
G j ø v i k  U n i v e r s i t y  C o l l e g e   

HiGIA  
Gjøvik University College Institutional Archive 

Nussbaum, P. S., Hardeberg, J. Y. & Albregtsen, F. (2011). Regression based charac-
 terization of color measurement instruments in printing applications. I:  
 Proceedings of SPIE, the International Society for Optical Engineering, Color I
 maging XVI : displaying, processing, hardcopy, and applications : 24-27 
 January 2011, San Francisco, California, United States, SPIE - International 
 Society for Optical Engineering. 
 
Internet address: 
http://dx.doi.org/10.1117/12.872381  

Please notice: 
This is the journal's pdf version.  

 

 

© Reprinted with permission from 
Society of Photo Optical Instrumentation Engineers  

 
One print or electronic copy may be made for personal use only. Systematic electronic or print repro-
duction and distribution, duplication of any material in this paper for a fee or for commercial purpo-

ses, or modification of the content of the paper are prohibited.  

http://dx.doi.org/10.1117/12.872381�


 

 

Regression based characterization of color measurement instruments 
in printing applications 

 
Peter Nussbaum a, Jon Y. Hardeberg a and Fritz Albregtsen b 

 
a Gjøvik University College, P. O. Box 191, N-2815 Gjøvik, Norway 

b Department of Informatics, University of Oslo, P. O. Box 1080 Blindern, N-0316 Oslo, Norway 

ABSTRACT 

In the context of print quality and process control colorimetric parameters and tolerance values are clearly defined. 
Calibration procedures are well defined for color measurement instruments in printing workflows. Still, using more than 
one color measurement instrument measuring the same color wedge can produce clearly different results due to random 
and systematic errors of the instruments. In certain situations where one instrument gives values which are just inside the 
given tolerances and another measurement instrument produces values which exceed the predefined tolerance 
parameters, the question arises whether the print or proof is approved or not accepted with regards to the standard 
parameters. The aim of this paper was to determine an appropriate model to characterize color measurement instruments 
for printing applications in order to improve the colorimetric performance and hence the inter-instrument agreement. The 
method proposed is derived from color image acquisition device characterization methods which have been applied by 
performing polynomial regression with a least square technique. Six commercial color measurement instruments were 
used for measuring color patches of a control color wedge on three different types of paper substrates. The 
characterization functions were derived using least square polynomial regression, based on the training set of 14 BCRA 
tiles colorimetric reference values and the corresponding colorimetric measurements obtained by the measurement 
instruments. The derived functions were then used to correct the colorimetric values of test sets of 46 measurements of 
the color control wedge patches. The corrected measurement results obtained from the applied regression model was 
then used as the starting point with which the corrected measurements from other instruments were compared to find the 
most appropriate polynomial, which results in the least color difference. The obtained results demonstrate that the 
proposed regression method works remarkably well with a range of different color measurement instruments used on 
three types of substrates. Finally, by extending the training set from 14 samples to 38 samples the obtained results clearly 
indicate that the model is robust. 
 
Keywords: Color measurement, color measurement instrument characterization, ISO standards, print quality, process 
control, polynomial fitting technique, measurement uncertainties, Inter-instrument agreement.  
 

1. INTRODUCTION 

In general, process control is the basic requirement for ensuring satisfactory print and proof quality in the graphic art 
industry. To preserve the standardization concept colorimetric parameters and tolerance values for print and proof 
productions are defined in ISO 12647-2 [14] and ISO 12647-7 [15] respectively. Therefore, to ensure the quality control 
colorimetric values have to be obtained using color measurement instruments. Currently, there are many different models 
of color measurement instruments used in the printing industry, and this has been found to have significant consequences 
on print and proof quality [22].  

In a modern color managed and standardized printing workflow, most of the printing houses use more than one color 
measurement instrument, typically one instrument in each department (pre-press, press, and post-press). Moreover, in the 
context of a Process Standard Offset (PSO) [21] certification process often the same color control wedge of a print or 
proof is measured first by the instrument of the company, that is to be certified, and secondly with the instrument of the 
certification body, to determine and confirm whether the colorimetric values are within the defined ISO tolerances.  

However, measuring a control wedge with two different color measurement instruments will obviously result in different 
colorimetric data sets due to the nature of the instrument’s uncertainties [22]. In a certification context assuming that 
both instruments give values that are within the given color difference tolerances according to the ISO standard, both 
measurements will be approved and the print or proof will be accepted. On the other hand, if one of the instruments gives 



 

 

values that exceed the tolerances, the question arises which of the measurement values are correct and which one has 
failed, even though both measurement instruments are certified. Depending on the applications and the customer’s 
requirements the predefined ISO standard tolerances have been defined narrower to increase the print quality. 
Consequently, the color measurements performed with more than one instrument are even more critical in terms of the 
instrument uncertainty.  

In the past, a number of studies have addressed the issues of color measurement instrument accuracy and uncertainties. 
For more details on assessment of color measuring instruments in general and inter-instrument reproducibility in 
particular see the works of Billmeyer [7], Briggs et al. [9], Billmeyer and Alessi [8], Rodgers et al. [25] and Wyble and 
Rich [29]. In a study by Rich et al. [24] the authors have observed that the differences between pairs of instruments can 
be quite significant, with maximum differences of up to ∆E*ab of 4.0. In a previous work by Nussbaum et al. [22] the 
authors conclude that in order to reduce the measurement errors in a color managed printing workflow the use of only 
one instrument product family (instruments of the same model from the same manufacturer using equal parameters) is 
recommended. However, due to a number of different reasons this advice seems to be rather difficult to implement in the 
daily printing production environment. A further technique to reduce the color differences obtained by measuring the 
same sample using more than one measurement instrument is applying a correction method to the obtained color 
measurements. 

Therefore, the aim of the present work is to propose a method to reduce the variations in color measurement performed 
with more than one instrument measuring the same color target. In particular, the main contribution of this study is in 
characterizing measurement instruments using a colorimetric regression technique. Finally, the appropriate correction 
model applied to the measurement data sets will reduce the color errors between the measurements obtained by a master 
instrument and the measurements performed by a second instrument used (Figure 1). Consequently, the model will 
improve the colorimetric performance and inter-instrument and inter-model agreement.  

 
Figure 1. A schematic diagram of the color measurement workflow using two measurement instruments measuring a 

color control wedge, and applying a correction model to reduce the errors between instrument 1 and instrument 2.  

In order to determine the performance of measurement instruments there are a number of parameters to consider. 
According to ASTM E2214 [3] the most important specification is the repeatability which defines how well an 
instrument repeats its reading of the same target over a certain period of time. Reproducibility is a form of repeatability 
in which one or more of the measurement parameters have been systematically changed, such that the target is being 
different, the time frame of measurements are being very long or the operator has being changed. Inter-instrument 
agreement describes the reproducibility of two or more instruments of the same design and inter-model agreement 
describes the reproducibility of two or more instruments of different design. Finally, accuracy describes the conformance 
of a series of readings to the accepted or true value. The measurement variations between instruments can be divided into 
systematic and random errors. According to Berns [6], repeatability is affected by random errors including drift, 
electronic noise and sample presentation. Random variations are difficult to avoid. On the other hand the accuracy is 
affected by systematic errors, which among other characteristics may be due to different measurement geometry, or 
detector linearity errors resulting from a change of wavelength. In the past several attempts have been made to reduce the 
systematic errors by characterizing color measurement instruments. The study by Berns [6] proposes the correction of 
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various systematic errors applying to the spectral measurements data using multiple linear regression based on modeling 
the results to improve the colorimetric performance. In this work, however, the aim is to correct the instrument’s 
systematic errors by applying a regression technique directly to the measured CIELAB data, and hence improve the 
inter-instrument and inter-model agreement. 

Following this brief introduction including the definition of the aim in this work and discussing central references, we 
provide some more methodology information in Section 2, by illustrating the regression model, defining key concepts, 
and the experimental procedure including data collection. Then, in Section 3 we present and discuss our results, before 
concluding in Section 4. 

2. METHODOLOGY 

The method we propose in this work is based on color image acquisition device characterization, which has been applied 
by implementing polynomial regression with a least square technique [12]. The purpose of the characterization model of 
a color measurement instrument is to predict color measurement data from a given set of reference data (training set). 
Essentially, the derived model according to polynomial fitting technique describes the colorimetric relationship between 
a given sample set of reference data and the corresponding measurements taken by an instrument. Consequently, the 
derived model is applied to another set of measurements (test set) obtained by the same instrument. The obtained new 
data set is a corrected version according to the used regression model, as depicted in Figure 2. In this work, for each 
instrument a separate model has been derived and consequently applied to the test set to correct the measurement data 
set. It is assumed that by modeling the systematic errors of the measurement instruments the results will improve the 
colorimetric performance and hence the inter-instrument and inter-model agreement. In other words, the color difference 
between two corrected measurement data sets will be reduced.  
 

 
Figure 2. Schematic diagram of the regression method using a training set and a test set. 

A set of 14 British Ceramic Research Association (BCRA) Ceramic Color Standards Series II (CCS II) ceramic gloss 
tiles including one Black and one White BCRA tile and printed substrates were measured using six spectrophotometers, 
according to the procedures outlined by ISO 13655 [16]. The instruments used are commercial industrial-oriented 
spectrophotometers typical utilized for daily production control in prepress and press applications. A spectrophotometer 
measures the ratio of reflected to incident light (the reflectance) from a sample at many points across the visible 
spectrum [5]. Table 1 presents the instruments employed including the corresponding specifications. Some of the 
instruments are typically from the same model and some of them represent different models from different 
manufacturers. According to Nussbaum et al. [22] the instruments used in this study show an acceptable performance in 
terms of repeatability and reproducibility. 
 

Table 1. Overview of the six instruments used in this work and the corresponding specifications. 
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were measuring the corresponding color specifications. For simplification purposes let’s call the BCRA reference values 
‘REF’ and the corresponding measurement values from the instrument ‘INS’. 

Assume that the reference target has N samples. For each color sample the corresponding reference values R, E and F are 
represented by a 1 x 3 vector pi (i = 1…N) and their corresponding I, N and S color measurement values obtained by the 
measurement instrument are represented by a 1 x 3 vector xi (i = 1…N). Suppose that only I, N and S values are used in 
p, the transformation between INS and REF is a simple linear transform. However, the reason for using polynomials is 
that vector pi can be extended by adding more terms such as I2, N2, S2 etc. which may improve the accuracy of the model 
in terms of reducing the color differences over all the color samples [13]. While higher order polynomials will give a 
perfect fit to the data of the training set, this may result in over fitting as well as causing oscillations between the points, 
Runge's phenomenon [28]. Hence, in this work we applied only second order polynomial even for a 3 x 11 matrix. 
 
The polynomials applied and analyzed in this work have the following form: 
1. pi = [I  N  S]       
2. pi = [I  N  S  1]     
3. pi = [I  N  S  INS  1]      
4. pi = [I  N  S  IN  IS  NS]     
5. pi = [I  N  S  IN  IS  NS  INS  1]     
6. pi = [I  N  S  IN  IS  NS  I2  N2  S2]    
7. pi = [I  N  S  IN  IS  NS  I2  N2  S2   INS  1]   
 
Suppose R denotes an 3 x N matrix of vectors pi and X the predicted matrix of vector xi. The mapping from INS to REF 
can be expressed by 

X = M*R      (1) 

M is the unknown transformation matrix that determines the accuracy of the model, which means minimizing the color 
differences over all color samples. The differences between Y’ and Y can also be expressed as the Sum of the Squares of 
the Differences (SSD): 

SSD = Y i
'−Y i( )

i=1

n

∑
2
      (2) 

where Y’= MX 

SSD = MX i−Y i( )
i=1

n

∑
2
     (3) 

Depending on the polynomial being solved the size of the matrix M in this work varies from 3 x 3 up to 3 x 11. On the 
following 1st order sample it is shown how the model can be derived. 
Forward model: [R E F] = [I  N  S  IN  IS  NS  INS  1]*M  
 
In this case M is an 8x3 transformation matrix that contains the model parameter calculated from the training set by the 
equation:  

M = (RT*R)-1*RT*X     (4) 

where RT denotes the transpose of R, and R-1 denotes the inverse. In this example R is an n x 8 matrix which contains 
values of the I N S samples as well as corresponding IN, IS, NS, INS and 1 values calculated from them for each sample. 
X is an n x 3 matrix which contains the number of samples n used in the training set and the columns accommodate R, E 
and F values of all the samples. 

The regression model is based on the training set containing 14 BCRA reference values and the corresponding 
measurements obtained by the measurement instruments from the BCRA tiles. The performance and accuracy of the 
characterization model has to be evaluated using an independent data test set, which in this work is represented by 
measurements of the 46 patches (UGRA/FOGRA Media Wedge) on different substrates. The best results with the least 
color differences are obtained by experimentation. 

Finally, the most appropriate transformation matrix M is the one that results in the least color difference between the 
corrected measurements of the ‘master instrument’ and the corrected measurements of the ‘secondary instruments’. Note 
that in this study CIELAB values are directly used in the characterization and evaluation procedure because CIELAB 



 

 

values have been reported from the spectral reflectance data initially measured by the instruments. Furthermore, the ISO 
tolerances given in the standards are communicated in CIELAB color space as well. Moreover and most important, 
Euclidian distance in CIELAB color space is corresponding quite well to the perceptual color differences [12].  
 
2.3 Data collections 
All instruments used in this study measured spectral reflectance factor values from 380nm to 730nm with 10nm 
intervals. Spectral measurements were converted to CIEXYZ tristimulus values according to the CIE 1931 2° observer 
and the CIE Standard illuminant D50 using the method proposed by ASTM 308, Table 1 [1]. Furthermore, to use a 
visually meaningful color space CIELAB (D50 as the reference white) values were calculated according to CIE 15 [10] 
specifications. Consequently, CIELAB data have been used for the regression model and colorimetric difference ∆E*ab 
values were computed between the master measurement instrument and the secondary instruments. Furthermore, the 
obtained results will be compared with the ISO tolerances. Because the colorimetric production control tolerances in the 
ISO standard 12647-2 and ISO standard 12647-7 are defined with ∆E*ab only, no further color difference metrics are 
used in this work.  
 

3. RESULTS AND DISCUSSIONS 

As mentioned previously the aim is to find a method to reduce the color difference between instruments measuring the 
same color patches. Furthermore the applied model shall improve the colorimetric performance and inter-instrument and 
inter-model agreement on three different types of substrates.  

Figure 4 shows the color difference results between the BCRA tiles reference values and the ‘master instrument’. 
Moreover, the color difference results between BCRA tiles reference values and the ‘secondary instrument A’ and 
between the ‘master instrument’ and the ‘secondary instrument A’. Notice, that the ‘master instrument’ and the 
‘secondary instrument A’ are not from the same instrument family (which in a practical application very often can be the 
case). We see that the color difference between the BCRA tiles reference values and the ‘master instrument’ has the 
highest values in the red (∆E*ab 2.8 units), orange (∆E*ab 4.2 units) and bright yellow (∆E*ab 2.4 units) tiles. Comparing 
the BCRA tiles reference values with the ‘secondary instrument A’ only the bright yellow tile shows a rather high color 
difference value (∆E*ab 2.4 units). On the other hand, comparing the measurement results between the ‘master 
instrument’ and ‘the secondary instrument A’ the results on the red, orange and bright yellow tiles again show very large 
color differences. Moreover, although the ‘master instrument’ and the ‘secondary instrument A’ show almost identical 
color difference compared to the BCRA tiles reference values on the bright yellow tile (approximately ∆E*ab 2.4 units), 
the direct comparison shows the largest color difference of ∆E*ab 4.5 units. This indicates that the accuracy of both 
measurement instrument, ‘master instrument’ and the ‘secondary instrument A’ on the bright yellow tile can be 
considered as very similar, However, the color difference between the ‘master instrument’ and the BCRA tiles reference 
values and between the ‘secondary instrument A’ and the BCRA tiles reference values points in different directions.  

It is important to consider the inherent physical properties of the BCRA tiles. Fairchild and Grum [11] stated that the 
BCRA tiles red, orange and yellow can exhibit appreciable thermochromism due to sharp changes in their spectral 
reflectance curves. Based on this finding Berns [6] argued against using the tiles red, orange and yellow unless the 
temperature of the tiles at the time of calibration was known and this temperature was maintained both at the location 
where the tiles would be used and during their measurements. However, according to the results shown in Figure 4 there 
is no clear evidence of thermochromism for the ‘secondary instrument A’ except for the yellow tile. In contrast, the 
‘master instrument’ demonstrates larger color differences due to possibly generating significant heat in the measuring 
process. According to Fairchild and Grum [11], it is important to make sure that the temperature of calibration standards 
remains constant during their use. On the other hand, no significant color changes have been observed with small 
temperature changes around room temperature. Furthermore, all measurements in this study have been conducted in the 
same location and the same room temperature conditions.  
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Paper type 5 1.56 0.82 3 x 8 3 x 8 1.42 0.71 

Secondary D 

Proofing  1.41 0.48 3 x 5 3 x 5 1.07 0.41 
Paper type 1 1.08 0.56 3 x 6 3 x 6 1.59 0.75 
Paper type 5 1.82 0.77 3 x 5 3 x 4 1.71 0.94 

Secondary E 
Proofing  0.62 0.33 3 x 4 3 x 3 0.61 0.25 
Paper type 1 0.66 0.32 3 x 5 3 x 5 0.83 0.28 
Paper type 5 0.67 0.34 3 x 6 3 x 6 0.60 0.32 

 
As indicated previously instruments can be divided into product families which are instruments of the same model from 
the same manufacturer using equal specifications. Hence, the least inter-instrument color differences can be expected 
within a product family. In this work, the ‘secondary instrument E’ is the same model as the ‘master instrument’. 
Regardless of the very small color differences of the uncorrected measurement data, applying the regression model has 
further minimized the color differences. It is noticeable that, taking the inter-instrument agreement from Table 1 into 
account which specifies the equipment accordance with mean ∆E*ab 0.3 units and maximum ∆E*ab 0.8 units on 12 
BCRA tiles ceramics the proposed method is performing reasonable. On the other hand, the model is not able to handle 
the instrument’s repeatability issues such as drift over time.  

The ‘secondary instrument B’ and ‘secondary instrument C’ are considered as the same instrument model too. However, 
the ‘secondary instrument C’ shows rather large color differences, in particular the values given for proofing substrate 
and substrate paper type 1. The reason is an UV cut filter attached to the instrument which causes the color differences 
due to the concentration of optical brighteners to affect the CIE b* values in the measurements. Such variations are not 
considered as systematic errors. Therefore, the applied model is not performing as expected, in terms of reducing the 
color differences. 

In the context of quality control using more than one measurement instrument in the workflow, the proposed method can 
improve the inter-instrument and inter-model agreement significant. Table 4 shows the color differences on proofing 
substrate according to the uncorrected measurement data of the master instrument and the secondary instruments A-E. 
Furthermore, the orange marked numbers demonstrate the values, which are outside the tolerances defined by ISO 
12647-7. According to the results presented in Table 4 the measurements from the ‘secondary instrument A’ and the 
measurements from the ‘secondary instrument C’ the proof would not be qualified as approved. On the other hand, 
measurements conducted with the ‘master instrument’, the secondary instruments B, D and E the proof would be 
qualified as approved. Again, the question may arise which of the instrument gives the appropriate results? Note, that the 
instruments random errors including repeatability performance has been tested in a previous study and concluded as 
acceptable [22]. 

 

Table 4. Color difference results on proofing substrate obtained by six instruments with respect to CIELAB ∆E*ab 
tolerances according to ISO 12647-7 (Orange marked values are outside the ISO tolerance). 

Un corrected 
measurements 

Substrate Mean Max Primaries 
 

Composed 
grey 

∆E*ab 3 ∆E*ab 3 ∆E*ab 6 ∆E*ab 5 ∆H*ab 2,5 ∆H*ab 1,5 

   C M Y K C M Y Average 

Master instrument 1.69 1.28 3.00 0.90 1.51 0.66 1.2 0.48 1.36 0.04 1.08 

Secondary A 1.40 2.54 7.5 2.96 3.03 7.5 1.36 2.56 0.05 0.71 0.55 

Secondary B 1.40 1.12 2.67 0.66 1.07 1.48 1.10 0.31 0.92 0.06 0.71 

Secondary C 6.34 3.04 6.34 3.27 2.36 2.49 1.68 3.14 2.19 0.33 3.47 

Secondary D 0.92 1.26 2.46 0.87 1.17 2.05 1.04 0.26 0.86 0.15 0.71 



 

 

 
Table 5 presents the results of all instruments after applying the regression model to the uncorrected data set. Although 
the ‘secondary instrument A’ results in values which now qualify the proof as approved it is important to emphasize that 
it is not the intention of the proposed method to get the values as close as possible to the ISO standard values but to 
reduce the color difference between the instruments.  
Furthermore, it can be seen that the ‘secondary instrument C’ with the UV cut filter still results in values which qualifies 
the proof far from approved. The variations between the ‘secondary instrument C’ and the other instruments are large, 
especially the results obtained on the substrate and the composed grey. As stated previously, this effect of variation is 
considered as a systematic error and therefore the regression method is not handling this.  
 

Table 5. Corrected measurement data set (based on 14 training samples) of seven instruments with respect to CIELAB 
∆E*ab tolerances according to ISO 12647-7. 

 
So far the training set for building the model was limited to 14 samples (14 BCRA tiles). To test if the model will 
improve the performance in terms of reducing the color difference between the ‘master instrument’ and the ‘secondary 
instrument (A-E)’ the sample number of the training set has been increased with 24 patches from the ColorChecker, 
which is a color rendition chart including traceable reference values [20]. Consequently, the regression method has been 
applied again for all the measurement on all three substrates. Although there is no significant improvement in terms of 
reducing the mean color difference, the maximum ∆E*ab could be reduced substantially in all instrument combinations 
and all three substrates. Moreover, also functions with second order polynomial (such as 3x11) give reasonable results 
reducing the color difference significantly, in particular the maximum color difference. This indicates clearly that the 
model with 38 sample points is more robust.  
 

Table 6. Corrected measurement data set (based on 38 training samples) of seven instruments with respect to CIELAB 
∆E*ab tolerances according to ISO 12647-7. 

Secondary E 1.52 1.4 3.12 1.43 1.70 0.9 1.38 1.00 1.59 0.45 0.93 

14 training  samples Substrate Mean Max Primaries 
 

Composed 
grey 

Corrected 
Measurement data set 

∆E*ab 3 ∆E*ab 3 ∆E*ab 6 ∆E*ab 5 ∆H*ab 2,5 ∆H*ab 1,5 

   C M Y K C M Y Average 

Master (3x4) 1.56. 1.55 3.22 1.96 1.81 2.87 1.25 0.57 0.98 0.19 0.78 

Secondary A (3x5) 0.92 1.83 4.42 2.12 1.85 4.56 1.17 2.00 0.97 0.13 0.41 

Secondary B (3x5) 1.40 1.33 3.39 0.90 0.94 2.62. 1.17 0.65 0.31 0.57 0.59 

Secondary C (3x6) 6.04 3.01 6.04 1.90 2.90 3.89 1.64 1.68 2.82 0.35 3.20 

Secondary D (3x5) 0.98 1.22 2.97 0.91 0.76 2.36 1.00 0.74 0.22 0.51 0.64 

Secondary E (3x3) 1.45 1.60 3.40 1.80 2.05 2.75 1.4 0.28 1.56 0.27 0.68 

38 training samples Substrate Mean Max Primaries 
 

Composed 
grey 

Corrected 
Measurement data set 

∆E*ab 3 ∆E*ab 3 ∆E*ab 6 ∆E*ab 5 ∆H*ab 2,5 ∆H*ab 1,5 

   C M Y K C M Y Average 

Master (3x4) 0.60 1.24 3.05 2.16 1.19 2.38 1.37 1.42 0.09 0.92 0.56 

Secondary A (3x3) 1.00 2.02 4.29 3.00 1.94 4.02 1.68 2.69 1.02 0.30 0.39 
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from the results, the color difference between the two instruments has been reduced by approximately 30% in both the 
mean and maximum respectively. The least difference has been obtained by using a 3x5 polynomial for both instruments 
and indicating that the applied model performs reasonable.  
 
Table 7. Color difference results from the uncorrected and corrected measurements between two different instruments on 

proofing substrate. 

Spectrophotometer 
versus 

Spectrocolorimeter 

Type 
Substrate 

∆E*ab Un-corrected Polynomial ∆E*ab Corrected 
Max Mean Manu A Manu B Max Mean 

Proofing 3.64 1.73 3 x 5 3 x 5 2.32 1.21 
 
It has to be mentioned that only one single measurement with each instrument on the training samples (14 BCRA tiles 
and 24 ColorChecker) has been conducted. Presumably, averaging multiple measurements per sample will reduce the 
noise, increase the performance of the model, and further reduce the color differences between the two corrected test data 
sets from each instrument. 
 

4. CONCLUSIONS 

It is known that the accuracy and inter-instrument and inter-model agreement of measurement instruments are limited. In 
this work we have described a method to correct the instrument’s systematic errors by applying a regression technique 
directly onto the measurement output values in the CIELAB color space to improve the colorimetric performance and 
hence the inter-instrument and inter-model agreement.  

The study compares different terms of polynomials derived using least-squares regression to determine the appropriate 
correction for six different measurement instrument’s measured on three different types of substrates. One of the 
measurement instrument used has been defined as the reference instrument. Reference data from 14 BCRA tiles and the 
corresponding obtained measurements from each instrument has been used to derive a model. The model has been 
applied to a test set containing 46 measurements from the UGRA/FOGRA Media Wedge on three different substrates. 
To determine the most appropriate polynomial color differences have been calculated between the corrected 
measurements of the ‘master instrument’ the corrected measurement of the ‘secondary instruments’. We conclude that 
first order polynomials (more precise 3x5 polynomial) in most cases produce the best results in terms of reducing the 
color differences between the instruments on different substrates.  

Although there is no significant difference in the performance of the model on the three different types of substrates, the 
proofing substrate results in the least color differences. Moreover, with instruments from different product families the 
inter-model agreement can be significantly improved by applying the characterization model, reducing the color 
differences between the measurement instruments by more than 50%. Increasing the size of the training set from 14 to 38 
samples is slightly reducing the maximum color differences, but much more important, the model’s behavior is more 
robust in terms of different applied polynomials. To justify whether thermochromism affected the model, the BCRA tiles 
red, orange and yellow could be left out in the training sample.  

As seen, the proposed regression method works remarkably well with a range of instruments used on the three types of 
substrates. However, for future work, the proposed method could by further investigated using different paper substrates 
(e.g. glossy paper, newspaper) and material (e.g. plastic, textile, aluminum, glass). To improve the performance of the 
model further extension of the sample number including different types of sample surfaces could be considered to derive 
the model. Furthermore, the method can be extended and tested on emission measurements using different models of 
spectrophotometers, spectrocolorimeters and colorimeters. Perhaps, a combination of Bern’s [6] proposed method 
correcting various systematic errors in the spectral domain and the presented technique adjusting the output CIELAB 
data set may further improve the colorimetric performance and the inter-instrument and inter-model agreement. Finally, 
considering a relevant application, the proposed model could be implemented into a measurement software system where 
the correction model is directly applied to the obtained measured values from the instruments. 
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