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Using gaze information to improve image difference metrics

Marius Pedersen, Jon Yngve Hardeberg and Peter Nussbaum; Gjøvik University College;
Gjøvik, Norway

ABSTRACT

We have used image difference metrics to measure the quality of a set of images to know how well they predict
perceived image difference. We carried out a psychophysical experiment with 25 observers along with a recording
of the observers gaze position. The image difference metrics used were CIELAB ∆Eab, S-CIELAB, the hue angle
algorithm, iCAM and SSIM. A frequency map from the eye tracker data was applied as a weighting to the image
difference metrics. The results indicate an improvement in correlation between the predicted image difference
and the perceived image difference.
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1. INTRODUCTION

Image difference metrics have been proven shortcoming when it comes to predict perceived image difference.
Information on where we look in images have been proven useful many different fields, also in image quality.
Areas where observers spot a difference in images should be weighted higher in a pixel-by-pixel difference. We
use information based on where observers gaze at images as a weight for different image difference metrics. If
an improvement is found, automatic region-of-interest algorithms simulating observers gaze could be used to
improve image difference metrics without doing an eye tracker experiment.

2. STATE OF THE ART

From the CIELAB ∆Eab in 1976 many different image difference metrics have been published, in a number of
studies it has been shown that the results does not always correlate with the perceived image quality.1,2

2.1 Hong and Luo’s hue angle metric

This algorithm by Hong and Luo3 is based on the known fact that systematic errors over the entire image is
quite noticeable and unacceptable. The proposed algorithm is based on some conjectures:

• Pixels or areas of high significance can be identified and a suitable weight allocation can be found.

• Larger areas of the same color should be weighted higher.

• Larger color difference between the pixels should get higher weights.

• Hue is an important color percept for discriminating colors within the context.

The proposed algorithm creates a histogram based on the hue angle, and sorts this ascending so weights can be
applied to different sections of the histogram. The overall color difference is then calculated by multiplying the
weighted hue angle for every pixel with the color difference pixel-by-pixel.

2.2 SSIM

The SSIM proposed by Wang et al.4 attempt to quantify the visibility between a distorted image and a reference
image. The algorithm defines the structural information in an image as those attributes that represent the
structure of the objects in the scene, independent of the average luminance and contrast. The index is based
on a combination of luminance comparison, contrast comparison and structure comparison. The comparison is
done for local windows in the image, and the overall image quality is the mean of all these windows.
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2.3 S-CIELAB

The S-CIELAB model was designed as a spatial pre-processor to the standard CIE color difference equations,5

to account for complex color stimuli such as halftone patterns.6,7 The S-CIELAB has two goals, first it would
like to apply a spatial filtering operation to the color image data, to simulate spatial blurring by the human
visual system. Second, in large uniform areas, they would like the extension to be consistent with the basic
CIELAB calculation. The image data are transformed into opponent-color space, each of these opponent-colors
are convolved with a kernel. The filtered representation is transformed to CIE-XYZ representation, this resulting
representation includes both spatial filtering and the CIELAB processing. The difference is summarized using
∆Es like the conventional CIELAB.

2.4 iCAM

The iCAM model was proposed by Fairchild and Johnson.8 iCAM was built upon previous research in many
fields among uniform color space9 because of the hue-linearity,10 image surround importance,11 image difference
and image quality measurement algorithms.12,13 This model takes the tristimulus values and transform them
into RGB values using Von Kries adaptation identical to the one found in CIECAM02.14 Further the adopted
signals are transformed into the IPT color space.9 The adapting and the surround luminance level is then used
to allow for the prediction of various appearance phenomena.

2.5 Region-of-interest and image difference metrics

Bando et al.1 used regions based on criteras from the observers were used to compute areas used to calculate image
difference. The conclusion by the authors was no correlation between the average pixel-by-pixel difference and
perceived image quality. Morovic and Sun15 did research on differences in color image reproduction experiments,
they discovered that more than 50% of the important errors were perceived in parts of the image rather than in
the entire image. They also found out that size and location of an object within an image do not have a strong
impact on whether it’s difference will be jugded to important. In the following research Morovic and Sun16 found
out that 80% of differences were reported due to changes in lightness, colorfulness and hue.

Bai et al.17 evaluated S-CIELAB on images produced by Retinex by using gaze information. The average
S-CIELAB color difference was weighted by the frequency map from the gazing information on the whole image
and over the gazing areas. The results from this research shows that frequency distribution of gazing area in the
image gives important information on the evaluation of image quality.

3. EXPERIMENT SETUP

3.1 Images

4 different images have been used in this experiment (Figure 1). All the images have been reproduced with

(a) Girl reproduced
with permission from
Grafisk Assitanse AB.

(b) Tore reproduced
with permission from
Se og Hør.

(c) JP from ISO. (d) Cartoon reproduced
with permission from
Trond Viggo Bjerke.

Figure 1. Images used in the experiment.
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different changes in lightness. Each scene has been altered in 4 directions globally and 2 different regions 2
directions locally, resulting in a total of 36 images. Changes was made in CIELAB color space in only the L∗

channel in 16 bit, the global changes were plus and minus 3 and 5 ∆Eab in lightness. The profile from the display
was also applied to the images.

3.1.1 Regions

In the images with only changes to regions in the image, the value used to increase and decrease lightness in the
whole image was applied only to the regions. I.e. the regions have been altered to the same degree as the same
region for the globally changed images. The region in the images with only local changes is similar to the same
region in the images with global changes. The white areas in Figure 2 were altered and the black were not.

(a) Girl back (b) Girl front (c) Tore back (d) Tore
front

(e) JP stripe (f) JP stripe2 (g) Cartoon
sign

(h) Cartoon t-
shirt

Figure 2. Regions, only white pixels have been altered.

3.2 Psychophysical experiment setup

The psychophysical experiment was done on a calibrated CRT monitor, LaCIE electron 22 blue II, in a gray
room. The observer was seated approximately 80 cm from the screen,18 this distance gives the eye tracker a
head tracking area of about 40x40 cm. The eye tracker used was a SMI iViewX RED,19 a contact free gaze
measurement device. The light was dimmed and measured approximately 17 lux in front of the screen, this is
within the CIE recommendation of 64 lux.20 Observers were shown 3 images at once during the experiment, one
original image in the middle and two different reproductions on each side. Observers were told to choose the
image most similar to the original.

The z-scores are based on Thurstone’s law of comparative judgement with 95% confidence intervals.21 The
error bars are computed as

X̄ ± σ√
N

where X̄ is the z score, σ is the the standard deviation and N is the size of the sample. For this experiment this
is the number of observers multiplied with 2, because each image was shown twice for consistency.

4. RESULTS

4.1 Results from psychophysical experiments

The results from the 25 observers can be seen on Figure 3, this image shows the mean results over the 4 scenes
for the images with global lightness changes of minus 3 ∆Eab (LM3), minus 5 ∆Eab (LM5), plus 3 ∆Eab (LP3)
and plus 5 ∆Eab(LP5). From the results we can see that LM3 and LP3 have the same visual distance from the
orignal, the same with LM5 and LP5. The observers can see a big difference between lightness 3 ∆Eab and 5
∆Eab even though the difference is only 2 ∆Eab.
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Figure 3. Z-score for global lightness changes (LM3/5 and LP3/5)

4.1.1 Girl

For the girl image, we can see that BACK LM3 (background lightness minus 3 ∆Eab), BACK LP3 (background
lightness plus 3 ∆Eab) and FRONT LM3 (front lightness minus 3 ∆Eab) score the highest , and have the same
visual difference from the original. LM3, LP3 and FRONT LP3 score approximately the same, while LM5 and
LP5 score significantly lower than the rest. From the results shown in Figure 4 smaller changes in background
have a smaller visual difference from the original than global changes. In the globally changed images both the
semantic regions and the almost uniform background is altered, both of these were stated as important by the
observers and therefore these also have the largest visual difference from the original.

Figure 4. Z-score for GIRL Figure 5. Z-score for TORE

4.1.2 Tore

For the Tore scene BACK LM3 scores the highest (Figure 5), but it has the same distance from the orignal as
BACK LP3, FRONT LM3/LP3 and LM3. Observers found images with brighter or darker background to be
closer to the original than brighter global images. The background in this scene is non-uniform making it difficult
to spot a difference here, observers will therefore look at areas in the foreground to find a difference. Both the
LM5 and LP5 score significantly lower than the rest, these also being the images with the largest modifications.
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4.1.3 JP

In this scene observers rated low global changes and the vertical stripe on the right side of the image to be closest
to the original (Figure 6), while higher global changes together with the horizontal stripe in the middle of the
image have a larger visual difference from the original. The horizontal stripe has a large visual difference from
the original according to the observers, but a small ∆E∗

ab change. The small changes made in this image have a
high visibility in central parts of the image, resulting in artifacts as new edges. Therefore observers rate other
images closer to the original.

Figure 6. Z-score for JP Figure 7. Z-score for CARTOON

4.1.4 CARTOON

Here Tshirt LM3 has the lowest visual difference from the original (Figure 7), but the difference is not distin-
guishable from Tshirt LP3, SIGN LM3 or SIGN LP3. LM3 and LP3 have a larger visual difference from the
orignal than the previous. LM5 and LP5 have a significantly larger visual difference than these again. In the
globally changed images observers stated that they could easily see a difference in the uniform background, and
therefore these images were rated with a larger difference to the orignal than the images with only small local
changes.

4.2 Image difference metrics results

The image difference metrics used are ∆Eab, S-CIELAB, iCAM, SSIM and the hue angle algorithm. Pearson’s
correlation coefficients for each scene is shown in Table 1.

Scene/Algorithm S-CIELAB iCAM ∆Eab SSIM Hue angle
1 (Girl) 0.94 0.63 0.93 0.61 0.96
2 (Tore) 0.96 0.57 0.96 0.50 0.97
3 (JP) 0.09 0.01 0.08 0.05 0.16
4 (Cartoon) 0.97 0.74 0.95 0.85 0.97

Table 1. Correlation coefficient r2 for the different algorithms

4.2.1 ∆Eab

The scores from the ∆Eab can be seen in Figure 8. ∆Eab scores a correlation coefficient (r2) of 0.63, this indicates
a correlation between the z-scores and the algorithm (Figure 8).

Images with only small regions altered scores low in the ∆Eab and have high z-scores except for the 2 horizontal
stripes in the JP scene. The low ∆Eab values indicates that this image should score high in a psychophysical
experiment, but this is the not the case. We can also see that the images altered with 5 ∆Eab have very different
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z-scores. One of the Cartoon images (LM5) scores lower than -1 on the z-score and one of the JP images score
approximately -0.4, this implies that the observers can differentiate between these images while the ∆Eab cannot.
The same for the images altered with 3 ∆Eab, where we have a z-score difference of 0.6.

Figure 8. Z-score vs. ∆Eab Figure 9. Z-score vs. iCAM

4.2.2 iCAM

iCAM shows a more scattered result as seen on Figure 9 than ∆Eab in the previous section. Some of the images
with a low iCAM score have a high z-score, but other images with a low iCAM score have a low z-score. We
can see the same for iCAM regarding the two JP images with the horizontal stripe as in ∆Eab. iCAM also has
problems with the LM5 images, in 3 scenes this image is rated much better than LP5 even though observers rate
them with the same visual difference from the original.

4.2.3 Hue angle

The hue angle algorithm gives a low score to images where only small regions have been altered, and a higher
score to images with a global score (Figure 10). The two images with a horizontal stripe score close to 0 in this
algorithm, but the z-score implies that these images should score higher. The hue angle algorithm differentiate
well between the images with 3 and 5 ∆Eab.

Figure 10. Z-score vs. hue angle Figure 11. Z-score vs. SSIM
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4.2.4 SSIM

The SSIM algorithm is made for grayscale images, the images used in this experiment have only been altered in
lightness therefore the SSIM should give a valid result. From Figure 11 we can see that the Tore scene gives very
different results, all from 0.82 to 0.99. The r2 gives a score of only 0.05, the reason for this overall low score is
the difference in the results between the scenes. We get a better view of the performance of SSIM by looking at
the single scenes in Figure 12. We can see that the only scene SSIM performs well in is the Cartoon. In the JP
scene 4 images with more or less the same z-score have been rated all over the scale.

(a) Girl (b) Tore (c) JP (d) Cartoon

Figure 12. SSIM for each scene

4.2.5 S-CIELAB

As we can see from Figure 13 the results are fairly linear, resulting in a r2 of 0.61. There are some outliers,
the most obvious are the horizontal JP stripe. These score low both on the z-score and S-CIELAB score. The
images changed plus or minus 5 ∆Eab are rated on the higher end of the scale in S-CIELAB, and the images
with smaller regions are in the other end of the scale.

Figure 13. Z-score vs. S-CIELAB

4.2.6 Difference between the algorithms

To calculate the difference in the performance of the algorithms, the linear regression line for each scene for the
different algorithms were computed. From this regression line the mean squared difference with a 95% confidence
interval were calculated as a measure of performance for the algorithms together with the correlation coefficient
r2.

Figure 14 shows that S-CIELAB, ∆Eab and hue angle algorithm scores better than SSIM. The hue angle
algorithm has the best score, with only a little difference to the ∆Eab and S-CIELAB. This is not surprising
because of the familiarity between these algorithms, since both the S-CIELAB and hue angle are build upon the
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Figure 14. Mean squared difference for algorithms Figure 15. Whole image r2 score for the different algorithms
and scenes

same principles as ∆Eab. SSIM should perform rather good due to the lightness changes, but this is not the
case. iCAM shows a high difference but due to the confidence interval it cannot be rated worse than ∆Eab or
S-CIELAB. For the JP scene all metrics have problems with the regions. This shows that the metrics have a
problem for images were small regions are altered, and the grade of visibility of these alterations.

Figure 15 shows the correlation for the different algorithms over the 4 scenes. The hue angle algorithm
perform well in scene 1 (Girl),2 (Tore) and 4 (Cartoon), and in scene 3 (JP) this algorithm encounter problems
along with all the other algorithms. This is because of the high visibility of errors in central parts of the image.
SSIM and iCAM generally perform worse than the other algorithms.

4.3 Image difference metrics applied to eye tracker regions
In this part the frequency maps from the eye tracker have been applied to the image difference metrics. This
map was based on the frequency map from the eye tracker,17 which was calculated as

F (x, y) =
(

T (x, y)
N (x, y)

)
Nol

(1)

where
F (x, y) ∈ [0, 1]

The total time (T ) an observer used on each pixel was divided by the number of times (N) the observer fixated
on that pixel. The result was then normalized (Nol) by the maximum value in the map, and a gaussian filter
was applied to the map to even out differences17,22,23 and to simulate that we look at an area rather than one
particular pixel.24 The values from the metrics were multiplied with the frequency map to get the overall image
difference. An example of a frequency map for one observers is shown in Figure 16.

MetricV alue =

∑
x

∑
y (Mappixelx,y · Metricmapx,y)

Nnumberofpixels
(2)

Some observers were discarded due to calibration or technical problems, for the different scenes 24 to 16 observers
were used to create the frequency maps.

4.3.1 S-CIELAB

In S-CIELAB the points are located around the regression line. The Stripe images from the JP scene is the
points with the biggest difference from the regression line, this also results in a low r2 score of only 0.16 for
S-CIELAB in this scene (Table 2). The three other scenes score between 0.92 and 0.97, this indicates a strong
correlation. In the overall score (Figure 17) we can see that the LP5 and LM5 in the Cartoon and Girl scene get
different scores even though they are rated similar by the observers.
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Figure 16. Continuous eye tracker map for scene 1

Scene/Algorithm S-CIELAB iCAM ∆Eab SSIM
1 (Girl) 0.92 0.64 0.93 0.66
2 (Tore) 0.92 0.73 0.93 0.69
3 (JP) 0.16 0.08 0.12 0.09
4 (Cartoon) 0.97 0.73 0.96 0.80

Table 2. r2 value for the different algorithms, eye tracker map applied

4.3.2 iCAM

iCAM gets an overall r2 score of 0.37, and the points are scattered as seen in Figure 18. The Cartoon scores
best of the scenes in iCAM with 0.73 with the Tore scene almost similar. The biggest problem for iCAM is the
LM5 images, iCAM underestimates the score and rates the LM5 as the LM3 and LP3. The same happens in the
Girl scene, and results in a r2 of 0.64. For the JP scene none of the points are located near the regression line,
resulting in a low correlation.

4.3.3 ∆Eab

∆Eab gets an overall score of 0.65. Some points are located on the regression line as seen in Figure 19, but the
stripe2 images are far off the regression line. We do also see that some images are given approximately the same
score but the z-score difference is almost 0.5. For the Girl, Tore and Cartoon have a correlation of 0.93, 0.93 and
0.96. This indicate that ∆Eab has a good correlation between the z-score and the predicted image difference.
The reason for the low overall score is mainly from the JP scene.

4.3.4 SSIM

The overall r2 value for SSIM is close to 0, this indicate almost no correlation between the points and the
regression line, but as discussed earlier this is not a valid result. For the single scenes SSIM shows some
correlation. In the Girl scene the r2 value is 0.66 and Tore scores almost the same. The JP gives a score of
almost 0.1, but most of the points are located more than 0.2 from the regression line (Figure 20). Images with
more than 0.8 difference in z-score have been rated almost the same. Cartoon is the scene that scores the best
for SSIM, with a r2 of 0.80. Here most of the points are located close to the regression line.

4.3.5 Overall score for metrics

We can see from Figure 21 that S-CIELAB and ∆Eab scores approximately the same in each scene, while iCAM
and SSIM are more similar in their r2 score. For the JP scene (scene 3) all metrics score low, but S-CIELAB
has the highest value while iCAM has the lowest.
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Figure 17. Regression plot for S-CIELAB weighted with eye
tracker map

Figure 18. Regression plot for iCAM weighted with eye
tracker map

Figure 19. Regression plot for ∆Eab weighted with eye
tracker map

Figure 20. Regression line plot SSIM for JP data points

If we look at the mean squared difference from the regression line (Figure 22), S-CIELAB and ∆Eab have
almost the same mean. iCAM and SSIM has a higher mean value, but iCAM cannot be differeniated from the
rest. S-CIELAB can be rated better than SSIM.

From this S-CIELAB and ∆Eab seems to be the algorithms when we take into account the correlation
coefficient.

4.4 Difference between the two methods

The results from the image difference metrics (Figure 15) is compared to the results from the eye tracker weighted
results (Figure 21). In the first scene the two ways score almost the same corralation as seen in Figure 23, but
SSIM improves slightly with 0.05. In the second scene SSIM and iCAM get a higher correlation, this is mainly
because of the improvement in the LP5 and LM5 images in the Tore scene. In the third scene all metrics have
an increased correlation coefficient. This third scene (JP) has regions that are small and highly visible even
though the overall change is small. The eye tracker map has a higher weighting in this area, and this results in
an increased correlation. In the fourth scene S-CIELAB, iCAM and ∆Eab show only minor differences, while
SSIM shows a result of almost -0.05.
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Figure 23. Difference from the normal and the eye tracker weighted map

5. CONCLUSION

We have shown that applying eye tracker frequency maps to image difference metrics can improve the overall
correlation between the perceived image difference and the predicted image difference. Metrics that perform well
before applying the eye tracker map only have minor changes, but metrics that perform moderate increase their
correlation. Also in scenes where small regions are altered with highly visible changes, applying an eye tracker
map will improve the performance of the metric.

6. FURTHER RESEARCH

Using an eye tracker each time improve image difference metrics is time consuming and not very practical.
Further research would be to implement and test automatic gaze simulating region-of-interest algorithms, with
the results given here this could eliminate the need for using an eye tracker to create the frequency maps.
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