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Evaluation of Algorithms for the Determination of Color
Gamut Boundaries1

Arne M. Bakke, Ivar Farup� and Jon Y. Hardeberg�

Gjøvik University College, Gjøvik, Norway

E-mail: jon.hardeberg@hig.no

S
m
t
t
G

o
d
d
t
t
t
k
g
t
t

B
T
G
i
g
a
p
b
s
f
t
a
o

M
M
g
s
C
c
t
N
p

p
d
i

bstract. Several techniques for the computation of gamut bound-
ries have been presented in the past. In this article we take an

n-depth look at some of the gamut boundary descriptors used when
erforming today’s gamut mapping algorithms. We present a
ethod for evaluating the mismatch introduced when using a de-

criptor to approximate the boundary of a device gamut. First, a
isually verified reference gamut boundary is created by triangulat-
ng the gamut surface using a device profile or a device character-
zation model. The different gamut boundary descriptor techniques
re then used to construct gamut boundaries based on several sets
f simulated measurement data from the device. These boundaries
re then compared against the reference gamut by utilizing a novel
oxel based approach. Results from experiments using several
amut boundary descriptors are presented and analyzed statisti-
ally. The modified convex hull algorithm proposed by
alasubramian and Dalal performs well for all the different data
ets. © 2010 Society for Imaging Science and technology.
DOI: 10.2352/J.ImagingSci.Technol.2010.54.5.050502�

NTRODUCTION
he construction of a gamut boundary descriptor (GBD) is

he first step in the process of performing gamut mapping.
hile there has been extensive1 research done on the perfor-
ance of gamut mapping algorithms (GMAs), little has

een done to compare the performance and validity of the
ommonly used GBDs. Since many of the GMAs depend on
nding the intersection between lines and a gamut bound-
ry, any inaccuracies introduced by using a GBD that fails to
ccurately represent the gamut boundary result in errors
ater in the gamut mapping process. If the GBD overesti-

ates the gamut volume in some areas of the color space,
he GMA may result in colors that are still not reproducible
n the output device. Similarly, gamut underestimation leads
o unnecessary image gamut compression, leaving parts of
he destination gamut unused. GMAs that utilize both the
ource and the destination gamut may further magnify the
roblem, since both gamut boundaries may contain errors.

Although exact determination of the gamut boundary is
mportant to the result of any GMA, different GBDs have
een used seemingly arbitrarily by different researchers.

IS&T Member.
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olor Imaging Conference, November, 2006, Scottsdale, AZ.
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. Imaging Sci. Technol. 050502-
imilarly, for gamut metrics like, e.g., the gamut volume, the
ethod used for determining the GBD is often left unmen-

ioned and the results are thus hardly comparable. No sys-
ematic comparison of existing methods for determining the
BD is known to the authors.

The purpose of the present work is to provide a thor-
ugh comparison of the most commonly used methods for
etermining the GBD. The methods are first described and
iscussed in terms of algorithmic complexity, feasibility of

he resulting geometric structure and specific implementa-
ion issues. Then, the algorithms are compared with respect
o how accurately they are able to reproduce the surface of
nown gamuts from different data sets extracted from the
amuts and for different choices of algorithm parameters. It
urns out that there is great variability of the performance of
he algorithms, particularly for the most sparse data sets.

ACKGROUND AND STATE-OF-THE-ART
here are several known approaches for determining the
BD. Some depend on knowledge concerning the character-

stics of a device, and are therefore only applicable to device
amuts of the specific device type. These methods construct

device model, and the gamut boundary follows from
hysical limits of the device, e.g., ink coverage. Approaches
ased on analytical models are clearly unsuitable for color
ets that do not follow such constraints, while other methods
or gamut boundary computation may be used also to de-
ermine the gamut boundary of images. Such methods usu-
lly require measured data sets as input, in the form of col-
rs (points) in a color space.

odel based methods
acAdam2 presented an early attempt at a model based

amut. An approximation of the gamut was found by as-
uming box-shaped colorant reflectance and calculating
IEXYZ tristimulus values. The gamut of a printing system

an also be determined by using the Kubelka-Munk3 equa-
ions, as shown by Meyer et al.4,5 in 1993. Mahy used the
eugebauer6 equations to calculate the gamut of a multi-ink
rinting system.7

Inui8 introduced an algorithm for the computation of
rinter based color gamuts, using an assumed correspon-
ence between color space and dye amount space. Herzog

ntroduced an analytical mathematical description of color
9,10
amuts called gamulyts, where the gamut is represented

Sep.-Oct. 20101
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y a deformed cube. By using a set of distortion functions, a
ube is deformed to fit the color gamut. An extension of this
odel can also be applied to systems with more than three

olorants.

oint based methods
t is possible to obtain a device gamut easily by assuming
hat the gamut boundary of a device is preserved between
evice dependent and device independent color spaces. A
imple approximation of the gamut can be found by mea-
uring the colors that make up the extreme points of the
amut. Stone et al.11 proposed that the gamut can be repre-
ented by planes connecting these extreme points.

In order to represent the gamut more accurately, Bolte12

erformed a direct triangulation of measured colors found
y printing patches that make up a regular structure in the
evice color space. One of the problems with this approach

s that characteristics of the printing process and the color
pace transformation can lead to the order of the tetrahedra
ertices being reversed, and internal points in the device
olor space structure may thus end up outside the triangles
hat form the surface of the regular structure when con-
erted to CIELAB. This method can be further improved by
nforcing a check for mirrored tetrahedra in the device in-
ependent color space, and testing for points on the outside
f the elements that make up the surface of the regular
tructure.13,14

If the data measurements do not follow any structure, it
s still possible to determine the gamut boundary by apply-
ng one of several geometric algorithms to find the surface of
he points. The convex hull of the measurement data can be
ound by using, e.g., the quickhull15 algorithm. This results
n a convex approximation of the gamut,4,5 and has been
sed to find gamuts from ICC profiles.16 The main problem
ith this approach is that device gamuts usually have some

oncave sides. If the data originates from a reasonably well-
ehaved printer, it is possible to compute the convex hull in
linearized dye density space,17 where the points are as-

umed to be more convex.
Balasubramian and Dalal18 presented an improvement

f the standard convex hull method. By introducing a non-
inear method as a preprocessing step before the convex hull
s found, the gamut surface is given the ability to follow
oncavities in the original data set.

A different approach to gamut determination is to find
aximum chroma for cells having a specific lightness and

ue. By imposing a regular grid structure on these points,
riangulation can result in a gamut surface,19,20 commonly
eferred to as a “mountain range.” Segment maxima21 is a
elated method that performs a subdivision of the color
pace into segments based on the polar coordinates of the
olors. The segment maxima technique has also been ap-
lied to image data,22,23 where the mass center can be used
s the origin of the spherical coordinate system.

Cholewo and Love24 used alpha shapes25 to find the
amut boundary of both devices and images. The alpha pa-
ameter controls the level of details of the computed shape,
 O

. Imaging Sci. Technol. 050502-
nd Cholewo and Love suggest that the optimal � should be
ound by interactively changing the shape.

Giesen et al.26 proposed the use of a discrete flow com-
lex to compute image gamuts. By using a grid representing

he relevant part of the color space, and computing the dis-
ance to the nearest sample in the point data, a discrete
hree-dimensional (3D) map of the color space can be
ound. By comparing the grid value at a certain grid position
o its neighbors, a flow is established. Traversal of this struc-
ure then decides which grid points are considered part of
he gamut.

HE ALGORITHMS
hile many GBDs have been suggested for use in, e.g., color

amut mapping, few are in use today. We will study the
erformance of some commonly used GBDs, as well as some

hat have been shown to have advantages when compared
ith these algorithms. We limit our investigation to algo-

ithms that can be applied to any type of generic color data
n a three-dimensional opponent color space, thereby ex-
luding model-based algorithms. The convex hull is used by
any when computation of gamut volumes is desired, al-

hough the algorithm is known to overestimate the gamut
olume. Bala’s modified convex hull represents a great im-
rovement over the standard convex hull, but is not as well
nown. The segment maxima GBD is found in the reference

mplementation of gamut mapping algorithms distributed
y the CIE. The alpha shapes algorithm is utilized in many
elds for finding the shape of a set of points, but is not
ommonly used to find color gamuts. The alpha parameter
eeds to be decided, and there is no standard method for
oing this. We will also investigate further the performance
f the uniform segment visualization method suggested by
akke et al.29 that has recently been proposed as an alterna-

ive to the segment maxima algorithm.
We have implemented the different methods for con-

tructing the gamut boundaries using the ICC3D
27 applica-

ion as a basic framework for the comparisons. This tool can
isualize a variety of GBDs, allowing visual verification of
ur results. Its modular architecture is particularly suited for

mplementation of new algorithms.

onvex hull
he convex hull of a set of points X is the smallest convex set
ontaining X. Any point in space that can be defined as a
onvex linear combination of the points defining the convex
et, i.e., a linear combination with weights greater than or
qual to 0 and sum equal to 1, is a part of the convex hull of
he data set.

The convex hull of a set of colors is often used as an
pproximation of a color gamut. The convex hull can be
ound using, e.g., the quickhull algorithm. The availability of
his algorithm in tools commonly used for data analysis is
ikely to be one of the main factors advocating its use. The
lgorithm has also been in use for a relatively long time, an
ts properties are well known. The expected complexity of
he algorithm is O�N log�N��, but it has a maximum limit of

2
�N � The convex hull is guaranteed to contain all of the

Sep.-Oct. 20102
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ata points, which is an important advantage when compar-
ng it to other GBDs.

However, the convex hull overestimates the volume of
amuts. Color gamuts in perceptual color spaces generally
ave concave surfaces that the convex hull algorithm does
ot detect.

odified convex hull
he modified convex hull algorithm is based on the im-
rovements suggested by Balasubramian and Dalal,18 result-

ng in surfaces similar to the one illustrated in Figure 1.
efore the convex hull is computed, new vertex coordinates

�� are calculated from the original position p� using a gamma
unction based on the distance to the color space center c�,
nd a parameter, �.

p�� = �p� − c���
p� − c�

�p� − c��
+ c� . �1�

By using a � between 0 and 1, the data are made more
onvex before the convex hull algorithm is applied. A � value
f 1 does not alter the data, and is equivalent to a standard
onvex hull, while values closer to 0 move all colors closer to
he surface of a sphere. By increasing the convexity of the
ata, points close to the convex surface are made part of the
urface. The result is a gamut boundary that more closely
ollows the perceived surface of the data set, including con-
avities. However, if the data set contains internal points, the
hoice of a smaller � increases the probability that these
oints are added to the surface.

When applying the modified convex hull algorithm to a
ata set consisting of surface colors in order to construct a
urface composed of polygons, it might seem obvious that
sing a very small � is the best solution, since this ensures

hat all the points are made part of the surface. However,
here are two important considerations that make such an
ssumption false:

(i) The surface may fold in on itself since the curvature
f the gamut surface can cause lines between the chosen
enter point and the gamut surface to cross the gamut
oundary twice before the final intersection with the gamut
urface. This creates the possibility that points are made part
f the surface structure in the wrong place, making the

igure 1. A gamut surface found by using the GBD proposed by
alasubramian and Dalal.
amut surface appear jagged with artificial holes. f

. Imaging Sci. Technol. 050502-
(ii) While a very small � value ensures that all of the
urface points are part of the resulting surface, the operation

ay lead to the inclusion of a set of erroneous edges that
eplace edges that should be part of the surface. This can
ypically be seen most clearly along edges between the pri-

ary and secondary color corners of the gamut, where the �
xpansion can lead to notches in the gamut surface. Figures
(a) and 2(b) illustrate this effect.

onvex hull in CIEXYZ
evice gamut measurements generally do not constitute

ompletely convex objects in CIELAB or related color spaces.
uyler28 proposed that the convex hull algorithm be per-

ormed in CIEXYZ, and the resulting surface transformed to
he desired color space. Guyler argued that color data tend to
e more convex in the CIEXYZ space, and that this approach
hus results in a better approximation.

First, the data points are converted from their original
olor space to CIEXYZ. The convex hull of these vertex co-
rdinates is computed and represented by a list of facets, and
he connectivity and vertex information of these facets is
sed to construct a surface in the original color space by
eplacing the CIEXYZ coordinates with the original data.

egment maxima
he segment maxima GBD is provided in the sample imple-
entation of GMAs provided by the CIE technical commit-

ee on gamut mapping (TC 8–03), making it a highly rel-
vant basis for comparison. Segment maxima divides the
olor space into a number of segments around a center
oint. Each segment represents a uniform interval of spheri-
al coordinates (polar and azimuth). For each segment, the
olor with the largest radius from the color space or gamut
enter is stored. These points can then be triangulated by
aking advantage of the structure created by the use of uni-

igure 2. The effect of the � parameter on the construction of gamuts
sing the modified convex hull algorithm. �a�The use of a small � value in
he pre-processing step has caused artifacts in the surface. �b� A slightly
arger � results in a surface without artifacts.
orm intervals.

Sep.-Oct. 20103
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Segment maxima, while theoretically a simple and
traightforward algorithm, is not easily implemented in a
ay that provides optimal results. The basic algorithm is fast

ince it takes time linearly proportional to the number of
nput points, and requires little storage. All that is required is
he coordinates of the colors with the largest radius per seg-

ent. However, the possibility of empty segments (segments
hat do not contain any measurement colors) generates the
eed for an interpolation algorithm. The source code pro-
ided by Morovič, available from the CIE Division 8 home
age, provides a reference implementation of segment
axima as well as an intricate interpolation function. In this

tudy, we have followed this implementation closely. Good
nterpolation is necessary to avoid artificial concavities
aused by a mismatch between the uniform segment divi-
ion and the data measurements. The creation of the surface
riangles from the extreme points also result in added com-
lexity since there are a number of special cases that need to
e handled when triangulating the surface:

(i) The extreme points of four neighboring segments
orm a surface element consisting of a four-sided, nonplanar
olygon. This can be divided into triangles in two different
ays, depending on the choice of diagonal. However, due to

he positioning of the points, sometimes one of the triangu-
ations results in a triangle that faces inwards when viewed
rom the outside toward the gamut center, as illustrated by
igure 3(a). Implementations of the segment maxima GBD
hat create a surface structure consisting of triangles should
void this folding of the gamut surface by selecting the other
iagonal when such problems are detected. This results in

he triangles in Fig. 3(b), where the dotted diagonal line
orrectly identifies a shared internal edge.

(ii) The bottom and the top of the gamut need special
onsiderations when constructing a surface from the ex-
reme points. This can be solved by adding an artificial top
r bottom point, calculated from the surrounding data
oints. Alternatively, it is possible to perform a two-
imensional (2D) triangulation of the neighboring points
ased on their position in the plane perpendicular to the
-axis (or equivalent).

lpha Shapes
delsbrunner and Mücke25 presented a technique for calcu-

ating approximations to shapes of a set of points in 3D.
hese approximations, named alpha shapes, are constructed

rom a 3D Delaunay triangulation of the point set, using a
arameter � to determine which tetrahedra, triangles, edges,
nd points are part of the shape. The simplices having points
uch that there exists a sphere with a radius less than or
qual to � containing these points are part of the specified
lpha shape. When applied to measurement data, � should
e large enough to ensure that the shape consists of one
ingle part made up of interconnected simplices.

omputationally, the complexity of the algorithm is defined p

. Imaging Sci. Technol. 050502-
y the Delaunay triangulation in n dimensions, which is
quivalent to finding the convex hull of the same number of
oints in n+1 dimensions.

niform Segment Visualization
he uniform segment visualization29 method is an attempt

o combine the modified convex hull algorithm with a
egment-based preprocessing step to reduce the number of
oints used to define the gamut surface. First, the color
pace is divided into segments using a sphere tesselation
echnique to create segments having a more uniform size
han existing algorithms. Similar to segment maxima, for
ach segment the point with the largest radius is kept for
urther processing. The modified convex hull algorithm is
sed to construct a surface from these points.

XPERIMENTAL METHOD
n order to perform objective evaluations of the perfor-

ance of GBDs using our method, it is necessary to be able
o construct a reference surface that contains all the data

(a)

(b)

igure 3. The two different triangulations of segment maxima points. The
ncorrect triangulation results in overlapping triangles. �a� Incorrect trian-
ulation. �b� Correct triangulation.
oints and follows the data set closely. This surface can then

Sep.-Oct. 20104
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e used when analyzing the performance of each algorithm.
e base our method on the use of device data and gamuts.

he advantage of this approach is that these data sets, unlike
mages, have an internal structure that can be utilized in the
reation of the reference gamut surface. We restrict the
hoice of devices to device types whose color spaces have
hree components, thereby further simplifying the task of
onstructing such a reference surface. Simulated data from a
umber of different RGB and CMY based devices can then
e used to ensure the general validity of the results.

We have performed an evaluation of the performance of
everal different GBDs, using several different parameters
nd a selection of different data sets.

evices and profiles
ineteen ICC profiles were used as the basis for the experi-
ent, providing the means to create the simulated measure-
ent data. In order to test the performance of the algo-

ithms on data from different devices, three different types of
rofiles have been included, as can be seen in Table I. The
eneric profiles include RGB working spaces like Adobe
GB. The monitor profiles include an assortment of moni-

or profiles, while the printer profiles include profiles for
ome Canon and Epson printers. All device profiles are ge-
eric profiles provided by the manufacturers.

All profiles have a three-component device color space,
hile only the printer profiles contain 3D lookup tables. We
tilize a color management module (CMM) with the relative
olorimetric option to generate simulated data points by

Table I. The device profiles used for generating test data.

evice Device type

AL/SECAM RGB Generic

olorMatch RGB Generic

dobe RGB �1998� Generic

pple RGB Generic

est RGB Generic

ruce RGB Generic

ide Gamut RGB Generic

TSC RGB Generic

hilips 202P4 Monitor

pple Studio Display 21� Monitor

ony STYLEPRO CPD-E240/B Monitor

itachi CM821FET Monitor

EC MultiSync LCD1970GX Monitor

ony CPD-E530 Monitor

anon iPF8000 Printer

anon iPF5000 Printer

pson Stylus Pro 10600 Printer

pson Stylus Pro 4880 Printer

pson Stylus Photo R2400 Printer
onverting colors from the device color space to CIELAB. o

. Imaging Sci. Technol. 050502-
ata Sets
n order to evaluate the methods for construction of gamut
oundary descriptors, each method is then applied to a va-
iety of simulated data sets extracted from the given device
amut, and the resulting gamuts are compared against the
eference. We use these general types of data sets:

(i) Data sets consisting of surface points. These data sets
an be constructed using uniform sampling of each of the
ix sides of the color cube, eliminating shared points along
he edges that have already been added to the set.

(ii) Data sets that in addition to surface points also in-
lude interior gamut points, typically found by utilizing uni-
orm sampling along each of the three axes of the device
olor space.

(iii) Data sets based on standard test charts, e.g., TC 2.83
nd TC 9.18 RGB test charts.

The effect of different measurement data was simulated
y using the ICC profiles to transform data from the device
olor space to CIEXYZ values. The generated data points
hould all be on the inside of the device gamut and the data
ets represent possible alternative bases for generating the
amut surfaces.

etric/Baseline Truth GBD
he first step in our proposed method for GBD evaluation
onsists of constructing a reference gamut boundary for
ach of the devices that are to be part of the experiment.
his surface is constructed by performing a dense sampling
f the six sides of the three-dimensional RGB/CMY cube in
he device color space, followed by transforming these data
nto the CIELAB color space.12 The resulting points are then
riangulated, creating a surface that closely follows the per-
ect gamut boundary of the device. It is necessary to inspect
his surface to make sure that the devices do not exhibit
ehavior that causes this method to fail.13,14 We have visually
onfirmed that the reference gamut of each device encloses
ll possible colors of that profile.

The surfaces can be evaluated by comparing a number
f attributes against the reference surface. One such attribute

s the gamut volume, which can be used as an indicator of,
.g., gamut overestimation. However, while the existence of a
olume difference is indicative of a difference in the gamut
oundaries, the opposite is not necessarily the case. There
re obviously an infinite number of gamuts that may have
he same volume, but whose surfaces are not equal.

This suggests the use of an alternative metric. The error
ntroduced by a gamut boundary descriptor refers to the
ifference between the space contained by the GBD surface
nd the reference gamut. We introduce the concept of rela-
ive gamut mismatch, which refers to this difference volume
parts of the color space that are contained within exactly
ne of the gamuts and not the other) divided by the volume

f the reference gamut,

Sep.-Oct. 20105
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ri =
V�Gi \ Gref� + V�Gref \ Gi�

V�Gref�
. �2�

When comparing gamuts, it can be necessary to deter-
ine the union, intersection, and the difference between the

wo objects. In order to perform this operation fast, as well
s independently of the structure of different GBDs, we em-
loy a voxel based technique. Every gamut is represented by

3D grid of binary values, where each value indicates
hether the associated volume in the color space lies within

he gamut boundary. The grid dimensions are chosen to take
nto account the perceptual scale along each axis, using the
ame subdivision as demonstrated by Giesen et al.26 in
IELAB. The advantage of this data type is that each voxel
nly requires one bit of memory storage, and the difference
etween gamuts can be found easily by using an xor opera-
ion on the bits that represent two gamuts. Figure 4 displays
he voxels that are the result of such an operation. This
liminates the need to compute the intersection of tetrahe-
ra to compare the gamuts, and allows comparisons between
amuts represented by different structures. The construction
f the grid depends only on a simple inside/outside test for
ach GBD type, and can thus be optimized by traversal of
he gamut structure.

hoice of Algorithm Parameters
he classical convex hull and the convex hull in CIEXYZ are
ble to construct a surface without setting any additional
arameters. When using the modified convex hull algorithm,
ome parameters for the preprocessing step can change the
esulting gamut. First, one needs to decide on a center point
hat is used to calculate the radius of the points. We use the
enter of the CIELAB color space (50, 0, 0) as this point. The

parameter defines the amount of nonlinear correction of
he radius, in effect deciding the amount of concavities in
he gamut surface. We include results from gamuts calcu-
ated using 0.05, 0.2, and 0.5 as the value of �.

The alpha shapes algorithm defines a series of shapes,
hile the choice of alpha determines the final gamut. If
=�, the alpha shape will be equal to the convex hull, while
=0 results in just the disconnected input points. When

pplied to device measurement data, we only need to decide
he minimum and maximum values of alpha for which each

Figure 4. The voxels that represent the mismatch between 2 gamuts.
etrahedron of the Delaunay triangulation should be in- h

. Imaging Sci. Technol. 050502-
luded in the gamut object. Disconnected triangles, edges,
nd points are unsuitable for most gamut applications (e.g.,
amut mapping).

Some optimization algorithms have been proposed for
electing a suitable alpha value, e.g., by finding the alpha
hich results in the largest connected group of tetrahedra
ithout holes.24 However, testing the connectivity of a graph
uilt from the edge information of the tetrahedron structure

s potentially slow. The graph state may switch back and
orth between full connectivity and disconnected parts as the
lpha value decreases, making it difficult to optimize the
earch for the correct alpha. Testing also shows that using
his optimized alpha value is problematic, as the resulting
amut and the reference gamut can be quite different for
ome data sets. Based on this test, as well as empirical data
howing that the convex hull is relatively consistent in its
verestimation of the gamut volume, we choose the greatest
lpha value satisfying the condition that the resulting alpha
hape has a volume equal to or less than 90% of the convex
ull. We refer to this algorithm as AS10% in the following
gures, meaning alpha shape where 10% of the volume has
een removed from the starting point of �=�. Due to al-
orithm complexity and running time, we have not been
ble to calculate the alpha shapes for all the data sets.

The segment maxima algorithm depends on the selec-
ion of a center point. We use the color space center in our
alculations, similar to our choice for the modified convex
ull. We use 8, 12, and 16 subdivisions of the angles around

his center point.

ata Analysis
any methods that are currently in use for analyzing results

epend on assumptions about the distributions of the un-
erlying data. These assumptions, e.g., that results can be
pproximated using the normal distribution, and that algo-
ithms have the same variance, cannot be made for GBD
lgorithms. In order to avoid this we have utilized statistical
ethods that do not make any assumptions about the dis-

ributions. We have used box plots to display the experimen-
al data. By using this technique, we utilize the data directly
nd do not depend on the data following a specific statistical
odel. The plots show the median value as well as the upper

nd lower quartiles of the grouped data. The full range of
he data is also plotted, along with any identified outliers.

We then use the sign test to test if there is a statistically
ignificant difference between the performance of the algo-
ithms. The nonparametric property of this test allows us to
ompute statistics without making any assumptions regard-
ng the distribution of the results of the algorithms. The
airing of data points compensates for the difference in per-

ormance between the data sets and results in detection of
ignificant differences even when plots of combined results
o not appear to show any significant difference between
lgorithms.

While the performance of the algorithms can vary
reatly, the probabilities derived from the sign test do not
how the magnitude of the differences. Several algorithms

ave problems when they are applied to certain types of
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ata, while the sign test does not put any more weight to
hese results than to minor differences. Although the sign
est can detect statistically significant differences in many
ituations, the box plot might reveal that the actual practical

(a)

(b)

(c)

igure 5. Overall results grouped by algorithm, device and data set. We
ee that the choice of data set and algorithm influences the accuracy of
he constructed gamut boundaries. The algorithms perform slightly worse
hen used on data from printers than the other device types. �a� The
erformance of the GBD algorithms for all data sets. �b� The performance
f all algorithms for each device. �c� The performance of all algorithms for

he different data sets.
ifference between the two algorithms is small. n

. Imaging Sci. Technol. 050502-
ESULTS AND DISCUSSION
verall Results
e have computed a total of 4047 gamut boundaries that

ave been compared with reference gamuts. The overall re-
ults for the different algorithms are presented in Figure
(a). We see that the average performance and the variance
f the algorithms vary greatly. While some algorithms gen-
rally perform well for almost all types of input, others do

(a)

(b)

(c)

igure 6. Results of the algorithms for the different types of data sets. �a�
he performance of the algorithms for data sets containing surface points.
b� The performance of the algorithms for data sets containing internal
oints. �c� The performance of the algorithms for data sets from actual
olor charts.
ot give a satisfactory result for certain data sets. The convex

Sep.-Oct. 20107
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ull algorithm consistently overestimates the gamut size by
lose to 10%. The alpha shapes method performs better, but
t is not as good as the most accurate algorithms. The modi-
ed convex hull algorithm generally results in accurate
amut boundaries. We see that using �=0.2 gives both a
etter median gamut mismatch as well as a smaller variance

(a)

(c)

(e)

Figure 7. The performance of convex hull based al
�b� Modified convex hull with gamma=0.5. �c� Mo
hull with gamma=0.05. �e� Convex hull computed
han �=0.5. Using an even smaller � increases the variation v

. Imaging Sci. Technol. 050502-
ithout improving the median mismatch, making it less
uitable for arbitrary data sets. The convex hull in CIEXYZ
as a very small median mismatch, but the range of the
esults is relatively high. The segment maxima algorithm
oes not perform well. Although the average accuracy is

mproved when a higher number of segments is used, the

(b)

(d)

(f)

s for the different types of data sets �a� Convex hull.
onvex hull with gamma=0.2. �d� Modified convex
CIEXZ color space. �f� Alpha shapes.
gorithm
dified c
in the
ariance increases dramatically.

Sep.-Oct. 20108



r
a
f
t
o
g
s
c
t

t
g
t

s
n
l
t
o
t
t
g
s
f

A
T
u
e
f
o
o

Bakke, Farup, and Hardeberg: Evaluation of algorithms for the determination of color gamut boundaries

J

Figure 5(b) shows that the performance of the algo-
ithms is mostly independent of the device. However, the
ccuracy of the computed gamuts seems to be slightly worse
or the printer profiles compared to the other profiles. Al-
hough the gamuts computed for data from printer profiles
n average have a higher error than for the two other
roups, the large in-class variance seen by grouping the re-
ults by the device type make it difficult to draw any clear
onclusions. This tendency is in part caused by higher varia-

(a)

(c)

Figure 8. The performance of segment based alg
maxima with 8�8 subdivisions. �b� Segment max
16�16 subdivisions. �d� Uniform segment visualiz

Figure 9. The segment maxima GBD.
ion in sample density in CIELAB for printer profiles when c

. Imaging Sci. Technol. 050502-
he device color space is sampled uniformly. Also, the printer
amuts have a more irregular shape than the other device
ypes based on simpler device models.

When we group the data by the different data sets, we
ee that the accuracy of the gamuts increases with a higher
umber of simulated measurement points, up to a certain

imit where adding additional input points does not improve
he performance of the algorithms. Clearly, a dense sampling
f the gamut surface is preferable. Figure 5(c) also shows
hat using data sets containing only surface points reduces
he number of points necessary to achieve a given level of
amut accuracy, e.g., 3752 surface points gives about the
ame results as using 19 683 points computed from a uni-
orm subdivision of the device color space.

lgorithm Performance for the Different Data Sets
he selection of measurements used to calculate color gam-
ts is important, as we can see from the significant differ-
nces in gamut mismatch between algorithms applied to dif-
erent types of measurement data in Figure 6. The inclusion
f measurements within the gamut may reduce the accuracy
f the resulting gamut since the GBDs, with the exception of

(b)

(d)

for the different types of data sets. �a� Segment
h 12�12 subdivisions. �c� Segment maxima with
orithms
ima wit
ation.
onventional convex hull, may include some of the internal

Sep.-Oct. 20109
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oints in the final gamut surface. It is therefore possible to
ptimize the performance of the GBD by selecting measure-
ents specifically for the task of gamut boundary determi-

ation.
In the case of previously measured test charts

Fig. 6(c)], we see that the segment maxima algorithm does
ot perform well with such a small number of data points
hen internal points are included. It can be advantageous to

pply a device characterization model, and use this to create
rtificial surface points. However, this approach will fail in
ases where internal points in the device color space are part
f the surface in CIELAB or a similar color space. Even if the
ransform from device color space to CIELAB does not dis-
ort the relationship between the positions of the data, it is
till not possible to perform a straightforward trianglulation
f the surface points for all devices. In particular, it is not
ossible to specify only surface points covering the entire
IELAB gamut of devices having a color space with more

han three components, e.g., CMYK printers.

ndividual Algorithm Performance
igures 7 and 8 show the performance of the individual
lgorithms grouped by data set. The conventional convex
ull technique overestimates the volume by a significant
mount, but can be useful to identify colors that are guar-
nteed to be on the outside of the gamut boundary (given
hat the convex hull is based on a representative sampling of
he device color space).

Results from the experiment, along with empirical evi-
ence, suggest that the modified convex hull algorithm per-

orms well on a wide variety of measurement data, assuming
hat the � parameter is set to a sensible value. The results
how that a choice of 0.2 as the value of � gives accurate
amut boundaries for the data sets that have been tested.
he modified convex hull algorithm shows a very stable per-

ormance, generally requiring few data points to generate an
ccurate gamut.

Computing the convex hull in the CIEXYZ color space
esults in a very small median gamut mismatch, but the

able II. A comparison of the gamut mismatch of the algorithms when used on data f
ismatch of the algorithm in the row is worse than the algorithm in the column, w

orresponding p-value is less than 0.05, while � and � indicate an even more signi

CH CH 0.5 CH 0.2 CH 0.05

H � � �

H 0.5 � � �

H 0.2 � � �

H 0.05 � � �

H CIEXYZ �

M 8 � � � �

M 12 � � � �

M 16 � � �

SV � � � �
esults vary greatly. The somewhat unusual distribution of s

. Imaging Sci. Technol. 050502-1
he results of the CIEXYZ convex hull algorithm can be
xplained by the convex nature of the gamuts of our monitor
nd generic device profiles in CIEXYZ. The large variance
ndicates that this algorithm does not work well for the
rinter gamuts because of their concavities in this color
pace. In fact, the algorithm performs worse than the normal
onvex hull in the case of the tested printer gamuts.

The alpha shapes algorithm does not perform as well as
he modified convex hull. This algorithm has not been tested
n the data sets containing a high number of points due to
he computational complexity of the Delaunay triangulation.
he alpha shapes algorithm also has the disadvantage that it

s not as easy to implement as some of the better performing
lgorithms.

The segment maxima algorithm performs well on mea-
urement data consisting of densely sampled surface points,
here the use of a higher number of segments increases the
uality of the gamut boundary without the risk of adding

nternal points. Additionally, this method results in a limited
umber of extreme points that can easily be specified by
hanging the number of segments, which is particularly
uited to inclusion in file formats where size is important.
ne of the issues with the segment maxima GBD is that the

urface points are positioned much closer together near the
op and the bottom of the gamut, as seen in Figure 9. This is
aused by the uniform subdivision of the spherical coordi-
ate space into segments, and results in a need for additional
ample points near the device white and black point to avoid
nwanted artifacts in the gamut boundary.

The USV algorithm combines many of the advantages
f a segment based method with the stable results of the
odified convex hull. If a simpler surface consisting of fewer

urface points is desired, this is clearly a better choice than
he segment maxima method in terms of accuracy.

ONCLUSIONS
e have introduced a method for GBD evaluation, and

ooked at how several different GBDs perform on some data

standard TC 9.18 test target. If the table cell contains �, this indicates that the gamut
indicates that the opposite relationship is true. A single � or � is used when the
alue of less than 0.01

CH CIEXYZ SM 8 SM 12 SM 16 USV

� � � �

� � � �

� � � �

� � � �

� � �

� � �

� � � �

� � �

� � �
rom the
hile �
ficant p-v
ets. The choice of GBD and parameter values influences the
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urface that is constructed, and we have shown that it is
mportant to make an informed choice based on the type of
ata and the requirements that apply to the situation.

The modified convex hull algorithm performs well on a
ange of different data using �=0.2. This is clearly the

ethod that should be used if there is no specific prior
nowledge about the data that indicates that another algo-
ithm would perform better. Table II shows that no other

ethod performs better than this when looking at paired
omparisons of the algorithms for the standard TC 9.18
easurement data. The convex hull in CIEXYZ is a very

ood choice if the device is known to have a convex gamut
n this color space. The alpha shapes method does not per-
orm as well as the modified convex hull for most data sets
sing our suggested � parameter, but has the possible ad-
antage that with the right tool the � parameter can be
djusted interactively to give a pleasing visualization of the
amut for a specific data set. The uniform segment visual-
zation algorithm does not follow densely sampled surface
ata as well as the modified convex hull due to its use of a
educed number of surface points. However, the surfaces
onstructed using USV show a consistent performance while
voiding the use of an excessive number of surface triangles
nd vertices.
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