
BACHELORTHESIS:

AUTHORS:

Jon Sætheren Lande

Anders Einar Hilden

Ole Marius Kohmann

Date: 27.05.2011

WIZARD WARS ʹ

ANDROID GAME DEVELOPMENT

WizardWars

May 27, 2011

Page 1

ABSTRACT

Title: Date : 27.05.11

English: Wizard Wars ʹ Android game development

Norwegian: Wizard Wars ʹ Android spillutvikling

Participants: Ole Marius Kohmann

 Anders Einar Hilden

 Jon Sætheren Lande

Supervisor(s) Øyvind Kolloen

Employer: Jayson David Mackie at the Game Technology Lab, Gjøvik University College

Keywords Game, Android, Mobile, OpenGL, Two-player

Number of pages: 181 Number of appendix: 8 Availability (open/confidential): Open

Short description of the bachelor thesis:

This project implemented a two player game on mobile devices running the Android operating system.

The game, named Wizard Wars, used network communication between the two players, allow them to

play on separate devices at different locations. The primary test device for the project was HTC Desire

mobile phones.

The game uses the touchsceen interface on the phone for all game input, including a gesture

recognition system for the main interaction during gameplay. The game involves manoeuvring around

an arena and casting spells at the opposing wizard.

Starting this project, the group had minimal experience with game programming. After many hours of

studying game technology and the Android system, trying, failing and debugging code, we have learned

a lot about working in a team and creating larger systems. We have spent 3 years learning several topics

and in this project we have used these topics in a practical situation, which has given us a new view and

insight into these topics.

WizardWars

May 27, 2011

Page 2

PREFACE

We would like to give a special thank you to our supervisor, Assistant Professor Øyvind

Kolloen, for his help with the documentation during our project.

Our employer, Jayson David Mackie, along with Simon McCallum at the Game Technology Lab,

Gjøvik University College has been very helpful with our code and game design issues.

We would like to thank Gjøvik University College for their good cooperation during the project.

Ole Marius Kohmann Anders Einar Hilden Jon Sætheren lande

____________________ ____________________ ____________________

WizardWars

May 27, 2011

Page 3

TABLE OF CONTENTS

1 Introduction ... 11

1.1 Project description .. 11

1.2 Goals .. 11

1.3 Scope ... 12

1.4 Target audience .. 12

1.6 Our background and expertise ... 12

1.7 roles ... 14

1.8 Work methods .. 14

1.8.1 System development model ... 14

1.8.2 How did we work? .. 15

1.9 The report ... 15

1.9.1 Organization ... 15

1.9.2 Terminology .. 15

1.9.3 Practical .. 15

1.9.4 Layout ... 16

2 Requirements specification ... 17

2.1 Game description .. 17

2.2 Functional requirements ... 17

2.2.1 Roles ... 17

2.3 Use case diagram .. 18

2.3.1 General use case descriptions .. 19

2.4 Use cases in a game .. 21

2.5 Detailed use case descriptions .. 22

2.6 Operational requirements .. 24

WizardWars

May 27, 2011

Page 4

2.6.1 Performance ... 24

2.6.2 Ease of use .. 24

2.6.3 Security ... 24

2.6.4 Network connection ... 24

2.7 Limits ... 25

2.7.1 Language and environment .. 25

2.7.2 Database ... 25

2.7.3 Operating system .. 25

3 Design .. 26

3.1 Starting the app... 26

3.2 Starting the game .. 28

3.3 The Game loop .. 29

3.4 Updating the world ... 31

3.5 Scenegraph .. 32

3.6 Rendering the world ... 33

3.7 the hud .. 37

3.7.1 Movement .. 38

3.7.2 Actions .. 38

3.7.3 Health and mana bars... 38

3.8 Animating the player ... 39

3.9 Casting a spell .. 40

3.10 Collision handling .. 42

3.11 Loading world and game objects .. 44

3.12 Player Rotation .. 46

3.13 Mana Regeneration .. 47

WizardWars

May 27, 2011

Page 5

3.14 Network... 48

3.15 Game server .. 48

3.16 Optimizations .. 49

3.16.1 Memory allocation ... 49

3.16.2 Threading .. 49

4 Design Decisions .. 50

4.1 Action System.. 50

4.2 Update manager vs. event handler/process manager ... 51

4.3 The Gameserver .. 54

4.4 Client Networking ... 55

4.5 Input .. 55

4.5.1 Movement .. 55

4.5.2 Gestures/Action .. 56

4.6 Rendering .. 56

4.7 Game loop ... 58

4.8 Collision ... 59

5 Implementation ... 61

5.1 Naming convention ... 61

5.2 Organization of the code .. 61

5.3 Design patterns ... 63

5.3.1 Singleton ... 63

5.4 no.hig.rag.UpdateManager ... 64

5.4.1 UpdateManager .. 64

5.5 no.hig.rag.controllers .. 65

5.5.1 Controller .. 65

WizardWars

May 27, 2011

Page 6

5.5.2 TranslateController ... 66

5.5.3 RotateController ... 68

5.5.4 AnimationController ... 69

5.5.5 ActionController ... 70

5.6 no.hig.rag.actions .. 71

5.6.1 Action .. 72

5.6.2 SpellDefault... 73

5.7 no.hig.rag.gui .. 75

5.7.1 Gestures .. 75

5.7.2 Movement .. 75

5.8 no.hig.rag.network .. 76

5.8.1 NetworkSender ... 76

5.8.2 NetworkReciver .. 76

5.8.3 Combined .. 77

5.9 no.hig.rag.collision .. 78

5.9.1 CollisionManager .. 78

5.9.2 Cell .. 78

5.10 no.hig.rag.human .. 79

5.10.1 Human .. 79

5.10.2 Player .. 80

5.10.3 NetworkPlayer .. 80

5.11 no.hig.rag.scenegraph... 81

5.11.1 Scenegraph ... 81

5.11.2 Nodes .. 81

5.11.3 Node ... 82

WizardWars

May 27, 2011

Page 7

5.11.4 TranslateNode .. 82

5.11.5 RotateNode ... 83

5.11.6 GeometryNode ... 84

5.11.7 TextureNode ... 84

5.11.8 GroupNode ... 85

5.11.9 SwitchNode ... 86

5.11.10 Initialization of nodes ... 87

5.11.11 Serialization .. 88

5.12 no.hig.rag.datastructures ... 89

5.12.1 Vec3 .. 89

5.12.2 Vec2 .. 89

5.12.3 RotateVector ... 89

5.12.4 VecCell .. 89

5.12.5 BoundingBox ... 89

5.13 Tools .. 90

5.13.1 Parsing game objects and creating scene graph file .. 90

5.13.2 Main .. 90

5.13.3 BuildInitialSceneGraph ... 90

5.13.4 ColladaParse ... 90

5.13.5 GameObject .. 90

5.14 Server .. 91

5.14.1 Communication .. 91

5.14.2 The components ... 92

5.14.3 The database tables .. 93

5.15 3rdparty... 94

WizardWars

May 27, 2011

Page 8

5.15.1 OpenGL ... 94

5.15.2 Collada .. 94

5.15.3 Android ... 95

6 Testing ... 96

6.1 Test strategy .. 96

6.2 Testing tools/methods .. 96

6.3 Game server .. 97

7 Closing ... 98

7.1 Discussion of the results ... 98

7.1.1 The result .. 98

7.1.2 Discussion ... 100

7.2 Work methods .. 102

7.2.1 Scrum .. 102

7.3 Afterthought ... 105

7.3.1 Do it yourself or use middleware? ... 105

7.3.2 Merging systems ... 105

7.3.3 The OpenGL/Android headache ... 106

7.3.4 Action system ... 106

7.3.5 Collada vs .OBJ .. 107

7.4 Conclusion ... 109

8 Appendices ... 113

Appendix 1: Project diary .. 115

Meeting 20.05.2011 - Feedback Øyvind ... 115

Appendix 2: Worklogs ... 135

Work log for Ole Marius Kohmann .. 146

WizardWars

May 27, 2011

Page 9

Worklog Anders Einar Hilden .. 152

Appendix 3: Status reports ... 155

Appendix 4: Scrum meetings .. 157

Sprint 7 (29.03.2011 - 04.04.2011) .. 157

Appendix 5: Daily scrums .. 161

Appendix 6: First Technical description What we need .. 168

Appendix 7: Project Plan (Pre project report) .. 170

5 Table of contents .. 170

6 1. GOALS AND BOUNDARIES .. 171

1.1 Background ... 171

1.2. Goals... 171

1.3. Boundaries ... 171

7 2. SCOPE .. 173

2.1. Project description ... 173

2.2. Scope .. 173

8 3. Project organization ... 174

3.1 Employer and supervisor .. 174

3.2. Responsibilities and roles ... 174

3.3. Group rules and routines ... 174

3.3.1 Group rules ... 174

3.3.2 Routines .. 174

3.4 Resources .. 175

9 4. Planning, meetings and reporting ... 176

4.1. System development model .. 176

4.2. Meetings .. 177

WizardWars

May 27, 2011

 Page

10

4.3 Status reports .. 177

10 5. Quality assurance .. 177

5.1 Testing ... 177

5.2 Code meeting .. 178

Appendix 8 .. 180

WizardWars

May 27, 2011

 Page

11

1 INTRODUCTION

1.1 PROJECT DESCRIPTION

Wizard Wars is an action game made for mobile phones running Android. The game will

allow two players to play competitive against each other on separate phones. The idea is to

have wizards fight each other, in real time, where the setting is a battle in an arena between

two players.

1.2 GOALS

Our main goal was to make an entertaining game, which was technically functional, so that it

could be played. This meant that both the client and the server had to be operational at the

end of the project.

Another important goal for the project is the learning aspect. We are excited about learning

game programming, and programming for Android, as well as improving our overall

programming skills.

Writing a game is a complicated task, requiring knowledge from many of the courses we

have had already, mentioning a few: Programming, algorithms, operating systems, computer

architecture, WWW-technology, program development, system engineering, math and

physics, with more.

We found it interesting to do a project that involves a lot of the courses we have had, since

none of our previous project have done this in particular. We are using a lot of time playing

games ourselves, so to learn the technology behind games seemed very exciting.

WizardWars

May 27, 2011

 Page

12

1.3 SCOPE

We realized that first making a game engine, and then implement the game play logic, would

take up a lot of time. Since the main goal was to make the game technically functional at the

end of the project period, we had to keep the artwork to a minimum. The main focus was to

implement the features needed to make the game playable.

1.4 TARGET AUDIENCE

The target audience for the game is basically anybody interested in gaming, with an Android

based phone, although we imagine the game appeals mostly to people at the age of 10 - 30.

 TŚĞ ƚĂƌŐĞƚ ĂƵĚŝĞŶĐĞ ĨŽƌ ƚŚŝƐ ƌĞƉŽƌƚ ŝƐ ƚŚĞ ƉƌŽũĞĐƚƐ͛ ĞǆƚĞƌŶĂů ƐĞŶƐŽƌ͕ ŽƵƌ ƐƵƉĞƌǀŝƐŽƌ ĂŶĚ

employer, other students, and others who might be interested in game programming. This

ŵĞĂŶƐ ƚŚĂƚ ǁĞ ĚŽŶ͛ƚ ĞǆƉĞĐƚ ƚŚĞ ƌĞĂĚĞƌ ƚŽ ŚĂǀĞ ĂŶǇ ƉƌŝŽƌ ŬŶŽǁůĞĚŐĞ ƐƉĞĐŝĨŝĐĂůůǇ ĂďŽƵƚ ŐĂŵĞ

programming. However, a general understanding of programming and computers is

expected.

1.6 OUR BACKGROUND AND EXPERTISE

Out of the three members of the group, Ole Marius was the only one with experience from

game development. He had previous work experience as a game designer, and some

knowledge to game technology from a few courses here at school. The two other group

members had no experience with game programming at all.

The Android system was new to all of us. However, Android apps are programmed in Java,

which Anders Einar and Jon had some experience with, from the program development

course at school. Ole Marius was new to Java, so he needed some time to adjust to it.

The server was programmed by Anders Einar with PHP and MySQL, which he knew well.

We used a lot of time to learn game technology, and understanding the Android system.

WizardWars

May 27, 2011

 Page

13

As time went by, we saw that because of our limited experience in game programming, we

needed more time on each part of the project than we expected. Especially the development

of the game engine became time consuming. We realized that we had to cut back on some

features.

We decided to drop the feature where players can choose their opponent. Instead, the

server finds two players looking for a new game, connecting them, and the game starts on

both phones. The two phones need to be connected to the same local network to play

against each other, and to the internet to get connection with the server. The help section

and view statistics did not get implemented either. The results of the project are discussed

ƵŶĚĞƌ ͚DŝƐĐƵƐƐŝŽŶ ŽĨ ƚŚĞ ƌĞƐƵůƚƐ͕͛ ŝŶ ƚŚĞ ͚ĞŶĚ͛ ƐĞĐƚŝŽŶ͘

WizardWars

May 27, 2011

 Page

14

1.7 ROLES

- Ole Marius Kohmann has been group leader, lead designer, and artist.

- Jon Sætheren Lande has been project manager, and responsible for game object

loading.

- Anders Einar Hilden has been Scrum master, and responsible for the server and

network.

- The projects employer was Associate Professor Jayson Mackie at the Game

Technology Lab, Gjøvik University College.

- Our supervisor was Assistant Professor Øyvind Kolloen.

1.8 WORK METHODS

1.8.1 SYSTEM DEVELOPMENT MODEL

Since we had minimal experience with game programming, we would probably need to

change our design, ideas and time limits through the development process. This meant that

we wanted to use an agile method as our development model.

When looking at the different methods we narrowed it down to 3 candidate methods; RUP,

Scrum and Extreme Programming (XP).

Two of the group members used RUP as method in the systems engineering course and

concluded afterwards that it is best used in large teams and big projects. Even though XP

could be used, we felt that Scrum was more suited to our needs, so Scrum was our preferred

choice of development model.

We think that Scrum as the development model was an excellent choice for our project. Its

rules and guidelines are easy to understand, and they ensure good documentation and

communication within the group. Scrum is suitable even for a small group like this. More

ĂďŽƵƚ ƚŚŝƐ ƵŶĚĞƌ ͚WŽƌŬ ŵĞƚŚŽĚƐ͛ ŝŶ ƚŚĞ ͚CůŽƐŝŶŐ͛ ƐĞĐƚŝŽŶ͘

WizardWars

May 27, 2011

 Page

15

1.8.2 HOW DID WE WORK?

Most of the project work has been done at our group room, A030. We shared this room with

another group. This has worked great.

In addition to the scrum meetings, we have had three meetings with our supervisor,

discussing the progress and our report. Jayson Mackie and Simon McCallum at the Game

Tech Lab at the school have been very helpful with game design- and coding questions. We

have had a lot of smaller meetings with them. The most important meetings during the

project period were logged, and are found in Appendix 1.

1.9 THE REPORT

1.9.1 ORGANIZATION

This report is designed based on the guidelines given from the Gjøvik University College for

Bachelor project reports.

We have chosen to let the design, and the discussion around our design decisions, be

separated. The design part can at time become quite big and we want to make sure that

both topics are easily found. We have also added a title in our document called

͞AĨƚĞƌƚŚŽƵŐŚƚ͘͟ HĞƌĞ ǁĞ ĚŝƐĐƵƐƐ ƚŽƉŝĐƐ ĂďŽƵƚ ǁŚĂƚ ǁĞ ǁŽƵůĚ ŚĂǀĞ ĚŽŶĞ ĚŝĨĨĞƌĞŶƚůǇ͕ ĂŶĚ

problems that changed the course of our project during implementation.

1.9.2 TERMINOLOGY

As mentioned earlier, we expect that the reader of the report has a general computer

understanding. When it comes to words and expressions we use that have to do with game

technology, we will explain these the first time they are mentioned, before moving on.

1.9.3 PRACTICAL

The report is written in Microsoft Word 2010. For some of the documentation, we have used

Google Docs in the process as well. Some of the figures are drawn by hand and scanned in,

while others are made with Google Docs Drawing. For referencing, we use the Vancouver

system.

WizardWars

May 27, 2011

 Page

16

1.9.4 LAYOUT

The report is written with the font type Calibri, size 12. The chapters and sub chapters are

numerated, in three levels (e.g. ch.1.9.4).

WizardWars

May 27, 2011

 Page

17

2 REQUIREMENTS SPECIFICATION

The following requirements specification shows the requirements for the game before the

development period started. This does not necessarily reflect what were implemented. Any

deviations from the requirements are discussed in the discussion section of the report.

2.1 GAME DESCRIPTION

Wizard Wars is going to be a multi-player action game in 3D, for mobile phones running

Android. The game will allow players to play competitive against each other. The idea is to

have wizards fight each other, in real time, where the setting is a battle in an arena between

two players. Players need to register and log in, in order to get an opponent and start a

game.

The game will have a user interface where players can get suggestions for available

opponents, and accept or reject these. Obviously the users can be challenged to a game

themselves as well. When a player is challenged and the challenge is accepted, a new game

is started.

TŚĞ ƉůĂǇĞƌ ǁŝůů ďĞ ĐŽŶƚƌŽůůĞĚ ǁŝƚŚ ƚŚĞ ƉŚŽŶĞƐ͛ ƚƌĂĐŬďĂůů Žƌ ŽƉƚŝĐĂů ƐĞŶƐŽƌ ĨŽƌ ŵŽǀĞŵĞŶƚ͘ TŚĞ

players will cast spells at each other, in order to win the game. This is done by doing certain

pre-defined gestures on the screen. When Ă ƐƉĞůů ŝƐ ĐĂƐƚĞĚ͕ ƚŚĞ ƉůĂǇĞƌ͛Ɛ mana will decrease.

If the spell hits the opponent, his health will decrease.

A game is won when a player is out of health. The players then get a message with the result

ŽĨ ƚŚĞ ŐĂŵĞ͘ TŚĞ ƵƐĞƌƐ͛ ŶƵŵďĞƌ ŽĨ ŵĂƚĐŚĞƐ͕ ǁŝŶƐ ĂŶĚ ůŽƐƐĞƐ get stored, and users can see

his statistics at any time.

2.2 FUNCTIONAL REQUIREMENTS

2.2.1 ROLES

The game will only have one type of user. The server handles all of its tasks automatically,

ǁĞ ĚŽŶ͛ƚ ŶĞĞĚ ĂŶ ĂĚŵŝŶŝƐƚƌĂƚŽƌ͘

WizardWars

May 27, 2011

 Page

18

2.3 USE CASE DIAGRAM

FIGURE 1: USECASE DIAGRAM FOR THE GAME.

Since there is only one type of user of the game, obviously every user can use all of the use

cases. Some of the use cases from one user can start a use case at another user, like 'choose

opponent' will trigger the use case 'answer opponent request' at the player that was chosen,

and vice versa.

WizardWars

May 27, 2011

 Page

19

2.3.1 GENERAL USE CASE DESCRIPTIONS

USE CASES BEFORE A GAME STARTS

Following are short descriptions of each of the use cases in the game. Since the game only

has one type of user role, all of the use cases are used by the same type of user, and thus the

user is not specified.

Use case: Manage player account

Goal: Create a player account, and log in, in order to play.

Description The user can register a new player profile, with a username, email and a

password. A player account is needed to play against other people. Once

registered, the user can log in and see the main menu. From here, he can

start a new game, view statistics, or log out.

Use case: View statistics

Goal: TŚĞ ƵƐĞƌ ĐĂŶ ƐĞĞ ŚŝƐ ƉůĂǇĞƌƐ͛ ƐƚĂƚŝƐƚŝĐƐ͘

Description User can view statistics for his player. This should show number of

matches played, wins and losses.

Use case: See help

Goal: Show user a help screen.

Description Shows an explanation of how the game works. This should show what

the different gestures look like, and explain how they work.

Use case: Start new game

Goal: Start looking for an opponent to start a new game with.

Description When the user chooses new game, the game starts looking for

opponents. If any available opponents are found, the user gets a list of

these.

Use case: Get opponent list

Goal: Show the user all the possible opponents to choose among.

Description User gets a list of available opponents for a new game. These are all

WizardWars

May 27, 2011

 Page

20

other players who are also currently looking for an opponent.

Use case: Choose opponent

Goal: Choose an opponent to challenge for a new game.

Description From the list of possible opponents, the user can challenge one of them

ƚŽ Ă ŶĞǁ ŐĂŵĞ͘ IĨ ƚŚŝƐ ĐŚĂůůĞŶŐĞ ŝƐ ĂĐĐĞƉƚĞĚ͕ ƚŚĞ ŵĂƚĐŚ ǁŝůů ƐƚĂƌƚ͘ IĨ ŝƚ͛Ɛ

rejected, the user can choose a new opponent.

Use case: Answer opponent request

Goal: Either accept or reject a request for a new game.

Description IĨ ƚŚĞ ƵƐĞƌ ŚĂƐ ĐůŝĐŬĞĚ ͚ŶĞǁ ŐĂŵĞ͕͛ ďƵƚ ŚĂƐ ŶŽƚ ǇĞƚ ĐŚĂůůĞŶŐĞĚ ĂŶ

opponent, he can get a request for a new game himself. This request can

either be accepted or rejected. If accepted, the match will start.

Use case: Offline game mode

Goal: Start a new game in offline mode.

Description This is a kind of single player mode, where the opponent is inactive. Here

the user can learn how the game works and practice the gestures, even

with no internet connection. Offline mode can be started without the

user having to register or log in.

WizardWars

May 27, 2011

 Page

21

2.4 USE CASES IN A GAME

Use case: Move player

Goal: User can move his player around in the world.

Description The user should be able to move his player around in the world. The

movement is controlled with the optical sensor on the phone, or a

trackball. Only moves along the ground will be possible, jumping will not

be possible. If user tries to move into another object (wall, another

player, etc), the move will not be allowed.

Use case: Cast spell

Goal: Cast a spell to hurt the opponent.

Description To win the game, the players need to hurt the opponent enough. The

way of doing this is casting different spells. Spells are casted by doing

different gestures on the screen. The game will have minimum three

different spells. The spells are going to be shown as small objects flying

through the world, where it can either hit the opponent or miss. There

has to be a clear sight to the opponent to get a hit. If the spell hits a wall

it will get destroyed.

Use case: See players info

Goal: “ŚŽǁ ďŽƚŚ ŽĨ ƚŚĞ ƉůĂǇĞƌƐ͛ ŚĞĂůƚŚ ĂŶ ŵĂŶĂ ƐƚĂƚƵƐ͘

Description While playing a match, both of the players can see their own and the

opponents health status and mana status, each represented by a

dynamical bar. These bars are shown all the time while in a game.

Use case: Leave game

Goal: Lets a user leave an active game.

Description If, for some reason, a user wants to leave a game, and he presses the

back button or home button, the active game should end for both

players. This will not result in a win/loose for any of the players.

WizardWars

May 27, 2011

 Page

22

2.5 DETAILED USE CASE DESCRIPTIONS

We picked out two of the most important use cases, which are explained in detail below. Both of

them happen inside an active game.

Use case: Move player

Goal: User can move his player around in the world.

Description: The user should be able to move his player around in the world. The

movement is controlled with the optical sensor on the phone, or a

trackball. Only moves along the ground will be possible, jumping will not

be possible. If user tries to move into another object (wall, another

player, etc), the move will not be allowed.

Every time a player tries to move, a collision detection system is

activated, to check whether the player collides with anything or not. If no

collision is found, the move is allowed, and the player moves. If a collision

is found, the player will either stop, or, if moving partially along an object

(e.g. a wall), the player will slide along the object.

Type: Essential

Pre-conditions: 1. New game started

2. PůĂǇĞƌ ĚŽĞƐŶ͛ƚ ĐŽůůŝĚĞ ǁŝƚŚ ĂŶŽƚŚĞƌ ŽďũĞĐƚ
Post conditions: PůĂǇĞƌ ŚĂƐ ŵŽǀĞĚ ŽŶ ďŽƚŚ ƉůĂǇĞƌƐ͛ ƐĐƌĞĞŶƐ

Detailed sequence of events:

User: System:

1. User tries to move his player 2. System detects a move, activates

collision system.

 3. Collision system checks for collisions

with other objects. No collision is found.

 4. Player gets moved to the new position.

Alternative sequence of events:

User: System:

1. User tries to move his player 2. System detects a move, activates

collision system.

 3. Collision system checks for collisions

with other objects. A collision is found.

 4. System calculates that the collision was

direct into the other object.

 5. TŚĞ ŵŽǀĞ ŝƐ ĚĞŶŝĞĚ͕ ƉůĂǇĞƌ ĚŽĞƐŶ͛ƚ
move.

Use case: Cast spell

Goal: Cast a spell to hurt the opponent.

Description: To win the game, the players need to hurt the opponent enough. The way

of doing this is casting different spells. Spells are casted by doing different

WizardWars

May 27, 2011

 Page

23

gestures on the screen. The game will have minimum three different

spells.

The spells are going to be shown as small objects flying through the

world, where it can either hit the opponent or miss. There has to be a

clear sight to the opponent to get a hit. If the spell hits a wall it will get

destroyed. The player is always facing the opponent, so the spells casted

will always move towards him.

The accuracy of the gestures is found, and the better this is, the more

damage the spell will do (if it hits the opponent).

Type: Essential

Pre-conditions: New game is started

Post conditions: a) Opponent is hit and damage is made.

or

b) Spell misses opponent, and gets destroyed.

Detailed sequence of events:

User: System: Opponent:

1. User moves player to the

desired location

2. Does the gesture which

casts a thunder spell

 3. TŚĞ ƉůĂǇĞƌƐ͛ ŵĂŶĂ ŝƐ
decreased with a specific

amount

 4. System finds the accuracy

of the gesture

 5. “ƉĞůů ŝƐ ͞ƚŚƌŽǁŶ͟ ƚŚƌŽƵŐŚ
air, and hits opponent

 6. Opponent gets hit

by the spell, and

damage is made

(based on the

accuracy of the

gesture)

Alternative sequence of events:

User: System

1. User moves player to the desired location

2. Does the gesture which casts a thunder

spell

 3. System finds the accuracy of the

gesture

 4. “ƉĞůů ŝƐ ͞ƚŚƌŽǁŶ͟ ƚŚƌŽƵŐŚ Ăŝƌ͕ ŵŝƐƐĞƐ
the opponent, hits a wall and gets

destroyed. Opponent is never

affected.

WizardWars

May 27, 2011

 Page

24

2.6 OPERATIONAL REQUIREMENTS

2.6.1 PERFORMANCE

We are going to make the code as efficient as possible. This means that our coding style

sometimes have to differ from the generally recommended practices of programming, in

order to increase the performance of the game.

Since our main goal is to get the game working on a HTC Desire, we should have more than

enough hardware power to run a game like this. However, we still want the game to run as

fast as possible.

WĞ ĚŽŶ͛ƚ ĞǆƉĞĐƚ ƚŚĞ ƐĞƌǀĞƌ ƚŽ ŐĞƚ ŽǀĞƌůŽĂded with users, but it should handle at least 50

users at a time.

2.6.2 EASE OF USE

We will try to make the game as user friendly as possible, without it affecting our goal of

making the game functional at the end of the development period. To increase the ease of

use, we want to make a help screen for guiding the user through how to play the game.

2.6.3 SECURITY

Security will not be a priority in our project. Considering the time limit of the project, we will

rather focus on getting the game functional. On the registration of player, the password will

be encrypted. We will not focus on preventing manipulation of game results. For further

development of the game, this would have been an issue.

2.6.4 NETWORK CONNECTION

In order to register a player account, log in, and find opponents to challenge, the phone

must be connected to the Internet, to get a connection to the server. The network traffic

between the two players in a game will be handled by the server as well. However, if the

phone has no Internet connection, there is still possible to play the game in offline mode,

with an inactive opponent.

WizardWars

May 27, 2011

 Page

25

2.7 LIMITS

2.7.1 LANGUAGE AND ENVIRONMENT

All the parts of our project will be developed through the software development

environment Eclipse. The project that creates the scene graph file will be a plain java project.

The GUI shown before the game starts, and the actual game are both written I Java as well,

for Android. The server will be written in PHP. For repository we have used Subversion

(although we considered using GIT).

2.7.2 DATABASE

For our server system, we will use MySQL as our database engine. The database is used to

store information about player accounts and games/matches.

2.7.3 OPERATING SYSTEM

We are going to develop the game for the Android platform, specifically Android 2.2.

Although Android 2.3 is the latest version at the moment, we believe we will reach out to

ŵŽƌĞ ƉĞŽƉůĞ ďǇ ƐƵƉƉŽƌƚŝŶŐ Ϯ͘Ϯ͘ BĞĐĂƵƐĞ ŽĨ ƚŚĞ ƚŝŵĞ ůŝŵŝƚ͕ ǁĞ ǁŽŶ͛ƚ ďĞ ĂďůĞ ƚŽ ƐƵƉƉŽƌƚ ŽƚŚĞƌ

versions or platforms.

We are limiting ourselves to developing the game primarily for the android phone HTC

Desire. This is one of the most popular android phones on the Norwegian market. (1) (2)

WizardWars

May 27, 2011

 Page

26

3 DESIGN

3.1 STARTING THE APP

Figure 2: Showing how the activities are connected.

An apps͛ activities are defined in the file AndroidManifest.xml. This file tells Android which

activities that the app uses. What activity that starts first, is decided by the <intent-filter> tag

inside an activity. The tag is used in our game to define MainMenu to start first. MainMenu

then decides how Run is to be started.

Run can be started in two ways: With or without Network. In MainMenu you can start the

game without network. This was used during the development period for debugging

purposes, but it also serves as an offline mode of the game. WŚĞŶ ƚŚĞ ƉůĂǇĞƌ ĐŚŽŽƐĞƐ ͞LŽŐ

IŶ͟ ĨƌŽŵ ƚŚĞ ŵĞŶƵ͕ ŚĞ ůŽŐƐ ŝŶƚŽ ƚŚĞ ŐĂŵĞ ĨƌŽŶƚĞŶĚ͘ TŚĞƌĞ ĂƌĞ ϯ ĐŚŽŝĐĞƐ ŚĞƌĞ͕ ͞NĞǁ GĂŵĞ͕͟

WizardWars

May 27, 2011

 Page

27

͞VŝĞǁ “ƚĂƚƐ͟ ĂŶĚ ͞LŽŐŽƵƚ͕͟ ǁŚĂƚ ƚŚĞǇ ĚŽ ŝƐ ƐĞlf-ĞǆƉůĂŶĂƚŽƌǇ͘ WĞ ĚŝĚ ŶŽƚ ĨŝŶŝƐŚ ͞VŝĞǁ “ƚĂƚƐ͟

so this feature is not in the game.

WŚĞŶ ƉƌĞƐƐŝŶŐ ͞NĞǁ GĂŵĞ͟ ƚŚĞ ĐůŝĞŶƚ ƐĞŶĚƐ Ă ŵĞƐƐĂŐĞ ƚŽ ƚŚĞ ƐĞƌǀĞƌ͕ ƚĞůůŝŶŐ ŝƚ ƚŚĂƚ ŝƚ ŝƐ

looking for a game. The server will then try to match up the client with the next free client,

ǁŚŽ͛Ɛ ůŽŽŬŝŶŐ ĨŽƌ Ă ŐĂŵĞ͘ WŚĞŶ ĂŶ ŽƉƉŽŶĞŶƚ is found, Run is started with network enabled

and the other clients IP so both clients will connect to each other.

WizardWars

May 27, 2011

 Page

28

3.2 STARTING THE GAME

Figure 3: Shows what is started when Run is started and up to the gameloop.

When Run is started, the game initialization begins. First the Android system is told to create

an OpenGL surface that we can render on, and to put a touch sensitive surface on top of this

(so we can accept movement and gesture input). A gesture library is loaded so the Android

automatically can recognize our prerecorded gestures.

Then we start the network threads (they communicate with Game), and a separate thread

that checks the game state (whether anybody has won of lost).

WizardWars

May 27, 2011

 Page

29

We populate the OpenGL surface by one of our classes (Game). In this class we have

combined both the rendering loop and update loop, and we call it the game loop.

3.3 THE GAME LOOP

The game loop is responsible for running/looping the game systems (input, updating,

rendering, network) during the lifetime of the game.

A game loop on Android is a bit different from a normal computer platform game loop, much

because there is already systems setup to do specific jobs. This means you need to order

your game loop around this. An example of this is that touches on the screen (the primary

input tool) are handled by an activity, without any easy way to pass these down to the

render.

Figure 4: The gameloops main jobs.

WizardWars

May 27, 2011

 Page

30

In addition to the threads created by Android to facilitate the rendering, we have threaded

our network sender- and receiver code. We would also have liked to have the renderer and

update routine to be on separate threads, but did not get it into the project in time, so both

are found inside Game.

Before the game loop is started, camera position, regeneration and similar are initialized,

and then the world (including the players) is loaded from a pre made file.

Inside the game loop we first update the game (Figure 4). This includes movement, rotation,

action, camera position and several other operations. Updates are explained better later in

this chapter.

Once all updates have been completed we traverse the scene graph, to render the world.

The scene graph is a graph that contains all the elements in our game world. More on this

ďĞůŽǁ͕ ƵŶĚĞƌ ͚‘ĞŶĚĞƌŝŶŐ ƚŚĞ ǁŽƌůĚ͛

On top of this rendered scene we draw the HUD (Heads Up Display), which includes

ŶĂǀŝŐĂƚŝŽŶ ŝĐŽŶ͕ ŚĞĂůƚŚ ďĂƌƐ ĂŶĚ ŵĂŶĂ ďĂƌƐ͘ MŽƌĞ ŽŶ ƚŚŝƐ ƵŶĚĞƌ ƚŚĞ ĐŚĂƉƚĞƌ ͚HUD͛͘

At the end of the game loop, we take a snapshot the time and compare this to one taken at

the start of the game loop. This gives us the difference in milliseconds from when this frame

started and when it ended. We then use this difference to set the loop to sleep for 1/30th

second minus the difference. This ensures us that the game will not render more than 30

frames per second.

Parallel to the game loop we have a thread for sending, and another thread for receiving

network packages. During the update cycle, new packages are created to be sent, and

received packages are read, parsed, and used to update the status of the opponent.

WizardWars

May 27, 2011

 Page

31

3.4 UPDATING THE WORLD

We update the world by using an update manager and different controllers. The update

manager is a class that makes sure that all of the controllers do their job, by iterating

through them. A controller is a class with a specific job, for example to handle user input.

Most of the controllers are connected to a specific node in the scene graph used in the

rendering of the world, and their job is to modify this. More about the scene graph later.

Any Controller inside the UpdateManager knows what to do itself. It is preprogrammed to

do a specific task. What the UpdateManager does, is providing each Controller with the

current time and previous time (previous time being the timestamp for the last frame

UpdateManager was run) so the Controller knows the timeframe which is needs to work

within. For instance, the RotateController needs to know how much time has passed since

last time it made a rotation, so it knows by how much it needs to rotate now. This gives a

smooth rotation when looking at the rotating object over time.

Figure 5: UpdateManager goes through all controllers, using time to call each update().

The Update routine is pretty straightforward. It is one function calling another function from

all objects inside an array.

WizardWars

May 27, 2011

 Page

32

3.5 SCENEGRAPH

Figure 6: How a scenegraph is built up.

A scene graph is an acyclic graph which is made up of nodes. The scene graph itself is not a

very complex data structure; the nodes contain all the code that defines the game world.

This structure allows for easy and fast control over how a world should be rendered. The

combination with the Controller classes, allow for complex behavior with minimal effort.

This way of working with small changes to produce great results are the greatest advantage

of using scene graphs for a game.

WizardWars

May 27, 2011

 Page

33

3.6 RENDERING THE WORLD

There are two things that are important for rendering the world. The first is making sure

OpenGL gets properly configured. The second thing is to traverse the scene graph.

OpenGL is a state based system; this means that when you set a state to a certain mode, it

will stay in that mode until you specify a different mode. Some states need to be set only

once, but others need to be set to on, off or change its value once or several times per

frame.

The value needed to be set once, are set inside Run.onSurfaceCreated(), rest are set in either

Run.onDrawFrame() or inside nodes in the scene graph. The TextureNode draw function only

enables a state in OpenGL that tells which texture to use. This texture will be used on all

drawing from OpenGL until a new texture is specified, so a texture node needs to be used for

every object drawn in the game.

For each frame the game loop is running, the scene graph is traversed. Every node performs

its task for every frame. Since this is being done after UpdateManager has been run, all

nodes have their data updated for the current frame.

There are seven different types of nodes and each one behaves differently (see below for

description of each node type). The nodes are split into two separate groups: Static and

dynamic. The static nodes are not moved after loaded, any node inside dynamic can move

during frames. Differentiating nodes like this speeds up the update routine greatly, because

if all nodes were to be dynamic, all nodes would have to have its own controller for

translation and rotation. This is not a big deal for a scene graph the size we use, but we

ǁŽƵůĚŶ͛ƚ ŶĞĞĚ ƚŽ ĂĚĚ ŵƵĐŚ ďĞĨŽƌĞ the update routine would take too long. As of now, the

only dynamic nodes are the ones used in Player and NetworkPlayer.

Each node has a OpenGL command performed in its drawTraverse() function. The order of

the nodes matter in terms of what result you are after. Below shows the different results of

having a TranslateNode and a RotateNode swapping position in the scene graph:

WizardWars

May 27, 2011

 Page

34

Figure 7: Different position of nodes in the scenegraph, cause different results.

In the first example, the RotateNode is before the TranslateNode. This means that the object

is rotated by 45 degrees around center, while being in the center and then moved 5 units on

the x-axis.

The second example shows the object being moved 5 units on the x axis first and then

rotated 45 degrees around center.

For displaying models in the world, you first need to set the position and rotation, using a

TranslateNode and a RotateNode. Then you need to add a TextureNode and at last a

GeometryNode. You could also add several mode GeometryNodes to the TextureNode to

have more than one model in the game, using the same texture.

The performDraw() function of the GeometryNode do the following: First it sets states in

OpenGL that allows drawing objects the way we chose to draw them. It then transfers the

data to OpenGL and asks it to draw it, when finished drawing, it disables all states that was

enabled before.

We use the function glEnableClientState() to activate these states and glDisableClientState()

to disable them. The states GL_VERTEX_ARRAY, GL_NORMAL_ARRAY and

GL_TEXTURE_COORD_ARRAY tell OpenGL that we are storing data in arrays and that we use

arrays for vertices, normal and texture coordinates.

WizardWars

May 27, 2011

 Page

35

Figure 8: All arrays need to be index aligned for OpenGL to work properly.

It is imperative that the data being sent in these arrays are synchronized. This means, that

any index in these 3 arrays, contain data about the same vertex! Some 3dmodel file formats

ĚŽ ŶŽƚ ƐƵƉƉŽƌƚ ƚŚŝƐ͕ ďĞĐĂƵƐĞ ϯĚ ŵŽĚĞůŝŶŐ ƉĂĐŬĂŐĞƐ ĚŽŶ͛ƚ ĐĂƌĞ͕ ďƵƚ ŝŶ OƉĞŶGL ƚŚŝƐ is an

absolute rule. By forcing this rule, OpenGL only need one index list for all vertices, all

normals and all texture coordinates.

The objects are built up by triangle. A triangle is defined by 3 vertices, connected together.

After enabling the states, we set the triangle draw order to counter clockwise, letting

OpenGL know which direction the triangles face. Any triangle that OpenGL draw, that is

drawn clockwise, it then knows is facing away from the camera and is then not being drawn.

This is something OpenGL does automatically.

Figure 9: Counter clockwise or clockwise triangle drawing.

WizardWars

May 27, 2011

 Page

36

With the settings we have for triangle orientation. The triangle on the left would be facing

the screen, and be drawn and the triangle on the right would be facing the same direction as

the camera is and would not be drawn. This technique is called back-face culling. (3)

The data about the objects (vertices, normals, texture coordinates) are stored in directly

addressed buffers, which the Java garbage collector cannot delete or remove.

What we do next, is assigning the buffers to OpenGL and identifies what kind of buffers they

are.

Using the functions glVertexPointer(), glNormalPointer() and glTexCoordPointer(), we let

OpenGL know what buffers to use and how to use them. Each function takes in as parameter

how many variables there are for each instance in the buffer, what kind of variable it is and a

pointer to the buffer.

When this has been set properly, OpenGL is ready to draw the vertices and

glDrawElements() is called. This function takes as parameter what kind of 3d structure you

want to draw, the size of the index list, what kind of variable the indices are, and a pointer to

the index buffer.

Last thing to do is to disable the states we set first, and the triangles have been successfully

drawn to the screen.

WizardWars

May 27, 2011

 Page

37

3.7 THE HUD

Figure 10: The HUD with health and mana bars for the player[3,4] and his opponent[2,5]. In

the top left corner is the navigation icon[1]

HUD stands for Heads Up Display. It is basically an overlay on top of the game world

displaying ǀŝƚĂů ŝŶĨŽƌŵĂƚŝŽŶ ĂŶĚ ŶĂǀŝŐĂƚŝŽŶ ĐŽŶƚƌŽůƐ͘ TŚĞ GUI͛Ɛ ƉƌŝŵĂƌǇ ŵŝƐƐŝŽŶ ŝƐ ƚŽ ƚƌĂŶƐůĂƚĞ

the user͛s physical interaction with the device to game events (movement, actions). We have

designed our game to accept two forms of input: Movement in the form of touch-events to

the screen, (in a pre-defined area) and gestures drawn on the screen to start actions (casting

spells).

WizardWars

May 27, 2011

 Page

38

3.7.1 MOVEMENT

Initially we wanted to use the trackball for movement. However,

the trackball did not perform as expected. We therefore had to

implement a special area on the screen that is used to detect

movement. Touches inside the navigation icon [1] in the top-left

corner of the screen are used instead of the trackball or other

hardware solutions. These touches are then translated to display-

size-independent values and passed on to user͛s player. Figure 11: D-Pad

3.7.2 ACTIONS

Gestures are captured using a built-in library in Android that compares the user͛s finger

movements over the screen area to prerecorded gestures. An

event is triggered when the library finds a comparatively close

match to the gesture. When a gesture is recognized and it is within

the boundaries we set for how close a match needs to be, the

action is sent into the game loop. There it is decided whether to

discard it (another action might be in progress), to cache it, or

accept it and start a new action. Figure 12: A Gesture

3.7.3 HEALTH AND MANA BARS

Figure 13: the Bars.

The GUI also provides the users with information needed in a game. Four dynamic bars that

represent the users and opponents stats ʹ health and mana - are drawn in the bottom of the

ƐĐƌĞĞŶ͘ TŚĞ ƉůĂǇĞƌ͛s bars are to the left and his opponent's to the right.

Using some math, we let the bars adjusts and position themselves relative to the resolution

and orientation of any screen.

WizardWars

May 27, 2011

 Page

39

3.8 ANIMATING THE PLAYER

Each player has two animation controllers; one for the upper body and one for the lower

body. These provide a walking look for the player, along with an idle version, and one for

when the player is casting a spell. For walking animations (walking or idle), thĞ ƉůĂǇĞƌƐ͛

translate controller will ask the animation controller to play an animation, and when a player

is casting a spell, the animation controller is asked to play the casting animation. An

animation is an iteration of different frames/versions of the player in different poses.

Figure 14: Animation Controller and its relationship to the SwitchNode.

The controller will then set this animation to be the current one. When update() is done it

will then ask the current animation to iterate its frames. When rendering the screen, the

switch node will then use the index set by the animation currently playing.

WizardWars

May 27, 2011

 Page

40

3.9 CASTING A SPELL

To hurt the network player, the player has to cast spells. A spell will decrease the network

ƉůĂǇĞƌ͛Ɛ ŚĞĂůƚŚ ďĂƌ͕ ĂŶĚ ĚĞĐƌĞĂƐĞ ƚŚĞ ƉůĂǇĞƌƐ ŵĂŶĂ ďĂƌ͘

Casting a spell is detected through gestures in android. It sends the id to the Player object if

the Gesture is identified as a spell. Player then asks the ActionController to change current

action to the one specified by the Gesture.

 TŚĞ AĐƚŝŽŶCŽŶƚƌŽůůĞƌ ƚŚĞŶ ŶĞĞĚƐ ƚŽ ĐŚĞĐŬ ŝĨ ŝƚ͛Ɛ ĂůůŽǁĞĚ ƚŽ ĂĐƚŝǀĂƚĞ ƚŚĂƚ ĂĐƚŝŽŶ ĂŶĚ ƚŚĞŶ

activate it, or not. The only two rules as of now are to check area range, and whether an

action is already being performed. Other rules to include would be: is the target the visible?

DŝĚ ƚŚĞ ƉůĂǇĞƌ ĐĂŶĐĞů ƚŚĞ ĐƵƌƌĞŶƚ ƌƵŶŶŝŶŐ ĂĐƚŝŽŶ͍ AŶĚ ƐŽ ĨŽƌƚŚ͙

Once the rules are passed, it needs to call the action͛s update() and check for when it is

complete. When an action is complete, it needs to kill that action and set itself to idle. This

logic is quite fragile for bugs, and you can easily get into troubles where it breaks itself, or

the Player does something that breaks it. If looking at the use of actions, from start to finish,

the complexity lies in all the layers of code it is spread over; They are called from Gestures,

sent to Player, started in ActionController, run in Actions and killed in ActionController. The

hard part of solving this, is understanding where you put what parts of the logic.

We chose to solve this by limiting Gestures to only tell the player what action was called,

which then tells the action controller what it wants to do. Then the action controller decides

ŝĨ ƚŚĂƚ ŝƐ ůĞŐĂů Žƌ ŶŽƚ͘ OŶĐĞ ƚŚĞ ĂĐƚŝŽŶ ŚĂƐ ďĞĞŶ ĂĐƚŝǀĂƚĞĚ͕ ŝƚ͛Ɛ ƚŚĞ action itself that controls

what happens. When the action is finished, it marks itself so the action controller ŬŶŽǁƐ ŝƚ͛Ɛ

finished and can remove it.

WizardWars

May 27, 2011

 Page

41

Figure 15: The internal FSM controlling the behavior of a spell.

When ActionController activates the spell, its set to 1, meaning it is currently being casted.

When finished casting, the transition casted is performed, in our case this is just setting

currentState to 2. In state 2 the spell is initialized and state is set to 3. During state 3 the

effect of the spell is calculated on the target. Leaving state 3 calls the kill function and

currentState is set to 0.

The function calculateSpellEfffect() has 5 different methods of applying its effect. We chose

to implement and test 1 of them, while the remaining 4 are implemented, but not tested.

The effect we implemented is direct damage/healing done to the target. It affects the health

of the target additive, using basic algebraic rules on adding two numbers together. This

means that when, using signed variables, the target is to take 10 in damage; the variable is -

10. If the target is to receive 10 health, the variable is 10.

WizardWars

May 27, 2011

 Page

42

3.10 COLLISION HANDLING

Almost every game needs some kind of collision handling. Without it, all of the objects

would just float through each other. We need to check if there is a collision, and, if so,

handle this collision in some way. We made a relatively simple system for detecting and

handling collisions between game objects, such as players, walls and other objects the world

might have.

There are many ways of representing an object in a collision system, called bounding shapes.

What they all have in common is that they need to encapsulate the object completely.

We decided to use two-dimensional squares/boxes. These wrap the objects into a square on

the ground. The red lines in figure 16 show the bounding boxes for the objects. The

bounding boxes can never be rotated, so their edges are always parallel to the x- and z-axes.

Figure 16: Bounding boxes represented by red lines

Every game object has its own bounding box. The object itself is never inside the collision

ƐǇƐƚĞŵ͕ ŝƚ͛Ɛ ŽŶůǇ ƌĞƉƌĞƐĞŶƚĞĚ ŚĞƌĞ ďǇ ŝƚƐ ďŽƵŶĚŝŶŐ ďŽǆ͘ WŚĞŶ ƚŚĞ ƐĐĞŶĞ ŐƌĂƉh is read from

ĨŝůĞ͕ ƚŚĞ ŽďũĞĐƚƐ͛ bounding boxes are added to the collision system.

To avoid having to check for collisions between every single object in the world all the time,

the world is divided into a grid of cells. The objects know which cell(s) they currently are in.

This way, we only have to check an object for collisions against other objects in the same

cell(s). Figure 17 shows how the grid looks like.

WizardWars

May 27, 2011

 Page

43

Figure 17: The grid of cells, holding the objects. Object A is in cell (1,1), while object B is in the

cells (2,2), (2,3), (3,2) and (3,3).

Iƚ͛Ɛ ƚŚĞ ƚƌĂŶƐůĂƚĞ ĐŽŶƚƌŽůůĞƌ ƚŚĂƚ ŵŽǀĞƐ ďŽƚŚ ƚŚĞ ŽďũĞĐƚƐ ĂŶĚ ƚŚĞŝƌ ďŽƵŶĚŝŶŐ ďŽǆĞƐ͘ WĞ ĐŚĞĐŬ

an object for collisions with other objects every time it tries to move. First, we move the

objects bounding box to the desired location. If there was no collision, we move the object

itself as well.

If a collision is found, we need to handle it. If an object tries to move directly into another

object, the bounding box is moved back, and the object itself is never moved. If the move is

more than 45 degrees away from the object we collide with, the object will move the desired

distance in the direction parallel to the edge of the bounding box it is colliding with, but it

will not move in the direction towards the object. This results in a sliding effect, where for

example a player can slide against a wall. A collision is shown in figure 18. The arrow is

representing the direction of the object colliding into another. The red line is the angle, ɲ͕

between this direction and the edge of the other object. If this angle is below 45 degrees, or

above 135 degrees, the colliding object will slide along the other object.

WizardWars

May 27, 2011

 Page

44

Figure 18: This shows a collision. ɲ is the angle between the direction of the moving object,

and the edge of the other object.

3.11 LOADING WORLD AND GAME OBJECTS

Our game object models are create with the 3D modeling program 3D Studio Max, and

exported as XML files, in the Collada format (.dae files). These files contain the objects͛

texture-, normal-, and vertex- coordinates, and faces of vertices. We needed a way to parse

these files, and transform them in to openGL objects. We also needed an initial scene graph

for when the game loads, that contains the world and all of its objects in their initial

positions.

We could have done this every time the game starts, but we quickly agreed that this would

slow down the performance. Therefore, we made a separate project called Create Scene

Graph. This is where we build the initial scene graph. The game objects are parsed from the

XML file(s), and added, one by one, to the scene graph. The scene graph is then written to a

scene graph file (.sg-file). This file is included in the game. When the game starts, the initial

scene graph gets read in from this file. As soon as you start playing, the nodes of the

dynamic objects will obviously change.

For our bachelor project, we only had time to make one world/map, and therefore we got

one scene graph file. In case of further development of the game, the plan is to make one

WizardWars

May 27, 2011

 Page

45

scene graph file for each map. As soon as this file is created, this project is no longer needed

in order to play the game.

We could probably have found a Collada file parser online, but we decided to write one

ourselves. This was mainly because the format is very comprehensive, and since we only

needed a few of the elements from the files, we found it best and simplest to do this

ourselves, instead of including a lot of unnecessary code in our project.

At first, we were exporting .obj files instead of Collada files from 3D Studio, containing our

objects. However, the objects were not displayed correctly. After a lot of debugging, we

figured out that the way the data was sorted in the .obj files was not compatible with

OpenGL. ThĞƌĞĨŽƌĞ͕ ǁĞ ĚĞĐŝĚĞĚ ƚŽ ƐǁŝƚĐŚ ƚŽ CŽůůĂĚĂ͘ MŽƌĞ ĂďŽƵƚ ƚŚŝƐ ƵŶĚĞƌ ͚ĂĨƚĞƌ ƚŚŽƵŐŚƚƐ͛͘

WizardWars

May 27, 2011

 Page

46

3.12 PLAYER ROTATION

We wanted the ƉůĂǇĞƌƐ͛ character to always face the enemy. To do this we created a

Controller called LookAtController. This controller rotates a 3d model so that it faces another

model. This is achieved by using simple vector math and basic trigonometry.

When we receive the models, the positions are stored in world space coordinates. This

means that the positional data originates from center of the world. In order to rotate like we

ǁĂŶƚĞĚ ƚŽ͕ ǁĞ ŶĞĞĚĞĚ ďŽƚŚ ŵŽĚĞůƐ ƚŽ ŚĂǀĞ ƚŚĞŝƌ ƉŽƐŝƚŝŽŶĂů ĚĂƚĂ ƌĞůĞǀĂŶƚ ƚŽ ƚŚĞ ƉůĂǇĞƌƐ͛

position, meaning player position is (0,0).

Figure 19: Changing center to player.

Deducting the player position values from the target position values, gives target values in

relation to the player position. We then created a new vector where the x value is from

player and the z value is from the target. Getting the dot product of these two vectors x and

z components and then using the standard Java method Math.atan(z/x) gives us a value

ranging from 0 to pi then ʹpi to 0.

WizardWars

May 27, 2011

 Page

47

Figure 20: Quadrants and the values inside each.

WĞ ĚŝĚ ĞŶĐŽƵŶƚĞƌ ƐŽŵĞ ƉƌŽďůĞŵ ǁŚĞŶ ŝŵƉůĞŵĞŶƚŝŶŐ ƚŚŝƐ ĨƵŶĐƚŝŽŶĂůŝƚǇ͗ TŚĞ ĂƌĐƚĂŶ ĚŝĚŶ͛ƚ

return all the values we expected, but values varying from 0 to 45 degrees and -0 to -45

degrees, whereas the values returned should be from 0 to 180 and -0 to -180. We eventually

decided to not track for this bug anymore and instead adjust the values according to what

quadrant we were in, and the method gave correct results.

3.13 MANA REGENERATION

We regenerate the mana of the player by a small bit every second. We use a Controller

called RegenController to update the ƉůĂǇĞƌƐ͛ mana through the UpdateManager loop. Not

the most important feature, but it does prevent the game from stalling logically because no

player has any mana left to cast spells for.

WizardWars

May 27, 2011

 Page

48

3.14 CLIENT NETWORKING

When a player moves, casts a spell, reduces his mana or health, or attacks his opponent, this

has to be transmitted to the other client to hold the game in sync. We implement this by

sending network packages between the two clients, containing updates to the players

position, current action, etc. These packages are then read on the other client, and the

appropriate actions are taken to adjust any value that was transmitted.

3.15 GAME SERVER

TŽ ĂůůŽǁ ƉůĂǇĞƌƐ ƚŽ ĨŝŶĚ ĞĂĐŚ ŽƚŚĞƌ͕ ĂŶĚ ƚŽ ŚĂǀĞ Ă ͞ƌĞŐŝƐƚĞƌĞĚ ƵƐĞƌ͟-system in place to allow

for scoring boards and similar at a later time, we have implemented a game server that

allows the user to register a user, log in as that user, and request to be paired with another

player to play a game. So that we don't have to have a connection open to the server all the

time, the client tells the server that it wants to play a game, and then checks the server at

intervals to check if it has been paired. Only login and the start of a game are handled by the

server. After a game has been started, all communication goes directly between the clients.

WizardWars

May 27, 2011

 Page

49

3.16 OPTIMIZATIONS

3.16.1 MEMORY ALLOCATION

We have tried in general to avoid any dynamic allocation of memory during runtime or

inside member functions. Where we can avoid to, we allocate memory for variables in the

class itself. IĨ ǁĞ ĚŝĚŶ͛ƚ ĚŽ ƚŚŝƐ͕ ůŽŽƉƐ ǁŽƵůĚ ƚĂŬĞ ĐŽŶƐŝĚĞƌĂďůǇ ůŽŶŐĞƌ time, because the code

would be interrupted by the garbage collector constantly.

3.16.2 THREADING

The network threads are most of the time blocking while either waiting for the client to

create a package and queue it to be sent, or waiting for a package to be delivered to it.

When it is time to stop blocking (i.e. the game is over) the threads are interrupted and

gracefully shut down. With this method Like this, the threads do as little work as possible.

WizardWars

May 27, 2011

 Page

50

4 DESIGN DECISIONS

4.1 ACTION SYSTEM

The action system is our attempt at creating a manageable, versatile system for controlling

the main interaction between players in our game: The spells. When starting on this part of

the code, we decided that we wanted to have something that could handle anything, or at

least not limit it by setting too strict rules for ourselves. This proved to be a two edged

sword: On one hand you have a system that can be built upon for later projects, or create

new interaction methods for this project if time allows it. On the other hand you have a

system that is too generic and hard to understand. In other words: The system could have

been made a lot smaller and would still perform just as good.

A system that handles player interaction will always have a higher level of complexity than

many other systems, just because it is interacting with the player. As a human you expect

something to behave in a certain way and you expect to get feedback when something

happens. This is part of the reason why these systems get so complex.

TŚĞ ƵŶĚĞƌůǇŝŶŐ ŝĚĞĂ ŽĨ ƚŚĞ ƐǇƐƚĞŵ ŝƐŶ͛ƚ ďĂĚ͕ ďƵƚ ĂƐ ŝŵƉůĞŵĞŶƚĂƚŝŽŶ ĐŽŶƚŝŶƵĞĚ ĂŶĚ ĞƐƉĞĐŝĂůůǇ͕

when the implementation of the action system met the other systems (especially the

Network system), the system started to deteriorate and started to be more rigid. In many

ways, this was caused by lack of time.

WizardWars

May 27, 2011

 Page

51

4.2 UPDATE MANAGER VS. EVENT HANDLER/PROCESS MANAGER

In a game, a lot of data is being sent between systems and subsystems before anything

ĂƉƉĞĂƌƐ ŽŶ ǇŽƵƌ ƐĐƌĞĞŶ͘ IĨ ŶŽƚ ŵĂŶĂŐĞĚ ƉƌŽƉĞƌůǇ͕ ƚŚĞ ĚĂƚĂ ǁŽŶ͛ƚ Ărrive to its proper

destination, is in risk of being exploited and can cause memory leaks. If managed too much,

ǇŽƵ ǁŝůů ŚĂǀĞ Ă ƐǇƐƚĞŵ ƚŚĂƚ ǁŽŶ͛ƚ ƉĞƌĨŽƌŵ ĨĂƐƚ ĞŶŽƵŐŚ ĨŽƌ ƵƐĞ ŝŶ ĂŶǇ ƌĞĂů ŐĂŵĞ ƐǇƐƚĞŵ͘

This data also goes through many systems and subsystems, all of which perform tasks

ranging from simple tasks like moving/storing data, to complex algorithms used for collision

detection, physics and rendering. Newer games are also multithreaded, adding yet another

layer of complexity, making it hard to understĂŶĚ ǁŚĂƚ͛Ɛ ŐŽŝŶŐ ŽŶ ŝŶ ǇŽƵƌ ĐŽĚĞ͘ TŚĞ ďĂůĂŶĐĞ

between manageable code and performance is vital in any system of a game engine, but

perhaps most important in an update routine. The update routine is the system where most

other systems will go to when receiving information about the game and the game world.

You will always have to go through the update routine when debugging your game, so

keeping it clean is important for debugging and making it fast is important for performance.

The traditional way of creating a update routine for a game is an event manager and a

process manager(Not to be confused with Operating System Processes) (4). Systems that

want to perform an event will send an event to the event manager, which in turn adds this

event to a queue. The event manager pulls events of this queue. Each system that uses

events has an event listener inside the event manager. The event manager then tells all the

listeners what event just occurred and those who waits for that event will be triggered. The

system receives the message that the event occurred from its event listener and performs

the actions it has been set to do when this event occurs.

WizardWars

May 27, 2011

 Page

52

Figure 21: An Eventmanager taking a event in and sending it to the proper listener.

The difference between an event and a process is that an event is something that happened

now (this tick), while a process is something that has happened and is currently ongoing. A

system that just got in an event can trigger new processes.

The process manager handles processes. It adds and removes processes currently being run

and it also trigger processes so they can do their jobs for the current tick.

WizardWars

May 27, 2011

 Page

53

Figure 22: A ProcessManager updating its processes.

The combination event manager and process manager is a great tool for keeping large

systems controlled and manageable. We decided that having two separate systems, for our

project, was unnecessary. We would never reach the complexity where needing two

systems, to handle something that could be done with one system, would be better. At the

same time, we wanted to have a manageable system that also performed well.

Our solution was to have one manager called the update manager and several objects of

classes inherited from a parent class called Controller. UpdateManager has a member

function called doUpdates() and Controller has a update() function which is then overridden.

The game loop runs doUpdates() for every frame and UpdateManager then performs all

registered Controllers update() function.

Many of the Controllers are added to our UpdateManager inside other classes, but some

Controllers were harder to find a logical placement of and were placed inside Run, where

our main game loop resides. The CameraController is a good example. Even though there is

only one camera in our game and it is always following the player, we chose to put it in Run

to separate these. This was a design decision so that the system was less rigid.

WizardWars

May 27, 2011

 Page

54

4.3 GAMESERVER

The original plan was that the game server should handle all communication between

clients, and also include a scoring board, user registration, and anti-cheat (to mention some).

During this time we researched existing game servers, but most of those we found were

either way top big, or for several/multi (not two) player-games. We started writing a high-

throughput server in java, but after research and code writing using this plan was started, a

discussion with a supervisor halted us in our tracks. Sending all data through a server when

playing an online real-time-multiplayer game would create a lot of network traffic for the

server, and possibly a considerable lag.

After this, communication directly between mobile units over the Internet (and over routers)

was investigated. We read up on NAT, NAT-hole punching, STUN, and similar topics to have

our code work between different wireless networks. At this time a proof-of-concept for

sending simple packages between mobile units had been tested and found to be working.

After some time we «hit the wall», and again resorted to outside help ʹ we were then told to

ignore this problem and focus on making the code work reliably between to phones, and

then expand it to work over NAT/different networks if we got the time. At this point the only

job of the server was to verify users, connect players that wanted to play (distribute port-

and IP-settings) and saving game-scores supplied from the units. Because it was easy to

combine for both server- and client side, we had the experience, and had used quite a lot

longer than planned on the server, it was implemented as a REST-service using PHP, MySQL

and JSON. This is the current state of the server to this day.

We could have sent binary (our earliest code did this) or XML data, but did not want the

overhead of using a XML parser in out communications. We therefore settled on JSON, a

simple interchange format that we easily could parse in both PHP and Java.

WizardWars

May 27, 2011

 Page

55

4.4 CLIENT NETWORKING

We quickly decided to use UDP for transporting our game data, as we felt it was simpler to

implement and fit our needs. TCP was considered, but was dropped after advice. Since

writing threads is quite simple in Java, and would ease the development greatly, a twin-

thread network system was selected. Sending and receiving would live in to threads, but

with the possibility to communicate if acknowledgement was required by any packages.

There was a discussion between us whether the network packages should be sent every xx

milliseconds, or if they should be sent as soon as something wanted to update the other

client with data. After the network programmer convinced the others that if they want to

change it at a later time, it would be trivial, we decided to write and experience a soon-as-

possible network, and change if we found any problems. To this day, the network uses this

last same approach. Because of design decisions regarding the game server, client have to be

on the same WLAN, or open appropriate ports in their firewalls to connect.

Because of time constrains all packages are simple strings; we did not take the time to create

any form of packages-wrapper. It is however simple to replace the strings sent with more

efficient packages later.

4.5 INPUT

4.5.1 MOVEMENT

Our initial idea was to use the trackball/pad/detector that is on all Android devices to control

the player. Our first iterations of code used this, but we later dropped it. For one, we

determined that when used, your thumb became very tired of the scroll-lift-scroll-lift

movement that was required to move longer distances. On some of the devices the trackball

could be used as a d-pad/joystick, while on other we had to «roll» the ball to get any

movement. We also discovered that both the accuracy and possible max-speed of scrolling

differed a lot between devices.

WizardWars

May 27, 2011

 Page

56

After studying other games in the same category as our own available on the Android

Market, we decided to use a screen-drawn navigation icon, and parse the touch of a finger

on this area into movements. Even though it was a possible solution, no form of

adapter/add-on controls were ever discussed.

4.5.2 GESTURES/ACTION

There was some discussion on whether to use on-screen icons or some type of «drawing-on-

screen» to start actions. Most of the games we found either had complex menus or on-

screen buttons for selecting actions, but we felt this distracted the user from the game

world. After research and test-implementation we decided to base out actions on screen-

ĚƌĂǁŝŶŐƐ͕ Žƌ ͞ŐĞƐƚƵƌĞƐ͘͟ AŶĚƌŽŝĚ ŚĂĚ ĂŶ ĂǀĂŝůĂďůĞ ůŝďƌĂƌǇ ƚŚĂƚ ůĞƚ ƵƐ ĚŽ ƚŚŝƐ͕ ĂŶĚ ĂĨƚĞƌ

overcoming some problems regarding to the joining of a game-surface and gesture-surface

in Android, we had a working gesture system.

4.6 RENDERING

When deciding how the rendering was going to work, we knew we wanted something that

was fast, easily maintainable and easy to debug.

The oldest method of rendering in OpenGL is called Immediate mode, in this mode you send

all data from main memory to the graphics chip between every shape you draw, every

frame. This is highly ineffective, but easily understood when reading the code.

The newer method using something called Vertex Buffer Objects(commonly called VBO) (5),

which sends all the data to the graphics chip and stores it there until you change the actual

data. This method is not supported in the version of OpenGL that we use for our project.

WizardWars

May 27, 2011

 Page

57

Vertex arrays are simpler versions of VBOs that store the data in arrays and call the graphics

chip to display its data, after the data has been transferred.

This is however just about storing the data; we also need to display it. In immediate mode,

we have a directly procedural method of displaying our data. We could also just store the

data in a big array and run through that every frame, but this will be hard to work with inside

the code. We chose to use a scene graph for holding our game data and store the data in

arrays.

WĞ ǁĂŶƚĞĚ ƚŽ ĂůƐŽ ŝŵƉůĞŵĞŶƚ ĐƵůůŝŶŐ͘ CƵůůŝŶŐ ŝƐ Ă ƚĞĐŚŶŝƋƵĞ ƚŽ ƌĞŵŽǀĞ ŽďũĞĐƚƐ ƚŚĂƚ ĂƌĞŶ͛ƚ

visible from the rendering. (6) We chose to have a Boolean variable called cullingFlag for

this. Its purpose is to mark a part of the graph which is outside of view range of the player

and then mark it as culled, in a separate traverse done before the drawTraverse(). This will

then tell the drawTraverse() function that anything below the node with the cullingFlag set

to true can be skipped completely. For a larger and more detailed game world, this would be

vital when attempting to achieve high enough frame rates for the game to be playable.

However, it is not needed for the level of detail we have in our game world.

WizardWars

May 27, 2011

 Page

58

4.7 GAME LOOP

The game loop is a game engines core in many ways. It re-computes the state of the game

world, and handles player interaction and presents the player with the result. The two issues

with game loops are the first and the last: updating and displaying the world. Both demand a

lot of resources from your computer and if not balanced properly, will cause the game to

slow down considerably to the point where the game is unplayable.

There are several approaches to creating a game loop. We looked at 3 possible methods:

Figure 23: Methods for creating a gameloop.

In the drawing above you see 3 different methods of performing the game loop.

A) The simplest method for creating a game loop. This method was used a lot in the

early games (up to the 80s). First it does the update, then Render the result. This

sounds good, but what happens when you use it on two computers that have

different computational power? Take a car game for instance: On the slow computer,

when your car was driving in 80 kph it would feel like 30 kph. On the fast computer

however, it would feel like 250 kph.

B) This shows a multithreaded game loop, where the update and render loop run on

separate threads. Problem with a multithreaded game loop is complexity.

Multithreading always introduces extra problems in terms of data sharing between

WizardWars

May 27, 2011

 Page

59

threads. If implementing a multithreaded loop, we would also need to design the

game more specifically with semaphores and mutexes.

C) Last figure is a game loop on a single thread, but uses a extra step after every run

through the loop. In this step you find out how much time has been used going

through the loop and then pausing for a time so that the current run through the

loop matches a set frame rate you want for your game. For instance, if you want to

have a constant 30 frames per second, and the run through the loop took 1/300th of a

second, you need to pause for 9/300 seconds to achieve 30 fps.

We chose to implement C as it would give us a stable game loop that would hold a stable

fps, without need for complex methods using semaphores and mutexes.

4.8 COLLISION

There are many ways of representing an object in a collision system, called bounding shapes.

What they all have in common is that they need to encapsulate the object completely. At the

same time, they should not extend the boundaries of the object more than necessary. This

can be done using spheres or cubes, or with two-dimensionally representations like circles or

squares. The more accurate the bounding shape is, the slower the collision system gets.

“ŝŶĐĞ ǁĞ ĚŽŶ͛ƚ ŶĞĞĚ ƚŽ ĐŚĞĐŬ ĨŽƌ ĐŽůůŝƐŝŽŶƐ ĂďŽǀĞ ƚŚĞ ŐƌŽƵŶĚ ůĞǀĞů͕ ǁĞ ĚŽŶ͛ƚ ŶĞĞĚ ϯD ƐŚĂƉĞƐ͘

We could have used bounding circles, but then we would still have to use squares for objects

like a rectangular wall. Since we wanted to stick to one type of shape, we decided to use

two-dimensional squares/boxes.

For the static objects, the bounding box is stored in the geometry node. For the two player

objects, the bounding box is stored in the translate node instead. The reason why is that

since the players are dynamic objects, the bounding boxes have to follow their objects when

these moves. Because of this, it was most convenient to store the bounding box in the

WizardWars

May 27, 2011

 Page

60

translate node. When the translate controller is connected to a translate node, the bounding

box gets copied to the controller as well, and then added to the grid in the collision system.

There are more logical classes to store bounding box, but this would be problematic when

checking for collisions. For instance, if we were to store this in the Human class, we would

have to take the bounding box in as parameter from the Update Manager. This solution is

inflexible and would cause problems if we wanted many bounding boxes.

WizardWars

May 27, 2011

 Page

61

5 IMPLEMENTATION

5.1 NAMING CONVENTION

We use camel case as naming convention for our functions and variables.

Examples:

thisIsAExample();

thisIsAVariable = 0;

5.2 ORGANIZATION OF THE CODE

The project consists of three parts:

1) The game itself, with user registration, login and menus

2) The game server, a web server written in PHP

3) A Java program that reads in game object models and creates the initial scene graph

file.

Since our game is written in Java, the source code is organized in packages. We have one

package for each logical part of the game.

The packages are:

Actions

This is where the system for casting spells is located.

Collision

Contains the collision manager, with a grid of cells dividing up the world.

Controllers

The controllers, such as translate, rotate and animation, that controls and changes their

respective nodes in the scene graph.

WizardWars

May 27, 2011

 Page

62

DataStructures

We have a few own data structures here, such as vectors and bounding box.

Exceptions

Our own exceptions

GUI

This GUI is the Heads Up Display (HUD), which includes the steering wheel for the player,

and all the information shown on the screen during gaming.

Human

This is where we represent the two players, both our own player and the opponent (network

player).

MainMenu

This is where the GUI with user registration, login and main menu is placed.

Network

Contains the networks sender and receiver. This is where the network communication is

handled.

Run

Here we have a run class, which is the first to run when the game starts. The game loop is

located here as well.

SceneGraph

The scene graph code is located here, with all of the different types of nodes in the scene

graph.

UpdateManager

Contains the update manager, which keeps track of the controllers update routines.

Utils

Utilities, like constant values. Used partially for testing purposes.

WizardWars

May 27, 2011

 Page

63

5.3 DESIGN PATTERNS

5.3.1 SINGLETON

This design pattern results in a class that there can only be one instance of. Meaning you can

call it from anywhere in your code. This makes manipulating the class very easy.

In an application, you want a manager class to contain specific nodes from a graph. In order

to do this, you need to traverse the graph and identify the nodes that you want and then

add them to the manager class. One way to do this is to take the manager class in as

argument into the traversing function of the graph. You will then have access to the

manager class inside the node. However, what if the traversing function already has 3

arguments? And what if you need to do this for more manager classes? Suddenly you will

have a large parameter list for the function that is getting unreadable for outsiders. On top

of that, the function now needs 3 manager classes are arguments, making the graph function

very rigid and hard to call anywhere else but specific locations in the code, where you have

all 3 manager classes available.

With the manager class as a singleton, you no longer need to worry about parameter lists for

the graph function, but instead ask for an instance of the manager class inside the function.

This also scales well with having more manager classes; you can call them inside the function

where you need them.

To implement a singleton in java you need to do the following:

1. You need a static variable of the class itself set to protected or private.

2. The constructor of the class needs to be protected of private.

3. You have a public member function (usually)called getInstance().

4. You need to disable object cloning.

The programmer then calls the class by using getInstance(). This function then checks if the

static variable is null. If yes, then create a new object and assign the static variable to it. If

no, do nothing. After doing this check, return the static variable.

WizardWars

May 27, 2011

 Page

64

5.4 NO.HIG.RAG.UPDATEMANAGER

5.4.1 UPDATEMANAGER

The UpdateManager has two main purposes: Adding new

controllers and traversing them during the game loop.

The UpdateManager contains a ArrayList<Controller> which

stores all controllers for the doUpdates() function to iterate

through and call each Controllers update() function.

The UpdateManager is created as a singleton.

Besides the functions made for the singleton design pattern, the UpdateManager is a very

compact class, only having two functions, one for adding controllers and one for the update

routine(doUpdates()).

Before doing updates, the UpdateManager gets the current time in milliseconds and then

passes current time and previous time into each controllers update function. After iterating

through all the controllers, it stores the current time as previous time.

WizardWars

May 27, 2011

 Page

65

5.5 NO.HIG.RAG.CONTROLLERS

5.5.1 CONTROLLER

Controller is the parent class. Its purpose is to allow

inherited classes to be used in the UpdateManager,

making sure that the functions UpdateManager needs from Controllers are present. It

contains a id value for debugging purposes, a constructor and a update() function. The

update() function takes two arguments when called; currentTime and previousTime, these

variables are used in certain Controllers to measure its effect set in the timespan that has

occurred since the last round of calculations. Each child class of the Controller overrides the

update() function with its own.

The TranslateController and RotateController both connect to Nodes in the SceneGraph. By

doing so, these controllers can manipulate the nodes without ever being inside the

scenegraph. This connection is done in the Controllers constructor.

WizardWars

May 27, 2011

 Page

66

5.5.2 TRANSLATECONTROLLER

Moves an object around in the world based on current

position and the force that the engine asks to move the

object with. This force can be of any size, so it is the

controllers͛ responsibility to ensure that the move is

legal. Illegal moves can be moves that end up inside

another object or moving faster than what the object is

allowed to move. The latter is prevented by having a

variable, here called ͚ŵĂǆƐƉĞĞĚ͕͛ ǁŚŝĐŚ will cut off the force vectors length before applying

the new position.

The CollisionManager handles any objects colliding and alter the force vector to the proper

position based on object collision.

TŚĞ TƌĂŶƐůĂƚĞCŽŶƚƌŽůůĞƌ ŝƐ ĐƵƌƌĞŶƚůǇ ƵƐĞĚ ŽŶ ƚǁŽ ĚǇŶĂŵŝĐ ǁŽƌůĚ ŽďũĞĐƚƐ͖ ͚PůĂǇĞƌ͛ ĂŶĚ

͚NĞƚǁŽƌŬPůĂǇĞƌ͛͘ WĞ ĚŝĚŶ͛ƚ ǁĂŶƚ ĞŝƚŚĞƌ ŽďũĞĐƚs to have separate controllers for input or

network handling of data, so we created one class that would support both ways and added

extra functions for handling network packages as input and output. We use a flag in the

constructor to tell the controller if it is being usĞĚ ĨŽƌ ŶĞƚǁŽƌŬ Žƌ ƉůĂǇĞƌ ŝŶƉƵƚ͕ ͚ŝƐOǁŶPůĂǇĞƌ͛,

which turns off collision checking for the NetworkPlayer. We do this because the network

packet has already been checked for collisions, so the controller should not check again. This

does raise security issues, but a better solution is beyond the scope of this project.

setValuesFromNetworkPacket() takes 3 strings in as parameter and assigns these values to

the force vectors x, y, z values, allowing the update routine to run as normal, without ever

knowing if the input was from gestures or from network packages.

getNetworkPacket() will return a packet to the network system to send, which contains the

force vectors x, y, z values.

WizardWars

May 27, 2011

 Page

67

The ƉůĂǇĞƌƐ͛ bounding boxes, used by the collision system, is stored in the translate

ĐŽŶƚƌŽůůĞƌ͘ TŚŝƐ ŝƐ ďĞĐĂƵƐĞ ŝƚ͛Ɛ ƵƐĞĚ ƚŽ ĐŚĞĐŬ ĨŽƌ ĐŽůůŝƐŝŽŶƐ ďĞƚǁĞĞŶ ƚŚĞ ŵŽǀŝŶŐ ŽďũĞĐƚ ;Ă

player) and other objects in the world.

setData() has two versions, one using a Vec3 as parameter and one using 3 floats for x, y and

z. Both do the same; setting force x, y and z values. Some classes use Vec3 objects for storing

positional data. While in streams of data, like in a network or file loading system, the data

appear as raw data, not objects.

The update() function from Controller is overloaded and created to do the translation for

this tick.

Figure 24: How a TranslateController is progressed.

WizardWars

May 27, 2011

 Page

68

5.5.3 ROTATECONTROLLER

Rotate controller manages rotation of an object. The

Controller connects to a RotateNode from its

constructor. This means the node values will be the same as the controller, meaning any

values updated in the controller, will be updated for the node at the same time.

The Controller has two variables of the type RotateVector. One is used for the values you

want to rotate by, and the other is the values that will be set for both controller and node.

Since we want time dependent rotation and not frame dependent rotation, we need to take

time into consideration(provided by UpdateManger). We multiply the angle we want, by the

time elapsed since last frame (converted to seconds) and save this in the shared variable,

giving us frame independent rotation.

The functions setData() and alterAxis() changes the values of the non-shared variable(the

one we want to rotate by).

As any controller, the RotateController has functions for returning its values & modifying its

current values by a networkPacket.

WizardWars

May 27, 2011

 Page

69

5.5.4 ANIMATIONCONTROLLER

The AnimationController controls what animation and

what frame is being displayed on screen. It is connected

to a SwitchNode and this node is given commands about

what frame to display. The AnimationController

contains a nested class called Animation. We chose to

create this class inside the AnimationController because there is no relevant use for it

anywhere else. The Animation class contains 3 variables: start, end, current. These variables

refer to the indices inside the SwitchNode that relate to the start of the animation, the end

of the animation and the current frame being rendered.

Apart from the functions used while the game is running, there are also functions for starting

up the game; Functions for loading the animation list, assigning a switchnode to the

controller, functions for the Player to iterate an animation inside the Controller.

We also check the time taken since the last time a frame was displayed. This is to have a

internal variable to check against when running the gameloop. This ensures that the

animation is played smoothly and not uneven.

WizardWars

May 27, 2011

 Page

70

5.5.5 ACTIONCONTROLLER

The ActionController controls what action is currently in

use and the action itself manages what to do in time

space when an action is being performed. To avoid

having two separate controllers for Player and

NetworkPlayer, we designed the controller so that it can

take commands from networkpackets and from gestures. As with any Controller, its main

functionality lies in the update() function. This function first checks if the actionController

currently busy(currentAction != null). If not, it executes currentAction.performAction() who

takes the current time and previous time in as arguments as usual. We also use a

NullPointerException when using performAction().

IĨ ƚŚĞ AĐƚŝŽŶCŽŶƚƌŽůůĞƌ ŝƐŶ͛ƚ busy, update() also

checks if currentAction is finished. When finished,

currentAction will be reset and be set to null. This

tells the ActionController that it is currently idle.

For networkpacket send/receive the functions

getNetworkSendPacket() and

setValuesFromNetworkPacket() are used. The first

function returns a string containing the current

actions values. The latter function receives the

package and stores the data into the current action.

 Figure 25: States in the ActionController

5.5.6 REGENCONTROLLER

This is a controller for status that should regenerate over time. In out implementation it only

regenerates mana at a set rate, but can be extended to regenerate health, degererate

either, or simply increse and decrease the rate.

WizardWars

May 27, 2011

 Page

71

5.6 NO.HIG.RAG.ACTIONS

WizardWars

May 27, 2011

 Page

72

5.6.1 ACTION

The Action class is designed to be a parent class that holds the

basic functions used by the ActionController. Its functions are

those designed to manage the creation, update and logic of

an action. It does not hold any specific routines as to how an

actual action is going to be used, but functions that help

decide if it can be used.

Action also has functions for saving and loading files to/from networkpackets. For saving the

data, we store it into a string and for loading the string from the networkpacket has already

been interpreted into the correct variable type.

The ActionController uses the performAction() function inside the Action class. Any inherited

class needs to override this to fit its own needs.

Init() is a function that in the current system ŝƐŶ͛ƚ ƵƐĞĚ͕ ďƵƚ ŝŶ Ă ŵŽƌĞ ĂĚǀĂŶĐĞĚ AĐƚŝŽŶ

system would be essential(See discussion about the Action System).

An Action has 4 important variables: currentState, target, caster, timestamp.

currentState:

this variable is an int, that we use to store an actions 5 different states: 0 means the action is

idle, 1 means it is currently being casted, 2 says that it was casted now, 3 says it has been

casted and 4 says its finished. When reaching state 4, it means it shall be set to 0.

Target:

Says what Human object the Action was meant for.

Caster:

What Human object the Action was originated from.

Timestamp:

The timetick when the Action was started.

WizardWars

May 27, 2011

 Page

73

5.6.2 SPELLDEFAULT

The SpellDefault is a class which handles the

internals of how a spell is going to work. It

has been made as a generic spell class, that

is meant to handle both damage and healing

to a target and both directly and over time.

It is a child of the Action class and therefore

inherits its variables and functions. In addition it has extra variables and functions for

debugging and game logic/game play. SpellDefault is designed as a Finite State Machine

(FSM) and uses 3 member functions to define the body of code used in the FSMs states and

transitions.

Variables:

Spell_id and SpellName are metadata variables used for identifying the spell both in

debugging and in the game.

The variables time, manacost, dotTicker, castRange, cooldownTime and value are all used for

defining the spells behavior. If the value is a negative number, it will deduct health from the

target; if its positive it will heal it. dotTicker is used instead of value if it is an over-time spell,

meaning it increases or decreases health of the target slowly over time.

castRange and cooldownTime both specify rules regarding the spell being casted. castRange

says maxrange the caster can be from the target and cooldownTime is the time in

milliseconds that the caster has to wait before he can cast the spell again, after having

casted the spell already.

WizardWars

May 27, 2011

 Page

74

Member functions:

SpellDefault splits its main functionality into 4 functions, performAction(), init(),

calculateSpellEffect() and kill(). We chose to do it like this because of readability.

PerformAction() controls the states of a spell.

 ŝŶŝƚ;Ϳ ƐĞƚƐ ƵƉ ƚŚĞ ƐƉĞůů ƐŽ ŝƚ͛Ɛ ƌĞĂĚǇ ĨŽƌ ĐĂůĐƵůĂƚŝŽŶ.

 calculateSpellEffect() calculate effect based on spell_id and input from the system(like

time).

Kill() resets the SpellDefault(Called from ActionController).

WizardWars

May 27, 2011

 Page

75

5.7 NO.HIG.RAG.GUI

Since all touches are captured by the main activity (no.hig.rag.run.Run) this file contains

code to initialize and pass-through inforŵĂƚŝŽŶ͘ TŚĞ ĨůŽǁ ŽĨ ƚŽƵĐŚĞƐ ŝƐ FŝŶŐĞƌ ї ‘ƵŶ ї

GĞƐƚƵƌĞƐ ї MŽǀĞŵĞŶƚ͘

5.7.1 GESTURES

All touches on the screen are sent to a GestureOverlayView. This View is connected to the

android.gesture-library. All incoming touch-events on the screen surface is automatically

compared to prerecorded gestures, and an event is fired from the library when a match is

found. In the initialization of the gesture library we set no.hig.rag.gui.TouchEventParser as

the target for a copy of all touch events ʹ this way we can use the screen for both gestures

and movement.

When a event is fired the value of the gestures score (how close it was to the original

gesture) is compared to a constant. We found that a score between 1.7 and 2.5 were the

ŽƵƚĞƌ ůŝŵŝƚƐ ŽĨ ͞ƌĞĂůůǇ ďĂĚ ŵĂƚĐŚ͟ ĂŶĚ ͞ƉƌĞƚƚǇ ŐŽŽĚ ŵĂƚĐŚ͘͟ IĨ ƚŚĞ ŐĞƐƚƵƌĞ ƉĂƐƐĞƐ ƚŚĞ ƐĐŽƌĞ-

check the gesture is converted from a string (as represented from the gesture library) to a

constant and passed along to the no.hig.rag.Controllers.ActionController.

5.7.2 MOVEMENT

All touch events are passed from the gesture-library through to

no.hig.rag.gui.TouchEventParser. We are only interested in touches that are within the area

of the rendered navigation icon. For this purpose the HUD updates the TouchEventParser (a

singleton) every time the position of the navigation icon changes (I.e the screen rotates).

When we get a touch, the coordinates (x,y) are compared to the latest values we got from

the HUD. If these are outside our area, we discard the events. If they are within x-min-x-max

and y-min-y-max we translate the so they are relative to origo in the center of the navigation

WizardWars

May 27, 2011

 Page

76

icon. The length of the vector from the center to the point is calculated, and if they are

outside the circle of the navigation icon, they are discarded.

Once a set of coordinates has passed these testes, they are translated to screen-size-

independent values. The length of the vector is converted to a power-value between 0-0.2

and 1. Values below 0.2 are set to 0 to make it easier to stop the movement by moving the

finger to the navigation center. The coordinates are also converted to the arc tangent of y/x

within the range [-pi..pi].

The power (0-1) and arc tangent (-pi-pi) is passed on to no.hig.rag.Human.Player, which will

use these values as a force to move when next rendered.

5.8 NO.HIG.RAG.NETWORK

5.8.1 NETWORKSENDER

It is initialized in no.hig.rag.Run.Run to send packages to a target IP and port. Once the

thread has started, it attempts to take() a package from the blocking list networkPackets in

no.hig.rag.Human.Player. The thread will block/wait/sleep here until there are any packages

to be sent. Once Player has created a package, the thread continues, and transmits the new

package. It the returns to take() and waits for the next packet.

5.8.2 NETWORKRECIVER

The NetworkReciver is much like NetworkSender ʹ it is initialized in Run to listens to the

default port (9876). It blocks on the recive-method of a UDP socket. Once a package (String)

is received, it is either sent to the Player or NetworkPlayer, depending on the content in the

packages.

WizardWars

May 27, 2011

 Page

77

5.8.3 COMBINED

Both sender and receiver are Java threads, running in their own processes.

Because the threads are blocking most of the time, they are stopped by issuing a interrupt.

The code is expecting this, and shuts down gracefully.

The packages are sent via UDP for highest possible speed. This does not guarantee delivery,

but most of our packages send data that does not need acknowledgement.

Because of time constrains, all packages are simple strings.

WizardWars

May 27, 2011

 Page

78

5.9 NO.HIG.RAG.COLLISION

5.9.1 COLLISIONMANAGER

The collision manager is class with a singleton object that manages all the collisions.

The class holds the grid of cells dividing up the world. Each cell has a list of the objects they

hold at the time, and each object knows which cell(s) it is currently in. This way, we only

need to check for collisions between objects that are in the same cell(s). This grid is

represented as the two-dimensional array of Cell-objects, cells, stored in the

CollisionManager.

CheckCollisions() is used to check one object for collisions. It finds out which cells this object

is in, and calls all of these cells own checkCollisions().

5.9.2 CELL

CheckCollisions() gets the object to check against as a parameter, and checks this by calling

checkOneCollision() for every object the cell holds at the moment. It is in

CheckOneCollision() the actual collision check is happening. We check if any of the bounding

ďŽǆĞƐ͛ ĞĚŐĞƐ ŽǀĞƌůĂƉ͘ IĨ ƐŽ͕ ŚĂŶĚůĞCŽůůŝƐŝŽŶ;Ϳ ŝƐ ĐĂůůĞĚ͘ HĂŶĚůĞCŽůůŝƐŝŽŶ;Ϳ ĨŝƌƐƚ ĨŝŶĚƐ if this was

a collision in x-, or z-direction. It then calculates the angle of the move in relation to the

other object. If the move is more than 45 degrees away from the object we collide with, the

object will move the desired distance in the direction parallel to the edge of the bounding

box it is colliding with, but it will not move in the direction towards the object. From this, the

bounding box is either moved back or moved along the edge of the other object.

WizardWars

May 27, 2011

 Page

79

5.10 NO.HIG.RAG.HUMAN

We have two wizards (players) in the game. These are each represented with their own

branch of nodes in the scene graph. This makes sure that the players are drawn to screen.

However, to be able to play the game using the players, we need some kind of logical

representation of the players as well. The players͛ information, like health, mana and

movement need to be linked to each of the players on the screen. Further, the player and

network player need a link to the user input and network input, respectively.

We thought the best way of doing this was to have a singleton object for each of the two

players, where their respective classes inherit from the same parent class. This way we can

connect to the players from anywhere in the code.

5.10.1 HUMAN

Human is the parent class for Player and NetworkPlayer. This is used for all of the properties

that the player and network player share.

Human stores all the information about the players, like the players͛ health and mana. It also

holds the controllers needed to control the players. This include an action controller for

casting spells, a translate controller for moving the player and two rotate controllers for

rotating the upper and lower body. It also includes two animation controllers for switching

between the different animations of the players upper and lower body, in the different

stages (idle, walking or casting a spell).

When we want to change something related to the player, we get the players singleton

object. Human (its parent) then has methods for either modifying the nodes in the scene

graph (through the controllers), or modify the players properties directly. For example,

setMove() uses the players translate controller to modify the players position in its translate

node, while alterMana() modifies the mana directly (since mana is stored in Human).

WizardWars

May 27, 2011

 Page

80

ConnectControllers() gets/finds the nodes representing the player(s) in the scene graph, and

assigns these nodes to their respective controllers. It also adds the controllers to the update

manager, making sure that the controller͛s update routines get executed.

RecieveAction() gets an action id, and, if the player is not currently in an action (casting a

spell), sets the new action as the current one.

5.10.2 PLAYER

The singleton object of the class Player is representing ͞ŽƵƌ ŽǁŶ ƉůĂǇĞƌ͟ ŝŶ ƚŚĞ ŐĂŵĞ ;ĂƐ

opposed to the opponent͛s player). Inherits from the base class Human.

The players position is updated through updateMovement(). This method gets information

about a touch on the navigation icon on the screen, and converts this to a move in the

correct direction. It then sends the move coordinates to the translate controller.

CreateNetworkPacket() builds up a network package that contains all the current

information about the player. To do this, it uses the controllers getNetworkPacket()

methods, to get the current information from these as well. This package will be transferred

over the network to the opponent, so our player gets updated on the opponents phone as

well. The package is a string of values in a defined order, separated by commas.

5.10.3 NETWORKPLAYER

The singleton object of the class NetworkPlayer is representing the opponent͛s player (the

network player) in the game. It also inherits from the base class Human.

SetValuesFromNetworkPacket() gets a network package as a string, containing all the

current information needed about the opponents player. It then extracts the different values

from the package, and assigns them to the right properties of the network player. It also

gives the controllers their updated information.

WizardWars

May 27, 2011

 Page

81

5.11 NO.HIG.RAG.SCENEGRAPH

5.11.1 SCENEGRAPH

The scenegraph class is a holder class for nodes. Its purpose is to store nodes for traversal

and call the traversing routine. The scenegraph is traversed depth first and executes the

node member function called drawTraverse(). Each node type overrides this function with its

own version using function overloading.

5.11.2 NODES

WizardWars

May 27, 2011

 Page

82

5.11.3 NODE

This is the parent class; it contains the variables

serialVersionUID, parent, cullingFlag, children,

lastChildVisited, childListSize and name.

The important variable here is ͚children͛͘ ͚Đhildren͛ is a

AƌƌĂǇLŝƐƚ ƚŚĂƚ ĐŽŶƚĂŝŶƐ Ăůů ƚŚĞ ŶŽĚĞ͛s children nodes.

The variable parent is a link to the nodes parent node, as of

now this is not used, but it is a valuable variable to have for debugging purposes (Being able

to see both up and down a scene graph when looking for errors).

The parent class Node also contains most of the basic member functions that are involved

when building up the scene graph. Functions for adding a child, setting the parent, setting

the cullingFlag(), setting/returning the name of the node and functions involving the

initialization of the nodes(More on this later).

5.11.4 TRANSLATENODE

The TranslateNode moves its children nodes around in

world space. The positional data is stored in a Vec3 object,

and used for translating its children nodes to the position

stored. The drawTraverse() calls performDraw(). The

performDraw() functions purpose is to move to a specific location and use this new location

as center for any child operations. The performDraw() achieves this by using the openGL call

glTranslatef().

WizardWars

May 27, 2011

 Page

83

5.11.5 ROTATENODE

The RotateNode, rotates its children objects around the

current center point. Just like the TranslateNode, it first

performs glPushMatrix(), does its rotation, calls all its childrens performDraw() and then

performs glPopMatrix(). The rotational data is stored in a class called RotateVector. This

class contains an angle variable and 3 orientational variables(x, y, z) that define over what

axis the rotation is to be performed on.

Figure 26: illustrates the axis settings and how they affect rotation.

WizardWars

May 27, 2011

 Page

84

5.11.6 GEOMETRYNODE

The GeometryNode is the container for the

data used in OpenGL to draw a 3-dimensional

object to the screen. It holds the buffers for

the vertices, normal and texture coordinates. It

also holds the bounding box for the collision

detection system.

The file loading system also uses the

GeometryNode to convert data from file to proper datavalues that are fast and easy to read

for OpenGL. We chose to have these functions inside the GeometryNode for the ease of use.

When first initialized, the GeometryNode stores the incoming arrays of data, into its own

arrays. After being initialized, it then converts these arrays into float buffers and short

buffers. Doing it this way, allows us to load the files much faster than reading and converting

the files into buffers in runtime, due to serialization in Java.

5.11.7 TEXTURENODE

The TextureNode sets up a texture to be used for its children

nodes. The performDraw() itself is just a OpenGL function

that lets OpenGL know what texture to use. OpenGL stores

textures in memory and returns a handle to your code. If you want to use this texture you

need to enable this state and let OpenGL know what texture you want to use. By storing the

handle when you load the texture, you can then easily use the texture later on. The texture

data is not needed in your application after loading successfully into OpenGL, so it can be

deleted afterwards.

WizardWars

May 27, 2011

 Page

85

One difference from Windows/Linux and Android is that Android stores the texture

differently, resulting in a flipped texture compared to what is normal in OpenGL. This was

solved by having a function that flips the texture before we send it to OpenGL.

5.11.8 GROUPNODE

The GroupNode is a metadata node used for describing

nodes below it. Its main purpose is for debugging. A scene

graph can quickly become very large, even for small worlds.

The Player class alone uses 6 nodes, not counting any GroupNodes or GeometryNodes used

by the AnimationController. The number of nodes quickly rises to a level where it becomes

hard to determine where you are in the graph. Having GroupNodes helps the programmer

navigating in the code while debugging.

WizardWars

May 27, 2011

 Page

86

5.11.9 SWITCHNODE

The SwitchNode takes advantage of the children arraylist and

uses it differently from the other nodes. Instead of traversing

all its children, the traversing will visit one node. This node is set in the setFrame() function.

SwitchNode is used in the AnimationController. Each child in the SwitchNode refers to a

GeometryNode. Every GeometryNode is then one frame in one or several animations. Using

the setFrame() function you can easily control what object is being displayed.

Figure27: SwitchNode uses its children list to set which child to draw, instead of drawing all

children

WizardWars

May 27, 2011

 Page

87

5.11.10 INITIALIZATION OF NODES

The GeometryNode and the TextureNode are the nodes that need initialization before being

able to be drawn. This is due to serialization. The data used by OpenGL is stored in buffer

object, while the data loaded is stored temporarily in arrays.

After the scene graph has been built, it needs to be traversed once to initialize the nodes.

This converts the data so it can be used by OpenGL.

After the scene graph has been built, it needs to be traversed once to initialize some of the

nodes. The GeometryNode and the TextureNode need initialization before they can be

drawn. InitTraverse() in Node traverses all the nodes once, and runƐ ƚŚĞ ŶŽĚĞƐ͛ ŝŶŝƚ;Ϳ͘ IŶŝƚ;Ϳ ŝƐ

empty in all the nodes except GeometryNode and TextureNode, where it is overridden. The

initialization only happens once.

GeometryNode holds the vertices-, normals- and texture-coordinates, and face indices. The

node needs an initialization because of the format of these data when written to file, in

contrast to the format needed by OpenGL. The data used by OpenGL is stored in byte

buffers, while the data loaded from file is stored temporarily in arrays. ConvertToBuffers()

converts the arrays into byte buffers of the wanted type (float or short). The reason why we

store all of the geometry coordinates temporarily in arrays instead of using byte buffers right

away, is that byte buffers are not serializable, so we have no way of writing them to file.

More on serialization in the next section.

FŽƌ ƐƚĂƚŝĐ ŽďũĞĐƚƐ͕ ƚŚĞ ŽďũĞĐƚƐ͛ ďŽƵŶĚŝŶŐ ďŽǆ ŝƐ ƐƚŽƌĞĚ ŝŶ ƚŚĞ ŐĞŽŵĞƚƌǇ ŶŽĚĞ͘ FŽƌ ƚŚĞƐĞ

objects, init() adds their bounding box to the collision grid as well.

TextureNode needs initializatiŽŶ ĨŽƌ ůŽĂĚŝŶŐ ŽĨ ƚŚĞ ŽďũĞĐƚƐ͛ ƚĞǆƚƵƌĞ͕ ĨƌŽŵ ƚŚĞ ƌĞƐŽƵƌĐĞ ĨŽůĚĞƌ

of the project.

WizardWars

May 27, 2011

 Page

88

5.11.11 SERIALIZATION

Serialization of an object is the process of converting the object into a sequence of bytes.

These bytes can then be written to a file, for example. Deserialization is the opposite, (7) i.e.

to convert the bytes back to an object. In Java, for an object to be serializable, and thus be

ĂďůĞ ƚŽ ďĞ ǁƌŝƚƚĞŶ ƚŽ ĨŝůĞ͕ ŝƚƐ ĐůĂƐƐ ;Žƌ Ă ĐůĂƐƐ ŝƚ͛Ɛ ĞǆƚĞŶĚŝŶŐͿ ŚĂƐ ƚŽ ŝŵƉůĞŵĞŶƚ ƚŚĞ interface

Serializable.

Every serializable class needs a unique version number, called serialVersionUID. This is used

to compare the class when it was written to file, and when it is loaded back from file, to see

ŝĨ ƚŚĞ ƚǁŽ ĐůĂƐƐ ǀĞƌƐŝŽŶƐ ĂƌĞ ĐŽŵƉĂƚŝďůĞ͘ IĨ ƚŚĞ ƐĞƌŝĂůVĞƌƐŝŽŶUID͛Ɛ ĚŽŶ͛ƚ ŵĂƚĐŚ, it will result in

an InvalidClassException.

As discussed earlier, we have a separate project called CreateSG, which creates a file with

the initial scene graph. This project is connected to the game project, so it uses the same

classes (in the package SceneGraph) as the game, when building the scene graph. The classes

SceneGraph and Node (which is the parent of all the nodes) implement the interface

Serializable. In addition, all of the nodes have its own serialVersionUID.

WizardWars

May 27, 2011

 Page

89

5.12 NO.HIG.RAG.DATASTRUCTURES

We have made some simple data structures, helping us to store data in a simple and

efficient way.

5.12.1 VEC3

A simple class holding the three float variables X, Y and Z, which are coordinates in the

ǁŽƌůĚƐ͛ ĐŽŽƌĚŝŶĂƚĞ ƐǇƐƚĞŵ͘ TŚĞ ĐůĂƐƐ ŝƐ ƵƐĞĚ throughout the project, in places related to

movement/translation of objects. The three variables are made public. Even though this is

bad object oriented practice, it reduces the number of method calls, and increases the

performance.

5.12.2 VEC2

A simple class holding the two float variables X and Z, which are coordinates ŝŶ ƚŚĞ ǁŽƌůĚƐ͛

coordinate system. Used in the collision system, to compare the position of objects to each

other͘ WĞ ĚŽŶ͛ƚ ŶĞĞĚ ƚŽ ĐŚĞĐŬ ĨŽƌ ĐŽůůŝƐŝŽŶƐ ĂůŽŶŐ ƚŚĞ Y ĂǆŝƐ͕ ƐŽ ǁĞ ĚŽŶ͛ƚ ŶĞĞĚ ƚŚĞ Y

coordinate.

5.12.3 ROTATEVECTOR

A simple class holding the three float variables X, Y and Z, which are coordinates in the

ǁŽƌůĚƐ͛ ĐŽŽƌĚŝŶĂƚĞ ƐǇƐƚĞŵ͘ TŚĞ ĐůĂƐƐ also includes an angle. This is used in rotate node, for

rotation of objects. The angle says how many degrees the object should rotate, while the

coordinates say in what direction it should rotate.

5.12.4 VECCELL

A simple class holding two integer variables, X and Z. These are used to represent a cell in

the grid dividing the world, in the collision system.

5.12.5 BOUNDINGBOX

Represents the bounding box that encapsulates the objects. Used for collision detection. The

ĐůĂƐƐ ŚŽůĚƐ ƚŚĞ ďŽǆ͛Ɛ ĐŽŽƌĚŝŶĂƚĞƐ ŝŶ ƚŚĞ ǁŽƌůĚ͕ ĂůŽŶŐ ǁŝƚŚ ŝƚƐ ŽǁŶ ůŽĐĂů ĐŽŽƌĚŝŶĂƚĞƐ͘ Iƚ ĂůƐŽ

knows which cells in the grid the object is currently in.

WizardWars

May 27, 2011

 Page

90

5.13 TOOLS

5.13.1 PARSING GAME OBJECTS AND CREATING SCENE GRAPH FILE

The code for the project that parses the Collada files containing the game objects, and

creating the file with the initial scene graph, is described below.

5.13.2 MAIN

Here we set the name of the Collada file containing the objects, and the name of the scene

graph file. We then make a new BuildInitialSceneGraph object. (8)

5.13.3 BUILDINITIALSCENEGRAPH

This is where the initial scene graph is made. We make an instance of ColladaParse, which

returns a list of GameObject objects. This list contains all of the game objects from the

Collada file. Then the two players are added two the scene graph. The players͛ geometries

are identical, but they have different textures. Each player has its own method for getting

added to the scene graph. This was considered the most convenient way of adding them.

There is a separate method for adding the static objects to the scene graph. When adding an

object to the scene graph, we add a new branch under either the dynamicNode (players) or

the staticNode (other objects). Then the branch is built up by the nodes needed.

5.13.4 COLLADAPARSE

The Colla file gets parsed, and for every game object that is found, a GameObject object is

added to an array list called gameObjects. GetObjectList() returns the list of game objects.

5.13.5 GAMEOBJECT

A class for holding all the information needed about a game object. This class is only used

temporarily, until the objects are written to the scene graph file. MakeBoundingBox() finds

the objects maximum and minimum coordinates, and makes the objects bounding box.

WizardWars

May 27, 2011

 Page

91

5.14 SERVER

The server is implemented using PHP, MySQL and JSON. It is primarily 6 PHP-files, each with

their own function. The clients send data using HTTP POST with data formatted in JSON, and

the server responds with a body containing a JSON-formatted response.

5.14.1 COMMUNICATION

Our client-server model is based around JSON-requests and replies. They are sent as normal

HTTP POST requests, but only contain JSON formatted data.

An example follows for registration of a new user:

The client sends a username, password and an email to the server (illustrated from the

server-test files)

If the server accepts the data sent by the client, the username is free, and the email is

correct (it is a valid email) a new user is created. The server returns a JSON-object with the

success-field set to true, the username and e-mail used when registering, and a session-

value that must be used on subsequent requests to identify as this username.

WizardWars

May 27, 2011

 Page

92

If the username I busy, something was wrong with the data, or there was a technical error, a

JSON-object with the success-field set to false and a message to explain the problem is

returned.

5.14.2 THE COMPONENTS

register.php

This file handles registration of new users. It checks that your chosen username is not takes,

it encrypts your password, and returns a session you can use for later queries.

login.php

Expecting a username and password, login.php verifies your login details and return a

session for later queries.

session.php

Verifies a supplied session. It is used so the user don't have to type in a username/password

again if he is already logged in, and to check that only logged in users can start games.

ip.php

This file is used to get the external (Internet) IP of the client. This is not strictly necessary

since we only handle clients on the same WLAN, but it is also a simple way to check that the

client is online and able to contact the game server.

checkgame.php

This file is called from 5-20 times while the client is looking for a game. The mfirst time it is

ƌƵŶ͕ ƚŚĞ ĐůŝĞŶƚƐ ƐĞƐƐŝŽŶ͕ IP ĂŶĚ ƉŽƌƚ ŝƐ ĞŶƚĞƌĞĚ ŝŶƚŽ ƚŚĞ ƐĞƌǀĞƌΖƐ ͞ůŽŽŬŝŶŐ ĨŽƌ ŐĂŵĞ͟-table. On

subsequent lookups it either returns noting (just a status that you have not been paired) or

the data you need to connect to an opponent (targetIP and targetPort).

Connectlooper.php

Is not supposed to be accessed by any client. This script is to be run on a interval basis, i.e

using crontab on GNU/Linux. It's purpose is to check the database for players that are

WizardWars

May 27, 2011

 Page

93

looking for a game, and connect these to. The connection occurs when the players data is

ŵŽǀĞĚ ĨƌŽŵ ƚŚĞ ͞ůŽŽŬŝŶŐ-for-ŐĂŵĞ͟-ƚĂďůĞ͕ ƚŽ ƚŚĞ ͞ŐĂŵĞ-ƌƵŶŶŝŶŐ͟-table. When the player

connects after the server has paired it with another client, the IP and port of the other client

will be returned.

5.14.3 THE DATABASE TABLES

Since the game server and supporting systems was not the primary focus of our prosject, the

setup is quite simple. We have tables for users, users looking for a game, users currently in a

game, and games that have been completed with information about their winners.

Figure 28: ER diagram, showing the tables in the database.

WizardWars

May 27, 2011

 Page

94

5.15 3RDPARTY

5.15.1 OPENGL

OpenGL is a API for displaying 2d and 3d graphics on a computer. Originally created by SGI

and currently maintained by Khronos Group , a consortium consisting of members from IT-

and Media- industry leading companies. (9)

OpenGL is a statebased system and the users enables the API to perform specific

functionality by enabling states inside OpenGLs statemachine. As data progresses through

this, the state dictates what to do. OpenGL was created for C and is not objective-oriented,

even though it has become more and more Objective Oriented in the later years.

The Android version we use for our game, supports OpenGL ES 2.0, but we chose to use

OpenGL ES 1.0, because the SDK only supports 1.0 not. For using OpenGL ES 2.0 you need to

use the NDK.

We use OpenGL for communicating graphics to the screen. This means both storing data on

memory available to the graphics chip on the phone and communicating to the same chip

how it͛s going to look.

5.15.2 COLLADA

Collada is a fileformat created by Khronos Group. Its purpose is to store 3d model data in

XML.

Collada defines an open standard XML schema for exchanging digital assets among various

graphics software applications that might otherwise store their assets in incompatible file

formats. (10)

WizardWars

May 27, 2011

 Page

95

5.15.3 ANDROID

Android is an open-source software-stack for mobile devices. It includes an operating

system, middleware and several default applications. Android OS is based on the Linux

Kernel. It runs on the Dalvik virtual machine featuring JIT compilation. (11)

When creating applications for Android, you usually work in Java, from the Android Software

Development Kit, but you can also work in the Native Development Kit (Which is in C/C++).

We chose to work in the SDK and not the NDK for simplicity.

WizardWars

May 27, 2011

 Page

96

6 TESTING

WĞ ĚŝĚŶ͛ƚ ĚĞĐŝĚĞ ŝŶŝƚŝĂůůǇ ŽŶ Ă ƐƉĞĐŝĨŝĐ ǁĂǇ ƚŽ ƚĞƐƚ͘ WĞ ĂŐƌĞĞĚ ƚŚĂƚ ĂŶǇ ƐǇƐƚĞŵ ƐŚŽƵůĚ ďĞ

tested and approved by the programmer before implemented to the system.

6.1 TEST STRATEGY

Our method of testing our code was straightforward; after we had written a part of code to

a workable state, we tested it quickly to see if it performed as expected. We tried to find

common errors like null pointers, data not behaving like expected. When the code worked as

we wanted it to, we moved on. If the code belonged to a bigger system, we would do these

quick on-the-spot tests on all smaller systems and then do a more thorough testing when all

the parts were completed.

By testing the system in parts, we prevented the final testing taking too long time, as all the

smaller parts had already been tested before put together.

We also tested larger systems in a separate project, creating a setting for the test outside of

the actual game. This helped us a lot to isolate the system and create specific situations that

could provoke errors.

6.2 TESTING TOOLS/METHODS

We used two main methods for fixing errors in our code. First method is to use the Log class

in Android.Util.Log. This class creates log data that can be read while running the game. This

is fast to set up and gives you feedback from the code as the project is running, without

having to stop the program.

The second method is to create breakpoints in the code and when the code stops at the

breakpoint, go through the code step by step. This gives you a lot of details about what the

code is doing at this specific place in the code͕ ďƵƚ ĚŽĞƐŶ͛ƚ ŐŝǀĞ ǇŽƵ ŝŶĨŽƌŵĂƚŝŽŶ ĂďŽƵƚ ǁŚĂƚ

has happened before this spot.

WizardWars

May 27, 2011

 Page

97

6.3 GAME SERVER

The game server was tested using static HTML-forms that transmitted the same data as a

normal client would. This way we could detect errors w/o having to run the request trough

an Android client.

WizardWars

May 27, 2011

 Page

98

7 CLOSING

7.1 DISCUSSION OF THE RESULTS

7.1.1 THE RESULT

As mentioned in the introduction, our main goal was to make a game that could be played.

We wanted it to be technically functional, and entertaining. We believe we have reached

this goal. The final version of the game can be played over network, and we all agreed that it

is entertaining as well.

In order for two players to play the game together, they both need to be connected to the

same wireless network, with an internet connection. The phones connect to the online

server. Once the server has connected the phones, they use the wireless local network to

communicate.

The user can quickly register a player account, and log in. When two players have registered

an account, logged in, and clicked new game, the server quickly connects them, and a new

game is started on both phones. If the connection is good, the response is quite good, and

ǁĞ ĂůŵŽƐƚ ĚŽŶ͛ƚ ŶŽƚŝĐĞ ƚŚĂƚ ǁĞ ƉůĂǇ ŽǀĞƌ ŶĞƚǁŽƌŬ͘

We added three different spells to the game. These have each their gesture attached to it.

The spells were thunder spell, fire spell and ice spell. Fire spell is not working as it should,

instead ŝƚ͛Ɛ ŵĂŬŝŶŐ ƚŚĞ ŐĂŵĞ ŚĂŶŐ͘ IĐĞ ƐƉĞůů ĚŽĞƐŶ͛ƚ ĚŽ ĂŶǇ ĚĂŵĂŐĞ ĨŽƌ ŶŽǁ͕ ďƵƚ ƚŚƵŶĚĞƌ

ƐƉĞůů ǁŽƌŬƐ ĂƐ ŝƚ ƐŚŽƵůĚ͘ Iƚ ĂĨĨĞĐƚƐ ƚŚĞ ŚĞĂůƚŚ ŽĨ ƚŚĞ ŽƉƉŽŶĞŶƚ͕ ĂŶĚ ĚĞĐƌĞĂƐĞƐ ƚŚĞ ƉůĂǇĞƌ͛Ɛ

ŵĂŶĂ͘ TŚĞƌĞ ŝƐ ŶŽ ǁĂǇ ŽĨ ͞ŐĞƚƚŝŶŐ ƐŬŝůůĞĚ͟ Ăƚ ĐĂƐƚŝŶŐ Ă ƐƉĞůů͕ ŝƚ ǁŝůů ĂůǁĂǇƐ Śŝƚ ƚŚĞ ŽƉƉŽŶĞŶƚ͘

The winner of a game is the one doing the highest number of spell casts.

When a spell is casted, the visual sign of this is an animation of the player, and a message

ĂƉƉĞĂƌŝŶŐ ŽŶ ƚŚĞ ƉůĂǇĞƌ͛Ɛ ƐĐƌĞen, telling which spell was casted. The health and mana will

ĐŚĂŶŐĞ ĂƐ ǁĞůů͘ TŚĞ ŽƉƉŽŶĞŶƚ ǁŽŶ͛ƚ ŐĞƚ Ă ŵĞƐƐĂŐĞ ĂďŽƵƚ ƚŚŝƐ͘

We implemented an offline game mode, which is basically the game without network

support. This is actually a nice little feature, where the user can practice his skills, and try out

the game.

WizardWars

May 27, 2011

 Page

99

TŽ ůĞĂǀĞ Ă ŐĂŵĞ͕ ƚŚĞ ƵƐĞƌ ƐŝŵƉůǇ ƉƌĞƐƐĞƐ ƚŚĞ ͚ďĂĐŬ͛- Žƌ ͚ŚŽŵĞ͛ ďƵƚƚŽŶ͘ IĨ ĂŶŽƚŚĞƌ ƉĂƌƚ ŽĨ ƚŚĞ

Android system interrupts the game (e.g. the phone rings), the active game ends as well.

The login screen, registration screen, main menu, and the game screen are shown below.

Log in screen Registration Main menu

An active game

WizardWars

May 27, 2011

 Page

100

7.1.2 DISCUSSION

We realized that since we first were going to make a game engine, and then implement the

game play logic, this would take up a lot of time.

As time went by, we saw that because of our limited experience with game programming,

we needed more time on each part of the project than we expected. Especially the

development of the game engine became time consuming. We had a limited time table, so

we had to cut back on some of the features described in the requirement specification. The

differences between the requirement specification and what we accomplished are all due to

the time limit of the project. These differences are described below. We tried to make the

best out of the time we had, and not let this affect the most important parts of the project.

We decided to drop the feature where players can choose their opponent. Instead, the

server finds two players looking for a new game, connects them, and the game starts on

both phones. The two phones need to be connected to the same local network to play

against each other, and to the internet to get connection with the server. This means that if

more than two players are looking for a game, the opponent is random. Although we

wanted the opportunity to choose opponent, and play over the internet, we think this

solution works great as well.

The spell system is working as it should for the thunder spell. This shows that the system

itself is working. However, we did not get the other two spells working properly. We believe

this is a minor issue, since the process of adding new spells is relatively easy.

We did not prioritize the help section and the player statistics overview, so these features

were not implemented. This does not affect the game itself, but they would have been nice

features that would help improve the overall experience of the game.

We are pleased with how movement of a player works. The navigation icon is very

responsive, and the collision system works pretty well. However, something is a little wrong

with the bounding boxes for the walls, since the players collide with the walls before actually

WizardWars

May 27, 2011

 Page

101

touching them. We believe this is due to some differences in object reading and rendering.

The collision handling between the two players and between a player and a box works fine.

WizardWars

May 27, 2011

 Page

102

7.2 WORK METHODS

7.2.1 SCRUM

WHAT IS SCRUM?

Scrum is an agile development model. This means that everything is not decided prior to the

development process, like in sequential models like waterfall, but through certain set of

rules and methods, ideas can be changed or created along the way of the process. (12)

Before the development process starts, a product backlog is made. This contains a list of all

the different parts needed to finish the product. Scrum uses sprints to split up the

development process. These are usually from one week to four weeks long. At the start of

each sprint you decide what parts you should work on for this sprint, by selecting tasks from

the product backlog. This list of things to do is called a sprint backlog. After each sprint, a

working preliminary copy of the product should be ready.

Working like this also opens for adding new tasks to the backlog as you progress or put non-

finished tasks back into the backlog if deadline was not met. Every day, the team has a

meeting to discuss what has been done since last meeting, and what should be done until

the next meeting.

 (8)

WizardWars

May 27, 2011

 Page

103

WHY DID WE CHOOSE SCRUM?

Since we had minimal experience with game programming, we would probably need to

change both our design, ideas and time limits through the development process. This meant

that a development model like waterfall would be a bad choice for us. We quickly agreed

that we wanted to use an agile method as our development model.

When looking at the different methods we narrowed it down to 3 candidate methods; RUP,

Scrum and Extreme Programming (XP).

RUP is a very advanced method, with a lot of tools and subsystems that can be used to work

for smaller teams. But, all in all, RUP is best used in large teams and big projects.

XP is the opposite, it favors creation over documentation and also requires a very active

project owner. XP could fit, if working extra on documentation, but project owner was not

available at all times. Conclusion was that even though XP could be used, it would not be

proper XP, so we chose to look elsewhere.

Scrum is a lot easier than RUP to both use and understand, as well as having better

documentation methods than what XP has. We also believe that reporting to the project

owner after each sprint is better suited for us and the owner, than having the owner

physically represented in the development team at all times as XP requires.

Therefore, Scrum was our preferred choice of development model.

HOW DID IT WORK?

This was the first time we had used Scrum as a development model, so a little adaptation

period was necessary. Initially, the sprints were supposed to last for two weeks. We realized

ƚŚĂƚ ďĞĐĂƵƐĞ ŽĨ ŽƵƌ ůŝŵŝƚĞĚ ĞǆƉĞƌŝĞŶĐĞ ǁŝƚŚ ŐĂŵĞ ƉƌŽŐƌĂŵŵŝŶŐ ĂŶĚ AŶĚƌŽŝĚ͕ ǁĞ ĚŝĚŶ͛ƚ

WizardWars

May 27, 2011

 Page

104

know exactly how long time we needed on each part of the game. Therefore, the sprints

were shortened to one week, making it easier to plan what to do in the next sprint.

We made a product backlog at the start of the development process, containing all of the

different parts we felt was needed for our game. At the start of each sprint, we had a short

sprint planning meeting, deciding which parts we should do next. This was put in the sprints

backlog.

As mentioned in the project plan, Appendix 7, our initial plan was to have both a sprint

review meeting and a sprint retrospective meeting. In practice, these eventually got merged

into one meeting, discussing the past sprint. We tried to document these meetings in the

start, but eventually agreed that maybe this was unnecessary. Every morning we had a short

daily scrum meeting, discussing what we had done since last time, and what to do this day.

In the beginning of the project, we documented these meetings. Eventually, we realized that

this was redundant, since these logs contained the same as our work logs.

We had planned to have a quick meeting once a week to review ĞĂĐŚ ŽƚŚĞƌ͛Ɛ code. This was

not done that systematically, but rather done when needed. Finally, we had also planned to

have a meeting with our supervisor at the start of every sprint. Since our supervisor had

limited experience with game programmiŶŐ͕ ǁĞ ĚŝĚŶ͛ƚ ĨĞĞů ƚŚĞ ŶĞĞĚ ĨŽƌ ƚŚĞƐĞ ŵĞĞƚŝŶŐƐ

every week. Instead, we contacted him when it was needed.

We think that Scrum as the development model was an excellent choice for our project. Its

rules and guidelines are easy to understand, and they ensure good documentation and

communication within the group. Scrum is suitable even for a small group like this.

WizardWars

May 27, 2011

 Page

105

7.3 AFTERTHOUGHT

7.3.1 DO IT YOURSELF OR USE MIDDLEWARE?

Middleware, and third-party SDKs, are premade software packages tailored for use in other

software packages.

When you develop your own software, you also learn a lot about how these systems work,

something you do not learn to the same extent when using middleware. This is something

that is important for us. We want to not only develop a game, but also have a maximum

learning benefit from the project.

We decided that the learning benefit from creating our own system far superseded the

ďĞŶĞĨŝƚ ĨƌŽŵ ƵƐŝŶŐ ƉƌĞŵĂĚĞ ĐŽĚĞ͘ WĞ ĚŝĚŶ͛ƚ ŶĞĞĚ ĂŶ ĂĚǀĂŶĐĞĚ ƌĞŶĚĞƌŝŶŐ ƐǇƐƚĞŵ Žƌ ĐŽŵƉůĞǆ

scene graph functionaůŝƚǇ͕ ƚŚĞƌĞĨŽƌĞ ŵĂŶǇ ŽĨ ƚŚĞ ĨĞĂƚƵƌĞƐ ŝŶ ƚŚĞ ŵŝĚĚůĞǁĂƌĞ ǁŽƵůĚŶ͛ƚ ďĞ

used.

7.3.2 MERGING SYSTEMS

When fitting together the different code parts, the network code and the game code had

problem speaking properly together. This was due to different understandings about how

these systems were going to work together. Better planning could have helped us to create

code that fitted better together.

WizardWars

May 27, 2011

 Page

106

7.3.3 THE OPENGL/ANDROID HEADACHE

It seems that even though a phone is upgraded to a certain version of Android; It does not

mean that it supports everything. We encountered this when trying to get our game running

on a older phone: The graphics was corrupted! Testing it on our own phones(HTC Desire)

and there was no problem. Eventually we did some tests and found out that the older

phones only supported OpenGL 1.1. Now, OpenGL 1.1 was released in 1997 and OpenGL 1.2

was released in 1998. We are a bit surprised that a phone developed after 2009 does not

support a API created in 1998, but the same one created in 1997.

7.3.4 ACTION SYSTEM

The action system was our attempt at creating a manageable, versatile and modular system

for controlling the main interaction between players in our game: The spells. When starting

on this part of the code, we decided that we wanted to have something that could handle

anything, or at least not limit it by setting too strict rules for ourselves. We also stressed that

we wanted this system to be highly modular, meaning that we wanted it to easily be added

upon. This proved to be a two edged sword: On one hand you have a system that can be

built upon for later projects, or create new interaction methods for the this project if time

allows it, on the other hand you have a system that is too generic and hard to understand. In

other words: The system could have been made a lot smaller and would still perform just as

good.

A system that handles player interaction will always have a higher level of complexity than

many other systems, just because it is interacting with the player. As a human you expect

something to behave in a certain way and you expect to get feedback when something

happens. This is part of the reason why these systems gets so complex.

TŚĞ ƵŶĚĞƌůǇŝŶŐ ŝĚĞĂ ŽĨ ƚŚĞ ƐǇƐƚĞŵ ŝƐŶ͛ƚ ďĂĚ͕ ďƵƚ ĂƐ ŝŵƉůĞŵĞŶƚĂƚŝŽŶ ĐŽŶƚŝŶƵĞĚ ĂŶĚ ĞƐƉĞĐŝĂůůǇ͕

when the implementation of the action system met the other systems (Especially the

WizardWars

May 27, 2011

 Page

107

Network system), the system started to become more and more rigid, moving away from the

idea that it was going to be able to handle anything.

What we really learned from creating this system was how important it is to plan out such

systems before implementing. Once you develop a system where the player is interacting

with, or through, the computer you need to set clear boundaries to that system. Never to

ŵĂŬĞ Ă ƐǇƐƚĞŵ ƚŚĂƚ ͞ĐĂŶ ŚĂŶĚůĞ ĂŶǇƚŚŝŶŐ͘͟

WĞ ĚŝĚŶ͛ƚ ƌĞĂůůǇ ĚĞƐŝŐŶ ƚŚŝƐ ƐǇƐƚĞŵ ďĞĨŽƌĞ ŝŵƉůĞŵĞŶƚŝŶŐ ŝƚ͕ ĂŶĚ ƚŚĂƚ ǁĂƐ Ă ďŝŐ ŵŝƐƚĂŬĞ͘ Iƚ

would have been a lot simpler to design this on paper before actually writing the code for it.

The system as a whole is a Finite State Machine (FSM) and is easily drawn up on paper. We

realized this halfway through the implementation of the system and from there on treated

the system as a FSM, which made the implementation a lot easier.

7.3.5 COLLADA VS .OBJ

When beginning the coding of the scene graph and the parser tool, we were converting from

3dsmax to a file type called OBJ (13). Once we thought the systems were implemented, we

had serious problems with displaying the 3d models properly in our game. After going back

and forth, trying to figure out what was wrong, we eventually found the error.

Obj files are saved by using separate indexes for vertices, normals and texture coordinates.

These indexes are optimized separately without regard to how the others are structured.

OpenGL requires the data to be sorted so that you can use only one index list, meaning all

data be sorted so that the same index in all 3 lists, deal with the same point in space.

We now had 2 choices. Read in the OBJ file and then restructure the data as needed, or

switch to a new file format all together. Restructuring the data could introduce more bugs

ĂŶĚ ŵŽƌĞ ƚƌŽƵďůĞ͕ ďƵƚ ǁĞ ǁŽƵůĚŶ͛ƚ ŚĂǀĞ ƚŽ ĐŚĂŶŐĞ ŵƵĐŚ ŽĨ ƚŚĞ ĞǆŝƐƚŝŶŐ ĐŽĚĞ͘ “ǁŝƚĐŚŝŶŐ ĨŝůĞ

WizardWars

May 27, 2011

 Page

108

format would mean rewriting the existing code, but would not require extra steps when

reading data.

The new file format we found to suit us best was the file format Collada (10). This file format

stored data in a way that allowed us to transfer the data directly into arrays without any

restructuring.

We chose the latter. Restructuring the data could be faster, but the end result was not

certain. Choosing a new file format that we knew would work and rewriting parts of the

parser(Parts we had already implemented for .obj files) gave us a fairly good overview of the

amount of work needed. Looking back at this point in time, we feel we made a very good

decision here, and the time used for implementing the new file format was minimal.

WizardWars

May 27, 2011

 Page

109

7.4 CONCLUSION

We started this project with great enthusiasm, all agreed upon following scrum to the letter,

by doing all meetings, planning as it should be and follow up code with proper testing

regimes. After progressing through the project for a while, we started to see that not every

project needs all tŚĂƚ ƐĐƌƵŵ ĚĞĨŝŶĞƐ͕ ĂŶĚ ƚĞƐƚŝŶŐ ĚŽĞƐŶ͛ƚ ŶĞĞĚ ƚŽ ďĞ ĚŽŶĞ ŝŶ Ă ƐĞƚ ǁĂǇ͘

When working on a bachelor project it is easy to think early, that you have lots of time. Well,

ǇŽƵ ĚŽŶ͛ƚ͘ A ĐŽŵƉƵƚĞƌ ŐĂŵĞ͕ ŽĨ ĂŶǇ ƐŝǌĞ͕ ŝƐ Ă ďŝŐ ƉƌŽũĞĐƚ͘ Iƚ ĐŽŶƐŝƐƚƐ ŽĨ ƐĞǀĞƌĂů ƐǇƐƚĞŵƐ͕

spread across many layers of code and communication between them needs to be fast,

manageable and safe.

We knew early on, that this project was going to be a lot of work, all up to the end.

Therefore we started by documenting everything and following scrum to the letter. Daily

meetings, two week sprints, planning meeting, review meeting. Everything.

About 1/3
rd

 into the project we also started noticing that daily scrum meetings consisted

usually of the same logs. We felt that saying the same thing every day was getting pointless.

So we changed from daily scrums to every 2 to 3 days logs and weekly code discussions.

From a development perspective this worked great, but we do see that for documentation

ƉƵƌƉŽƐĞƐ͕ ƚŚŝƐ ǁĂƐŶ͛ƚ ƚŚĞ ďĞƐƚ ŝĚĞĂ͘

We did however, have an extra layer for documentation. All members of the group agreed to

keep a work log that was to be updated frequently. This was done with varying success, but

in general most parts of the project has been logged.

2/3rds into the project, one of the project members left, to be gone until the very last days of

the project. This took a huge strain on the developing process. Not so much on the actual

coding, but the documentation went from a structured method, to a vocal or whiteboard

method. We did take pictures of pretty much all whiteboard meetings, but we do feel that

we should have continued to use the scrum method.

One thing that we felt missing from scrum, that we tried to implement, was code meetings.

Scrum does have Sprint review meetings, where you can talk about how the last Sprint was.

WizardWars

May 27, 2011

 Page

110

BƵƚ ŝƚ ĚŽĞƐŶ͛ƚ ŶĞĐĞƐƐĂƌŝůǇ ŵĞĂŶ ƚŚĂƚ ƚŚŝƐ ŵĞĞƚŝŶŐ ƐŚŽƵůĚ ďĞ ƐƉĞŶƚ ŽŶ ƌĞǀŝĞǁŝŶŐ ĐŽĚĞ͕ ŝƚ

should be used to talk about the process and code, not the code alone.

LŽŽŬŝŶŐ ďĂĐŬ͕ ǁĞ ƐĞĞ ƚŚĂƚ ŽƵƌ ǁŽƌŬ ŵĞƚŚŽĚ ǁĂƐŶ͛ƚ Ă ƉƵƌĞ scrum method. But the changes

ǁĞ ĚŝĚ ǁĞƌĞ ĚŽŶĞ ŝŶƚĞŶƚŝŽŶĂůůǇ͘ WŚĞŶ ǁĞ ƐĂǁ ƚŚĂƚ ǁĞ ǁĞƌĞ ĚŽŝŶŐ ƐŽŵĞƚŚŝŶŐ ƚŚĂƚ ǁĂƐŶ͛ƚ ĨŽƌ

the sake of the project, but for the sake of the process; we discussed it together and found a

solution where everyone agreed that this would be best.

We learned a lot from this project. Writing and designing a project of this size, forces all to

work together and write code that͛s usable by others. Creating a game also requires a lot of

algorithm and system engineering techniques that we learned in theory from previous

courses in our degree. Using what we learned before, in an actual software project , gave us

better insight and perspective of why we are here. All of us are looking forward to starting

our careers with new found knowledge.

WizardWars

May 27, 2011

 Page

111

WORKS CITED

1. http://www.amobil.no/artikler/dette_er_favorittmobilene_til_netcoms_kunder/80762 .

amobil.no. [Online]

2. http://www.amobil.no/artikler/her_er_de_25_mest_populaere_mobilene/80621/2.

amobil.no. [Online]

3. http://en.wikipedia.org/wiki/Back-face_culling. wikipedia. [Online]

4. [book auth.] Mike McShaffry. Game Coding Complete, 3rd edition. s.l. : Delmar, 2009.

5. Khronos. http://www.opengl.org/wiki/Vertex_Buffer_Object. opengl.org. [Online]

6. Wright Jr, Richard S., et al., et al. OpenGL SuperBible: Comprehensive Tutorial and

Reference. s.l. : Addison Wesley, 2010.

7. http://download.oracle.com/javase/6/docs/api/java/io/Serializable.html.

www.oracle.com. [Online] oracle.

8. http://no.wikipedia.org/wiki/Fil:Scrum_process.svg. wikipedia.org. [Online]

9. http://en.wikipedia.org/wiki/OpenGL. wikipedia.org. [Online]

10. http://en.wikipedia.org/wiki/COLLADA. wikipedia.org. [Online]

11. http://developer.android.com/. www.android.com. [Online] Google.

12. http://scrummethodology.com/. scrummethodology. [Online]

13. http://en.wikipedia.org/wiki/Wavefront_.obj_file. wikipedia. [Online]

14. Dalmau, Daniel Sánchez-Crespo. Core Techniques and Algorithms in Game

Programming. s.l. : New Riders, 2004.

WizardWars

May 27, 2011

 Page

112

WizardWars

May 27, 2011

 Page

113

8 Appendices

CONTENTS

Appendix 1: Project diary .. 115

Meeting 20.05.2011 - Feedback Øyvind ... 115

Appendix 2: Worklogs ... 135

Work log for Ole Marius Kohmann .. 146

Worklog Anders Einar Hilden .. 152

Appendix 3: Status reports ... 155

Appendix 4: Scrum meetings .. 157

Sprint 7 (29.03.2011 - 04.04.2011) .. 157

Appendix 5: Daily scrums .. 161

Appendix 6: First Technical description What we need .. 168

Appendix 7: Project Plan (Pre project report) .. 170

5 Table of contents .. 170

6 1. GOALS AND BOUNDARIES .. 171

1.1 Background ... 171

1.2. Goals... 171

1.3. Boundaries ... 171

7 2. SCOPE .. 173

2.1. Project description ... 173

2.2. Scope .. 173

8 3. Project organization ... 174

3.1 Employer and supervisor .. 174

WizardWars

May 27, 2011

 Page

114

3.2. Responsibilities and roles ... 174

3.3. Group rules and routines ... 174

3.3.1 Group rules ... 174

3.3.2 Routines .. 174

3.4 Resources .. 175

9 4. Planning, meetings and reporting ... 176

4.1. System development model .. 176

4.2. Meetings .. 177

4.3 Status reports .. 177

10 5. Quality assurance .. 177

5.1 Testing ... 177

5.2 Code meeting .. 178

Once a week we will have a group meeting where we read through each others code. This

way we assure that the quality of the code is maintained. 6. Gantt chart Since we are

using Scrum as our development model, the development period of the project will be

divided into sprints. We set one sprint to be two weeks. This gives us four sprints total. At

the end of each sprint we will have a working product. .. 178

Appendix 8 .. 180

WizardWars

May 27, 2011

 Page

115

Appendix 1: Project diary

Meeting 20.05.2011 - Feedback Øyvind

WizardWars

May 27, 2011

 Page

116

MEETING MONDAY 10.01.2011

Attendees:

Ole Marius Kohmann, Jon Lande, Simon McCallum, Jayson Mackie.

Topics:

Supervisor.

Project scope.

Project technical & creative brainstorming.

Project goals for the students.

Roles.

Details:

Concerns were raised about having a supervisor who is not experienced with game

development and game programming. Simon advised Ole Marius to contact Rune Hjelsvold

for further discussions about this issue.

The size of the project was discussed, there are some concerns related to Jon and Anders

Einar not being experienced with game programming already, but the group was quickly

assured by Simon and Jayson that this would not be such a big problem when they get hands

on experience with this kind of coding.

Ole talked about his ideas for the project being a multiplayer game in 3d, where players can

fight eachother as wizards. The game would be controlled by using the trackball and doing

gestures on the screen itself. There is a wish for doing this in a realtime style gameplay, but

we suspect it is more feasible to do this in a turn-based style game.

WizardWars

May 27, 2011

 Page

117

The group talked about what the students were aiming for in terms of grading and was

explained what it is expected to put into the project for the different grades.

The students said they were going to aim for an A.

Being maybe a bit too early to set in stone the roles(As Anders Einar was not present), it was

agreed by all that it would be best if Ole Marius took the role as lead designer.

Notes:

Anders Einar Hilden was not in the meeting, due to conflicting schedules. This was informed

of before the meeting time was set.

MEETING WEDNESDAY 12.01.2011

Attendees:

Ole Marius Kohmann, Jon Lande, Simon McCallum, Jayson Mackie

Topics:

Supervisor part 2

Room

Details:

The students have talked together around the supervisor issue and decided that it would

infact be best if we did have the originally assigned supervisor Øyvind Kolloen and not try to

find someone who are more experienced in the game programming field.

WizardWars

May 27, 2011

 Page

118

Having Øyvind Kolloen as supervisor will give us a different perspective than that of a game

programmer. We now see that this is of great benefit to us.

Ole Marius has sent an email to Rune Hjelsvold to explain our new view on this.

The room we have been assigned to is not a good place to create a project of this

complexity. This project needs a work area that allows the students to sit in deep

concentration for several hours without being disturbed. Sitting in room A112 together with

4 other groups and a total of 12 people in the room is a great concern to the students.

Ole Marius sent an email to the school, explaining our concerns.

Notes:

Anders Einar informed today that he is coming back on monday 17th january.

MEETING WEDNESDAY 19.01.2011

Attendees:

Ole Marius Kohmann, Jon Lande, Anders Einar Hilden.

Topics:

Finalise roles.

Divide responsibility.

Specify idea.

Project contract.

WizardWars

May 27, 2011

 Page

119

Project plan.

͞HŽǁ ĚŽ ǁĞ ǁĂŶƚ ƚŽ ǁŽƌŬ͍͟

Agree on coding style.

What tools do we use?

Agree on version control.

Scrum/RUP/XP?

͙͍͘͘

Details:

Finalise roles:

Ole is lead designer.

Jon is project manager..

Anders Einar is technical supervisor.

Responsibilites:

Anders Einar is responsible for the website and the version control.

Jon is responsible for the project reports

Ole is responsible for the idea.

Project contract:

WizardWars

May 27, 2011

 Page

120

Ole will talk to Torunn Linneberg regarding a updated project contract that contains an

agreement around the source code and its its right of use/ownership.

Project plan:

Jon will write up a suggestion to the main headlines for the project plan by tomorrow.

Group agrees that we need to talk to Øyvind tomorrow for more details around how the

project plan should be structured and its content.

Scrum/RUP/XP?:

Scrum.

Anders Einar will research Scrum and present it to the rest of the group on friday 21.01.11.

͞HŽǁ ĚŽ ǁĞ ǁĂŶƚ ƚŽ ǁŽƌŬ͍͗͟

Scrum meeting: Mondays.

Midweek meeting: Thursdays.

Workhours: Tuesday - friday: 09.00- 15.00.

Codingstyle:

Standard Java capitalization.

Tabs, not spaces.

WizardWars

May 27, 2011

 Page

121

public class BookShop {

 public void getBook(String title) {

}

}

Tools

git

Eclipse Helios

EGit

Android SDK (Android 2.2)

Idea:

- Android game for Android 2.2.

- Multiplayer.

- 3d (openGL) top down, perspective view.

- Competition oriented.

- 1 vs 1, arenastyle gameplay.

- using gestures to control what skills to use.

- if realtime; use trackball to move around.

Next meeting:

WizardWars

May 27, 2011

 Page

122

Anders Einar will research possible game servers w. regards to complexity, possibilities, and

gameplay (turnbased/realtime).

Ole will continue to port his code from game programming and research what is needed for

it to go 3d.

Jon will make a blueprint for the project description delivery that is due 29th january.

Notes:

Øyvind Kolloen has been gone since friday. The group has been informed that he will be back

tomorrow(Thursday 20th january).

MEETING FRIDAY 21.01.11 WITH SUPERVISOR

Attendees:

Ole Marius Kohmann, Jon Lande, Anders Einar Hilden, Øyvind Kolloen.

Topics:

Gameserver

͙͍͘͘

Details:

OMK started the meeting by informing ØK that (and why) we had settled on him as a

supervisor.

OMK: What is the target of the bachelor-thesis - the product or the project rapport?

WizardWars

May 27, 2011

 Page

123

ØK: There should be a guiding schema somewhere on the HiG-web, but that in the end, the

overall delivery is judged.

OMK: What is most important regarding the code - ƐŵĂƌƚ ĐŽĚĞ Žƌ ĚŝƌƚǇ ĐŽĚĞ ƚŚĂƚ ĚŽĞƐ ŝƚ͛Ɛ

job?

ØK: Sensible, reusable code is important. Use libraries if they fit (not to complex, not to

useless), you will not be rewarded for reinventing the wheel.

OMK/AEH: Should we make out own UDP-java server, or find and use a framework already

written ?

ØK: Overkill (mega framework) is stupid. Check what is out there - if you find something that

matches your needs or is simple to redesign, use it. If you cant find anything with a fitting

complexity, write something yourself - but whatever we choose, list your reasons for doing

either in your rapport.

OMK͗ WŚĂƚ ƐŚŽƵůĚ ǁĞ ͞ƵƐĞ͟ ØK ĨŽƌ͍

ØK: Project plan, progress plan, work methods. Game questions should be directed at

Jayson/Simon. You should consider contacting Kjell Arne Refsvik (mobile development) to

see if he can be a resource as well. He might be able to help you with basic GUI designs for

small screens etc.

OMK/JL: Can we deliver an updated project plan later after we have adjusted/found

ƉƌŽďůĞŵƐ ǁŝƚŚ ŝƚ͕ Žƌ ŝƐ ŝƚ ͞ůŽĐŬĞĚ͟ ͍

ØK: It is OK to update it later, after you have found some traps or used somewhat longer on

a thing than planned - but sleeping all of january/february will not be tolerated. Remember

to write the rapport as you work - it stupid to write it all the last two weeks.

OMK: Mixing pair programming (XP) with scrum interations?

ØK: IŶĚĞĞĚ ƉŽƐƐŝďůĞ͘ DŽŶ͛ƚ ŵŝǆ ŝƚ Ăůů͘ Iƚ ƐŚŽƵůĚ ďĞ ƉŽƐƐŝďůĞ ƚŽ ĨŽůůŽǁ ǇŽƵƌ ƉůĂŶ͘ DŽŶ͛ƚ ƉŝĐŬ Ăůů

ƚŚĞ ͞ŐŽŽĚ͟ ďŝƚƐ Žƌ ĚƌŽƉ Ăůů ƚŚĞ ŚĂƌĚ ŽŶĞƐ͘ EĂƐǇ ƉƌŽũĞĐƚƐ ;ŶĞƚƐŚŽƉƐ͕ ƚŝŵĞƚĂďůĞƐ ĞƚĐ ĂƌĞ ƚŽ

simple. SQL queries with PHP on top) a normal student will get a C. Technicly heavy projects

WizardWars

May 27, 2011

 Page

124

can get a B with the same amount of work.

DƌŽƉ ͞ŽďǀŝŽƵƐ͟ ƚŚŝŶŐƐ ŝŶ ŝŶ ǇŽƵ ǁŽƌŬͬƌĂƉƉŽƌƚ͕ ƌĞŵĞŵďĞƌ ƚŽ ŝŶĐůƵĚĞ ƚŚĞ ŝŶƚĞƌƌĞƐƚŝŶŐ ďŝƚƐ͘

Explain your targets and limits. (i.e android 2.2, 1ghz cpu, x ram).

Time-use: They have enough experience with bachelor-ƚŚĞƐŝƐ͛ ƚŚĂƚ ƚŚĞǇ ŬŶŽǁ ŝĨ Ă ůŽǁ

volume of hours i a genius working fast, or a average working to little.

Project plan: Should have a scrum product queue, and a somewhat accurate plan of attack.

Suggestions for dates, but these _will_ change.

Meetings v. ØK: Every 14. days, preferably after a SCRUM-sprint is completed. If we submit

progress papers to ØK at the morning, a meeting after lunch is enough time for him to read

them.

ØK shedule: Mon-Wed: Free all day. Thuesday: Busy after lunch. Friday: Busy before lunch.

Class-tree, use-cases, gaunt (accurate) in specification. Create a rough schedule of you

project, what you want to have finished after each sprint, etc.

Remember to test as-you-code. Design the test first, then write the code. If the test fails, the

code is not complete.

MEETING MONDAY 31.01.11

ATTENDEES:

OLE MARIUS KOHMANN, ANDERS EINAR HILDEN, JON SÆTHEREN LANDE

TOPICS:

WizardWars

May 27, 2011

 Page

125

Coming scrum

Sprint length

Sprint work methods

Notes:

1. Sprint length: 2 weeks, might need to change to 1 week.

2. Sprint work methods.

 1 day to research & proof of concept.

 4 days to reach feature complete.

 5 days to finish & test.

3. Coming scrum.

Tasks that will be worked on the coming sprint:

Server:

Highlights:

Rudementary lobby

Message pump.

Game server thread.

Test Requirement:

WizardWars

May 27, 2011

 Page

126

Be able to echo messages.

Be able to add and remove users to lobby and remove timeout users.

Match two random players in lobby by request.

Start new game-thread. by tcp query.

start game after both users have joined game thread.

Relay/use packages.

stop game when player looses.

Update stats.

Return users stats on request(TCP).

Sane check packages in game thread.

ObjParser

Test Requirement:

 ϭ͘ ďĞ ĂďůĞ ƚŽ ƌĞĂĚ ͞ƚĂŐƐ͟ ŝŶ Ă ͘obj file and its coming data.

 2. Be able to create nodes of correct type and store data correctly in them.

 3. be able to read .mtl file in same way as .obj file.

SceneGraph

Classes:

 SceneGraph

 Node

WizardWars

May 27, 2011

 Page

127

 TranslateNode

 RotateNode

 ModelNode

 GLTraverser

 ClippingTraverser

Test Requirement:

 - Be able to create a SceneGraph correctly read from objparser file.

- Be able to traverse through the tree and display info about each nodes location

 and data.

Renderroutine

Player

Work Description:

Gui

Work Description:

Next meeting:

Notes:

WizardWars

May 27, 2011

 Page

128

MEETING WEDNESDAY 02.02.11

Attendees:

Ole Marius Kohmann, Jon Sætheren Lande, Anders Einar Hilden

Topics:

Anders Einar expressed concerns regarding network code & and problems with connecting

two phones together through internet. Main issue is regarding peer to peer connections and

how to connect through routers in each end. The group talked about several solutions and

came to the conclusion that Anders Einar will talk to Jayson/Simon and also do more

research before we make our final decision.

SKYPE MEETING 16.02.11 (SHORT)

Unfortunately, Ole Marius had to stay home with sick children both tuesday and wednesday

this week, so the meetings at the end of this sprint and start of the next sprint had to be

postponed.

Since Ole Marius had to stay home, we had a short meeting over Skype.

We decided we will try to have a meeting with both the supervisor and the employers this

ǁĞĞŬ͕ ŝŶ ĂĚĚŝƚŝŽŶ ƚŽ ŽƵƌ ƐĐƌƵŵ ƐƉƌŝŶƚ ŵĞĞƚŝŶŐƐ͘ WĞ ĚŝĚŶ͛ƚ ĨŝŶŝƐŚ Ăůů ƚŚŝƐ ƐƉƌŝŶƚƐ ƉĂƌƚƐ ŽĨ ƚŚĞ

project, like we planned. Since most parts of the project is new to us, we need to do a lot of

research. This also means that we have a little trouble deciding on how long time we need

for each task. Therefore, we are thinking of changing the sprint length to one week, instead

of two.

WizardWars

May 27, 2011

 Page

129

MEETING TUESDAY 01.03.11

Attendees:

Ole Marius Kohmann, Jon Sætheren Lande, Jayson Mackie

We had a meeting with Jayson concerning the progress of the project so far, and how to

proceed. Anders Einar was sick, and had to stay home.

We demonstrated what we had done so far, and got some positive feedback. When looking

at our work/progression schedule, Jayson suggested some changes in the order to do things.

He also had valuable input on how to organize the game logic.

WizardWars

May 27, 2011

 Page

130

Notes:

PLANNING MEETING WEDNESDAY 02.03.11

Attendees:

Ole Marius Kohmann, Anders Einar Hilden, Jon Lande

Planning meeting where we decided what tasks we will focus on next.

WizardWars

May 27, 2011

 Page

131

Notes:

Pr. 02.03.2011:

TODO Next:

Ingame GUI / HUD (Heads up display)

- Player info

 - Hp

 - Mana

 - ++ (?)

- Opponent info

- Event handling

Player controls

- Player movement

- Player actions (gestures)

Update routine (controller / controller list)

- Design method for update routine

- System for handling all movement & rotations of all objects in current level

- Controller system for the object

Movement design

- Need to decide how the player moves, what is allowed and what restrictions are involved.

Both from a technical perspective and design perspective

Collision / physics

- Decide on collision features

- Scope of physics system:

 - Player/opponent ground collision

 - Player/opponent wall collision

 - Spell travelling physics

WizardWars

May 27, 2011

 Page

132

- Out of boundraries

08.02.2011

After a meeting with Jayson, we found out that the format of the .obj files we were using

when reading 3D objects was useless for us, because of the way openGL interpreted the

texture data. Therefore we decided to use the xml based Collada format (.dae files) instead.

This meant some re-writing of the code for parsing game objects, and adding them to the

scene graph.

PLANNING MEETING WEDNESDAY 15.03.11

Attendees:

Ole Marius Kohmann, Anders Einar Hilden, Jon Lande

Topics:

Sprint review

Sprint retrospective

Daily Scrum log - neccessary?

Sprint Planning meeting

(See scrum meetings for scrum related topics)

Daily Scrum log:

Group agrees that daily scrum logs are less needed for the project. Team also agrees to put

more effort into keeping our own work logs updated and feel that this is enough to track our

WizardWars

May 27, 2011

 Page

133

progress and time put into the project.

MEETING THURSDAY 17.03.11 WITH SUPERVISOR

Attendees:

Ole Marius Kohmann, Jon Lande, Anders Einar Hilden, Øyvind Kolloen.

Topics:

Status update

Discussing progression

Network

Presentation

Details:

OMK gave Øyvind a status update, telling about our progress. We were concerned that not

all of our meeting are documented properly, but Ø said this was ok as long as we got the

most important.

We decided that we will write three status reports to supervisor and employer in all. We

have sent one, and the two next will be at the start of April and start of May.

Øyvind was a little concerned about the network/multi-player part of the game, and warned

us that it usually takes longer time than we think. Since Anders Einar will be gone for a

month towaƌĚƐ ƚŚĞ ĞŶĚ ŽĨ ƚŚĞ ƉƌŽũĞĐƚ͕ ĂŶĚ ŚĞ ŝƐ ƚŚĞ ŶĞƚǁŽƌŬ ŐƵǇ͕ ǁĞ ĐĂŶ͛ƚ ǁĂŝƚ ƚŽŽ ůŽŶŐ

before focusing on network.

WĞ ǁĞƌĞ ǁŽŶĚĞƌŝŶŐ ŝĨ ƚŚĞ ĨĂĐƚ ƚŚĂƚ ǁĞ ĚŽŶ͛ƚ ŚĂǀĞ Ă ĚĞƚĂŝůĞĚ ƉůĂŶ ŽĨ ƚŚĞ ŐĂŵĞƉůĂǇ ǇĞƚ ǁĂƐ Ă

major issue. This was not a problem, since what we have done so far could have been used

WizardWars

May 27, 2011

 Page

134

ĨŽƌ ĂůŵŽƐƚ ĂŶǇ ŐĂŵĞ͘ HŽǁĞǀĞƌ͕ ǁĞ ǁŽŶ͛ƚ ǁĂŝƚ ƚŽŽ ůŽŶŐ ďĞĨŽƌĞ ĨŽĐƵƐŝŶŐ ŽŶ ƚŚŝƐ͘

We discussed that the group members have different approaches to code debugging. Øyvind

suggested that we mixed our approaches for most effective debugging.

Ole M was concerned if we should have used more third party libraries for things like the

scene graph. This was okay to make ourselves, as long as we argued why in the report.

We discussed short the presentation, and Øyvind told us to make a idiot-proof presentation

of the game, not try to play in real time.

All in all, Øyvind was pleased with our progress, and was not very concerned.

WizardWars

May 27, 2011

 Page

135

APPENDIX 2: WORKLOGS

WORKLOG FOR JON LANDE

Week 1: 12 hours

Research android 6 h

Research game programming 6 h

Week 2: 11 hours

Mon 10.01.2011: 6 h

Meeting with Simon/Jayson/Ole M 3 h

Meeting with Ole M 1 h

Research game programming 2 h

Wed 12.01.2011: 2 h

Tools installation / learning 2 h

Fri 14.01.2011: 3 h

Research android dev 3 h

Week 3: 24,5 hours

Mon 17.01.2011: 3 h

Getting room / computer for project 1 h

Research android dev 2 h

Tue 18.01.2011: 3 h

Setting up desktop computer and

installing software 3 h

WizardWars

May 27, 2011

 Page

136

Wed 19.01.2011: 6 h

Troubleshooting computer 1 h

Group meeting / project planning 5 h

Started on the project plan < 1 h

Thu 20.01.2011: 6 h

Working on project plan 6 h

Fri 21.01.2011: 6,5 h

Project plan 4 h

Research game programming 1 h

Meeting with supervisor 1,5 h

Week 4: 29,5 hours

Tue 25.01.2011: 6 h

Project plan 4 h

Research android/game prog 2 h

Wed 26.01.2011: 7,5 h

Project plan 5,5 h

Research/testing Android dev 2 h

Thu 27.01.2011: 9 h

Research Android dev 9 h

Fri 28.01.2011: 7 h

Project plan 4 h

Opengl research 3 h

Week 5: 28 hours

Monday 31.01.2011: 4 h

WizardWars

May 27, 2011

 Page

137

Working on project contract 2 h

Started writing obj parser 2 h

Tue 01.02.2011: 7 h

Writing obj parser 6 h

Learning openGL from OM 1 h

Wed 02.02.2011: 7 h

Working on obj parser 7 h

Thu 03.02.2011: 4 h

Writing .mtl parser 4 h

Fri 04.02.2011: 6 h

Reading about OpenGL 6 h

Week 6: 27,5 hours

Tue 08.02.2011: 8 h

Researching sounds in Android 8 h

Wed 09.02.2011: 6,5 h

Started on GUI 6 h

Database planning 0,5 h

Thu 10.02.2011: 6,5 h

Worked on GUI / login 6,5 h

Fri 11.02.2011: 6,5

GUI (login / register) 6,5h

Week 7: 23 hours

WizardWars

May 27, 2011

 Page

138

Tue 15.02.2011 8 h

Working on login and register 8h

Wed 16.02.2011

Register new player 7 h

Thu 17.02.2011 2 h

Register 2h

Fri 18.02.2011 6 h

Playing with OpenGL in Android 6 h

Week 8: 25 h hours

Tue 22.02.2011 6 h

Scrum meetings, sprint planning 4 h

Scene graph planning 2 h

Wed 23.02.2011 6 h

Started on building the initial scene graph 6 h

from .obj files

Thu 24.02.2011 6 h

Creating geometry nodes from .obj 6 h

files, writing them to binary file (on computer),

then reading nodes from this file (on phone)

Fri 25.02.2011 7 h

Continued on sg I/O, debugging parser 7 h

Week 9: 30,5 hours

Mon 28.02.2011 3 h

WizardWars

May 27, 2011

 Page

139

Scrum meetings 1 h

Debugging .obj file parsing 2 h

Tue 01.03.2011 8 h

Fixed the .obj parsing and rendering, 8 h

so game objects are shown correctly on

phone

Wed 02.03.2011 7 h

Work planning meeting 1 h

Adding geometry node to scene graph, 6 h

adding a texture node, then writing

the whole sg to file (on computer), reading

back in (on phone)

Thu 03.03.2011 6,5 h

Traversing sg for initialization, trying to get 4,5 h

texture mapping to objects working correctly

Reading about collision detection 2 h

Fri 04.03.2011 6 h

Reading collision detection 6 h

Week 10: 20 hours

Mon 07.03.2011

?

Tue 08.03.2011 6 h

Project planning, 6 h

debugging texture mapping

WizardWars

May 27, 2011

 Page

140

Wed 09.03.2011 4 h

Collada file parser 3 h

Lecture: Writing bachelor report 1 h

Thu 10.03.2011 6 h

Got collada file parser working 6 h

Fri 11.03.2011 4 h

Reading 4 h

Week 11: 17 h

Tue 15.03.2011 6 h

Scrum meetings 2 h

Reading and planning code 2 h

Planning collision detection 2 h

Thu 17.03.2011 8 h

Meeting with supervisor 1 h

Collision detection 7 h

Fri 18.03.2011 3 h

Collision detection 3 h

Week 12: 30 h

Tue 22.03.2011 8 h

Collision detection 8 h

Wed 23.03.2011 4 h

Collision detection 4 h

Fri 25.03.2011 6 h

WizardWars

May 27, 2011

 Page

141

Collision 6 h

Sat 26.03.2011 4 h

Collision 4 h

Sun 27.03.2011 8 h

Collision 8 h

Week 13: 37 h

Mon 28.03.2011 3 h

Collision 3 h

Tue 29.03.2011 10,5 h

Collision handling 10,5 h

Wed 30.03.2011 3 h

Collision 3 h

Thu 31.03.2011 7,5 h

Collision 7,5 h

Fri 01.04.2011

Collision 8 h

Sat 02.04.2011 2 h

Collision handling debugging 2 h

Sun 03.04.2011 3 h

Collision handling debugging 3 h

Week 14: 20 h

WizardWars

May 27, 2011

 Page

142

Mon 04.04.2011 3 h

Collision 3 h

Tue 05.04.2011 7 h

Modifying collada parser 7 h

Fri 08.04.2011 9 h

Working on player movement 9 h

Week 15: 24 h

Tue 12.04.2011 7 h

Planning meeting 1 h

Collision 6 h

Wed 13.04.2011 7 h

Collision debugging 7 h

Thu 14.04.2011 10 h

Collision debugging 10 h

Week 16 - Easter:

-

Week 17: 26 h

Mon 25.04.2011 7 h

Working on animation system for player 7 h

Wed 27.04.2011 7 h

Network movement, animation 7 h

Thu 28.04.2011 4 h

WizardWars

May 27, 2011

 Page

143

Network movement 4 h

Fri 29.04.2011 8 h

Network movement, collision, scenegraph 8 h

Week 18: 39 h

Mon 02.04.2011 8 h

Debugging scene graph/collision 8 h

Tue 03.04.2011

Debugging scene graph/collision 6 h

Wed 04.04.2011 7 h

Starting on the report 6 h

Writing status report 1 h

Thu 05.05.2011 7 h

Report: Collision system 7 h

Fri 06.05.2011 7 h

Report: Loading of Scene graph 4 h

Code: Working on animation system 3 h

Sat 07.05.2011 4 h

Report research 4 h

Week 19: 25 h

Tue 10.05.2011 7 h

Report: Code organization and 7 h

data structures

Wed 11.05.2011 5 h

WizardWars

May 27, 2011

 Page

144

Debugging wrong displaying of

objects in emulator and other units 5 h

Thu 12.05.2011 7 h

Got walking animation working 6 h

Report: Work methods 1 h

Fri 13.05.2011 6 h

Planning report,

Report: Collision 6 h

Week 20: 49 h

Mon 16.05.2011 5 h

Report: Work methods, collision 5 h

Wed 18.05.2011 8 h

Report: Humans, serialization, initialization 8 h

Thu 19.05.2011 8 h

Report: Introduction 8 h

Fri 20.05.2011 8 h

Meeting with supervisor 1 h

Report: Dividing up code desc. & design, 7 h

 introduction ++

Sat 21.05.2011 8 h

Modifying collada parser (translating 8 h

objects correctly) + sg reading

Sun 22.05.2011 12 h

Finalizing the coding, game result 12 h

WizardWars

May 27, 2011

 Page

145

conroller, reading spawnpoints

Week 21 44 h

Mon 23.05.2011 9 h

Code: Testing network code 2 h

Report: Requirement specification 7 h

Tue 24.05.2011

Report: Requirement specification 8 h

Wed 25.05.2011 12 h

Report: Requirements & introduction 12 h

Code: Fixed enemy animation

Thu 26.05.2011

Report: Finalizing 15 h

WizardWars

May 27, 2011

 Page

146

WORK LOG FOR OLE MARIUS KOHMANN

Week 1: 27 hours

Research Java 12 hours

Research android 10 hours

Research game programming 5 hours

Week 2: 32 hours

monday 10.01.2011: 8 hours

Meeting with Simon/Jayson/Jon 3 hours

Meeting with Jon 1 hour

Research android 4 hours

Tuesday 11.01.2011: 7 hours

Research android 4 hours

Research SVN/GIT/CVS 3 hours

Wednesday 12.01.2011: 8 hours

Research game programming android 4 hours

Meeting with Simon/Jayson 2 hours

internet meetings 2 hours

Thursday 13.01.2011: 6 hours

Tools research 3 hours

Tools installation 1 hour

Research android 2 hours

Friday 14.01.2011: 0 hours

No work

Saturday 15.01.2011: 0 hours

No work

Sunday 16.01.2011: 3 hours

Code converting(c++ to java) 3 hours

Week 3 23.5 hours

Monday 18.01.2011: 5 hours

Administrative tasks(room, computers++) 1 hours

Android programming research 2 hours

Code converting(c++ to java) 2 hours

Tuesday 18.01.2011: 0 hours

No work

WizardWars

May 27, 2011

 Page

147

Wednesday 19.01.2011: 6 hours

Group meeting / project planning 5 hours

Working on the projectplan 1 hours

Thursday 20.01.2011: 6 hours

Working on project plan 3 hours

OpenGL for Android research 2 hours

Code converting(c++ to java) 1 hours

Friday 21.01.2011: 6,5 hours

Project plan 4 hours

Research Android 1 hours

Meeting with supervisor 1,5 hours

Week 4 31.5 hours

Monday 24.01.2011: 0 hours

(Normal school)

Tuesday 25.01.2011: 8 hours

Meeting with Jayson(Scenegraph) 1 hour

Working on the projectplan 5 hours

Code research 2 hours

Wednesday 26.01.2011: 7.5 hours

Project plan 4 hours

Meeting Jayson/Simon SG/contract 1 hour

Research/testing Android dev 2.5 hours

Thursday 27.01.2011: 8 hours

Projectplan 3 hours

SceneGraph research 3 hours

Lecturing others on OGL/SG 2 hours

Friday 28.01.2011: 8 hours

Projectplan 5 hours

SceneGraph code planning 1 hours

Scrum backlog planning 2 hours

Week 5 31 hours

Monday 31.01.2011: 4 hours

Project contract work 2 hours

Scrum backlog planning 2 hours

Tuesday 01.02.2011: 6 hours

WizardWars

May 27, 2011

 Page

148

SceneGraph coding/Researching 3 hours

Scrum meeting 1 hour

Teaching JSL some OGL 1 hour

Java research regarding SceneGraph 1 hour

Wednesday 02.02.2011: 7 hours

Rendering coding(SG Traversing) 2 hours

SceneGraph coding 4 hours

Various meetings 1 hour

Thursday 03.02.2011: 6 hours

SceneGraph research 2 hours

SceneGraph coding 2 hours

Rendering coding(SG Traversing) 2 hours

Friday 04.02.2011: 0 hours

School work

Saturday 05.02.2011: 5 hours

SceneGraph research 2 hours

SceneGraph coding 3 hours

Sunday 06.02.2011: 5 hours

SceneGraph research 3 hours

Rendering coding(SG Traversing) 2 hours

Week 6 18 hours

(Worked from home this week)

Monday 07.02.2011: 3 hours

SG Traversing code/research 3 hours

Tuesday 08.02.2011: 5 hours

SceneGraph Traversing code 5 hours

Wednesday 09.02.2011: 3 hours

SceneGraph

Thursday 10.02.2011: 3 hours

SceneGraph

Friday 11.02.2011: 2 hours

SceneGraph

Saturday 12.02.2011: 1 hours

SceneGraph

WizardWars

May 27, 2011

 Page

149

Sunday 13.02.2011: 1 hours

Week 7(Winter vacation) 1 hours

Monday 15.02.2011: 1 hours

Meeting

(Schoolday)

Tuesday 16.02.2011: 0 hours

(Home with sick children)

Wednesday 17.02.2011: 0 hours

(Home with sick children)

Thursday 18.02.2011: 0 hours

(Home with sick children)

Friday 19.02.2011: 0 hours

(Home with sick children)

Saturday 20.02.2011: 0 hours

(Home with sick children)

Sunday 21.02.2011: 0 hours

(Home with sick children)

Week 8 23 hours

Monday 21.02.2011: 0 hours

(Home with sick children)

Tuesday 22.02.2011: 7 hours

Meeting 2 hours

Rendering testing/coding 5 hours

Wednesday 23.02.2011: 4 hours

Rendering testing/coding 4 hours

Thursday 24.02.2011: 8 hours

Rendering testing/coding 6 hours

Meeting Jayson(Update routine) 2 hours

Friday 25.02.2011: 3 hours

Rendering testing/coding 3 hours

WizardWars

May 27, 2011

 Page

150

Saturday 26.02.2011: 0 hours

Sunday 27.02.2011: 3 hours

Rendering testing/coding 2 hours

Research Update routine 1 hour

Week 9 20 hours

Monday 28.03.2011: 4 hours

Research update routine 2 hours

Scrum meeting 2 hours

Tuesday 01.03.2011: 6 hours

Scrum meeting 3 hours

Research updateroutine 2 hours

Meeting Jayson/Simon UR 1 hour

Wednesday 02.03.2011: 3 hours

Research updateroutine 3 hours

Thursday 03.03.2011: 6 hours

Testing updateroutine 3 hours

coding updateroutine 2 hours

Research updateroutine 1 hour

Friday 04.03.2011: 0 hours

Saturday 05.03.2011: 0 hours

Sunday 06.03.2011: 1 hours

Coding updateroutine 1 hour

Week 10 25 hours

Monday 07.03.2011: 4 hours

Coding updateroutine 2 hours

Research updateroutine 2 hours

Tuesday 08.03.2011: 6 hours

Coding updateroutine 4 hours

WizardWars

May 27, 2011

 Page

151

Meeting updateroutine 2 hours

Wednesday 09.03.2011: 5 hours

Coding updateroutine 5 hours

Thursday 10.03.2011: 6 hours

Coding updateroutine 6 hours

Friday 11.03.2011: 4 hours

Coding updateroutine 4 hours

Saturday 12.03.2011: 0 hours

Sunday 13.03.2011: 0 hours

Week 11 19 hours

Monday 14.03.2011: 0 hours

Tuesday 15.03.2011: 5 hours

Coding updateroutine 5 hours

Wednesday 16.03.2011: 5 hours

Coding updateroutine 5 hours

Thursday 17.03.2011: 6 hours

Coding updateroutine 6 hours

Friday 18.03.2011: 3 hours

Coding updateroutine 3 hours

Saturday 19.03.2011: x hours

Sunday 20.03.2011: x hours

Week 12 25 hours

Monday 21.03.2011: 4 hours

Research Actionsystem 4 hours

Tuesday 22.03.2011: 6 hours

Research Actionsystem 2 hours

WizardWars

May 27, 2011

 Page

152

Design Actionsystem 4 hours

Wednesday 23.03.2011: 6 hours

Coding ActionSystem 6 hours

Thursday 24.03.2011: 5 hours

Coding ActionSystem 5 hours

Friday 25.03.2011: 4 hours

Coding ActionSystem 4 hours

Saturday 26.03.2011: x hours

Sunday 27.03.2011: x hours

Week 13 27 hours

Monday 28.03.2011: 6 hours

Coding ActionSystem 5 hours

Meeting 1 hour

Tuesday 29.03.2011: 7 hours

Coding ActionSystem 5 hours

Design ActionSystem 2 hours

Wednesday 30.03.2011: 4 hours

Design ActionSystem 4 hours

Thursday 31.03.2011: 5 hours

Coding ActionSystem 5 hours

Friday 01.04.2011: 5 hours

Coding ActionSystem 5 hours

Saturday 02.04.2011: x hours

Sunday 03.04.2011: x hours

WORKLOG ANDERS EINAR HILDEN

WizardWars

May 27, 2011

 Page

153

Week 1: 0 hours
Sick

Week 2: 0 hours
Sick

Week 3: hours
Monday 17.01.2011: hours

Tuesday 11.01.2011: hours

Wednesday 12.01.2011: hours
Started working on offsite GIT-hosting.

Thursday 13.01.2011: hours
Sendt public keys for group 1 hour
to GIT-host for access.
Meeting w. Jayson re. gameserver
Setup EGit, Eclipse, initialice repository
Research UDP connections pc/Android

Friday 14.01.2011: hours

Saturday 15.01.2011: 0 hours

Sunday 16.01.2011: 0 hours

Week 4
Monday 2011-01-25: 6 hours

Digitalicing meeting notes from friday 3 hours
Setting up a rudamentary webpage 2 hours

Thursdag 2011-01-26 hours

TODO:
SCRUM foredrag
GIT-testing (crashtest, etc)

Week 5
Tirsday 11-02-01
12-13: Eclipse configuration, setup etc.
bestemte oss for å gå for svn i stedet for å bruke masse tid på å lære oss git

WizardWars

May 27, 2011

 Page

154

13:30 -> udp hole punching, android udp test app
15:35 android udp test app complete.

15 februar:
09:00-12:00 sette oppp eclipse, suberverison etc (utviklingmiljø) på hjemmemaskin
12:00-13:00: sette opp ny offsite server for hjemmetilgang til ragserverphp
13:00-15:00 login.php

16. februar
09:30 - xx:xx registrer.php

17. feb
16:45-19:00 -> se svn log
22:00 -> 01:30 -> se svn log

21. mai
Display health and mana of both players on screen
Create RegenController for regenerationg mana of local player

22. mai
Include maninmenu in wizardwars
Rewrite mainmenu to accept games from server
Rewrite server
23. mai
Total rerwite of-game part of server.

WizardWars

May 27, 2011

 Page

155

APPENDIX 3: STATUS REPORTS

24.05.2011

Hello, third and last status report of the bachelor project.
With 72 hours left of the project period, this is what we got:
- The game is almost done. We have a world, with some walls and boxes, and two players.

The network part is what's left. The movement of the players are working, and now we are

working on getting the spell system working correctly over network. The register/login user

part is now connected to the game, and the server connects two players that are looking for

an opponent.
- There are still some work left on the report. We need to tell about network in the design

document. We also need to write a discussion and conclusion part.
- The code also needs some clean-up.
Although a little too much work still remains, we are very pleased with what we've done,

and hopefully we will get everyting done in time.

Jon S Lande, Ole Marius Kohmann, Anders Einar Hilden

04.05.2011

Hi, here's a second update on the progress of our bachelor project.
The project is due in three weeks, and this is what we have accomplished so far:
- The scene graph is now working as planned. We have a seperate project that builds up a

initial scene graph file (.sg) from game object files (collada, .dae). This will contain all the

game objects we need.
- We have navigation icon for movement of the player
- We have some controllers for connecting and changing the nodes in the scene graph. This

includes a translate controller, for movement of objects (players), rotate controller for

rotation of objects, animation controller, for animation of player, and action controller, for

controlling spells. Translation is done (we can move our own player around), the others need

a little more work.
- A collision system, for detecting and handling collisions between objects. Supports sliding

(e.g. player sliding against a wall)
- Sending/receiving simple packages over network between two phones works fine. We have

made a system for creating network packages that contains everything we need to

send/receive, but we haven't tested this yet. This is probably our biggest concern at the

moment.
- We also have a system for casting spells. This is tested and seems to be working on its own,

but for this to work over the network, we probably need to modify some of it. We have

support for three different spell gestures on the screen.
The coding part of the project has taken more time than expected, so the report has not

been prioritized yet. However, we have started on the report now, and will focus on this the

rest of the project period along with getting the game done.
Since easter, Anders Einar is occupied with other things during the day, until after 25th of

WizardWars

May 27, 2011

 Page

156

May, so the group is a little amputated at the moment. He is, however, working in the

afternoons and weekends.

Jon S Lande, Ole Marius Kohmann, Anders Einar Hilden

23.02.2011

Hŝ͕ ŚĞƌĞ͛Ɛ Ă ůŝƚƚůĞ ƐƚĂƚƵƐ ƌĞƉŽƌƚ ŽŶ ŽƵƌ ďĂĐŚĞůŽƌ ƉƌŽũĞĐƚ͕ ƚŚƌĞĞ ǁĞĞŬƐ ŝŶƚŽ ƚŚĞ ĚĞǀĞůŽƉŵĞŶƚ
period.

Initially, the plan was to have scrum sprints on two weeks. However, the first sprint had to

be extended ǁŝƚŚ Ă ǁĞĞŬ͕ ƐŝŶĐĞ ǁĞ ĚŝĚŶ͛ƚ ŐĞƚ ĂŶǇ ŽĨ ƚŚĞ ƉƌŽũĞĐƚ ƉĂƌƚƐ ĚŽŶĞ ŝŶ ƚŝŵĞ͘ WĞ
realized that because of our limited experience with game programming and Android, we

ĚŽŶ͛ƚ ŬŶŽǁ ĞǆĂĐƚůǇ ŚŽǁ ůŽŶŐ ƚŝŵĞ ǁĞ ŶĞĞĚ ŽŶ ĞĂĐŚ ƉĂƌƚ͘ TŚĞƌĞĨŽƌĞ͕ ĨƌŽŵ ŶŽǁ ŽŶ ǁĞ ǁŝůů
shorten our scrum sprints to one week.

According to the Gantt chart in the project plan, we were supposed to have finished the GUI,

the object parser, server, scene graph, render routine and player by now. We saw early in

the sprint that this was too much work.

The GUI is pretty much done. We have made a player registration screen, and a login screen

on the phone. We also have a simple main menu. Login and registration are implemented on

the server as well, using PHP with a MySQL database. The server also supports storing of

players stats. We will need more functionality on the server (i.e. showing and connecting

ƉůĂǇĞƌƐͿ͕ ďƵƚ ƚŚĞƌĞ͛Ɛ ŶŽ ŚƵƌƌǇ ǁŝƚŚ ƚŚĞ ƌĞƐƚ ŽĨ ƚŚĞ ƐĞƌǀĞƌ͘

We also have two parsers for game objects, .obj files, and materials the objects use, .mtl

files. These are files outputted from 3D Studio Max, which we will use to model game

objects. We are going to create nodes in the scene graph from the .obj files, as soon as the

scene graph design is ready. We are currently testing the scene graph, so this is coming

along well. The main tasks for us for this weeks sprint us to get the scene graph done, and

the render routine.

The last week of the sprint got a little amputated, since Ole M had to stay at home with sick

kids. Still, we are pretty happy with what we have accomplished so far.

Ole Marius Kohmann, Anders Einar Hilden, Jon Lande

WizardWars

May 27, 2011

 Page

157

APPENDIX 4: SCRUM MEETINGS

SPRINT 8 (05.04.2011 - 15.04.2011)

Sprint planning meeting
For this sprint:
- Finish collision system
- Finish player movement
- Get opponent players movement over network
- Make an animation system for player movement

Sprint review meeting

Sprint retrospective meeting

Sprint 7 (29.03.2011 - 04.04.2011)

Sprint planning meeting
For this sprint:
- Collision handling - handle collisions between objects

Sprint review meeting
TŚĞ ĐŽůůŝƐŝŽŶ ƐǇƐƚĞŵ ƐŚŽƵůĚ ŶŽǁ ŚĂŶĚůĞ ƚŚĞ ĐŽůůŝƐŝŽŶƐ ĐŽƌƌĞĐƚůǇ͕ ƚŚŽƵŐŚ ǁĞ ŚĂǀĞŶ͛ƚ ƚĞƐƚĞĚ ŝƚ
with real objects yet, only in a test environment.

Sprint retrospective meeting

SPRINT 6 (22.03.2011 - 28.03.2011)

Sprint planning meeting
For this sprint:
- Continue on collision detection

Sprint review meeting
We now have a system that (in theory) detects collisions. We use rectangled bounding boxes

around objects for detecting collisions.

Sprint retrospective meeting

WizardWars

May 27, 2011

 Page

158

SPRINT 5 (15.03.2011 - 21.03.2011)

Sprint planning meeting
For this sprint:
- Start on collision detection.
- translate controller.
- human/player/opponent.
- onscreen controller.
- Gestures research.

Sprint review meeting
This sprint we had a meeting with the supervisor, who was pleased with our progress.
We got started on the collision detection system, for detecting and handling collision

between objects in the game.

Sprint retrospective meeting

SPRINT 4 (08.03.2011 - 14.03.2011)
Sprint planning meeting
For this sprint:
- Finish website
- Make collada file parser
- Continue on HUD
- Continue on update/controller routine

Sprint review meeting
We have moved from a .obj file parser and made a xml/Collada parser. This was neccessary

due to unforseen constraints in the .obj file format.
Updateroutine is at stage 1 and tested with a rotatecontroller.
HUD is visible and Anders Einar will implement features for a onscreen controller next sprint.

Sprint retrospective meeting

SPRINT 3 (01.03.2011 - 07.03.2011)
Sprint planning meeting
For this sprint:
- We are going to finish the object parsing, so objects are displayed correctly on screen.
- Start on HUD (Heads up display) - Ingame GUI
- Get texture mapping working, so the objects textures are loaded automatically.
- Start on update routine / controllers
- Finish website

WizardWars

May 27, 2011

 Page

159

Sprint review meeting
We managed to finish the object parsing, so the objects are displayed properly. However,

the textures are not mapped correctly, so this still needs some debugging. We started on the

HUDͬIŶŐĂŵĞ GUI͕ ĂŶĚ ƚŚŝƐ ůŽŽŬƐ ŐŽŽĚ ƐŽ ĨĂƌ͘ WĞ ĚŝĚŶ͛ƚ ŚĂǀĞ ƚŝŵĞ ƚŽ ĨŝŶŝƐŚ ƚŚĞ ǁĞďƐŝƚĞ͕ ƐŽ
this will be the first priority next sprint.

Sprint retrospective meeting
This sprint we worked a little closer than before, helping each other with coding, instead of

only working on our own parts of the project. We feel this was helpful.
The planning for this sprint could have been better. We coult have defined the goals of the

sprint better.

SPRINT 2 (22.01.2011 - 28.02.2011)
Sprint planning meeting
This sprint we will focus on getting the scene graph code done, so we can try to write it to

file. From there we are going to read these files and build up the graph from file(s) every

time we need it.

Tasks:
Scenegraph I/O
Renderer

Sprint review meeting
This sprint we all worked on the rendering routine for a game object. The goal was to parse

an .obj-file with game objects, exported from a 3D modelling program, correctly, and then

put these objects into nodes in our scene graph. From there we will render the objects to

ƐĐƌĞĞŶ͘ HŽǁĞǀĞƌ͕ ǁĞ ĚŝĚŶ͛ƚ ŵĂŶĂŐĞ ƚŽ ŐĞƚ ƚŚŝƐ ǁŽƌŬŝŶŐ ĐŽƌƌĞĐƚůǇ͕ ƚŚĞ ŽďũĞĐƚƐ ĚŽŶ͛ƚ ůŽŽŬ ĂƐ
expected on screen. The scenegraph and rendering code has been tested ok, so it looks like

there is some incorrect reading/saving of data from the .obj files that is causing it. This

should be a small issue to fix.

Sprint retrospective meeting
This sprint was used to try to finish the object parsing and rendering, which was the

ƵŶĨŝŶŝƐŚĞĚ ƉĂƌƚƐ ĨƌŽŵ ůĂƐƚ ƐƉƌŝŶƚ͘ EǀĞŶ ƚŚŽƵŐŚ ǁĞ ĚŝĚŶ͛ƚ ƋƵŝƚĞ ĨŝŶŝƐŚ ŝƚ͕ ǁĞ͛ƌĞ ĂůŵŽƐƚ ƚŚĞƌĞ͘ Iƚ
has been a lot of trying and failing, so maybe we could have planned the code better.

However, we are learning a lot.

SPRINT 1 (31.01.2011 - 21.02.2011)

Sprint planning meeting
For this first sprint:
-
Sprint review meeting

WizardWars

May 27, 2011

 Page

160

TŚŝƐ ƐƉƌŝŶƚ ŚĂĚ ƚŽ ďĞ ĞǆƚĞŶĚĞĚ ǁŝƚŚ Ă ǁĞĞŬ͕ ƐŝŶĐĞ ǁĞ ĚŝĚŶ͛ƚ ŐĞƚ ĂŶǇ ŽĨ ƚŚĞ ƉƌŽũĞĐƚ ƉĂƌƚƐ ĚŽŶĞ
in time. We realize that because of our limited experience with game programming and

AŶĚƌŽŝĚ͕ ǁĞ ĚŽŶ͛ƚ ŬŶŽǁ ĞǆĂĐƚůǇ ŚŽǁ ůŽŶŐ ƚŝŵĞ ǁĞ ŶĞĞĚ ŽŶ ĞĂĐŚ ƉĂƌƚ͘ TŚĞrefor, from now on

we will shorten our scrum sprints to one week.

According to the Gantt chart in the project plan, we were supposed to have finished the

Graphical User Interface, the object parser, server, scene graph, render routine and player

by now. We saw early in the sprint that this was too much work. The GUI and object parser is

ĂůŵŽƐƚ ĨŝŶŝƐŚĞĚ͕ ĂŶĚ ƚŚĞ ƵƐĞƌ ƉĂƌƚ ŽĨ ƚŚĞ ƐĞƌǀĞƌ ŝƐ ĚŽŶĞ͘ TŚĞƌĞ͛Ɛ ŶŽ ŚƵƌƌǇ ǁŝƚŚ ƚŚĞ ƌĞƐƚ ŽĨ ƚŚĞ
server. We need some more time to work on the scene graph and render routine.

The last week of the sprint got a little amputated, since Ole M had to stay at home with sick

kids. Still, we are pretty happy with what we have accomplished so far.

Sprint retrospective meeting

What went well:
- We have learned a lot already
- AlthouŐŚ ǁĞ ĂƌĞ ďĞŚŝŶĚ ŽƵƌ ƐĐŚĞĚƵůĞ͕ ǁĞ ĨĞĞů ƚŚĂƚ ǁĞ͛ǀĞ ĐŽŵĞ Ă ƉƌĞƚƚǇ ůŽŶŐ ǁĂǇ͘
- We work pretty good together

What could have been done better:
- Planning, especially of the server
- Better documentation of all the choices we make
- Each member could be morĞ ŽƉĞŶ ĂďŽƵƚ ǁŚĂƚ ŚĞ ŝƐ ǁŽƌŬŝŶŐ ŽŶ͕ ƐŽ ĞǀĞƌǇŽŶĞ ŬŶŽǁƐ ǁŚĂƚ͛Ɛ
going on.

WizardWars

May 27, 2011

 Page

161

APPENDIX 5: DAILY SCRUMS

DAILY SCRUM MEETING, 2011-03-08

OMK

What did you do yesterday?

Coded update routine, should work in theory now. Need to implement some more stuff to

test properly.
More research on the same topic.
What will you do today?

Scrum planning meeting.
Implement more code for the updateroutine.
Are there any impediments in your way?
no.

JSL
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

AEH
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

DAILY SCRUM MEETING, 2011-03-01

OMK

What did you do yesterday?

Researched on Update routine method.
Scrum meeting
What will you do today?

Scrum planning meeting.
Continue to research the update routine method and figure out how to do it.
Talk to Simon and Jayson about my ideas for the update routine.
Are there any impediments in your way?
no.

JSL
What did you do yesterday?

WizardWars

May 27, 2011

 Page

162

What will you do today?

Are there any impediments in your way?

AEH
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

DAILY SCRUM MEETING, 2011-02-25

OMK

What did you do yesterday?

Rendering code(texture node)
What will you do today?

Same
Are there any impediments in your way?
Not really

JSL
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

AEH
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

DAILY SCRUM MEETING, 2011-02-24

OMK

What did you do yesterday?

Rendering, (geometry node)
What will you do today?

Rendering, more nodes
Are there any impediments in your way?
not really

JSL

WizardWars

May 27, 2011

 Page

163

What did you do yesterday?

Working on adding game objects to the initial scene graph, from .obj files
What will you do today?

The same as yesterday

Are there any impediments in your way?
Hopefully not

AEH
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

DAILY SCRUM MEETING, 2011-02-23

OMK

What did you do yesterday?

What will you do today?

Rendering
Are there any impediments in your way?
not really

JSL
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

AEH
What did you do yesterday?

What will you do today?

Are there any impediments in your way?

DAILY SCRUM MEETING, 2011-02-16

OMK

What did you do yesterday?

Nothing(Home with sick child)
What will you do today?

WizardWars

May 27, 2011

 Page

164

SceneGraph testing
Are there any impediments in your way?
Not really, fix code if its not working...

JSL
What did you do yesterday?

Finished a basic login screen.
What will you do today?

Continue on the player registration.

Are there any impediments in your way?
Need Anders Einar to have the server ready in order to test registration.

AEH
What did you do yesterday?

Login part of server

What will you do today?
Player registration part of server
Are there any impediments in your way?

Daily scrum meeting, 2011-02-10

OMK

What did you do yesterday?

Scenegraph traversing
What will you do today?

SceneGraph traversing
Are there any impediments in your way?
No

JSL
What did you do yesterday?

Started on the gui. Planned how it should look, made a login screen.Planned the database
What will you do today?

More Gui and database + login functionality.

Are there any impediments in your way?
No

AEH
What did you do yesterday?

Fant & tilpasset en reliable, high-volume server. Skrev en echo-server. Begynte på en

RagHandeler, testet å sende javaobjecter via serveren
What will you do today?
Sende javaobjekter til en androidtelefon. Deretter starte på server-api'et.

WizardWars

May 27, 2011

 Page

165

Are there any impediments in your way?

Trenger kanskje litt hjelp og input ang. database og gui fra JSL
Daily scrum meeting, 2011-02-09

OMK

What did you do yesterday?

SG tree build up
What will you do today?

SG tree build up
Are there any impediments in your way?
No

JSL
What did you do yesterday?

Researched sounds in Android
What will you do today?

Start on the GUI
Are there any impediments in your way?

No

AEH
What did you do yesterday?

Reshearced server
What will you do today?

Write server, help JSL w. GUI, working on serverrequsts in co-op JSL
Are there any impediments in your way?

No

DAILY SCRUM MEETING, 2011-02-08

OMK

What did you do yesterday?

SG traversing methods research
What will you do today?

SG tree build up
Are there any impediments in your way?
Nothing yet, but will need a testfile for tree structure eventually.

JSL
What did you do yesterday?
materialfile parser, reading openGL
What will you do today?
Sound
Are there any impediments in your way?
no

WizardWars

May 27, 2011

 Page

166

AEH
What did you do yesterday?
Sick(friday, saturday,sunday,monday)
What will you do today?
Serverstuff
Are there any impediments in your way?

Nothing major.

DAILY SCRUM MEETING, 2011-02-03

OMK

What did you do yesterday?

SceneGraph (Nodes & started on traversing)
What will you do today?

SceneGraph(More Traversing)
Are there any impediments in your way?
Not really.

JSL
What did you do yesterday?
Continued work on the .obj parser. Should be working, Have been committed.
What will you do today?
Starting on the .mtl parser.
Are there any impediments in your way?
no.

AEH
What did you do yesterday?
Meeting with IT about testing. Two meetings with Jayson. Research.
What will you do today?
Starting on servercode.
Are there any impediments in your way?
no.

DAILY SCRUM MEETING, 2011-02-02

OMK

What did you do yesterday?
Worked with scenegraph, helped, JSL. Nodes in SC. Research. Planning.
What will you do today?
The same. Continuing on nodes. Continue helping JSL.
Are there any impediments in your way?
Not really, just needs work.

JSL
What did you do yesterday?
Learning from OMK. Worked on parser. Read almost everything, and group it into lists.

WizardWars

May 27, 2011

 Page

167

What will you do today?
Continue on parser. Syncing with OMK nodes. Starting materials-file parser.
Are there any impediments in your way?
Needs refrence implementarion from OMK regarding Nodes before i can continue.

AEH
What did you do yesterday?
Researching NAT/PAT. Got PoC(Proof of Concept) client on the phone, can send and recieve UDP packets.

Came across problems with phone to phone communication, did more research on the topic(STUN/ICE).
What will you do today?
Meeting with IT-department @ school regarding networks theory, and planned testing.
Are there any impediments in your way?
Small issues, need to discuss with group to find a good solution.

WizardWars

May 27, 2011

 Page

168

APPENDIX 6: FIRST TECHNICAL DESCRIPTION

What we need

Tools Engine Game

- Obj2SG

- Servertool

 - Result storage

 - Userstats storage

- SceneGraph

- Collision

- Physics

- GUI

- EventHandler

- Renderroutine

- Network

- Movement

- Gestures

- Item system

- Spell system

- Talenttree system

- Player

- Item spec

- Spell spec

- Talenttree spec

- Talent logic

- Level win/lose logic

OBJ2SG

Needs:
- .mat reader/loader
- .obj reader/loader
- texture reader (->OGL)
Purpose:
1. To read a obj file & create a Scene Graph file from it. The SG file is then loaded into the

game
2. Convert obj files to dynamic object files (Like player models)

SERVER

Packets:
- Movements
- Actions
TCP-queries:
- Aftermatch data
- Prematch data
Sane-packet-check

Matchmaking

WizardWars

May 27, 2011

 Page

169

ENGINE

SceneGraph:

Classes:

- Node (abstract)
 - Virtual function execute();
- Translate node (extends Node)
- Rotate node ---------͟---------
- Scale node ---------͟---------
- Model node ---------͟---------
- SceneGraph
- Traverser
 - Depth first
 - Performs Execute() on Current node if dirtyFlag i marked
 - Unflags dirty flags

Collision/Physics:

- line-circle collision
- Ray intersection test
- Simple gravitational physics

WizardWars

May 27, 2011

 Page

170

APPENDIX 7: PROJECT PLAN (PRE PROJECT REPORT)

Project Plan

For Bachelor Thesis 2011

RAG: Really Awesome Game

Ole Marius Kohmann - 071192

Anders Einar Hilden - 080207

Jon Sætheren Lande - 080822

All participants are from 08HBINDA

5 TABLE OF CONTENTS

Table of contents
1. GOALS AND BOUNDARIES

1.1 Background
1.2. Goals
1.3. Boundaries

2. SCOPE
2.1. Project description
2.2. Scope

3. Project organization
3.1 Employer and supervisor
3.2. Responsibilities and roles
3.3. Group rules and routines

3.3.1 Group rules
3.3.2 Routines

https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.xqdanr-hoges1
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.xvpdbt-ut6rmf
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.nzu8y2-t40mm2
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.q82eid-54x20k
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.76zik0-ugyh18
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.qche8e-2d3xy
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.ky89n8-vdqsib
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.us9v7u-66vegg
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.oczv8f-sm52q3
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.uelzof-oslly
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.oez5mx-4n9ws5
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.dg0n0p-hk2u7d
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.ihzi5y-atttsb
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.n03p99-i8ip0d

WizardWars

May 27, 2011

 Page

171

3.4 Resources
4. Planning, meetings and reporting

4.1. System development model
4.2. Meetings
4.3 Status reports

5. Quality assurance
5.1 Testing
5.2 Code meeting

6 1. GOALS AND BOUNDARIES

1.1 BACKGROUND

Wanting to challenge ourselves we have decided to develop a game as our final project for

our bachelor degree. Writing a game is a complicated task, requiring knowledge from many

of the courses we have had already, mentioning a few: Programming, algorithms, operating

systems, computer architecture, WWW-technology, Program development, systems

engineering, math, physics, etc.

1.2. GOALS

Our main goal is to develop an entertaining multi-player mobile game for the android

platform. We want to reach out to as many people as possible, and the android platform is

the fastest growing mobile platform. The game needs to have good performance, and be

user friendly.

Another important goal for the project is the learning aspect. We are excited about learning

game programming, programming for mobile units/Android, as well as improving our overall

programming skills.

1.3. BOUNDARIES

https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.6m82f3-a9h9bo
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.t5a66wvpid8x
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.srnit2-u8djgm
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.12knz3-wlkdq3
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.k2dp3t-4mnxra
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.1vtrhh-gs4ttp
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.6i85me-ftoua5
https://docs.google.com/document/d/1iv-9ZqMUwQyn7iF_YWi9sQtEQ-R1kKpqPF8Ul67pxec/edit?hl=en_US#heading=h.j3i0is-2o2lgu

WizardWars

May 27, 2011

 Page

172

The project is due 25.05.2011. This gives us almost five months to develop the game. Out of

the three persons on the group, Ole Marius is the only one with experience from game

development, so we will need to use some time on learning game technology.

We are going to develop the game for the Android platform, specifically Android 2.2.

Although Android 2.3 is the latest version at the moment, we believe we will reach out to

ŵŽƌĞ ƉĞŽƉůĞ ďǇ ƐƵƉƉŽƌƚŝŶŐ Ϯ͘Ϯ͘ BĞĐĂƵƐĞ ŽĨ ƚŚĞ ƚŝŵĞ ůŝŵŝƚ͕ ǁĞ ǁŽŶ͛ƚ ďĞ ĂďůĞ ƚŽ ƐƵƉƉŽƌƚ ŽƚŚĞƌ

versions or platforms.

We are limiting ourselves to developing the game first and foremost for the android phone

HTC Desire. This is one of the most popular android phones on the Norwegian market (

http://www.amobil.no/artikler/dette_er_favorittmobilene_til_netcoms_kunder/80762 &

http://www.amobil.no/artikler/her_er_de_25_mest_populaere_mobilene/80621/2)

http://www.amobil.no/artikler/dette_er_favorittmobilene_til_netcoms_kunder/80762
http://www.amobil.no/artikler/her_er_de_25_mest_populaere_mobilene/80621/2

WizardWars

May 27, 2011

 Page

173

7 2. SCOPE

2.1. PROJECT DESCRIPTION

A multi-player game that allows players to play competitive against each other. We will use

AŶĚƌŽŝĚ ĨŽƌ ƚŚĞ ĐůŝĞŶƚ ĂŶĚ JĂǀĂ ĨŽƌ ƚŚĞ ƐĞƌǀĞƌ ƐŝĚĞ͘ TŚĞ ŐĂŵĞ͛Ɛ ƐĞƚƚŝŶŐ ŝƐ Ă ĨŝŐŚƚͬďĂƚƚůĞ ŝŶ Ă

ĂƌĞŶĂ ďĞƚǁĞĞŶ ƚǁŽ ƉůĂǇĞƌƐ͘ WŝŶŶĞƌ ŐĞƚƐ Ă ƌĞǁĂƌĚ͕ ůŽŽƐĞƌ ĚŽŶ͛ƚ͘ AĨƚĞƌ Ă ŵĂƚĐŚ͕ ƚŚĞ ƉůĂǇĞƌ

earns experience, which allows him to get points to use to develop/improve his character.

The player can get a limited amount of points and there are more abilities than there are

points. This allows for variation in player style, which gives a more interesting gameplay.

The game will have a user interface where players can get random suggestions for

opponents and accept or reject these.

The player will be controlled with the trackball/optical sensor for movement and using

gestures on the screen for selecting and using spells/skills.

2.2. SCOPE

We want the game to be technically functional at the end of the project period. This means

that we have to keep the artwork to a minimum. All gameplay features described in the

description should be implemented and functional.

Both client and server is going to be operational at the end of the project.

WizardWars

May 27, 2011

 Page

174

8 3. PROJECT ORGANIZATION

3.1 EMPLOYER AND SUPERVISOR

The projects employer is Associate Professor Simon McCallum at the Game Technology Lab,

Gjøvik University College.

Our supervisor is Assistant Professor Øyvind Kolloen.

3.2. RESPONSIBILITIES AND ROLES

Ole Marius Kohmann: Group Leader, Lead Designer

Jon Sætheren Lande: Project Manager

Anders Einar Hilden: Technical Supervisor

Scrum roles:

- Scrum master: Anders Einar

- Product owner: Ole Marius

 Ole Marius is responsible for the idea.

 Jon is responsible for the project reports.

 Anders Einar is responsible for the website and the version control.

TŚŝƐ ŽŶůǇ ƐŚŽǁƐ ǁŚŽ͛Ɛ ƌĞƐƉŽŶƐŝďůĞ ĨŽƌ ŐĞƚƚŝŶŐ ƚŚĞ ĚŝĨĨĞƌĞŶt parts of the project done. We will

obviously be cooperating closely on most parts.

3.3. GROUP RULES AND ROUTINES

3.3.1 GROUP RULES

- All of the group members have to log all of their work - what they do, and time spent.

- WŚĞŶĞǀĞƌ ƚŚĞƌĞ͛Ɛ Ă ĐŽŶĨůŝĐƚ ŝŶ the group, the general rule is that the majority of the group

rules.

3.3.2 ROUTINES

WizardWars

May 27, 2011

 Page

175

Work hours are Tuesday - Friday 09.00- 15.00. If nothing else is agreed, we show up at our

bachelor room 09.00 these days.

Broken rules / routines are logged. If this log grows to a substantial size, this log will be

added to the final log as an appendix. Any serious offenses will be discussed as a group along

with the supervisor.

3.4 RESOURCES

In order to do/test the project, we need some equipment. We have borrowed a desktop

computer from the IT department at school. We will also be needing some Android

ƉŚŽŶĞƐͬƚĂďůĞƚƐ ƚŚĂƚ ƚŚĞ GĂŵĞ TĞĐŚ LĂď ǁŝůů ƉƌŽǀŝĚĞ ƵƐ͘ Iƚ͛Ɛ ŝŵƉŽƌƚĂŶƚ ƚŽ ƚĞƐƚ ƚŚĞ ƐŽĨƚǁĂƌĞ ŽŶ

different kinds of hardware that runs Android.

Our project employer, Simon McCallum, will, along with Jayson Mackie at the Game Tech

Lab, function as technical advisers during our project. They both have a lot of game

programming experience.

WizardWars

May 27, 2011

 Page

176

9 4. PLANNING, MEETINGS AND REPORTING

4.1. SYSTEM DEVELOPMENT MODEL

When we looked at different models we quickly agreed that we wanted to use an agile

method as our development model. An alternative would be to choose the waterfall

method, but this method is very static and requires a lot of planning before development.

This might be good for larger developers, but for a bachelor project it is better, in our

opinion, to have a method that allows a more dynamic way of working. Agile methods opens

up for this.

When looking at the different methods we narrowed it down to 3 candidate methods; RUP,

Scrum and Extreme Programming(XP).

RUP is a very advanced method, with alot of tools and subsystems that can be used to work

for smaller teams. But, all in all, RUP is best used in large teams and big projects.

XP is the opposite, it favors creation over documentation and also requires a very active

project owner. XP could fit, if working extra on documentation, but project owner is not

available at all times.

Conclusion was that even though XP could be used, it would not be proper XP, so we chose

to look elsewhere.

Scrum is a lot easier than RUP to both use and understand, as well as having better

documentation methods than what XP has. We also believe that reporting to the project

owner after each sprint is better suited for us and the owner, than having the owner

physically represented in the development team at all times as XP requires.

Scrum uses scrum sprints to split up the development. at the start of each sprint you decide

what parts you should work on for this sprint, by selecting tasks from a previously created

backlog that contains all the tasks needed to finish the project. When a sprint is finished, the

group will have a set of functional parts of the project that can be tested and used further.

Working like this also opens for adding new tasks to the backlog as you progress or put non-

WizardWars

May 27, 2011

 Page

177

finished tasks back into the backlog if deadline was not met.

The group has agreed together on using Scrum as our System development model.

4.2. MEETINGS

 Daily scrums. Each member of the development team takes 5 minutes to sit down

and answer 3 questions:

o What have you done since yesterday?

o What are you planning to do today?

o Do you have any problems preventing you from accomplishing your goal?

 Midweek meeting: Thursdays. Quick meeting to look and review each-others code

together.

 Sprint planning meeting. The first Tuesday in all sprints, we will have a meeting to

decide what to do in the coming sprint.

 Sprint review meeting. Last day in each sprint we will have a meeting to demonstrate

& review the finished parts from our sprint. Unfinished parts will not be

demonstrated.

 Sprint retrospective. The Monday after a sprint, we will have a meeting where we

discuss our past sprint. The task each member of the project has in this meeting is to

answer two questions: What went well in the last sprint, and what could be improved

in the next sprint?

 At the start of each scrum iteration, we will have a meeting with our supervisor. Here

we will discuss the project process, management and documentation.

4.3 STATUS REPORTS

Each week we will make a short status report, describing the progress of our project. This

will be sent to our employer and our supervisor, so they easily can follow our progress.

10 5. QUALITY ASSURANCE

5.1 TESTING

Each task in a sprint has a test written for it that the task has to complete in order for the

task to be accepted as complete.

In the finalising part of our project, we will use extra time testing, both internally and

externally, to identify problem areas and fix bugs.

WizardWars

May 27, 2011

 Page

178

5.2 CODE MEETING

Once a week we will have a group meeting where we read through each others code. This

way we assure that the quality of the code is maintained.

6. GANTT CHART

Since we are using Scrum as our development model, the development period of the project

will be divided into sprints. We set one sprint to be two weeks. This gives us four sprints

total. At the end of each sprint we will have a working product.

Below is our Gantt chart, showing the progress plan for the project.

WizardWars

May 27, 2011

 Page

179

WizardWars

May 27, 2011

 Page

180

APPENDIX 8

Overview of the code delivered

 Wizard wars.zip
o Our complete code-three for our Android application
o The internal JavaDocs for the sourcecode
o All graphics, and a playable gameworld

 Web Server.zip
o Our complete code-three for game server
o A SQL file for recreating our server database w. three users

 createSG.zip
o Our complete code-three for the tool that parses the game objects, and builds

up a file with an initial scene graph
o This project requires the Android.jar and Wizard Wars project on it's classpath

to compile
 Wizard Wars.apk

o A Android APK file for installing the game on Android devices

