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ABSTRACT. In this paper we study several fixed step and adaptive RKuogfa methods suitable
for transporting track parameters through an inhomogenemgnetic field. Moreover, we present
a new adaptive Runge-Kutta-Nystrom method which estistite local error of the extrapolation
without introducing extra stages to the original Runget&Nystrom method. Furthermore, these
methods are compared for propagation accuracy and congpdst efficiency in theimultaneous
track and error propagatiorfSTEP) algorithm of the common ATLAS tracking software. Tésts
show the new adaptive Runge-Kutta-Nystrom method to benibst computing cost efficient.
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1 Introduction

Experimental particle physics is on the verge of a new enaltied by the Large Hadron Collider
being commissioned at the European Organization for Nu&eaearch, CERN, located just out-
side Geneva, Switzerland. The LHC accelerator will coljietons at a center of mass energy of
14 TeV, opening up a new window for particle discoveries amtigion measurements of existing
theories. Particle detectors are located at four beamiongssalong the LHC, one of which houses
the ATLAS detector J]. This is the largest of the LHC experiments, employing aagrariety
of detector and magnetic field technologies to identify aemidnge of particles. The complex
magnetic field and high collision rate, however, make th@mstruction of particle tracks very
challenging. Things are further complicated by the redyisbig amount of material within AT-
LAS, generating considerable disturbances to the pattiatks through material interactions such
as energy loss and multiple scattering.

Particle trajectories are often parametrized with resjpestirfaces crossed by the track. At AT-
LAS, there are five standard track paramet@}stjvo related to the track position, another two giv-
ing the track direction, while the last is related to the iplrtcharge and momentum. Track param-
eter propagation — which is the process of transportingktperameters and their associated co-
variance matrices through the magnetic field and materitgdeotletector — is an important part of
any track reconstruction algorithm, hence high accuradyspeed are essential to the propagation.

Historically, track parameter propagation has often bemmdled by the fixed step Runge-
Kutta-Nystrom methodd], which is designed to solve second-order differentialagiqus, such



as the equation of motion of a particle in a magnetic field. Basic idea of this method is to
divide the integration interval into steps and solve thesependently in an iterative procedure.
The solution to each step is estimated by evaluating thetiequaf motion at different points —
often referred to astages— along the step. Fixed step methods are, however, not opiima
case of a very inhomogeneous magnetic field, such as in thé&Tdetector. To accomodate the
most challenging parts of the ATLAS magnetic field, the fixegpssize has to be small, thereby
wasting time in the smooth parts of the field. Adaptive methadch as the Runge-Kutta-Fehlberg
method f], solve this problem. These adaptive methods, howeveujiegt least one extra stage in
every step compared to the fixed step methods, but the ambstefps taken during the propagation
is often reduced significantly.

In this paper, we study several adaptive Runge-Kutta metlatmhg with the classical fixed
step Runge-Kutta (RK) and Runge-Kutta-Nystrom (RKN) roeth We also introduce a new adap-
tive Runge-Kutta-Nystrom method, which combines the éicitp of the fixed step method with
the efficiency of the adaptive methods without introducintyaestages. This is the method em-
ployed by the STEP algorithm, which is used for both stams@land combined muon reconstruc-
tion — along with fast track simulation in the muon spectrtane— within the ATLAS tracking
framework p].

In section2, we present the equation of motion along with some fixed std@daptive Runge-
Kutta methods for solving the track parameter propagafiowed by the new adaptive Runge-
Kutta-Nystrom method. In sectioBy we give a short presentation of the STEP algorithm before
validating and comparing the Runge-Kutta methods in seectioFinally we present a brief con-
clusion in sectiorb.

Natural units f = ¢ = 1) are used throughout this paper.

2 Integrating the equation of motion

There are many representations of the equation of motioncbheged particle moving through a
magnetic field §], primarily separated by the free spatial parameter, wigamostly dictated by
the geometry of the experiment. For a fixed target experipievilving tracks going mainly along
the beam axis, using a fixed Cartesian coordinate system asdhe free parameter is often sat-
isfactory. In a beam collision, particles move outwardsrfribie interaction point in all directions,
facilitating r as the free parameter, either in a fixed spherical or cyliaticoordinate system.
However, the introduction of a magnetic field makes the iratiégn along a fixed axis difficult and
error prone. Using the arc lengthand integrating along the path itself solves this problem.

Technically, the main difference between using and s as the free parameter is the need
to constantly check the distance to the destination suskden applyings as the free parameter.
This is because thepropagation sets up a curvilinear coordinate system wiaibbvis the track at
all times, whereas the andr propagations use a static coordinate system defined by thetde
geometry. The increased complexity and computing costiofuscurvilinear system is, however,
outweighed by its robustness and ability to handle sharphdmg tracks.

By usings as the free parameter, the equation of motion, given by therito force, becomes

2
% = % (Z—: X B(r)> = \T x B(r)) (2.1)
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Figure 1. The classical fourth-order Runge-Kutta method. The @érie is evaluated four times in each
step; once at the initial point, twice at trial midpoints artte at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated o(rmef. [7]).

whereT = dr/ds is the normalized tangent vector to the tragk(r) is the magnetic field and
A = ¢/p. To see thatl' is the normalized tangent vector it is useful to look at th&nitéon
of the speedir/dt = v, and the arc lengtlls = vdt. The derivativedr/ds then becomes
dr/vdt =v/v="T.

The electric field component of the Lorentz force is left oluth@ equation of motion because
the electric field inside most of the detector is small coragdo the magnetic field.

Given the inhomogeneous nature of the magnetic field, findim@nalytical solution to the
second-order differential equation of motidhk) becomes impossible. It has to be solved numer-
ically. Many methods are available, but one group of metlprdses especially useful in tracking.
These are the recursive Runge-Kutta metha@isrhost of which are developed for solving first-
order differential equations, since higher order equatitan always be reduced to sets of first-order
equations by introducing auxiliary variables.

The basic idea of the recursive Runge-Kutta method is talditie integration interval into
steps and solve these independently in an iterative proeedivery step becomes an initial value
problem and can be solved as best suited for that particaldrop the integration interval. This
is especially useful when varying the step length to makeptbeedure adaptive. The solution to
each step is estimated by evaluating the equation of motidifferent pointsk — often referred to
asstages— along the step. Every stage, except the first, is based gré@us stages of the step.
In the end, all stages are weighted and summed to find themolotthe step. Figuré illustrates
the four stages and the solution of the original Runge-Kungghod.

Generally speaking, every evaluation of the equation darae error term, producing a so-
lution correct to the order of the number of evaluations. é¢d¢grthe four stages of the original
Runge-Kutta method produce a result correct to the fourtteror Using higher-order solutions
gives better accuracy per step and allows longer steps. Vowi the integration environment
is not known to the same order as the Runge-Kutta method xthe evaluations may be better
spent on more steps. Six evaluations of the equation of matia given interval can produce one
sixth-order step, two third-order steps or three secodérosteps. Which gives the best overall
accuracy is hard to tell without testing. Later in this pajiteis shown that the ATLAS magnetic
field does not warrant the use of Runge-Kutta methods beyaunthf order.



Figure 2. Integrating the equation of motion using the fourth-orBenge-Kutta-Nystréom method. The
equation of motion is evaluated four times in each step; antiee initial point, twice at a trial midpoint and
once at a trial endpoint. From these stageshe positionr,,; and the normalized tangent vector to the
trackT,,; are calculated.

2.1 The Runge-Kutta-Nystiom method

These are the four stages and the solutions to the fourtir-&dnge-Kutta-Nystrom method;
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whereh is the step lengthy is the integration variable; is the step number anflis the second-
order differential equation ,

T _ fa0.0) 23)
which is integrated twice; first to produce tihe, ; solution, second to produgg 1. This method
was specifically designed for solving second-order difigat equations such as the equation of
motion. Integrating the equation of motio2.1), figure2, the first integration gives the normalized
tangent vectoff;,. 1, while the second integration gives the position of theiplart,, , ;.

An appealing aspect of the Runge-Kutta-Nystrom metholdasgtage two and three share the
same point in spacéx,, + %, Yn + gy; + %214:1), and hence magnetic field. To reduce calls to the
magnetic field service further, it is possible to use the re#igriield found in the last stage of the
current step as the starting field of the next step, becaegeosition of the last stage:,, + i, y, +
hy,, + %Qk‘g) is very close to the final solution of the step, + h, y,, + hy,, + %2 (k1+ko+k3)), i.e.
the starting point of the next step. By using these optinonat the Runge-Kutta-Nystréom method
only needs to evaluate the magnetic field twice per step.
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Figure 3. Illustration of the varying step size of the adaptive Ruiggta methods. The step size algorithm
adjusts to the roughness of the function by using small stefise rocky sections and longer steps in the
smooth parts.

Itis, however, a problem of the Runge-Kutta-Nystrom mdttiat it only gives an idea of the
quality of the integration, i.e. correct to the fourth ord€he actual integration error of the step is
unknown. Furthermore, the accuracy of the integration ¢dy be adjusted by setting the fixed
step lengthh, which has to accommodate the most inhomogeneous parts afdgnetic field. In
ATLAS, this step length is a lot smaller than that needed ier more well-behaved parts of the
field, making a fixed step length inefficient.

2.2 Adaptive Runge-Kutta methods

To avoid the problems of the fixed step length methods, andjtsathe accuracy in a predictable
way, an adaptive Runge-Kutta method is needed. The mogitgfiaward technique is step dou-
bling. Every step is taken twice, first as a full step, and thetwo half-steps producing a solution
of higher order. The difference between these solutionesgan estimate of thiecal error e of
each step of the lower-order full step solution. The locabreis checked against a user specified
criterion, theerror tolerancer, and if the error is bigger than the error tolerance the saép. flt

is then shortened and redone. If the local error is smalkan the error tolerance, the step is suc-
cessful and the step size of the following step is increasadinimize the number of steps needed
for the integration. A good step size selection algorithimviateserror tolerance proportionality
which means that the logarithm of the global error of the wHaotegration is proportional to the
logarithm of the user specified error tolerance. This isaad by keeping the local error close to
the error tolerance during the integration by adjustingstie@ size, figur8. Managing this with a
minimum number of failed steps is the main challenge of thp size selection algorithm.

2.3 Embedded Runge-Kutta pairs

An alternative way of estimating the local error of a stepasda on the embedded Runge-Kutta
formulae — the so-called embedded pairs — invented by Fehlgg. The most well-known

Runge-Kutta-Fehlberg method is a fifth-order method wixhstages, where another combination
of these six stages gives a fourth-order method. As in steplohg, the difference between these
two solutions is used to estimate the local error of the leareer solution of the step. Since the em-
bedded formulae provide error estimation at almost no edss many additional embedded pairs
of varying orders have been created since Fehlberg’s afigiork, most of which contain only



one extra stage compared to the classical Runge-Kutta aetifdhe same order. The Bogacki-
Shampine 3(2)FSAL (BS32) embedded p&irgrovides an illustrative example;

]471 — hf(xnvyn)

h k
ko = hf<xn+§>yn+51>

3 3
ks = hf(a, + 2hoy, + 2k
3 f<90+4y+42>

2 1 4
ki =h nthy, + =k + ko + =k
4 f<x+ y+91+32+93>
. 2 1 4
3rd-order solutiony,,+1 = yn + =k1 + ko + —k3
9 3 9
7 1 1 1
2nd-order solutiony,,+1 = vy, + — k1 + -k —k3 + =k 2.4
utiony, 1 y+241+42+33+84 (2.4)

This is a “first-same-as-last” (FSAL) pair, meaning that ld&t staget, is evaluated at the final
higher-order solution of the stap,. ;. Since the next step starts out where the current ends, we
getki(n + 1) = kq4(n), hence the name “first-same-as-last”. This property resitioe number
of evaluations of the differential equation, thereby irsiag the efficiency. The 3(2) in the nam-
ing of the pair indicates the orders of the pair, the loweteorsolutiony,, 1 being used for error
estimation only.

Since the error estimate applies to the lower-order salutiee higher-order solution is often
more accurate than the error estimate suggests. It haddieteecome a standard procedure
to use the higher-order solution along with the error edtintd the lower-order solution unless
very precise error estimates are needed. This is the seddaltal extrapolation, which is applied
throughout this paper.

2.4 Adjusting the step size according to the error tolerance

As mentioned earlier, a step size selection algorithm utsiadocal error estimate of each step

€= Ynt1 — Yn+1 (2.5)

is needed to make the Runge-Kutta methods adaptive. Theamwshon step size algorithm is

1

q+1
hn-l—l = hn < u > " (26)

el

where the new step length,; is given by the local error of the current stepthe current step
length h,,, the user specified error toleraneceand the order of the lower-order solutior,, . 1.
The derivation of this algorithm is left to refsz,[9]. The core of the algorithm is the fractiory |¢|
which becomes less than one if the local error is bigger tharetror tolerance, reducing the step
length, and vice versa.

After “trimming” by a limitation criterion

1



the new step sizé,, ., is used for the next step, or for retrying the current step fidils. The
limitation criterion is introduced to prevent extreme ches to the step size during the integra-
tion. Without the limitation criterion, a tiny bump or smbategion in the integration interval may
change the step length by a factor of hundred or more. Thisgompromise the stability of the
solution and the error tolerance proportionality.

After finding the new step lengtt2(6) and trimming it .7), the quality of the current step is
evaluated by an acceptance criterion

le] < 4t (2.8)

to decide whether the step is accepted. The safety factoisoidroduced to allow for the local
error to oscillate around the optimal value|df= .

Given the above step size algorithéh@) and acceptance criterio2.8), the estimated global
error of the integration becomes

ge = 1 (2.9)

For a given Runge-Kutta method and differential equaticamda are constants. The logarithm of
the global errory. — and hence integration accuracy — is therefore proportitmtne logarithm

of the user specified error tolerance. The error toleranopggtionality of the global error is very
useful in the reconstruction software, allowing the sanmpagator to be used for a slow, accurate
reconstruction, or a fast, less precise high-level trigyeonly adjusting the error tolerance.

2.5 An adaptive Runge-Kutta-Nystom method

The fourth-order Runge-Kutta-Nystrom methdi? is in many ways the simplest and most at-
tractive of the Runge-Kutta methods discussed above. BStigthe local error of each Runge-
Kutta-Nystrom step — thereby enabling adaptivity throwgybp size adjustment — is basically
all that separates this fixed step method from the adaptitbads. In this section, we present
a novel approach to estimating this local error, thus enghiie creation of an adaptive Runge-
Kutta-Nystrom method through the application of the folaeudescribed in sectich 4.
To estimate the local error of a Runge-Kutta-Nystrom stap useful to look at the Taylor

expansion around,, that forms the basis of the Runge-Kutta methods;

9+ h) = gla) + hg'(ea) + 329" (ea) + £H9) ) + ohlg D () -+ (2.20)

The main part of the local error is the truncation error froighler-order terms that are excluded,
i.e. all terms above fourth order for the Runge-Kutta-Ngtstrmethod. This leaves out the possi-
bility to calculate the local error directly, but it makesise to assume that the last known term
indicates how quickly the Taylor expansion converges. Alsiaian indicates a quick convergence
and small truncation (local) error, whereas a big term iaigis the opposite. This assumption is
confirmed by the widely used local error estimaeb) of the embedded pairs. For a 4(3) pair, the
local error becomes

€ = Yn+1 — Un+t1 = 9(xn, + h)fourth order— 9(Zn + h)third order =
(2.11)

9(zn + h)tourth-order term= ﬁhzlg(‘l) ()



which is the last known term. Calculating this term diredtlym the four stages of the Runge-
Kutta-Nystrom method is not possible. However, since amgreestimate along the step will
suffice, we can calculate it in the middle of the step ¢ %h), instead of at the beginning:().
This allows us to find the local errerby using the symmetric derivative

g(xn +h) — gz, —h)
2h

g (zn) = (2.12)
and the four stages given by the second-order derivatives- g;') already calculated by the
Runge-Kutta-Nystrom method.
First, we find the third-order symmetric derivative of thestinalf of the step by using a step
size of1h, figure4,
" (xy + %h + %h) — " (xn + %h - %h)

1
g9 (xn + 4h) %h

g5 (xn + %h) — g1 (zn) _ ko — k1
3h 3h

(2.13)

Moreover, we calculate the third-order symmetric derixaidf the last half of the step. Again,
using a step size dfh,
" (z, + %h + %h) — " (xy + %h — %h)

3
(3) °n) — —
g (xn + 4h) %h

94 (xn + h) — g3 (xn + %h) _ky—ks
T =1
3h 3h

(2.14)

These two derivatives are then used to calculate the faudbr symmetric derivative at the middle
of the step
9% (@n + 5h + 1h) — g% (20 + 3h — 1)

1
(4) Zh) = =
g (o + 5 ) %h

ki—ks _ ko—Fy

9O (@, + 3h) — ¢ (2, + 1n) Th I _ki—k—kytk

1 1 1
3h 3h i

(2.15)

corresponding to the error estimate

= — (k1 — ko — k3 + k4) (2.16)

ih‘lkl — ko — k3 + k4 h_2
24 1h2 6

_ Lo Ly
6—24hg (xn+2h)—

Since we are always looking at the local error estimateivelddb some arbitrarily chosen error
tolerance 2.6), (2.8), we can absorb th&/6 into the error tolerance, leaving only

€= h%(ky — ky — ks + ky) (2.17)

Whereas the embedded Runge-Kutta pairs introduce exfjassta estimate the local error, this
approach only recycles the four Runge-Kutta-Nystromesagready known.
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Figure 4. Using the four stagek; (= g¢;) of the fourth-order Runge-Kutta-Nystrom method to estien

the local errofe of a step. The four stages are used to produce the third-eydemetric derivatives at the
intermediate pointsi, + ih) and @, + %h), which go into the calculation of the fourth-order symneetr
derivative in @, + 1), corresponding to the local errer

Equipped with the local error estimat2.17), we can apply the step size algorithéh) with
g = 3 — assuming an error estimate correct to one order less tlmRtimge-Kutta-Nystrom
method — followed by the limitation criterior2(7) and the acceptance criterio?.) to create an
adaptive Runge-Kutta-Nystrom method. Thus, adaptigtschieved by following the approach of
the embedded Runge-Kutta pairs, only the local error estimsanew. In the following sections, we
show that this adaptive Runge-Kutta-Nystrom method iy wemputing cost efficient, and hence
has become the standard STEP method.

3 The STEP algorithm

The STEP algorithm transports the track parameters fronsarface of the tracking geometry to
another. To find the crossing point with the target surfdoe algorithm starts off with finding the
distance from the starting point to the surface in the divaadf the momentum. Ifitis less than 10
cm the propagation is done in a single step, else the prapagstarts off with a 10 cm step. The
STEP algorithm then does the initial step applying the chédgnge-Kutta method. From the step
size and local error estimate of the first step, a new stepsstadculated by the step size algorithm.
This new step size is then “trimmed” according to the linidtatcriterion before a decision to go
on, or retry the current step is made by the acceptanceiariter

The whole procedure, starting with finding the distance &t#iget surface is then repeated.
This time, and for all the following steps, the distance is/arsed as a maximum limit to the new
step size to avoid stepping through the target surface. Whneilistance to the target surface is
down to 10um, or less, the Runge-Kutta propagation is stopped, ledhi@mgemaining propagation
to a simple Taylor expansion

1 d 1 d?
Tpni1 = TRK + Wi + §h2r§$K = TRk + "G5 )Rk + ghz(ﬁ)m(

(3.2)
To+1 =Tre + hTéK = (Z_Z)RK + h(%)RK
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Figure 5. The definition of the propagation error in the test setupiddig the error by the total path length
— back and forth — produces the relative propagation error.

whereh is the remaining distance to the target surface and theatimg are given by the equation
of motion Q.1). The parameters indexed by RK are those found by the lgsbfthe Runge-Kutta
propagation.

Since the standard STEP algorithm uses an adaptive — insfesfiked step — Runge-Kutta
method, the initial step length is of less importance, anttheannot be set by the user.

4 Validating the parameter propagation

To test the STEP algorithm and compare Runge-Kutta methedspropagate the same set of
charged particles through the realistic ATLAS magnetidfi®y using the different methods. The
particles are sent in random directions, covering all a#ivaluand polar angles at momenta ranging
from 500 MeV to 500 GeV, starting off from an initial surfacechted at the center of the ATLAS
detector, figuré. The target surface is randomly placed and rotated in a cithesides of 20 m
centered in the detector. Upon reaching the target surtiaeg@articles are propagated straight back
to the initial surface, which they should ideally hit exgiatthere they originally started out. How-
ever, due to errors introduced by the propagation, the fiositipn is slightly displaced, giving the
global propagation error of the track. Due to the great viaricof the distance to the target surface,
the global propagation error is divided by the total pathgtbn— back and forth — to produce
a global propagation error per unit distance. To avoid smgaif the global propagation errors
by the orientation of the initial surface, it is always setmal to the initial particle momentum.
For simplicity, the global propagation error per unit digta is hereafter referred to as tiedative
propagation error

This test does not represent typical ATLAS situations ingbiese that the actual propagation
distances are not randomly distributed in the detectormaelithe majority being short range prop-
agations in the inner detector. Furthermore, the partiddenanta are taken at random from a flat
distribution — as opposed to the fixed momenta often useddh wsts — to produce a quick and
easy way of covering a wide range of momenta. This approaatcisptable since the propagation
errors depend heavily on external factors specific to themxgnt, such as the magnetic field, lim-
iting the relevance of studying propagation errors at $gegiomenta. In spite of these short cuts
— and because the same random set of particles are used bgththals — this test is sufficient
for comparing and qualifying propagation algorithms.

—10 -
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Figure 6. Distributions of the logarithms of the relative propagaterrors of the fixed step, step doubling
and adaptive (STEP) Runge-Kutta-Nystrom methods, anthioembedded pair TP43, for three fixed step
lengths and error tolerances.

4.1 Relative propagation errors

Figure 6 shows distributions of the logarithms of the relative prggi#on errors at different fixed
step lengths and error tolerances. Distributions are pteddor the fixed step, step doubling and
adaptive (STEP) Runge-Kutta-Nystrom methods, and foethbedded pair Tsitouras-Papakostas
4(3)FSAL (TP43) 9]. In this pair, the last two stages are both calculated afutiestep length,
making them closely positioned in space, almost sharingnetig field values. Here, we use
identical field values for both stages to increase the efftgieof the pair. The classical Runge-
Kutta distributions (not shown) are similar to those of thenBe-Kutta-Nystrom method, both in
the fixed step and step doubling case.

The distributions of figuré& show several peaks; one-ai2 which is made up of very short
tracks, typically 10 cm. Another at8 which is made up of tracks within the ATLAS solenoid,
and the main peak at4 which contains the tracks moving into the ATLAS toroidal matic field,
which is the most challenging part to maneuver accuratelymost cases, a relative propagation
error below10~9 is sufficient.

Figure7 shows the mean relative propagation errors as a functidmeagitror tolerance for the
above-mentioned adaptive Runge-Kutta methods, along tiwitre other embedded pairs; Cash-
Karp 5(4) (CK54) [/], Dormand-Prince 5(4)FSAL (DP541(] and Tsitouras-Papakostas 7(5)
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Figure 7. Mean values of the logarithms of the relative propagativars of some fixed step and adaptive
Runge-Kutta methods.

(TP75) B]. Similarly to the TP43 pair, the last two stages of DP54 axth lsalculated at the full step
length, sharing the same magnetic field values to increasefficiency of the pair. Furthermore,
the fixed step methods are presented as functions of theestgihl The “ATLAS RungeKutta” is
another ATLAS propagator — originally part of the xKalmarckage [L1] — while GEANT4 [12]

is a simulation package developed for tracking particlesuph material.

As mentioned in sectioB.], it is possible to use the same magnetic field values for tzing
the last stage of the current step and the first stage of thtestegx in the Runge-Kutta-Nystrom
method because both stages are closely located in spaceoftimization is implemented in the
adaptive Runge-Kutta-Nystrom method employed by STE®,itis validated by the “STEP no
optimization” curve of the top left plot of figuré.

In figure 7, we see that all of the methods reach a plateau at high eremataee, which
is the inherent accuracy of the method. On the plateau, tioe eontrol is practically disabled
and the propagation goes “unchecked”, similarly to thesitas fixed step methods. Besides, the
computing time also levels out, gaining nothing by going@onhigh error tolerances.

The linearity of figure7 at error tolerances below0~! — where the error control is in full
effect — clearly shows the error tolerance proportionatifythe relative propagation erro2.Q).
This allows for steering the integration accuracy in a priadile way through adjusting the error
tolerance. The constants of e@.9) can easily be found from figuré, however, since these
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Figure 8. Computing cost efficiencies relative to the efficiency of #daptive Runge-Kutta-Nystrom
method (STEP).

constants rely heavily on the experimental setup, they &idtle interest beyond the ATLAS
experiment, and hence are left out of this paper.

Surprisingly, the step doubling methods perform worse tharfixed step methods, showing
little correlation between the error tolerance and thetikedgoropagation error. This is because
halving the step length does not necessarily increase theaay of the step sufficiently to give a
good local error estimate. Moreover, in many cases the krcal estimate of the step doubling is
too low, giving an overly optimistic view of the quality ofefpropagation. This prevents the step
size algorithm from working properly, making the steps tog to produce the required accuracy.
These tracks show up as an extra shoulder on the right-hdaddsihe step doubling distribution
of the lowest error tolerance of figu& Trials by using step tripling give a slightly better error
estimate, but still worse than that of the other adaptivehouis.

4.2 Efficiencies

All of the above-mentioned Runge-Kutta methods can produsefficient relative propagation
error, even though the error tolerances needed to prodeadesired accuracy differs. To compare
methods, we need to study the computing cost of reaching giwee accuracy; the so-called
efficiency. Figure8 shows efficiencies relative to the most efficient method, riteer adaptive
Runge-Kutta-Nystrom method (STEP). From the plot on tlfie \ée see that the optimized STEP
method is slightly more efficient than the non-optimized &Tgethod. Moreover, we see that the
fixed step methods are outperformed by the adaptive metlesgecially at high accuracy (small
propagation errors). To achieve such accuracy, the fixgu steist be limited to a few cm each,
slowing the propagation down significantly. Furthermore,netice that the step doubling methods
perform surprisingly bad because every step is actuallyemgdof three steps; two steps for the
solution, and one for the error estimation, producing aiiggmt overhead for failed steps.

From the plot on the right of figurg, we see that the embedded pairs — especially TP43 —
fare better than the fixed step and step doubling methods.effioeency of the embedded pairs
depends heavily on how well they are matched to the underiyinblem; defined by the equation
of motion and the ATLAS magnetic field. The fourth-order ST&RI TP43 methods are clearly
best suited in this case. The fifth-order CK54 and DP54 pédis fare reasonably well, whereas
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the lowest (BS32) and highest (TP75) order pairs fail at laigturacy. This probably happens be-
cause BS32 struggles to produce the required accuracyeahdiP75 becomes more meticulous
than necessary.

Even though the new adaptive Runge-Kutta-Nystrom methale most efficient in ATLAS,
the TP43 efficiency becomes comparable when the computstgoEpolling the magnetic field is
negligible, such as in the case of a parameterized magnetic fi

5 Conclusion and outlook

In this paper, we have presented a new adaptive Runge-Kygaém method developed for the
STEP algorithm within the ATLAS tracking framework. The SFElgorithm transports track
parameters and their associated covariance matricegytitbe ATLAS detector, taking the mag-
netic field and material interactions into account. A reklii extensive computing cost comparison
with existing numerical methods — suited for parameter pgapion — shows the new adaptive
Runge-Kutta-Nystrom method to be the most efficient, hgyiatential beyond the STEP applica-
tion presented here.

In addition to the track parameter propagation discussegl liee transport of the associated
covariance matrix — the so-called error propagation — i®esseary to provide a full description
of the track. The covariance matrix provides informatiomwhbthe uncertainties related to the
reconstruction of the track parameters from the empiriedh,dand its transport is treated in a
separate papef§].
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