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Abstract—In this paper we will show that using Principle
Component Analysis (PCA) on accelerometer based gait data will
give a large improvement on the performance. On a dataset of 720
gait samples (60 volunteers and 12 gait samples per volunteer)
we achieved an EER of 1.6% while the best result so far, using
the Average Cycle Method (ACM), gave a result of nearly 6%.
This tremendous increase makes gait recognition a viable method
in commercial applications in the near future.

I. INTRODUCTION

In our current society we need to prove our identity in
many different places. Using passports to cross borders, using
a password to get access to a computer, using a PIN code to
open our mobile phones, or in combination with a banking
card to get money from our account. Passwords and PIN
codes have the obvious disadvantage that we need to remember
many of them and we either tend to forget them, write them
down, or choose simple ones. This works against having a
strong mechanism for access control. What we in general
do want is an authentication method that we cannot forget
or loose (either physically or from our memory) and is still
easy to use. Biometrics is such a method and fingerprint and
face recognition are already often used and well excepted
authentication methods. In many cases however, we do not
just want an easy to use authentication method, but even one
that works without any interference or action from our side. In
such a case we do often need to turn to behavioural biometrics
and gait recognition is such a method. Gait, the way we walk,
can be captured and processed unobtrusively and can therefore
play a future role as an authentication method. So far the
performance results on gait recognition have not been such
that it allows for large scale commercial deployment, but in
this paper we will describe an analysis method where we can
make a giant leap towards commercial use. The techniques
we used are not new as such; Principle Component Analysis
has been used before in for example face recognition [1], and
also wearable sensor based gait recognition is not new [2],
[3]. However, this is the firs paper in which these techniques
have been combined, giving very good results.

In the future we could imagine protecting our mobile
devices (e.g. PDA and phones) using our own gait. The new
mobile devices already contain accelerometers and we could
use the output of these accelerometers to recognize the owner
of the device. Modern mobile phones are no longer just used
for making phone calls or sending text messages, but they
are often synchronized with email accounts, contain sensitive

documents or store sensitive information for m-banking. The
current protection mechanism on a mobile phone is a PIN
code, that only needs to be entered when the phone is turned
on. The number of people that use a PIN code to activate a
phone that has gone to stand-by mode is extremely low, mostly
because the extra effort of typing a PIN code whenever the
phone is needed is seen as a burden. Using gait recognition to
keep track if the phone is still in the possession of its genuine
owner can be an add-on that can provide extra, effortless
security. Such a phone would lock itself if it detects that the
current way of walking does not fi with the walking of its
owner. In case of a false negative, the user needs to unlock
the phone with the PIN code, but given the performance of
gait recognition reported in this paper, it is likely to happen
only very infrequently, and thus is it a small price to pay for
the increased security.

The remainder of the paper is organized as follows. In
Section II we will briefl describe current techniques used
in gait recognition biometrics. Sections III and IV we will
describe the basics of the Average Cycle Method (ACM) and
of Principle Component Analysis (PCA). Section V will start
with a description of the used database and will then describe
how the data is pre-processed and analyzed. Finally Sections
VI and VII will give the results of the analysis on the used
dataset and will draw conclusion on the results given in this
paper.

II. GAIT RECOGNITION

Within gait recognition we try to recognize a person by
the way he or she is walking. This can be either in an
identificatio setting, used for example in surveillance, or in
an authentication setting, which can for example be applied
in securing access to mobile devices. There exist 3 major
approaches to gait recognition. The firs and most used one
is called Machine Vision (MV) based gait recognition. In
this case the walking behaviour is captured on video and
video processing techniques are used for analysis. The second
technique is called Floor Sensor (FS) based gait recognition.
In this case sensors are placed in the floo that can measure
force and use this information for analysis. Such a system can
for example be used for controlling access into a building.
Both MV and FS based gait recognition are well suited for
identificatio purposes.

The fina method is referred to as Wearable Sensor (WS)
based gait recognition. In this case the user wears a device



Fig. 1. MR100 Sensor used in the experiment [5]

that measures the way of walking and pattern recognition
techniques can now be used for recognition purposes. WS
based gait recognition is very well suited for authentication
purposes. In our case the wearable sensor (as shown in
Figure 1) is an MR100 accelerometer [4], which measures
acceleration in 3 perpendicular directions (referred to as x, y,
and z). The MR100 measures and stores approximately 100
data points per second for each of the 3 directions.

Accelerometer based gait recognition has f rst been explored
in 2005 [2], [3]. Approaches in WS based gait recognition
often use a variation of the Average Cycle Method [6], which
is explain in more detail in Section III. In the ACM method
the collected gait data is represented by an ”average cycle”
which is then used for comparisons in the analysis. Some of
the reports are on performance of gait authentication [7], while
others focus on security issues like how easy it is to copy the
gait characteristics of another person [8]. Also issues related to
different walking circumstances have been investigated before
[5].

In this article we will focus on the use of Principle Compo-
nent Analysis (PCA) in gait recognition as an additional step
in the Average Cycle Method. PCA will be discussed in more
detail in Section IV. PCA has been applied in other biometric
research before, in particular in face recognition [1]. It has also
been used before in gait recognition, in particular in MV based
gait recognition, for example in [9]–[14]. In [15] the authors
actually apply PCA to a Floor Sensor system, but the goal in
that article is to discriminate between normal and abnormal
walking and not so much user identif cation or authentication.

To our best knowledge PCA has never been applied to
accelerometer based gait recognition. The only time PCA was
used with accelerometer based gait data was to distinguish
abnormal walking behaviour [16], [17], similar to what was
done in [15].

III. AVERAGE CYCLE METHOD (ACM)

The main idea behind the Average Cycle Method [5], [6]
is to represent a full gait sample (as can be seen in Figure 2
by a single gait cycle, where this single cycle in some way
or another represents the average cycle present in the full gait
sample. The ACM consists of various steps: (1) preprocessing;

(2) cycle detection; (3) creating the average cycle; and (4)
performance analysis. These steps are explained below in more
detail.

(1) The preprocessing of the data depends heavily on
the used sensor. One of the actions taken in this
step will be the reduction of noise in the collected
data, for example by using a Moving Average or
Weighted Moving Average f lter [5], but different
types of f lters can also be applied [7]. In case of the
MR100 sensor we also performed time equalization
between the data points in a gait sample in this step,
because the time between two data points was not
constant.

(2) The most important step is the ACM is obviously the
detection of single cycles in the data signal. Different
methods for this are used by Gafurov et al. [6],
Holien [5] and Derawi et al. [18]. The f rst action
in this step is to determine approximately how many
data points one cycle contains. Let Napprox denote
this estimated value. The common basic idea in cycle
detection is that given the start of a cycle we can f nd
the start of the next cycle (and hence the ending of
the current cycle) by looking approximately Napprox

data points further in the gait sample. In Figure 2 we
can see a gait sample and how that sample is split
into distinct cycles, where the start and end of a cycle
is denoted by a circle.

(3) For creating the average cycle again different tech-
niques can be used, and the chosen technique de-
pends partly also on the distance metric that is
used in step (4). Often the separate cycles are f rst
”normalized” to have 100 data points per cycle by
using linear interpolation [6]. In such a case the
average cycle can be calculated by simply using the
mean or median per each of the 100 data points
over the detected cycles. Another way of f nding
an average cycle is by selecting the cycle that has
the least average Dynamic Time Warping (DTW)
distance to the other detected cycles [5]. We do
not need to normalize the cycles to a f xed number
of data points in order to apply DTW averaging,
although DTW can still be applied if the cycles are
normalized.

(4) During the performance analysis we compare the
average cycles to each other. Different distance
metrics can be applied in this case, for example
Euclidean distance, Manhattan distance and DTW
distance (otherwise also know as edit distance or
Levenshtein distance). In case of Euclidean and
Manhattan distance it is needed that all cycles have
the same number of data points, but such a restriction
does not apply for the DTW distance [5].

IV. PRINCIPLE COMPONENT ANALYSIS (PCA)
Principle Component Analysis is a statistical technique that

is not unknown in the f eld of biometrics. It has been mainly



Fig. 2. A gait data sample showing detected cycles [19].

applied to face recognition before, but also to MV based gait
recognition. To our best knowledge it has never been used
on WS based gait recognition before. In general any multi-
dimensional source of information is expressed in the basis
consisting of the unit-vectors ~ei. For example any point ~p =
(x, y, z) ∈ R

3 can be expressed as ~p = x · ~e1 + y · ~e2 + z · ~e3.
We can use any other basis {~b1, ~b2, ~b3} and express ~p as ~p =
x′ · ~b1 + y′ · ~b2 + z′ · ~b3 for particular values x′, y′, and z′.

The idea behind PCA [20] is to f nd new basis vectors that
express the underlying dataset best. Given a dataset, PCA will
f nd new basis vectors such that the f rst basis vector will
contain the most information about the underlying dataset. The
next basis vector will contain a little less information, and in
fact each following basis vector will contain less information
about the dataset as the basis vectors before. The basis vectors
are also called eigenvectors and the importance of the basis
vectors is expressed in the so called eigenvalues. The number
of eigenvalues equals the number of eigenvectors, which is
again equal to the number of dimensions in the dataset.

When performing PCA analysis in (gait) biometrics, we
need to split up our dataset in three parts. The f rst part will
be used to ”train” the PCA, i.e. to f nd the eigenvectors.
Analogue to face recognition, where the eigenvectors are
called eigenfaces, will we name the eigenvectors eigensteps,
as they are based upon an underlying dataset of single steps.
The second part will be used to create templates for each user.
Finally the third part will be used for testing, i.e. comparing
against the templates.

V. EXPERIMENT DESIGN AND DATA ANALYSIS

In this section we will f rst describe the design of our ex-
periment. Next we will discuss how the collected acceleration
data is preprocessed and analyzed.

A. Experiment design

In the experiment we used 60 volunteers, 43 of which
were male and 17 were female. The average age of the
male volunteers was 32.9 year with a standard deviation
of 11.04 year. For the female volunteers the average age
was 35.1 year with a standard deviation of 15.24 year. All
volunteers participated in 2 sessions. In both of these sessions
the volunteers provided 6 gait samples. This makes a total of
2 ·6 = 12 gait samples per user and 60 ·12 = 720 gait samples
in total.

The environment where the experiment took place was a
large room, about 20 meters long and the f oor was f at. The
participants were asked to walk in a normal way, at their
own normal speed, in a straight line from one end of the
room to the other. Each such walk would provide one gait
sample, hence to collect the 6 gait samples for each of the
sessions, the volunteers had to walk up and down the room 6
times (3 times up and 3 times down). Before the volunteers
started walking, the MR100 sensor (see Figure 1) containing
the 3 perpendicular accelerometers was attached to the left
hip of the volunteers. The MR100 sensor was attached every
time in a more or less f xed position, with obviously some
small deviations for every time it was attached. We made
sure that during both sessions the volunteers wore the same
(type of) shoe, such that the inf uence on the gait due to the
shoe ware would be minimal. The accelerometer data was
collected inside the MR100 sensor and was downloaded after
each session to a computer. The data was stored in f le in such
a way that the volunteer and the session could be identif ed
from the f lename.

After the experiment we had 120 f les, where for each
volunteer we had 2 f les, and each f le contained the data
of 1 session. Each f le was split into 6 new f les, where
each new f le contained one of the gait samples related to



walking the full distance of the room once, hence each new f le
corresponded to exactly one gait sample. The f lename of the
resulting 6·120 = 720 f les identif ed the volunteer, the session
and the gait sample within that session. The information
contained in each of these 720 f les are 4 columns with data.
The f rst column was a timestamp, and the second till the forth
column represented the x-, y- and z-acceleration measured
at the particular timestamp. The MR100 sensor collected the
accelerometer values at approximately (but not exactly) 100
data points per second. In particular, the difference between
two timestamps was not always the same and not always equal
to 10 milliseconds.

B. Data preprocessing and analysis

For the data processing we followed to a large extent the
Average Cycle Method (ACM) as it was described in [6] with
variations described in [5] and in [18]. We then also included
our own addition of the PCA. As described in Section III is the
ACM a method in which various algorithms can be plugged
in, for example the f ltering of the data to reduce the noise can
be done using the Moving Average (MA) f lter, as was done in
[6] or the Weighted Moving Average (WMA) f lter as is done
in [5]. The major differences between [18], [6], and [5] lies
in the cycle detection. The cycle detection in [6] is relatively
simple but still functions very well. This was the basis for
the cycle detection in [5] which was rather elaborative but
performed also much better. On the dataset we are using, the
cycle detection method from Gafurov [6] results in an EER of
25%, using Euclidean metric as a distance metric. Under the
same circumstances, only replacing Gafurov’s cycle detection
method by the one from Holien [5], the EER drops down to
8.4%. Actually Holien’s best result on this dataset is when
using Dynamic Time Warping (DTW) as a distance metric,
giving an EER of 5.9%. Derawi’s cycle detection method is
again derived from Holien’s, but simplif ed and actually the
best result is an EER of 5.7% with the Cyclic Rotation Method
(CRM) as the distance metric [18].

In our analysis we actually used all three above mentioned
cycle detection methods. We will show that when combining
the ACM with PCA all three methods perform more or less
the same. This indicates that using the simple method from
[6] may already be good enough when combining PCA with
ACM. In the remaining description we will assume that a
general cycle detection method is used because the particular
used method is not important for the description. As a f rst
analysis step the gait data is preprocessed and each of the
720 gait samples is split into separate cycles, after which each
of the cycles is then normalized to 100 values using linear
interpolation. This corresponds to steps (1) and (2) of the ACM
(see Section III).

As mentioned in Section IV, we need to split the dataset
into three parts. We used 2 gait samples per person for training
the PCA, 1 to create the template and the remaining 9 to test
the performance. In order to calculate the eigensteps we use 2
gait samples per participant and from each of these 60*2 gait
samples all the cycles are used. The total number Ncycles of

Gafurov [6] Holien [5] Derawi [18]

Ncycles 1275 1566 1498
Nλ 17 16 17

TABLE I
NUMBER OF DETECTED CYCLES WHEN APPLYING VARIOUS CYCLE

DETECTION METHODS.

cycles in all of the gait samples is highly dependent on the used
cycle detection method and these values are given in Table I.
As was to be expected, the most complicated cycle detection
method by Holien [5] detected the most cycles within this set
of 120 gait samples. The less complicated method by Gafurov
et al. [6] detected the least number of cycles.

Each of the cycles was normalized using linear interpolation
to contain exactly 100 values. We denote these cycles by ~ci for
i = 1, . . . , Ncycles and ~caverage denotes the average of these
cycles. PCA is applied to the vectors ~c′i = ~ci − ~caverage, and
the resulting eigensteps are denoted by ~pi with corresponding
eigenvalues λi, where i = 1, . . . , 100.

We can now express cycles ~s and ~t in terms of these
eigensteps, i.e.:

~s = ~caverage + α1 · ~p1 + α2 · ~p2 + · · ·+ α100 · ~p100,

and
~t = ~caverage + β1 · ~p1 + β2 · ~p2 + · · ·+ β100 · ~p100.

The distance between ~s and ~t can now simply be expressed
in terms of Manhattan or Euclidean distance, either weighted
with the eigenvalues or not. For example, the Weighted Eu-
clidean (WE) and Euclidean (E) distance between ~s and ~t can
be expressed as:

dWE(~s,~t) =

100∑

i=1

λi · (αi − βi)
2; (1)

dE(~s,~t) =
100∑

i=1

(αi − βi)
2. (2)

Similarly can we express the Weighted Manhattan (WM) and
Manhattan (M) distance between these input values as:

dWM (~s,~t) =

100∑

i=1

λi · |αi − βi|; (3)

dM (~s,~t) =
100∑

i=1

|αi − βi|. (4)

As the values of λi rapidly become smaller and smaller, we
do not need the full summation from i = 1 to 100, but we can
stop earlier. The eigenvalues are normalized, by dividing each
original eigenvalue by the sum of all original eigenvalues. In
this way we know that the sum of the normalized eigenvalues
equals 1. Now the number Nλ of indices that is used in the
summations (1)-(4) is determined as the minimal value such
that

Nλ∑

i=1

λi ≥ 0.95,



Gafurov [6] Holien [5] Derawi [18]

M 1.6808 1.6682 1.6777
WM 1.6808 1.6667 1.6620

E 1.6808 1.6682 1.6667
WE 1.6808 1.6667 1.6400

TABLE II
EER WHEN COMBINING PCA AND ACM ACCORDING TO VARIOUS CYCLE

DETECTION METHODS.

where λi represents the normalized eigenvalues. Obviously the
values of Nλ depend again on the used cycle detection method
and are given in Table I.

For each of the remaining 10 gait samples per participant
we calculated the average cycles per gait sample, exactly like
in the ACM. We used the mean to create the average cycle
from the separate cycles in a gait sample. From these 10
average cycles per person, 1 was used as a template, while
the other 9 were used for testing. All of the average cycles
were expressed in their eigenstep coordinates. In this way we
have 60 templates and 540 test vectors. When comparing all
templates against all test vectors, we found 60 · 9 = 540
genuine attempts and 60 · 59 · 9 = 31.860 impostor attempts.

The four distance metrics in equations (1)-(4) were applied,
where the summation was from 1 to Nλ instead of 1 to 100.
Per applied distance metric we found 540 genuine and 31.860
impostor scores, and from these values we determine the False
Match Rates (FMR) and False Non-Match Rates (FNMR).
From the FMR and FNMR, the Equal Error Rate (EER) was
determined.

VI. RESULTS

In this section we will present the results of our research.
As described in Section V-B we used three different cycle
detection methods. Each of the 3 cycle detection methods is
combined with the distance metrics described in equations (1)-
(4). In Table II all the resulting EER values are displayed. In
this table, the columns represent the 3 used cycle detection
methods, while the rows represent the 4 used distance metrics:
Manhattan (M), Weighted Manhattan (WM), Euclidean (E)
and Weighted Euclidean (WE).

For comparison reasons we represent in Table III the best
known EER results on the used database given the analysis
methods from [5], [6], and [18]. We did apply 3 different
distance metrics in this case: Euclidean (E), Dynamic Time
Warping (DTW) and Cyclic Rotation Method (CRM). As the
CRM distance metric is new from [18], we do not have results
on how well it performs when the cycle detection method from
[6] or from [5] is used.

From Table II we can see that the performances for each
of the cycle detection methods are more or less all around
1.6-1.7% EER. This means that for the PCA analysis it is not
that important what cycle detection method is used. We also
clearly see from the results in Tables II and III that our method
by far outperformes the known methods. We see that the best
performance is by Derawi et.al., giving a 5.7% EER, using an
advanced distance metric called Cyclic Rotation Method [18].

Gafurov [6] Holien [5] Derawi [18]

E 25 8.4 8.2
DTW 11.75 5.9 7.4
CRM - - 5.7

TABLE III
EER OF APPLYING VARIOUS DISTANCE METRICS TO THE DATASET SPLIT

ACCORDING TO VARIOUS CYCLE DETECTION METHODS.

We get down to a 1.64% EER, which is almost 3.5 times as
low, using the ’simple’ weighted Euclidean distance metric.
The best results for the Euclidean distance with the previous
methods was 8.2% when using the cycle detection method by
Derawi et al. [18], which is almost 5 times as high as the best
result we obtain with the Euclidean distance.

VII. CONCLUSIONS

From face recognition we already know that PCA is a
technique that can give good recognition rates. PCA has also
been applied to Machine Vision based gait recognition before,
but never to Wearable Sensor based gait recognition. Using
the relatively simple cycle detection from [6] we already got
an EER of 1.68%. This is an improvement by approximately
a factor of 3.5 compared to the best known results on this
database and an improvement of a factor 15 for comparable
preprocessing. Possibly we will even get further improvements
in performance by having a closer study of different distance
metrics.

The merit of these results is not only the improvement of
the gait recognition performance, but this can also be seen as
a f rst step to a combination of recognizing not only that a
person is walking (as opposed to for example sitting, running,
cycling, etc.) but also who the person is (either identifying or
authenticating that person). Particularly the recognition of the
walking activity is very important in a real implementation of
a gait recognition system. Such a system should not give false
alarms if the owner is not walking. In particular, the system
(e.g. implemented in a mobile phone) f rst needs to recognize
the particular activity (walking in our case) and can then in
the second stage recognize if the walking is indeed from the
expected user. This will be future research.
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