
MAIN PROJECT:

AUTHORS:
André Lindhjem
Kjetil Holien
Terje Risa
Øyvind Nerbråten

DATE:
22.05.2006

TITTEL

The DaisyPlayer Project

SUMMARY OF THE MAIN PROJECT

Title: The DaisyPlayer Project Nr. :
Date : 22.05.06

Participants: André Lindhjem
Kjetil Holien
Terje Risa
Øyvind Nerbråten

Supervisor: Øyvind Kolås

Customer: Skolelinux

Contact person: Herman Robak
Catch words Daisy, Digital Talking Book, GNU/Linux, Open Source

Pages: 85 Appendixes: 9 Availability (open/confidential): open
Short summary of the main project:

During the progress of this Open Source project, we have created a library for parsing and playing
a Daisy Digital Talking Book. We have also developed two front-ends which utilizes our library,
one with a graphical user interface and one with a console based user interface.

The Daisy standard gives blind, visually impaired, and otherwise print challenged individuals
access to information using multimedia representation of a print publication.

To make our library useful for other developers, we have made an application programming
interface. The library is meant to hide the complexity of the Daisy standards, enabling developers
to create their own Daisy software, without extensive knowledge about the Daisy format.

This projects software have been developed using C, C++, Qt and numerous other libraries.

We have worked using an Open Source development model with elements from evolutionary
development. The development process have been divided into release cycles, each spanning two
weeks.

I

Preface

This project has been carried out by four students at Gjøvik University
College in Norway working on this project as our bachelor assignment. The
DaisyPlayer Project is the final task in our last semester of our bachelor
degrees in Computer Science. We chose this project because we wanted
to create something useful and because the Linux operating system lacks a
good, free Daisy player.

We found this bachelor assignment to be a great opportunity for us to
expand our horizon by learning new things and gain experience in working
on a relatively large project. Development for- and on the Linux platform
was completely new to us and posed as an exiting way to gain new topical
knowledge. We also liked the idea of starting an Open Source project and
cooperate with the Open Source community. The Open Source community
is a vast resource, which we can turn to for tools, help and guidance.

We would like to thank the following people for their help and contribu-
tions to this project:

• Øyvind Kol̊as, our supervisor, for giving us tips and help along the
way.

• Herman Robak, our principal, for giving us this assignment and intro-
ducing us to the Open Source community.

• Petter Reinholdtsen for all the help and support he has given us. We
really appreciate all the time and effort Petter Reinholdtsen have put
in the project. Petter has been a person we could turn to for help and
guidance.

• Bjørn Erik Nilsen from the last years Stopmotion project, for helping
out with the GUI part and always answering our questions.

• The Skolelinux community for hosting the project, and giving us feed-
back, resources, pointers and suggestions.

Gjøvik, 22th of May, 2006

Øyvind Nerbr̊aten André Lindhjem

Kjetil Holien Terje Risa

II

Contents

1 Introduction 1
1.1 About Daisy . 2
1.2 Task background . 2
1.3 Limitations . 3

1.3.1 Product . 3
1.3.2 Project constraints 3

1.4 Defining the assignment 4
1.5 Target group . 4
1.6 Objective and why we chose this project 5
1.7 The groups academical background and expertise . . . 6
1.8 Method of work . 6
1.9 The organization of the report 7

1.9.1 Terminology . 8
1.9.2 The layout of the report 11

2 Analysis 12
2.1 Amis . 13
2.2 Emacspeak . 13
2.3 IDAIR . 13
2.4 Listen-up . 14

3 Requirements specification 15
3.1 Use case model . 16
3.2 Supplementary specifications 17
3.3 Requirement ranking 17

4 Design 19
4.1 Front-ends . 20

III

4.2 Threads . 20
4.3 Audio engine . 20

4.3.1 Audio interface 21
4.3.2 Audio decoder / converter 22
4.3.3 Audio output module 22

4.4 Parser . 22
4.4.1 NCC & NCX parser 24
4.4.2 SMIL 1.0 & SMIL 2.0 parser 25

4.5 Data structure . 26
4.5.1 Audio engine 27
4.5.2 Parser . 27

4.6 Libdaisy interface . 28
4.7 Internationalization . 29

4.7.1 GUI front-end 29
4.7.2 Console front-end 30

5 Implementation 32
5.1 Choices of programming language and libraries 33

5.1.1 Programming languages 33
5.1.1.1 Ruby 33
5.1.1.2 C . 33
5.1.1.3 C++ 34

5.1.2 Libraries . 34
5.1.2.1 GStreamer 34
5.1.2.2 REXML 35
5.1.2.3 Libxml2 35
5.1.2.4 GUI 36
5.1.2.5 Audio design considerations 37

5.2 Threads . 39

6 Management tools 40
6.1 Documentation and choices of aiding- and developing tools 41

6.1.1 Doxygen . 41
6.1.2 LATEX and LYX 42
6.1.3 Subversion and TortoiseSVN 42
6.1.4 Planner . 43
6.1.5 Eclipse . 43

6.2 Code quality tools . 43
6.2.1 Splint . 43

IV

6.2.2 Electric fence 43
6.2.3 Valgrind . 44
6.2.4 GNU Debugger 44
6.2.5 GNU Binary Utilities package (nm) 44
6.2.6 Lintian . 44

6.3 Packing and release tools 45
6.3.1 Make . 45
6.3.2 QMake . 45
6.3.3 Debian Package building tools 46

6.4 Scripts . 47

7 Testing 48
7.1 User testing . 49
7.2 Product quality . 50
7.3 Product quality tools used 50

8 Public relations 53
8.1 Web page . 54
8.2 Plan for advertising . 56

9 Discussion of results 58
9.1 Evaluation of the result 59
9.2 Evaluation of choices and technologies 60

9.2.1 Development model 60
9.2.2 Choice of programming language 61
9.2.3 Choice of GUI 62
9.2.4 Choice of libraries 63

9.2.4.1 POSIX threads 63
9.2.4.2 MAD - MPEG Audio Decoder 63
9.2.4.3 Libxml2 64
9.2.4.4 Libao 64

9.2.5 Choice of documentation tools 65
9.2.5.1 Doxygen 65
9.2.5.2 LATEX and LYX 65

9.2.6 Evaluation of development environment 66
9.2.6.1 Eclipse 66
9.2.6.2 Scripts 66

9.2.7 SVN . 66
9.2.8 Problems encountered 67

V

9.2.9 Evaluation of the PR work 68
9.3 Evaluation of the groups work 69
9.4 Further work on the project 70

10 Conclusion 71

11 Bibliography 72

Index 74

A Pre-project report for the DaisyPlayer Project (without
appendixes) 76
A.1 Goals and constraints 76

A.1.1 Background . 76
A.1.2 Effect goal . 76
A.1.3 Result goal . 77
A.1.4 Target group 77
A.1.5 Constraints . 77

A.2 Extent of task . 77
A.2.1 Task description 77
A.2.2 The platform 78
A.2.3 Libraries, frameworks and standards 78
A.2.4 Programming languages 79

A.2.4.1 Programming languages 79
A.2.4.2 Python 80
A.2.4.3 Ruby 80
A.2.4.4 C++ 80
A.2.4.5 C . 80
A.2.4.6 Availability of compilers and interpreters 80

A.2.5 Constraints . 81
A.3 Project organization 81

A.3.1 Principal . 81
A.3.2 Group . 81
A.3.3 Roles and responsibilities 81

A.4 Planning and reporting 82
A.4.1 Choice of methodology 82
A.4.2 Plan for status meeting and decision dates . . . 82
A.4.3 Code convention 82

A.5 Organization of quality assurance 83

VI

A.5.1 Revision management 83
A.5.2 Quality handling 83
A.5.3 Risk analysis 83

A.6 Development plan . 84

B Use cases 85
B.1 daisy init . 85
B.2 daisy term . 86
B.3 daisy load . 86
B.4 daisy play . 87
B.5 daisy seek . 88
B.6 daisy get position . 89
B.7 daisy goto position . 89
B.8 daisy stop . 90
B.9 daisy pause . 91
B.10 daisy get info . 92
B.11 daisy get chapter count 92
B.12 daisy get chapter info 93

C Code conventions 94

D Gantt chart 97

E Status reports 100

F Work log 106

G Libdaisy API 107

H Manuals 120
H.1 What is daisyconsole? Where can I get it? 122
H.2 Getting started . 122
H.3 Open a Daisy DTB . 123
H.4 Playback . 123

H.4.1 Play . 123
H.4.2 Pause . 123
H.4.3 Stop . 123
H.4.4 Seek . 124

H.5 Positioning and bookmarking 124
H.6 Book indexing . 124

VII

H.7 Shortcut keys . 125
H.8 What is daisygui? Where can I get it? 127
H.9 Getting started . 127
H.10 Open a Daisy DTB . 128
H.11 Playback . 129

H.11.1 Play . 129
H.11.2 Pause . 130
H.11.3 Stop . 130
H.11.4 Seek . 130

H.12 Bookmarking . 130
H.13 Book indexing . 130
H.14 Shortcut keys . 131

I CD contents 132

VIII

List of Figures

3.1 Use case diagram. 16

4.1 Audio module outline 21
4.2 The logical structure of a Daisy book. 23
4.3 An extract of an NCC file. 25
4.4 An extract of a SMIL file. 26
4.5 An extract of the resulting lists in the data structure . 28
4.6 An example how internationalization work with Designer. 29
4.7 Adding a new translation to the project file. 29
4.8 A screenshot from Linguist. 30

5.1 Showing the KDE architecture 36

6.1 Doxygen source example 41
6.2 Doxygen output example 41
6.3 A simple example on a project file. 46
6.4 Part of the Makefile used to generate this report. . . . 47

7.1 The evolutionary system development model. 49

8.1 A screenshot of the DaisyPlayer Project web page. . . . 55

D.1 Gantt chart - part 1. 98
D.2 Gantt chart - part 2 99

H.1 Daisyconsole screenshot. 122
H.2 Daisygui screenshot. 127
H.3 Daisygui screenshot. 129

IX

Chapter 1

Introduction

In today’s world the boundaries between technology and education have
melted away and are now very close integrated. More and more of the
teaching in the school are being done with the help of computers. Not
only is it, in many cases, more interesting, fun, and motivating for the
students, but the opportunities that lies with this technology is almost
infinite. This is where Skolelinux comes into focus.

Skolelinux1 is a Custom Debian Distribution that is customized for
schools with focus on being easy to install and maintain. Skolelinux
tries to give schools and students a good and free alternative to pro-
prietary software. This is used in many schools already and the goal is
to cover as many schools as possible.

In order to achieve this goal, Skolelinux need software to cover the
different needs the student have in their education. One such program,
after a request of a Norwegian teacher, is an application able to play
Daisy Digital Talking Books (DTB). Daisy DTB is a multimedia rep-
resentation of a print publication. Linux lacks a good and easy to use
Daisy player at this point.

1Skolelinux http://www.skolelinux.org/portal/

1

http://www.skolelinux.org/portal/

Chapter 1. Introduction

1.1 About Daisy

Common audio books are an audio representation of printed publica-
tions, and is something most people are familiar with. Daisy Digital
Talking Books2 incorporates open standards and multimedia to present
books in a better way to people who have problems using traditional
printed media.

Both traditional audio books and Daisy books use a human voice
to present the contents of a book to the reader. But, as Daisy books
utilizes multimedia technology, it has some features that normal audio
books lacks. This includes features like synchronized audio and text,
as well as navigation features.

The main advantages of Daisy books over traditional audio books
are illustrated by an example; consider an encyclopedia or a phone
catalogue and how they should be made accessible for print-disabled
persons. Traditional printed books are not an option, and audio books
will not be useful because it lacks when it comes to navigation (listening
to a whole encyclopedia in sequential order are not very useful). Daisy
books, however provides support for audio read contents as well as
extensive navigational features.

1.2 Task background

Audio books are often used by people for many reasons. The users
might be blind or visually impaired, or they might have reading dis-
orders or other troubles which makes it difficult for them to use con-
ventional printed media. Daisy books are usually audio books with
synchronized text that provides navigating capabilities which are su-
perior to that of normal audio books.

This project task was requested by Ole-Anders Andreassen because
there was no suitable player for Daisy books he could use on Linux. He
had used to play the audio as normal audio books, but this means that
a lot of the Daisy capabilities (such as navigating the books) are lost.

Also, the Skolelinux project are interested in providing a Daisy-
Player with their product.

There were few good software Daisy players altogether. The ones
that exists are usually not actively maintained, depends on old tech-

2What is a DTB? http://www.daisy.org/about_us/dtbooks.asp

2

http://www.daisy.org/about_us/dtbooks.asp

Chapter 1. Introduction

nology and are not user friendly enough to be used in schools. The
long time effect goal of this project have been to make it possible to
develop one or more user friendly Daisy players that can help students,
in an easy way, to play Daisy books on the Linux platform.

1.3 Limitations

1.3.1 Product

The primary goal of this project is not to create a complete Daisy
player with GUI which is ready to be used. This will probably be a
too large task for our time schedule, and it makes more sense to focus
on implementing the Daisy functionality and leave the GUI out of it,
at least until the Daisy functionality is implemented.

The UI that are to be produced should primarily demonstrate the
functionality of the DaisyPlayer.

In this project we have to be conscious about which libraries and
dependencies we use. It is a goal to keep the number of dependencies
to a minimum. At the same time, we should use existing libraries and
as much as possible. We need to be conscious about what libraries
we use and make sure that they are good choices when it comes to
maintainability, supported platforms and licenses.

1.3.2 Project constraints

The project must be Open Source. It must be able to be licensed
and distributed according to The Debian Free Software Guidelines
(DFSG)3. The group also decided on some guidelines to follow, be-
side being an Open Source project, we felt it important to write all our
documentation in English. This to make it easier for other to adapt our
project after we are finished with it. Hopefully will other take interest
in this project, so that the project does not become another abandoned
project. We also felt it natural to have an open repository on our web
page, giving anybody the chance to look into our work. This giving
the users the ability to really follow the project closely. Another deci-
sion made by the group where to avoid any proprietary programs like

3The Debian Free Software Guidelines http://www.debian.org/social_contract

3

http://www.debian.org/social_contract

Chapter 1. Introduction

Microsoft Project or Microsoft Word, for instance to make our Gantt-
charts and writing the report.

1.4 Defining the assignment

The primary goal is to create a Daisy player ”engine” that can easy
be incorporated in other programs and provide the Daisy functionality.
Future Daisy players could be implemented by writing a GUI which
works against the DaisyPlayer engine and a clearly defined API. In-
depth knowledge about the different Daisy books and standards will
not be required. This should make the development of new Daisy-
aware applications much simpler which we hope will benefit the users
of Daisy books.

It is preferred by the principal, if the project can incorporate or build
upon other Open Source Daisy projects, as the project probably has a
better chance of surviving and involving other developers. Because of
this, a part of the assignment involves evaluating existing free Daisy
players and either learn from or build upon them.

As a part of this task, the group have to make themselves familiar
with several new areas such as Open Source development, software
licenses, Daisy standards and the libraries that will be used.

The project should release regularly so that the progress should
be easy to follow for people who are interested in testing the Daisy-
Player. External input, bug reports and experiences should be consid-
ered throughout the whole project.

1.5 Target group

The target group for this project report are mainly those who shall
evaluate the project. Parts of this report is written in a technical
manner, so the reader is expected to have some knowledge related to
software development. This report is also meant as supplementary
documentation for software developers who wish to use or extend the
DaisyPlayer engine.

This project as a whole, addresses multiple target groups through
the different products we have created.

The main product of this project, the DaisyPlayer engine (libdaisy),
targets software developers. This project will also include two simple

4

Chapter 1. Introduction

UI to demonstrate the functionality of the engine, meant for software
developers and users who want to test our product.

The two UI also targets regular Linux users and should motivate
regular users to test and get involved with the DaisyPlayer Project.
They also, to some degree, motivate regular Daisy users to test their
Daisy books with our software.

We target end users by providing easy-to-install Debian packages
and a user manual that explains how to use our example players. This
way, we hope to enable regular users to be able to use our software
with a minimum of trouble.

Our main portal towards the Internet, users and the Open Source
community are our web page4. The web page targets all of the above
mentioned user groups. It contains a presentation, basic information,
FAQ and install information targeted at regular users. It also contains
project information and documentation, open to anyone who wishes
to read about the project. Developers can find the libdaisy API doc-
umentation, and even browse the current libdaisy up-to-date source
code. The web page design is friendly, informative, and should en-
courage interested visitors to try our software, contact us, or involve
themselves in the project.

1.6 Objective and why we chose this project

Skolelinux is more and more used in the schools at lower level, not only
in Norway but also in the rest of the world. At this point Skolelinux
lacks a good program for playing Daisy Digital Talking Books (DTB).
One objective of this project is to start an Open Source development
of a Daisy DTB player.

We chose this project because we thought it would be an interesting
and challenging project. The group had minimal experience with pro-
gramming for Linux, so we considered this project to be a very good
way to learn something new. Some of us also took this project as a
good opportunity to learn more about Linux as an operative system.
We also looked at this project, as it would be interesting to develop
something that other people could use and maintain when we are fin-
ished. Since the existing free Daisy players for Linux are so unfinished

4The DaisyPlayer Project http://developer.skolelinux.no/info/studentgrupper/
2006-hig-daisyplayer/

5

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/

Chapter 1. Introduction

and no longer under maintenance, we really saw the need for a new
project which could get other people interested. We really thought and
hoped that since we started this project it would eventually help a lot
of students with reading disabilities. Further we thought it could be
of interest to get to know an Open Source community and learn how
projects are developed.

1.7 The groups academical background and exper-
tise

The group consists of four graduating students in bachelor of engineer-
ing, computer science at HIG5. One specialized in system administra-
tion and the other three in software development.

We had all experience in using development languages such as C++
and Java, so adapting to C was no problem. As none of us had done any
development under GNU/Linux before and three of the group members
was almost completely new to the GNU/Linux operation system, we
had to start from scratch and learn the ways of software development
on this platform. We also needed to learn all the libraries included in
the project, as we had no experience what so ever in use of these.

A part of this project has been to investigate, learn and use lots of
standards, libraries, software and technologies. These include, but are
not limited to: XHTML, CSS, XML, libxml2, libao, libfaad2, MAD,
Make, LATEX, Daisy, SMIL and Subversion. Some had to be rejected in
the process as they did not fit our needs.

1.8 Method of work

In our pre-project phase we decided on a development model, a mixture
of evolutionary system development and Open Source development,
to use throughout the project, see section A.4.1 on page 82 for more
information. This model will hopefully give us the freedom to carrying
out our project in a way that suits the group and the project. As an
Open Source developing project, we feel it natural that our working
methods are adaptable, so that the project is not entirely controlled
by decisions made early in the project, but are open for changes as

5Gjøvik University College http://www.hig.no/eway/default0.asp?pid=248

6

http://www.hig.no/eway/default0.asp?pid=248

Chapter 1. Introduction

we go along. This way of working, requires good communication and
excellent collaboration, but since the group are used to work together
from earlier project and also live side by side in a hall of residence, we
did not feel this as a threat to the project.

We also decided to have an open way of organizing the project,
and giving each other tasks based on individual knowledge and wishes.
Another thing we felt natural where to be able to always helping each
other out when we stumble upon difficulties. On the decision of the
project leader position, we discussed if we should pick one leader, or
maybe rotate the position so that everybody got the chance to be
leader. We decided to go with one leader throughout the project, and
Øyvind Nerbr̊aten were picked.

Our Gantt-chart, see appendix D, was submitted to the web page
so that anyone could follow our progress plan.

1.9 The organization of the report

The report is based on HIG’s final project reports template.

1. Introduction
Contains a brief description of our project, tasks and report.

2. Analysis
An analysis of the existing Daisy players available.

3. Requirements specification
The requirements specification to the project.

4. Design
A solution to the applications design.

5. Implementation
How the modules has been implemented and what libraries we used
and rejected.

7

Chapter 1. Introduction

6. Testing
How we decided to test our code and what we did to ensure the quality
of the source code.

7. Discussion of results
Reflections about the result.

8. Conclusion
The conclusion of the project.

9. Bibliography
Books and web pages which has been referenced in the report.

Appendixes
Pre-project, code conventions, use cases, Gantt-charts, status reports,
libdaisy API, manuals and CD contents.

1.9.1 Terminology

AAC Advanced Audio Coding. AAC is a lossy audio encoding
and compression format.

ALSA Advanced Linux Sound Architecture is a Linux kernel com-
ponent intended to replace the Open Sound System (OSS).

API Application Programming Interface describe how to access
a set of functions.

ARTS Analog RealTime Synthesizer is an application that simu-
lates an analog synthesizer. The aRts soundserver mixes
several sound streams and is used as the default sound
server for KDE.

DAISY Digital Accessible Information SYstem. A digital talking
book standard.

DFSG Debian Free Software Guidelines. A set of commitments
that the Debian GNU/Linux system has agree to abide by.

8

Chapter 1. Introduction

DOM Document Object Model. Is a description of how a HTML
or XML document is represented in an object-oriented fash-
ion.

DTB Digital Talking Book. A multimedia representation of a
print publication.

ESD Enlightened Sound Daemon is the sound server for Enlight-
enment window manages and the GNOME desktop.

FAQ Frequently Asked Question. A collection of common ques-
tions and the accompanying answers.

FPU Floating Point Unit is a part of a computer system specially
designed to carry out operations on floating point numbers.

GNU/GPL GNU General Public License. The GNU/GPL is a com-
mon license that grants the users certain rights.

GUI Graphical User Interface. Also see UI.

HIG Høgskolen i Gjøvik/Gjøvik University College (GUC).

IRC Internet Relay Chat. IRC is a form of instant communica-
tion over the Internet.

LATEX LATEX. A High-quality typesetting system, with features
designed for the production of technical and scientific doc-
umentation.

LYX LYX. A document processor following the “what you see is
what you mean” (WYSIWYM) paradigm. This means that
the user only have to care about the structure and content
of the text, while formatting is done by LATEX.

MP3 MPEG-1 Audio Layer 3 is an audio encoding and lossy com-
pression format.

NCC The Navigation Control Center document contains an in-
dex of navigable entry points into the DTB, used by the
Daisy 2.02 standard. The NCC also implicitly represents
the continuous playback order of all the media objects that
make up the DTB. This is sometimes referred to as ”the
flow” of narration and/or text.

9

Chapter 1. Introduction

NCX The Navigation Control file for XML applications exposes
the hierarchical structure of a DTB, used by the Daisy
Z39.86-2005 standard, to allow the user to navigate through
it. The NCX is similar to a table of contents.

NUUG Norwegian Unix User Group. A non-commercial organiza-
tion for Unix users in Norway.

Open Source Open Source describes practices in production and devel-
opment that promote access to the end product’s sources.

OSS Open Sound System is a portable sound interface, available
on many Unix/Linux systems.

PCM Pulse-Code Modulation is a digital representation of an
analog signal. The analog signal are sampled at fixed in-
tervals, and the magnitude of each sample are stored as a
digital value.

PDF Portable Document Format is a file format developed by
Adobe Systems for representing documents.

POSIX POSIX is the name of a series of standards specified by the
IEEE to define the API Unix compatible software.

RIFF Resource Interchange File Format is the formal name of the
file format used by the common WAV files.

SAX Simple API for XML. An event based interface for process-
ing XML documents.

SMIL The Synchronized Multimedia Integration Language is a
standard for definition and playback of multimedia presen-
tations over the Internet. SMIL defines the sequence of
playback for one or more media objects. In the case of
DTB’s, the primary media objects are audio and textual
content files; SMIL provides for their parallel and synchro-
nized presentation.

UI User Interface. The graphical, textual and auditory infor-
mation the program presents to the user, and the control
sequences (such as keystrokes with the computer keyboard,

10

Chapter 1. Introduction

movements of the computer mouse, and selections with the
touchscreen) the user employs to control the program.

WAV A Microsoft and IBM audio file format. A common format
for raw audio. A variant of the RIFF file format.

XPath XML Path Language uses a non-XML syntax for addressing
portions of an XML document. XPath is often used by
developers as a small query language.

1.9.2 The layout of the report

The whole report, except the libdaisy API, has been made using LATEX6.
The libdaisy API is an auto generated PDF generated from Doxygen7.
We decided to have a terminology list in the introduction chapter so
that the reader knows where to look if he stumbles upon an abbrevia-
tion. We have also used footnotes to give better explanations and link
to external web pages. In the end of the main report we have an index
containing references to many keywords.

This report are also available in PDF format with many clickable
links, an index and cross references. The amount of external links and
cross references makes the PDF version easier to navigate and better
suited for most readers.

6LaTeX http://www.latex-project.org/
7Doxygen http://www.stack.nl/~dimitri/doxygen/

11

http://www.latex-project.org/
http://www.stack.nl/~dimitri/doxygen/

Chapter 2

Analysis

In the early stages of the project we mapped other Open Source Daisy
project available to us. In this process we found one project for Win-
dows and three for Linux. We had to make a choice if it was possible
for us to make use of some of this code. None of these existing projects
seemed to fit our image on how we would like to implement a Daisy
player, so we decided not to base our work on any of these projects,
but rather use them as possible ideas and hints on how things can be
done. By reading the problems others have stumbled on, we can learn
and maybe avoid coming across them ourselves.

12

Chapter 2. Analysis

2.1 Amis

The Amis1 project is a fully functional Daisy player written for the
Windows operating system. The project is written in C++, which
did not really fit our plans and some of the libraries used would make
to many dependencies. Because of this it would be difficult to port
the code to a Linux environment. Read more about our choice of
programming language in chapter 5 section 5.1.1. The Amis project
consists of a very large code, so it would take us much time to get to
know the code properly and the fact it is written for Windows, makes
it difficult to use. We decided not to base our player on this code, but
rather “steal” some ideas along the way.

2.2 Emacspeak

Emacspeak2 is a subsystem of Emacs that produces speech output and
can be used with the Daisy format. We had problems getting this
to work and did not really see why this was listed as a Daisy player
on some sites. Emacspeak is more like a screen reader than a Daisy
player. The fact that it just works inside Emacs made it useless for our
purpose.

2.3 IDAIR

Iduna Daisy Reader3. This is a Linux Daisy player project written in
C. The code looks incomplete and the project has not been updated
since December 2003. The project could be used to get some ideas,
but we decided not to reuse this code as it was incomplete and a bit
messy. The project had implemented a own XML parser with lack of
almost everything, which is a bad idea when there are so many free
Open Source XML parsers available.

1Amis http://amis.sourceforge.net/
2Emacspeak http://emacspeak.sourceforge.net/
3IDAIR http://idair.sourceforge.net/

13

http://amis.sourceforge.net/
http://emacspeak.sourceforge.net/
http://idair.sourceforge.net/

Chapter 2. Analysis

2.4 Listen-up

Listen-up4 is a Linux Daisy player project written in C++. This project
has been inactive since august 2003. The audio library used by this
player is an outdated and inactive project. The code is in C++, which
is not our first choice of language.

4Listen-up http://www.linux-speakup.org/listenup.html

14

http://www.linux-speakup.org/listenup.html

Chapter 3

Requirements specification

A requirement specification is an important part of all software devel-
opment projects. This part of the document is meant to aid the pro-
grammers in the implementation phase. To identify the requirements
in our project we decided to create use cases of the functionality of our
library, we also had some supplementary specifications. From the be-
ginning we had the main functionality figured out, and as we learned
more about the standard we discovered new functionality which we
needed to add to the library.

15

Chapter 3. Requirements specification

3.1 Use case model

The use cases we have figured out are shown in figure 3.1. As you can
see from the picture, the user has access to all of the functions in the
library.

In appendix B there are expanded use case descriptions for the cases.

Figure 3.1: Use case diagram.

16

Chapter 3. Requirements specification

3.2 Supplementary specifications

Debugging should be available during development. This means that
states and key points in the library should be reported during run time
(using one common method) while debugging is enabled.

Error handling that the library cannot automatically resolve should
be presented to the front-end program so that the programmer (or user)
who use libdaisy can investigate the error and decide the proper action
to take.

3.3 Requirement ranking

There are almost endless features we could implement in such a project,
but due to the time limitation, we have to prioritize what we should
implement.

AAC AAC support will not be prioritized. We have not found a
single Daisy DTB which uses AAC.

Front-ends We will try to make a small and intuitive front-end that
shows how the engine can be used.

MP3 MP3 are by far the most common audio format in Daisy
books. The support for MP3 audio playback is vital to the
project.

Navigation Basic navigating functionality should be supported. The
user should be able to forward / rewind both on a passage
and chapter level. Methods for stopping and pausing the
book should also be provided.

Portability We will try to use libraries which easily could be ported
to both Windows and Mac OS. If we got time this will be
done, but it is not a priority.

Speech synthesis We will try to implement text to speech to our front-
end using Festival1 if we get the time, but it is not a priority.

1Festival http://www.cstr.ed.ac.uk/projects/festival/

17

http://www.cstr.ed.ac.uk/projects/festival/

Chapter 3. Requirements specification

Standards Daisy standard 2.02 will be prioritized since this is the most
used standard today. But we will have support for the main
functionality in the new standard, Z39.86-2005. The 2.0
standard will not be supported.

WAV WAV support will not be prioritized. We have not found a
single Daisy DTB which uses WAV.

18

Chapter 4

Design

As this is an Open Source project we wanted to be very clear on the
design. This because we wanted to help other interested users to fairly
easy understand the code. One of the first decisions we made were to
separate the engine from the UI. This was done because we wanted to
have the main focus on the engine and Daisy functionality, and not mix
it together with how this were presented to the end user. As a result of
this separation, it is relatively easy to make different UI to the engine.
In our case we created both a commando based UI (console front-end)
and a GUI to show how the engine can be used.

19

Chapter 4. Design

4.1 Front-ends

By creating both a graphical UI and a console based UI, we aim to
demonstrate two quite different target groups which this project aims
to help. Users who require large fonts, large buttons etc. will probably
need to rely on a graphical UI. New users might want a simple interface
with just the basic functions and as few buttons as possible. On the
other hand, blind users have no need for graphical UI’s, and might re-
quire highly configurable functionality. Because the Daisy target group
includes many people with very different needs, we mean our approach
with a library and multiple specialized front-ends are a good solution.
Our examples aim to demonstrate this. By providing a console-based
player, we can benefit from existing screen readers, and navigation by
pressing keyboard keys. The GUI based alternative have configurable
font-size, use traditional mouse navigation, and it has a listing of the
book chapters.

4.2 Threads

Libdaisy requires a few events to happen simultaneously. Handling and
acting on input will need to happen at the same time as we are decoding
and playing audio. For example, actions like forwarding, stopping or
pausing will need to be acted upon even though libdaisy are playing
audio.

To achieve this, we decided that we needed to base our library on
threads. POSIX threads are the most common, and libraries that uses
the POSIX threads interface exists on almost all modern operating
systems.

4.3 Audio engine

The audio engine is the part of libdaisy which parses audio files, de-
coding audio and playing the sound for the user.

The audio engine is separated into multiple components as shown
in figure 4.1:

• an audio interface towards the rest of libdaisy.

20

Chapter 4. Design

• a decoder or converter which creates PCM audio from an encoded
audio file.

• an audio output component that plays the PCM data to the de-
sired audio output source.

Figure 4.1: Audio module outline

These parts works together to create sound from the Daisy audio
source files. The MP3 decoder has the highest priority because MP3
encoded audio are by far the most common format. But the audio
interface should enable easy integration of both an AAC decoder and
a WAV converter as well.

4.3.1 Audio interface

The audio interface is basically a set of functions that provides libdaisy
with the basic audio functions it requires. The main idea is that the
complexity of decoding and playing audio should be well hidden from
the code that parses Daisy books.

This audio interface allows for extending the audio module at a later
point, and support for decoding other formats could be implemented
without affecting the rest of libdaisy.

21

Chapter 4. Design

4.3.2 Audio decoder / converter

The decoder, controlled from the audio interface, converts encoded au-
dio to PCM audio which is sent to the output module.

MP3 and AAC will have to be decoded, while the WAV format has
PCM encoded audio as a component, so a converter should probably
be suffice.

4.3.3 Audio output module

In libdaisy, this is basically a very simple wrapper to the equivalent
libao functions. Once the decoder has decoded a buffer, a function in
the audio output module is called, and audio will be played to the user,
using the preferred audio module or server.

4.4 Parser

Before we explain how the parser in libdaisy works, we must explain
the logical structure of a Daisy book. An image is shown in figure 4.2.

22

Chapter 4. Design

Figure 4.2: The logical structure of a Daisy book.

The NCC/NCX file is the main file, you can look at it as a table of
contents, from this file we get information about where the chapters are
to be found. Each chapter links further to a SMIL file and it also has
an identifier, in most cases this identifier is the first id tag in the SMIL
file, but not necessarily. The SMIL file consist of several passages, in
each passage you can find an audio passage and/or a text passage (in
the new standard it is also possible to link to an image). If there is
a text passage, the passage is linked to a HTML/XML file with an
identifier.

A Daisy DTB consists of XML markup text combined with sound.

23

Chapter 4. Design

This makes parsing one of the main tasks of libdaisy. The parser is
divided into four parts, a NCC parser for parsing a Navigation Control
Center file for the 2.02 standard, a NCX parser for parsing a Navigation
Control File for the Z39.86-2005 standard, a SMIL 1.0 and a SMIL 2.0
parser. As the structure of the files to parse follows strict rules, we
decided to make the parsers recursive.

The parser consists of many small functions which all parses one
kind of tag each. For each tag the parser encounter, the function for
parsing this tag is called. The different functions call each other recur-
sively, so when the process returns to the caller function, the parsing
is done. All functions return a value to its caller to tell if the job was
successful or not. If a critical function fails, the error return value is re-
turned all the way up to the top calling function and the parser returns
an error.

4.4.1 NCC & NCX parser

The NCC/NCX file is, as mentioned earlier, like the table of contents
in a book. It exposes the hierarchical structure of a DTB to allow the
user to navigate through it. When a book is loaded by libdaisy the
NCC/NCX file is parsed.

The top of the NCC/NCX file consists of the books meta informa-
tion, title, authors, total time and such. This data is stored in a data
structure and made available to the user at anytime after a book is
loaded. In addition to meta data, the NCC/NCX contains information
about the hierarchical structure of the DTB as references to SMIL files
for each chapter or section. The parser stores the names and positions
of the SMIL files and some meta data like title, id, audio reference and
such. A two way linked list is made by structs containing data from
one SMIL reference each. This linked list represents the hierarchical
structure of the DTB and can be traversed both ways. This way we do
not have to parse the whole DTB into memory at once, but are able to
parse one SMIL file at a time. A pointer variable keeps track of what
SMIL file is loaded, and the linked list makes it easy to get the next or
last SMIL file and send it to the SMIL parser.

The NCC and NCX parsers works the same way and uses the same
data structure to store data. The reason we have made a separate
parser for both formats is because a NCC and a NCX file has different
structure and tags. The NCX format is a new and improved version of

24

Chapter 4. Design

the NCC format. Because of the major difference between the structure
of these two formats, we found it best to make two separate parsers to
prevent messy code.

In figure 4.3 below, you can see an example of the structure of a
NCC file.

Figure 4.3: An extract of an NCC file.

To learn more about the structure of a NCC or a NCX file, see the
Daisy standards1.

4.4.2 SMIL 1.0 & SMIL 2.0 parser

SMIL is a standard for definition and playback of multimedia presen-
tations over the Internet. SMIL defines the sequence of playback for
one or more media objects. In the case of DTB’s, the primary media
objects are audio and textual content files; SMIL provides for their
parallel and synchronized presentation.

The SMIL parser can parse one SMIL file into memory at a time
after the NCC/NCX parser is done and the linked list of references to
SMIL files is made. When a DTB is loaded and the NCC/NCX file has
been successfully parsed, the first SMIL reference in the linked list is
parsed. The reference to a SMIL file is sent to the SMIL parser, which
builds another linked list where each link contains the data from a single
passage in the book, including text and reference to an audio segment.
A passage can contain synchronized text and audio, just text or just
audio. The SMIL file contains references to synchronized passages of
text and audio. For each passage the parser opens a referenced XML
file and retrieves the text matching a passage identifier from the SMIL
file and stores the text in the data structure. For the corresponding
audio segment it stores a reference to the audio file with start and stop
offsets.

1Daisy technical specifications http://www.daisy.org/publications/

specifications.asp

25

http://www.daisy.org/publications/specifications.asp
http://www.daisy.org/publications/specifications.asp

Chapter 4. Design

In figure 4.4 below, you can see an example of the structure of a
SMIL file.

Figure 4.4: An extract of a SMIL file.

To learn more about the structure of a SMIL file, see the Daisy
standards.

4.5 Data structure

In order for libdaisy to run as a shared library, we chose to gather all
the data in one struct and let the library functions be independent of
global variables. When the library is initialized, the user gets a pointer
reference which he will need to pass to all of libdaisy’s functions. The
user should never try to modify any of the data in this reference, and
does not need to know anything about the data it contains.

Internally in libdaisy, all data (apart from local variables) is con-
tained in one single struct. This struct contains data directly, or con-
tains references to other data or structs which is used by the individual
modules. The main parts of this data structure consists of pointers
to the users callback functions, a pointer to the data structure for the
audio engine and a pointer to the data structure for the parser.

Libdaisy is based on callback functions. When the data structure
is being initialized with daisy init, the user must supply pointers to a
set of callback functions. These functions will be called by the engine
to report to the user during playback. The main data structure also
give the user the opportunity to give the daisy init a void data pointer
to any object or data structure as an argument. This data pointer will
be available in all callback functions. The user can e.g. pass along a

26

Chapter 4. Design

GUI object in C++ so that you can output the text from the callback
functions in the GUI.

4.5.1 Audio engine

The audio data structure contains data related to audio files and audio
decoding. Notable data are file information, a buffer, start- and stop-
times, a mutex lock, and callback function pointers.

Some information about and related to the the audio file are stored.
This helps us in keeping track of what file we already have read into
memory and lets us prevent loading the same file multiple times.

The buffer is filled with data that the decoder will process. The
start- and stop-times are used to specify start and stop offsets in an
audio segment.

The data structure also contains function pointers to the callback
functions that needs to be available, and a mutex lock to provide a way
to serialize access to the data.

4.5.2 Parser

The parsers data structure is created to hold the data parsed from the
loaded Daisy DTB. It has a two way linked list for storing the data
parsed from the NCC/NCX file and a pointer to the current playback
position. This linked list represents the hierarchical structure of the
DTB and is used to control chapter or section navigation.

The data structure also has a two ways linked list for storing the
data parsed from a SMIL file. One SMIL file is parsed and stored in the
data structure at a time, according to the position pointer in the linked
list containing all SMIL information. This second linked list contains
data from each synchronized passage in the DTB, like the text parsed
from the XML files with reference to the corresponding audio segment,
and a pointer to the current playback position. This linked list is used
for passage navigation.

Figure 4.5 below shows an example of the two linked lists.

27

Chapter 4. Design

Figure 4.5: An extract of the resulting lists in the data structure

The parsers data structure also contain a struct for storing the
loaded DTB’s meta data, such as title and total playtime, a linked
list for all the authors and a string representation of the path from
where the DTB was loaded.

4.6 Libdaisy interface

When developing a library it is very important to make a good inter-
face. The interface makes the functionality available to others, sepa-
rating the implementation from the external communication with the
user. This way the user does not have to worry about changes in the
implementation. The interface should be as consistent and easy to use
as possible, but without loosing it is user applicability.

We have tried to make a small, easy to use interface which require
minimal knowledge about Daisy DTB’s for the developer to make a
Daisy player. We have also provided a number of callback functions
that gives the front-end designer continuous information about the
playback, errors, and a large degree of control over the Daisy engine.
The callback functions informs the front-end about key-events in the
Daisy engine, such as player progress, errors, finished passages, text or
passage ID’s.

28

Chapter 4. Design

4.7 Internationalization

Internationalization is a very important matter for many programs,
and perhaps specially if the software is an Open Source project. We
have a hope that people from different countries will be interested in
this project and perhaps maintain our front-ends rather than creating
a new front-end from scratch. In order to have a realistic hope for that
to happen, we must use internationalization. Every single word and
sentence we present to the end user must be able to be replaced by a
localized alternative.

4.7.1 GUI front-end

Qt Designer2 made internationalization very simple for us when we
created the GUI front-end. Designer has very good support for inter-
nationalization, all we needed was to add a few line of source code to
install a translator, and everything we need to translate will be auto-
matically caught up. Sentences we hard coded in the source code, e.g
the status bar message on figure 4.6 below, had to be placed inside a
tr(...) in order to be processed by the translator.

Figure 4.6: An example how internationalization work with Designer.

When every sentence was placed inside tr(), we had to edit our
project file and add translations files shown on figure 4.7.

Figure 4.7: Adding a new translation to the project file.

When that was in place, all we had to do was to run Qt’s tool
lupdate <file name>.pro and our ts files were generated. To edit the

2Qt Designer http://www.trolltech.com/products/qt/features/designer/

29

http://www.trolltech.com/products/qt/features/designer/

Chapter 4. Design

translations files we used another software from Qt called Linguist3,
a screenshot of the program is show in figure 4.8 below. All of the
words and sentences we needed to translate was surveyable organized.
When the translation was done we had to run lrelease <file name>.ts
to generate the binary file used by the application. As we see in the
project file in figure 4.7 the path to the binary files (*.qm) had to be
put in its own folder.

Figure 4.8: A screenshot from Linguist.

4.7.2 Console front-end

For the console front-end we used the GNU gettext4 utilities for inter-
nationalization. Gettext is fairly easy to use and has a simple API.
It gives the program access to message catalogues through the system
localization variables. When the program starts, the gettext function-
ality searches for a message catalogue matching the system locale with

3Qt Linguist http://www.trolltech.com/products/qt/features/

internationalization/
4GNU gettext http://www.gnu.org/software/gettext/

30

http://www.trolltech.com/products/qt/features/internationalization/
http://www.trolltech.com/products/qt/features/internationalization/
http://www.gnu.org/software/gettext/

Chapter 4. Design

a translation file matching the programs domain. Gettext will fetch the
translated strings from this file or the default strings if no translation
file matching the specific language is found. A template of the transla-
tion file is public available so the program can be translated by anyone
to any language. A translation has to be converted to a binary format
with ’msgfmt’ before it can be used. The program is set to search both
the standard system path and a local directory for message catalogues.

31

Chapter 5

Implementation

As this project is an Open Source project we have tried to reuse much
existing code and not “reinvent the wheel” more than absolutely nec-
essary. Therefore, we have used existing libraries and standards to a
large degree.

In this chapter we will look at which libraries we used and briefly
explain why we believe they were good choices for this project. We will
also explain how these libraries have been used in the project.

32

Chapter 5. Implementation

5.1 Choices of programming language and libraries

5.1.1 Programming languages

5.1.1.1 Ruby

Ruby1 is a relatively new programming language, only about 10 years
old, and has lately become more and more popular. It is a free inter-
preted scripting language and it is a very object-oriented programming
language, every bit of data is an object. Further has Ruby good support
to process text files and it is very simple and understandable. But due
to slow parsing and difficult audio handling, which will be discussed in
chapter 9 section 9.2.2, we dropped Ruby.

5.1.1.2 C

Since Ruby did not satisfy our needs, we had to choose another lan-
guage. C and C++ became our main candidates. By searching the web
we found endless discussions on why one was better than the other and
vice versa. To get a glimpse of the discussions, read the article “Why
don’t C++ and free software mix?”2 by Dan Egnor. For our library
we decided to go with C because of it is wide use and because of C++
portability and binary linkage problem. We decided to use C as our
programming language for libdaisy and daisyconsole, because it is a
very widely used and powerful language, especially in the Unix world.
We knew that this language would give us the speed we were looking for
in our XML parsing. After some consideration, we went with the first
standardized C known as ANSI C89 (American National Standards In-
stitute (ANSI) adopted it in 1989). This is an old and widely adopted
and used standard. Compilers for this language exists on almost ev-
ery hardware platform. Writing our source code in ANSI C, gave us
some strict rules to follow in our code convention. See appendix C on
page 94. This to make our source code as easy to read and maintain
as possible, giving the project a better chance of being adopted, than
if our code was a big mess.

1Ruby Language http://www.ruby-lang.org/en/
2Why don’t C++ and free software mix? http://www.advogato.org/article/207.

html

33

http://www.ruby-lang.org/en/
http://www.advogato.org/article/207.html
http://www.advogato.org/article/207.html

Chapter 5. Implementation

5.1.1.3 C++

With our GUI front-end on the other hand, we decided to use Qt, see
section 5.1.2.4, which made C++ a natural choice. C++ is like C a very
powerful language, it was originally named “C with classes” because it
was an enchantment to C with support for object orientation. The only
difference we encountered in the little GUI code we made was the use
of classes and how new pointers are allocated (new instead of malloc).
We also had to define a standard wrapper around the libdaisy header
file shown below:

#ifndef LIBDAISY_H_

#define LIBDAISY_H_

#lnclude <pthread.h>

#ifdef __cplusplus

extern "C"

{

#endif

...

#ifdef __cplusplus

}

#endif

#endif /*LIBDAISY_H_*/

5.1.2 Libraries

5.1.2.1 GStreamer

To begin with we chose GStreamer3 to be our sound library. GStreamer
is used by many programs, and look just like the kind of multimedia
framework we needed to make our sound engine. It supported all the
different audio file formats our Daisy player needed to support. So in
the beginning GStreamer looked very promising, and we started using
it right away. We soon discovered that GStreamer was not so easy to
use. Because of Skolelinux using an older version of the library than

3GStreamer http://gstreamer.freedesktop.org/

34

http://gstreamer.freedesktop.org/

Chapter 5. Implementation

we liked, and the poor API existing on the Internet. We used the first
release cycle on getting GStreamer to work, without success. It was
with big relief we decided to drop GStreamer.

5.1.2.2 REXML

In our Ruby experimentation period we needed a XML processor. The
decision landed on REXML4, which was well documented and had a
good and understandable API. It had features like DOM and SAX pars-
ing, full XPath support, good support for different character set and
was written entirely in Ruby. By using REXML our code became easy
and understandable, which is important for us since we are developing
an Open Source project. So things looked really promising, and after a
few hours of work we got a working parser which was able to parse the
2.02 standard. We tried different books and never got satisfied with
the time it took to parse the meta data. It took unacceptable long time
to parse a medium sized book. Ruby may not be the best language to
use when we need fast parsing. Since we already had problems with
GStreamer, we decided to drop REXML and Ruby and move to a lower
level programming language.

5.1.2.3 Libxml2

When we decided to use C as our programming language we needed a
new XML parser. After some searching we went for libxml2 5. Libxml2
is, as REXML, a library which is very well documented with a very thor-
ough API. Libxml2 is written in C and is know to be very portable. Fur-
ther libxml2 implements a lot of existing standards related to markup
languages. The code needed to be written in order to parse was also
fairly understandable and intuitive. We noticed a large improvement is
parsing speed. What took several seconds with Ruby and REXML was
now done in an instant. We had some minor problems in the begin-
ning concerning that Debian uses an older version of libxml2, but after
some examination we found good, working solutions. We can with big
confidence say that we made the right choice using libxml2.

4REXML http://www.germane-software.com/software/rexml/
5Libxml2 http://xmlsoft.org/

35

http://www.germane-software.com/software/rexml/
http://xmlsoft.org/

Chapter 5. Implementation

5.1.2.4 GUI

We had some discussion on how we were going to implement a GUI
front-end for our engine. In the beginning, we tried to make a web
browser solution, but we were unable to find an easy way to interact
with our engine. Since our main goal in this project was to make
an engine, we decided to make a simple GUI front-end instead. Our
decision therefore landed on Qt6 as our GUI library. Qt is a class library
that are written in C++, and since we used C in our code, it would
not be any problem using the engine and front-end together. Another
reason why we used Qt is that Skolelinux uses KDE7 as its desktop
environment. As shown in figure 5.1 KDE applications are written
with Qt and KDE libraries on the top of two low level programming
API’s included in X Window System8.

We first started to look at the new Qt 4 application, but soon re-
alized that Debian Sarge only had Qt 3.3 by default. To make our
front-end compatible with Debian Sarge, we decided to use Qt 3.3 in-
stead. To create the GUI layout with its buttons and menus we used Qt
Designer9. Designer also had a built in source editor to create functions
and make the application do just as we wanted it to.

Figure 5.1: Showing the KDE architecture
6Qt 3 http://www.trolltech.com/products/qt/qt3/
7KDE http://www.kde.org/
8X Window System http://www.xfree86.org/current/X.7.html
9Qt Designer http://www.trolltech.com/products/qt/features/designer/

36

http://www.trolltech.com/products/qt/qt3/
http://www.kde.org/
http://www.xfree86.org/current/X.7.html
http://www.trolltech.com/products/qt/features/designer/

Chapter 5. Implementation

5.1.2.5 Audio design considerations

When planning the audio engine it is, of course, important that it
follows the project guidelines with respect to licensing and platform
requirements. This meant that decoder libraries and output libraries
licensing should be compatible with DFSG10, and that it should run
on Linux platforms and be easy for users to acquire.

According to the Daisy ANSI/NISO Z39.86-2005, a player should
be able to decode one or more of the audio formats

• MPEG-4 AAC

• MPEG-1/2 Layer 3 (MP3)

• Linear PCM - RIFF WAVE format.

During the initial examination, we found that the MP3 format were
by far the most common audio format. We chose to give support for
the MP3 format the highest priority. Later in the project, we had
not come across one single MPEG-4 (AAC) or PCM-encoded DTB, so
we decided to prioritize the development on other components. The
audio module is designed with the AAC and WAV formats in mind, so
implementing these once the need arises should go smooth.

Audio output library Libao is a cross platform audio library. It pro-
vides a very simple API, supports a large number of different platforms
and is standard in most Linux distributions. It supports all the output
devices and sound servers we hoped to be able to support - and more.

From the projects early stages, we had attempted to use GStreamer
which proved itself to be a dead end. By examining other stable Linux
programs which we have had good experience with, we concluded that
libao was very commonly used. The facts that it was quite widely
used, and that it had a relatively simple well-documented API, made
us decide to use libao.

MP3 decoder MAD11 is a high-quality MPEG audio decoder which
supports MPEG-1 and MPEG-2, layers I, II, and III12. MAD provides

10Debian Free Software Guidelines http://www.debian.org/social_contract
11MPEG Audio Decoder http://www.underbit.com/products/mad/
12Commonly referred to as “MP3”.

37

http://www.debian.org/social_contract
http://www.underbit.com/products/mad/

Chapter 5. Implementation

features such as 24bit PCM output and fixed point computation. The
fact that MAD does not rely on a floating point unit were considered an
advantage in the event of libdaisy being run on platforms that does not
provide a FPU. By using MAD, we got a widely used MPEG audio de-
coder which followed the project principle of not bringing in unneeded
dependencies.

Other MP3 decoders were briefly evaluated, but were quickly dis-
carded. Some due to incompatible non-free licenses, and some for not
providing the same degree of documentation and example code as MAD
did.

AAC decoder FAAD was chosen as an AAC decoder, but AAC sup-
port was unfortunately not completed.

The status at this moment is that the AAC decoder can play audio
output, but it does not yet fully support the seek, pause and stop
functions that is required to play Daisy books. AAC support can be
implemented in a relatively short time span if the need arises, but this
were not prioritized during this project as we could not find one single
Daisy book which actually used AAC encoded audio. As the Daisy
standard only specifies that one of the audio decoders needs to be
supported, we decided to use a pragmatic approach and that we would
not prioritize AAC audio until an actual need arose (i.e. someone
encountered a book which actually used AAC), or until we had the
spare time-resources to spend.

There have also been some controversy regarding whether or not
libfaad2 are compatible with the DFSG13. The AAC-related code in
our project are optional and can be enabled or disabled during build
time using a single “#define”. The person who builds our software can
make the decision himself based on the laws in his country and where
the software will be distributed and used.

WAV support The WAV format is very well-documented and con-
sists of a number of different “chunks”, and audio data in linear PCM
format. Stripping away the chunks and outputting the PCM data to
libao should be a relatively easy task. WAV support in Linux programs
have already been implemented numerous times, it is well-documented,

13A mail on debian-legal mailing list containing some information. http://lists.

debian.org/debian-legal/2006/04/msg00286.html

38

http://lists.debian.org/debian-legal/2006/04/msg00286.html
http://lists.debian.org/debian-legal/2006/04/msg00286.html

Chapter 5. Implementation

and the group decided that it was safe to assume that this would be
easily implemented if the need for WAV support arose.

This has, however, been given a low priority in this project because
we have not found one single Daisy book which actually uses WAV
audio. As with the AAC decoder, implementing support for this in the
future should be a relatively simple task, but it is not prioritized until
the need arises, or we have the spare time.

5.2 Threads

Threads are necessary in order to be able to communicate with the
front-end and play audio at the same time. Threads potentially exposes
the software to a whole lot of problems single-threaded programs does
not suffer from, so we wanted to use as few threads as possible. Threads
makes debugging more complicated, much harder and error symptoms
are not necessarily consistent.

Libdaisy uses POSIX threads to do things like playing audio and
handling input without blocking the engine or the front-end. Libraries
that supports the POSIX threads interface exists on all modern oper-
ating systems. The facts that POSIX threads have been widely used
through a number of years and is well documented with API, tutorials
and example code, convinced us to choose the standard pthreads for
our project.

39

Chapter 6

Management tools

Since this is an Open Source project, we decided early to avoid any
proprietary programs like Microsoft Word or Microsoft Project. We
felt it natural to follow the Open Source and free software philosophy
related to open standards and free software. We stated that all the tools
and formats we were going to use had to be Open Source and available
to anyone. It is also important that everyone who are interested in this
project is able to involve themselves.

40

Chapter 6. Management tools

6.1 Documentation and choices of aiding- and de-
veloping tools

6.1.1 Doxygen

One of our main goals was to have a good documentation to the API
of our software. We decided that Doxygen1 was a natural choice to
help us with this task. Doxygen is a very common and widely used
API documentation system for C and C++ among others. Below is an
example on how Doxygen works, in figure 6.1 we see the source code,
while in figure 6.2 we can see the generated API documentation.

Figure 6.1: Doxygen source example

Figure 6.2: Doxygen output example
1Doxygen http://www.stack.nl/~dimitri/doxygen/

41

http://www.stack.nl/~dimitri/doxygen/

Chapter 6. Management tools

6.1.2 LATEX and LYX

We decided that all our documentation, not only the reports, should
be available in the LATEX format2, so that we could focus on content
and spend less time on manual formatting and document appearance.
Two of the group members had some former experience with LATEX,
through the LYX3 front-end, and the decision was relatively easy to
make. We felt that LYX would give us the right output that we wanted
without too much trouble. While LYX gives the user an easy way of
generating LATEX code, it can implement more advanced LATEX code
through use of ERT (Evil Red Text) boxes. Therefore we went with
the LYX front-end, instead of other word- or document processors such
as MS Word (who was not really an alternative since we wanted to use
non-proprietary software) or OpenOffice Writer.

The LYX/LATEX formats also has exciting advantages when it comes
to our development environment. We use SVN for version handling,
and because the LYX/LATEX files are text-based, they have advantages
over binary formats when it comes to version handling. Also, by using
tools available on the developer machine 4, we could automatically
generate up to date versions of the documents in several formats. By
automating the task of generating updated documents, we saved some
time on administrative work. We could focus on other parts of the
project, knowing that the documentation on the web page would always
be up to date.

Since the group did not have that much experience with LATEX, we
took the opportunity to use this project to really learn how to use it.

6.1.3 Subversion and TortoiseSVN

All developers for Skolelinux is using Subversion5 as its version control
system, so we did not had to worry about version handling and backup.
For Windows XP we found the TortoiseSVN6 client to be a really good
alternative to the terminal based Subversion. TortoiseSVN is more
intuitive when it comes to moving files, folders etc. - at least for people
who are new to Subversion.

2LaTeX http://www.latex-project.org/
3LyX http://www.lyx.org/
4Devloper Skolelinux http://developer.skolelinux.no/
5Subversion http://subversion.tigris.org/
6TortoiseSVN http://tortoisesvn.tigris.org/

42

http://www.latex-project.org/
http://www.lyx.org/
http://developer.skolelinux.no/
http://subversion.tigris.org/
http://tortoisesvn.tigris.org/

Chapter 6. Management tools

6.1.4 Planner

To make our Gantt-charts, we used an Open Source project manage-
ment tool called Planner7. It is really easy to use, and supports all the
features we needed.

6.1.5 Eclipse

To aid us in our coding, we chose Eclipse8 as our development tool.
Eclipse is an Open Source community which creates i.a. application
frameworks for building software. It has good support for different
programming languages by installing different plugins and extensions.
To get Eclipse to support C we needed the Eclipse CDT package9, this
package has an editor, debugger and launcher, as well as a makefile
generator. Eclipse is very intuitive and has a clear design.

6.2 Code quality tools

With our second release (the first release written in Ruby), we experi-
enced some common problems related to wrong allocating and freeing
of memory. To find bugs and improve the quality of our code, we used
the tools mentioned below.

6.2.1 Splint

Secure Programming Lint10 is a tool for statically checking the program
source code and has provided good information on parts of our code
that can be written better.

6.2.2 Electric fence

Efence11 is a memory debugger written by Bruce Perens which we have
used to some degree to debug our memory management. However, we
have found Valgrind slightly simpler for our use.

7Planner http://developer.imendio.com/wiki/Planner
8Eclipse http://www.eclipse.org/
9Eclipse CDT package http://packages.debian.org/unstable/devel/eclipse-cdt

10Splint http://www.splint.org/
11Electric fence http://perens.com/FreeSoftware/ElectricFence/

43

http://developer.imendio.com/wiki/Planner
http://www.eclipse.org/
http://packages.debian.org/unstable/devel/eclipse-cdt
http://www.splint.org/
http://perens.com/FreeSoftware/ElectricFence/

Chapter 6. Management tools

6.2.3 Valgrind

Valgrind12 is a GNU/GPL system for debugging and profiling Linux
programs. It can automatically detect many memory management and
threading bugs, making our program more stable. It pinpoints where
the memory management bugs happens.

6.2.4 GNU Debugger

GNU Debugger13 is the standard debugger for GNU software systems.
It gives us a lot of good options when it comes to debugging programs.
The features we found to be really useful were backtraces on individ-
ual threads. This has really simplified the work of debugging thread
executions and have helped us locate some critical bugs.

6.2.5 GNU Binary Utilities package (nm)

nm14 examines binary files (libraries, compiled object modules, shared-
object files, and standalone executables) and displays the contents of
those files, or meta information stored in them. nm is used as an aid
for debugging and resolving conflicts. nm is a part of the GNU Binary
Utilities package.

In our project, nm was used (together with Doxygen) mainly for
locating leftover global variables in libdaisy.

6.2.6 Lintian

“Lintian dissects Debian packages and reports bugs and policy viola-
tions. It contains automated checks for many aspects of Debian policy
as well as some checks for common errors.”15

12Valgrind http://valgrind.org/
13GNU Debugger http://www.gnu.org/software/gdb/
14GNU Binary Utilities package (nm) http://www.gnu.org/software/binutils/

manual/html_chapter/binutils.html
15Lintian http://lintian.debian.org/

44

http://valgrind.org/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/binutils/manual/html_chapter/binutils.html
http://www.gnu.org/software/binutils/manual/html_chapter/binutils.html
http://lintian.debian.org/

Chapter 6. Management tools

6.3 Packing and release tools

6.3.1 Make

In order to create an executable file from our source code, we use
Make16. To build a program we needed a makefile, where all the build
rules are set. With Make we can also install the program to the users
binary folder and it is also possible to uninstall a package. Some of
the great advantages of Make is that the end user does not have to
know anything about the details of what actually happens in the back-
ground. Further it figures out automatically which files that needs to
be updates based on the changes in the source code. Make is also not
limited to any particular language, we also used Make to generate the
project report in PDF format from the LYX files.

6.3.2 QMake

Qmake17 is a tool created by Trolltech which helps the user create a
makefile. Qmake is very powerful and can create makefiles for different
compilers and platforms. It can also be used if the source is not made
with Qt18. Having such a tool saves us a lot of hours with hard and
difficult work, and let us have full focus on the code. Qmake was used
to help us create makefiles for the GUI front-end, all we needed was
a simple project file, see figure 6.3 for an example, and run qmake
<file name>.pro. Most of our project file was auto generated by Qt
Designer19, but we had to modify it to fit some of our special needs, like
for instance to include translation files and where to put them. This is
discussed in section 4.7 on page 29.

16Make http://www.gnu.org/software/make/
17QMake http://doc.trolltech.com/4.0/qmake-manual.html
18Qt 3 http://www.trolltech.com/products/qt/qt3/
19Qt Designer http://www.trolltech.com/products/qt/features/designer/

45

http://www.gnu.org/software/make/
http://doc.trolltech.com/4.0/qmake-manual.html
http://www.trolltech.com/products/qt/qt3/
http://www.trolltech.com/products/qt/features/designer/

Chapter 6. Management tools

Figure 6.3: A simple example on a project file.

6.3.3 Debian Package building tools

NUUG hosted a lecture in Oslo on how to make Debian packages, this
lecture was recorded and put on the NUUG web page. This intro
on how to make a Debian package, and the information we read on
the Internet, were the only experience we had with creating Debian
packages. There are many different tools you can use to aid you in
creating a Debian package. Since we were fresh to the whole Debian
package building scene, we started out doing very much of it manually
because we felt we had best control this way.

After much help from Petter Reinholdtsen in setting up an environ-
ment for using debhelper, we finally went over to a more automatically
way of making our Debian packages. “Debhelper is a collection of pro-
grams that can be used in a debian/rules file to automate common tasks
related to building Debian packages. Programs are included to install
various files into your package, compress files, fix file permissions, etc.
Most Debian packages use debhelper as part of their build process.”20

This automatize our package build phase, and made it easier for us to
make our Debian packages accordingly to the Debian Policy Manual21.

The environment Petter Reinholdtsen helped us put together also
made the tarball for us, making the whole Debian packaging process
automated. One of the things we had to take care of regarding Debian
packages, where version numbering. We had not any experience on
how to version numbering our release, therefore we decided after some
examination to use the numeric versioning scheme22. Here we use three
different numbers separated by periods to give the software a unique
numerical identifier, where the first number is the major number, the

20Debhelper http://packages.debian.org/stable/devel/debhelper
21Debian Policy Manual http://www.debian.org/doc/debian-policy/
22Software Version numbering http://en.wikipedia.org/wiki/Version

46

http://packages.debian.org/stable/devel/debhelper
http://www.debian.org/doc/debian-policy/
http://en.wikipedia.org/wiki/Version

Chapter 6. Management tools

second is the minor number and the third is the revision number.
This making our first release being named “daisyplayer 0.0.1 i386.deb”
where “0.0.1” meaning that it was our first release.

6.4 Scripts

We have had shell access to the developer server23 and opportunities
to run scripts and automate tasks. We have used this on some areas,
and it has helped us during our project.

Figure 6.4: Part of the Makefile used to generate this report.

The two main areas where we have used scripts have mainly been
to produce up-to-date documentation and to generate source code doc-
umentation using Doxygen.

Our scripts generally consists of bash scripts and makefiles. Make-
files are very helpful and helps us only generate new documentation if
any of the source files have changed.

The main idea behind the use of scripts are that we should spend
more time working on the project and not spend it on repetitive tasks
that can be automated.

23Skolelinux developer server. http://developer.skolelinux.no/

47

http://developer.skolelinux.no/

Chapter 7

Testing

Testing is a vital part of every software project. Many bugs and errors
are encountered and can be fixed during extensive testing. It is easy to
not see or comprehend different bugs in the source code if the projects
testing methods is not efficient enough.

48

Chapter 7. Testing

7.1 User testing

As a mixture of evolutionary system development and Open Source de-
velopment, testing was a major part of our project. Like figure 7.1 in-
dicates, testing and validating the product is an important task. When
working after this specific system development model, we had to test
our product continuously during the project.

Figure 7.1: The evolutionary system development model.

One method we used a lot, was testing each others code and ideas.
As a four person group, this method worked very good. Many bugs and
errors where encountered and fixed together. This method also gave
us a good understanding on what the different members of the group
where working on and made us learn much from each other on various
subjects.

Early in the project we found some different Daisy books, giving
us the ability to test our DaisyPlayer against different books. Some of
the Daisy books followed the 2.02 standard and some followed the AN-
SI/NISO Z39.86-2005 standard, some with audio and others with only
text. From our experience, many of the Daisy books that are available
follows the Daisy standards to a varying degree. Testing with several
real books has allowed us to make libdaisy more tolerant and able to
parse many books that does not adhere completely to the respective
standards. This variety of Daisy books has been important during the
tests of our DaisyPlayer.

Because we did not want to have a lot of users reporting and com-
menting on issues we already worked on, we did not include as many

49

Chapter 7. Testing

external test users in the early phase of the project for a number of
reasons.

We were aware of many bugs and spent much time fixing them. The
extra load of managing bug reports, suggestions and repeatedly talk to
test users about bugs that we already had filed, would not benefit the
project - at least not in the early phases. We felt it would be best to
test each others code out internally in the group, and rather ask for
help if we needed it.

The technical nature of the project would have required the testers
to be quite familiar with program development on Linux and, even
then, would require a large effort to test our software.

Once we had front-ends that showed libdaisy functionality, we re-
ceived some helpful feedback and tips from persons within the Skolelinux
community who had tested it. We would like to have included more
end users, if we have had an user friendly front-end earlier. The nature
of this project made this hard for “regular” Linux users to really test
our software until perhaps in the last phases, where we had created
user-friendly front-ends.

7.2 Product quality

We really put a big effort in making the product as good as possible.
A lot of time went into making the engine stable. Since we used C as
programming language we had to be extremely careful with our pointers
when it comes to allocating and deallocating memory. Every time we
used a pointer we had to check whether it contained valid information,
or just points to NULL, to avoid segmentation faults.

To help us in the debugging process we added debug information
in every function that got called. This debug information can easily
be turned on and off, and it is also possible to choose which C file to
debug.

We followed the ANSI C standard in the libdaisy code, to ensure
the quality and portability of the source code.

7.3 Product quality tools used

Another method we used to test our product, was using a number of
different tools for sorting out common mistakes. See section 6.2 about

50

Chapter 7. Testing

code quality tools on page 43, for some information on the tools we
used to test our product.

Valgrind We used Valgrind1 for debugging our program, and found
and fixed many memory management and threading issues. Valgrind
is very good at reporting when memory are either not freed, or freed
multiple times.

Electric fence (Efence) Efence2 aims to debug two very common
programming bugs. Efence will monitor both read- and write access to
areas that have been malloc()’ed and report when the software touches
areas that are outside the malloc()’ed area or that have already been
free()’ed. Efence has, in combination with Valgrind, been very helpful
in detecting problems where memory have not been handled properly.

Splint Splint3 statically checks the C code for security vulnerabilities
and coding mistakes. The error-messages from splint have been very
detailed and extremely helpful in increasing our code quality.

GNU Binary Utilities package (nm) The GNU Binary Utilities4

provides “nm” which we used to detect and remove global variables in
our library.

GNU Debugger (gdb) GNU Debugger5 has been great help when
it comes to locating the exact places of critical errors, or to inspect
states while programs and libdaisy are running. The bugs that caused
segfaults were usually easy to pinpoint thanks to gdb.

Lintian We used Lintian6 to validate and check our Debian packages
for common mistakes. This allowed us to make our Debian packages
accordingly to the Debian Policy, and we discovered a lot of bugs with
our packages. We encountered many bugs, with the help of Lintian,

1Valgrind http://valgrind.org/
2Efence http://perens.com/FreeSoftware/ElectricFence/
3Splint http://www.splint.org/
4GNU Binary Utilities package http://www.gnu.org/software/binutils/manual/
5GNU Debugger http://www.gnu.org/software/gdb/
6Lintian http://lintian.debian.org/

51

http://valgrind.org/
http://perens.com/FreeSoftware/ElectricFence/
http://www.splint.org/
http://www.gnu.org/software/binutils/manual/
http://www.gnu.org/software/gdb/
http://lintian.debian.org/

Chapter 7. Testing

when we created Debian packages. Lintian was an important help to
ensure product quality of our software packages.

These different ways of testing our product, made it possible for us
to find and improve a lot of different bugs. This ensured product qual-
ity throughout the project.

52

Chapter 8

Public relations

As this is an Open Source project, public relations is actually very
important. To make useful software, we must get people to use it as well
as generate interest in our target groups. As an attempt to make the
DaisyPlayer Project known among the Open Source community, and
people who use Daisy products, we have focused on reaching potential
interested people. We have put effort into creating a good web page,
and we have been present on several IRC channels almost at any time
of the day. We posted messages on mailing lists and forums when we
had something that might be of interest.

53

Chapter 8. Public relations

8.1 Web page

In an attempt to make the project known, we decided to create a web
page for the DaisyPlayer Project as early as possible. We also wanted
to keep the web page as easy as possible, but also informative as you
can see in figure 8.1 on the following page. The reason we wanted to
make a good web page is that this is where many new users will get
their first impression of the project. If the page is a real mess most
people will loose interest in the project. During these months the page
has gotten almost 900 hits from users all around the world and if you
search after ’Daisyplayer’ with Google1 our project appear as one of
the first hits. 2

1Google http://www.google.com/
2As of May 2006

54

http://www.google.com/

Chapter 8. Public relations

Figure 8.1: A screenshot of the DaisyPlayer Project web page.

• On the main page you will get some brief information about the
project and the latest news. There is also a link to a Frequently
Asked Questions (FAQ) page.

• In the news section you will get all the news and can read about
the progress of the project.

55

Chapter 8. Public relations

• On the progress page you will see our Gantt-chart, showing our
project schedule.

• The download page contains Debian packages and tarballs of all
our releases, you will also find information on how to download
our repository. We have added some screenshots of our front-ends.

• In the documentation section you can download PDF’s of our
reports and you can find the documentation on our source code
and API to the library.

• The developer page contains information about the developers of
the DaisyPlayer Project.

• On the contributor page you will find information about the con-
tributors of this projects.

• On the links page you will find links to all libraries, software and
technologies relevant to the project.

8.2 Plan for advertising

One of the best ways of advertising and presenting the project was to
have a nice and updated web page. We put a lot of effort into the web
page, both with regards to content and design. One issue related to
our advertising plan, was that we did not want to advertise to much
before we had a decent product. Because of this, in the beginning of
the project, the only advertisement we had were our web page and
through the #skolelinux IRC channel.

When we had a product worthy of advertising and the need for user
feedback emerged, we notified the following Linux forums and mailing
lists:

• Debian3 - under “General Discussion”

• Ubuntu4 - under “Ubuntu Cafe”

• Gentoo5 - under “Unsupported Software”

3Debian forum http://forums.debian.net/
4Ubuntu forum http://www.ubuntuforums.org/
5Gentoo forum http://forums.gentoo.org/

56

http://forums.debian.net/
http://www.ubuntuforums.org/
http://forums.gentoo.org/

Chapter 8. Public relations

• Linuxforum6 - under “Linux Software”

• Linuxlinks7 - under “Software”

• Skolelinux and DebianEdu mailing lists.

In addition we registered an account on Freshmeat8, where we made
our project easier to find.

We also spent some time updating Wikipedia9 with some of the
information and knowledge about Daisy that we had gathered during
this project. The Wikipedia entry for the Daisy format was minimal
and in quite a bad state. By writing about what we have learned during
our project, we could give knowledge back to the community through
Wikipedia, and we could make available our information about the
DaisyPlayer Project. Naturally, it is extremely important to us that our
contributions benefits Wikipedia, and that it should not be interpreted
as an “advertisement” or be irrelevant to Wikipedia.

6Linux forum http://www.linuxforum.com/forums/
7Linuxlinks forum http://www.linuxlinks.com/portal/phpBB2/index.php
8Freshmeat http://freshmeat.net/
9Wikipedia http://www.wikipedia.org/

57

http://www.linuxforum.com/forums/
http://www.linuxlinks.com/portal/phpBB2/index.php
http://freshmeat.net/
http://www.wikipedia.org/

Chapter 9

Discussion of results

On the following pages we are going to discuss the resulting product we
ended up with, our development environment and project management
tools. Further we are also going to discuss the experiences with the
libraries and technologies we have used, evaluate how we have been
working during this project and what we have learned.

58

Chapter 9. Discussion of results

9.1 Evaluation of the result

We are very pleased with the work we have done on this project. We
have learned a lot and gotten valuable experience in a number of dif-
ferent areas. It has been very rewarding to work on a big project for
such a long period of time and we are proud of what we have achieved.

This was supposed to be a start on an Open Source project and we
feel that the project have all the possibilities to be an active project
also after our project period is over. As we already have mentioned, we
put a big effort into make the web page1 look nice and tidy. We are very
happy with how the page looks, with its nice design and informative
text. The web page is written in strict XHTML and CSS, and gives this
project the serious web page it needs to attract users and developers.

We are also very pleased with our documentation, created with the
help of Doxygen2. Everything we have written is in English, so we all
got the opportunity to freshen up our English. As you can see in our
source code documentation and the API, we have commented the code
very well, so outsiders easily can understand what we have done and
why.

Since we decided to use C as our programming language, it brought
in its train a big challenge. We soon discovered that we had to be
very disciplined when allocating and deallocating memory. We always
had to check our pointers, and we got a big portion of our problems
in the world of threads. This time consuming labour made us learn
very much about programming techniques and how to program more
complex solutions.

When it comes to the visible result we are very pleased, even though
we know lots of improvements and extensions which could have been
done. Since this is our first project of such size we are proud of what
we have created. The library with both its parser- and audio-part are
working well. We only wish we could have had some more time on this
project so that we could support more of the complexity in the Daisy
standards and get more people involved, now that we have front-ends
to show to. The front-ends we have created to test the functionality
of the library are very plain and simple. As mentioned earlier in the
report, our main focus was on the library. We also feel that we have

1The DaisyPlayer Project http://developer.skolelinux.no/info/studentgrupper/
2006-hig-daisyplayer/

2Doxygen http://www.stack.nl/~dimitri/doxygen/

59

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://www.stack.nl/~dimitri/doxygen/

Chapter 9. Discussion of results

kept the software dependencies to a absolute minimum. When we look
at the goals we decided in the pre-project, see section A.1 on page 76,
we can with good confident say that we have successfully met our goals.

The guidelines we sat for this project in the project outline doc-
ument found on our web page3, have also been followed. We have
documented all our sources with the utmost respect to the authors
and we have used the DFSG approved license GNU/GPL4 on all our
work. We have also made the front-ends support internationalization,
the GUI front-end is translated to English and Norwegian, and created
manuals for them, see Appendix H.

9.2 Evaluation of choices and technologies

9.2.1 Development model

As explained in the pre-project report on page 82 and in section 1.8 on
page 6 , we chose a mixture of evolutionary and Open Source devel-
opment model. This model fitted the project and the group well. It
required very good communication and cooperation. Fortunately, the
group could fulfill those requirements. We knew from the very begin-
ning of the project that communication would not be a problem, as all
the group members were neighbours. We have also worked together a
lot in the past and use other means of communicating such as IRC and
e-mail.

The model we decided to use was very open for changes during
development. This meant that we could develop more freely than, for
instance, if we had decided on a pure incremental development model.
To give the project some time frames and goals to work against, we
created two weeks long release cycles. This mean that we would make
a release of our product every two weeks, forcing us to set achievable
goals and structure our work according to the time boundaries. The
model worked well for this project, and provided structure to our work.
One issue with the release cycles were that we spent a lot of time to
prepare and make Debian packages. A consequence was late evenings

3Project Outline http://developer.skolelinux.no/info/studentgrupper/

2006-hig-daisyplayer/project_management/reports/project_outline/project_

outline.pdf
4The Debian Free Software Guidelines http://www.debian.org/social_contract

60

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/project_management/reports/project_outline/project_outline.pdf
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/project_management/reports/project_outline/project_outline.pdf
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/project_management/reports/project_outline/project_outline.pdf
http://www.debian.org/social_contract

Chapter 9. Discussion of results

before each release. A number of times, we were forced to work on the
release until close to midnight.

One feature we included in our development model that we did
not plan, was the use of eXtreme Programmings pair programming.
On the difficult parts we tend to ask each other for help, which re-
sulted in much use of pair programming. This way we sorted out many
difficult issues. While most programming was done individually, pair
programming proved itself to be incredibly (and surprisingly) helpful
when programming and debugging hard parts of our code.

The Gantt-chart, on page 97, which we followed through the whole
project fitted our needs good, but in retrospect some changes could
have been done to it. The first release cycle could have been longer,
maybe the two first release cycles could have been merged into one.
The project did not have any set dates where we had to complete one
specific part of the engine, so having release cycles lasting two weeks
fitted the project nicely.

9.2.2 Choice of programming language

In our choice of programming language, we decided early on in the
project that we did not have to pick one and stand by it throughout
the project, but keep our options open. We discussed and examined
different languages. Together with our supervisor we decided that Ruby
would be a good language to learn and use.

We tried using Ruby early on, but concluded that it was not the
right language for this project. It did not fulfill our requirements, nei-
ther when it came to audio decoding and output, nor XML parsing.
One problem the Ruby language presented us was that the XML pars-
ing went really slow, even though we did use SAX parsing, and not the
slower DOM parsing method. This was a major issue, and we could
not settle for this XML parsing alternative. When trying to handle the
audio output, Ruby did not prove itself to fulfill our needs either.

We decided to change to C which we have had some previous ex-
perience with. We knew that with C we would have good support for
audio decoding since it is a very widely used language, and most au-
dio libraries are already implemented in C. Our experience from using
C with libraries like MAD and FAAD are that the programmer has
better control over what happens and how it happens. Decoding and
playing audio with MAD and libao were implemented without any of

61

Chapter 9. Discussion of results

the strange undocumented issues we had experienced with GStreamer.
This project have benefited greatly from using these well-used well-
documented libraries.

We knew that the parsing would go quicker with C since it is a
compiled language instead of Ruby which is interpreted, and quickly
registered that parsing speed was no longer an issue. In most cases, the
parsing of an entire chapter was done in the blink of an eye. The only
problem is when the chapter is very big or, in a worst case scenario, the
whole book consist of only one single chapter. We discussed whether
we should parse smaller segments in cases of very large chapters, but
new issues with a higher priority needed to be sorted out, so we have
not had time to tackle this potential issue yet.

With implementing the library in C, came a large responsibility of
creating robust code. We needed to be more conscious of everything
we did, because C lacks the safety features many younger programming
languages have. We quickly concluded that we had to be very strict
with our pointers and always check for NULL-pointers to make sure
we worked on existing data and to prevent segmentation faults. Also,
allocated memory needed to be manually deallocated when it is no
longer in use. C++ would probably be an easier language to use as it
is object-oriented, but using C have taught us to be a whole lot more
disciplined and aware of what we do when we write code.

The advantages we achieved from using C were fast code and a very
large degree of control over what the computer are instructed to do.
Finesses such as the “register” keyword which instructs the compiler
that a variable will be used frequently, and that the programmer wants
it (if the compiler allows) to exist in the CPU register rather than in
memory makes C a rewarding language to use.

Using C++ for our GUI front-end did not pose as a problem be-
cause it can easily implement C libraries. A minor wrapper around
the libdaisy header file was all we needed in order to link against our
library.

9.2.3 Choice of GUI

Since none of us had any wide experience creating GUI with languages
like C or C++, we wanted a tool for helping us with this task. We
read a lot about different possibilities, and tried e.g. an embedded web

62

Chapter 9. Discussion of results

browser created by a tool called Glade 5. Glade is a free user interface
builder for GTK+ and Gnome. Trolltechs Qt6 which KDE is based
upon, could give us what we wanted much easier and quicker, so the
decision landed on Qt. After some weeks experience with developing
with Qt, we feel that we chose correct. We are very happy with the
result, and will most likely chose Qt again later. It is very well docu-
mented and the library is easy to use. It was also a real big plus to use
QMake to create our makefiles, that saved us from lots of hours with
hard work. Another plus is how easy Qt solves internationalization.

9.2.4 Choice of libraries

9.2.4.1 POSIX threads

We decided to use POSIX threads for our library due to the fact that it
is widely used, well-tested and exists on almost all platforms. As Linux
are the primary platform, we chose to link against the libpthread shared
library.

We expected that programming with threads would cause some
problems and we were correct. We have had quite a lot of problems
caused by issues related to how we used threads.

One error we made was to first write code that handles audio play-
back without bringing in threads. Once we had successful audio play-
back, we tried to change the existing code to use threads. The result
of this was quite messy code and bugs which were hard to track down.

For future development, a redesign of the audio engine with focus
on threads rather than just audio playback will benefit this project
enormously. This has been added to our future plans (see section 9.4 on
page 70), and have high priority.

9.2.4.2 MAD - MPEG Audio Decoder

We chose MAD for a number of reasons. MAD is:

• Well documented.

• Provides a good, clean API.

5Glade http://glade.gnome.org/
6Qt 3 http://www.trolltech.com/products/qt/qt3/

63

http://glade.gnome.org/
http://www.trolltech.com/products/qt/qt3/

Chapter 9. Discussion of results

• Widely used by a number of good applications. (AlsaPlayer,
MPlayer, mpg321, ScummVM)

• Does not depend on a FPU.

MAD is also known to deliver very high-quality audio compared to
many other decoders, though this were not considered to be important
for our project.

In our experience, MAD have been very good to work with. The
decoder was very simple to use. Many of the alternatives were to take
code from other MP3 players and try to make it work in our project,
which would probably not have given us the same result. MAD provides
example code, and it is widely used in other Open Source projects. This
helped us greatly as we had much code to look at which provides helpful
hints about how to best use MAD in our project.

The choice of using MAD for our decoder was a good choice which
we have had no reason to regret.

9.2.4.3 Libxml2

The main reason we chose libxml2 is that we knew it was used in
numerous other projects, so it is well-tested and used. Also, we quickly
noticed that libxml2 was well documented and had a good API. There
was also some simple code examples which helped us in the beginning.

Another reason why we chose libxml2 is that the library is very
portable and could easily be ported to e.g. Windows or Mac OS. A
minor issue in the beginning was that not all the functions in the API
was supported in the version of libxml2 which is supplied with Debian
Sarge. But after some reading and testing, we managed to solve them
nicely. So we are very happy with our choice choosing libxml2 as our
XML parser.

9.2.4.4 Libao

We used libao to output decoded audio from the decoder. Libao is a
cross-platform audio output library with a very simple, well-documented
API and provides good example code.

Libao supports all the project requirements such as low number of
dependencies, portability, and it supports all the required audio sys-

64

Chapter 9. Discussion of results

tems (ARTS, OSS, ALSA, ESD). Libao will automatically use the users
default audio driver.

Libao served us well in this project, and saved us from creating
our own interfaces towards ARTS, ESD and ALSA. All audio output
functionality is hidden behind a very intuitive API.

9.2.5 Choice of documentation tools

9.2.5.1 Doxygen

We all had little or no experience with Doxygen7 before we started
this project, but we knew that Doxygen could help us a lot in order to
create good documentation from our source code. In order for Doxygen
to work for us we had to comment our source code in a special way,
but that was no problem for us since we were used to doing this from
previous projects. We are very happy with our choice of Doxygen, it
created a good documentation of our library8 and a very nice API, see
appendix G. Another great feature is that it auto-generated up-to-date
documentation throughout our development phase.

9.2.5.2 LATEX and LYX

Two of the members of the group have had some minor experience
with LATEX and LYX from previous projects, but none of us could call
ourselves experts with this technology. We knew that it would be a
great documentation tool, when we learned to use it. It took some
hours to learn different aspects of LYX, but we feel that it was the
right tool to use. It eventually gave a very good result and we are very
pleased with the layout of the report. It is also really great that with
a simple little script all the PDF’s are automatically generated when
needed from the LYX files.

For this project, the combination of LATEX and LYX have really paid
off. We have trouble seeing how the same result could be achieved using
traditional word-processors with binary file formats like for example
Microsoft Word. The combination of SVN and text-based file formats
enabled the four of us to work simultaneously on a relatively large

7Doxygen http://www.stack.nl/~dimitri/doxygen/
8Libdaisy Documentation http://developer.skolelinux.no/info/studentgrupper/

2006-hig-daisyplayer/documentation/doxygen/html/index.html

65

http://www.stack.nl/~dimitri/doxygen/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/documentation/doxygen/html/index.html
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/documentation/doxygen/html/index.html

Chapter 9. Discussion of results

document like this report and still keep conflicts to a minimum. The
creating of contents, index, list of figures etc. are handled automatically
and saves the group for keeping track of things like this manually.

The only problem we had with LYX was that the version on Skolelinux’s
server are quite old. That gave us some complication with the auto
generation of the PDF’s, but we found ways to solve this. For future
reports, LATEX and LYX will be a natural choice.

9.2.6 Evaluation of development environment

9.2.6.1 Eclipse

Since we already were familiar with Eclipses powerful development tool,
we knew when choosing Eclipse9 we would not regret it. It is a great
free development tool, and it has saved us a lot of unnecessary work.
Eclipse does not only create makefiles for us, but it has a very great
debugging tool. Further, it is very well arranged and it helps us in
saving time with minor details like auto-complete variable and function-
names. Eclipse also showed us the location of warnings and errors in
the code. The only negative side with Eclipse is that it sometimes used
a lot of memory, and since some of us used a virtual machine with
limited memory, Eclipse sometimes crashed.

9.2.6.2 Scripts

The use of scripts have been of great assistance to us during this project.
As an example, one of the scripts helped us constantly updating our
code documentation as changes was submitted. We have been able to
spend time on other tasks, knowing that we would not need to update
documentation manually whenever we made a change. By spending
time making the scripts, we saved a lot of time we normally would
have used on tasks that are now automated.

9.2.7 SVN

We were all excited about using a repository and version control sys-
tem, as we had never used one before. Since we were developing for
Skolelinux we did not have any choice on what version control we should

9Eclipse http://www.eclipse.org/

66

http://www.eclipse.org/

Chapter 9. Discussion of results

use. We were all amazed how incredibly easy SVN10 was and how great
it is to work with version control. It only took a few minutes to set up
the framework and we soon came into a good routine where we updated
and committed changes often. We also tried to always commit source
code that worked so that another could work on a different part of the
engine without worrying about compilations errors.

The only real problem we had with conflicts came when we worked
with LYX, these conflicts came because we used both LYX on Windows
and Linux11. We solved this problem by only using LYX under Linux.
Early in the project we learned the habit of checking difference with
our working copy with what lies on the server. The reason we did this
is to reduce the chance of conflicts, so we were very thorough when
we submitted something. During this project we have a total of 2000
commits, and a total of 9400 file changes. For us SVN has been a great
tool that is extremely useful, and we all have had great use of this
system.

9.2.8 Problems encountered

When we started this project we knew we had to read and follow the
specification on the structure of a Daisy DTB. We downloaded the
ANSI/NISO Z39.86-2005 standard12 and started reading. The standard
was quite extensive, so it took some time to get to know it.

When we started implementing the first simple version of the parser,
we started looking for Daisy DTB’s for testing. We encountered some
free books on the Internet that we could download, and later we got
hold of retail CD versions of several books which we could borrow. None
of this books followed the standard we had. It was then we realized
it was several older versions of the standard, and the newer standards
was not backward compatible.

At first we thought it had to be only minor changes and just addi-
tional tags that would differ between the standards, but after looking
closer on the other standards we found them to differ quite a bit. Mak-
ing a parser that would support all the standards would take way to

10SVN http://subversion.tigris.org/
11Windows- and Linux newlines differ, so whole files were submitted rather than just a

patch.
12ANSI/NISO Z39.86-2005 http://www.niso.org/standards/resources/

Z39-86-2005.html

67

http://subversion.tigris.org/
http://www.niso.org/standards/resources/Z39-86-2005.html
http://www.niso.org/standards/resources/Z39-86-2005.html

Chapter 9. Discussion of results

much time. Both the implementation of the parser and us getting to
know all these standards would take a lot of time.

We decided to do some examination on which standard today’s
books were normally using. It did not take to much time to find out
that the second newest standard, called Daisy 2.0213, was the most
used. In fact, we had a hard time finding books using any of the other
standards.

Based on our examination, we decided to concentrate on the 2.02
standard, but also implement as much as possible of the newest stan-
dard, Z39.86-2005. Looking back now, it may have been better to con-
centrate on just one standard, the 2.02 standard, because this is most
widely used. Implementing these standards were very time consum-
ing, and it would be better to fully support one, rather than partially
support two. But since we have concentrated on the most important
functionality, we have come out of all of this with a parser and library
which gives the user enough functionality to enjoy a Daisy DTB.

After implementing a parser which supports enough of the standard
to parse a Daisy DTB, we still got a lot of errors when we tested it
on the books we had. After checking the markup of the DTB’s, it
seems like they did not follow the standard all the way. We have yet
to discover a book that validates a 100% according to the standard.
Because of this we had to use more time on the parser, to make it more
tolerant to errors in the markup.

9.2.9 Evaluation of the PR work

In the final stages of this project, PR became a very important task.
We put a lot of effort into advertising our project, and stuck to our
advertising plan. The plan made it easier for us to advertise the project,
and saved us a lot of time. The effect of our PR work was reflected in the
amount of hits on our web page. After we executed our advertisement
plan, more people become aware of the project, resulting in more hits
on our web page.

We decided that it was very important for us to quickly give good
replies on enquiries related to the project. Anyone who were interested
or had questions should get a good response as soon as possible. A step
to ensure this was to register an e-mail address that forwards everything

13Daisy 2.02 standard http://www.daisy.org/publications/specifications/daisy_

202.html

68

http://www.daisy.org/publications/specifications/daisy_202.html
http://www.daisy.org/publications/specifications/daisy_202.html

Chapter 9. Discussion of results

to all project members. A new enquiry will notify all four developers,
and we should be able to quickly provide an answer.

Contributing to Wikipedia14 was not done primarily to promote the
project, but to share information we had acquired during the project,
and to help increase the general awareness of the Daisy standard. The
result is an increase in the Daisy-related information available on the
English Wikipedia, as well as a small article about Daisy on the Nor-
wegian Wikipedia. The DaisyPlayer Project are only mentioned in the
English version of Wikipedia.

Public relations and the projects image are very important to Open
Source projects like this which relies on reaching interested people.
With our clean, tidy web page and good focus on documentation, we
believe we have started a good project which can attract interested
developers and users. Even though we have not got as much interest
and feedback from our advertisement as hoped, we feel pretty certain
that in the future this can change. When people start to use the Daisy
standards more, people will look for players, and then our project will
become very useful.

9.3 Evaluation of the groups work

The group cooperation has been very good, and we have had at every
point good communication within the group. One reason for this is that
we all knew each other very well before the project started, and have
worked together on previous school related projects. It also help a lot
that we all live in the same hallway, so we could easily go to each other
and ask if there was something we wondered about. Another great
advantage with living so close is that we could take meetings whenever
we felt for it without making appointments and such. Already from
the beginning we divided the work and responsibility within the group.
When it was time to develop a GUI we divided the group in two. We
all feel that the we have worked very well. All the time we have put
into this project is documented in “work log”15, which we have been
very thorough with updating.

We are very satisfied with how the group have worked together, ev-

14Wikipedia http://wikipedia.org/
15Work log http://developer.skolelinux.no/info/studentgrupper/

2006-hig-daisyplayer/project_management/project_files/work_log.txt

69

http://wikipedia.org/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/project_management/project_files/work_log.txt
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/project_management/project_files/work_log.txt

Chapter 9. Discussion of results

eryone have put a lot of effort into this project. The pair programming
mentioned in section 9.2.1 on page 61 could not have been done with-
out the groups cooperation being as flawless as it was. From the “work
log” you can see that it has been put a total of 1800 hours effective
working time into this project.

9.4 Further work on the project

There are some features that this project could have implemented, but
either we have not got the time to implement or we have not felt that we
needed to implement it. These are all things that can be implemented
in the future. Much of the future work should be to test and stabilize
the product. Especially should the library get more testing then that
we got time to.

Features to implement in the future are as following:

• Support for the Daisy 2.0 standard.

• Redesign the audio engine. Keep a clear focus on threads and en-
gine states. Create a cleaner interface towards the rest of libdaisy
and separate the audio-engines data from libdaisy’s data.

• Utilizing more of the information that comes with the Daisy stan-
dards.

• Parse only part of the chapter if the chapter is huge.

• Port both the library and the front-ends to Windows and Mac.

• Use automake and autoconf.

• Adding the front-ends to the KDE menus.

• Get more languages supported for the front-ends.

• Add support for Braille.

• Test/modify or develop a front-end specially fitted for people who
are blind or visually impaired.

• Front-ends that remember progress, configuration settings etc.

• Speech-synthesis for books which lacks audio.

70

Chapter 10

Conclusion

We have spent this last half a year on this project as our bachelor
assignment in our last semester at HIG1. This project has been a great
experience for us and has taught us much about software development,
especially Open Source development on the GNU/Linux platform.

We have come a long way since the beginning of this project. We
started out with something completely new to us and have had to work
our way from there. We have investigated and learned to use many
libraries, standards and techniques. Our contact with the Open Source
community has given us a lot of experience in cooperating with users
and other developers. It has also given us much insight and thoughts
on how most projects needs to be advertised and marketed in order to
get users and developers interested.

Teamwork has been a key factor in this project, as we have been
working as a group of four students. Working as a group has taught
us a great deal on dividing work and responsibility. It has been very
important for us to learn how to work good as a team, as almost all
development projects is done by more than one person.

The experience and knowledge we have acquired throughout this
project have given us valuable skills and competence which we will
bring along into future projects after we graduate at HIG.

1Gjøvik University College http://www.hig.no/eway/default0.asp?pid=248

71

http://www.hig.no/eway/default0.asp?pid=248

Chapter 11

Bibliography

• Brian W. Kernighan, Bob Pike. The Practice of Programming.
Addison-Wesley, Inc., 1999.

• Dimitri van Heesch. Doxygen Manual, 2006. http://www.stack.
nl/~dimitri/doxygen/manual.html.

• Eric S. Raymond. The Cathedral and the Bazaar. Eric S. Ray-
mond, 1997. http: // www. firstmonday. org/ issues/ issue3_
3/ raymond/ index. html .

• Gnome. Reference Manual for libxml2, 2006. http://www.xmlsoft.
org/html/index.html.

• Josip Rodin. Debian new maintainers guide, 2005. http://www.
debian.org/doc/maint-guide/ch-start.en.html.

• Sean Russell. REXML - an XML toolkit for Ruby, in Ruby, 2006.
http://www.germane-software.com/software/XML/rexml/doc/.

• Stan Seibert. Libao Documentation, 2003. http://www.xiph.

org/ao/doc/.

• The DAISY Consortium. Specifications for the Digital Talking
Book, ANSI/NISO Z39.86-2005, 2005. http://www.daisy.org/

z3986/2005/z3986-2005.html.

• The DAISY Consortium. DAISY 2.02 Specification, 2001. http:
//www.daisy.org/publications/specifications/daisy_202.

html.

72

http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.firstmonday.org/issues/issue3_3/raymond/index.html
http://www.firstmonday.org/issues/issue3_3/raymond/index.html
http://www.xmlsoft.org/html/index.html
http://www.xmlsoft.org/html/index.html
http://www.debian.org/doc/maint-guide/ch-start.en.html
http://www.debian.org/doc/maint-guide/ch-start.en.html
http://www.germane-software.com/software/XML/rexml/doc/
http://www.xiph.org/ao/doc/
http://www.xiph.org/ao/doc/
http://www.daisy.org/z3986/2005/z3986-2005.html
http://www.daisy.org/z3986/2005/z3986-2005.html
http://www.daisy.org/publications/specifications/daisy_202.html
http://www.daisy.org/publications/specifications/daisy_202.html
http://www.daisy.org/publications/specifications/daisy_202.html

Chapter 11. Bibliography

• The Open Group. Pthread API, The Single UNIX Specification,
Version 2, 1997. http://www.opengroup.org/pubs/online/7908799/
xsh/pthread.h.html.

• The Ruby community. Ruby Standard Library Documentation,
2006. http://www.ruby-doc.org/stdlib/.

• Trolltech. Qt Reference Documentation, 2005. http://doc.

trolltech.com/3.3/.

73

http://www.opengroup.org/pubs/online/7908799/xsh/pthread.h.html
http://www.opengroup.org/pubs/online/7908799/xsh/pthread.h.html
http://www.ruby-doc.org/stdlib/
http://doc.trolltech.com/3.3/
http://doc.trolltech.com/3.3/

Index

AAC, 38
Audio, 20

Decoder, 22
Engine, 20
Interface, 21
Output module, 22

Daisy, 2
Data structure, 26

Audio, 27
Parser, 27

Debhelper, 46
Debian packages, 46
Development model, 6
Doxygen, 41, 65
DTB, 2

Eclipse, 43, 66

Front-end, 20, 36

GNU Gettext, 30

Internationalization, 29
Console front-end, 30
GUI front-end, 29

KDE, 36

LaTeX, 42, 65
Libdaisy interface, 28
Libraries, 34

AAC decoder, 38
Audio design, 37
Audio output, 37
GStreamer, 34
GUI, 36, 62
Libao, 37, 64
Libxml2, 35, 64
MAD, 37, 63
MP3 decoder, 37
REXML, 35
WAV, 38

LyX, 42, 65

Make, 45
Makefile, 47
MP3, 37
MPEG, 37, 63

Parser, 22
NCC, 24
NCX, 24
SMIL, 25

PCM, 37, 38
Planner, 43
POSIX, 20, 39, 63
Product quality, 50
Product quality tools

Efence, 43, 51
GNU Binary Utilities, 44, 51
GNU Debugger, 44, 51

74

Chapter 11. INDEX

Lintian, 44, 51
Splint, 43, 51
Valgrind, 44, 51

Programming languages
C, 33
C++, 34
Ruby, 33

QMake, 45
Qt 3, 36
Qt Designer, 29
Qt Linguist, 30

Scripts, 47, 66
Skolelinux, 1
Subversion, 42
SVN, 66

Threads, 20, 39

User testing, 49

WAV, 38
Web page, 54

75

Appendix A

Pre-project report for the
DaisyPlayer Project
(without appendixes)

A.1 Goals and constraints

A.1.1 Background

Skolelinux is a Custom Debian Distribution that is customized for
schools with focus on being easy to install and maintain. Skolelinux
tries to give schools and students a good and free alternative to pro-
prietary software. This is used in many schools already and the goal is
to cover as many schools as possible.

In order to achieve this goal Skolelinux need software to cover the
different needs the student have in their education. One such program,
after a request of a Norwegian teacher, is an application able to play
Daisy Digital Talking Books (DTB). Daisy DTB is a multimedia rep-
resentation of a print publication. Linux lacks a good and free Daisy
player at this point.

A.1.2 Effect goal

The effect goal is to start the development on a free Daisy player which,
in an easy way, helps students play Daisy-books using Skolelinux or
other Linux-distributions.

76

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

A.1.3 Result goal

Result goals are to start an Open Source project and to create an engine
for playing Daisy DTB’s with an API and a simple user interface. It
must be able to play at least one audio format, and it should be easy
for others to program against the API.

A.1.4 Target group

The main target group for this project is the students and other users
which need a free Daisy player for Linux. But we must also have in
mind that the project are going to be evaluated by the school.

A.1.5 Constraints

This project must be Open Source and licensed according to The De-
bian Free Software Guidelines (DFSG). 1 Software created must run
on “Skolelinux” and it is a goal to keep the software dependencies to a
minimum.

A.2 Extent of task

A.2.1 Task description

The task is to create a software Daisy player for Linux. This software
must follow the Daisy\NISO standard 2. The program should be able to
play the audio and display synchronized text. Navigating and searching
through the books will also be supported.

A simple UI to the daisy engine will be made. A more advanced
GUI have been requested, but has a low priority. The creation of a
GUI depends upon the DaisyPlayer engine and API and are limited by
the projects time resources.

Main functionality:

• Make an engine able for audio playback.

• Display the synchronized text.

1DFSG http://www.debian.org/social_contract.html
2Daisy/NISO Standard http://www.daisy.org/z3986/

77

http://www.debian.org/social_contract.html
http://www.daisy.org/z3986/

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

• Make a simple user interface which makes it possible for user
interaction.

• Make navigation- and searching functionality.

• The project should be easily extendible.

It is very important that we try to separate the engine from the user
interface. This is done because it should be a simple job to change the
user interface at a later time if wanted.

The principal may come with suggestions and more functionality on
the way, but at this point the above points are our goals.

A.2.2 The platform

The Skolelinux system is based on Debian GNU/Linux and the KDE
Desktop and is the target platform for this application. We will try to
make it portable to other platforms, but this is not a priority.

Audio output to aRts is a minimum requirement, but a goal is to
support the other common methods such as ALSA, OSS, ESD too.

A.2.3 Libraries, frameworks and standards

This far we have identified the following libraries, frameworks and stan-
dards which we may need in the development of this application.

Audio

• Audio formats (MP3, MP4-AAC, WAV)

• Audio back-ends (ARTS, ESD, OSS, ALSA)

• MAD (MPEG Audio Decoder)

• Initial research suggests that the libao library is a good choice for
communicating with audio back-ends. Libao claims to support
the back-ends mentioned above.

78

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

Graphics

• JPEG

• PNG

• SVG

GUI

• GTK+

• QT

XML

• SMIL

• XHTML

IPC

• DBUS

• Sockets

• Pipes

Other

• Unicode

• Festival

A.2.4 Programming languages

A.2.4.1 Programming languages

We have evaluated a few programming languages to come up with the
best choice in relation to the project. This project will use a lot of
existing technologies, so the availability of libraries are important (we
do not want to re-invent audio- or XML libraries). The project will
also be split up into multiple strongly separated modules. As long as
the modules supports the same IPC, there are possible to use different
programming languages for the individual modules.

79

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

A.2.4.2 Python

Python is an object-oriented language with good support for technolo-
gies we are likely to use. Support exists for XML, Unicode, wrappers
to audio output-libraries, widget toolkits etc.

A.2.4.3 Ruby

Ruby lacks proper support for Unicode, but has partial support for
UTF-8. We must look into this in the event that we use Ruby for
components that needs to deal with Unicode.

A.2.4.4 C++

C++ is a powerful language, but has some issues as we see it. The
size of variables are not fixed, but depends upon the HW-platform and
compiler. There have also been expressed worries that we might not
get the compatibility and backwards-compatibility we need because of
variation between compilers, HW-platforms and libraries.

A.2.4.5 C

C is a powerful language, but it does not fit for this particular project
as we see it. It is not object-oriented and, even though the technologies
we are going to use are supported through external libraries, we think
there are better and easier alternatives which will allow us to implement
our program faster.

There is a slight possibility we will have to review or modify existing
code in libraries etc. These are likely to be written in C, so we must
be ready to face the C programming language at some point through
our project. But, as a primary programming language, C is not what
this project requires.

A.2.4.6 Availability of compilers and interpreters

Compilers for C/C++, Java and more are shipped with Skolelinux.
An interpreter for Python are shipped with Skolelinux as default,

while the Ruby interpreter needs to be installed as an extra. 3

3DebianEdu/FAQ/General/Software http://www.skolelinux.org/portal/faq/

general/software/

80

http://www.skolelinux.org/portal/faq/general/software/
http://www.skolelinux.org/portal/faq/general/software/

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

A.2.5 Constraints

A goal is to keep the software dependencies to a minimum, so it can be
easily installed on a typical workstation. Because of time limitations
we focus on the player engine and at least one UI. A future extension
is to implement a GUI, but this is not a priority until the engine is
complete.

A.3 Project organization

A.3.1 Principal

Skolelinux. Contact: Herman Robak.

A.3.2 Group

The project group consists of:
André Lindhjem, 03HBINDP HiG
Kjetil Holien, 03HBINDP HiG
Terje Risa, 03HBINDD HiG
Øyvind Nerbr̊aten, 03HBINDP HiG

A.3.3 Roles and responsibilities

The four members on this group will have different roles and responsi-
bilities. Most of this will be distributed as the need occur during the
project, but some roles have already been assigned.

• Our project leader will be Øyvind Nerbr̊aten, he will be responsi-
ble to make sure that all of us works in the terms we have agreed.

• Each one of the members are responsible to keep a log about the
work they do and we will try to work about 25 to 30 hours a week.
When we will work will mostly depend on the others lectures we
got to attend to, but try to work at the same time of the day since
we then can discuss problems and solutions that may occur.

Skolelinux package list http://developer.skolelinux.no/cgi-bin/viewcvs.cgi/

~checkout~/skolelinux/src/task-skolelinux/pkgdeblist.txt

81

http://developer.skolelinux.no/cgi-bin/viewcvs.cgi/~checkout~/skolelinux/src/task-skolelinux/pkgdeblist.txt
http://developer.skolelinux.no/cgi-bin/viewcvs.cgi/~checkout~/skolelinux/src/task-skolelinux/pkgdeblist.txt

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

• If a member do not work sufficient the group leader will talk to
him and give him a warning, if that does not help, the teaching
supervisor will be contacted.

A.4 Planning and reporting

A.4.1 Choice of methodology

The group have decided to use an mixture of evolutionary system devel-
opment and Open Source development. Since the project is an Open
Source project we felt it natural to follow the Open Source develop-
ment standard, with a few minor changes. We will try to release a new
version every two weeks, giving the project some time boundaries and
certain goals to work against. All our work will be on the Internet in
a revision management system, giving users the option of download-
ing the work as it is develops, meaning that they do not have to wait
for the new version to be released to be updated. We will also try to
implement user suggestions and establish an user group that hopefully
will find this project interesting, in true Open Source style.

The only other development choices we truly consider where incre-
mental development or a more pure evolutionary development. Since
we did not feel that either one of the development methods mention
before suited our needs, we decided to use an adaptation of the evolu-
tionary model.

A.4.2 Plan for status meeting and decision dates

The formal status meetings will be held on these dates: 20/02-06,
20/03-06 and 24/04-06. But we will have more informal meeting with
the supervisor more often. The status meetings will be a natural time
to decide large decision which regards the projects outcome.

A.4.3 Code convention

We will try to keep the source code as readable and structured as
possible. This is done to make it easier for both us, and other readers, to
understand and maintain the code. We will agree on code conventions
for the languages we use. Since we are planning to take advantage of

82

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

existing code, we must be flexible on programming languages and code
conventions.

A.5 Organization of quality assurance

A.5.1 Revision management

In this project we will be using Subversion to handle our version con-
trol of all our work. This includes both the source code and the project
documentation. Because all Skolelinux projects are stored in a shared
repository, the choice of manual version handling was eliminated, not
that manual version handling was an eligible alternative either way.
Since Skolelinux just started using Subversion instead of CVS, the
choice was already made for us.

A.5.2 Quality handling

We must be dynamic and prepared to receive and act on user input to
ensure quality. As most Open Source projects we are dependant upon
user feedback to do testing maintain code quality.

The creation of an API for developers and a good users manual
are a priority. Presentable versions of important documents created
throughout the project are automatically generated within one hour
and linked to from the project website.

A.5.3 Risk analysis

We have identified the following risks:

User feedback: Lack of feedback from the user community will make
it difficult to develop software for people with special needs. To avoid
this we must reach out to the Open Source community and advertise
for the project in the right forums and mailing lists.

Future maintenance: It is important for this project survival to get
users and other developers involved. It is imperative for the project to
be active to maintain the user-mass. To do this, we must advertise the
project.

83

Chapter A. Pre-project report for the DaisyPlayer Project (without
appendixes)

Sickness: This is a common risk with software development projects.
In our case this is not a very big risk, since we are four members
with almost equally knowledge. To prevent any serious problems that
sickness may cause, we will keep each other updated with how things
work and what we do.

Principal or target group: The risk of the principal or target group
looses interest are considered to be minimal. There is a genuine need for
a DaisyPlayer for the Linux platform, and (as we are an Open Source
project) we are not dependant upon the principal to the same degree
as “traditional” projects are.

Violations of patents and trademarks: This could be a serious risk
if we are not careful and thorough enough in our search for code we
can use.
In appendix A we have ranked the risks.

A.6 Development plan

As already mentioned under the choice of methodology we are working
in a mixture of evolutionary system development and Open Source
development. That means that we are not able to plan the whole
project very specific, like we would have done with e.g. a waterfall
model. Because of the fact that we must be prepared to accept and
act on code-contributions, bug-reports and fixes, we must be flexible
during the development. Since we are planning to release a version
every other week, it means that we work in cycles. In each cycle, we
add more functionality. Each cycle consist of planning, coding and
testing. A coarse grain sketch of our Gantt chart can be found in
appendix B.

84

Appendix B

Use cases

B.1 daisy init

Goal Initiate the Daisy library with its data structure and callback
functions.

Precondition The callback functions must be declared.

Postcondition The library has been initialized and the data struc-
tures has been allocated.

Description In order to use the libdaisy library the daisy init func-
tions must be called to initialize the data structure and callback func-
tions. The user must pass along pointers to the functions he wishes to
use to get callback messages from the engine. The user can also pass
along a pointer to an object or a data structure which will be available
in all the callback functions.

Main success scenario

1. The user request to initialize the library.

2. The system allocates the data structure and stores the pointers
to the users callback functions.

3. The system return a pointer to the data structure, this must be
passed along to all other functions in the library.

85

Chapter B. Use cases

B.2 daisy term

Goal Terminate the Daisy library and free all memory held by it.

Precondition The data structure must have been initialized by daisy init.

Postcondition The supplied data structure is destroyed and all mem-
ory allocated by it is released.

Description The user must pass along a data structure initialized
with daisy init in order to free memory occupied by it.

Main success scenario

1. The user calls the daisy term function and supplies a initialized
data structure.

2. The system destroys the supplied data structure and deallocates
the memory occupied by it.

B.3 daisy load

Goal Parse a Daisy DTB and store the data in the data structure.

Precondition The data structure must have been initialized by daisy init.

Postcondition The playback data from the Daisy DTB has been
stored in the data structure.

Description The user must pass along a data structure initialized
with daisy init, and a valid path to a Daisy DTB in order to load the
DTB.

86

Chapter B. Use cases

Unresolved issues

• Support more of the possibilities in the Daisy standards.

• What if the book does not follow the standard?

Technical implication

• Library support for XML parsing.

Main success scenario

1. The user calls the daisy load function and supplies an initialized
data structure and a full path to a Daisy DTB.

2. The data structure now contains the playback data of the loaded
DTB.

B.4 daisy play

Goal Start playback of the loaded Daisy DTB.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

Postcondition The engine starts playing the loaded Daisy DTB.

Description In order to use this function the user must pass along a
data structure initialized with daisy init. If a book is loaded, the data
structure will contain the playback data.

Technical implication

• Need libraries for audio playback with various audio formats.

87

Chapter B. Use cases

Main success scenario

1. The user calls the daisy play function and supplies an initialized
data structure with a loaded Daisy DTB.

2. The engine enters playing state.

B.5 daisy seek

Goal Changing the current playback position in the data structure.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

Postcondition Continues playback from the new position in the data
structure.

Description Perform various user specified seek operations. The valid
options are next/previous chapter and passage, and seek to the begin-
ning. The seek option must be passed along with the function call.

Main success scenario

1. The user calls the daisy seek function and supplies an initialized
data structure with a loaded Daisy DTB, and a seek option.

2. The system changes its playback position pointers in the data
structure and continues playback from there.

Variations

1a The user tries to seek to the previous chapter/passage when we
are at the first chapter/passage.

1. The system changes its playback position to the first passage and
continues playback from there.

88

Chapter B. Use cases

1b The user tries to seek the next chapter/passage when we are at
the last chapter/passage.

1. The system returns “end of book” and the audio playback stops.

B.6 daisy get position

Goal Retrieve the current playback position in the data structure.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

Postcondition

Description In order to use this function the user must pass along
a data structure initialized with daisy init. To retrieve the playback
position, the data structure must contain a loaded Daisy DTB. This
function returns the current position in the data structure as a struct
of two integers. The first integer tells which chapter we are at and the
second which passage.

Main success scenario

1. The user calls the daisy get position function and supplies an ini-
tialized data structure with a loaded Daisy DTB.

2. The user gets a struct with the current playback position.

B.7 daisy goto position

Goal Change the current playback position in the data structure.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

89

Chapter B. Use cases

Postcondition Continues the playback from the new position in the
data structure.

Description To use this function the user must pass along a data
structure initialized with daisy init. In order change playback position,
the data structure must contain a loaded Daisy DTB. The user must
also pass along a struct containing the new playback position.

Main success scenario

1. The user calls the daisy goto position function and supplies an
initialized data structure with a loaded Daisy DTB and a struct
with the new position.

2. The system changes playback position in the data structure and
continues from there.

B.8 daisy stop

Goal Stop playback of the loaded Daisy DTB.

Precondition The data structure must have been initialized by daisy init,
the DTB must have been loaded by daisy load and playback started
by daisy play.

Postcondition The engine stops playing the loaded Daisy DTB.

Description In order to use this function the user must pass along
a data structure initialized with daisy init and the engine must be in
playback mode. The engine will be put in stopped state at the current
playback position.

Main success scenario

1. The user calls the daisy stop function and supplies an initialized
data structure with a loaded Daisy DTB.

90

Chapter B. Use cases

2. The engine enters stopped state at current playback position.

B.9 daisy pause

Goal Pause or resume the playback of the loaded Daisy DTB.

Precondition The data structure must have been initialized by daisy init,
the DTB must have been loaded by daisy load and the engine must be
in playing or paused state.

Postcondition The engine pauses the current playback if the state
was playing, continue playback it the state was paused.

Description In order to use this function the user must pass along
a data structure initialized with daisy init. If the engine is in playing
state, the engine will be put in a paused state, if the engine already is
in a paused state, the playback will continue from the position it was
paused.

Main success scenario

1. The user calls the daisy pause function and supplies an initialized
data structure with a loaded Daisy DTB.

2. The engine enters paused state at the current playback position
or continues playing from the last position.

Variations

1a The user calls the daisy pause function while the current playback
state is playing.

1. The engine enters a paused state at the current playback position.

91

Chapter B. Use cases

1b The user calls the daisy pause function while the current playback
state is paused.

1. The engine continues playback from the where it was paused.

B.10 daisy get info

Goal Get meta info about the loaded Daisy DTB.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

Postcondition

Description In order to use this function the user must pass along
a data structure initialized with daisy init. If a book is loaded, the
data structure will contain the meta data about the book, if available
in the loaded Daisy DTB. The user must also pass along what kind of
information he wants to retrieve.

Main success scenario

1. The user calls the daisy get info function and supplies an initial-
ized data structure with a loaded Daisy DTB.

2. The user gets the information from the data structure.

B.11 daisy get chapter count

Goal Return the number of chapters in the loaded Daisy DTB.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

92

Chapter B. Use cases

Postcondition

Description In order to use this function the user must pass along
a data structure initialized with daisy init. This function returns the
number of chapters in the loaded Daisy DTB.

Main success scenario

1. The user calls the daisy get chapter count function and supplies
an initialized data structure with a loaded Daisy DTB.

2. The user gets the number of chapters in the loaded Daisy DTB.

B.12 daisy get chapter info

Goal Return information about the chapter to the user.

Precondition The data structure must have been initialized by daisy init,
and the DTB must have been loaded by daisy load.

Postcondition

Description In order to use this function the user must pass along
a data structure initialized with daisy init. The user must also pass
along which chapter and what kind of information he wants.

Main success scenario

1. The user calls the daisy get chapter info function and supplies an
initialized data structure with a loaded Daisy DTB.

2. The user gets the information about the chapter from the data
structure.

93

Appendix C

Code conventions

All C code follows the ANSI C standard.

/**

* Comment..

* @param x ...

* @param y ...

* @returns ..

*/

int function (x, y)

{

...

}

All functions must be commented with its parameters and return
values (if any). The source will be indented one indent for each level.

if (value == NULL)

{

...

}

else

{

...

}

while (i < 5) foo (i++);

94

Chapter C. Code conventions

With one line statement we do allow to not use curly brackets around
it.

switch (currentToken)

{

case 1:

{

...

break;

}

...

}

struct Foo

{

...

};

struct Foo *foo = (struct Foo *) malloc (sizeof (struct Foo));

• We try to avoid using global variables.

/* control.c */

#include <stdio.h>

#include <stdlib.h>

...

#include "control.h"

...

95

Chapter C. Code conventions

Other notes:

• Loop and short lived test variables have names consisting of one
character such as i, j or n.

• Other long lived variables will have more explaining names such
as authorNode.

• Constants are named with capital letters with underscores
between each word: DEBUG NCCPARSER

96

Appendix D

Gantt chart

Below is our Gantt-chart from the pre-project which shows how we
planned the time.

97

Chapter D. Gantt chart

Figure D.1: Gantt chart - part 1.

98

Chapter D. Gantt chart

Figure D.2: Gantt chart - part 2

99

Appendix E

Status reports

We decided to have three status meetings every fourth week. After
those meetings we wrote a report where we discussed the current
progress and problems that have occurred.

100

Status report 20.02.06

Progress report

We have just started our third release cycle and we have implemented a simple
audio engine able to play MP3 and XML parsing (SAX parsing) of the 2.02
standard. In our �rst release cycle we used GStreamer and REXML with Ruby,
but were not happy with the result. In our second release cycle we reimple-
mented the functionality we made in the �rst release cycle, using C instead of
Ruby as programming language. We are using mad, libao and libxml2 as our
libraries, which seems to work nicely.

Our current work is to improve and expand our code, and add support for
the new Daisy standard (ANSI/NISO Z39.86-2005).

Group cooperation

We have good communication and cooperation within the group, and we are
pretty con�dent that the good collaboration will continue.

Report writing

We have not had so much focus on report writing up to now. Our focus in
the early phase has been to explore good solutions and implement them. We
feel that this method has given us the �exibility needed to quickly evaluate,
implement, and possibly discard alternatives. In the time ahead, documenting
our work will have a higher priority as we now to a larger degree have decided
on speci�c solutions and need to create documentation for those solutions.

Problems

We have experienced a few problems this far.

• We had di�culty getting gstreamer to provide su�cient audio control.
Also, in our experience, GStreamer is not well enough documented. The
ruby gstreamer wrapper we worked against lacked both in documentation
and basically did not give us enough control over the output to support
our needs.

• The speed in our �rst XML parser caused us concern. While it was not
critical, the Ruby implemented XML parsing was really slow.

To solve our problems, we decided to discard GStreamer and REXML for the
Daisy engine and use well known C libraries like libmad, libao and libxml2. As
we now would implement both audio and XML parsing functionality using C
libraries, we decided not to use Ruby and implement everything in C. When we
switched over from Ruby to C, the speed problem with the XML parsing solved
itself.

1

Motivation

With this second release we feel a lot more con�dent in the project. It is a relief
to discard REXML and GStreamer and our current implementation holds a lot
more promise when it comes to maintainability, speed and control. In the future
we hopefully will not experience the same problems with our choices as in our
�rst release cycle. Now that these frustrations are behind us, our motivation is
restored.

Øyvind Nerbråten André Lindhjem

Kjetil Holien Terje Risa

2

Status report 21.03.06

Progress report

We have just started our �fth release cycle and it is time to �nalize the engine
API. We have started to make a front-end for the engine. It is still a lot to be
done with the engine, but we have to focus on the most important functionality
because we are running out of time. Since last status report we have made the
engine run as threads and implemented playback functionality. We have also
partially implemented the new standard.

Group cooperation

We have good communication and cooperation within the group, and we are
pretty con�dent that the good collaboration will continue.

Report writing

We have started to focus more on the report writing, but still got much work
to do. It is hard to balance the report writing and coding when we got so much
to do.

Problems

Since last report we have encountered some new problems:

• We have had some setback due to sickness.

• We have used a lot of time on a potential problem with parsing according
to the standard. We are still a bit uncertain how to solve this problem,
but we will try to make solution that works.

• We have had some problems with threads, deadlocks and race conditions.

• Implementing other audio formats seems to be to time consuming and
have not seen any books using other formats than MP3. So implementing
these will have a low priority.

Motivation

We can �nally see some results and are able to play a Daisy DTB with some
playback functionality. We need to focus de�ning the API and wrapping up the
engine rather than implementing new features. We do not have that much time
left, so we have to focus on the important matters.

1

Øyvind Nerbråten André Lindhjem

Kjetil Holien Terje Risa

2

Status report 24.04.06

Progress report

We have just �nished our last release cycle and it is time to �nalize the report.
We have created two front-ends for our engine, one console and one GUI. They
work as examples on how to use the engine. We have removed some bugs and
the global variables in the library.

Group cooperation

We have good communication and cooperation within the group, and we are
pretty con�dent that the good collaboration will continue.

Report writing

We have started to focus more on the report writing, but still got much work
to do. It is hard to balance the report writing and coding when we got so much
to do.

Problems

Since last report we have encountered some problems:

• Because of limited time resources we could not do all we wanted to do.

Motivation

Continue writing a good project report that re�ects the work we have done.

Øyvind Nerbråten André Lindhjem

Kjetil Holien Terje Risa

1

Appendix F

Work log

All work hours we have put into this project has been documented in
a work log. This log has become too big to enclose in this document.
You can look at our log in the progress section of the project web
page1. We have also created a plan for each iteration, which you can
find on the same section of the web page.

1The DaisyPlayer Project - progress http://developer.skolelinux.no/info/

studentgrupper/2006-hig-daisyplayer/www-files/p-progress/

106

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/www-files/p-progress/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/www-files/p-progress/

libdaisy Reference Manual
0.2.2

Generated by Doxygen 1.4.2

Thu May 18 12:46:33 2006

CONTENTS 1

Contents

1 Libdaisy 1

2 libdaisy Data Structure Index 2

3 libdaisy File Index 2

4 libdaisy Data Structure Documentation 3

5 libdaisy File Documentation 3

1 Libdaisy

1.1 Introduction

Libdaisy is a toolkit for parsing and playing Daisy Digital Talking Books (DTB). Libdaisy is developed for
the Linux operation systems under theGNU General Public License .

Libdaisy does not offer the complete functionality according to the Daisy standards and is not a finished
library. Even though the library is not complete, it offers the most important functionality for playing a
Daisy DTB. Libdaisy partially supports two of the Daisy standards,DAISY 2.02 and the new standard
ANSI/NISO Z39.86 .

Please visit theDaisyPlayer project web page for more information.

1.2 Requirements

• libxml2 >=2.6.16-7

• libao2>=0.8.6-1

• libmad0>=0.15.1b-1.1

1.3 Install

From package:

Install the Debian package, using ’dpkg -i libdaisy_0.2.0_i386.deb’.

From source:

’tar -zxvf libdaisy_0.2.0.tar.gz’

’cd libdaisy_0.2.0’

’make’

’make install’ or ’make install DESTDIR=/tmp/foo’ #’make install’ needs root privilege

’make install-dev" #install the development header, needs root privilege

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

1.4 License 2

1.4 License

Copyright (C) 2006 by AndrÃ169 Lindhjem<belgarat@sdf.lonestar.org >, Kjetil Holien
<kjetil.holien@gmail.com >, Terje Risa<terje.risa@gmail.com > & Ã152yvind Ner-
brÃ165ten<oyvind@nerbraten.com >

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1.5 Bug Reports

Any kind of bug reports are welcome. If you find bugs, please email us (See the Author section for contact
information).

Author:
AndrÃ169 Lindhjem<belgarat@sdf.lonestar.org >
Kjetil Holien <kjetil.holien@gmail.com >
Terje Risa<terje.risa@gmail.com >
Ã152yvind NerbrÃ165ten<oyvind@nerbraten.com >

Date:
26.04.2006

Version:
0.2.2

2 libdaisy Data Structure Index

2.1 libdaisy Data Structures

Here are the data structures with brief descriptions:

daisy_position(Struct for holding a Daisy DTB playback position) 3

3 libdaisy File Index

3.1 libdaisy File List

Here is a list of all files with brief descriptions:

libdaisy.h (Header file for the libdaisy development package) 3

libdaisy_mainpage.doxygen 10

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

4 libdaisy Data Structure Documentation 3

4 libdaisy Data Structure Documentation

4.1 daisy_position Struct Reference

4.1.1 Detailed Description

Struct for holding a Daisy DTB playback position.

Meant for storing chapter (smilops) and passage (nodepos) jump positions. Works as a bookmark. The
integer values is equal to the chapter number and passage numer in the playback sequence (smilpos = 1 &
nodepos = 1 is the position for passage 1 in chapter 1).

See also:
daisy_get_position
daisy_goto_position

Data Fields

• int smilpos
• int nodepos

4.1.2 Field Documentation

4.1.2.1 intdaisy_position::nodepos

4.1.2.2 intdaisy_position::smilpos

The documentation for this struct was generated from the following file:

• libdaisy.h

5 libdaisy File Documentation

5.1 libdaisy.h File Reference

5.1.1 Detailed Description

Header file for the libdaisy development package.

Libdaisy is a toolkit for parsing and playing Daisy Digital Talking Books (DTB).

Date:
21.03.2006

Typedefs

• typedef void∗ daisyplayer_t

This will need to be initialized and passed along to the daisy functions.

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 4

Enumerations

• enumdaisy_status{

DAISY_ERROR_UNKNOWN = 0x0000, DAISY_ERROR_AUDIO_NOT_INITIALIZED =
0x0200, DAISY_ERROR_AUDIO_CREATE_MMAP = 0x0201, DAISY_ERROR_AUDIO_-
FSTAT = 0x0202,

DAISY_ERROR_AUDIO_OPEN= 0x0203,DAISY_ERROR_AUDIO_FREE_MMAP= 0x0204,
DAISY_ERROR_AUDIO_INITIATE_DATA = 0x0205, DAISY_ERROR_AUDIO_NOT_-
PLAYING = 0x0206,

DAISY_ERROR_AUDIO_NOT_STOPPED= 0x0207, DAISY_ERROR_AUDIO_DATA_IS_-
NULL = 0x0208, DAISY_ERROR_AUDIO_MALLOC = 0x0209, DAISY_ERROR_AUDIO_-
PAUSED_WHILE_NOT_PLAYING= 0x0210,

DAISY_ERROR_AUDIO_STOPPED_WHILE_NOT_PLAYING= 0x0211, DAISY_ERROR_-
PLAYBACK_NO_TEXT_IN_SEGMENT = 0x0301, DAISY_ERROR_PLAYBACK_NO_-
AUDIO_IN_SEGMENT = 0x0302, DAISY_ERROR_PLAYBACK_NO_DTB_LOADED =
0x0303,

DAISY_ERROR_PLAYBACK_SEEK_FAILED = 0x0304, DAISY_ERROR_MISC_INIT_-
MUTEX = 0x0400,DAISY_END_OF_BOOK= 0x1100 }

The different sort of status messages libdaisy might return.

• enumdaisy_seek_option{

DAISY_SEEK_PREV_CHAPTER= 1, DAISY_SEEK_PREV_PASSAGE= 2, DAISY_SEEK_-
NEXT_CHAPTER= 3, DAISY_SEEK_NEXT_PASSAGE= 4,

DAISY_SEEK_TO_BEGINNING= 5 }

The different seek operations supported by the engine.

• enum daisy_bookinfo_option{ DAISY_BOOKINFO_TITLETEXT = 1, DAISY_BOOKINFO_-
TITLEIMAGE = 2, DAISY_BOOKINFO_TOTALTIME = 3 }

The different types of book information.

• enumdaisy_chapter_info{ DAISY_CHAPTER_TITLE= 1,DAISY_CHAPTER_WEIGHT= 2 }

The different types of chapter information.

Functions

• daisyplayer_tdaisy_init (void ∗data, void(∗l_cb_daisy_audio_done)(void∗), void(∗l_cb_daisy_-
audio_next)(void∗, unsigned long int), void(∗l_cb_daisy_text)(void∗, void ∗), void(∗l_cb_daisy_-
id)(void ∗, void ∗), void(∗l_cb_daisy_error)(void∗, enumdaisy_status, const char∗daisy_status_-
msg), void(∗l_cb_daisy_progress)(void∗, long int))

Initializes the daisy library.

• void daisy_term(daisyplayer_tdaisy)

Terminates the daisy library and frees memory used by it.

• int daisy_load(daisyplayer_tdaisy, char∗path)

Loads a new daisy book.

• int daisy_play(daisyplayer_tdaisy)

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 5

Starts playback if a book is loaded.

• int daisy_seek(daisyplayer_tdaisy, int seek_option)

Seek operations which can be performed when a book is loaded.

• daisy_position∗ daisy_get_position(daisyplayer_tdaisy)

Retrieves the current playback position.

• int daisy_goto_position(daisyplayer_tdaisy,daisy_position∗position)

Seeks to a playback position (bookmark) and continue playback from there.

• int daisy_stop(daisyplayer_tdaisy)

Stops playback.

• int daisy_pause(daisyplayer_tdaisy)

Toggle pause.

• char∗ daisy_get_info(daisyplayer_tdaisy, int value)

Retrieves book meta information.

• int daisy_get_chapter_count(daisyplayer_tdaisy)

Retrieves the number of chapters in in the loaded Daisy DTB.

• char∗ daisy_get_chapter_info(daisyplayer_tdaisy, int num, int option)

Retrieves information about a given chapter.

5.1.2 Typedef Documentation

5.1.2.1 typedef void∗ daisyplayer_t

This will need to be initialized and passed along to the daisy functions.

5.1.3 Enumeration Type Documentation

5.1.3.1 enumdaisy_bookinfo_option

The different types of book information.

See also:
daisy_get_info

Enumeration values:
DAISY_BOOKINFO_TITLETEXT

DAISY_BOOKINFO_TITLEIMAGE

DAISY_BOOKINFO_TOTALTIME

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 6

5.1.3.2 enumdaisy_chapter_info

The different types of chapter information.

See also:
daisy_get_chapter_info

Enumeration values:
DAISY_CHAPTER_TITLE

DAISY_CHAPTER_WEIGHT

5.1.3.3 enumdaisy_seek_option

The different seek operations supported by the engine.

See also:
daisy_seek

Enumeration values:
DAISY_SEEK_PREV_CHAPTER

DAISY_SEEK_PREV_PASSAGE

DAISY_SEEK_NEXT_CHAPTER

DAISY_SEEK_NEXT_PASSAGE

DAISY_SEEK_TO_BEGINNING

5.1.3.4 enumdaisy_status

The different sort of status messages libdaisy might return.

Enumeration values:
DAISY_ERROR_UNKNOWN

DAISY_ERROR_AUDIO_NOT_INITIALIZED

DAISY_ERROR_AUDIO_CREATE_MMAP

DAISY_ERROR_AUDIO_FSTAT

DAISY_ERROR_AUDIO_OPEN

DAISY_ERROR_AUDIO_FREE_MMAP

DAISY_ERROR_AUDIO_INITIATE_DATA

DAISY_ERROR_AUDIO_NOT_PLAYING

DAISY_ERROR_AUDIO_NOT_STOPPED

DAISY_ERROR_AUDIO_DATA_IS_NULL

DAISY_ERROR_AUDIO_MALLOC

DAISY_ERROR_AUDIO_PAUSED_WHILE_NOT_PLAYING

DAISY_ERROR_AUDIO_STOPPED_WHILE_NOT_PLAYING

DAISY_ERROR_PLAYBACK_NO_TEXT_IN_SEGMENT

DAISY_ERROR_PLAYBACK_NO_AUDIO_IN_SEGMENT

DAISY_ERROR_PLAYBACK_NO_DTB_LOADED

DAISY_ERROR_PLAYBACK_SEEK_FAILED

DAISY_ERROR_MISC_INIT_MUTEX

DAISY_END_OF_BOOK

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 7

5.1.4 Function Documentation

5.1.4.1 int daisy_get_chapter_count (daisyplayer_tdaisy)

Retrieves the number of chapters in in the loaded Daisy DTB.

Parameters:
daisy - the daisy struct which must be passed along with all the API functions.

Returns:
the number of chapters, or -1 in case of error.

5.1.4.2 char∗ daisy_get_chapter_info (daisyplayer_tdaisy, int num, int option)

Retrieves information about a given chapter.

Parameters:
daisy - the daisy struct which must be passed along with all the API functions.

num - the chapter number to retrive information from (use daisy_get_chapter_count to get the number
of chapters available).

option - adaisy_chapter_infowhich states what information to retrieve.

Returns:
a pointer to a string containing the information, or NULL in case of error.

See also:
daisy_chapter_info
daisy_get_chapter_count

5.1.4.3 char∗ daisy_get_info (daisyplayer_tdaisy, int value)

Retrieves book meta information.

Parameters:
daisy - the daisy struct which must be passed along with all the API functions.

value - adaisy_bookinfo_optionvalue which states what information to retrieve.

Returns:
the string if found, otherwise NULL. The string must be deallocated by the caller.

See also:
daisy_bookinfo_option

5.1.4.4 daisy_position∗ daisy_get_position (daisyplayer_tdaisy)

Retrieves the current playback position.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 8

Returns:
a pointer to adaisy_positionstruct containing the chapter and passage positions, or NULL in case of
error. The struct must be deallocated by the caller.

See also:
daisy_position
daisy_goto_position

5.1.4.5 int daisy_goto_position (daisyplayer_tdaisy, daisy_position∗ position)

Seeks to a playback position (bookmark) and continue playback from there.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

position - a pointer to adaisy_positionstruct with the chapter and passage position.

Returns:
1 in case of success and -1 in case of error.

See also:
daisy_position
daisy_get_position

5.1.4.6 daisyplayer_t daisy_init (void ∗ data, void(∗)(void ∗) l_cb_daisy_audio_done, void(∗)(void ∗,
unsigned long int) l_cb_daisy_audio_next, void(∗)(void ∗, void ∗) l_cb_daisy_text, void(∗)(void ∗, void
∗) l_cb_daisy_id, void(∗)(void ∗, enumdaisy_status, const char∗daisy_status_msg)l_cb_daisy_error,
void(∗)(void ∗, long int) l_cb_daisy_progress)

Initializes the daisy library.

It should be called before any attempt to use the daisy functionality.

Parameters:
data - a void pointer to any object or datastructure you may need in the callback functions. This data

pointer will be available in all callback functions. You can e.g. pass along a GUI object in c++ so
that you can output the text from the callbackfunctions in the GUI. Set this parameter to NULL
if you don’t need it.

l_cb_daisy_audio_done- a pointer to the function which will be called when an audio segment is
done playing.

l_cb_daisy_audio_next- a pointer to the function which will be called when an new audio segment
starts playing, supplying the duration of the segment in ms.

l_cb_daisy_text- a pointer to the function which will be called when an new audio segment starts
playing, supplying the text corresponding to the audio.

l_cb_daisy_id- a pointer to the function which will be called when an new audio segment starts
playing, supplying the id of the text passage in the xml file.

l_cb_daisy_error- a pointer to the function which will be called when an engine error occures.

l_cb_daisy_progress- a pointer to the function which will be called during playback, supplying the
progress in ms.

Returns:
daisyplayer_t- the daisy data struct which must be passed along with all the API functions.

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.1 libdaisy.h File Reference 9

5.1.4.7 int daisy_load (daisyplayer_tdaisy, char ∗ path)

Loads a new daisy book.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

path - a full path to the daisy dtb (ncc.∗ | ∗.ncx) to open.

Returns:
1 in case of success and -1 in case of error.

5.1.4.8 int daisy_pause (daisyplayer_tdaisy)

Toggle pause.

Pauses playback if state is playing and continues playing of state is paused.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

Returns:
1 in case of success and -1 in case of error.

5.1.4.9 int daisy_play (daisyplayer_tdaisy)

Starts playback if a book is loaded.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

Returns:
1 in case of success and -1 in case of error.

5.1.4.10 int daisy_seek (daisyplayer_tdaisy, int seek_option)

Seek operations which can be performed when a book is loaded.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

seek_option- adaisy_seek_option.

Returns:
0 if end_of_book, 1 in case of success and -1 in case of error.

See also:
daisy_seek_option

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

5.2 libdaisy_mainpage.doxygen File Reference 10

5.1.4.11 int daisy_stop (daisyplayer_tdaisy)

Stops playback.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

Returns:
1 in case of success. Has no other return values at this point.

5.1.4.12 void daisy_term (daisyplayer_tdaisy)

Terminates the daisy library and frees memory used by it.

It should be called when daisy are no longer needed.

Parameters:
daisy - the daisy data struct which must be passed along with all the API functions.

5.2 libdaisy_mainpage.doxygen File Reference

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

Index
daisy_bookinfo_option

libdaisy.h,5
DAISY_BOOKINFO_TITLEIMAGE

libdaisy.h,5
DAISY_BOOKINFO_TITLETEXT

libdaisy.h,5
DAISY_BOOKINFO_TOTALTIME

libdaisy.h,5
daisy_chapter_info

libdaisy.h,5
DAISY_CHAPTER_TITLE

libdaisy.h,5
DAISY_CHAPTER_WEIGHT

libdaisy.h,5
DAISY_END_OF_BOOK

libdaisy.h,6
DAISY_ERROR_AUDIO_CREATE_MMAP

libdaisy.h,6
DAISY_ERROR_AUDIO_DATA_IS_NULL

libdaisy.h,6
DAISY_ERROR_AUDIO_FREE_MMAP

libdaisy.h,6
DAISY_ERROR_AUDIO_FSTAT

libdaisy.h,6
DAISY_ERROR_AUDIO_INITIATE_DATA

libdaisy.h,6
DAISY_ERROR_AUDIO_MALLOC

libdaisy.h,6
DAISY_ERROR_AUDIO_NOT_INITIALIZED

libdaisy.h,6
DAISY_ERROR_AUDIO_NOT_PLAYING

libdaisy.h,6
DAISY_ERROR_AUDIO_NOT_STOPPED

libdaisy.h,6
DAISY_ERROR_AUDIO_OPEN

libdaisy.h,6
DAISY_ERROR_AUDIO_PAUSED_WHILE_-

NOT_PLAYING
libdaisy.h,6

DAISY_ERROR_AUDIO_STOPPED_-
WHILE_NOT_PLAYING

libdaisy.h,6
DAISY_ERROR_MISC_INIT_MUTEX

libdaisy.h,6
DAISY_ERROR_PLAYBACK_NO_AUDIO_-

IN_SEGMENT
libdaisy.h,6

DAISY_ERROR_PLAYBACK_NO_DTB_-
LOADED

libdaisy.h,6

DAISY_ERROR_PLAYBACK_NO_TEXT_-
IN_SEGMENT

libdaisy.h,6
DAISY_ERROR_PLAYBACK_SEEK_-

FAILED
libdaisy.h,6

DAISY_ERROR_UNKNOWN
libdaisy.h,6

daisy_get_chapter_count
libdaisy.h,6

daisy_get_chapter_info
libdaisy.h,6

daisy_get_info
libdaisy.h,7

daisy_get_position
libdaisy.h,7

daisy_goto_position
libdaisy.h,7

daisy_init
libdaisy.h,8

daisy_load
libdaisy.h,8

daisy_pause
libdaisy.h,8

daisy_play
libdaisy.h,9

daisy_position,2
nodepos,3
smilpos,3

daisy_seek
libdaisy.h,9

DAISY_SEEK_NEXT_CHAPTER
libdaisy.h,6

DAISY_SEEK_NEXT_PASSAGE
libdaisy.h,6

daisy_seek_option
libdaisy.h,5

DAISY_SEEK_PREV_CHAPTER
libdaisy.h,6

DAISY_SEEK_PREV_PASSAGE
libdaisy.h,6

DAISY_SEEK_TO_BEGINNING
libdaisy.h,6

daisy_status
libdaisy.h,6

daisy_stop
libdaisy.h,9

daisy_term
libdaisy.h,9

daisyplayer_t

INDEX 12

libdaisy.h,5

libdaisy.h,3
daisy_bookinfo_option,5
DAISY_BOOKINFO_TITLEIMAGE, 5
DAISY_BOOKINFO_TITLETEXT,5
DAISY_BOOKINFO_TOTALTIME, 5
daisy_chapter_info,5
DAISY_CHAPTER_TITLE,5
DAISY_CHAPTER_WEIGHT,5
DAISY_END_OF_BOOK,6
DAISY_ERROR_AUDIO_CREATE_-

MMAP, 6
DAISY_ERROR_AUDIO_DATA_IS_-

NULL, 6
DAISY_ERROR_AUDIO_FREE_MMAP,

6
DAISY_ERROR_AUDIO_FSTAT,6
DAISY_ERROR_AUDIO_INITIATE_-

DATA, 6
DAISY_ERROR_AUDIO_MALLOC,6
DAISY_ERROR_AUDIO_NOT_-

INITIALIZED, 6
DAISY_ERROR_AUDIO_NOT_-

PLAYING, 6
DAISY_ERROR_AUDIO_NOT_-

STOPPED,6
DAISY_ERROR_AUDIO_OPEN,6
DAISY_ERROR_AUDIO_PAUSED_-

WHILE_NOT_PLAYING, 6
DAISY_ERROR_AUDIO_STOPPED_-

WHILE_NOT_PLAYING, 6
DAISY_ERROR_MISC_INIT_MUTEX,6
DAISY_ERROR_PLAYBACK_NO_-

AUDIO_IN_SEGMENT,6
DAISY_ERROR_PLAYBACK_NO_-

DTB_LOADED, 6
DAISY_ERROR_PLAYBACK_NO_-

TEXT_IN_SEGMENT,6
DAISY_ERROR_PLAYBACK_SEEK_-

FAILED, 6
DAISY_ERROR_UNKNOWN,6
daisy_get_chapter_count,6
daisy_get_chapter_info,6
daisy_get_info,7
daisy_get_position,7
daisy_goto_position,7
daisy_init,8
daisy_load,8
daisy_pause,8
daisy_play,9
daisy_seek,9
DAISY_SEEK_NEXT_CHAPTER,6
DAISY_SEEK_NEXT_PASSAGE,6

daisy_seek_option,5
DAISY_SEEK_PREV_CHAPTER,6
DAISY_SEEK_PREV_PASSAGE,6
DAISY_SEEK_TO_BEGINNING,6
daisy_status,6
daisy_stop,9
daisy_term,9
daisyplayer_t,5

libdaisy_mainpage.doxygen,10

nodepos
daisy_position,3

smilpos
daisy_position,3

Generated on Thu May 18 12:46:33 2006 for libdaisy by Doxygen

Appendix H

Manuals

This is the user manuals for our two front-ends for libdaisy,
Daisyconsole and Daisygui.
The latest versions of the manuals can be retrieved from the
Documentation section of the DaisyPlayer Project web page1.

1The DaisyPlayer Project http://developer.skolelinux.no/info/studentgrupper/
2006-hig-daisyplayer/

120

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/

Daisyconsole user manual

121

H.1 What is daisyconsole? Where can I get it?

Daisyconsole is a free Linux program for playing Daisy Digital
Talking Books. Daisyconsole is a front-end for the libdaisy library,
created for those who wants a simple console user interface.
You can download the latest version of daisyconsole and libdaisy from
the DaisyPlayer Project’s web-page (http://developer.
skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/).

H.2 Getting started

Once you have installed daisyconsole you can start it by typing
daisyconsole in a console.
When the program is started you will see something like figure H.1
below.

Figure H.1: Daisyconsole screenshot.

The menu shows the keys to access the various functionality of

122

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/

daisyconsole. If you like the menu to reappear anytime during
playback of the Daisy DTB, simply press the letter m.

H.3 Open a Daisy DTB

The first step for playing a Daisy DTB is to load the book. You can
load a book by pressing the letter o and supply the full path to the
DTB’s ncc.* file (Daisy 2.02) or *.ncx file (Daisy Z39.86-2005) when
prompted for it and press enter. A message will appear on the screen
telling you if the book was successfully loaded or not.

H.4 Playback

The playback functionality will be available after a book is
successfully loaded.

H.4.1 Play

You can start the playback by pressing the letter p. The program will
start playing the passages in chronological order outputting the
corresponding text to the screen as a passage is played. If the book
does not contain any text, the audio will play without any text being
outputted. If there is only text in the book, one passage at the time is
displayed at screen. The text will normally be outputted synchronized
with the audio, so when there is no audio present, the user must
navigate to the next passage when he is done reading the last output.

H.4.2 Pause

When a book is playing, you can toggle pause by pressing the space
bar. By pressing the space bar once more, the playback will continue.

H.4.3 Stop

When a book is playing, you can stop playback by pressing the letter
s. To restart the playback from the last passage after a stop, simply
press p.

123

H.4.4 Seek

Seeking is possible as soon as a book is loaded. You can seek while
the book is playing, stopped or paused.
You can seek to the next passage by pressing right arrow, previous
passage by pressing left arrow, next chapter by pressing down arrow,
previous chapter by pressing up arrow and to the beginning of the
book by pressing the letter b. If you try seeking forward beyond the
last passage or chapter you will get a end of book message and if you
try seeking backwards beyond the start of the book, playback will
jump to the beginning.

H.5 Positioning and bookmarking

Daisyconsole has the ability to jump to any chapter and passage in
the loaded Daisy DTB. By pressing the letter c, the current playback
position is displayed at the screen as two integers representing the
chapter and passage position. This can be used as a bookmark to
continue playback later at the same playback position. To jump to a
playback position, press the letter j and enter the chapter and
passage integers when prompt. The playback position will not change
if you enter invalid integers.
The jump functionality can be used to jump to a specific chapter by
entering the chapter number for the chapter integer and 1 for the
passage integer. To get the list of chapter with corresponding chapter
numbers see section H.6.

H.6 Book indexing

You will get a list of chapters, with its chapter numbers, in a loaded
Daisy DTB by pressing the letter l. Because there can be a lot of
chapters, only 10 chapters is outputted at a time. If there are more
chapters left to output, a “—more—” line will appear at the end of
the list. To get the next 10 chapters simply press any key. Press the
letter q to exit the chapter listing before all chapters has been listed.

124

H.7 Shortcut keys

Shortcut Description
o Open a Daisy DTB.
p Start playback of the loaded DTB.

space Toggle pause.
s Stop playback.

left arrow Seek to previous passage.
right arrow Seek to next passage.
up arrow Seek to previous chapter.

down arrow Seek to next chapter.
b Seek to beginning of the DTB.
c Print the current playback position.
j Jump to a specific playback position.
l List chapters.
m Print the menu.
q Quit program.

Table H.1: Shortcuts

125

Daisygui user manual

126

H.8 What is daisygui? Where can I get it?

Daisygui is a free Linux program for playing Daisy Digital Talking
Books. Daisygui is a front-end for the libdaisy library, created for
those who wants a simple graphical user interface.
You can download the latest version of daisygui and libdaisy from the
DaisyPlayer Project’s web-page (http://developer.skolelinux.
no/info/studentgrupper/2006-hig-daisyplayer/).

H.9 Getting started

Once you have installed daisygui you can start it by typing daisygui
in a console.
When the program has started you will see something like figure H.2
below.

Figure H.2: Daisygui screenshot.

127

http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/
http://developer.skolelinux.no/info/studentgrupper/2006-hig-daisyplayer/

At the top of the window you have a toolbar with buttons for opening

a Daisy DTB , seeking to the previous chapter , seeking to the

previous passage , starting playback , toggling pause ,

stopping playback , seeking to the next passage , seeking to the

next chapter , bookmarking current playback position , jumping

to last bookmark and exiting the program . Some of the
buttons will not be available at all time, e.g. play will not be available
if no book is loaded.
Below the toolbar you have box showing the total playback time
when a Daisy DTB is loaded, a box showing the font size, which you
can increase or decrease, and a drop-down box where you can choose
between different fonts to use in the center area.
In the left area you have a box for listing all the chapters in a loaded
Daisy DTB. When a DTB is loaded, it will show a list of all chapters
with its chapter number and title.
The center area is for outputting the text from the current passage
when playing a Daisy DTB.
The bottom field of the main window shows status- and tooltip
messages. Try moving the mouse pointer over some of the buttons to
see the corresponding tooltip.
You can change the language for the user interface by clicking Help
-> Language -> your-language, or by pressing Alt+H+L.

H.10 Open a Daisy DTB

The first step for playing a Daisy DTB is to load the book. You can

load a book by pressing and you will see a window like figure H.3.
Browse to the DTB’s ncc.* file (Daisy 2.02) or *.ncx file (Daisy
Z39.86-2005) and press open. The tooltip field on the bottom of the
main window will tell if the book was opened successfully or not.

128

Figure H.3: Daisygui screenshot.

H.11 Playback

The playback functionality will be available after a book is
successfully loaded.

H.11.1 Play

You can start the playback by clicking on the button. The
program will start playing the passages in chronological order
outputting the corresponding text to the center area as a passage is
played. If the book does not contain any text, the audio will play
without any text being outputted. If there is only text in the book,
one passage at the time is outputted to the screen. The text will
normally be outputted synchronized with the audio, so when there is
no audio present, the user must navigate to the next passage when he
is done reading the last output.

129

H.11.2 Pause

When a book is playing, you can toggle pause by clicking the

button. By clicking the button once more, the playback will
continue.

H.11.3 Stop

When a book is playing, you can stop playback by clicking the
button. To restart the playback from the last passage after a stop,

simply click the button.

H.11.4 Seek

Seeking is possible as soon as a book is loaded. You can seek while
the book is playing, stopped or paused.

You can seek to the next passage by clicking the button, previous

passage by clicking the button, next chapter by clicking the

button and previous chapter by clicking the button. If you try
seeking forward beyond the last passage or chapter you will get a end
of book message in the tooltip area and if you try seeking backwards
beyond the start of the book, playback will jump to the beginning.

H.12 Bookmarking

You can add a bookmark to the current playback position by clicking

the button. When you want to jump back to the bookmarked

position, simply click the button.

H.13 Book indexing

When a Daisy DTB is loaded, the left area will show a list of all
chapters with its corresponding chapter number and title. To jump
directly to a specific chapter, simply double-click the entry in the list
corresponding to the chapter you want to jump to.

130

H.14 Shortcut keys

Shortcut Description
Ctrl+O Open a Daisy DTB.
Ctrl+P Start playback of the loaded DTB.

Ctrl+Space Toggle pause.
Ctrl+S Stop playback.

Ctrl+Left Seek to previous passage.
Ctrl+Right Seek to next passage.
Ctrl+Up Seek to previous chapter.

Ctrl+Down Seek to next chapter.
Ctrl+B Set bookmark.
Ctrl+L Load bookmark.
Ctrl+A About dialog.
Ctrl+X Exit program.

Table H.2: Shortcuts

131

Appendix I

CD contents

The following CD contains a dump of our repository with all the
project files. For more detail about the structure, please refer to
README on the root of the CD.

132

	1 Introduction
	1.1 About Daisy
	1.2 Task background
	1.3 Limitations
	1.3.1 Product
	1.3.2 Project constraints

	1.4 Defining the assignment
	1.5 Target group
	1.6 Objective and why we chose this project
	1.7 The groups academical background and expertise
	1.8 Method of work
	1.9 The organization of the report
	1.9.1 Terminology
	1.9.2 The layout of the report

	2 Analysis
	2.1 Amis
	2.2 Emacspeak
	2.3 IDAIR
	2.4 Listen-up

	3 Requirements specification
	3.1 Use case model
	3.2 Supplementary specifications
	3.3 Requirement ranking

	4 Design
	4.1 Front-ends
	4.2 Threads
	4.3 Audio engine
	4.3.1 Audio interface
	4.3.2 Audio decoder / converter
	4.3.3 Audio output module

	4.4 Parser
	4.4.1 NCC & NCX parser
	4.4.2 SMIL 1.0 & SMIL 2.0 parser

	4.5 Data structure
	4.5.1 Audio engine
	4.5.2 Parser

	4.6 Libdaisy interface
	4.7 Internationalization
	4.7.1 GUI front-end
	4.7.2 Console front-end

	5 Implementation
	5.1 Choices of programming language and libraries
	5.1.1 Programming languages
	5.1.1.1 Ruby
	5.1.1.2 C
	5.1.1.3 C++

	5.1.2 Libraries
	5.1.2.1 GStreamer
	5.1.2.2 REXML
	5.1.2.3 Libxml2
	5.1.2.4 GUI
	5.1.2.5 Audio design considerations

	5.2 Threads

	6 Management tools
	6.1 Documentation and choices of aiding- and developing tools
	6.1.1 Doxygen
	6.1.2 LaTeX and L.25emYX
	6.1.3 Subversion and TortoiseSVN
	6.1.4 Planner
	6.1.5 Eclipse

	6.2 Code quality tools
	6.2.1 Splint
	6.2.2 Electric fence
	6.2.3 Valgrind
	6.2.4 GNU Debugger
	6.2.5 GNU Binary Utilities package (nm)
	6.2.6 Lintian

	6.3 Packing and release tools
	6.3.1 Make
	6.3.2 QMake
	6.3.3 Debian Package building tools

	6.4 Scripts

	7 Testing
	7.1 User testing
	7.2 Product quality
	7.3 Product quality tools used

	8 Public relations
	8.1 Web page
	8.2 Plan for advertising

	9 Discussion of results
	9.1 Evaluation of the result
	9.2 Evaluation of choices and technologies
	9.2.1 Development model
	9.2.2 Choice of programming language
	9.2.3 Choice of GUI
	9.2.4 Choice of libraries
	9.2.4.1 POSIX threads
	9.2.4.2 MAD - MPEG Audio Decoder
	9.2.4.3 Libxml2
	9.2.4.4 Libao

	9.2.5 Choice of documentation tools
	9.2.5.1 Doxygen
	9.2.5.2 LaTeX and L.25emYX

	9.2.6 Evaluation of development environment
	9.2.6.1 Eclipse
	9.2.6.2 Scripts

	9.2.7 SVN
	9.2.8 Problems encountered
	9.2.9 Evaluation of the PR work

	9.3 Evaluation of the groups work
	9.4 Further work on the project

	10 Conclusion
	11 Bibliography
	Index
	A Pre-project report for the DaisyPlayer Project (without appendixes)
	A.1 Goals and constraints
	A.1.1 Background
	A.1.2 Effect goal
	A.1.3 Result goal
	A.1.4 Target group
	A.1.5 Constraints

	A.2 Extent of task
	A.2.1 Task description
	A.2.2 The platform
	A.2.3 Libraries, frameworks and standards
	A.2.4 Programming languages
	A.2.4.1 Programming languages
	A.2.4.2 Python
	A.2.4.3 Ruby
	A.2.4.4 C++
	A.2.4.5 C
	A.2.4.6 Availability of compilers and interpreters

	A.2.5 Constraints

	A.3 Project organization
	A.3.1 Principal
	A.3.2 Group
	A.3.3 Roles and responsibilities

	A.4 Planning and reporting
	A.4.1 Choice of methodology
	A.4.2 Plan for status meeting and decision dates
	A.4.3 Code convention

	A.5 Organization of quality assurance
	A.5.1 Revision management
	A.5.2 Quality handling
	A.5.3 Risk analysis

	A.6 Development plan

	B Use cases
	B.1 daisy_init
	B.2 daisy_term
	B.3 daisy_load
	B.4 daisy_play
	B.5 daisy_seek
	B.6 daisy_get_position
	B.7 daisy_goto_position
	B.8 daisy_stop
	B.9 daisy_pause
	B.10 daisy_get_info
	B.11 daisy_get_chapter_count
	B.12 daisy_get_chapter_info

	C Code conventions
	D Gantt chart
	E Status reports
	F Work log
	G Libdaisy API
	H Manuals
	H.1 What is daisyconsole? Where can I get it?
	H.2 Getting started
	H.3 Open a Daisy DTB
	H.4 Playback
	H.4.1 Play
	H.4.2 Pause
	H.4.3 Stop
	H.4.4 Seek

	H.5 Positioning and bookmarking
	H.6 Book indexing
	H.7 Shortcut keys
	H.8 What is daisygui? Where can I get it?
	H.9 Getting started
	H.10 Open a Daisy DTB
	H.11 Playback
	H.11.1 Play
	H.11.2 Pause
	H.11.3 Stop
	H.11.4 Seek

	H.12 Bookmarking
	H.13 Book indexing
	H.14 Shortcut keys

	I CD contents

