 20

KEYBOARDFKEY, 23
KEYBOARDNX, 23

AppendLine
Cbelt_mainDlg, 43

base64Encode
Global function for string manipulation, 33

Bif flags for active system keys, 14
binarySearch

sendData, 165
Blacklist, 35
bstrToString

Global function for string manipulation, 26

CANCEL
Cbelt_mainDlg, 41

CTrayNot, 64
⇠CTrayNot, 65
CTrayNot, 65
CTrayNot, 65
SetState, 65

Cbelt_mainApp, 35
Cbelt_mainApp, 36
Cbelt_mainApp, 36
InitInstance, 36

Cbelt_mainDlg, 36
⇠Cbelt_mainDlg, 40
AppendLine, 43
CANCEL, 41
Cbelt_mainDlg, 40
Cbelt_mainDlg, 40
changePause, 44
controlListener, 53
DoDataExchange, 40
FAIL, 50
manageRawInput, 43
monitorHWUsage, 41
OnAppAbout, 52
OnAppExit, 47
OnBnClickedButtonSendData, 57
OnClose, 49
OnDestroy, 46
OnDeviceChange, 50
OnEndSession, 48
OnGetMinMaxInfo, 42
OnHideapp, 46
OnInitDialog, 42
OnPaint, 45
OnPowerState, 48
OnQueryDragIcon, 45
OnQueryEndSession, 47
OnRawInput, 52
OnSetDlg, 49
OnSize, 47
OnSysCommand, 45
OnTrayNotify, 45
OnTrayRestore, 46

INDEX 197

pauseListener, 56
printEvent, 44
resumeListener, 57
SUCCESS, 51
sendKeyboardInfo, 43
sendToServer, 54
setFilterSettings, 54
setIcon, 52
startKeylog, 42
startListener, 55
stopListener, 53
updateStat, 43

changePause
Cbelt_mainDlg, 44

check
checkUpdate, 63

check_profile
Syslog1, 189

checkScreen
focusEventHandler, 92

checkUpdate, 57
check, 63
checkUpdate, 59
checkUpdate, 59
closeConnection, 62
closeTLS, 59
explode, 60
getFile, 61
getVersionNum, 60
getserverSettings, 60
initTLS, 59
initiateConnection, 61
internetAvailable, 63
newerVersion, 59
startTLS, 59
writeFile, 62

cleanup
eventHandler, 69
focusEventHandler, 89
propertyEventHandler, 156
UIAutomation, 194

clearButton
filterSettings, 86

closeConnection
checkUpdate, 62

closeCpuLoad
HWMonitor, 140

closeTLS
checkUpdate, 59

Constants for success or failure messages, 9
constructMessage

Syslog1, 188
constructMessageStd

Syslog1, 190
controlListener

Cbelt_mainDlg, 53
cstringToString

Global function for string manipulation, 26

Current mode of storage, 8
Current server status at the client, 7

Default Error Strings, 6
deleteEventUnion

Events, 79
deleteFileButton

sendData, 173
deviceInfo, 66
Diferent software events, 17
difference

Mouse, 149
Different colors for icons, 18
Different colors used., 13
DoDataExchange

AboutDialog, 35
Cbelt_mainDlg, 40
sendData, 163
SettingDialog, 176

DoModal
AboutDialog, 35
filterSettings, 86
SettingDialog, 177

dwordToString
Global function for string manipulation, 25

ERRORS
All enumerations, 5

Each field in the list of patches, 16
Each field in the update file, 15
escapeKey

Keylogger, 144
escapeLetter

Global function for string manipulation, 27
eventHandler, 66

⇠eventHandler, 68
AddRef, 69
cleanup, 69
eventHandler, 68
eventHandler, 68
HandleAutomationEvent, 70
listenerThreadProc, 68
QueryInterface, 70
registerEventHandler, 69
Release, 70
removeEventHandler, 69
StartEventHandler, 71
Uninitialize, 71

eventInfoUnion, 72
Events, 73

⇠Events, 74
deleteEventUnion, 79
Events, 74
fillEventInfo, 78
getControlType, 76
getElemDescription, 75
getElemId, 77
getProcName, 74
getRectangle, 76

Generated with Doxygen on May 15, 2013

INDEX 198

getValueProperty, 75
isDocument, 79
isEdit, 79
removeId, 77
sendEventUnion, 77

events
UIAutomation, 195

Events from user, 11
explode

checkUpdate, 60
Global function for string manipulation, 28

FAIL
Cbelt_mainDlg, 50

Facility
All enumerations, 5

fileList
sendData, 173

fillEventInfo
Events, 78

filterSettings, 81
clearButton, 86
DoModal, 86
filterSettings, 82
filterSettings, 82
keyPressAll, 85
keyPressDown, 85
keyPressUp, 85
MarkAllButton, 86
mouseAll, 83
mouseMove, 83
mousePress, 83
mousePressDown, 84
mousePressLeft, 84
mousePressMiddle, 84
mousePressRight, 85
mousePressUp, 84
mouseWheel, 83
retFilter, 86
setBoxes, 86

filterTimeframeButon
sendData, 172

findKeyDown
Keylogger, 144

focusEventHandler, 87
AddRef, 90
checkScreen, 92
cleanup, 89
focusEventHandler, 88
focusEventHandler, 88
HandleFocusChangedEvent, 90
listenerThreadProc, 89
QueryInterface, 90
registerEventHandler, 89
Release, 90
removeEventHandler, 92
StartEventHandler, 91
Uninitialize, 91

focusEvents

UIAutomation, 195
formatData, 92

formatData, 93
formatData, 93
getRealTime, 93
timeNow, 94
timeNowStd, 94

fromBstrToCstring
Global function for string manipulation, 26

generateID
Syslog1, 187

generateRandomString
Global function for string manipulation, 32

generateSID
Syslog1, 190

getBeltToServer
handleData, 117

getBetweenChar
Global function for string manipulation, 27

getBetweenWChar
Global function for string manipulation, 28

getControlType
Events, 76

getCpuLoad
HWMonitor, 140

getCsvBelt
handleData, 107

getCsvDev
handleData, 105

getCsvHID
handleData, 106

getCsvHW
handleData, 104

getCsvKey
handleData, 103

getCsvKeyboard
handleData, 107

getCsvMouse
handleData, 102

getCsvRectangle
handleData, 108

getCsvScreen
handleData, 105

getCsvUIA
handleData, 103

getDescSentenceKey
handleData, 119

getDescSentenceMouse
handleData, 118

getDevToServer
handleData, 115

getElemDescription
Events, 75

getElemId
Events, 77

getEventToServer
handleData, 112

getFile

Generated with Doxygen on May 15, 2013

INDEX 199

checkUpdate, 61
getFormatHID

handleData, 111
getFormatHW

handleData, 110
getFormatKey

handleData, 109
getFormatKeyboard

handleData, 110
getFormatMouse

handleData, 108
getFormatRectangle

handleData, 112
getFormatScreen

handleData, 111
getFormatUIA

handleData, 109
getHIDToServer

handleData, 116
getHWID

Syslog1, 185
getHWToServer

handleData, 114
getID

Syslog1, 185
getKeyCount

Keylogger, 144
getKeyToServer

handleData, 114
getKeyboardToServer

handleData, 117
getLastLine

sendData, 165
getMemLoad

HWMonitor, 140
getMouseToServer

handleData, 113
getProcName

Events, 74
myWinEvent, 152

getProfileInfo
Global function for string manipulation, 31

getProfileInfoInt
Global function for string manipulation, 30

getRealTime
formatData, 93

getRectangle
Events, 76

getScreenToServer
handleData, 116

getTimeFromString
Global function for string manipulation, 29

getTimestamp
handleData, 101, 102

getValueProperty
Events, 75

getVersionNum
checkUpdate, 60

getserverSettings
checkUpdate, 60

Global function for string manipulation, 24
base64Encode, 33
bstrToString, 26
cstringToString, 26
dwordToString, 25
escapeLetter, 27
explode, 28
fromBstrToCstring, 26
generateRandomString, 32
getBetweenChar, 27
getBetweenWChar, 28
getProfileInfo, 31
getProfileInfoInt, 30
getTimeFromString, 29
intToString, 25
myAtoi, 27
openFile, 32
printUSASCII, 33
replaceLetter, 25
s2ws, 29
valueToString, 26
writeProfileInfo, 31
writeProfileInfoInt, 30
ws2s, 29

Global variables, 2

HIDDevice, 138
HWMonitor, 139

⇠HWMonitor, 140
closeCpuLoad, 140
getCpuLoad, 140
getMemLoad, 140
HWMonitor, 140
HWMonitor, 140

HandleAutomationEvent
eventHandler, 70

handleData, 95
⇠handleData, 100
accessKey, 125
getBeltToServer, 117
getCsvBelt, 107
getCsvDev, 105
getCsvHID, 106
getCsvHW, 104
getCsvKey, 103
getCsvKeyboard, 107
getCsvMouse, 102
getCsvRectangle, 108
getCsvScreen, 105
getCsvUIA, 103
getDescSentenceKey, 119
getDescSentenceMouse, 118
getDevToServer, 115
getEventToServer, 112
getFormatHID, 111
getFormatHW, 110
getFormatKey, 109

Generated with Doxygen on May 15, 2013

INDEX 200

getFormatKeyboard, 110
getFormatMouse, 108
getFormatRectangle, 112
getFormatScreen, 111
getFormatUIA, 109
getHIDToServer, 116
getHWToServer, 114
getKeyToServer, 114
getKeyboardToServer, 117
getMouseToServer, 113
getScreenToServer, 116
getTimestamp, 101, 102
handleData, 100
handleData, 100
initCom, 137
MAX_STORAGE, 138
retPaused, 136
sendData, 120
sendFullListToServer, 121
sendFullListToServerStatic, 135
sendListToServer, 120
sendListToServerStatic, 135
sendMissing, 122
sendToServer, 119
serverList, 138
setLogAddr, 137
setLogPort, 136
startNewSession, 123
stopCurrentSession, 124
toggleServer, 125
toggleServerStatic, 134
updateSID, 136
writeAll, 122
writeData, 121
writeDevToServer, 130
writeEventToServer, 126
writeHIDToServer, 132
writeHWToServer, 129
writeKeyToServer, 128
writeKeyboardToServer, 133
writeMissing, 121
writeMissingStatic, 123
writeMouseToServer, 127
writeScreenToServer, 131
writeStringToServer, 134
writeTime, 125

handleData::lastAll, 146
lastInput, 147

HandleFocusChangedEvent
focusEventHandler, 90

HandlePropertyChangedEvent
propertyEventHandler, 157

initCom
handleData, 137
Syslog1, 192

InitInstance
Cbelt_mainApp, 36

initTLS

checkUpdate, 59
initiateConnection

checkUpdate, 61
intToString

Global function for string manipulation, 25
internetAvailable

checkUpdate, 63
isDocument

Events, 79
isEdit

Events, 79
isExcluded

sendData, 166

KEYBOARDFKEY
All the key possible key variations, 23

KEYBOARDNX
All the key possible key variations, 23

KeyInfo, 141
keyPressAll

filterSettings, 85
keyPressDown

filterSettings, 85
keyPressUp

filterSettings, 85
keyType, 146

KeyboardDevice, 141
KeyboardDevice, 141

keyType, 141
lang, 141

Keylogger, 142
⇠Keylogger, 143
escapeKey, 144
findKeyDown, 144
getKeyCount, 144
Keylogger, 143
registerState, 146
retKeyevent, 143
setData, 143
setLLEvent, 145
setPassword, 145

lang
KeyboardDevice, 141

lastInput
handleData::lastAll, 147

Level
All enumerations, 5

linkCreated
SettingDialog, 180

linkDeleted
SettingDialog, 180

linkExists
SettingDialog, 180

List of all classes, 1
listenerThreadProc

eventHandler, 68
focusEventHandler, 89
propertyEventHandler, 155

Generated with Doxygen on May 15, 2013

INDEX 201

MAX_STORAGE
handleData, 138

manageRawInput
Cbelt_mainDlg, 43

MarkAllButton
filterSettings, 86

Messages used throughout the application, 12
Misc Global Functions, 3

__declspec, 3
MyInfoEnumProc, 4

monitorHWUsage
Cbelt_mainDlg, 41

Mouse, 147
⇠Mouse, 148
difference, 149
Mouse, 148
printThis, 148
setLLEvent, 150
setLMRButton, 149
setmouseEvent, 149

mouseAll
filterSettings, 83

MouseInfo, 150
mouseMove

filterSettings, 83
mousePress

filterSettings, 83
mousePressDown

filterSettings, 84
mousePressLeft

filterSettings, 84
mousePressMiddle

filterSettings, 84
mousePressRight

filterSettings, 85
mousePressUp

filterSettings, 84
mouseWheel

filterSettings, 83
myAtoi

Global function for string manipulation, 27
MyInfoEnumProc

Misc Global Functions, 4
myWinEvent, 151

⇠myWinEvent, 151
getProcName, 152
myWinEvent, 151
myWinEvent, 151
registerwinEvent, 152
unregisterwinEvent, 153
WinEventProc, 152

newerVersion
checkUpdate, 59

OnAppAbout
Cbelt_mainDlg, 52

OnAppExit
Cbelt_mainDlg, 47

onAutoStart
SettingDialog, 178

onAutoUpdate
SettingDialog, 177

OnBnClickedButtonSendData
Cbelt_mainDlg, 57

OnBnClickedCancel
sendData, 173

OnClose
Cbelt_mainDlg, 49

OnDestroy
Cbelt_mainDlg, 46

OnDeviceChange
Cbelt_mainDlg, 50

OnEndSession
Cbelt_mainDlg, 48

OnGetDefID
sendData, 169

OnGetMinMaxInfo
Cbelt_mainDlg, 42

OnHideapp
Cbelt_mainDlg, 46

OnInitDialog
Cbelt_mainDlg, 42

OnLbnSelchangefileList
sendData, 172

OnPaint
Cbelt_mainDlg, 45

OnPowerState
Cbelt_mainDlg, 48

OnQueryDragIcon
Cbelt_mainDlg, 45

OnQueryEndSession
Cbelt_mainDlg, 47

OnRawInput
Cbelt_mainDlg, 52

onSave
SettingDialog, 177

OnSetDlg
Cbelt_mainDlg, 49

OnSize
Cbelt_mainDlg, 47

onStorage
SettingDialog, 177

OnSysCommand
Cbelt_mainDlg, 45

OnTrayNotify
Cbelt_mainDlg, 45

OnTrayRestore
Cbelt_mainDlg, 46

openFile
Global function for string manipulation, 32

pauseListener
Cbelt_mainDlg, 56

printEvent
Cbelt_mainDlg, 44

printThis
Mouse, 148

Generated with Doxygen on May 15, 2013

INDEX 202

printUSASCII
Global function for string manipulation, 33

processList, 153
propertyEventHandler, 154

AddRef, 156
cleanup, 156
HandlePropertyChangedEvent, 157
listenerThreadProc, 155
propertyEventHandler, 155
propertyEventHandler, 155
QueryInterface, 157
registerEventHandler, 156
Release, 157
removeEventHandler, 158
StartEventHandler, 157
Uninitialize, 158

propertyEvents
UIAutomation, 195

QueryInterface
eventHandler, 70
focusEventHandler, 90
propertyEventHandler, 157

readAllFiles
sendData, 164

readFileLines
sendData, 164

realDeleteFile
sendData, 167

registerEventHandler
eventHandler, 69
focusEventHandler, 89
propertyEventHandler, 156

registerState
Keylogger, 146

registerwinEvent
myWinEvent, 152

Release
eventHandler, 70
focusEventHandler, 90
propertyEventHandler, 157

removeEventHandler
eventHandler, 69
focusEventHandler, 92
propertyEventHandler, 158

removeId
Events, 77

replaceLetter
Global function for string manipulation, 25

reset
SettingDialog, 178

resumeListener
Cbelt_mainDlg, 57

retAutoStart
SettingDialog, 180

retAutoUpdate
SettingDialog, 180

retFilter

filterSettings, 86
retID

Syslog1, 189
retKeyevent

Keylogger, 143
retLogAddr

SettingDialog, 181
retLogPort

SettingDialog, 181
retPaused

handleData, 136
retSession

Syslog1, 190
retStorage

SettingDialog, 181
retUpAddr

SettingDialog, 181
retUpPort

SettingDialog, 181
retUpPortS

SettingDialog, 181
retrieveIniFile

SettingDialog, 179

s2ws
Global function for string manipulation, 29

SUCCESS
Cbelt_mainDlg, 51

save
SettingDialog, 178

Screen, 158
sendData, 159

⇠sendData, 162
accFileDrop, 172
addAllFiles, 163
binarySearch, 165
deleteFileButton, 173
DoDataExchange, 163
fileList, 173
filterTimeframeButon, 172
getLastLine, 165
handleData, 120
isExcluded, 166
OnBnClickedCancel, 173
OnGetDefID, 169
OnLbnSelchangefileList, 172
readAllFiles, 164
readFileLines, 164
realDeleteFile, 167
sendData, 162
sendFileToServer, 170
sendFileToServerStatic, 167
sendPreviousFile, 169
sendToServerButton, 171
sendData, 162
setCurrentFilter, 166
setProgress, 162
setTotalEvents, 165
undoTimeframeExclusion, 172

Generated with Doxygen on May 15, 2013

INDEX 203

writeProgress, 168
sendData::ExcludeIndex, 80
sendData::Excluded, 80
sendData::File, 80
sendData::Thread, 192
sendData::progressRange, 154
sendEventUnion

Events, 77
sendFileToServer

sendData, 170
sendFileToServerStatic

sendData, 167
sendFullListToServer

handleData, 121
sendFullListToServerStatic

handleData, 135
sendKeyboardInfo

Cbelt_mainDlg, 43
sendListToServer

handleData, 120
sendListToServerStatic

handleData, 135
sendMessage

Syslog1, 186
sendMissing

handleData, 122
sendPreviousFile

sendData, 169
sendToServer

Cbelt_mainDlg, 54
handleData, 119

sendToServerButton
sendData, 171

serverList
handleData, 138

setAutoStart
SettingDialog, 182

setAutoUpdate
SettingDialog, 182

setBoxes
filterSettings, 86

setCurrentFilter
sendData, 166

setData
Keylogger, 143

setFilterSettings
Cbelt_mainDlg, 54

setIcon
Cbelt_mainDlg, 52

setIpandPort
Syslog1, 191

setLLEvent
Keylogger, 145
Mouse, 150

setLMRButton
Mouse, 149

setLogAddr
handleData, 137

SettingDialog, 182
setLogPort

handleData, 136
SettingDialog, 183

setPassword
Keylogger, 145

setProgress
sendData, 162

SetState
CTrayNot, 65

setStorage
SettingDialog, 182

setTotalEvents
sendData, 165

setUpAddr
SettingDialog, 182

setUpPort
SettingDialog, 183

setmouseEvent
Mouse, 149

SettingDialog, 173
⇠SettingDialog, 176
advanced, 178
DoDataExchange, 176
DoModal, 177
linkCreated, 180
linkDeleted, 180
linkExists, 180
onAutoStart, 178
onAutoUpdate, 177
onSave, 177
onStorage, 177
reset, 178
retAutoStart, 180
retAutoUpdate, 180
retLogAddr, 181
retLogPort, 181
retStorage, 181
retUpAddr, 181
retUpPort, 181
retUpPortS, 181
retrieveIniFile, 179
save, 178
setAutoStart, 182
setAutoUpdate, 182
setLogAddr, 182
setLogPort, 183
setStorage, 182
setUpAddr, 182
setUpPort, 183
SettingDialog, 176
SettingDialog, 176

StartEventHandler
eventHandler, 71
focusEventHandler, 91
propertyEventHandler, 157

startEventHandlers
UIAutomation, 194

Generated with Doxygen on May 15, 2013

INDEX 204

startKeylog
Cbelt_mainDlg, 42

startListener
Cbelt_mainDlg, 55

startNewSession
handleData, 123

startTLS
checkUpdate, 59

startTls
Syslog1, 186

stopCurrentSession
handleData, 124

stopListener
Cbelt_mainDlg, 53

sysResources, 192
Syslog1, 183

⇠Syslog1, 185
check_profile, 189
constructMessage, 188
constructMessageStd, 190
generateID, 187
generateSID, 190
getHWID, 185
getID, 185
initCom, 192
retID, 189
retSession, 190
sendMessage, 186
setIpandPort, 191
startTls, 186
Syslog1, 184

timeNow
formatData, 94

timeNowStd
formatData, 94

toggleServer
handleData, 125

toggleServerStatic
handleData, 134

UIAutomation, 193
cleanup, 194
events, 195
focusEvents, 195
propertyEvents, 195
startEventHandlers, 194
UIAutomation, 193
UIAutomation, 193

undoTimeframeExclusion
sendData, 172

Uninitialize
eventHandler, 71
focusEventHandler, 91
propertyEventHandler, 158

unregisterwinEvent
myWinEvent, 153

updateSID
handleData, 136

updateStat
Cbelt_mainDlg, 43

valueToString
Global function for string manipulation, 26

Which log event occurred, 10
WinEventProc

myWinEvent, 152
writeAll

handleData, 122
writeData

handleData, 121
writeDevToServer

handleData, 130
writeEventToServer

handleData, 126
writeFile

checkUpdate, 62
writeHIDToServer

handleData, 132
writeHWToServer

handleData, 129
writeKeyToServer

handleData, 128
writeKeyboardToServer

handleData, 133
writeMissing

handleData, 121
writeMissingStatic

handleData, 123
writeMouseToServer

handleData, 127
writeProfileInfo

Global function for string manipulation, 31
writeProfileInfoInt

Global function for string manipulation, 30
writeProgress

sendData, 168
writeScreenToServer

handleData, 131
writeStringToServer

handleData, 134
writeTime

handleData, 125
ws2s

Global function for string manipulation, 29

Generated with Doxygen on May 15, 2013

EULA - BeLT

End User Lisence Agreement for Behaviour Logging Tool

Table of content

1. Licence agreement

2. Disclaimer

3. Intelectual Property rights

4. General information

5. About BeLT

1) Licence Agreement

1. All rights for BeLT is reserved to NISlab represented by Prof.

Patrick Bours and Soumik Mondal

2. By installing this application you agree to, and promise you have

read and understood the EULA, and accepted all its terms.

3. By agreeing to the licence agreement you are allowing BeLT to log

and store information about you.

4. The user has the right to know what kind of information is being

stored by BeLT and what its purpose is.

5. Any question may be direted at Prof. Patrick Bours

2) Disclaimer

1. BeLT WILL capture and store sensitive information about the user.

2. It is the users own responsibility to hinder the compromise of

sensitive information when using BeLT

3. BeLT nor NISlab can be held liable for any trouble, loss or

damage caused by BeLT or its information.

3) Intellectual Property rights

1. The code is owned and maintained by NISlab. Redistribution, use

or derivation of this applicaiton, its source code or any other

information related to BeLT is prohibited without NISlabs written

consent.

2. BeLT is entirely owned by NISlab

3. Project maintainers are:

Prof. Patrick Bours patrick.bours@hig.no

Soumik Mondal soumik.mondal@hig.no

4. The developers are:

Robin Stenvi robin.stenvi@hig.no

Magnus Øverbø magnus.overbo@hig.no

Lasse T. Johansen lasse.johansen@hig.no

4) General Information

1. BeLT was developed as a Bachelor Thesis in the spring of 2013

2. Errors can be reported to Soumik Mondal or Patrick Bours of

NISlab, (www.nislab.no)

5) About BeLT

1. BeLT captures and stores information about the users interaciton

with the computer.

2. BeLT captures the following:

1. Mouse interactions

2. Keyboard interactions

3. Hardware events/changes

4. Software events/changes

5. System events/changes

3. BeLT will transmit the data it captures to a centralised storage

facility mangaged by NISlab

4. The application comes with a user manual available on-line or by

request from the project managers.

G Work Log

G.1 Work activity documentation
In figure 1 we have summarized our work activity and efforts, as a group and individuals.

Throughout our project we have worked consistently with good effort and without
breaks, except two days during Easter. We have certain spikes in our activity which is a
result of special events that occurred during our development process. The purple area
in the background is the combined work effort of the group. The area represents the
average of our combined efforts over the previous three days.

Figure 1: Graph of summarized work effort

It clearly shows that we’ve had certain points in our development when we’ve had a
lot to do, but generally was our activity stable. Our first spike is during our first release of
BeLT on the 14th of January. At this point we had to set up our environment, develop the
basis of our graphical user interface and main application functionality. After this point
our work effort was pretty steady until the week leading up to our server test. The time
leading up to our server test was lower because we had done most of our development
at this point and had to test our server communication before continuing. As a result of
this we spent this time focusing on our additional courses an projects. Over the course of
the weekend of the 22nd-24th of February we have a very high spike due to our testing
phase.

Following the server test we had a lowered performance while doing the task of
analysing and documenting our test. Then on the week before Easter we had an increase
in our efforts when trying to create a driver for our application.

During the Easter holiday we have a rather large drop as caused by us taking the
weekend off and resting before starting up again on the 1st of April with a group meet-
ing. After this we had an increase in activity as since we had a rush on finishing our
application, file format, database storage/export and starting our migration to a produc-
tion system. Then on the 15th we finished most of our functionality in BeLT, the server

373

Behaviour Logging Tool - BeLT

applications and main part of our tasks. Then some time got wasted waiting for a server
which weren’t allowed to use in the end which made us have a massive spike at the end
during our production of our report and final version of BeLT.

The purple area in the background is our collaborative effort averaged over three
days iterations. This means that this graph has one datapoint for each three days passed
during our project. The red line is our groups average work efforts for all three members,
averaged over three days iterations. This, along with our columns, representing the group
members, shows how much effort was put into the project as opposed to the average
work effort.

G.2 Progress log

Progress log
Date Description
4/1-13 First meeting with counselor after project had started
10/1-13 First draft of preliminary project is finished and delivered supervisor.
11/1-13 Crash course with Tom Røise. Finished prototype to show what type

of information is collected, includes keylogger, mouselogger and very
limited UI Automation.

14/1-13 First meeting with the employer after the project has started. Defined
the scope of the task and demonstrated prototype.

17/1-13 Created the first GUI prototype.
26/1-13 Released BeLT 0.1.0, with GUI to start, stop, pause and resume logging,

could also display logged data to screen and write logged data to file.
20/1-13 Set up a bugtracker to keep track of bugs and remaining work,
3/2-13 Created the web page for this project.
9/2-13 Released BeLT 0.2.0, with the following functionality; new way to filter

data before output to screen, possible to send data to server using TLS,
functioning installer for 32-bit version.

12/2-13 Released BeLT 0.2.1. A bit extra functionality, but mostly bug fixing.
24/2-13 Finished stress-test, using 22 computers.
25/2-13 Released BeLT 0.3.0. Ability to update, instead of reinstalling, bug fixes,

performance optimization, and persistent storage of information.
27/2-13 Released BeLT 0.3.1. Small changes after meeting with employer.
5/3-13 Acquired certificates for our server and code signing certificate for our

application.
10/3-13 Released BeLT 0.4.0. Changes and bug fixes, mostly thing under the

hood of the application, very few visible changes.
11/3-13 Finalized the CSV format with employer
13/3-13 Released BeLT 0.4.1. Small changes after feedback from employer.
22/3-13 Released BeLT 0.4.2. Implemented automatic update functionality, in-

cluding the server component.
5/4-13 Released BeLT 0.5.0. Major changes to the GUI and enhancements for

how data is gathered. Most notable changes are settings dialog that
stores the user settings, option to send a previously stored file to server.

9/4-13 Released BeLT 05.1. Small changes after feedback from the employer.
22/4-13 Released BeLT 0.6.0. Many changes to the GUI after feedback from the

employer, this version has all the necessary functionality that has been
developed under our meetings with the employer.

30/4-13 Released BeLT 0.7.0. Mostly bug-fixes, but some noticeable changes.
Continuing on next page

374

Behaviour Logging Tool - BeLT

Date Description
10/5-13 Released BeLT 0.9.0. Released the latest version for feedback and any

small changes that are needed before we release the last version.
15/5-13 Released BeLT 1.0.0. Final version.

375

Employermeeting for

BeLT bachelor project

Date & time: 14.01.2013 at 12:00
Place: Kr̊akereiret
Referent: Magnus Øverbø
Participants: Magnus Øverbø, Lasse Johansen, Robin Stenvi, Patrick

Bours, Soumik Mondal
Absent:

Agenda
Presentation of BeLT example-version

1. UI Automation, key and mouse capture, etc.

• Impressed about the current state

Discussion of the functions you want the program have
Format for storing the captures in (CSV or XML)

1. CSV

Storing of mousemovement

1. Timestamps have an accuracy of +- 10ms
2. Can get better accuracy by using other methods

• Don’t use up resources with timestamping

Define ”nonintrusive”

1. Don’t bug the user with messages
2. Minimize to system tray
3. The program should run in the background without user interaction

Operational requirements

1

Agenda
1. Accuracy of mouse movement

• GUI, possibility of deciding sampling rate and compression rate for
mouse moovement

2. Capasity of server/client

• No worries about storage capasity
• Store the login date and time at the start of log file

3. Transmission of data

• Transmit the data at the end of the session
• Build up chunks of data locally and then transmit at the end
• Create new logfile at fixed intervals

4. Resource usage
5. Backwards compatibility on WinOS(Win7+, no need for more that

XPSP3)

• OS compatibility is not an issue, but shouldn’t rely on special services
• 64bit compatibility(Yes)

6. Other

• Should be able to continue develop on the same system
• Ability to add touchscreen in later times
• Pause button for the application, with popup notification
• Automatically detect password fields
• Enumerate key/mouse events and show the log in GUI

Suggestions to define the scope of the project

1. At least, Web browsers, O�ce and Skype
2. Collect, Store, Transmit is needed
3. Retrieval is not required, but would be great to have
4. Analysis is not required
5. Do not add touchscreen support
6. Retrieval of logs from server as CSV or text file
7. Noted and put into the requirement specification

What is to be, or not to be, logged

2

Agenda
1. HW information/status(Yes)

• Store HW information/status on install of the system

2. Binary data(Screenshots, etc)(No)
3. Metadata(Filesize, MACtime)(No)
4. Contents of files(No)
5. External devices(HID and usb)

• External human interfaces
• Only keyboard and mouse

6. System status(Yes, noted)
7. GUI info(Yes, noted)
8. Physical switches, etc.(No)

• No external switches

9. 2 entries per button(Yes)
10. 1 entry per button

Security requirements

1. Server security
2. Client security
3. Security during transmition of data
4. Manipulation of temporary data

• Client side security of temporary stored information is not neccesary

Privacy requirements

1. Anonymization of data

• Anonymous storing, but identifiable across sessions
• Stored on a secure server with no view access
• Only grab the results of the analyzed log file

2. Removal of sensitiv information, we’re currently able to detect password
fields with UI Automation

• Yes

Prioritization of requirements

3

Agenda
• Importance of metro-app compatibility(No need)
• Importance of having a server/client based system(Needed, but can man-

age with only local system)
• Importance of having a fully functioning and complete client only based

system
• Importance of testing, stresstesting(Important)
• Importance of backwards compatibility of WinOS
• Importance of removing sensitiv personal information(If possible remove

password, otherwise not needed)
• Importance of future development(Very)
• Importance of having the files as CSV, as opposed to XML(Very impor-

tant)
• Importance of certification of software(Not a high priority, but a very nice

feature)
1 Local version first
2 Then storage on server and retrieval
3 Analysis and touchscreen is future work

Other items on the agenda

1. Most important to log the events, not analyze
2. Store everything in one huge file
3. Store mouse/key-event first then the occuring action

For the next meeting

1. Prepare the software

4

BeLT
Behaviour Logging Tool

Magnus Øverbø(090832), Robin Stenvi(100232) og Lasse T. Johansen(090749)

Forprosjekt for bacheloroppgave
IMT3912 - Bacheloroppgave IMT

20 Studiepoeng
Avdeling for informatikk og medieteknikk

Høgskolen i Gjøvik, 2013

BeLT Behaviour Logging Tool

Innhold

Innhold . ii
1 Bakgrunn, mål og rammer . 1

1.1 Bakgrunn . 1
1.2 Prosjektmål . 2
1.3 Rammer . 3

2 Omfang . 3
2.1 Oppgavebeskrivelse . 3
2.2 Avgrensning . 4

3 Prosjektorganisering . 5
3.1 Ansvarsforhold . 5
3.2 Rutiner og regler . 5

4 Planlegging, oppfølging og rapportering . 7
4.1 Hovedinndeling av prosjekt . 7
4.2 Plan for statusmøter og beslutningspunkter . 8

5 Organisering av kvalitetssikring . 8
5.1 Kvalitetssikring . 8
5.2 Risikoanalyse . 9

6 Plan for gjennomføring . 11
Bibliografi . 14

ii

BeLT Behaviour Logging Tool

1 Bakgrunn, mål og rammer

1.1 Bakgrunn
Prosjektets bakgrunn

Soumik Mondal jobber med å gjenkjenne brukermønstre for å autentisere databrukere for NISLab
(Norwegian Information Security laboratory).

I denne sammenheng er det nødvendig å samle informasjon om hvordan brukere interakterer
med datamaskinen, som tastetrykk og musebevegelser, men også hvordan brukeren jobber med
forskjellige applikasjoner, da det ofte er mange forskjellige måter å gjøre samme oppgave på. For
å lagre et dokument for eksempel, kan man trykke ”ctrl+S”, man kan gå opp til fil-menyen og
trykke på lagre, eller man kan bruke knappen som ligger på knappelinjen. Disse tre funksjonene
har akkurat samme utfall, men forskjellige personer har forskjellige preferanser.

For at analysen skal bli generell, trengs det mange testbrukere, så det er ønskelig med en
applikasjon som kan distribueres til mange datamaskiner og samle dataene på en sentral server.

Våres bakgrunn
Alle i gruppen studerer bachelor i informasjonssikkerhet ved Høgskolen i Gjøvik. Ingen av gruppe-
medlemmene har noen spesiell erfaring i å programmere opp mot Windows sitt API, men alle har
programmert mye i C++, gjennom fagene, ”Grunnleggende programmering”, ”Objektorientert
programmering” og ”Algoritmer” på skolen. Andre fag som kommer til å være en nyttig er:

Operativsystemer: Vi trenger å vite om sikkerhetsmekanismene i Windows og hvordan Win-
dows er strukturert og designet.

Programvaresikkerhet: Viktig at applikasjonen er utviklet med sikkerhet i tankene fra starten
av. Bygger også videre på sikkerhetsmekanismene i Windows.

Informasjonsstrukturer og databasemodellering: Vi trenger å finne en effektiv og god løsning
på hvordan dataene skal lagres.

Systemutvikling: To av gruppemedlemmene har hatt systemutvikling, som vil være nyttig i å
utvikle et produkt som er det kunden ser ute etter og generell prosjektgjennomføring.

Systemadministrasjon: Ett av gruppemedlemmene har hatt systemadministrasjon som vil kom-
me god med når vi skal sette opp serveren gjøre applikasjonen klart for distribuering.

Ethical hacking and penetration testing: Dette vil hjelpe oss med å vite hvilke trusler som
finnes mot applikasjonen vår og kunne teste applikasjonen mot disse truslene.

Risikostyring: Dette vil hjelpe oss med å analysere risikoen og utarbeide tiltak til hvordan den
burde håndteres.

1

BeLT Behaviour Logging Tool

Relatert arbeid
Det er blitt gjort en del arbeid for å fange musebevegelser[1, 2, 3], i de fleste er målet å finne ut
hvordan brukeren jobber opp mot en applikasjon for å forbedre brukeropplevelsen. Disse er alle
rettet mot web-applikasjoner og fokuserer på å visualisere hvordan brukeren interakterer med
en web-applikasjon.

RUI[4] er et program laget i C# for Windows og Carbon Framework til Mac OS X. Programmet
lagrer kun tastetrykk og musebevegelser, lagrer altså ingen interaksjon med applikasjoner.

En annen artikkel[5] prøver å lære brukerens interesser ved å observere oppførselen. Lagrer
få data og er dermed ikke så relevant for oss.

EAGER[6] er et program som lagrer oppgaver som brukeren foretar seg og programmerer
repetitive oppgaver. Eldre artikkel som har lite av verdi for oss.

AppMonitor[7] er en applikasjon som lagrer brukeraksjoner for å finne ut hvordan brukeren
interakterer med datamaskinen. Den bruker Windows hooking for å fange musebevegelser og
tastetrykk og den bruker Microsoft Active Accessibility for å fange hvordan brukeren interakterer
med applikasjoner. AppMonitor støtter kun Adobe Reader 7 og Word 2003. Dette er et arbeid
som er ganske likt det vi prøver å få til og en nyttig ressurs.

1.2 Prosjektmål
Effektmål

Det forventes at det ferdige programmet skal forbedre følgende:

• Forenkle prosessen med å samle inn brukerinformasjon1.

• Samle inn mer brukerinformasjon, både fra flere brukere og fra et større tidsperspektiv.

• Samle inn mer nøyaktig informasjon om brukere og plassere det inn i den riktige kontekst,
slik at analysen blir lettere og mer effektiv.

Resultatmål
Applikasjonen skal leveres innen 15. Mai 2013 og skal ha følgende funksjonalitet:

• Fange tastetrykk.

• Fange musebevegelser.

• Lagre hvordan brukeren bruker applikasjoner. Nyttig ting er, om det brukes hotkeys, menyer,
knapper osv.

• Sende og lagre informasjonen til en sentral server.

Dette skal gjøres på en måte som er sikkert og ikke-intrusiv for brukeren.
Rapporten skal bidra med følgende:

• Utarbeidelse av etiske problemstillinger, knyttet til slik programvare og hvordan dette bør
håndteres.

• Utarbeidelse av en risikovurdering ved distribuering av programvaren og hvordan den kan

1Brukerinformasjon her regnes som alt det brukeren gjør for å interaktere med programmer

2

BeLT Behaviour Logging Tool

minimeres. Dette gjelder vurdering av klient-applikasjonen, server-applikasjonen og oversen-
ding av sensitive data.

1.3 Rammer
Gruppen må forholde seg til følgende tidsfrister:

27/1-13 Innlevering av prosjektplan og prosjektavtale

10/2-13 Etablering av nettside

15/5-13 Innlevering av Prosjektrapport

29/5-13 Innlevering av plakat til utstilling

4-6/6-13 Presentasjon av prosjektet

Kontaktpersoner er:

• Hanno Langweg – Veileder

• Soumik Mondal – Oppdragsgiver

• Patrick Bours – Interessepart

2 Omfang

2.1 Oppgavebeskrivelse
Oppgaven går ut på å lage en applikasjon som fanger interaksjonen brukeren har med data-
maskinen. Informasjonen skal oversendes og lagres på en sentral server. Deretter skal det være
mulig å eksportere dataene på et lett forståelig format.

Gruppen må undersøke muligheten for å fange interaksjon med alle applikasjoner ved en
metode, eller en metode for å fange interaksjon med helt nye applikasjoner. Dette vil sørge for
at applikasjonen er universell og man trenger ikke å oppdatere applikasjonen når nye versjoner
av programvare kommer. Hvis dette ikke er mulig skal applikasjonen minst håndtere:

• Microsoft Office

• En eller flere PDF-lesere

• En eller flere nettlesere

• Skype

Applikasjonen skal være designet slik at det er mulig å utvide denne listen på et senere tids-
punkt, uten alt for mye problemer.

Oppgaven kan deles inn i seks deler:

Fange tastetrykk: Her må vi først utarbeide hva som er den beste mulige måten å gjøre dette
på. Viktig at måten er nøyaktig, tid må være nøyaktig opp til ett millisekund. Det må være
effektivt og kompatibelt på flest mulige Windows plattformer.

3

BeLT Behaviour Logging Tool

Fange musebevegelser: Her har vi de samme oppgavene som ovenfor, men vi må også finne et
bra format, å lagre musebevegelser på, da dette kan bli mye data etter kort tid. I program-
met RUI[4] som ble nevnt tidligere, ble det lagret omtrent 22 KB/min i musebevegelser.
Dette er ikke noe stort problem, men kan minkes.

Fange interaksjon med applikasjoner: Hvordan arbeider brukeren med applikasjonen, meny-
er, hurtigtaster osv. For at dette skal være universelt for alle applikasjoner, må det detekteres
når to forskjellige brukerinteraksjoner gir likt resultat.

Lagring av informasjon: Det må først utvikles et format for lagring av dataene, deretter må
det lages en løsning for sending og lagring av disse dataene på en sentral lokasjon. Denne
løsningen må bevare konfidensialitet, integritet og håndtere personvernhensyn.

Eksportere informasjon: Det må utarbeides et fornuftig format å presentere dataene på, dette
kan for eksempel være CSV, eller XML format, eventuelt flere muligheter. Formatet skal
være leselig uten bruk av programmer.

Utarbeide risikoanalyse for bruk av applikasjonen: Hvilke risikoer er viktige hvis denne ap-
plikasjonen distribueres til tusen brukere og alle kobler mot en sentral server. Hvordan kan
vi håndtere og minimere denne risikoen.

Et annet viktig område som det må sees nærmere på er tids granularitet. Det er viktig at når
brukeren gjør noe for eksempel når et tastetrykk, så blir tiden tatt, med nøyaktighet ned mot ett
millisekund. Klokkene på datamaskiner er ikke lagd for å være helt nøyaktige, og hvis du henter
en verdi som måles i millisekunder, betyr ikke dette at tiden oppdateres hvert millisekund. Her
kan nøyaktigheten variere stort mellom forskjellige systemer.

Prosjektet skal også utarbeide personvernhensyn ved bruk av applikasjonen og utarbeide hvil-
ke risikoer som er relevante ved distribuering av applikasjonen og hvordan disse kan håndteres.

Selve applikasjonen kan deles i to deler, en er klient-delen som samler inn data. Den andre
er en servertjeneste som tar imot informasjonen og lagrer dataene på et fornuftig format, for
eksempel en komma separert liste. Viktig at denne tjeneren er sikker, da den skal muligens kjøre
på en sensitiv server og den tar i mot sensitiv data.

I prosjektet må vi også se på sikkerhetsrisikoer, servertjenesten behandler sensitive data og
må være programmert sikker. Klient-applikasjonen kommuniserer på nettet, vi må sørge for at
applikasjonen vi lager ikke introduserer brukeren for mer risiko.

Prosjektet må også ta for seg personvernhensynet, både i følge personopplysningsloven og i
forhold til etiske rammeverk. Personvernet bør i all hovedsak løses ved tekniske løsninger, data
lagret på serveren bør ikke kunne knyttes til en person så vidt dette er mulig.

2.2 Avgrensning
Applikasjonen som utvikles vil kun ta for seg Windows operativsystemet. Det er ønsket bakover-
støtte så langt som mulig, men grunnet teknologivalg, kommer applikasjonen kun til å være
støttet på Windows XP SP3 og nyere. Dette kan også bli begrenset på bakgrunn av fremtidige
valg.

Applikasjonen skal ikke analysere dataene, men kunne samle de inn.

4

BeLT Behaviour Logging Tool

Det er ikke nødvendig å lage støtte til touchscreen, våres applikasjon skal kun støtte mus og
tastatur.

3 Prosjektorganisering

3.1 Ansvarsforhold
Prosjekt/gruppeleder: Robin Stenvi
Webmaster, systemansvarlig: Lasse Tjensvold Johansen
Referent, utstyr og dokumentansvarlig: Magnus Øverbø

Prosjekt/gruppeleder: Har ansvaret for å delegere arbeidsoppgaver til resten av gruppen, samt
sørge for at tidsfristene som blir overholdt. I tillegg har prosjektlederen ansvaret for å lede mø-
tene som holdes gjennom prosjektet og holde oversikten over prosjektets gang.

Webmaster, systemansvarlig: Har hovedansvaret for å opprettholde prosjektets weblogg, sys-
temtjenester og GANTT-skjema vi benytter. Ansvaret for oppdatering av weblogg faller i tillegg
på resten av gruppen.

Referent, utstyr/dokumentansvarlig: Referenten har ansvaret for å ta referat av møtene, både
internt i gruppen og eksternt. Dokumentansvarlig har ansvaret for å holde oppsyn over doku-
mentasjon, og repoet som benyttes under prosjektet. Utstyrsansvarlig har ansvaret for å anskaffe
det utstyret som gruppen trenger for å utføre sitt arbeid.

3.2 Rutiner og regler
Alle gruppemedlemmer plikter seg til å overholde de følgende reglene. Gjør man ikke dette vil
det forekomme sanksjoner.

Generelle regler
• Alle gruppemedlemmer skal gjøre sitt ytterste for å lykkes med prosjektet og møte til samtlige

møter og arbeidsøkter.

• Det skal iblant forekomme et sosialt samvær hvor man gjør noe annet enn prosjekt/skolearbeid.

• Felles inntekt/utgift splittes likt mellom gruppemedlemmene.

Utvikling
• Vi benytter HiGs SVN repo-løsning for å vedlikeholde vår kodebase og utviklingsprosess,

https://svn.hig.no/2014/belt/.

• For kontinuerlig integrasjon vil vi benytte scriptene vi har laget.

• Feil som oppstår i repoet skal rettes øyeblikkelig av vedkommende eller andre i gruppen.

• Alle medlemmer arbeider hovedsaklig på separate oppgaver.

• En tildelt oppgave skal ikke gjøres av en annen, med mindre det er gyldig grunnlag for det.

5

BeLT Behaviour Logging Tool

• Det skal kun lastes opp kompilerbar kode/tekst til repoet.

• Hvis det er grunnlag kan man laste opp ikke-kjørbar kode etter opplysning om dette til resten
av gruppen, samt gi en beskrivende kommentar i repoet.

• Alle opplastinger skal ha en ordentlig kommentar vedlagt.

Standarder
• Bruk av usikre funksjonskall er ikke akseptabelt. Dette gjelder funksjonskallene som Microsoft

har bannlyst her: http://msdn.microsoft.com/en-us/library/bb288454.aspx.

• All kode skal kommenteres, med mindre det er elementært.

• All kode skal kodes iht. Doxygen. http://www.stack.nl/~dimitri/doxygen/index.html

Kommunikasjon
• Kommunikasjon forekommer normalt sett muntlig, men med muntlig resymé i en etterføl-

gende e-post.

• All kommunikasjon over e-post skal sendes via HiGs epost tjeneste

• Alle e-poster skal starte med "[BELT]"i emne-området for å identifisere e-poster vedrørende
prosjektet.

• Kritisk informasjon skal gis i form av SMS eller oppringing, etterfulgt av en e-post.

• Alle medlemmer skal sjekke deres HiG e-post to ganger daglig iløpet av arbeidsdager og en
gang iløpet av helgen.

• Websiden skal oppdateres med nye innlegg minst en gang i uken.

Møte, loggføring, stemming og signering
• Møteinnkallelse til ekstra møter skal sendes minst tre arbeidsdager i forvei, med mindre det

er ekstremt viktig med det evt. møtet.

• Referater distribueres med SVN repository, senest 24 timer etter møtet. Dette er referent
ansvarlig for.

• Interne tidsfrister bestemmes fortløpende under prosjektets gang.

• Alle medlemmer skal holde sin egen loggbok over deres arbeid, minimum ett innlegg per uke.

• Stemming gjøres i felles samvær.

• Signering av dokumenter skal alltid gjøre i samarbeid med de andre gruppemedlemmene.

• Under spesielle omstendigheter kan signering/bestemmelser gjøres alene, men kun når det
ikke er mulig å gjøre det i samarbeid med et medlem til.

6

BeLT Behaviour Logging Tool

Gyldig fravær og beskjedgivning.
• Alle beskjeder skal gis så tidlig som mulig.

• Beskjeder om planlagt fravær må gis minst tre arbeidsdager før fraværet skal inntreffe

• Andre beskjeder må gis så tidlig som mulig, før et møte/tidsfrist/annet forekommer.

• Sykdom, ved mer enn en liten forkjølelse

• Forhåndsavtalt fravær, som er godtatt i fellesskap.

• Uventede hendelser(Kriser, familiekrise, helse/død)

• Andre grunner som i etterkant godtas i fellesskap.

Sanksjoner
• Sanksjoner kan kun gis hvis det ikke foreligger en gyldig grunn.

• Unnværelse å levere inn arbeidsoppgaver innen fristen resulterer i en skriftlig advarsel via
epost.

• Tre advarsler resulterer i et møte med veileder for å bestemme håndteringen av situasjonen,
med mulighet for ekskludering

4 Planlegging, oppfølging og rapportering

4.1 Hovedinndeling av prosjekt
For bachelorprosjektet vil vi benytte en iterativ systemutviklingsprosess. Utviklingsmetodikken
vil ha faste lengder, hvor hver hver runde vil ende i et ferdig utviklet produkt som blir distribuert
til arbeidsgiver. Vi har valgt å sette av ti arbeidsdager til hver iterasjon, som igjen vil resultere i
rundt ni distribusjoner av programvaren til arbeidsgiver.

Grunnen for å velge en iterativ prosess er at det gir oss en mulighet for å bygge programvaren
i inkrementer, som til slutt ender i en fullverdig versjon 1.0 av programmet I tillegg muliggjør
det for oss å benytte arbeidsgiver som testpersonell gjennom hele prosessen, slik at vi får tilbake-
meldinger av arbeidsgiver etter hver distribusjon av programvaren.

Prosjektet er delt inn i to spor som går parallelt, spor nummer én er utviklingsprosjektet, spor
to er utarbeidelsen av prosjektrapporten. Prosjektrapporten er basert rundt noen få hovedpunk-
ter. Først kommer teorien bak vår prosjekt og hvordan vi har satt opp våre systemer. Deretter
kommer teorien om vårt prosjekt, hva vi har gjort, oppdaget og utviklet. Til slutt kommer delen
om problematikken rundt personvern, hvordan dette sett er i sammenheng med vårt prosjekt
og sluttprodukt. Mye av oppgaven vår er nært knyttet opp i mot personvern siden vi loggfører
brukerinformasjon, både sensitiv og generell data. Spesielt iht. at produktet vårt loggfører og
lagrer brukerens tastetrykk og musebevegelser under en sesjon hos en sentral serverenhet.

7

BeLT Behaviour Logging Tool

Utviklingssporet er delt inn i sine respektive deler, hvor vi først utarbeider en skrivebords-
applikasjon brukeren kan benytte på sitt eget system. Del to blir å utvikle server-programmet,
samt etablere kommunikasjon mellom klient og server. Del tre baserer seg på å utvikle en driver
for I/O av mus og tastatur, samt en egen metro-applikasjon for å teste mulighetene innenfor
dette området.

For å sikre fremgang i prosessen har vi satt av to møter i uken internt i gruppen på mandag og
torsdag. Disse møtene er for at gruppen skal kunne samles og utveksle idéer, status på oppgaver
og videre utførelse av oppgaven.

I tillegg til interne gruppemøter to ganger i uken har vi avsatt ukentlige møter med veileder på
fredag formiddag. Disse møtene er ment for å kunne komme med foreløpig status på oppgavene
utført, og få en rask tilbakemelding på arbeidet utført. Disse møtene sikrer at vi holder oss
innenfor rammene av oppgaven, samt holder en rød tråd rundt prosjektet.

Til slutt har vi møte med arbeidsgiver annenhver uke for å utlevere en ny versjon av program-
varen, samt motta tilbakemelding på foregående distribusjon. Disse møtene øker sjansene for at
arbeidsgivers behov til programvaren blir ivaretatt og at arbeidsgiver er tilfreds med det endelige
produktet.

4.2 Plan for statusmøter og beslutningspunkter
• Periodiske gruppemøter skal holdes på mandag kl. 09:00 og torsdag kl. 14:00.

• Møter med veileder skal holdes på fredag kl. 11:30-12:00.

• Møter med arbeidsgiver holdes på mandager kl. 12:00.

Beslutningstakning

• Beslutninger tas i hovedsak som avstemning i felles samvær mellom alle gruppemedlemmene.

• Beslutninger og signering av dokumenter skal alltid gjøre i samvær med de andre gruppe-
medlemmene.

• Under spesielle omstendigheter kan beslutninger/signering gjøres alene, men kun når det
ikke er mulig å gjøre det i samarbeid med et medlem til.

5 Organisering av kvalitetssikring

5.1 Kvalitetssikring
For å sikre kvaliteten av vårt utviklingsprosjekt har vi implementert versjonskontroll, kontinuerlig
integrasjon og statisk analyse av programvaren. For å sikre samhandling benytter vi Høgskolen
i Gjøviks versjonskontrollsystem, Subversion. Dette gir hele gruppen et felles lagringsområde
hvor man kan hente ut og legge inn kode til prosjektet. For å hindre at feil i programvaren blir
lagt til har vi implementert vår egen versjon av kontinuerlig integrasjon ved å lage egne skript

8

BeLT Behaviour Logging Tool

som tillater å laste opp kode kun når den kompilerer, den statiske analysen er godtatt og ingen
konflikter med eksisterende kode oppstår.

Dermed sikrer vi at koden som ligger på serveren er kjørbar og sikker i størst mulig grad.
For å utføre statisk analyse av kildekoden benytter vi oss av CPPCHECK som utføre statisk

analyse av kildekoden og returnerer de feil den finner. I tillegg benytter vi oss også av Micro-
soft Visual Studio 2012 sin egen kodeanalyseverktøy. Dette er for å ha to uavhengige kilder for
feilsøking av koden. CPPCHECK vil kjøre hver gang man prøver å bygge koden, siden denne er
relativt rask til å kjøre. Deretter vil vi benytte Visual Studios analyseverktøy før hver innlevering
så vi har en ekstra analyse av programmet.

For å for å få ekstra sikkerhetsadvarsler ved bygging av programvaren har vi slått på Security
Development Lifecycle Checks(SDL checks). Dette legger til en rekke anbefalte sjekker, bl.a ekstra
funksjoner for generering av sikker kode. I tillegg vil den gi ekstra tilbakemeldinger med tanke
på sikkerhetsadvarsler.

Vi har laget skript som integrerer subversion, statisk analyse av kildedekode og kompilering i
Microsoft Visual Studio. For kommentering av kode har vi valgt å benytte Doxygen. Siden dette
gir oss muligheten til å eksportere kommentarer til LATEXog HTML har vi valgt dette for å enklere
knytte informasjon fra kildekoden inn i rapporten.

For å øke sjansene for at arbeidsgiver blir fornøyd med produktet setter vi opp en ”Bug Tra-
cker” hvor testeren kan fortløpende legge inn meldinger om feil i produktet, slik at vi ikke går
glipp av det på et møte og at feilen kan evt. løses med en gang vi har tid.

5.2 Risikoanalyse
Vi har gjennomført en forenklet risikoanalyse hvor vi har vektet faktorene med verdiene høy-
middels-lav for å angi deres påvirkning på prosjektet og sluttproduktet. Faktorene vi har valgt
er sannsynligheten for at trusselen vil inntreffe under prosjektet og hvilken konsekvens det vil få
for sluttproduktet om den inntreffer. Summen av sannsynligheten og konsekvensen er risikoen
trusselen utgjør for prosjektet.

Trussel Sannsynlighet Konsekvens Risiko
Tap av medlem lav høy middels
Beskrivelse Det kan skje uforutsette hendelser som medfører at et eller fle-

re gruppemedlemmer ikke kan utføre sine arbeidsoppgaver, det-
te kan for eksempel være død i nær familie, force majeure, at
gruppemedlemmet blir skadet og langtidssykemeldt eller at med-
lemmet dør

Tiltak Vi har iverksatt tiltak for å holde samholdet ved like. Vi vil holde
sosiale sammenkomster utenom prosjektet, men fysisk skade er
dessverre ikke mulig å iverksette tiltak imot.

Ikke godkjent sluttpro-
dukt av arbeidsgiver

lav middels lav

Beskrivelse Det er en sannsynlighet for at det endelige produktet ikke hol-
der mål iht. arbeidsgivers krav, dette kan for eksempel være at
produktet er ustabilt, ikke brukervennlig eller uferdig

Fortsetter på neste side

9

BeLT Behaviour Logging Tool

Trussel Sannsynlighet Konsekvens Risiko
Tiltak Vi har involvert arbeidsgiver tidlig i prosessen og vi har valgt å

benytte korte iterasjoner i utviklingen. Arbeidsgiver har allerede
tidlig vist interesse for å hjelpe til med testing av produktet. Vi
vil sette opp en bugtracker hvor det kan rapporteres feil når som
helst til en sentralisert enhet som vi følger med på. Dette senker
sannsynligheten for at sluttproduktet ikke blir godkjent.

Halvferdig klient/server-
arkitektur

middels middels middels

Beskrivelse Det er en sjanse for at vi møter uforutsette hindringer som gjør at
vi ikke får nok tid til å ferdigstille transmisjonsbiten av program-
met, dette er en risiko vi må ta inn over oss i arbeidet vårt.

Tiltak Siden vi jobber etter en inkrementell utviklingsmodell vil vi uan-
sett ha et kjørbart program etter hver iterasjon. Dermed vil det vi
har utviklet til det stadiet være i orden og kjørbart med et utvalg
av den ønskede funksjonaliteten på plass. Derfor er ikke dette et
risikot tap uansett hva som skjer.

Utdatert sluttprodukt lav middels lav
Beskrivelse Det kan hende at de teknologivalgene vi baserer oss på viser seg

å være utdatert når vi kommer til innleveringsfasen, sannsynlig-
heten er lav på grunnlag av teknologiens art.

Tiltak I våre teknologivalg vil vi først gjennomføre et selvstudie, for
å så prate med ressurspersoner på høgskolen hvis det er noe vi
er i tvil om. Det ligger masse dokumentasjon ute på internett,
og høgskolebiblioteket har et godt utvalg av bøker som omhand-
ler Windows-programmering og -arkitektur. Ved å være bevisst
på hvordan vi behandler informasjonen vi innhenter, minsker vi
sannsynligheten for at informasjonen er enten a) feil eller b) ut-
datert.

Endring av lovverk, krav,
standarder

lav lav lav

Beskrivelse Sannsynligheten for at et lovverk endres er liten, men at det fore-
kommer nye krav, enten i lovverk eller standarder, som hindrer
produktet i å bli brukt til sitt formål kan forekomme.

Tiltak Siden programvaren kun vil benyttes i et forskningsprosjekt vil
programvaren kun benyttes i et kontrollert miljø hvor det opply-
ses om hva programvaren gjør, og loggfører. Dermed vil ansvaret
falle på sluttbrukeren.

Uoppdaget sikkerhets-
hull

middels høy middels

Beskrivelse Siden sikkerhetshull er vanskelig å oppdage er det en sjanse for
at det foreligger programmeringsfeil, enten fra oss eller fra tredje-
parts systemer. Disse feilene kan resultere i sikkerhetshull.

Tiltak Ved å implementere statisk analyse av kode, kontinuerlig integra-
sjon og kodegjennomgang vil sannsynligheten for dette reduseres.

Liknende produkt slippes
før vårt

lav lav lav

Fortsetter på neste side

10

BeLT Behaviour Logging Tool

Trussel Sannsynlighet Konsekvens Risiko
Beskrivelse Det er en sannsynlighet for at det lages tilsvarende programvare

et annet sted i landet/verden som vi ikke er klar over.
Tiltak Siden vi har dette som et fastsatt bachelorprosjekt vil ikke dette

påvirke oss.
Misforståelser middels middels middels
Beskrivelse Innad i gruppen, arbeidsgiver, veileder, etc.
Tiltak Ved å ha hyppige møter åpner vi for dialog hvor vi kan lufte idéer

og fortere se og ta tak i misforståelser.
Uteværende utstyr middels middels middels
Beskrivelse At utstyr vi trenger for å fulløre oppgaven på en tilstrekkelig

måte ikke blir anskaffet.
Tiltak Vi baserer oppgaven minst mulig på utstyr vi må anskaffe fra en

tredjepart, evt. utstyr vi skaffer skal ikke være kritisk for utvik-
lingen av prosjektet.

6 Plan for gjennomføring

Dette kapittelet omhandler ressurser og tidsplaner. Her er en liste over personene, systemene og
softwaren vi kommer til å bruke mest:

Ressurskategori Ressurs Beskrivelse
Personell Robin Gruppeleder
Personell Magnus Gruppemedlem
Personell Lasse Gruppemedlem
Personell Soumik Mondal Testperson, arbeidsgiver
Personell Patrick Bours Testperson, interessert part
Personell Hanno Langweg Prosess-veileder
Programvare Visual Studio Professio-

nal/Premium 2012
For utvikling av kode

Programvare Windows 8/7/XP For testing og utvikling av pro-
grammet

Programvare Cpp-check For statisk analyse av kode
Programvare SDK/WDK Utviklingstillegg for Windows
Programvare Psake Powershell modul for forenkling

av kompileringoppgaver
Programvare Visual-svn Tillegg til visual studio for hånd-

tering av repositories
Programvare Microsoft Project 2013 For utvikling av framdriftsplaner
System Server HiG Kontaktperson Erik Hjelmås
System Subversion HiG System for versjonskontroll av

kode
System Doxygen System for å samle kommentarer

fra kildekoden

11

BeLT Behaviour Logging Tool

Vi har delt vår plan for gjennomføring i to deler, en for utvikling av verktøyet og en for
rapportskiving. Vi representerer tankemåten vår med to ganttskjemaer i henhold til dette. Legg
merke til at vi ikke har planlagt utviklingen lenger enn til mars, dette er fordi at det er vanskelig
å forutsi hvordan utviklingen vil gå. Dette gir oss muligheten til å forskyve ugjorte oppgaver
videre til neste iterasjon, og for eksempel legge til en iterasjon på slutten.

Gantt

Figur 1: Plan for utvikling

12

BeLT Behaviour Logging Tool

Figur 2: Plan for rapportskriving

13

BeLT Behaviour Logging Tool

Bibliografi

[1] Arroyo, E., Selker, T., & Wiy, W. 2006. Usability tool for analysis of web designs using mouse
tracks. CHI EA ’06 CHI ’06 Extended Abstracts on Human Factors in Computing Systems, 484–
489.

[2] Atterer, R., Wnuk, M., & Scmidt, A. 2006. Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. WWW ’06 Proceedings of
the 15th international conference on World Wide Web, 203–212.

[3] Mueller, F. & Lockerd, A. 2001. Cheese: tracking mouse movement activity on websites, a
tool for user modeling. CHI EA ’01 CHI ’01 Extended Abstracts on Human Factors in Computing
Systems, 279–280.

[4] Kukreja, U., Stevenson, W. E., & Ritter, F. November 2006. RUI: Recording user input from
interfaces under windows and Mac OS X. Behavior Research Methods, 38, 656–659.

[5] Goecks, J. & Shavlik, J. 2000. Learning users’ interests by unobtrusively observing their
normal behavior. IUI ’00 Proceedings of the 5th international conference on Intelligent user
interfaces, 129–132.

[6] Cypher, A. 1991. EAGER: programming repetitive tasks by example. CHI ’91 Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 33–39.

[7] Alexander, J. & Cockburn, A. Mai 2008. AppMonitor: A tool for recording user actions in
unmodified windows applications. Behavior Research Methods, 40, 413–421.

14

	Preface
	Contents
	List of Figures
	Code snippets and scripts
	List of Tables
	List of Abbreviations
	Glossary
	Introduction
	Background
	Project objective

	Requirement Specification
	Functional requirements
	Operational requirements
	Graphical design requirements
	External requirements

	Theory and technology
	Application
	Development

	Design
	Architectural design
	Implementation view
	Logical view
	GUI design

	Implementation
	Application
	Server
	Development
	Algorithms

	Testing and analysis
	Tests on client
	Performance optimization on server
	Server testing

	Privacy
	Anonymity of the user
	Confidentiality
	User awareness
	Abuse by authorized personnel
	Abuse by un-authorized personnel
	Transparency of logged data
	Storage of data

	Conclusion
	Achievements
	Requirement specification and results
	Future Development
	Alternatives
	Evaluation of group work

	Bibliography
	BeLT: System Manual
	BeLT: User Guide
	Windows application certification
	Scripts
	Python script to calculate time statistics
	Python script to measure mouse compression on file
	Python script to paint mouse movements from file
	SQL procedure for inserting data into database
	Script to insert data into indexed database
	Bash script used to run the servertest
	RAW part of Syslog-NG configuration file
	CSV part of Syslog-NG configuration file
	XML part of syslog-NG configuration file
	Syslog-NG for database storage
	Bash script for inserting data into database

	BeLT: Source Code Documentation
	BeLT: EULA example
	Work Log
	Work activity documentation
	Progress log
	Meetings

	Preliminary project

