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ABSTRACT

We report on subjective experiments comparing example-based regularization, total variation regularization,
and the joint use of both regularizers. We focus on the noisy deblurring problem, which generalizes image
superresolution and denoising. Controlled subjective experiments suggest that joint example-based regularization
and total variation regularization can provide subjective gains over total regularization alone, particularly when
the example images contain similar structural elements as the test image. We also investigate whether the
regularization parameters can be trained by cross-validation, and we compare the reconstructions using cross-
validation judgments made by humans or by fully automatic image quality metrics. Experiments showed that of
five image quality metrics tested, the structural similarity index (SSIM) correlates best with human judgement
of image quality, and can be profitably used to cross-validate regularization parameters. However, there is a
significant quality gap between images restored using human or automatic parameter cross-validation.
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1. INTRODUCTION

Given the wide availability of high-quality images, many researchers have studied how one can use example
images as training examples to solve image estimation problems. However, even with advanced algorithms,
these example-based (EB) approaches can produce objectionable artifacts, as illustrated in Fig. 1, and image
quality can be heavily dependent on the choice of parameters. The objectionability of such artifacts is often not
accurately captured by simple image quality metrics such as MSE or PSNR. We questioned whether EB methods
can result in more visually-appealing reconstructions than the standard approach of using total variation (TV)
regularization, but were unable to find comparative experiments in the literature.

In this paper, we address this question with subjective experiments that compare EB, TV, and a joint EB-TV
regularizer for the task of deblurring. All three approaches require choosing how much regularization to use. We
set these regularization parameters by finding the parameter values that maximize quality on a set of training
images. This enables a second experiment: we compare human judgement to five full-reference image quality
metrics (IQMs) to cross-validate the regularization parameters.

Our results show that the combined regularization can perform better than either regularizer alone, and that
example-based regularization is most effective on images with strong structure and when the example images
are similar. In subjective human experiments, we found that parameters can be effectively cross-validated by
human judges, but are significantly less optimal when chosen by an IQM; we also found that SSIM correlated
best with human judgements of deblurred image quality out of the five IQMs tested for the proposed algorithm.
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noisy blurred image EB deblurring TV deblurring EB-TV deblurring
Figure 1. Far left: A noisy blurred image. Second from left: an EB reconstruction that exhibits crisp edges but objection-
able artifacts. Second from right: a total-variation (TV) reconstruction. Far right: a joint example-based TV (EB-TV)
reconstruction (far left). Regularization parameters for the TV and EB-TV images were optimized over a finite set of
parameter choices by maximizing the average score of three independent observers, as described in Section 5.1.

2. EXAMPLE-BASED IMAGE PROCESSING

One of the first image processing solutions to explicitly use example images was for the problem of inverse
halftoning:1 halftoned blocks of an image were mapped to continuous-tone values based on training example
pairs of continuous blocks and their halftones. Another early direct use of example images was in restoring
lossy-compressed images.2

Recently, a number of EB methods have focused on the task of single-frame superresolution. Freeman et
al. proposed a method that estimates missing high-frequency components of a low-resolution (LR) image by
comparing small blocks in the image to a training corpus of high-resolution images. The high-res images are
anti-aliased and downsampled, and from them a nearest-neighbor image block is located; the high-frequency
edges corresponding to the low-resolution nearest-neighbor match are added to the low-resolution image to be
super-resolved.3 Note that estimating high-frequencies from image blocks with similar mid-frequencies can be
effective because edges induce correlation of adjacent frequency bins.4,5 Since the procedure is performed on
a per-block basis, a boundary condition between adjacent blocks is used to regularize the nearest neighbor
selection and promote continuity across block boundaries in the reconstructed image. A simple and effective
implementation of such a boundary condition is to find the nearest-neighbor image patches in raster-scan order,
and overlap each new patch with previously reconstructed image pixels.3

Freeman et al. noted that this approach of learning from nearest-neighbor patches can overfit to noise in
the test image and create objectionable artifacts in the reconstructed image.3 When we applied the strict
analogue of this EB approach to the deblurring problem, we saw similar objectionable reconstruction artifacts,6

and the risk of such overfitting artifacts generally increased if we used a larger number of example images. To
reduce artifacts, we have previously proposed an optimal combination of the nearest-neighbor reconstruction with
Wiener deblurring by treating them as multiple observations in a linear minimum mean squared error (LMMSE)
framework.6 However, that approach requires impractical knowledge about power spectra, assumes inaccurately
that the image statistics are stationary, and focuses on maximizing PSNR rather than visual image quality.

A number of improvements to the basic idea of learning from nearest-neighbor patches have been proposed
in the superresolution community. Chang et al. presented a method which requires fewer training samples by
posing the nearest-neighbor problem similar to manifold learning.7 Jiji and Chaudhury proposed a method in
which high-resolution detail was learned from a database using contourlets.8 Jiji et al. evaluated various local
and global single-frame superresolution reconstruction techniques,9 and proposed a global PCA-based technique
to remove blur, noise, and aliasing artifacts. Ma et al. have shown that example-based superresolution can
be effective for error concealment in scalable video coding where previously decoded frames are used to create
example images that can be highly similar to the image to be reconstructed.10

In this paper we explicitly use examples to regularize the deblurring estimate (as opposed to model-based
regularizations that use examples to learn the model parameters, such as the work of Zhu and Mumford11).
Explicit example-based regularization was perhaps first proposed by Baker and Kanade in 2002, who regularized
the gradients of their superresolution solution to match the gradient of the corresponding nearest-neighbor from
a set of example images;12 they termed this image hallucination. Datsenko and Elad proposed a regularizer
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based on an (image-dependent) example-based prior for a global maximum a posterior objective, and showed
good results superresolving scanned documents containing text, equations and graphs,13 and face images.14

3. DEBLURRING WITH EXAMPLE-BASED AND TOTAL VARIATION
REGULARIZERS

Given a column-scanned M × N noisy blurred image z ∈ R
MN and a known blur matrix H ∈ R

MN×MN , a
TV-regularized least-squares estimate of the original image is the x∗ ∈ R

MN that solves:

min
x
‖Hx− z‖22 + λTV‖x‖TV, (1)

where λTV ∈ R is a regularization parameter that must be specified, and ‖ · ‖TV denotes total variation:

‖x‖TV
�
=

∑
j,k

√
|(∇vx)j,k|2 + |(∇hx)j,k|2,

where the subscripts v and h denote the vertical and horizontal gradients respectively, and the subscript (j, k)
indexes the ((k − 1)N + j)th entry of the vector.

Similarly, an EB-regularized least-squares estimate of the original image is the x∗ ∈ R
MN that solves:

min
x
‖Hx− z‖22 + λEB ‖x− x̂EB‖22 (2)

where x̂EB is an example-based reconstruction (our implementation details given below).

EB and TV regularization are different approaches to enhancing image quality, and using them together
might be useful. To test this hypothesis as well as compare EB and TV regularization, we defined the following
joint EB-TV objective function for deblurring, which has the following features:

• it uses an auxilliary image v ∈ R
MN for computational efficiency, following the work of Chambolle;15

• it has three regularization parameters: λAUX, λEB, λTV corresponding to weights on the auxiliary term, the
EB regularizer, and the TV regularizer respectively;

• and the example-based regularization term is defined as ‖x −∑
i Tiαi‖2, where the columns of each Ti ∈

R
MN×k contain the k “most similar” m ×m training blocks to the ith block of the input image z (with

entries outside the block set to zero), the ith training blocks are weighted by the corresponding vector αi,
and the αi are jointly solved for to minimize the error between x and the nearest neighbor reconstruction∑

i Tiαi. This example-based regularizer is based on the work of Datsenko and Elad13,14 but differs in that
we regularize towards a linear combination of neighborhood blocks rather than summing regularizations to
each block, which showed a slight performance advantage in preliminary experiments.

Specifically, the joint EB-TV objective function we used solves for an image estimate x ∈ R
MN , an auxiliary

image v ∈ R
MN , and weights on example-blocks {αi ∈ R

k}Bi=1 such that:

min
x,v,{αi}B

i=1

‖Hv − z‖22 + λAUX‖x− v‖22 + λEB

∥∥∥∥∥x−
∑
i

Tiαi

∥∥∥∥∥
2

2

+ λTV‖x‖TV. (3)

This paper’s subjective experiments use (3) with different values of the regularization parameters:

• λEB = 0 corresponds to TV-only regularization as implemented by Bresson and Chan;16

• λTV = 0 corresponds to EB-only regularization, analogous to the work of Freeman et al.3 and Elad and
Datsenko;14
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• λEB > 0 and λTV > 0 then (3) is a joint EB-TV regularization. A key aspect in the joint case is
the interaction of the {αi} in the example-based regularization with the other terms caused by jointly
minimizing over x, v, and {αi}. Usually in example-based reconstruction, one or more neighbors that are
close to z are solved for and combined in some way. Here, the neighbor blocks {Ti} are fixed based on
closeness to z, but the combination weights {αi} are solved for jointly with x and v, and the example-based
reconstruction

∑
i Tiαi is solved to match the reconstruction x. This interaction tempers the propensity of

the example-based reconstruction to add artifacts, because the total variation regularization will cause the
reconstruction x to be smoother and have cleaner edges, and thus Ti that are smoother and have cleaner
edges will be rewarded with stronger αi’s.

We provide our complete algorithm implementation details in the appendix.

4. EXPERIMENTAL SET-UP

In this section, we describe the details of the experimental set-up. In the next section, we describe the actual
experiments and results.

4.1 Image Distortion

For all experiments, each sharp image was blurred by convolving it with a Gaussian blur kernel with a 2.25
pixel bandwidth and adding Gaussian white noise such that the PSNR with respect to the original sharp image
was 34 dB PSNR. For the reconstructions where λEB > 0, example image blocks were extracted from all of the
the images in the training set if reconstructing a test image, or if a training image was being reconstructed (to
cross-validate parameters), then the example image blocks were extracted from only those images in the training
set that were not being reconstructed (that is, at no point did we deblur an image using examples from the same
image).

For all experiments, each color plane of the original 24 bit RGB color image was independently subjected
to blur and noise. Wen et al. have investigated color-plane-dependent TV deblurring,17 but to make for a more
valid comparison with the IQMs, we converted the corrupted RGB image to the YCbCr color space, and only
deblur the Y plane. Because the Y plane roughly corresponds to human perception of luminance and luminance
edges are most noticeable,18 this is a good approximation to full deblurring. We chose the YCbCr color space
over a more perceptually accurate color space such as CIELAB because the Y channel is a linear function of the
original RGB channels, and thus the blur affecting Y is still H. After deblurring the Y channel, we converted
the YCbCr image back to an RGB image, and then all visual comparisons were performed with RGB images.
However, the IQM’s only used the Y color plane as specified below.

4.2 Training and Test Images

The training images and test images used are shown in Fig. 2 and are from the publicly available Kodak
benchmark image dataset. We selected the test images randomly, and selected the training images to fall in one
of two coarse image categories: structure or human.

In preliminary experiments we studied the effect of the number of training images on EB. While it may seem
that the larger the set of training images the better for EB regularization, we found in preliminary experiments
that this was not true, as having too many choices makes it possible to find very close nearest neighbor examples,
but does not necessarily increase the chance that those nearest neighbor examples have the same high-frequency
content as the block to be reconstructed. This overfitting in the nearest neighbor selection led to objectionable
artifacts. The more degraded the test image, the more risk there is of overfitting. In addition, we found that
using a fewer number of training images results in a greater diversity in the selected neighbor examples for a
given block, and this had benefits in the EB reconstruction.

4.3 Subjects and Environment

All nineteen subjects had normal color vision, normal or corrected-to normal vision. All experiments took place
in a room with controlled D50 lighting, using a calibrated NEC MultiSync LCD 2490WUXi monitor in sRGB
mode, and with the observer sitting at roughly 18 inches from the monitor.
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test images

house boat face

training set: structure

training set: human

Figure 2. Test images house, boat and face (top), structure training set (middle), and human training set (bottom); all
images are 768× 512 pixels.

4.4 Parameter Choices

The set of possible parameter values was λAUX ∈ {0.1, 0.5, 1}, λEB ∈ {0, 0.001, 0.1, 1} and λTV ∈ {0, 0.001, 0.1},
for a total of 36 different combinations of parameter values. These values were chosen in a preliminary experiment
such that the parameters were far enough apart to produce perceptually different reconstructions.

5. SUBJECTIVE EXPERIMENTS

We conducted controlled subjective experiments to compare EB, TV, and EB-TV regularizers on the deblurring
task. In addition, we investigated how well the objective function parameters for each method can be optimized
by cross-validation on two different categories of training images. Lastly, we compared how well different IQMs
could choose optimal parameters from training images compared to humans.

5.1 Experiment Set One: Parameter Training Experiments

The first round of experiments was parameter training. In this experiment, we tested our hypothesis that a good
set of parameter choices for a particular image will be the same as for similar images, so that one can learn good
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parameter choices using similar training images. Here, by similar, we mean having similar spatial features and
edge-content.

For each of the five training images shown in Fig. 2, the 36 different-parameter-setting reconstructions were
ordered randomly, and each of three subjects blindly and independently scored each of the 5 × 36 reconstruc-
tions according to the following categories: very good (score=5), good (score=4), fair (score=3), unsatisfactory
(score=2) and objectionable (score=1). Scoring was averaged across the three subjects to yield the “human
score.” Although the three subjects’ scores showed high correlation, the subjects differed in their sensitivity to
blur, to overall noise, and to objectionable artifacts (of the type shown in Fig. 1, second from right). In addition,
for each of the three test images shown in Fig. 2, the 36 different-parameter-setting reconstructions were made
for each of the two training image sets (structure and human), and the 3× 36× 2 resulting reconstructions were
scored by the same three subjects and the scores averaged.

Fig. 3 shows the results. Each marker corresponds to one of the 36 parameter settings (zoom in to see that
some markers overlap). The x-axis location of a marker denotes the mean score of reconstructed training images
with that parameter setting. The y-axis location of a marker denotes the score on a particular test image.

If all of the markers lay on the diagonal, it would show that one could perfectly choose regularization
parameters for a test image by using the optimal regularization parameters for the training images. For example,
the top-left plot shows that the parameter scores for the house test image correlate well with the parameter
scores for the structure training images, but the top-right plot shows that the parameter scores for the face

test image correlate poorly with the parameter scores for the structure training images. Reviewing all of the
plots, we conclude that the more similar the image structure, the easier it is to choose regularization parameters
on training images that will also work well on test images.

As a separate issue, Fig. 3 shows what parameter choices are optimal for each test image. The red squares
correspond to parameter choices where only λEB = 0 (TV regularization only), the green diamonds correspond
to parameter choices where λTV = 0 (EB regularization only), and the blue triangles mark parameter choices
that use both EB regularization and TV regularization. For example, the parameter set that produced the
highest-quality boat reconstruction given the structure images did not use EB regularization, but the highest-
quality face reconstruction used both EB and TV regularization. While many of the top scores use both EB
and TV regularization, we do not think the results show strong evidence that both types of regularization are
needed to achieve high-quality reconstruction. However, in practice it may be easier and more robust to train
the parameters for joint regularization - we test this hypothesis in the following subsection.

5.2 Cross-validating Deblurring Parameters Using IQMs

In practice it would be desirable to automatically cross-validate the regularization parameters on training images,
removing the need for human subjects. To that end we consider whether a full-reference IQM can be used to
assess the best parameter choices on the training images, since a high-quality training image is available to
compare to the 36 reconstructions with different parameter choices. We evaluated five candidate IQMs: PSNR,
the 95% highest error as measured by ΔE CIELAB, the 95% highest error as measured by ΔE of s-CIELAB,19

structural similarity index (SSIM),20 and visual information (VIF).21 For each IQM, the Y plane of the true
image is compared to the Y plane of the reconstructed image.

The scatterplot in Fig. 4 shows how IQM scores correlate with human scores when averaged over each training
set. We hoped to see a strong positive correlation for PSNR, SSIM and VIF 95% ΔE and a strong negative
correlation for 95% s-ΔE (because low ΔE scores are desirable).

To determine which IQM performs closest to the human observers, we consider two metrics, shown in the
tables in Fig. 4. First, the correlation between each IQM and the human score gives a global indication of how
well the IQM mimics human performance. However, since the goal is to select the regularization parameters
that achieve the best IQM score, we are especially interested in whether the highest-ranking IQM parameters
correspond to high-ranking human scores. Thus for a second metric, we compute the average human score of the
top five IQM-selected parameters. For both metrics and for both the structure and human training sets, SSIM
performs better than the other IQMs.
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Figure 3. Correlation of Parameter-settings Between Test and Training: Each marker in each plot corresponds to a
parameter-setting, and its x-axis position corresponds to its average human score on the training set, while its y-axis
position corresponds to its average human score on a particular test image. The test images house (left column), boat
(middle column) and face (right column) were reconstructed using the structure (top row) and human (bottom row)
training sets. Scores for the house and boat exhibit better correlation to the structure training set, while face exhibits
better correlation to the human training set. The marks denote images for which λEB = λTV = 0 (•), λEB = 0, λTV > 0
(�), λEB > 0, λTV = 0 (�), and λEB, λTV > 0 (�).

5.3 Experiment Set Two: Comparisons With Trained Parameters

In our second round of experiments, we performed larger-scale subjective comparisons of reconstructions using
the parameter values chosen by cross-validation. As given in Table 1, eight parameter settings were compared,
covering all combinations of three binary factors: (i) which of the two training sets was used, (ii) whether or
not EB regularization was used, and (iii) whether the parameters were cross-validated on the training set using
human judgement or SSIM as detailed in Sec. 5.1.

Subjective comparisons for the second round of experiments were made by a set of sixteen subjects that did
not include the subjects from the first experiment set. Subjects compared the eight different parameter settings
on each of the three test images for a total of 24 images evaluated by each subject. The forced-choice pair
comparison protocol was used.22–24 In the beginning of the experiment, the observers were shown the original
(non-blurred) images as a reference, while during the comparisons only each pair of reconstructed images to be
compared were shown at any one time. The observers were informed that the images they would be comparing
were high-quality images that had been subjected to blur and noise and then processed with different deblurring
methods, and they were instructed to select the reconstruction in each pair that they preferred. All pairs were
presented twice with the two reconstructions on different sides of the monitor to avoid possible systematic errors
in which people prefer one side of the monitor to the other when reconstructions seem indistinguishable. The
observers’ responses were analyzed according to Case V of Thurstone’s Law of Comparative Judgement in order
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Figure 4. Average human score versus IQM score over training set structure (top) and human (bottom). The marks
denote images for which λEB = λTV = 0 (•), λEB = 0, λTV > 0 (�), λEB > 0, λTV = 0 (�), and λEB, λTV > 0 (�). The
table lists the correlation coefficient (negative correlation for the ΔE metrics) and the average human score of the top 5
IQM parameters.
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Table 1. Regularization parameters for the proposed algorithm and TV chosen by cross-validation on each training set by
a human-in-the-loop and by SSIM.

λAUX λEB λTV

trained on structure

No EB Reg. (human) 1.0 — 0.001
No EB Reg. (SSIM) 1.0 — 0
With EB Reg. (human) 0.5 0.001 0.001
With EB Reg. (SSIM) 0.5 0.1 0

trained on human

No EB Reg. (human) 1.0 — 0.001
No EB Reg. (SSIM) 0.5 — 0.001
With EB Reg. (human) 0.5 0.1 0.001
With EB Reg. (SSIM) 1.0 0.1 0

to obtain Z-scores.22–24

Results for this experiment are given in Fig. 5. The left column shows results using the structure training
images, and the right column shows results using the human training images. We focus first on the parameters
chosen by cross-validation using human judgement. For human-judgement parameters and training on structure

images, the joint EB-TV deblurring is a statistically significant preference on the house and boat test images,
which are psychovisually more similar to the structure training images than the face image. On the face

image, there was not a statistically significant difference with the addition of EB regularization when trained
with the structure images. Further, when trained on human training images, the joint EB-TV regularization is
preferred to TV regularization only, but the differences are not statistically significant for any of the test images.

Next, consider the results using SSIM cross-validated parameters. Fig. 5 shows that SSIM cross-validated
parameters almost always led to worse results than using human cross-validated parameters, and sometimes
dramatically worse. When using SSIM cross-validated parameters, the joint EB-TV regularization is statistically
significantly better than TV-only for the cases of face and house trained with structure, and those are the
only statistically significant differences.

When subjects were asked afterward their evaluation to comment on what was important to them in mak-
ing their preference judgements, three main attributes were mentioned: sharpness, presence of artifacts (de-
scribed as jagged edges/ghosting/ringing), and noise (described as graininess/dottedness/pockiness). Typically
the observers reported making tradeoffs between these attributes. Notably, according to these post-experiment
interviews, there was a large variation in how the observers ranked these three different attributes.
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Figure 5. Results comparing total variation reconstructions with cross-validated parameters and no example-based regu-
larization, or with additional example-based regularization.
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6. CONCLUSIONS

In this paper we presented the results of subjective experiments comparing the value of example-based regular-
ization and total-variation regularization as well as their combined joint regularization effect. In addition, we
compared how well the regularization parameters for both methods can be learned by cross-validation, either
with human judgement or an IQM.

Our experiments suggest that good deblurring parameters are learnable by cross-validation with human
scores, but more so if the training and test data are psychovisually well-matched, and even more so for example-
based regularization if the images have structure. Of five IQM’s, we found that SSIM correlated best with
human judgements of quality of the reconstructions for all images. Overall, the parameters chosen by SSIM
yielded much lower quality reconstructions than the parameters chosen by humans. Comparing the use of EB
regularization to no EB regularization, we found that using EB regularization was significantly better than using
TV regularization only when the test and training images were psychovisually matched, and particularly for
more structured images. The effect was stronger using parameters trained with human judgement rather than
by SSIM.

We found the results depended heavily on the training set. We believe there are two main reasons the training
set matters. First, different training sets may have different quantities and qualities of structure. Second, as
shown in Fig. 3, the appropriate set of parameters for different images may differ; we hypothesize that this is
primarily because humans judge image quality differently depending on the image content, for example noise
appears to be judged more harshly in face images, and that affects the choice of regularization parameters. We
did not try to quantify how the training set should match the test set, which is an important open question for
future research.

Although we focused on image deblurring with a known point spread function in this paper, we believe that
the knowledge gained from these experiments will be useful for many image processing problems where total
variation has already been shown to be effective.

APPENDIX A. APPENDIX: FULL ALGORITHM IMPLEMENTATION DETAILS

In the following subsections, we provide full details on how we solved (3).

A.1 Pre-Processing the Training Images

To generate {Ti}Bi=1, we pre-process training images as prescribed in Freeman et al.:25 edges are extracted using
a high-pass filter, and the images are (locally) contrast normalized. Training image blocks are generated by
extracting every m ×m block from the corpus of training images; we use m = 9. For each m ×m block of the
test image in raster-order, we select the k = 5 (rather than k = 1 as done in3,25) blocks that, when blurred by H,
are the k nearest neighbors to the test block in terms of Euclidean distance. To promote continuity across block
boundaries, we overlap subsequent blocks by one row (or column) of pixels, and use the same distance calculation
between blocks as Freeman et al.:25 the distance between blocks is the Euclidean distance between the blurred
blocks plus a scalar (α = 0.1) times the Euclidean distance between the current reconstruction estimate for the
overlapped pixels and the unblurred training blocks. Each of the k nearest neighbor training blocks inherits the
local contrast and low-frequency information of the test block; this is done so that the low-frequency content of
x is not regularized towards zero for the λEB term in (3).

Searching for the nearest-neighbors can be expedited by creating a kd-tree, however this requires extract-
ing, processing and storing every overlapping block from each training image, which leads to redundancy in a
straightforward implementation. Instead, we found it quite efficient to exploit the fact that the cross-term of
‖a − bi‖2 = ‖a‖2 − 2〈a, bi〉 + ‖bi‖2 can be computed by cross-correlation of image block a with {bi}Bi=1 quickly
using FFTs, while the other two terms can be computed once prior to the search.
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A.2 Minimizing the Deblurring Objectives

We describe how we minimize the joint EB-TV objective (3), the EB-only and TV-only objectives are special
cases. Since (3) is jointly convex in its variables, its minima can be found by alternating minimizations over each
variable.26 Specifically, we first optimize over {αi}Bi=1 for fixed x and v, then optimize over x and v for fixed
{αi}Bi=1. The latter optimization over x and v is accomplished with an inner alternating minimizations loop.
That is, (3) is implemented by solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step 1: min
{αi}B

i=1

‖x−
∑
i

Tiαi‖22⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Step 2a: min
x

λAUX‖x− v‖22 + λEB‖x−
∑
i

Tiαi‖22
+λTV‖x‖TV

Step 2b: min
v
‖Hv − z‖22 + λAUX‖x− v‖22,

(4)

where each bracket denotes a loop of alternating minimizations. We next detail how we solve the subproblems
that arise in each of the steps.

Since the blocks {Ti} overlap, optimizing Step 1 requires that all {αi}Bi=1 be found jointly using, however, for
the related example-based superresolution problem, Freeman et al. found that a raster-order method performed
well compared to a joint solution.3 With that motivation, we similarly solve Step 1 in (4) by solving for each
block in raster scan order. Then solving for each αi is equivalent to solving a least-squares linear regression
problem, and thus each αi has a closed-form solution αi = (TT

i Ti)
−1TT

i x (solved efficiently by exploiting the
sparsity of Ti; the only nonzero entries of Ti correspond to the support of the ith block).

We derived a solution for Steps 2a and 2b in (4) by extending recent work on efficient total variation deblurring.

Chambolle showed that the solution to min
x

1

2
‖x− g‖2 + γ‖x‖TV can be found using a dual formulation for total

variation.15 In particular, note that ‖x‖TV = |∇x| = max
‖p‖≤1

〈p,∇x〉. By substituting this dual formulation for

‖x‖TV , applying the minimax theorem to swap max and min, then minimizing using the Euler-Lagrange method
with respect to x, Chambolle shows that

x = g − γ(∇ · p), (5)

which gives a relationship between the image x, the dual variable p and the target image g. From this, Chambolle
derived a semi-implicit gradient descent method.15 Bresson and Chan16 and Wen et al.17 extended this approach
for total-variation image deblurring of full-color images; each work employed an alternating-minimizations al-
gorithm. Wang et al. took a slightly different approach to obtain computational efficiency for total variation
deblurring,27 which we believe could also be generalized to implement the proposed objective function.

Analogously, let f =
∑

i Tiαi, substitute ‖x‖TV = max‖p‖≤1〈p,∇x〉, and minimize Step 2a in (4) with respect
to x using the Euler-Lagrange technique to yield

x =
λAUXv + λEBf

λAUX + λEB
− λTV

2(λAUX + λEB)
(∇ · p). (6)

This can be written as Chambolle’s solution given in (5) with g = λAUXv+λEBf
λAUX+λEB

(a convex combination of the

auxillary image v and the example-based image f) and γ = λTV

2(λAUX+λEB) , which enables us to implement Steps

2a and 2b of (4) using the alternating minimizations approach of Bresson and Chan:16{
x = λAUXv+λEBf

λAUX+λEB
− λTV

2(λAUX+λEB) (∇ · p)
v =

(
(HTH + λAUXI)

)−1 (
AT z + λAUXx

)
.

(7)

Note that v = (HTH+λAUXI)
−1(AT z+λAUXx) can be solved efficiently by approximating H as block circulant

(corresponding to 2D circular convolution); it is then diagonalizable using the 2D FFT, and we need only compute
the inverse of a diagonal matrix.
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A.3 Pixel-wise EB Regularization

In preliminary experiments, we observed that the example-based term in (3) can induce artifacts in the recon-
struction especially when λEB is large. The severity of the artifacts depends on how well the training blocks
match image blocks in the image z. To control this effect, we form a pixel-specific regularization parameter
λ̃EB,i ∈ [0, λEB] for each pixel i, based on the EB image residual z −Hf , where f =

∑
i Tiαi. For pixels where

‖z −Hf‖ is large, we wish to decrease the effect of the example-based regularization. To this end, we modify
(7) so that the update on x is on a per-pixel basis:

xi =
λAUXvi + λ̃EB,ifi

λAUX + λ̃EB,i

− λTV

2(λAUX + λ̃EB,i)
(∇ · p)i,

where the subscript i denotes the ith element of the vector. In our experiments, we form λ̃EB by starting with
the residual image r = z − Hf , using each pixel’s residual to define a pixel weight qi = e−50r2i , then spatially
smoothing the weight-image q by convolving it with a 2 × 2 spatial filter s whose taps are each 1/4, resulting
in the pixel-wise regularization parameter λ̃EB,i = λEB(q ∗∗ s)i, where ∗∗ denotes spatial (two-dimensional)
convolution. We found that the performance of this pixel-wise regularizer was robust to the exact specification
of the q and s.
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