
GRADUATE PROJECT:

AUTHORS: Magne Andreassen
Jon Langseth
Stian Ramse

Date: 19.05.05

Summary of Graduate Project

Title: Copwall Nr: 6
Date: 19.05.05

Participants: Magne Andreassen
Jon Langseth
Stian Ramse

Teacher Erik Hjelmås
supervisor:
Employer: Espen Torseth representing Gjøvik University College

Contact person: Espen Torseth

Keywords (4) Copwall, OpenBSD, Firewall, Java

Pages: 68 Appendixes: 13 Accessibility(open/confidential): Open

Short description of the project:

The Copwall project presents the foundation in form of architecture, design and application
prototype of the Copwall Firewall management system.

The Copwall Firewall management system aims to solve the task of configuring, maintaining and
monitoring network firewalls, by presenting a powerful graphical application and a centralized
management solution. The Copwall application GUI will give the user access to both simple and
advanced features of firewall filter configuration, along with system service configuration
and management features. The Copwall management system will provide a central management
solution for distributed firewalls, using encrypted channels in all network communication.

The Copwall system uses the security of OpenBSD and the power of Packet Filter (PF) to provide
a strong and secure solution on firewalls and management server, while allowing platform
independence for the user, by implementing the user interface in the cross platform compatible
Java system.

This report presents the result of five months work by three graduate students at
Gjøvik University College.

I

Preface

This report is the culmination of roughly five months worth of work. It presents our
efforts on the graduate project that all students have to do during the last semester
in Bachelor of Computer Science. The graduate project has a workload of 20 ECTS
points.

We would like to direct thanks to Erik Hjelmås, who has been our teaching
supervisor, and Espen Torseth who has represented our formal employer for this
project, Gjøvik University College. They have both contributed with great ideas,
advice and technical know-how, and shown great interest in both the project and the
resulting end product. Thanks also go out to Geir Ingebrigtsen, who has assisted
with external testing and ideas, and a strong belief in the product’s viability in the
system administrator market.

We also thank the group that has shared room with us, Roger Carson, Cristo-
pher J. Fullu, Halvor Borgen and Kenneth Fladby, for the good working environ-
ment these five months, and for their help in testing of our application.

Gjøvik 19.05.05

Magne Andreassen Jon Langseth Stian Ramse

II

Contents

Summary I

Preface II

List of figures VI

1 Introduction 1
1.1 Problem description, limits and constraints 1
1.2 Project definition . 3
1.3 Background for the project . 3
1.4 The background and qualifications of the group members 4
1.5 Target groups . 4

1.5.1 Application . 4
1.5.2 Report . 4

1.6 Conditions . 5
1.6.1 The project . 5
1.6.2 Distribution of responsibilities and roles 5
1.6.3 Division of project tasks 5

1.7 About the employer . 6
1.8 Configuration management . 6

1.8.1 Selected development standards, -model and -environment 6
1.8.2 Structure of the report 7
1.8.3 Standardization of documentation- and storage format and

language . 8

2 Requirement Specification 9
2.1 Requirement Specification document 9

2.1.1 Introduction . 9
2.1.2 Function . 9
2.1.3 System environment . 10
2.1.4 The users of the system 11
2.1.5 Life cycle aspects . 11
2.1.6 Constraints . 12
2.1.7 Assumptions . 12

III

2.1.8 Detailed Requirements Specification 13
2.2 Description and discussion of Requirement Specification 24

3 Design 25
3.1 Introduction . 25
3.2 The overall architecture . 25
3.3 The choice of communication encryption 26
3.4 Central Management Platform 28

3.4.1 Data Store and revision Handling system 28
3.4.2 Graphical Management Client Interface 28
3.4.3 Job Manager . 29

3.5 Configuration and Administration System 30
3.5.1 Job Scheduler . 30
3.5.2 System Configuration Agents 32

3.6 The job specification language 32
3.7 Graphical Management Client 33

3.7.1 The design of module loading/selection 34
3.7.2 Data structures in the Graphical Management Client . . . 34
3.7.3 Application code package separation 36

4 Implementation 38
4.1 Development tools and IDE used 38
4.2 Third-party Java libraries used in the project 38
4.3 Code conventions . 40

4.3.1 Start comments . 40
4.3.2 Naming conventions . 40
4.3.3 JavaDoc . 40
4.3.4 Source code example . 41
4.3.5 Class imports . 41

4.4 Core functionality . 42
4.4.1 Boot sequence . 42
4.4.2 Core User Interface . 42
4.4.3 User action events . 42
4.4.4 Custom widgets . 43
4.4.5 Command framework based on the command pattern . . . 44

4.5 Java and XML data binding . 47
4.5.1 Packet Filter model . 47
4.5.2 View / controller components 47

4.6 PF ruleset editor . 50
4.6.1 Expanded rules . 50
4.6.2 Collapsed rules . 52
4.6.3 Disabled rules . 52
4.6.4 Dragging and dropping a rule 53
4.6.5 Rule popup menu . 53

IV

4.6.6 Advanced Rule Settings 53

5 Testing 59

6 Discussion of results 62
6.1 Introduction . 62
6.2 Deviations from requirements 62

6.2.1 Management server and firewall configuration software . . 62
6.2.2 Graphical management application 63
6.2.3 Configuration generator 64
6.2.4 Summary of deviations 64

6.3 Other considerations . 65
6.4 Potential for completion . 65
6.5 Potential for expansion . 66

7 Conclusion 67
7.1 Evaluation of the project task . 67
7.2 Additional gains . 67
7.3 Evaluation of project as form of work 68

Bibliography 69

A Glossary 71

B Gantt-diagram 79

C Revised Gantt-diagram 81

D Sample of detailed class diagram 83

E PF configuration XSD 85

F Job Specification Language 93

G Sample meeting logs 96

H Progress reports 99

I Known bugs 102

J Missing or wanted features 106

K Preproject report 108

L Contracts and Argreements 122

M CD-ROM 126

V

List of Figures

1.1 A simple example of a Copwall managed network topology. . . . 2
1.2 Illustration of the development model used. 7

2.1 Main subsystems and communications. See text for details. 10
2.2 Subsystems modularity. Dashed line shows communication when

CMP is not used. 13
2.3 Mockup of main window. 14
2.4 Mockup of connect view . 16
2.5 Mockup of navigation browser, viewing top level groups 16
2.6 Mockup of navigation browser, subgroup view. 17
2.7 Mockup of navigation browser, showing contents of a FLU. 17
2.8 PF ruleset editor . 18
2.9 Network interface configurator 19
2.10 Platform and operating system configurator 20
2.11 Available services configurations 20
2.12 Tables based filter rule editor . 21

3.1 Main subsystems and communications. 26
3.2 Main system design overview. 28
3.3 Architecture of the GMC system. 33
3.4 Flow chart of boot process and module loading. 34
3.5 Domain Model view of the Graphical Management Client, simpli-

fied representation. 35
3.6 Class diagram of the data model for representing firewall groups

and units administrated using a Copwall system. 35
3.7 Detailed model-view-controller data flow. 36
3.8 Package structure of Java code in Graphical Management Client. . 37

4.1 Action popup menu . 43
4.2 XPanel layout . 43
4.3 Command Class Diagram . 44
4.4 A JButton created with the abstract Action «myCommand» 45
4.5 A JMenuItem created with the abstract Action «myCommand» . . 45
4.6 Pre- Post CommandListener Interaction Diagram 46

VI

4.7 The GUI view / controller lifetime. 48
4.8 Screenshot of Copwall, PF ruleset editor. 50
4.9 Editing the comment for a rule. 52
4.10 Advanced settings for rule action. 55
4.11 Keep State and limit concurrent states to 2000. 56
4.12 Keep State Source Tracking. 56
4.13 Keep State TCP Connection Settings. 57
4.14 Keep State Overload Policy. 57
4.15 Keep State Flush Policy. 58
4.16 TCP Flags Settings. 58

D.1 Class diagram of the data model for representing a PF configuration. 84

VII

Chapter 1

Introduction

1.1 Problem description, limits and constraints

Anyone connecting a computer to the Internet, or any other large scale network
today, are exposed to the risk of network attack, intrusion, viruses, and otherwise
malicious network usage. All users of network systems today, both single home
computers, for personal use, and large-scale corporate networks, containing sensi-
tive data, depend on a form of first line defence. This first line of defence is set up
using a network packet filter, be it a piece of software running on the user’s work-
station, or a dedicated computer system, running the filtering for an entire network.
These packet filters are what is called firewalls [1].

With a single workstation, connected directly to the Internet, a packet filter
software application installed on the workstation normally is enough. But for a
network of computers, this becomes an inefficient solution, and a dedicated fire-
wall is needed. This can be implemented using purpose-built hardware, but in
many cases this becomes either limiting in way of functionality, or expensive, if
not both. Using a standard computer, and a suitable combination of operating sys-
tem and filtering software, provides a far more flexible solution, and may become
less expensive. Especially if this is done using a strong and secure operating system
like OpenBSD.

The task of configuring, maintaining and monitoring a firewall system or clus-
ter of firewalls through a shell prompt, is time consuming and complex. To help
do something with this, a management application with a logical and easy to use
graphical user interface is needed. Such an application does not currently exist
for OpenBSD. In addition, no solution does currently exist for centralized man-
agement of multiple firewalls running OpenBSD or other open-source operating
systems.

This project is set to rectify this, by creating the foundation for a software prod-
uct for graphical configuration and centralized management of firewall systems.
This will be done by demonstrating a powerful concept for graphical administra-
tion and management of OpenBSD based firewalls, and creating an architecture for

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A simple example of a Copwall managed network topology.

centralized management of firewalls, and include functions such as revision control
and encrypted communication in this architecture.

The final software product shall support both simple and advanced user features
in configuration of firewall functionality on OpenBSD, using the PF1 and CARP2

features of OpenBSD.
In addition to this, the system will support configuration of running system

services, all configuration of network interfaces, and to a more limited extent con-
figuration of operating system options.

The software is set to be built as a three tier architecture, on top the OpenBSD
operating system and other essential supporting services, such as database engine
or virtual machine. The three tiers of the system will be:

• Graphical Management Client, abbreviated GMC, a graphical user interface
that will typically be used on a non-OpenBSD workstation connected to a
firewalled network.

• Central Management Platform, abbreviated CMP, a middleware system that
can be installed on a separate management server, or directly on a computer
acting as firewall

• Configuration and Administration System, abbreviated CAS, to be installed
on computers performing firewalling, and handles the actual administration
of the firewall computer and/or firewall cluster.

The software system shall support administration of multiple firewalls, and
support separation of the concepts:

• Firewall Physical Units, abbreviated FPU, physical computers acting either
as standalone firewalls, or as part of a failover firewall cluster

1Packet Filter is the filtering engine (firewall) bundled with OpenBSD
2Common Address Redundancy Protocol is used by services like PF to gain high availability

CHAPTER 1. INTRODUCTION 3

• Firewall Logical Units, abbreviated FLU, consisting of either a single FPU
performing standalone firewalling, or a collection of FPU’s in a firewalling
cluster totalling as a single firewall.

• Firewall Logical Groups, abbreviated FLG, a visual representation collection
multiple FLU’s that are grouped together for simpler visual access by the
user.

Although it is a goal to come at close as possible to a complete software system,
it is quite evident that the amount of work this implies, cannot be accomplished
with good quality within the time frame of the project. The project is therefore
limited to creating the architecture needed, and demonstrating the central concepts,
through documentation, graphical mock-ups and some working code.

1.2 Project definition

The goals of the project are to:

• demonstrate a different view on managing firewall filtering rules, compared
to traditional tables-based GUI management.

• create a prototype application through code and mockups that explores the
user friendliness of the GUI concepts.

• evaluate and select encryption methods for secure communication.

• provide the overall architecture of the software system.

1.3 Background for the project

The basic project idea came up during spring of 2004, after OpenBSD 3.5 was
released. One of the major new features included in OpenBSD was the CARP
technology. CARP was the OpenBSD project’s response [2] to Cisco’s patented
HSRP3, which causes licensing problems using the IETF VRRP4. CARP has sev-
eral design advantages over Cisco’s HSRP, and is free of patent rights.

Combining CARP with PF makes for a truly powerful and potentially very
secure firewall failover solution. PF is a stable and complex filtering engine that
makes OpenBSD perfect for running as a dedicated firewall. PF has implemented
quality of service features directly in the filter syntax, and is capable of doing most
things an expensive commercial firewall can do.

3Hot Standby Router Protocol
4Virtual Router Redundancy Protocol

CHAPTER 1. INTRODUCTION 4

What sparked the idea of the project was an interview with the developers of
PF, published at ONLamp.com, where Ryan McBride stated:

[. . .] doing a good GUI configuration tool for PF is very difficult be-
cause there are so many options, and laying them out intuitively in a
graphical interface is nearly impossible. [3]

In contrast to many commercial solutions, OpenBSD does not provide com-
mercial support. Taking into consideration that many users are perplexed by the
command line interface they have to overcome, along with potentially complex
configuration format, these users do not choose OpenBSD as a firewall. This
project will try to cope with this problem, and hopefully make OpenBSD a more
widespread operating system, thus ensuring future existence of the OpenBSD project.

1.4 The background and qualifications of the group mem-
bers

All three members of the project group started at Gjøvik University College in the
fall of 2002, at the Engineer of Computer Sciences study. Magne Andreassen and
Jon Langseth have both chosen the specialisation of Software Engineering, while
Stian Ramse specialises on System Administration. While Magne has a general
education as basis, Stian and Jon are previously educated as electronic technicians.

1.5 Target groups

1.5.1 Application

The system has two usage applications, one as a centralized management solution,
the other as a standalone configuration application. This results in two target groups
for the software. The first group of users are network administrators who need to
manage, configure and maintain firewalls based on OpenBSD and PF. The second
group are SOHO5 and home users, who need to configure a single firewall.

1.5.2 Report

The target group of the report consists of IT professionals, in the form of system
and software engineers, network and system administrators. The primary purpose
of the report is to provide a good documentation of what has been done and learned
during the project period, and is in the interest of Gjøvik University College for
evaluation of the end result, along with an external examiner.

The secondary purpose of the report is to document the requirements, the ar-
chitecture, the design and implementation of the Copwall system. This is geared

5Small Office or Home Office

CHAPTER 1. INTRODUCTION 5

towards making further work on the system possible. A developer that who has not
been involved in the process so far, should be able to use this documentation to get
an understanding of the construction of the system.

1.6 Conditions

1.6.1 The project

This project is a graduate project at the studies for bachelor of engineering, com-
puter sciences at Gjøvik University College, Department of Computer Science and
Media Technology, who also is the formal contractor for the project. Contact per-
son in relation to contractor is set to be Espen Torseth, while the project supervisor
is Erik Hjelmås. The project period runs from January 3rd till May 19th, 2005.

The group has been allocated the room A036 at Gjøvik University College, and
this will be the primary site for work activity. The room A036 will also be location
for meetings, to the degree this is feasible. Work on the project will primarily be
done the days Monday through Friday, core work time from 8am to 3pm, while
this may be deviated according to general agreement within the group.

In terms of hardware allocated for the project, the group has been given exclu-
sive access to eight computers of PentiumTM class, all with three or more network
interfaces installed, and a total of two monitors and keyboards. These computers
and «consoles» are the property of Gjøvik University College. In addition to this,
group members use their private laptop computers. The need for three network
switches will be met though the use of private equipment.

1.6.2 Distribution of responsibilities and roles

This is the distribution of responsibilities we have agreed upon:

• Magne Andreassen - Group leader and responsibility for web updates

• Jon Langseth - Responsibility for development, reporting and logging.

• Stian Ramse - Responsibility for documentation

1.6.3 Division of project tasks

The project development cycles will be divided based on the subsystems running
on the client, server and the firewall. We use a top-down attack and start with the
Client GUI. A large portion of the total time is given to this task. This includes
GUI mock-ups, researching OpenBSD subsystems to be supported, prototyping,
development and API specifications. Because of the size of the GMC subsystem,
this is divided by two milestones to avoid long periods of time without a common
group goal. The preliminary development task contains iterations for each main
module we are to design and/or develop. Each of them will be reviewed at end

CHAPTER 1. INTRODUCTION 6

of the iteration, and all will be reviewed as a total at the end of the preliminary
development period.

The CMP has an important function in the overall design, but the actual coding
for this module will be postponed if needed. Same goes for the CAS subsystem. If
the project suffers from time starvation, we will use the time reserved for develop-
ment to document and design how it should work, rather than focusing on writing
code. We prefer a good design without code, over poor design with buggy code.

On the 25th of April, we go into the closure period of the project. The main
tasks in this iteration is finishing the graduate project report, and finishing the most
critical software bugs and clean up code. These tasks will continue in parallel
throughout the rest of the project period. Deadline for report and editing is set at
Friday the 13th of May. After this day we focus on preparations for the presenta-
tion.

Apart from the milestones set by Gjøvik University College, the group has set
its own milestones and decision stages. Please see the Gantt chart, included in
appendix B, for further information.

1.7 About the employer

The idea for the project was first introduced to Einar Snekkenes, Professor of Infor-
mation Security at Gjøvik University College. He was positive and forwarded the
request to Erik Hjelmås. After introducing the project to Hjelmås, Espen Torseth
was contacted and asked if he would act as the project employer, with Erik Hjelmås
as teaching supervisor. Torseth accepted, and after a brainstorming session in No-
vember 2004, the basis for the project was set. Espen Torseth teaches the course
Perimeter Security at Gjøvik University College, Master of Information Security,
and has several years of experience from ErgoGroup6.

1.8 Configuration management

1.8.1 Selected development standards, -model and -environment

The programming languages used in the project will be:

• Java for graphical user interface and end-user client application

• C/C++ for middleware, management software and firewall administration
software

• Perl scripts for system administrative tasks on firewalls

• Bourne Shell script for simple, elementary support functions

6http://www.ergo.no

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Illustration of the development model used.

The development model that is to be followed, is based on two variants of agile
development. Extracting key elements from FDD [4] and Scrum [5], a model will
be used that focuses on first defining the overall system architecture, design and
feature sets, followed by incremental planning, development and documentation.
Each increment is developed over one or more short loop iterations of five work
days. Each short loop will be initiated by a summary, status and planning meeting,
similar to that of Scrum. At the end of each increment, unit testing and integration
is performed.

1.8.2 Structure of the report

The report is loosely constructed around the template published by Gjøvik Univer-
sity College, and contains a introduction, main section, closure, bibliography and
attachments.

Chapter 1: Introduction An introduction to the project and the document in gen-
eral.

Chapter 2: Requirement specification The formal requirement specification doc-
ument of the system, along with a discussion of its contents and the work
performed to produce it

Chapter 3: Design A description and discussion of the overall system architec-
ture and design, and more detailed design discussion of each of the main
modules.

Chapter 4: Implementation Describes the implementation work that has been
done, and in some cases not been done, on the system.

Chapter 5: Testing Gives an overview of how system testing has been performed.

CHAPTER 1. INTRODUCTION 8

Chapter 6: Discussion of results In this chapter, the work and end result is eval-
uated against the requirements set for the system, and various problems or
errors are discussed.

Chapter 7: Conclusion Concludes the project as a whole in context as a graduate
project. Also provides a description of further work needed to complete the
system.

Bibliography, definitions and Attachments

1.8.3 Standardization of documentation- and storage format and lan-
guage

The documentation will be written in plain text using text-encoding ISO-8859-1,
and will be formatted with LATEX2ε, and filenames based on: theme-chapter.tex.
The language we will be using is English, with little emphasis on Oxford or Amer-
ican sentence structure.

Version and revision control will be performed with use of CVS. This system
handles all problems with editing the same document on the same time, and it
gives the opportunity for comparing versions with inspection. CVS is used for
both documentation and source code. Substantial themes or sub-projects will be
separated in different areas within CVS.

Chapter 2

Requirement Specification

2.1 Requirement Specification document

2.1.1 Introduction

Copwall is a multi-layered software system for graphical configuration and admin-
istration of single firewalls and centralized configuration of multiple, distributed
firewalls. The first version will be a system for managing OpenBSD based fire-
walls, with management features including the configuration of operating system,
hardware and firewall related parameters. It is desirable that the system allows fu-
ture expansion with support for platforms other than OpenBSD, and also allowing
expansion with additional software subsystem support. This must be obtained by
using a modular design, based on the concepts of plugin modules and software
agents.

2.1.2 Function

The software is set to be built as a three tier architecture (see figure 2.1) on top
of the OpenBSD operating system and other essential supporting services, such as
database engine or virtual machine. The three tiers of the system will be:

• GMC, a graphical user interface that will typically be used on a non-OpenBSD
workstation connected to a firewalled network.

• CMP, a middleware system that can be installed on a separate management
server, or directly on a computer acting as firewall

• CAS, to be installed on computers performing firewalling, and handles the
actual administration of the firewall computer and/or firewall cluster.

It will be possible to use the GMC as a standalone application, where all data
generated in application specific format is stored locally, and data transfer to and

9

CHAPTER 2. REQUIREMENT SPECIFICATION 10

Figure 2.1: Main subsystems and communications. See text for details.

from managed firewalls are performed directly, without the intermediate manage-
ment system.

When not using the software in a standalone configuration, all communication
shall go via the intermediate CMP. The CMP is to be installed on a Unix based
management server, preferably running OpenBSD. All generated data in applica-
tion specific format is stored in a revision controlled repository managed by the
CMP. This configuration is considered the standard scenario.

All transfer of data between the subsystems will be done over encrypted net-
work communication, using SSH as the mechanism for encryption. As the arrows
in figure 2.1 shows, all communication is bi-directional.

2.1.3 System environment

The GMC will be run by the user on a desktop or workstation computer, capable
of running J2SE1 5.0, and supporting TCP/IP based networking.

The CMP will run on a computer running OpenBSD, and requires CVS,
OpenSSH and libssh to be installed on this computer. Network communication
may be performed via any TCP/IP capable communication channels with sufficient
bandwidth.

The CAS will be installed on firewall computers. As such, the software will
run under the OpenBSD operating system, requires the computer system to have
a minimum of two network interfaces, and should be (but is not required to be)
connected to an uninterruptible power supply. If the software system is used to
configure a firewall cluster containing two or more physical computers in one log-
ical firewall, each computer in the cluster is required to have a minimum of three
network interfaces.

1Sun Java 2 Platform Standard Edition

CHAPTER 2. REQUIREMENT SPECIFICATION 11

2.1.4 The users of the system

The end users of the software are network administrators who need to manage,
configure, manage and maintain firewalls based on OpenBSD and PF. These users
are assumed to have a fair knowledge of computer usage in general, and in addition
at least a basic knowledge of the purpose and function of a firewall.

2.1.5 Life cycle aspects

During development, CVS is used for version control and configuration manage-
ment. From the CVS, regular developer or experimental releases should be made,
and these releases must be tagged in CVS. Stable releases and stable patch revi-
sions must also be tagged in CVS.

All parts of the Copwall system must be developed in a modular way, but it
is not required to use dynamic pluggable modules (plug-ins). Added or removed
modules that results in changed functionality are provided by changing version
(release) of the software. As such, to gain access to new functionality, the user is
required to upgrade to a new version of the software.

Version numbering should be used to denote differences in features and com-
patibility, and identify the claimed stability of a release. A version numbering
scheme based upon the major.minor.patch scheme with odd numbered unstable re-
leases will be used, similar to that previously demonstrated by the Linux kernel
versioning scheme [6].

Major changes in features, architecture or GUI, and changes rendering files
from previous versions of the software incompatible or unreadable must be denoted
a major version number. Minor feature additions, where file format compatibility
is kept, must be denoted a new minor revision number on the current major revi-
sion. Bug fixes are given a patch revision number. Code considered to be stable is
given an even number in the minor revision number. Developer, unstable and ex-
perimental releases are given a revision with an odd minor revision number. When
an odd numbered minor revision is considered stable, it will result in a new patch
level release in the even numbered revision chain if no new features are added. If
new features are added, a new even minor revision should be made, with a patch
level of zero, and the next unstable or developer release should be given an odd
minor revision number, counting one higher than the minor revision number of the
latest stable release. Major changes causes a new major number, but only when this
code is released in the stable version number chain. Releases prior to initial stable
release should only have minor.patch version number, with minor set to zero.

As an example: Prior to initial stable release, all developer releases are given
a version number of 0.x, where x starts with 1 and increments by 1 for each patch
or release. The first stable release is given version number 1.0.0. Further develop-
ment is done on versions 1.1.x. A stable patch revision would increment the stable
release to 1.0.1, while continued increments are used on the unstable 1.1.x chain.
Upon a new minor feature change, version 1.2.0 is released, and development re-

CHAPTER 2. REQUIREMENT SPECIFICATION 12

leases start with version numbers 1.3.x. Upon a major feature change release , or
a compatibility changing release, the stable release moves to version 2.0.0, and
developer releases to 2.1.x 2.

The version numbering of the various subsystems should be coherent. This
means that a GMC of a given major.minor release must be able to be used with
any release of CMP with the same major.minor, and the same goes for compati-
bility between CMP and CAS. Exception to this rule is accepted for the developer
release chain (odd numbered minor number), but it is required that any developer
release that requires a specific version of a different subsystem clearly note this in
its changelog.

2.1.6 Constraints

The GMC requires a computer capable of running J2SE 5.0, with a minimum of
50MB available hard disk space for installation. It requires a screen resolution of
1024x768 pixels. A minimum of 256MB installed system RAM is required for
acceptable operation. As the GMC is a network intensive application, a network
connection with sufficient bandwidth is required.

The CMP system requirements are dictated by the requirements of underly-
ing software. This software includes the OpenBSD 3.6 operating system with
OpenSSH, libssh, CVS and PostgreSQL installed. Storage space requirements are
dictated by the size of deployment, and as such impossible to predict. An assump-
tion is made that 5MB storage minimum should be allocated each managed fire-
wall, to allow revision handling of configurations sufficient space, plus 20MB for
the CMP itself. If the CMP is installed on a computer not also acting as a firewall,
this computer is required to have a minimum of one network adapter.

The CAS requires OpenBSD with OpenSSH, Perl, Python and libssh installed.
The CAS requires a minimum of 5MB available hard disk space, and should not re-
quire more than 20MB of storage on the firewall. Each firewall that is administered
by Copwall through CAS must have a minimum of two TCP/IP communications,
e.g. two network adapters, or a network adapter and a WAN adapter. The network-
ing adapters used, must be supported by OpenBSD.

2.1.7 Assumptions

It is assumed that computers used for developing, testing and running GMC are
desktop class computers capable of running J2SE 5.0, and that J2SE 5.0 JRE3 is
installed. On systems used for CMP and CAS, OpenSSH and libssh is assumed
to be available, and it is assumed that OpenBSD’s syslog service may be used for
logging.

2Version numbering is a debated topic, see http://www.advogato.org/article/40.html
3Java Runtime Environment

CHAPTER 2. REQUIREMENT SPECIFICATION 13

2.1.8 Detailed Requirements Specification

Functional structure and inter-relationships

Figure 2.2: Subsystems modularity. Dashed line shows communication when CMP
is not used.

Figure 2.2 shows the proposed system structure. The system must consist of
three separate subsystems. These systems should in turn be divided into smaller
sections, each handling a separate function or operation.

This division shall be done as software modules inside a single application for
the GMC. On the CMP and CAS, the division may be selected more freely, but it
is suggested that it should be based on a central application responsible for com-
munication between subsystems, and «agents», separate applications controlled by
the central application.

Data framework

Data used internally in the system shall use XML in all stored files. These XML
files naturally must be parsed and translated into application internal data structures
that are dictated in great extent by the programming language used.

Data exported and transferred to managed firewalls must be translated from
XML format to the configuration format expected by the managed system. In
example, a filter configuration for OpenBSD 3.6 is generated for storage in XML
format by the GMC, stored in that format at the CMP, and translated from XML to
the PF syntax format when transferred to the CAS on the firewall.

The format of the XML files should be controlled by XML Schema Definition
(XSD) to ensure correctness, and Document Type Definition (DTD) files should be
used to simplify translation from XML to system specific format.

At time of writing it has not been decided wether the GMC or CMP should per-
form config generation. This will be noted here in a future release of requirements,
but developers should assume that GMC will receive this responsibility.

CHAPTER 2. REQUIREMENT SPECIFICATION 14

Graphical Management Client requirements

Usage description, input/output
The GMC is, as the name implies, a GUI application. Its intended primary

role is as a front-end application, used to display and edit configurations stored
and administrated by a central management server, the CMP. The application may
also as previously described, be used as a standalone application, used to manage
firewalls without the need for the central management server. The same GUI is
used for both modes of operation. What follows is a user oriented description of
how the application should operate, and how it should be used.

Figure 2.3: Mockup of main window.

Figure 2.3 shows the elements of the core GUI elements. The application will
consist of the following elements:

• A toolbar
Buttons representing available operations will be added to and removed from
the toolbar by the different modules that make out the GMC application.
The buttons should always represent navigational operations, and selection
insensitive operations. No operations that manipulate a single, selected item
on screen should be present on the toolbar, as these operations should be
provided in a pop-up context menu, accessed using a right click on the item
to be manipulated.

• A menubar
The menubar will provide access to all or most available editing, manipula-
tion and navigation operations. The length of a single menu on the bar should

CHAPTER 2. REQUIREMENT SPECIFICATION 15

not exceed 16 menu items, including sub menu items and separators. The use
of sub menus should be kept at a minimum, and a sub menu should not con-
tain more than 8 items, including separators. Nested sub menus should be
avoided completely. The number of menus on the bar should not exceed 16.

• A statusbar
As the familiar name of this element implies, this bar should display the
current status of the application. On the right hand side of the bar, a progress
indicator will be displayed on time-consuming operations. For operations
that use a long time to complete, but have a duration that is impossible to
predict, a continuous operation progressbar is displayed.

• Four resizable areas
Naming these four areas west, center, east and south, the following content
will be applied:

– Center:
The main area of the application, and the natural focus point for the
user. This is where the main functionality of the application is placed.
I.e. all central editor display functionality for creating and editing con-
figurations is placed here, and this is where all firewall groups and units
are visually represented.

– West:
As the secondary area of the application, this area is used to directly
manipulate the type of information displayed in the center area. Here
alternate navigational aid is placed, e.g. a tree view. This area is also
used to display buttons that manipulate what type of information is
displayed when the main area displays a configuration editor.

– East:
Instead of using a separate window for viewing application help, the
right most area is used to display assistive information. The behaviour
of the help viewer is not yet completely decided upon, but it is sug-
gested that this should dynamically change to reflect the contents of
the center area, and the operation the user is performing.

– South:
The southern area is used to display console and log information when
configurations are transferred to a firewall, This may be done in a real-
time fashion, or displayed after transfer and activation is completed.
This area may also be used to display extended information about a
selected entity in a navigational view. Usage of this area should be
kept at a minimum, as it steals valuable window real estate from the
center area.

All of these four areas support scrolling using GUI scrollbars. All areas
except center may be automatically displayed or hidden through software,

CHAPTER 2. REQUIREMENT SPECIFICATION 16

depending on what areas are needed in a given context. The help view can
be opened and closed manually by the user.

Figure 2.4: Mockup of connect view

When the application starts up, the main window is displayed with only menubar,
toolbar, statusbar and center area visible. In the center area a connect view is
displayed (see fig. 2.4). In this view the user can select a previously configured
configuration repository or management server from a drop down list, optionally
selecting a button to create a new location, or delete the selected location. After
selecting the appropriate option, the user clicks a button labeled «Connect».

Figure 2.5: Mockup of navigation browser, viewing top level groups

Communication with a management server is then initiated, or the local repos-
itory is located and checked. A file containing info about managed firewall groups
and units is loaded, and the navigation browser is displayed (see figures 2.5, 2.6 and
2.7). This browser view follows the familiar navigational style of a file manager,
like Windows Explorer or Konqueror. In the west area, a tree view representing

CHAPTER 2. REQUIREMENT SPECIFICATION 17

Figure 2.6: Mockup of navigation browser, subgroup view.

Figure 2.7: Mockup of navigation browser, showing contents of a FLU.

FLGs, FLUs and FPUs are displayed. FLG’s may be nested, and may contain both
FLG’s and FLU’s. Only an FLU may contain a FPU. A FLU cannot contain a FLG.

In the center view, medium sized icons representing the contents of the current
group or unit is displayed. The navigator is operated using single mouse clicks.
Right clicking on an icon brings up a menu that, in addition to the items available
when right clicking in an empty space, contains options to manipulate the single
item. In the navigator display mode, the toolbar displays buttons that allow the
user to navigate backwards and forwards between displayed items. It also displays
a button that allows navigation upwards in the item hierarchy. In addition to the
navigational buttons, the toolbar contains buttons to add new items of type FLG
and FLU. When displaying the contents of a FLU, both icons for FPU’s and icons
representing configuration editor actions are displayed in the center area, and on

CHAPTER 2. REQUIREMENT SPECIFICATION 18

the toolbar buttons to add physical units to the logical group.
When displaying the contents of a FLU, the icons representing FPU’s are over-

laid with visual emblems that indicate the current status of that computer. The icons
representing configurations or views, are also activated using a single click method.
These activate the display or editor module for the given type of information.

Within the view of a FLU, icons representing configuration of running services,
editing of firewall filter rules, and display of system statistics and logs are available.
Within the view of a FPU, icons representing system configuration (OS/platform),
network interfaces, and logs are available. The operation of the configuration or
editor views is as follows:

Figure 2.8: PF ruleset editor

PF rule editor (fig 2.8) The rule editor aims to move away from the typical table
paradigm for firewall filter rule editing, providing an interface where central
and common settings are directly and easily available, while maintaining
availability of advanced settings.

Instead of using a typical table based view of filter rules, a vertically oriented
list of graphical views is used. Each rule has a separate view, consisting of a
label that the user defines to describe a rule, and a collection of buttons, entry
fields and lists that together describe the central elements of a filtering rule.
Each rule display may be collapsed, so that only the descriptive title, and
perhaps a rule syntax summary of the rule is shown. Advanced rule editing is
provided through a modal dialog box, that displays a full feature single rule
editor. Ruleset editing functions, like adding, removing, and reorganizing
rules, are provided using a context menu, available via right clicking on a
rule.

CHAPTER 2. REQUIREMENT SPECIFICATION 19

Different types of filtering rules are separated into categories, and navigating
between the categories is done using navigation buttons located in the west
area. This navigation concept has previously been demonstrated in simi-
lar fashion by the Opera web browser by Opera Software4. The categories
group conceptually similar rules, e.g. NAT, BiNAT and redirect rules under
the same navigation button. Within a category, syntactically or functionally
different filtering rules are separated using a tab based layout, e.g. placing
NAT, BiNAT and redirect rules in three separate tabs.

Figure 2.9: Network interface configurator

Network interface configurator (fig 2.9) The interface editor consists of naviga-
tional buttons in the west area, and a list of interfaces in the center area. The
navigation buttons are used to select between types of interfaces displayed,
where type is e.g. physical interfaces, virtual interfaces or CARP interfaces.
In addition, navigation buttons should be available to provide direct access
to the configuration parameters of CARP failover, VPN and VLAN configu-
ration.

The list of interfaces consist of visual editors that are collapsible, with only
the most central information visible in the list. Refined or advanced settings
are still available through a «Settings ...» button in the visual display, that
brings up a detailed dialog box. Each interface has its current up/down/error
status indicated in the list, and in the expanded view, buttons are provided to
allow toggling of enable- and debug-state.

4http://www.opera.com/

CHAPTER 2. REQUIREMENT SPECIFICATION 20

Figure 2.10: Platform and operating system configurator

Platform and operating system configurator (fig 2.10) The configuration editor
for platform and OS specific settings closes away the west and south areas
(user may keep help view open), and uses the remaining area as a large dialog
box. In view is displayed grouped sets of configuration parameters that may
be set. Types of platform settings that have a complex nature, should be
edited in separate dialogs, and a button to open the dialog should be placed
on the center area.

Figure 2.11: Available services configurations

Available services configurations (fig 2.11) When activating the Services view,
an icon browser view is displayed, containing icons representing installed
and configured services on a given FPU. Selecting an icon brings up a modal
dialog box that is specific for configuring the given service. Adding a new
service to a FPU is performed using a button on the toolbar, or selecting
the appropriate option from a menu available by right clicking anywhere in
the center area. Right clicking on an icon brings up a menu that allows the

CHAPTER 2. REQUIREMENT SPECIFICATION 21

user to start or stop, remove (deactivate and unconfigure), configure or add a
service.

Figure 2.12: Tables based filter rule editor

Tables based filter rule editor (fig 2.12) Though it is not a requirement for the
development of the first version of the system, the developers may choose to
provide a standard tables based rule editor, and include this as an optional
interface for the user. If this is included, it should use tab separated informa-
tion pages, as shown in figure 2.12.

Performance, availability and error/failure reporting
The GMC is started manually by the user. It should never terminate unless re-

quested to do so by the user. Exception from this is in the case of a severe software
malfunction, where the application is allowed to perform an automatic termination,
after first informing the user about the event, and what may have caused it through
an informative dialog box.

In the event of a failure, the application must attempt to recover automatically.
In the event of an unrecoverable error, the user must be notified, and the application
should attempt to regain a stable state without termination. The overall stability
will be to some extent be governed by the operating system the application is run-
ning on, and by the Java Virtual Machine used. Stability problems caused by OS
or Java VM cannot easily be predicted.

Central Management Platform requirements

Performance, availability and error/failure reporting
The CMP will be centered around a continuously running application (a dae-

mon). This daemon should have a very high level of availability. In the event of
software failure in the daemon itself, or one of its subsystems failure, the CMP
should automatically attempt to recover and regain a stable state without termina-
tion. If termination of the daemon and its subsystems is required, these systems
should automatically restart. All inconsistencies in operation, failures or stability

CHAPTER 2. REQUIREMENT SPECIFICATION 22

problems must be logged. Relatively severe problems must also be reported to all
currently connected GMC instances.

Configuration and Administration System requirements

Performance, availability and error/failure reporting
The CMP initiates communication with CAS on managed firewalls. This should

start execution of the CAS management communication subsystem. This subsys-
tem should never terminate before the CMP closes the connection. The rest of the
CAS should be run on a scheduled basis, with fairly short and automated execution
runs. Errors encountered during a scheduled run must be logged.

Constraints details

All software libraries used in software through dynamic or static linking is required
to have a licensing policy that does not put licensing constraints on the finished
product. The same applies to all software systems that the Copwall system com-
municates and interfaces with.

Acceptable licensing policies are e.g. the BSD family of licenses, the Lesser
GNU Public License, the Common Public License, the Eclipse Public License and
the Sun Public License. Licenses that enforces openness or closedness on the end
product should be avoided, e.g. libraries released under the GNU Public License
shall not be used.

Applications used to develop code and/or documentation is required to be re-
leased under a license that is approved by the Open Source Initiative. Exception
to this is the operating system of the computers used as developer workstations,
though it is required that a valid license is provided for the operating system on
each workstation.

CHAPTER 2. REQUIREMENT SPECIFICATION 23

The following programming languages are suggested:

• J2SE

• C++

• Perl

• Python

The following storage formats and transaction languages are to be used:

• XML

• SQL

• plaintext configuration formats, e.g. pf.conf

The following external systems may be used:

• OpenSSH

• CVS

• PostgreSQL

The following libraries are suggested:

• JSCh

• Castor

• libssh

CHAPTER 2. REQUIREMENT SPECIFICATION 24

2.2 Description and discussion of Requirement Specifica-
tion

The requirement specification document is set as a combined product and require-
ments description, and is focused on a usage view. This means that the operation
and function description is written as a description of how the finished product
is expected to function. This way, the requirement specification fulfills its task
of highlighting the expected functionality and requirements, and in addition func-
tions as an introduction to the system usage, and as a marketing document aimed
at recruiting developers to the project.

The formal requirement specification document did not exist until quite late
in the project period. The contents of the specification has existed throughout the
project span, and has been under continuous revision. But it has been a collection
of informal notes and sketches, along with unwritten understanding between the
group members. With such a small group, we have not seen the need for a formal
document before late in the project. We see now that since the system itself is
not completed, it is necessary to formalize the information into a requirements
document that other developers may use, to continue further development. As
the current group will be somewhat split up after the graduate project period is
over, and some time may pass before further work is done, the document is also
necessary for ourselves to keep a written record of the agreed requirements and
functionality.

As the need has not been seen for a formal requirement specification document
earlier in the project period, the requirement specification document has become a
rather large bulk of work, concentrated on a short time span. This is naturally not
ideal, and we are fully aware of this.

Chapter 3

Design

3.1 Introduction

While the project was still in its planning phase, before being accepted as a grad-
uate project assignment by Gjøvik University College, the system was planned as
a far simpler solution. The original idea was to create an application for creating
filtering rulesets for PF for single OpenBSD based firewalls. At the early stage,
support for multiple firewalls was not included in the plan, it focused solely on
single machines. When starting discussions with our assigned contact person, the
idea of a centralized management solution, supporting the configuration and ad-
ministration of multiple firewalls was introduced early. This drastically changed
the size of the project, but also lay down the architecture of the solution quite early.

This chapter describes and discusses the architecture and design of the Copwall
system. As the goal of the project was to create a sound foundation for a complete
system, the language used is to great extent set in a future tense.

3.2 The overall architecture

The system architecture is a three tier system. This does not mean that it employs
the classical three tier architecture of application front-end, middleware system
and back-end server. In Copwall, the three levels are application front-end, man-
agement server and middleware, and managed client systems. The front-end appli-
cation is the GMC, which is the application that the user interacts with to manipu-
late information stored at the management server, and to instruct the management
server to apply changes onto the managed firewalls.

It is possible to exclude the management server, and use the GMC with direct
communication with managed firewalls. When a management server is not used,
all configuration data generated by the GMC needs to be stored locally on the
computer running the application. Figure 3.1 shows the architectural setup where
a management server is used.

25

CHAPTER 3. DESIGN 26

Figure 3.1: Main subsystems and communications.

All communication in the system needs to allow bi-directional data transfer.
Commands issued, and responses to command, along with status information should
use the same channel. Communication between an instance of the GMC are to be
continuous, to allow quick responses to user actions, and to allow the transfer of
management initiated status messages. Communication between a managed fire-
wall, and the management system does not need to be continuous, and should not
be, to preserve bandwidth. With the logic that the management server should trans-
fer configurations and commands to the firewall, and the firewall should transfer
logs and status information to the management server in bulks, there should be no
need for a continuous communication.

3.3 The choice of communication encryption

The system has a high requirement of secure communications. This is natural
taking into consideration that what is being configured and managed, is in fact the
first line of defence of a network. Using communication that is not encrypted and
authenticated in some way, will quite simply allow someone with malicious intents
to read out and possible change configurations and statuses, and in that way making
the firewall nothing more than a porthole into the network behind it.

Several methods have been discussed for encryption and authenticating com-
munications. Initially the plan was to use secure socket layers (SSL) to implement
this. SSL is a security protocol that provides communications privacy over the In-
ternet. The protocol allows client/server applications to communicate in a way that
is designed to prevent eavesdropping, tampering, or message forgery [7].

Use of SSL in C/C++ code for simple encryption of transferred data was simple
and rather painless, and though there was some more work involved in getting it
to work with Java, it seemed a very viable solution. But when we tried getting the
SSL connection authenticated, witch is done using X.509 certificates, things started

CHAPTER 3. DESIGN 27

getting complicated. We wanted bi-directonal authentication, but could only get
authentication of certificates to work uni-directional. When we combined this with
problems we saw in getting bi-directional data transfer over a single communica-
tion socket, we started evaluating other mechanisms.

One such mechanism that had been suggested early on was revisited. The
SSH protocol suite provides secure communications that have been thoroughly
tested, and proven to be a relatively safe choice. With our basis in OpenBSD, the
OpenSSH implementation of SSH2 is readily available. After a short research we
located two additional resources that eased our adoption of the SSH2 mechanism
for encrypted communications. libssh is a library for inclusion of SSH2 commu-
nications in C and C++ based applications. It has a simple API, and is released
under the Lesser GNU Public License. For Java applications we found the JSCh
library, that allows advanced SSH2 communications to be easily integrated. JSCh
is licensed using a modified BSD license. One great advantage we found in using
SSH as transport mechanism, is that a single communication session may be used
to transfer several channels of data. For example, a single session may simulta-
neously transfer application commands and responses, in parallel with file transfer
in a separate channel. Even multiple command interactive channels may be open
simultaneously on a single session. SSH2 may be configured to use a combination
of host and user public key authentication, where RSA key pairs are used. This
leads to a form of bi-directional authentication, where both server and client public
keys are confirmed, after encryption has started, but before data transfer initiates.

Combining the problems we saw in using SSL, with the overly complex task
of researching and developing our own solution for encryption, and the advantages
that SSH2 communication gave us, the choice of SSH as transport mechanism was
a simple one. The result is that all network based communication channels in the
design are assumed to be SSH2.

This choice in turn, does dictate some other design issues. OpenSSH will be
the server daemon that controls incoming SSH connections, and will in turn start up
applications that the connecting client request. Thus all software that is to be con-
trolled via SSH, needs to be developed in such a way that it expects its input/output
to be handled as it was controlled on a local terminal. As a result, software on
the CMP and the controlling software on the firewalls (part of the CAS) is pro-
grammed with input/output via STDIN/STDOUT/STDERR. File transfers will be
handled via either SFTP or SCP channels.

This also gives an advantage in terms of testing and debugging, as all elements
of commands that normally would go encrypted over a network, may be tested
locally on the system it is to run, as if it were a standard, console operated applica-
tion.

CHAPTER 3. DESIGN 28

3.4 Central Management Platform

The purpose and function of the CMP is to be an intermediate system that support
storage, revision control of configuration files and data, status monitoring and log
file storage and is an intermediate task broker.

A job or job request consists of a task description, the commands needed to
complete the task, configuration files and information about when and how to exe-
cute.

Figure 3.2: Main system design overview.

The construction of the Copwall CMP is split into separate applications and
software agents. The three central elements in the CMP are the GMC Interface (ab-
breviated GMCI), that management client applications interact with, the Job Man-
ager (abbreviated JM), that executes actual management of connected firewalls,
and the Data Store and Revision Handling system (abbreviated DSH), which is a
middleware system that handles extraction and storage of data in the underlying
storage systems.

3.4.1 Data Store and revision Handling system

The use of a middleware DSH enables masking of the underlying data storage sys-
tem, and thereby makes the other parts of the CMP independent of storage mech-
anism. In the event that storage mechanisms are replaced, the only part that needs
to be rewritten is the DSH, in stead of having to rewrite all parts of the CMP that
uses the data store.

3.4.2 Graphical Management Client Interface

The GMCI is a program that is started upon connection from a GMC. The actual
startup of the GMCI is handled by OpenSSH2, as a result of a SSH subsystem

CHAPTER 3. DESIGN 29

request from the connecting client. The GMCI remains running while the client
application is connected. The job of the GMCI is to receive commands from the
GMC, and respond appropriately to the command. This means to :

• receive configuration files and other data from client, and pass this off to
DSH for storage

• retrieve such data from store through the DSH, and transfer to GMC

• receive job requests and transfer these requests to the Job Manager (JM)
subsystem.

• transceive job execution feedback from JM to connected GMC

3.4.3 Job Manager

The JM is a continuously running part of the CMP system. Its responsibilities
is to acquire information about tasks that are to be performed on the managed
firewalls, and transfer information about these tasks along with configuration data
across an outgoing SSH2 connection to the firewalls. The JM can schedule jobs
independently of the GMC, and this is why the JM is a continuous running system.
Implementing the JM as a continuously running system also eliminates the need to
use systems like cron to perform scheduled, non-interactive operations within the
system. An example of a job that is regularly executed without an explicit request
from a GMC, is the collection of log files from the managed firewalls. When a
GMC is connected to the CMP, a job that is requested directly from the GMC is
expected to be executed immediately, and in a singe SSH connection. The GMCI
uses Unix pipe pairs to communicate with the JM, and will normally keep this
communication open while a client is connected, to allow data transfer from the
JM through the GMCI to the connected client. Configuration files are not to be
transferred through the GMCI/JM pipes. The GMCI will transfer all other parts
of the job description through the pipes, and the JM will use this information to
extract the correct configuration files and relevant data through the DSH.

When the JM transfers a job to a firewall system, it will start an SSH2 con-
nection to the firewall, and activate the Job Scheduler (abbreviated JS) as an SSH
subsystem. The SSH connection will remain open after the job request is trans-
ferred, and is used to transfer job output back from the JS to the JM. This output
may be textual output from executing commands, textual streaming of data from
the firewall’s syslog, or a file transfer in the form of log file or configuration file.
When the job is requested from a connected GMC, output in form of text stream
is transferred to the GMC via the GMCI and the Unix pipes. When the job is a
«non-interactive» one, the output stream is buffered into a log of the job run, and
stored into the data store. Both for interactive and non-interacive jobs, file transfers
in the form of log files or configuration files are stored via the DSH.

CHAPTER 3. DESIGN 30

3.5 Configuration and Administration System

The CAS is split into smaller components, just like the CAS is. The central com-
ponent is the Job Scheduler, which handles all communication with the CMP, and
is responsible for starting execution of the other subsystems. The System Configu-
ration Agents (abbreviated SCA) are the actual executing parts of the CAS. These
are specialised pieces of software that perform the operations needed by a job.

An executing session of the CAS is initiated by a SSH2 connection from the
JM on the CMP. The JS is then started as an SSH subsystem, and job specification
along with configuration files are transferred. The JS remains running, keeping
the connection with the CMP open until all tasks in the job specification is either
completed, or confirmed failed.

3.5.1 Job Scheduler

When the JS receives a job specification, it waits until an identifier telling it that
the specification is fully transferred before starting execution. It then executes
one or more of the system configuration agents, in required order, to get the job
done. Output from the SCA’s are transferred back to the CMP’s JM using the open
SSH2 stream, prepending each output line with the string SCA: followed by a
space. The JS also reads all lines that appear in the system logs during its run,
and transfer these to the CMP, prepending each line with the string LOG: followed
by a space. Status output from the JS is prepended with the string OUT: and a
space. In the event of an error, this is notified to the CMP using a message with
the string ERROR: prepended, and during development and testing, debugging
messages may be sent with the string DEBUG: prepended, both followed by a
space after the colon. Whenever a file is requested to be transferred, the JS will not
perform the actual transfer, it will make a copy of the file, using a generated, unique
file name, storing it in the JS temporary storage area, then inform the CMP that the
file is ready for transfer by sending the string FILE: filename filespec,
where filename is the name used for the file in the temporary storage area, and
filespec is a specification of which file this originally was, e.g. pf.conf. For log file
bulk transfer files, the filespec part should always be logfiles.

During the transfer of a job specification from CMP to CAS, the JS will, as
noted not start execution of the job until it is fully transferred. It will, however, re-
turn status information, informing the CMP line by line whether the line is accepted
or rejected. These status messages are constructed by the keyword STATUS: fol-
lowed by a space, a status indicating number, a space, and last a text string repre-
sentation of the string. The following messages may be expected:

• STATUS: 100 Connection accepted

• STATUS: 101 Welcome to Copwall CAS

• STATUS: 101 CAS version x.x.x

CHAPTER 3. DESIGN 31

• STATUS: 102 JS version x.x.x

• STATUS: 200 OK

• STATUS: 210 Job received OK

• STATUS: 215 Job execution START

• STATUS: 220 Job execution COMPLETE

• STATUS: 400 Invalid command

• STATUS: 410 Invalid keyword

• STATUS: 415 Wrong number of parameters

• STATUS: 420 Wrong parameter format

• STATUS: 500 Server failure

• STATUS: 501 Not ready

• STATUS: 502 SCA not available

• STATUS: 555 SEVERE FAILURE

These status numbers are grouped by the de-facto standard grouping used in
most plain text communication protocols accepted by the IETF Network Working
Group.

• 100 Informational messages

• 200 Success and acceptance messages

• 300 Redirection messages

• 400 Error in request from client

• 500 Server errors

The JS runs with normal user privileges, i.e. no root or super-user privileges.
When the JS is to execute an agent that requires root or similar higher privileges,
the agent is executed through a wrapper program that utilizes the suid and sgid
system calls to change the effective user-id that the agent executes at. This wrapper
script is a compiled C or C++ program, and has compiled in constants that contain
a checksum and byte-size for each of the agents that may be executed through
the wrapper. This ensures that the wrapper under no circumstances will execute
an agent that has been tampered with. The developers must pay notice to this, if
an agent is modified, the checksum and byte-size constants of the agent must be
updated, and the wrapper must then be recompiled.

CHAPTER 3. DESIGN 32

3.5.2 System Configuration Agents

The SCAs are primarily written using the Perl scripting language. This allows for
rapid development, and easy scripting of advanced functions. Perl was among
the first scripting languages to gain acceptance in the Unix world, and has, to
some extent, replaced much shell programming as the Free Software lingua franca
of system administration [8]. Perl combines features of the C programming lan-
guage, with a number of extra features that make it ideal for dealing with text files
and databases. This makes Perl an essential tool for system administration tasks
[8]. The standard availability of Perl on the OpenBSD platform makes it a natural
choice over alternative scripting languages like Python.

3.6 The job specification language

The structure of this job specification format is: first a controlling keyword, second
the primary parameter, and on some keywords further additional parameters. The
definition of the job specification syntax is attached in appendix F.

A sample job-specification is as follows (line numbers not part of spec):

1 job begins
2 job id 3933350
3 file pf-841587000 pf.conf
4 file ssh-072572000 sshd.conf
5 backup pf.conf
6 backup sshd.conf
7 install pf.conf
8 install sshd.conf
9 rehash
10 wait 5*60
11 rollback pf.conf
12 rollback sshd.conf
13 rehash
14 log genbulk
15 log transfer
16 job ends

This is a basic job specification used to make a «test-run» of two configura-
tions. In this job run, the CMP transfers two files to a the firewall, placing the
files in the temporary storage space, and naming the files pf-841587000 and
ssh-072572000. On lines 3 and 4, these files are specified to be used as con-
figuration files for PF and SSHd, respectively. On lines 5 and 6 the system is
instructed to make backup copies of the currently installed configurations, before
installing the new files on line 7 and 8. Line 9 tells the system to reload all man-
aged configurations, thereby applying the new configurations. Next a 5 minute
wait period is specified. After the wait, the last backup copies of the pf.conf
and sshd.conf configurations are put back in operation, and applied on line 13.
Line 14 and 15 generates a log file bulk package, and prepare these files for trans-
fer. Line 16 ends the job spec. Only when this command line is received from the
JM, the execution is started.

CHAPTER 3. DESIGN 33

3.7 Graphical Management Client

Figure 3.3: Architecture of the GMC system.

The GMC construction consists of a collection of core functionality, a set of
modules that extend the core interface and functionality, and finally a set of support
functions and modules. The core functionality includes elements like the main GUI
framework, startup functionality and module management. The central element
of the core is the core user interface, which is instantiated at application startup.
Most of the elements in the core are implemented as static classes. This means that
functions and variables located in the core, are globally available in the application,
and data is persistent during the execution.

This construction is also used for the supporting modules. As an example, one
of the supporting functions is a module for SSH communication. This module
needs to use a single SSH connection for all communication, while multiple of the
other parts of the application need read/write access to this connection. We find that
this is most easily implemented by using a static construction in Java, as opposed
to building a message and object passing architecture. The supporting functions
are not considered to be part of the core, as they do not need to be present at all
times, and as such are instantiated on first use. Interfacing between the supporting
functions and the other modules also go directly, and not through the core classes.

Figure 3.3 shows the architectural division of modules, and where commu-
nication between modules occur. Separate modules are created for each type of
information to be displayed on screen.

CHAPTER 3. DESIGN 34

3.7.1 The design of module loading/selection

Figure 3.4: Flow chart of boot process and module loading.

What the user sees as the application, is actually the user interfaces of the
modules, loaded onto the core user interface. Except for the window framework
and visual divisions, the core and support functions should be transparent to the
user. All application interaction is done through one or more application modules.
One such is selected as the primary module, and is started at application startup.
This primary module allows the user to select how the application will be used;
as a standalone filter editor tool, or a front-end for a management solution. The
primary module is next responsible for loading either the firewall management
browser module, or loading the filter configuration editor. The application startup
and module loading is illustrated in figure 3.4.

When the application is up and running, selection of displayed module is man-
aged by the core module management. Selecting a new type of operation, makes
the currently active module to request the loading of the appropriate module. The
requesting module is then kept active, but is hidden from view. When the new
module is loaded, it registers itself with the module management. Once the user is
done using a module, this module is removed from view, and unregistered from the
module management. The core user interface will then bring into view the module
that was responsible for opening or activating the just closed module.

3.7.2 Data structures in the Graphical Management Client

Application logic dependent data structures are not restricted by any general design
guidelines, except from those imposed by the libraries and classes used. There does
however exist a clearer design of the data model related to representing firewall
groups and units, and the information contained within these. Figure 3.5 shows
how the data model is conceptually built up. A tree structure is used, with a data
object representing the management host at the top, and groups and units following.

As a firewall may be configured in a failover solution, the differentiation of
logical units and physical units is done. As such, a logical unit is what totals as a

CHAPTER 3. DESIGN 35

Figure 3.5: Domain Model view of the Graphical Management Client, simplified
representation.

firewall solution, while a physical unit is a single host, acting as a part of a logical
unit. Information that is common for all hosts involved in a logical unit, is kept and
presented to editors at the logical unit level, while information specific to a host is
presented at the physical unit level.

It must be noted that the data model pictured in figure 3.5 is the architectural
model. In implementation there is no need for an actual data binding between the
nodes in the structure. As an example, the firewall browser module only uses a
limited part of the data tree, as shown in figure 3.6. The browser module is how-
ever the location from which the filter editor, log viewer and service configuration
modules are started. Thus the browser module is the starting point for loading these
parts of the data.

Figure 3.6: Class diagram of the data model for representing firewall groups and
units administrated using a Copwall system.

Please note that figure 3.5 is a simplified domain view of the data model. The
actual data class models are far more complex. A separate class diagram is created

CHAPTER 3. DESIGN 36

for each of the significant data elements, and an XML Schema Definition document
is set up to implement the corresponding data model, both for Java code, and for
the XML files used for persistent storage of data. A sample of such a class diagram
and corresponding XSD can be found in the appendixes D and E.

3.7.3 Application code package separation

The application code is split into separate Java packages, following a logic of sep-
arating different modules into separate packages (fig. 3.8). The purpose of this is
to impose a logical structure of where various source files may be located, and to
enforce an awareness of scope and code separation onto the developers. As Java
package separation in itself is not a rigid code separation tool, the developers are
directly responsible for making sure that low coupling[9] is achieved, by defining
and documenting interfaces between packages. At this stage in the design process,
there has not been created any formal interface specifications.

Figure 3.7: Detailed model-view-controller data flow.

Within each module package, there is further package division. As a model
/ view / controller construction is used in the application (fig. 3.7), there should
be package distinction of data model, user interface, and controlling code within
each module. Therefore each module package has at least three sub packages, «ui»
containing user interface (view) components, «actions» containing the controlling
command classes, and «model» containing the relevant data model classes. Varia-
tions to this theme is allowed. For instance does no data model package exist in the
core package, as this has no central data model. The core package does however
contain additional packages like «widgets» and «commands», containing elements
that are not specific to any particular module, but used generally in the application.

CHAPTER 3. DESIGN 37

Figure 3.8: Package structure of Java code in Graphical Management Client.

Chapter 4

Implementation

4.1 Development tools and IDE used

For the source code in Java, we have standardized on the Eclipse Platform by the
Eclipse project. Eclipse is an extensible platform for integrated software develop-
ment, developed primarily for Java development, but supporting a wide range of
other languages and features through a plug-in system.

Specifically our configuration of the Eclipse Platform uses the Eclipse Software
Development Kit (SDK), version 3.0.1, including Eclipse Platform runtime, Plu-
gin Development Environment (PDE), Java Development Tools (JDT), Rich Client
Platform (RCP) and Standard Widget Toolkit (SWT), extended with the C/C++
Development Tool (CDT) the Eclipse Modelling Framework (EMF) and support
plugins for UML modelling support and LaTeX syntax support.

4.2 Third-party Java libraries used in the project

The following third party libraries have been used in development of Java code,
and must be bundled with the finished application to make it fully functional:

• Castor version 0.9.6
http://castor.org/
XML parser and generator with support functions.

• Castor depends on the following libraries from the Jakarta Project

– Commons Collections
http://jakarta.apache.org/commons/collections/

– Commons Logging
http://jakarta.apache.org/commons/logging/

– ORO
http://jakarta.apache.org/oro/index.html

38

CHAPTER 4. IMPLEMENTATION 39

– Regexp version 1.1
http://jakarta.apache.org/regexp/index.html

– Xerces-J version 1.4.0
http://xml.apache.org/xerces-j/

• Windows Look and Feel Fidelity 0.5.1
https://winlaf.dev.java.net/
Look and feel bug fixes for Swing on the Windows platform.

These libraries are either licensed under the BSD License1, or under one of the
Apache license versions 1.0, 1.1 or 2.02. In addition to the previously mentioned
libraries, the Java Secure Channel, JSCh library will be used for SSH2 communi-
cation in Java code.

During the start of the development we evaluated a few other libraries and pack-
ages, that we thought could simplify the development. One of these was SwiXml, a
small GUI generating engine for Java applications and applets. With SwiXml, the
GUI is described in XML documents that are parsed at runtime and rendered into
javax.swing objects [10]. While this tool early on seemed to give us a tool allowing
for rapid prototyping of user interfaces, it was soon concluded that implementing
rather complex GUIs using SwiXml provided a relatively small gain, compared to
the effort needed to learn the structure and use of the XML files needed to SwiXml.
Thus we have only performed a short investigation and test of SwiXml, and not
used it in further development.

To allow for scalability of the GMC, we intended to use a plug-in based ar-
chitecture, supporting dynamic extension of the application. As our knowledge
of dynamic class loading and Java re-entrant code was rather limited when the
project started up, research was made trying to find an existing framework for a
dynamic plug-in architecture. What we came up with, was the plug-in framework
of Eclipse, and the Java Plugin Framework (JPF). The Eclipse Plugin Development
Environment (Eclipse PDE) is a powerful, but large system that allows for dynamic
applications. While trying to comprehend the API specification of this library, we
realized that using this tool would make the resulting solution heavily dependent
on most of the Eclipse platform. We found that not to be acceptable for our ap-
plication. A longer examination and test was therefore done on the Java Plugin
Framework. This is a framework that allows for simple integration of plug-in func-
tionality in a Java application. But using this as a central part of the application,
would make internal data transfer within the application rather cumbersome. Com-
bining this with the lack of time we had available to learn how to use it efficiently,
this was also scrapped.

As noted, the third party libraries used in the Java application, will have to be
bundled with the application upon distribution. It is preferable that the distribution
of the Java application be done as a single JAR file. Due to limitations in the

1http://www.opensource.org/licenses/bsd-license.html
2http://www.apache.org/foundation/licence-FAQ.html

CHAPTER 4. IMPLEMENTATION 40

Jar format, it is not possible to directly package additional Jar files within one Jar
package. To accomplish this, an additional tool is needed. The de-facto standard
solution to this problem, is to use One-JAR3 package created by P. Simon Tuffs.
We will use an Eclipse plug-in that automates the use of One-JAR, called FJEP, the
Fat Jar Eclipse Plugin4 by Ferenc Hechler and others.

4.3 Code conventions

4.3.1 Start comments
All java source files should start with a C-style comment containing the CVS Id
tag, and creation date:

/*
* Id

* Created on ${date}

*
*/

The Id tag is expanded by CVS on first commit, and should look something
like:

Id: CoreUI.java,v 1.48 2005/05/10 13:40:52 magne Exp

The ${date} tag is a Eclipse internal variable and is expanded on creation.

4.3.2 Naming conventions

We have aimed at following Sun’s naming conventions explained in the Code Con-
ventions for the JavaTMProgramming Language [11] document. This document
reflects the Java language coding standards presented in the Java Language Speci-
fication [12], from Sun Microsystems, Inc.

4.3.3 JavaDoc

For Source Code comments, standard JavaDoc is used. All classes, interfaces, con-
structors, methods and significant variables should have a short JavaDoc comment
to explain its purpose.

For any other in-line comment needs, // single line or /* comment */
multi line C-style comment may be used where applicable.

3http://one-jar.sourceforge.net/
4http://fjep.sourceforge.net/

CHAPTER 4. IMPLEMENTATION 41

4.3.4 Source code example
/*
* Id: MyClass.java,v 1.1 2005/05/10 13:40:52 magne Exp

* Created on 15.feb.2005

*/

package net.copwall.mystuff;

import net.copwall.yourstuff.YourClass;

/**
* Class description goes here.

*
* @version xxx

* @author Name

*/
public class MyClass extends YourClass {

/** firstVariable documentation comment */
public static Object firstVariable;

/** secondVariable documentation comment */
protected SomeClass secondVariable;

/**
* MyClass constructor comment...

*/
public MyClass() {

// code here...
}

/**
* doSomething method comment...

*/
public void doSomething() {

// code here...
}

/**
* doSomethingElse method comment...

* @param myParam description

*/
public void doSomethingElse(Object myParam) {

// code here...
}

}

4.3.5 Class imports

Importing external classes should never be used implicit like e.g.
import net.copwall.yourstuff.*;, but explicit like this:
import net.copwall.yourstuff.YourClass;. This can make the im-
port block rather large in some circumstances, but makes reading and understand-
ing what external classes are used for rather easy. Eclipse supports auto importing
of classes, so organizing imports is an easy task for the developer.

CHAPTER 4. IMPLEMENTATION 42

4.4 Core functionality

Core functionality is collected in the net.copwall.core java package. This
package contains the core functionality used throughout the application.

4.4.1 Boot sequence

The Boot sequence is a rather simple implementation responsible for setting up
logging, initiating core components like CoreUI, displaying a simple splash-screen
while loading the different modules like the ruleset editor, management and repos-
itory. We have stressed the usage of the logger in Boot, and as a result all de-
bugging and log messages are correctly logged to file during operation. Under no
circumstances System.out.println should be used, except from temporary,
restricted debugging. The Boot process will first try to start CoreUI, and there-
after all registered modules. If everything loads correctly, CoreUI is set visible to
the user. If an exception is thrown, the error message is logged to file for further
investigation.

4.4.2 Core User Interface

CoreUI is the main window for Copwall, and is implemented as a singleton in-
stance. It can be accessed in a static, synchronized way to keep it thread-safe.
By making the modules responsible for adding themselves to the different views,
like e.g. center area or west area, CoreUI is only used as a repository for the cur-
rent visible modules. This concept should eventually support storing the different
views so that switching between them without reloading is possible. Different pub-
lic methods is implements to add components to the views, and these methods also
manages resizing and splitpane logic. Splitpanes are visual dividers separating the
different views and supports resizing of the views. CoreUI also holds the instances
of the main menu, toolbar and statusbar. Members in need of adding components to
any of these, must fetch them trough CoreUI. Some logic is added not to break the
order of menu item groups and toolbar placeholders, but the developer sometimes
has to override these if placing elements in non-supported areas.

4.4.3 User action events

Collecting action commands in a sub-package called .actions, developers are
encourage to place all user supported actions here to clearly show what actions are
initiated by the user, and what actions are generated by members.

CHAPTER 4. IMPLEMENTATION 43

4.4.4 Custom widgets

PopDownButton

A PopDownButton is basically two buttons operating as one. As figure 4.1 illus-
trates, clicking the right part of the PopDownButton, a popup-menu is displayed
underneath it. Clicking the left part of the button will in this particular situation
bring up the advanced settings for the rule action.

Figure 4.1: Action popup menu

XPanel

XPanel is a JPanel extension capable of operating in expanded or collapsed mode.
In collapsed mode, only the top component is visible, and by clicking the plus-
icon, the panel expands and reveals the bottom component. The same action can
also be accomplished trough double clicking the top component. See figure 4.2 for
the conceptual layout of XPanel. The collapsed and the expanded components can
be any Java Swing Component of choice. XPanel is the core component for filter
rules.

Figure 4.2: XPanel layout

SettingsDialog

The abstract SettingsDialog is created to keep setting dialogs consistent trough the
application. Should a settings dialog be needed, the developer must subclass this
class. The abstract methods okPressed(), applyPressed(), and possibly
the cancelPressed() must be implemented. SettingsDialog defaults to being
a modal dialog. The developer can override this at request.

CHAPTER 4. IMPLEMENTATION 44

4.4.5 Command framework based on the command pattern

The package net.copwall.core.command contains the command frame-
work (fig. 4.3) used for coupling user inputs with actions that should be executed.
The command framework, is an extension of Swing’s own action framework, to
not break compatibility with Swing components. To meet the requirement of a
complex user interface with hundreds of different input actions, a simple way to
associate a button or a menu item with text and possibly an icon was needed.

An abstract command holds information about the command to be executed on
a user input, as well as the text label to display to the user and optionally a icon,
tool tip text, mnemonic key and an accelerator key. This means that both a button
and a menu item can be associated with the exact same command. Actually the
command can be associated with any Swing AbstractButton implementing
components like e.g. a JButton, JCheckBox, JToggleButton and so on.

Figure 4.3: Command Class Diagram

CHAPTER 4. IMPLEMENTATION 45

Internationalization of commands
The reason for extending Swing’s AbstractAction was to internationalize the
text and keyboard accelerator keys easy. Information about the command can be
stored in a ResourceBundle, and following a given pattern, completely define
how the command is displayed to the user. By using ResourceBundles to de-
fine command faces, they are 100% internationalized, and text, icon, mnemonic
and accelerator keys can easily be changed without modifying source code.

ResourceBundle file: messages.properties

file.open.label = &Open
file.open.icon = net/copwall/core/ui/icons/16/open.png
file.open.desc = Open Packetfilter
file.open.acckey = ctrl O

Open is used as the label for the command, open.png as the icon, and so on.
The & precending Open tells the Command to automatically create a mnemonic
identifier for the character O.

Following code will create a new command based on the data given in the
messages.properties file:

ResourceBundle res = ResourceBundle.getBundle("messages");
ICommand runMe = new ICommand() {

public void execute(CommandEvent event) {
System.out.println("runMe was executed!");

}
};
Command myCommand = new Command(runMe, "file.open", res);

When creating a new button based on myCommand we only need one line of
code, and the same command can be reused in e.g. a menu (figures 4.4 and 4.5):

JButton myButton = new JButton(myCommand);
JMenuItem myMenuItem = new JMenuItem(myCommand);

Figure 4.4: A JButton created with the abstract Action «myCommand»

Figure 4.5: A JMenuItem created with the abstract Action «myCommand»

CHAPTER 4. IMPLEMENTATION 46

Processing of user input

The response to an user input event, will trigger the actionPerformed()
method in Swing, and eventually execute the command associated with the menu
and/or button. To be more specific, pressing any of the myButton or myMenuItem
will trigger the actionPerformed() method in Swing, which in turn will ex-
ecute the runMe object and print runMe was executed!.

In its simplest form, the ICommand interface implements one single method;
execute(CommandEvent e). which is executed from a Swing
actionPerformed event. For an undoable command, we need to implement
some additional methods, which we will look at soon.

Pre / post command listeners

To be notified before or after a command is executed, a pre or post listener needs to
be registered with the Command. The pre and post listeners implement the exact
same interface; ICommand. See figure 4.6. The pre and post listeners are passed
a copy of the CommandEvent object to be notified what command is about to be
executed, or was just executed, respectively.

Figure 4.6: Pre- Post CommandListener Interaction Diagram

Undoable commands

Some user input events needs to be undoable, and by extending the command
framework and adding the UndoManager, this is accomplished by listening for
execution of a command, and put it in the undo queue. The UndoManager is
simply a post command listener (fig. 4.6), listening for undoable commands.

If an UndoCommand is executed, the UndoManager registers the command
in its undo queue and waits for the user to undo it. Initially, the queue holds
100 objects, which should be sufficient in most situations. The developer writ-
ing commands, must implement the IUndoCommand interface and is responsible

CHAPTER 4. IMPLEMENTATION 47

for storing pre and post states of the model so that an undo or redo action works as
expected.

4.5 Java and XML data binding

4.5.1 Packet Filter model

XML data binding is the shortest path between java objects and XML documents.
The concept is explained thorough in the article «XML and Java technologies: Data
binding with Castor» [13].

The PF model uses Castor and data binding. While meeting the requirements
for a XML structured middle-format, we also gain advantage trough only storing
away the data interesting for the ruleset. Using Castor’s Source Code Generator,
the PF model is auto-generated from the XSD Schema as seen in appendix E. Auto
generating source code has some advantages and some drawbacks. The first test,
we ended up with about 200 auto-generated classes for the PF model. Later, we
discovered Castor’s class inheritance feature, and we agreed to refactor the XML
schema, and generate a new model. We accomplished to reduce the number of
classes to about 90, and also gained a much better design.

We configured the source code generator to auto-generate PropertyChange
methods for all classes. If any of the values in the model is changed, an event is
issued to all PropertyChange listeners. This is an important feature for the
MVC concept used in the application, and a more in-depth explanation is presented
in the following subsection.

The PF BNF [14] was used as reference when creating the XML schema for
Castor. Also the PF User Guide [15] was used frequently.

4.5.2 View / controller components

All GUI components viewing and controlling the model in some way must comply
to a number of rules.

First of all the view / controller (VC) must be able to be initialized as a dummy
VC, not connected to the model in any way. This should place the VC in a dis-
abled, non-editable state, but laying out the various components if possible. From
here on, when the model is added to the VC, it initializes the creation of all
objects depending on the model, reads the current state, and register itself as a
PropertyChangeListener. Controller components of interest, should be set
to an enabled, editable state. See figure 4.7. The VC is responsible for correctly
displaying the initial state of the model, and thereafter wait for change events or
user input. We refer to this as the enabled state.

Controller elements like buttons, checkboxes and menu items modifying the
model in any way, should never change their state based on other controller com-
ponents, but rather listen for ChangeEvents from the model. In some cases

CHAPTER 4. IMPLEMENTATION 48

Figure 4.7: The GUI view / controller lifetime.

this is not possible or appropriate e.g. where one wishes to prevent user inter-
action during a running process. If the component supports drag and drop, it is
crucially important that they implement the VC interface. This interface assure
that the method disconnectFromModel() is executed before the transferable
Object is serialized. If the VC component is not disconnected from the model,
the serialization process will try to serialize the GUI components registered as
PropertyChangeListeners as well 5. As a general rule it is desirable that
all VC components implement this interface to assure it can connect and disconnect
from the model at request.

Delegated view / controller example excerpt
/**
* Constructor sets ActionMenuUI in a

* disabled un-editable state.

*/
public ActionMenuUI() {

super();
init();

}

/**
* Constructor takes a rule as parameter.

* Try to start the GUI component.

* @param filterRule the PFFilterRule to view.

*/
public ActionMenuUI(PFFilterRule filterRule) {

super();
init();
setFilterRule(filterRule);

}

/**
* Set the PFFilterRule to view.

* @param filterRule PFFilterRule object

*/

5http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4202657

CHAPTER 4. IMPLEMENTATION 49

public void setFilterRule(PFFilterRule filterRule) {
if(this.filterRule == filterRule) {

stop();
connectToModel(); //reconnect to the model...

} else if(null != this.filterRule) {
stop(); //implies disconnectFromModel();
this.filterRule = filterRule;
load(); //reloads and connects to model...

} else {
this.filterRule = filterRule;
load();

}
}

CHAPTER 4. IMPLEMENTATION 50

4.6 PF ruleset editor

The ruleset editor as shown in figure 4.8 needs some additional explanation. The
figure is marked with numbers ranging from 1 to 6 to distinguish the individual
components explained.

Figure 4.8: Screenshot of Copwall, PF ruleset editor.

4.6.1 Expanded rules

A single rule logically separates the different settings trough use of titled borders.
Each of them explained below.

Action

First, the Default block all rule (Figure 4.8 (1)) states that this is a block rule,
both trough the comment and trough the Action icon. From the «pop-down» menu
displayed when clicking the down arrow right of the icon, the user is presented
with options for selecting either «Pass», «Block» or «Block Return...» which in
turn will open advanced action settings.

CHAPTER 4. IMPLEMENTATION 51

Direction

The Direction icon is grey, and represents that this rule will match any direction.
The other options selected from the «pop-down» menu are «Inbound» and «Out-
bound» traffic.

Logging

The Logging icon is represented with a small green check mark in the lower right
corner, indicating that this rule should be logged. The other options include «No
logging» and «Log All». «Log All» is only applicable for stateful rules, and dis-
abled for stateless rules.

Address Family

Address Family is either IPv4, IPv6 or any of them, here represented with a #
indicating any.

Protocol

The Protocol section is where the user specifies which protocols this rule should
match, again a grey icon represents any protocol. The preliminary supported pro-
tocols are «TCP», «UDP» and «ICMP». More should be supported.

Stateful Inspection

Stateful Inspection is also represented with a grey icon, indicating that no state
inspection is used for this rule. The options are; «Keep», «Modulate» or «Synproxy
State». A more in-depth explanation is discussed later in this chapter.

Interface

The Interface (Figure 4.8 (2)) section displays a list of interfaces this rule should
apply to, possibly none if the All checkbox is checked. All available interfaces can
apply to the rule.

Source and Destination

Source and Destination (Figure 4.8 (3)) sections are basically the same. Only
thing separating them, is the All checkbox placed right of the Source Address
list. All tells PF to totally ignore source and destination addresses, equivalent to
any source and any destination. The Address list can consist of address(es), host-
name(s), table(s) or interface(s). Any of these may be negated to invert the sense
of the match, trough a popup menu. The Port list may hold single numeric ports,
a port name (as specified in OpenBSD’s /etc/services file) or a port range.

CHAPTER 4. IMPLEMENTATION 52

Ranges can be specified as exceptions, matching every port except the range spec-
ified, or as ranges including or excluding boundaries.

Comment

The comment is displayed as a un-editable label, but can be changed trough the
Edit Comment menu-item in the popup menu. In edit mode, the label is swapped
with a text field as shown in figure 4.9, to allow the user to edit the comment. The
text field is swapped back with the label when the user is finished editing, defined
as; [enter] pressed, or focus lost on the text field.

Figure 4.9: Editing the comment for a rule.

Left column

The left column (Figure 4.8 (4)) in the Ruleset editor is used to mark the current
active rule, as well as holding the plus / minus icon for expanding and collapsing
the rule.

4.6.2 Collapsed rules

The second rule pass all local traffic is collapsed, only showing the comment. It
also has an icon arrow located in front of the comment. This icon represents a quick
rule, in other words, this rule is evaluated as the last matching rule. Last matching
rules (or quick rules as they are called in PF) are recently heavily debated on the
PF mailing-lists 6.

4.6.3 Disabled rules

When disabling a rule, (Figure 4.8 (5)) it is suggested that the rule no longer
be part of the «active» ruleset and is therefore left out, or commented out in the
pf.conf output file. (The XML to pf.conf translator is as of today, not yet
implemented.) Disabled rules are greyed out, and controller elements like buttons,
checkboxes, etc are disabled to clearly state the fact that it is not in use.

6http://www.benzedrine.cx/pf/index.html

CHAPTER 4. IMPLEMENTATION 53

4.6.4 Dragging and dropping a rule

The rules can be rearranged trough drag and drop. When a drag gesture is recog-
nized, the rule GUI VC components are decoupled from the model preparing for
transfer, thus the rule look disabled to the user. A transparent border is painted
over drop targets as the user moves the rule down or upwards the ruleset. When
dropping a rule on top of another, the rule is added or moved to the index preceding
the drop target.

4.6.5 Rule popup menu

The popup menu (Figure 4.8 (6)) supports general settings for the rule and rule
set. The menu items include, editing the comment, collapsing and expanding the
rules, adding, disabling, deleting and opening advanced settings for rules. The
popup menu is built as general as possible, and should support all types of PF
rules.

4.6.6 Advanced Rule Settings

Action

As figure 4.10 shows, some additional settings for the Action statement exist. For
a block rule, the user may choose to drop the packet, or return an ICMP message
to the source host. With TCP connections a TCP Reset message can be issued
to terminate the connection. The Default Block Policy option will use the default
block policy defined for this ruleset.

Stateful Inspection

The following text is a summary of the original OpenBSD pf.conf manual from
the subsection Stateful Inspection. For a more in-depth explanation of
Stateful Inspection, please see the original document [14].

Stateful Inspection is a method for tracking the state of a connection. This is
used to eliminate the need to evaluate a complete ruleset, by inspecting only the
initial package of a connection, and thereafter keeping state of all packages for this
connection. All traffic for the connection will flow trough the filter because of the
filter’s awareness of it. By checking the sequence number of the packets before
any rules are evaluated, the packets are passed or dropped based on the expected
values. This prevents spoofing attacks and takes load of the filtering engine since
no additional rules need to be evaluated.

Keep, modulate and synproxy state all share the same type of options, but
operate in a different nature. Keep state, can be used on both TCP and UDP con-
nection, though UDP is stateless by nature, the filter engine matches state based on
source address and port. Modulate state is used for TCP connections where initial
sequence numbers (ISNs) are assumed to be poorly generated, and vulnerable to

CHAPTER 4. IMPLEMENTATION 54

exploits. PF creates «a high quality random sequence number for each connec-
tion endpoint» [14]. Synproxy state is used for TCP connections where the user
wants to make the handshake transparent to the active and passive endpoint. The
advantage gained with synproxy state is summarized in the previously mentioned
document as:

No packets are sent to the passive endpoint before the active end-
point has completed the handshake, hence so-called SYN floods with
spoofed source addresses will not reach the passive endpoint, as the
sender can not complete the handshake [14].

As seen in figure 4.11, it is possible to limit concurrent state for the rule. The
State Binding specifies whether the state should be bound to a single interface, a
group of interfaces or «floating» between interfaces.

Figure 4.12 show the source tracking options for the stateful rule. Source track-
ing makes it possible to track state entries on per. source host basis, and specify
limits if applicable.

Figure 4.13 show the TCP connection settings for a rule. TCP connection set-
tings can e.g. limit the creation of new connections over a given interval originating
from the same host.

Figure 4.14: Overload policy makes it possible to place a host, violation any of
the limits specified, in a table to block further activity from the offending host or
redirecting it to a tarpit process or restricting its bandwidth.

Figure 4.15: Flushing of states terminates the connections from the hosts vi-
olating any of the limits specified. The «Flush States Globally» option implies
killing all connections from the offending host.

TCP Flags

TCP flags are most commonly used for matching packets initiating a new connec-
tion, but could also be used to match other flags set in the TCP header.

The following TCP flags are supported by PF:

• FIN - Finish; end of session

• SYN - Synchronize; indicates request to start session

• RST - Reset; drop a connection

• PUSH - Push; packet is sent immediately

• ACK - Acknowledgement

• URG - Urgent

• ECE - Explicit Congestion Notification Echo

• CWR - Congestion Window Reduced

CHAPTER 4. IMPLEMENTATION 55

By specifying TCP flags for check/mask (Figure 4.16), the rule can be matched
only to packets having «check» set out of those specified in «mask». The «SYN /
SYN, ACK» combination is often used to match a packet attempting to start a new
connection. Looking at packets with only the «SYN» and «ACK» flags set, only
«SYN» may be set. I.e. the combination would match a packet with «SYN» and
«URG», but not «SYN» and «ACK». A mask must always be specified and GUI
logic helps to accomplish this.

Figure 4.10: Advanced settings for rule action.

CHAPTER 4. IMPLEMENTATION 56

Figure 4.11: Keep State and limit concurrent states to 2000.

Figure 4.12: Keep State Source Tracking.

CHAPTER 4. IMPLEMENTATION 57

Figure 4.13: Keep State TCP Connection Settings.

Figure 4.14: Keep State Overload Policy.

CHAPTER 4. IMPLEMENTATION 58

Figure 4.15: Keep State Flush Policy.

Figure 4.16: TCP Flags Settings.

Chapter 5

Testing

As this project has focused primarily on the GMC part of the planned system, and
minimal work has been performed on the other two parts, it is not relevant to talk
about system testing of the CMP or CAS. A total integration test plan has not been
developed. The only element of internal system communication which is clear, is
that SSH2 subsystems and SCP will be used for data transfer. Reasonably complete
is also how the preliminary protocol for Job specification looks like. All in all, the
only part of the system that has been tested in any sense is the GMC.

In starting the planning and prototyping phases there was little awareness of the
need to select a testing method. No real planning was done in regards to how testing
would be performed. Though the development model specified has been followed,
with an unit based iterative cycle of planning and development, the actual focus
on unit testing has been minimal. The work has been seen as a prototyping effort,
more than a focus on commercial quality code. This has resulted in reducing test-
ing to the mere necessary act of getting code to compile correctly, and to perform
the requested task correctly. This method of work is quite common in unstructured
development projects, and may be compared to a more «code-and-fix» way of de-
veloping, though the way each unit or feature has been functionally tested is more
in the line of a white-box test.

Having said this, it must be pointed out, that each time a major feature has been
introduced into the system, a more thorough test has been performed to verify this
features function and integration. Such test-points have occurred for instance with
the introduction of

• the collapsible/expandable panels

• navigational buttons and tabbed panes in filter editor

• drag-and-drop functionality

• command and action interfaces and classes

• the Castor generated data model for PF

59

CHAPTER 5. TESTING 60

• the advanced rule settings dialog

• the core GUI framework

At these points, we have used the white-box testing paradigm to verify that
the new features work as intended, and that they do not break other parts of the
application. White-box testing is a concept name for structural testing. This is
performed by examining code, and subjecting the product to test data and usage
patterns, where the test cases are derived from transparent knowledge of how the
code works[16]. This method of testing is practically the opposite of black-box
testing, where test cases are designed with basis in expected functionality, not in
knowledge of actual construction, and the test cases are fed through the application
or system, checking that the end result is as expected. The system is viewed as a
black box, for which you know what to put in to, and have an expectation to the
outcome.

The Castor library has been used as parser and generator for the XML files
that describe PF configurations and the hierarchy of managed firewalls. In or-
der to ensure that the Java data model is completely compatible with the Castor
parser/generator, the source code generator included in the Castor package has
been used to auto-generate the Java code for these data models. As a method to
test this auto-generated code, simple unit test Java classes have been created, that
create test configurations within the Java virtual machine, and perform black-box
unit testing on the model and both Castor XML marshalling and unmarshalling1.
The resulting XML files have been read through to verify that the marshalling
process completes correctly, and the debugging features in Eclipse have been used
to check that in-memory representation of data read in from XML is correct. The
XML files generated by this black-box process has also been used as basis for
prototype testing, and for white-box testing of application features.

It is worth noting that at regular intervals, we have had assistance from the
group that we have shared workspace with, in testing the user interface. These
tests have been performed in a black-box way, where the person who has assisted
has been given a rough explanation of what the application should be able to do,
before he has been given full freedom in exploring the application interface. This
has proven to be an efficient way to uncover flaws that we had not expected to
appear while doing our white-box tests.

Methods such as equivalence partitioning and path testing have not been ap-
plied in our defect testing, and the reason for this may be explained in the fact that
we have not had a clear strategy for testing.

Should we try to find a principle for integration testing that is similar to the
informal approach we have made, this will have to be the bottom-up approach,
where low level components are integrated and tested before higher level compo-
nents have been developed [16].

1 In computer programming, the marshaller converts data parameters from procedure calls into a
standardized data structure for transfer or storage. This data is later decoded or «unmarshalled» by a
receiver.

CHAPTER 5. TESTING 61

When it comes to security testing, this have to be done when the application is
closer to release. We have only done prototyping so far, so we have seen no point in
doing security tests yet. Before the application goes in release a thorough security
test case must be in place, testing for how vulnerable the system is for things like
DoS, Man-In-The-Middle attacks and key tampering attempts [17].

Chapter 6

Discussion of results

6.1 Introduction

A discussion of results often tend to focus on what has not been completed, what
has been done wrong, and similar problems. This text is no exception. But before
starting the summary of what is missing, or could have been done differently, it is
necessary to note that at the end of the project, all members of the project group
feels that we have completed the task we took upon us. What we promised to
deliver, was a foundation of a management solution, through documented design,
requirements definition, and some prototype code. By reviewing the requirements
specification and design documents, we feel it can be claimed without problem
that the design and concept project goals have been reached. Also, by examining
the developed application prototype, and implementation description, we feel that
we can claim to have completed the primary goal; to introduce a different and
functional concept for visually editing firewall rules.

6.2 Deviations from requirements

6.2.1 Management server and firewall configuration software

From the very beginning of the project period, there was a clear plan to per-
form more development of all parts of the system, as compared to what we have
achieved. Though time was allocated to development of prototype development on
the management server and firewall configuration software, we ended up focusing
more on the GUI application, thus taking away the development time allotted to
the other parts of the system. The reason for this will be discussed further down.

When it comes to the planning and design of the management server and con-
figuration software, there are a few elements to point out. First of all, we must
admit to have discovered a flaw in the system construction that has followed us
throughout the entire project from inception. The Copwall system aims to become
a tool for configuration of firewalls on multiple platforms, but relies on installing

62

CHAPTER 6. DISCUSSION OF RESULTS 63

system software on the firewalls that are to be managed. There is no problem to
develop and install this software as an OpenSSH subsystem on a computer run-
ning OpenBSD, but it may not be possible at all to install user defined software
on other platforms. In addition to this, the concept of configuration software in-
stalled on the managed firewalls, complicates both installation of the system, and
the construction of the overall system. By eliminating the named Configuration
and Administration System completely, by using direct command shell interaction
from management server and/or GUI application, it may become a smaller task to
support the two modes of operation, as server-based and standalone configuration
tool.

We have also, in the design document, completely forgotten one of the im-
portant concepts of the original problem definition in regards to the management
server. It is noted quite early that a modular construction should be used in the
management system, that separates functions related to communication with, and
configuration of firewalls, into separate modules for different operating systems
and/or firewall platforms. As is clear when examining the design document, is that
this has sometime during the project been overlooked, as no such platform depen-
dent module structure exists. Trying to find a reason for this, one has to conclude
that the major factor must be that we have focused completely at OpenBSD as the
platform to be configured.

6.2.2 Graphical management application

In addition to the focus on OpenBSD, there has been a clear focus on the GUI
application, and hence the GUI configuration tool. This part of the system is a
highly central element of the original project definition, and is seen as the core
functionality of the application. As such, it was decided that we should focus on
developing as much as possible of a functional filter configuration tool. Seeing that
GUI application prototyping and development is a large task, it was decided that
software development of the other sections should be postponed. System software
development of the type needed for the CMP and CAS has not been dismissed as
a minimal job, but we see this as more a job of using our existing knowledge of
the Unix operating system family and C programming, thereby making the devel-
opment of CMD and CAS more a job of making the elements of the system work
together, rather than creating something completely new.

In the GMC, we have utilized the Castor XML framework/library. This gave
us a large advantage, by being able to auto-generating Java source code from a
XML Schema Definition. By building a precise XSD representation of the PF
configuration format, Castor helped us get an efficient Java representation of a very
complex data structure, with integral XML support. But as a famous saying goes,
«There’s no such thing as a free lunch». Gaining advantages with Castor, locked
down our data model, preventing the addition of user defined methods to the objects
generated by Castor. Using a GUI and underlying controllers to manipulate the
data has at times become a complex and confusing task. This has at times slowed

CHAPTER 6. DISCUSSION OF RESULTS 64

progress quite drastically, trying to find solutions that work.
It was an intention from both project group and employer, to use a true plug-

gable architecture on top of the basic functionality of the management application.
This has not been achieved. We have however, tried to get a modular structure
of the application. To some extent, this has been achieved, although some critic
may be raised also here. Firstly, there has been written very scarce documenta-
tion in regards to software interfaces and module loading methods. Secondly, the
modular structure is currently geared towards supporting a single type of firewall.
Again we see that we should have had a higher awareness of the planned multi
platform support, along with a higher awareness of developing concrete interfaces
with accompanying documentation.

6.2.3 Configuration generator

Though we have a complete data structure implemented to represent filter configu-
rations, and support of storing the configurations to XML file format, we have not
started work on the system to translate XML configurations to the configuration
format expected by the PF software on firewalls. The same goes for the reverse
parser, for translating configuration file format in to the data model and XML for-
mat.

6.2.4 Summary of deviations

The following list is a summary of what elements defined in the requirement spec-
ification that remains unimplemented in software:

• CMP is completely unimplemented, but is documented and designed.

• CAS is completely unimplemented, but documented and designed.

• Firewall browser in GMC is mocked up, but not implemented.

• Interface configuration, service configurators, log viewer, and system con-
figurator have gone though some prototyping, and some design has been
performed, but no code has written.

• Configuration file generator/parser, job request system and SSH communi-
cation modules in the GMC are designed and described, but no actual code
has been created.

• The PF editor has not been completed, though the central concepts are demon-
strated, and complete its specified requirements.

• The implementation of a modular structure in the application is not as rigid
and well documented as it should have been.

CHAPTER 6. DISCUSSION OF RESULTS 65

6.3 Other considerations

We see that there is a risk involved in introducing a graphical configuration solution
of the type we have created. It is difficult to assess how the user community will
react to a solution that is completely different from what is accepted as a norm. In
addition to this, none of the members of the project group have any formal knowl-
edge of ergonomic concepts. We have stated more than once, that our solution is
supposed to have an interface that is easy to understand and use. But we have no
basis to debate this in form of a human-computer interface principle discussion, as
none of us have knowledge within this field.

To our defence, we have had external users test our application. These users
have been a mix of users that are very experienced with PF configurations, and
users who are completely new to the principles of firewalls. From these test users,
the responses have been that the filter editor has a logical construction, and repre-
sents in a good way how a filter setup does work in reality. We can also through the
feedback conclude that the application does implement its set of the requirements.

The development of the GMC has been based to great extent on throw-away
prototyping. This has sometimes resulted in having good technical solutions intro-
duced late in the process. As a result, some sections of the application has been
completely rewritten several times. Some of the solutions used have also been the
result of lengthy research and test prototyping before actual implementation. It is
agreed within the group that the method of throw-away prototyping has at times
used up too much of our available time.

6.4 Potential for completion

The following is an ordered list of what needs to be done to make the system fully
operational, as described in requirements specification. It is worth noting again
that our problem definition clearly states that we have never expected to get the
system fully operational.

1. make filter configuration module complete

2. implement firewall management browser module

3. implement module for network interface configuration

4. implement missing features of core user interface

5. implement services configuration module

6. implement system configuration module

7. implement configuration generator and parser

8. implement SSH communication in GMC

CHAPTER 6. DISCUSSION OF RESULTS 66

9. get direct communication between GMC and firewall operational

10. implement status and logging module

11. implement the CMP, and introduce use of this into the GMC.

At the points 7, 9 and 11 release milestones should be set. At these points
the system should have enough functionality to represent a useful tool that can be
released to the public. The first release, at point 7, should allow all forms of config-
uration to be done, using local file import and export, and manual copying to and
from firewalls. At second release, point 9, the system is complete as a standalone
configuration editor, which supports import and export of configurations directly
via SSH to firewalls. The third release is the complete system release, where all
features are implemented. From this release on, work should be done to bring the
application to a stable and tested state, ready for release of version 1.0.0.

6.5 Potential for expansion

After the release of the stable version 1.0.0, there is still room for expansion. First
of all, it should be a small task to implement the more traditional tables based filter
rule editor. It is also very interesting to expand the graphical filter editor with a
resource editor, to create tables, macros and similar structures that simplify a PF
configuration, and making this resource editor a source for drag-and-drop of such
elements onto the graphical editor view.

The system should also be rewritten to use a true plug-in structure, followed
by serious work on supporting multiple firewall platforms, like Linux IP-Tables,
FreeBSD IPFW and Cisco PIX.

It is also very interesting to introduce a third view on filter rule editing. Most
system administrators who have worked with OpenBSD PF over some time, have
developed a fair knowledge of the configuration file syntax. These professionals
may want a text view of the configuration. At the end of the project period, sugges-
tions were made to include a syntax highlighting editor, featuring code completion,
and syntax verification. Since the system already should contain a solution for pars-
ing configuration files into the application data representation, this should not be
impossible, using inspiration from the way Eclipse editors are constructed.

Chapter 7

Conclusion

7.1 Evaluation of the project task

As the group was responsible for defining the initial project description, one may
claim that we are in no position to evaluate whether we chose the correct task
for our graduation project. But the problem definition that we ended up with is
very different from the initial description. As an evaluation of the project size
we see that we perhaps should have started setting restrictions to expanding ideas
presented to us from our employer, at an earlier stage. But the ideas presented
were all very interesting, and we were at times quick to embrace these ideas. The
resulting system design and specification has a broader market interest than the
rather small project that we initially suggested.

We feel that the problem we set out to tackle was the one that gave us the
most, in form of challenges and personal engagement. We also feel that we have
accomplished what was required of us.

7.2 Additional gains

During this project, we have in addition to testing and expanding on the basis that
our education provides, gotten to learn about quite a few useful tools and tech-
niques. Our knowledge on Java as an application programming language has been
greatly expanded, along with new insight in good Java programming techniques
like the model / view / controller paradigm, and how to efficiently use external li-
braries. In a project management setting, we have not only examined new method-
ologies not known to us through previous education, but actually introduced a new
model ourselves. This model we feel that has worked perfectly for us, and we feel
it may be applied also to other projects.

One area where much has been learned, which is not directly related to edu-
cational learning, is in tools that have been used. We have located several tools
that have had a definitive impact through increasing productivity. Perhaps the most
central of these is the Eclipse platform, an extensible integrated development envi-

67

CHAPTER 7. CONCLUSION 68

ronment that also provides software development kits that the user may use in his
or her own applications. Eclipse provides a host of features that for us significantly
speeded up Java development compared to other environments and solutions we
have tried. Comparisons include Borland JBuilder, NetBeans, SunOne Studio and
developing outside of an IDE.

Another tool that was introduced to the project was LATEX2ε. This was intro-
duced as a requirement by Jon Langseth, to be used for all documentation except
figures and source code comments. LATEX2ε was at the time completely unknown
to the rest of the project group, and initially had a rather steep learning curve. All
members are now comfortable with this format. Though some elements still may
feel cumbersome, the general consensus is that LATEX2ε is in invaluable tool for
documentation and report generation.

7.3 Evaluation of project as form of work

The graduation project is the culmination of three years of study, and as such,
should test as many aspects of our education to date as possible. It is hard to find
any other way to actually test that students have learned what they need to, and
also understood how to apply this knowledge in a real work situation. A large
project at the end of the education is the closest one may come to simulating a real
working environment, while maintaining the control and mentoring needed by an
educational institution.

As we now round off five months of project work, we feel that we have gotten
a good result from working on a project basis. Our knowledge has been tested, and
we have gained significant understanding of how to apply what we have learnt in
our study in practical use. We have also gotten a few eye openers in regards to the
need for documentation, system design, planning and testing.

Bibliography

[1] Jacek Artymiac. Building Firewalls with OpenBSD and PF. devGuide.net
Artymiac, USA, second edition, 2003.

[2] The OpenBSD project. Openbsd release song lyrics, openbsd 3.5.
http://www.openbsd.org/lyrics.html#35.

[3] Federico Biancuzzi. Openbsd pf developer interview, part 2.
http://www.onlamp.com/pub/a/bsd/2004/05/06/pf_developers.html.

[4] Nebulon Pty. Ltd. Feature driven development web site.
http://www.featuredrivendevelopment.com/.

[5] Control Chaos. Scrum, it’s about common sence.
http://www.controlchaos.com/.

[6] Linus Torvalds. Linux kernel release 2.0.xx readme.
http://www.kernel.org/pub/linux/kernel/README.

[7] Paul C. Kocher Alan O. Freier, Philip Karlton. The SSL Protocol Version
3.0. Alan O. Freier, Philip Karlton, Paul C. Kocher, Transport Layer Secu-
rity Working Group, http://wp.netscape.com/eng/ssl3/draft302.txt, November
1996.

[8] Mark Burgess. Principles of network and system administration. John Wiley
& Sons Ltd, West Sussex, England, second edition, 2004.

[9] Craig Larman. Applying UML and patterns : an introduction to object ori-
ented analysis and design and the Unified Process. Prentice Hall PTR, Upper
Saddle River, NJ, USA, second edition, 2002.

[10] Wolf Paulus. Swixml web site. http://www.swixml.org.

[11] Sun Microsystems, Inc, http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html.
Code Conventions for the JavaTMProgramming Language, 1996.

[12] Guy Steele James Gosling, Bill Joy and Gilad Bracha. Java Language Spec-
ification. ADDISON-WESLEY, California, U.S.A., third edition, 2005.

69

BIBLIOGRAPHY 70

[13] Dennis M. Sosnoski. Xml and java technologies: Data bind-
ing with castor. IBM developerWorks, April 2002. http://www-
106.ibm.com/developerworks/xml/library/x-bindcastor/ (18.feb, 2005).

[14] The OpenBSD project. Pf: The openbsd packet filter.
http://www.openbsd.org/faq/pf/index.html.

[15] The OpenBSD project. Openbsd 3.6 pf.conf manual page.
http://resin.csoft.net/cgi-bin/man.cgi?section=5&topic=pf.conf.

[16] Ian Sommerville. Software Engineering. Pearson Education Ltd, Essex, Eng-
land, sixth edition, 2001.

[17] Inc. Cisco Systems. Internetworking tech-
nology handbook, security technologies.
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/security.htm.

Appendix A

Glossary

71

APPENDIX A. GLOSSARY 72

A

• API - Application Programming Interface

B

• BiNAT - Bi-directional NAT

• Black-box - A testing method where the system is wieved as an opaque,
black box.

• BNF - Backus-Naur form (also known as Backus normal form)

• BSD - Berkeley Software Distribution

• BSD family - The family of BSD* operating systems (Open, Free, Net and
others)

• Bug - An insect, or a flaw in programming code.

• Buggy code - Code which contains bugs.

C

• CARP - Common Address Redundancy Protocol

• CAS - Configuration and Administration System

• Castor - An Open Source data binding framework for Java

• C/C++ - A programming language

• CDT - C/C++ Development Tool

• Cisco - A major actor in the networking hardware market

• Cisco PIX - A firewall hardware family and standard by the Cizzz-coeee
company

• CMP - Central Management Platform

• Copwall - The name Copwall originates in an acronym representing CARP,
OpenBSD and PF, followed by the word wall.

• CoreUI - Core User Interface in Copwall

• CVS - Concurrent Versions System, https://www.cvshome.org/

APPENDIX A. GLOSSARY 73

D

• Daemon - A process which runs in the background and provides some ser-
vice to an application, on behalf of a user.

• DoS attack - Denial of Service attack

• DSH - Data Store and revision Handling system

• DTD - Document Type Definition

E

• Eclipse Platform - Integrated Extensible Development Environment, see
http://www.eclipse.org

• ECTS - European Credit Transfer System

• EMF - Eclipse Modelling Framework

F

• FDD - Feature Driven Development

• Firewall - A computer acting as an interface between two networks (e.g., the
Internet and an private network, respectively), and regulates traffic between
those networks for the purpose of protecting the internal network from elec-
tronic attacks originating from the external network

• FLG - Firewall Logical Group

• FLU - Firewall Logical Unit

• FPU - Firewall Physical Unit

G

• Gantt chart - A popular type of bar chart, showing the interrelationships of
how projects, schedules, and other time-related systems progress over time

• GMC - Graphical Management Client. Aka. Copwall

• GMCI - Graphical Management Client Interface

• GNU - GNU Not UNIX

• GUC - Gjøvik University College

• GUI - Graphical User Interface

APPENDIX A. GLOSSARY 74

H

• HSRP - Hot Standby Router Protocol,
see http://www.cisco.com/en/US/tech/tk648/tk362/tk321/tech_protocol_home.html

I

• ICMP - Internet Control Message Protocol

• IDE - Integrated Development Environment

• IETF - Internet Engineering Task Force

• IP-tables - The implementation of TCP/IP filtering and inspection of Linux
2.4 and newer.

• IPFW - IP FireWall, the FreeBSD implementation of TCP/IP filtering.

• IPv4 - Internet Protocol version 4

• IPv6 - Internet Protocol version 6

• ISN - Initial Sequence Number

• ISO-8859-1 - Standard encoding for latin based and Western European char-
acters, see http://en.wikipedia.org/wiki/ISO_8859-1

J

• J2SE - Sun Java 2 Platform Standard Edition

• JAR - A file format developed by Sun to store compressed Java programs

• Java - Programming Language

• JavaDoc - A documentation tool for Java

• JDT - Java Development Tools

• JM - Job Manager

• JPF - Java Plugin Framework

• JRE - Sun Java Runtime Environment

• JS - Job Scheduler

• JSCh - Java Secure Channel, a SSH2 library for Java

APPENDIX A. GLOSSARY 75

L

• LAN - Local Area Network

• LATEX2e - LaTeX is a high-quality typesetting system, with features designed
for the production of technical and scientific documentation. LaTeX is the
de facto standard for the communication and publication of scientific docu-
ments. See http://www.latex-project.org/

• libssh - SSH client library for C/C++, http://www.0xbadc0de.be/?part=libssh

M

• Man-In-The-Middle attack - an attack in which an attacker is able to read,
insert and modify at will, messages between two parties without either party
knowing that the link between them has been compromised

• Marshalling - In computer programming, the marshaller converts data pa-
rameters from procedure calls into a standardized data structure for transfer
or storage. This data is later decoded or «unmarshalled» by a receiver

• MVC - Model / View / Controller Paradigm

N

• NAT - Network Address Translation

O

• OpenBSD - A FREE, multi-platform 4.4BSD-based UNIX-like operating
system. Emphasizes portability, standardization, correctness, proactive se-
curity and integrated cryptography. See http://www.openbsd.org for more
information.

• OpenSSH - The OpenBSD project’s implementation of the SSH protocol
family, http://openssh.org/

• ORO - A set of text-processing Java classes developed by the Apache Jakarta
project

P

• Patch - An addition to a piece of code to remove an existing bug or misfea-
ture

• PDE - Plugin Development Enviroment

• PentiumTM
- A family of microprocessors produced and marketed by Intel R©

APPENDIX A. GLOSSARY 76

• Perl - A scripting language, created by Larry Wall. http://www.perl.com/

• PF - OpenBSD’s filtering engine: «Packet Filter». Originally coded by
Daniel Hartmeier

• pf-rule - A PF rule of type; filter, normalization, antispoof, NAT, BINAT,
redirect or queue rule

• pf.conf - The default configuration file for PF.

• PostgreSQL - PostgreSQL is a highly scalable, SQL compliant, open source
object-relational database management system, see http://www.postgresql.org/

• Python - A scripting language, created by Guido van Rossum.
See http://www.python.org/

Q

• QoS - Quality of Service

R

• RCP - Rich Client Platform

• Regexp - Regular Exp

• RSA - Encryption algorithm named after the three Mathematichians invent-
ing it; Ronald Rivest, Adi Shamir og Leonard Adleman

S

• SCA - System Configuration Agent

• SCP - Secure CoPy, utilizes the SSH protocol for secure file copy

• SCRUM - Scrum is an agile, lightweight process that can be used to manage
and control software and product development using iterative, incremental
practices.

• SDK - Software Development Kit

• SFTP - Secure FTP, utilizes the SSH protocol for secure FTP sessions

• SOHO - Small Office or Home Office

• SQL - Structured Query Language

• SSH - Secure Shell

• SSHd - SSH daemon, see daemon

APPENDIX A. GLOSSARY 77

• SSL - Secure Sockets Layer

• STDIN - Standard Input stream

• STDOUT - Standard Input stream

• STDERR - Standard Error stream

• Swing - Provides a set of «lightweight» components that, to the maximum
degree possible, work the same on all platforms

• SWT - Standard Widget Toolkit

• SYN flood - The SYN flood attack sends TCP connections requests faster
than a machine can process them

• syslog - A facility in UNIX and UNIX-workalike systems which controls the
logging of system events

T

• TCP - Transmission Control Protocol

U

• UDP - User Datagram Protocol

• UML - Unvirsal Modeling Language

• UNIX - It’s more than an operating system! It’s a religion!

• UNIX pipes - Simply put, a pipe is a method of connecting the standard
output of one process to the standard input of another.

• Unmarshalling - See Marshalling

• User - The user of the Copwall application

V

• VC - View / Controller

• VM - Virtual Machine

• VLAN - Virtual LAN

• VPN - Virtual Private Network

• VRRP - Virtual Router Redundancy Protocol, see ftp://ftp.rfc-editor.org/in-
notes/rfc3768.txt

APPENDIX A. GLOSSARY 78

W

• WAN - Wide Area Network

• White-box - A testing method where the system is wieved as a fully trans-
parent box.

X

• X.509 certificate - A widely used standard for defining digital certificates

• Xerces-J - a fully conforming XML Schema processor

• XML - eXtensible Markup Language

• XSD - XML Schema Definition

	Summary
	Preface
	List of figures
	Introduction
	Problem description, limits and constraints
	Project definition
	Background for the project
	The background and qualifications of the group members
	Target groups
	Application
	Report

	Conditions
	The project
	Distribution of responsibilities and roles
	Division of project tasks

	About the employer
	Configuration management
	Selected development standards, -model and -environment
	Structure of the report
	Standardization of documentation- and storage format and language

	Requirement Specification
	Requirement Specification document
	Introduction
	Function
	System environment
	The users of the system
	Life cycle aspects
	Constraints
	Assumptions
	Detailed Requirements Specification

	Description and discussion of Requirement Specification

	Design
	Introduction
	The overall architecture
	The choice of communication encryption
	Central Management Platform
	Data Store and revision Handling system
	Graphical Management Client Interface
	Job Manager

	Configuration and Administration System
	Job Scheduler
	System Configuration Agents

	The job specification language
	Graphical Management Client
	The design of module loading/selection
	Data structures in the Graphical Management Client
	Application code package separation

	Implementation
	Development tools and IDE used
	Third-party Java libraries used in the project
	Code conventions
	Start comments
	Naming conventions
	JavaDoc
	Source code example
	Class imports

	Core functionality
	Boot sequence
	Core User Interface
	User action events
	Custom widgets
	Command framework based on the command pattern

	Java and XML data binding
	Packet Filter model
	View / controller components

	PF ruleset editor
	Expanded rules
	Collapsed rules
	Disabled rules
	Dragging and dropping a rule
	Rule popup menu
	Advanced Rule Settings

	Testing
	Discussion of results
	Introduction
	Deviations from requirements
	Management server and firewall configuration software
	Graphical management application
	Configuration generator
	Summary of deviations

	Other considerations
	Potential for completion
	Potential for expansion

	Conclusion
	Evaluation of the project task
	Additional gains
	Evaluation of project as form of work

	Bibliography
	Glossary
	Gantt-diagram
	Revised Gantt-diagram
	Sample of detailed class diagram
	PF configuration XSD
	Job Specification Language
	Sample meeting logs
	Progress reports
	Known bugs
	Missing or wanted features
	Preproject report
	Contracts and Argreements
	CD-ROM

